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Abstract

Long-baseline precision tests based on atom interferometry require drastic control over the initial
external degrees of freedom of atomic ensembles to reduce systematic effects. The use of optical
lattices (OLs) is a highly accurate method to manipulate atomic states in position and momentum
allowing excellent control of the launch in atomic fountains. The simultaneous lattice launch of two
atomic species, as required in a quantum test of the equivalence principle, is however problematic due
to crosstalk effects. In this article, we propose to selectively address two species of alkalines by applying
two OLs at or close to magic-zero wavelengths of the atoms. The proposed scheme applies in general
for a pair of species with a vastly different ac Stark shift to a laser wavelength. We illustrate the principle
by studying a fountain launch of condensed ensembles of *’Rb and *'K initially co-located. Numerical
simulations confirm the fidelity of our scheme up to few nm and nm s~ ' in inter-species differential
position and velocity, respectively. This result is a pre-requisite for the next performance level in
precision tests.

1. Introduction and motivations

Manipulating cold atomic ensembles with optical dipole traps is an exquisite tool to address their external
degrees of freedom [1]. The Stark effect resulting from these beams realizes so-called optical tweezers and allows
to precisely confine or move cold atoms or Bose—Einstein condensates (BEC) [2, 3] and prepare them in desired
position and momentum states. Interference of counter-propagating dipole beams creates a conservative
periodic potential known as an optical lattice (OL) [4]. Atoms trapped at the potential minima of this periodic
structure realize solid state physics-like systems with an unprecedented possibility to control the lattice
properties. If the two interfering beams are relatively detuned, the lattice can displace the atoms. If the detuning
is time-dependent, it accelerates them via Bloch oscillations [5, 6] in analogy with electrons in a solid subject to
an electric field. This method is very efficient in transferring large and quantized momenta to the atoms [7]
putting them in well defined momentum states. Therefore, it is extensively used in precision atom
interferometry [8—12].

The free evolution of an atomic ensemble in the gravitational field interrogated in a Mach—Zehnder light-
pulse interferometer realizes a measurement of the gravitational acceleration g [13—17]. When two atomic
ensembles of different masses are dropped in the gravity field, a comparison of their accelerations realizes a
universality of free fall test or test of the weak Einstein’s equivalence principle (WEP) [18]. Since violations of this
principle are predicted at different levels in competing theories to unify fundamental interactions [19], such an
experimental test can have a major impact in (in)validating these models. In recent years, atom interferometers
performed WEP tests up to 10~ in the E6tvos ratio [20—23] parametrized by

(a-@) 6

lara)z @ v
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where a; and a, are the accelerations experienced by the test masses 1 and 2, respectively, da = (a; — a,)and

a = (a1 + a3)/2. Since the sensitivity of an atom interferometer typically scales quadratically with the pulse
separation time T, there is an obvious incentive for using atomic fountains on ground to augment the available
experimental time. This geometry is at the heart of recent proposals expected to open a new era of precision WEP
tests (up to seven orders of magnitude expected improvement over state-of-the-art) by performing itin 10 m tall
towers [24-26]. The idea is to launch two atomic ensembles of different atomic species using accelerated lattices
before operating two simultaneous Mach—Zehnder atom interferometers, thus comparing the local gravity
acceleration experienced by each.

In such a test performed in the vertical direction z, the differential velocity ¢ v, between the two species at the
end of the acceleration stage couples e.g. to local gravity gradients (GG) resulting in a differential acceleration
bias 6 a. In line with recent and proposed experiments, we assume the typical Mach—Zehnder (7/2-7-7/2) pulse
geometry. The full interferometer time 2T shall be the same for both species, but the effective wave numbers k;
and k, may differ. The phase shift due to the GG in each interferometer i = 1,2is[27]

¢; = —kiT.v,i T?, (@)
which divided by the scale factor k;T° leads to an acceleration equivalent bias of
a; = —T,v,;T, (3)
for alaunch velocity v, ;. Thus, the differential acceleration is

Sa = =TT (v — v20) = — T Téw, @)

with v, = v,; — v,,. T, denotes the first order GG tensor 0,g,. In the considered case, the fountain is solely
realized in the z-direction and therefore the other gradient tensor terms can safely be neglected. Phase shifts due
to higher order tensors are orders of magnitude smaller than ¢;, thus not considered here. Dependent on the
vibrational background, an additional mechanical accelerometer might be necessary to recover the
interferometer signals of the weak equivalence principle as suggested in [28]. This GG coupling can be eliminated
in a particular four-pulse atom interferometer scheme [29] at the cost, however, of a degraded (about a factor 5
lower) sensitivity to the gravity acceleration.

A GG T, with an uncertainty A T, parallel to the effective wave vectors couples to a differential velocity of
the two ensembles 6 v, oriented in the same direction with an uncertainty Aév,. Since both the GG and the
differential velocity are known within their uncertainties, a post-correction reduces the GG contribution to an
uncertainty of

An = Aba/a = —T-( T, Abv,

+ |ATZZ<SVZ

+ \ATZZA(SVZ

)/a. (5)

Using compensation masses within the region where the atom interferometer is formed as proposed in [30]
would only reduce the contribution of the first term in equation (5) proportional to T, without relaxing the
knowledge level required for A T,.

