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Abstract: The demand for efficient and accurate finite element analysis (FEA) is becoming more
prevalent with the increase in advanced calibration technologies and sensor-based monitoring
methods. The current research explores a deep learning-based methodology to calibrate FEA results.
The utilization of monitoring reference results from measurements, e.g., terrestrial laser scanning,
can help to capture the actual features in the static loading process. We learn the deviation sequence
results between the standard FEA computations with the simplified geometry and refined reference
values by the long short-term memory method. The complex changing principles in different
deviations are trained and captured effectively in the training process of deep learning. Hence,
we generate the FEA sequence results corresponding to next adjacent loading steps. The final FEA
computations are calibrated by the threshold control. The calibration reduces the mean square errors
of the FEA future sequence results significantly. This strengthens the calibration depth. Consequently,
the calibration of FEA computations with deep learning can play a helpful role in the prediction and
monitoring problems regarding the future structural behaviors.

Keywords: terrestrial laser scanning; finite element analysis; deep learning; long short-term memory;
calibration; sequence

1. Introduction

The field of artificial intelligence has been developing rapidly in recent years [1]. It has
made significant contributions regarding the optimization and prediction of many problems [1–3].
The machine learning-based approach has proved to be a suitable method to solve the finite element
analysis (FEA) calibration problem [4]. However, its accuracy and calibration depth still need to be
improved significantly. Therefore, this paper focuses on the FEA calibration to further improve its
efficiency, depth, and accuracy by utilizing the advanced deep learning approach.

1.1. Development of Classical FEA Calibration

The calibration of the FEA is a process of tuning and improving the FEA computation, which aims to
predict and analyze the future behavior of the object better. Efficient methods regarding FEA calibration
have been reported in many cases [5–7]. Abrahamsson and Kammer applied the experimental
frequency response to calibrate the dynamic FEA model [5]. The damping equalization is carried out to
solve problems regarding the mode pairing in experiments and computations. It combines the model
reduction to improve the efficiency. The results indicate that the application of the frequency response
offers a scientific and reliable calibration deviation metric. Different calibration methods combining
dynamic experimentation have been presented, including the Levenberg–Marquardt minimizer [6] and
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the genetic algorithm [7] to optimize parameters. Additional calibration studies of complex structures
were carried out based on the fundamental principles above. By comparing the deviations between the
experimental and numerical data, Abrahamsson et al. researched on the front subframe model of the
car with complex degrees of freedom [8]. They proposed a cross validation method by combining both
Levenberg–Marquardt and Gauss–Newton minimizers. Osmancikli et al. calibrated the computational
dynamic characteristics by the experimental characteristics in the ambient vibration test by changing
the stiffness coefficients of the connection joints of the initial FEA model [9].

The long-span suspension structure is one of the most advanced techniques in constructing
bridges which can be found as important traffic roads built over the long-span river, lake or sea.
Wang et al. developed two phase models to solve the calibration of long-span suspension bridge [10].
They simplify the entire progress of the calibration by the later combination with the separated
vibration and static measurements. Garo et al. created a method to calibrate the material property in
FEA computation by using an inverse method based on the experimental structure performance at
different dynamic loadings [11].

The methods above apply a single parameter to calibrate FEA computations. The multivariate-based
FEA calibration is more challenging. Formisano et al. proposed the calibration based on the natural
frequencies and damping coefficients in the ABAQUS software environment [12]. A reliable calibration
process is carried out in the commercial FEA package ABAQUS by obtaining the required inner structural
properties [13]. A set of calibration results, including the loading-displacement response, the strain
distribution, and the failure mode are presented through the indentation test with complex mixed mode
loadings. A good displacement agreement in the results of both the FEA computation and the experiment
has been reliably confirmed. Chen et al. used a continuous health monitoring system in the bridge [14].
The output model resulting from the ambient vibration experiment calibrated the FEA model and
improved the correlation between the computational and experimental parameters. Erdogan calibrated
the discrete and continuous FEA models thorough the combination of vibration and material tests for
the purpose of the seismic assessment [15]. The procedure considers the stiffness of contact between
adjacent stone units. The use of experimental data provides a sufficiently reliable calibration of the FEA.
An inverse technique, called the virtual field method, calibrates the FEA material model by tracking the
parameter covariance of large errors and the existence of equivalent parameters [16]. As the number
of variate parameters increases, the classical FEA calibrations become increasingly time-consuming.
Therefore, new calibration techniques with machine learning are increasingly gaining interest in the
FEA calibration community.

1.2. FEA Computation and Calibration with Machine Learning

The FEA computations and calibrations now apply the advanced machine learning techniques.
The latter is a powerful tool to understand the FEA processes and provide calibration solutions based
on the deviation results between the experimental and FEA data. It can solve extraordinarily complex
and difficult tasks for many engineering applications. Machine learning permits computers to learn
the changing laws and behaviors based on the trained data [17–20]. With the combination of the
FEA, machine learning can learn from the complicated patterns and understand the FEA process.
There are lots of integration methods regarding the FEA and machine learning which one can apply in
computations of modal characteristics, finite elements, constitutive relationships, material parameters,
the FEA geometric deviation, and mechanical behaviors. There is an increasing need for fast and
accurate computations and calibrations in the FEA.

Combined with response surface and particle-swarm methods, Marwala implements supervised
learning in the form of Bayesian neural networks (NNs) which calibrate the mode and frequency
domains in FEA [21]. The Markov chain Monte Carlo technique solves the Bayesian formulation well.
The mode shape and frequency domains in the FEA computation are calibrated in NNs according to
the model assurance criterion and natural frequencies tested.



Sensors 2020, 20, 6439 3 of 26

Applying machine learning determines the FEA element state in both regular and multiscale
structure problems [22]. The novel model regarding the smart finite elements extracts data from the
FEA which is fed into the machine learning algorithm later, avoiding the complex task of finding the
displacement field and complex iterations in the original computation. Accordingly, this reduces both
the computational cost of producing and the computational error significantly.

Nie et al. explored a deep learning strategy to accelerate the computation of constitutive
relationships [23]. Convolutional neural networks (CNNs) are beneficial in determining the FEA stress
field regarding a two-dimensional cantilevered structure. This novel approach takes the object geometry,
loads, and displacement boundary as inputs to output the predicted computational stress results.
Oishe and Yagawa described computational mechanics and implicit rules regarding stiffness matrices
through deep learning enhancement [24] Deep learning-based strategies indicate the robustness and
flexibility. They also introduce more opportunities to apply in more complex FEA problems.

Javadi et al. calibrated the conventional material parameter model in FEA regarding the
embankment through applying an artificial NNs-based methodology [25]. The relationship of the
Mohr–Coulomb material subjected to loadings is outputted and calibrated. Similarly, Javadi et al.
proposed an artificial intelligence regarding the evolutionary polynomial regression to calibrate
complex material parameters in the FEA computation [26]. Hence, the optimization and calibration
process of internal materials are also displayed to readers more intuitively.

