
Mulaosmanovic et al. Plant Methods           (2020) 16:62  
https://doi.org/10.1186/s13007-020-00605-5

METHODOLOGY

High-throughput method for detection 
and quantification of lesions on leaf scale based 
on trypan blue staining and digital image 
analysis
Emina Mulaosmanovic1*† , Tobias U. T. Lindblom2†, Marie Bengtsson3, Sofia T. Windstam4, Lars Mogren1, 
Salla Marttila5, Hartmut Stützel6 and Beatrix W. Alsanius1

Abstract 

Background: Field-grown leafy vegetables can be damaged by biotic and abiotic factors, or mechanically damaged 
by farming practices. Available methods to evaluate leaf tissue damage mainly rely on colour differentiation between 
healthy and damaged tissues. Alternatively, sophisticated equipment such as microscopy and hyperspectral cameras 
can be employed. Depending on the causal factor, colour change in the wounded area is not always induced and, 
by the time symptoms become visible, a plant can already be severely affected. To accurately detect and quantify 
damage on leaf scale, including microlesions, reliable differentiation between healthy and damaged tissue is essential. 
We stained whole leaves with trypan blue dye, which traverses compromised cell membranes but is not absorbed in 
viable cells, followed by automated quantification of damage on leaf scale.

Results: We present a robust, fast and sensitive method for leaf-scale visualisation, accurate automated extraction 
and measurement of damaged area on leaves of leafy vegetables. The image analysis pipeline we developed auto-
matically identifies leaf area and individual stained (lesion) areas down to cell level. As proof of principle, we tested the 
methodology for damage detection and quantification on two field-grown leafy vegetable species, spinach and Swiss 
chard.

Conclusions: Our novel lesion quantification method can be used for detection of large (macro) or single-cell 
(micro) lesions on leaf scale, enabling quantification of lesions at any stage and without requiring symptoms to be in 
the visible spectrum. Quantifying the wounded area on leaf scale is necessary for generating prediction models for 
economic losses and produce shelf-life. In addition, risk assessments are based on accurate prediction of the relation-
ship between leaf damage and infection rates by opportunistic pathogens and our method helps determine the 
severity of leaf damage at fine resolution.
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Introduction
Plant lesions (damage) are localised areas of dead cells 
on plant surfaces, typically occurring due to disease or 
trauma, such as wounding. Leafy vegetables are exposed 
to a diverse array of stress factors throughout pre- and 
post-harvest handling that can cause wounding. Such fac-
tors can be biotic (plant pathogens and insects), abiotic 
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(e.g. wind, hail, drought, sunburn, freeze injury, nutrient 
imbalance) or mechanical (originating from agricultural 
and processing practices). As leaves are the principal site 
for photosynthesis, they are essential for plant survival. 
Cellular injury results in loss of water and solutes from 
the damaged area [1, 2] and localised cell death, causing 
loss of chlorophyll and thereby reduced net photosyn-
thetic rate [3], affecting plant growth and metabolism [4]. 
Wounding leads to physical damage of cell membranes, 
disrupting both their function and the function of neigh-
bouring cells [5]. Depending on the severity of damage, 
wounding can cause abnormal growth of plant organs 
and result in decreased crop productivity and yield [6]. 
In addition, injury-related leached solutes on the leaf 
surface provide nutrients that can support prolonged 
survival of microbial pathogens [1], making injury sites 
preferred habitats for microorganisms [7]. Injury sites 
can also serve as ports of entry for opportunistic bacte-
rial pathogens [8] that lack the ability to break down pec-
tin, allowing invasion of intact leaf tissues. Because most 
opportunistic pathogen cells are smaller in size than plant 
cells, methods for detection and quantification of micro-
scopic, single-cell tissue damage on leaf scale are needed. 
Such methods would be very useful in research and also 
within the processing industry for leafy vegetables.

It is necessary to discriminate between damage that is 
manifested in the visible spectrum and damage without 
visible symptoms. Most current methods for evaluating 
plant damage, including damage due to plant diseases 
with visible symptoms, are based on visual assessment by 
trained experts. Such methods are laborious, time-con-
suming and prone to error, bias or optical illusions, and 
the precision decreases with rating time and when visual 
symptoms are small in size and abundant in number [9, 
10].

The agriculture sector has expressed interest in replac-
ing this mostly manual process with more automated, 
objective and sensitive approaches, such as digital (RGB), 
multispectral and hyperspectral imaging [11–13] and 
digital image processing [14–18]. Multispectral and 
hyperspectral imaging is a rather new, non-destructive 
but expensive technology, and generates large amounts 
of data that are sometimes difficult to collate and process 
[19]. Detection of single-cell injuries is challenging and 
currently based on microscopy, which is not an adequate 
tool for quantification of damage on leaf scale. An auto-
mated assessment such as RGB digital image analysis is 
faster, increases throughput, reduces subjectivity and is 
highly repeatable [14].

Digital image processing approaches are useful for 
detection, quantification and classification of plant 
pathologies [14, 17, 20–22], and measurement of plant 
disease severity [19, 23] in an objective manner. The basic 

approach for image processing techniques includes image 
pre-processing, segmentation, feature extraction, fea-
ture selection and classification of the diseased areas or 
leaves. Detailed surveys of established image processing 
techniques used for automated detection and classifica-
tion of lesions have been reported [18, 21, 24–26]. Con-
sidering damage, those approaches employ an array of 
lesion segmentation and classification techniques such as 
thresholding [27, 28], edge detection [29, 30], watershed 
[31], fuzzy c-means [32], superpixel clustering [33], color 
transformation [17], pixel classification [22], improved 
histogram segmentation method [34], and genetic algo-
rithms [14]. Popularly used classification techniques for 
plant lesion identification are K-means [35], K-nearest 
neighbor [36], Artificial Neural Networks [37, 38], Sup-
port Vector Machine [39–41], and Deep Learning [42–
47] as a new standard in digital image analysis. Due to the 
complexity and variation of lesion symptoms, and as the 
color of normal region and lesion region is also uneven 
and unclear [48], segmentation of lesions in an image is 
challenging. In attempt to overcome these challenges, 
some damage detection and classification approaches 
are based on combination of techniques, such as local 
threshold and region growing [49], auto-cropping seg-
mentation and fuzzy c-means [50], super-pixel cluster-
ing with K-mean clustering and pyramid of histograms of 
orientation gradients algorithms [51], and Markov Ran-
dom Field combined with edge detection [52], and more.

A reduction in the accuracy of disease severity estima-
tion algorithms has been reported [9] when the contrast 
between healthy and damaged tissue is low. Successful 
image segmentation relies on a sharp contrast between 
healthy (green) and damaged (yellow or brown) tissue, 
therefore infection needs to reach a threshold disease 
severity level in order to be detected. Furthermore, avail-
able damage detection methods based on image process-
ing are developed for multiple cell (macroscopic) lesions 
[14, 20], and lower limit of detection with regards to 
lesion size is seldom discussed, except for stating the effi-
cacy of proposed algorithms in detection of small lesions 
[20, 22]. Such a discussion needs to take place as the size 
of lesions is crucial for early detection of plant diseases 
and their controlling.