If one considers the case of Earth’s GG on ground T,, = —3 x 10~ °s~?, and a differential velocity of
6v = 0 ym s~ with an uncertainty Aév = 40.2 um s~ ', one would reach an uncertainty in Az of 10~"> even
with a modest knowledge of the GGof A T,, = 3 x 10~° s 2 If6v, = 100 ums ‘and Adv = +0.2 ums
then a characterization of T,,to 0.2% correspondingto A T,, = 6 x 10~? s~ ? would be necessary to reach the
same uncertainty of the WEP test.

Due to the different recoil velocities, the two atom interferometers will cover slightly different trajectories.
The related recoil phase terms can be suppressed by inverting the direction of momentum transfer for
subsequent cycles and calculating the half difference [27]. This requires a sufficient homogeneity over the
baseline of the atom interferometer. To reach A7 = 10~"°, the homogeneity requirements of 3 x 10~ ''s 2in
GGand5 x 107'* m~'s ?are compatible with Earth’s contributions. The mass distribution of the
experimental apparatus itself has to be designed appropriately to avoid contributions exceeding these
thresholds.

Figure 1 illustrates this scaling by indicating the required GG level of characterization as a function of the
starting differential velocity for various target accuracies of the WEP test parametrized by A 7. In principle, the
GG could be characterized with the atom interferometer in a gradiometer mode [31]. It becomes clear that an
inherently small differential velocity would relax the requirements for a GG knowledge or even make it obsolete.
Consequently, the systematics assessment would be considerably relieved, especially in scenarios, where the GG
might drift unpredictably. The figure suggests that with a characterization of the GG within its magnitude on
ground (horizontal line), reaching state-of-the-art WEP test performances of An = 10~ "> with quantum
objects requires a bias in differential velocities of a fraction of um s~ '. This proposal is motivated by the absence,
to our knowledge, of appropriate methods to achieve this accuracy in a dual atomic launch.

2



I0OP Publishing NewJ. Phys. 17 (2015) 123002 R Chamakhi et al
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Figure 1. Required knowledge of the gravity gradient (GG) as a function of the inter-species differential velocity for several levels of
performance A 7 of a WEP test. The case of a 10 m fountain is considered and implies an interferometry time of 2T = 2.74 5. The
interferometer is assumed to operate with two-photon transitions at about 780 nm each. Earth’s GG affects the measurement and
consequently needs to be determined in the shaded area. The corresponding differential accelerationis da = —T,(£A T,,)év(£A
6v,)T, where A 6v, denotes the uncertainty in differential velocity év,, and A T, denotes the uncertainty in GG T.. This leads to the
plotted contribution to A o< A T,6v,. For each curve, a maximum A év, is assumed (see legend) to keep, on ground, the other
contributions (equation (5)) below the represented A 7.

To understand the origin of the differential velocity between two launched masses, we briefly recall the
principle of a fountain launch. A lattice accelerated from v = 0to v = vinduces a quantized momentum
transfer via Bloch oscillations to an atom initially at rest. To avoid the population of multiple orders, the final
lattice velocity vrshould match a targeted atomic velocity N/ /m where N € Z with the modified Planck
constant /7, the lattice light wave vector k and the atomic mass m. When the lattice transports two species of
masses m; and m,, the differential velocity at the end of the launch reads:

ov = ﬁk(— - —), (6)

where N; and N are the numbers of photon kicks transferred to species 1 and 2, respectively. From equation (6),
itbecomes clear that minimizing 6 v translates to finding a minimum of (N, /m, — N,/m,). With asingle OL,
choosing a final v matchinga certain /kN;/m, completely fixes the choice of N,. Thus, the bias év cannot be
minimized to better than a few tens of x m s~ ' in agreement with the predictions of [27] for the pair of isotopes
8Rb and *°Rb.

The idea of individually addressing each species with separate lattices is problematic since this would require
vastly different ac-Stark shifts from each lattice. For sufficient lifetimes in the lattice however, high power and
large detunings from the targeted electronic excitation are required. This generally means that other transitions,
which are not much stronger detuned, e.g. of the other species, will have a considerable ac-Stark shift. Each
lattice would have an effect on both species and the clean lattice dynamics are replaced by strongly time-varying
potentials and undesired excitations. In this proposal, we solve this issue by choosing two lattices with zero-magic
or tune-out wavelengths to selectively accelerate the two atomic clouds. At the start and the end of the
acceleration phase, the wavepackets of different atomic masses #1; and m;, shall ideally have matching positions
and velocities.

2.Scheme and method

For alkaline atoms, the contribution of the D, and D; lines to the dipole potential for one species of atoms reads

[1]:

Ui (7) = 75 ti(1 = Perme) || (02 5 Pee) 1(7) @)

3 3
2 wD] ADl wDZADZ

with Ap, = wp, — wyand Ap, = wp, — wy are the detuning of the laser wy, from the D, and D, atomic
transition lines, respectively, and gris the hyperfine Landé factor. Pis the polarization of the laser, mpthe Zeeman
state of the atom and c the speed of light. When the atomic dynamic polarizability switchs sign between two
resonances, a magic-zero or tune-out wavelength could be found [32-39]. Several magic-zero wavelengths have

3



10P Publishing

NewJ. Phys. 17 (2015) 123002 R Chamakhi et al

Table 1. Magic-zero or tune-out wavelengths for alkaline atoms with neutralizing D, and D, contibutions according to
equation (7). The variables P parametrizing the laser polarizations are assumed to be zero for simplicity. Theoretical calcula-
tions for alkaline-Earth-metal atoms are made in [35] and predict tune-out wavelengths for Be, Mg, Ca, Sr, Ba, and Yb to be
454.9813,457.2372, 657.446, 689.200, 788.875, and 553.00 nm, respectively.

