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Abstract

Abstract

The mechanisms underlying organogenesis are based on precisely controlled genetic pro-

grams [1-3]. The embryonic development of the respiratory epithelium has been extensive-

ly studied [4, 5],  while the insights into mesenchymal development  are limited. Previous

work described the functional requirement of the T-box (Tbx) transcription factor genes

Tbx2-Tbx5, in the development of the pulmonary mesenchyme [6-10], of which the tran-

scriptional repressors TBX2 and TBX3 were shown to control embryonic lung growth and

branching morphogenesis by maintaining mesenchymal proliferation [7, 8]. 

The present study aims to unveil the cellular and molecular mechanisms by which TBX2

exerts its function in the pulmonary mesenchyme. Detailed expression analysis and genet-

ic lineage tracing analyses showed that the majority of mesenchymal cells and approxi -

mately half of the mesothelial cells express TBX2 and derive from the TBX2+ cell lineage.

Analyses in TBX2 loss-and gain-of-function mutant lungs revealed that lineage diversifica-

tion was independent of TBX2, however, minor defects in the development and physiology

of the bronchial smooth muscle layer were observed.

Transcriptomic- and ChIP-seq data identified Interleukin 33 (Il33) and cellular communica-

tion network factor 4 (Ccn4) as additional direct target genes and de novo motif analysis of

the DNA regions bound by TBX2 revealed an enrichment of homeobox and high-mobility-

group (HMG) box consensus sequences. Proteomic analysis revealed that TBX2 interacts

with the homeobox transcription factor  pre B cell leukemia homeobox 1 (PBX1) and the

HMG protein high mobility group box 2 (HMGB2), in consistence with the preceding motif

analysis. Further identified interaction partners of TBX2 indicate a function of TBX2 in his-

tone modification and chromatin remodeling. Taking together, TBX2 predominantly controls

proliferation of the pulmonary mesenchyme rather than cell  fate decisions or differentia-

tion. In order to do so, TBX2 interacts with several proteins to exert DNA binding and his-

tone/chromatin  modifications.  Thus,  this  study provides new insight  in  the cellular  and

molecular mechanisms by which TBX2 participates in lung development.

Keywords:  Tbx2, Lung mesenchyme development, Smooth muscle cells, Target genes,

Protein interaction
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Zusammenfassung

Zusammenfassung

Die Prozesse der Organogenese basieren auf akribisch kontrollierten, genetischen Program-

men [1-3]. Im Fall der Lungenentwicklung sind diese Mechanismen für das Epithel bereits ein-

gehend erforscht [4, 5], während das Wissen über die mesenchymale Entwicklung begrenzt ist.

Für die T-Box Transkriptionsfaktoren TBX2-TBX5 wurden essenzielle Funktionen für die Ent-

wicklung des Lungenmesenchyms beschrieben [6-10], wobei die transkriptionellen Represso-

ren TBX2 und TBX3, über die Aufrechterhaltung der mesenchymalen Proliferation, für  das

Wachstum und die Verzweigungsmorphogenese der embryonalen Lunge notwendig sind [7, 8]. 

Die vorliegende Arbeit soll die zellulären und molekularen Mechanismen von TBX2 im Lungen-

mesenchym näher untersuchen. Dafür wurden detaillierte Expressions- und Zellschicksalsana-

lysen sowie ChIP-Seq-, Transktiptom- und Proteininteraktionsanlysen durchgeführt. Die Expres-

sions- und Zellschicksalsanalyse zeigten, dass ein Großteil der mesenchymalen, sowie in etwa

die Hälfte der mesothelialen Zellen TBX2 exprimieren und aus der TBX2+ Zelllinie abstammen.

Analysen in TBX2 Verlust- und Überexpressionsmutanten verdeutlichten, dass die mesenchy-

malen Zellschicksale der Lunge unabhängig von TBX2 sind. Allerdings konnten geringe Defekte

in der Entwicklung und der Funktion der bronchialen Muskulatur beobachtet werden. Transkrip-

tom- und ChIP-Seq Daten identifizierten Il33 und Ccn4 als weitere Zielgene und eine de novo

Motivanalyse der von TBX2 gebundenen DNA Regionen zeigte eine Anreicherung von Konsen-

sussequenzen für Homöobox und HMG-Box Proteine. Im Einklang dazu konnten Proteininter-

aktionsstudien eine Interaktion von TBX2 mit dem Homöobox-Transkriptionsfaktor PBX1 und

dem HMG Protein HMGB2 zeigen. Die Betrachtung weiterer Interaktionspartner lieferte Hinwei-

se darauf, dass TBX2 Chromatin und Histon modifizierende Enzyme und Komplexe rekrutiert.

Die vorliegende Arbeit verdeutlicht, dass TBX2 vorwiegend die Proliferation des Lungenmesen-

chyms reguliert, während Zellschicksalsentscheidungen nicht von TBX2 abhängig sind. TBX2

interagiert mit verschiedenen Proteinen, um DNA Regionen spezifisch zu binden und vermutlich

um Chromatin und Histone zu modifizierenden. Diese Arbeit liefert neue Erkenntnisse über die

zellulären und molekularen Mechanismen mittels derer TBX2 an der Entwicklung der Lunge be-

teiligt ist.

Schlagworte: Tbx2, Lungenmesenchym, Glattmuskelzellen, Zielgene, Proteininteraktion
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Introduction

Introduction

Structure and development of the respiratory system

The physiological function of the mammalian lung is to take up oxygen and discharge car-

bon dioxide. This gas exchange is based on diffusion and relies on a large air exposed

surface closely linked to the vascular network. This is achieved by a complex organ archi-

tecture combined with a variety of specialized cell types.

The murine lung consists of one left and four right lobes (superior, middle, inferior and

post-caval lobes), one of which (the post-caval lobe) is morphologically shifted to the left

side (Fig. 1A). Starting from the trachea, the lung epithelium is organized in a tree like

structure of bronchi and bronchioles (Fig. 1B) which conduct the air; the epithelium of the

airways is mostly ciliated to remove particles and pathogens from the lung. Distally, the ep-

ithelium forms specialized units  for the gas exchange, the alveoli  (Fig.  1C),  which are

mostly comprised of alveolar epithelial cells type I and II (AEC I and AEC II). To enable an

efficient diffusion of gases, these cells have a flattened morphology and direct contact to

the air on one side and to the ramified vascular network on the other.

The epithelium of the trachea, bronchi and bronchioles is surrounded by mesenchymal tis-

sues of differential characters (Fig. 1D, 1D', 1D''). The mesenchymal compartment of the

trachea consists of C-shaped cartilaginous rings which enclose the ventral and lateral as-

pects,  while  dorsally  continuous  fibers  of  SMCs reside (Fig.  1D).  The bronchial  mes-

enchyme comprises of irregularly arranged,  crescent-shaped cartilaginous plates which

surround a  periepithelial layer  of  bSMCs (Fig.  1D').  The bronchioles lack cartilaginous

structures, but feature a prominent layer of bSMCs (Fig. 1D''). The bSMCs contract rhyth-

mically to control the diameter of the epithelial tube and thereby support air conduction

[17], while the cartilaginous structures stabilize the conducting airways. The mesenchyme

of the alveoli is restricted to a sparse population of interstitial fibroblasts and pericytes.

The entire organ is covered by a mono-layer of epithelial-like cells, a mesothelium, also

known as the visceral pleura. The mesothelium allows the smooth sliding of the lung along

other organs and the body wall and is critically involved in the immune response [18]. [19,

20]
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Figure 1: Morphology and histology of the murine lung.

(A) Scheme of the lobes of the adult murine lung. The lung consists of four right lobes (su-
perior, middle, inferior and post-caval) and one left lobe. (B) Scheme of the pulmonary ep-
ithelial structure. A magnification of C and cross-sections at the levels D, D' and D'' are de-
picted in the panels to the right. (C) Illustration of the distal respiratory tree showing alveo-
lar sacs, composed of multiple alveoli and their association with the capillary network. (D,
D', D'') Scheme of the circular tissue arrangement of the trachea (D), the bronchi (D') and
the bronchioles (D'').  Abbreviations:  a: anterior; d: dorsal; IL: Inferior lobe; l: left; LL: Left
lung; ML: Middle lobe; p: posterior; PcL: Post-caval lobe; r: right; SL: Superior lobe; v: ven-
tral.
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The tissue architecture and the cell diversity of the mature lung derives from simple pri-

mordia through complex developmental programs, which involve a coordinated interplay of

the epithelium, the mesenchyme and the mesothelium [21-23].  At approximately E9.0, a

region of the ventral foregut endoderm is specified as lung primordium which will later give

rise to entire pulmonary epithelium. This precursor population is marked by the expression

of  Nkx2.1 [24], which is induced by two ligands of the canonical WNT-signaling pathway

(WNT2 and WNT2B) expressed in the adjacent mesenchyme [25]. In turn, BMP4-signaling

from this ventral mesenchyme allows the ventral endoderm to commit to the respiratory lin-

eage by the restriction Sox2, and thereby of the esophageal fate, to the dorsal endoderm

[26-28]  (Fig. 2A).

The initial budding of the lung epithelium critically depends on the expression of the signal-

ing protein FGF10 in the ventral foregut mesoderm. FGF10 acts as a pro-proliferative fac-

tor and as chemoattractant, guiding the evagination of the epithelium into the surrounding

mesenchyme at approximately E9.75 [29] (Fig. 2B). The initial outpouching immediately

forms two separated buds, corresponding to the two primary bronchi. Recent studies in

chicken suggest, that these buds originate from a paired primordium, rather than from a

subdivision of a single bud [30]. Bud outgrowth is accompanied by the formation of the tra-

cheoesophageal groove (Fig. 2B, arrowhead) which prefigures the separation of the tra-

chea and the esophagus [30-32]. The vascular network develops simultaneously to the

respiratory tree and emerges as soon as the initial buds have formed [33-35].

Starting from E9.5, lung development is subdivided into five stages: embryonic, pseudog-

landular, canalicular, saccular and alveolar [36-38].

The embryonic and the pseudoglandular stages, which end at E12.5 and at E16.5 respec-

tively, cover most of embryonic development. Both are mainly characterized by branching

morphogenesis generating the lower respiratory tract [36-38].  At E12.5 the epithelium is

subdivided into a proximal, SOX2+ stalk region and a distal, multipotent, highly proliferative

region that expresses SOX9 [39-42].  At  the distal  tips iterative dichotomous branching

events take place [43], guided by reciprocal inductive signals of the epithelium and the

mesenchyme. Mesenchymal FGF10 expressed around the epithelial  tips stimulates and

directs the epithelial outgrowth (Fig. 2C(a)). It simultaneously induces  Shh and  Bmp4 in

the most distal epithelium of the tip which repress epithelial proliferation and negatively in-

fluence  Fgf10 expression in the mesenchyme (Fig. 2C(b)). This restricts FGF10 expres-
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sion and proliferation to the lateral regions of the tip. Subsequently the epithelial growth is

directed to the sides (Fig. 2C(c)), forming two new branching endpoints [29, 44-46] (Fig.

2C(d)). 

In addition to morphogenesis, the differentiation of the majority of epithelial and mesenchy-

mal cell types takes place in a proximal to distal gradient during the pseudoglandular stage

[36-38].

From E16.5  to  E17.5, the  mouse lung passes through the canalicular  stage which  is

marked by further branching, the refinement of the vascular network and the differentiation

of alveolar cell types. The subsequent saccular stage extends until the postnatal day (P)5,

followed by the alveolar stage which ends with the full maturation of the lung at P30. Both

stages are characterized by maturation of the alveoli, increase of air spaces at the ex-

pense of mesenchymal tissue and optimization of the capillary network [36-38].
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Figure 2: Molecular control of lung specification and branching morphogenesis.

(A) Specification of the lung field within the foregut endoderm. WNT2/2B signals from the
mesenchyme  induce  Nkx2.1 expression,  in  the  epithelium,  which  marks  the  lung
primordium. Simultaneously, BMP4 expressed in the ventral mesenchyme represses Sox2
in the ventral epithelium, thereby restricting the esophageal fate to the dorsal region.  (B)
Initial  budding  of  the  specified  endoderm  into  the  surrounding  mesenchyme.  FGF10
expressed in the mesenchyme promotes the proliferation of the NKX2.1+ epithelium and
additionally directs the ventral outgrowth. (C) Simplified illustration of epithelial bifurcation
and its dependence on SHH, BMP4 and FGF10 signals. The epithelium is subdivided into
proximal and distal regions marked by the expression of SOX2 (yellow) and SOX9 (green),
respectively.  The  multipotent  distal  epithelium  receives  FGF10  from  the  mesenchyme
which  induces  SHH and  BMP4 in  the  epithelium and  thereby drives  proliferation  and
directs the pouching of the epithelium towards the FGF10 source. SHH and BMP4 in turn
repress FGF10, leading to enhanced FGF10 expression flanking the distal tip, while the
central epithelial regions no longer receive FGF10 signals. This results in the outgrowth of
the epithelium to the sides and thereby to the bifurcation of the distal tip creating two new
branching  endpoints.  Abbreviations:  d:  dorsal;  S:  Somites  v:  ventral;  arrowhead:
tracheoesophageal groove; pink arrows: indicates growth direction of the epithelium.



Introduction

Mesodermal derivatives within the lung: a closer look on origin, precursor popula-

tions and differentiation

The complex morphogenesis and the emergence of all specialized cell types are achieved

by precisely organized developmental programs depending on tightly regulated gene ex-

pression and reciprocal signals from the epithelium, the mesenchyme and the mesotheli-

um.  The development and differentiation of the pulmonary epithelium is well studied (for

reviews see: [37, 47, 48]), while the knowledge about mesenchymal and mesothelial de-

velopment lags behind. 

In an attempt to systematically characterize mesenchymal cell types and subpopulations of

adult lungs broad single-cell RNA-seqs were recently performed. According to their tran-

scriptomic profile endothelial and mesothelial cells as well as different types of fibroblasts

(lipofibroblasts, myofibroblasts and two types of matrix fibroblasts) and mesenchymal pro-

genitors were characterized [49].  However, diversification of the pulmonary mesenchyme

is still poorly understood. But some studies identified multipotent mesenchymal lineages

[50-55].  This was further emphasized by lineage tracings of single mesenchymal cells,

which demonstrated that single-potential lineages are rather uncommon in the lung [51],

complicating the investigation of genetic control of mesenchymal differentiation. Analyses

of different mouse mutants provided some insight into the molecular pathways regulating

lineage  commitment  and  differentiation  of  the  major  mesodermally  derived  cell  types

(mesothelium, bSMCs, vSMCs, cartilage and endothelium), whereas the genetic control of

fibroblast differentiation is poorly understood.

The mesodermally derived visceral pleura emerges around E10.5  and grows rapidly to

cover the lung [18]. A recent study suggested that the mesothelial lineage is specified and

separated  from  the  pulmonary  mesenchyme  early  in  development [51].  However,

mesothelial cells can contribute, albeit to a limited degree [56], to different mesenchymal

cell types, such as endothelial cells, SMCs and fibroblasts [57-59]. More importantly, the

visceral pleura serves as an essential signaling center during development [18] which e.g.

maintains a multipotent cell population of the mesenchyme or restricts cell differentiation to

certain compartments [60-63]. The potential of mesothelial signals to affect the develop-

ment of the entire mesenchymal compartment was demonstrated by mesothelial-specific

loss-and gain-of-function mutant mice. Loss of Smad4 and gain of SHH-signaling results in

a mesenchymal thickening and a reduction of airspaces, while the gain of Notch-signaling
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led to an emphysema-like phenotype [56], emphasizing the crosstalk of the mesothelium

and the mesenchyme.

