
Turbine–Diffuser Interaction

Von der Fakultät für Maschinenbau
der Gottfried Wilhelm Leibniz Universität Hannover

zur Erlangung des akademischen Grades
Doktor-Ingenieur

genehmigte Dissertation

von
Dajan Mimic, M. Sc.

2021



Schlagwörter:
Turbine, Diffusor, Grenzschicht, Radialspalt-Wirbel, Strömungsablösung

Keywords:
Turbine, diffuser, boundary layer, tip-leakage vortex, flow separation

Vorsitzender: Prof. Dr.-Ing. Eduard Reithmeier
1. Referent: Prof. Dr.-Ing. Jörg Seume
2. Referent: Prof. Seung Jin Song

Tag der Promotion: 13. November 2020



Abstract

Diffusers increase the power output and cycle efficiency of gas turbines by reducing the back
pressure of the turbine, thus, increasing the work extracted from the fluid by the turbine.
They are, however, challenging to design. This is due to the inherent predisposition of the
flow to separate under the adverse pressure gradients generated by diffusers, hence negating
their benefit. This condition of imminent flow separation is aggravated because diffuser
designers seek ever-shorter diffusers with correspondingly steeper opening angles and, thus,
higher adverse pressure gradients, to reduce frictional losses and costs.

This work presents a novel theory of turbine–diffuser interaction. More specifically, this
theory addresses the stabilisation of diffuser boundary layers induced by tip-leakage vortices
from an upstream rotor.

The theory provides a framework to characterise tip-leakage vortices based upon integral
stage-design parameters. The stage parameters loading coefficient, flow coefficient, swirl an-
gle, and non-dimensional blade-passing frequency have been identified as the determinants
for the intensity, orientation, and duty cycle of the tip-leakage vortices. These parameters
have been condensed into the stabilisation number as a predictor for the inflow-dependent
diffuser performance. Several hypotheses are derived from the theory and subsequently
confirmed using partially scale-resolving simulations and experimental data.

Additionally, a prediction method for the vortex-induced boundary-layer stabilisation in
annular diffusers has been developed. The results of the prediction method are shown to be
consistent with the theory presented.
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Zusammenfassung

Diffusoren steigern die Leistung sowie den Wirkungsgrad von Gasturbinen, indem sie den
Gegendruck der Turbine herabsenken und somit den Arbeitsumsatz in der Turbine erhöhen.
Jedoch ist die Auslegung von Diffusoren herausfordernd. Dies ist auf die inhärente Neigung
von Strömungen zurückzuführen, unter Einwirkung adverser Druckgradienten, wie sie in
Diffusoren vorliegen, abzulösen und somit den Nutzen des Diffusors zunichte zu machen.
Dieser Umstand wird dadurch verschärft, dass kürzere Diffusoren mit folglich größeren
Öffnungswinkeln und somit ausgeprägteren adversen Druckgradienten wünschenswert
sind, um Totaldruckverluste und Kosten zu senken.

Die bisherige Forschung hat gezeigt, dass die Sekundärströmungsstrukturen in der Ab-
strömung der Turbine durchaus positiv auf die Grenzschicht des Diffusors einwirken können.
In dieser Arbeit wird eine neuartige Theorie der Turbine-Diffusor-Interaktion vorgestellt.
Genauer gesagt, adressiert diese Theorie die Stabilisation der Diffusor-Grenzschichten durch
Radialspaltwirbel eines stromauf liegenden Rotors.

Die Theorie liefert ein Grundgerüst für die Charakterisierung des Radialspaltwirbels
basierend auf integralen Stufenkennzahlen. Die Stufenkennzahlen Leistungszahl, Durch-
flusszahl, Abströmwinkel und dimensionslose Schaufelwechselfrequenz wurden als die
ausschlaggebenden Faktoren der Intensität, Orientierung sowie des Tastgrads der Radi-
alspaltwirbel identifiziert. Diese Parameter wurden zu einer Stabilisationskennzahl zusam-
mengeführt, welche als Vorhersagewerkzeug für die zuströmbedingungsabhängige Leis-
tungsfähigkeit desDiffusors dient. Eine Reihe anHypothesenwird aus der Theorie abgeleitet
und anschließend anhand partiell skalenauflösender Simulationen sowie experimenteller
Daten bestätigt.

Zusätzlich wurde eine Vorhersagemethode für die wirbelinduzierte Grenzschichtstabilisa-
tion in Ringdiffusoren entwickelt. Es wird gezeigt, dass deren Ergebnisse zur vorgestellten
Theorie konsistent sind.
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Introduction

Diffuser flows pose a formidable challenge to both turbomachinery engineers and aerodynam-
icists. Diffusers convert the kinetic-energy density of a flow into static pressure, thereby
decelerating the flow. In the case of subsonic flow, this is achieved by increasing the cross-
sectional area in the stream-wise direction.

This passive energy conversion comes in very useful in the context of turbomachinery
where diffusers are employed mainly at the inlet of aircraft engines, downstream of com-
pressors, as transitional ducts between turbine stages, and as exhaust diffusers downstream
of turbines. By raising the pressure of the turbine outflow before it encounters ambient
conditions upon leaving the gas turbine, an exhaust diffuser allows for lower pressure levels
at the turbine outlet. This, in turn, improves the turbine performance, as the flow can be
expanded across a greater pressure difference andmore work can be extracted by the turbine.

This desirable increase in static pressure, at the same time, defines the challenge which
diffuser designers have to face: the flow has to overcome an adverse pressure gradient.
The low-momentum flow regions adjacent to the diffuser walls—the boundary layers—are
prone to flow separation when confronted with adverse pressure gradients. This issue
is aggravated when it becomes an additional objective to reduce the diffuser length in
order to decrease frictional losses and manufacturing cost. An increase in pressure rise and
decrease in diffuser length necessitate an increased aerodynamic loading, often achieved
by increasing the opening angle of the diffuser. Such highly loaded diffusers tend to exhibit
massive flow separation: a state where the flow is no longer guided by the diffuser walls and
large recirculation zones form. The deceleration of the core flow and, therefore, its pressure
rise are severely impeded by this occurrence.

The challenge encountered by aerodynamicists lies in the great uncertainty in the prediction
of such violently separated flows. It is not for nothing that the accurate prediction of
boundary-layer separation—and reattachment, for that matter—represents a cornerstone
when validating and assessing turbulence and transition models. Not only the prediction,
but also the measurement of massive flow separation poses several problems due to the
highly unsteady and three-dimensional nature of the flow.

The complexity of this task is exacerbated by the fact that a diffuser downstream of a
turbine experiences an already unsteady and three-dimensional inflow. Wakes and vortices
emerging from the turbine, together with circumferential velocity components, interact with
the boundary layers in the diffuser and give rise to a series of intriguing effects. The most
astounding observation is probably that vortices generated at the tip of the turbine blades—
structures associated with high losses and performance decrease in turbomachines—can
actually serve to increase the static-pressure rise in the subsequent diffuser.

The purpose of this work is to devise a theoretical framework that allows a qualitative
understanding of the mechanisms involved in the process of turbine–diffuser interaction and

a quantitative prediction of their impact on diffuser performance.
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Introduction

Epistemology

One fundamental question precedes all research: How can we gather knowledge about the nature
surrounding us? Popper (1994) articulated a theoretical framework which, even if it is not
an accurate representation of the reality of science, provides a useful, structured approach.
This framework is usually referred to as the scientific method and distinguishes between the
different stages of the scientific cognition process.

The process begins with a question; this question is often derived from a particular ob-
servation. Based upon the current theory, the observer then formulates a hypothesis. The
hypothesis is essentially any “if–then” statement: it states conditions under which a certain
outcome is predicted. In order to determine whether the hypothesis can be confirmed or
not, the observer devises an experiment,which recreates the conditions premised. The theory
is considered valid if the hypothesis is confirmed. If the hypothesis is not confirmed, the
theory has to be revised and new hypotheses need to be formulated to test the new theory.
In this context, it is a central aspect of a scientific theory that it must be falsifiable. This means
that it must be possible to derive hypotheses from the theory which can potentially be shown
to be false.

In engineering
The above cognition process is closely related to the philosophy of natural sciences. In
the field of engineering, the fundamental question about the acquisition of knowledge is
accompanied by the rather practically oriented question: Which pieces of information do we
need? The main implication of this question is that theories in engineering serve an external
purpose. Often, this purpose is to provide information or rule sets—or, more generally, a
framework—with the goal of enabling, facilitating, or improving a system or design process.
This entails two general principles:

1. It must be possible to derive hypotheses from the theory proposed which contain
predictions about relevant quantities.

2. It must be possible to derive hypotheses from the theory proposed which apply under
the conditions available in the intended application.

The theorymust, therefore, be accessible to its intended users. It can be argued, from this point
of view, that intuitive explanations of phenomena, easy-to-handle tools and time-efficient
methods are to be favoured over unnecessary complexity.

The same goes for models derived from the theories. If theories are understood as the
abstract description of systems, objects, and processes, then models represent the mani-
festation of these descriptions as quantitative relationships. Consequently, models should
generate predictions about the quantities of interest from easily obtained input parameters
while displaying stable behaviour and computational efficiency.

In this work
This work does not contest the established theories of fluid dynamics and all predictions can
probably, at least in principle, be derived from high-fidelity flow simulations with sufficiently
accurate boundary conditions. Nevertheless, it seemed prudent to adhere to the maxims
laid out above.
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For this reason, an attempt was made to describe the turbine–diffuser interaction in terms
of different features, which were treated as conceptual objects: free stream, boundary layer,
and vortex. These features were modelled in a simple and rather fundamental way, which,
due to the clear distinction between these objects, serves to facilitate future incremental
improvements. Likewise, the most fundamental descriptions of exchange processes between
these objects were favoured. This comprises, e.g., a very basic consideration of turbulence
effects in the form of an artificial viscosity. Also, regression analyses of a higher order than
warranted by the data were avoided.

This was partially driven by the vanity to find an elegant explanation of the matter, but
even more so by the optimism that this theory can be expanded to cover a broader class of
flow problems in the future: different diffuser types, diffusers downstream of compressors,
and intermediate ducts with adverse pressure gradients. Moreover, it is to be hoped that
the intended rigour will help to identify open questions concerning vortex–boundary-layer
interactions as well as prospective research to answer these questions.

Structure

Derived from the cognition process explained and the ambitions expressed above, this work
is structured in eight major parts.

1. The chapter Problem lays out the necessity for diffusers, the problem associated with
diffuser flows and the benefit of a concurrent design approach towards turbines and
diffusers.

2. The chapter Literature reviews the state of current diffuser research with a focus on
the stabilisation of diffuser flows, i.e., the prevention or reduction of boundary-layer
separation.

3. The chapter Fundamentals introduces the fundamentals of fluid dynamics and turbo-
machinery flows necessary to understand the interaction mechanisms between turbine
and diffuser.

4. The chapter Theory introduces and details the theory of turbine-induced effects on the
diffuser performance. A series of hypotheses are derived, which refer to individual
stages of the interaction process.

5. The chapter Method presents the experimental and numerical configurations that were
used to gather the data used to test the hypotheses.

6. The chapter Evidence comprises the testing and discussion of the individual hypotheses.

7. The chapter Applicability summarises the relationships established in the previous
chapter and explains how they can be used in turbomachine design processes.

8. The chapter Conclusions reiterates the findings of this work, shows the limitations of
the theory and gives an outlook on prospective research.

xxiii





Chapter 1.

Problem

Diffusers increase the power output and cycle efficiency of gas turbines by reducing the back
pressure of the turbine, thus, increasing the work extraction from the fluid in the turbine.
They are, however, challenging to design. This is due to the inherent predisposition of the
flow to separate under adverse pressure gradients as they are generated by diffusers, hence,
negating their benefit. This condition of imminent flow separation is aggravated because
diffuser designers seek ever-shorter diffusers with, consequently, steeper opening angles
and, thus, higher adverse pressure gradients, to reduce frictional losses and costs.

1.1. Gas-turbine cycle

To understand why the use of diffusers is beneficial to overall gas-turbine performance, it is
helpful to consider the gas-turbine cycle, i.e., the open Brayton cycle∗. As can be seen in
Fig. 1.1, this cycle consists of the distinct phases compression, heating, and expansion. During the
compression process, the compressor performs the specific compression work 𝑤C, whereby
the total specific enthalpy ℎtot and total pressure 𝑝tot of the fluid are increased. Naturally,
this exchange of work is tied to an increase in entropy. The isentropic compressor efficiency
quantifies how closely a real compression process corresponds to its isentropic counterpart:

𝜂is,C ∶=
𝑤C,rev

𝑤C
=

ℎtot,3,is − ℎtot,2
ℎtot,3 − ℎtot,2

, (1.1)

where the subscripts “rev” and “is” stand for reversible and isentropic, respectively. The
specific heat quantity 𝑞 is added in the subsequent combustor.

In contrast to the compressor, the turbine extracts the specific expansion work 𝑤T from
the fluid. As a result, both total enthalpy and total pressure of the fluid decrease. Again, the
real change of states can be quantified in relation to an isentropic expansion process via the
isentropic turbine efficiency:

𝜂is,T ∶=
𝑤T

𝑤T,rev
=

ℎtot,5 − ℎtot,4
ℎtot,5,is − ℎtot,4

. (1.2)

Since the turbine drives the compressor, some of the work extracted is redirected to the
compressor. The remaining work is called the specific useful work 𝑤U and can be defined as

𝑤U ∶= 𝑤C + 𝑤T. (1.3)
∗also referred to as Joule cycle
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Figure 1.1.: Mollier diagram of the open Brayton cycle

The efficiency of the overall cycle, i.e., the cycle thermal efficiency, is defined by the ratio
of useful work extracted from the cycle to the heat input:

𝜂th ∶=
∣𝑤U∣

𝑞 . (1.4)

It can be inferred from Eqns (1.3) and (1.4) that both the specific useful work and the
thermal efficiency of the Brayton cycle increase with a higher work extraction during the
expansion process if the specific heat quantity 𝑞 added remains constant. The expansion
process, however, is bounded by two constraints:

1. The upper limit for the temperature at the beginning of the expansion process is
determined by the thermal resilience of the turbine.

2. The final pressure of the expansion process corresponds to the pressure at the turbine
outlet.

Since the extractable expansion work is largely dependent upon the pressure difference
between the beginning and the end of the expansion process, two parameters can be manip-
ulated to increase the expansion work:

1. It is possible to increase the pressure ratio of the compression. This allows the max-
imum turbine entry temperature to be reached at a higher pressure. This, however,
necessitates additional compression work which, if the pressure ratio is increased
beyond the optimum, results in a decrease in useful work.

2. The final pressure of the expansion can be reduced. Because the static pressure at
the gas-turbine exhaust is determined by the ambient static pressure, a component
which increases the static pressure of the turbine outflow before it reaches the exhaust
becomes necessary: the diffuser. Since the diffuser is a passive component which
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1.2. Diffuser types

converts the kinetic-energy density of the turbine outflow into pressure, it does not
introduce additional work and, thus, does not impact the useful work directly.

It can be concluded from the above elaborations that it is desirable to maximise the static-
pressure rise in diffusers.

1.2. Diffuser types

Most diffusers can be assigned to one of the following four main classes: planar (two-
dimensional), rectangular, conical, and annular. Annular diffusers can be further classified
depending upon their hub and casing divergence (or convergence) angle. This work is
focused on annular diffusers with diverging casing walls and cylindrical hub walls.

1.3. Diffuser flows

It is the function of a diffuser to convert the kinetic-energy density of a flow into static
pressure, i.e., to decelerate the flow. The following is assumed, unless stated otherwise:

Assumption 1.1. The flow is steady, i.e., the flow quantities do not change over time:

𝜕⊠
𝜕𝑡 = 0. (1.5)

Assumption 1.2. The density 𝜌 of the fluid is not dependent upon its pressure, i.e., the flow
is incompressible∗ and, therefore,

𝛁 ⋅ 𝐮 = 0. (1.6)

Assumption 1.3. The density 𝜌 of the fluid is uniform:

𝛁𝜌 = 0. (1.7)

Assumption 1.4. The fluid does not transport momentum normal to the flow direction, i.e.,
it is inviscid:

𝜇 = 0. (1.8)

Implication 1.1. Assumption 1.4 implies that the flow velocity at the wall does not equal
zero, i.e., the no-slip condition is not fulfilled.

Assumption 1.5. The flow is irrotational (the concept of rotation is explained in Sec. 3.4), i.e.,

𝛁 × 𝐮 = 0. (1.9)

Assumption 1.6. The heat fluxes across the diffuser walls equal zero, i.e., the walls are
adiabatic. Likewise, there are no thermal inhomogeneities at the inlet.

Implication 1.2. Due to Ass. 1.6, the total enthalpy is constant and the flow is isoenergetic:

𝛁ℎtot = 0. (1.10)
∗and, by extension, subsonic
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Implication 1.3. Crocco (1937) showed that for an inviscid, incompressible flow

𝑇𝛁𝑠 = (𝛁 × 𝐮) × 𝐮 + 𝛁ℎtot. (1.11)

Therefore, Ass. 1.5 (irrotational flow) and Imp. 1.2 (isoenergetic flow) imply an isentropic
flow:

𝛁𝑠 = 0. (1.12)

Since the flow considered is isentropic, the total pressure does not change between the
inlet and outlet of the diffuser. It can be seen from Bernoulli’s equation that a deceleration
of the flow in the diffuser raises the static pressure:

𝑝tot = 𝑝 + 𝑝dyn = 𝑝 +
𝜌
2𝑢2 = const. (1.13)

For a subsonic flow, which is implied by Ass. 1.2 above, deceleration implies an increase in
the cross-sectional area in the stream-wise direction in order to satisfy the conservation of
mass, i.e.,

𝜌𝑢𝐴 = const. (1.14)

Area ratio
The ratio of the inlet and outlet areas of the diffuser necessary to achieve a certain deceleration,
and consequently, a certain static-pressure rise of the flow can be represented by the area
ratio,

𝔄 ∶=
𝐴out
𝐴in

. (1.15)

It follows from (1.14) that the resulting velocity ratio is the inverse of the area ratio:

𝑢out
𝑢in

=
1
𝔄 . (1.16)

Static-pressure recovery
The static-pressure rise, or static-pressure recovery, in a diffuser is defined as the difference
between the static pressures at the inlet and outlet of the diffuser:

Δ𝑝 ∶= 𝑝out − 𝑝in. (1.17)

To compare the static-pressure recovery of different diffuser flows at different pressure
levels, the static-pressure rise can be non-dimensionalised with the dynamic pressure at the
diffuser inlet:

𝑐𝑝 ∶=
𝑝out − 𝑝in

𝑝dyn,in
. (1.18)

Using the relationship given in Eqn. (1.13) and 𝑝tot,in = 𝑝tot,out, the above equation can be
rewritten to yield

𝑐𝑝 =
(𝑝tot,out − 𝑝dyn,out) − (𝑝tot,in − 𝑝dyn,in)

𝑝dyn,in
= 1 −

𝑢2
out

𝑢2
in

. (1.19)
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Together with Eqn. (1.16), the ideal static-pressure recovery coefficient 𝑐𝑝,id is then defined as

𝑐𝑝,id ∶= 1 −
1

𝔄2 . (1.20)

This coefficient quantifies the static-pressure recovery in an ideal, inviscid diffuser with axial
inflow and depends solely upon the area ratio. When inlet swirl∗, that is, an inflow with a
circumferential component, is to be considered, the deceleration due to the conservation of
angular momentum has to be taken into account as well. The ideal static-pressure recovery
coefficient may then be defined as:

𝑐𝑝,id ∶= 1 −
1/𝔄2 + tan2 (𝛼) ( 𝑟Euler,in

𝑟Euler,out )
2

1 + tan2 (𝛼)
(1.21)

where the inlet swirl angle

𝛼 ∶= arctan(
𝑢𝜃,in
𝑢𝑥,in

) (1.22)

is calculated at the Euler radius which is defined as the radius which evenly divides the
inner and the outer cross-sectional area, i.e.,

𝑟Euler ∶= √𝑟2
hub + 𝑟2

cas
2 (1.23)

with the subscripts “hub” and “cas” indicating the hub and casing, respectively.

Residual dynamic pressure
Equations (1.20) and (1.21) indicate that complete static-pressure recovery—or complete
deceleration of the flow—meaning that the entire inlet dynamic pressure is converted into a
static-pressure rise, requires an infinite area ratio. Conversely, a diffuser flow with a finite
area ratio will always see a residual dynamic pressure

𝑝dyn,out > 0. (1.24)

Using a non-dimensional formulation, the dynamic-pressure coefficient is obtained:

𝜉 ∶=
𝑝dyn,out

𝑝dyn,in
. (1.25)

1.4. Viscous effects

The flow problem becomes disparately more complicated if viscous effects are to be included.
By waiving the assumption of an inviscid flow (Ass. 1.4), neighbouring streamlines are now
exchanging momentum normal to the flow direction via shear stresses. Implication 1.1 is no
longer valid and a no-slip boundary condition must be assumed at the wall: the wall-parallel
flow velocity at the wall now equals zero. The wall-normal momentum exchange due to
viscous shear stresses leads to the formation of boundary layers at the diffuser walls. Their

∗The term whirl is also found in some older references.
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velocity profiles assume a wall-parallel velocity of zero at the wall and free-stream velocity
at a sufficient distance from the wall.

It can be shown that such a velocity profile does not fulfil Eqn. (1.9): boundary layers are
rotational flow regions (see Ass. 1.5). It follows from this and Eqn. (1.11) that the flow is
no longer isentropic in the rotational regions and Imp. 1.3 is no longer valid. Hence, kinetic
flow energy is dissipated into heat in the boundary layers.

Total-pressure losses
The dissipation of kinetic energy manifests itself in a total-pressure loss,

Δ𝑝tot ∶= 𝑝tot,in − 𝑝tot,out > 0, (1.26)

or expressed in non-dimensional form as the total-pressure loss coefficient:

𝜁 ∶=
𝑝tot,in − 𝑝tot,out

𝑝dyn,in
. (1.27)

It follows from the definitions of 𝑐𝑝, 𝜁, and 𝜉 given in Eqns (1.18), (1.27), and (1.25) that

𝑐𝑝 + 𝜁 + 𝜉 ≡ 1. (1.28)

Generally, it can be expected that increased total-pressure losses are linked to a decrease in
static-pressure recovery.

1.4.1. Boundary layers

The exact values of the real static-pressure recovery coefficient depend upon the total-
pressure losses generated in the boundary layers. It is, thus, not surprising that their
prediction is anything but trivial. Nevertheless, several inferences can be drawn from a
simple description of the characteristic boundary layer parameters. A detailed introduction
will be given in Sec. 3.3.

The first parameter which comes to mind when trying to describe a boundary layer is its
thickness. The boundary-layer thickness 𝛿 is not rigidly quantifiable because the boundary-
layer velocity profile approaches the free-stream velocity asymptotically. It has, however,
proven to be practical to define the boundary-layer edge as the streamline where 99% of
the free-stream velocity is attained; the wall-normal distance between the wall and the
streamline with 𝑢 = 0.99 𝒰∞ is termed 𝛿99.

Two, more physically motivated, properties are the displacement thickness 𝛿∗ and momen-
tum thickness 𝜗, which can be derived from the respective conservation laws of mass and
momentum.

The displacement thickness 𝛿∗ follows from the velocity-deficit distribution 𝒰∞− 𝑢 in the
boundary layer. It labels the hypothetical distance by which the flow boundary would have
to be displaced in an inviscid flow in order to achieve the same reduction in mass flow rate
caused by the integrated velocity-deficit distribution of the boundary layer:

𝛿∗ 𝒰∞ =
ˆ 𝛿

0
( 𝒰∞− 𝑢)d𝑥2. (1.29)
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Likewise, the momentum thickness 𝜗 labels the hypothetical distance by which the flow
boundary would have to be displaced in an inviscid flow to achieve the same reduction in
momentum-flux caused by the boundary layer:

𝜗 𝒰2
∞ =

ˆ 𝛿

0
𝑢 ( 𝒰∞− 𝑢)d𝑥2. (1.30)

Effective static-pressure recovery
The displacement thickness allows relating a viscous flow problem to an equivalent inviscid
flow problem. It can be used to formulate an effective area ratio for a viscous diffuser flow,

𝔄eff ∶=
𝐴out,eff
𝐴in,eff

(1.31)

where the effective area ratio is a ratio of the effective inlet and outlet areas; an effective area
is defined as the difference between the actual cross-sectional area of the diffuser and the
area blocked by the displacement thickness, i.e., 𝐴𝛿∗:

𝐴eff ∶= 𝐴 − 𝐴𝛿∗. (1.32)

By inserting the effective area ratio into the definition of the ideal static-pressure recovery
coefficient given in Eqn. (1.20), the effective static-pressure recovery coefficient, i.e., the static-
pressure recovery achieved in the diffuser with boundary layers may be written as:

𝑐𝑝,eff = 1 −
1

𝔄2
eff

. (1.33)

The term effective static-pressure recovery is used here, rather than real static-pressure recovery,
to emphasise that it is based upon simplified descriptions of the boundary layers.

To quantify how well a diffuser with boundary layers performs in comparison to its ideal
counterpart, the diffuser effectiveness is introduced, i.e.,

𝜖 ∶=
𝑐𝑝,eff

𝑐𝑝,id
, (1.34)

or, expressed more generally with regard to real diffuser flows,

𝜖 ∶=
𝑐𝑝

𝑐𝑝,id
. (1.35)

The diffuser effectiveness is generally below unity. Exceptions to this can arise when
the dissipation of sufficiently strong inflow inhomogeneities raises the thermal energy and,
thereby, static pressure of the flow. This is presumably mostly the case for area ratios close to
unity where this effect would be the predominant cause of the static-pressure rise. According
to Fleige (2002), tailpipes∗ downstream of diffusers with strong outflow inhomogeneities are
employed to realise a residual static-pressure recovery based upon this effect.

∗Duct sections of constant cross-sectional area
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Momentum losses
The momentum deficit in the boundary layers determines the total-pressure loss of the
diffuser if the boundary layers are the only loss-generating mechanisms present. Thus, a
greater increase in momentum thickness along the diffuser results in higher total-pressure
losses.

1.4.2. Boundary-layer separation

Boundary layers tend to have the strongest impact upon diffuser performance when they sep-
arate. Flow separation occurs under adverse pressure gradients because the low-momentum
fluid adjacent to the wall reacts more sensitively to the pressure rise. Experiencing decel-
eration, the boundary-layer velocity profile develops an inflection point at the wall where
the wall shear stress is zero and which demarcates the region of separated flow. Upon
further deceleration, the boundary layer exhibits regions of reversed flow and, on a greater
scale, recirculation zones. Both displacement thickness and momentum thickness increase
drastically downstream of the separation point.

It is a common observation that the shape of boundary-layer velocity profiles is a good
predictor for the likelihood of separation. A widely used parameter to describe the shape is
the ratio of the displacement thickness to the momentum thickness, i.e., the boundary-layer
shape factor,

𝐻 ∶=
𝛿∗

𝜗 , (1.36)

Gruschwitz (1931) reported separation of strictly turbulent boundary layers shortly after
𝐻 reaches approximately 1.85; von Doehnhoff and Tetervin (1943) observed that flow
separation never occurs for 𝐻 < 1.8 and definitely happens when 𝐻 > 2.6. Senoo and
Nishi (1977b) argued that most 𝐻-based separation criteria are valid only for external flows.
For internal flows, however, they postulated that boundary layers can stay attached at
considerably higher shape-factor values. They attributed this effect to blockage of the duct
due to boundary layers and provided the following separation relationship:

𝐻sep = 1.8 + 3.75𝐵sep (1.37)

where the subscript “sep” denotes values at the separation point and where the authors
defined the blockage 𝐵 as the ratio of the total displacement to the diffuser width 𝒲,

𝐵 ∶=
2𝛿∗

𝒲
, (1.38)

for planar diffusers and the ratio of the total displacement to the diffuser radius,

𝐵 ∶=
2𝛿∗

𝑟 , (1.39)

for conical diffusers. Even though these separation criteria differ substantially, they all indi-
cate that a reduction of the shape factor—and, consequently, of the displacement thickness
relative to the momentum thickness—is beneficial to avoid separation.
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1.5. Derived objectives

Two main objectives for the design of diffusers can be derived from the above discussion.

