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Abstract

Rapid advancements in the experimental realisation of large many-body systems
also leads to the necessity for better theoretical descriptions of them. In this thesis,
I present the successful solution of the notoriously hard but experimentally highly
relevant many-body problem of driven-dissipative Rydberg polaritons in an optical
lattice. The setup uses two counter-propagating light fields to produce a standing
light field inside the lattice in combination with another control laser field to excite
Rubidium atoms into the Rydberg states. From the continuous model, we derive
a dispersion relation and construct the respective Wannier functions of the bands.
We identify two dark-state polaritons and derive a Bose-Hubbard-like model in con-
sideration of the interaction with the surrounding bright-state polariton bands. We
then study the dynamics of this system with the Lindblad master equation to also
include dissipative processes. To solve it, we use a variational approach in combi-
nation with a hard-sphere constraint to describe the Rydberg blockade. First, we
compare these results with the solution from a Monte-Carlo wave function simula-
tion where we find a good agreement between the two solutions for larger system
sizes. We then use the variational approach to obtain a result for a system size
of N = 40, which far exceeds the possible site number obtainable via Monte-Carlo
simulations. In the end, we also study the time correlation between measurements
of two photons leaving the system after they travelled through the entire lattice.
The problem of the description of the infinite Hilbert space that occurs in bosonic
fields is also a highly relevant topic in the context of many-body systems. Here, we
show a new way to use the variational principle to describe any bosonic field by the
usage of the P-representation of the density matrix in combination with the formu-
lation of the master equation in terms of equations of motion. By investigating the
bistability region of the driven-dissipative Jaynes-Cummings model, we show that
our method exceeds conventional mean-field descriptions. We then extend the new
approach by adding correlation functions as additional variational parameters to
describe correlations between different parts of the Hilbert space. This allows us to
investigate the effective three-boson model which describes Rydberg atoms inside a
driven cavity with dissipation channels for the atoms and the cavity. The Rydberg-
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Rydberg interaction leads to correlations between the atoms which in turn cause a
squeezing effect of the different bosonic modes. By a transformation of the model
into the polariton picture, we show how the squeezing mostly affects the dark-state
polaritons and its scaling with the pumping rate of the cavity.
The last part focuses on the dissipative Ising model and its realisation through the
coupling of internal states of ions and their vibrational modes. We present the anal-
ysis of the system with the novel approach to combine mean-field solutions with the
variational norm to deepen the understanding of the phase diagram of the model.
We also look for traces of the different phase transitions between a ferromagnetic and
a paramagnetic phase if we are far from the thermodynamical limit. Furthermore,
we present a measurement protocol that reduces unwanted detuning terms that can
arrive from systematic errors in experiments, which will allow a better comparison
between the theoretical and experimental analysis of the dissipative Ising model.
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Introduction

The duality of light to behave like an electromagnetic field and a particle is one of
the cornerstones of quantum mechanics. Nowadays, these particles, called photons,
are back in the spotlight of a large research field. With progress in the fields of signal
processing, quantum information and communication also came the possibility to
use them as transmitters of informations[1, 2, 3, 4].
Almost lossless movement with the speed of light is a useful feature in the classical
but also in the quantum world. On the other hand, photons do not only show al-
most no interaction with their environment but also with other photons which makes
their usage for quantum gates, transistor, switches etc. hard as these devices rely
on that interaction between the particles. Early research by Kerr showed that the
application of an electric field can manipulate the optical properties of a medium.
Even though reseachers knew that these nonlinear effects can cause interaction be-
tween photons, they thought that the effects are only relevant for high levels of light
intensities and not usable at the level of a single atom with only a few photons [4, 5].
The first major step to overcome the weak interaction between a photon and the
atom was to drastically increase the time of interaction between atoms and photons
by the usage of a cavity with a high-quality factor which enhances the probability
that the two particles interact with each other [6, 7].
Another approach was the development of strongly nonlinear media which was
achieved by the discovery of the electromagnetically induced transparency (EIT)
effect, which creates strong nonlinearities even at a level of only a few quanta. If a
three-level system is driven by a probe field and further excited to a metastable state
by another control laser, then the interferences between different excitation patterns
can allow photons to move through the medium. Therefore, EIT turns a normally
opaque medium into a transparent one in a very narrow spectral window which
causes the large nonlinearities. Furthermore, the photons that now pass through
the system form quasi-particles with the atoms called polaritons [8]. These particles
have a drastically reduced group velocity compared to pure light which depends on
the ratio of light and matter in the composition of the polaritons. Because this can
be changed by the control laser, these systems also find application in the field of

9



Contents

quantum memories and storing of quantum informations by transforming light to
matter and vice versa.
The control of the transmission on the level of a single photon was achieved by
introducing Rydberg states as the third level in the EIT scheme. This change in
the level architecture maps the dipole-dipole interaction of the Rydberg atoms onto
the photons [9]. Responsible for this mapping process is the Rydberg blockade ef-
fect. The interaction strength detunes the atom out of the two-photon resonance
necessary for EIT. The detuning can even exceed the control laser linewidth in an
area around the Rydberg atom. Other atoms within the blockade radius of the Ryd-
berg atom become two-level systems because they can no longer reach the Rydberg
state. The interacting atoms inside the sphere form a mesoscopic superatom with
an enhanced coupling to light [10, 11, 12, 13]. By also considering EIT in this de-
scription, the medium becomes transparent to single photons and opaque to pairs of
photons. Multiple experimental groups confirmed the theoretical predictions later
on [14, 15, 16, 17].

The emergence of different Rydberg polariton systems showed the need for bet-
ter theoretical descriptions [9, 14, 15, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27] . The
interplay between external drive, a natural dissipation channel from the Rydberg
state and strong dipole-dipole interaction can lead to interesting dynamics that are
not found in closed systems [28, 29]. However, the analysis of open quantum many-
body systems is extremely difficult [30]. Different attempts so far, are either limited
by the number of polaritons in the system [24] or neglect the decay channel of the
Rydberg state [25, 26, 27].
This thesis wants to offer new ways to study these open many-body systems with
the usage of the variational principle for open quantum systems. The first chapter
covers most of the theoretical concepts that build the foundation of this thesis. It
focuses on the theory for open quantum systems and how the variational principle
can be adapted to it. We also give a brief summary on how to describe light in
the quantum mechanical context which also includes its representations in terms
of quasi-probability distributions and the examples of some of the most prominent
states of light. In the end, we discuss the distinctive properties of Rydberg atoms
which also leads to the formation of EIT, dark states and polaritons if they interact
with light.
The second chapter then investigates the dynamics of Rydberg polaritons in an op-
tical lattice potential. We will first derive the dispersion relation of the system by
solving the single-particle problem, which allows us to obtain a Bose-Hubbard-like
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Hamiltonian with long-range hopping. We then move on to study the influences of
an environment and also how the long-range interactions affect our system. We will
use this knowledge to adapt the variational principle for the system and compare
it to other common numerical methods to see how it performs. The variational
approach then allows us to probe our model for larger system sizes than otherwise
possible. In the end we observe the time dynamics in the system, especially on the
last site, which has a connection to the photon output of our system. Furthermore,
we also look at the time correlation function which will give us information about
the quantum nature of the emitted light.
In the next chapter, we turn to a wider problem of how to treat bosonic fields in
an open quantum system. To tackle the problem, we will look at the convolution of
phase-space representations of the density matrix and how to calculate expectation
values without knowing the full expression of these convoluted distribution func-
tions. Based on that, we formulate a variational principle in terms of expectation
values with the P-distribution to describe bosonic fields. We then test it on the
well-known Jaynes-Cummings model and compare it again with other methods. We
then extend the newly developed method even further by also allowing correlation
between different modes. In the last section of this chapter we look at an effective
model for Rydberg atoms in a cavity. We study how the Rydberg-Rydberg inter-
action affects the squeezing of the polariton particles and we also look at particle
numbers that are very hard to obtain with other methods to see how the same scale
with cavity pumping.
In the last part of this thesis, we turn our attention to a different many-body sys-
tem in the form of the dissipative Ising model. Extensive studies of the model with
the variational principle showed an interesting and rich phase diagram that exceeds
previous assumptions based on the mean-field approach or the closed version of the
system [31, 32, 33, 34]. We will look at a system of two trapped ions that are
coupled with each other through their vibrational modes which causes an Ising-like
interaction between the ions. There are two questions we are concerned with. The
first one is if the mean-field solutions can be used to find both second and first-order
transitions if combined with the variational principle. The second one is if we can
find traces of the phase transitions between a ferromagnetic and a paramagnetic
phase in an experimentally realistic setup which means far from the thermodynam-
ical limit. To lower possible errors for these systems we also present a measurement
protocol to minimize unwanted systematic error.
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1. Theoretical Background

We want to use this section to discuss some basic concepts we will need throughout
the thesis. The concepts and methods for describing open quantum systems will
serve us as a starting point. First, we will establish the description of quantum
systems with mixed states via the density operator. We use this to describe the
dynamics of systems that couple to an external bath which leads us to the Lindblad
master equation and the generalised Ehrenfest equation, which offers an equivalent
description but in terms of expectation values. We also introduce the concepts of
the variational principle for open quantum systems as an efficient method to solve
driven-dissipative many-body problems.
Afterwards, we give a brief overview of the quantum description of light. We will
give a few examples of possible states in which we can encounter light or bosonic
fields in general and follow this up with the introduction of quasiprobabilities dis-
tributions to describe these bosonic fields.
We then want to look at some coherence and interference effects that stem from
the interaction of atoms with light, including the electromagnetically induced trans-
parency (EIT), the creation of dark states and at the end the introduction of po-
laritons.
Hereafter we shift our attention towards the systems we will encounter in the follow-
ing chapters. First and foremost, this will include Rydberg atoms, their properties
and also a short overview of how these atoms connect to the previously mentioned
effects in combination with light. In the end, we apply the Bloch theorem to a
general lattice system, which will be our foundation for the theoretical description
of Rydberg atoms in a lattice.
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1. Theoretical Background

1.1. Open quantum systems

From quantum mechanics, we know that a system can be described by its wave
function Ψ and its dynamics are given by [35]

Ĥ |Ψ〉 = Ê |Ψ〉 . (1.1)

Eq. (1.1) is the most general form of the Schrödinger equation with Ĥ as the Hamil-
ton operator and Ê = i~

∂

∂t
. This description of quantum systems is only valid as

long as it is isolated from its environment, an impossible task in any realistic situa-
tion.
In this section we want to discover how we can include the influences of the envi-
ronment to the system we are interested in. We will see that a single wave function
is in general not sufficient enough to describe the system, which will lead us to the
introduction of the density matrix. This obviously implies that we cannot use the
Schrödinger equation in the form of Eq. (1.1) to describe the dynamics of an open
quantum system. Instead, we will give a brief derivation of the Lindblad master
equation and its description of the dynamics of systems with dissipation channels.
In the last part, we will introduce the variational principle for open quantum sys-
tems and how to solve the master equation with it.
Let us first discuss why wave functions are not appropriate to describe open quan-
tum systems. The state |Ψ〉 in Eq. (1.1) is an eigenvector of the Hamiltonian that
describes a system. Such a state is also called a pure state. The interaction with an
environment that we do not have full knowledge about and also cannot control can
lead to a mixture of different pure states. A convenient way to write this mixture
is to sum over the projection operators Pi = |Ψi〉 〈Ψi| for each pure state |Ψi〉 and
weight it with the probability pi to find the system in this specific eigenstate. The
operator

ρ =
∑

i

pi |Ψi〉 〈Ψi| (1.2)

that we obtain in that way is semi-positive (ρ ≥ 0) and hermitian (ρ = ρ†) and is
called the density operator or in its matrix form the density matrix. The sum over
all possible states of the system in 1.2 also implies the constraint

∑

i

pi = 1 (1.3)

for the probabilities.
With the definition in Eq. (1.2) we can write the expectation value 〈Â〉 of an operator
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1.1. Open quantum systems

Â as
Â =

∑

i

pi 〈Ψi| Â |Ψi〉 = Tr
{
Âρ
}
. (1.4)

Here, we used the trace function Tr {·} which is defined as

Tr {A} =
d∑

k=1
〈φk|A |φk〉 . (1.5)

for any d-dimensional quadratic matrix A and orthonormal basis set |φk〉. Even
though any basis set is sufficient enough to fulfill the definition in Eq. (1.5), it is
often convenient to choose the eigenstates |Ψi〉.
In many cases, we can split up the Hilbert space in subsystems H1 with eigenstates
|φi〉 and H2 with eigenstates |φi〉. The composite Hilbert space is then given by
the tensor product of the subsystems H = H1 ⊗ H2. The same is also possible
for the density matrix ρ = ρ1 ⊗ ρ2 under the condition that the two subsystems are
uncorrelated. We want to write the states of compound Hilbert space as |Ψi〉⊗|φj〉 =
|ij〉 If we are now only interested in one of the subsystems, that is if we look at
observable of the form Â⊗I or I⊗ Â , we can also use the reduced density matrix of
the corresponding subsystem by defining the partial trace of the full density matrix
like

ρ1 = Tr2 {ρ} = Tr
�1
{ρ} =

∑

ii′

∑

j

〈ij| ρ |i′j〉 |Ψi〉 〈Ψi′| . (1.6)

The different expressions in Eq. (1.6) have the same meaning but can be useful in dif-
ferent contexts. For example, Tr2 {ρ} just means to take the partial over subsystem
2, whereas Tr

�1
{ρ} means that we are taking the partial trace over all subsystems

expect 1, which is especially useful when dealing with a large amount of subsystems.

1.1.1. Master equation in Lindblad form

So far, we only discussed how the density matrix can be useful to describe a quan-
tum system in case its states become mixed by the interaction with the environment.
Now, we want to investigate how exactly we can describe these interactions and es-
pecially what influences they have on the dynamics of our system.
First, we want to have a look at the Liouville-von Neumann equation as a generali-
sation of the Schrödinger equation for the density operator. For convenience reason,
we will set ~ = 1 and if not mention it otherwise will keep it that way throughout
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1. Theoretical Background

the thesis. The equation then reads as

ρ̇ = d

dt
ρ = −i[Ĥ, ρ̂] = L(t)ρ̂ (1.7)

where we introduced the notion of superoperators that act on other operators. The
Liouville superoperator Lmaps the density operator ρ to its time derivative ρ̇ = d

dt
ρ.

We can use Eq. (1.7) to obtain the dynamics of the full systems, that include the
system we are interested in, with the Hilbert space HS, and also its environment
with HE. The complete Hilbert space can also be written as a composition of the
two subsystems like

H = HS ⊗HE. (1.8)

In many cases, we are not interested in the complete dynamical processes that
happen in the environment but only its impact on the system S. Therefore, we
want to obtain a similar equation like Eq. (1.7) but for the reduced density matrix
ρS = TrE {ρ}.
A complete derivation of the master equation in Lindblad form can be found in [36].
Here, we want to focus ourselves on the approximations used to get the result and
a few key steps to understand its meaning.
For this purpose let us first take a step back. If we take the full system into account,
the unitary time evolution operator

ρ(t) = U(t)ρ(0)U(t)† (1.9)

realises the time evolution of the the density matrix ρ(0) to a time t. For the partial
density matrix ρS of the subsystem S, that means

ρS(t) = TrE
{
U(t)ρ(0)U †(t)

}
= V(t)ρS(0). (1.10)

Our goal is therefore to obtain the dynamical map V(t). This map does not describe
any longer the unitary time evolution of a closed system, instead it describes the
dynamical changes of an open system.
To obtain a microscopic derivation, we use as the starting point the Liouville-von
Neumann equation in Eq. (1.7). The Hamiltonian H = HS+HE+Hint consists of the
system Hamiltonian HS, the Hamiltonian of the environment HE and the interaction
between the two systems Hint. For simplicity, we want to work in the interaction
picture which we obtain by using the unitary transformation ρ̃ = U(t)ρU †(t) with
U(t) = exp[−(HS + HE)t] and insert this into Eq. (1.7) which allows us to rewrite
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1.1. Open quantum systems

the equation to
d

dt
ρ̃ = −i[HI(t), ρ̃] (1.11)

with
HI(t) = U †(t)HIU(t). (1.12)

A formal solution can be given through integration in the form of

ρ̃(t) = ρ̃(0)− i
t∫

0

dt′[Hi(t′), ρ̃(t′)] (1.13)

We now need the first important approximation which is the Born approximation.
Its basic assumptions is that the interaction between the two subsystems is small and
especially that the environment is not influenced by the smaller system S. Then we
assume ρB to be constant. Let us further assume that we start in a product state
of the two subsystems, that is without any correlations between them. Inserting
Eq. (1.13) back into Eq. (1.11) and taking the partial trace over the environment
yields the Redfield master equation

d

dt
ρS(t) = −

t∫

0

dt′TrE {[HI(t), [HI(t′), ρS(t)⊗ ρB]]} . (1.14)

To get to the Markovian master equation we need to take care of the fact that the
reduced density matrix still depends on its starting condition at t = 0. Therefore
we substitute t′ by t − t′ and shift the upper limit of the integral to infinity. This
is possible as long as the integrand disappears fast for t′ � τE with τE being the
timescale over which correlations in the environment decay. This then leads to

d

dt
ρS(t) = −

∞∫

0

dt′TrE {[HI(t), [HI(t− t′), ρS(t)⊗ ρB]]} . (1.15)

Here, we replaced ρS(t′) by ρS(t) which means that the dynamics of the system
at time t only depends on its present state ρS(t). This is known as the Markov
approximation and is valid as long as correlations in the environment decay quickly
enough to neglect any memory effects of the environment that could influence the
system.
The last approximation we need to apply to obtain a generator of the dynamics in
our system is the rotating frame approximation or secular approximation. We will
not carry out the full calculation and focus on the main point of it: The interaction
Hamiltonian between bath and system can be decomposed into eigenoperators of
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1. Theoretical Background

Figure 1.1.: Scheme of an system S with Hamiltonian HS embedded in its envi-
ronment E with Hamiltonian HE. Energy can leave the system S by
different dissipation channels with rates γ that arise from the interaction
with the environment.

the system Hamiltonian and can then be written as

HI(t) =
∑

α,ω

eiωtA†α(ω)⊗B†α(t) (1.16)

with A(†)
α being eigenoperators of the system and B(†)

α of the environment. The sys-
tem operators depend on the frequency ω = ε−ε′ which is defined as the fixed energy
difference between the eigenvalues ε, ε′ of the system Hamiltonian. The secular ap-
proximation comes into play if we insert the decomposed interaction Hamiltonian
Eq. (1.16) back into Eq. (1.15) which yields

d

dt
ρS(t) =

∑

ω,ω′

∑

α,β

ei(ω
′−ω)Γαβ(ω)(Aβ(ω)ρS(t)A†α(ω′)− A†α(ω′)Aβ(ω)ρS(t)) + h.c..