The pulmonary mesenchyme is derived from the splanchnic mesoderm and is subdivided

into a submesothelial and a subepithelial compartment, which are molecularly distinguish-

able by the expression of Wnt2a and Noggin, respectively [63, 64].

FGF10 expressing cells, the descendants of which contribute to both types of SMCs and

lipofibroblasts [55, 61, 65] represent the exclusive progenitor population of bSMCs. FGF10

is essential for bSMC lineage commitment [65] and induces Shh and Bmp4 in the epitheli-

um which in turn cause the downregulation of FGF10 in the precursors of the bSMCs. Si -

multaneously, SHH-signals activate  Foxf1 expression in the mesenchyme, which is sug-

gested to activate WNT2 likewise in the mesenchyme [66]. WNT2 is required and sufficient

to initiate the differentiation of bSMCs by inducing the expression of  Myocardin  (Myocd)

and Myocardin related transcription factor B (Mrtf-B), two key factors of the myogenic tran-

scriptional  program [67, 68].  The specified bSMC progenitors passively relocate to the

subepithelial mesenchyme surrounding the stalk epithelium [65] where they mature and

express muscle associated genes such as ACTA2 [51, 67]. Mesothelial FGF9, together

with mesenchymal β-catenin- and PDGF-signaling maintain the initial precursor population

and prevent the differentiation of bSMCs in the submesothelial mesenchyme [61, 63, 69,

70].  Additionally,  BMP4 negatively  influences  Foxf1 in  the  distal  tip  mesenchyme and

thereby possibly counteract SMC differentiation in that region [71]. 

In the upper airways, the reciprocal antagonism of SMCs and juxtaposed cartilaginous

structures affect the cell number and the spatial expansion of both cell types [72]. Further-

more, preventing the differentiation of pulmonary SMCs by the inactivation of Myocd led to

malformations  of  the  cartilaginous  structures  of  the  trachea  by  disturbing  the  evenly

spaced condensation of the future cartilage cells [73]. 

Cartilage precursors derive from mesenchymal progenitors, commit to the chondrocyte lin-

eage, condense and differentiate to from the tracheal and bronchial cartilage [74, 75]. Car-

tilage development is mainly driven by WNT-, SHH- and possibly BMP-signals from the ep-

ithelium [76-78]. WNT-signaling is required for the condensation of the cartilage precursors

and additionally maintains their proliferation [76, 79]. Chondrocyte differentiation is initiated

by SHH inducing the expression of SOX9 in certain mesenchymal cells, which in turn acti-

vate  Col2a1  a cartilage-specific gene [78]. BMP-signaling acts pro-chondrogenic and is
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suggested to stimulate tracheal cartilage formation and chondrocyte maturation [80]. More-

over, the deficiency or reduction of RA-signaling was shown to result in malformed carti-

lage rings, which was suggested to be the consequence of a reduced blood supply during

cartilage formation [81, 82], emphasizing the importance of a functional vascular network

not only for later gas exchange, but also for lung development.

The development of the capillary network starts at approximately E10.0 and occurs simul-

taneously trough two mechanisms; angiogenesis, the sprouting of new vessels from pre-

existing vessels, and vasculogenesis, the formation of endothelial cells from mesodermal

precursors [33, 34, 83, 84]. Endothelial precursor populations are located in proximity to

the epithelium and several studies showed a pivotal interaction of these two compartments

for proper vasculogenesis [34, 85].  The formation of the first capillary-like structure, the

vascular plexus is initiated by FGF-, SHH- and VEGF-signaling from the epithelium to the

adjacent mesenchyme. Together these pathways are required and sufficient to induce vas-

cular development [38, 85, 86]. Moreover, VEGFA-signals, conveyed by its receptors VEG-

FR1 and VEGFR2 expressed in the primitive endothelium, support endothelial proliferation

and the formation of angioblasts [25, 84, 87-90]. Endothelial cells are surrounded by a lay-

er of SMCs and connective tissue whose radial patterning is established by a PDGFB-sig-

naling gradient emanating from the endothelium [91]. Vascular SMCs are derived from the

mesenchyme around newly generated vessels [91]. It was shown that signals from en-

dothelial  cells induce the accumulation of vSMC progenitors [35, 83, 92] which subse-

quently proliferate and then migrate to enclose the vessel [93, 94]. Analyzing a Wnt7bLacZ

mutant  suggested  Wnt7b as  the  major  player  of  canonical  WNT-signaling  involved  in

vSMC development,  but  contradictory results  were observed analyzing different  Wnt7b

mutant alleles, questioning its necessity [95]. However, several studies identified β-catenin

signaling, together with downstream PDGF-signaling as crucial signals to expand vSMC

progenitors and promote their migration [70, 96-98], emphasizing the role of the WNT-sig-

naling pathway.

Thus an orchestrated interplay not only of tissue compartments but also of cell types is es-

sential for proper mesenchymal morphogenesis and differentiation.
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From DNA to protein: regulation of gene expression

The generation of complex organs and their multitude of specialized cell types from simple

progenitor cell populations is a hallmark of metazoan development [1]. Undifferentiated,

homogeneous precursor cells, which contain the same genetic information, have to estab-

lish differential gene expression to acquire cell type-specific characteristics. The extensive

morphogenesis and cellular diversity occurring during organogenesis are consequences of

well-conserved developmental programs driven by precisely controlled patterns of gene

expression [2].

Gene expression starts with the transcription of a certain region of genomic DNA (gDNA)

by RNA polymerase multiprotein complexes into precursor messenger RNA (pre-mRNA),

which is further processed to mature mRNA.

Genomic DNA is present as chromatin, meaning associated with histones and other pro-

teins. Chromatin structure, thus its configuration and the localization of the nucleosomes

determines the accessibility of the chromatin for transcription [99]. 

Chromatin remodeling, meaning ATP dependent nucleosome removal,  relocalization by

sliding along the DNA and restructuring, is executed by special multiprotein complexes

which establish  specific  nucleosome patterns [100,  101].  These  chromatin  remodeling

complexes are divided - according to their properties and subunits - into four distinct fami -

lies: the switch/sucrose non-fermenting SWI/SNF (also known as Brg/Brm Associated Fac-

tor (BAF))  -family,  the chromodomain helicase DNA-binding (CHD) family,  the imitation

switch (ISWI/SNF2L) family, and INO80 family [100-102]. 

Chromatin remodeling complexes get recruited to specific target sites in the genome by

different modifications of histones, specific DNA features and DNA binding proteins [103,

104], which themselves additionally influence the chromatin structure and chromatin asso-

ciated proteins [105].

Histone modifications often occur at the N-terminal tails of the histones and include among

others  methylation  of  arginine  (R)  residues  as  well  as  methylation  and  acetylation  of

lysines (K). These covalent modifications are exerted by specialized enzymes, such as hi-

stone acetyltransferases (HATs),  histone deacetylases (HDACs),  histone demethylases

(HDMs) and histone methylases (HMTs). 

To allow transcription, the chromatin has to be in an open or "relaxed" state [106]. Hyper-

acetylation of histones is generally  associated with active transcription of a gene, since

9
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acetylation of lysine residues can weaken the binding between the histone and the DNA

[107] (Fig. 3A).

In contrast, methylations are associated with gene activation and repression. Here, the ex-

act site and the state of the methylation (mono-, di- and trimethylation) defines the tran-

scriptional outcome [99]. Methylation of histone 3 (H3) at lysine 4 (H3K4), lysine 36 and ly-

sine 79 has been implicated in transcriptional activation, whereas methylations of H3K9,

H3K20,  and  H3K27  serve  as  repressing  marks [108,  109].  Trimethylation  of  H3K9

(H3K9me3) a repressive histone mark associated with heterochromatin formation is recog-

nized by heterochromatin associated proteins such as HP1 [110-112]. HP1 in turn is able

to recruit DNA methyltransferases (DNMTs) [107, 113, 114] which establish DNA modifica-

tions associated with transcriptional regulation. Cytosine methylation in the promoter or en-

hancer region of a gene is the most commonly observed DNA modification which was

shown to drive the establishment heterochromatin [115, 116]. Thus, methylated DNA and

histones, together with deacetylated histones and binding of heterochromatin proteins re-

sult in condensed chromatin, which is transcriptionally inactive [99, 112, 117](Fig. 3A). 

To achieve specificity,  chromatin remodeling complexes but also histone modifying en-

zymes  are  often  recruited  to  enhancers/silencers  and  promoters  by sequence-specific

DNA binding proteins primarily transcription factors (reviewed in: [99, 101, 102]).

Tissue-specific transcription factors (TFs) mediate the spatial and temporal specificity of

gene  transcription.  TFs  bind  specific  DNA sequences  within  regulatory  elements  and

thereby influence the transcription frequency of the associated transcriptional unit. These

regulatory elements can be represented by sites in the promoter region of a gene as well

as by enhancers/silencers, located upto thousands of base pairs (bp) away from the tran-

scription start sites [118-120] (Fig. 3B). The DNA sequences which are recognized by TFs

are characteristic for all members of a TF family, and are mostly rather short. Therefore,

specificity is often achieved by the occurrence of multiple DNA binding sites that are bound

by different TFs in concert.

Transcription factors are classified into activators and repressors, which increase or de-

crease the amount of mRNA transcripts of a gene, respectively. In the case of repressing

TFs the transcriptional regulation is achieved by different mechanisms. Transcriptional  re-

pressors can bind regulatory elements competitively to an activator, mask the activating

site of an enhancing TF or interact with the transcription machinery either directly or via
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additional TFs or protein interaction partners [118-120]. As mentioned above, transcription

factors can also recruit chromatin remodeling complexes as well as DNA and histone mod-

ifying enzymes to modulate DNA accessibility [101, 117, 121-126].

Gene expression is not only controlled on the level of transcription but also at many subse-

quent steps of mRNA maturation, transport, stability and translation. Eukaryotic pre-mRNA

consists of non-coding introns and protein coding exons. During pre-mRNA maturation, the

introns are removed by a multiprotein complex, the spliceosome. Thus, alternative splicing

of the same pre-mRNA can produce different proteins with different properties and func-

tions. Furthermore, gene expression is influenced by mRNA stability which is determined

by different degradation signals [118-120].

After maturation, the mRNA gets translated into a protein by ribosomes. During this step,

different modifications such as the attachment of e.g. phosphates or lipids or even the en-

zymatic cleavage can alter protein appearance and stability and thereby influence gene

expression products, levels or duration.

Thus, gene expression is a multi-facetted process which is regulated at various levels. Or-

chestrating the expression of a multitude of genes allows the establishment of specified

tissues and organs during embryonic development whereby transcription factors play a

central role in the regulation of gene expression. 

11
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12

Figure 3: Mechanisms of transcriptional control and chromatin remodeling.

(A)  Simplified  scheme  of  epigenetic  chromatin  silencing.  Active  chromatin  is  highly
demethylated,  contains  hyperacetylated  histones  and  is  free  from  heterochromatin
proteins. Silencing of the chromatin occurs through deacetylation of histones by HDACs
and  the  methylation  of  both,  histones  and  DNA  by  (de-)methylases and
methyltransferases. Additionally, heterochromatin proteins get incorporated. (B) Scheme
illustrating the general  events of transcription. Tissue-specific transcription factors (TF1,
TF3) bind to distal regulatory elements (enhancer/silencer)(pink) and (rarely) to proximal
regulatory  elements  in  the  promoter  region  (dark  green)  to  recruit  the  transcription
machinery to its specific site at the promoter (light green) in front of the transcription start
site of a target gene (dark gray). Moreover, transcription initiation is possibly influenced by
the additional interaction with transcriptional co-factors (TF2). Abbreviations: DNMTs: DNA
methyltransferases;  HATs:  Histone  acetyltransferases;  HDACs:  Histone  deacetylases
HDMs: Histone demethylases; HMTs: Histone methylases; TF: Transcription factor; TM:
Transcription machinery.
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T-box transcription factors: Transcription regulation and their role in development

and disease

T-box (Tbx) genes encode an evolutionary highly conserved family of transcription factors

[127], which is characterized by a conserved DNA binding region of 174-186 amino acids

[128], the T-box. In vitro binding site selection experiments identified the sequence 5’-AG-

GTGTGA-3’ as optimal binding site [129]. This binding site, also referred to as T-box bind-

ing element (TBE), is a half site and T-box proteins may bind to one TBE as a monomer or

to direct or inverted repeats as dimers [130, 131]. Additionally to interacting with each oth-

er, T-box proteins can heterodimerize with transcription factors of other families including

homeobox and GATA zinc-finger proteins to regulate target gene transcription [12, 125,

132-136]. Moreover, TBX proteins also interact with proteins that affect the state of the

chromatin such as the NuRD or the BAF complex [12, 121, 124, 125, 137]. 

Specificity of DNA binding is mediated by the T-box, while transcription regulating proper-

ties reside outside the T-box [12, 138, 139]. Functionally, T-box transcription factors can be

subdivided in activators and repressors [12, 138]; some proteins may act context-depen-

dently either as activator or repressor [12, 132, 138, 140, 141].

In mice, 17 T-box genes have been identified to date, and were grouped into 5 subfamilies

(T, Tbx1, Tbx2, Tbx6, Tbr1) according to sequence similarity [12, 138]. Divergence of T-

box genes is suggested to emerge evolutionarily by (tandem) gene duplication which was

best described for the Tbx2-subfamily. Its four members,  Tbx2-Tbx5, emerged from one

ancestral locus and duplicated first into Tbx2/3 and Tbx4/5 genes which further diversified

by an additional duplication event into 4 different genes [127, 142]. As a consequence of

the high sequence similarity of e.g. TBX2 and TBX3 these two proteins act redundantly in

some contexts, but also have distinct functions [8, 143, 144].

T-box genes are expressed in a multitude of organs and tissues [6, 12] and genetic studies

in mice showed that T-box genes are involved in the development of multiple organs and

body parts including the heart, the liver, the urogenital system, the limbs and craniofacial

structures. Here, they control cell fate decisions, differentiation, patterning and proliferation

in both mesenchymal and epithelial tissue primordia and several mutations of T-box genes

result in serious defects [12-15, 145, 146].

Mutations of T-box genes also underlie congenital syndromes in humans [147]. For exam-

ple, mutations of TBX1 results in DiGeorge syndrome, which comprises craniofacial, vas-
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cular and heart anomalies [148]. Haploinsufficiency of TBX3 leads to the Ulnar-mammary

syndrome. Humans affected by this syndrome suffer among other things, from limb de-

fects, mammary and apocrine gland hypoplasia and dental abnormalities [149]. Heart and

skeletal  anomalies  of  the  forelimbs  are  symptoms  of  Holt-Oram  syndrome,  which  is

caused by a mutation of TBX5 [150]. Recent studies showed that the members of the

TBX2-subfamily are downregulated in the pulmonary mesenchyme of a  nitrofen-induced

model of  congenital diaphragmatic hernia [151]. Newborns suffering from congenital di-

aphragmatic hernia display a defective closure of the diaphragm combined with severe hy-

poplasia of the lung [152]. Moreover, numerous studies demonstrated that the overexpres-

sion of TBX2 and TBX3 is associated tumor development in humans [11, 138, 143, 153].

Together this provides strong evidence for the importance of T-box transcription factors for

embryonic development and tissue homeostasis in mammals.

T-box transcription factors in murine lung development 

Five members of the T-box transcription factor family, namely Tbx1-5, are expressed in the

embryonic mouse lung [6].