Advances in the FEA computation have also been preliminarily applied in soft-tissue biomechanics
and human organs. However, discussing the irregular and complex structures is too computationally
burdensome for the application in real-time applications. The combination of the FEA with machine
learning can offer an efficient solution to solve this problem. Reducing the computational cost
and complexity of FEA is one of the main topics in the medical application by utilizing different
techniques, for example, NNs-based strategy [27] and regression models-based prediction [28]. A deep
auto encoder approximates the behavior of a non-linear and muscle actuated beam structure [29].
The deformation space in the compact form regarding high degree soft tissue is calibrated by Artisynth’s
quasi-static incremental solver through the use of deep learning models. The application of the auto
encoder deep learning approach indicates a lower reconstruction error, which is compared with the
original FEA model. The similar idea can also be applied to estimate, calibrate, and recover the
zero-pressure geometry of the patient’s thoracic aorta is developed on the basis of the FEA method [30].
The application of different machine learning methods can simplify, predict, and calibrate the complex
FEA computations, thus, solving medical problems.

Liang et al. integrated the principal component analysis, sparse coding, nonlinear regression,
and bidirectional neural networks to study the shape characteristics and Von Mises stress behavior of
FEA computation [31]. The inputs are the material parameters based on experiments and statistical
geometric shape. The calibration and optimization from FEA results enable the output stress analysis
of human organs into fast speed, reliable, and real-time analysis. Li et al. recently designed an
encoder–decoder-based CNN-FEA model [32]. Inputting geometry features and FEA boundary
conditions result in the prediction of time-dependent concentration distributions. The mean relative
error is very low, which indicates that the test accuracy is very high in the novel model.

However, the methods above ignore the depth of the FEA calibration. They mainly focus on
one-step based calibrations. All these effective studies indicate that machine learning can greatly
capture the complex behaviors of FEA computation and provide calibration possibilities to improve the
FEA. Automatic and smart algorithms train and simulate the complicated behaviors and computational
processes in FEA. Consequently, intelligent algorithms can make predictions and decisions about the
future contour without being explicitly programed in the mathematical FEA calculation. Combining the
FEA with deep learning, predictions regarding the future behavior of images or next frames and their
calibrations are possible directions in this field, in which one seldom finds future image predictions
based on the known FEA pattern data. The depth of the prediction can be extended through the
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application of deep learning. Future image prediction is also known as the next-frame prediction in
the video generation, which is discussed in the next section mainly.

1.3. Deep Learning

Deep learning is a subset of machine learning which commits to research on computations and
analysis with intelligence. Practical applications regarding deep learning in the context of patterns
or images processing has increased tremendously increase in recent years [33–37]. The generic deep
learning contains various methods of learning and predicting future images, including recurrent
neural networks (RNNs), CNNs, and others [38–40]. They help one to learn and understand the
dynamic mechanisms process and characteristics of the object under consideration and feedback
future predictions from learning. The image sequence prediction is a challenging task which involves
understanding continuous motion images at different levels. This is similar to the way in which humans
can forecast anticipated changes through the cooperation of brain neurons and sensory perception.
Consequently, the future sequence image prediction is sufficiently helpful to further learn the FEA
behavior patterns, for example, the displacement, stress, and strain patterns. The prediction theory
illustrates the interaction of feed-forward and backward information flow [41]. Many advanced
vision applications benefit a lot from the knowledge of future image prediction. The application
of future image predictions has been widely utilized in automatic car-guidance [42], prediction of
the moving target’s position [43], robotic motion [44], weather forecasting [45,46], and video-frame
prediction [47,48].

Srivastava et al. utilized long short-term memory (LSTM) networks with multi-layers to learn video
image sequences, which predicts future sequence by decoding multiple LSTMs [49]. The introductions
regarding LSTM details and its theories are in Sections 2.3 and 3.2. LSTM is a widely applicable kind of
RNN which contains feedback connections for both single data points and entire data sequences in deep
learning [50]. The optimization task regarding accurate future image prediction has been a highlighted
problem in artificial intelligence in recent several years [51–67]. Kalchbrenner et al. have developed a
video pixel network to predict the joint distribution of future image in pixel videos [60]. It encodes a
four-dimensional dependency chain to reflect different space, time, and color structures. Only minor
deviations from the ground truth are indicated with the application of this prediction model. Xue et al.
proposed a cross convolutional network to synthesize future images in a probabilistic manner, based on
auto-encoders of future maps and convolutional kernels, respectively, with the single input image
and unknown motions [52]. Additionally, subsequent layers model [66], generative adversarial
networks [56], CNNs [55], convolutional LSTM [68], and cubic LSTM [58] play significant roles in the
prediction of future images.

Summarily, the input of the prediction task is the image data regarding the current and previous
status. The aim is to output and predict the possible future images. The kernel insight of all these
applications is to learn the variant rules of images and predict how the research object will change from
visual images accurately over time. There are similar features and powerful reference values between
the future image prediction topic and the computational patterns prediction in the continuous static
FEA behavior computations. What they significantly describe and contain in common are the variant
patterns over continuously different loadings. One of the final aims of this research is to provide fast
calibrated image sequence results of FEA behavior computations using the benefit of the prediction
technology regarding future images. Deep FEA calibration is another aim. Consequently, this research
selects the LSTM method to predict and calibrate sequence results in the static FEA.

2. Motivation and Methodology

2.1. Motivation

There are many analysis and optimization tasks in mechanical and structural engineering and fluid
dynamics which use FEA computations as their basis. With the development of relevant engineering
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applications regarding the FEA calculation, the scale of calculations is becoming greater and increasing
rapidly. A generic approach to carry out FEA computations is to apply simplified models in the
computation of large composite structures, which provides us sufficient efficiency to obtain the
characteristics of the researched object quickly [69]. A significant problem is also indicated that the
accuracy of FEA computations based on the simplified model is insufficient. As is discussed in [69],
the parametric method, for example, the B-spline method, which is based on the laser scanning data
is proposed to calibrate the simplified FEA computation. This kind of method can indeed optimize
the FEA computation results for the accurate parametric representation of the scanning sensor data
regarding the object structure. Expensive time costs are indicated through complex computations and
complex geometries. Consequently, the efficiency is greatly affected utilizing this method while the
accuracy is improved a lot. The FEA computation time varies from hours to weeks in some engineering
composite structures with large scales, which makes the FEA insufficiently efficient. The problem
is that there need to be a balanced approach to integrate the accurate calibration reference with the
efficient standard FEA.