Leafy vegetables are mechanically damaged by cut-
ting and bruising throughout harvest and post-harvest 
handling. Mechanical damage does not cause changes 
in tissue colour as such and there is no visible con-
trast between damaged and undamaged tissues. Thus, 
the level of mechanical damage can only be manually 
assessed. For mechanical damage and early stage dam-
age detection, preceding a colour change, methods rely-
ing on natural colour change are invalid. Hence use of 
image processing quantification methods necessitates 
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enhancing the contrast between healthy and damaged 
leaf tissue. In the leafy vegetable processing industry, 
there is a need for a robust and rapid method for evalu-
ating produce quality, including damage quantification.

Trypan blue (TB) is a specific dye used for detection 
of dead plant tissue [53–55]. Staining with TB enables 
colour discrimination between intact-viable and dam-
aged cells [56]. Intact cells exclude the dye, whereas 
cells with damaged membranes are stained blue [56], 
enhancing the contrast between intact and damaged 
tissue. TB has been used for discriminating structures 
on leaf surfaces, as it also stains chitin in fungal cell 
walls [57, 58], and has been used extensively in plant 
pathology for studying plant-fungal interactions by 
microscopy [53, 59–61].

To the best of our knowledge, there is no existing 
method for detection and automated quantification of 
damage to leafy vegetables on leaf scale that combines 
TB staining with digital image analysis.

The aim of this work was to develop a robust method 
for (i) detection of multiple (macro) and single-cell 
(micro) lesions on leaf scale and (ii) automated quan-
tification and classification of lesion parameters using 
diverse established digital image processing methods 
combined with TB staining. Novelty of the proposed 
approach is in its simplicity achieved by combin-
ing clearing and TB staining with an array of widely 
employed image processing techniques such as OTSU 
and local thresholding, and DBSCAN and K-means 
clustering algorithms, enabling the proposed approach 
to distinguish healthy and damaged areas down to sin-
gle cell level correctly.

Materials and methods
Spinach (Spinacia oleracea) and Swiss chard (Beta vul-
garis subsp. vulgaris) were chosen as sample leafy veg-
etables when developing the high-throughput method. 
All plants were grown outdoors in southern Sweden 
in June 2017 under conventional farming practices for 
4  weeks (Vidinge Grönt, AB). Individual leaves were 
manually harvested at baby-leaf stage (BBCH stage 13) 
and transported to the laboratory in plastic containers 
(Orthex Sweden AB; 50 cm × 39 cm x 26 cm) to avoid 
additional damage.

The experimental procedure comprised two main 
steps (1) damage detection and visualisation, and (2) 
damage quantification using the LiMu image analy-
sis program (Fig.  1). LiMu results were (3) compared 
against results acquired with IMAGEJ software and 
manual assessment, and validated with IMAGEJ, fol-
lowed by (4) application of the method on an experi-
mental dataset.

Damage detection and visualisation
Detection and visualisation of lesions was performed on 
detached, whole leaves in a series of steps comprising 
clearing, staining and verification of staining by micros-
copy and RGB image acquisition.

Clearing protocol
To enhance the contrast between healthy and damaged 
(later stained) tissue, chlorophyll was removed from the 
tissue of detached leaves by soaking the whole leaves in a 
clearing solution composed of ethanol (Solveco, 95%) and 
acetic acid (Acros Organics, 99.6%) in a 3:1 (v/v) ratio. 
Similar clearing protocols are described by Schenk and 
Schikora [62] and Sharma [63]. All leaves were soaked in 
clearing solution until they became entirely transparent, 
usually overnight (15–17 h) on a rotary shaker (50 rpm) 
at room temperature (21 °C). Saturated clearing solution 
was replaced when necessary. Clearing was followed by 
washing in 50% ethanol for 15  min on a rotary shaker 
(50 rpm).

Staining protocol
The staining step to detect and visualise leaf tissue dam-
age was based on an existing protocol [59], but with 
modifications to TB concentration and staining time. In 
brief, whole cleared leaves were incubated in 0.01% TB 
(Sigma-Aldrich) in de-ionised water  (diH2O) for 4 h on a 
rotary shaker (50 rpm), followed by washing with  diH2O 
until the wash-off water was clear.

Verification of staining
To verify that only damaged areas were stained with 
TB dye, samples were studied using an inverted fluo-
rescent microscope. First, leaves were artificially dam-
aged with a Derma stamp (HudRoller Of Sweden; 36 
microneedles; 1  mm) and Derma roller (HudRoller Of 
Sweden; 1  mm), mimicking dot-like lesions. Damaged 
leaf samples were immediately cleared. To achieve bet-
ter visualisation of lesions, samples for microscopy were 
subjected to dual staining with TB and aniline blue (AB) 
dyes (Acros Organics). Aniline blue stains callose [59–
62], including trauma-induced callose deposited around 
lesions. Cleared leaves were first soaked in 0.01% TB 
staining solution in  diH2O (4  h), washed in  diH2O, and 
stained with 0.01% AB staining solution (2 h) in 150 mM 
 K2HPO4 (Merck) [62], followed by washing in 150  mM 
 K2HPO4. Leaf discs (Ø 10 mm) were then extracted from 
corresponding sites on TB-stained and dual-stained 
leaves (N = 5), using a coring tool (Harris Uni-Core). As 
a negative control for microscopy, discs from cleared 
leaves without the staining step were imaged (N = 5). 
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Microscopy was carried out using a Zeiss Axio Observer 
D1 microscope (Carl Zeiss, Jena, Germany) as described 
previously [62].

Image acquisition
Stained leaves were placed on a LED light table (DÖRR 
GmbH; 200 × 200 × 8  mm), with a few drops of water 

between light table surface and sample, and a barcode 
label was added. The barcode specified the year, plant 
species, experimental repetition, replicate and sam-
ple number of the leaf. A reference standard-size object 
(1  cm2) was included in each image. A camera (Canon 
EOS 5D Mark IV fitted with a Canon EF 50  mm 1:1.4 
lens) was placed vertically on a tripod, at a height of 

Fig. 1 Overview of the lesion detection and quantification method. There are two main steps (1) damage detection and visualisation by clearing 
and staining and subsequent microscopy verification of staining (scale bar 50 µm) and image acquisition; and (2) damage quantification using the 
LiMu image analysis program. LiMu program results were (3) evaluated by comparing them against results acquired with IMAGEJ software and 
manual assessment, and validated with IMAGEJ results, followed by (4) application of the method on an experimental dataset
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35.5 cm above the sample, and operated in manual expo-
sure mode (shutter speed 1/125, aperture 6.3, ISO 160). 
The height and objective magnification were adjusted 
for the field of view to include the LED light table, with 
leaf, sample barcode and standard-size object. The focus 
of the camera and its distance from the sample remained 
fixed for the duration of the experiment. Images were 
obtained in a dark room, with light only from an LED 
light table below the sample. Images were collected in 
raw format (CR2), with picture dimensions 6880 × 4544 
(31.26 MP) and approximate size 62–65 MB.