Tbx1 is expressed in the pulmonary epithelium throughout development [6]. The somatic

deletion of Tbx1 leads to a failure of lung inflation at birth [148], but an explicit analysis of

Tbx1 function during lung development has not yet been performed.

In contrast, the members of the TBX2-subfamily (Tbx2-5) are expressed in the embryonic

lung mesenchyme and the consequences of their loss were analyzed in several studies. 

TBX4 and TBX5 act as activators of target gene transcription in the lung mesenchyme [9,

154]. Deletion of Tbx5 in the entire embryo leads to an unilateral loss of lung bud specifi-

cation and defective tracheal specification, while mice deficient for Tbx4 combined with a

heterozygote loss of Tbx5 die shortly after birth due to respiratory distress [9]. Lung-specif-

ic deletion of  Tbx4 and/or  Tbx5 results in dose-dependent defects of branching morpho-

genesis, cartilage formation and expansion of tracheal SMCs [9, 154]. Branching morpho-

genesis is regulated by the direct activation of Fgf10, while the impact of TBX4 and TBX5

on cartilage formation is not yet completely unveiled [9, 154].

TBX2 and TBX3 are transcriptional repressors and were described to act at least partly re-

dundant in the lung mesenchyme [8]. Constitutive expression of TBX2 into adulthood leads

to pulmonary hyperplasia including a thickening of the mesenchyme, but mainly unaffected
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branching morphogenesis. The loss of Tbx2 results in hypoplasia and reduced branching

of the lung, due to a decrease in proliferation of the mesenchyme [7]. Additionally, a re-

duced presence of S100A4 expressing interstitial fibroblasts and an increased deposition

of extracellular matrix were observed [7]. Indirectly, the loss of Tbx2 marginally affects also

the proliferation of the distal epithelium and the composition of epithelial cell types.

Molecular analyses revealed that TBX2 and TBX3 affect epithelial branching by supporting

the proliferation of the mesenchyme by at least two independent mechanisms: the direct

repression of the cell cycle inhibitors Cdkn1a and Cdkn1b [7] and mediation of the pro-pro-

liferative function of the WNT-signaling pathway by direct repression of  its  antagonists

Frzb and Shisa3 [8]. Furthermore, the alterations of mesenchymal composition indicate a

role of TBX2 in mesenchymal differentiation. 

Thus, several T-box transcription factors are crucial regulators of embryonic lung specifica-

tion, growth, morphogenesis and mesenchymal cell differentiation. However, the charac-

terization of the cellular and molecular functions of these factors during lung development

is not yet complete.
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Aims of the study

TBX2, a member of the evolutionary conserved family of T-box DNA-binding proteins, reg-

ulates as a transcriptional repressor different cellular programs in the development of nu-

merous organs during mammalian embryogenesis (for review see: [11, 12]).

During murine lung development,  TBX2 is expressed in the mesenchyme [6], where it is

required for branching morphogenesis and growth of the embryonic lung [7, 8]. Transcrip-

tomic analysis and ChIP-seq data identified direct target genes which revealed a crucial

function of TBX2 in mesenchymal proliferation. From this, Lüdtke et al. hypothesized that

TBX2 maintains the precursor state of lung mesenchymal cells by preserving their ability to

proliferate. However, both mesenchymal loss- and gain-of-Tbx2, led to mesenchymal and

epithelial differentiation defects [7], suggesting that TBX2 also regulates additional cellular

programs such as patterning, cell fate decisions and differentiation, as it does in other or-

gan systems [13-16]. Moreover, the molecular mechanisms by which TBX2 achieves tar-

get gene specificity and exerts its repressive function in the pulmonary mesenchyme have

not yet been examined.

This study aims to provide new insight into the molecular mechanisms of TBX2 function in

the pulmonary mesenchyme.

To identify cell types possibly depending on TBX2 function in the developing lung a de-

tailed temporal  and spatial  expression analyses of  TBX2 as well  as a  lineage tracing

analyses of TBX2+ cells in the mesenchyme and the mesothelium shall be performed and

evaluated in a qualitative and quantitative manner. To address whether TBX2 expression

critically affects the differentiation and/or lineage diversification, cell fate analyses will be

performed in Tbx2-deficient and constitutively overexpressing mutant lungs.

To uncover as yet undescribed cellular and molecular functions of TBX2, existing transcrip-

tomic and genomic data sets shall be used to obtain a list of additional direct target genes

of TBX2 in the developing pulmonary mesenchyme. The expression and spatial distribu-

tion of genes upregulated upon  Tbx2 loss, shall  be verified by  in situ hybridization on

E14.5 lung sections. Candidate target genes shall be manually analyzed for the presence

of ChIP peaks and TBX2 DNA binding sites located in the peak regions. Subsequently, the

binding of TBX2 will be validated by individual ChIP-PCRs of the corresponding DNA frag-

ment.
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To characterize the molecular mechanisms by which TBX2 represses its target genes, an

unbiased proteomics approach from E14.5 wild-type lung tissue shall  be performed to

identify TBX2 interaction partners that might serve as cofactors in DNA binding site recog-

nition and transcriptional repression. Subsequently, the interaction of the candidates and

TBX2 shall be validated by co-immunoprecipitation assays in HEK293 cells.

Altogether, this study shall further characterize the cellular and molecular mechanisms by

which TBX2 regulates murine lung development. 
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Supplemental Data

Additional file 1

SFigure 1. Secondary and tertiary antibodies do not exhibit unspecific binding.

Control immunofluorescence stainings of secondary and tertiary antibodies without primary

antibody on frontal lung sections of E14.5 control embryos. Antibodies and fluorophores

are indicated. Incubation with a biotinylated antibody was followed by a streptavidin-HRP

conjugated antibody and TSA-Rhodamine. ca: caudal; cr: cranial; l: left; r: right.
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SFigure 2. Tbx2/TBX2 expression and lineage contribution to the lung mesenchyme

at E9.5. 

(A) In situ hybridization analysis of expression of the lung bud marker Nkx2.1 and of Tbx2

on adjacent transverse sections of wildtype embryos at the indicated somite numbers. (B)

Double immunofluorescence analysis  of  expression of  TBX2 with  the epithelial  marker

CDH1 on sections of wildtype embryos, and of the lineage marker GFP with the epithelial

marker CDH1 on sections of Tbx2cre/+;R26mTmG/+ embryos. Antigens are color-coded, stages

are as indicated. Nuclei were counterstained with DAPI. d: dorsal; f: foregut; l: left; lb: lung

bud; r: right; v: ventral.
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SFigure 3. Tbx2/TBX2 expression and lineage contribution in the lung bud 

mesenchyme of Tbx2-deficient embryos.

(A) In situ hybridization analysis of expression of the lung bud marker Nkx2.1 and (B) 

immunofluorescence analysis of expression of TBX2 and the epithelial marker CDH1 and 

of the lineage marker GFP together with the epithelial marker CDH1 on transverse 

sections of Tbx2cre/fl;R26mTmG/+ embryos at a developmental stage of 23 and 24 somites. 

Antigens are color-coded, stages are as indicated. Nuclei were counterstained with DAPI. 

d: dorsal; f: foregut; l: left; lb: lung bud; r: right; v: ventral.
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SFigure 4. TBX2 expression is lost in the pulmonary mesenchyme of 

Tbx2cre/fl;R26mTmG/+ embryos in early lung development.

Immunofluorescence staining of TBX2 expression (red) on transverse (E9.5) and frontal

(E10.5, E11.5) sections of control and Tbx2-deficient embryos. Higher magnifications are

shown  on  the  right  panel.  Stages  and  genotypes  are  as  indicated.  Nuclei  were

counterstained with DAPI. ca: caudal; cr: cranial; d: dorsal; f: foregut; l: left; lb: lung bud; r:

right; v: ventral.

36



Part 1 - Lineage tracing of TBX2+ cells and the role of TBX2 in cell fate decision

SFigure 5. The TBX2+ lineage does not contribute to the pulmonary epithelium in

Tbx2-deficient embryos.

Double immunofluorescence analysis of the lineage marker GFP and the epithelial marker

CDH1 on transverse (E9.5) and frontal (E10.5, E14.5, E16.5) sections of Tbx2cre/fl;R26mTmG/

+ lungs at different developmental stages. Antigens are color-coded, stages and genotypes

are as indicated.  Nuclei were counterstained with DAPI. Insets in overview images are

magnified in the row below. ca: caudal; cr: cranial; d: dorsal; f: foregut; l: left; lb: lung bud;

r: right; v: ventral.
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SFigure 6. Overexpression of TBX2 leads to enhanced and premature formation of

lineage positive cell clusters.

Analysis of GFP/RFP epifluorescence of Tbx2cre/+;R26mTmG/+ (control) and Tbx2cre/+;HprtTBX2/+

lung explants at different time-points of the culture. Clusters of irregularly distributed GFP +

cells (arrowheads) were observed in Tbx2cre/+;R26mTmG/+  controls at day 5 of the culture. In

Tbx2cre/+;HprtTBX2/+  mutant lungs GFP+ clusters appeared at day 2 of the culture and were

evenly arranged at the rim. Stages and genotypes are as indicated. Insets in overview

images are magnified on the panels on the right.
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SFigure  7.  TBX2  expression  and  TBX2  lineage  contribution  in  control  and

constitutively TBX2 overexpressing lung explant cultures.

 (A) Double immunofluorescence analysis of expression of TBX2 and the epithelial marker

CDH1  in  lung  explants  of  Tbx2cre/+;R26mTmG/+ (control),  Tbx2cre/+;HprtTBX2/+ and Tbx2cre/

+;HprtTBX2/y embryos cultured for 6 or 8 days. (B) The distribution of lineage positive cells

was analyzed by double immunofluorescence stainings of the epithelial marker CDH1 and

the lineage marker GFP and YFP, respectively. (C) The correlation of TBX2 expression

with  TBX2  lineage  was  investigated  using  TBX2/GFP  and  TBX2/YFP  co-stainings.

Antigens are color-coded, genotypes are as indicated. Nuclei were counterstained with

DAPI. Insets of overview images are magnified in the row below.
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SFigure 8. Validation of cell-type specific markers and of TBX2+ cell lineage 

contribution in lung explant cultures.

(A)  Ex vivo validation of the expression pattern of different cell-type specific markers on

sections of  Cre-negative control cultures explanted at E12.5 and cultured for 8 days. (B)

Lineage tracing of TBX2-positive cells in E12.5  Tbx2cre/+;R26mTmG/+  lung explants cultured

for 6 days. Antigens are color-coded, stages and genotypes are as indicated. Nuclei were

counterstained with DAPI. Selected regions of overview images are magnified in the row

below.
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SFigure 9. Mesenchymal mosaic overexpression of TBX2 does not affect the lineage

diversification of TBX2-expressing cells.

Double immunofluorescence analysis of expression of cell-type specific marker proteins

(TAGLN, ACTA2 for SMCs; EMCN for the endothelium; CDH1 for the epithelium; S100A4

for different types of fibroblasts, and POSTN for the ECM) and of the TBX2 lineage marker

YFP on frontal sections of explants of E12.5 Tbx2cre/+;HprtTBX2/+ lungs cultured for 8 days.

Antigens  are  color-coded.  Nuclei  were  counterstained  with  DAPI.  Selected  regions  of

overview images are magnified in the row below.
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SFigure 10. Expression analysis of TBX3 and TBX2+ cell lineage contribution to 

TBX3 expressing cells.

(A, B, C) Co-immunofluorescence analysis of expression of TBX3 (in red) and the lineage

marker GFP (in green) on frontal sections of lungs from Tbx2cre/+;R26mTmG/+ control embryos

at E12.5, E14.5, E16.5 (A), in 6-day cultures of E12.5 lung explants  (B), and on lungs with

conditional  loss  of  Tbx2 (Tbx2cre/fl;R26mTmG/+)  at  E14.5  (C).  (D)  Co-immunofluorescence

analysis of expression of TBX3 (in red) and the lineage marker YFP (in green) on sections

of  E12.5  lung  explants  from  Tbx2cre/+;HprtTBX2/+ and Tbx2cre/+;HprtTBX2/y mutant  embryos

cultured for 8 days. Stages and genotypes are as indicated.  Nuclei were counterstained

with DAPI. Insets or selected regions of overview images are magnified in the rows below.

ca: caudal; cr: cranial; l: left; r: right.
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SFigure 11. Analysis of ACTA2 expression in Tbx2cre/+;HprtTBX2/y lungs.

Double immunofluorescence analysis of expression of TBX2 and the SMC marker ACTA2

on frontal sections of E12.5 embryos (A) and on 8-day cultures of E12.5 lung explants (B).

Antigens  are  color-coded,  stages  and  genotypes  are  as  indicated.  Nuclei  were

counterstained with DAPI. Insets of overview images are magnified in the rows below. ca:

caudal; cr: cranial; l: left; r: right.
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SFigure 12. Analysis of SMC differentiation in Tbx2cre/fl;R26mTmG/+ lungs.

(A) Immunofluorescence analysis of ACTA2 expression on frontal sections of the lung of

control  and  Tbx2cre/fl;R26mTmG/+ mice  at  E10.5,  E11.5,  E12.5  and  E14.5.  Nuclei  were

counterstained with  DAPI.  (B)  In  situ hybridization  analysis  of  expression of  the  SMC

marker genes Myh11, Cnn1 and Des on frontal lung sections of Tbx2-deficient and control

embryos at E12.5 and E14.5. Probes, stages and genotypes are as indicated. Insets of

overview images are magnified in the row below (A) or in the column to the right (B). ca:

caudal; cr: cranial; l: left; r: right. 
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Abstract

Background

Tbx2 encodes  a  transcriptional  repressor  implicated  in  the  development  of  numerous

organs  in  mouse.  During  lung  development  TBX2  maintains  the  proliferation  of

mesenchymal  progenitors,  and  hence,  epithelial  proliferation  and  branching

morphogenesis.  The pro-proliferative function was traced to direct repression of the cell-

cycle inhibitor genes Cdkn1a and Cdkn1b, as well as of genes encoding WNT antagonists,

Frzb and  Shisa3, to  increase pro-proliferative WNT signaling.  Despite  these important

molecular insights, we still lack knowledge of the DNA occupancy of TBX2 in the genome,

and  of  the  protein  interaction  partners  involved  in  transcriptional  repression  of  target

genes.

Methods

We used chromatin immunoprecipitation (ChIP)-sequencing and expression analyses to

identify genomic DNA-binding sites and transcription units directly regulated by TBX2 in

the developing lung. Moreover, we purified TBX2 containing protein complexes from em-

bryonic lung tissue and identified potential interaction partners by subsequent liquid chro-

matography/mass spectrometry. The interaction with candidate proteins was validated by

immunofluorescence and individual co-immunoprecipitation analyses.

Results

We identified  Il33 and  Ccn4 as additional direct target genes of TBX2 in the pulmonary

mesenchyme. Analyzing TBX2 occupancy data unveiled the enrichment of five consensus

sequences, three of which match T-box binding elements. The remaining two correspond

to a high mobility group (HMG)-box and a  homeobox consensus sequence motif.  We

found and validated binding of TBX2 to the HMG-box transcription factor HMG2 and the

homeobox transcription factor PBX1, to the heterochromatin protein CBX3, and to various

members of the  nucleosome remodeling and deacetylase (NuRD) chromatin remodeling

complex including HDAC1, HDAC2 and CHD4.
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Conclusion

Our data suggest that TBX2 interacts with homeobox and HMG-box transcription factors

as well as with the NuRD chromatin remodeling complex to repress transcription of an-

ti-proliferative genes in the pulmonary mesenchyme.