(1.17)
Here we also introduced the Fourier transform of the reservoir correlation function
as

Γαβ(ω) =
∞∫

0

dseiωt
′ 〈B†α(t)Bβ(t− t′)〉 . (1.18)

Neglecting now all fast oscillating terms in ω, that is all terms for wich ω′ 6= ω, is
known as the secular approximation and after some more algebra allows to write
the master equation as

d

dt
ρ(t) = L(ρ) = −i[H(t), ρ(t)] +

∑

i

(
ciρc

†
i −

1
2{c

†
ici, ρ}

)
. (1.19)

In the derivation of the master equation for the density matrix ρ we already shifted
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1.1. Open quantum systems

from the Schrödinger picture to the interaction picture. A natural question would
be how Eq. (1.19) looks like in the Heisenberg picture. Therefore, we need to find
the time evolution of an operator Â which is also known as an equation of motion.
We start from the definition of the expectation value in terms of the density matrix
in the Schrödinger picture which gives us

〈A〉 = Tr {A(0)ρ(t)} . (1.20)

The formal solution for ρ(t) from solving the Master equation

dρ

dt
= L[ρ] (1.21)

is given by
ρ(t) = eLtρ(0) (1.22)

if we define the adjoint Liouvillian L† as

Tr {PL[Q]} = Tr {L[P ]Q} (1.23)

for the two arbitrary operators P and Q. With that, we can transform the expec-
tation value to

Tr {A(0)ρ(t)} = Tr
{
A(0)eLt[ρ(0)]

}
= Tr

{
eL
†t[A(0)]ρ(0)

}
. (1.24)

From there we can define the generalised Ehrenfest equation as

d

dt
〈Â〉 (t) = i 〈[H, Â]〉+

∑

i

〈
(
ciÂc

†
i −

1
2c
†
ici, Â}

)
〉 . (1.25)

1.1.2. Variational Principle

The quantum master equation in Eq. (1.19) we derived in the last section is a pow-
erful tool to analyse open quantum systems but solving it constitutes a big problem
for classical computers. Exact numerical calculation are only possible for small par-
ticle numbers because of the exponentially growing complexity of the problem with
increasing system size. Many tools that were developed for closed many-body prob-
lems do not work in the open systems [30]. Even finding the steady state (ρ̇ = 0)
can be difficult because it is in most cases not the ground state of the system but a
mixture of many possible states. In this section, we want to discuss how the varia-
tional principle can be modified for open quantum systems. In the end we will have
a method to calculate both the steady state and the dynamics of open quantum
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1. Theoretical Background

systems.
The variational principle is a broad concept in physics and it already found ap-
plication in other fields like optics (Fermat’s principle) [37] or classical mechanics
(Hamilton’s principle) [38, 39]. Finding the extrema of a functional is the basic idea
of the variational principle and the Rayleigh-Ritz method is its adaptation to the
quantum mechanics. It uses the energy functional 〈Ψ|H |Ψ〉 to find an approxi-
mated ground state of the system. Like we already stated at the beginning of this
section, a single wave function is not sufficient enough to describe open quantum
systems. Instead, we need a variational approach for the density matrix and its time
derivative ρ̇. For the sake of simplicity, we first want to focus ourselves on the steady
state where the goal is that ρ̇ = 0. To find a variational solution of the steady state,
we will need to minimize an appropriate matrix norm of the master equation like

||ρ̇|| = ||Lρ|| → min. (1.26)

A possible class of matrix norms are the Schatten p-norms

||ρ̇|| = p

√
Tr {|ρ̇|p}. (1.27)

It turns out that out of the pool of different norms only the trace norm with p = 1
allows for an unambiguous variational solution. The other choices always converge
towards the maximal mixed state for large system sizes in Eq. (1.26), independent
of the choice of the Hamiltonian or jump operators [40].
To see the advantage of the variational approach, we want to have a closer look at
the norm in Eq. (1.26) by assuming the trial state

ρ =
∏

i

Tr
�i
{ρ} =

∏

i

ρi. (1.28)

Here, we introduce the superoperator R that transform every unit matrix of any
given subsystem into the corresponding density matrix of the subsystem ρi.
The product state is the simplest way to express the density matrix for multiple
subsystem because it excludes correlation between them and if we further assume
that the interaction only acts on nearest neighbor subsystem, e.g., in a lattice, we
can write the time evolution in Eq. (1.19) like

ρ̇ =
∑

i

Rρ̇i +
∑

〈ij〉
RĊij. (1.29)
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1.1. Open quantum systems

The appearance of the additional term Ċij is caused by the evolution of correlation
between system i and j through the interaction and will also influence the variational
solution in Eq. (1.26). A different approach to find steady-state solutions of open
quantum systems is to approximate the master equation by local terms instead of
an approximation of the density matrix. This approach is known as the mean-field
approximation and can be achieved by taking the partial trace of the master equation
Eq. (1.19) over the full system except for a single site/particle. The solution of this
equation can also be expressed by a product state of local density matrices like in
Eq. (1.28). In comparison to Eq. (1.29) does the solution of the master equation in
the mean-field approximation not involve the terms Ċij and is therefore missing a
crucial part of the time-evolution [40].
We now can find the steady state of an open quantum system but we also want to
be able to capture dynamical processes in the system with the variational approach.
We can write a formal solution of Eq. (1.19) by using standard integration methods
like the Euler method. The solution after a time step with size τ then reads as

ρ(t+ τ) = ρ(t) + τL(ρ(t)) +O(τ 2) (1.30)

or if we want to reduce the error O(τ 2) we can also use the implicit midpoint
integration which leads to

ρ(t+ τ) = ρ(t) + τ

2L(ρ(t) + ρ(t+ τ)) +O(τ 3). (1.31)

This allows us to formulate a new variational norm for the trial state ρ(t+ τ) as

D = ||ρ(t+ τ)− ρ(t)− τ

2L(ρ(t) + ρ(t+ τ))|| → min. (1.32)

The integration error of O(τ 3) is low for appropriate time steps τ .
For most many-body systems, the variational parameters of even a product trial
state exceed numbers that can be well handled by conventional optimizer routines.
We can use the triangle inequality to find an upper bound of the variational norm
in Eq. (1.32) like

D ≤
∑

ij

Dij =
∑

ij

||ρij(t+ τ)− ρij(t)−
τ

2L[ρij(t) + ρij(t+ τ)]||. (1.33)

We now reduced the problem to a summation over norms that only have the manifold
of the two subsystems i, j. If the system is translationally invariant, we can even
drop the summation.
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1. Theoretical Background

For a inhomogeneous system with N subsystems, that are each described by Nα

numbers of variational parameters, the minimization of Eq. (1.33) still involves Nα ·
N independent, variational parameters. We will quickly reach a computational
limitation for large system sizes if we want to minimize them all at once. From
Eq. (1.33) we can obtain

Di =
∑

i

||ρi(t+ τ)⊗ ρj(t)− ρij(t)−
τ

2L[ρij(t) + ρi(t+ τ)⊗ ρj(t)]|| (1.34)

by applying the product rule to the time derivative ∂ρ
∂t

of the product state density
matrix and then use another triangle inequality. With Eq. (1.34) we shifted the
problem of finding the norm of the full system at once to multiple single subsystem
minimization while holding the other subsystems constant. It is important to note
that we first need to apply Eq. (1.34) to all subsystems for a time step τ before we to
the next one. By using this method we have reduced the problem from minimizing
Nα · N parameters at once for a single time step to only Nα parameters but doing
it N times for each time step [41].

1.2. Quantum description of light

The full description of light in the context of quantum theory is a quite complicated
matter and is a subject on its own with the quantum field theory. Here, we want to
focus ourselves on the basic concept of how to describe light as a quantum field and
also look at some of its possible states.
From classical electrodynamics and Maxwell’s equations, we can describe both the
electric field E and the magnetic field B by the vector potential A. If no sources
are present are the equations gauge invariant and can be expressed like

E = −∂A
∂t
, B = ∇×A (1.35)

under a Coulomb gauge transformation ∇A = 0 [42]. The operator of this vector
potential Â(r, t) is the basis of describing light in quantum theory.
The operator Â(r, t) consists of all possible light fields and we can write it as an
extension of an orthonormal set of waves Ak(r, t) like

Â(r, t) =
∑

k

(Ak(r, t)âk + A∗k(r, t)â
†
k). (1.36)
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1.2. Quantum description of light

The complex functions Ak(r, t) are called modes of the light field with a mode index
k which is in most cases their wavenumber. We also introduced the associated
operators â(†)

k to each mode which carries the quantum information of the field. The
operators correspond to complex Fourier components in classical electrodynamics.
By an appropriate choice in the mode expansion we can assure that the modes
obey orthonormality which allows us to use the Bose commutation relations for the
operators

[âk, â†k′ ] = δkk′ , [âk, âk′ ] = 0. (1.37)

This choice allows for the description of the dynamical behaviour of the electric
field amplitudes by an an ensemble of independent harmonic oscillators with the
same commutation relations as above [43]. This commutation relation describes all
bosonic fields which includes all spin-0 and spin-1 particles. An important conse-
quence is that the operators of different modes commute and therefore the Hilbert
space for light is equivalent to the tensor product of the Hilbert space of all modes.
Eq. (1.36) and Eq. (1.37) are enough to fully describe the wave-like but also the
quantum properties of the light field. From here, we want to define three operators
to simplify this description. First, the photon number operator

n̂ = â†â (1.38)

is defined in such a way that its expectation value 〈n̂〉 returns the number of pho-
tons in a mode. The second and the third operators q̂, p̂ as a pair are called the
quadratures of the field and are defined as

q̂ =
√
~
2(â† + â), p̂ = i

√
~
2(â† − â). (1.39)

These two serve as an equivalent to the position and the momentum quantity of an
electromagnetic oscillator and are therefore often called that way.
We now want to look at a few interesting states of light that are either important
from a mathematical perspective in describing states in general or have significant
physical meaning.
A single mode of light can be described by different quantum states. They are given
by their eigenstates and the properties are encapsulated in a few distinct observables
like the quadratures or the photon numbers. We will first look at Fock states as one
of the fundamental states in quantum optics and then go on to coherent light as it
is produced by lasers. In contrast, we will also have a brief look at thermal light
and we end with a highly non-classical light in the form of squeezed states.
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1. Theoretical Background

Fock state

Fock states are the eigenstates of the previously defined number operator n̂

n̂ |n〉 = n |n〉 . (1.40)

The definition Eq. (1.40) implies that each Fock state has a fixed photon number
and are therefore hard to produce in experiment as a pure state beyond the single
photon Fock state |1〉 because of thermal fluctuations or the superposition with other
states [44]. The set of all Fock states are complete, that means

∞∑

n=0
|n〉 〈n| = 1 (1.41)

and also orthonormal 〈n|n′〉 = 1. Because of that we can use them as a convenient
basis of the Hilbert space and are often used in quantum optics. The effect of the
operators â and â† on a Fock state are

â |n〉 =
√
n |n− 1〉

â† |n〉 =
√
n+ 1 |n+ 1〉

(1.42)

which is why we will call â the annihilation and â† the creation operator. The state
|0〉 can be identified as the vacuum state of the system which allows us to represent
the Fock state also as

|n〉 = â†√
n
|0〉 (1.43)

Coherent light

The definition of a coherent state is based on the eigenstates of the annihilation
operator â of the light field, which we defined in the previous section, and reads as

â |α〉 = α |α〉 . (1.44)

The eigenvalue α is complex because â is a non-hermitian operator. We can also
define the state in the Fock basis as

|α〉 = e−
|α|2

2

∞∑

n=0

αn√
n!
|n〉 = e

|α|2
2 eαâ

†
e−α

∗â |0〉 (1.45)
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1.2. Quantum description of light

Figure 1.2.: Comparison of the decomposition of vector v in an orthonormal basis
set e1, e2 (left) and an overcomplete non-orthogonal basis set e1, e2, e3
(right). This is a visual representation of how the non-orthogonality of
the coherent states |α〉 leads to an overcomplete basis set.

From Eq. (1.45) we can see that we can also obtain a coherent state by applying the
displacement operator

D(α) = eαa
†−α∗â. (1.46)

We used the simplified Baker-Campbell-Hausdorff formula [45]

eA+B = e−[A,B]/2eAeB (1.47)

with A = αa† and B = −α∗a to get from Eq. (1.45) to Eq. (1.46). The simplified
version in Eq. (1.47) hold true if [A, [A,B]] = [B, [A,B]] = 0.
The so defined states form an overcomplete basis set

∫ ∞

−∞
d2α |α〉 〈α| = π (1.48)

with d2α = d(Reα)d(Imα) which is a result from the fact that the states are non-
orthogonal

〈α|α′〉 = e−
|α|2

2 −
|α′|2

2 +α′∗α. (1.49)

A visual representation of the difference between an overcomplete set and an or-
thonormal basis set is depicted in Fig. 1.2.

With the fock representation Eq. (1.45) we can also see that coherent light has a
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Figure 1.3.: Photon statistics of Poissonian (left) and super-Poissonian light(right).
Both distribution have an average photon number of 〈n〉 = 6.25.

Poissonian photon statistics, see Fig. 1.3,

P (n) = | 〈n|α〉 |2 = |α|
2

n! e
−|α|2 . (1.50)

It should also be mentioned that coherent states belong to the family of states with
minimum-uncertainty which means that

∆p∆q = ~
2 (1.51)

with

(∆p)2 = 〈p2〉 − 〈p〉2 = ~
2

(∆q)2 = 〈q2〉 − 〈q〉2 = ~
2

(1.52)

being the variances of the quadratures.

Squeezed coherent states

We mentioned in the previous section about the coherent states that there is a
whole family of states that fulfill the minimum-uncertainty relation. The reduction
of the noise in one quadrature raises the noise in the other but keeps the product in
Eq. (1.51). These states are called squeezed states. They are an important tool in
measurement experiments to reduce the uncertainties of the amplitude or the phase
of electromagnetic waves caused by quantum fluctuations. An example would be the
Laser Interferometer Gravitational-wave Observatory (LIGO) which uses squeezed
states to increase the phase sensitivity of their Michelson interferometers[46]. We ob-
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1.2. Quantum description of light

tain them by expanding the notion in Eq. (1.45) and Eq. (1.46) by another operator
S(z). This is the squeeze operator for a single mode and is given by

Ŝ = e
1
2 (z∗â2−zâ†2) (1.53)

with z = reiφ. Therewith we can write the coherent squeezed states as

|α, z〉 = D(α)S(z) |0〉 . (1.54)

If we look again at the uncertainties for these states

(∆p)2 = ~
2e

2r

(∆q)2 = ~
2e
−2r,

(1.55)

we immediately see that the amplitude r of the complex parameter z determinate
the strength of the squeezing and is therefore also called the squeezing parameter
and φ rotates the state in the phase-space. The annihilation (creation) operator a(†)

transform to

S†(z)aS(z) = â cosh r − â†e−2iφ sinh
S†(z)a†S(z) = â† cosh r − âe2iφ sinh r

(1.56)

which is important to determine other expectation values like the photon count

〈n〉 = |α|2 + sinh2 r. (1.57)

The first term in Eq. (1.57) is equal to the photon number in a coherent state but
from the second term we can see that squeezing can both increase or decrease to
total number in the state depending on the squeezing parameter.
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1. Theoretical Background

Figure 1.4.: Quadrature uncertainties for a coherent (left) and a squeezed state
(right). Both have the same area (the product ∆p∆q is the same) but
the squeezed state has a reduced uncertainty in q accompanied with the
increase noise in p.

Thermal states

The states we discussed so far are quite useful in quantum optics and experiments,
but most light we encounter in day-to-day life comes from thermal radiation like
sunlight. In experiments is thermal light a nuisance most of the time and the
experimental setups try to avoid its influences as much as possible. We will later
see how exactly a thermal state influences other states of light. The energy and the
photon number of thermal light is not fixed but fluctuates. Hence, we will use a
description we already introduced in the context of open quantum system which is
the density. A Fock state representation of it reads lie

ρ =
∑

n

pn |n〉 〈n| (1.58)

and allows us to describe the thermal state as a statistical mixture. The state we
want to describe is the one with a maximal entropy S for a given energy E. This
constraint leads to the density matrix

ρ = (1− e−β)
∞∑

n=0
e−nβ |n〉 〈n| (1.59)

with β = 1
kbT

as the inverse temperature and kb the Boltzmann constant.
The photon statistics can be calculated to

P (n) = 1
〈n〉+ 1

(
〈n〉
〈n〉+ 1

)n
. (1.60)
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1.3. Quasiprobability distributions

In contrast to coherent light, thermal light follows a super-Poissonian distribution
like it is shown in Fig. 1.3.

1.3. Quasiprobability distributions

With the beginning of quantum mechanics also came the wish to find a connection
between quantum-mechanical operators and classical functions. The goal was to
obtain observable with methods of classical statistical physics. To achieve this, we
have to find an appropriate representation of the density matrix ρ in form of a
(quasi-)distribution function that depends on the classical correspondence of the
operators q̂, p̂ or alternatively â, â† for a bosonic field.
In this section we want to discuss the most prominent examples for such distribution
functions. We will also see that for non-classical states, most of the functions are
only quasidistributions because they cannot comply with all properties of a real
one. Our main focus will be the P-representation as it will later be used to define
and expand the variational method for open quantum system to bosonic fields with
an infinite Hilbert space. Many properties that we define here also apply to the
functions that we also want to discuss afterwards like the Wigner- or Q-function.

P-representation

From the last section we know that the coherent states |α〉 form a (over-)complete
basis set which led to the expression of the density matrix in terms of the diagonal
coherent states like

ρ =
∫
d2α P (α) |α〉 〈α| . (1.61)

which was established independently by Glauber and Sudarshan in the same year
[47, 48]. The expression relies on the non-orthogonality of the coherent states and
the idea is to use the P-distribution P (α) to assign a value to each point in the
complex phase-space. Additionally, we know that P (α) is normalized because

∫
d2α P (α) = Tr

{∫
d2α P (α) |α〉 〈α|

}
(1.62)

= Tr {ρ} = 1. (1.63)

A general expression of P (α) can be found by inverting Eq. (1.61) to

P (α) = 1
π2

∫
d2zTr

{
ρeiz

∗a†eiza
}
e−iz

∗α∗e−izα. (1.64)
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1. Theoretical Background

This is the complex Fourier transform of the trace function which we can expand in
terms of Fock states to

P (α) = 1
π2

∫
d2z



∞∑

n=0

∞∑

m=0

∞∑

k=0
ρn+k,m+k

√
(n+ k)!

√
(m+ k)!

k!

×(iz+)m
m!

(iz)n
n!

)
e−iz

∗α∗e−izα

(1.65)

This lengthy expression shows that it is possible to find a P-distribution for any
given state if the Fourier transform in Eq. (1.64) exists [49]. Unfortunately, that
is only possible if we expand the field of possible functions for P (α) from ordinary
to generalised distributions like the delta distribution δ(x). They are defined as
continuous linear functionals over a space of infinitely differentiable functions. An
example that is widely used in physics is the delta-distribution δ(x). It is only
defined inside an integral acting on a test function φ(x) and behaves like the limit of
a sequence of Gaussians lim

n→∞

√
n

π
e−nx

2 which allows us to write
∫
dxδ(x)φ(x) = φ(0).

