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Abstract
Unforeseen machine tool failures due to technical issues can cause downtimes leading to delays during production. To reduce 
delays, rescheduling of the production is, in most cases, necessary. However, warranting such a change requires reliable 
knowledge about the duration of the failure. This article presents a method to provide this knowledge by estimating the 
duration of a machine tool failure based on previous failure durations. Using the cross-industry standard process for data 
mining (CRISP-DM) and statistical methods, the embedded model for failure classification and duration is continuously 
improved. The method is thoroughly tested using multiple distributions, parameters and a practical use case. The results 
show high potential for predicting the duration of machine tool failures, which consequently could lead to improved quality 
of rescheduling.
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1  Introduction

Growing customer expectations and technological develop-
ments have led to an increased complexity of manufacturing 
systems. Companies face stochastic disturbances and cyclic 
demands and consequently they struggle to achieve their full 
manufacturing capacity [1]. Additionally, they have to deal 
with shorter product and technology lifecycles, increasing 
number of variants, customized products, short delivery 
times and competitive pricing [2–4]. Thus, efficient pro-
duction planning and control (PPC) has become a crucial 
competitive advantage for many companies [1].

However, stochastic influences on the production time 
make exact planning difficult. For example, machine tool 
failures (MTF), defined by Iserman as “a permanent inter-
ruption of a system’s ability to perform a required function 
under specified operating conditions” [5], are very common. 
These are often caused by technical issues. Hence, different 
approaches exist in the area of maintenance (preventive or 

predictive maintenance to avoid them) [6]. Nevertheless, the 
implementation of these approaches is not always possible. 
Therefore, the quality of production control depends on the 
ability to forecast the time to restoration (TTR) as accurately 
as possible and to use this information in a targeted manner 
when rescheduling orders.

In practice, a forecast of MTF durations is often difficult 
to obtain due to the poor quality of the operating data used 
for the forecast. These are usually recorded manually and are 
therefore often faulty. Hence a methodology for predicting 
MTF durations is required. This must ensure the quality of 
manually recorded failures by using suitable routines. At 
the same time, the quality of predicted failure durations by 
means of a structured and as complete as possible classifica-
tion of the recorded MTF must also be guaranteed.

2 � State of the art

In common methods for the modelling of MTF events, an 
exponential distribution [7–9] or an Erlang distribution [10, 
11] is assumed for the entire failure duration of a machine 
tool. The Weibull distribution or the logarithmic normal dis-
tribution are also often applied [12]. To model these distribu-
tions, the mean value of the TTR (MTTR) is used. Due to 
the complexity of disturbances like MTF, such a description 
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is a simplification [13] because a distinction between differ-
ent MTF classes is often not made. As a result the MTTR 
is obtained on the basis of data from many different failure 
events. Thus, in practice, the data is enhanced by the expert 
knowledge of the production planner or maintenance engineer. 
However, there is no systematic analysis which may lead to 
sub-optimal planning results.

An approach with automatic and structured failure clas-
sification and individualized forecast values for each failure 
class is presented by Oladokun. Variables, which affect the 
duration of an MTF, are identified as input for an artificial 
neural network. Output variable is a failure duration class 
which divides the duration into three possible time intervals, 
depending on how strongly the duration influences production 
planning. Even if the accuracy of the forecast model is speci-
fied with 70% [14], it only uses a fixed and small number of 
failure duration classes. Hence, the output cannot serve as a 
basis for high-quality rescheduling decisions.

Research in the area of maintenance as well as condition 
and health monitoring focuses on the diagnosis of faults and 
the prognosis of wear on tools and components [15, 16]. For 
example, event-related or condition-related data is used for 
information retrieval in condition-based maintenance [17]. 
The event-related data include machine failures, maintenance 
measures or information on the tool, the machining object 
or the process [17–19]. In contrast, condition-based data are 
measured values that reflect the condition of the unit under 
investigation. For this purpose, the term sensor fusion refers 
to various theoretical and practical approaches to combine 
several or different signals of machine tools to obtain more 
desirable results [20, 21]. In this context, this means more pre-
cise, complete, reliable or robust results than a single signal or 
one type of signal [22]. Neither summaries of the state of the 
art [20–25] nor the individual publications considered in this 
article provided results for the prognosis of MTF durations.