Deep learning is considered to be a novel approach to balance the efficiency, step size, and accuracy
of the FEA calibration. The idea of deep learning models is to learn from the accurate and more complex
FEA computation or other accurate measurements. The training process itself is time consuming
for large amount of training feeding in the deep algorithm. However, with the application of deep
learning, the computation of the implicit rules, material properties, complex boundaries conditions,
and physics equations can be learned effectively once the training is accomplished, as is described in
Section 1.3. It is still a rare combination to apply deep learning to the FEA computation. Therefore, it is
in a starting stage in this scientific combination aspect.

The FEA post-processing with high efficiency and quality is a significant advantage concerned by
researchers. Post-processing results provide us with an intuitive visual representation of the mechanical
characteristics, for example, the displacement, stresses, and strain contour. Our methodology is
inspired by the visual representation of the mechanical data in the FEA post-processing and the strong
data-processing power of deep learning. Therefore, we expect that both efficiency and accuracy of the
FEA calibration can be maintained with the new deep learning-based method.

2.2. Framework

Sections 1.1 and 1.2 indicate that the mature frameworks of FEA calibrations regarding constitutive
relationships, material parameters, and mechanical characteristics are generally based on the response
between inputs and outputs. Meanwhile, multi-sensors data or experiment-based data is the
fundamental of the calibration. Different optimization techniques can be applied according to
various calibration goals. Therefore, the first task in the current research is to find out a scientific
solution to address the gap which is indicated in the motivation section. By clarifying the calibration
objective, we can apply deep learning to establish a suitable algorithm between the real and FEA data for
effective calibrations. The FEA post-processing data regarding the mechanical characteristics, including
the stress, strain, and displacement corresponding to various loadings, is one of the calibration features
concerned in the FEA application process.

The data-processing of deep learning and visual representation of mechanical data in the FEA
combines the framework of the current methodology, as is shown in Figure 1. The entire framework is
composed of three parts, which are the preparation of database, deep learning of the model, and the
final generation of the calibrated FEA results. The calibration database is derived from two groups
of images. One is from the output of the standard FEA to be calibrated, which is represented as at.
Here, the standard FEA means the normal FEA computation with the simplified geometry or rough
parameter settings. Another is from the output of reference value, which is represented as bt. The given
inputs in the deep learning process are necessary to finally predict the desired output, as is described in
Section 1.3. Using a similar solving process, the input dataset for the training task in this methodology
is the deviation results between the standard FEA and calibration reference values, which can be based
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on the displacement, stress, and strain in different cases. The network structure displays and computes
the deep learning hierarchically. The architecture schematic of NNs is drawn by the online platform
AlexLenail NN-SVG [70]. Multiple layers are the core of deep learning to execute the computation.
A layer is defined logically as a separated group of neurons in deep learning. Neurons in the first
layer, which is also called the input layer, receive the information and features from the input data
steam. Input features are extracted from the deviation calculation with time series. All input data are
converted to pixel values in a set of arrays. The last layer in the model is the output layer which executes
the output of the required data. There are multiple hidden layers between the input and output
layers. The ratio regarding the training and validation datasets depends on the deep learning method.
Details about the deep learning datasets in this research are explained in Section 3.3.2. Each layer in the
deep learning model plays different roles, for example, abstracting the pixels, encoding, and decoding.
Deviation-based results are learned and calibrated through the training process. The deep learning
model outputs the predicted deviation results. The calibrated FEA results are calculated by integrating
the next image generated from FEA computation and the predicted deviation result finally. The NNs
input, output, and final calibrated FEA values in this research are related to the equivalent stress
values, which are represented as gray intensity images in all the subsequent sections. Requirements
regarding the calibration reference method should be easy-to-access and graphical display. The given
loadings, boundary conditions, material parameters, and the simplified geometric model provide the
standard FEA computations. The calibration reference monitoring should be processed under the
same conditions to ensure the comparability of the final results.
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The process of the original FEA and reference values is shown in Section 3.3.1. The calibration
process is composed of two chains overall. The standard FEA computation is remained as the first
chain for its fast and efficient computation with the simplified model. The framework focuses on the
deviation calibration from the reference results. Hence, the second chain is to predict an accurate
deviation. The calculation of the deviations is presented in Section 3.3.2. The implementation of
deep learning captures the variation characteristics regarding the deviation values. The integration
of the standard FEA result and the predicted deviation value determines the final calibration values.
The application of this methodology solves the problems in the motivation section. The training
process of deep learning is complex and time-consuming. However, the deep learning model when
finally trained can perform an accurate prediction quickly and be utilized efficiently. This framework
realizes both the efficiency and accuracy of calibrated FEA results.

There are some choices for the reference dataset. Terrestrial laser scanning (TLS) and digital
photogrammetry are advanced measurements and monitoring tools that can provide reference patterns
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to detect the surface information accurately [71,72]. With the application of TLS, the surface information
regarding the object can be measured rapidly as the point cloud data with high precision [73,74].
The precision of TLS can reach the level of ±1 mm and its resolution at the industrial environment is
10,000 Pixel/360◦ and even higher [73]. Digital photogrammetry is also an advanced technique to acquire
three-dimensional geometric information from stereoscopic image overlap [75,76]. Both measurement
methods have extensive engineering applications in a variety of fields. This manuscript uses a
TLS-based monitoring method because its precision is very high and acquiring large amounts of point
clouds is achieved quickly. The reference in this research is the parametric model-based FEA described
in [69]. It is a FEA computation on the basis of the TLS data which refers to the TLS-based reference in
the next sections. The point cloud from TLS is approximated by B-spline surfaces. The advantage of
parametric model-based FEA is that it provides a high volume of database of various computational
patterns from a large number of computations. The accuracy of the parametric model, which is based
on the B-spline surface approximation, can be highly improved by the FEA computation [69].

Various techniques are utilized for the training process regarding the addressing sequence data,
as is described in Section 1.3. LSTM is one of the most highlighted techniques in fixing long sequence
training and is well known in predicting continuous future steps in movie frames [68] and weather
forecasting [45]. Moreover, this technique ensures and improves the prediction accuracy of the model
through the development in recent years. Therefore, it is applied as the main technique to learn,
predict, and calibrate the sequence data regarding mechanical characteristics in the FEA computation.
Section 2.3 shows details of the general LSTM implementation.