Keywords: 

Tbx2, pulmonary mesenchyme, lung development, NuRD, HDAC, CBX3, HMGB2, PBX1
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Background

In the mammalian lung, trachea, bronchi and bronchioles form a tree-like system of tubes

that conduct the air to thin-walled terminal sacs, the alveoli, where the exchange of carbon

dioxide and oxygen occurs.  This  elaborate epithelial  system arises from a simple out -

growth of the foregut endoderm by a complex program of specification, proliferative expan-

sion, branching morphogenesis, proximal-distal patterning and differentiation during em-

bryonic development [1]. All of these epithelial processes depend on cues from surround-

ing mesenchymal cells and the visceral pleura, the mesothelial lining of the lung. Branch-

ing morphogenesis occurs mostly during the pseudoglandular stage of lung development

which extents in mice from embryonic day (E)12.5 to E16.5. Here, the pulmonary mes-

enchyme acts as a source for signals that direct the proliferative expansion and branching

of the distal epithelial tips of the developing airways. In turn, endodermal and mesothelial

signals maintain a proliferative undifferentiated state of the pulmonary mesenchyme, thus,

preventing its differentiation into chondrocytes, smooth muscle cells (SMCs) and various

types of fibroblasts that will later ensheath the epithelial components of the mature lung [2,

3]. The cross-talk between all three pulmonary tissue compartments is executed by a num-

ber of different signaling molecules including SHH, BMPs, FGFs and WNTs [4-9].

Orchestration and interpretation of these reciprocal signaling cascades require the activity

of transcription factors that regulate the signals and their activities in time and space but

also impinge onto the cell-cycle machinery to assure the pro-proliferative undifferentiated

state in either tissue compartment. T-box proteins are members of a large, evolutionary

conserved family of transcriptional regulators that share a highly conserved DNA-binding

region, namely the T-box [10]. Transcriptional regulation by T-box proteins underlies a mul-

titude of cellular processes including proliferation and differentiation in diverse contexts of

germ layer, tissue and organ development as evidenced by severe embryonic defects in

men and animals with loss- and gain-of-function of these genes [11, 12]. 

Our previous work characterized the T-box transcription factor TBX2 as a mesenchymal

regulatory hub during lung development. Tbx2 and the closely related Tbx3 gene are pre-

dominantly expressed in  mesenchymal  precursors that  surround the  distal  endodermal

tips. The expression largely depends on epithelial SHH signals with modulatory input from

epithelial BMP4, mesenchymal TGFs, and WNTs possibly emerging from both compart-

ments [13, 14]. Loss of Tbx2 and even more, the combined loss of Tbx2 and Tbx3 in mice,
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results in arrest of mesenchymal proliferation, premature mesenchymal differentiation and

an arrest of epithelial branching morphogenesis leading to lung hypoplasia at birth. Prolon-

gation of TBX2 expression into adulthood leads to hyperproliferation and maintenance of

mesenchymal progenitor cells. These cellular changes were traced to a molecular function

of TBX2 to directly repress expression of the cell-cycle inhibitor genes  Cdkn1a and  Cd-

kn1b, as well as of genes encoding WNT antagonists, Frzb and Shisa3, which in turn in-

creases pro-proliferative WNT signaling [13, 15]. 

Despite these important molecular insights, we still lack a survey of all direct target genes

of TBX2 in the mesenchyme of the developing lung and of the nature and configuration of

DNA-binding sites present in these genes. Moreover, we do not know with which other

transcription factors, corepressors and chromatin remodeling complexes TBX2 interacts to

achieve target gene specificity and repression in this developmental context. 

Here,  we  set  out  to  experimentally  address  these  questions.  Using  a  combination  of

transcriptional profiling by microarrays and ChIP-Seq technology, we identified additional

targets of TBX2 activity including Ccn4 and Il33, and describe the consensus binding site

of  TBX2  in  the  developing  lung.  Additionally,  we  identified  and  characterized  protein

binding partners of TBX2 that may aid in specific repression of these target genes.
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Methods

Mouse strains and genotyping

All  mouse strains used in this study:  Tbx2tm1.1(cre)Vmc (synonym:  Tbx2cre) [16], Tbx2tm2.2Vmc

(synonym:  Tbx2fl) [17], Gt(ROSA)26Sortm4(ACTB-tdTomato,-EGFP)Luo/J (synonym:  R26mTmG) [18] were

maintained on an NMRI outbred background. Embryos for analysis were obtained from

matings  of  NMRI  wildtype  mice,  and  from  matings  of  Tbx2cre/+ males  with

R26mTmG/mTmG;Tbx2fl/fl or  Tbx2cre/+ females.  To  time  the  pregnancy,  vaginal  plugs  were

checked on the morning after mating and noon was taken as embryonic day (E) 0.5. On

the day of harvest, pregnant females were sacrificed by cervical dislocation. Embryos and

lungs  were  dissected  in  PBS.  For  both  in  situ hybridization  and  immunofluorescence

analyses,  embryos were fixed in  4% PFA/PBS,  transferred to  methanol  and stored at

-20°C. PCR genotyping was performed on genomic DNA prepared from ear clips of adult

mice or from embryonic tissues. 

All  animal  work  conducted  for  this  study  was  approved  by  the  local  authorities

(Niedersächsisches Landesamt fur Verbraucherschutz und Lebensmittelsicherheit; permit

number AZ33.12-42502-04-13/1356) and was performed at the central animal laboratory

of  the Medizinische Hochschule Hannover  in  accordance with  the National  Institute  of

Health guidelines for the care and use of laboratory animals.

Chromatin immunoprecipitation DNA-sequencing (ChIP-seq) assays

For ChIP-Seq analysis, a total of 100 E14.5 wildtype lungs were minced in PBS into pieces

of 100-500 µm. The tissue was incubated in 1.6% formaldehyde/PBS for 20 min before

glycine was added to a final concentration of 1% and incubation continued for 10 min at

room temperature. After a washing step with PBS, the tissue was stored at -80°C until

further  use.  ChIP  reactions  were  performed  with  the  SimpleChIP®  Plus  Enzymatic

Chromatin IP Kit (Magnetic Beads) (#9005, Cell Signaling Technology, Danvers, MA, USA)

following manufacturer’s instructions. Nuclease treatment for fragmentation of chromatin

was prolonged to 30 min and nuclease concentration was doubled to obtain fragments of

300 bp in average. The DNA-containing supernatants were incubated with a ChIP grade

anti-TBX2 antibody (1:50; sc-514291 X, Santa Cruz Biotechnology Inc., Santa Cruz, CA,

USA), anti-Histone H3 (1:50; #9005, Cell Signaling Technology) or an IgG control (1:50;

#9005, Cell  Signaling Technology) for 1 h at room temperature, and together with ChIP-
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Grade ProteinG Magnetic Beads (#9006S, Cell Signaling Technology) overnight at 4°C. 

The DNA precipitates were passed to the Research Core Unit  Genomics of Hannover

Medical School. Library preparation was performed with NEBNext® Ultra™ II DNA Library

Prep  Kit  for  Illumina®  (E7645S,  New England  Biolabs,  Ipswich,  MA,  USA)  and  next

generation sequencing was performed on Illumina NextSeq High Output 500/550 flow cells

with a reading depth of 15 million 75 bp paired-end reads (FC-404-2005, Illumina, San

Diego, CA, USA) using NEBNext® Multiplex Oligos for Illumina® (96 Unique Dual Index

Primer Pairs) (E6440S, New England Biolabs,) following manufacturer’s instructions. ChIP

peaks  were  mapped  against  the  GRC38/mm10  genome (NCBI  BioProject  Accession:

PRJNA20689) using MACS2 callpeak integrated in Galaxy version 2.1.1.20160309.1 [19].

ChIP peaks were visualized and manually analyzed using IGV software v.2.5.3 [20, 21].

Associated gene names were determined in Galaxy with “Fetch closest non-overlapping

feature”,  version  4.0.1.  (https://usegalaxy.org). Gene  ontology (GO)  term analysis  was

performed with Genomic Regions Enrichment of Annotations Tool (GREAT, version 4.0.4,

http://great.stanford.edu/public/html).  De novo motif analysis on the data was performed

with the FIMO tool in Galaxy (Version 4.11.1.0, https://usegalaxy.org) [22] for palindromic

and  non-palindromic  sequences.  For  that  purpose,  sequence  information  from Macs2

callpeak data was gathered in Galaxy with the “Extract Genomic DNA” plugin (Version

2.2.3). Enriched motifs were compared to known transcription factor binding profiles with

the  TomTom  Motif  Comparison  Tool  version  5.1.1  (http://meme-suite.org/tools/tomtom)

[23],  using  annotated  sequences  stored  in  Jaspar  (http://jaspar.genereg.net)  and

footprintDB (http://floresta.eead.csic.es/footprintdb) databases.

GO-term analysis of gene lists

Lists of gene symbols were imported into DAVID Bioinformatics Resources version 6.8

(https://david.ncifcrf.gov) [24] with  annotations restricted to mouse.  Gene lists  imported

into  MouseMine  websoftware  (MGI  6.14)  [25]  were  analyzed  for  ontology  terms  of

biological processes determined with Holm-Bonferroni test correction and p-values smaller

than 0.05.

ChIP-PCR assays

Chromatin of ~20 wildtype and Tbx2-mutant lungs was isolated as described for ChIP-seq
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experiments and subjected to PCR amplification of gene-specific peak regions. Primers for

a peak in Ccn4, chr15:66,883,385-66,883,657 were: 5’- CCAGAGAATGTCACACTCCAC-

3’  and  5’-  GCAGCTACTGGGTCTCTCA-3’.  For  peak  #1  in  Il33  (chr19:29,925,062-

29,925,237):  5’-TGGTTCTCTGCCAAGTTCTG-3’ and 5’-  TGCTCCACAGGTCCTAAGAT-

3’;  for  peak  #2  in  Il33  (chr19:29,924,808-29,924,983):  5’-

GGCTAAGGCAAGAAGATCATG-3’ and 5’-CCTGCCAATGTTACTGTTATC-3’. 

Proteomic analysis

Three independent proteomic analyses were performed using material of 100 E14.5 lungs

each. The lung tissue was fixed and stored until further use as described for ChIP-seq

assays.  Tissue  dissociation  was  achieved  following  the  RIME protocol  [26]  utilizing  a

Minilys homogenizer (#P000673-MLYS0-A, Bertin Technologies, Montigny-le-Bretonneux,

France)  with  mixed  1.4/2.8  mm  ceramic  beads  (#91-PCS-CKM,  VWR  International,

Radnor, PA, USA) and a sonification step of 3 x 20 pulses of an amplitude of 60% with a

duty cycle of 75% (UP200H, Sonotrode S1, Ø1mm, Hielscher Ultrasonic GmbH, Teltow,

Germany). Cell lysates were incubated overnight at 4°C under constant rotation with ChIP-

Grade ProteinG Magnetic Beads (#9006S, Cell Signaling Technology) conjugated either

with normal rabbit IgG (#9005, Cell Signaling Technology) or ChIP grade mouse-anti-TBX2

antibody (1:50; sc-514291X, Santa Cruz). Enzymatic digestion and raw data processing

steps  were  performed  by  the  Research  Core  Unit  Proteomics  of  the  MHH.  Liquid

chromatography with subsequent tandem mass spectrometry (LC-MS/MS) was performed

by the Department of Plant Proteomics of the Institute of Plant Genetics of the Leibniz-

University Hannover. Extracted proteins were alkylated with iodacetamide and digested

with trypsin overnight at 37°C in 40 mM ammonium hydrocarbonate buffer containing 10%

acetonitrile.  The reaction was stopped by increasing the concentration of  trifluoroacetic

acid (TFA) to 5%. Samples were centrifuged at high speed and supernatants containing

peptides were dried and stored at -20°C. 

Apart from minor modifications, LC-MS/MS was performed as previously described [27].

Peptides were resuspended in 20 µl of 5% [v/v] acetonitrile and 0.1% [v/v] TFA, of which 1

µl  were  loaded  onto  a  2  cm C18 reversed  phase  trap  column (Acclaim PepMap100,

diameter:  100  µm,  granulometry:  5  µm,  pore  size:  100  Å;  Thermo  Fisher  Scientific,

Waltham, MA, USA). Separation took place on a 50 cm C18 reversed phase analytical
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column (Acclaim PepMap100, diameter: 75 µm, granulometry:  3 µm, pore size: 100 Å;

Thermo  Fisher  Scientific,  Dreieich,  Germany)  using  a  60  min  non-linear  5-36%  [v/v]

acetonitrile  gradient  in  0.1%  [v/v]  formic  acid  for  elution  (250  nl/min;  33°C).  Eluting

peptides were transferred into a Q-Exactive mass spectrometer (Thermo Fisher Scientific)

by electrospray ionization (ESI) using a NSI source (Thermo Fisher Scientific) equipped

with a stainless steel nano-bore emitter (Thermo Fisher Scientific). A spray voltage of 2.2

kV, capillary temperature of 275°C, and S-lens RF level of 50% were selected. The data-

dependent MS/MS run was conducted in positive ion mode using a top-10 method. MS1

spectra (resolution 70,000) and MS2 spectra (resolution 17,500) were recorded in profile

mode from 20 to 100 min. Automatic gain control (AGC) targets for MS and MS/MS were

set to 1E6 and 1E5, respectively.  Only peptides with 2,  3,  or 4 positive charges were

considered. Raw data were processed using Max Quant (version 1.5, [28]), and Perseus

software  (version  1.6.2.3,  [29])  and  human  and  virus  entries  of  Uniprot  databases

containing common contaminants. Proteins were stated identified by a false discovery rate

of 0.01 on protein and peptide level and quantified by extracted ion chromatograms of all

peptides. 

Protein  network  analysis  was  performed  using  the  STRING protein-protein  interaction

networks  functional  enrichment  analysis  tool  v11  (https://string-db.org) [30]  with  MCL

clustering with an inflation parameter of 2 as suggested by STRING, an interaction score

of high confidence (0.700) and deactivating text mining as least meaningful  interaction

source. 

RNA in situ hybridization analysis

Non-radioactive in situ hybridization analysis of gene expression was performed on 10-μm

paraffin sections of embryos using digoxigenin-labeled antisense riboprobes as described

previously [31]. For each marker, sections from at least three mutant and control lungs

were analyzed. 

Immunofluorescence

Detection of antigens was performed on 5-µm or 10-µm frontal sections through the lung

region  of  paraffin-embedded  embryos.  Endogenous  peroxidases  were  blocked  by

incubation in 6% H2O2 for 20 min. Antigen retrieval was achieved by citrate-based heat
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unmasking  (H-3300,  Vector  Laboratories  Inc.,  Burlingame,  CA,  USA).  The  following

primary antibodies were used: anti-CBX3 (1:200;  #PA5-30954, ThermoFisher Scientific,

Waltham,  MA,  USA),  anti-CHD4  (1:200;  ab70469,  Abcam  plc,  Cambridge,  UK),  anti-

HDAC1  (1:200;  #PA1-860,  ThermoFisher  Scientific),  anti-HDAC2  (1:200;  #51-5100,

ThermoFisher Scientific), anti-HMGB2 (1:200; #ab124670, Abcam plc), anti-PBX1 (1:100;

#PA5-82100,  ThermoFisher  Scientific),  anti-TBX2  (1:200  or  1:2000;  #07-318,  Merck

Millipore,  Darmstadt,  Germany),  anti-TBX2  (1:200;  #sc-514291X,  Santa  Cruz

Biotechnology Inc.). Primary antibodies were detected by directly labeled fluorescence- or

biotin-conjugated secondary antibodies (1:200; Invitrogen, Carlsbad, CA, USA; Dianova,

Hamburg, Germany). The signal was amplified using a tyramide signal amplification (TSA)

system (NEL702001KT, PerkinElmer, Waltham, MA, USA) according to the manufacturer’s

instruction. Nuclei were stained with 4’,6-diamidino-2-phenylindole (DAPI, #6335.1, Carl

Roth, Karlsruhe, Germany).