Preparation of image datasets: The original image 
dataset consisted of stained spinach (N = 300) and Swiss 
chard (N = 300) leaf images, negative control images 
(N = 25) representing undamaged leaves (cleared, 
unstained leaves and positive control images (N = 36) 
with different severity levels (low to high) of standardised 
artificial damage (cleared and TB-stained leaves).

The original dataset was divided into two subsets: (1) a 
primary image dataset, used to design the image analy-
sis pipeline, and (2) a test or experimental image dataset, 
used to evaluate the pipeline developed.

The primary image dataset comprised randomly 
selected images of spinach leaves (N = 100) from the 
original dataset. Selected images represented the range of 
plant damage expected to be encountered in the original 
image set.

The experimental image dataset consisted of the 
remaining images of spinach leaves (N = 200) and ran-
domly selected images of Swiss chard leaves (N = 200) 
from the original dataset, along with control images.

Damage quantification in LiMu image analysis pipeline
The LiMu image analysis program is written in Python 
and its main objectives are to identify and quantify leaf 
area and individual lesion (stained) areas and their mor-
phometric parameters (Fig.  2). The current application 
of the program consisted of (1) image pre-processing 
(Fig. 2a), i.e. finding leaf images, (2) processing (Fig. 2b), 
i.e. finding and segmenting regions of interest (ROIs, 
where ROI1 = leaf, ROI2 = lesion), (3) quantification of 
ROIs (Fig.  2c), (4) data management (Fig.  2d) and (5) 
post-filtering of segments (Fig. 2e). The LiMu image analy-
sis program enables segmentation of leaf and leaf lesions 
and quantification of total leaf area and of individual 
lesion areas and their morphometric parameters. The 
LiMu script for automated image processing of stained 
spinach leaves is provided in Additional file 1.

Pre‑processing
Unprocessed raw (Canon, CR2) 14-bit, Bayer-encoded 
image data were imported using the rawkit library 
[64]. To increase processing speed, image data were 

downscaled by a factor of 16 and pixel (px) values were 
linearly scaled between 0 and 1. In order to extract 
morphometric plant features from images, leaf regions 
(foreground) were segmented from the light table 
(background).

Background segmentation: To select the bright-
est object in image, representing the light table (back-
ground), non-linear intensity correction was conducted, 
followed by clustering on pixel indices using the hdbscan 
library [65]. Pixels belonging to the largest cluster were 
identified as the backlit light table.

Leaf image segmentation: Once the background was 
identified, the program was used to search for objects 
(holes) in the background, and the identified objects were 
classified as “leaf image”, “size marker image” (if present) 
and “barcode image”. The largest logical hole in the back-
ground was assumed to be the leaf image, which was 
extracted with surrounding background [LEAF] from the 
full resolution Bayer image. Leaf images were de-Bayered 
using a bi-linear de-mosaicing algorithm into a colour 
image [RGB].

Processing
The colour images [RGB] obtained consisted of leaf and 
leaf surrounding background (Fig. 1).

Leaf segmentation (ROI1): White balancing for nearly 
white background images [WHITE] was performed by 
creating a crude foreground/background mask and clus-
tering pixel indices and colour intensities of the colour 
[RGB] image with DBSCAN [66]. The background area 
was set to the largest area object. The second largest area 
object was the designated foreground (leaf ). The white 
image representing the light-table (background) was re-
constructed using the background and infilling by means 
of linear interpolation. Foreground non-white pixels 
(leaf ) were constructed using data from the nearby white 
pixels (background). A white-balanced/normalised image 
[NORM] was created by dividing the RGB image by the 
WHITE image. The foreground mask [MASK] was made 
using OTSU thresholding on a grey scale version of the 
white-balanced image. This mask also contains informa-
tion on actual holes in leaves, when present.

Lesion segmentation (ROI2): To retrieve absorbance 
information (blueness), the white-balanced image was 
transformed into an absorbance map using its negative 
logarithm [INV]. The inverted image [INV] was then 
converted to spherical coordinates and the Theta angle 
(blueness) was multiplied by the amplitude (darkness). 
This resulted in a lesion [STAIN] image representing 
the lesion area. This lesion image was convolved with a 
series of disc filters with radius 1–13 pixels, constructed 
with outside and inside disc pixels adding up to zero. 
The resulting 13 images were thresholded at 0.1 of their 
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maximum value. These binary images were dilated once 
and logical holes in individual segments (lesions) were 
filled and labelled. Each labelled segment was then thres-
holded at 60% of the stain value range within the seg-
ment. The thresholded segments were combined using 
logical operator (OR) to a single binary image and rela-
belled [LABELS].

Quantification
The ROIs leaf area (ROI1) and individual stained 
areas (lesions, ROI2) were quantified. Leaf area was 

measured from the foreground (leaf ) mask and lesion 
area was measured from combined binary images. 
Morphometric parameters, e.g. area, Theta angle 
(blueness), location (distance from edge and from cen-
treline), shape, perimeter and amplitude (darkness), 
were measured for each labelled segment representing 
a single lesion. These parameters were then selected as 
data features, representing the raw dataset, saved as a 
text file and used for further evaluation.

Fig. 2 The LiMu image analysis pipeline. Detailed schematic overview of the main steps in the LiMu image analysis program: a Image 
pre-processing, b image processing, c quantification of regions of interest (ROIs), d data management and e post-filtering on segments with 
K-means clustering
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Post‑filtering of segments
Post-filtering of segments, an optional step in the LiMu 
program, was performed on extracted data points in 
order to remove false positive lesions introduced as a 
result of uneven clearing between different leaves, but 
also between different parts of the leaves used in the 
experiment. This step can be customised based on the 
research question, e.g. parameters used for clustering 
(shape descriptors, distance from the edge and centre of 
the mask) can be added or removed. Lesion (segment) 
data from all segmented images were post-filtered and 
classified into 30 clusters using K-Means (Minibatch), 
with each individual lesion in the text file assigned a 
number from 1 to 30. Features used for clustering were 
area, maximum Theta angle (blue value), maximum to 
minimum Theta angle (range), maximum amplitude 
(dark value), maximum to minimum amplitude (range), 
eccentricity and  log10[Square root of area + 0.1]. Clusters 
were plotted (10 × 15) by randomly selecting 225 lesions 
(segments) with the same class number assigned. Visual 
inspection was used to determine which of the clusters 
contained false positive lesions, followed by automated 
removal of individual lesions that had a class number 
assigned in the text file. Figures containing plotted clus-
ters (classes) are provided in Additional file 2. After false 
positive lesions had been removed, lesions were once 
again displayed on images. Images used to create the 
image analysis program were not used for validation.