Isotopes I'p,(MHz) I'p,(MHz) Ap, (nm) Ap, (nm) Atune — out (NM) References
133Cs 28.690 32.768 894.59295986 852.34727582 879.936574550 [43]
5Rb 36.129 38.117 794.979014933 780.241368271 789.996623133 [44]
¥Rb 36.129 38.117 794.978851156 780.241209686 789.996461148 [45]
PK 37.8684 37.8998 770.108385049 766.700921822 768.959724329 [46]
10K 37.8998 37.8998 770.108136507 766.700674872 768.958845121 [46]
K 37.8998 37.8998 770.107919192 766.70045870 768.958628193 [46]
*Na 61.353 61.542 589.7566617 589.1583264 589.557085633 [47]
°Li 36.898 36.898 670.992421 670.977338 670.987393031 [48]
b

= | 7]

| zn

Dipole pot

acceleration
direction

A (nm)

Figure 2. Selective lattice launch principle. (a) For each species the lattice wavelength is chosen as a tune-out wavelength of the other
species. The two magic-zero values for rubidium and potassium are found at 789.9965 and 768.9586 nm, respectively. (b) The
proposed arrangement makes it possible to selectively drive two kinds of atoms 1 and 2 by two optical lattices OL; and OL,,
respectively. This allows one lattice to bring one of the atomic clouds to any desired final position or velocity without altering those of
the other species. In order to reach the precision target for this manuscript, a slight shift A A from the rubidium magic wavelength is
introduced (see inset) for the potassium lattice, leading to a small perturbation of rubidium dynamics.

been implemented in different experimental contexts [40—42]. In table 1, we provide some key values for
commonly used alkalines and alkaline-Earth-metal atoms in the metrology context with identified tune-out
wevelengths.

Recently very precise—uncertainty below 1 pm—measurements of these wavelengths were done for
rubidium [49] and potassium [50]. We shall consider these two most used species in cold atoms laboratories as a
study case to illustrate our method. Figure 1(a) shows that at the wavelength A; (\,), the contributions of the two
lines cancel out the dipole potential for *'K (*Rb). These special wavelengths were already implemented in
mixture experiments to selectively manipulate ®Rband *'K degenerate ensembles [51].

Based on these investigations, a magic-zero wavelength \; could be used to create a lattice OL; accelerating
the Rb cloud (species 1) without any effect on the *'K atoms (species 2), and vice-versa with ), (lattice OL,),
therefore realizing a dual-species fountain, which principle is illustrated in figure 2(b). The atomic ensembles are
guided during the time #,from the same initial position z = 0. OL, transports species 1 (in red) and OL, conveys
species 2 (inblue) to {zy, vy } and {zy, vy }, respectively. By choosing lattice acceleration ramps minimizing
zf — zpand vy — vy, weachieve a fountain launch that greatly relaxes the required knowledge of GG
uncertainties as discussed in the previous section.

The simultaneous and independent use of lattices with two wavenumbers k;, and k;, allows for more
flexibility towards cancelling ¢ v, which reads now:

®

After choosing a final velocity, thus the corresponding couple of integers N; and N,, we could slightly tune one
or both wavelengths to strictly reach a zero differential velocity. This is illustrated for the study isotopes case in
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the inset of figure 2(a) by the shift A A = 2.9 pm correspondingto A k = 29.22 m™ ' from the tune-out value
kr,- This comes at the price of introducing a perturbation by OL, to the dynamics of the *’Rb cloud which now is
subject to the accelerating effect of this lattice ramped in time to transport *'K. In the following sections,
numerical simulations are implemented to check whether this parasitic contribution affects the fidelity and
performance of the selective acceleration process.

Both chosen species *Rb and *'K have positive scattering lengths: 99 a,and 60 ay, respectively, where a is
the Bohr radius. They can be cooled down to degeneracy independently [52] or taking advantage of sympathetic
cooling [53]. Another advantage of this pair in the context of precision measurements is the existence of a low-
magnetic field (79 G) Feshbach resonance allowing to tune the inter-species interaction to zero [40] and
maximize the overlap between the two BECs while in the Zeeman state F = 1, mp = 1. This manipulation is very
useful since inter-component interactions lead otherwise to a shell structure (in the case of the chosen isotopes)
or could in immiscible phases form mixture ground states with broken spatial symmetry. Both of the last
geometries lead to complex and coupled expansion dynamics of the BECs, thus to significant wave fronts-related
systematic effects. These effects being leading systematics in most atom interferometry experiments, it is vital for
precision differential atom interferometry to minimize or neutralize the inter-species interactions. This
motivates our choice to consider in this study the intra-species interactions only. As a consequence, during the
proposed acceleration ramps, the atoms are assumed to remain in magnetic sensitive sub-states. Couplings to
the Feshbach field lead to magnetic field gradients and induce a differential velocity due to the different atomic
properties. In principle, a characterization of the gradients could be performed by dedicated measurements with
the atom interferometer [54] and the resulting differential velocity cancelled by accounting for it in the proposed
lattice launch sequence. Assuming a time 10 ms before transfer to the magnetically insensitive states and
switching-off the Feshbach field, the magnetic field gradient should be below 1 mG m ™" in average to reach
An=10""0or10 4G m 'toreach An = 10" *°.