Cell culture, co-transfections and co-immunoprecipitations

HEK293 cells (ACC 305, DSMZ, Braunschweig, Germany) were cultured in DMEM medi-

um with GlutaMaxTM (#61965-059, ThermoFisher Scientific) containing 10% FCS (#F2442,

Merck), 100 units/ml penicillin, 100 µg/ml streptomycin (#15140122, ThermoFisher Scien-

tific),  5% sodium pyruvate (#11360070;  ThermoFisher Scientific)  and 5% non-essential

amino acids (#11140035; ThermoFisher Scientific) and kept in an incubator at 37°C with

5% CO2.  The transient transfections were performed with the calcium phosphate method

as previously described [32]. For this, cells were plated on 6 well plates (#657160, Cellstar,

Greiner, Germany) and grown for approximately 6 hours to reach 80-90% confluence. 5 µg

of expression plasmid each for TBX2 and its interaction candidate were co-transfected.

Transfection efficiency was verified by epifluorescence of EGFP  co-transfected with an

empty pcDNA3 vector.

We  used  the  following  expression  vectors  for  transfections  in  HEK293  cells:

pcDNA3.huTBX2.HA encoding  N-terminally  HA-tagged  full-length  human  TBX2;

pCS2.Pbx1b  encoding full-length mouse PBX1B,  (gift  from Heike Pöpperl,  Institute  for

Biophysical  Chemistry,  Hannover  Medical  School,  Germany);  pd2EGFP-N1 (EGFP-

expression vector) [33];  pCMV6-Entry.Cbx3-Myc-DDK encoding full-length mouse CBX3

(#MR224357, OriGene,  Rockville, Maryland, USA);  pCMV-SPORT6.Hdac1 encoding full-
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length  mouse  HDAC1  (#4217199,  Sourcebioscience,  Nottingham, UK);  pCMV6-

Entry.Hdac2-Myc-DDK encoding  full-length  mouse  HDAC2  (#MR226709,  OriGene);

pCMV-SPORT6.Chd4 encoding full-length mouse CHD4 (#6489649, Sourcebioscience);

pCMV-Entry.Hmgb2-GFP encoding full-length mouse HMGB2 (#MR202276, OriGene). 

Cell lysates were obtained following the RIME protocol [26] as described for MS analysis.

Immunoprecipitations  were  performed  using  primary  antibodies  against  potential

interaction  partners  of  TBX2  either  exploiting  MYC  protein  tags  (mouse  anti-MYC

monoclonal  antibody  (9E10),  MA1-980,  Thermo  Fisher  Scientific)  or  with  antibodies

directed  against  the  respective  protein  (rabbit  anti-HP1  gamma  (CBX3)  polyclonal

antibody,  #PA5-30954,  ThermoFisher  Scientific;  mouse  anti-CHD4  antibody  [3F2/4],

ab70469,  Abcam; rabbit  anti-HDAC1  polyclonal  antibody,  #PA1-860,  ThermoFisher

Scientific;  rabbit  anti-HDAC2  polyclonal  antibody,  #51-5100,  ThermoFisher  Scientific;

rabbit anti-PBX1 polyclonal antibody, #PA5-82100, ThermoFisher Scientific). Antibodies for

IP  reactions  were  diluted  according  to  manufacturers’  instructions.  Cell  lysates  were

incubated with respective antibodies for 1 hr at room temperature, followed by incubation

with ProteinG Magnetic Beads (#9006S, Cell Signaling Technology) overnight at 4°C. After

washing, beads were boiled in 1x Laemmli buffer with 2.5% β-mercaptoethanol (CAS 60-

24-2,  Sigma Aldrich).  Proteins  were  separated  by SDS-PAGE and  blotted  onto  PVDF

membranes (T830.1, Carl Roth, Karlsruhe, Germany). Western blots were stained using

HRP coupled mouse anti  HA (#ab1265, Abcam) antibodies for detection of HA tagged

TBX2. Bands were visualized using CheLuminate-HRP FemtoDetect  chemiluminescent

substrate (#A7807, AppliChem, Darmstadt, Germany). 

Documentation 

Lung sections  were  documented with  a  DM5000 microscope (Leica  Camera,  Wetzlar,

Germany) equipped with a Leica DFC300FX digital camera. Images were processed and

analyzed with Adobe Photoshop CS5 (Adobe, San Jose, CA, USA) and ImageJ software

(https://imagej.nih.gov). Western blots Blots were documented on a LAS-4000 luminescent

Image Analyzer (Fuji, Tokyo, Japan).
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Results

ChIP-Seq  analysis  identifies  genome-wide  TBX2 binding  sites  in  the  developing

lung

To obtain an unbiased view of TBX2-bound genomic regions in the pseudoglandular stage

of lung development, we performed  in vivo ChIP-Seq analysis on E14.5 wildtype lungs

using an anti-TBX2 antibody.  Mapping of  sequenced tags using MACS2 callpeak [19]

identified 3062 peaks that were at least 3.5 fold enriched with –log10 p-values between 4

and  256.  Peak  scores  ranged  from  7  to  2470  (Table  S1).  We  mapped  TBX2  ChIP-

sequencing peaks to genes with the Genomic Regions Enrichment of Annotations Tool

(GREAT,  version  4.0.4,  http://great.stanford.edu/public/html) [34].  With  respect  to  the

transcription  start  site  (TSS),  177  TBX2-binding  sites  mapped  5  kbp  upstream,  174

mapped 5 kbp downstream; an additional 1150 TBX2-binding sites were located within 50

kbp  up-  or  downstream;  3648  TBX2-binding  sites  were  located  at  a  greater  distance

(Figure 1A). Since TBX2-binding sites can be associated with more than one gene, the

number of total localizations does not sum up to the number of peaks found. 

Gene ontology (GO) annotation of biological function and processes by GREAT revealed

enrichment  of  peak-associated genes with  various mouse phenotypes.  ”Abnormal  pul-

monary trunk morphology”  and “dilated respiratory conducting tubes”  were the top en-

riched clusters in mouse phenotypes indicating significant  affiliation of TBX2-bound re-

gions to pulmonary development. Additional peak clusters were affiliated with the terms

“abnormal digit development”, “failure of palatal shelf elevation”, “development of the uro-

genital system” and “limbs” reflecting known functions of TBX2 in mouse development [35-

38]. “Abnormal otic vesicle development”, “decreased cochlear coiling” and “abnormal tym-

panic membrane morphology” within the top 15 clusters may indicate an as yet unexplored

function associated with TBX2 expression in the otic vesicle [39] (Figure 1B, Table S2-S4).

We next  performed  de novo sequence motif  analysis  on the sequenced tags with  the

FIMO tool in Galaxy [22] (Figure 1C). Using the TomTom Motif Comparison Tool version

5.1.1  [23],  we  compared  enriched  motifs  with  experimentally  determined  transcription

factor  binding  profiles  deposited  in  Jaspar  (http://jaspar.genereg.net)  and  footprintDB

(http://floresta.eead.csic.es/footprintdb) databases. We found five enriched binding motifs

in our ChIP-Seq data set with three strongly resembling previously described binding sites

for T-box proteins. Two of them, one palindromic, the other non-palindromic, demonstrated
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high similarity to a known binding motif for TBX2 (entry MA0688.1 in Jaspar) (Fig. 1C,

highlighted in grey); a third (palindromic) motif was highly similar to a TBX21 binding site

(entry TBX21_full_1 in footprintDB HumanTF 1.0) (Figure 1C, highlighted in green). The

fourth motif matched a high mobility group (HMG)-box binding site (Fig. 1C, highlighted in

blue), the fifth one resembled a composite of an erythroblast transformation specific (ETS)

transcription  factor  binding  site  and  a  homeobox  consensus  sequence  (Fig.  1C,

highlighted in red).  Strikingly,  the TBX21-like binding motif  occurred in different spatial

combinations with the ETS-/homeobox- and HMG-motifs (Figure 1D), raising the possibility

of cooperative binding of TBX2 with transcription factors harboring the respective DNA

binding domains. 

Microarray analysis identifies functional targets of TBX2 activity in the pulmonary

mesenchyme

ChIP provides genomic DNA fragments bound by TBX2 but does not necessarily reflect a

biological functionality of near-by genes. To identify genes whose expression depends on

TBX2 in lung development, we interrogated a microarray-based gene expression profiling

data set previously generated from E14.5 lungs of  Tbx2-deficient and control mice  [13].

Filtering each of the four individual microarray data sets by thresholds for intensity (>100)

and fold change (>1.4) delivered a set of 36 genes with reduced and a set of 70 genes

with increased expression (Figure 2A, Table S5-6). 

Since  TBX2  is  a  potent  transcriptional  repressor  [40-43],  we  intersected  the  list  of

upregulated  genes  with  the  list  of  genes  with  an  associated  TBX2  ChIP-peak,  and

obtained 39 genes that are potentially directly repressed by TBX2 in the developing lung

(Figure  2B,C).  Functional  annotation  using  MouseMine  websoftware  MGI  6.14  [25])

revealed  an  enrichment  of  clusters  of  GO  terms  related to  “response  to  stress”

(GO:0006950);  “regulation  of  cell  population  proliferation”  (GO:0042127)  and  “positive

regulation of cell growth in cardiac muscle development” (GO:0061051) implicating TBX2

transcriptional activity in proliferative growth control (Figure 2D, Table S7-8). RNA in situ

hybridization analysis on sections revealed a clear mesenchymal upregulation in  Tbx2-

deficient lungs for five genes: Cdkn1a, Frzb1 and Shisa3 as previously reported [13, 15],

and additionally Ccn4 (also known as Wisp1) and Il33 (Figure 2E, Figure S1). Analysis at

earlier  stages  showed  that  derepression  starts  around  E12.5  in  Tbx2-deficient  lungs
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(Figure  S2).  Ectopic  expression  of  Il33  occurred  in  the  mesothelium  and  the  sub-

mesothelial mesenchyme (Figure 2E, Figure S2). 

To gain further evidence for a direct regulation of  Ccn4  and  Il33 by TBX2, we manually

analyzed  the  ChIP-peak  landscape  for  both  genes  (Figure  2F).  We  detected  peaks

upstream of or within the promoter region that we evaluated by ChIP-PCR on wildtype and

Tbx2-mutant  lungs (Figure  2G).  Input  control  was  comparable  in  wildtype  and mutant

chromatin  for  all  tested peak regions.  PCR signals in  mutant  chromatin  were  strongly

reduced for all tested ChIP regions further implicating  Il33 and Ccn4 as direct targets of

TBX2 repressive activity in the pulmonary mesenchyme. 

Proteomic analysis identifies binding partners of TBX2 in the developing lung

To identify protein interaction partners that may explain target specificity and transcriptional

repressive  activity  of  TBX2  in  the  pulmonary  mesenchyme,  we  used  an  in  vivo co-

immunoprecipitation  (Co-IP)  approach  from  E14.5  lungs  with  subsequent  liquid

chromatography - tandem mass spectrometry analysis (LC-MS/MS) (Figure 3A). For this,

TBX2 containing complexes were purified from formaldehyde fixed lungs of E14.5 wildtype

mice by affinity purification using an anti-TBX2 antibody coupled to Protein-G magnetic

beads. The purified protein complexes of three independent experiments were sent to the

proteomics facility of Hannover Medical School for protein extraction, and subsequently

handed  over  to  the  Institute  of  Plant  Genetics  of  Leibniz-University  Hannover  for  LC-

MS/MS  analysis.  In  the  three  experiments,  fragments  of  919  mouse  proteins  were

identified.  An  enrichment  of  2  or  larger  (Student’s  t-test)  against  the  control

(immunoprecipitates in  absence of the anti-TBX2 primary antibody)  was found for  219

proteins (Figure 3A, Table S9).  We rejected hemoglobins,  immunoglobins and proteins

associated with  the terms “ribosomal”,  “mitochondrial”  and “proteasomal”  in the DAVID

functional annotation tool (v6.8,  david.ncifcrf.gov) reducing the list of candidates to 183

proteins. GO enrichment analysis using DAVID revealed that 119 of these proteins were

associated with the term “nucleus”, i.e. were likely to colocalize with TBX2 in the nucleus

(Figure 3A, Table S10). Out of this list, 29 proteins were annotated by DAVID with the GO

term “regulation of transcription”, 14 proteins were associated with “histones or histone

modification”,  implicating  a  role  in  transcriptional  regulation.  Seven  proteins  were  in

common between the two lists: CBX3, HDAC1/2, HNRNPD, RBBP4/7 and RBM14 (Figure

83



Part 2 - TBX2 target genes and interaction partners

3A-C, Table S10). Analysis of the protein association network of these 36 proteins using

the  STRING  Protein-Protein  Interaction  Networks  Functional  Enrichment  analysis  tool

(v11, https://string-db.org)) [30] uncovered three distinct protein interaction clusters (Figure

3D). Within the largest cluster (in red in Figure 3D) five proteins are known to be part of the

transcriptional  corepressor  nucleosome  remodeling  and  deacetylase  (NuRD)  core

complex:  the  histone  deacetylases  HDAC1  and  HDAC2,  the  histone-binding  proteins

RBBP4  and  RBBP7,  and  the  ATP-dependent  chromatin-remodeling  enzyme

chromodomain-helicase-DNA-binding protein CHD4 [44, 45]. Proteins associated with this

core  complex included CBX3 (aka HP1),  a  chromatin  organization modifier  (Chromo)

domain protein associated with heterochromatin [46], the homeobox transcription factor

PBX1 that interacts with HOX proteins and is able to repress transcription [47], the HMG

box containing protein HMGB2, which binds to DNA in a DNA structure-dependent but

nucleotide sequence-independent manner to function in chromatin remodeling [48],  the

DNA (cytosine-5)  methyltransferase  DNMT1  that  acts  in  gene  silencing  [49],  and  the

transcriptional corepressor MYBBP1A [50]. 

The second cluster (green in Figure 3D) contained several  proteins implicated in RNA

metabolism and splicing (HNRNs, DDX5, RBM39, CDC5L, ILF2). Further, members of the

SWI/SNF chromatin remodeling complex were present (SMARCC1/2,  DPF2).  However,

important  core  proteins  of  this  complex  including  the  ATPase (SMARCA2/4)  were  not

enriched  in  our  anti-TBX2 immunoprecipitation  experiments.  The  third  cluster  (blue  in

Figure 3D) represents a very small group of WNT-signaling associated proteins correlated

with cell adhesion. For the two latter clusters interactions have been found only between

individual components indicating lack of functional complex formation. 

TBX2 colocalizes and interacts with members of the NuRD complex (CHD4, HDAC1,

HDAC2) as well as with PBX1, HMGB2 and CBX3

For further validation, we decided to employ candidate proteins found in the repressive

NuRD complex (CHD4, HDAC1, HDAC2) as well as the proteins possibly associated with

this complex (PBX1, HMGB2, CBX3) since they are likely to explain the target specificity

and repressive activity of TBX2 in the pulmonary mesenchyme.