This definition also allows us to define derivatives of generalised functions through
partial integration. For the delta-distribution we get

∫ ∞

−∞

dn

dxn
(δ(x))φ(x) = (−1)n

∫ ∞

−∞
δ(x) d

n

dxn
φ(x) = (−1)n d

n

dxn
φ(0). (1.66)

This shall be enough for us about the theory of generalised functions. It is a vast
field and we only grazed the surface of it. A more comprehensive overview can be
found for example, in the books by Lighthill [50] or Bremermann [51]. This exceeds
the original proposal by Glauber and Sudarshan and also breaks with the notion of
a classical distribution to associate a number to each point α as we stated earlier.
A useful property of this P-representation is the way how expectation values of
annihilation (creation) operators a(a†) are calculated through c-number integrals

〈: a†paq :〉 = Tr
{
ρa†paq

}
=
∫
d2αP (α)α∗pαq. (1.67)

〈: a†paq :〉 indicates a normal ordering of the operators, which also corresponds to
measurements in an experiment. Normal ordering refers to having all creation op-
erators on the left of all annihilation operators in the product. We will, later on,
expand on the idea of the P-distribution in the context of the variational principle
for bosonic fields.
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1.3. Quasiprobability distributions

Wigner representation

The first attempt to represent quantum states as distributions in phase-space was by
Wigner [52]. A good overview of the interesting properties of the Wigner distribution
can be found in [53]. Here, we want to focus on its connection to the P-distribution
through the introduction of the characteristic function χ. This can be used as
an alternative way to represent a given probability distribution and the differences
in the calculation of expectation values. We already found such an expression in
Eq. (1.64) with

χN(z, z∗) = Tr
{
ρeiz

∗a†eiza
}

(1.68)

The function defines all normal-ordered operator averages as

〈a†paq〉 = ∂p+q

∂(iz∗)∂(iz)χN(z, z∗) |z=z∗=0 . (1.69)

The Wigner distribution can now be formulated as the fourier transformation of the
characteristic function

χS(z, z∗) = Tr
{
ρeiz

∗a†+iza
}
, (1.70)

which yields

W (α, α∗) = 1
π2

infty∫

−∞

dµ

infty∫

−∞

dνχS(µ+ iν, µ− iν)e−2i(µx−νy). (1.71)

The original proposal by Wigner defined the function by the position x and mo-
mentum p to obtain a quantum analogue to the classical phase-space. However, in
the context of quantum optics, the representation in terms of the eigenvalues of the
annihilation/creation operators α, α∗ is more relevant.
Like the P-distribution, the Wigner distribution is also only a quasi-probability
distribution because some states can show negative values in the distribution. Con-
trary to the P-distribution, these negativities do not appear for all nonclassical states
[54, 55]. In stark contrast to the representation by Glauber, the W -representation
does not have singularities, which makes it an ideal candidate for the visual repre-
sentation of quantum states [56]. Both distributions can be connected by

W (α) = 2
π

∫
d2α′e−2|α−α′|2P (α′). (1.72)
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The expectation values we obtain by calculating

〈(a†paq)S〉 = ∂p+q

∂(iz∗)∂(iz)χS(z, z∗) |z=z∗=0 (1.73)

are another important difference between the two distributions. With Eq. (1.70)
we obtain expectation values in symmetric order instead of the normal order. The
ordering involves the average of all (n+m)!

n!m! possible operator sequences of (a†nam)S,
e.g.

(a†a)S = 1
2(a†a+ aa†)

(a†a2)S = 1
3(a†a2 + aa†a+ a2a†) (1.74)

(a†2a2)S = 1
3(a†2a+ a†aa† + aa†2)

... (1.75)

This ordering scheme is not well suited for application in quantum optics because
quantities are always measured in normal order at the detectors but it should be
mentioned that all symmetric ordered operator can be brought into a normal ordered
form like [49]

(a†paq)S =
min(p,q)∑

k=0

1
2k

p!
(p− k)!

q!
(q − k)!a

†p−kaq − k. (1.76)

Q-representation

At last, we want to briefly discuss the representation of antinormal-ordered averages
like 〈ânâ†m〉. The characteristic function χ for this ordering has to look like

χ(z, z∗) = Tr
{
ρeizaeiz

∗a†
}

(1.77)

and like before when we can define the Fourier transform of Eq. (1.77) as a new
representation

Q(α) = 1
π2

∞∫

−∞

d2β eαβ
∗−α∗βχ(β). (1.78)

This can be brought into a more understandable form of

Q(α) = 1
π
〈α| ρ |α〉 (1.79)
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1.3. Quasiprobability distributions

which is the probability distribution for finding the coherent state α in state ρ. We
can immediately see from Eq. (1.79) that the Q-function is non-negative and nor-
malized to unity based on the definitions of the density matrix ρ and the coherent
states |α〉.
Like the P-representation for normal ordered averages, the Q function turns expec-
tation values for anti-normal order into c-number integrals like

〈ânâ†m〉 = Tr
{
ρânâ†

}
=

∞∫

−∞

Q(α)αnα†m. (1.80)

It can be related to the P-representation by

Q(α) = 1
π

∫
P (β)e−|α−β|2d2β (1.81)

and the two examples in the form of coherent state |β〉 and the Fock state |n〉 that
look like

Qcoherent(α) = 1
π
e−|α−β|

2
, Qfock(α) = |α|

2n

πn! e
−|α|2 (1.82)

are shown next to their Wigner function in Fig. 1.5. Its clear advantage over the
other two representations we showed is that the Q-function is always positive. It
is still classified as a quasiprobability distribution because its definition over the
non-orthogonal coherent states brakes the additivity axiom of normal probability
distributions [57]. It is also not often used because the measurements in experiments
are in normal order.

33



1. Theoretical Background

x

024
p

−2
0

2

W
(x
, p)

0.1

0.2

0.3

(a) coherent state, W-function
Re α

024

Im
α

−2
0

2

Q
(α
, α
∗) 0.05

0.10

0.15

(b) coherent state, Q-function

x

−202
p

−2
0

2

W
(x
, p)

−0.1
0.0
0.1
0.2
0.3

(c) Fock state, W-function
Re α

−5.0−2.50.02.55.0

Im
α

−5.0
−2.5

0.0
2.5

5.0

Q
(α
, α
∗)

0.01
0.02
0.03
0.04

(d) Fock state, Q-function

Figure 1.5.: Representation of a coherent state with α =
√

2 and a Fock state with
n = 2 in the W- and Q-representation. For the classical coherent state
are the representations qualitatively similar but the non-classical Fock
state shows a more drastic divergence between the two representations.
Whereas the Q-function stays positive everywhere, the Wigner-function
has negative values around its center which breaks the definition of
classical distribution functions.
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1.4. Light-Matter interaction

Dark states and EIT

The ideas of electromagnetically induced transparency and dark states are both
related to interference phenomena in atomic physics. We want to focus ourselves
on atoms with a three-level structure for this section. The goal is to drive the
system into a state in which it cannot absorb any photons of a specific frequency
which results in the transparency to this light. We will later see that one transition
between the different states has to be dipole-forbidden. This leads to the three
possible configurations shown in Fig 1.6 but the mechanism is the same in all the
setups. Because this thesis is focused on systems with Rydberg atoms, we will focus
our attention on the ladder configuration in the middle of Fig. 1.6, which represents
a possible excitation scheme to reach the Rydberg state in atoms. Furthermore, the
state |1〉 will be the ground state and |2〉 and |3〉 excited states of the atom.

Figure 1.6.: Different settings to achieve EIT in a three-level system: (left) vee-,
(middle) ladder- and (right) lambda-scheme. The pictures show all pos-
sible transitions which implies each setup has a dipole-forbidden transi-
tion which is necessity for EIT. Additionally, the states |1〉 and |3〉 need
to be (meta-)stable states against dephasing to observer the effect.

We now drive the two transitions in the atom by a probe and a control laser.
Within the dipole approximation, the interaction between the light and the atom is
Hint = µE with µ as the transition electronic dipole moment and E as the electric
field. In the rotating frame approximation, we can rewrite it in terms of the Rabi
frequency Ω = µE0

~
with the amplitude of the electric field E0. The resulting

Hamiltonian H = Hint +H0 where H0 describes the bare atom can then be written
as

H = −~




0 Ωp

2 0
Ωp

2 ∆ Ωc

2
0 Ωc

2 δ



. (1.83)
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The two different Rabi frequencies are Ωp for the probe and Ωc for the control laser.
The detuning ∆ = ωp−ω12 is the single photon detuning of the probe laser from the
transition frequency of the atom between states |1〉 and |2〉. We need two photons
to reach |3〉 and thus we also get a two photon detuning δ = ω31 − ωp − (ω32 − ωc).
Furthermore, we describe the spontaneous emission of a photon from the excited
states by the decay rates γ2 and γ3 (see Fig. 1.7).

Figure 1.7.: Detailed three-level ladder system with ∆/δ being the one-/two-photon
detunings, Ωp/Ωc the probe-/control-laser Rabi frequency and γ2/γ3 as
the decay rates of the intermediate (|2〉) and the excited (|3〉) state.

If we set the system to a two-photon resonance (δ = 0), we can find analytical
expressions for the eigenstates of Eq. (1.83). If we define the two angles

tan Θ = Ωp

Ωc

(1.84)

tan 2φ =

√
Ω2
p + Ω2

c

∆ (1.85)

we get the following three eigenstates

|a+〉 = sin θ sinφ |1〉+ cosφ |2〉+ cos θ sinφ |3〉 (1.86)
|a0〉 = cos θ |1〉 − sin θ |3〉 (1.87)
|a−〉 = sin θ cosφ |1〉 − sinφ |2〉+ cos θ cosφ |3〉 . (1.88)

We can immediately see that |a0〉 is decoupled from the intermediate state |2〉. If we
now choose a system in which only the state |2〉 decays with a significant rate, the
state |a0〉 is called a dark state. The system cannot absorb any more photons or exit
this state in any other way, it is trapped in |a0〉. That also means, that no matter
what, if we wait long enough, the system will end up in this state. Hence, all further
incoming photons pass through the medium and we reach a point of an electro-
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1.4. Light-Matter interaction

magnetically induced transparency (EIT). Other explanations of the effect like the
dressed states or the interference between different transition pathways rely both on
the additional assumption that Ωc � Ωp. The dark state pictures shows, that this
is not a necessary condition for EIT. Besides the general structure our medium has
to have, we need a two-photon resonance as an EIT condition and γ3 � γ2. We will
later see that the last condition makes Rydberg systems ideal candidates to observe
EIT.

Polaritons

The description of light propagation through a Rydberg medium was simplified by
the introduction of quasi-particle that corresponds to the superposition of an elec-
tromagnetic and an atomic excitation. These quasi-particle are called polaritons.
We extend the Hamiltonian in Eq. (1.83) by a quantised probe field. The corre-
sponding operator of the electric field reads as

Ê =
√
~ωp
2ε0
Êe−i(ωpt−kpz) + h.c. (1.89)

with Ê (†) =
∑

k

eikza
(†)
k as the slowly varying envelope operator of the field. There-

with, the system Hamiltonian is

H = ∆σee + δσrr − (Ωcσre + gÊσeg + h.c.) (1.90)

The operators σij = |i〉 〈j| describe the transitions between the states of the atom.
We obtain the polaritons of the system by transforming it into its eigenbasis. In Fig.
1.8 we show the eigenenergies of Eq. (1.90) and their scaling with the wavevector k of
the probe light field. By additionally analysing the eigenvectors, we also obtain the
contributions of the different fields to each eigenvalue. Each path of the eigenvalue
represents a type of polariton. We can distinguish between the ±- bright polaritons
above and below the zero energy line and a third one around it. This so called
dark-state polariton is of special interest because like in atomic picture before, its
wave function does not contain any contribution of the intermediate atomic level

Ψdp = 1√
Ω2
r + Ω2

e

(ΩrÊ − Ωeσgr) (1.91)
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Figure 1.8.: Real part of the eigenenergies of a three-level system. The different
branches belong to non-interacting polaritons. The group velocity vg =
dε

dk
of the dark state polariton (DSP) is almost zero in comparison with

the two bright polariton branches (BSP ±).

1.5. Rydberg atoms

In the 19th century, Johannes Robert Rydberg found a formula to describe the spec-
tral lines of the valence electron of hydrogen. Nowadays, we know that atoms with
large principle quantum numbers n > 30 and a highly excited electron also behave
hydrogen-like and are called Rydberg atoms. They are used in a wide variety of
applications, e.g. quantum simulation, quantum computing, quantum optics and
sensing [58, 59, 60, 61, 62, 13, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74].
In this section, we want to discuss the properties of Rydberg atoms to understand
why they are so useful and versatile. In this context, we will discuss some basic
properties like their long lifetime and how it makes Rydberg states good candidates
for the previously discussed EIT. We will also need to have a look at the van der
Waals interaction and the blockade mechanism as important features.

Properties of Rydberg atoms

The main difference between atoms in its Rydberg state and a hydrogen atom is
that the core is not only the nucleus but can also include many electrons. A few ad-
justments helped in recovering the same scaling properties that were already known
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1.5. Rydberg atoms

for the hydrogen atom. By the usage of quantum defect theory, it was found that
Rydberg atoms have the same scaling properties as hydrogen atoms if we use an ef-
fective principle quantum number like n∗ = n− δl with δl as a quantum defect that
depends on the angular momentum number l and the specie of atom. The defect
arises from orbitals with low angular momentum numbers crossing and interacting
with the core electrons and therefore changes the Coulomb potential experienced by
the valence electron. In 1.1 we listed a few properties of Rydberg atoms and how
they scale with n∗.
The long lifetime and the strong dipole moment are of special interest for us. The

Parameter scaling
Bohr radius n∗2

Dipole moment n∗2

polarizability n∗7

life-time n∗3

Table 1.1.: Scaling of different Rydberg properties.

spontaneous emission from the Rydberg state has a strong influence on the lifetime
of the state and can be calculated by the usage of Fermi’s golden rule

γ = 2π
~
| 〈i|V |f〉 |2ρ(Ef ) (1.92)

that describes the transition probability γ of an initial to a final state |i〉 → |f〉
under the influence of a perturbation operator V . It also depends on the density of
states ρ at the energy level of the final state Ef . Normally we would need to sum
over all possible final states but a closer analysis reveals that the probability for a
transmission improves with higher frequencies and therefore favours transitions to
the lowest allowed states. The overlap with these states and the Rydberg state,
given by the matrix element in Eq. (1.92), is very low and which results in a long
lifetime τ = 1

γ
.

A second decay channel that we only want to mention is the black body radiation.
Even though the gap to the ground state is large and out of range for thermal
radiation, the same is not true for transitions between different Rydberg states.
The large dipole matrix elements 〈i|µ |f〉 further enhance the dissipation from the
original state to other energetically nearby states [75].
In modern experiments, the lifetime of Rydberg atoms reaches up to τ ∼ 100µs.
Therefore, we consider Rydberg atoms as metastable and can use them in EIT
systems as a medium.
Let us now see how Rydberg atoms interact with each other. We assume that the
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1. Theoretical Background

interparticle separation is large enough to neglect the overlap of their wave functions
[76]. An analysis of the multipole expansion for the overall neutral Rydberg atoms
shows a dipole-dipole interaction as the first leading term like

Vdd(r1 − r1) = D(φ) C3

|r1 − r2|3
(1.93)

where r1 and r2 denote the positions and the factorD(φ) includes all angle-dependencies
between the two atoms. We now want to know how Eq. (1.93) couples the two-atom
state |Ψ〉 = |nlj, nlj〉 to other states which can differ in their principal quantum
number n or azimuthal quantum number l but are limited by dipole selection rules.
Fermi’s golden rule for a dipole perturbation rules out many possible states. The
matrix element cannot be too small for a significant transition and this strongly
depends on the overlap of the wave functions. This reduces the possible coupling by
the dipole-dipole interaction to only a few states that are energetically close to our
original two-atom state.
The interaction Hamiltonian can be written as

H =




δF
C3

r3

√
D(φ)

C3

r3

√
D(φ) 0


 (1.94)

if we use a two-level approximation for the atoms and the FÃűrster defect δF to
account for any energy differences between the two states.
The eigenvalues of Eq. (1.94) are

V±(r) = δF
2 ±

1
2

√

δ2
F + 4C

2
3D(φ)
r6 (1.95)

with r = |r1 − r2| as the distance between the two atoms. We can observe that for
small distances between the atoms, we obtain an interaction with dipole character.
For larger distances, on the other hand, we get

VvdW(r) ≈ −C
2
3D(φ)2

δF r6 = C6

r6 , (1.96)

which has a characteristic form of the van der Waals interaction. The van der Waals
coefficient C6 for two rubidium atoms in an s-state can be calculated by the scaling
law

C6 = n11(11.97− 0.8486n+ 3.385× 10−3n2) (1.97)
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1.5. Rydberg atoms

in atomic units, which translates to a range of 25MHzµm to up to 3 × 104GHzµm
for 30 < n < 95 [74].

Rydberg blockade

We want to dedicate an extra section for a specific phenomenon that results from
the van der Waals interaction in Rydberg atoms: the Rydberg blockade. If we go
back to the notation introduced in the EIT chapter and represent each atom by the
ground state |g〉, the intermediate state |e〉 or the Rydberg state |r〉, we can write
the two-atom dipole-dipole interaction as

Hint = C6

r6 |r, r〉 〈r, r| . (1.98)

This can be understood as a (two-photon) detuning for the state in which both
atoms are in the Rydberg state. For large C6

r6 , this leads to a suppression of any
Rydberg excitations around another atom in the Rydberg state. The blockade radius
at which the detuning is too large depends on the concrete system and the purpose.
We want to focus on its definition for the case of the EIT picture from the previous
chapter. There, it is defined as

rb = 6

√
C6|γ3 + i∆|

Ω2 (1.99)

and indicates the radius at which the two-photon detuning of the interaction is equal
to the EIT linewidth VvdW(rb) = Ω2

|∆ + γ3|
. That means for the polaritons that

all dark and bright polaritons are getting strongly mixed and the whole polariton
picture breaks.
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1. Theoretical Background

Figure 1.9.: Visualisation of the Rydberg blockade effect. The red line is the in-
teraction potential between the two atoms. Under a distance of rb the
Rabi frequency Ω is not sufficient to excite the system from a single
excitation to a double excited state.