3. Theoretical model

Justified by the cancelled inter-species interactions, the treatment is described for one species and could be
applied to the other simply by accounting for its different temporal control sequence of external potentials. The
momentum shift Ak = 29.22 m ™' chosen to perfectly match the two final velocities leads to a parasitic
contribution of OL, in the dynamics of species 1 (lattice depth of few nK). Moreover, the assumed finite
uncertainty in the definition of the tune-out wavelengths (1 pm) leads to a small ac Stark effect even in the case of
the atoms for which it should be magic-zero. None of these effects is neglected by solving the dynamics equations
of both BECs in presence of the two lattice potentials weighted by their exact numerical magnitude.

3.1. Gross—Pitaevskii equations (GPEs)

In the mean-field regime, a BEC is well described by the GPE. This often-called nonlinear Schrédinger equation
features an additional term describing the interactions between atoms. At low temperature, the system of N
bosons is described by a single wavefunction W(r) [55] solution of the stationary GPE:

2
[_zﬁ_mvz + V@ + Negp |‘I’(r)|2]‘1’(r) = u¥(n), ©)

where m is the mass of the bosonic species considered, V(r) the external potential seen by the atoms and  is the
chemical potential. The magnitude of the nonlinear term is proportional to the total number of condensed
bosons N and the atom—atom interaction magnitude. When assuming s-wave scattering only, the interaction
term reads
A/’
&p = —, (10)
m
where g, is the s-wave scattering length of the atomic species. In this proposal, we consider atomic species with
repulsive interatomic interactions. In a fountain configuration, the relevant physical effects (acceleration,
center-of-mass motion, etc) triggered by the lattice accelerating potentials Vo, and Vo, occur mainly in the
gravity direction zjustifying a one-dimentional treatment. The ground state of the problem is found by solving
the effective one-dimensional GPE
/2 0? 1,
———— + —mwiz? + Ng, |V ()] |V (2) = n P(z), (11)
[ 2m ozt 2 ° &ip P
where g;p and i, are the effective 1D interaction strength and chemical potential, respectively.
The time-dependent behavior of the BEC before and during vertical acceleration, is followed while solving
the time-dependent GPE
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iﬁglll(z H=|-— 7 + lmwz(t)z2 + VoL (z, t) + Vo, (z, t)
ot 2mdzt 2 oLt Ola’®
+ Ngp [¥(z, t)Iz]‘I’(z, 1), (12)

where w, (t), Vo, (z, t) and V1, (2, t) are time-dependent potentials accounting for a complete sequence of
loading a BEC from a harmonic trap into two OLs that accelerate it.

3.2. Loading, release and acceleration ramps
During any fountain launch proposed in this manuscript, The total potential reads:

WVioading (2> 1), [tO) tl]
Vi )= Vie@ 0, [ot] (13)

szitchfoff (Z) t)) [t4: t5:|-

The expressions taken by the potential at each time step are presented in the following.

Loading and release In order to adiabatically load a BEC in the OLs considered, the magnitude of their
potentials is increased smoothly. We model this step by multiplying the potential with the function fon(f)
defined as follows:

1 yt>ton + 7,

fON(t; fox, 7_) _ {sinz(%g(t - tON)) , [tON, ton + T] (14)

where to denotes the starting time of ramping up the lattice and the characteristic loading duration is set by 7. A
complementary behavior regulates an adiabatic switch-off through the function:

fOFF(t; torps 7') = {COSZ(%g(t - tOFF)): [tOFF, forr + 7.] )

0, t > topp + 7.

During the loading phase, the initial harmonic trap is switched off while the lattices are ramped up. We label this
time interval [#,, f;]. After acceleration, the BEC s released adiabatically in order to recover its single-peaked
distribution in momentum space. This step is performed over the time interval [#,, #5]. The total external
potential for a species of atoms within these initial and final steps reads:

1
Vioading (2 0 < £ < 1) = fore (1 torr = to, r)[gmwﬁf] + fon (5 fon = 10, 7)

[%(1 + cos(Zklz)) + %(1 - COS(Zkzz))]> (16)

and

v
Vewitch—off (z, t<t< ts) = fOFF(t; torr = t4 T)I:;l(l + cos (Zkl(z + v(’;th + céLl)))

+ %(1 + COS(Zkz(Z + V();th + C(J;Lz)))]’ (17)

with V(J;Luz) and chm) being velocities and offset positions of the lattice 1(2) at the end of the ramp, respectively.
They are determined by the choice of the target final velocities of the atoms as explained in the next paragraph.
Depending on the study case, we could choose the same or different values of 7in the different temporal
functions fon and forg.