1. Increase static-pressure recovery.

2. Reduce total-pressure losses.

Both objectives require the reduction of the boundary-layer displacement thickness in the
diffuser in order to prevent or delay separation and, in the case of attached boundary layers,
increase the effective area ratio.

This would favour long diffusers with a low aerodynamic loading, i.e., shallow opening
angles. However, a third objective is mentioned by Fleige (2002): when considering gas-
turbine power plants, longer diffusers lead to increased investment cost for the surrounding
facility as well as for the diffuser itself if the generator is located upstream of the compressor.
In the case where the generator is located downstream of the diffuser, additional vibrational
problems can arise due to the need for a longer shaft.

It becomes, thus, a third objective to minimise the diffuser length. This can only be realised
by increasing the aerodynamic loading and designing aggressive diffuser geometries with
steep opening angles. These seemingly conflicting goals motivate a thorough investigation
of opportunities for increasing the resilience of diffusers against flow separation.

In the context of the present work, the improvement in diffuser performance, i.e., the in-
crease in static-pressure recovery and decrease in total-pressure losses by means of reducing
the boundary-layer displacement thickness and, by extension, delaying or preventing flow
separation will be referred to as diffuser stabilisation; the physical process by which this is
achieved will be referred to as boundary-layer stabilisation while the capacity of the boundary
layer to yield an improved diffuser performance will be referred to as boundary-layer stability.
It should be noted that the terms stability and stabilisation are often used in the context of
boundary-layer transition from laminar to turbulent as well as the suppression of such
boundary-layer transition; this use, however, is precluded in the present work to avoid
possible ambiguities.
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Chapter 2.

Literature

It is the aim of this chapter to review how the stabilisation of diffuser flows has been
approached in past research and to identify how the present work can be integrated into the
body of literature.

Investigations into diffusers were reported as early as 1797 by Venturi (Venturi 1797). The
first systematic studies of pressure losses in diffusing water pipes were performed by Andres
(1909)∗ and Gibson (1910). Patterson (1938) reviewed data from literature and provided
an extensive analysis of diffuser efficiencies depending upon swirl and flow uniformity as
well as geometric parameters, which would serve as a standard reference for a long time.

Similarly, Bardili et al. (1939) provided a series of empirical diffuser design charts which
can be regarded as early predecessors of the well-known design charts by Reneau et al.
(1967) as well as Sovran and Klomp (1967). The extensive experimental studies of Sovran
and Klomp (1967), which considered a multitude of diffuser geometries, were later compiled
together with additional corrections for real diffuser flows, e.g., in ESDU (1977).

2.1. Empirical studies

2.1.1. Boundary layers

Reneau et al. (1967) found a decrease in static-pressure recovery for an increasing displace-
ment thickness at the diffuser inlet. Sovran and Klomp (1967) confirmed these observations
for conical diffusers. While they did not consider variations in the inlet displacement thick-
ness for annular diffusers, similar studies were conducted by Howard et al. (1967) for fully
developed turbulent boundary layers

2.1.2. Turbulence

Using arrays of rods, round in cross section, located upstream of a planar diffuser, Hoffmann
(1981) andHoffmannandGonzalez (1984)were able to increase the static-pressure recovery
by increasing the free-stream turbulence intensity and, thereby, enhancing mixing between
the free stream and boundary layers.

Interestingly, they noted an influence of the rod orientation as well as turbulence intensity
and length scale. The improvements were most significant when the rods—and, therefore,
the principal rotational axes of the turbulent structures—were oriented normal to the flow
direction and parallel to the diverging wall, as shown in Fig. 2.1. They reported significant
improvements for turbulence intensities greater than 3.5% and integral turbulence length

∗The experiments were conducted at the University of Hanover.
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Figure 2.1.: Diffuser with upstream turbulence grid: experimental configuration used by
Hoffmann (1981) and (with five rods) by Hoffmann and Gonzalez (1984)

scales of at least 7.2 times the boundary-layer displacement thickness. These results suggest
that, for the purpose of diffuser stabilisation, well-oriented large-scale vortical structures
are to be favoured over small-scale more isotropic turbulence.

2.1.3. Swirl

Lohmann et al. (1979) showed that, for annular diffusers with conical walls of various
divergence angles, inlet swirl leads to an increase in the turbulent kinetic energy at the
casing walls, whereas the turbulent kinetic energy decreased at the hub walls. As a result,
the hub boundary layer becomes less resilient against flow separation. The converse can
be said for the casing boundary layer. Overall, the authors noted a decrease in diffuser
performance when inlet swirl is present. These changes in turbulent kinetic energy are
commonly observed along curved streamlines where Coriolis forces impact the production
and decay of turbulence (Kožulović and Röber 2006).

Later, Fleige and Riess (2001), Vassiliev et al. (2003), and Vassiliev et al. (2011) studied
the impact of inlet swirl on the performance of annular diffusers. The studies agreed in
showing that moderate swirl angles are able to reduce or prevent boundary-layer separation
at the diffuser casing and, thereby, increase the static-pressure recovery. The investigations
revealed, however, an increase in separation at the diffuser hub and a decrease in static-
pressure recovery. These results confirmed the earlier findings of Hoadley (1970).

2.1.4. Turbine outflow

In the case where a diffuser is located downstream of a turbine stage, it experiences the
inflow variations mentioned previously in this chapter. Additionally, the diffuser is subjected
to inhomogeneities and a high degree of unsteadiness: this expands the parameter space
which can be explored to a considerable degree.

Kluß et al. (2009) simulated an annular diffuser with a subsequent conical diffuser
downstream of a spoked-wheel rotor and obtained a static-pressure recovery higher than
predicted by common diffuser design charts. Drechsel et al. (2015) simulated the same
annular diffuser downstream of a rotor equipped with symmetric NACA-0020 blades and
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obtained results consistent with Kluß et al. (2009). This indicates that some structures in
the turbine outflow act on the diffuser boundary layer in a stabilising manner.

Experiments conducted by Sieker (2010)∗ and Kuschel (2014)† confirmed the results of
the numerical simulations. The experiments featured the same configuration as the annular
diffuser and rotor used in this work. The rotor was equipped with either cylindrical spokes
or symmetric NACA-0020 blades. The annular diffusers featured half-opening angles of 15°
and 20°. For both rotors and both diffusers, significant increases in static-pressure recovery
could be achieved. These increases varied with the rotor operating point, which is a clear
indicator of the involvement of secondary-flow structures in the stabilisation process.

Mimic et al. (2018a) identified the velocity field induced by the tip-leakage vortices as a
central aspect of the stabilisation process.

2.2. Separation-prevention methods

Having discussed the predominant influences which contribute to deviations of diffuser
performance from an idealised state, the focus will be placed on select examples of methods
which deliberately control the diffuser flow in a beneficial way, before finally moving on to
methods for predicting the diffuser performance accurately.

Moore and Kline (1958) and Cochran and Kline (1958) visualised the flow-separation
structures emerging in planar diffusers with varying opening angles. The authors provided
a comprehensive analysis of the transition process from fully attached to fully separated
diffuser flows. The data show that—adopting the terminology introduced by Cochran and
Kline (1958)—the process begins with the occurrence of asymmetric, intermittent transitory
separation regions on one of the two diverging walls, while the flow remains quite steady.
As intermittent transitory flow separation forms on the opposite wall, the unsteadiness of
the flow increases until one wall reaches transitory flow separation, characterised by moving
separation cores and three-dimensional flow. At this point, the flow is subjected to strong
pulsations. After further increase of the opening angle, the steadiness of the flow increases
again until one diffuser wall exhibits rather stable flow separation while the other wall
experiences fully attached flow. The flow was reported to be very steady.

Building upon these results, Cochran and Kline (1958) inserted splitter vanes into the
inlet section of a planar diffuser. They were able to reduce flow separation and increase
static-pressure recovery tremendously, even at steeper opening angles. Senoo and Nishi
(1977b) commented on this; the authors conjectured that the increase in blockage caused by
the additional boundary layers on the splitter vanes leads to a stabilisation as expressed in
their empirically derived separation relationship (see Eqn. 1.37).

Vortex generators represent another class of separation-preventing or reducing devices. The
physical mechanism by which they act shares some similarities with the turbine–diffuser
interaction measured by Sieker (2010)∗ and Kuschel (2014)† as well as with the rod-induced
stabilisation described by Hoffmann (1981) and Hoffmann and Gonzalez (1984), in the
sense that they cause the formation and shedding of vortical or turbulent structures. This, in
turn, promotes the exchange of fluid and momentum between the free stream and boundary
layer. Based upon this effect, improvements in diffuser performance were achieved by

∗for preliminary results, see also Sieker and Seume (2008a) and Sieker and Seume (2008b)
†see also Kuschel et al. (2015)
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using vortex generators, e.g., by Brown et al. (1968) and Senoo and Nishi (1974). It is
noteworthy that Brown et al. (1968) observed a distinct dependency of the benefit of vortex
generators upon their positioning and orientation, with some cases even impeding diffuser
performance. This dependency is consistent with the influence of turbulence directionality
seen by Hoffmann (1981).

The injection of fluid into the casing boundary layer at the diffuser inlet was investigated
by Babu et al. (2011), who found that the overall effect of this active flow-control methodwas
positive. Similarly, Thomas et al. (2015) performed detailed measurements in an annular
and subsequent conical diffuser where they injected fluid into the casing boundary layer
to emulate strong tip-leakage flow—a so-called tip jet. Their experimental set-up allowed
the variation of the injection mass-flow fraction and injection slot height∗, effecting variable
injected mass flow and jet velocity. The static-pressure recovery increased after exceeding
a certain minimum injection rate. After further increase of the injection rate, this trend
was reversed, as more and more fluid was entrained from the free-stream into the casing
boundary layer, ultimately causing separation at the hub.

2.3. Concurrent design of turbine and diffuser

Another conceptually more holistic approach to improving diffuser performance is the
concurrent or combined design of turbine and diffuser. Unlike the methods presented in the
previous section, this approach does not require any additional devices or moving compo-
nents. As discussed in Sec. 2.1, the inflow conditions experienced by the diffuser can impact
its performance tremendously. It is, therefore, logical to investigate methodologies for the
design of turbines that generate an outflow which benefits the diffuser.

Quest and Scholz (1980) conducted extensive experimental studies on annular diffusers
with divergent casing walls and parallel hub walls downstream of a turbine. They reported
an optimum tip gapwhich, while reducing the turbine efficiency, increases the overall system
efficiency. They noted, however, that certain combinations of turbine-outflow swirl and strut
orientation may increase losses.

Farokhi (1987) presented a simplified thermodynamic analysis of the turbine–diffuser
system. His calculations yielded a possible increase in turbine power output for larger tip
gaps, however, at the expense of a reduced system efficiency. Zimmerman and Stetter (1993)
arrived at similar conclusions when interpreting their experimental data. Willinger and
Haselbacher (1998), however, found virtually no dependency between tip gap and system
efficiency.

Mihailowitsch et al. (2018) compared different shroud seal gaps in their numerical
analysis of a turbine–diffuser system with a shrouded rotor. The authors found an adverse
effect of the gap size on the diffuser performance. This was partially due to changes in
incidence on the subsequent struts. They noted, however, a current trend towards more
compact gas turbines with consequently shorter diffusers and acknowledged that larger
gaps could be beneficial in such configurations.

∗in analogy to a tip-gap variation
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2.4. Diffuser-performance prediction

Great attention should be paid to the prediction of diffuser performance. Due to the oc-
currence of flow separations and the ensuing highly three-dimensional flow conditions,
this task is certainly not trivial. The diffuser design charts introduced at the beginning of
this chapter and the quantification of inflow-related deviations from an idealised diffuser
flow can be regarded as a form of diffuser-performance prediction. Their heuristic nature,
however, usually confines their applicability to a rather limited class of cases.

Senoo and Nishi (1977a) and Senoo and Nishi (1977b) devised an algorithm for the
calculation of boundary-layer parameters and static-pressure recovery in diffusers, using an
integral form of the boundary-layer momentum equation and a correlation-based approach
to evaluate the shape factor 𝐻. In connection with their empirically derived separation
relationship (see Eqn. 1.37), they were among the first to successfully calculate the behaviour
of real diffuser flows—even downstream of the separation onset. Bardina et al. (1982),
however, referred to this approach as “postdictive” in order to emphasise its heavy reliance
upon measurement data.

Building upon the work of Kline (1978), Bardina et al. (1982) implemented a zonal method
where the flow is subdivided into two “zones” or “modules”∗: free stream and boundary
layer. The exchange of mass and momentum between the two is captured in a system of
two ordinary differential equations, which will be discussed in Sec. 3.3.5. The equations for
the conservation of both mass and momentum are based upon wall-normal integrals of the
boundary-layer flow quantities. The correlations employed in the calculation process are
derived from the generalised, non-dimensional boundary-layer profiles of Coles (1956) and
Coles (1962) as well as the entrainment relationship of Head (1958). Using this approach,
Bardina et al. (1982) were able to successfully predict boundary-layer parameters and
static-pressure recovery for a multitude of planar diffusers and some annular diffusers.
Childs (1981) integrated compressibility effects into the approach and Lyrio et al. (1981)
adapted the method to cover unsteady free-stream flow. A detailed overview of these and
further associated developments is given by Johnston (1998).

2.5. Prediction of turbine–diffuser interaction

The inclusion of unsteady free-stream flow by Lyrio et al. (1981) can be seen as a first step
towards the prediction of the behaviour of turbine–diffuser systems.

Thework ofKuschel (2014)† revealed a correlation between apparent stresses—i.e., Reynolds
stresses caused by highly unsteady vortical flow conditions measured just downstream of
the rotor near the tip—with a dominant radial component and the static-pressure recovery
coefficient of the annular diffuser. Again, some similarity to the work of Hoffmann (1981)
can be inferred, who noted the importance of the orientation of the vortical flow structures.

Drechsel et al. (2015) were able to reproduce these results numerically. However, this
was only possible to a sufficient accuracy by applying the partially scale-resolving scale-
adaptive simulation (SAS) approach by Menter and Egorov (2010). Drechsel et al. (2016)
demonstrated in a comparative study between conventional unsteady Reynolds-averaged

∗or conceptual objects, to continue the wording introduced initially
†see also Kuschel et al. (2015)
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Navier–Stokes (URANS) simulations, SAS, and hot-wire measurements that URANS failed
to render the unsteady vortical structures in the tip region accurately.

For the first time, Mimic et al. (2018a) formulated a non-dimensional number from
integral stage-design parameters with the aim of predicting the influence of the turbine
outflow on the static-pressure recovery in annular diffusers. The authors found a linear
correlation between their newly defined stabilisation number and the diffuser effectiveness
using experimental data from Kuschel (2014)∗, additional measurements from the same
diffuser test rig, and a computational flow model using the SAS approach.

Mimic et al. (2018b) found a linear correlation between the stabilisation number, mul-
tiplied by a second non-dimensional number calculated from integral stage data, and the
total-pressure losses generated in the diffuser. Again, both experimental and numerical data
were used for this correlation.

Mimic et al. (2018c) were able to expand the static-pressure recovery correlation to several
other diffuser half-opening angles, although most of the newly added diffusers were only
investigated numerically. Finally, Mimic et al. (2019) expanded the total-pressure loss
correlation to other diffuser half-opening angles.

2.6. Subsumption of the present work

The preceding sections give an overview of previous diffuser research relevant to this work.
The content of this work, especially the stabilisation number and its correlation with the
static-pressure recovery and total-pressure losses, is closely related to the publications by
Mimic et al. (2018a), Mimic et al. (2018b), Mimic et al. (2018c), and Mimic et al. (2019). In
the present work, however, the stabilisation number is derived with greater rigour. Several
improvements have also been incorporated into the approach.

Additionally, the method of Bardina et al. (1982) has been implemented and extended
to predict the vortex-induced boundary-layer stabilisation. It is shown that the stabilising
vortices are modelled consistently with the definition of the stabilisation number.

The literature suggests that both the vortex–boundary-layer prediction method and the
correlation-based approach using the stabilisation number are novel.

∗see also Kuschel et al. (2015)
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Chapter 3.

Fundamentals

This chapter presents a review of the fluid-mechanical fundamentals necessary to develop
a coherent theory about the turbine–diffuser interaction, starting from first principles and
moving on to specific applications of these principles.

3.1. Continuum flows

Real fluids consist ofmolecules or atoms, in short fluid particles, which interactwith each other
by exchanging momentum through different forces. While it is possible to derive and solve
the equations of motion for such a system, the sheer number of fluid particles (approximately
2.7 × 1016 particles per mm3 for a gas under standard conditions), it is certainly not trivial
for most flows considered in engineering. With certain assumptions, however, it is possible
to simplify the problem (Schlichting and Gersten 2006).

Assumption 3.1. The characteristic length scale of the flow problem considered is much
larger than the mean free path between fluid particles.

Implication 3.1. It follows from Ass. 3.1 that the fluid can be modelled as a continuum, i.e.,
a material with a continuous distribution of mass, momentum, and energy.

Assumption 3.2. The torque acting upon a fluid element is not dependent upon its volume.

Implication 3.2. Assumption 3.2 implies that no electro- or magnetodynamic forces arise in
the fluid.

Assumption 3.3. The principal directions of the stresses and strains arising in the fluid are
aligned, i.e., the fluid is considered isotropic.

Assumption 3.4. The stresses arising in the fluid are related linearly to the strains, i.e., it is
a Newtonian fluid. The proportionality factor is the molecular viscosity.

Assumption 3.5. Internal relaxation processes in the fluid happen on a significantly shorter
time scale than deformation processes.

Assumption 3.6. Thermodynamic state equations are independent from local or temporal
gradients, i.e., they are the same as in a resting system.

Assumption 3.7. The flow exhibits a single phase. Hence, the thermodynamic state of the
fluid can be described using only two state variables (e.g., static pressure and temperature).
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Figure 3.1.: Infinitesimal fluid element

Assumption 3.8. Heat fluxes in the fluid are related linearly to temperature gradients. The
proportionality factor is the thermal conductivity.

Assumption 3.9. There are no heat sources in the fluid, such as, e.g., nuclear decay or
chemical reactions.

Following these assumptions, it is necessary to derive equations for the distribution of
mass, momenta in three spatial dimensions, and internal energy in order to describe the
behaviour of the flow, giving a total of five equations. As will be shown in the following
sections, two further variables are involved: pressure and temperature. It will, therefore, be
necessary to provide two thermodynamic state equations to close the system. To establish
these fundamental relationships, an infinitesimal fluid element, as shown in Fig. 3.1, is
considered.

3.1.1. Continuity equation

The temporal rate of change of the mass contained in the fluid element is determined by the
integral of the rate of change in fluid mass density 𝜌 over the element volume 𝒱:

D𝑚
D𝑡 =

˚
𝒱

D𝜌
D𝑡 d𝑉. (3.1)

The material derivative D⊠/D𝑡 describes the overall temporal rate of change of a physical
quantity in any fluid element and can be separated into

D𝜌
D𝑡 ∶=

𝜕𝜌
𝜕𝑡 +

d𝜌
d𝑡 (3.2)

where 𝜕𝜌/𝜕𝑡 is the local derivative which describes changes due to inherent unsteadiness
in the flow field and where d𝜌/d𝑡 is the advective or convective derivative which represents
the advective transport of a physical quantity—here the density—into and out of the fluid
element. The advective derivative can, therefore, be expressed as

d𝜌
d𝑡 = 𝐮 ⋅ 𝛁𝜌. (3.3)
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The overall rate of change of the density, as quantified by the material derivative, is
determined by the presence of sources or sinks in the fluid element. These sources and sinks
are given by the divergence 𝛁 ⋅ 𝐮 of the velocity field: sources imply 𝛁 ⋅ 𝐮 > 0 and are seen as
diverging streamlines leading to a reduction in fluid density, whereas sinks imply 𝛁 ⋅ 𝐮 < 0
and are seen as converging streamlines corresponding to an increase in density. This can be
written as

D𝜌
D𝑡 + 𝜌 𝛁 ⋅ 𝐮 = 0, (3.4)

which is the continuity equation for compressible flows and describes the conservation of mass.
The use of the qualifier “compressible” implies that there is also an incompressible form
of the equation. In an incompressible flow, the density of a fluid element does not change
during its movement along a streamline, i.e., its material derivative vanishes:

D𝜌
D𝑡 = 0. (3.5)

Therefore, the continuity equation for incompressible flows becomes

𝛁 ⋅ 𝐮 = 0. (3.6)

3.1.2. Momentum equations

In a similar way to the temporal rate of change of the mass, the temporal rate of change of
the momentum carried by the fluid element can be formulated as the sum of all forces acting
upon the element. Distinguishing between volume-specific volume forces and volume-specific
surface forcers, this may be written as

D𝐉
D𝑡 =

˚
𝒱

𝜌
D𝐮
D𝑡 d𝑉 =

˚
𝒱

𝐟𝑆d𝑉 +
˚

𝒱
𝐟𝑉d𝑉. (3.7)

The term 𝐟𝑉 d𝑉 refers to the volume-specific forces acting upon the entire volume of the
fluid element, e.g., gravitation or fictitious forces when an accelerated frame of reference is
considered, whereas 𝐟𝑆 d𝑉 describe the volume-specific surface forces.

The surface forces are caused by stresses acting upon the surface of the fluid element
which are expressed by the Cauchy stress tensor,

𝛔 ∶=
⎛⎜⎜⎜
⎝

𝜎1 𝜏12 𝜏13
𝜏21 𝜎2 𝜏23
𝜏31 𝜏32 𝜎3

⎞⎟⎟⎟
⎠
, (3.8)

where 𝜎𝑖 are the normal stresses and 𝜏𝑖𝑗 are the shear stresses.
The Cauchy stress tensor is symmetric (see Ass. 3.3) and its use carries the implicit

assumption that the shear-stress-induced torque imposed upon a fluid element does not
depend upon its volume, as may be the case in electrostatic fields (Schlichting and Gersten
2006).

For most gases, the mechanical pressure can be defined as the first invariant of the stress
tensor:

𝑝 ∶= −
𝜎1 + 𝜎2 + 𝜎3

3 . (3.9)
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The normal stresses in Eqn. (3.8) can then be decomposed into isotropic and deviatoric
components, yielding the following decomposition of the Cauchy stress tensor:

𝛔 = 𝛕 − 𝑝𝐈 (3.10)

where 𝐈 is the identity matrix,

𝐈 ∶=
⎛⎜⎜⎜
⎝

1 0 0
0 1 0
0 0 1

⎞⎟⎟⎟
⎠
, (3.11)

and 𝛕 is the deviatoric stress tensor, i.e.,

𝛕 ∶=
⎛⎜⎜⎜
⎝

𝜏11 𝜏12 𝜏13
𝜏21 𝜏22 𝜏23
𝜏31 𝜏32 𝜏33

⎞⎟⎟⎟
⎠
. (3.12)

Note that the trace of the deviatoric stress tensor vanishes for incompressible flows (Schlicht-
ing and Gersten 2006).

Using the decomposition of the Cauchy stress tensor into an isotropic pressure and a
deviatoric stress tensor, as shown in Eqn. (3.10), the general continuum equation can be derived
from Eqn. (3.7):

𝜌
D𝐮
D𝑡 = −𝛁𝑝 + 𝛁 ⋅ 𝛕 + 𝐟𝑉. (3.13)

In order to derive an equation for the motion of the fluid from the force equilibrium
stated in the above equation, a nexus between the stresses and deformations acting upon
the fluid element needs to be determined. The deformations can be expressed in terms of
the strain-rate tensor,

𝐒 ∶=
⎛⎜⎜⎜⎜⎜⎜⎜
⎝

𝜕𝑢1
𝜕𝑥1

1
2 (𝜕𝑢2

𝜕𝑥1
+ 𝜕𝑢1

𝜕𝑥2
) 1

2 (𝜕𝑢3
𝜕𝑥1

+ 𝜕𝑢1
𝜕𝑥3

)
1
2 (𝜕𝑢1

𝜕𝑥2
+ 𝜕𝑢2

𝜕𝑥1
) 𝜕𝑢2

𝜕𝑥2

1
2 (𝜕𝑢3

𝜕𝑥2
+ 𝜕𝑢2

𝜕𝑥3
)

1
2 (𝜕𝑢1

𝜕𝑥3
+ 𝜕𝑢3

𝜕𝑥1
) 1

2 (𝜕𝑢2
𝜕𝑥3

+ 𝜕𝑢3
𝜕𝑥2

) 𝜕𝑢3
𝜕𝑥3

⎞⎟⎟⎟⎟⎟⎟⎟
⎠

, (3.14)

or, in brief,
𝐒 ∶=

1
2 [(𝛁 ⊗ 𝐮) + (𝐮 ⊗ 𝛁)] . (3.15)

Using the assumption of a Newtonian fluid (see Ass. 3.4), the deviatoric stresses can be
expressed through linear functions of the strain rates,

𝛕 = 𝜆 tr(𝐒) 𝐈 + 2𝜇𝐒, (3.16)

where tr(𝐒) = 𝛁 ⋅ 𝐮 denotes the trace of the strain-rate tensor and where 𝜆 is called the
Lamé constant, which relates the normal stresses to a volume dilation. By invoking Stokes’
hypothesis, i.e.,

3𝜆 + 2𝜇 = 0, (3.17)

the deviatoric stress tensor can be reformulated to yield

𝛕 = −
2
3𝜇 tr(𝐒) 𝐈 + 2𝜇𝐒. (3.18)
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Using the traceless strain-rate tensor,

𝐒∗ ∶= 𝐒 −
1
3 tr(𝐒) 𝐈, (3.19)

the deviatoric stress tensor can be conveniently rewritten as

𝛕 = 2𝜇𝐒∗ (3.20)

with the associated Cauchy stress tensor given by

𝛔 = −𝑝𝐈 + 2𝜇𝐒. (3.21)

Inserting Eqn. (3.20) into Eqn. (3.13) gives

𝜌
D𝐮
D𝑡 = −𝛁𝑝 + 𝛁 ⋅ (2𝜇𝐒∗) + 𝐟𝑉 (3.22)

and, after substituting the traceless strain-rate tensor, yields the vector form of the Navier–
Stokes equations for compressible flows:

𝜌
D𝐮
D𝑡 = −𝛁𝑝 + 𝜇𝛁2𝐮 +

1
3𝜇𝛁(𝛁 ⋅ 𝐮) + 𝐟𝑉. (3.23)

Since 𝛁 ⋅ 𝐮 = 0 for incompressible flows, and assuming constant viscosity, it follows that

𝜌
D𝐮
D𝑡 = −𝛁𝑝 + 𝜇𝛁2𝐮 + 𝐟𝑉, (3.24)

which represents the Navier–Stokes equations for incompressible flows in their vector form.