2.3. LSTM Implementation

The LSTM network is a special structure in RNN, which was firstly proposed by [50] in 1997. It is
capable of learning various practical mechanisms regarding spatiotemporal information. The calibration
problem of FEA results are described as a spatiotemporal problem if the FEA results are divided
into tiled non-overlapping slice-images containing pixel measurement results. The FEA calibration is
transformed into the spatiotemporal prediction. Therefore, LSTM is selected as the implemented deep
learning approach to learn, calibrate, and predict the future images of FEA. LSTM contains the form of
repeating module chain with various computational blocks, as is shown in Figure 2. It is different with
the standard RNN, for standard RNN contains a simple neural net layer to perform the computation.
LSTM is more complex in its repeating unit with different layers. These layers are computational
blocks which interact to selectively control the information flow within the cell. Therefore, LSTM cells
are capable to track related information throughout time steps.
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One of the most significant components of LSTM is the gate. Related information can be removed
or added through gates in NNs optionally. LSTM processes information through four steps. Each step
is marked with various dashed blocks in red, blue, black, and orange colors in Figure 2.

ft = σ
(
Wx f xt + Wh f ht−1 + b f

)
(1)

σ(x) =
1

1 + exp(−x)
(2)

The first step is to decide what information is going to be thrown away from the cell state. This task
regarding forgetting the irrelevant history is finished by a sigmoid layer named as the forget gate layer,
which is marked as a red dashed block. Equation (1) describes the computational relationship. It is a
function of the prior internal state ht−1 and the current input xt, which outputs a number in the range of
[0, 1] by a sigmoid function. Equation (2) represents the calculation of sigmoid function σ. The number
of 0 means to discard it completely, while the number of 1 means keep it completely. Consequently,
the forget gate function can decide whether the information is important. The parameters regarding
W and b in all following contexts and equations stand for the weight and bias for the respective gate
neurons, which are learnable parameters.

it = σ(Wxixt + Whiht−1 + bi) (3)

c̃t = tanh(Wxcxt + Whcht−1 + bc) (4)

tanh(x) =
exp(x) − exp(−x)
exp(x) + exp(−x)

(5)

The next step is that LSTM can decide what part of the new information is relevant. This will be
utilized to store the information into its cell state. This is the store layer with two sub chains which are
marked with a blue dashed block in Figure 2. One chain it with a functional relationship in Equation
(3) is computed with a sigmoid function to update the prior internal state ht−1 and the current input xt.
The computation of this chain squishes the value between 0 and 1. Anther chain is computed with
a tanh function in the range of −1 to 1 to pass ht−1 and xt, as is shown in Equation (4). Equation (5)
describes the computation of the tanh function. The aim of this tanh chain is to create a new candidate
based on the regulation of the parameters in the neural network. Finally, the sigmoid chain decides
which information from the tanh chain is relevant and important to keep and store.

ct = ft ◦ ct−1 + it ◦ c̃t (6)

The third step is to calculate and update the cell state, illustrated in the black dashed block in
Figure 2. It is called the update layer and performs both actual updating and forgetting. The Hadamard
product is represented as ◦ in this research. The cell state ct is an important conveyer belt which
extends along the entire chain. The state in the network is a sort of simplifying. There are a group of
neurons which are firing the numbers squished by the sigmoid or tanh functions. The weight and
biases constantly modify and compute these numbers. Hence, those numbers hold a state. Equation (6),
which is separated into two parts, computes the updating of the cell state. Firstly, the latest previous cell
state ct−1 is calculated with the output ft from the forget layer. The previous state is used selectively and
can be forgotten in this process when the forget layer outputs a value near 0. Secondly, the calculation
of results from two sub chains of the store layer is processed. The new cell state is computed by the sum
of both parts. In the current paper, the previous FEA deviation results are remembered or propagated
together through xt, ht and ct.

Finally, the calculation and return of the output layer takes place, illustrated in the orange dashed
block in Figure 2. It controls what information encoded in the cell state is processed to the network
as the input in the next time step. This layer outputs the next hidden state ht which is also used for
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the prediction yt. This is the predicted FEA deviation result in the next step. The function t feeds the
previous hidden state ht−1 and the current input xt into the sigmoid function, described in Equation (7).
The updated cell state ct is also passed to a tanh function in the final calculation. Therefore, Equation
(8) then shows the generation of the output.

ot = σ(Wxxt + Whht−1 + b) (7)

ht = yt =t ◦tanh(ct) (8)

Summarily, the LSTM maintains a conveyer belt, called the cell state, throughout the entire
network. Gate layers control the information flow of the network, which contains the forget layer,
store layer, update layer, and output layer. The most important advantage of LSTM during processing
sequences is that the network can regulate and choose what information is relevant to keep or irrelevant
to discard efficiently. Hence, LSTM is a highly efficient approach and superior choice to deal with
the sequential information and problems throughout time steps. In this research, the inputs are the
equivalent stress deviation results computed from standard FEA results and TLS-based reference
values. The final outputs in LSTM model of this research are corresponding to the predicted deviations
in next few steps of the FEA computations.

3. Model

3.1. Mathematical Description

The kernel of the intelligent FEA calibration is the prediction of the future result of the FEA
computation. The future result prediction is the problem of estimating future FEA images and
evaluating the accuracy with known past FEA results. Therefore, it is significant to find an approach to
generate next future images. Different input loadings over time determine a group of deformation or
stress images in FEA computational results. Here, one considers the static structural FEA computations
with an invariant load interval, for example, F, 2F, · · · , tF. The input object of deep learning is the
deviation dataset.

a ∈ {a1, a2, · · · , at} (9)

b ∈ {b1, b2, · · · , bt} (10)

x = a− b ∈ {x1, x2, · · · , xt} (11)

p = p(xt+1
∣∣∣xt, xt−1, · · · , x1) (12)

Two groups of FEA results, which contain both the standard FEA computation at in Equation (9)
and the parametric model-based FEA computation bt in Equation (10), determine the deviation. As is
discussed in Section 2.2, this methodology can compute and process many features including the
stress, strain, and displacement. The equivalent stress values are mainly researched in the current
research. The deviations of the values and contour lines regarding the equivalent stress in different
computational models are obvious. Both groups of data at and bt represent the equivalent stress
values from standard FEA computations with the simplified geometry and reference results in Figure 1.
Equation (11) describes the calculation of the deviation. The next image of the future FEA deviation
result between two computations is xt+1. The problem can be described by Equation (12), which means
the unknown probability distribution p of the next image depends on all of the past FEA images.

x̂t+1 = arg max
xt+1

p(xt+1
∣∣∣xt−1, xt−2, · · · , x1) (13)

The FEA computation generates the past images. The main aim is to predict the future image xt+1

with an efficient approach. Therefore, the current task in this research is clear. It is necessary to find the
functional relationship of generating future predictions x̂t+1. Equation (13) formulates the relationship
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to find the possible prediction by maximizing the probability function in Equation (12). However,
the probability function in this example is difficult to solve with a precise mathematical solution.
A reasonable solution regarding this problem is to search for the minimum of the deviation between
the estimated and ground truth values.