Acceleration ramps. In order to accelerate the condensates without leaving the first band, the OLs must be
tuned on and off adiabatically. A common method of doing this is to use the following lattice acceleration profile
a(t) during a time sequence [ty, 5]
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a(t) = 3 %max > 2, t3:| (18)

N
8
&
>
=
=
S
(I

L

This sequences determines the lattice phases. Once the common target final velocity and the acceleration
sequence duration are chosen, one needs to determine the constant acceleration a,,,, and the different time
intervals of the acceleration sequence. To find out these characteristic times, we choose a couple of total numbers
of recoils cancelling év in equation (8) and a value of a,,,, for each species that is not too large for an optimal
acceleration [56]. Typical experimental realizations involve about 2000 m s~ *. Based on the trapezoidal
geometry of the ramp, the total number of recoils gained by one species Nigxs = % j;l “a (t)dt is the sum of three

intervals contributions:

Lomar 6 6]

Vo2

Nijeks = %amax AT [t2a t3] (19)

1 amax
Lompg [t 1),

v

where v, = 7k/m is the recoil velocity of one of the species of mass m driven by the OL of wave vector k. In
general, a different choice of At (or t, and t3) and a,,,,, for each species could be done leading to a different phase
in the time-dependent potentials parametrized with the position offset between the two OL previously
introduced in equation (17) by Cc')le(z). We choose At and ay,,, for both sequences such that the two initially co-
located minima of the two different OL do not shift at the end of the sequence by more than the maximum
displacement of the BECs centers allowed by the WEP test performance targeted. In the case of a measurement of
nto the 10~ '° level, this offset would be about 1 nm. We check that this threshold is not crossed when
engineering the ramp sequences and choosing the couples At and a,,,x corresponding to

VéLl = Vész = N, /i / m; = N, /ik; / m,. Finally, the total potential exerted on one species during the acceleration
phases reads

Vacc(z, h<t< t4) = %[1 + cos(2k1(z + ZOLl(t)))] + %[1 + cos<2k2(z + ZOLZ(Z')))], (20)

where zoy, , (t) are completely set after the choice of £y, £, 13, 4 and admay for each of the lattices OL, .

We would like to stress out that due to the deliberately introduced shift A k, it is not guaranteed that the
effect of the magic-zero lattice OL, on species 1, which magnitude scales with V5, is negligible. Any effect on the
center of mass and momentum distribution of BEC 1 would set a limit on our proposed method. This is
essentially the motivation for the in-depth numerical simulations made, the results being detailed in the Results
section.

3.3.Frame transformation

The typical realizations we would like to model involve tall fountains of 10 m or more. Corresponding
acceleration ramps would accelerate the BECs over distances of few cm. To efficiently treat this problem
numerically, we employ a moving frame description, reducing the required grid extension. All of the dynamics
takes place around the translated center of the BECs, which in the ideal case follows closely the trajectory zo; of
the accelerated OL. We take advantage of this situation to perform a transformation to an accelerated co-moving
frame with the OL. This classical so-called extended Galilean transformation [57-59] takes the system from (z, f)
to transformed coordinates (Z, T), where

Z=2z— zoL(t)
ros @

Applying this transformation, a term proportional to zo; and the first derivative of the wave function appears in
the GPE. The phase transformation

U(Z, T) = e (iZmo)d(Z, T) 22)
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makes it vanish. After a transformation of all operators in the accelerated frame, the time-dependent GPE reads

., 0 n* 92

in—9Z,T)=|——=— + Vor,(Z, T) + Vo,(Z, T) + Ng,p, |2(Z, T)|* + ZmioL |¥(Z, T). (23)
orT 2m 0Z*

The advantage of this system of coordinates becomes clear when writing the transformed accelerating potential
terms (20) to

VaCC(Z, HL<t< t4) = %[1 + cos(2k1(Z))] + %[1 + cos (Zkz(Z + zop, (1) — Zou(ﬂ))], (24)

where the choice is made here to center the grid on zgy,. Since the two accelerated lattices of the problem are not
allowed to acquire a large position offset all along the acceleration sequence, the term zgy, () — zoy, (t)
appearingin (24) does not lead to a need for a larger grid than the one centered on zgy,.

3.4. Numerical techniques

The method used to find the ground state and dynamics of the condensates is based on a split-operator
treatment initially reported in [60] and previously applied in a similar context in [61, 62]. It consists in breaking
the evolution operator within a time step 6 ¢ in a product of two kinetic propagators separated by a potential one.
The Hamiltonian is assumed to be time-independent during this time step and the error made during it scales
with (§ £)°. The potential propagator is applied in a straightforward way to the wave function whereas the kinetic
one is only diagonal in the momentum space. For each application of the latter, the BEC wave function is
transformed to the momentum space beforehand. Transforming back and forth from these spaces is done using
an optimized fast Fourier transform (FFT) developed by Intel for FORTRAN compilers [63]. Finding out the
ground states is done following the same recipe but in complex time [64]. Typical grids used feature 2'” points
and extend over 700 pm. A full loading and acceleration sequence of about 10 ms requires a numerical
propagation of few hours on a standard desktop computer (Intel i5 processor with 8 GB RAM).

4, Results

4.1.Loading to and release from the OL

As previously stated, the choice of along enough time 7is crucial to allow an adiabatic transfer of the BECs from
their initial harmonic traps to the OLs and at the release step. In order to stress out the dramatic effect of this
choice, we contrast in figure 3 the extreme case of a sudden switch-on and -off of the lattice potential (7 = 0)
with an adiabatic ramping.

The gallery shows the BEC momentum distribution at three different times (i) in the harmonic trap just
before loading in the OL, (ii) after loading and (iii) after release from the OL. A too short or zero value of 7 leads
to areleased BEC with several momentum classes populated (blue dashed peaks at +2/k in figure 3(c)). This
effect is limiting the population of the chosen momentum at the end of the ramp thereby reducing the number of
atoms involved in the Al. An adiabaticloading and release at 7 = 80 us (red plain curve) guarantees a single-
peaked density in momentum space | ¥ (k) |? after release from the lattice. This is observed in both cases of a static
or accelerated lattice. The sequences considered in this manuscript are all characterized by a choice of 7
guarantying a final single momentum peak, thus a maximum efficiency of the coherent transport.