3.1.3. Energy equation

The next step in determining the state of the fluid is to establish the distribution of the
internal energy and, by extension, temperature. Considering the same infinitesimal fluid
element as before, the first law of thermodynamics is applied, which states that the rate of
change of the total energy in the fluid element is balanced by the sum of the heat flow across
the boundaries and the work performed due to deformation of the element:

D𝐸tot
D𝑡 = �̇� + 𝑊 (3.25)

where the total energy is defined as the sum of the internal energy, kinetic energy and
potential energy:

𝐸tot ∶= 𝐸 +
1
2 𝑚 (𝐮 ⋅ 𝐮) + Φ. (3.26)

Using specific quantities and omitting the infinitesimal volume d𝑉, Eqn. (3.25) can be
rewritten to yield

𝜌
D𝑒 + 1/2 (𝐮 ⋅ 𝐮) + 𝜙

D𝑡 = −𝛁 ⋅ 𝐪 + 𝛁 ⋅ (𝛔𝐮). (3.27)
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Following Ass. 3.8, the heat fluxes can be expressed as temperature gradients according to
Fourier’s law, i.e.,

𝐪 = −𝜆𝛁𝑇 (3.28)

where 𝜆 is the thermal conductivity of the fluid. Consequently,

𝛁 ⋅ 𝐪 = 𝛁 ⋅ (−𝜆𝛁𝑇) = −𝜆𝛁2𝑇. (3.29)

By applying Eqns (3.10) and (3.28) and subsequently subtracting the mechanical energy,
which is the dot product of the velocity vector 𝐮 and Eqn. (3.23), the energy equation for
compressible flows is obtained:

𝜌
D𝑒
D𝑡 = 𝜆𝛁2𝑇 − 𝑝𝛁 ⋅ 𝐮 + 𝛁 ⋅ (𝛕𝐮) − 𝐮𝛁 ⋅ 𝛕 (3.30)

where
𝒬 ∶= 𝛁 ⋅ (𝛕𝐮) − 𝐮𝛁 ⋅ 𝛕 (3.31)

is the dissipation function, which quantifies the dissipation of mechanical energy into heat.
The role of the energy equation is negligible for incompressible, adiabatic flows.

3.1.4. Thermodynamic state equations

As mentioned in the introduction to this chapter, the five equations derived in the previous
sections contain seven variables: mass, momenta in three spatial dimensions, energy, tem-
perature, and pressure. Two further relationships are, therefore, necessary to close the set of
equations. Following Ass. 3.6, the thermodynamic state of the fluid is determined locally,
i.e., it does not depend upon spatial or temporal gradients. Consequently, the temperature
and pressure can be determined via two algebraic state equations, which can be derived for
a resting fluid.

As emphasised earlier, real fluids consist of fluid particles interacting via various forces
and, therefore, exchanging momentum. To narrow down the way in which fluid particles
interact, the following is assumed:

Assumption 3.10. The fluid considered is in a gaseous state.

The fluid particles—or rather gas particles—in a resting gas are assumed to move randomly
with certain momenta and kinetic energies (Feynman et al. 1965), where both quantities
are statistically distributed and the sum of the momenta in all three spatial dimensions is
the same. The sum of the momenta in one spatial dimension gives the pressure (hence the
assumption of an isotropic mechanical pressure in the fluid), whereas the kinetic energies
determine the temperature of the gas.

At this point, it should be clear that the way in which pressure and temperature are
related to each other depends not only upon the mass of the individual gas particles, but also
upon several assumptions about the forces acting between these particles and the spatial
distribution of these forces. It is, thus, not surprising that the state equations are contingent
upon these same assumptions. The following can be assumed for most gaseous flows at
moderate pressures:
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Assumption 3.11. The gas particles are mathemical points, i.e., they have no spatial extent.

Assumption 3.12. The gas particles all have the same mass.

Assumption 3.13. The gas particles interact with each other only by means of perfectly
elastic collisions.

Assumptions 3.11, 3.12, and 3.13 are commonly summarised in the theoretical concept of
an ideal gas. For such an ideal gas, the state variables pressure and temperature are related
via the ideal gas law, i.e.,

𝑝 = 𝜌𝑅𝑇, (3.32)

where 𝑅 is the specific gas constant, which is defined as the ratio of the universal gas constant
to the average molar mass of the gas, i.e.,

𝑅 =
ℛ
𝑀 . (3.33)

Furthermore, the specific internal energy and specific enthalpy can be related to the
temperature via

𝑒 = 𝑐𝑉𝑇, (3.34)
ℎ = 𝑐𝑝𝑇, (3.35)

where 𝑐𝑉 and 𝑐𝑝 are the specific heat capacities

𝑐⊠ ∶=
𝐶⊠
𝑚 =

1
𝑚
d𝑄
d𝑇 ∣

⊠=const.
(3.36)

for constant volume and pressure, i.e., the isochoric and isobaric heat capacities, respectively.
In addition, the following can be assumed:

Assumption 3.14. The isochoric and isobaric heat capacities are constant and do not depend
upon the temperature and pressure of the gas, i.e., the gas is calorically perfect.

It follows that the heat-capacity ratio 𝛾 can be defined as

𝛾 ∶=
𝐶𝑝

𝐶𝑉
=

𝑐𝑝

𝑐𝑉
= const. (3.37)

and, according to Mayer’s relationship, that

𝑅 = 𝑐𝑝 − 𝑐𝑉. (3.38)

3.1.5. Material laws

In Secs 3.1.2 and 3.1.3, two proportionality factors were implicitly introduced: the dynamic
viscosity 𝜇 in Eqn. (3.16) and the thermal conductivity 𝜆 in Eqn. (3.28). Both of these
quantities are contingent upon material properties of the medium.
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Dynamic viscosity
As it is the proportionality factor between stresses and strain rates, the viscosity is often
mistaken for a form of friction. While the effects may be very similar, the momentum diffusion
occuring in viscous fluids is the result of a more or less random exchange of fluid particles
between neighbouring streamlines, as well as an exchange ofmomentum between interacting
gas particles, leading to an averaging of the momenta carried by the streamlines. While
it is possible to derive models that predict the viscosity from statistical analyses of ideal
gases, the results are generally unsatisfactory. Sutherland (1893) derived a more accurate
model by waiving Asss 3.11 and 3.13 and, instead, conceptualising the gas particles as finite
particles, which collide elastically at distances shorter than their diameter, and attract each
other with a force inversely related to the distance between them for distances greater than
their diameter. Using this gas-particle model Sutherland (1893) obtained the following
relationship:

𝜇 = 𝜇ref
𝑇ref + 𝐶S
𝑇 + 𝐶S

(
𝑇

𝑇ref
)

3/2
(3.39)

where 𝐶S is the Sutherland constant and where the reference values satisfy the following
condition

𝜇ref
𝑇ref + 𝐶S

𝑇3/2 = 1.456 × 10−6 kg/msK1/2. (3.40)

Thermal conductivity
Since the diffusion of momentum and temperature follow similar mechanisms on a gas-
particle scale, a relationship between the thermal conductivity 𝜆 and the dynamic viscosity 𝜇
can be expected. This relationship is characterised by the non-dimensional Prandtl number:

Pr ∶=
𝑐𝑝𝜇
𝜆 . (3.41)

For gases, the Prandtl number can be assumed constant across a wide temperature range.

3.1.6. Summary of the governing equations

Compressible

D𝜌
D𝑡 + 𝜌𝛁 ⋅ 𝐮 = 0,

𝜌
D𝐮
D𝑡 = −𝛁𝑝 + 𝜇𝛁2𝐮 +

1
3𝜇𝛁(𝛁 ⋅ 𝐮) + 𝐟𝑉,

𝜌
D𝑒
D𝑡 = 𝜆𝛁2𝑇 − 𝑝𝛁 ⋅ 𝐮 + 𝛁 ⋅ (𝛕𝐮) − 𝐮𝛁 ⋅ 𝛕.

Incompressible

𝛁 ⋅ 𝐮 = 0,

𝜌
D𝐮
D𝑡 = −𝛁𝑝 + 𝜇𝛁2𝐮 + 𝐟𝑉.

While the above equations fully describe any flow which satisfies Asss 3.1 to 3.14 as well as
Imps 3.1 and 3.2, their complexity poses a hindrance to the derivation of algebraic solutions
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3.2. Turbulent flows

to most flow problems. This is especially true for flows considered in engineering. Solutions
for such flow problems can often only be obtained by solving the discretised equations
numerically. With high computing power now readily available, it is certainly feasible to
obtain numerical solutions for most flow problems. However, the sheer complexity of the
flows and the large amount of data generated can impede an intuitive understanding of the
individual phenomena involved. In this case, further adaptations or simplifications of the
governing equations can make the results more accessible for a more in-depth analysis.

3.2. Turbulent flows

It is a property of the Navier–Stokes equations, and an observable feature of real flows, that
they can become unstable and yield chaotic solutions when certain conditions are satisfied.
These conditions are on one hand the presence of an initial disturbance and on the other hand
sufficiently small damping of the said disturbance. The ensuing turbulent flow is highly
three-dimensional and unsteady. It is characterised by a significant increase in diffusivity
compared to a laminar flow.

The degree to which disturbances are damped is determined by the ratio of inertial to
viscous forces acting upon a fluid element, i.e.,

Inertial force
Viscous force =

𝜌𝑢𝜕𝑢/𝜕𝑥1
𝜇𝜕2𝑢/𝜕𝑥2

2
. (3.42)

Assuming 𝑢 ∝ 𝒰, 𝜕𝑢/𝜕𝑥1 ∝ 𝒰/ℓ, and 𝜕2𝑢/𝜕𝑥2
2 ∝ 𝒰/ℓ2, where 𝒰 and ℓ are the respective

characteristic velocity and length scale of the flow problem considered, the Reynolds number
is defined as

Re ∶=
𝜌 𝒰ℓ

𝜇 . (3.43)

A sufficiently high Reynolds number indicates the possibility of turbulent flow if distur-
bances are present. The exact value of the Reynolds number for which this happens is,
however, dependent upon the flow problem considered.

A more in-depth discussion of the modelling and prediction of turbulent flows will be
given in Secs 5.3.2 and 5.3.3.

3.3. Boundary-layer theory

The concept of boundary layers was first put forward by Prandtl (1904).∗ As detailed in the
introduction of Schlichting and Gersten (2006), the concept of boundary layers reconciled
the fields of hydrodynamics and hydraulics. While the former was dominated by mathematical
approaches to solving inviscid flow problems, the latter was characterised by empirical
approaches to highly specialised classes of problems. According to the framework proposed
by Prandtl, the flow is divided into an inviscid and irrotational free-stream region and a
viscous and rotational boundary-layer region. This subdivision allows a simplified prediction
of the free stream using potential theory, which, in turn, provides boundary conditions for

∗Prandtl was professor of fluid mechanics in Hanover at that time.
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a simplified prediction of the boundary layers. Some key concepts of the boundary-layer
theory were introduced in Sec. 1.4.1.

3.3.1. Laminar and turbulent boundary layers

Boundary layers can be subdivided into three flow regimes: laminar, turbulent, and transitional,
where the transitional regime comprises the transition from laminar to turbulent. In the case
of laminar boundary-layer flow, the fluid elements move along so-called streamlines. These
streamlines, or rather stream tubes (the volume enclosed by the fluid elements travelling along
a streamline), represent enclosed material tubes without any material exchange between
neighbouring stream tubes.∗

Turbulent boundary layers are characterised by strong velocity fluctuations, both in stream-
wise and stream-normal direction. The concept of streamlines or stream tubes is, thus, only
applicable to turbulent flows if a time-averaged flow field is considered. These velocity
fluctuations lead to a strong stream-normal exchange of fluid and momentum between
neighbouring fluid elements and can be modelled using the concept of a turbulent viscosity.
As a result, turbulent boundary layers—which are considered in the present work—exhibit
velocity profiles which differ strongly from laminar velocity profiles. A common observation
is that boundary layers experience a sudden drop in the shape factor 𝐻 as they transition from
laminar to turbulent (Schlichting and Gersten 2006). This means that their displacement
thickness is significantly lower than their momentum thickness. Likewise, the increased
lateral momentum exchange causes turbulent boundary layers to be more resilient against
flow separation.

3.3.2. Boundary-layer equations

To derive a set of equations which explicitly model the behaviour of boundary layers, four
simplifying steps need to be taken first.
The first simplification is that only steady boundary layers are considered, i.e., Ass. 1.1.
The second simplification is that only two-dimensional boundary layers are considered. This

reduces the number of momentum-equation components from three to two.
The third simplification is the reintroduction of Ass. 1.2 (incompressible flow). Incompress-

ibility can be assumed for the diffuser flows considered in this work, as they exhibit very
low flow velocities or, expressed in fractions of the speed of sound 𝑎, i.e.,

Ma ∶=
𝑢
𝑎 , (3.44)

low Mach numbers. As a consequence, all terms containing the divergence of the velocity
field, 𝛁 ⋅ 𝐮, vanish.
The fourth simplification is also partially rooted in the low flow velocities (and associated

gradients) expected as well as the assumption of adiabatic flow (see Ass. 1.6): in the absence
of both heat fluxes across the boundaries and strong heat sources due to dissipation, a

∗The assumption of no material exchange is only valid within the context of continuum fluid mechanics, as
modelled by the Navier–Stokes equations. In reality, there is an exchange of fluid molecules or atoms. This
exchange is, however, modelled as the molecular viscosity in continuum fluid mechanics (see Sec. 3.1.5).
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3.3. Boundary-layer theory

constant temperature throughout the entire flow can be assumed. Consequently, the energy
equation does not need to be considered.

Without volume forces, the simplified equations then give, written in component form,

𝜕𝑢1
𝜕𝑥1

+
𝜕𝑢2
𝜕𝑥2

= 0, (3.45)

𝜌𝑢1
𝜕𝑢1
𝜕𝑥1

+ 𝜌𝑢2
𝜕𝑢1
𝜕𝑥2

= −
𝜕𝑝
𝜕𝑥1

+ 𝜇 (
𝜕2𝑢1

𝜕𝑥1𝜕𝑥1
+

𝜕2𝑢1
𝜕𝑥2𝜕𝑥2

) , (3.46)

𝜌𝑢1
𝜕𝑢2
𝜕𝑥1

+ 𝜌𝑢2
𝜕𝑢2
𝜕𝑥2

= −
𝜕𝑝
𝜕𝑥2

+ 𝜇 (
𝜕2𝑢2

𝜕𝑥1𝜕𝑥1
+

𝜕2𝑢2
𝜕𝑥2𝜕𝑥2

) . (3.47)

To derive a set of equations which describes the boundary-layer flow, the following problem
is considered: a flat plate with a finite characteristic length ℓ in 𝑥1 direction, a free stream
with the characteristic velocity 𝒰∞, and a boundary-layer thickness 𝛿 in 𝑥2 direction, i.e.,
normal to the wall. Thus, 𝑥1 can be non-dimensionalised with ℓ, 𝑥2 with 𝛿 and, furthermore,
𝑝 with 𝜌 𝒰2

∞. Assuming that
𝜕𝑢1
𝜕𝑥1

∼
𝒰
ℓ , (3.48)

it can be estimated from Eqn. (3.45) that

𝒰
ℓ ∼

𝑢2
𝛿 . (3.49)

Moreover, it can be inferred from the following proportionality for the boundary-layer
thickness (Schlichting and Gersten 2006):

𝛿 ∝ √
𝜇𝑥

𝜌 𝒰∞
(3.50)

that
𝛿
ℓ ∝

1

√Reℓ

(3.51)

where
Reℓ ∶=

𝜌 𝒰∞ℓ
𝜇 . (3.52)

By inserting the transformations obtained from the above order-of-magnitude analysis
into the simplified equations, it follows that

𝜕𝑢1
+

𝜕𝑥1
+ +

𝜕𝑢2
+

𝜕𝑥2
+ = 0, (3.53)

𝑢1
+ 𝜕𝑢1

+

𝜕𝑥1
+ + 𝑢2

+ 𝜕𝑢1
+

𝜕𝑥2
+ = −

𝜕𝑝+

𝜕𝑥1
+ +

1
Reℓ

𝜕2𝑢1
+

𝜕𝑥1
+𝜕𝑥1

+ +
𝜕2𝑢1

+

𝜕𝑥2
+𝜕𝑥2

+ , (3.54)

1
Reℓ

𝑢1
+ 𝜕𝑢2

+

𝜕𝑥1
+ +

1
Reℓ

𝑢2
+ 𝜕𝑢2

+

𝜕𝑥2
+ = −

𝜕𝑝+

𝜕𝑥2
+ +

1
Re2

ℓ

𝜕2𝑢2
+

𝜕𝑥1
+𝜕𝑥1

+ +
1
Reℓ

𝜕2𝑢2
+

𝜕𝑥2
+𝜕𝑥2

+ , (3.55)

where ⊠+ denotes the transformed variables.
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It is evident that several terms disappear in these equations at a sufficiently high Reynolds
number. This condition is often satisfied for flows considered in engineering. By applying
the limit Reℓ → ∞∗ and reversing the transformation, the boundary-layer equations as derived
by Prandtl (1904) are finally obtained:

𝜕𝑢1
𝜕𝑥1

+
𝜕𝑢2
𝜕𝑥2

= 0, (3.56)

𝑢1
𝜕𝑢1
𝜕𝑥1

+ 𝑢2
𝜕𝑢1
𝜕𝑥2

= −
1
𝑝

𝜕𝑝
𝜕𝑥1

+ 𝜇
𝜕2𝑢1

𝜕𝑥2𝜕𝑥2
, (3.57)

0 = −
𝜕𝑝
𝜕𝑥2

. (3.58)

The boundary-layer equations carry some implications: Firstly, only the wall-parallel shear
stresses appear in Eqn. (3.57) since they are of significantly greater magnitude than their
wall-normal counterparts. This is not surprising, considering that the wall-normal velocity
gradients are considerably higher than those in the flow direction. Secondly, Eqn. (3.58)
indicates that the wall-normal pressure gradient is zero in the boundary layer, i.e., the local
pressure is dictated entirely by the free stream.

It follows that thewall-parallel pressure gradient can be expressed in terms of a free-stream
acceleration parameter. Neglecting the temporal derivative (see Ass. 1.1) and body-force
terms, the Euler equation of the free-stream velocity in one dimension gives

−
1
𝜌

𝜕𝑝
𝜕𝑥1

= 𝒰∞
𝜕 𝒰∞
𝜕𝑥1

, (3.59)

where the right-hand side defines the free-stream acceleration parameter. By inserting
Eqn. (3.59) into Eqn. (3.57), the condition of a constant pressure in wall-normal direction
stated in Eqn. (3.58) is implicitly satisfied, whereupon the above set of equations can be
further simplified to

𝜕𝑢1
𝜕𝑥1

+
𝜕𝑢2
𝜕𝑥2

= 0, (3.60)

𝑢1
𝜕𝑢1
𝜕𝑥1

+ 𝑢2
𝜕𝑢1
𝜕𝑥2

= 𝒰∞
𝜕 𝒰∞
𝜕𝑥1

+ 𝜇
𝜕2𝑢1

𝜕𝑥2𝜕𝑥2
. (3.61)

3.3.3. Momentum integral

The boundary-layer equations shown above still represent a set of non-linear partial differ-
ential equations and, hence, require numerical solving in most cases. Due to computational
limitations† in the early days of boundary-layer theory, von Kármán (1921) put forward an
integral approach to describe the behaviour of boundary layers. This approach was further
formalised and developed into the present notation of the von Kármán momentum integral
by Gruschwitz (1931).

The momentum-integral equation is obtained by integrating Eqn. (3.57) or (3.61) in the
wall-normal direction across the boundary layer, i.e., from 𝑥2 = 0 to 𝑥2 = 𝛿. Using the

∗Here, ∞ denotes infinity instead of the free stream.
†Calculations had to be performed by hand.
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displacement and momentum thicknesses introduced in Eqns (1.29) and (1.30), the integral
momentum equation of the boundary layer is, according to Gruschwitz (1931),

d𝜗
d𝑥1

+
𝛿∗

𝒰∞

d𝒰∞
d𝑥1

+
2𝜗
𝒰∞

d𝒰∞
d𝑥1

=
𝜏0

𝜌 𝒰2
∞
, (3.62)

where the right-hand side represents the impact of skin friction with 𝜏0 representing the
shear stress immediately at the wall. With the definition of the boundary-layer shape factor
from Eqn. (1.36), the equation becomes

d𝜗
d𝑥1

+ (𝐻 + 2)
𝜗

𝒰∞

d𝒰∞
d𝑥1

=
𝜏0

𝜌 𝒰2
∞
. (3.63)

This equation is evidently considerably simpler than Prandtl’s system of boundary-layer
equations. The development of the shape factor, however, is heavily dependent upon the
initial shape of the boundary layer. Pohlhausen (1921) published, in the same year as von
Kármán∗, a calculation procedure for the above equation. He did so by defining polynomials
to describe the boundary-layer velocity profiles and parametrising them using the boundary-
layer quantities appearing in the above equation.

3.3.4. Entrainment relationship

Pohlhausen’s method, however, failed to produce results for separated boundary layers,
as explained by Veldman (2017) in his review of the boundary-layer theory. The solution
to this problem would be found more than 30 years later when Head (1958) attempted to
derive an equation similar in nature to Eqn. (3.63), yet related to mass conservation in the
boundary layer. Head (1958) hypothesised an entrainment of mass from the free stream into
the boundary layer. By introducing the shape factor,

𝐻𝛿−𝛿∗ ∶=
𝛿 − 𝛿∗

𝜗 , (3.64)

and the entrainment rate,

𝐸 ∶=
d𝑄BL
d𝑥1

=
d
d𝑥1

[ 𝒰∞ (𝛿 − 𝛿∗)] , (3.65)

as the spatial derivative of the boundary-layer volume-flow rate per unit span 𝑄, he formu-
lated the entrainment relationship,

1
𝒰∞

𝐸 =
1

𝒰∞

d
d𝑥1

[ 𝒰∞ (𝛿 − 𝛿∗)] = 𝒻 (𝐻𝛿−𝛿∗) , (3.66)

as an empirical function of his newly developed shape factor.

∗Both articles were actually published in the same journal issue.
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3.3.5. Application to diffusers

As mentioned in Sec. 2.4, Kline (1978) and, in succession, Bardina et al. (1982) developed
a one-dimensional prediction method for planar and annular diffuser flows. The method is
based upon the approach of solving Eqns (3.63) and (3.66) simultaneously.

The dependent variables, for which the system is solved, are the blockage factor,

𝐵 ∶=
𝛿∗

𝒲
, (3.67)

and a boundary-layer blockage factor,

Λ ∶=
𝛿∗

𝛿 , (3.68)

where 𝛿∗ is the average displacement thickness and 𝒲 is the diffuser width for planar
diffusers and the channel height for annular diffusers. It is worth to be noted that the
blockage factor 𝐵 is defined differently than in Eqns (1.38) and (1.39); the definition given
in Eqn. (3.67) will be used in the following.

Using the non-dimensional wall-wake boundary-layer velocity profiles of Coles (1956,
1962), Bardina et al. (1982) derived correlations between Λ and the non-dimensional shear
velocity 𝑢𝜏

+ which, in turn, is used to predict, e.g., the skin-friction coefficient:

𝐶f ∶= 2𝜅2 ∣𝑢𝜏
+∣ 𝑢𝜏

+ (3.69)

where 𝜅 is the von Kármán constant. Together with the definition of an alternative boundary-
layer shape parameter,

ℎ ∶=
𝐻 − 1

𝐻 =
𝛿∗ − 𝛿

𝛿∗ , (3.70)

and using purely non-dimensional quantities, Eqns (3.63) and (3.66) may be rewritten as
follows:

(1 − ℎ + 𝐶2) + 2𝐵 (2 − 2ℎ + 0.015/Λ)
𝐵 (1 − 2𝐵)

d𝐵
d𝑥1

+ − 𝐶1
dΛ
d𝑥1

+ =
𝐶f/2 + 𝛽𝐸+

𝐵 𝒲+

+ (2 − 2ℎ + 0.015/Λ)
1

𝒲+
d𝒲+

d𝑥1
+

− (1 − ℎ)
1

𝑟m+
d𝑟m+

d𝑥1
+ , (3.71)

1
𝐵 (1 − 2𝐵)

d𝐵
d𝑥1

+ −
1

Λ (1 − Λ)
dΛ
d𝑥1

+ = 𝐸+ −
1

𝑟m+
d𝑟m+

d𝑥1
+ , (3.72)

where 𝑥1
+ is the non-dimensional wall-parallel coordinate and where 𝐶1 and 𝐶2 are calcu-

lated from empirical correlations dependent upon Λ and 𝑢𝜏
+. The derivative of the mid-span

radius d𝑟m+/d𝑥1
+ has been adapted from Bardina et al. (1982) to account for the changes

in transverse curvature. It vanishes in the case of an equiangular annular diffuser.∗ The
∗Id est, an annular diffuser where the convergence angle of the hub is equal and opposite to the divergence

angle of the casing.
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corresponding set of equations for planar diffusers is provided by Bardina et al. (1981) and
Bardina et al. (1982).

A detailed derivation of the above equations is given by Bardina et al. (1982); a more
succinct description, albeit for planar diffusers only, is given by Bardina et al. (1981).
The method provides accurate predictions of attached and separated diffuser flows, as
demonstrated by Bardina et al. (1982) and—in less detail and for planar diffusers only—by
Bardina et al. (1981).

3.4. Vortex theory

By subtracting half of the strain-rate tensor, i.e., 1/2 𝐒 from the transposed velocity-gradient
tensor (𝛁 ⊗ 𝐮), i.e.,

(𝛁 ⊗ 𝐮) −
1
2 [(𝛁 ⊗ 𝐮) + (𝐮 ⊗ 𝛁)] =

1
2 [(𝛁 ⊗ 𝐮) − (𝐮 ⊗ 𝛁)] , (3.73)

the following antisymmetric tensor is obtained:

𝐑 ∶=
⎛⎜⎜⎜⎜⎜⎜⎜
⎝

0 1
2 (𝜕𝑢2

𝜕𝑥1
− 𝜕𝑢1

𝜕𝑥2
) 1

2 (𝜕𝑢3
𝜕𝑥1

− 𝜕𝑢1
𝜕𝑥3

)
1
2 (𝜕𝑢1

𝜕𝑥2
− 𝜕𝑢2

𝜕𝑥1
) 0 1

2 (𝜕𝑢3
𝜕𝑥2

− 𝜕𝑢2
𝜕𝑥3

)
1
2 (𝜕𝑢1

𝜕𝑥3
− 𝜕𝑢3

𝜕𝑥1
) 1

2 (𝜕𝑢2
𝜕𝑥3

− 𝜕𝑢3
𝜕𝑥2

) 0

⎞⎟⎟⎟⎟⎟⎟⎟
⎠

, (3.74)

which is called the rotation-rate tensor and measures the angular velocity of a fluid element
rotating about its own centre. Applying the rotation-rate tensor to the differential vector
d𝐱 rotates the terminal point of d𝐱 about its origin. After some rearrangements, it can be
shown by comparison that this relative motion is characterised by the vector 𝛀, i.e.,

𝐑d𝐱 =
1
2𝛀 × d𝐱, (3.75)

where
𝛀 ∶= 𝛁 × 𝐮 (3.76)

is the vorticity vector; flow regions of non-zero vorticity are called rotational flow regions.

3.4.1. Vortex classification

Just like the rotation-rate tensor, the vorticity characterises the rotation of a fluid element
about its own centre. It is important to note that a non-zero vorticity does not necessarily
imply swirling flow, that is, an angular velocity of the fluid element about an external centre
of rotation.

Rotational vortex
By applying the relationship given in Eqn. (3.75) to a finite region of swirling flow with a
constant angular velocity determined by ∥𝐑∥F ∶= √𝐑 ∶ 𝐑, it is shown that the vorticity of the
swirling flow region will be twice as large. A flow region which satisfies this relationship is
called a rotational vortex; the corresponding motion is termed rigid-body rotation.
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Figure 3.2.: Distributions of circumferential velocity provided by different vortex models

Irrotational vortex
It is also possible that a flow region undergoes a swirling motion without being rotational,
i.e., 𝛀 = 0. Such a flow region is called an irrotational or potential vortex. An irrotational vortex
is a two-dimensional axisymmetric flow where the radial distribution of the circumferential
velocity is determined by

𝑢𝜃 =
Γ

2𝜋𝑟 (3.77)

where the circulation is defined as

Γ ∶=
˛

𝜕𝒮
𝐮 ⋅ d𝐬. (3.78)

It can be shown that this solution satisfies 𝛀 = 0 for 𝑟 > 0.
While a pure potential vortex is merely a theoretical concept, Hamel (1941) showed that its

velocity distribution corresponds to the analytical solution of the Navier–Stokes equations
for an unbounded, two-dimensional flow field around a rotating cylinder. In this case, the
conservation of kinetic energy is still fulfilled throughout the entire flow field, because the
work performed on the fluid by the rotating cylinder is identical to the viscous dissipation
rate of kinetic energy.