Evaluation and validation of the LiMu program
To evaluate potential benefits of the LiMu program 
application developed in the present study, the results 
obtained with LiMu were compared against results 
obtained with two commonly used approaches: (i) auto-
mated processing in IMAGEJ, regarded as the disci-
pline-standard image analysis system, and (ii) manual 
segmentation (manually rounding lesion areas with the 
“freehand” tool in IMAGEJ). Images used for compari-
sons of results obtained with these three approaches were 
positive control images (N = 10) and randomly selected 
test spinach images (N = 10).

For image analysis in IMAGEJ, a macro was written 
(Additional file  3). Due to large variations in the col-
our of cleared leaf tissue and the size and intensity of 
the stained areas, the default thresholding algorithm 
in IMAGEJ could not be successfully applied uni-
formly across the entire dataset. It was found that the 
Shanbhag thresholding algorithm [67] provided the 
best lesion segmentation on the largest number of the 
images. Thresholding was performed on the red chan-
nel. There were two major differences in the image 
analysis workflows between the two tools. First, leaf 

image segmentation in LiMu was completely auto-
mated, while in IMAGEJ leaf images had to be manually 
cut from the pictures and saved for later batch process-
ing, as the position of the leaf on the light table varied. 
Second, post-filtering as a form of error correction step 
where false positive detected lesions were removed was 
lacking in the IMAGEJ workflow (Additional file 4).

To validate LiMu image analysis results, a simple lin-
ear regression analysis was carried out using the results 
of LiMu as the explained variable and the results of 
IMAGEJ as the explanatory variable. Validation was 
performed on 50% of the experimental dataset, con-
taining both spinach and Swiss chard leaf images.

Application of the method on the experimental dataset
The LiMu program was applied on the experimental 
image dataset, which was processed in the same man-
ner as the primary dataset used to create the image 
analysis program.

Statistical analysis
Statistical analysis was performed in R studio (ver-
sion 3.6.1.) [68], using packages ggplot2 for plotting 
and ggpubr for customisation in ggplot2 plots. Dif-
ferences in damage level means for leaf area, lesion 
area, number of lesions per leaf and leaf damage (%) 
were tested with the nonparametric Kruskal–Wal-
lis test. Pairwise multiple-comparison post hoc tests 
were carried out using Dunn′s test, with Holm cor-
rection to adjust the significance values for multiple 
comparisons. Differences in means between the LiMu 
image analysis program, the image analysis software 
IMAGEJ and the manual assessment approach in terms 
of leaf area, lesion area, leaf damage, lesion number 
and lesion classes were tested with the nonparametric 
Friedman′s test, with image used as block, followed by 
Dunn′s post hoc test. Function geom_hline() was used 
to add y-intercept. A linear regression model was cre-
ated using the lm() function. Function geom_smooth() 
was used to add regression lines to scatter plots and 
a reference line with slope = 1 and intercept = 0 was 
added using the geom_abline () function. Coefficient 
of determination  (R2) was calculated using stat_cor() 
function. The linear regression models used for lin-
ear regression analysis were yLiMu = β0 + β1xImageJ 
and yLiMu − xImageJ = β0 + β1xImageJ  . Differences in 
mean values of morphometric variables between the 
two leafy vegetable species were tested with the non-
parametric Wilcoxon test. A two-dimensional den-
sity estimation was added to the scatter plot using the 
geom_density_2d() function.
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Results and discussion
Method development and associated issues
We successfully developed a robust, cost-effective and 
fast method for detection and quantification of lesions 
on leaves of leafy vegetables, which can be handled in 
full by one person (Fig. 1). The infrastructure required is 
commonly available in most laboratories and comprises a 
balance, fume hood, shaker, chemicals, tripod-supported 
high-resolution camera, light table and computer (Addi-
tional file  5). During development of the method, we 
identified three steps that generally caused the major-
ity of issues in the process, namely clearing of leaf tissue 
(Figs. 3, 4), detection of damage by TB staining (Figs. 4, 
5, 8a) and quantification of damage in the LiMu program 
(Figs. 2, 6, 7, 8, 9, 11A, B).

Clearing of leaf tissue: Clearing involves removal of 
chlorophyll from leaf samples in order to provide suf-
ficient contrast between TB-stained and intact tissue. 
Leaf samples can be cleared and stained individually, 
or batch-processed. To enhance penetration of clearing 
and staining solutions, careful shaking during clearing 
is recommended. We discovered variations in clearing 
outcome between different leaf samples and between 
different parts of the same leaf, due to differences in 
size and thickness (Fig. 3). It took longer for the clear-
ing solution to penetrate large/thick leaves and evenly 
clear the leaf midrib surrounding area. Complete clear-
ing of all leaf parts was critical in achieving accurate 
feature segmentation in the LiMu program (Figs.  3, 
4). The volume of the clearing and staining solutions 
must be adjusted to the amount of leaf samples pro-
cessed and to leaf area and thickness. There should be 

enough solution to completely cover all leaf material 
and enable floating of leaves. Insufficiently cleared leaf 
areas, found mainly along the midrib and its surround-
ing area, were falsely recognised as lesion tissue in the 
damage quantification step (Fig.  4). We optimised the 
protocol for spinach and for Swiss chard, which has red 
leaf ribs. For other plant species, the clearing protocol 
would need to be optimised for the leaf morphology 
and properties of the particular species. This can be 
achieved by (i) increasing the overall volume of clear-
ing solution added to leaves, (ii) replacing the saturated 
clearing solution with fresh solution or (iii) increasing Fig. 3 Examples of a even and b uneven (incomplete) leaf clearing. 

Leaf images acquired post-staining with trypan blue dye

Fig. 4 Examples of leaf lesion segmentation using the LiMu program. 
Images of leaves with a even and b uneven tissue clearing, acquired 
post-staining with trypan blue dye. c, d Labelled lesion segments 
from leaf images a and b. Uneven or incomplete clearing (b) can 
result in subsequent detection of false positive lesions (d) in poorly 
cleared leaf parts
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the proportion of acetic acid in the solution, before 
proceeding with staining.