Co-immunofluorescence  analysis  of  the  candidate  proteins  and  TBX2  on  transverse

sections of E14.5 lungs revealed that all  six candidates were widely coexpressed with
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TBX2 in the nuclei of pulmonary mesenchymal cells (Figure 4A). 

In co-transfection/co-immunoprecipitation experiments in HEK293 cells, TBX2 interacted

with  all  six  candidates  (Figure  4B).  Hence,  TBX2  interacts  in  the  mesenchymal

compartment of the developing lung with proteins implicated in transcriptional repression.

Discussion

Il33 and Ccn4 are novel direct targets of TBX2 in the lung mesenchyme

We previously performed a ChIP-Seq experiment to validate  Cdkn1a,  Cdkn1b, Frzb and

Shisa3 as direct targets of TBX2 repressive activity in the pulmonary mesenchyme [13].

Here, we performed a new ChIP-Seq experiment to survey in an unbiased fashion the

genomic binding sites of TBX2 in this organ. Importantly, we increased the chromatin input

to  obtain higher  signals and performed bioinformatical  analysis  on the obtained called

peak data set. We identified 3062 significantly enriched binding sites in the mouse genome

that were variably spaced from TSSs indicating distant enhancer-promoter interactions. By

a number of criteria, we deem that these binding peaks represent or at least contain bona

fide TBX2  genomic  binding  sites.  First,  our  motif  analysis  found  a  highly  significant

enrichment of DNA sequences similar to a T-box binding element initially identified in an in

vitro binding site selection approach for the prototypical T-box protein Brachyury and to a

consensus sequence previously identified by ChIP-Seq for TBX2 in neuroblastoma cell

lines  [51,  52].  Second,  we  recovered  binding  peaks  in  those  genes  previously

characterized as direct targets of TBX2 repressive activity in the lung, including Cdkn1a,

Shisa3  and  Frzb [13,  15].  Third,  GO  annotation  of  biological  function  and  processes

revealed  enrichment  of  peak-associated  genes  with  mouse  phenotypes  previously

associated with TBX2 function in various embryological contexts [35-38]. 

The intersection of  transcriptional profiling and ChIP-seq data sets provided a list of 39

genes that  might  be  directly  regulated by TBX2.  In  line  with  our  previous  phenotypic

characterization, we found enrichment of  genes annotated with proliferation and stress

control,  indicating  that  TBX2  predominantly  represses  anti-proliferative  genes.  To  our

surprise,  we  failed  to  detect  increased  expression  of  most  candidate  genes  in  the

pulmonary mesenchyme of  Tbx2-deficient embryos by  in situ hybridization analysis. We

assume  that  the  overall  expression  of  these  genes  is  too  low  in  the  pulmonary

mesenchyme of Tbx2-deficient embryos to reliably detect it by this method. Since many of
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these  candidate  genes  are  strongly  expressed  in  the  epithelium,  changes  in  the

mesenchyme are unlikely to be detected either by alternative approaches including RT-

PCRs of whole lung tissue. However, we confirmed increased expression of Ccn4 and Il33

in  the  lung  mesenchyme of  mutant  embryos,  and  validated  them as  additional  direct

targets of TBX2 by ChIP-PCR. CCN4, also known as WISP-1, is a member of the WNT1

inducible  signaling  pathway protein  (WISP)  subfamily  of  the  connective  tissue  growth

factor/CCN family of matricellular proteins. CCN proteins, which are secreted, interact with

cell  surface receptors (e.g., integrins) and extracellular matrix components to modulate

cellular functions. CCN4 can stimulate proliferation, adhesion, invasion, metastasis and

epithelial-to-mesenchymal transition of cells [53]. The significance of repression of  Ccn4,

and thus, of these cell  programs in the lung mesenchyme cannot  be answered at this

point. Il33 codes for a cytokine which mediates inflammatory responses [54]. Its repression

by  TBX2  in  the  mesothelium  and  the  submesothelial  mesenchyme  might  prevent  a

premature activation of these responses in lung development, and thus avoid excessive

immune cell infiltration at this stage. 

TBX2  interacts  with  homeobox  and  HMG-box  transcription  factors  in  the  lung

mesenchyme

Our de novo motif analysis of the TBX2-ChIP-seq data set did not only reveal binding sites

highly similar to the consensus binding site(s) of the T-box DNA-binding domain [11, 51]

but  also  in  variable  spatial  association  for  homeobox-,  ETS-domain  and  HMG-box

proteins, indicating concerted or even cooperative DNA-binding of TBX2 with members of

other  transcription  factor  families.  Since  DNA-binding  sites  are  normally  rather  short,

concerted binding of several  transcription factors to adjacent binding sites dramatically

increases target specificity [55]. It may further enhance the transcriptional outcome and

may  serve  architectural  purposes.  In  fact,  high-mobility  group  (HMG)  proteins  are

architectural DNA bending proteins that promote DNA loop structures and tether distant

regulatory elements to gene promoters [56]. 

Most satisfyingly, we identified the homeobox transcription factor PBX1 and the HMG-box

protein  HMGB2 that  have  both  been  implicated  in  transcriptional  repression  [57,  58],

amongst TBX2 interaction partners in our unbiased proteomic screen in the E14.5 lung.

We validated binding of  these candidates to  TBX2 in  co-immunoprecipitations in  HEK
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cells, and showed that they are largely coexpressed with TBX2 in the lung mesenchyme at

E14.5. Mice with loss of Hmgb2 do not exhibit lung defects, while Pbx1-deficiency results

in lung hypoplasia and alveolar defects [59, 60]. In either case it is conceivable that the

interaction  with  TBX2  is  irrelevant  for  mesenchymal  proliferation  and  branching

morphogenesis  in  the  pseudoglandular  stage.  Alternatively,  redundancy  with  closely

related family members (Hmgb1 and Pbx2-4) may conceal the requirement of these genes

in these cellular programs.

Although our de novo motif analysis found an enrichment of an ETS-domain binding motif

in  the  TBX2-ChIP  peaks,  we  did  not  identify  a  member  of  this  protein  family  in  our

proteomic screen.  This seems plausible since members of the ETS transcription factor

family (e.g. ETV4, ERG, ELF1, ELK1) act as transcriptional activators [61-63] and would

interfere  with  the  repressive  activity  of  TBX2,  PBX and HMGB2 complexes.  However,

localization of these motifs might not occur coincidently. It is conceivable that TBX2 inhibits

ETS-mediated  transcriptional  activation  competitively  or  by  displacement  of  ETS

transcription factor complexes from the promoter without necessarily interacting directly. 

It is important to note that interaction of TBX2 and the closely related TBX3 with HMG-box

and homeobox proteins has been documented before for other developmental contexts in

which these closely related T-box proteins act [64-66] while interaction with ETS domain

proteins is unreported. This further substantiates the possibility that TBX2 preferentially

interacts with HMG and homeobox proteins in target gene repression in the lung. 

TBX2  interacts  with  the  components  and  interaction  partners  of  the  repressive

NuRD complex

It is long known that TBX2 acts as repressor of target gene transcription both in vitro and

in  vivo  [40-43]  but  evidence  has  accumulated  that  the  molecular  mechanisms  of

repression may differ in different developmental contexts. In the developing heart, TBX2

achieves repression of chamber specific genes in the atrioventricular canal by competing

with  the  transcriptional  activator  TBX5  for  binding  to  both  conserved  T-box  binding

elements as well as cooperating transcription factors including NKX2-5 and GATA4 [64]. In

breast  cancer  cell  lines,  TBX2 interacts  with  EGR1 to  co-repress  EGR1-target  genes

including the breast tumor suppressor gene  NDRG1. To do so, TBX2 recruits the DNA

methyltransferase DNMT3B and histone methyltransferase complex components to set a
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repressive chromatin mark (H3K9me3) within the proximal promoter of  NDRG1 [67].  In

contrast, the repression of Cdkn1a, Cdkn2a, Adam10, Pten and muscle-specific genes in

different cancer cell lines or myoblasts cells  depends on  recruitment of HDAC1, hence,

deacetylation of lysine residues in N-terminal tails of histones [68-71]. The closely related

T-box factor TBX3  also binds to HDACs (1,2,3  and 5) to repress target genes including

Cdkn1a and Cdkn2a [72, 73].

Our  proteomic  analysis  argues  that  HDACs  namely,  HDAC1  and  HDAC2,  are  also

involved in repression of TBX2 target genes including  Cdkn1a and  Cdkn1b in the lung

mesenchyme. Both proteins were enriched in our proteomic screen, both bound to TBX2

in  HEK  cells  and  both  genes  were  largely  coexpressed  with  TBX2  in  the  lung

mesenchyme. Our proteomic analysis further identified RBBP4, RBBP7 and CHD4 which

are  known  to  interact  with  HDAC1  and  HDAC2  in  the  CHD/NuRD  complex  [44,  45]

implicating for the first time this chromatin remodeling/histone deacetylase complex in the

repression of TBX2 targets genes in the lung mesenchyme.

CHD proteins like CHD4 are known to bind to methylated histone tails (H3K9me3) most

likely via their PHD2 finger [74]. Similarly, CBX3 (aka HP1), another protein for which we

confirmed TBX2 binding, recognizes H3K9me3 marks and is involved in heterochromatin

formation and transcriptional silencing including that of Cdkn1a by TBX2 [46, 67, 75, 76].

Together,  this would argue for TBX2 interaction with histone-methyltransferases such as

was shown for  repression of  NDRG1 in  tumor cells  [67].  The identity of  such histone

methyltransferases in the lung mesenchyme remains open since we did not detect such

enzymes in our proteomic screen. However, similar to the control of NDRG1 by TBX2, we

found that a DNA methyltransferase, namely (maintenance) DNMT1 coprecipitated with

TBX2 from lung tissue implicating DNA methylation in transcriptional repression by TBX2

[49]. Intriguingly, cooperation of DNMTs with HDACs and the NuRD complex, and of DN-

MTs with CBX3/HP1 and the NuRD complex in gene silencing including that of sFRPs

(such as Frzb) and of Cdkn1a has been reported, substantiating the relevance of TBX2 in-

teraction with these components [77-80]. 

We also found MYBBP1A as an interaction partner in the proteomic analysis. MYBBP1A

acts  as  a  corepressor  for  different  transcription  factors  and  is  possibly  involved  in

chromatin compaction by recruiting negative epigenetic modifiers, such as HDAC1/2 and

histone methyltransferase [50, 81]. Finally, in the group of 119 enriched nuclear proteins
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LMNB1 was present,  localizing TBX2 targets to the heterochromatic region associated

with the nuclear lamina. 

Conclusion 

Our work identified  Il33  and Ccn4 as additional direct target genes of TBX2 in the lung

mesenchyme. It revealed combinations of T-box binding elements with bindings sites for

HMG-box and homeobox proteins in the TBX2 genomic binding peaks, and characterized

the transcription factors PBX1 and HMGB2, and components and interaction partners of

the NuRD complex as TBX2 protein binding partners. We suggest TBX2 cooperates with

homeobox  and  HMG-box  transcription  factors  in  transcriptional  repression  of  anti-

proliferative genes in  the lung mesenchyme, and that  this  repressive activity relies on

histone deacetylation and chromatin remodeling mediated by the NuRD complex but also

on  DNA  methylation,  histone  H3K9  trimethylation  and  subsequent  heterochromatin

formation by CBX3 at the nuclear lamina.
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ADAM10: A disintegrin and metallopeptidase domain 10 
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avgFC: Average fold change

BMP4 : Bone morphogenetic protein 4 
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CBX3: Chromobox 3 

CCN4: Cellular communication network factor 4 

CDC5L: Cell division cycle 5-like 

CDKN1A: Cyclin-dependent kinase inhibitor 1A (P21) 

CDKN1B: Cyclin-dependent kinase inhibitor 1B (P27)

CHD: Chromodomain helicase DNA binding protein 

CHD4: Chromodomain helicase DNA binding protein 4

ChIP: Chromatin immunoprecipitation 

ChIP-Seq: Chromatin immunoprecipitation sequencing

Chromo: Chromatin organization modifier
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Co-IP: Co-Immunoprecipitation

DAPI:  4’,6-diamidino-2-phenylindole

DDX5: DEAD box helicase 5 

DNA: Deoxyribonucleic acid

DNMTs: DNA methyltransferases

DNMT1:          DNA (cytosine-5) methyltransferase 1

DNMT3B: DNA methyltransferase 3B 
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DPF2: D4, zinc and double PHD fingers family 2 
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EGFP: Enhanced green fluorescent protein

EGR1: Early growth response 1 

ELF1: E74-like factor 1 

ELK1: ELK1, member of ETS oncogene family 

ERG: ETS transcription factor 

ETS: Erythroblast transformation specific
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Frzb: Fizzled-related protein 

GATA4: GATA binding protein 4 

GO: Gene ontology

GREAT: Genomic Regions Enrichment of Annotations Tool

H2O2: Hydrogen peroxide

HDACs: Histone deacetylases

HDAC1: Histone deacetylase 1 

HDAC2: Histone deacetylase 12

HEK293 cells: Human embryonic kidney 293 cells

HMG: High mobility group

HMGB2: High mobility group box 2 

HNRNs: Heterogeneous nuclear ribonucleoproteins

HNRNPD: Heterogeneous nuclear ribonucleoprotein D

HOX: Homeobox 

HP1 Heterochromatin Protein 1, gamma 

hr: Hour

IgG: Immunglobulin G 

IL33: Interleukin 33

ILF2: Interleukin enhancer binding factor 2 

IP: Immunoprecipitation

kbp: Kilo base pairs
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kDa: Kilodalton

kV: Kilovolt 

LC-MS/MS: Liquid chromatography tandem mass spectrometry 

LMNB1: Lamin B1 

min: Minute

µg: Microgram 

µl: Microliter

µm: Micrometer

mM: Millimolar

MS: Mass spectrometry

MYBBP1A: MYB binding protein (P160) 1a 

NDRG1: N-myc downstream regulated gene 1 

NKX2-5: NK2 homeobox 5 
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NuRD: Nucleosome remodeling and deacetylase

PBS: Phosphate-buffered saline 

PBX1: Pre B cell leukemia homeobox 1 

PCR: Polymerase chain reaction 

PFA: Paraformaldehyde 

PHD2: Plant homeodomain 

PTEN: Phosphatase and tensin homolog

RBBP4: Retinoblastoma binding protein 4, chromatin remodeling 

factor 

RBBP7: Retinoblastoma binding protein 7, chromatin remodeling 

factor 

RBM14: RNA binding motif protein 14 

RBM39: RNA binding motif protein 39 

RNA: Ribonucleic acid 

RT-PCR: Reverse transcription polymerase chain reaction 

SDS: Sodium dodecyl sulfate 

sFRPs: Secreted frizzled-related protein

SHISA3: Shisa family member 3 

92



Part 2 - TBX2 target genes and interaction partners

SMARCC1: SWI/SNF related, matrix associated, actin dependent 

regulator of chromatin, subfamily c, member 1 

SMARCC2: SWI/SNF related, matrix associated, actin dependent 

regulator of chromatin, subfamily c, member 12

SMARCA2: SWI/SNF related, matrix associated, actin dependent 

regulator of chromatin, subfamily a, member 4

SMARCA4: SWI/SNF related, matrix associated, actin dependent 

regulator of chromatin, subfamily a, member 2 

SMC: Smooth muscle cell

SWI/SNF: SWItch/Sucrose Non-Fermentable 

TBX2: T-box 2 

TBX21: T-box 21

TBX3: T-box 3

TBX5: T-box 5

TFA: Trifluoroacetic acid

TGFs: Transforming Growth Factors

TSA: Tyramide signal amplification

TSS:  Transcription start site

v/v: Volume percent 

WISP: WNT1 inducible signaling pathway protein

WISP-1: WNT1 inducible signaling pathway protein 1 

WNT: Wingless-type MMTV integration site family 

WNT1: Wingless-type MMTV integration site family, member 1 
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Figure 1. ChIP-Seq analysis identifies genomic binding sites of TBX2 in E14.5 lungs.