Viscous fluids
Strictly speaking, potential vortices can only occur in inviscid fluids (unless driven by a
rotating cylinder, as explained above). For sufficiently small radial velocity gradients and,
consequently, a sufficiently large radial distance from the centre of rotation, the potential-
vortex model is also applicable to viscous fluids. For smaller radial distances, however, the
contribution of viscous effects increases. The result is a finite rotational flow region around
the centre of rotation. This has led to several models which describe vortices in viscous
fluids to varying degrees of accuracy. Some of these models shall be introduced below.
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Rankine vortex
An early and simplemodel of vortices in viscous fluidswas devised by Rankine. Anticipating
the findings of Hamel (1941), Rankine postulated that vortices in viscous fluids can be
subdivided into an irrotational—or potential—outer region and a rotational—or rigid-body—
vortex core with a characteristic core radius 𝑟0:

𝑢𝜃 = { (Γ𝑟) / (2𝜋𝑟2
0) for 𝑟 ≤ 𝑟0,

Γ/ (2𝜋𝑟) for 𝑟 > 𝑟0.
(3.79)

It is evident that the Rankine vortex is only a rough approximation of the behaviour of a
real vortex. This is most apparent when considering the radial discontinuity of the velocity
gradient 𝜕𝑢𝜃/𝜕𝑟.

Lamb–Oseen vortex
A significantly more elaborate vortex model was derived by Oseen (1911), Hamel (1917),
and Lamb (1932). This Lamb–Oseen vortex∗ describes a vortex decaying over time where
the initial conditions represent an irrotational vortex. It can be shown that this vortex is
an analytical solution of the Navier–Stokes equations for 𝑡 > 0. The radial distribution of
circumferential velocity is, in cylindrical coordinates,

𝑢𝜃 =
Γ0

2𝜋𝑟 (1 − e− 𝑟2
4𝜈𝑡 ) (3.80)

where 2√𝜈𝑡 = 𝑟0 gives the characteristic radius of the vortex. The characteristic radius
corresponds to the core radius of a Rankine vortex towards which the velocity distribution
converges for 𝑟 → ∞†. Velocity profiles of the Lamb–Oseen, Rankine, and irrotational vortices
are shown in Fig. 3.2.

By deriving the gradient of Eqn. (3.80) in cylindrical coordinates, i.e.,

(𝛁𝐮)𝑟,𝜃 = ⎛⎜
⎝

0 −𝑢𝜃
𝑟

𝜕𝑢𝜃
𝜕𝑟 0

⎞⎟
⎠𝑟,𝜃

=
⎛⎜⎜⎜⎜⎜⎜
⎝

0 − Γ0
2𝜋𝑟2 (1 − e− 𝑟2

4𝜈𝑡 )

− Γ0
2𝜋𝑟2 (1 − e− 𝑟2

4𝜈𝑡 ) − Γ0
2𝜋𝑟e

− 𝑟2
4𝜈𝑡 (− 𝑟

2𝜈𝑡) 0

⎞⎟⎟⎟⎟⎟⎟
⎠𝑟,𝜃

(3.81)

and applying Eqn. (3.15), the strain-rate tensor is obtained:

𝐒𝑟,𝜃 =
⎛⎜⎜⎜
⎝

0 Γ0
8𝜋𝜈𝑡 (1 + 4𝜈𝑡

𝑟2 ) e− 𝑟2
4𝜈𝑡 − Γ0

2𝜋𝑟2

Γ0
8𝜋𝜈𝑡 (1 + 4𝜈𝑡

𝑟2 ) e− 𝑟2
4𝜈𝑡 − Γ0

2𝜋𝑟2 0

⎞⎟⎟⎟
⎠𝑟,𝜃

. (3.82)

The strain-rate distribution along the radial coordinate is then:

𝑆𝑟,𝜃 =
Γ0

4𝜋𝜈𝑡 (1 +
4𝜈𝑡
𝑟2 ) e− 𝑟2

4𝜈𝑡 −
Γ0

𝜋𝑟2 . (3.83)

∗It is also commonly referred to as Hamel–Oseen vortex or simply Oseen vortex.
†Here, ∞ refers to infinity.
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3.4.2. Vorticity transport

The transport of vorticity in a flow is obtained by applying the curl operator to the Navier–
Stokes equations. This operation results in

D𝛀
D𝑡 = 𝜌 (𝐮 ⊗ 𝛁) ⋅ 𝛀 − 𝜌𝛀 (𝛁 ⋅ 𝐮) +

1
𝜌𝛁𝜌 × 𝛁𝑝 + 𝜌

1
3𝛁𝜇 × [𝛁(𝛁 ⋅ 𝐮)]

+ 𝜇𝛁2𝛀 + 𝛁𝜇 × (𝛁2𝐮) + 𝜌𝛁 × 𝐟, (3.84)

which constitutes the vorticity equation. Assuming that the fluid is incompressible, barotropic∗
and in an non-accelerating frame of reference, the above equation simplifies to

𝜌 (𝛀 ⊗ 𝛁) ⋅ 𝐮 = 𝜌 (𝐮 ⊗ 𝛁) ⋅ 𝛀 + 𝜇𝛁2𝛀 (3.85)

where the first term on the right-hand side describes the vorticity deformation due to velocity
gradients and the second term the vorticity diffusion.

Depending upon the relative orientation of the velocity gradient and vorticity vector, this
deformation can assume several fundamental modes:

1. vortex stretching, if a positive velocity gradient acts along the vorticity vector,

2. vortex squeezing, if a negative velocity gradient acts along the vorticity vector, and

3. vortex bending, if a velocity gradient acts normal to the vorticity vector.

3.5. Secondary flow in axial turbines

It can be inferred from the literature discussed in Sec. 2.1.4 that secondary-flow structures
generated in the turbine, more specifically the tip-leakage vortex, canmitigate flow separation
in a subsequent diffuser. A brief and simple introduction to the flow topology of the most
prominent secondary-flow structures in subsonic axial turbines shall be given with a focus
on the tip-leakage vortex. Detailed elaborations about the matter of secondary flow in axial
turbines can be found in Sieverding (1985) or Langston (2001).

The individual secondary-flow structures can be classified into two categories: secondary-
flow vortices which are fed directly by the end-wall boundary layers and vortices which are
generated as a result of the aerodynamic blade-loading distribution. For the sake of brevity,
the terms end-wall–bound secondary flow and blade-bound secondary flow shall be used.

3.5.1. End-wall–bound secondary flow

It follows from the nature of boundary layers that they are rotational flow regions. This
means boundary layers can be represented as a bundle of vorticity lines normal to the flow
direction and parallel to the wall, as indicated by the vortex line on the left-hand side of
Fig. 3.3. Most end-wall–bound secondary-flow phenomena can be explained via deformation
of these vorticity lines (seeEqn. 3.85). They are shown on the left-hand side of Fig. 3.3 together
with the resulting vortex system.

∗This means that surfaces of constant pressure and surfaces of constant density are coplanar.
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Figure 3.3.: Left (adapted from Pöhler 2013): horseshoe vortex (HSV), passage vortex (PV),
and cross-passage flow (CPF); right: trailing filament vortex (TFV)

Horseshoe vortex

The horseshoe vortex is the secondary-flow structure which originates the furthest upstream:
it forms as the incoming boundary-layer vorticity lines impinge upon the leading edge of
the blade. The adverse pressure gradient caused by the potential field of the blade bends the
vorticity lines, which drape around the leading edge in a horseshoe-like shape. The vorticity
lines, now collinear with the streamlines, cause a helical motion of the latter and lead to the
formation of the horseshoe vortex.

Passage vortex

The passage vortex is a result of the flow turning within the passage. The vortex lines of the
incoming boundary layer undergo a change in orientation, since they remain roughly normal
to the flow direction. The conservation of angular momentum necessitates the generation of
a negative stream-wise vorticity component in order to compensate for this realignment of
the vorticity vectors. This process can be understood as analogous to the effect of gyroscopic
precession experienced by solid bodies. The induced rotational velocity field gives rise to the
cross-passage flow.

Trailing filament vortex

The trailing filament vortex is caused by the differences in stream-wise acceleration between
the pressure side of a blade and the suction side of the neighbouring blade, as shown on
the right-hand side of Fig. 3.3. For the sake of visual clarity, the vorticity of the incoming
boundary layer is depicted as a vortex tube, even though it does not form a coherent vortex,
but merely a region of rotational flow. The differential acceleration in the passage causes
strong stretching and bending near the suction side, i.e., an increase in vorticity with a
simultaneous decrease in the cross-sectional area of the vortical flow region. The result of
this simultaneous increase in vorticity and alignment with the flow is the trailing filament
vortex.
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Figure 3.4.: Left: bound and free vortex for two-dimensional aerofoil; right: three-
dimensional vortex system (adapted from Schlichting and Truckenbrodt 2001)

3.5.2. Blade-bound secondary flow

The blade-bound secondary-flow phenomena are closely tied to the generation of dynamic
lift. Considering a two-dimensional potential flow around a lift-generating aerofoil, the
flow can be decomposed into a purely translational component and a circulation around the
aerofoil. This circulation is commonly referred to as the bound vortex. As shown in Fig. 3.4,
a free vortex of equal and opposite circulation must then form downstream of the aerofoil
due to the conservation of circulation in inviscid fluids, which is expressed in Thompson’s
theorem:

dΓ
d𝑡 ≡ 0. (3.86)

Now considering a three-dimensional wing of finite span, the bound vortex is represented
by a vortex line going through thewing along its span. Helmholtz’s third theorem∗, however,
states that a vortex line in an inviscid fluid must be closed or end on the boundary of the
flow domain (von Helmholtz 1858). The resulting system of bound vortex, free vortex and
trailing vortices is shown in Fig. 3.4. This explanation, using Prandtl’s lifting-line theory is,
of course, heavily simplified.

To add to the accuracy, and complexity, of this simple representation of a wing, it must
be considered that the wing does not generate the same lift at each span-wise position.
Rather, the lift decreases approaching the wing tips. This is equivalent to a decrease in
bound circulation. Again, invoking Prandtl’s lifting line theory and dividing the wing into
infinitesimal span-wise sections, starting from the symmetry plane and proceeding towards
its tip, it can be determined that the circulation decreases by dΓ from one section to the
next. Every section is, consequently, associated with a trailing vortex line of infinitesimal
circulation. While the trailing vortex lines are now spread across a greater cross-sectional
area, their total circulation remains the same as in the first case.

∗The order in which Helmholtz’s theorems are numbered varies in the literature. Here, the numbering has
been chosen according to von Helmholtz (1858).
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Figure 3.5.: Left: tip-leakage vortex (adapted from Mimic et al. 2018a); right: trailing shed
vortices

Tip-leakage vortex
The formation of the tip-leakage vortex in a turbine, as shown in Fig. 3.5, can be explained
using the same model described in the previous paragraph. The proximity of the blade
to the casing, however, causes some differences in the span-wise loading distribution and,
ultimately, in the shape of the vortex. These differences are caused on one hand by the limited
gap between the blade and casing, which limits themass-flow rate of the tip-leakage flow, and
on the other hand by the casing boundary layer, which can reduce the aerodynamic loading of
the tip region of the blade. In addition, a higher degree of three-dimensionality and viscous
effects can be expected where the casing boundary layer and tip-leakage vortex interact.
These influences, however, are highly dependent upon the blade and casing geometry and
exceed the scope of this work.

Trailing shed vortex
The end-wall boundary layers, as mentioned in the previous paragraph, reduce the blade
loading and, thus, the circulation in the near-wall regions. This causes the formation of the
trailing shed vortex in a similar manner to the trailing vortices and the tip-leakage vortex as
illustrated in Fig. 3.5.
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Chapter 4.

Theory

The aim of this chapter is to devise a coherent theory that approaches the problem of turbine-
induced boundary-layer stabilisation in annular diffusers. To approach the problem, the
stabilisation process will be subdivided into a stream of “events”. The sensitivity of each
event towards the preceding one will then be evaluated. Starting with simple considerations
about the relationship between the static-pressure recovery of the diffuser and the effective-
area reduction due to boundary layers, the focus will move on to the stabilisation process
taking place between the vortex and boundary layer, the transport of vortices and, finally,
upstream towards the generation of vortices in the rotor and the link to certain integral rotor
parameters.

4.1. Ideal reference

The first step towards a quantitative understanding of turbine–diffuser interactions is to
define a suitable reference flow. This reference problem should be accessible algebraically, yet
resemble the flow problem considered as closely as possible. It is then necessary to quantify
the deviations of the real flow from this idealised view. The reference flow was introduced
earlier in the form of the inviscid diffuser flow with homogeneous inlet swirl. Therefore,
instead of the static-pressure recovery, the diffuser effectiveness will be considered, which is
the ratio of the effective static-pressure recovery to the ideal static-pressure recovery with
inlet swirl as defined in Eqn. (1.21). Using the effectiveness, most swirl-induced effects
can be neglected and the focus can be placed on the axial components of the diffuser flow.
Consequently, all changes in effectiveness can be attributed to inhomogeneities in the inlet
flow field and viscous effects inside the diffuser.

4.2. Diffuser blockage

Although the increase in effective area ratio is, by definition, a result of a decrease in the
blockage caused by boundary layers, it occurs in two distinct ways. The first way is a simple
reduction in boundary layer thickness due to viscous interaction with the free stream. The
second way is a delay in separation onset caused by changes in the boundary-layermomentum.
The purely geometric impact of each way will be considered first, before approaching the
underlying driving mechanisms. Evidently, only the first way is relevant in diffusers with
fully attached boundary layers.

To determine how a change in boundary-layer displacement thickness affects the static-
pressure recovery, an annular diffuser with constant hub radius and diverging outer walls is

39



Chapter 4. Theory

𝑟cas,in

𝐴in

𝑥sep Δ𝑥sep,shifted

𝛿

 

𝐴out,eff

𝐴out,eff,shifted

Figure 4.1.: Shifted location of separation onset and resulting difference in effective area
ratio (adapted from Mimic et al. 2018c)

considered. With the exception of the boundary layers, the flow is assumed to be inviscid
and the boundary layer at the hub is assumed to remain constant. For easier notation, the
hub boundary layer is absorbed into the already displaced hub radius 𝑟∗

hub. Expanding the
definition in Eqn. (1.34), the effectiveness is then given as

𝜖 =
1 − [ (𝑟cas,in−𝛿∗

in)2−(𝑟∗
hub)2

(𝑟cas,out−𝛿∗
out)

2−(𝑟∗
hub)2 ]

2

1 − [
𝑟2
cas,in−𝑟2

hub

𝑟2
cas,out−𝑟2

hub
]

2 . (4.1)

Because the changes in 𝛿∗ are small compared to 𝑟, higher order terms of 𝛿∗ are negligible.
From this, it can be inferred that the effect is not dominant for highly loaded diffusers.

In contrast, the connection between the boundary-layer separation and the change in
diffuser effectiveness can be expected to be more dominant in these highly loaded diffusers.
Mimic et al. (2018c) considered the diffuser shown in Fig. 4.1 and assumed, for the sake
of simplicity, inviscid flow and a uniform velocity distribution at the diffuser inlet, where
the circumferential flow components are neglected. Further assuming a circumferentially
homogeneous flow, the problem can be regarded as two-dimensional.

Upon entering the divergent part of the duct, the flow initially remains attached until
𝑥sep, where massive flow separation occurs abruptly. Obviously, an inviscid flow does
not experience flow separation, which means that the sudden separation is imposed as a
boundary condition in this thought experiment. Not accounting for any viscous effects,
Mimic et al. (2018c) assumed that there is no appreciable static-pressure rise downstream
of the location of separation onset. The streamlines downstream of the separation are, thus,
aligned horizontally. While the last assumption is not accurate for a viscous flow, where
static-pressure recovery can still be observed downstream of the separation onset (Senoo
and Nishi 1977b), it proves useful in isolating the influence of the spatial shift in the location
of separation onset.
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It follows from the assumptions stated that the effective area ratio, which is defined
similarly to Eqn. (1.15), i.e.,

𝔄eff =
𝐴out,eff

𝐴in
, (4.2)

is significantly lower than the geometric area ratio of the entire diffuser if the flow separates
far enough upstream. To express the effective area ratio in terms of the diffuser half-opening
angle and location of separation onset, basic trigonometry can be used as shown by Mimic
et al. (2018c):

𝔄eff (𝑥sep, 𝛿) = 1 +
1

𝐴in
[𝜋𝑥sep tan (𝛿) (2𝑟cas,in + 𝑥sep tan (𝛿))] . (4.3)

To determine the sensitivity of the effectiveness towards a downstream shift of the sepa-
ration onset, i.e., the process of boundary-layer stabilisation, the partial derivative of the
effectiveness is formed with regard to the location of separation onset, i.e., 𝑥sep:

𝜕𝜖
𝜕𝑥sep

=
1

𝑐𝑝,id

𝜕𝑐𝑝,eff

𝜕𝑥sep
=

1
𝑐𝑝,id

2
𝔄3
eff

⎛⎜
⎝

𝜕𝔄eff
𝜕𝑥sep

⎞⎟
⎠
. (4.4)

The fully expanded expression is obtained by differentiating Eqn. (4.3) with regard to 𝑥sep
and inserting the result into Eqn. (4.4), i.e.,

𝜕𝜖
𝜕𝑥sep

=
1

𝑐𝑝,id

4𝜋
𝐴in

tan (𝛿) (𝑟cas,in + 𝑥sep tan (𝛿))

[1 + 𝜋
𝐴in

𝑥sep tan (𝛿) (2𝑟cas,in + 𝑥sep tan (𝛿))]
3 . (4.5)

The right-hand side of the above equation returns strictly positive values for diffuser
half-opening angles greater than zero. Figure 4.2 shows solutions of Eqn. (4.5) for several
diffuser half-opening angles.

It appears that steeper opening angles yield a higher sensitivity of the effectiveness if the
location of separation onset is shifted in the first third of the diffuser: for steeper opening
angles, the same axial shift of the separation onset yields a greater increase in effective
cross-sectional area. This trend is reversed in the remaining diffuser, where steeper opening
angles are less sensitive towards the axial shift. The reason for this behaviour can be found in
the definition of the ideal static-pressure recovery coefficient. According to Eqn. (1.20), the
ideal static-pressure recovery coefficient is determined solely by the area ratio and exhibits
an initially steep slope, which decreases as 𝑐𝑝,id approaches unity, i.e., any further increase in
the area ratio produces a diminishing increase in static-pressure recovery. A steeper opening
angle causes the ideal static-pressure recovery to converge faster and, therefore, flatten out
earlier than shallower half-opening angles. Because diffusers with steeper half-opening
angles tend to exhibit flow separation further upstream, the following hypothesis is inferred:

Hypothesis 4.1. The sensitivity of the diffuser effectiveness towards a given stabilising
vortex increases with the diffuser opening angle.
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Figure 4.2.: Derivative of the diffuser effectiveness towards the location of separation onset
versus non-dimensional location of separation onset according to Eqn. (4.5) for
different diffuser half-opening angles

4.3. Vortex–boundary-layer interaction

A rigorous, yet accessible description of the interaction process between vortex and boundary
layer proves to be distinctly more difficult than for the effect of boundary-layer induced
blockage. To achieve this, viscous effects must be considered, as viscosity enables the vortex
to exchange mass and momentum with the boundary layer.

As laid out in Sec. 3.3, incompressible boundary-layer flows are governed by the laws of
conservation of mass and momentum. The one-dimensional representations of boundary
layers given in Secs 3.3.3 and 3.3.4 connect the boundary layer to the free stream by defining
an exchange of momentum and mass through the acceleration term in Eqn. (3.63) and the
entrainment relationship in Eqn. (3.66). As mentioned initially, Bardina et al. (1982) devel-
oped a one-dimensional prediction method for attached and separated diffuser flows. The
method provided accurate results for a wide range of test cases. However, the method of Bar-
dina et al. (1982) has been devised to predict the behaviour of diffusers with homogeneous
inflow. This raises the question:

Can this approach be used to predict the stabilising effect of tip-leakage vortices on
boundary layers in diffusers?
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Figure 4.3.: Example of an interaction between a Lamb–Oseen vortex and a boundary layer

4.4. Vortex model

In order to gain some insight into this question, a simple vortex model is developed in this
thesis and integrated into the diffuser prediction method of Bardina et al. (1982). The
implementation is listed in in Lst. A.1 in App. A.

Again, the use of several assumptions and simplifications will be necessary. Still viewing
the flow as two-dimensional, a Lamb–Oseen vortex (see Sec. 3.4.1) with the circulation Γ is
considered, which is convected closely along the free-stream edge of a boundary layer: this
thought experiment is visualised in Fig. 4.3.

Momentum
As a starting point, it is assumed that the vortex exchanges momentum with its environment
by means of shear stresses. More precisely, it is assumed that the vortex exerts a shear stress
upon the free-stream edge of the boundary layer which is proportional to its circulation,
as can be inferred from Eqn. (3.83). Because the strain rate is, by definition, zero at the
free-stream boundary of an undisturbed boundary layer, the shear stress is merely a function
of the vortex. Consequently, the following can be hypothesised:

Hypothesis 4.2. The stabilisation of the boundary layer does not depend upon the momen-
tum deficit of the boundary layer, but only upon the circulation of the vortex.

This is evidently tied to the presumption that the boundary layer remains in the same
flow regime, i.e., that it either remains fully laminar or fully turbulent. The inclusion of
transition would imply strong non-linearities in the behaviour of the boundary layer and is,
therefore, not applicable to the following approach.

Furthermore, the above hypothesis may not be valid if the boundary layer is massively
separated at the initial point of interaction, i.e., at the diffuser inlet. In this case the vortex
would be partially or entirely submerged in the boundary layer, resulting in a significantly
more complex interaction where the strain rate caused by the boundary layer would affect
the vortex decay.

To transfer these rather general thoughts into a quantitative description, it is further
assumed that the vortex trajectory is located just outside the boundary layer and that the
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vortex is in contact with the boundary layer at the radius of maximum shear stress. As can
be derived from Eqn. (3.83), the strain rate and, therefore, shear stress reach their maximum
at approximately 1.34 r0, which is assumed to be the distance between the vortex centre
and the free-stream edge of the boundary layer. To calculate the shear stress, Eqn. (3.83)
is—consistent with the method of Bardina et al. (1982)—non-dimensionalised using the
following transformations:

Γ0
+ ∶=

Γ0
2𝜋𝑟Euler,in 𝒰∞,in

(4.6)

for the circulation,
𝑟+ ∶=

𝑟
𝒲in

(4.7)

for the radial coordinate,

𝑡+ ∶= 𝑡
𝒰∞,in

𝒲in
(4.8)

for the time coordinate, and

ReℓD =
𝒰∞,inℓD

𝜈 + 𝜈turb
(4.9)

for the kinematic viscosity, where the molecular viscosity has been replaced by the sum
of molecular and turbulent viscosity to express the effect of turbulence. According to Hall
(1966), citing an unpublished analysis of literature data by Owen (1964), the turbulent
viscosity of trailing vortices correlates with their circulation:

𝜈turb = 𝐶√Γ𝜈, (4.10)

where 𝐶 is a non-dimensional constant with values reported between 0.21 and 0.63.
The resulting non-dimensional strain-rate distribution

𝑆𝑟𝜃
+ =

Γ0
+ReℓD
4𝜋𝑡+

⎛⎜⎜
⎝

1 +
4𝑡+

ReℓD𝑟+2
⎞⎟⎟
⎠
e−

ReℓD
𝑟+2

4𝑡+ −
Γ0

+

𝜋𝑟+2 (4.11)

is used to calculate the non-dimensional shear-stress distribution, i.e.,

𝜏𝑟𝜃
+ =

𝑆𝑟𝜃
+

ReℓD
(4.12)

which is then expressed in terms of a non-dimensional shear velocity,

𝑢𝜏
+ ∶= − sgn(𝜏𝑟𝜃

+) √|𝜏𝑟𝜃
+|, (4.13)

where the density is omitted due to the assumption of incompressible flow and the use of
non-dimensional quantities. The negative of the sign function is used in order to express the
shear stress experienced from the boundary-layer reference frame. In analogy to Eqn. (3.69),
a “vortex-friction” coefficient is defined as

𝐶f,Ω ∶= 2𝜅2 ∣𝑢𝜏
+∣ 𝑢𝜏

+ (4.14)
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and subtracted from the right-hand side of Eqn. (3.71):

(1 − ℎ + 𝐶2) + 2𝐵 (2 − 2ℎ + 0.015/Λ)
𝐵 (1 − 2𝐵)

d𝐵
d𝑥1

+ − 𝐶1
dΛ
d𝑥1

+ =
𝐶f/2 + 𝛽𝐸+

𝐵 𝒲+

+ (2 − 2ℎ + 0.015/Λ)
1

𝒲+
d𝒲+

d𝑥1
+

− (1 − ℎ)
1

𝑟m+
d𝑟m+

d𝑥1
+

− 𝑐Ω𝐶f,Ω , (4.15)

where 𝑐Ω is a calibration constant; the corresponding numerical value is given in App. A.
Again, because the vortex-induced shear stresses appear as a constant inhomogeneous term
in this ordinary differential equation, it can be inferred that the vortex circulation affects
the stabilisation process linearly. Since the skin-friction term and vortex-stress term have
opposite signs, it can be easily seen that the vortex acts in a stabilising manner:

Hypothesis 4.3. Shear stresses imposed by a vortex with a mathematically positive sense of
rotation increase the boundary-layer stability in proportion to the vortex circulation.

Mass
Prompted by the entrainment mechanism drawing free-stream fluid into the boundary layer,
the question arises whether similar processes occur on larger scales when macroscopic
vortices are in play.

Cutler and Bradshaw (1993b) observed that a boundary layer in close proximity to
longitudinal vortices experiences local separation of boundary-layer fluid in the upwash
region with a subsequent increase in the boundary-layer thickness and a decrease in the
skin-friction coefficient. The separated fluid is reported to be entrained into the vortex,
thus reducing the vortex circulation. Cutler and Bradshaw (1993a) showed for a similar
case—albeit with a greater distance between the vortex pair and boundary layer—an increase
in the boundary-layer thickness in the upwash region without flow separation. The data
provided for the skin-friction coefficient and momentum-thickness Reynolds number allow
the estimation of a slight increase in the shape factor 𝐻 in the upwash region using the
following relationship by Ludwieg and Tillmann (1949):

𝐶f = 0.246 ⋅ 10−0.678𝐻Re−0.268
𝜗 . (4.16)

The estimated increase in 𝐻 would imply less resilience of the boundary layer against flow
separation under a hypothetical adverse pressure gradient. Unfortunately, no such data are
provided in the first case, where the vortices are convected more closely along the boundary
layer.

The case presented by Cutler and Bradshaw (1993b) certainly differs significantly from
the flows considered in this work, as the cited study considers a flow where the vortex axes
and boundary-layer flow are aligned and the effects induced are oriented predominantly in
the cross-wise direction. It does, however, suggest that the process of entrainment plays a
role in vortex-induced changes in diffuser stability.
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The effect of vortex-induced entrainment is assumed to be a function of the vortex-induced
shear stress at the boundary-layer edge. It is added as an inhomogeneous term to the right-
hand side of Eqn. (3.72), i.e.,

1
𝐵 (1 − 2𝐵)

d𝐵
d𝑥1

+ −
1

Λ (1 − Λ)
dΛ
d𝑥1

+ = 𝐸+ −
1

𝑟m+
d𝑟m+

d𝑥1
+ + 𝑐𝐸𝐶f,Ω , (4.17)

where 𝑐𝐸 is a calibration constant; the corresponding numerical value is given in App. A.
This leads to the following hypothesis:

Hypothesis 4.4. Entrainment of boundary-layer fluid into the vortex decreases the boundary-
layer stability in proportion to the vortex circulation.