1.6. Optical lattices

We now want to present how light can confine cold atoms into an optical lattice.
To trap an atom in a confined space, we need a force that holds it there. If we put
atoms into an off-resonant light field, they will experience a ac Stark shift which
changes in space. This leads to the formation of an external potential and with that
a dipole force

F = 1
2α(ωL)∇[|E(r)|2] (1.100)

for the atoms [77]. We only use the time-average intensity |E(r)|2 because the center-
of-mass motion of the atoms is a lot slower than the time scale of the light which
is given by the inverse laser frequency 1

ωL
. The polarizability α(ωL) now dictates

the direction of the force. If the light field is only slightly detuned from an atomic
transition |g〉 → |e〉 with frequency ω0, we can approximate the polarizability by

α(ωL) ≈ | 〈e| d̂ |g〉 |
2

~(ω0 − ωL) (1.101)

with d̂ being the dipole operator. If we insert Eq. (1.101) into Eq. (1.100) we can
see that the atoms are attracted to the nodes of the intensity of a blue-detuned
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1.6. Optical lattices

(ωL > ω0) laser light or to the peaks of it if it is red-detuned (ωL < ω0).
The trapping of atoms with light can form lattices in different dimensions. If we use
two counterpropagating laser beams to form a periodic potential, we can trap the
atoms in place with an periodicity of λ/2. The period can further be changed by
choosing a different angle at which the two beams interfere with each other [78, 79].
For laser beams with a Gaussian profile this results in a trapping potential of

V (r, z) = −V0e
−2r2/w2(z)sin2(kz) (1.102)

with k = 2π
λ

as the wave vector of the light and V0 the maximum depth of the po-
tential. With only two laser beams, we subtract a potential dimension of movement
for the atoms which results in cigar-like figures in the medium.
To restrict the atoms to individual lattice sites we need to introduce another pair of
light beams that usually acts in an orthogonal direction to the original pair.
For our purpose, it is enough if we focus the attention on the 1D case. Particles in
such a lattice follow the time-independent Schrödinger equation

HΨ =
(
− ~2

2m
∂2

∂x2 + V (x)
)

Ψ = EΨ. (1.103)

The full wave function then simply reads as Ψ(x, t) = Ψ(x)e−iEt/~ with Ψ(x) as the
solution of Eq. (1.103).
The information about the lattice is contained in the periodic potential V (x). The
periodicity of a lattice is defined through a translation invariance under the trans-
formation through a translation operator like

TRnf(r) = f(r + Rn). (1.104)

Rn is the crystal translation vector consisting of the primitive translation vectors
v of the lattice and their n-th multiple. These vectors v are noncoplanar and form
the smallest possible vector under which the system is translationally invariant. In
the case of a 1D lattice Rn = naêx with a as the lattice constant and êx the unit
vector in x direction.
The potential V (x) has to have the same periodicity as the lattice

TRnV (x) = V (x+ na) = V (x). (1.105)

With that condition fullfilled we can see that the Hamiltonian in Eq. (1.103) com-
mutes with the translation operator TRn and therefore must have a common set of
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1. Theoretical Background

eigenstates. If the potential is periodic it should also be possible to write it as a
Fourier series

V (x) =
∑

q

cqe
iqx. (1.106)

Putting Eq. (1.106) in Eq. (1.105) results in the additional condition

eiqRn = eiqna = 1 (1.107)

which also leads to the definition of the one dimensional reciprocal wave vector

q = 2π
a
m (1.108)

The periodic condition for the potential has a direct consequence for the wave func-
tion in the Schrödinger equation that is known as the Born-von Karman boundary
condition

Ψ(x+Na) = Ψ(x) (1.109)

for lattices with N sites.
A possible wave function that obeys Eq. (1.109) is a set of plane waves

Ψ(x) =
∑

k

cke
ikx. (1.110)

The boundary condition implies that

k = 2π
Na

n = 2π
L
n (1.111)

with L = Na being the size of the lattice and n ∈ N . Substituting Eq. (1.110) and
Eq. (1.106) into Eq. (1.103) results in

∑

k

eikx
[
(~

2k2

2m − E)ck +
∑

q

Vqckq

]
= 0. (1.112)

Here, we used the fact that the Born-von Karman condition also applies to the
reciprocal lattice vectors q which allowed us to rewrite

V (x)Ψ =
∑

q,k

Vqcke
i(G+k)x (1.113)

to
V (x)Ψ =

∑

q,k

Vqck−qe
ikx. (1.114)
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1.6. Optical lattices

The plane waves defined through the Born-von Karman boundary condition form
an orthogonal set of function which implies that

[
(~

2k2

2m − E)ck +
∑

q

Vqckq

]
= 0. (1.115)

for all k.
Finally, we can further simply Eq. (1.115) by restricting k to lie in the first Brillouin
zone. It is defined as the primitive cell of the lattice in the reciprocal space and
contains all the necessary information. Therefore, if we use a new k′ that lies in the
Brillouin zone and rewrite k = k′−q′ with q′ being another reciprocal lattice vector,
we get [

(~
2(k′ − q′)2

2m − E)ck′−q′ +
∑

q

Vqck′−q′−q

]
= 0. (1.116)

Another transformation of q′′ = q + q′ yields our final result

(~

2(k′ − q′)2

2m − E)ck′−q′ +
∑

q′′
Vq′′−q′ck′−q′′


 = 0. (1.117)

Our result in Eq. (1.117) is in general applicable to any kind of particles inside
a lattice. Furthermore, we did not use any kind of assumption of the particular
strength or form of the potential. We reduced the problem of solving a differential
equation into a set of eigenvalue problems for each k. This way, we also derived the
Bloch theorem that states that for any periodic potential the wave function can be
written as

Ψk(x) = eikxuk(x). (1.118)

This statement directly follows if we substitute k = k′ − q′ into Eq. (1.110) like

Ψk(x) =
′∑

q

ck′−q′e
i(k′−q′)x = eik

′x
′∑

q

ck′−q′e
−iq′x = eikxuk(x). (1.119)

In the last step we redefined k′ → k to make it clearer and is anyway only a ques-
tion of conventions. The Bloch function automatically inherits both conditions that
Ψ(x+ na) = Ψ(x) and Ψk+k′(x) = Ψ(x).
The obtained wave functions are eigenfunctions of the Hamiltonian but are delo-
calized throughout the crystal. We can turn this around by performing a discrete
Fourier transformation like

wR(x) = 1
N

∑

k

e−ikRΨk(x). (1.120)
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This creates a located function at position R = an, n ∈ N which corresponds to the
lattice site centers. These so constructed function are orthonormal and are called
Wannier functions. The inverse transformation

Ψk(x) =
∑

R

eikRwR(x) (1.121)

is also possible and allows the reconstruction of the Bloch functions from a linear
superposition of Wannier functions wR(x) with the appropriate phases eikR.
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2. Quantum many-body dynamics of
driven-dissipative Rydberg
polaritons

Now that we covered the basics, we first want to look at the driven-dissipative quan-
tum many-body dynamics of Rydberg polaritons in an optical lattice potential. We
obtain the dispersion relations for the single-particle problem by using a Bloch wave
ansatz. In combination with a transformation into the Wannier basis, we derive an
effective Bose-Hubbard model for the dark state polaritons with long-range hopping.
The van der Waals interaction of the Rydberg states also leads to additional long-
range interaction terms in the model. We show that under experimentally realistic
conditions, the dynamics is confined to a single dark state polariton band, even in
the presence of dissipation from the decay of the Rydberg state and the possible
conversion of dark-state polaritons into bright polaritons caused by the interaction.
We provide a numerical analysis of this driven-dissipative many-body model using
a variational approach, which we benchmark against wave function Monte-Carlo
simulations for small system sizes. Finally, an additional calculation of the two-time
correlation function shows that strongly correlated photons can be observed when
the polaritons are leaving the system.
This chapter offers a more detailed insight into the results of [80].

2.1. Setup

For our model we want to confine multiple ensembles of rubidium atoms in an
effective one-dimensional (1D) geometry with length L = Na with a being the
spacing between the N lattice sites. We already discussed how to achieve this in
Sec. 1.6. We assume a Gaussian distribution like

n(z) = n0 exp( 1
σ2 (z − z0)) (2.1)
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2. Quantum many-body dynamics of driven-dissipative Rydberg polaritons

Figure 2.1.: Setup of the system for dark-state polariton propagation. A one-
dimensional optical lattice potential creates lattice sites separated by
a distance a, around which the atoms exhibit approximately Gaussian
density profile. The system is being pumped from the left by a coherent
light field, leading to an output intensity Iout. Each atoms is driven by
a photon field with a space-dependent coupling g and a coherent laser
field Ω with a two-photon detuning δ. The photon field is detuned by
∆e from the intermediate state.

for the atoms inside each lattice site with an average particle density n0 = 1013 cm−3

and a standard deviation of σ = 25 nm.
There are multiple setups to achieve stationary polaritons in our system. The sim-
plest setup works in the three-level ladder that we discussed in 1.4 but with the
addition of counterpropagating light fields ΨEL and ΨER that couple the ground
state |g〉 to the single excited state |e〉 with a transition frequency of ωge. The light
fields can be detuned by δe from the atomic transition which we combine with the
linewidth γe of |e〉 to a complex detuning ∆ = δe − iγe. We further have a classical
control field that is assumed to be constant in the areas it can interact with the
excited atoms. The driving is then given by a Rabi frequency Ω, which enables the
transition to the Rydberg state |r〉. An in-depth analysis of the stationary light in
this system is given by I. Iakoupov et.al. [81].
Now, if we are working on a two-photon resonance (δ = 0), our system enters the
EIT regime. The collective, single-photon Rabi frequency g(z) in this regime is then
given by

g(z) = g̃
√
n(z)

∑

l

eik̃la (2.2)

with g̃ = [6πγec3/ω2
ge]1/2 and c being the speed of light [27]. We split the phase

factor up in two parts by setting k̃ = k0 + k which corresponds to the wave vector
k0 = ωge/c and a deviation from the EIT condition k. This will help us to calculate
the dispersion relation for our system. The transition processes within the atoms
can then be described by the bosonic field operators Ψ̂p = |g〉 〈e| and Ψ̂r = |g〉 〈r|
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2.1. Setup

[26]. In the continuum, the non-interacting part of the Hamiltonian can then be
written as

H0 = ~
∫
dz Ψ̂†




−ic∂z 0 g(z) 0
0 ic∂z g(z) 0

g(z) g(z) ∆ Ω
0 0 Ω δ




Ψ̂. (2.3)

with Ψ̂ = {Ψ̂EL , Ψ̂ER , Ψ̂e, Ψ̂r}. The kinetic terms for the quantized light fields only
account for the previously mentioned deviation from the two-photon resonance.

2.1.1. Dispersion relation

A periodic spatial modulation of the coupling constant already suggests the usage
of localized Wannier function that we introduced in chapter 1.6. We follow the same
steps and first find the single-particle solution of (2.3) by using a Bloch wave ansatz
φk(z) = eikzuk(z) in combination with a plane wave expansion for the periodic
functions uk(z).

The eigenstates of the resulting band structure are a composition of the previously
defined bosonic fields. The structure of the composition in Fig. 2.2 shows clearly
that the system, like in the case without a lattice, can be described by dark-state
polariton and light state polaritons. The two states without any contribution from
the |e〉 state at around E = 0 can be identified as the only two dark-state-polaritons.
We can also see that states with large |E| show no constribution from the Rydberg
state and form a pure two-level system between the ground and intermediate state.
These eigenstates will dissipate into the environment because of the spontaneous
emission that arises from any contribution of |e〉. Hence, we want to focus on the
dark-state polaritons with their vanishing population 〈Ψ̂†eΨ̂e〉.
Fig. 2.4 shows the dispersion relations E(k) of the two bands and the surrounding
light polaritons. The parameters are chosen for a typical excitation scheme in 87Rb
like 5s → 5p → 34s1/2. The states form two symmetrical bands around E = 0,
which would not be the case if the forward and backward propagating light did
not have the same polarization. This results in a similar situation as we discussed
for different stationary light setups. Even though, we depict our three levels as a
ladder in Fig. 2.1, this is essentially the same as the λ-configuration for three-level
systems. The biggest difference here is that we deal with a discrete model enforced
by the optical lattice. This has important consequences, especially around the EIT
resonance k = 0. The solution there presents a superposition of both bands which
results in an elimination of the Rydberg part in the polaritons and a crossing of the
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Figure 2.2.: The summation over the absolute squared coefficients
∑

q

|cq|2 for the

different modes Ψ̂ = {Ψ̂EL , Ψ̂ER , Ψ̂e, Ψ̂r} at k = 0 shows the distribution
of each field to the Bloch wave of the corresponding band. In the lowest
and highest energy bands are the Rydberg state occupation 0 which
allows for a two-level description in that regime. The two energy bands
around E = 0 can be identified as the dark-state polariton because they
have a vanishing amplitude in the intermediate atomic level but still
occupy the Rydberg state |r〉. The rest are all light polariton states
with different distributions in the modes.
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bands at that point. Furthermore, the standing wave of the control field is assumed
to be constant and not zero at each lattice site. All of this results in the linear
dispersion we can see in Fig.2.4 and these are also the only two bands in the system
with a linear dispersion relation. Additionally, Fig.2.4 also shows the dissipation of
the two dark-state polaritons which is the imaginary part of E(k). The dissipation
like the dispersion at k = 0 is also zero because of EIT but it is overall so small that
we will not investigate it further because we will later see that a different dissipation
channel has a way bigger impact on the dynamics of our dark-state polaritons.
The surrounding bands above and below the two dark-state polaritons can already
be classified as bright state polaritons with a occupation probability of ≈ 4% in
the intermediate state and a relatively small dissipation, respectively. The band
gap between these states and the dark-state polaritons allows us to use a two-band
approximation. We can neglect all bands besides the two dark-state bands if the
mean energy value of the bands are lower than the energy to the next band [82].
In Fig. 2.3 the scaling of the band gap is shown in dependence of the control field
frequency Ω. It is important to note that the gap scales with an experimentally
tunable parameter. The gap disappears for Ω = 0 because the bands involving the
Rydberg state collapse because they are no longer coupled to the intermediate state.
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Figure 2.3.: Scaling of the energy gap EG between the upper dark-state polariton
band and the next band with the Rabi frequency of the control laser
Ω. The gap scales almost linearly with the strength of the control laser.
When the atomic system changes from three to two levels for Ω = 0,
the gaps between the bands around E = 0 also disappear because the
system cannot form dark-states anymore.
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Figure 2.4.: (Upper) Dispersion relation for polaritons close to zero energy. We
obtain two dark-state polariton bands and show the next bright state
polariton bands. The dashed grey line indicates the average energy
ε of the upper dark-state polariton. (Lower) The dissipation of the
two dark-state polaritons. For both dark-state bands are ImE

ReE � 1
because of almost no contribution from the intermediate atomic level.
The dissipation is by a factor of≈ 10 smaller than the spontaneous decay
from the Rydberg state γr = 25kHz. The parameters for the dissipation
and dispersion are Ω/2π = 18 MHz, δe/2π = 20 MHz, γe/2π = 6 MHz,
and a = 532nm.
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2.1.2. Hamiltonian

In the following, we transform the eigenstates of (2.3) into localized Wannier func-
tions wj(z) = 1√

N

∑

k

e−ikajφk(z) that we discussed in the first chapter of this

thesis, resulting in bosonic creation operators a†i =
∫
dzw(z)Ψ(z) for the upper

band and the analogous operators bi for the lower band. Fig. 2.5 and Fig. show a
exemplary Bloch wave and a Wannier function for our system and how we achieve
strong localised functions by the transformation. The Hamiltonian

H0 = −
∑

i,j

Ji,j(â†i âj − b̂†i b̂j + h.c.)

+ (2ε− β)
∑

i

b̂†i b̂i + β
∑

i

â†i âi (2.4)

(2.5)

describes the non-interacting dynamics of the two bands. The first line in Eq. (2.4)
describes hopping between the sites with a strength of Ji,j, which can be written in
terms of the hopping length m as Jm with |i− j| = ma. This parameter arises from
the operator transformation into the Wannier basis and describes the probability of
a particle on site i with Wannier function wi(z) to change to a particle on site j with
Wannier function wj(z)

Ji,j = −
∞∫

−∞

w∗i (z)Hwj(z) (2.6)

It is important to note that the scaling of Ji,j with the distance |i − j| does not
follow an exponential decay but an asymptotic power law decay like |i− j|−2, which
arises from the linear dispersion of the bands at around k ≈ 0. Fig. 2.7 shows
the polynomial fit b log x + a in an logarithmic scale with the parameters b = −2.4
and a = 0.2MHz. Hence, we cannot approximate the system by a nearest neighbor-
hopping J1, which is the usual assumption considering other level schemes [83].

The following two terms are the on-site energy shifts where the factor β indicates
the detuning from a resonant driving of the upper polariton branch. The explicit
form of ε is quite similar to J and is given by ε = −Ji,i. The term can also be
understood as hopping from site i to site i and can, therefore, decrease the chance
that the particles moves through the system which we will later use to constrain
ourselves to a single band model. Our goal is to have a description of an open
system which means that additional dissipative channels will enter the system. To
counteract the loss, we add a continuous, coherent light beam from the left side
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Figure 2.5.: The blue solid line shows the real part of the Bloch function Ψk(z) of
the upper dark-state polariton band for k = 2π

L
n with n = 10. The

orange dashed line shows only the eikz factor of the Bloch function.
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Figure 2.6.: The Wannier functions |wi(z)|2 of the dark-state polariton of the upper
branch for 0µm ≤ z ≤ 2.5µm. We see the strong localization of each
function around the site center.
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Figure 2.7.: Logarithmic scale of the hopping terms with a polynomial fitting func-
tion f(|zi − zj|) = a|zi − zj|b with b = −2.4 and a = 0.2MHz

Figure 2.8.: Depiction of the parts of the dark-state polariton bands that are getting
excited by a forward propagating wave as the pumping pulse.

of the system to act as a pump (see fig. 2.1). For the dark-state polaritons, the
consequence is that we pump only half of the states of two bands instead of all states
in one band, see Fig. 2.8. For J1/(2ε − β) � 1 the lower band is far detuned and
can be neglected.

2.1.3. Influences of the environment

Until here we described a closed system and obtained a Bose-Hubbard-model for two
bands. We already described in section 1.1.1 how the Lindblad formalism allows us
to describe an open quantum system. We want to use it to describe the system in an
open environment. We will see that even though we do not have a band gap between
the upper and lower dark-state polariton we still can neglect one band under the
correct conditions.
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2. Quantum many-body dynamics of driven-dissipative Rydberg polaritons

In section 1.5 about the properties of Rydberg atoms, we already discussed what
can cause losses in these systems. The largest dissipation channel appears in the
form of the decay from the intermediate atomic level. For most states in our system
that would be the most significant contribution to any kind of loss but we already
saw in the last section that this is not true for our dark-state polaritons.
Here, a second natural dissipation channel comes into play in the form of the spon-
taneous decay from the Rydberg state. We did not include it so far because the
typical rates for it are only a few kHz which is neglectable to the intermediate decay
rate with typically a few MHz. Now that we want to focus on the dynamics of
the long-living dark-state polaritons, we are suddenly working in a time scale where
these slow decay rates are becoming more important. A large part of the compo-
sition of the polaritons is the Rydberg state and we can express its effect on them
by an effective decay rate γi =

∫
dz|w(i)

r (z)|2γr = 12.5kHz [84]. The jump operator

that describes the process can then be written as ci = √γiσ(i)
− for each site i.

Another problem arises from the finite lattice we are working with. The dynamics
of the polariton particle do not suddenly end at the edges of our system. Instead,
the dynamical process of hopping which we discussed previously can also happen
towards the surrounding environment. There are multiple problems we need to ad-
dress with that description. Outside the lattice we do not have Rydberg atoms
which destroys the polariton picture we were working in and with that it could have
an impact on the probability of a jump occurring. We assume here that this is not
the case with the simple argument that the dynamical process of hopping between
the sites of the polaritons is mostly defined by the photonic part of the particles.
Furthermore, photons are also not influenced by the optical lattice so that we can
disregard it here. Altogether can we describe the emission of the photons into the
environment as another dissipation channel with jump operators c1(,N) = γoutσ

−
1(,N)

that only acts on the first and last sites of the lattice. Here, we consider the case
where γout = J1, i.e., the coupling to the outside has the same strength as the inter-
nal nearest-neighbour hopping. Similar processes can also be defined for the other
sites but show an insignificant influence on the overall dynamics.
The output dissipation channel allows us to define an output photon intensity uti-
lizing the internal dynamics of the polaritons in the system, providing a similar ap-
proach as the input-output formalism in for example cavity QED systems [85, 86].
The probability of emitting a photon in the opposite directions of the incoming pho-
tons depends on the polariton population of site N . Hence, we can define an output
intensity as Iout = J1 〈σ+

Nσ
−
N〉 which describes the incoherent part of the master equa-

tion for 〈σ+
Nσ
−
N〉 without the Rydberg decay. The Rydberg decay is not included in
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our definition because the process of spontaneous emission emits photons in random
direction from the lattice site and hence adds very little to a photon detector at
the end of the lattice. It should further be noted, that similar terms could also be
defined for all previous sites with accordingly long-range hopping terms J2,3,··· but
we found no significant change in the output signal by including these additional
terms for larger systems because of the combination of the low population or low
hopping strength.
To counteract the dissipation in our system we also want to pump the transition
from the ground to the intermediate state. We are doing this through a forward
propagating wave which enters at one edge of the system. In the description of the
here established band model of the polariton, we always assumed a symmetric probe
laser. Fig. 2.8 shows the parts of the two bands that would get excited from forward
propagating wave. We also need to know how this translates into the real space.