(A,B)  Analysis  of  TBX2 ChIP-sequencing  peaks with  Genomic  Regions Enrichment  of

Annotations Tool  (GREAT, version 4.0.4).  (A) Bar diagram showing the orientation and

distance of TBX2 ChIP peaks to a transcription start site (TSS). (B) Functional annotation

shows enrichment of genes associated with TBX2 ChIP peaks in clusters with annotated

mouse phenotypes and biological processes sorted by –log10 binomial p-value. (C)  De-

novo motif analysis was performed in Galaxy using FIMO - Scan a set of sequences for

motifs (Galaxy v4.11.1.0) Novel consensus sequences are highlighted in colored boxes

and  compared  to  known  motifs  with  TomTom  Motif  Comparison  Tool  v5.1.1.  One

palindromic  and  one  non-palindromic  motif  with  similarities  to  a  known  TBX2  binding

element in the Jaspar database were discovered with E-values of 5.9e-198 and 4.6e-152

(grey boxes). Additional novel palindromic sequences show similarities to a TBX21 binding

site in the footprint database, E=1.7e-252 (green box),  an ETS (Jaspar database) and

homeobox (footprint  database)  binding motif,  E=6.8e-497 (red box),  and an HMG-Box

binding site  (footprintDB),  E=4.4e-300 (blue  box).  (E)  Analysis  of  motif  localization  by

GREAT discovered conjunct motifs for TBX2 (green), ETS/homeobox (red) and HMG-box

proteins (blue) in TBX2 ChIP-Seq peaks. Motifs are colored as in C and colored boxes in

D reflect spatial arrangement and interconnection of motifs on both DNA strands (+ and -).
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Figure 2. Microarray analysis identifies functional targets of TBX2 activity in E14.5

lungs. 

(A) Pie-chart summarizing the results of 4 individual transcriptional profiling experiments

by microarrays of E14.5 control  and  Tbx2-deficient lungs. (B) Intersection of the list  of

genes upregulated in the microarrays of E14.5 Tbx2-deficient lungs and the list of genes

associated with TBX2 ChIP peaks in the E14.5 lung. (C) List of genes upregulated in the

microarrays of E14.5 Tbx2-deficient lungs and having a TBX2 ChIP-peak. Shown are the

average fold changes (avgFC) of the 4 individual  microarray data sets.  (D) Functional

annotation analysis by MouseMine websoftware identifies functional enrichment of terms

related to stress response and growth control in the set of 39 genes upregulated in the

microarrays of E14.5 Tbx2-deficient lungs and having a TBX2 ChIP-peak. (E) RNA in situ

hybridization analysis of Ccn4 and Il33 expression on sections of E14.5 control and Tbx2-

deficient lungs. (F) Scheme depicting the genomic loci of  Ccn4 and  Il33. Binding peaks

identified by ChIP-Seq analysis are indicated above. Black boxes indicate peaks further

validated by ChIP-PCR. (G) ChIP-PCR-validation of peaks in Il33 and Ccn4 as indicated in

(F). Lanes were loaded as indicated.
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Figure 3. LC-MS/MS identifies TBX2 interaction partner in E14.5 lungs.

(A) Diagram depicting the strategy to identify TBX2 interacting proteins in embryonic lungs.

Tissue of E14.5 wildtype formaldehyde fixed lungs was homogenized, cells were lysed,

and nuclei extracted. Protein complexes containing TBX2 were purified with an α-TBX2

antibody.  Subsequent  LC-MS/MS  analysis  and  statistical  filtering  (Student's  t-test

difference  of  ≥2)  revealed  an  enrichment  of  219  proteins  within  the  α-TBX2  fraction

compared to the control lacking the α-TBX2 antibody. Manual exclusion of mitochondrial,

proteasomal,  and ribosomal proteins as well  as hemoglobins, immunoglobins and non-

nuclear proteins lead to a list of 119 candidate proteins. Of these, 22 were associated with

the GO term “transcriptional regulation”, 7 with the terms “histone/histone modification”. 7

proteins were in the intersection of both GO term lists.  (B,C) List  of  enriched proteins

associated  with  the  GO  term  “transcription  regulation”  (B)  and  “histones”  or  “histone

modification”  (C)  according  to  DAVID  functional  analysis.  (D)  STRING  analysis  of

interactions of the candidate proteins shown in (B) and (C). Three clusters were identified

using  MCL  clustering  with  an  inflation  parameter  of  2,  an  interaction  score  of  high

confidence (0.700) and deactivating the interaction source "textmining". 
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Figure  4.  Interaction  candidates  are  coexpressed  with  TBX2  in  the  pulmonary

mesenchyme and interact in HEK293 cells.

(A)  Co-immunofluorescence analysis  of  candidate  interaction  partners  (red)  and TBX2

(green) on frontal sections of the right lung of E14.5 Tbx2cre/+ embryos. Antigens are color-

coded and nuclei  were  counterstained with  DAPI  (blue). Insets  or  selected regions in

overview  images  are  magnified  in  rows  2,4  and  6.  (B)  Western  blot  analysis  of  co-

immunoprecipitation experiments for verification of TBX2 interaction of candidate proteins

on 10% SDS polyacrylamide gels. Detection was performed with an anti-TBX2 primary

antibody and developed with chemoluminescence-IHC. Arrows indicate TBX2 bands. 

Lanes  were  loaded  as  follows:  No  antibody:  IP  without  specific  antibody  resembling

negative  IP-control;  5% input:  5% of  crude cell  extract  before precipitation;  empty:  no

protein loaded; IP: co-immunoprecipitate with antibody for specific candidate. Expected

molecular weight for TBX2.HA approx. 76.2 kDa.
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Additional files

Additional file 1: 
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Figure S1.  Expression analysis of  candidate genes with increased expression in

microarray analyses of TBX2-deficient lungs. 

RNA in  situ  hybridizations  were  performed  on  frontal  lung  sections  of  E14.5  control

(Tbx2+/fl)  and  Tbx2-deficient  (Tbx2cre/fl) embryos.  Insets  show  positive  control  regions.

Numbers refer to fold change in the microarray analysis of  Tbx2-deficient lungs. Probes

and genotypes are as indicated. 
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Figure  S2.  Derepression  of  TBX2  target  genes  occurs  around  E12.5  in  TBX2-

deficient pulmonary mesenchyme. 

In situ hybridization on frontal lung sections of E11.5, E12.5 and E13.5 control (Tbx2+/fl)

and Tbx2-deficient (Tbx2cre/fl) mice. Probes, genotypes and stages are as indicated. 
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Additional file 2:

Because of the extend of the tables, the complete data set of Additional file 2 is provided

as  electronic  version  on  the  attached  compact  disc.  Table  S1  and  Table  S10  are

exclusively  provided as  electronic  versions.  Table  S9 is  partly  provided in  the  printed

version, while the complete list is provided as electronic version.

Table S1. TBX2 ChIP-seq peaks.

Shown are ChIP-seq peaks with  a peak score threshold of  7  sorted by chromosomal

position. 

Because of the extend of the table, the complete data set is provided as electronic version

on the attached compact disc.
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Table S2. Functional annotation of enriched TBX2 ChIP-seq peaks. 

Shown are  gene enrichments  determined by GREAT and associated with  TBX2 ChIP

peaks in clusters with annotated biological processes sorted by –log10 binomial p-value.
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Table S3. Functional annotation of enriched TBX2 ChIP-seq peaks. 

Shown are  gene enrichments  determined by GREAT and associated with  TBX2 ChIP

peaks in clusters with annotated mouse phenotypes sorted by –log10 binomial p-value.
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Table S4. Functional annotation of enriched TBX2 ChIP-seq peaks. 

Shown are  gene enrichments  determined by GREAT and associated with  TBX2 ChIP

peaks in clusters with annotated human phenotypes sorted by –log10 binomial p-value.
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Table S5. Genes with decreased expression in the microarrays of E14.5 control vs

Tbx2-deficient lungs.

Shown are the individual intensities, the individual fold changes (FC) and the average FC

over the four individual microarrays performed.
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Table S6. Genes with increased expression in the microarrays of E14.5 control vs

Tbx2-deficient lungs.

Shown are the individual intensities, the individual fold changes (FC) and the average FC

over the four individual microarrays performed.
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Table S7. GO-Term analysis of upregulated genes in microarray analysis.

Shown are GO-terms of upregulated genes in the microarray determined by MouseMine

sorted by raw p-value.
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Table  S8.  Functional  annotation  analysis  of  upregulated  genes  in  microarray

analysis.

Shown  are  functional  clusters  of  upregulated  genes  in  the  microarray  determined  by

DAVID functional annotation tool sorted by enrichment score.
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Table S9. Mass Spectrometry.

Complete list of detected proteins in mass spectrometry analysis.

Because of  the  extend of  the  table,  Table  S9 is  only  partly  embedded in the  printed

version, while the complete data set is provided as electronic version on the attached

compact disc.

Table S10. GO-Term analysis of interaction candidates.

Shown  are  GO-terms  of  candidate  proteins  for  interaction  with  TBX2  determined  by

MouseMine sorted by Gene ID.

Because of the extend of the table, the complete data set is provided as electronic version

on the attached compact disc.
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Concluding remarks

The regulation of gene expression by TBX2 in the embryonic lung mesenchyme in-

volves multiple molecular mechanisms.

To control gene transcription, regulatory proteins interfere either directly with the initiation

of transcription by the RNA polymerase holoenzyme or modulate the accessibility of the

DNA. Post-transcriptionally, gene expression is also regulated by RNA processing and pro-

tein modifications which influence the properties, the amount or the stability of a gene

product. Utilizing microarray analysis, ChIP-seq data and an  in vivo co-immunoprecipita-

tion approach, the present study identified diverse mechanisms by which TBX2 regulates

gene expression in the pulmonary mesenchyme.

The evaluation of the ChIP-seq data displayed several TBX2 peaks in promoter regions,

but most frequently in regions between 50-500kbp away from the transcription start sites,

demonstrating that TBX2 regulates target gene transcription via local (promoter), but more

frequently via distal (enhancer/silencer) regulatory elements. In order to do so, TBX2 likely

interacts with other transcription factors either antagonistically as described for the interac-

tion with MSX1 [155] and EGR1 [156], cooperatively as shown for NKX2.5 [157] or syner-

gistically as ascertained for RB1 [158]. Indeed, we were able to verify the interaction of

TBX2 with the transcription factor PBX1 and the chromatin binding protein HMGB2 in the

pulmonary mesenchyme.  This  indicates  that  DNA binding specificity  and regulation  of

gene transcription in the pulmonary mesenchyme is realized by the coordinated interplay

of TBX2 and additional proteins. However, the functional consequences of these interac-

tions have not yet been addressed. Since mice deficient for Hmgb2 do not exhibit any ob-

vious lung defects [159], the interaction of TBX2 and HMGB2 might be irrelevant for gener-

al lung development. In contrast, the loss of PBX1 results in lung hypoplasia [160], but a

regulation of proliferation by PBX1  has not yet been analyzed. However,  closely related

family members (Hmgb1 and Pbx2-4) might act redundant, covering the functional require-

ment. TBX2 has been described to act as a transcriptional repressor [11, 12, 138] and the

present as well as previous studies confirmed such a repressing function of TBX2 also in

the developing lung mesenchyme. 

In  breast  cancer  cells,  TBX2 has  been shown to  repress the  tumor  suppressor  gene

NDRG1 by the recruitment of the DNA methyltransferase DNMT3B and histone methyl-
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transferase complex components, which set a repressive mark (H3K9me3) within the prox-

imal promoter [126]. In other contexts the repression of target genes such as Cdkn1a and

Cdkn2a depends on the deacetylation of lysine residues in N-terminal tails of histones by

HDACs, which are recruited by TBX2 [161-163].  We verified the interaction of TBX2 with

HDACs and observed a co-immunoprecipitation of the DNA methyltransferase DNMT1,

suggesting that TBX2 is able to trigger DNA methylation and histone modifying enzymes

associated with transcriptional repression in the embryonic lung. Although we were not

able to identify a histone methyltransferase among the TBX2 interaction partner, we veri -

fied an interaction of TBX2 with CHD4 and CBX3, two proteins which recognize and bind

methylated histone tails (H3K9me3) [104, 107, 110, 164, 165], supporting the idea that

TBX2 is also involved in histone modification.  Furthermore, CHD4 is described as chro-

matin remodeling protein and as core protein of the NuRD complex, which also includes

the verified TBX2 interaction partners HDAC1 and HDAC2 [166-170]. Interestingly, CHD4

contains an HMG-box-like domain in its N-terminal region [171], which possibly mediates a

cooperative binding of TBX2 and the CHD4/NuRD complex to the DNA via the identified

enrichment of HMG-box binding motifs close to TBX2 peak regions. Although no individual

validation was performed,  the  MS analysis  also  identified the  histone binding proteins

RBBP4 and RBBP7, which are involved in the assembly of the of the NuRD complex [168,

172]. Together this strongly indicates the participation of TBX2 in the recruitment and/or

function of the NuRD complex to regulate target gene repression. Moreover, TBX2 was

suggested to recruit a novel repressing complex by the interaction with CBX3 and TRIM28

to co-repress EGR1-target genes in breast cancer cells. Our proteomics analysis co-im-

munoprecipitated both CBX3 and TRIM28, suggesting the possibility of a similar complex

assembly in the pulmonary mesenchyme. Thus, TBX2 likely participates in different mech-

anisms of  chromatin  remodeling  to  (persistently)  repress the  transcription  of  its  target

genes in the pulmonary mesenchyme. 

The identified protein interaction partners are able to act as transcriptional repressors in

different contexts [168, 173-176], but PBX1 was described to have activating properties

[177, 178] and moreover, was even shown to directly activate Fgf10 expression in the lung

mesenchyme [160]. Possibly the interaction of TBX2 with PBX1 is not  cooperatively, but

competitively as described for TBX2 and MSX1 during tooth development [155]. However,

the  repeatedly described synergistic  interaction of  T-box and homeobox proteins [132,
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136, 157, 179] argues against such a competition for PBX1. It  has been shown that a

HOX-PBX protein complex turns from an activating into a repressing complex depending

on the available co-factors [180]. The switch to a repressor depends on the interaction with

HDAC1, suggesting that the activation of Fgf10 by PBX1 in the pulmonary mesenchyme

depends on other co-regulators than TBX2, while PBX1 has a repressive function in the

lung upon the interaction with TBX2/HDACs. However, as described above, the functional

requirement of such an interaction has to be analyzed in additional studies.

Although our analysis strongly supports the repressive function of TBX2 via DNA binding

and recruitment of repressive histone and chromatin modifying proteins/complexes in the

pulmonary mesenchyme, our analyses propose an additional possibility of  transcription

control by TBX2, which should be considered at least to some degree.