Other research areas investigate the suitability of different 
methods to determine an exact prognosis of accident durations 
[26], the occupancy time of hospital beds [27, 28] and the 
duration of surgeries [29]. Although these cases are similar 
to the problem of MTF duration prognosis discussed in this 
article, the solutions cannot simply be transferred because 
extensive data sets are needed to train the underlying models. 
Especially, small and medium-sized enterprises (SMEs) often 
do not have the resources or the incentive for a detailed and 
continuous data recording of their production processes [30].

3 � Methodology for predicting MTF 
durations

The review of the state of the art shows that there is a lack of 
research with regards to the prognosis of MTF durations in 
the area of PPC. Established indicators such as unclassified 

MTTR are too imprecise for the prognosis of individual 
MTF. Therefore, the methodology presented in Fig. 1 was 
developed. It was developed according to the concept of 
“Cross-industry standard process for data mining” (CRISP-
DM). CRISP-DM defines the requirements and work steps 
shown in Fig. 2 for the creation of models with a high fore-
cast quality. The four core steps are Sects. 3.1–3.4. These 
steps are included in the methodology for MTF prognosis. 
As a result, the methodology enables systematic processing 
of MTF events and provides the production planner with 
statistically validated prognosis of MTF durations.

3.1 � Data comprehension

A prediction model must first be trained to forecast MTF 
durations. This can be done by either using historical data 
or information about MTF that occur after implementation. 
In the latter case, the use of the method must ensure that a 
forecast is not made until sufficient data for statistic valida-
tion is available. For data recording, tuples consisting of the 
MTF duration and the MTF class (e.g. tool breakage) are 
entered into the model via a user interface.
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Fig. 1   Method for prognosis of MTF durations



209Production Engineering (2020) 14:207–215	

1 3

If there are at least n = 3 + l observations for the current 
MTF class, an adjusted box plot is calculated for determin-
ing the position parameters. This enables a descriptive char-
acterization and evaluation of the observations. The vari-
able l represents the threshold value for manual intervention 
(cf. Sect. 3.2). The adjusted boxplot is used because it takes 
into account the skewness of a distribution when calculat-
ing the whiskers by using the Medcouple (MC) [31]. This is 
done to avoid the incorrect identification of many potential 
outliers in case of skew distributions. The MC is calculated 
according to Brys as follows [32]:

with

X is the sorted sample with n independent observations; xmed 
[h] is the median of the sample X; h(xi,xj) is the medcouple 
matrix.

The whisker interval is calculated as follows.
For MC ≥ 0

For MC ≤ 0

IQR is the interquantile distance; Q1 is the lower quantile; 
Q3 is the upper quantile.

(1)MC(X) = med
xi≤xmed≤xj

h
(

xi, xj
)
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{
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}

(3)xi ≠ xj

(4)h
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)
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)
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)

xj − xi

(5)
[

Q1 − 1, 5e−4MCIQR ;Q3 + 1, 5e3MCIQR
]

(6)
[

Q1 − 1, 5e−3MCIQR ;Q3 + 1, 5e4MCIQR
]

3.2 � Data preparation

For data preparation, the observations are compared with 
the previously determined limit values. Observations that 
lie outside the whiskers represent extreme values and, thus, 
could have a negative influence on the prediction quality 
of the model. Possible causes for such extreme values are:

1.	 The observations represent correct MTF durations of the 
MTF class considered, they are real extreme values. An 
annotation is internally made in the model, so that these 
points are no longer considered when comparing with 
the threshold value l.

2.	 The observations represent the correct MTF duration 
for the failure class considered but a modification (e.g. 
maintenance measure, improvement) has taken place on 
the machine, which has caused a significant change in 
the failure distribution. The data collected up to the time 
of modification are excluded from further prognosis.