Again, this may not be valid in the case where a weak vortex encounters a massive
boundary layer separation at the initial point of interaction.

Vortex decay
Beside the dissipation inherent to the Lamb–Oseen vortex, it can be expected that the inter-
action with a boundary layer yields an intensified decay of the vortex. Thinking in terms of
Eqns (4.15) and (4.17), this can be explained as follows:

Firstly, in order to transmit momentum to the boundary layer, the vortex must exert a force
upon it. It follows from Newton’s third law of motion that an equal and opposite force acts
upon the vortex, thereby exerting a torque about its centre. Since this torque opposes the
sense of rotation of the vortex, its circulation diminishes.
Secondly, the vortex entrains boundary-layer fluid if it passes closely enough. Cutler

and Bradshaw (1993b) explained that the boundary-layer vorticity is of the opposite sign
compared to the vortex. As a result, the overall vorticity—and, ergo, circulation—of the
vortex are reduced.

Since both forms of interaction are governed by shear stresses, it can be deduced that the
vortex decay is also proportional to the shear stresses at the interface between the vortex
and boundary layer. The shear stresses, in turn, are a function of the vortex circulation.
Consequently, it is to be expected that the circulation decrease depends solely upon the
circulation of the vortex. In the prediction method proposed, this is realised by reducing
the vortex circulation at each solver step by

dΓ = −2𝜋𝑟𝜏=max𝑐dΓ𝑢𝜏
+ (4.18)

where 𝑐dΓ is, again, a calibration constant. The corresponding numerical value is given in
App. A. This leads to the following statement:

Hypothesis 4.5. The vortex decay does not depend upon the momentum deficit of the
boundary layer, but only upon the vortex circulation.

4.5. Vortex generation

The tip-leakage vortex, which was identified as the structure stabilising the boundary layer
in previous works (see Sec. 2.1.4), is generated at the tip of a blade, akin to a trailing vortex
generated at the tip of awing (see Sec. 3.5). Its vorticity is a function of the span-wise decrease
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𝑟Euler

Integration path

Figure 4.4.: Integration domain for blade-row circulation

in blade loading, i.e., in blade circulation (see Sec. 3.5); this reduces to a dependency upon
the blade circulation if a constant aspect ratio and tip gap, as well as incompressible flow,
are presumed. To relate the vortex generated to its stabilising influence on the boundary
layer, three parameters can be identified which will be discussed below.

Vortex intensity
Using the non-dimensional circulation introduced in Eqn. (4.6), the following relationship
is postulated:

𝜖 = 𝒻 (
Γ

2𝜋𝑟Euler𝑢𝑥
) . (4.19)

Assuming constant density, the non-dimensional circulation may be understood as the ratio
of the tangential momentum of the vortex to the axial momentum of the free stream and, by
extension, the momentum deficit of the boundary layer of a given diffuser.

As indicated in Fig. 4.4, the circulation contained in the outflow from a blade row can be
expressed purely as the difference between the absolute circumferential velocities at the
inlet and outlet planes of the row (Schlichting and Truckenbrodt 2001) integrated along
the entire circumference of the rotor. For the sake of simplicity, the circumference at the
Euler radius is chosen here. This yields

Γ
2𝜋𝑟Euler𝑢𝑥

=
2𝜋𝑟Euler (𝑢𝜃,1 − 𝑢𝜃,2)

2𝜋𝑟Euler𝑢𝑥
=

Δ𝑢𝜃
𝑢𝑥

. (4.20)

By expanding Eqn. (4.20) with the rotor speed at the Euler radius, it follows that

Δ𝑢𝜃
𝑢𝑥

⋅
𝑣rot
𝑣rot

=
Δ𝑢𝜃
𝑣rot

⋅
𝑣rot
𝑢𝑥

=
Ψ
Φ (4.21)

where Ψ is the loading coefficient,

Ψ ∶=
Δ𝑢𝜃
𝑣rot

, (4.22)

and Φ is the flow coefficient,
Φ ∶=

𝑢𝑥
𝑣rot

. (4.23)
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𝛼
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Vortex trajectory

∝ 𝑣rot cos 𝛼

𝑢

Figure 4.5.: Projection of axial vorticity onto the stream-normal direction

The posited relationship between the non-dimensional circulation and the non-dimensional
term Ψ/Φ is strictly applicable to quantify the circulation of the tip-leakage vortices only
if a highly idealised, inviscid flow is assumed where the vortices trail the blade tips as
concentrated vortex lines. A proportionality between the blade circulation and the circulation
of the tip-leakage vortex can, however, be expected as long as the span-wise aerodynamic
blade-loading distribution remains unchanged. Certain circumstances, such as changes in
the span-wise velocity distribution upstream of the blade row or partial flow separation
on the blades at high incidence, may preclude this proportionality. Similarly, the effect of
varying aspect ratios is not included in this relationship.

Vortex orientation
The above equation gives, by definition, the circulation in the outlet plane of the control
volume shown in Fig. 4.4. It follows from Stokes’ theorem that this circulation can be
translated into a vorticity normal to the outlet plane. However, the vorticity component
normal to the flow direction is relevant to the boundary-layer stabilisation.

Because the overall vorticity vector is presumably collinear with the vortex trajectory, two
points on the vortex trajectory are considered which were generated with a time delay of
Δ𝑡. The axial distance between the two points is evidently ΔΩ,𝑥 = 𝑢𝑥Δ𝑡. The distance in
the circumferential direction is ΔΩ,𝜃 = (|𝑣rot| + |𝑢𝜃|) Δ𝑡. This is invariant with respect to the
frame of reference.

A fluid element leaving the rotor, outside the vortex, for the same time span Δ𝑡, would still
travel a distance of Δ∞,𝑥 = 𝑢𝑥Δ𝑡 in the axial direction. The distance in the circumferential
direction, however, would only be Δ∞,𝜃 = |𝑢𝜃|Δ𝑡. The ratio of Δ∞,𝑥 to Δ∞,𝜃, in turn, is
determined by the absolute outflow angle 𝛼.

Figure 4.5 shows that the projection of the axial vorticity component Ω𝑥 onto the absolute
outflow angle is, therefore, Ω𝑥/ cos 𝛼. To obtain the vorticity component normal to the
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outflow, Ωn, the angle 𝜑 between the vortex trajectory and the outflow direction must be
determined:

tan (𝜑) =
𝑣rot cos 𝛼
𝑢𝑥 cos 𝛼 =

𝑣rot
𝑢𝑥

=
1
Φ . (4.24)

It follows that
Ωn =

1
Φ cos 𝛼Ω𝑥. (4.25)

The relationship between the flow coefficient and the vortex orientation assumes a constant
circumferential angle of the vortex trajectory. In real diffuser flows, however, the stream-
wise deceleration of the flow will cause a certain amount of vortex bending, as expressed
in Eqn. 3.85. Notwithstanding, it is assumed that the variation of this effect is rather small
for a given diffuser and that the initial orientation dictates the subsequent trajectory, for the
most part. Regarding the comparison of diffusers with different opening angles, the effect
of vortex bending will be absorbed in the sensitivity of the diffuser effectiveness towards
the diffuser opening angle.

Vortex duty cycle
Unlike posited in Ass. 1.1, the actual stabilisation process is not steady, since the boundary
layer experiences stabilisation only when a vortex passes by. In this simplified model,
however, the flow can be regarded as quasi-steady due to the periodic nature of the stabilising
vortices. The stabilisation must then be related to parameters describing the periodicity of
the stabilising vorticies.

The term duty cycle is adapted from the field of electrical engineering∗, where a duty cycle
or duty factor is understood as the fraction of a signal period during which a signal can be
measured. Similarly, in the context of this work, the vortex duty factor refers to the fraction
of a blade passing during which a vortex core passes by a stationary point in the diffuser
boundary layer. It is, thus, equivalent to the ratio of the diameter of a vortex core to the
blade pitch ℓp. Expressed in time scales, this gives

𝐹 ∶=
𝒯Ω

𝒯BP
=

𝑣rot
ℓp

ℓΩ
𝑢𝑥

=
𝑣rot𝑛

2𝜋𝑟Euler

ℓΩ
𝑢𝑥

. (4.26)

In wind-tunnel experiments, McAlister and Takahashi (1991) measured that the trailing
vortex of a NACA-0015 half wing increased almost quadratically with increasing chord
length. Because the experiment was performed for a single, free-standing half wing and
because the authors kept a constant thickness-to-chord ratio, it is questionable whether these
results are quantitatively applicable to the case discussed here; they do however show that
a positive relationship exists. Nevertheless, in the absence of more specific data, a linear
dependency between the vortex-core diameter and the characteristic length is assumed, i.e.,

ℓΩ ∝ ℓch, (4.27)

which yields

𝐹 =
𝑣rot𝑛ℓch

2𝜋𝑟Euler𝑢𝑥
(4.28)

∗The term is also used in the context of intermittent flow actuation, e.g., by means of pulsed jets.
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where 𝑛 is the blade count and where the chord was chosen as the characteristic length. This
is equivalent to the definition of the non-dimensional blade-passing frequency,∗

𝐹 =
𝑓BPℓch

𝑢𝑥
=

𝑛𝑁ℓch
𝑢𝑥

, (4.29)

where 𝑁 is the rotor speed.
The above derivations of the vortex duty factor require the assumption that the vortex-core

diameter is independent from the blade pitch and the aspect ratio. The vortex-core diameter
is, however, related to the aspect ratio and aerodynamic blade loading (see McAlister and
Takahashi 1991), the latter of which changes with varying pitch-to-chord ratio (see Traupel
2001). While the impact of an altered blade loading is, at least partially, expressed by the
loading coefficient, the impact of a variation in the aspect ratio is not. Because the data
which will be used to evaluate the validity of the theory derived in this chapter were all
collected for a constant aspect ratio, this parameter is not included here.

Vortex characterisation
By multiplying the vortex parameters derived in Eqns (4.21), (4.25), and (4.29), which
express the respective contributions of the vortex intensity, orientation, and duty cycle to
the boundary-layer stabilisation process, the following stabilisation number Σ is defined:

Σ ∶=
Ψ𝐹

Φ2 cos 𝛼
. (4.30)

Due to the relationships between the individual events in the diffuser-stabilisation process,
which are predicted to be linear, the following hypothesis can be proposed:

Hypothesis 4.6. The diffuser effectiveness 𝜖 increases linearly with the stabilisation number
Σ.

The corresponding correlation is, therefore, expected to assume the following general
form, where the subscript “ref” indicates values at the reference operating point, e.g., for
Σref = 0:

Δ𝜖 = 𝜖 − 𝜖 (Σref) = 𝑎ΣΣ. (4.31)

Several further parameters, beside the ones already named in the respective sections, will
likely impact the relationship posited—the Reynolds and Mach number being the most
prominent ones. The diffuser data presented later in this work, however, were all collected
for a narrow range of both parameters, thus, precluding the assessment of this assertion.

4.6. Total-pressure losses

As stated initially, it is in the interest of turbomachinery designers to reduce the total-pressure
losses generated in the diffuser. For a proper comparison of the losses generated in various
test cases, it is necessary to include the influence of several phenomena which have not
yet been considered in this work. These phenomena represent inflow inhomogeneities in

∗This non-dimensional parameter is also often referred to as the Strouhal number.

50



4.6. Total-pressure losses

general and wakes in particular. To achieve this, the overarching approach will be to use
an aerodynamically unloaded reference—which does not exhibit secondary flow—and to
extrapolate the total-pressure losses to the operational conditions of interest. It must be noted
that the following derivations of the extrapolation function are likely to be highly rotor-
specific and ignore the probable contributions of varying Reynolds and Mach numbers.
The intention is, however, to demonstrate that such an approach towards loss prediction at
the design stage of diffusers is possible.
The first, most obvious correction follows from the definition of the total-pressure loss

coefficient (see Eqn. 1.27): the total-pressure losses scale with the dynamic pressure at the
diffuser inlet, i.e.,

Δ𝑝tot ∝
𝜌
2𝑢2

in. (4.32)

The second correction expresses the presumably linear relationship between the wake
losses and the characteristic length as well as the number of blades, here expressed as the
chord-to-pitch ratio, i.e., the solidity of the rotor:

Δ𝑝tot ∝
ℓch
ℓp

. (4.33)

The third correction to be applied is related to the diffuser swirl angle 𝛼. It is intuitive
that the dissipative processes occurring in the diffuser are likely to scale linearly with the
flow-path length travelled by the fluid. Any deviation from an axial inflow leads to an
increase in flow-path length, as expressed by

Δ𝑝tot ∝
1

cos 𝛼 . (4.34)

Of course, this relationship is bound to flatten for very long diffusers where a homogeneous,
mixed-out flow is achieved.
The fourth and final correction is somewhat less self-evident; it is also perhaps the most

rotor-specific relationship proposed in this section and attempts to predict the breadth
and depth of the wakes from design parameters. For most aerofoils, a change in the rotor
incidence increases the area obstructed by the blades and is, at the same time, likely to yield
thicker boundary layers (Mimic et al. 2018b). A change in incidence is indicated by a change
in the flow coefficient for a given rotor geometry. It follows that

Δ𝑝tot ∝ ∣Φ − Φdesign∣ . (4.35)

The above relationships are used to define the following extrapolation factor Ξ:

Ξ ∶=
𝜌
2𝑢2

in
𝜌ref
2 𝑢2

in,ref

ℓch/ℓp
ℓch,ref/ℓp,ref

cos 𝛼ref
cos 𝛼

⎡⎢
⎣
1 +

∣Φ − Φdesign∣
Φref

⎤⎥
⎦
. (4.36)

If the tip-leakage vortices are able to stabilise the boundary layer, it is to be expected
that the losses related to the boundary-layer will decrease. An increase in the stabilisation
number, however, is in most cases tied to an increased intensity of the tip-leakage vortices.
Consequently, the vortex-induced losses should increase. At this point, it is not predictable
whether the reduction in the boundary-layer losses or the increase in vortex losses will
prevail. For now, however, the more optimistic hypothesis is chosen:
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Hypothesis 4.7. The total-pressure loss coefficient 𝜁 of the diffuser decreases linearly with
an increasing product of the extrapolation factor and the stabilisation number, i.e., ΞΣ with
regard to an extrapolated reference Ξ𝜁ref.

The expected correlation can be given the following general form:

ΔΞ𝜁 = 𝜁 − Ξ𝜁ref = 𝑎ΞΣΞΣ. (4.37)

For the sake of convenience, ΔΞ𝜁 and ΞΣ will be referred to as the extrapolated change in
total-pressure losses and extrapolated stabilisation number, respectively.

52



Chapter 5.

Method

5.1. Validation approach

The data-acquisition process for the validation of the theory proposed can be subdivided into
several key steps. Generally speaking, Hyps 4.6 and 4.7 are to be tested using experimental
data. Additionally, partially scale-resolving simulations using the scale-adaptive simulation
(SAS) method by Menter and Egorov (2010) were conducted and validated with the same
experimental data (Mimic et al. 2018a). The numerical model was then adapted to suit
different diffuser half-opening angles in order to test the theory beyond the experimental
data available. A chronological enumeration of the steps is given below.

1. Mimic et al. (2018a): Experimental data were collected from experiments conducted
previously on the low-speed axial-diffuser test rig of the Institute of Turbomachinery and
Fluid Dynamics at Leibniz Universität Hannover by Kuschel (2014)∗ for a diffuser
with a half-opening angle of 15°. These published data contain information about
the mass-flow rate, rotor speed, flow coefficient of the rotor, and swirl angle at the
diffuser inlet as well as static-pressure recovery in the diffuser control domain. The
input quantities mass-flow rate, rotor speed, flow coefficient, and swirl angle were
used to estimate the loading coefficient and non-dimensional blade-passing frequency
of the rotor. The stabilisation number was determined from the loading coefficient,
flow coefficient, and non-dimensional blade-passing frequency. Additionally, the
ideal static-pressure recovery coefficients and corresponding values of the diffuser
effectiveness were calculated for each data point using the diffuser opening angle and
inlet swirl angle. A correlation between the values of the stabilisation number and
effectiveness was derived.

2. Mimic et al. (2018a): Numerical flow simulations were conductedwithin a range of the
stabilisation number comparable to the experiments using the partially scale-resolving
scale-adaptive simulation (SAS) approach to validate the numerical flow prediction
and confirm the correlation derived from experimental data.

3. Mimic et al. (2018a): Supplemental experimental data were provided to further
increase the validity of the correlation.

4. Mimic et al. (2018b): A correlation between the stabilisation number and extrapo-
lated total-pressure loss coefficient† was derived for experimental and numerical data.

∗see also Kuschel et al. (2015)
†Mimic et al. (2018b) referred to this as the rectified total-pressure loss coefficient.

53



Chapter 5. Method

Inlet section
Rotor section
Annular diffuser
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Investigated section

Figure 5.1.: Low-speed axial-diffuser test rig at the Institute of Turbomachinery and Fluid
Dynamics (simplified)

The measurements were taken during the same experiments as the supplemental
experimental data mentioned previously and presented by Mimic et al. (2018a).

5. Mimic et al. (2018c): Older experimental data from Sieker (2010)∗ were used to further
validate the correlation for a half-opening angle of 15° and expand the correlation to a
half-opening angle of 20°.

6. Mimic et al. (2018c): Numerical flow simulations were conducted for half-opening
angles of 5°, 10°, and 12°. All diffusers simulated exhibit a less severe aerodynamic
loading than the 15° diffuser. Their behaviour is, therefore, less critical to predict
numerically than for the validated 15° simulations. Simulations of the 20° diffuser did
not reach satisfying convergence due to full separation at the casing.

7. Mimic et al. (2019): The numerical data set used in Mimic et al. (2018c) was evaluated
further together with some additional simulation results and correlations between the
stabilisation number and extrapolated total-pressure loss coefficient† were derived for
the half-opening angles 5°, 10°, and 12°.

8. Present work: The present work uses solely the experimental data collected by Sieker
(2010)∗, Kuschel (2014)‡, Mimic et al. (2018a), and Mimic et al. (2018b) as well as
the numerical data set generated successively by Mimic et al. (2018a), Mimic et al.
(2018b), Mimic et al. (2018c), and Mimic et al. (2019). Because the numerical data set
was expanded gradually, the simulations will be referred to in the following simply
as numerical data or simulation data. All data have been reassessed. Several smaller
inaccuracies present in prior publications regarding the chord length and positions of
measurement planes have been corrected. The data have been correlated using the
improved formulations of Σ and ΞΣ given in Eqns (4.30) and (4.36).

∗see also Sieker and Seume (2008a)
†Mimic et al. (2019) referred to this as the rectified total-pressure loss coefficient.
‡see also Kuschel et al. (2015)
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Figure 5.2.: Test section comprising the rotor and annular diffuser

5.2. Experimental setup

All experiments were conducted on the low-speed axial-diffuser test rig at the Institute of
Turbomachinery and Fluid Dynamics at Leibniz Universität Hannover. The test rig was
initially designed by Fleige (2002)∗ and represents a model of a typical exhaust diffuser of a
heavy-duty gas turbine at a scale of approximately 1:10. Sieker (2010)† upgraded the test
rig for a rotor upstream of the diffuser in order to generate turbine-like wake and secondary-
flow structures at the diffuser inlet. A schematic of the test rig in its present configuration,
which is the one investigated in this work, is shown in Fig. 5.1. It comprises the following
sub-assemblies.

Inlet section
Ambient air enters the intake in a radially inward direction, where it passes an array of 30
adjustable sheet-metal swirl generators. The swirl generators were used in past studies. In
the experiments used in this work, however, all swirl generators were in the neutral position
to ensure swirl-free inflow. The flow is subsequently redirected into the axial direction
before entering the rotor.

Rotor section
The rotor section features constant radii for the hub and casing. The rotor used in this work
is equipped with either 15 or 30 blades with a span of 99.3% of the channel height and
an aspect ratio of approximately 4. The blades are unshrouded and consist of NACA-0020
aerofoils. The stagger angle varies across the blade span in order to satisfy incidence-free
inflow at the aerodynamic design point. Together with the symmetric shape of the NACA-
0020 aerofoil, this means that the blades exhibit no aerodynamic loading—and consequently
no considerable secondary flow—under design conditions. The rotor shaft is coupled to an
electric motor-generator with a maximum power of 4 kW, which operates between 100RPM
and 3000RPM. Together with the symmetric blades, this allows the generation of both
compressor and turbine-like outflow. In this work, only turbine-specific operating points
are considered. The rotor section is described in greater detail by Sieker (2010).†

∗see also Fleige and Riess (2001)
†see also Sieker and Seume (2008a)
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Annular diffuser
Upon exiting the rotor section, the flow enters an annular diffuser. The annular diffuser is
the component investigated in this work and has an area ratio of 1.78. Note that the control
domain, over which static-pressure recovery and total-pressure losses are evaluated, ranges
from 0.085ℓD to 0.96ℓD. Diffusers with half-opening angles of 15° and 20° were used. Due to
the fixed area ratio, the 15° diffuser has a non-dimensional length of 2.13, whereas the 20°
diffuser has a non-dimensional length of 1.55. The investigated section, comprising the rotor
and annular diffuser is shown in Fig. 5.2. More detailed information is given by Kuschel
(2014).∗

Conical Diffuser
The annular diffuser is followed by a conical diffuser with a half-opening angle of 5°. The
abrupt end of the hub at the outlet of the annular diffuser causes a jump in cross-sectional
area. The area ratio of the conical diffuser is, therefore, 2.88 and its non-dimensional length is
10.5. The conical diffuser is not considered in this work. However, more detailed information
is given by Kuschel (2014).∗

Settling chamber
A settling chamber with a flow straightener is located downstream of the conical diffuser.
This eliminates any residual swirl before the flow reaches the subsequent axial fan.

Axial fan
The mass flow is provided by an axial fan located in the outflow section of the test rig. The
fan has a power of 37 kW. It reaches a volume-flow rate of 8m3/s and a total-pressure rise of
approximately 2800 Pa near the point of peak efficiency.

Pneumatic measurements
Pneumatic measurements were conducted at the respective inlet and outlet planes of the
annular-diffuser control domain (0.085ℓD and 0.96ℓD) using radial probe traverses in order
to determine the swirl angle, static-pressure recovery, and total-pressure loss coefficient.
Sieker (2010)† and Kuschel (2014)∗ used three-hole probes, whereas Mimic et al. (2018a)
and Mimic et al. (2018b) used five-hole probes.

5.3. Numerical model

The simulations used in this work were conducted using the flow solver TRACE 8.2.417
(Turbomachinery ResearchAerodynamic Computational Environment), which is an ongoing
development by the German Aerospace Center (DLR, Deutsches Zentrum für Luft- und
Raumfahrt). The details of the numerical model shall be covered below.

5.3.1. Governing equations

TRACE solves the fully three-dimensional, compressible continuity equation, Navier–Stokes
equations, and the energy equation (see Sec. 3.1.6) together with additional scalar transport

∗see also Kuschel et al. (2015)
†see also Sieker and Seume (2008a)
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equations for, e.g., turbulent quantities in a rotating frame of reference. In their strong
conservative form, the governing equations may be formulated as

𝜕𝐔rel
𝜕𝑡 + 𝛁 ⋅ 𝐅rel = 𝐐rel, (5.1)

where 𝐔rel, 𝐅rel, and 𝐐rel represent the respective vectors of the state variables, fluxes, and
source terms in the rotating frame of reference. For the transport of mass, momentum and
energy, they are defined as

𝐔rel ∶=
⎛⎜⎜⎜
⎝

𝜌
𝜌𝐮rel

𝜌𝑒tot,rel

⎞⎟⎟⎟
⎠
, (5.2)

𝐅rel ∶=
⎛⎜⎜⎜
⎝

𝜌𝐮rel
𝜌𝐮rel ⊗ 𝐮rel + 𝑝𝐈 − 𝛕

𝐮rel (𝜌𝑒tot,rel + 𝑝) − 𝛕𝐮rel + 𝜆𝛁𝑇

⎞⎟⎟⎟
⎠
, (5.3)

𝐐rel ∶=
⎛⎜⎜⎜
⎝

0
𝐟c + 𝐟C

0

⎞⎟⎟⎟
⎠
. (5.4)

Here, 𝑒tot,rel is the total specific energy relative to the rotating reference frame,

𝑒tot,rel = 𝑒 +
1
2 𝐮 ⋅ 𝐮 −

1
2 𝐑sys ⋅ 𝐑sys ⋅ 𝐫 ⋅ 𝐫, (5.5)

where 𝑒 is the specific internal energy of the fluid. The source term 𝐟c denotes the volume-
specific centrifugal force,

𝐟c = −𝜌 𝐑sys × (𝐑sys × 𝐫) , (5.6)

where the vector 𝐑sys represents the angular velocity of the reference frame and 𝐫 a radial
vector. Likewise, 𝐟C denotes the volume-specific Coriolis force,

𝐟C = −2𝜌 𝐑sys × 𝐮rel, (5.7)

which expresses the conservation of angular momentum as a fictitious force in the rotating
frame of reference. A detailed discussion of the numerical intricacies of TRACE is given by
Morsbach (2016).

The gas is assumed to be calorically perfect (see Sec. 3.1.4). Its molecular viscosity 𝜇mol is
calculated from Sutherland’s law (see Eqn. 3.39).

5.3.2. Favre decomposition

Equation (5.1) would, if solved using a sufficiently fine mesh, resolve all scales of turbulence.
While this approach, termed direct numerical simulation (DNS), represents the closest ap-
proximation to the actual flow physics, it is also computationally highly expensive due to
the fine spatial and temporal resolution required.

To reduce computational cost, any dependent flow variable 𝜙 can be decomposed into a
mean and fluctuating component,

𝜙 ≡ 𝜙 + 𝜙″, (5.8)
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where 𝜙 represents a density-weighted time average, i.e.,

𝜙 ∶=
´

Δ𝑡 𝜌𝜙d𝑡´
Δ𝑡 𝜌d𝑡

. (5.9)

This so-called Favre decomposition can be applied to the governing equations. The Favre-
averaged continuity equation, i.e.,

𝜕𝜌
𝜕𝑡 + 𝛁 ⋅ (𝜌𝐮), (5.10)

can be expressed purely in terms of average quantities, where the overline denotes a time
average. In the case of the Favre-averaged Navier–Stokes equations, shown here in vector
notation for a resting reference frame for better readability, i.e.,

𝜕(𝜌𝐮)
𝜕𝑡 + 𝛁 ⋅ (𝜌𝐮 ⊗ 𝐮) = −𝛁𝑝 + 𝛁 ⋅ [𝛕 − 𝜌𝐮″ ⊗ 𝐮″], (5.11)

the decomposition gives rise to an the additional term, −𝜌 (𝐮″ ⊗ 𝐮″), on the right-hand side
of the equation, where the velocity fluctuations act as an apparent-stress tensor. This will
be discussed in the following section. The energy equation is not shown here, because its
contribution is negligible at the low Mach numbers investigated in this work. However,
similar terms arise there due to the contribution of the velocity fluctuations.

Technically, the terms Reynolds decomposition and unsteady Reynolds-averaged Navier–
Stokes (URANS) equations are used when constant density is assumed. Nevertheless,
approaches using both the unsteady Favre-averaged and unsteady Reynolds-averaged
Navier–Stokes equations are commonly referred to as URANS approaches.

5.3.3. Turbulence model

The Favre decomposition yields the term −𝜌 (𝐮″ ⊗ 𝐮″) on the right-hand side of Eqn. (5.11).
These apparent stresses are a result of the correlation between the different components of
the velocity fluctuations and represent the contribution of turbulence. They are commonly
referred to as Reynolds stresses with the Reynolds-stress tensor

𝛕′ ∶= −𝜌 (𝐮″ ⊗ 𝐮″). (5.12)

Due to the Reynolds-stress tensor, Eqn. (5.11) contains more dependent variables than
equations, which means that the system is not closed. Hence, a closure is required in order to
solve the system.