The neural network method implements the estimation problem in this research.
Stacking consecutive past images sequentially predicts the future image xt+1. Following this
idea, Equation (14) presents the generation in the neural network of the estimated image.

x̂t+1 = f (xt, g(xt, xt−1, · · · , x1)) (14)

Here, the functional generator of the intelligent estimation is f . The current computed FEA image
is xt. The current latent cell of the neural network is g which is associated with the memory of the
past computed states xt−1, xt−2, · · · , x1. The calculation of g makes the neural network structure to be
active in motion. The learning process in this neural network is to optimize the functional generator f .
Equation (15) shows that it is necessary to minimize the deviation ∆xt+1 between the estimated value
and the monitored real data to bring the generated value x̂t+1 close to the real one xt+1.

min(∆xt+1) = min
∆

∣∣∣x̂t+1 − xt+1
∣∣∣ (15)

The deviation between the estimated and real data is represented as the loss function L in
Equation (16) to be minimized in the NNs. The loss function should be determined so that the
probability distribution results converge to p as the loss function is minimized. Mean square error
(MSE) is chosen to be the loss function in this paper as it is easier, more effective, and faster to be
implemented in this research. Hence, the model calculates and minimizes the MSE value between the
original FEA result and calibrated result. Equation (17) shows the calculation of the final calibrated
FEA result.

x̂t+1 = arg min
x̂t+1

L(x̂t+1, xt+1) (16)

b̂t+1 = at+1 + x̂t+1 (17)

3.2. Neural Network Model

The deviations regarding the equivalent stress results are monitored over different loads. A pixel
representation records each monitoring image with the RGB channel. Each contains M ×N grids.
From the point of spatial view, the entire g FEA computation can be described as three-dimensional
tensors. The tensor X ∈ RP×M×N describes each monitored feature. P is the number of the feeding
epochs. R indicates the tensor domain of the monitored features which is recorded periodically.
Consequently, Equation (18), formulated from Equation (13), transforms the prediction and calibration
problem in FEA computation to a spatiotemporal forecasting problem. It indicates that the last length-J
FEA computational results generate future length-K predictions with the highest probability.

X̂t+1, X̂t+2, · · · , X̂t+K = arg max
Xt+1,Xt+2, ··· ,Xt+K

p
(
Xt+1,Xt+2, · · · ,Xt+K

∣∣∣Xt,Xt−1, · · · ,Xt−J+1
)

(18)

A solution to the spatiotemporal weather forecasting problem using convolutional LSTM is
proposed in [45]. With the comparison of the conventional LSTM [77] extends the convolutional
structures regarding both input-to-state and state-to-state. The innovation of convolutional LSTM is
that the inputs, outputs, and states are three-dimensional tensors with timestamp, row, and column.
The timestamp indicates the spatiotemporal extension of the image-variate information. Equations (19)
to (23) show the kernel equations of convolutional LSTM described in [45].

Ft = σ(WXF ∗ Xt + WHF ∗Ht−1 + WCF ◦ Ct−1 + bF ) (19)
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It = σ(WXI ∗ Xt + WHI ∗Ht−1 + WCI ◦ Ct−1 + bI) (20)

Ct = Ft ◦ Ct−1 + It ◦ tanh(WXC ∗ Xt + WHC ∗Ht−1 + bC) (21)

Ot = σ(WXO ∗ Xt + WHO ∗Ht−1 + WCO ◦ Ct + b) (22)

Ht = Ot ◦ tanh(Ct) (23)

In these, X1,X2, · · · ,Xt are the inputs in the convolutional LSTM, C1,C2, · · · ,Ct are the cell
outputs, H1,H2, · · · ,Ht are the hidden states. The weight is W. The forget gate is Ft. The output
gate is Ot. All these parameters belong to the three-dimensional tensor of RP×M×N. The input gate in
convolutional LSTM is It. The convolution operator is represented as ∗. The convolution operator in
convolutional LSTM replaces the general multiplication operator in conventional LSTM. Details and
explanations can be found in [45]. As the input data in LSTM networks is one-dimensional, the spatial
image sequence data is impossible to predict with LSTM. Convolutional LSTM can capture underlying
spatial image features by applying convolutional operators. Therefore, the convolutional LSTM model
reasonably combines the characteristics of convolutional networks regarding the image recognition
and LSTM networks regarding ‘memorizing past’. Another dramatically different point between the
convolutional and standard LSTM networks is the additional calculation term WC ◦ C added into
forget, store, and output layers. It is called the peephole connection [78]. Our convolutional LSTM
implements peephole connections. Traditional LSTM, illustrated in Figure 2, indicates the problem
that some information is potentially lost during the computation of those gates for the loss of direct
connections from the cell state. Therefore, the calculations of these gate layers can look at the cell
state with the peephole connections after computation. These gates with peephole connection can
understand unwanted inputs and error signals. The advantage of using the cell state to control
different gates is that the gradient is prevented from vanishing too fast because it is already trapped
and computed through the peephole connection in the cell [45]. It is a critical problem in the vanilla
RNN structure as is described in [50]. With the application of convolutional LSTM, the sequence length
of the FEA computational results handled to the neural network model is variable. This makes the
tracking of long-term data dependencies possible to realize. It offers the network to share parameters
across the FEA result sequence.

3.3. Training Data

3.3.1. Post-Processing Images of FEA Computation

The basis of the calibration of the standard FEA computation is the simplified model which
ignores all irregular deformable details. Simple flat planes generate the simplified FEA model.
The positive gain of the application regarding the standard FEA computation is the efficiency of the
computation. The next task is to improve the accuracy of the efficient computation in this research.
Hence, the reference result is based on a parametric FEA model is applied. The accurate parametric
geometry is reconstructed with the combination of TLS point clouds data, as is shown in Figure 3a.
The details regarding point clouds can be found in the previous work [69]. The accuracy of the
parametric model depends on two parts which are the accurate geometry scanning with TLS [79]
and the accurate description with B-spline surface [80]. B-spline approximation is beneficial in fitting
scattered points with the advantage of surface continuity representation [80]. Accordingly, a selection
is made of the parametric FEA computation as the monitoring TLS-based reference method regarding
the model accuracy in this research. Details regarding the parametric FEA computation can be found
in [69]. The FEA computation is conducted under continuous static loadings which are surface-based
distributed on the roof of this building. The researched object in this research is the roof surface in
the model of [69]. The static loading begins from 16 kN. Each loading increases linearly by 0.2 kN.
The total number of loadings is 141. The equivalent stress value forms the basis for the value analyzed.
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All geometric details, parameters, and boundary conditions are related to Section 3.1 of [69]. The object
being calibrated is the roof part.Sensors 2020, x, x 12 of 26 
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Figure 3. Images of point clouds and finite element analysis (FEA) equivalent stress results.