3.	 The observations are outliers which do not reflect the 
distribution of the failure duration as expected but are 
influenced by further effects (e.g. input errors). These 
values can be removed or corrected by the employee 
from the dataset.

4.	 The observations are classified as extreme values 
because they belong to a different MTF class. In this 
case, it is possible for the employee to transfer the obser-
vations to another or a new class.

According to the recommendations in the literature, case 
2 to case 4 lead to manual interventions by the machine 
operator or production planner. To keep the interventions 
at an appropriate level, the number of potential outliers u 
is compared with the threshold value l. If there are enough 
observations for the failure class considered and at least 
l observations outside the whiskers at the same time, the 
employee is made aware of this fact. For this purpose, the 
adjusted box plots of the failure classes are displayed and 
the employee can qualitatively evaluate the extreme values. 
After a manual intervention in the data sets, a new check is 
initiated for the affected failure classes, as long as that suf-
ficient observations are available.

3.3 � Modelling

If the considered data set passes the test for extreme values, 
data modelling follows. For individual MTF classes, it can 
be assumed on the basis of the central limit value theorem 
that a production system consisting of overlapping stochastic 
input variables results in normally distributed output vari-
ables [33]. This assumption is tested during the modelling 
step using the Shapiro–Wilk test (SW test) [34]. Depending 
on the results, either the median or the mean value of the 
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Fig. 2   Cross-industry standard process for data mining [39]
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data set under consideration is used for MTF duration prog-
nosis. The tested data set deviates significantly from a nor-
mal distribution, if the null hypothesis of the test is rejected 
and the alternative hypothesis is assumed. In this case the 
robust duration of MTF prediction is based on the median 
because of its high break point compared to the mean value. 
This prevents individual atypical MTF durations from influ-
encing the forecast quality and can have a positive influ-
ence on the prognosis quality [35]. In addition, the median 
represents the entry value with the highest probability in 
unimodal distributions, which is not normal or skew, and is 
therefore usually preferred over the mean value [36].

3.4 � Evaluation and interpretation

Lastly, the statistical significance of the position parameter is 
examined. For normally distributed data, Kröning’s method 
for accuracy prediction is used. Accuracy e is calculated as 
follows [37]:

based on the confidence interval

e [h] is the forecast accuracy; n is the number of observa-
tions; � is the error probability; s [h] is the standard deviation 
of all MTF durations; x̄ [h] is the mean value of all MTF 
durations; t(

1−
�

2
;n−1

) is the value of t distribution.

For not normally distributed data observations, j and k 
are identified, which correspond to α/2 = αj or 1– α/2 = αk 
of the cumulated binomial distribution B(n, 0.5) [38]. Since 
the binomial distribution is a discrete distribution, the limits 
of the confidence interval for the median are additionally 
linearly interpolated. In this way, the required confidence 
probability of 1 – α is achieved. However, if identical values 
occur at the neighboring ranks of j and k to the respective 
ranks themselves, an interpolation may lead to false results. 
In this case, the confidence interval without interpolation 
is used.

If the minimum of one is defined as the intervention limit 
for the threshold value l, the iteration ends at this point. If 
the confidence interval was able to maintain the required 
accuracy, a reliable forecast value is available. If the inter-
vention limit is set as higher than one, this leads to a further 
loop-like check. From all permissible observations of the 
current MTF class, the most recent observation is removed 
in l iterations and the verification of the confidence inter-
val for the required accuracy is repeated. The purpose of 
this is to secure the forecast against potential outliers whose 
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number u is below the threshold value l. At the same time, 
the volatility of the confidence interval in stochastic obser-
vations is compensated because the randomness of MTF 
durations does not permit a strictly monotonously decreas-
ing confidence interval with an increasing number of obser-
vations. Thus, even with a high intervention limit and the 
ranking-based confidence interval around the median, the 
quality of prognosis is assured.