Boussinesq
Boussinesq (1903) assumed an analogy between the momentum exchange in turbulent
motion and the momentum exchange on molecular scales (see Sec. 3.1.5). Therefore, he
hypothesised the existence of a turbulent viscosity, often called the eddy viscosity, which can
be used to construct the Reynolds-stress tensor in a similar manner to Eqn. 3.16:

𝛕′ = 𝜇turb [(𝐮 ⊗ 𝛁) + (𝛁 ⊗ 𝐮) −
2
3 𝛁 ⋅ 𝐮𝐈] +

2
3 𝜌𝑘𝐈. (5.13)
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Shear-stress–transport model
The use of Boussinesq’s assumption shifts the problem of determining the Reynolds-stress
tensor to that of determining the turbulent viscosity. Several approaches to predicting
the turbulent viscosity, so-called turbulence models, of varying complexity are found in the
literature. In an industrial context, two-equation linear eddy-viscosity turbulence models
represent the most widely used class of these approaches. This is because they combine low
additional computational effort and high numerical stability with predictions which are
often sufficiently precise for technical applications.

The 𝑘-𝜔 shear-stress–transport (SST) turbulence model byMenter et al. (2003)∗ is probably
the most popular among these two-equation models. It comprises two partial differential
transport equations:

𝜕(𝜌𝑘)
𝜕𝑡 + 𝛁 ⋅ (𝜌𝑘𝐮) = ̃𝒫𝑘 − 𝛽∗𝜌𝜔𝑘 + 𝛁 ⋅ [(𝜇 + 𝜎𝑘𝜇turb) 𝛁𝑘], (5.14)

𝜕(𝜌𝜔)
𝜕𝑡 + 𝛁 ⋅ (𝜌𝜔𝐮) =

𝜌𝛼
𝜇turb

̃𝒫𝑘 − 𝛽∗𝜌𝜔2 + 𝛁 ⋅ [(𝜇 + 𝜎𝜔𝜇turb) 𝛁𝜔] (5.15)

+ 2 (1 − 𝐹1)
𝜌𝜎𝜔,2

𝜔 [𝛁𝑘 ⋅ 𝛁𝜔] .

Equation (5.14) describes the transport of the turbulent kinetic energy 𝑘 in terms of pro-
duction, destruction, and diffusion, whereas Eqn. (5.15) transports the specific turbulence-
dissipation rate 𝜔. The cross-diffusion term, i.e., the last term on the right-hand side of
Eqn. (5.15), enhances the prediction capabilities in the free stream. The turbulent viscosity
is then approximately determined by

𝜇turb ≈
𝜌𝑘
𝜔 ; (5.16)

the exact calculation procedure including limiters and further details of the model and its
calibration are given in App. B.

Scale-adaptive simulations
Drechsel et al. (2015) showed that, for the same test case used in the present work, a simple
RANS or URANS approach using the 𝑘-𝜔 SST model does not predict the diffuser flow
accurately. Likewise, Drechsel et al. (2016) demonstrated that the same approach does
not capture the apparent stresses produced in the tip-leakage vortex sufficiently well. They
showed, however, that in both cases the scale-adaptive simulation (SAS) method by Menter
and Egorov (2010) produced satisfactory results.

The SAS method is not a stand-alone turbulence model, but rather modifies existing
turbulence models. It is usually applied in addition to the 𝑘-𝜔 SST model, in which case it
is referred to as the SST-SAS model. The SST-SAS model is classified by Fröhlich and von
Terzi (2008) as a second-generation URANS (2G-URANS) model, as it allows the partial
resolution of turbulent structures. In order to achieve this, the following source term is
added to the right-hand side of the 𝜔 equation (Eqn. 5.15) of the 𝑘-𝜔 SST model:

𝒫SAS ∶= max
⎧{
⎨{⎩

𝜌𝜁2𝑆2 (
ℓturb
ℓvK

)
2

− 𝐶SAS
2𝜌𝑘
𝜎Φ

max [
1
𝑘2 (𝛁𝑘 ⋅ 𝛁𝑘) ;

1
𝜔2 (𝛁𝜔 ⋅ 𝛁𝜔)] ; 0

⎫}
⎬}⎭

(5.17)

∗The model was first published by Menter (1994).
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where
𝑆 ∶= √2 ∥𝐒∥F = √2𝐒 ∶ 𝐒. (5.18)

The essential term in Eqn. (5.17) is

(
ℓturb
ℓvK

)
2

where
ℓvK ≈ 𝜅

∥(𝐮 ⊗ 𝛁)∥F
∥𝛁2𝐮∥2

(5.19)

is a three-dimensional formulation of the von Kármán length scale, with 𝜅 being the von
Kármán constant, and where

ℓturb ∝
√𝑘
𝜔 (5.20)

represents the turbulence length scale. The exact definitions including limiters and calibra-
tion constants are given in App. C.

The von Kármán length scale quantifies the ratio of the gradient to the vector Laplacian
of a velocity field and gives a local estimate of the characteristic length of inhomogeneous
flow features. Menter and Egorov (2010) recognised these inhomogeneous flow features as
potentially unsteady and argued that they should not be suppressed by an increase in the
turbulent viscosity, as would be the case with conventional RANS or URANS models.

An increase in the ratio of ℓturb to ℓvK generally causes an increase in the SAS source term
𝒫SAS. This, in turn, increases the specific turbulence dissipation rate 𝜔 and, per Eqn. (5.16),
reduces the turbulent viscosity. This facilitates the development of tip-leakage vortices and
massive flow separations, among other features.

5.3.4. Discretisation

In order to solve the governing equations numerically, it is necessary that they undergo a
temporal and spatial discretisation. All simulations were conducted using a finite-volume
method, which is facilitated by the strong conservative form of the governing equations used
in TRACE: the integrated divergence of the flux-vector field, 𝛁 ⋅ 𝐅, for a given cell, with the
volume 𝒱 enclosed by the surface 𝜕𝒱, can be expressed as the summation of all fluxes across
the cell boundaries by applying the divergence theorem:

˚
𝒱

𝛁 ⋅ 𝐅 d𝑉 =
‹

𝜕𝒱
𝐅 ⋅ 𝐧 d𝐴. (5.21)

The time derivative was discretised using a second-order accuracy Euler backward scheme.
The inviscid fluxes were evaluated using a blended implicit second-order accuracy differencing
scheme; they were calculated as a weighted sum of a central and upwind differencing scheme
using the blending procedure developed by Strelets (2001):

𝐅inviscid = (1 − 𝜎) 𝐅central + 𝜎𝐅upwind (5.22)

where the blending function 𝜎 is essentially determined by the ratio of the local cell size to
another characteristic turbulence length scale. As a result, the solver assumes a predomi-
nantly central differencing scheme in typically SAS-dominated regions in order to reduce
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Figure 5.3.: Computational domain: example 15°; with additional passages for better orien-
tation (Mimic et al. 2018c)

numerical diffusivity, whereas it employs a mostly upwind differencing scheme in other
flow regions. Further details of the blending procedure are given in App. D.

The state variables were calculated using a third-order accuracy monotonic upstream-centered
scheme for conservation laws (MUSCL) with a van Albada square limiter to increase numerical
robustness. The discretised governing equations were solved using an incomplete lower-upper
(ILU) factorisation method.

5.3.5. Computational domain
The numerical domain comprises a single rotor pitch with a NACA-0020 blade and a subse-
quent annular diffuser. Figure 5.3 shows the computational domain of the 15° diffuser with
two additional passages for better orientation. The domain inlet is located approximately
one axial chord length upstream of the blade leading edge; the resulting circumferential
inhomogeneity of the inlet flow field is negligible for this choice of upstream extent of
the computational domain. The blade pitch was varied to emulate blade counts of 25, 30,
and 40 blades. Diffusers with half-opening angles of 5°, 10°, 12°, and 15° were simulated.
The diffuser section is slightly longer than in the experimental set-up and extends into a
coarsened straight outlet section. The coarse mesh in the outlet section acts as a buffer layer
and prevents oscillations from reaching the outlet to increase numerical stability. Further
improvements in the numerical stability were achieved by simulating the entire domain in a
rotating frame of reference, thereby avoiding an interface between the rotor and diffuser.

The meshes consist of between 1.7 × 106 and 2.5 × 106 cells, depending upon the pitch and
diffuser opening angle. Drechsel et al. (2015) presented a detailed grid-convergence study
for the 15° test case using the 𝑘-𝜔 SST model. Compared to Drechsel et al. (2015), the
meshes were refined in the casing region to ensure better capturing of the tip-leakage vortex
and flow separation. The significantly less severe—or even non-existent—flow separation
with shallower opening angles leads to the conclusion that all meshes used satisfy the
grid-quality requirements.

The numerical evaluation planes correspond to the measurement planes used in the
experiment (0.085ℓD and 0.96ℓD). The position of the outlet plane was varied in a separate
study.
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Evidence

In this chapter, several pieces of evidence for the hypotheses stated in the previous chapter
will be reviewed. The aim is to test the validity of the theory proposed. The validation
approach shall be introduced in the following section.

6.1. Validation

The hypotheses derived in Chap. 4 will be tested in this section using the experimental
and numerical data introduced in Sec. 5.1. The hypotheses will be approached in the
predominantly reverse order, starting with the most general statements.

6.1.1. Diffuser effectiveness

Hypothesis 4.6 postulates the existence of a linear relationship between the stabilisation
number Σ (see Eqn. 4.30) and the diffuser effectiveness.

Fifteen degrees
The diffuser effectiveness and stabilisation number were evaluated for one numerical and
three experimental diffuser test cases with a half-opening angle of 15°. The results are
plotted in Fig. 6.1, showing the absolute increase in diffuser effectiveness Δ𝜖 compared to
the reference case with an aerodynamically unloaded rotor, i.e., Σ = 0 (see Eqn. 4.31). As
can be seen, both the experimental and numerical data are represented well by the linear
correlation

Δ𝜖 = 1.90Σ, 𝑅2 = 0.92 (6.1)

where 𝑅2 = 0.92 is the coefficient of determination achieved by the linear regression. This
means that 92% of the variability in the data is explained by the correlation.

Twenty degrees
The same procedure was repeated for the experimental data from an annular diffuser with
a 20° half-opening angle to obtain further corroborating evidence; the results are shown in
Fig. 6.1.

The circled data point does not exhibit any static-pressure recovery—on the contrary,
the static-pressure recovery is slightly negative. Further inspection of the work of Kuschel
(2014)∗ did not yield any satisfactory explanation for this behaviour as the analysis provided
was not decisive about whether any tip-leakage vortices had been measured at this operating
point. The non-negligible aerodynamic loading of the rotor, however, implies the presence

∗see also Kuschel et al. (2015)
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Figure 6.1.: Validation of the effectiveness correlations for 15° (left) and 20° (right)

of such vortex structures. In any case—be it undetected flow phenomena, such as flow
separation on the blades, large-scale unsteadiness in the interaction between rotor outflow
and diffuser separation or merely erroneous measurement—this point is discarded as an
outlier with regard to the correlation formulated here.

Again, it follows that there is a linear correlation between Σ and Δ𝜖, i.e.,

Δ𝜖 = 2.24Σ, 𝑅2 = 0.91. (6.2)

It can already be inferred from these two correlations that the sensitivity of the diffuser ef-
fectiveness to the vortex-induced stabilisation increaseswith the opening angle (seeHyp. 4.1).
This will be discussed further in Sec. 6.1.5.

Conclusion 6.1. The data confirm Hyp. 4.6: the effectiveness 𝜖 increases linearly with thesee Hyp. 4.6
stabilisation number Σ.

6.1.2. Total-pressure losses

Hypothesis 4.7 posits a linear relationship between the product of the extrapolated stabilisation
number ΞΣ (see Eqn. 4.36) and the total-pressure loss coefficient 𝜁 of the diffuser. The
experimental data of the 15° diffuser from Mimic et al. (2018a) were analysed together

∗see also Sieker and Seume (2008a)
†see also Kuschel et al. (2015)
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Figure 6.2.: Validation of the total-pressure loss correlations for 15° (left) and radial diffusion
of circumferential vorticity (right)

with the corresponding numerical simulations with regard to these characteristic numbers.
Because no information on the density encountered in the experiments was available, 𝜌 =
1 kg/m3 was assumed for both numerical and experimental samples. The resulting distribution
is shown on the left-hand side of Fig. 6.2. The data can be approximated by means of linear
regression and yield the following correlation:

ΔΞ𝜁 = −0.29ΞΣ, 𝑅2 = 0.93. (6.3)

The following can be concluded:

Conclusion 6.2. The data confirm Hyp. 4.7: the total-pressure loss coefficient decreases lin- see Hyp. 4.7
early with an increasing extrapolated stabilisation number ΞΣ with regard to an extrapolated
reference Ξ𝜁ref.

The stabilisation of the boundary layer and the resulting increased deceleration of the
free stream yield lower velocity gradients within the boundary layer (see Mimic et al.
2018a), thereby reducing the losses produced by momentum diffusion as supported by a
loss-decomposition study conducted by Mimic et al. (2019).

6.1.3. Vortex decay

Is the vortex decay simply a function of the vortex circulation or is it also determined by
the momentum deficit of the boundary layer? Hypothesis 4.5 contends that the former is the
case.
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Figure 6.3.: Boundary-layer stabilisation by means of wall-normal vorticity diffusion
(adapted from Mimic et al. 2018c)

To assess the substance of this hypothesis, numerical simulations of diffusers with half-
opening angles of 5°, 10°, and 12° were analysed in addition to the 15° diffuser. While
no experimental data were available for these cases, the simulation results from the 15°
diffuser have been shown to be sufficiently accurate in comparison with their experimental
counterparts. Since the shallower opening angles exhibit significantly “simpler” flow fields
with limited or no flow separation, it can be argued that their numerical predictability at
least matches, or even surpasses, that of the 15° diffuser.

Due to the relationship between circulation and vorticity, which is established per Stokes’
theorem, the vorticity is used for the analysis in this section, as it can be calculated purely from
local velocity gradients. As shown in Fig. 6.3, an attached boundary layer is characterised by
a negative vorticity whereas the recirculation zone in a separated boundary layer exhibits
positive vorticity.

Following the reasoning detailed by Mimic et al. (2018c), a steady, axisymmetric flow is
assumed where only the circumferential vorticity component Ω𝜃 is considered. The vorticity
equation (see Eqn. 3.85) may then be expressed in cylindrical coordinates which yields (see
Panton 2013):

𝜌𝑢𝑥1

𝜕Ω𝜃
𝜕𝑥1

+ 𝜌𝑢𝑟
𝜕Ω𝜃
𝜕𝑟 = 𝜌

Ω𝜃𝑢𝑟
𝑟 + 𝜇eff

𝜕
𝜕𝑟 [

1
𝑟

𝜕(𝑟Ω𝜃)
𝜕𝑟 ] + 𝜇eff

𝜕2Ω𝜃
𝜕𝑥1𝜕𝑥1

, (6.4)

where the effective viscosity represents the sum of the molecular and turbulent viscosity, i.e.,

𝜇eff ∶= 𝜇 + 𝜇turb (6.5)

where the turbulent viscosity accounts for the effect of turbulence.
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As explained by Mimic et al. (2018c), the stream-wise transport and radial advection of
vorticity may be neglected in Eqn. (6.4), because the relevant transport mechanism is the
wall-normal diffusion of vorticity (see also Fig. 6.3). The first term on the right-hand side
of Eqn. (6.4), which results from the stretching of a circumferential vortex line at different
radii, is between one and three orders of magnitude lower than the radial diffusion for
the simulations presented in this work (results not shown) and is, thus, neglected in the
following analysis.

To evaluate the overall vorticity diffusion flux, the volumetric average of the diffusion
term is formulated:

𝐷𝒱 = −
1
𝒱

˚
𝒱

𝜇eff
𝜕
𝜕𝑟 [

1
𝑟

𝜕(𝑟Ω𝜃)
𝜕𝑟 ]d𝑉. (6.6)

The negative sign is introduced to conserve the proper direction of the vorticity flux when
expressed in a wall-normal coordinate system. The integration volume 𝒱 ranges from the
diffuser inlet plane to its outlet plane and from the Euler radius at the diffuser inlet to the
casing to exclude the hub boundary layer.

The resulting volumetric average represents the average radial transport of circumferential
vorticity, i.e., the vorticity transferred between vortex and boundary layer and, therefore, how
much vorticity the vortex loses. The expectation derived from Hyp. 4.5 is that a given change
in Σ will correlate with a constant change in 𝐷𝒱 for any of the diffuser half-opening angles,
which represent different degrees of momentum deficit in the boundary layer. However,
because 𝐷𝒱 contains information not only about the transport process between the vortices
and boundary layer, but also about transport processes within the boundary layer, it is to be
expected that the different half-opening angles will yield different values of 𝐷𝒱.

The right-hand side of Fig. 6.2 confirms this notion for the most part: The diffusion
increases with the opening angle, and, therefore, the momentum deficit of the boundary
layer, being negative for the cases with predominantly attached boundary layers and positive
in the case of massive flow separation, i.e. for 𝛿 = 15°. Likewise, the 5°, 10°, and 12° diffusers
exhibit virtually the same slope. This indicates that the same variation in the circulation
of the stabilising vortices yields the same variation in the stabilising vorticity diffusion
across different diffusers. The 15° diffuser, however, behaves differently in the case of low
stabilisation numbers: the anomalous test cases are characterised by a weak aerodynamic
loading of the rotor and massive flow separation just downstream of the diffuser inlet which
likely violates the assumptions of the theory presented (see Sec. 4.4). Nevertheless, beyond
a certain value of the stabilisation number, this diffuser assumes the same behaviour as
observed for shallower half-opening angles, as indicated by the dashed line. This anomaly
was not evident in the work of Mimic et al. (2018c), where the particular test cases seemed
to merely exhibit scattering. The improved definition of the stabilisation number presented
in this work, however, appears to be more sensitive towards changes in the rotor operating
point, especially in the case of low aerodynamic loading of the rotor.

Conclusion 6.3. The numerical results partially support Hyp. 4.5: the vortex decay is mostly see Hyp. 4.5
dependent upon the vortex circulation and not upon the momentum deficit of the boundary
layer. This conclusion is, however, not applicable to the case of low stabilisation numbers
together with strong flow separation just downstream of the diffuser inlet.
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Figure 6.4.: Model predictions: changes in effectiveness (left) and displacement thickness
(right) versus non-dimensional circulation

6.1.4. Boundary-layer stabilisation

Conclusion 6.3 leads to the question whether the sensitivity of the boundary layer towards
vortex-induced stabilisation is influenced by themomentumdeficit of the boundary layer, i.e.,
whether a more pronounced momentum deficit of the boundary layer implies an increased
sensitivity.

To give a tentative answer to this question, the boundary-layer predictionmodel of Bardina
et al. (1982) was implemented as described in Sec. 3.3.5. Its functionality was verified
successfully by reproducing the computation results listed by the authors (results not
shown). Deviations from the data published were negligible and can be attributed to
differences in the numerical scheme employed for solving the model equations (see App. A).
Because the original implementations of Bardina et al. (1982) were tailored to planar and
equiangular annular diffusers, the transverse-curvature term in Eqns (3.71) and (3.72) was
adapted in this work for the calculation of the behaviour of annular diffusers with diverging
external walls and constant hub diameter. Finally, the vortex model detailed in Sec. 4.4 was
implemented as described in Lst. A.1 in App. A.

The use of such a lower-order model has several advantages over the higher-order sim-
ulations presented so far. Firstly, boundary layers, their thickness parameters as well as
the involved momentum exchange and entrainment are concepts; they describe features
and events, which are extracted from measurements or flow simulations. The inherently
arbitrary character of the quantities by which these features and events are described, how-
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ever, can pose some difficulties. This becomes especially apparent when boundary-layer
parameters and transport processes are to be evaluated in highly perturbed flow regions.
An accurate calculation of these quantities in the interaction zone between boundary layer
and vortex can, therefore, lead to inconclusive results. A prediction method with a higher
degree of abstraction can circumvent some of these difficulties. Secondly, a lower-order model
where individual objects, processes, or features are modelled individually and interact via
predefined interfaces allows the deliberate and independent variation of various parameters
in a way that is hardly feasible in higher-order simulations or experiments. Exempli gratia,
the shear stress and entrainment imposed by the vortex can be varied separately and their
individual contributions to the stabilisation process assessed.

Model calibration
Before activating the vortex model, the boundary-layer parameters at the diffuser inlet were
selected so as to reproduce the diffuser effectiveness obtained from a linear regression of
the experimental data from Kuschel (2014)∗ at Σ = 0. This was done for the 15° and 20°
diffusers. The vortex model was then activated and the model constants for the vortex decay,
vortex-induced shear-stress, and entrainment terms in Eqns (4.15) and (4.17) were varied
until similar behaviour to the correlations given in Sec. 6.1.1 was achieved. The result is
shown in Fig. 6.4. As can be seen, both relationships could be reproduced to an accuracy
well within the measurement uncertainties.

The corresponding decreases in the displacement thickness calculated at the diffuser
outlet for various Σ are shown in Fig. 6.4: both the 15° and 20° diffusers exhibit the same
decrease in displacement thickness, which supports Hyp. 4.2.

Conclusion 6.4. The modelling results agree with Hyp. 4.2: the sensitivity of the boundary see Hyp. 4.2
layer towards vortex-induced stabilisation does not depend upon the momentum deficit of
the boundary layer, but on the circulation of the vortex.

Momentum and mass exchange
The calibration of the model yielded positive values for the model constants which control
the shear-stress and entrainment terms. With the formulations used here, this equates not
only to a shear stress acting upon the boundary layer in the free-stream direction, but also
to an increased mass transfer into the boundary layer. In order to separate the contributions
of the momentum transfer via shear stresses and the mass transfer via entrainment, the
constants 𝑐Ω and 𝑐𝐸 were varied one at a time in a small separate study for the 15° diffuser.
The variations are expressed as fractions of the respective values of 𝑐Ω and 𝑐𝐸 obtained from
the model calibration. As can be seen from Fig. 6.5, the displacement thickness 𝛿∗ and shape
factor 𝐻 exhibit a distinctly higher sensitivity towards the entrainment term than they do
towards the shear-stress term. Nevertheless, the displacement thickness decreases in both
cases.

Conclusion 6.5. The modelling results show a linear dependency of the boundary-layer see Hyp. 4.3
parameters displacement thickness and shape factor upon the vortex shear stresses. The
results are, thus, consistent with the theory presented.

∗see also Kuschel et al. (2015)
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Figure 6.5.: Sensitivity analysis: changes in displacement thickness (left) and shape factor
(right) versus calibration constants 𝑐Ω and 𝑐𝐸 for the 15° diffuser

Conclusion 6.6. Themodelling results showa strictlymonotone dependency of the boundary-see Hyp. 4.4
layer parameters displacement thickness and shape factor upon the vortex entrainment. The
results are, thus, consistent with the theory presented.

The latter conclusion is consistent with the observations of Cutler and Bradshaw (1993b):
the displacement thickness increases after fluid is entrained into the vortex and out of the
boundary layer. In the present case, the displacement decreases for a net entrainment of
fluid into the boundary layer.

It must be kept in mind, however, that these data were merely calibrated postdictively
using integral diffuser-performance parameters. Even though they agree with the theory
presented, further calibration based upon boundary-layer measurements and extensive
testing with experimental data are required in order to substantiate these results.

6.1.5. Diffuser opening angle

Hypothesis 4.1 predicts an increasing sensitivity of the diffuser towards the stabilising tip-
leakage vortices—i.e., an increase in the slope expressed by the general relationship in
Eqn. (4.31)—for increasing diffuser half-opening angles. To gain an insight into this matter,
the effectivenesswas evaluated fromnumerical simulations of the diffuserswith half-opening
angles of 5°, 10°, 12°, and 15°.

The results are shown in Fig. 6.6: in addition to the results presented for the 15° and 20°
diffusers in Fig. 6.1, they confirm the conjecture that the slope of the correlation increases
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Figure 6.6.: Changes in effectiveness versus stabilisation number for different half-opening
angles (left); sensitivities (right)

with the half-opening angle. The resulting correlations are given below.

5°: Δ𝜖 = 0.01Σ, 𝑅2 = 0.01, (6.7)
10°: Δ𝜖 = 0.54Σ, 𝑅2 = 0.80, (6.8)
12°: Δ𝜖 = 1.34Σ, 𝑅2 = 0.86, (6.9)
15°: Δ𝜖 = 1.91Σ, 𝑅2 = 0.96. (6.10)

The changes in the sensitivity are visualised in Fig. 6.6. The dotted line indicates that
the increase in sensitivity of the diffuser effectiveness towards the stabilisation number is
close to linear for half-opening angles upwards of 10°. This was the lowest half-opening
angle for which flow separation could be observed in the simulations. This subdivision into
attached and separated flow regimes roughly matches the values given by Traupel (2001).
Notably, the lowest half-opening angle, 5°, exhibits virtually no sensitivity. This is, however,
not surprising because the diffuser operates without any flow separation.

Conclusion 6.7. The simulation results support Hyp. 4.1: the sensitivity of the effectiveness see Hyp. 4.1
towards vortex-induced stabilisation increases with the diffuser opening angle.

If a change in sensitivity is observed for the effectiveness, a change in sensitivity is to be
expected for the total-pressure losses, too. In this study, the actual values of the density were
used to calculate Ξ. Figure 6.7 shows the behaviour of the total-pressure loss correlation for
varying half-opening angles. Consistent with the increasing sensitivity of the effectiveness,
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Figure 6.7.: Extrapolated changes in the total-pressure losses versus extrapolated stabilisation
number for different half-opening angles (left); sensitivities (right)

the sensitivities of the total-pressure loss coefficient increase, too. Or, in other words: the
same value of Σ yields a more significant loss reduction for steeper half-opening angles.
This is especially apparent in the case of the 15° diffuser: the reduction of the massive flow
separation yields a considerable decline in the total-pressure losses. The corresponding
correlations are given below.

5°: ΔΞ𝜁 = −0.05ΞΣ, 𝑅2 = 0.85, (6.11)
10°: ΔΞ𝜁 = −0.07ΞΣ, 𝑅2 = 0.92, (6.12)
12°: ΔΞ𝜁 = −0.11ΞΣ, 𝑅2 = 0.87, (6.13)
15°: ΔΞ𝜁 = −0.27ΞΣ, 𝑅2 = 0.97. (6.14)

Conclusion 6.8. The simulation results show that the sensitivity of the extrapolated changes
in the total-pressure loss coefficient towards the vortex-induced stabilisation increases with
the diffuser opening angle.

6.1.6. Diffuser length

An additional study was conducted to determine the impact of the diffuser length. The
outlet evaluation plane was varied in order to obtain non-dimensional diffuser lengths of
approximately 𝑥/𝒲in = 0.5, 1.0, 1.5, and 2.0. The effectiveness was calculated for all cases.
Figure 6.8 shows that, for the massively separated 15° diffuser, lower sensitivities can be
observed for greater non-dimensional diffuser lengths. This can be attributed to the fact that
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flow separation occurs very early in this diffuser. The greatest benefit is, therefore, obtained
just downstream of the location of separation onset.
Figure 6.8 shows the sensitivity distributions of other diffuser opening angles for com-

parison. Interestingly, the sensitivity decreases only at the steepest opening angle where
massive flow separation occcurs. The 10° diffuser, which remains mostly attached (Mimic
et al. 2018c), exhibits an increasing sensitivity with increasing diffuser length. It is likely
that the benefit of vortex-induced boundary-layer stabilisation acts evenly upon the entire
length of the boundary layer.