Detection of damage by TB staining: Different concen-
trations of TB dye (0.01%, 0.05%, 0.1%, 1%) were tested, 
to determine the optimal concentration for staining. At 
high concentrations (0.1% and 1%), the dye tended to 
deposit on the leaf surface as precipitate, resembling 
staining on the intact tissue (Fig. 5), and was challeng-
ing to wash off post-staining. This led to over-estima-
tion of damaged tissue when using image analysis for 
quantification. High concentrations of TB are therefore 

inappropriate. Dye deposition was lowest with 0.01% 
TB and enabled visualisation of damaged areas, provid-
ing good visualisation of damaged leaf tissue. At a con-
centration of 0.01%, TB dye was internalised in spinach 
tissue in a pattern characteristic of the induced artifi-
cial damage (Figs. 5, 8a).

Dual TB and AB staining revealed callose depos-
its surrounding the damage sites (Fig.  1). Microscopy 
revealed that intact cells did not take up the TB dye 
(Additional file 6). Scrutiny of TB-stained areas showed 
that the dye was internalised in artificially damaged 
epidermal cells of spinach tissue. Some diffusion of 
TB dye into neighbouring cells around lesions was 
also observed. This corroborates previous findings on 
increased permeability of damaged and adjacent cells 
impacted by mechanical damage [5].

Due to simplicity of the clearing and staining proce-
dures herein, we believe that a device to properly stain 
and clear leaf tissue would be fairly easy to build. The 
minimum requirements for successful performance of 
such a device are a closed vessel system, with mild liq-
uid mixing or agitation. Additionally, the device should 
comprise automated pumping of used clearing and 
staining solution, and rinsing of the system and samples 
between the two procedures, and disposal of the chem-
ical waste. The staining procedure needs to be executed 
in laboratory settings, away from the processing factory 
facilities due to toxicity of the TB dye, feasibly within 
the quality control room that is common within pro-
cessing facilities. Therefore, stained leaves are not be 
used for human consumption. Considering assessment 
of damage, for a proper characterization of a batch, 30 
observations taken at harvest would give a statistically 
sound basis for decisions [69].”

Fig. 5 Examples of artificially damaged leaves, stained post-clearing with different concentrations of trypan blue (TB) dye. Leaves were stained with 
either a 0.01% TB, b 0.05% TB, c 0.1% TB, or d 1% TB

Fig. 6 Micrograph of spinach epidermal cells. Area within the yellow 
square (≈ 1800 µm2) corresponds to the size of one pixel in spinach 
photographs analysed using the LiMu program and represents the 
smallest area (bottom threshold) that can be detected and quantified 
with LiMu. This area is approximately two times larger than a stomata 
(small white rectangle), and three times smaller than an average 
spinach epidermal cell (large white rectangle)
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Quantification of damage in the LiMu program: Uni-
formity of image acquisition and maintaining the same 
settings, especially light and camera distance from the 
object, are crucial when calculating damage as a percent-
age of leaf area [70]. We included an object of known 
dimensions (1 cm2) in the image, which enabled calibra-
tion of the dataset. During development of the image 
analysis pipeline, several image segmentation methods 
were tested, namely colour separation [71], superpixela-
tion [72] and morphological snakes [73]. Colour separa-
tion worked well overall, but issues arose with very dark, 
almost black, stained lesions, as black has no colour. In 
addition, the colour of insufficiently cleared leaves (yel-
low–brown to green) had to be automatically assessed, 
which proved difficult. Superpixelation, a form of over-
segmentation, worked adequately, but we could not find 
a robust method for reliably joining the super-pixels. The 
morphological snakes approach was discarded due to 
lack of robustness. We also tested a form of ‘local thresh-
olding’ with square discs in the LiMu program, which 
proved to be the most efficient and robust solution.

Feature extraction (quantification) and data export are 
completely automated in the method based on the LiMu 
program developed in this study (Fig.  2). The program 
has a selective threshold, adapting to each image indi-
vidually, which was an essential trait to solve the issue of 
variability in clearing and image quality within the data-
set. It is a conservative, robust and fast program (30  s/
image, depending on number of lesions per leaf ). The 
LiMu program thereby enables large-scale image data 
analysis. False positive lesions are easily removed by post-
filtering on data. The program is flexible to improvement 

and creates a framework for future analysis of damage. 
Depending on the research question, it is also easy to 
combine different extracted parameters in order to gain 
more information about the lesions (i.e. shape descrip-
tion, position, distance to edge etc.) and fine-tune lesion 
classification.

An example of image segmentation, where leaf and 
lesions are segmented from a leaf image, is shown in 
Fig.  1. The size of each pixel in images subjected to 
image analysis is approximately 1800  µm2. This area is 
demonstrated in planta in Fig. 6, where the area within 
the yellow square corresponds to one pixel in spinach 
photographs analysed with the LiMu program and rep-
resents the smallest area that can be detected and quan-
tified using this method (bottom threshold). One pixel 
is larger in area than a stomata (small white rectangle), 
but smaller than one epidermal cell (large white rectan-
gle). This means that a single cell lesion can be detected 
and quantified. We divided all detected lesions into three 
classes based on their area (Fig. 11A, B), namely micro-
lesions (smallest detectable area; 1 px), macrolesions 
(major plant tissue damage; > 200 px) and mesolesions 
(1–200 px lesion range).

Some image segmentation issues arose due to uneven 
distribution of light across the surface of the light table, 
so use of a global foreground/background threshold to 
find a leaf in the image was not satisfactory. For this rea-
son, it was necessary to perform white balancing on the 
background, by estimating the picture without leaf and 
dividing the real picture by the estimate. This resulted in 
an image with a normalised background. This white bal-
ancing step in LiMu is adjusted and computed for each 

Fig. 7 Examples of object mis-segmentation (red squares) after processing using the LiMu program. Common types of mis-segmentation: a Failure 
to segment leaf area, b failure to detect lesions (false negative lesions), c recognition of undamaged plant tissue as lesion (false positive lesions), d 
recognition of two or more neighbouring lesions as one larger lesion (under-segmenting), and e recognition of one lesion as two or more lesions 
(over-segmenting)
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image individually. A good light table with uniform dis-
tribution of light is also necessary. Leaf transparency is 
somewhat dependent on leaf thickness and this can result 
in a minor segmentation issue for very thin leaves, where 
leaf can be mistaken for background, and for very thick 
leaves, where darkness represents leaf tissue, leading to 
recognition of dark areas as lesions. In imaging on a light 
table, there is a thin layer of water between light table and 
plant material. If excess water is present on the table dur-
ing imaging, it can cause a minor leaf segmentation issue 
where darkness (shadow) appears at the edges of water 
spots, making it difficult for the program to find the leaf 
edge. This issue was partly solved with background white 

balancing. After placing a leaf on the light table, all excess 
water surrounding the leaf should be removed before tak-
ing an image, or a 1-mm water layer should be applied 
over the whole light table.