4.2. Dual-species launch

In this section, we illustrate the implementation of the dual-fountain launch by propagating the two BECs using
the ramps shown in figure 4(a). We choose to imprint 2280 and 1104 kicks for ®Rb and *'K. This choice would
drive the atoms to acquire a final velocity of 13.6 m s~ ' realizing a fountain of about 10 m as planned in three
facilities so far [24—26]. After the acceleration phase, the two BECs are transferred to the exact target momentum
class as shown in figures 4(c) and (e) (red and blue dashed lines) and spatially lifted off to the same height of

5.5 cm (figures 4 (b) and (d)). The fidelity of this process is subject to a final adiabatic release from the OLs. A
sudden or imperfect release leads to the a loss of atoms in other momentum classes (+2 7k, +4 /k and +6 7k
(black plain lines in (b) and (d)).

To check, in the adiabatic loading and release case, if the acceleration process is free from parasitic effects
caused by the simultaneous application of two OLs, we zoom-in in figure 5 around the central and unique
momentum peaks obtained. Whereas the effect of the presence of two lattices is negligible for *'K as expected
(lower graph), it is clearly visible that it amplifies the fluctuations around the maximum of the *Rb momentum
distribution. This stems from the use of two OL in the latter case where both are not at the magic-zero
wavelengths. The parasitic effect of OL, seems, however, to be simply modulating the momentum distribution
around the targeted central value in a symmetric fashion. The numerical analysis conducted in the next sections
will confirm this statement. Such a perturbed but symmetric momentum distribution (around the target value)
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Figure 3. Momentum distribution |¥ (k)| of a *K Bose—Einstein condensate of 10° atoms in units of /k 1,- (@) Initially trapped BEC in
aharmonic potential with orbital frequency w, = 27 5 Hz. The interactions magnitude are chosen equal to the case where a transverse
orbital frequency of 27 500 Hz would be applied. (b) Momentum distribution after loading in a lattice of wavelength A, and depth
s = 4.7 (c) released wave functions after a free expansion in the optical lattice of 0.24 ms. The right-hand insets show the switching-on
and -off functions fon and forr used in both the sudden (dashed lines) and adiabatic (plain lines) cases. The left-hand insets are a zoom
ata different scale on the central peak of every graph. The outcome of an adiabatic loading and release at 7 = 80 us is characterized by
asingle peak (red plain curves) suggesting that all atoms remained in one momentum class.

would not lead to an additional dephasing in a WEP test since the differential velocity between the two BECs
relies solely on the centers of the momentum wave packets at the input of the dual interferometer.

4.3. Dual-lattice dynamics and role of the interactions

To interprete the momentum density distribution of *Rb, we contrast in figure 6 the cases of an acceleration
following the ramps previously applied (right column) and a simple expansion lasting for the same duration (left
column) for different regimes of interactions. In all numerical experiments, the *’Rb BEC wave packets are
released adiabatically from the OLs. The first row (a) and (b) shows that the BEC loaded in OL; has the same
momentum density whether accelerated by this lattice or simply expanded in it for the same time. The
momentum width in both cases is, however, larger than the initial one (by a factor of 10 to 20) driven by
interaction dephasing over the lattice sites. Indeed, depending on the number of atoms per site, the chemical
potential leads to different phase winding in every lattice well. This causes momentum broadening even in the
case where atoms are loaded and released adiabatically [65, 66]. When Bloch oscillations are involved, atomic
interactions lead to a dephasing and a broadening of the quasi-momentum width as observed in [67] and
analyzed in [68]. Recently, the same effect was observed in the context of a metrology-oriented lattice-
accelerated BEC experiment [69]. In [68], the increase in momentum width is proportional to J&p "1 wheret
is the evolution time. By varying the number of atoms in the BEC or the time spent in the lattice, we could check
that our results are consistent with this scaling in the case of a simple expansion in the lattice. Since the
momentum width of a wave packet is a critical quantity for the contrast of an atom interferometer [70], it is of
interest to keep it as low as possible. This can be realized by utilizing delta-kick cooling techniques [69, 71-73] or
by taking advantage of the existence of Feshbach resonances to tune down the interactions magnitude. The next
row (c) and (d) illustrates the case when two OLs are in presence and shows that the main perturbation and
broadening of the momentum peak stems from the evolution in the bichromatic lattice configuration imposed
to ¥Rb. Although, the second lattice OL, is several orders of magnitude weaker than the main accelerating one, it
introduces a dephasing of the atomic cloud spatially extending over bichromatic lattice sites starting co-located
at the origin but with potential minima that spatially separate the further the atoms are off-centered fromz = 0.
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Figure 4. Species-selective 10 m fountain for *Rb and *'K BECs. (a) Acceleration ramps for the two species with the key time points
indicated for the rubidium case (solid red line) as labeled in the theoretical model section. (b) and (d) Position space probability
densities of the two condensates accelerated in less than 8 ms to a common height of about 5.5 cm. (c) and (e) The acceleration ramps
bring the BECs to the target momentum class (red and blue dashed central peaks) corresponding to a velocity of 13.6 m s~ *. The
importance of an adiabatic release is highlighted by contrasting it to the case of a sudden switch-off of the two OLs. In the latter case,
parasitic velocity states (side peaks) are populated leading to aloss in the usefully accelerated atoms. For this simulation, we considered
10* atoms in each BEC with timing ramps corresponding to 1104 for ("'K) and 2280 for (*’Rb) momentum kicks transferred in units
of the respective k;. The depths of the acceleration lattices used are s; = Vi/Eg, = 104 for rubidiumand s, = V,/Eg, = 31 for
potassium, Ex, = /2%k}/(2m;) being the respective recoil energies for speciesi (i = 1,2).