The 10° diffuser presents an interesting borderline case. Its casing boundary layer separates
roughly between 𝑥/𝒲in = 1.0 and 𝑥/𝒲in = 1.5, as shown by Mimic et al. (2018c). This is
also where a flattening of the sensitivity can be seen in Fig. 6.8. It may be speculated that a
longer diffuser would experience a decline in sensitivity.

Conclusion 6.9. The simulation results show that the sensitivity of the diffuser effectiveness
towards the vortex-induced stabilisation decreases gradually downstream of the separation
location in the case of massive flow separation. It increases, however, in the case of attached
boundary layers.

An equivalent study was conducted to determine the impact of the diffuser length on
the reduction in total-pressure losses. As shown in Fig. 6.9, all cases exhibit an increase in
sensitivity as the outlet plane is moved downstream. This is likely a result of a cumulative
total-pressure loss reduction, even downstream of the separation.
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Conclusion 6.10. The simulation results show that the sensitivity of the extrapolated changes
in the total-pressure loss coefficient towards the vortex-induced stabilisation increases lin-
early with the diffuser length.

6.2. Summary of the results

The hypotheses and respective conclusions summarised in this section are listed verbatim in
Tab. E.1 in App. E. The data presented confirm, or at least support, all predictions derivedsee Hyp. 4.7,

Hyp. 4.6 from the theory proposed. Distinct linear correlations between the improved stabilisation
number Σ and the changes in diffuser effectiveness Δ𝜖, as well as between the extrapolated
stabilisation number ΞΣ and the changes in the total-pressure loss coefficient ΔΞ𝜁, could be
substantiated using both extensive numerical and experimental data.

It was shown that both the numerical simulations and the diffuser-prediction modelsee Hyp. 4.5,
Hyp. 4.4,
Hyp. 4.3,
Hyp. 4.2

proposed provide corroborating evidence for the dominance of the vortex intensity in
determining the boundary-layer stabilisation process and the vortex decay in the face of
changes in the momentum deficit of the boundary layer. The model suggests that the
boundary-layer stabilisation can be explained by a transfer of momentum and mass between
the vortex and boundary layer via shear stresses and fluid entrainment; the entrainment
appears to be the dominant contributor. Thorough experimental studies are, however,
required to further substantiate these provisional conclusions.
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Moreover, the numerical data confirm the hypothesised positive influence of the diffuser see Hyp. 4.1
opening angle on the sensitivity of the vortex-induced effectiveness increase. Additional
studies revealed that these sensitivities decrease with increasing diffuser length in the case
of massive flow separation; they do, however, increase with the diffuser length in the case of
attached boundary layers. The sensitivity of the changes in the total-pressure loss coefficient
ΔΞ𝜁 was shown to increase with the opening angle and diffuser length. �
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Applicability

The results presented in the previous chapter can be further condensed into design charts to
facilitate their application in a turbomachinery design process. Due to the multidimension-
ality of the problem at hand, it is most accessible to aggregate the sensitivities of the diffuser
effectiveness (see the right-hand side of Figs 6.6 and 6.8) and the extrapolated total-pressure
loss coefficient (see the right-hand side of Figs 6.7 and 6.9). The resulting sensitivitymaps are
shown in Figs 7.1 and 7.2. Following the majority of well-established diffuser design charts,
the area ratio and non-dimensional diffuser length were chosen as the independent variables
in this representation. The contour lines indicate interpolated lines of constant sensitivity.
These sensitivity maps, or design charts, can be used in several stages of a turbomachinery
design process to determine the static-pressure recovery coefficient and total-pressure loss
coefficient of an annular diffuser downstream of a turbine at various operating points.

7.1. Static-pressure recovery

The general procedure for the calculation of the static-pressure recovery coefficient is equiv-
alent to the one described in Mimic et al. (2018a) and can be summarised in seven steps.

1. Determine the reference stabilisation number Σref and the stabilisation number Σ at
the operating point of interest using Eqn. (4.30):

Σ =
Ψ𝐹

Φ2 cos 𝛼
.

In most cases, the reference will likely be the aerodynamically non-stabilised diffuser,
i.e., Σref = 0. It is, however, also possible to use other available diffuser operating
points.

2. Estimate a reference static-pressure recovery coefficient 𝑐𝑝,ref for the reference stabili-
sation number Σref. Possible ways to obtain an accurate estimate will be expounded
following the description of this procedure.

3. Calculate the swirl-based ideal static-pressure recovery coefficient using Eqn. (1.21):

𝑐𝑝,id ∶= 1 −
1/𝔄2 + tan2 (𝛼) ( 𝑟Euler,in

𝑟Euler,out )
2

1 + tan2 (𝛼)
.
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4. Use the results from the two previous steps to calculate the reference effectiveness 𝜖ref
for the non-stabilised diffuser using Eqn. (1.35):

𝜖ref =
𝑐𝑝,ref

𝑐𝑝,id
.

5. Obtain the sensitivity of the diffuser effectiveness 𝜕𝜖/𝜕Σ from Fig. 7.1.

6. Calculate the diffuser effectiveness at the operating point of interest using

𝜖 = 𝜖ref +
𝜕𝜖
𝜕Σ (Σ − Σref) ,

which is adapted from the general formulation given in Eqn. (4.31).

7. Finally, calculate the static-pressure recovery coefficient by rearranging Eqn. (1.35):

𝑐𝑝 = 𝑐𝑝,id𝜖.

The point in the design process at which the above procedure is employed dictates how
the reference static-pressure recovery is determined. Two possible scenarios are given for
reference.
Early design stages: In the earliest design stages, the reference static-pressure recovery

coefficient can be obtained from empirical diffuser design charts, e.g., by Sovran and Klomp
(1967) or ESDU (1977). Because the rotor blades introduce additional blockage to the
diffuser inflow, this approach will likely lead to a slight over-estimation of the resulting
static-pressure recovery. If additional empirical data exist for the relationship between the
rotor-induced blockage and decrease in static-pressure recovery, then these can be used for
a more accurate estimate.
Later design stages: As soon as designs exist for the rotor and diffuser, a high-fidelity

simulation of the system can be performed for the reference operating point; the correlations
can then be used to estimate the static-pressure recovery across the operating range of the
system.
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7.2. Total-pressure losses

The total-pressure loss coefficient can be calculated for various operating points of interest in
a similar manner to the static-pressure recovery coefficient. If the corresponding stabilisation
numbers Σref and Σ have already been calculated, this requires three additional steps which
are summarised below.

1. Determine the extrapolation factor between the reference and the operating point of
interest using Eqn. (4.36):

Ξ ∶=
𝜌
2𝑢2

in
𝜌ref
2 𝑢2

in,ref

ℓch/ℓp
ℓch,ref/ℓp,ref

cos 𝛼ref
cos 𝛼

⎡⎢
⎣
1 +

∣Φ − Φdesign∣
Φref

⎤⎥
⎦
.

2. Obtain the sensitivity of the extrapolated total-pressure loss coefficient 𝜕(ΔΞ𝜁)/𝜕(ΞΣ)
from Fig. 7.2.

3. Calculate the total-pressure loss coefficient at the operating point of interest by re-
arranging Eqn. (4.37):

𝜁 = Ξ𝜁ref +
𝜕(ΔΞ𝜁)
𝜕(ΞΣ) ΞΣ.

Again, in the early design stages, these values can be estimated from empirical data, eg.,
by ESDU (1977) or using a diffuser simulation procedure similar to the method devised by
Bardina et al. (1982). Later in the design process, simulation results can be used.

7.3. Parameter space

The dotted lines in Figs 7.1 and 7.2 indicate the envelope of the parameter space sampled. In
any case, the sensitivities of the effectivess are supported by numerical data for values of Σ
between 0 and 0.12—and up to 0.21 for the steepest half-opening angle (see the left-hand
side of Fig. 6.6). Likewise, the sensitivities of the total-pressure losses are supported by
numerical data in any case for values of ΞΣ between 0 and 0.3—and up to 0.6 for the steepest
half-opening angle (see the left-hand side of Fig. 6.7). Extrapolations beyond the limits of
the parameter space should be avoided, especially towards higher aerodynamic loading, i.e.,
higher area ratios.

As mentioned in the introduction of this chapter, the contour lines were obtained from
interpolations between the sampling points. This step was necessary due to the high degree
of data consolidation and the resulting sparseness of the sixteen available sampling points.
Beyond a mere increase in sampling density, it is advisable to conduct variations of the ratio
between the hub and casing radii in future investigations to further corroborate the validity
of the design charts.

Likewise, it is advisable to expand the parameter space, both by expanding the limits of
the envelope shown in Figs 7.1 and 7.2 and by exploring new independent variables. Such
investigations should comprise variations of the blade geometry, aspect ratio, and tip gap to
induce variations in the chord-wise and span-wise loading distributions. Furthermore, they
should include different flow conditions, e.g., by variation of the inflow turbulence as well
as the Reynolds and Mach number.
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Figure 7.2.: Diffuser design chart showing the sensitivity distribution of the extrapolated
total-pressure loss coefficient towards the extrapolated stabilisation number as a
function of the non-dimensional diffuser length and the diffuser area ratio
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Conclusions

This work presents a novel theory of turbine–diffuser interaction. More specifically, this
theory addresses the stabilisation of diffuser boundary layers induced by tip-leakage vortices
from an upstream rotor.

The theory provides a framework to characterise tip-leakage vortices based upon integral
stage-design parameters. The stage parameters loading coefficient Ψ, flow coefficient Φ,
swirl angle 𝛼, and non-dimensional blade-passing frequency 𝐹 have been identified as the
determinants for the intensity, orientation, and duty cycle of the tip-leakage vortices. These
parameters have been condensed into the stabilisation number Σ as a predictor for the
inflow-dependent diffuser performance.

Compared to the publications preceding this thesis, the significance of all four determi-
nants and their nexus to the stage-design parameters has been derived with greater rigour.
This has led to an improved formulation of the stabilisation number.

Effectiveness
It has been demonstrated, on the basis of experimental data and partially scale-resolving
simulations, that the stabilisation number is a valid predictor for the turbine-induced increase
in diffuser effectiveness. The changes in diffuser effectiveness correlate linearly with the
stabilisation number across a wide range of rotor operating points and diffuser opening
angles. The sensitivity of the effectiveness towards the vortex-induced stabilisation increases
with the diffuser opening angle. The data suggest that this is likely not primarily due to a
varying momentum deficit of the boundary layer. The stabilising vorticity transport between
vortices and boundary layer rather seems to be predominantly determined by the circulation
of the vortices, unless the stabilising vortices are weak and massive flow separation occurs
just downstream of the initial point of interaction, at which point the underlying assumptions
of the theory seem to break down. This anomalous behaviour is, however, restricted to
operating points with virtually no aerodynamic loading of the rotor.

Overall, the dominant cause for the increase in sensitivity is rather to be found in the
diffuser geometry itself: a given shift in the location of separation onset causes a greater
change in diffuser blockage if the opening angle is steeper. The relationship between the
sensitivity and diffuser length has been shown to depend upon the boundary-layer state:
it decreases with increasing diffuser length in the case of massive flow separation and
increases for predominantly attached boundary layers. As shown in the chapter Applicability,
the results of the studies regarding the diffuser effectiveness have been mapped to the
non-dimensional diffuser length and area ratio to provide a novel diffuser design chart.
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Total-pressure losses
An additional parameter, the extrapolation factor Ξ, has been devised in order to predict
the influence of the turbine outflow on the total-pressure losses generated in the diffuser.
This factor expresses the influence of the flow coefficient, rotor solidity, dynamic pressure
and diffuser inlet swirl on the wake deficit, wake duty cycle, wake mixing losses, and the
increase in stream-path length, respectively. Multiplied by the stabilisation number and the
reference total-pressure loss coefficient at Σ = 0, the extrapolation factor allows a prediction
of the total-pressure losses.

Here, too, a distinctly linear correlation could be identified between the extrapolated
stabilisation number, i.e., ΞΣ and the total pressure losses: the losses decreasewith increasing
ΞΣ. The sensitivity, that is, the proportionality factor of the correlation, increases for steeper
diffuser opening angles. This becomes especially apparent for the diffuser with the highest
aerodynamic loading and, hence, the strongest flow separation. The cumulative effect of the
vortex-induced boundary-layer stabilisation leads to an increasing sensitivity towards the
extrapolated stabilisation number with increasing diffuser length. Again, as shown in the
chapter Applicability, the results of the studies regarding the total-pressure loss coefficient
have been mapped to the non-dimensional diffuser length and area ratio to provide another
novel diffuser design chart.

Boundary-layer calculation
In order to obtain more insight into the boundary-layer mechanics, but also with prospective
developments in mind, a one-dimensional prediction method for the behaviour of boundary
layers in diffusers from the literature was implemented. The method solves a system of
two ordinary differential equations describing conservation of momentum and mass in the
boundary layer. The method was adapted to predict the behaviour of annular diffusers with
a constant hub diameter and diverging casing.

The method was upgraded to feature the calculation of vortex-induced boundary-layer
stabilisation in a way consistent with the derivations of the stabilisation number. This was
achieved by the use of the Lamb–Oseen vortex: an analytical solution of the Navier–Stokes
equations, which describes the decay of an initially irrotational vortex in a viscous fluid. The
shear stresses imposed by the vortex onto the boundary-layer edge were used to model the
transfer of momentum and the impact on fluid entrainment into the boundary layer. The
model was successfully calibrated to postdict the changes in diffuser effectiveness for two
opening angles. The result suggest that, even more than the momentum transfer between
vortex and boundary layer, the entrainment of fluid into the boundary layer could play a
significant role in the understanding of the exact stabilisation mechanism.

8.1. Limitations

Any attempt to explain nature is inherently subject to limitations. It is, therefore, highly
desirable to be aware of the specific limitations of a particular model or theory. Several of
the limitations of the theory proposed have already been stated as explicit assumptions:
exempli gratia, incompressible flow, a vortex trajectory close to the boundary-layer edge and
a negligible change in the hub boundary layer.

Other limitations arise from parameters which were deliberately kept constant, e.g., the
aspect ratio of the blade, shape of the aerofoil, and tip gap. This means that the validity
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of the correlation parameters derived is yet to be demonstrated for a wider range of stage-
design parameters, Reynolds and Mach numbers, and a greater variety of blade profiles
and additional phenomena, such as flow separation on the blades.

Likewise, it is yet to be investigated how different types of diffuser geometries, such as
conical diffusers or annular diffusers with a varying hub diameter, impact the interaction.
The influence of different diffuser types is tied closely to a deeper understanding of the exact
flow mechanisms driving processes such as the momentum transfer or vortex decay.

The turbine–diffuser predictionmethodwas developed to take the first step in the direction
of a deeper understanding. So far, however, themethod could only be postdictively calibrated
using rather limited and non-specific data, i.e., the diffuser effectiveness. This only implies
that the prediction of one integral performance parameter of the cases investigated is located
in the solution space predictable by the method. Nevertheless, the mere feasibility is a
promising step and a potential guidepost for prospective research topics.

8.2. Prospects

The limitations mentioned above suggest three classes into which prospective research topics
can be subdivided: research which fortifies the existing foundation of the theory proposed,
research which aims to expand the boundaries of the theory and possible applications of
the research.

The first class comprises further and more fine-grained experimental investigations within
the existing parameter space. This means the measurement of a greater variety of diffuser
opening angles across a wider range of operating points. To some extent, the variation of
profile geometry and tip gap can be counted towards this category, as well. Their influence
will most likely be attributable to changes in the radial aerodynamic-loading distribution
and can be explained by modifying the present approach slightly, i.e., by including radially
weighted distributions of the stabilisation number.

The second class is closely related to the physical exchange process between vortex and
boundary layer. The exact role which momentum transfer and entrainment play in this
process, is, at present, corroborated speculation. Precise measurements of the unsteady
small-scale interactions and fully scale-resolving simulations will be necessary to further
substantiate the assumptions made and conclusions drawn from these. The data obtained
through such experiments could validate the predictive performance of the calculation
method proposed and allow its application as a diffuser-design tool. Likewise, the potential
insight gained could be transferred to different diffuser types and other components of
turbomachines where vortices and boundary layers interact.
The third class, which is about possible applications of the theory proposed, can be re-

duced to the question of how the correlations and calculation methods presented could be
integrated into cycle simulations on a system level. These simulations would, in tandem
with an empirical data base for various diffuser types, facilitate not only cycle optimisations
but also the optimisation of the individual contributions of the annular and conical diffuser
to the overall pressure recovery.

The theory proposed, by virtue of its validity and simplicity, appears to be a
promising framework for improving the understanding and predictability of

turbine–diffuser interactions.
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Appendix A.

Diffuser-prediction program

The program GammaDiff was implemented in Python 3.8.3rc1 to predict the performance
of planar diffusers and annular diffusers under the influence of a circumferentially oriented
Lamb-Oseen vortex which can be imposed at the inlet. The program was adapted from
Bardina et al. (1982) where a detailed discussion of most procedures can be found.

The calibration constants for the vortex model and its interaction with the boundary-layer
model were chosen as 𝑐Ω = 1.1 (C_VORT in the program), 𝑐𝐸 = 2.03 (C_ENTR in the program),
and 𝑐dΓ = 22 (C_DGAM in the program). Additionally, for the analyses presented in Sec. 6.1.4,
the inlet blockage factor and boundary-layer blockage factor were chosen as 𝐵 = 0.05 and
Λ = 0.215 for the 15° diffuser and 𝐵 = 0.06 and Λ = 0.36 for the 20° diffuser in order to
reproduce the experimentally observed variations in the effectiveness in both test cases. The
displacement-thickness Reynolds number, Re𝛿∗ ∶= 𝒰in𝛿∗/𝜈, was set to 3000; the kinematic
viscosity used to determine the vortex Reynolds number, which in turn determines the
vortex decay, was set to 1.5 × 10−5 m2/s. The position of the centreline of the prescribed
vortex was assumed at 99.3% of the diffuser channel height to mimic the tip gap of the rotor
used in this work. A few other input parameters together with their numerical values are
commented in the code.

The fourth/fifth-order Runge–Kutta solver RK45, included in the Python library SciPy
(see Virtanen et al. 2020), is used to numerically integrate the set of ordinary differential
equations. Further information regarding other libraries used in the program can be found
in Oliphant (2006), Van Der Walt et al. (2011), and Van Rossum and Drake (2009);
information regarding Python is given in Van Rossum (2020). ListingA.1 shows the complete
program code, including detailed comments.

Listing A.1: Diffuser-prediction program GammaDiff

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
gammadiff.py: This program predicts the performance of planar diffusers
and annular diffusers under the influence of a circumferentially oriented
vortex at the inlet.

@version: 1.0

@author: Dajan Mimic
@organization: Institute of Turbomachinery and Fluid Mechanics ,

Leibniz Universitaet Hannover
@contact: mimic@tfd.uni-hannover.de,

An der Universitaet 1, 30823 Garbsen, Germany
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Appendix A. Diffuser-prediction program

@note: This program is issued as part of the doctoral thesis:
Mimic, D. (2020): Turbine-Diffuser Interaction. Ph.D. Thesis,
Leibniz Universitaet Hannover , Germany.

@note: This program is represents an adapted implementation of the programs
PLANDIFF and AXIDIFF by Juan Bardina (1978), originally written in
Fortran and issued together with the report:
Bardina, J.; Kline, S.J.; Ferziger , J. (1982): Computation of Straight
Diffusers at Low Mach Number Incorporating an Improved Correlation for
Turbulent Detachment and Reattachment. Report PD-22. Heat Transfer and
Turbulence Mechanics Group/Thermosciences Division, Stanford University.

@note: The adaptations comprise (ordered from general to specific):
- Implementation in Python
- Functional programming
- General adaptations to the data input/output interfaces
- A 4th/5th-order accuracy Runge-Kutta from the scipy library (rk45) is

used instead of the 4th/5th-order accuracy Runge-Kutta-Fehlberg
implementation in Fortran.

- Adaptations of the model equations to predict the behaviour of annular
diffusers with constant hub and diverging casing in the functions
- calc_ODE_coeff_LHS_RHS1(...),
- calc_ODE_coeff_RHS2(...), and
- limit_entrainment(...).

- A method is implemented which imposes a Lamb-Oseen vortex with
circumferentially oriented rotational axis at the inlet. The vortex
interacts with the other model equations in order to influence the
boundary-layer behaviour. The vortex model is implemented in the
functions
- update_circulation(...),
- convect_vortex(...),
- calc_vortex_strainrate(...), and
- calc_vortex_shear(...).

@note: The code is organised in the following sections:
- input data
- numerical and solver settings
- constants
- boundary and initial conditions
- model parameters
- function definitions

- general tasks
- diffuser model
- vortex model
- solver

- execution
- solver call
- output

"""

#------------------------------------------------------------------------------
#%% imports
import math
import numpy as np
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from types import SimpleNamespace as sns
from scipy.integrate import solve_ivp

#------------------------------------------------------------------------------
#%% input data
## geometric boundary conditions of the diffuser
# diffuser type: 'planar' or 'annular'
diffuserType = 'annular'
# half-opening angle in deg:
halfOpeningAngleDeg = 15
# diffuser length / inlet width:
nonDimDiffuserLength = 1.9944
# length of straight inlet pipe / inlet width:
nonDimInletLength = 0
# length of straight tailpipe / inlet width:
nonDimTailPipeLength = 0.0
# inlet radius at the midspan / inlet width:
nonDimInletMidspanRadius = 1.8448

# initial conditions of the boundary layer
# 2 * inlet displacement thickness / inlet width:
inletDiffuserBlockage = 0.05
# inletDisplacementThickness / inletBoundaryLayerThickness:
inletBoundaryLayerBlockage = 0.215
# inletVelocity * inletDisplacementThickness / kinematicViscosity:
inletDisplacementReynoldsNumber = 3000.0

## initial conditions of the vortex
# non-dimensional circulation of Lamb-Oseen vortex:
inletCirculation = 0.0
# relative spanwise position of vortex (decimal value)
# of half width for 'planar',
# of width for 'annular':
nonDimSpanwisePosition = 0.993
# kinematic molecular viscosity for vortex reynolds number
kinViscosityMol = 1.5e-5

#------------------------------------------------------------------------------
#%% DO NOT CHANGE PART BELOW!

#------------------------------------------------------------------------------
#%% numerical and solver settings
RES = 11 # spatial resolution for rk45 solver
ABS_ERROR = [1e-7, 1e-7, 1e-7, 1e-7] # abs. error for rk45 solver
REL_ERROR = 1e-2 # rel. error for rk45 solver
MAX_STEP = 1e-1 # max. integration step size

INT_START = -nonDimInletLength # integration start
INT_END = nonDimDiffuserLength + nonDimTailPipeLength # integration end
X_EVAL = np.linspace(INT_START , INT_END, RES) # evaluated points

#------------------------------------------------------------------------------
#%% constants
PI = math.pi
VON_KARMAN = 0.41 # von-Karman constant
VON_KARMAN_SQR = VON_KARMAN * VON_KARMAN
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LAMBDA_VORT = 0.35 # relates turbulent kinematic viscosity in vortex to
# circulation and molecular viscosity ,
# see Hall, M.G. (1966): The structre of concentrated
# vortex cores. In: Progress in Aerospace Sciences.

#------------------------------------------------------------------------------
#%% boundary and initial conditions
# assign input parameters to variables for convenience in program

# geometric boundary conditions
D_TYPE = diffuserType
THETA = math.radians(halfOpeningAngleDeg)
W_IN = 1.0 # non-dimensional inlet width; 1 by definition
N_IN = nonDimInletLength
N_D = nonDimDiffuserLength
N_OUT = nonDimTailPipeLength
RM_IN = nonDimInletMidspanRadius

# initial flow conditions
B_IN = inletDiffuserBlockage / 2.0
L_IN = inletBoundaryLayerBlockage
U_IN = 1.0 # non-dimensional inlet flow velocity; 1 by definition
RE_D_IN = inletDisplacementReynoldsNumber

# initial vortex conditions
G_IN = inletCirculation
WV_IN = nonDimSpanwisePosition

# general properties
NUM = kinViscosityMol # kin. molecular viscosity
NUT = LAMBDA_VORT * math.sqrt(abs(G_IN) * NUM) # kin. turbulent viscosity
NU = NUM + NUT # effective kin. viscosity
RE_V = U_IN * (N_IN + N_D + N_OUT) / NU # vortex Reynolds number

#------------------------------------------------------------------------------
#%% model parameters
V_ONOFF = 1 # vortex model: 1 = on, 0 = off
C_VORT = 1.1 # momentum exchange between vortex and boundary layer: 1.1
C_ENTR = 2.03 # mass exchange between vortex and boundary layer: 2.03
C_DGAM = 22 # circulation decrease due to interaction between vortex and

# boundary layer: 22
T_IN = 0.001 # initial vortex time: this gives an initial amount of vortex

# diffusion and ensures a smooth velocity distribution

#------------------------------------------------------------------------------
#%% function definitions
npi = lambda x: x * PI
sign = lambda x: math.copysign(1, x)
sqr = lambda x: (x * x)

sqrt = lambda x: math.sqrt(x)
exp = lambda x: math.exp(x)
ln = lambda x: math.log(x)

sin = lambda rad: math.sin(rad)
cos = lambda rad: math.cos(rad)
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tan = lambda rad: math.tan(rad)
atan = lambda x: math.atan(x)

#------------------------------------------------------------------------------
#%% general tasks
def unpack_solution_vector(y):

"""Unpack the solution vector"""

#dependent variables:
y = {#boundary layer

'B' : y[0], # (half) blockage:
# B = displacement thickness / diffuser width

'L' : y[1], # boundary -layer blockage:
# L(ambda) = displacement thickness / bl thickness

#vortex
'G' : y[2],
't' : y[3], # solution time: SUM(dx_i/U_i); see def convect_vortex()
}

return y

def init_output():
"""Initialise output vector as dictionary"""

# define dictionary with output arrays
output = {'x' : [],

#
'B' : [],
'L' : [],
'G' : [],
#
'cpi' : [],
'cp' : [],
'eff' : [],
#
'Cf' : [],
'H' : [],
#
'blt' : [], # boundary -layer thickness
'blt_d' : [], # displacement thickness
'blt_m' : [], # momentum thickness
}

return output

def gen_output(output, x, y, geom, flow, bounlay):
"""Add new output to dictionary"""

out = sns(**output)

out.x.append(x)

out.B.append(y['B'])
out.L.append(y['L'])
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out.G.append(y['G'])

out.cpi.append(geom['cpi'])
out.cp.append(flow['cp'])
out.eff.append(flow['cp'] / geom['cpi'])

out.Cf.append(bounlay['Cf'])
out.H.append(bounlay['H'])

out.blt.append(y['L'] * y['B'] * geom['W'])
out.blt_d.append(y['B'] * geom['W'])
out.blt_m.append(y['B'] * geom['W'] / bounlay['H'])

pass

def eval_output(output):
"""Evaluate the output vector"""

output_eval = {}

for key in output:
key_eval = np.interp(X_EVAL, output['x'], output[key])
output_eval.update({key: key_eval})

return output_eval

#------------------------------------------------------------------------------
#%% diffuser model
def calc_geom(x):

"""Calculate diffuser width 'W', change in width 'dW', and ideal
static-pressure recovery coefficient 'cpi' as a function of the
stream-wise coordinate 'x'; return as dictionary 'geom'"""

Wr = 1.0 + 2.0 * N_D * tan(THETA) # width ratio of diffuser

if x >= N_D / cos(THETA):
W = Wr
dW = 0.0

elif x > 0.0:
W = THETA * (2.0 * x + 1.0 / sin(THETA))
dW = 2.0 * THETA
if W >= Wr:

W = Wr
dW = 0.0

else:
W = 1.0
dW = 0.0

# ideal pressure -recovery coefficient
if D_TYPE == 'planar':

cpi = 1 - sqr(W_IN / W)
elif D_TYPE == 'annular':

cpi = 1 - sqr((W_IN * RM_IN) / ((W_IN + 1.0 * x * sin(THETA)) * \
(RM_IN + x * sin(THETA/2) )))
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geom = {'W': W,
'dW': dW,
'cpi': cpi,
}

return geom

def calc_flow(x, y, geom):
"""Calculate non-dimensional flow velocity U, displacement -thickness