The equivalent von-Mises stress value is a positive value output directly from the FEA computation.
Utilizing original equivalent stress information to describe the FEA post-processing results can produce
a similar color map contain an alternate range due to the various interims of deformation results under
various loadings. This will introduce various gray hues corresponding to the same equivalent stress
values in various image descriptions. This will affect the training effect and efficiency if the color
intensity maps of these images are not unified. Accordingly, the process of the FEA computation images
unifies the gray intensity epochs with the same color map distribution according to the equivalent
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stress range in this example, shown in Figure 3b,c. Alternatively, Figure 3b shows the computational
results from standard FEA computation, while Figure 3c presents the FEA computational results from
TLS-based reference in Figure 3a. The length of the training sequence is 16. It means the utilization
of the previous 8 epochs predicts the next 8 adjacent epochs in the future. The computation results
contain 141 groups of epochs. The gray intensity value 0 is corresponding to the zero equivalent stress
value and the gray intensity value 255 is corresponding to the largest equivalent stress value. Hence,
the completely black color indicates the smallest equivalent stress, while the completely white color
indicates the largest equivalent stress in this research, as is shown in the relative value comparison table
of Figure 3b. The complete white is invisible and cannot be shown in the figure with the completely
white content background even through it is easy to be implemented in the procedure. As a result,
the comparison table of Figure 3b provides the relative value comparison between the gray intensity
and equivalent stress value.

All equivalent stress values in all epochs shown in this research can be converted and obtained
by the proportional relationship between the gray intensity and equivalent stress in the table.
There are 690 × 800 pixels in each original image. Four regions where the large equivalent stress
develops from can be found. Therefore, the monitored surface is divided into four separated parts for
the NNs computed later. It is obvious to find the blank rectangular regions in the figure with 690× 800
pixels. As a result, the final refined images have 280× 280 pixels to avoid the blank regions and retain
the main variable features of the monitored surface. Meanwhile, the refined regions contain the most
obvious variable features.

Figure 3b,c indicates a comparison example of four different parts corresponding to the same
epoch. The same epoch represents the same static loading and equivalent stress response in the
FEA computation. Results indicate apparent deviation between the standard FEA computation
and the TLS-based reference. As a result, it is significant to calibrate the efficient but inaccurate
standard FEA computation. The calibration of the standard FEA can be implemented in either stress,
strain, or deformation results or all of them. The equivalent stress calibration tests and applies the
implementation of the methodology in this research.

3.3.2. Data Processing

Figure 4 presents an overview of the development of equivalent stress deviation epoch examples
in Part 1 regarding the monitored surface. E in the left-upper side of images stands for the epoch.
Twenty epoch samples are presented in Figure 4. The shades of different gray colors illustrate the
equivalent stress characteristics of different models. The equivalent stress value can be intuitionally
indicated by the gray scale map with shades of gray. The different equivalent stress values vary a lot in
different parts of the monitored images. The equivalent stress values of different images appear more
similar when the color part is closer to the black color or value 0. As is shown in Figure 4, there are a
number of similarities among the equivalent stress distribution when the static loading is low. With the
development of the static loading, the FEA computation of equivalent stress results indicate dramatic
deviations. Hence, the equivalent stress deviation increases gradually.

The equivalent stress of the monitored surface is computed in this research. Section 4.1 shows
the comparison and analysis of the deviation in different parts. The extracted deviation images
regarding the object equivalent stress are represented as three-dimensional dataset with width, height,
and channel. The width and height have 280 pixels in this model. And the channel is 1. There are four
parts computed in the model, as is shown in Figure 3. The deviations dataset in each part contains
140 sequences. All sequences are divided in 60% training sequences, 20% testing sequences, and 20%
validation sequences, which refers to the grouping method in [45]. All sequences are 16 deviation
epochs long, including 8 epochs for the input and 8 epochs for the prediction.
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4. Results and Discussion

This section mainly presents the important results. Some discussions and analysis are conducted
in details. It begins with the presentation of MSE results and the analysis based on MSE regarding the
original FEA computational results. Some examples show a visual representation of the prediction
results. The MSE and structural similarity (SSIM) of the predicted results are calculated. We reveal
the histogram and frequency results of image intensity in details. The evaluation of the predictions
from the deep learning model are carried out based on the calculations of above results. Meanwhile,
the FEA calibration is optimized by the threshold control. Finally, the analysis regarding the normal
FEA calibration and optimized calibration is carried out.

4.1. Analysis of FEA Results

MSE =
1

mn

m−1∑
i=0

n−1∑
j=0

[a(i, j) − b(i, j)]2 (24)

Within this section, the MSE value is used as a quality estimator of deviation values [81] and
can be applied to evaluate the deviation between two FEA images. Equation (24) describes the
formulation method. a(i, j) and b(i, j) are the gray intensity values to their corresponding equivalent
stress values at and bt in Figure 1. MSE is the most widely applied metric by averaging the squared
intensity deviations of distorted and TLS-based reference image pixels, along with the related quantity
of the peak signal-to-noise ratio [82]. In the current research, MSE values of different parts are calculated
to compare the deviation between standard FEA and reference results.

Different parts of the monitored surface equivalent stress reveal the MSE values, shown in Figure 5.
There are a number of important deviations between the standard FEA results and TLS-based reference
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results. The MSE value of the epoch increases with the development of the static loadings. It trends to
drop down in the middle of the horizontal axis. The beginning positions of the decline trend vary from
each other in different parts. The MSE value of Part 1 performs best within the four parts, which means
the deviation of Part 1 between the standard FEA result and reference result is minimal. The MSE
values of Parts 1, 2, and 3 are smaller than the MSE of the entire monitored surface. The MSE of Part
4 performs extremely abnormal in the comparison to the others. It indicates that the standard FEA
computation with simplified geometry demonstrates the lack of mechanical behavior in the simulation
process regarding Part 4 while it is compared with the TLS-based FEA computation. This confirms
the inadequacy of the simplified model. Meanwhile, it verifies the necessity of the calibration and
optimization regarding the simplified or standard FEA computation in the mechanical application.
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Figure 5. Mean square error (MSE) values between standard FEA and the terrestrial laser scanning
(TLS)-based reference result.

The fluctuation of MSE curves in Parts 1, 2, and 3 performs gentle within the range of epochs
90 to 130. It reveals the equivalent stress performance is very similar during these static loadings in
both standard FEA computation and TLS-based reference results. It is confirmed that the mechanical
development of the object can be fitted by the standard FEA computation in some stages and monitored
regions correctly and efficiently.

4.2. Evaluation of Prediction

Figure 6 shows the comparison between the TLS-based reference deviation images and the
predicted results. The current inputs from epochs 95 to 102 provide the basis for the outputs of the
predictions from epochs 103 to 110. This indicates that we apply eight input epochs to predict eight
future epochs. This research tests five strategies regarding the number of the input and output epochs,
in which the numbers of input and output epochs are equal, including 4, 6, 8, 10, and 12. The number
of 8 is finally applied according to the best model training performance in this condition, in which the
MSE is smallest. The overall development trend of both results in Figure 6a,b is similar, which proves
that the deep learning results are close to those in the FEA prediction process. The overall feature of the
deviation images regarding the general contours are followed well by the predicted ones, especially in
epochs 103, 104, 105, and 106. In terms of contour details, the first two predictions, where bump features
follow the initial data well, perform better. This can bring excellent equivalent stress monitoring on the
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surfaces in the static loading experiment. However, the predicted deviation images trend to miss some
detailed features in the learning process. There are some deviations in epochs 107, 108, 109, and 110.
The absolute deviations in Figure 6c prove this.