4 � Experimental evaluation

First, the functionality of the developed methodology for 
prognosis of MTF durations and, in particular, its practi-
cal applicability is tested. For this purpose, it is examined 
whether the method fulfils the following characteristics:

1.	 Quantity of data The prediction of MTF duration should 
be able to deliver trustworthy results even with small 
quantities of data, so that a fast adoption for planning 
and scheduling processes is made possible.

2.	 Data quality Against the background of stochastic 
effects of a real production, the forecast should be able 
to identify and process incorrect values. At the same 
time, the system should be able to adequately process 
atypical behavior.

3.	 Interaction Interaction with the user should be reduced 
to a minimum to save resources. However, this must not 
contradict data quality. Atypical behavior must trigger 
an interaction quickly.

Subsequently, the effect of the more precise prognosis 
options on corporate key figures is examined using an exem-
plary production scenario.

4.1 � Model functionality and practical applicability

For the first part of the evaluation, different configurations 
of the model are considered as part of sensitivity analyses. 
Effect direction of parameter changes becomes apparent and 
problematic configurations are identified. In addition, vari-
ous generated distributions are used.

4.1.1 � Model behavior with small amounts of data

Particularly with small amounts of data, the choice of an 
appropriate error probability α is subject to a conflict of 
objectives. On the one hand, a high probability of error 
makes it possible to obtain a forecast value for small 
amounts of data. On the other hand, an error probability 
that is too high contradicts the objective of obtaining reli-
able values for the forecast. The aim of first investigations 
is therefore to clarify whether a situation that influences the 
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choice of the confidence probability 1 – α exists or enables 
specific recommendations for action for its choice. There-
fore, the mean and median value of a normal distribution as 
a function of standard deviation σ, error probability α and 
number of observations n are investigated. The detailed test 
configurations are shown in Table 1.

The investigations of the confidence interval around the 
mean value for normal distributions with different scattering 
initially show only trivial correlations, which confirm the 
basic functionality of the method.

For the confidence interval around the median, the case 
without interpolation was focused on because here the actual 
confidence probability does not necessarily correspond to 
the required one. The test results presented in Table 2 show 
the actual confidence probability αk − αj, with the lower rank 
j and the upper rank k of x(i), which represent the limits of 
the confidence interval. The number of observations nα must 
be available for all four probabilities of error examined to 
ensure that they do not fall below the required confidence 
probability 1 − α. These are indicated by the dotted lines in 
Table 2. To ensure the functionality of the prognosis model 
during the evaluation part (cf. Fig. 1 and Sect. 3.4), nα has 
to be corrected by the expression (l− 1). As a result, the 

required minimum number of observations nmin is calculated 
as follows:

nmin is the minimum number of observations; n
�
 is the num-

ber of observations to ensure confidence probability without 
interpolation.

The graphical comparison of confidence and error prob-
ability as well as the number of observations in Fig. 3 dem-
onstrates that this problem can be disregarded by the method 
from α = 0.125, since at least four observations are inevitable 
for a forecast.

However, there is no specific restriction of the use of the 
method based on the facts presented because the method 
also ensures compliance with the confidence probability 
for α < 0.125. It is only necessary to individually examine 
whether a deviation from the standard value α = 0.05−0.0625 
is logical as the minimum number of observations can then 
be reduced by one.

4.1.2 � Interaction effort with different data quality

The choice of the intervention threshold l and the distri-
bution function of the MTF have a decisive influence on 
the interaction effort. The latter depends on the considered 
machine tool as well as other framework conditions of a 
company (e.g. capacities for maintenance) and can therefore 
not be directly influenced. On the other hand, the threshold 
value l represents a configuration variable of the forecast 
model. Therefore, the effect of different threshold values on 
the resulting interaction effort is investigated. Detailed infor-
mation on the experimental settings are shown in Table 3.

The main experimental results are summarized in 
Fig. 4. The probability for none, one and two manual inter-
ventions is shown as a function of the threshold value l. 