Common types of mis-segmentation (Fig.  7) were: 
(a) failure to recognise and segment leaf area, (b) fail-
ure to detect lesions (false negative lesions), (c) recogni-
tion of undamaged plant tissue as lesion (false positive 
lesions), (d) recognition of two (or more) neighbouring 
lesions as one larger lesion (under-segmenting) and (e) 
recognition of one lesion as two or more lesions (over-
segmenting). Leaf area mis-segmentation occurred 
in < 1% of cases, where very thin and bright leaf images 

Fig. 8 Different levels (0–5) of standardised artificial damage inflicted on spinach leaves. Leaf images a before and b after processing in the LiMu 
program, and c after K-means based filtering and removal of false positive segments
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were mistaken for background (Fig. 7a). Lesion area mis-
segmentation can occur when TB-stained areas are very 
dim, and hence might not be quantified (false negative) 
(Fig. 7b). This is more of a clustering problem, as lesions 

are detected initially but, since they appear more ‘dark’ 
than blue, they are removed as false positives in post-fil-
tering on segments. Mis-segmentation of lesions in most 
cases occurred due to uneven leaf tissue clearing (false 

Fig. 9 Leaf morphometric parameters for different levels of standardised artificial damage (0–5) inflicted on spinach leaves. Results shown are 
average values for negative (N = 25) images and each damage level for positive (N = 5) images. The morphometric parameters A leaf area, B 
number of lesions, C lesion area and D leaf damage (%) were compared. Area was measured in pixels (px) and leaf damage was calculated as 
Damage =

(

lesionarea
leafarea

)

× 100 . Dashed horizontal line represents the overall mean across damage levels. A nonparametric Kruskal–Wallis test was 

used, followed by Dunn′s post hoc test. Significant differences (p ≤ 0.05) identified in the post hoc test are indicated by different lower-case letters 
(a, b) (Additional file 7). E Results of linear regression analysis between number of lesions and lesion size
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positive) (Fig. 7c). This was a major image analysis issue, 
due to variation in leaf tissue colour between images, 
and caused difficulties in finding a suitable segmentation 
method that would work for a variety of spinach images, 
irrespective of variation between different images. As a 
combination of blueness and darkness parameters is used 
to detect lesions, this issue is specific for leaves that have 
some darker areas (green, brown and grey) as a result of 
uneven clearing. To reduce this variation, optimisation 
of the clearing protocol for specific plant species and 
modification of blueness and greyness parameters is nec-
essary. Interestingly, false positive lesions also occurred 
when the number of lesions on a leaf was very low. This 
was clearly demonstrated by the negative control images, 
where lesions were detected on non-TB stained leaves, 
i.e. false positive lesions. As leaves that are not stained 
with TB (negative control images) have no blue colour, 
the detection approach based on a combination of blue-
ness and darkness leads to any dark area, including vas-
cular bundles, being recognised as lesions. One solution 
would be to use only blueness as the definition for lesions 
(colour separation method). A trade-off in this case is 
that very dark blue-stained lesions (almost black) would 
be recognised as holes in the leaf, and therefore their area 
would not be measured accurately. Under-segmentation 
(Fig. 7d), i.e. recognition of two or more lesions as one, 
is a minor lesion segmentation issue. It occurs when 
lesions are so close to each other that they almost merge, 
with possible diffusion of the stain to neighbouring cells. 
In this case, it is difficult for the program to define the 
edge of each individual lesion and thus they are recog-
nised as one large lesion. Over-segmentation (Fig. 7e), i.e. 
recognition of one lesion as two or more lesions, is also 
an issue of defining the lesion edge and of stain diffusing 
into neighbouring cells. Lesions are not stained evenly 
across their area, with the central part of individual 
lesions being darker (almost black) than the outer edges, 
and the program recognises this difference in intensity 
of blue staining. For this reason, the whole lesion area is 
segmented into two or more lesions, which results in a 
greater number of lesions being detected. A compromise 
must be reached when increasing the sensitivity of the 
method in order to quantify small, weak-stained lesions. 
This is a potential issue when determining lesion num-
bers and lesion classes, but is not an issue when assessing 
total lesion area or damage per leaf, as lesion number is 
not an indication of total lesion area on leaf scale. Thus, 
total lesion area per leaf is not affected by over-segmenta-
tion. A possible solution to this issue could be shrinking 
the lesion threshold. Additionally, segmentation steps of 
the proposed algorithm could potentially be replaced by 
a semantic segmentation model [43].

As a control for both staining and image analysis, a set 
of images with six different levels of standardised, arti-
ficially inflicted damage with a known pattern was pre-
pared (Fig.  8). The artificial damage comprised low (1, 
2) and high (3–5) severity levels. Comparison of results 
before (Fig.  8a) and after processing in the LiMu pro-
gram (Fig.  8b), and after K-means based filtering and 
removal of false positive segments (Fig.  8c), indicated 
that most false positive lesions (Fig. 8b; outlined in red) 
were removed with post-filtering (Fig.  8c). The stained 
(Fig. 8a) and quantified (Fig. 9B, D) lesion area increased 
with increasing level of artificial damage. There was no 
statistically significant difference in leaf area between 
leaves used to represent low and high damage levels 
(Fig.  9A). As expected, the number of lesions detected 
differed between the low and high damage treatments 
except for damage level 5, which had a low lesion count 
due to introduction of cuts, recognised as large (macro) 
lesions. Although number of lesions varied between the 
treatments (Fig. 9B), due to variation in size of individual 
lesions the total lesion area was not predicted. Quanti-
fied lesion area (Fig.  9C) and percentage of damage per 
leaf area (Fig.  9D) increased with increasing introduced 
damage. Damage was also detected on negative control 
images (treatment 0) (Fig.  9B–D), but was significantly 
lower than in the high damage treatments. Significant 
differences in total lesion area (Fig.  9C) and percentage 
of damage per leaf (Fig.  9D) were found between low 
and high damage levels. A significant linear regression 
between number of lesions detected and lesion size (pix-
els per lesion) was found, indicating a separation between 
damage levels (Fig. 9E).

