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ERRATUM TO: A VARIATIONAL APPROACH TO A STATIONARY

FREE BOUNDARY PROBLEM MODELING MEMS

Philippe Laurençot1,* and Christoph Walker2

Abstract. An incomplete argument in the proof of Theorem 3.4 from Ph. Laurençot and Ch. Walker
[ESAIM: COCV 22 (2016) 417–438] is corrected.
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We noticed a gap in the proof of Theorem 3.4 from [2] and the aim of this erratum is to provide a complete
argument. Specifically, in Theorem 3.4 from [2], we derive the Euler-Lagrange equation satisfied by a minimizer u
of the functional

Em(u) :=
β

2
‖∂2
xu‖2L2(I) +

1

2

(
τ +

a

2
‖∂xu‖2L2(I)

)
‖∂xu‖2L2(I)

on the set

Aρ := {u ∈ H2
D(I) : u is even with − 1 < u ≤ 0 and Ee(u) = ρ} ,

where I := (−1, 1), ρ ∈ (2,∞), H2
D(I) := {u ∈ H2(I) : u(±1) = ∂xu(±1) = 0}, and Ee is a non-negative non-

linear and nonlocal functional of u. The computation in [2] of the Euler-Lagrange equation, see equation (3.10)
from [2], relies implicitly on the property that minimizers lie in the interior of Aρ, a property which is, however,
not known a priori. Although knowing that minimizers are strictly greater than −1, it is actually not known
whether minimizers are negative (even though this property can be shown a posteriori, which was the main
reason to include it in the definition of Aρ). This issue can be remedied by changing slightly the admissible set
Aρ on which the functional Em is minimized. In fact, the non-positivity assumption in Aρ is not needed and
our analysis works equally well in the set

Aρ := {u ∈ H2
D(I) : u is even with − 1 < u and Ee(u) = ρ} . (1)
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To be more precise, several results in [2] were derived for non-positive functions in

Ks := {u ∈ Hs
D(I) : −1 < u ≤ 0 on I} , s ≥ 1 ,

an assumption which is not required, as it suffices to work in

Ss := {u ∈ Hs
D(I) : −1 < u on I} , s ≥ 1 .

For u ∈ S1, one shall then rather define the function bu in equation (2.1) from [2] as

bu(x, z) :=


1 + z

1 + u(x)
for (x, z) ∈ Ω(u) ,

1 for (x, z) ∈ Ω(Mu) \ Ω(u) ,

where Ω(Mu) := I× (−1,Mu+ 1) with Mu := max{0, supI u}. Note that bu belongs to H1(Ω(Mu))∩C(Ω(Mu)),
which allows one to redefine Bu ∈ H−1(Ω(Mu)) (i.e. the dual space of H1

D(Ω(Mu))) in equation (2.2) from [2]
by

〈Bu, ϑ〉 := −
∫

Ω(Mu)

[
ε2∂xbu∂xϑ+ ∂zbu∂zϑ

]
d(x, z) , ϑ ∈ H1

D(Ω(Mu)) .

Then Lemmas 2.1 and 2.2 from [2] remain true for u ∈ S1 (instead of u ∈ K1) and Proposition 2.3 from [2] is
actually valid for u ∈ S2−α (instead of u ∈ K2−α) when replacing equation (2.5) from [2] by

1 + z

1 +Mu
≤ ψu(x, z) ≤ 1 , (x, z) ∈ Ω(u) .

Moreover, Propositions 2.6 and 2.7 from [2] are also true when replacing K1 by S1. For later use, we note that
Proposition 2.6 from [2] implies

Ee(u) ≤ Ee(0) = 2 for u ∈ S1 with u ≥ 0 in I . (2)

Also Lemma 2.8 from [2] remains true for u ∈ S1 (instead of u ∈ K1), except that the lower bound on Ee(u) has
to be replaced by

Ee(u) ≥
∫ 1

−1

dx

1 + u(x)
≥ 2

1 +Mu
.

All other statements of Section 2 from [2] are not affected by these changes.
The minimization of Em in Section 3 from [2] is now performed on the set Aρ defined in (1) for a given

ρ ∈ (2,∞). The statement of Proposition 3.1 from [2] remains true, as it is easily checked that its proof only
relies on the continuity of the map t 7→ Ee(tv) for v ∈ Aρ established in Proposition 2.7 from [2], but not on its
monotonicity (which is only true when v is non-negative). Next, neither Proposition 3.2 from [2], nor Lemma 3.3
from [2] are affected by the change of Aρ to Aρ. Therefore, in the proof of Theorem 3.4 from [2] we can use the
same arguments to derive that, if u ∈ Aρ is an arbitrary minimizer of Em on Aρ, then u ∈ H4(D)∩H2

D(I), and
there is a Lagrange multiplier λu ∈ R such that

β∂4
xu−

(
τ + a‖∂xu‖2L2(I)

)
∂2
xu = −λug(u) , x ∈ I , (3)
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where g(u) := ∂uEe(u) is a non-negative functional of u, which belongs to L2(I). At this stage, since the non-
positivity of u is not yet guaranteed, we need to employ a slightly different argument than in [2]. Indeed, we
first assume for contradiction that λu ≤ 0. Then −λug(u) is non-negative and it follows of (3) and Theorem 1.1
from [1] that u > 0 in I. Hence ρ = Ee(u) ≤ Ee(0) = 2 by (2), contradicting ρ ∈ (2,∞). Consequently, λu > 0
and −λug(u) is negative, so that we infer of (3) and Theorem 1.1 from [1] that u < 0 in I. The remaining
arguments in the proof of Theorem 3.4 from [2] are then the same.

Summarizing, the statement of Theorem 3.4 from [2] is correct, once Aρ is replaced by Aρ. Thanks to the
above analysis, Theorem 3.4 from [2] may be supplemented with the following result:

Corollary 1. Consider ρ ∈ (2,∞) and let u ∈ Aρ be an arbitrary minimizer of Em in Aρ. Then u < 0 in I
and u ∈ Aρ. In addition,

Em(u) = min
v∈Aρ

Em(v) = min
v∈Aρ

Em(v) .
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