Reynolds number ReD, and static-pressure recovery coefficient cp;
return as dictionary 'flow'"""

y = sns(**y)
g = sns(**geom)

U = (1.0 - 2.0 * B_IN) / (1.0 - 2.0 * y.B) / g.W
ReD = RE_D_IN * U * g.W * y.B / B_IN
cp = 1.0 - sqr(U)

flow = {'U': U,
'ReD': ReD,
'cp': cp
}

return flow

#------------------------------------------------------------------------------
#%% boundary -layer model
def calc_bl_state(y, flow):

"""Calculate the boundary -layer state in terms of shear-stress velocity
'VT', boundary-layer shape parameter 'Sh', skin-friction coefficient
'Cf', and shape factor 'H'; return as dictionary 'bounlay'"""

y = sns(**y)
f = sns(**flow)

c1 = 0.885
c2 = 0.115
c3 = 1.5894898556

VT = 0.44 * sign(1.0 - 2.0 * y.L) * pow(abs(1.0 - 2.0 * y.L), c1) * \
pow(y.L / f.ReD, c2)

Sh = 1.5 * y.L + (2.0 * c3 - 3.0) * VT + (3.5 - 2.0 * c3) * sqr(VT) / y.L

Cf = 2.0 * VON_KARMAN_SQR * VT * abs(VT)
H = 1.0 / (1.0 - Sh)

bounlay = {'VT': VT,
'Sh': Sh,
'Cf': Cf,
'H': H
}

return bounlay
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def calc_max_shearstress_position(y, bounlay):
"""Calculate and return the non-dimensional wall-normal position of maximum

shear stress in the boundary layer"""

y = sns(**y)
b = sns(**bounlay)

if y.L >= 0.5: c1 = 1.3 * y.L - 0.4
else: c1 = 0.24

if b.VT >= 5.3212 * y.L - 3.117086 * c1:
eta = 0.25

else:
eta = 2.0 * atan(sqrt(2.0 * y.L / c1 -1.0)) / PI - \

0.006 * (1.0 / y.L - 2.0) / y.L

# Newton's method
while True:

func = b.VT * ln(eta) - 2.0 * (y.L - b.VT) * \
sqr(cos(PI * eta / 2.0)) + c1

d_func = b.VT / eta + PI * (y.L - b.VT) * sin(PI * eta)
delta = func / d_func
eta = eta - delta
if abs(delta) < 1e-4: break

# end Newton's method

return eta

def calc_curvature_correction_AUX(B, L, W, dW):
"""Calculate the curvature -correction term"""

if D_TYPE == 'planar' and dW > 0.0 and L < 0.5 and \
THETA > 0.12: curv = 0.006 / W / B

elif D_TYPE == 'annular' and dW > 0.0 and L < 0.5: curv = 0.006 / W /B
else: curv = 0.0

return curv

def calc_ODE_coeff_LHS_RHS1(y, geom, flow, bounlay, shear_coeff_v):
"""Calculate the coefficients 'a11', 'a12', 'a21', and 'a22' on the

left-hand side of the ODE system; calculate the first coefficient 'b1'
on the right-hand side of the ODE system"""

y = sns(**y)
g = sns(**geom)
f = sns(**flow)
b = sns(**bounlay)

c1 = 1.5894898556
c1_1 = 3.5 - 2.0 * c1
c1_2 = 2.0 * c1 - 3.0
c1_3 = 7.0 - 4.0 * c1
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curv = calc_curvature_correction_AUX(y.B, y.L, g.W, g.dW)

coeff1 = 1.5 - c1_1 * sqr(b.VT / y.L) + (0.115 - 2.0 * y.L) / y.L * \
(c1_2 + c1_3 * b.VT / y.L) * (0.3 + 0.4 * y.L) / pow(f.ReD, 0.115)

coeff2 = 0.115 * (c1_2 * b.VT + c1_3 * sqr(b.VT) / y.L)

a11 = (coeff2 + 1.0 - b.Sh) / y.B / (1.0 - 2.0 * y.B) + \
(2.0 - b.Sh + curv / y.L) / (0.5 - y.B)

a12 = coeff1
a21 = 1.0 / (1.0 - 2 * y.B)
a22 = y.B / y.L / (1.0 - y.L)

b1 = VON_KARMAN_SQR * b.VT * abs(b.VT) / g.W / y.B + g.dW * \
(2.0 - b.Sh + curv / y.L) / g.W

if D_TYPE == 'annular':
b1 -= (1.0 - b.Sh) * sin(THETA) /2 / RM_IN

b1 -= shear_coeff_v

ode_coeff = {'a11': a11,
'a12': a12,
'a21': a21,
'a22': a22,
'b1' : b1
}

return ode_coeff

def calc_beta_coeff(B, dB, W, dW, VT):
"""Calculate coefficient beta"""

beta = W * B * (2.0 * dB / (1.0 - 2.0 * B) - dW / W) / 15.0 / \
VON_KARMAN_SQR / sqr(VT)

beta = max(min(beta, 0), -30)

return beta

def calc_ODE_coeff_RHS2(y, W, tau, entrain_coeff_v):
y = sns(**y)

b2 = 10.0 * tau * y.L / W / (1.0 - y.L)

if D_TYPE == 'annular':
b2 -= y.B * sin(THETA) /2 / RM_IN

b2 += entrain_coeff_v

return b2

def calc_dB(y, geom, ode_coeff , b2, flag):
"""Calculate the derivative of the blockage factor 'dB'"""
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y = sns(**y)
g = sns(**geom)
o = sns(**ode_coeff)

if flag == 0:
dB = (b2 * o.a12 - o.b1 * o.a22) / (o.a12 * o.a21 - o.a11 * o.a22)

elif flag == 1:
dB = g.dW * (1.0 -2.0 * y.B) / g.W / 2.0

elif flag == 2:
dB = o.b1 / o.a11

return dB

def calc_dL(ode_coeff , b2, dB, flag):
"""Calculate the derivative of the boundary-layer blockage factor 'dL'"""

o = sns(**ode_coeff)

if flag == 0:
dL = (b2 * o.a11 - o.b1 * o.a21) / (o.a12 * o.a21 - o.a11 * o.a22)

elif flag == 1:
dL = (o.a11 * dB - o.b1) / o.a12

elif flag == 2:
dL = 0.0

return dL

def calc_shear_lag_equations(x, yy, geom, flow, bounlay, eta, ode_coeff ,
entrain_coeff_v , state_prev):

"""Calculate the shear-lag equations"""

y = sns(**yy)
g = sns(**geom)
f = sns(**flow)
b = sns(**bounlay)
prev = sns(**state_prev)

dB = prev.dB
tau0 = prev.tau
funct0 = prev.funct
dx = abs(x - prev.x)

limiterFlag = 0 # no limiter active here

tauEQ = 0.0168 * y.L * (b.VT / eta + PI * (y.L - b.VT) * sin(PI * eta))
tauEQ /= 1.0 + 9.0 * pow(eta, 6.0)

if x == -N_IN: tau0 = tauEQ

if y.L >= 0.48:
tauEQ = 0.13 * tauEQ / 0.168
if g.dW == 0.0: tauEQ = tauEQ * (1.0 - y.L) / y.L
tau = tauEQ
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b2 = calc_ODE_coeff_RHS2(yy, g.W, tau, entrain_coeff_v)
dB = calc_dB(yy, geom, ode_coeff , b2, limiterFlag)

elif g.dW == 0.0:
tau = tauEQ * y.L * dx / (80.0 * g.W * y.B + dx * y.L)
tau += (tau0 + dx * funct0 / 80.0) / \

(1 + dx * y.L / 80.0 / g.W / y.B) * sqr(prev.U/f.U)
b2 = calc_ODE_coeff_RHS2(yy, g.W, tau, entrain_coeff_v)
dB = calc_dB(yy, geom, ode_coeff , b2, limiterFlag)

else:
tau1 = tauEQ
while True:

beta = calc_beta_coeff(y.B, dB, g.W, g.dW, b.VT)

tau = tau1 * (0.013 + 0.0038 * exp(beta)) / 0.0168
tau = tauEQ * y.L * dx / (80.0 * g.W * y.B + dx * y.L)
tau += (tau0 + dx * funct0 / 80.0) / \

(1 + dx * y.L / 80.0 / g.W / y.B) * sqr(prev.U / f.U)

if y.L <= 0.5 and y.B >= y.L / 2.0: tau = 0.0

b2 = calc_ODE_coeff_RHS2(yy, g.W, tau, entrain_coeff_v)

dB0 = dB
dB = calc_dB(yy, geom, ode_coeff , b2, limiterFlag)

if abs(dB0 - dB) < 1e-6: break

funct0 = y.L * (tauEQ - tau) / g.W / y.B

state_prev = {'x': x,
'U': f.U,
'tau': tau,
'funct': funct0,
'dB': dB
}

dL = calc_dL(ode_coeff , b2, dB, limiterFlag)

dy = {'dB': dB,
'dL': dL,
}

return dy, b2, state_prev

def limit_entrainment(yy, geom, ode_coeff , b2, dy, state_prev):
"""Limit the entrainment rate"""

y = sns(**yy)
g = sns(**geom)
o = sns(**ode_coeff)
dy = sns(**dy)

if y.L <= 0.42265 or g.dW == 0:
limiterFlag = 0
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dB = dy.dB
dL = dy.dL

elif dy.dL > 0.0:
if dy.dB <= g.dW * (1.0 - 2.0 * y.B) / 2.0 / g.W:

dB = dy.dB
dL = dy.dL

else:
limiterFlag = 1
dB = calc_dB(yy, geom, ode_coeff , b2, limiterFlag)
dL = calc_dL(ode_coeff , b2, dB, limiterFlag)
if D_TYPE == 'planar':

state_prev['tau'] = (o.a21 * dB - o.a22 * dL) * g.W * (1.0 -
y.L) / 10.0 / y.L

elif D_TYPE == 'annular':
state_prev['tau'] = (o.a21 * dB - o.a22 * dL + y.B *

sin(THETA) / 2 / RM_IN) * \
g.W * (1.0 - y.L) / 10.0 / y.L

else:
limiterFlag = 2
dB = calc_dB(yy, geom, ode_coeff , b2, limiterFlag)
dL = calc_dL(ode_coeff , b2, dB, limiterFlag)
if D_TYPE == 'planar':

state_prev['tau'] = (o.a21 * dB) * g.W * (1.0 - y.L) / 10.0 / y.L
elif D_TYPE == 'annular':

state_prev['tau'] = (o.a21 * dB + y.B * sin(THETA) /2 / RM_IN) * \
g.W * (1.0 - y.L) / 10.0 / y.L

dy = {'dB': dB,
'dL': dL,
}

return dy, state_prev

#------------------------------------------------------------------------------
#%% vortex model
# G = Circulation
def update_circulation(u_tv, r, G):

"""Reduce the vortex circulation due to viscous interaction with the
boundary layer"""

if G >= 0:
dG = - C_DGAM * u_tv * npi(2) * r
print('DG', dG)

else:
dG = 0

return dG

def convect_vortex(x, flow):
"""Convect the vortex, determine physical time step to calculate vortex

decay"""

f = sns(**flow)

dt = 1 / f.U
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return dt

def calc_vortex_strainrate(t, r, G):
"""Calculate the strain rate induced by the vortex"""

pot = G / npi(1) / np.square(r)
gam = G * RE_V / npi(4) / t
decay = np.exp(- sqr(r) * RE_V / 4.0 / t)

strainrate_v = pot * (decay - 1.0) + gam * decay

return strainrate_v

def calc_vortex_shear(y, geom):
"""Calculate the shear stress induced by the vortex at the location of

maximum shear stress"""

y = sns(**y)
g = sns(**geom)
r_rel_max_strainrate = 1.33913087

if V_ONOFF != 0 and y.B >= ABS_ERROR[-2] and y.L >= ABS_ERROR[-2] and \
y.G > 0:
r_eval = (1 - WV_IN) * g.W / 2 - y.B
r_max_strainrate = 2 * sqrt(y.t / RE_V) * r_rel_max_strainrate
r = max(r_eval, r_max_strainrate)

strainrate_v = calc_vortex_strainrate(y.t, r, y.G)
shearstress_v = strainrate_v / RE_V # negative sign transforms from

# vortex reference frame to
# boundary -layer reference frame

u_tv = - sign(shearstress_v) * sqrt(abs(shearstress_v))
shear_coeff_v = C_VORT * 2 * VON_KARMAN_SQR * abs(u_tv) * u_tv
entrain_coeff_v = C_ENTR * 2 * VON_KARMAN_SQR * abs(u_tv) * u_tv

dG = update_circulation(u_tv, r, y.G)
else:

u_tv, shear_coeff_v , entrain_coeff_v , dG = 0, 0, 0, 0

return u_tv, shear_coeff_v , entrain_coeff_v , dG

#------------------------------------------------------------------------------
#%% solver
def solver():

"""Call functions in appropriate order; call solver"""

output = init_output()

# init storage structure for state from previous iteration
state_prev_stored = {# position

'x' : INT_START ,
# flow
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Appendix A. Diffuser-prediction program

'U' : U_IN,
'tau' : 0.0,
'funct': 0.0,
'dB' : 0.0,
}

# evaluate derivatives of dependent variables (y[])
# for given independent variable (x)
def eval_func(x, y):

# read stored state from previous iteration
# contains initial values of x, U, G
nonlocal state_prev_stored
state_prev = state_prev_stored

# initialise and unpack data structures
y = unpack_solution_vector(y)

# all following functions are performed step-wise at each iteration

# set up diffuser geometry
geom = calc_geom(x)
# compute free-stream and boundary -layer flow
flow = calc_flow(x, y, geom)
bounlay = calc_bl_state(y, flow)
eta = calc_max_shearstress_position(y, bounlay)

# compute vortex velocity gradient
u_tv, shear_coeff_v , entrain_coeff_v , dG = calc_vortex_shear(y, geom)
dt = convect_vortex(x, flow)

# compute coefficients for ODE system
# LHS: a11, a12, a21, a22;
# RHS: b1; b2 will be computed in next function
ode_coeff = calc_ODE_coeff_LHS_RHS1(y, geom, flow, bounlay,

shear_coeff_v)

# compute gradients of independent variables ,
# ODE coefficient b2 and previous state
# for boundary layer
dy, b2, state_prev = calc_shear_lag_equations(x, y, geom, flow,

bounlay, eta, ode_coeff ,
entrain_coeff_v ,
state_prev)

# re-compute gradients and previous state
# if required by entrainment limiter
dy, state_prev = limit_entrainment(y, geom, ode_coeff , b2, dy,

state_prev)

# pack and store state for next iteration (nonlocal)
state_prev_stored = state_prev

# store output in output arrays (global)
gen_output(output, x, y, geom, flow, bounlay)

# pack gradients for output
dy_tuple = dy['dB'] , dy['dL'], dG, dt
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return dy_tuple

# call solver with 4th/5th order accuracy Runge-Kutta method
sol = solve_ivp(fun = eval_func ,

t_span = [INT_START , INT_END],
y0 = [B_IN, L_IN, G_IN, T_IN],
method = 'RK45',
t_eval = X_EVAL,
atol = ABS_ERROR ,
rtol = REL_ERROR ,
max_step = MAX_STEP
)

print ("Solver success") if sol.success else print ("Solver error")

return output

#------------------------------------------------------------------------------
#%% execution
#%% solver call
output = solver()

#------------------------------------------------------------------------------
#%% output
output_eval = eval_output(output)

#------------------------------------------------------------------------------
#%% end of file
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Appendix B.

Shear-stress–transport turbulence model

The model equations of the 𝑘-𝜔 shear-stress–transport (SST) turbulence model by Menter
et al. (2003), which was first published in Menter (1994), are given below in the notation
of this thesis. The respective transport equations for the turbulent kinetic energy 𝑘 and the
specific turbulence-dissipation rate 𝜔 are (see also Eqns 5.14 and 5.15):

𝜕(𝜌𝑘)
𝜕𝑡 + 𝛁 ⋅ (𝜌𝑘𝐮) = ̃𝒫𝑘 − 𝛽∗𝜌𝜔𝑘 + 𝛁 ⋅ [(𝜇 + 𝜎𝑘𝜇turb) 𝛁𝑘],

𝜕(𝜌𝜔)
𝜕𝑡 + 𝛁 ⋅ (𝜌𝜔𝐮) =

𝜌𝛼
𝜇turb

̃𝒫𝑘 − 𝛽∗𝜌𝜔2 + 𝛁 ⋅ [(𝜇 + 𝜎𝜔𝜇turb) 𝛁𝜔]

+ 2 (1 − 𝐹1)
𝜌𝜎𝜔,2

𝜔 [𝛁𝑘 ⋅ 𝛁𝜔] ,

where the limiter
̃𝒫𝑘 ∶= min (𝒫𝑘; 10𝛽∗𝜌𝜔𝑘) (B.1)

limits the production of turbulent kinetic energy, i.e.,

𝒫𝑘 ∶= [𝛕′ ∶ (𝐮 ⊗ 𝛁)] . (B.2)

The turbulent viscosity is then

𝜇turb ∶=
𝜌𝑎1𝑘

max (𝑎1𝜔; 𝑆𝐹2) . (B.3)

Calibration
The cross-diffusion term in the transport equation of the specific turbulence-dissipation rate,
i.e., the last term on the right-hand side is controlled by the blending function

𝐹1 ∶= tanh (arg4
1) , (B.4)

where

arg1 ∶= min ⎡⎢
⎣
max⎛⎜⎜

⎝

√𝑘
𝛽∗𝜔𝑑;

500𝜈
𝑑2𝜔

⎞⎟⎟
⎠

;
4𝜌𝜎𝜔,2𝑘
𝒞𝒟𝑘𝜔𝑑2

⎤⎥
⎦
, (B.5)

where 𝑑 is the wall distance and

𝒞𝒟𝑘𝜔 ∶= max{
2𝜌𝜎𝜔,2

𝜔 [𝛁𝑘 ⋅ 𝛁𝜔] ; 10−10} (B.6)

is the limited cross-diffusion term. As a result, the cross-diffusion term is activated when
the wall distance becomes sufficiently large.
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Appendix B. Shear-stress–transport turbulence model

The second blending function,
𝐹2 ∶= tanh (arg2

2) , (B.7)

with

arg2 ∶= max⎛⎜⎜
⎝

2√𝑘
𝛽∗𝜔𝑑;

500𝜈
𝑑2𝜔

⎞⎟⎟
⎠

(B.8)

limits the turbulent viscosity in near-wall regions.

Model calibration
The model has two sets of calibration constants, i.e.,

𝜎𝑘,1 ∶= 0.85, 𝜎𝜔,1 ∶= 0.5, 𝛼1 ∶= 5/9, 𝛽1 ∶= 0.075, 𝛽∗ ∶= 0.09,
𝜎𝑘,2 ∶= 1.0, 𝜎𝜔,2 ∶= 0.856, 𝛼2 ∶= 0.44, 𝛽2 ∶= 0.082, 𝑎1 ∶= 0.31 (B.9)

which are interpolated linearly using the 𝐹1 blending function:

⊠ = 𝐹1 ⊠1 + (1 − 𝐹1) ⊠2 , (B.10)

where ⊠ is a generic placeholder.

Boundary conditions
The boundary conditions are defined as follows:

𝒰∞
ℓdomain

< 𝜔∞ < 10
𝒰∞

ℓdomain
, 𝜔0 = 10

6𝜈
𝛽1 (Δ𝑑1)2 , (B.11)

10−5 𝒰2
∞

Reℓdomain

< 𝑘∞ < 0.1
𝒰2

∞
Reℓdomain

, 𝑘∞ = 0. (B.12)
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Appendix C.

Scale-adaptive simulation approach

The model equations of the scale-adaptive simulation (SAS) method by Menter and Egorov
(2010) are given below in the notation of this thesis. The source term (see also Eqn. 5.17)

𝒫SAS ∶= max
⎧{
⎨{⎩

𝜌𝜁2𝑆2 (
ℓturb
ℓvK

)
2

− 𝐶SAS
2𝜌𝑘
𝜎Φ

max [
1
𝑘2 (𝛁𝑘 ⋅ 𝛁𝑘) ;

1
𝜔2 (𝛁𝜔 ⋅ 𝛁𝜔)] ; 0

⎫}
⎬}⎭
,

where (see also Eqn. 5.18)
𝑆 ∶= √2 ∥𝐒∥F = √2𝐒 ∶ 𝐒

is added to the transport equation for the specific turbulence-dissipation rate (Eqn. 5.15).
The source term increases the specific turbulence-dissipation rate and, therefore, reduces

the turbulent kinetic energy when the modelled turbulence length scale

ℓturb ∶=
√𝑘

𝑐𝜇𝜔 (C.1)

is large compared to the limited von Kármán length scale (see Eqn. 5.19), i.e.,

ℓvK ∶= max
⎛⎜⎜⎜⎜
⎝

𝜅
∥(𝐮 ⊗ 𝛁)∥F

∥𝛁2𝐮∥2
; 𝐶S

√
√
√
⎷

𝜅𝜁2
𝛽
𝑐𝜇

− 𝛼
Δ

⎞⎟⎟⎟⎟
⎠
, (C.2)

where the local cell size Δ is calculated from the determinant of the Jacobian matrix,

Δ ∶= ∣ 𝐉 ∣1/3 = 𝐽1/3. (C.3)

This results in a decrease in the turbulent viscosity and facilitates the formation of unsteady,
inhomogeneous flow structures.

The model constants are defined below:

𝜅 ∶= 0.4, 𝜁2 ∶= 3.51, 𝐶SAS ∶= 2.0, 𝜎Φ ∶= 2/3. (C.4)

The Smagorinsky constant 𝐶S must be calibrated specifically for the employed discretisation
scheme (see Egorov and Menter 2008).
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Appendix D.

Blending of spatial differencing schemes

Themethod of Strelets (2001) provides a blending between central and upwind differencing
schemes to reduce numerical dissipation in flow regions where the SST-SAS model is active
yet increase numerical stability in other flow regions. The equations are given below in the
notation of this thesis. The inviscid fluxes of the central and upwind differencing scheme
are interpolated linearly (see also Eqn. 5.22):

𝐅inviscid = (1 − 𝜎) 𝐅central + 𝜎𝐅upwind,

where
𝜎 ∶= 𝜎max tanh (𝐴𝐶H1) (D.1)

with
𝜎max ∶= 1.0. (D.2)

The argument of the blending function 𝜎 is

𝐴 ∶= 𝐶H2max(
𝐶DESΔ𝜎/ℓturb,𝜎

𝑔 − 0.5; 0) , (D.3)

where

ℓturb,𝜎 ∶= √
𝜇 + 𝜇turb

𝜌𝑐3/2
𝜇 𝐾

, (D.4)

𝐾 ∶= max⎛⎜⎜
⎝

√𝑆2 + Ω
2 ; 0.1𝒯 −1⎞⎟⎟

⎠
, (D.5)

and
𝑔 ∶= tanh𝐵4 (D.6)

with
𝐵 ∶= 𝐶H3Ω

max (𝑆; Ω)

max(𝑆2+Ω2

2 ; 10−20)
. (D.7)

The calibration constants are

𝐶H1 ∶= 3.0, 𝐶H2 ∶= 1.0, 𝐶H3 ∶= 2.0. (D.8)

In this work, the characteristic convective time was set to 𝒯 = 5.920 07 × 10−4 s.
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Appendix E.

Index of hypotheses and
corresponding conclusions

The hypotheses and corresponding conclusions developed in this thesis are referenced and
summarised below in Tab. E.1. Three additional conclusions which do not refer to any
hypotheses are listed at the end of the table. The page numbers indicate the beginning of
the particular sections in which the statements were made.

Table E.1.: Index of the hypotheses and corresponding conclusions stated in this work

Hypothesis Conclusion

Number Sec. start Statement Number Sec. start Statement

Hyp. 4.1 p. 39 The sensitivity of the dif-
fuser effectiveness towards
a given stabilising vortex
increases with the diffuser
opening angle.

Con. 6.7 p. 70 The simulation results sup-
port Hyp. 4.1: the sensitiv-
ity of the effectiveness to-
wards vortex-induced sta-
bilisation increases with
the diffuser opening angle.

Hyp. 4.2 p. 43 The stabilisation of the
boundary layer does not
depend upon the momen-
tum deficit of the bound-
ary layer, but only upon the
circulation of the vortex.

Con. 6.4 p. 68 The modelling results
agree with Hyp. 4.2: the
sensitivity of the boundary
layer towards vortex-
induced stabilisation does
not depend upon the
momentum deficit of the
boundary layer, but on the
circulation of the vortex.

Continued on the following page
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Table E.1 (continued)

Hypothesis Conclusion

Number Sec. start Statement Number Sec. start Statement

Hyp. 4.3 p. 43 Shear stresses imposed by
a vortex with a mathemati-
cally positive sense of rota-
tion increase the boundary-
layer stability in propor-
tion to the vortex circula-
tion.

Con. 6.5 p. 68 The modelling results
show a linear dependency
of the boundary-layer
parameters displacement
thickness and shape factor
upon the vortex shear
stresses. The results are,
thus, consistent with the
theory presented.

Hyp. 4.4 p. 43 Entrainment of boundary-
layer fluid into the vortex
decreases the boundary-
layer stability in propor-
tion to the vortex circula-
tion.

Con. 6.6 p. 68 The modelling results
show a strictly mono-
tone dependency of
the boundary-layer pa-
rameters displacement
thickness and shape factor
upon the vortex entrain-
ment. The results are, thus,
consistent with the theory
presented.

Hyp. 4.5 p. 43 The vortex decay does not
depend upon the momen-
tum deficit of the bound-
ary layer, but only upon the
vortex circulation.

Con. 6.3 p. 65 The numerical results
partially support Hyp. 4.5:
the vortex decay is mostly
dependent upon the vortex
circulation and not upon
the momentum deficit of
the boundary layer. This
conclusion is, however,
not applicable to the
case of low stabilisation
numbers together with
strong flow separation
just downstream of the
diffuser inlet.

Hyp. 4.6 p. 46 The diffuser effectiveness 𝜖
increases linearly with the
stabilisation number Σ.

Con. 6.1 p. 63 The data confirm Hyp. 4.6:
the effectiveness 𝜖 in-
creases linearly with the
stabilisation number Σ.

Continued on the following page
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Table E.1 (continued)

Hypothesis Conclusion

Number Sec. start Statement Number Sec. start Statement

Hyp. 4.7 p. 50 The total-pressure loss co-
efficient 𝜁 of the diffuser de-
creases linearly with an in-
creasing product of the ex-
trapolation factor and the
stabilisation number, i.e.,
ΞΣ with regard to an ex-
trapolated reference Ξ𝜁ref.

Con. 6.2 p. 64 The data confirm Hyp. 4.7:
the total-pressure loss co-
efficient decreases linearly
with an increasing extrapo-
lated stabilisation number
ΞΣ with regard to an ex-
trapolated reference Ξ𝜁ref.

N/A N/A N/A Con. 6.8 p. 70 The simulation results
show that the sensitivity of
the extrapolated changes
in the total-pressure loss
coefficient towards the
vortex-induced stabilisa-
tion increases with the
diffuser opening angle.

N/A N/A N/A Con. 6.9 p. 72 The simulation results
show that the sensitivity
of the diffuser effec-
tiveness towards the
vortex-induced stabilisa-
tion decreases gradually
downstream of the separa-
tion location in the case of
massive flow separation. It
increases, however, in the
case of attached boundary
layers.

N/A N/A N/A Con. 6.10 p. 72 The simulation results
show that the sensitivity of
the extrapolated changes
in the total-pressure loss
coefficient towards the
vortex-induced stabilisa-
tion increases linearly with
the diffuser length.
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