Evaluation and validation of LiMu results
Evaluation: We performed visual and numerical compar-
ison of the LiMu program results with results obtained 
using the IMAGEJ software and by manual assessment 
(Fig.  10). Comparisons of methods were based on leaf 
and lesion morphometric parameters for positive con-
trol images (Fig.  10I, II), and randomly chosen experi-
mental images (Fig.  10III, IV). We compared leaf area 
(Fig. 10IIA, IVA), total lesion area (Fig. 10IIB, IVB) and 
damage per leaf (Fig. 10IIC, IVC) for the three methods. 
Results for both positive control images and experimental 
images followed the same trend in detection and quanti-
fication of parameters of interest. There was a significant 
difference between the three methods in detection of 
lesion area (Fig. 10IIB, IVB) and percentage leaf damage 
(Fig.  10IIC, IVC), for both positive control images and 
experimental images. Total lesion area and percentage 
leaf damage were significantly higher for LiMu detection 
than for IMAGEJ, but not manual assessment. As the 
freehand tool used for manual segmentation by rounding 



Page 14 of 22Mulaosmanovic et al. Plant Methods           (2020) 16:62 

Fig. 10 Comparison of results obtained in LiMu program, IMAGEJ and manual assessment of morphometric leaf parameters. Images used for 
comparisons were (I) positive control images (N = 10) and (III) randomly chosen images from the experimental dataset (N = 10). Morphometric 
parameters such as A leaf area and B lesion area, measured as pixels (px), and C leaf damage were compared (II, IV). Leaf damage was calculated as 
Damage =

(

lesionarea
leafarea

)

× 100 . Dashed horizontal line represents the overall mean across damage levels. A nonparametric Friedman′s test was used, 

followed by Dunn′s post hoc test. Significant differences (p ≤ 0.05) identified in the post hoc test are indicated by different lower-case letters (a, b) 
(Additional file 7)
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of individual lesion areas is not completely precise, it 
might lead to slight area overestimation. In terms of time 
requirement, LiMu was significantly less time-consuming 

than manual assessment. The selection capabilities of 
IMAGEJ did not provide the level of detail afforded by 
LiMu. In addition, the adaptability and consistency of 

Fig. 11 Lesion quantification and classification. A Image of artificially damaged and stained spinach leaf containing damage of different sizes. 
All detected lesions were divided into three classes, based on their area (measured as pixels (px)). B Definition and in planta demonstration of 
lesion classes: microlesion (smallest detectable area; 1 px or 1800 µm2) shown as a small yellow square, mesolesion (2–200 px; up to 360,000 µm2) 
shown as area within large dashed rectangle, and macrolesion (major damage, > 200 px or > 360 000 µm2) shown as the area outside the dashed 
rectangle. Images used for comparisons between methods, comprising C positive control images (N = 10) and D randomly chosen images from 
the experimental dataset (N = 10). Lesion classification by the LiMu program, the commonly used image analysis software IMAGEJ and manual 
assessment was compared. Significant differences (p ≤ 0.05) between methods (post hoc test) are indicated with different lower-case letters (a, b, c) 
(Additional file 7)
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LiMu was very good for both completely and unevenly 
cleared leaves and this method was more likely to cor-
rectly segment objects than the form of ‘fixed’ threshold 
used in IMAGEJ. In addition, the LiMu program allows 
correction by filtering out false positive lesions through 
K-means based clustering on the extracted data, which is 
not the case with manual assessment or IMAGEJ. Com-
parisons of the three methods in terms of total number 
of detected lesions and lesion classes revealed that a sig-
nificantly larger number of lesions was quantified with 
the LiMu program than with the other two methods, 
both for positive control images (Fig.  11C) and experi-
mental images (Fig. 11D). A significantly higher number 
of microlesions was detected with the LiMu program 
than with manual assessment, but not IMAGEJ. This is 
because in most cases microlesions are not visible to the 
naked eye and therefore cannot be assessed manually. A 
significantly higher number of mesolesions was detected 
with the LiMu program than with IMAGEJ and manual 
assessment, whereas a significantly higher number of 
macrolesions was detected with manual assessment than 
with the LiMu program for positive control images, but 
not for experimental images. This might be a result of 
over-segmentation in manual assessment, because find-
ing lesion edges manually is not as precise as it is with 
LiMu or IMAGEJ.

Manual segmentation of individual lesion areas can-
not be regarded as absolute ‘truth’, as it is limited by 
the ability of the human eye to discern lesions (stained 
areas). Depending on the number of lesions, it can also 
be a very tedious and time-consuming process and some-
what subjective. Manual assessment is thus not suitable 
for large-scale image analysis and for detection of very 
dim and small lesions. It is possible, but rather com-
plex, to segment all damage using the IMAGEJ default 
threshold. On the other hand, the LiMu program’s local 
thresholding method, using square disc filters, is robust 
and computes a threshold individually for each image. 

Although the results obtained using IMAGEJ and the 
LiMu program were very similar for the selected images, 
IMAGEJ was not adequate for batch processing of a large 
number of spinach leaf images due to large variations in 
the colour of cleared leaf tissue and the size and inten-
sity of blue-stained areas. There was variation in the col-
our of cleared leaf tissue between different leaf samples, 
but also between different parts of the same leaf, and in 
most cases this led to the introduction of false positives 
(Additional file  4). Large variation prevented the same 
threshold being used for all images tested without gener-
ating many segmentation errors, although it functioned 
satisfactorily for measurement of leaf area. Therefore, to 
apply IMAGEJ batch processing, it would be necessary to 
pre-classify images into groups to minimise the variation 
between images in the same group, and adapt a threshold 
for the groups individually. This would be time consum-
ing and would involve a certain level of subjectivity.

Validation: The results of simple linear regression 
analysis for both tools are presented in Table  1 and 
Fig. 12.

Leaf area: The results obtained using IMAGEJ vali-
dated LiMu results for the variable leaf area, i.e. the esti-
mated regression line indicated a perfect fit between the 
observed IMAGEJ and predicted LiMu models. Lesion 
area, damage (%) and number of lesions: For these three 
variables in Swiss chard, the estimated regression line 
was above the perfect fit line. This indicates that the 
LiMu model predicted significantly higher lesion area, 
percentage leaf damage and number of lesions than 
observed with IMAGEJ. However, for lesion area and 
damage, the slope when comparing LiMu predictions and 
IMAGEJ observations did not differ, indicating that the 
over-estimation by LiMu was the same regardless of size 
of lesion area or percentage leaf damage for Swiss chard. 
For number of lesions the slope differed, i.e. the number 
of lesions predicted by the LiMu model compared with 
observed IMAGEJ outcomes varied with the number of 

Table 1 Results of linear regression analysis on leaf morphometric variables for Swiss chard and spinach

***p < 0.001, **p < 0.01. *p < 0.05. LiMu results are used as the explained variable and IMAGEJ results as the explanatory variable. Linear regression analysis was 
performed on 50% of the experimental dataset. The results shown are for the model: yLiMu − xImageJ = β0 + β1xImageJ

Swiss chard Spinach

R2 (adjusted) Intercept Slope R2 (adjusted) Intercept Slope

Leaf area (px) 5.6e−02 0.13 9.7e−03** 2.5e−03** 0.41 0.39

Lesion area (px) 4e−03** 1.8e−07*** 0.46 0.89 2e−16*** 2e−16***

Damage (%) 6e−03** 9.3e−06*** 0.21 0.91 2e−16*** 2e−16***

Lesions (n) 0.34 0.82 8e−11*** 0.21 3.7e−15*** 8.5e−07***

Microlesions (1 px) 0.99 0.97 2e−16*** 0.99 2.5e−03** 2e-16***

Mesolesions (2–200 px) 0.11 0.02* 3.3e−04*** 0.06 2e−16*** 7e−03**

Macrolesions (> 200 px) 0.05 4.9e−06*** 8e−03** 0.38 9.5−04*** 3.5e−12***
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lesions. For spinach, the slope was significantly differ-
ent between LiMu and IMAGEJ models for these three 
variables. Outcomes predicted by the LiMu model varied 
with the value of the input variable compared with the 
IMAGEJ model.