We can write the upper branch as
kN/2∑

kn=0
a†k and the lower part as

k=0∑

−kN/2

b†k. If we again

use the Fourier transformation into the real space we get

kN/2∑

kn=0
a†k = N + 1

2
√
N
a†0 + 1√

2N

N∑

j=1
a†j (2.7)

for the upper band and

k=0∑

−kN/2

b†k = N + 1
2
√
N
b†0 + 1√

2N

N∑

j=1
b†j (2.8)

for the lower part. The full calculation can be found in the Appendix A. Even though
all sites are getting pumped, most of it ends up in the first lattice site. Especially
for larger lattice sites with N � 1, the second part is neglectable compared to the
first one. We will later show with the help of another argument that arises from
the interaction of the polaritons on different site why we can drop the second part
completely.

2.1.4. Long-range interaction

An important point we neglected so far is the interaction between the Rydberg
atoms and the effects it has on the different polariton states. The interaction between
Rydberg atoms is dominated by the van der Waals interaction, which we discussed in
Chapter 1. There, we already defined the interaction Hamiltonian between Rydberg
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2. Quantum many-body dynamics of driven-dissipative Rydberg polaritons

atoms in a continuum. For a one dimensional model this reads as

Hint =
∫
dz
∫
dz′V (z − z′)σ†gr(z)σ†gr(z′)σgr(z′)σgr(z). (2.9)

In [87] we find an comprehensive summary how to obtain Eq. (2.9). They show
that an effective description is possible if the beam waist of the probe laser is small
compared to the EIT blockade radius rB = 6

√
C6∆Ω2. The correct choice of the

radial dipole trap plays an important role to achieve this condition for Rydberg
systems [88].
By also transforming the operators in Eq. (2.9) with the previous established Wan-
nier functions, we obtain

Hint =
∑

i,j

( V (1)
i,j â

†
i â
†
j â
−
i â
−
j + V

(2)
i,j b̂

†
i b̂
†
j b̂
−
i b̂
−
j

+ V
(3)
ij a†iaib

†
jbj + V

(4)
ij a†ia

†
jbibj (2.10)

+ V
(5)
ij a†ib

†
jaiaj + V

(6)
ij a†ib

†
jbibj + h.c. )

for both bands. The coefficients V (i)
i,j have the general form

Vij = C6

2

∫
dzdz′

w∗i (z)w∗j(z′)wj(z′)wi(z)
r6
b + |z − z′|6 (2.11)

with the Wannier function w that belongs to the site and band of the corre-
sponding operator in the term and we chose rb as a regularization constant for the
calculation of the interaction strength.
The first line in Eq. (2.10) describes the two possible interband interactions. The
other terms are the possible intraband interactions in the system. We also need
to consider the interaction between dark and light polariton states. The blockade
mechanism allows to greatly reduce the complexity of the system. We already men-

tioned the EIT radius rb = 6

√
C6|∆|

Ω2 and how the EIT brakes for atoms inside of it.
That means the description of dark-state polaritons are not valid anymore and in-
coming photons can get absorbed into the intermediate state of the atoms. Without
the possibility to form a dark state or reaching the Rydberg level, the fast decay of
the intermediate state causes an undirected scattering of the photons into the envi-
ronment. This enforces a minimal distance rb between the creation of two polariton
states and is the reason why it is our choice for the regularization in Eq. (2.11). The
blockade mechanism has more consequences for our model but we need to change
the radius to take into account that we are in a lattice and only can create polaritons
by hopping between the sites. Like we said earlier the strength of this process is
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Figure 2.9.: Interaction strength of two interacting polaritons for different distances
between the two particles in a semi-logarithmic scale. The crossing
of the grey line at hopping strength J1 with the interaction strength V
indicates the the Rydberg blockade radius rb. Hopping of the polaritons
closer to each cannot happen below this radius because the energy is
not sufficient enough to overcome the interaction barrier.

mostly defined by the nearest-neighbour hopping J1. For a jump to occur we need
to weigh its strength against repulsive van der Waals interaction which leads to a

different blockade radius r̃b = 6

√
C6

J1
. Fig 2.9 shows how the interaction strength

falls off over the distance r between two polaritons and also when it crosses block-
ade radius we defined through the hopping strength J1. For r ≤ rb ≈ 2a is the
interaction strength almost constant because of our choice of the regularization and
r̃b ≈ 5a for the chosen parameters. We note that r̃b > rb is always the case because
J1 ∝ Ω, 1/|∆|. The relationship between the different radii can only change if the
intermediate state is decoupled from the ground state by a large detuning which
leaves the system in the trivial ground state.

We now know that a second polariton cannot jump into the radius r̃b around
another polariton or can be created otherwise inside rb. Therefore, we can neglect
the scattering process from one dark state to the other for small distances and in
combination with the low population of the detuned band, we can also ignore the
terms in our calculations. Also, the energy scale of Vij outside r̃b is very small and
cannot couple to the surrounding light polariton bands, which keeps our single-band
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2. Quantum many-body dynamics of driven-dissipative Rydberg polaritons

approximation intact. Hence, we can rewrite Eq. (2.11) as

Hint =
∑

i,j

Vi,j â
†
i â
†
j â
−
i â
−
j . (2.12)

Furthermore, with rb > a the formation of more than one dark-state polariton per
site is not possible. Therefore, we have either a single polariton or none on any lattice
site. In the case of a single band we express that as a kind of spin-1/2 particle lattice
which can be either in the up |↑〉 or down state |↓〉. We use the convention that the
up state corresponds to having a polariton on that site and the down state if we
do not find one. Instead of having an infinite subspace, we now can express it with
the Pauli matrices σx, σy, σz which are the generators of the SU(2)-group to which
spin-1/2 systems belong. The density matrix for one site is then

ρi = 1
2(I + αxσx + αyσy + αzσz). (2.13)

The annihilation operator a changes accordingly to σ− = 1
2(σx − iσy), similarly

σ+ = 1
2(σx + iσy) for the creation operator a†.

For the dynamics of both dark-state polariton bands the situation is different. It
does not matter if we are in the lower or upper dark-state band, the interaction
between the Rydberg states blocks an additional excitation for both bands. This
leads to three possible states on each site: it can be in the lower or upper dark-state
band or in neither of them. This kind of triplet state belongs to the SU(3)-group and
is also used to describe spin-1 particles. As an analogue to the Pauli matrices we can
use the Gell-Mann matrices λi to span the Hilbert space of a single spin-1 particle,
which corresponds to a single site of our lattice. From the 9 matrices (including the
unitary matrix) we can again define new annihaltion (creation) operators

λ−(+)
a =




0 0 0
1 0 0
0 0 0




(†)

, λ
−(+)
b =




0 0 0
0 0 1
0 0 0




(†)

(2.14)

for the dark-state polaritons in the upper (a) and the lower (b) dispersion branch
in 2.4.
Putting everything together gives us an extended Bose-Hubbard Hamiltonian for
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interacting dark-state polaritons

H =−
∑

i,j

Ji,jλ
+
a,iλ

−
a,j + p(λ+

a,1 + λ−a,1) + β
∑

i

λ+
a,iλ

−
a,i

−
∑

i,j

Ji,jλ
+
b,iλ
−
b,j + p(λ+

b,1 + λ−b,1) + (2ε− β)
∑

i

λ+
b,iλ
−
b,i

+Hint.

(2.15)

for two interacting dark-state polaritons in a lattice with Hint being Eq. (2.10). This
simplifies further to

H =−
∑

i,j

Ji,jσ
+
i σ
−
j + p(σ+

1 + σ−1 )

+ β
∑

i

σ+
i σ
−
i +

∑

i,j

Vijσ
+
i σ

+
j σ
−
i σ
−
j

(2.16)

for the upper dark-state polariton if the other one is far detuned.
Eq. (2.16) will be our end result and we will focus on that in the next section but
before we do that we want to have a brief look at the dynamics of Eq. (2.15) which
we will do with the QuTiP module in Python [89, 90] and the quantum Monte
Carlo wave function method. Fig. 2.10 shows the expectation value of finding a
dark polariton on a site 〈Pdp〉i for a lattice of size N = 3. Here, we use the coherent
pump we introduced before and if the detuning of both bands are equal we also
observe a similar behavior of them. In the second part we far detune one band and
set the other on resonance which result in an almost complete suppression of one
band after the first site, which is not influenced by the detuning because it is the
site that we directly pump. In Fig. 2.11 we additionally look at a slightly different
situation where we exchange the coherent pumping by an incoherent pump which
can be implemented by the two jump operators ca,b = √pλ+

1,a,
√
pλ+

1,b. We observe
a different dynamics overall but especially also if we change the detuning. Even
though the detuning still reduces the population on each site for one of the bands,
neither of them vanish completely. The coherent pumping populates virtual states
at the off-resonant energy level and even though hopping can occur there are no
processes on the other sites that the depopulate these virtual states except on the
first site.
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Figure 2.10.: Time evolution of a small system (N = 3) to see the effect of the
detuning between the two dark-state polaritons if we have a coherent
pump. (Upper) For ε = 1 the detuning for both bands is the same
which results in very similar dynamics between the two. (Lower) For
ε = 0 the lower band vanishes almost completely. The occupation
numbers are also higher for the single band than the two bands for ε = 1
together because of no additional detuning through the interaction
between the two bands. The results are calculated by WFMC.
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Figure 2.11.: Time evolution of the two dark-state polaritons with an incoherent
pump. In comparison to the coherent pump in 2.10 the effect of the
detuning of the two bands is much smaller because the virtual processes
that capture the polariton on the first site only appear in with coherent
pump processes.
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2.2. Time evolution
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Figure 2.12.: Scaling of the intensity output 〈Iout〉 for different detunings β under
coherent pumping. For N = 2 a symmetrical behaviour is visible but
does not last for larger system sizes.

Now that we have fully described our model we want to investigate its dynamics.
We perform exact numerical simulations of the system for site numbers up to N =
10 with the Monte-Carlo wave function method using the QuTiP library [90, 91],
which amounts to an average of about two polaritons inside the system. In all our
simulations, we choose the initial state to have no polaritons in the system. To
analyse the output for larger lattices, we use a variational approach [40, 92] starting
with a product ansatz for the density matrix

ρ =
N∏

i=1
ρi = 1

2

N∏

i=1


1 +

∑

µ∈{x,y,z}
αµσ

i
µ


 (2.17)

with ρi as the density matrix for each lattice site and αµ as our variational para-
meters.
A product state ansatz is insufficient to describe the blockade phenomena associated
with the van der Waals interaction in Rydberg system but we can solve this problem
by adding a constraint to the minimization process regarding the pair-correlation
function

g2(zi − zj) = 〈P i
rP

j
r 〉

〈Pr〉i 〈Pr〉j
. (2.18)

In a strongly correlated regime, which in our case is given by the area inside the
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blockade radius r̃b, the pair-correlation function vanishes and the correlations are
neglectable outside of it which corresponds to g2 = 1. We can assume a very sharp
transition from one regime to the other which allows us to describe the correlation
function as a step function

g2(|z|) = Θ(|z| − rb). (2.19)

In combination with an adaptive version of the normalisation condition for g2(|z|)
for dissipative systems

1
2rb

∑

ix0≤rb
〈Pr〉i

∫
dz[1− g2(z)] ≤ 1, (2.20)

we can derive a blockade constraint for the polaritons, which restricts the summed
probabilities inside a 1d-sphere with radius rb to a single polariton, i.e.,

∑

i−rb<j<i+rb
〈σ(i)

+ σ
(i)
− 〉 ≤ 1 (2.21)

for all sites i. A similar approach was already successfully implemented in the
equilibrium analysis of Rydberg gases [93]. For the variational integration of the
quantum master equation, we use an implicit midpoint method [92] To reduce the
number of variational parameters in a single optimization, we evolve the system
from t to t+∆t by minimizing the parameters for one site while holding every other
site constant [31]. This procedure is repeated for all sites before moving on to the
next time step. For the variational optimization we use the norm Di for each site i
given by

Di =
∑

j 6=i
|| − τ

2L[ρi(t+ τ)ρj(t) + ρij(t)]

+ ρi(t+ τ)ρj(t)− ρij(t)||1 → min,
(2.22)

where || · ||1 denotes the trace norm Tr{| · |}. Additionally, we add constraints to the
minimization to enforce the positivity of the density matrix ρi ≥ 0 and to enforce
the blockade of the polaritons.

Fig. 2.13 shows the intensity output Iout for different lattices sizes N . Addi-
tionally, we benchmark the variational results against wave function Monte-Carlo
simulations. The product states in combination with the hard-sphere constraint are
both not suitable for small system sizes because they do not depict the influences
of the strong correlations in the system if the particle number is below 1 at all
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Figure 2.13.: Intensity output 〈Iout〉 for different system sizes for a pump strength of
P = 10 γ. For smaller system size (N = 4, 10) the variational approach
(solid) is compared to Monte Carlo wave function(MCWF) simulations
(dashed). The shaded region shows the statistical error of the WFMC
simulations for 500 trajectories.

times. This is visible in Fig. 2.13 for the N = 4 where the variational solution is
larger than the expected one from WFMC. The difference decreases substantially
for N = 10 with the remaining difference being caused by short-range correlation
between the ends. The product state ansatz is not well suited to capture those. On
the other hand, it allows us to also investigate larger system sizes that are way out
of reach for other methods. For the wave function Monte Carlo simulation one of
the highest reported numbers is a system of up to 20 particles [94]. In Fig. 2.13 we
already showed the intensity output for N = 25 which already seems hard to achieve
otherwise. After having demonstrated the viability of the variational approach, we
now want to go one step further in the system size.

Fig. 2.15 displays the dynamics of the polariton population on each site for a
lattice size of N = 40. We observe that a significant portion of the polariton density
remains confined to the initial pump site, with the rest of the population spreading
throughout the system similar to a light cone, which is a consequence of the linear
dispersion relation. We see an oscillation pattern that also appears if we look at the
scaling of the error between the Monte Carlo simulation and the variational solution
in Fig. 2.14. The repeating pattern comes from the hard-sphere blockade, where we
used the Rydberg blockade radius of ≈ 5 sites.
We can get a better understanding of the blockade effect onto our system by looking
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Figure 2.14.: Scaling of the difference between the variational and the Monte-Carlo
wave function (MCWF) solution with system size N. Overall, we see
a decrease in the differences between the two methods with increased
system sizes. The fluctuations arise from the fact that the constraint
for the Rydberg blockade in the variational approach is not always
active. That is also the reason why the methods are the closest at
system sizes that are around a multiple of the Rydberg blockade radius
rb = 5x0.
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Figure 2.15.: Time evolution of the polariton population P (i)
dp = 〈σ(i)

+ σ
(i)
− 〉 of each site

i in a lattice of size N = 40 for a pumping strength of P = 10 γ.
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Figure 2.16.: The upper plot shows the scaling of the intensity output 〈Iout〉 with
the pumping strength for system sizes up to N = 10. The curves are
getting flatter with larger system sizes. The lower plot then shows the
same but for system sizes N = 20 and N = 40. Above a pumping
strength of p ≈ 9.5 the curve does not change significantly. The reason
are the blockade phenomenon and that the system reaches an optical
depth of 1 for system sizes above 2rb which means that no further
photon can be absorbed.

68



2.2. Time evolution

at the scaling of the intensity output 〈Iout〉 for different pumping strength and system
sizes. Fig. 2.16 shows the scaling for different system sizes and especially for large
system sizes (N = 20, 40) leads the blockade phenomenon to a limitation of the
possible output of the system and further increase of the pumping strength shows
no further impact. This is also shown by the comparison of the time evolutions
of system sizes N = 6 and N = 40 for two different pumping strengths P = 10
and P = 15 in Fig. 2.17. For N = 40 is the steady state the same and we can
only observe small difference in the time evolution towards the steady state whereas
N = 6 a substantial difference between the two pumping strengths shows.