The absolute deviations between the predicted and reference results become increasingly obvious
with the development of the epochs. In contrast to earlier predictions, apparent evidence of contour
blur is detected. The later prediction process ignores all contour boundaries. Small features which
vary slightly and slowly in earlier future predictions trend to vary fast and disappear. The prediction
of FEA equivalent stress deviation images confirms and verifies the future prediction feasibility of the
application of the methodology proposed. Consequently, the requirement of the prediction steps can
be determined to take the earlier four predictions in the engineering application while applying the
methodology in the static loading.
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Figure 6. Comparison regarding the reference and predicted results.

Figure 6d shows the calculation of the MSE and SSIM. SSIM is a method for predicting the
perceived quality of digital pictures to measure and evaluate the similarity between two images [83].
Equation (25) shows the formulation of SSIM regarding two epochs a and b [83]. More details of SSIM
can be found in [82,83]. µa and µb are the local means. σa and σb are the standard deviations. σab is the
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covariance of a and b. C1 and C2 are two variables. C1 = (k1L)2. C2 = (k2L)2. Here, k1 = 0.01. k2 = 0.03.
And L = 255.

SSIM(a, b) =
(2µaµb + C1)(2σab + C2)(
µ2

a + µ
2
b + C1

)(
σ2

a + σ
2
b + C2

) (25)

The blue line in Figure 6d presents the trend of the MSE. The red line presents the trend of the
SSIM. The process occurs between the original deviation results and predicted results for the calculation
of both values. Figure 6d shows that the MSE of the first future prediction is 346. MSE values improve
with the development of the processed epochs. The MSE values vary slightly in epochs 103, 104, 105,
106, and 107. MSE varies significantly after prediction of epoch 107, which reveals that the prediction
regarding future equivalent stress images after epoch 107 should be considered as significantly too
large in the static loading experiment. Deviations after epoch 107 increase greatly. This indicates that
the further the predicted images are in the future, the higher the deviations should be. The application
of the SSIM index improves the evaluation of traditional methods. SSIM is a decimal value between
−1 and 1. The value of 1 proves perfect structural similarity within two images. The first future
prediction contains a SSIM of 0.74. It indicates strongly inter-dependent pixels of the predicted image.
With the development of the epochs, the SSIM reduces, especially after epoch 106. Regarding the
predictions, Epochs 103 to 106 are more accurate. Accordingly, we discuss the first four future images
in the predicted results more in the following.

After comparing the results from some published references [45,84], we find that the blur problem
is obviously general with the application of LSTM when the predicted future sequence is too long.
This is also proved in [51]. Moreover, a very long predicted sequence in static loading experiment
is undesirable. Other sequences regarding the prediction parts perform the similar variable law as
in Figure 6d. The further the predicted results are in the future, the higher the deviation from deep
learning trends to be. Consequently, the variable law in Figure 6d is the feature within a large sequence
range in all sequences, which is also proved in all predicted examples with the LSTM method in [51].
Figure 9 in Section 4.3 can confirm it.

With the combination of Figure 6a,b, the median value in Figure 7 reveals the blur problems in
the long sequence study period. The intensity distribution of the equivalent stress deviation images
regarding the first four epochs in Figure 6a,b focuses on the low and high intensity part. The frequency
in the median value interval is low. Accordingly, the predicted images in these four epochs perform
well in the boundary and different gray region description of the contours. Meanwhile, this also
explains why the TLS-based FEA calibration is focused on the next four steps in static loadings in
Section 4.3.
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4.3. Discussion of Calibration

Figure 8 shows MSE values of the FEA future outputs after the calibration. The original curve is
the comparison curve which is corresponding to the results of Part 1 in Figure 5 from epochs 30 to 130.
When the MSE value is reduced, the calibrated result is improved. The MSE curves apparently show
that the calibration based on the first four prediction results of deep NNs reduces the MSE values of
the original FEA computations. The MSE increases with the development of the deep calibration in
long sequences, and the MSE rises up. The reason is that the equivalent stress image contains larger
variable regions with the development of the static loadings. The MSE values are pretty close to the
original curve data after epoch 120 which is highlighted as a dotted circle. As discussed in Section 4.2,
the further the predicted results are in the next steps, the higher the deviation from deep learning
trends is. The MSE values in the calibration relate to those in the prediction part. The MSE values in
the calibration after the fourth prediction are higher than the first four results. The calibration accuracy
is increasingly worse after the calibration on the basis of the deeper future outputs after the fourth
prediction. Accordingly, we do not discuss the calibrated results after the fourth prediction in this
section anymore. There is an obvious improvement of the accuracy after the intelligent calibration of
FEA computations. Meanwhile, the most obvious calibration results relate to the first prediction of the
NNs model.
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Both the deviation image learning and the simplified FEA computation results provide the
basis for the calibration of the FEA computation, as the methodology section and Figure 1 describe.
This manuscript takes from the epochs 95 to 102 as the input of the TLS-based reference results in this
figure sample, as is shown in Figure 9a. Hence, according to the explanation in Section 4.2, the next
four images, which are epochs 103, 104, 105, and 106, are the future output from the monitored results,
as is shown in Figure 9b. These are also the ground truth in this research. Figure 9c shows the original
future output from the standard FEA computation, which is also the object required to be calibrated in
this figure. Figure 9d shows the calibrated results applying the proposed methodology.

Figure 9d shows that the calibrated future FEA results are improved significantly with the
comparison of the original images in Figure 9c. The boundary follows with the TLS-based reference
feature correctly, especially in the first three calibrations. Moreover, the calibrated output results
describe the deformable surface details well. There are more equivalent stress changes around the
deformable surface according to the intensity of the equivalent stress image. The deformation region
with higher equivalent stress detection could show crack behaviors when the loading force is very
high in the engineering application. However, the original FEA computation before calibration cannot
detect the deformable surfaces. Accordingly, the future output after calibration with deep NNs can
perform effective roles in health monitoring in the engineering application.
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The obvious difference between Figure 9b,e is that Figure 9e contains a horizontal highlighted
bar region in the gray part. It makes the calibrated results inaccurate in some parts of the monitored
surface. Accordingly, the calibration is also optimized by threshold controls, as is shown in Figure 9e.
The solution is to find out the deviation between the stronger and normal intensity. The edge detection
function in Python detects the boundaries between different regions. Since the gray intensity is different
in each pixel, one can calculate the average intensity values of the stronger and normal intensity
region. The deviation between the average intensity values in both regions generates the threshold
control. Subtracting the threshold control value weakens the gray values within the region with
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stronger intensity and a close intensity corresponding to the TLS-based reference value. Meanwhile,
the threshold control strategy in the middle circle region also strengthens the weak intensity. The same
method as the previous one calculates the threshold control value. It is obvious to find that the
optimized calibration in Figure 9e performs better than the normal calibration in Figure 9d.