Microlesions, mesolesions, macrolesions (n): The 
observed regression line for microlesions was below the 
perfect fit line and there was a significant slope for both 
spinach and Swiss chard. This indicates that the LiMu 
model predicted a significantly lower number of micro-
lesions than was observed with IMAGEJ, irrespective of 

Fig. 12 Comparison of IMAGEJ-measured and LiMu-estimated leaf morphometric variables for 50% of the experimental dataset. The variables 
a leaf area (pixels), b lesion area (pixels), c leaf damage (%), and number of d lesions, e microlesions (1 pixel), f mesolesions (2–200 pixels) and g 
macrolesions (> 200 pixels) were assessed. Regression line (red) showing the result of the model: yLiMu = β0 + β1xImageJ and line with slope 1 and 
intercept 0 (grey) are shown
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the value of the input variable. The observed regression 
line for mesolesions was above the perfect fit line for 
both leafy vegetable species. This indicates that the LiMu 
model predicted a significantly higher number of mesole-
sions than was observed with IMAGEJ, irrespective of 
the value of the input variable. Outcomes predicted by 
the LiMu model for macrolesions varied with the value of 
the input variable compared with the IMAGEJ model for 
both leafy vegetable species.

The major difference between the two tools was for 
the parameters lesion area and percentage leaf damage 
in spinach and number of microlesions and mesolesions 
in both species. It can be speculated that the difference 
between the two tools with respect to lesion quantifica-
tion is partly due to the fact that the IMAGEJ workflow 
does not include post-filtering as a form of error cor-
rection step (Additional file  4), and thus false positive 
lesions induced by incomplete clearing are not removed. 
A certain number of microlesions detected with LiMu 
are removed in the post-filtering step, due to weak stain-
ing and small size (Fig. 2e). Hence it can be expected that 
false positive lesions one pixel in size are mis-classified as 
microlesions. It can also be speculated that the choice of 
threshold algorithm selected in IMAGEJ underestimated 
individual lesion areas, thereby classifying some mesole-
sions as microlesions.

Application of the method on the experimental dataset
Using the experimental dataset, we demonstrated that 
LiMu can be used to effectively quantify damage to Swiss 
chard leaves (Fig. 13). We then compared differences in 
quantified parameters between the two species. The scat-
ter plot with marginal density plots in Fig. 13a shows the 
distribution of lesion area and leaf area of spinach and 
Swiss chard samples used in this experiment. Leaf areas 
occupied by larger lesions (macrolesions) were greater in 
spinach, while the proportion of microlesions and con-
comitant leaf areas occupied by microlesions were higher 
in Swiss chard (Fig.  13a). As expected from the experi-
mental set-up, lesion number was positively correlated 
with lesion size, which explained 16% of the variations 
in lesion numbers (Fig.  13b). Likewise, increasing leaf 
area was related to increasing total lesion area (Fig. 13c), 
with a higher proportion of leaf area occupied by lesions 
in spinach, as confirmed by the Wilcoxon test (Fig. 13d). 
The separation into different lesion classes (micro-, 
meso- and macrolesions) revealed significant differences 
in the relative distribution of microlesions and macrole-
sions between spinach and Swiss chard (Fig. 13e).

The main aim in this paper was to provide a detailed 
description of the steps followed in development of a 
leaf-scale damage detection and quantification method, 

using parameters such as leaf and lesion areas, leaf-scale 
damage and lesion classes as examples. Numerous lesion 
parameters can be extracted using the LiMu program 
(Additional file  8). Parameters of biological relevance 
which may have the greatest utility in future studies are 
lesion area, shape descriptors (circularity, eccentricity, 
height and width, diameter, perimeter) and location (dis-
tance to leaf edge and to central line-midrib). Combining 
some of these parameters (e.g. area, location and circu-
larity) would allow lesion classification (e.g. cuts, dot-like 
lesions), providing more information about the position 
and origin of the damage-lesion relationship (co-local-
isation) and the link to specific post-harvest processing 
steps.

Conclusions
To meet the need for more automated damage detection 
and quantification approaches within the agriculture sec-
tor and food processing industry, we developed a high-
throughput, automated and robust method for detection 
and quantification of lesions on leaf scale.

Leaf samples can vary widely with respect to size, 
thickness and maturity, and therefore optimisa-
tion of the leaf clearing step to remove chlorophyll is 
vital. Uneven clearing increases variation between 
and within leaf samples and leads to feature mis-seg-
mentation. We found that a combination of clearing 
and staining provided a good colour contrast between 
intact and damaged leaf tissue and increased the sensi-
tivity of the method. The great advantage of the method 
is that the staining with TB dye visualises all damage 
on leaf scale, even when visible symptoms are absent, 
facilitating early-stage damage detection. In tests, the 
approach enabled detection of large (macro) and sin-
gle-cell (micro) lesions and automated quantification, 
classification and description of lesion parameters on 
leaf scale.

The method can be used for analysis of leafy vegeta-
bles post-harvest, in particular to identify critical steps 
introducing damage within the chain. With the method, 
it is possible to investigate whether the location, shape 
and size of individual lesions are specific to certain post-
harvest steps and where on the leaf damage is more 
likely to occur (location). In-depth knowledge concern-
ing lesion quantity and their morphometric parameters 
may be used for generating prediction models and risk 
assessments for economic losses and produce shelf-life. 
Our method enables large-scale screening for early-stage 
plant susceptibility to specific pathogens, and can be 
used in the identification of less susceptible plant culti-
vars. In addition, cell damage due to interactions of plant 
cultivar, pathogen strain and environmental factors can 
be assessed at different time points from inoculation to 
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generation of first visible infection symptoms using the 
proposed approach. Finally, the information provided by 
the method regarding tissue damage on leaf scale allows 

correlations between leaf damage severity and infection 
and internalisation rate of specific opportunistic plant 
pathogens to be investigated.

Fig. 13 Results obtained for Swiss chard and spinach leaf and lesion parameters using the LiMu program. a Distribution of lesion area on spinach 
and Swiss chard leaves in scatter and marginal density plots. Correlations between b lesion number and size of individual lesions, and c leaf and 
lesion areas. Differences between Swiss chard and spinach in d lesion area and e relative distribution of different lesion classes between the two 
species quantified with the LiMu program. A non-parametric Wilcoxon test was used for comparisons of mean values between the two species (d, 
e). Significant differences (p ≤ 0.05) between the species are indicated with an asterisk (*) (Additional file 7)
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