Before we move on to the temporal correlations in the system, we want to utilize
the time evolution of the chosen variational method more by changing from a con-
tinuous pump to a pulse. The result in Fig. 2.18 shows the evolution of multiple
sites with N = 40 sites. In addition to the effects, we observed for the continu-
ous pumping, we see another interesting phenomenon in the shape of the polariton
pulse that moves through the lattice. The pulse broadens slightly during the time
evolution whereas the free-space polaritons form a form-stable solution of the corre-
sponding wave equation [95]. This also comes from the Rydberg blockade because
the limitation of only one possible Rydberg excitation in the Rydberg radius around
an excited site causes a necessary delay in the transport to fulfil this constraint.
Another detail we can see through the pumping pulse is a small backpropagation
of polaritons visible by smaller oscillations after the main pulse. The fact that for-
ward and backwards propagating probe fields couple to the same intermediate level
and the resulting Bose-Hubbard-like Hamiltonian already implied that but was not
clearly visible in the search for the steady state of the system.
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Figure 2.17.: Difference between pumping strengths P = 10γ and P = 15γ for
system sizes N = 6, 40. The difference between the pumping strengths
for the smaller system size vanishes almost completely for N = 40
because the blockade mechanism creates a bottle neck for the polariton
population in the system.
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Figure 2.18.: Time evolution of 〈Pdp〉 of every fifth site out of N = 40 with a Gaus-
sian pump pulse on the first site with a peak of P = 15γ and a standard
deviation of σ = 0.1. The drop-off after the first site is a consequence
of the hard-sphere blockade. It also slightly alters the form of the pulse
on the first site (see Fig. 2.19). Later sites show the back propagation
of the pulse through the lattice but because of the size of the system
it does not have any impact on the output.
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Figure 2.19.: Probability to find a dark-state polariton 〈Pdp〉 on the first (grey) and
last site (blue) of a lattice with size N = 40 if it is getting pumped
by a Gaussian pulse with a peak of P = 15γ and a standard deviation
of σ = 0.1. After the travel trough the lattice, the last site shows a
clear distortion from the original Gaussian shape which comes from
the hard-sphere blockade and the fact that our level scheme allows for
back and forward propagation in the lattice.
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2. Quantum many-body dynamics of driven-dissipative Rydberg polaritons

2.2.1. Temporal correlations

Finally, we also want to look at the temporal correlations in the output intensity. To
obtain the temporal function, we let the system evolve until it reaches a steady state
at time tss. At this time, we consider the effect of a quantum jump corresponding
to measuring a photon at the detector, after which we let the system evolve for an
additional time τ . Then, the probability to observe a second photon is described by
the two-time intensity-intensity correlation function

g(2)(τ) ∝ 〈Ô1(t1)Ô+
2 (t2)Ô3(t1〉 (2.23)

= 〈σ+
N(t1)σ+

N(t2)σ−N(t2)σ−N(t1〉 (2.24)

with Ô1 = σ+
N ,Ô2 = σ+

Nσ
−
N ,Ô3 = σ−N and t2 > t1 > 0. The subscript N of the

operators denotes their acting on the last site of the lattice. The quantum regres-
sion theorem allows us to reduce this problem to the calculation of a single-time
correlation function [96, 97, 49]. The theorem relied originally on the Markov ap-
proximation which we introduced in the derivation of the quantum master equation
in Sec. 1.1.1. If we neglect any memory effects of the environment, we also assume
that noise operators are uncorrelated with system observables that are measured at
earlier times. With the theorem in play we can calculate (2.24) by

〈Ô1(t1)Ô+
2 (t2)Ô3(t1〉 = Tr

{
Ô2e

Lτ [Ô3ρ(t)Ô1]
}
. (2.25)

For a similar situation as in experiments we are interested in the dynamics after the
system reached a steady state by the time tss. The linearity and trace preserving
properties of the master equation also imply that the function will go back to the
steady state. Therefore, we use the normalization that is often used in the field of
quantum optics by normalizing the correlation function by the steady state mean
values 〈Ô2〉SS 〈Ô1Ô3〉SS. Finally, we obtain for our system the correlation function

g(2)(τ) = 〈σ
+
N(tss)σ+

N(tss + τ)σ−N(tss + τ)σ−N(tss)〉
〈σ+

Nσ
−
N〉

2
tss

= 1
〈σ+

Nσ
−
N〉

2
ss

Tr
{
σ−Ne

Lτ
[
σ−Nρ(tss)σ+

N

]
σ+
N

}
, (2.26)

where we have used the cyclicity of the trace [98]. The quantum jump from the first
measurement also affects the other sites because of the long-range Rydberg-Rydberg
interactions. In our hard-sphere model, we use a self-consistent approach to identify
the affected sites by adding the excitation probabilities of the sites beginning from
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2.2. Time evolution

site N − 1 until
∑

i=N−1
〈σ+

i σ
−
i 〉 = 1. To see the effect of the interaction on the other

sites in terms of the product states we use for the density matrix, we calculate the
full density matrix for smaller system sizes and only look at the partial trace for
one of the affected sites. We observe that they are also set back to the ground
state when measuring a photon leaving the system which is expected because this
corresponds to the blockade phenomena associated with the strong interactions in
our system. The blockaded region defined in that way is for smaller system sizes
identical to our previous definition of the blockade radius. For larger system sizes,
the radius is slightly extended because the self-consisting method to determine the
blockade radius also includes the decay from the Rydberg state which we could not
include in the hard sphere approximation.
We can use the correlation function to determine how long it takes for the system

to emit a second photon after the first one and also when the system is back in the
steady state. If g(2)(τ) ≈ 0 we get photon antibunching because the system will not
emit a second photon in this time. This is also what we are looking for if we want to
use the polariton lattice system to mediate Rydberg-Rydberg correlation onto the
photons. On the other hand, if g(2)(τ) ≥ 1 it is called bunching because there is an
increased probability that the system emits a second photon in comparison to the
steady state. Fig. 2.20 illustrates the differences between bunched, coherent and
anti-bunched light.
Fig. 2.21 shows an extended anti-bunched region g(2)(τ) ≈ 0 resulting from the
blockade, we discussed previously. Furthermore, we also observe bunching before
the system recovers its steady state g(2)(τ) = 1. The oscillations depend on the
lifetime of the polaritons but also on the internal dynamics of the system given by
the Hamiltonian. Our chosen product state ansatz is often accompanied by longer
oscillation patterns in comparison to calculations with the full density matrix. We
already saw this in the time evolution of our system in Fig. 2.13 between our so-
lution and the Monte-Carlo simulations. The same effect results in long relaxation
times in the temporal correlation function.
Even though we also observe bunching in the Monte-Carlo simulation, it is unclear if
the scaling of the strength and duration of the bunching with system size is correct
or also a consequence of the product states. These findings underline the possibility
of using Rydberg polariton systems to generate strongly correlated photon streams,
similar to some free-space systems [99].
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2. Quantum many-body dynamics of driven-dissipative Rydberg polaritons

Figure 2.20.: Difference of the structure in emitted photons. Each circle indicates
the emission of a photon from the system. Bunched light has multi-
ple photons leaving the system together. Coherent light sources emit
photons independently from each other. Antibunching is a quantum
mechanical effect that forbids the emission of a another photon for
some time.
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Figure 2.21.: Two time correlation function g(2)(τ) of the output signal from the last
site of the lattice for different system sizes N .
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3. The variational method for
bosonic fields

The previous chapter revealed the complexity ones faces in many-body systems.
We used various techniques to reduce the dimensionality of the Hilbert space of
the system and thereby brought the computational effort to a manageable level.
In this chapter, we want to discuss how we can treat an infinite Hilbert space or
more specific bosonic fields with light as the most important example. They can be
used to describe spin-0 and spin-1 particles but also gauge and scalar fields. The
description of such fields is a difficult task because there is no natural limitation in
the Hilbert space dimension describing these fields. This is especially a problem in
open quantum system where the particle number is not fixed but can be changed
through incoherent processes like pumping or dissipation.
Here, we use the phase-space representation of the density matrix to formulate a
variational approach for the Fokker-Planck equation and the generalised Ehrenfest
equations. The convolution theory of P-distribution will help us to cover a wide
range of possible quantum states with our density matrix. We also give an overview
of how different state distributions interact with each other.
We then test the method with Jaynes-Cummings model [100]. The model consists of
an atom interacting with a light field trapped inside a cavity and therefore forms one
of the simplest systems to investigate atom-light interaction. The light mode will be
represented by a density matrix in its P-representation. The mean-field treatment
of this model has an area of bistability, which we will also investigate with the new
approach and compare it with the Monte-Carlo simulation of the full model. We
also use the P-distribution to examine the model for nonclassicality.
At last, we will look at another model that focuses around Rydberg atoms in a
cavity. A polariton picture for the model is established and then analysed by the
variational approach. To cover the strong correlations between the different modes
in this model, we expand our method by introducing correlation functions as varia-
tional parameters. We then look at the intensity and the squeezing of the different
modes and see how they scale with increased cavity pumping. The necessity of the
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3. The variational method for bosonic fields

additional parameters in the form of the correlation function will be made clear and
also how this variational approach can easily handle large particle numbers in the
system.
We end this chapter by giving an outlook on which states are possible candidates
to further expand this method and possible advantages of adapting the method to
other phase-space representations than the P-distribution.

3.1. P-representation of the density matrix in the
variational approach

Finding the right representation of the density matrix is a cornerstone of the varia-
tional approach. Previously, we used product states in combination with generalized
Pauli matrices to construct a Hilbert space of multiple two- or three-level particles.
Here, we make use of the phase-space representation of the density matrix which we
introduced in 1.3.
We focus our attention on the P-representation by Glauber and Sudarshan [47, 48]
but it should be noted that the general concept can be transferred to the other
phase-space representations as well because they are connected via the character-
istic function χ, as we mention in Section 1.3. The convenience of our particular
choice will be seen later.
At first, we need to discuss how we can expand the P-representation to also represent
superpositions of multiple independent fields that are still emitting into the same
mode. The construction of the corresponding P-distribution is done by a convolution

P (α) = (Pi ∗ Pj)(α) =
∫
dαdα′Pi(α′)Pj(α− α′) (3.1)

of the original distributions Pi and Pj [101] If we insert (3.1) into (1.67) we obtain

〈a†paq〉 =
p∑

n

q∑

m

ξp,q 〈(a†)nam〉Pi 〈(a
†)p−naq−m〉Pj (3.2)

as a formula to calculate expectation values of a convoluted P-distribution with ξn,m
as the number of possible combinations of the given expectation values from 〈a†paq〉.
If we assume one distribution is the one for a thermal state we regain the same re-
sult as in [102]. We see that the calculation depends on all expectation values up
to the orders p, q of a,a† of the original expectation value but are calculated for the
single P-distributions Pi and Pj. This process can then be repeated multiple times
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3.1. P-representation of the density matrix in the variational approach

to combine multiple distributions.
Table 3.1 shows different convolutions P1 ∗P2 between coherent, squeezed, thermal

and Fock states to give a better understanding of the concept. Whereas the convo-
lution between a coherent state α1 = i and a second coherent state α2 = 1 results in
another coherent state with α = α1 +α2, leads the convolution with a thermal state
to a broadening of P2 and can even destroy important aspects of the distribution,
for example, the negativity in the Fock states. Especially the convolutions between
PFock and Psqueezed result in interesting states that we would not be able to obtain
without the convolution. One should further note, that we restricted ourselves to
the convolutions of only two P-distributions as an overview but in our final varia-
tional approach we will have a convolution of multiple P-distributions which allows
for even more possible combinations.
Now we have everything we need to combine the concepts of the variational principle
and the P-distribution. There are two possible ways that we can take to derive a
variational norm. Both are shown in the overview in Fig. 3.1.
Let us explore the upper approach first, which is in closer relation to our approach
in the previous chapter. Our starting point is again the Lindblad master equation
∂

∂t
ρ = Lρ. Here, we can directly insert the P-distribution P (α) into Eq. (1.15).

The action of the operators on |α〉 〈α| can now be transformed to α and α∗ and the
partial derivatives of these variables. After the transformation we often end up with
a Fokker-Planck equation which originally described Brownian motion with classical
probability distributions [103, 49]. The equation we end up with is of the form

∂

∂t
P (α) =

[
∂

∂α
f(α, α∗) + ∂

∂α∗
g(α) + ∂2

∂α∂α∗
h(α)

]
P (α). (3.3)

An example in the form of the damped harmonic oscillator is given in Appendix B.
A more general form of 3.3 would be the Kolmogorov equation which can include
higher-order derivatives in α, α∗ but the Fokker-Planck equation is enough for our
purpose. We can useEq. (3.3) in a similar fashion in the variational approach as
the master equation. We would need to find a test distribution P var(α) insert it in
Eq. (3.3) and minimize an appropriate norm of the resulting equation which in this
case would be Euclidean norm for complex numbers.
This approach leads to two major problems which ultimately makes this approach
not feasible for most relevant problems. The first problem is the necessity to have
an explicit expression of P (α). The variational test distribution needs to be as
general as possible to be able to find an optimal solution through minimization.
Generic functions for P (α), e.g. a sum of Gaussian functions, do not lead to a
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3. The variational method for bosonic fields

valid density matrix. That is why we introduced the concept of convoluted P-
distributions, but their exact calculations can be hard, especially if we want to
include nonclassical states. This leads us to the second problem with Fokker-Planck
approach: The equation makes it necessary to calculate different orders of derivatives
of P (α) in combination with the functions f, g and h. For many nonclassical states
are the P-distribution highly singular which includes derivatives of the complex delta
distribution δ(2)(α) with α = x + iy. To use these in the variational context, we
would need to approximate the distribution by classical functions and even that
does not guarantee that we can calculate the full derivative. Therefore, we take the
other path in Fig. 3.1 and move into the Heisenberg picture of the master equation.

Here, we already saw that the equations of motion created by Eq. (1.25) for the
expectation value Â depends only on expectation values like

d

dt
〈Â〉 (t) = F ({〈a†paq〉}p,q). (3.4)

We can formulate a variational norm for the equations of motion as

∑

n

| d
dt
〈Â〉var

n (t)| =
∑

n

|L(〈Â〉var
n )| → min (3.5)

with 〈Â〉var
n being the n-th variational expectation value Tr

{
ρvarÂ

}
= 〈Â〉var. If

n→∞, the norm in Eq. (3.5) is equivalent to ||ρ̇|| and a finite number of expectation
values corresponds to a upper bound for the density matrix norm. If we insert (3.4)
into (3.5) we obtain

D =
∑

i

|Fi({〈a†paq〉p,q})| → min. (3.6)

with Fi describing the right hand side of Eq. (1.25) which depends on the set of
expectation values {〈a†paq〉}p,q. Instead of using the expectation values as our varia-
tional parameters to reduce the equation, we want to use the previously introduced
P-representation. To understand how it can be used, we first need to look at some
P-functions of commonly known states. For the thermal state we obtain

P (α) = 1
πn0

e−|α|
2/n0 (3.7)

with the average photon numbers n0 = 〈n〉. The coherent state density matrix
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3. The variational method for bosonic fields

ρ = |α0〉 〈α0| can be expressed as

P (α) = δ(2)(α− α0) = δ(x− x0)δ(y − y0). (3.8)

with the complex delta distribution δ(2)(α) and the complex numbers α = x + iy

and α0 = x0 + iy0. As previously discussed, other nonclassical states are even more
singular than δ(2)(α) which referred to derivatives of that function. The Fock state
is given by

Pfock = 1
l!e
|α|2 ∂2l

∂αl∂α∗l
δ(2)(α) (3.9)

and the vacuum squeezed state by [104]

P (α) = exp
[
−δ

2
x − δ2

p

8

(
∂2

∂α2 + ∂2

∂α∗2
− 2

δ2
x − δ2

p − 2
δ2
x − δ2

p

∂

∂α

∂

∂α∗

)]
δ(α). (3.10)

We can also look at a convoluted P-distribution. The convolution of coherent and
thermal state can be done quite easily and yields

P (α) = 1
π 〈n〉e

−|α−α0|
2

〈n〉 (3.11)

We can obtain the two original distributions for the edge cases 〈n〉 → 0 and α0 → 0.
We can immediately see that each of these distributions has at least one defining

parameter like α0 ∈ C, n0 ∈ R or l ∈ N. The convoluted distributions depend on
the set of the parameters of the original distributions like {β} = α0, n0.
This allows us to formulate Eq. (3.6) as

D =
∑

i

|Fi({β})| → min (3.12)

In consideration of Eq. (3.2) we can also see that we do not need to know the com-
plete form of the P-distribution that corresponds to a specific state. Instead, it is
enough to know how all expectation values depend on the state-specific parameters.
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Table 3.1.: Convoluted Wigner functions of the coherent, squeezed coherent, thermal
and Fock state with different parameters.
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3. The variational method for bosonic fields

3.2. Jaynes-Cummings Model

We now want to look at the Jaynes-Cummings model [100] to see how our method
performs in comparison to a Monte-Carlo simulation which we will do with the
QuTIP module in Python [89, 90]. The Jaynes-Cummings model describes an atom
interacting with a light field that is trapped inside a cavity, see Fig. 3.2. The
Hamiltonian reads as

H = ∆ca
†a+ ∆aσ

+σ− + g(aσ+ + a†σ−) + p(a† + a). (3.13)

Figure 3.2.: Scheme of the open Jaynes-Cummings model with dissipative processes.
An two level-system with Rabi-frequency Ω, a detuning from the cavity
light mode ∆ and decay rate γ is trapped inside a cavity which also has
a decay rate of γc.

The first two terms describe the detunings ∆c, ∆a for the cavity and the atom
respectively. The atom and the cavity are coupled with a strength of g and the
driving amplitude which corresponds to the driving strength p. Additionally, we
include dissipation from the cavity to account for any imperfections and add a
second dissipation channel for the atoms that accounts for any photon emission that
does not go back into the cavity mode through the second part of Eq. (1.19) via
jumping operators cc = √γca and ca = √γσ− with decay rate γc for the cavity and
γ for the atom.
We use a product ansatz for the atom and the cavity

ρ = ρcavity ⊗ ρatom (3.14)
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3.2. Jaynes-Cummings Model

in the variational approach and use the variational parameter αi in
∑

i=0,x,y,z
αiσi

to describe the atomic part and for the cavity we use the P-representation. As
our variational parameter set we use a convolution of coherent, thermal, Fock and
squeezed states. To show an immanent advantage of the variational approach, we
also want to analyse the Maxwell-Bloch equations of the Jaynes-Cummings model
[105, 106]. This set of equations describes the time evolution of the lowest order of
expectation values. The atom and cavity decouples in a similar fashion like in Eq.
3.14 but it also decouples the equation from higher order terms of the cavity field
through the neglect of any correlation terms of the second or higher order [107]. The
Maxwell-Bloch equation for the Jaynes-Cummings model then reads as

d

dt
〈a〉 = −(κ+ iδc) 〈a〉 − ig 〈σ−〉 − ip (3.15)

d

dt
〈σ−〉 = −(γ2 − i∆a) 〈σ−〉+ ig 〈a〉 〈σz〉 (3.16)

d

dt
〈σz〉 = −γ(〈σz〉+ 1) + 2ig(〈a†〉 〈σ−〉 − 〈a〉 〈σ+〉) (3.17)

Fig. 3.3 shows a comparison between the solution of the Maxwell-Bloch equa-
tions, the Monte-Carlo wave function solution and the variational approach for the
expectation value of the cavity field 〈a†a〉. The mean-field solution (orange) shows a
large area of bistability between two solutions of Eq. (3.17). A variational treatment
on the same level solves the problem by a clear transition between the solutions at
the grey line. In comparison to the Monte-Carlo simulation is the point at which the
transition appears still not correct. The third line (blue) now indicates the solution
if we go one order higher in the equations of motion in the variational approach
and the comparison clearly shows a strong improvement in a qualitative sense. Fig.
3.4 shows a reconstructed P-distribution from the variational expectation values
through the usage of the characteristic function

χ(z) =
∞∑

k,l=0

zk

k!
(−z∗)l
l! 〈a†kal〉 (3.18)

and

P (α, α∗) = 1
π2

∞∫

−∞

d2zχ(z)e−iz∗a†e−iza. (3.19)

The result is comparable to the solution through Monte-Carlo simulation and con-
firms an agreement between the methods to higher orders even though we only
used a very limited amount of convoluted P-distributions. It also shows the non-
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3. The variational method for bosonic fields

Figure 3.3.: Results of the Maxwell-Bloch equations, the variational approach
and the Monte-Carlo wavefunction method (MCWF) for the Jaynes-
Cummings model with g = 3347γ, γc = 6γ,∆c = 340γ,∆a = 23.5×103γ.
The Maxwell-Bloch equations (orange) show a region of bistability
which can be solved by a variational treatment of the equations which
yields a prediction for the transition between the two solution at the grey
line. For higher orders of the variational approach (blue) the transition
shifts towards the MCWF solution.
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3.2. Jaynes-Cummings Model

classicality of the steady state for the given parameters which is indicated by the
negative values of P (α) in Fig. 3.4 [108, 104, 109].