The main error of the calibrated output is mainly focused on the gray intensity compared with the
TLS-based reference output, especially in the middle region with a horizontal bar shape regarding
the equivalent stress images. The deviation of the gray intensity after the deep learning causes this.
The possible solution is to separate the gray region in an independent deep learning. One utilizes the
separated region after calibration to replace the inaccurate region to generate a new calibrated result.

The object in the entire research of the calibration is taken to be the contour with boundary, as is
shown in Figure 9. This indicates that the gray contour has been divided into different intensity
range with gray bands. The disadvantage of this method is the discontinuity of the equivalent stress
description. During this research, the smooth gray contour is also investigated as a comparison.
However, one cannot predict or calibrate the variable features without the obvious gray band correctly
in the convolutional LSTM model. As the contour boundaries are added, the deep NNs are able
to learn the variable characteristics in equivalent stress images. One possible method to perform
more continuous contour description is to divide the contour into more gray bands if necessary.
Another method is to carry out an interpolation calculation in different gray intensity boundary regions.

Figure 10 reveals the MSE values of FEA future output after optimized calibration. It proves
that the threshold control method to decrease the MSE values is effective. Meanwhile, it indicates
that the deviation in the middle horizontal bar region is the main source of the MSE in Figure 9.
The optimization is based on the threshold control method which is described in the explanation
of Figure 9. Figure 10 focuses on the first four calibrations. Calibration values based on the first
three prediction results are relatively close and kept within a low MSE level after the optimization.
Based on the examples in Figure 9, the MSE reduction ratios in the first three calibrations are below
66%. The original curve data of Figure 8 is the basis for the calculation of the MSE reduction ratio
here. The threshold control apparently decreases the MSE values of the fourth calibration significantly,
which is close to the original curve in the circle mark of Figure 8. The MSE reduction ratio in this part
is also below 57%. An overall improvement of the calibration quality occurs. With the combination
of Figure 9d,e, the large region in the middle horizontal bar of the image provides the main basis for
the improvement. Calibration and optimization of the region range and equivalent stress value are
calibrated and optimized significantly. Accordingly, the optimized calibration of the FEA future output
benefits from the threshold control.
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5. Summary and Conclusions

The current research aims to explore effective methods and improve the depth in calibrating the
continuous static FEA computations. Machine learning proves to be the successful method. However,
the sequence-based FEA calibration is still unsolved. Accordingly, we selected the convolutional LSTM
model to calibrate the future sequence results corresponding to adjacent continuous loadings in the
FEA. We addressed the intelligent FEA calibration problem in two ways: (1) by using the normal FEA
computation to generate the original future output, and (2) by using the estimation and prediction
of deviation results between the standard FEA results and the TLS-based reference. Training of the
previous deviation results and predicting the future deviations results took place. By integrating the
results from the simplified FEA and predictions from the convolutional LSTM model, the future FEA
results are generated as the sequence-based representation. The threshold control finally optimizes
the calibration. The paper is composed of five main sections. Section 1 introduces the development
background of FEA and deep learning. Novel combination approaches and the future sequence
prediction techniques are described. Section 2 discusses the motivation of this manuscript, which leads
to the main issues to be discussed. It also describes the general framework regarding how to realize the
proposed methodology. The LSTM model is introduced and discussed in details. Section 3 presents the
mathematical description of the model and methodology, the main implementation of LSTM, and the
training of the intelligent FEA model. Section 4 discusses and analyzes the results regarding the
final calibration. Finally, Section 5 relates the summary and draws main conclusions of this research.
Based on the results, the main points of this research are concluded as the following:

1. Compared with the TLS-based reference, the standard FEA computation with a simplified
geometry reveals large MSE values regarding the equivalent stress all through the computation process.
There is a reduction of the final MSE results when applying the convolutional LSTM model and
TLS-based reference. It ensures the improvement of the accuracy in the proposed methodology.

2. The quality of predictions reduces with the increase of the static loadings. When the size
of prediction step is too long, it reveals the blur problem in predicted frames. The blur problem is
focused on two aspects. One is based on the contour boundary. Another is based on the blur of the
entire predicted images in the later long-term or long-step prediction. Additionally, the unexpected
improvement of the image color intensity in predicted results indicates the disadvantage.

3. Calibrating the FEA future sequences reduces the final MSE value significantly. The first four
future predictions are very accurate. We suggest taking the first four predictions as the calibration
sequence in the calibration part. The calibration output performs excellently corresponding to the
TLS-based reference results. The contour boundary in the calibration is described very close to
the true values. The threshold control provides an effective optimization to the calibration results.
The MSE value is further reduced by the threshold control. It ensures the effectiveness of the
proposed methodology.

4. The depth issue of the FEA future calibration is addressed successfully through the
sequence-based LSTM. However, the amount of training dataset needs to be increased further.
This can further enhance the reliability of the proposed methodology.

Additionally, the current FEA calibration method is different from the popular CNN-based FEA
computation. It reveals more possibilities and potentials of deep learning methods to be applied in the
FEA calibration. In the future, we will focus on the sequence-based FEA calibration while exploring
more methods to improve the prediction depth and the calibration accuracy in the engineering
application regarding continuous static loadings.
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Abbreviations

The following abbreviations are used in this manuscript:

FEA Finite element analysis
LSTM Long short-term memory
NN Neural network
CNN Convolutional neural network
RNN Recurrent neural network
TLS Terrestrial laser scanning
MSE Mean square error
SSIM Structural similarity

Nomenclatures

Nomenclatures of different parameters used in equations of this manuscript are defined as following:
at Output result from standard FEA computation before calibration
bt Output result from reference method before calibration
xt Deviation between standard FEA and reference outputs before calibration
x̂t Predicted deviation value with deep learning
b̂t Calibrated output results
σ Sigmoid function
W Weight of the respective gate neurons
b Bias of the respective layer
ft Output from the forget gate layer of LSTM
it Output from the store gate layer of LSTM
ct Output from the update gate layer of LSTM
t Output from the output gate layer of LSTM
yt Predicted output from LSTM model
ht Hidden state in LSTM model
Ft Output from the forget gate layer of convolutional LSTM
It Output from the store gate layer of convolutional LSTM
Ct Output from the update gate layer of convolutional LSTM
Ot Output from the output gate layer of convolutional LSTM
Ht Hidden state in convolutional LSTM model
µ Local mean in SSIM
C Variable in SSIM
σab Covariance of a and b
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