By contrasting (c) and (d), it becomes clear that the accelerated case with different ramps applied to the two OLs
leads to an averaging of this dephasing effect reducing perturbations and broadening of the momentum density
distribution. Since the case of graph (d) is the one of interest in this article, the suitability of our proposal is
confirmed. Itis obvious that the size of the wave function during the expansion or acceleration process is a key
quantity to account for since it determines the lattice sites occupancy. The size being shaped, in the BEC case, by
the atomic interactions, it is necessary to clarify and distinguish the roles of size and interactions. To this end, we
plot in the lower row (e) and (f), the momentum densities of the ®’Rb BEC with tuned-off interactions. In plot (e)
and for the case of two lattices, we start with the same BEC wave function (same initial extension than the one in
plot (c) before switching off the interactions for the complete evolution time. This suggests that, initially, the
same number of bichromatic lattice sites are occupied. The similarity in the behavior of the two momentum
structures (same peaks each 2 - (k, — kj,) and relative magnitude than (c) confirms our interpretation of the
dephasing due to more spatial separation between the sites of OL; and OL,. The interactions in the case (c)
simply broaden every momentum peak already visible in (e). When a single lattice is present (black plain curves
of graphs (e) and (f), the broadening of the initial ground state observed in (a) and (b) disappears with the
vanishing interactions. In this case, the local lattice sites density does not play any role in altering the overall BEC
phase. As for (a) and (b), there is no difference whether the BEC is accelerated or kept expanding in the lattice.
The broadening observed in the expanding case of the bichromatic static lattice (red dashed curve in (e) is
averaged out (red dashed in (f)) thanks to the different accelerating ramps and matches the single lattice case
(solid black curve in (f)). As a conclusion, two effects are altering the momentum distributions of the BECs: (i)
momentum broadening driven by interactions dephasing with complex shapes of the envelopes and (ii)
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Figure 5. Zoom on the single momentum peaks of the accelerated Bose—Einstein condensates. This figure is azoom on the momentum
distribution in the adiabatic release limit of figures 4(c) and (e). (a) The effect of the concurrent application of OL; and OL, on 87Rb
condensate is modulating the momentum density around the central target value in a symmetric way. (b) The 'K condensate density
in momentum space remains unaffected (compared to a single lattice case) since OL, is exactly the magic-zero wavelength for this
atom.

bichromatic lattice dephasing, however, averaged out by the different acceleration ramps proposed in our
scheme.

4.4. Effect of the number of kicks

In the case of the proposed scheme, the parasitic effects discussed above do not seem to be related to the number
of momentum kicks transferred. It is, however, important to check if the fidelity of the process is harmed for
higher velocity ramps. Indeed, if it is the case, the dual-lattice dephasing will add up for longer sequences or taller
fountains setting a limit on the practically realizable interferometry times. Figure 7 does not support the
occurrence of such effects. Comparing the momentum probability density of the two species (upper and lower
rows) for largely different accelerations (left versus right column), we observe no difference in the shape or
density magnitude of the wave functions. Numerical estimations of the differential velocity between the two
species confirm this statement. This demonstrates the scalability of the method since no detrimental effects are
observed for longer baselines. Only realistic experimental constraints are expected to set a limit to the proposed
dual-species launch as homogeneity of the optical or magnetic traps involved.

4.5. Quantitative evaluation of the differential velocity

The minimum differential velocity between the two species is solely limited by the effect of the potassium lattice
perturbing the rubidium atoms distribution, being non-magic-zero. In order to evaluate this effect, we estimate
the velocity difference of rubidium when the second lattice is present compared to the ideal case of OL, alone.
The analogous effect of OL; on potassium is strictly absent since its wavelength is exactly the magic-zero one. By
changing the power of OL,, we estimate in figure 8 the bias velocity offset of the *’Rb BEC from the reference
ideal one of 2280 /k;,/m;,. For an OL, beam waist of 1 mm, The perturbation starts to be important for several
Watts. Keeping the lattice power between typical experimental values of 0.5 and 1 W, we bound the velocity
perturbation below the low limit (few tens of nm s~ ') identified for the high-precision measurements
motivating the actual proposal. Within this range of parameters, the inter-species differential velocity lies
similarly around few tens of nm s~'. To match the launching velocities on alevel of ym s ' (nm s ") for

An = 107" [10~ "], the lattice frequencies have to be controlled to 0.1 GHz [0.1 MHz], which can be done e.g.
by a frequency comb. Assuming retro reflected lattices, the relative angle between the lattices has to be below