Before we move on, we look at the cavity intensity 〈a†a〉 and the atom population
measured by 〈σz〉 which is depending on the detuning ∆c. The effect we observe in
the cavity intensity 〈a†a〉 in the upper part of Fig. 3.5 is known as Rabi splitting and
only occurs if the cavity field interacts with an atom [110, 111, 112, 113, 114]. The
comparison with the Monte-Carlo wave-function method shows a good agreement
between the solutions again. Therefore, we want to focus on the lower part of Fig.
3.5 which shows the difference between the two methods for the atomic part of the
Jaynes-Cummings model measured by 〈σz〉. We see a large deviation between the
two solutions around ∆c = 0. The same figure also shows the normalized correlation
between the atom and the cavity 〈σza〉

〈σz〉 〈a〉
, which gives us a good understanding of

the deviation: the variational method we applied uses a product ansatz between
the atom and the cavity and even though we saw before in Fig. 3.3 that the varia-
tional method exceeds mean-field treatments, we still neglect the correlation terms
between the two subsystems. In the next section, we want to look at a different
model where the correlation is more important but we also provide two approaches
on how to overcome this problem.
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Figure 3.4.: P-distribution of the Jaynes-Cummings model for g/γ = 3347, κ/γ =
6,∆c/γ = 340,∆a/γ = 23.5 × 103 and p/γ = 50 calculated by the
variational approach (upper) and the Monte-Carlo wavefunction method
(lower). The comparison between the two shows a good agreement
of the general structures of the P-distributions but also reveals small
deviations in the exact values. The colormap is choosen to empathies
the negative region in the P-distribution. Both plots show regions of
strong negativity which indicates a non-classical behavior of the model
for the given parameters.
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Figure 3.5.: Comparison of the cavity intensity 〈a†a〉 (upper) and 〈σz〉 of the atom
between the variational solution and the Monte Carlo wavefunction
(MCWF). Espeically the lower plot show that the used product state
is not capable to correctly reproduce the physics around the resonance
(∆c ≈ 0). This is also shown by the normalized correlation function
〈σza〉 / 〈σz〉 〈σa〉 in the same plot which is equal to 1 for all ∆c in the
variational approach.
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3.3. Rydberg atoms in a cavity

We now want to have a look at the proposed effective three-boson model by Grankin
et al. [115, 116] to describe non-linear effects that arise from the interaction of
Rydberg atoms inside a cavity. At first, we want to briefly recapture the keynotes
of the model. Consider a cavity filled with N three-level atoms with energy level
g, e, r as the ground state |g〉, the intermediate state |e〉 and a highly excited state
which we denote as the Rydberg state |r〉. The atomic model we consider to describe
Rydberg atoms inside a cavity is the same as in the previous chapter. The |g〉 ↔ |r〉
transition is dipole forbidden. Here, we introduce two additional parameters with
the detuning of the Rydberg state ∆r = ωp + ωc − ωr (which we set to zero before)
and a detuning of the cavity photon field to the probe field ∆e = ωp − ωc.

The system is described by a the general Hamiltonian (without the inclusion of
environmental influences)

Hat = −∆e

N∑

n=1
σ(n)
ee +

N∑

m<n=1

C6

|rm − rn|6
σmrrσ

n
rr−∆r

N∑

n=1
σ(n)
rr + Ω

2

N∑

n=1
(σ(n)

re +σ(n)
er ) (3.20)

Hcav = −∆ca
†a (3.21)

where a(a†) is a bosonic field operator to destroy(create) a photon in the cavity
mode and σαβ ≡ |α〉 〈β| are operators to describe the transition from state β to
state α.

The ground state of this system consists of a collective atomic state which is sym-
metric in respect to permutations of the atoms. If the number of atomic excitations
is small in comparison to the overall number of atoms N, we can focus our attention
to the subspace of collective states with the same symmetrical behaviour [116]. We
then can describe the system in terms of collective bosonic field operators describing

with b = 1√
N

N∑

n=1
σge and c = 1√

N

N∑

n=1
σgr as the collective operators for the atomic

modes σge and σgr. We are following the steps of [116] and rewrite our Hamiltonian
with the collective operators to the following effective Hamiltonian

H = ∆ca
†a−∆eb

†b−∆rc
†c+ g

√
N(ab† + b†a) + Ω

2 (bc† + b†c) + κr
2 c
†c†cc (3.22)

with the additional dissipation terms De = γeb, Dr = γrc and Dnl = κicc. The
last term in the Hamiltonian κr

2 c
†c†cc expresses the dipole-dipole interaction of the

Rydberg atoms but it also couples the symmetric subspace to the non-symmetric
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3.3. Rydberg atoms in a cavity

Figure 3.6.: Scheme of multiple Rydberg atoms trapped inside a cavity. The atoms
are described by a three-level ladder scheme with g as the coupling
constant between the cavity light field and the transition between the
ground state |g〉 and the intermediate state |e〉. A control laser then
couples the intermediate to the Rydberg state |r〉 with a strength of ω.
The one- and two-photon detunings of the atoms are given by ∆e and
∆r. The rates γc, γe and γr describe decay processes of the cavity, the
intermediate atomic state and the Rydberg state.

subspace which we express by the additional dissipation channel Dnl.

With that the Hamiltonian reads as

H = −∆ca
†a+ p(a+ a†)−∆eb

†b−∆rc
†c

+ g
√
N(ab† + a†b) + Ωcf

2 (bc† + b†c) + κr
2 c
†c†cc (3.23)

and the the jump operators are given by ce = √γeb, cr = √γrc for the intermediate
and Rydberg state and also for the cavity. The nonlinear terms in the Hamiltonian
arise from the van-der-Waals-force between atoms in the Rydberg state. The inter-
action also couples the symmetric subspace to the antisymmetric subspace which
leads to an additional nonlinear dissipation term cnl = √κicc.
We now extend the mode by working the eigenbasis of the Hamiltonian. The di-
agonalisation of Eq.(3.23) results in H =

∑

p∈+,0,−
cpΨ†pΨp. The new states Ψp form

polariton states. They are defined as a quasi particle consisting of both light and
matter. For a three level atomic system we get 2 different types of polaritons with
± indicating light polaritons and 0 being the dark state polariton. The dark state
polariton is of special interest because this eigenstate is decoupled from the inter-
mediate atomic level which leads to long lifetimes in the cavity. The interaction
between the polariton leads to a strongly correlated many-body system which pro-
vides a difficult task for numerical calculation especially for larger system sizes and
therefore large particle numbers [80].
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To also be able to capture correlations between the modes we need additional varia-
tional parameters. If we look at the lowest order expectation values between different
modes we get

〈ab〉 = 〈a〉 〈b〉+ δ(ab) (3.24)

with δ(ab) being the correlation function between mode a and b. These kind of
factorizations for expectation values can be done for all orders and it provides us with
the needed variational parameter in the form of the correlation functions δ(anbm)
[117, 118, 119].
Fig. 3.7 shows the occupation number of the different modes and the squeezing
strength. We see that the bright state polaritons are populated unevenly because of
the detuning in the intermediate atomic state. Furthermore, the dark state shows
squeezing in its mode evoked by the nonlinear terms in the Hamiltonian and the
dissipation terms. The strength of the squeezing depends on the feeding parameter p
but reaches a saturation for p ≈ 5γe just like the intensity. The two bright polariton
states show no sign of squeezing. The correlations and therewith the squeezing
are closely related to the lifetime of the particles in the Rydberg state because the
nonlinearity in the Hamiltonian arise from the Rydberg-Rydberg interaction. Like
we already discussed in previous chapters the lifetime of the dark state polariton
is significantly longer to the light state polariton because of its missing component
from the intermediate atomic level and the associated dissipation channel.
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Figure 3.7.: Intensity (upper) and squeezing parameter r (lower) of the effective
three boson model in the polariton picture. We observe a saturation of
the bright and dark state polariton populations because of the van der
Waals interaction. The effects of squeezing are only visible in the dark
state polariton because of its longer lifetime compared to the bright-
states. The parameters are: γr = 0.1 γe, γc = 0.3 γe, ∆c = 0, ∆e =
−10 γe, ∆r = 0, κr = −1.2 γe, κi = 0.42 γe, g = 4.2 γe, N = 104
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3.4. Outlook

Throughout this chapter, we worked with only a handful of different convoluted
states to construct our variational manifold. Before we come to a conclusion we
want to show that our approach is not restricted to these few well-known states.
Like we mentioned before it is not necessary to know the full P-distribution and
that it is sufficient to know the expectation values of the given state which gives us
access to a great variety of nonclassical states.
In the previous chapters we already discussed the coherent squeezed states as the
most prominent candidate for squeezing but there are similar definitions for squeezed
Fock state |l〉sf and thermal states |n〉sth [120, 121, 122]

|l〉sf = S(r, φ) |l〉 (3.25)
|n〉sth = S(r, φ) |n〉 . (3.26)

Both states were already studied before and it was shown that we can find an
explicit expression for expectation values of all orders [123, 102]. Another state we
want to mention is the cat state defined as

|ψ〉 = A(|α1〉+ Θ |α2〉) (3.27)

with |α1〉 and |α2〉 being two different coherent states. The expectation values for
this state can be calculated via the explicit P-distribution [124].
Fig. 3.8 shows the Wigner distribution of all four states. We also want to make
a clear distinction between the squeezed thermal (Fock) state and the convoluted
distribution of a squeezed coherent state with a thermal (Fock) state. Tabular 3.1
shows the possible combinations of two states via convolution for all states we used
for our calculations, i.e. thermal, Fock, squeezed coherent and coherent state. Es-
pecially in the case of the thermal state, it is not straight forward to see that the
two results are actually different. That is why we want to look at a lower order
expectation value like the intensity 〈a†a〉 for the squeezed thermal state |n, r〉sth
and the convoluted case |n, r〉s+th. The difference between the two results reads as
〈a†a〉sth − 〈a†a〉s+th = 2n0 sinh2 r. The difference is enhanced for higher orders of
expectation values which can significantly change the result of the minimization in
(3.12).
In case of the cat state, the situation is reversed. Although the visual represen-
tation in 3.8 is cleary distinguishable from a simple coherent state, they are hard
to distinguish in terms of expectation because the first order of the cat state reads
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Figure 3.8.: Wigner function for different nonclassical states.(a) squeezed thermal
state and (b) squeezed Fock state (c) Hermite polynomial states and
(d) cat state .

〈a〉cat = α1 + α2 = α̃. Only the scaling with higher order expectation values can
reveal the true nature of this state and shows the importance of incorporating as
many orders as possible for the equations of motion.
Before we come to a conclusion we want to mention two more states with complex
properties which exceed the scope of this work. We think that both the single-
variable Hermite polynomial states [125, 126, 127, 128] and the photon-added (sub-
stracted) coherent states [129, 130] good candidates to expand our method further.

3.5. Summary

In conclusion, we expanded the variational principle for open quantum systems
through the usage of the P-distribution of the density matrix operator. We gave an
example of its usage with the Jaynes-Cummings model. We then used the method
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to analyse the squeezing of the dark-state polariton in an effective three-bosonic field
model for Rydberg atoms in a cavity by also implanting additional terms to cover
the correlations between different modes. At the end, we gave an outlook on how
the method can be expanded to other possible states of the quantum field. The zoo
of possible states that can be implemented through the usage of convolution could
allow for an interesting new perspective on different systems. Our method opens up
the possibilities for the variational principle and we hope to find more application
for it in the future.
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4. Dynamical decoupling in the
dissipative Ising model

In the last chapter of the thesis, we want to turn our attention to another kind of
Rydberg systems. The problems and systems we encountered so far were focused
around the interaction of Rydberg atoms with each other and also with light which
led to the description in the polariton picture. In the optical lattice, we derived
a Bose-Hubbard-like model to describe the dynamics in these systems. The Ising
chain is another spin model with an important role in the theoretical and experi-
mental description of strongly correlated many-body systems [32]. Here, we want
to complement the work by V. Overbeck et al. [31] which focused on the multi-
critical behaviour of the Ising chain in the thermodynamical limit. In experiments,
the numbers of realisable spins are far less than necessary to be comparable to this
limit. Hence, we take a different approach and look at only two interacting sites
to see if we find any traces of the predicted phase transitions in the system. We
also take this occasion to deepen our understanding of the variational principle by
inserting the analytical mean-field solutions of the Ising model into our variational
norm to see if this changes the phase diagram in a similar way of what we saw in
Section 3.2.
The Ising model is an experimental cornerstone and still important today in the
context of quantum gates and quantum simulations. A rapid progress in exper-
iments allows for tunable dissipation channels in these models which can lead to
interesting many-body states [131, 132, 133, 134, 135, 136]. Quantum gates like the
Mølmer-Sorensen gate are built upon Ising-like interactions between the different
spins [137, 138, 139, 140]. Imperfection in the traps can add additional detuning in
the system which would disturb the phase diagram. That is why we also propose a
measurement protocol to overcome these unwanted detuning on the sites.
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4.1. Phase transitions in the dissipative Ising model

An important finding of the work by V. Overbeck et al. [141] was how the phase
diagram differs between the open model and in the equilibrium case. Besides the
second-order transition, the dissipative Ising model also shows a first-order transition
in combination with a tricritical point. We want to see how the magnetisation for a
system of just two lattice sites behaves and we investigate if there are still signs of
the different phase transitions that appear in the thermodynamical limit. At last,
we will use the mean-field solution in combination with the variational method to
analyse the system.
Quantum phase transitions are different from their classical counterparts by the
absence of thermal fluctuations. Even at 0K temperature, we observe changes in
the properties of matters by varying other parameters other than the temperature.
The Ising model in equilibrium is often used to study the transition between a
ferromagnetic (FM) and a paramagnetic (PM) phase. In classical thermodynamical
system a non-analytic behaviour of the free energy is a sign of a phase transition.
In the quantum case, we can replace this with a non-analytical ground state energy.
This goes hand in hand with the crossing of eigenenergies of the Hamiltonian. A
general Hamiltonian like

H = H0 + gH1 (4.1)

with a coupling constant g can have level crossing if [H0, H1] = 0. In most cases,
this condition is not fulfilled and a gap separates the two lowest eigenergies, see Fig.
4.1. If the system size goes to infinite, which corresponds to the thermodynamical
system, the gap closes and we can recover a non-analytical function for the ground
state energy [33].

Before we look at the case of only two sites, we will need a better understanding
of the results in [141] to know what to look out for in the finite system. The Ising
Hamiltonian for a system with a translational invariance can be written as

H = ∆
∑

i

σzi − J
∑

〈ij〉
σxi σ

x
j . (4.2)

The corresponding Lindbladian we get from (1.19) with the jump operators ci =
√
γσ−i has a Z2 symmetry because the dissipation channel is in the same eigenbasis

as the transverse field. Symmetry in the system is necessary to observe a phase
transition when it breaks and it allows us to distinguish between a ferromagnetic
and paramagnetic phase in terms of the order in the system. The magnetization
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Figure 4.1.: Crossing(left) and anti-crossing(right) of two eigenergies of the Hamil-
tonian H = H0 + gH1. The non-analytical behaviour caused by the
crossing of the two disappears for finite system if [H0, H1] 6= 0.

will serve as the order parameter. The system can go from a completely ordered
phase (ferromagnet) to a disordered phase (paramagnet). The order parameter can
also be used to classify the phase transitions present in the system because of its
connection to the free energy [142]. We will follow the modern approach in the
classification of phase transitions by distinguishing between a discontinuous jump in
the order parameter as a first-order transition and a discontinuity of its derivative
as a second-order transition [143, 141, 144].
If we now turn our attention to only two lattice site, we find the ground states
of(4.2) to be

∆
J
� 1 : |g〉 = |↓↓〉 (4.3)

and

∆
J
� 1 : |g〉 = |→→〉 or (4.4)

|g〉 = |←←〉 . (4.5)

The first state represents the paramagnetic phase and the other two the ferromag-
netic phase. The quantity 〈σxσx〉, therefore, gives information about the magnetiza-
tion in the system and also will be used as the order parameter. The susceptibility
of the system is given by d 〈σxσx〉

d∆ .
V. Overbeck et al. showed that there is a first-order transition if γ � ∆. In Fig. 4.2
shows a map of the order parameter 〈σxσx〉 over γ and ∆ with no additional dephas-
ing terms. We see that there could be a transition between the ferromagnetic and
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the paramagnetic field for low dissipation rates. The thermodynamical limit would
be needed to see a ”real” phase transition because for finite particles the partition
function is an analytic function everywhere. To see an indication of a transition for
γ � 1, we also need to see the susceptibility. If we look at Fig. 4.3, we can see that
for γ → 0 the susceptibility becomes large. We, therefore, can actually use even the
smallest possible system size to find traces of the predicted phase transition in the
dissipative Ising model.
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Figure 4.2.: Map of 〈σxσx〉 for different γ and ∆.
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Figure 4.3.: (Upper)Map of 〈σxσx〉 and (lower) map of d

d∆ 〈σxσx〉 for different γ
and ∆ for an Ising chain with system size N = 2. The phase diagram
does not show a clear transition line between the ferromagnetic and
the paramagnetic phase. The derivative, on the other hand, indicates a
divergence for γ, δ → 0 and , therefore, a possible phase transition.
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Figure 4.4.: (Upper) The phase diagram of the three dimensional Ising chain calcu-
lated by the combination of the mean-field solution with the variational
principle. (Lower) The map of the used mean-field solution that gave
the lowest norm for the given ∆ and γ. The trivial solution is marked
with 0 whereas the other two solutions in (4.7) are distinguished by
their sign +1,−1. In comparison to a full variational treatment like in
[141], there are no indications for a first order transition.
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4.2. Mean-field solution and the phase diagram

The phase diagram of the dissipative Ising model is significantly different from the
one in equilibrium as it was shown in the work by Vincent R. Overbeck [141].

d

dt
〈σx〉 = −γ2 〈σx〉 − 2∆ 〈σy〉

d

dt
〈σy〉 = −γ2 〈σy〉+ 2∆ 〈σx〉+ 2Jz 〈σx〉 〈σz〉 (4.6)

d

dt
〈σz〉 = −γ(1 + 〈σz〉)− Jz∆ 〈σx〉 〈σy〉

The equations in Eq. (4.6) result in three different solutions for the steady state
d

dt
〈σx〉 = d

dt
〈σy〉 = d

dt
〈σz〉 = 0 and result from the mean-field approximation of

the Ising model [34]. The trivial solution with 〈σx〉 = 〈σy〉 = 〈σz〉 = 0 and the two
other solutions

〈σx〉 = ± 1√
8J

√
16∆J − 16∆2 + γ2

〈σy〉 = ± γ

8
√

2∆J

√
16∆J − 16∆2 + γ2 (4.7)

〈σz〉 = ± 1√
2γ

√
16J∆2 − γ2∆− 16∆3.

4.3. Measurement protocol

When it comes to the implementation of the Ising model in an experiment, we want
to focus on the Mølmer-Sorensen gate and its realisation with trapped ions [145, 146].
The gate is realised by confining ions in a linear trap. The ions are coupled with each
other by a collective quantized motion. The internal states of the particles represent
the qubits of the gate and the interaction allows for multi-qubit operations. We will
neither discuss the advantages of the setup nor how the Mølmer-Sorensen creates
entangled states through the collective vibrational modes as this would far exceed
the scope of this chapter but instead focus on experimental problems and how to
overcome them by implementing a measurement protocol.
At first, we want to look at a brief summary of the theoretical description of the gate
in the context of trapped ions. The full system is described by H = HMS +Hm+Hz.
The first part is the Mølmer-Sorensen gate which is given by

HMS = Ω
2

2∑

j=1
(σ+

j + σ−j ).(aeiδt + a†eiδt). (4.8)
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The Pauli matrices σi,j are used to describe the ions and a(†) are the ladder operators
of a harmonic oscillator which is used to represent the center-of-mass vibrational
energy of the two ions. We focus on an idealised version by neglecting a possible
time-dependence of the gate Rabi frequency Ω. With δ being the gate detuning from
the high-frequency rocking mode of two ions, we can also choose the gate time to be
t = 2π

δ
which leads to an effective Hamiltonian of HMS ∝ σx⊗σx. Therefore, we can

use the Mølmer-Sorensen gate as a possible realisation of the Ising interaction. We
apply a magnetic field to the particles that causes a shift in the energy level based
on their magnetic momentum. The Hamiltonian of this Zeeman shift reads as

Hz = ∆ε

2 (σz1 + σz2), (4.9)

where we assume that both sites experience the same shift. We will later see how
deviations from that adulterated the results and how to restore it.
This is enough to fully represent the Ising model for two particles. We ignored any
instability in the rocking mode frequencies of the ions and also off-resonant coupling
to other motional modes. We allow for tuneable dissipation channels in the atoms
that are represented by ci = γiσ

−
i and the rates γi are set to be equal for both sites.