(9)nmin = n
�
+ l − 1

Table 1   Test configurations with small amount of data

Para-meter Configurations Description

n 2, …, 10 Number of observations
α 0.01 Very low probability of error

0.05 Standard probability of error
0.10 High probability of error
0.20 Very high probability of error

σ 2 Small scattering
4 Medium scattering
8 Large scattering

Table 2   Ranks and confidence 
probabilities for the confidence 
interval around the median 
without interpolation

N Significance level α

0.01 0.05 0.10 0.20

j k αk–αj j k αk–αj j k αk–αj j k αk–αj

2 1 2 0.5000 1 2 0.5000 1 2 0.5000 1 2 0.5000
3 1 3 0.7500 1 3 0.7500 1 3 0.7500 1 3 0.7500
4 1 4 0.8750 1 4 0.8750 1 4 0.8750 1 4 0.8750
5 1 5 0.9375 1 5 0.9375 1 5 0.9375 1 5 0.9375
6 1 6 0.9688 1 6 0.9688 1 6 0.9688 1 6 0.9688
7 1 7 0.9844 1 7 0.9844 1 7 0.9844 2 6 0.8750
8 1 8 0.9922 1 8 0.9922 2 7 0.9297 2 7 0.9297
9 1 9 0.9961 2 8 0.9609 2 8 0.9609 3 7 0.8203
10 1 10 0.9980 2 9 0.9785 2 9 0.9785 3 8 0.8906

nmin = 8 + l − 1 nmin = 6 + l − 1 nmin = 5 + l − 1 nmin = 4 + l − 1
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Since all distributions are free of actual outliers, ideally no 
interventions should be necessary. Regardless of the very 
different number of manual interventions for different scat-
ters of the normal distributions (4007 for σ = 4, 4053 for 
σ = 8 and 4845 for σ = 2), the probability of no necessary 
manual intervention for all three distributions examined 
is highest from l = 5. This also implies that, in the worst 
case, outliers are only detected if five extreme values are 
already present. The choice of l = 3 as threshold value is 
therefore more practical. Here, the relative frequency for 
a single manual intervention is highest for the first time.

The model behavior at Weibull distributed input values 
is similar to that at normal distributed values. However, 
for the logarithmic normal distribution, the limit value for 
no manual intervention is l = 6 and the threshold value for 
one manual intervention is l = 4. Since the adjusted box 
plot takes into account the skewness of the distribution, 
this cannot be the only cause for the slightly deviating 

model behavior. The extent to which the scattering behav-
ior could be the cause is still to be examined.

Lastly, it should be noted designing data sets that can 
lead to undesired, but mathematically correct model behav-
ior is possible. Thus, the median for a data set with two per-
fectly alternating growing centers, which differ exclusively 
in the mean value, lies exactly in the middle of the cent-
ers at every second iteration. This corresponds to the mean 
value between the two centers and does not allow adequate 
differentiation. In addition to the accuracy e, the threshold 
value l also has a significant influence on the prevention of 
this problem. For l > 3, the two distributions add up enough 
observations to cancel out the detection of skewness with 
further uniform growth. In this case, the box plot is not able 
to provide sufficient differentiation via the parameters used.

To investigate the extent to which these theoretical limita-
tions influence the practicability of the methodology and to 
estimate its practical potential, the model behavior is ana-
lyzed in a use case in the next step. According to the results 
above, for this α is set to 0.0625 and l is set to 3.

4.2 � Exemplary application of the model

The added value of a more accurate prediction possibility of 
MTF durations is investigated on the basis of the production 
of a sample component. Details on the use case are given in 
Fig. 5. Oladokun’s classification into the three fault classes 
“short term” (≤ 0.5 h), “medium term” (0.5–2 h) and “long 
term” (≥ 2 h), which has been available so far as prediction 
model, is used as reference for evaluating the newly intro-
duced methodology [14].