40 prad to allow for maximum differential velocities of nm s~ '. A mitigation strategy is using common optics for
both lattices. The method adopted to evaluate these velocities was to find the expectation values of the
momentum operator for each of the BECs and compare them. The finite velocity width implies a statistical
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Figure 6. Expansion of the *’Rb BEC for various situations after an adiabatic release from the involved lattice(s). The final wave-
function is shown for a single lattice OL; (solid black) and with a second one (OL;+OL,) (dashed red). The effects of lattice(s)
acceleration (right column) are contrasted with static lattice(s) (left column). (a) and (b) The proposed acceleration ramp in a single
lattice does not lead to a broadening of the momentum distribution. (c) and (d) The evolution of the BEC in the bichromatic lattice
potential (OL,;+OL,) leads to a broadening of the momentum distribution due to dephasing occurring between multiple bichromatic
lattice sites. This effect is dramatically reduced in the accelerated case (d) as we chose slightly different acceleration ramps for the two
lattices, causing the perturbation in each site to oscillate and average down. (¢) Even with vanishing interactions, the same BEC
structure than case (c) is observed for the bichromatic lattice case. The dephasing effect leads to the same momentum peaks (with less
broadening) and relative magnitudes. (f) The different acceleration ramps make the bichromatic dephasing average down and we
observe the same momentum distribution for one or two lattices. Note that the BECs of (b) and (d) are the same plotted in figure 5(a).

uncertainty in the center of mass velocity. Coupled to GGs this leads to a noise contribution in the
interferometer which has to be kept below the shot noise limit. For 10° atoms of each species, two photon beam
splitters, contrasts near unity, a free evolution time of T = 1.37 s, Earth’s GG, and velocity widths as depicted in
figure 5 the related noise would be smaller than the shot noise by one order of magnitude. The differential center
of mass motion can be assessed by spatially resolved imaging directly after launch and subsequently after 2T.
Repeating these measurements for about 20 times is sufficient to reach the precision required for a target of

An = 10" ">, Higher precisions require either a higher number of measurements or a reduction in velocity
width. Even in a space-borne experiment and assuming the parameters from [74], the noise associated with the
statistical uncertainty in the center of mass velocity would be below the anticipated shot noise limit.

5. Conclusion and discussion

In this article, the idea of using two OLs at the zero-magic wavelengths of ®Rb and *'K allowed to manipulate
each of them selectively. The motivation behind this scheme is to achieve a perfectly zero inter-species
differential velocity required in precision tests of the WEP in fountain geometries. To the best of our knowledge,
no acceleration method of two different atoms or isotopes to a common precise velocity was reported so far. In
order to strictly cancel the differential velocity between the species, one of the lattices had to be slightly shifted
leading to a perturbing effect on one of the atoms (*’Rb). Numerical simulations of the dynamics of two BECs of

12



I0OP Publishing NewJ. Phys. 17 (2015) 123002 R Chamakhi et al

20 a 20 b
15— 15—
-
3T i 87
S
Rb
10— 10 -
=
< L L
z
5 5
0 T | T | T | T O T | T | T | T
1899 190 190,1 22799 2280 2280,1
0 k/kLl 0 k/ kL1
¢ d
15— 15—
;|
3 L L
] 41
S K
~_ 10— 10 —
=
-
N— - -
=
5 5
0 ' | ' ! 0 ' | ' !
91,9 92 92,1 11039 1104 1104,1
Kk, Kk,
Figure 7. Effect of the number of momentum kicks. The right column differ from the left one by more than one order of magnitude in
the total number of momentum kicks transferred. The upper panel illustrates the #’Rb case whereas the lower ones corresponds to the
acceleration of the potassium 41 isotope. This figure demonstrates the scalability of the method since different fountains of variable
sizes could be operated using the same principle. No alteration of the momentum of the launched species is observed whether the
fountain realized is few tens of cm or has a height of 10 m. Note that the duration of the two ramps (less than 8 ms) is chosen to be the
same in the two cases (left versus right) in order to decouple the effect of momentum transfer from interaction dephasing effects,
which scale linearly with time [68].

T T T
Lo

T T T T T T
M|

Ll

|

T T T

0 | | | | |
0 1 2 3 4 5
Power (W)
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offset is compared to the reference value of 2280 /1, /m; and plotted against the power of the perturbing lattice OL,. Since the lowest
differential inter-species velocity is limited by the effect of OL, on ®Rb, the velocity offset introduced for this species is the relevant
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to be 1 mm for all the simulated cases of this figure. It is clear that for typical experimental values of the power of OL, (about 0.5 W),
the systematic velocity offset introduced is about 10 nm s~ ' required in high-precision tests.
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the above-mentioned atoms with realistic parameters lead to the conclusion that this perturbation does not alter
the efficiency of the method to more than few tens of nm s~ ! Moreover, the effects of atomic interactions were
extensively assessed and contrasted to the ideal collision-less case making this study valuable for the non-
condensed regime as well. The method proposed is not bound to a particular experimental arrangement and
covers a wide range of fountain baselines from few mm to several meter-tall chambers without suffering from
any performance deterioration. In general, the acceleration ramps can be engineered to account for an initial
spatial offset between the two atomic clouds, which was for simplicity omitted in the treated example. This
feature is an intrinsic advantage of the scheme that provides a solution to the gravitational sag issue complicating
Earth-bound inertial precision measurements. The choice of the atomic test pair is not restricted to the study
case considered but can be made among the multitude of alkaline and alkaline-Earth-metal species possessing
tune-out wavelengths [32—42, 50]. The fountain concept presented is the baseline of a launch stage in an atomic
interferometry test of the equivalence principle requiring the two species to start with velocities as close as few
nm s~ . This result puts a WEP test with an uncertainty of 10~'> within reach in already existing fountain
facilities.
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