Now, we want to propose a scheme to reduce the influence of possible errors
in the AC-Zeeman shift. We can express them by the additional Hamiltonian
Herr = δ1σz + δ2σz. Errors like that can appear through the inhomogeneity of the
magnetic field or by displacements of the ions in the traps. By applying spin-flip
operations on both sites we can average the unwanted δi-terms out. Its functionality
is based on already proven methods like the spin-echo or the dynamical decoupling
in open quantum systems [147, 148, 149]. Both methods apply additional unitary
transformations to the system to obtain an averaged Hamiltonian that is freed from
unwanted decoherences. Fig. 4.5 shows our implementation of a similar approach
to these two methods. The MS-gate stays on throughout the full measurement
and because σ1

xσ
2
x is invariant under spin-flip operators the interaction term of the

Hamiltonian is not affected throughout the measurement. We evolve the system for
a time τ before applying Uflip = σ1

x ⊗ σ2
x and let it evolve again for the same time

τ . The procedure is then repeated for the duration of the measurement. The time
τ determines the effectiveness of the scheme as it is also the case in the dynamical
decoupling process. This covers the coherent part of the dynamics. The controllable
dissipation channel for each ion has to be turned off with the spin-flip because the
jump operators do not commute with it. If we still want to be in the same time
scale as without the error correction, we need to double the dissipation rate while
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4.3. Measurement protocol

it is on.

Figure 4.5.: Scheme to compensate unwanted detuning. The idea is to apply the
flip operator Uflip = σ1

x ⊗ σ2
x multiple times during the measurement

to average out the unwanted detuning. The dissipation (γσ−) and the
wanted detuning (∆σz) must change in such a way that they are not
affected by the operations. The Ising interaction (σxσx) does not have
to change over the duration of the measurement because it is unaffected
by the flip operation.

The procedure for a full cycle of 2τ then can be written as

|ψ1〉 = eL1τ |ψ〉 (4.10)
|ψ2〉 = eL2τUflip |ψ1〉 . (4.11)

We keep the wanted AC-Zeeman shift ∆ by changing its sign after each flip which
keeps its impact on the dynamics of |Ψ2〉 the same as for |Ψ1〉.
Each cycle consists of two flips and the measurements always have to happen at the
same time in the cycle with the same conditions. There is still an arbitrary choice
of when exactly in this interval of τ the measurement can take place. Therefore, we
compare the three scenarios of measuring at the beginning, in the middle and at the
end of the interval in Fig. 4.6. The figure shows the steady state expectation value
of the projection operator of the double excited state Pee = |ee〉 〈ee| over different
numbers of flips that occur during the full measurement procedure, thereby reducing
the time span between each flip. The fastest approach to the solution without error
terms is achieved by measuring in the middle of the interval at τ/2 (see also 4.5).
At the beginning or at the end of the interval leads to a larger undershooting or
overshooting respectively, with respect to the solution we aim at. We also see that
if we approach Nflips → 100 the differences between the three measurement methods
decrease. Hence, we can make a choice based on the experimental restriction that
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4. Dynamical decoupling in the dissipative Ising model

slower switching times are easier to achieve, which again leaves us with the choice
of measuring at τ/2.

20 40 60 80 100
Nflips

−0.4

−0.2

0.0

0.2
〈P

ee
〉−
〈P

ee
〉 ex

ac
t

↓
↓
↓

Figure 4.6.: Comparison between the system with 〈Pee〉 and without error 〈Pee〉exact
and how the improvement scales with numbers of applied flips Nflips dur-
ing the measurement. It also shows the difference between a measuring
at the beginning, in the middle and at the end of the time interval.
The parameters are: J/2π = 54Hz, ∆/2π = 54Hz, δ1/2π = −50Hz,
δ2/2π = 100Hz, γ/2π = 54Hz

Next, we also want to check if and how the system parameters change the effec-
tiveness of the scheme. Fig. 4.7 shows the results for different detunings ∆ and
different errors δ1, δ2. For the correction scheme it does not matter how the error
is split up between the sites but the overall error δ1 + δ2. Like in Fig. 4.6 is the
deviation of the results < 0.1 in most cases, which should be good enough for most
experimental setups. The same is true if we change the decay rate γ of the system on
both sides. There, the difference between different γ values is small in comparison
to the detuning ∆.

Our proposed scheme does not only work for finding the steady state but also
produces good results for the dynamics of the system. In Fig. 4.9, we show the
dynamics of the occupation numbers that cover the full system. Whereas previously
we only looked at Pee, we added in Fig 4.9 the probability to find both qubits in
the ground state with Pgg and the combined probability to find them in the mixed
states Pge and Peg.
Overall, Fig. 4.6-4.9 show that the scheme should be applicable to a wide variety
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Figure 4.7.: Difference between the error correcting scheme and the solution without
error over different number of flips Nflips for different detunings ∆. The
upper graph has errors on the two sites of δ1 = 0Hz and δ2/2π = 40Hz
whereas the lower one has higher errors of δ1/2π = 80Hz δ2/2π =
160Hz.
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Figure 4.8.: Difference between the error correcting scheme and the solution without
error over number of flips Nflips and for different decay rates γ.

of experiments surrounding the Ising model. A generalisation from two sites to N
site should be possible because the protocol does not rely on the two-particle system
and only applies global operations.
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Figure 4.9.: Time evolution of the dissipative Ising model with implemented protocol
to reduce influences of a detuning error δ1/2π = 50Hz. The solid lines
indicate the solutions without any error in comparison. The upper plot
shows the results for N = 10 and the lower one with N = 50 flips
of the wanted detuning ∆ during the measurement. With a time of
0.6ms between each flip in the second plot, the discrepancy between
the solutions with and without errors is already down to ≈ 0.003.
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5. Summary

In this thesis, we studied the interaction between Rydberg atoms and photons in
different systems. We presented an experimentally realisable and new approach to
obtain single-photon emission without the usage of cavities. We used and expanded
the variational principle for open quantum system to study different many-body
systems.
In Chapter 2, we have demonstrated the possibility to treat large many-body sys-
tems of driven-dissipative systems of strongly interacting Rydberg polaritons using
a variational approach. We used a setup in which we trapped Rubidium atoms in
an optical lattice and used additional light fields to excite them to the Rydberg
state. The obtained dispersion relation revealed the existence of two symmetrical
dark-state polaritons for which we derived an extended Bose-Hubbard model with
long-range hopping and interactions. We find that two counterpropagating probe
light fields coupling to the same intermediate atomic level with the same polarisation
allow for a linear dispersion around k ≈ 0 for the dark-state polaritons. We then
studied the dynamics of the open quantum system via the Lindblad master equa-
tion in which we considered the often disregarded Rydberg decay. An adaptation
of the Rydberg blockade into the variational approach yielded a good approxima-
tion for the dynamics, especially for larger system sizes. The blockade mechanism
also led to a limit on the possible output intensity of the field. Furthermore, by
measuring the two-time correlation function for emitted photons from the lattice,
we observed that the propagation of photons through the lattice can yield in strong
correlations between the particles. The work is an important first look into the
driven-dissipative transport of Rydberg polariton and presents a novel theoretical
analysis of polaritons in the many-body-regime. The setup we propose should also
allow for an experimental realisation in the future.
In Chapter 3, we established a new way to integrate bosonic fields in the varia-
tional approach by representing the density matrix in terms of the quasi probability
distributions. We used the convolution of different distribution functions to allow
for a wide variety of possible states. We use the property of the P-distribution to
allow for easy calculation of normal-ordered expectation values to reformulate the
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5. Summary

variational principle also for equations of motion that we obtain from the Lindblad
master equation.
We tested our method with the Jaynes-Cummings-model consisting of an atom in-
side the bosonic light field of a cavity. The bistabilty that is visible in the Maxwell-
Bloch-equation, which corresponds to a mean-field approach, was not existing in our
solution.
The investigation of an effective model to describe Rydberg atoms in an atom by
the usage of three different bosonic fields revealed the necessity of correlation terms
between different modes which were implemented by additional variational para-
meters. We used this to study the model in the polariton picture. The dynamics
of the three polariton modes showed a dominating light polariton in the occupation
numbers. On the other hand, we saw that the dark-state is heavily influenced by
the Rydberg-Rydberg interaction, which leads to a strongly squeezed mode in com-
parison to the light modes.
In the end, we also gave an outlook on how to proceed with the new method which
includes more exotic quantum states and also the possibility to use other quasi-
probability distributions. In the future, the method should also allow a unique
insight into the influences the individual state distributions have on the dynamics
of different systems.
In Chapter 4 we focused on a different model that is often used to describe Rydberg
atoms in the form of the Ising chain. We started by investigating the model by a
combination of the variational and the mean-field method by inserting the mean-
field solutions into the variational test density matrix. The goal was to see if traces
of the full variational treatment of the model, which also include a first-order phase
transition, can be found. Even though this was not the case, we still found that
the treatment resolves the bistability of the mean-field solutions. Then we used the
numerical integration of the master equation to see if signs of a phase transition are
visible in finite lattices far away from the thermodynamic limit. We find that even
for a lattice site of N = 2, the susceptibility of the system starts to show signs of
divergence, which typically indicates a phase transition. The findings are especially
important in the context of experiments. The Mølmer-Sorensen gate is often tested
with the Ising model. Systematic error in the experimental setup of the ion traps
in the gate can often lead to a departure from the theoretical prediction. We pro-
posed a scheme that drastically reduces the influences of unwanted detuning terms
by averaging them out over the measurement time. We found that the scheme can
compensate for a large error span and is mostly independent of the other system
parameters. We think that this scheme can be of great usage for future experiments
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involving the transverse field Ising model.
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A. Pumping with a forward
propagting wave

We assume that the coherent light we pump into the system create dark state po-
lariton in all k-modes. The creation is expressed by the two creation operators a†kn
and b†kn . Each operator can be written as the Fourier transform a†kn =

N∑

j=0
ei2πnj/Na†j

in the real space. With that we can write the forward propagating part of the two

bands as the sum
kN/2∑

kn=0
a†k +

k=0∑

−kN/2

b†k. If we use the relation kn = 2πn
L

= 2πn
Na

and

ri = aj, j ∈ N+, we can write the two individual parts as

kN/2∑

kn=0
a†k = 1√

N

N/2∑

n=1

N∑

j=0
ei2πnj/Na†j + 1√

2

N∑

j=0
a†j

We singled out the mode for k = 0 because this mode is formed through a super-
position of both bands which we write as 1√

2
(a† + b†). We can further simplify the

expression in Eq. (A) to

= 1√
N

N∑

j=0




Ñ∑

n=1
eiπnj/Ñ + 1√

2


 a†j

= 1√
N

N∑

j=0

(
N

2 δj/2,0 + 1√
2

)
a†j

If we use the summation representation of the kronecker delta δm = 1
N

N∑

k=1
e2π k

N
(n−m)

with m = 0, we get as our final result

kN/2∑

kn=0
a†k =

√
N

2 a†0 + 1√
2N

N∑

j=0
a†j (A.1)
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and for the other band

k=0∑

−kN/2

b†k =
√
N

2 b†0 + 1√
2N

N∑

j=0
b†j.
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B. Fokker-Planck-equation for the
damped harmonic oscillator

We want to give an example on how to obtain a Fokker-Planck-equation through
the usage of the P-representation of the density matrix in the master equation in
Lindblad form. Therefore, we follow the steps in [49] for the damped harmonic
oscillator.
The coherent part of the Lindblad equation in 1.15 is given by the Hamiltonian of
an harmonic oscillator

H = ω0a
†a (B.1)

with frequency ω. We want to add two dissipation channels that results from cou-
pling the oscillator to a reservoir. They can be described by the jump operators

c1 =
√
γ

2 (n̄+ 1)a and c2 =
√
n̄
γ

2a
† with n̄ = e−~ω/kbT

1− e−~ω/kbT . The constant kb is the
Boltzmann constant and T is the temperature.
If we substitute the density matrix by its P-representation Eq. (1.61), we obtain

∫
d2α |α〉 〈α| ∂

∂t
P (α, t) =

∫
d2α |α〉 〈α|P (α, t)[−iω0(a†a |α〉 〈α| − |α〉 〈α| a†a)

+ γ

2 (2a |α〉 〈α| a† − a†a |α〉 〈α| − |α〉 〈α| a†a)

+ γn̄(a |α〉 〈α| a† + a† |α〉 〈α| a− a†a |α〉 〈α| − |α〉 〈α| a†a)].

(B.2)

At this point, we need to exchange the operators with the complex numbers α, α∗.
With the definition of the coherent states in (1.44) and their derivatives

∂

∂α
|α〉 〈α| = (a† − α∗) |α〉 〈α| (B.3)

∂

∂α∗
|α〉 〈α| = |α〉 〈α| (a− α), (B.4)
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we can rewrite (B.2) to

∫
d2α |α〉 〈α| ∂

∂t
P (α, t)

=
∫
d2α |α〉 〈α|

[
(γ2 + iω0) ∂

∂α
α + (γ2 − iω0) ∂

∂α∗
α∗ + γn̄

∂2

∂α∂α∗

]
P (α, t).

(B.5)

We used an integration by part to transfer the partial derivative from |α〉 〈α| to
P (α, t). We also can drop the boundary terms if P (α, t) vanished fast enough at
infinity. The sufficient condition for (B.5) to be satisfied is the Fokker-Planck-
equation for a damped harmonic oscillator:

∂

∂t
P (α, t) =

[
(γ2 + iω0) ∂

∂α
α + (γ2 − iω0) ∂

∂α∗
α∗ + γn̄

∂2

∂α∂α∗

]
P (α, t). (B.6)

At this point we could insert any test distribution P for our variational approach and
minimize (B.6) in respect to the chosen variational parameters which we discussed
in Sec. 3.1.
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Lukin and A. V. Gorshkov, Effective Field Theory for Rydberg Polaritons,
Phys. Rev. Lett. 117 (2016), p. 113601,
URL: https://link.aps.org/doi/10.1103/PhysRevLett.117.113601

119

https://doi.org/10.1038/nature12512
https://doi.org/10.1038/s41567-018-0313-7
http://link.aps.org/doi/10.1103/PhysRevLett.107.115301
https://link.aps.org/doi/10.1103/PhysRevLett.111.113001
https://link.aps.org/doi/10.1103/PhysRevLett.117.113601


Bibliography

[28] M. Müller, S. Diehl, G. Pupillo and P. Zoller, Engineered Open Systems and
Quantum Simulations with Atoms and Ions, in P. Berman, E. Arimondo and
C. Lin (eds.), Advances in Atomic, Molecular, and Optical Physics (Academic
Press, 2012), vol. 61 of Advances In Atomic, Molecular, and Optical Physics,
pp. 1 – 80,
URL: http://www.sciencedirect.com/science/article/pii/
B9780123964823000016

[29] L. M. Sieberer, M. Buchhold and S. Diehl, Keldysh field theory for driven open
quantum systems, Rep. Prog. Phys. 79 (2016) (9), p. 096001,
URL: http://stacks.iop.org/0034-4885/79/i=9/a=096001

[30] H. Weimer, A. Kshetrimayum and R. Orús, Simulation methods for open quan-
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[64] T. E. Lee, H. Häffner and M. C. Cross, Antiferromagnetic phase transition in
a nonequilibrium lattice of Rydberg atoms, Phys. Rev. A 84 (2011), p. 031402,
URL: http://link.aps.org/doi/10.1103/PhysRevA.84.031402
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J. I. Cirac, G. Rempe and S. Dürr, Strong Dissipation Inhibits Losses and
Induces Correlations in Cold Molecular Gases, Science 320 (2008) (5881), pp.
1329–1331,
URL: http://www.sciencemag.org/content/320/5881/1329.abstract

[132] K. Baumann, C. Guerlin, F. Brennecke and T. Esslinger, Dicke quantum phase
transition with a superfluid gas in an optical cavity, Nature 464 (2010), pp.
1301–1306

130

https://doi.org/10.1063/1.4985938
https://link.aps.org/doi/10.1103/PhysRevA.36.3796
http://www.nature.com/nature/journal/v528/n7582/full/nature16186.html?WT.ec_id=NATURE-20151217&spMailingID=50271052&spUserID=MjA1NTA5MDEyMwS2&spJobID=822569676&spReportId=ODIyNTY5Njc2S0
http://www.nature.com/nature/journal/v528/n7582/full/nature16186.html?WT.ec_id=NATURE-20151217&spMailingID=50271052&spUserID=MjA1NTA5MDEyMwS2&spJobID=822569676&spReportId=ODIyNTY5Njc2S0
http://www.nature.com/nature/journal/v528/n7582/full/nature16186.html?WT.ec_id=NATURE-20151217&spMailingID=50271052&spUserID=MjA1NTA5MDEyMwS2&spJobID=822569676&spReportId=ODIyNTY5Njc2S0
http://www.nature.com/nature/journal/v528/n7582/full/nature16186.html?WT.ec_id=NATURE-20151217&spMailingID=50271052&spUserID=MjA1NTA5MDEyMwS2&spJobID=822569676&spReportId=ODIyNTY5Njc2S0
https://link.aps.org/doi/10.1103/PhysRevA.46.485
https://link.aps.org/doi/10.1103/PhysRevA.75.052106
https://link.aps.org/doi/10.1103/PhysRevA.98.013809
http://www.sciencemag.org/content/320/5881/1329.abstract


Bibliography

[133] J. T. Barreiro, M. Müller, P. Schindler, D. Nigg, T. Monz, M. Chwalla, M. Hen-
nrich, C. F. Roos, P. Zoller and R. Blatt, An open-system quantum simulator
with trapped ions, Nature 470 (2011), p. 486

[134] H. Krauter, C. A. Muschik, K. Jensen, W. Wasilewski, J. M. Petersen, J. I.
Cirac and E. S. Polzik, Entanglement Generated by Dissipation and Steady
State Entanglement of Two Macroscopic Objects, Phys. Rev. Lett. 107 (2011),
p. 080503,
URL: http://link.aps.org/doi/10.1103/PhysRevLett.107.080503

[135] G. Barontini, R. Labouvie, F. Stubenrauch, A. Vogler, V. Guarrera and H. Ott,
Controlling the Dynamics of an Open Many-Body Quantum System with Lo-
calized Dissipation, Phys. Rev. Lett. 110 (2013), p. 035302,
URL: http://link.aps.org/doi/10.1103/PhysRevLett.110.035302

[136] S. Diehl, A. Micheli, A. Kantian, B. Kraus, H. P. Büchler and P. Zoller,
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