To evaluate the planning quality, a labelled training 
data set of MTF reports for six exemplary MTF classes 
(cf. Table 4) with 1000 fault events each is generated and 
randomly mixed. This data set is manipulated in such a 
way that the number of correct messages (assignment of 
MTF class to MTF duration) is approximately 50%. This 
simulates the poor quality of manual production data col-
lection (PDC) inputs which frequently occurs in practice. 
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Table 3   Test configuration for 
different distribution functions

Parameter/distribution Configurations Description

Normal (rounded up, with seed) σ = 2 Small scattering
σ = 4 Medium scattering
σ = 8 Large scattering

Log-normal μ = 0 Non-normal distribution
σ = 0.5

Weibull Scale parameter = 128 Investigation without failure class
Form parameter = 2

α 0.05 Standard probability of error
n 100 Number of observations
Data sets 2500 Number of examinations per distribution
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The prognosis model is then trained with the aid of the 
manipulated data set by entering the disturbance events 
one by one. The class assignment is corrected in the 
case of an automatic error detection. In the next step, the 
resulting forecast values xprog are stored for planning in 

a Manufacturing Execution System (MES) as a one-time 
MTF for the second milling machine. An exemplary pro-
duction program with 40 orders of different batch sizes is 
created and the resulting lead times (LT) are calculated. 
In addition, the mean values of the disturbance classes 
according to Oladokun are used for further three planning 
scenarios.

To analyze the planning quality of all considered sce-
narios, production is simulated with the help of a material 
flow simulation model in Tecnomatix Plant Simulation. 
This digital twin of the considered production system 
takes into account the correct distribution function s(x) 
for the six disturbance scenarios (cf. Table 4). To statisti-
cally secure the simulated LT, five simulation runs per 
scenario are performed.

The results show that an underestimated MTF dura-
tion due to a lack of accuracy of prognosis can quickly 
lead to large deviations between planned and actual LT. 
The analyses indicate that, with the new methodology, 
the disturbance durations used for forecasting are a good 
approximation of the real disturbance distribution, even if 
the quality of the manual PDC messages is medium. The 
real mean values are predicted with a quality of at least 
97.3%. In comparison, the Olandokun model only achieves 
a quality of 70% with an ideal input database. This aspect 
was neglected in the comparison in Table 4, which is why 
the gained accuracy represents a minimum value.

Due to the very good interference duration prognosis, 
the predicted LT deviates from the real one by a maximum 
of 0.12% (absolute 0.4 h). With the old Olandokun model, 
the maximum deviation is 1.69% and 5.97 h is absolute. 
As more than one single fault event usually occurs during 
the production of an order in the production system, this 
reduction can already have a strong influence on the PPC 
performance of a company.
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5 � Conclusion

The model developed within the scope of this work on the 
basis of the CRISP-DM concept is used for the reliable 
prognosis of MTF durations. Depending on the underly-
ing MTF duration distribution, the median or mean value 
is used for the prediction. An input-parallel check of PDC 
inputs helps to avoid incorrect reporting and allows fore-
cast accuracy of over 97%.

For practical validation and research, the prognosis 
model was tested with different configurations and dif-
ferent data sets. It has been proven that the model can 
handle small amounts of data as well as poor data quality. 
Additionally, it has been shown that α = 0.0625 and l = 3 
are suitable as default settings for the forecast model. An 
additional case study could prove that the presented meth-
odology is applicable for LT prediction as the maximum 
variance between target and actual LT was 0.12% and thus 
clearly below the value of an alternative MTF forecast 
model.

The aim of further research is to examine the perfor-
mance of the approach in the context of a more complex 
failure class distribution. The ability of the prognosis to 
cope with a higher number and closely arranged MTF 
classes is of significant interest. In addition, the required 
amount of input data should be an object of investiga-
tion. Moreover, the extent to which the model correctly 
recognizes error classes that occur in rare cases must be 
examined. Finally, the transferability of the method should 

be investigated. The universal approach should be able to 
handle any kind of interruption (e.g. shortages of material) 
in the production.
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