The MS analysis identified several proteins associated with the splicing machinery among

the putative TBX2 interaction partners, suggesting that TBX2 may regulate gene expres-

sion also by RNA processing. Interestingly, TBX3 was shown to interact with multiple splic-

ing factors and to directly bind to the RNA via a TBE to impinge on splicing [181]. The

close structural and functional similarity of both TBX2 and TBX3, permits the assumption

of similar abilities of TBX2. Moreover, the validated TBX2 interaction partner CBX3 facili-

tates the recruitment of the splicing machinery to its targets in human colorectal cancer

cells [182], providing a second mechanism by which TBX2 might influence RNA splicing.

However, additional analyses are needed to further investigate a possible function of TBX2

in RNA processing.

In summary, TBX2 controls transcription in the pulmonary mesenchyme via the binding of

differentially localized regulatory elements of target genes and more globally by different

mechanisms of chromatin remodeling and/or histone modification. For this, TBX2 interacts

with different proteins as well as other TFs. Moreover TBX2 may even participate in RNA

processing to regulate target gene expression. Together, this demonstrates the high poten-

tial and variability of TBX2 regarding the control of gene expression in the embryonic lung

and stresses generally the complexity of TFs.

TBX2 regulates cell proliferation and lung growth rather than lineage commitment

and cell differentiation in the lung.

It was shown that TBX2 supports proliferation in a multitude of cancer types by repressing
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the cell cycle inhibitors  Cdkn1a, Cdkn1b and  Cdkn2a [156, 161, 183]. In the lung mes-

enchyme TBX2 controls proliferation by at least two independent mechanisms [7], one of

which is  the direct  repression of  Cdkn1a  and  Cdkn1b,  emphasizing the importance of

TBX2 function to precisely regulate proliferation and organ growth. Interestingly, Kumar et

al. [51] demonstrated that single cells of the mesothelium stay rather coherent and locally

proliferate to populate the organ surface. The TBX2 lineage positive mesothelial clusters

observed upon TBX2 overexpression therefore most likely emerge from an increased pro-

liferation of lineage positive descendants, suggesting conserved functions of TBX2 in the

pulmonary mesenchyme and mesothelium.

Moreover, the study by Kumar et al. [51] showed that the proliferation rate of different mes-

enchymal cells originating from the same lineage vary substantially, indicating a local con-

trol of proliferation. Several of the interaction partners of TBX2 identified in the MS analysis

are closely linked to the regulation of proliferation.  PBX1 promotes proliferation during

spleen development [177], while HMGB2 plays a role in neural stem cell proliferation [184]

and represses Cdkn1a in cervical cancer [185]. The CHD4 containing version of the NuRD

complex is associated with the proliferation of progenitor cells [186, 187] and the epigenet-

ic repression of  Cdkn1a in breast cancer cells [188]. CBX3 represses  Cdkn1a in colon

cancer [189] and was shown to interact with TBX2 and TRIM28 to repress EGR1 target

genes and thereby strongly supports proliferation in breast cancer cells [126]. TRIM28 was

identified in our MS analysis, although not strikingly enriched, suggesting the assembly of

a similar complex during lung development. TBX2 and the verified interaction partners

were co-expressed in the majority but not all mesenchymal cells. Possibly the combined

expression of TBX2 and its interaction partners and the exact expression levels of each

are responsible for the differential proliferation of mesenchymal cells. Together, these find-

ings reinforce the importance of TBX2 in proliferation control.

To  allow  cell  differentiation,  the  expression  of  cell  type-specific  genes  needs  to  be

coordinated with the cell cycle exit [190]. Particularly members of the CIP/KIP family of

cyclin-dependent  kinase  (CDK)  inhibitors  reduce  CDK-promoted  proliferation  and  may

overcome the CDK-mediated inhibition of transcription factors which are involved in the

induction  of  differentiation.  Furthermore,  it  has  been  proposed  that  expression  of

transcriptional repressors antagonize senescence and terminal differentiation of quiescent

cells [190]. Lüdtke et al. [7, 8] hypothesized that TBX2 acts as such an TF, which prevents
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the differentiation of the lung mesenchyme by repressing Cdkn1a and thereby preserving

a  proliferative  state  of  mesenchymal  cells.  TBX2,  and  its  closest  relative  TBX3,  are

involved in cell type specification and differentiation of organs such as the heart, the liver

and the ureter [13, 14, 16, 144, 145, 191-193]. Furthermore, the TBX2 interaction partners

validated in the present study (CBX3, CHD4, PBX1, HMGB2, HDAC1/2) are involved in

the fate decisions of different cell types [28, 194-200], supporting a potential function of

TBX2 in lineage commitment or differentiation of mesenchymal cells of the lung. 

Lüdtke et al. [7] suggested that the observed reduction of interstitial fibroblasts in Tbx2-de-

ficient mice is caused by a premature maturation of these cells. The reduction of S100A4+

interstitial fibroblasts at E14.5 was confirmed in the present study, but analysis of earlier

embryonic stages showed no premature emergence of these cells upon  Tbx2 deletion.

This argues for  a general  reduction of  S100A4+ interstitial  cells  possibly due to  a de-

creased proliferation rather than a premature differentiation. In wild type mice the entire

endothelium derives from the TBX2+ cell lineage, while  only a subset of endothelial cells

expresses TBX2 at E14.5, indicating a specific downregulation of TBX2 possibly as pre-

requisite  for  differentiation.  Although  a  hypervascularization  was  observed  upon  Tbx2

overexpression, neither Tbx2 deletion nor overexpression interfered with endothelial differ-

entiation. Therefor, the TBX2+ endothelial cells might represent transit-amplifying cells of

the endothelium [201], and therefore persistent TBX2 expression drastically increases en-

dothelial proliferation leading to the observed hypervascularization. Thus, neither intersti-

tial fibroblast nor endothelial cell differentiation depends on TBX2 function, but the prolifer-

ation of both cell types is impacted by TBX2.

The deletion of Tbx2 mildly affects the temporal window of a subprogram of bSMC differ-

entiation,  molecularly  characterized  by  the  premature  expression  of  S100A4.  In  rhab-

domyosarcoma cells, TBX2 recruits HDAC1 to directly repress smooth muscle associated

genes like myogenic differentiation 1 (Myod1) and prevents terminal differentiation of SMC

by repressing Cdkn1a [162]. Although the confirmed interaction of TBX2 and HDAC1 as

well as the validated repression of  Cdkn1a by TBX2 permits the assumption of a similar

regulatory network in bSMCs, the establishment and differentiation, examined by several

SMC markers, was unaffected upon loss of  Tbx2.  Moreover,  Tbx2 deletion appears to

have no effect on the proliferation of bSMCs at E12.5, the time point when premature

S100A4 expression was observed. This supports the notion that lineage commitment, dif-
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ferentiation and proliferation of SMCs in the lung are largely independent of TBX2. 

We identified Il33 and Ccn4 as direct target genes of TBX2 in the pulmonary mesenchyme

which were derepressed in the submesothelial- or subepithelial mesenchyme, respectively.

Il33 is a cytokine which acts via its receptors IL1RL1 and IL-1RAcP [202, 203] and medi-

ates the immune responses as alarmin in several tissues including the lung [203]. Ccn4, a

member of the WNT1 inducible signaling pathway protein (WISP) subfamily of the connec-

tive tissue growth factor/CCN family of matricellular proteins is implicated in development,

tissue repair and disease, where it is involved in proliferation, cell survival, epithelial–mes-

enchymal transition (EMT) and differentiation [204-207]. Both, Il33 and Ccn4 are associat-

ed with the control of proliferation and the production of ECM [202, 204, 208], suggesting

that derepression of both genes in the lung mesenchyme mediate these phenotypical as-

pects observed in Tbx2-deficient lungs. However, further analysis have to be performed to

unveil the functions of Il33 and Ccn4 in this context.

Thus, the fate analysis of the pulmonary mesenchyme of Tbx2-deficient and constitutively

overexpressing mutant mice showed that deregulation of TBX2 has only a marginal affect

on the establishment of mesenchymal cell types.  Detailed expression analyses of TBX2

during cell cycle revealed that TBX2 levels substantially varied between the different phas-

es of the cell cycle [209]. TBX2 levels increased from mid to late S-phase and peaked in

late S- and G2-phase, while TBX2 expression was very low in G1-phase. The G1-phase is

proposed to be the phase in which cell fate decisions are manifested by the expression of

differentiation-inducing TFs [190, 210]. The low levels of TBX2 during this phase might ex-

plain the minor affect of TBX2 on differentiation observed in our study, since the upregula-

tion of any pro-differentiation factor might overcome the weak repressive effect of TBX2

during G1-phase.

All in all, the major function of TBX2 in the lung mesenchyme is the precise control of pro-

liferation, but not of lineage commitment and differentiation. This indicates, that TBX2 is

more important to assure lung growth rather than maintaining an undifferentiated state of

the progenitor populations. Nonetheless, it  is important to consider that TBX3 may partly

take over TBX2 function, especially in the subepithelial mesenchyme where TBX3 is pre-

dominantly expressed.
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TBX2 might be involved in the etiology and/or progression of chronic lung diseases

TBX2 is a well-described oncogene which is a key factor to bypass cellular senescence in

many different cancer types, including lung cancer [11, 143, 183]. The present as well as

previous studies [7, 8], suggest that TBX2 not only participates in lung cancer, but also in

progressive, chronic pulmonary diseases. Chronic lung disease (CLD) is a collective term

for a variety of pulmonary disorders, including asthma bronchiale, chronic obstructive pul-

monary disease (COPD)/emphysema, pulmonary fibrosis (PF) and others. These diseases

are not curable up to now and represent leading causes of death and disability worldwide

[211],  emphasizing  the  importance to  unveil  underlying  cellular  and  molecular  mecha-

nisms.

PF is characterized by a decreased diffusion capacity due to reduced airspaces, while

COPD causes a limited airflow and the disruption of alveoli structure, whereas asthma

bronchiale is marked by airflow obstruction upon exaggerated airway constriction. CLDs,

especially the ones of fibrotic character, but also COPD/emphysema and asthma are ac-

companied by massive mesenchymal remodeling such as disturbed deposition of ECM, in-

creased proliferation of fibroblasts as well as alterations of SMC and myofibroblast differ -

entiation [212-215]. 

Mesenchymal thickening, an increase of ECM [213] and a higher incidence of S100A4

positive fibroblast as well as an increase in S100A4 level were observed in lungs of PF pa-

tients and corresponding mouse models [216]. S100A4 has a crucial function in the prolif-

eration of fibroblasts and the increase in nuclear S100A4 level is sufficient to induce fibrot-

ic properties in fibroblasts [217, 218]. Constitutive expression of TBX2 into adulthood has

been shown to increase mesenchymal proliferation, resulting in a mesenchymal thickening

and reduced air spaces at P40, accompanied by an enhanced ECM deposition and an in-

crease of S100A4 expressing fibroblasts in mice [7]. Moreover, a recent study identified a

Col13a1 expressing subpopulation of matrix producing fibroblasts, which is expanded in fi-

brotic lungs [49]. This subpopulation not only expressed TBX2 in normal lungs but upregu-

lated TBX2 in fibrotic condition. Together, this supports a role of TBX2 in fibrotic remodel -

ing of the mesenchyme, including proliferation and matrix deposition.

An increase in ECM deposition is not only a feature of the mesenchymal remodeling in pul-

monary fibrosis but also in asthma bronchiale [208, 215, 219]. Since S100A4+ fibroblasts

are reduced in  Tbx2-deficient lungs, extensive ECM deposition has to be triggered by a
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different process in the loss-of function mutant lungs. The TBX2 target gene Il33 is dere-

pressed in the mesothelium and the submesothelial mesenchyme of Tbx2-deficient lungs

and  has been  repeatedly described to mediate inflammatory responses in several CLDs

including  COPD/emphysema  and  asthma  bronchiale [220-222] IL33  expression  levels

were significantly elevated in bronchial asthma patients [208, 223] and in a murine mouse

model for asthma. There, IL33 was shown to significantly increase the proliferation of lung

fibroblast and the deposition of several ECM components such as different collagens and

FN1 [208]. Additionally, the TBX2 target gene Ccn4 which was upregulated in the subep-

ithelial layer of Tbx2-deficient lungs was shown to induce the expression of ECM compo-

nents such as FN1 and collagens [224]. Moreover, Ccn4 induces proliferation and hyper-

trophy of human bSMC and may therefore contribute to the pathogenic mesenchymal re-

modeling of asthma bronchiale [225]. Interestingly, we observed a functional anomaly of

the bSMC, both in Tbx2-deficient and constitutively overexpressing mutant mice. Loss of

Tbx2 led to an increase in contraction strength and a decelerated muscle relaxation, while

the constitutive TBX2 expression resulted in an opposite effect. Thus, physiologically the

LOF mutant resembles the hypertension observed in asthma bronchiale. 

Chronic inflammation, emphysematous lesions and arrested tissue repair due to prema-

ture  senescence  of  mesenchymal  stem  cells  are  key  processes  which  characterize

COPD/emphysema lungs [226]. Previous studies showed that senescence markers such

as CDKN2A and CDKN1A were elevated in lungs of COPD patients as result of the sup-

pression of anti-senescence mediators including  Tbx2,  chromatin modifiers and histone

deacetylases [227]. The development of an emphysema-like histological phenotype was

not observed in  Tbx2-deficient lungs yet, possibly due to the fact that these mutants die

shortly after birth [16] and emphysema-like malformations become prominent after alveoli

should have been formed. However, molecular alterations of Tbx2-deficient mice, such as

reduced WNT-signaling upon derepression of its antagonists  Shisa3 and Frzb [7, 8], are

similar to observations in COPD/emphysema lungs, where reduced WNT-signaling upon

upregulation of its antagonists critically contributes to the initiation of mesenchymal remod-

eling [215, 228] . Thus, not only the reduction of Tbx2 but also downstream pathways pro-

vide a link of Tbx2-deficient and COPD/emphysema lungs.

Together these findings suggest that Tbx2 regulates different aspects of mesenchymal re-

modeling via a set of downstream target genes.
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Interstitial lung diseases affect the pulmonary parenchyma, however the initial cause origi-

nates from epithelial irritations and chronic inflammation [213, 219]. Since TBX2 is exclu-

sively expressed in non-epithelial cells of the lung, it might represent one of the links be -

tween an epithelial trigger and downstream mesenchymal remodeling. It has been shown,

that TBX2 is specifically phosphorylated in response to an external stress-stimulus, lead-

ing to an increase in protein level and consequently to an enhanced repression of target

genes including Cdkn1a [229]. This suggests, that stress-associated signals caused by an

epithelial or mesothelial inflammation might be transmitted into the mesenchyme via the

phosphorylation of TBX2. Moreover, Lüdtke et al. [8] showed that TBX2 is downstream of

SHH-signaling in wild type lungs, indicating that altered epithelial SHH-signaling as in case

of COPD/emphysema, PF and asthma [230-232], might serve as mediator from epithelial

irritations into a modified mesenchymal TBX2 expression.

In summary, the Tbx2 mutants analyzed in this and previous studies, reflect different mes-

enchymal phenotypes of chronic pulmonary diseases such as COPD/emphysema, PF and

asthma, without an obvious external stimulus like airway inflammation. Since the deletion

of TBX2 only mildly affects cellular composition and the functionality of the lung, TBX2 mu-

tants might serve as a suitable model to study interstitial lung distortions separately from

primary epithelial  effects.  Furthermore, TBX2 might be a suitable mesenchyme-specific

therapeutic target to reduce severity or progression of chronic pulmonary diseases without

critically interfering with other aspects of lung homeostasis. However, deeper analyses are

needed to evaluate the possible therapeutic effects of TBX2 deregulation in mesenchymal

remodeling of pulmonary diseases. 
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