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Abstract
To avoid computational burden, diagonal variance covariance matrices (VCM) are preferred to describe the stochasticity of
terrestrial laser scanner (TLS)measurements. This simplification neglects correlations and affects least-squares (LS) estimates
that are trustworthy with minimal variance, if the correct stochastic model is used. When a linearization of the LS functional
model is performed, a bias of the parameters to be estimated and their dispersions occur, which can be investigated using
a second-order Taylor expansion. Both the computation of the second-order solution and the account for correlations are
linked to computational burden. In this contribution, we study the impact of an enhanced stochastic model on that bias
to weight the corresponding benefits against the improvements. To that aim, we model the temporal correlations of TLS
measurements using the Matérn covariance function, combined with an intensity model for the variance. We study further
how the scanning configuration influences the solution. Because neglecting correlations may be tempting to avoid VCM
inversions and multiplications, we quantify the impact of such a reduction and propose an innovative yet simple way to
account for correlations with a “diagonal VCM.” Originally developed for GPS measurements and linear LS, this model is
extended and validated for TLS range and called the diagonal correlation model (DCM).

Keywords Terrestrial laser scanner · Correlations Matérn · Covariance function · Taylor expansion · Bias · Nonlinear model ·
Diagonal correlation model

1 Introduction

Terrestrial laser scanners (TLS) capture a large number of
three-dimensional (3D) points rapidly, with high precision
and spatial resolution. The point clouds obtained can be visu-
alized in specific commercial software or approximated with
parametric models, among which are the increasingly popu-
lar andflexibleB-spline curves or surfaces (e.g., Bureick et al.
2016;Koch 2010;Neitzel et al. 2019). Themain advantage of

B Gaël Kermarrec
kermarrec@gih.uni-hannover.de

Michael Lösler
michael.loesler@fb1.fra-uas.de

1 Geodetic Institute, Leibniz Universität Hannover, Nienburger
Str. 1, 30167 Hannover, Germany

2 Faculty of Architecture – Civil engineering – Geomatics,
Laboratory for Industrial Metrology, University of Applied
Sciences, Nibelungenplatz 1, 60318 Frankfurt am Main,
Germany

point cloud modelization strategies over visualization comes
from the possibility of performing rigorous test statistics,
for example, for deformation analysis purposes (Zhao et al.
2019; Kermarrec et al. 2020a). The mathematical model can
be simplified for basic objects, such as ellipsoids, cylinders or
planes (e.g., Ahn 2004; Fang et al. 2015; Lehmann 2019). A
linearized Gauss–Helmert (Lenzmann and Lenzmann 2004;
Neitzel 2010) or Gauß–Markov model (GHM and GMM,
respectively, see (Koch 1999) is generally used to estimate
the parameters of the corresponding geometric primitives.
Among them, planes have a simple geometry and are easy to
manufacture and handle. For that reason, they are often used
for calibration purpose, i.e., to estimate the uncertainty of
the sensors or optimize measurements settings. Exemplarily,
Wujanz et al. (2017, 2018) or Schmitz et al. (2019) derive a
stochastic model for TLS rangemeasurements using approx-
imations of planar surfaces with different colors andmaterial
properties. Heinz et al. (2019) investigated the TLS param-
eter settings for optimization purposes by scanning a plane.
TLS point clouds were further approximated with planes in
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order to improve the registration in Theiler and Schindler
(2012). Plane fitting and segmentation of target surfaces are
an important step in applications such as the monitoring of
structures (Bolkas and Martinez 2018).

Unfortunately, a bias is introduced when the estimates of
a nonlinear problem—such as a popular plane fitting—are
derived by a linearized or first-order substitute problem. The
second-order effect was obtained analytically by expanding
the nonlinear functional model by its second-order Taylor
series in Lösler et al. (2020). The authors analyzed the bias
between the first- and second-order solution rigorously for a
plane fitting and also studied the impact of a large number
of poor measurements versus small and precise samples. The
empirical results of Heinz et al. (2019) were confirmedmath-
ematically: Both contributions highlighted the advantages of
a high discretization of the point clouds regarding an increase
in the signal-to-noise ratio, balancing the computation effort
and the need for accurate parameter estimation. The sim-
ulated measurements in Lösler et al. (2020) were assumed
to be spatially correlated by means of a rotational-invariant
Taylor–Karman structured matrix (Grafarend and Schaffrin
1979). Modeling correlations as being spatial focuses on the
resolution capability of TLS or their effective number of
measurements (Kauker and Schwieger 2017; Schmitz et al.
2020). In this contribution,wewill adopt a different approach
to correlations and come back to the source of the mea-
surements: Range from TLS—phase or time of flight—is
a measure of time (Rüeger 1996); their correlations should
logically be modeled as being time dependent since they are
mainly linked with physical temporal effects such as laser or
atmospheric noise, see Lösler et al. (2016) for investigations
with total station measurements. For the sake of simplifica-
tion, we will assume—and shortly justify—that angles are
non-correlated and further consider that the measurements
are heteroscedastic, i. e., with different variances.

Neglecting correlations in LS adjustment leads to a sim-
plification of VCM and is known to give unrealistic and
mainly underestimated a priori or a posteriori dispersion
(Jäger et al. 2005, p. 214ff) see Klos et al. (2018) for GPS
velocity uncertainty and Kermarrec and Schön (2014) for
coordinate estimation using double differences from GPS
phase observations. This discrepancy can be linked with the
particular structure of the inverse of the VCM (Kermarrec
and Schön 2016). Unfortunately, the VCM is involved in
the computation of the aforementioned second-order solu-
tion (Lösler et al. 2020); we are entitled to think that temporal
correlations will affect the corresponding bias and raise the
following questions:

1. What is the impact of the correlations of TLS range
measurements on the second-order solution regarding the
first-order one?

2. Does the scanning configuration affect the parameter and
dispersion biases?

3. Will the diagonal VCM that neglects correlations lead to
results comparable to the one obtained with fully popu-
lated VCM? If not, is it possible to account for temporal
correlations by an equivalent diagonal model?

By answering these questions, we aim to give the prac-
titioner some indications about the impact of TLS range
correlations on the second-order solution. Our goal is to
weigh the benefits of this improved solution against the addi-
tional computational burden, in the presence of correlated
noise. We will place ourselves, without loss of generality
in the controlled framework of simulated TLS point clouds
from a plane, which is a popular scanned object.

We intent to draw the attention of the reader to the risk of
neglecting correlations in the first- or second-order solution,
and propose a powerful yet simple alternative to the use of
fully populated VCM in LS adjustment. To that aim, we will
investigate the extent to which the DCM proposed for GPS
correlations together with a strictly linear functional model
can be applied to the nonlinear problemof a plane fitting from
TLS measurements. This new model was said, ironically, to
account for correlations in an “hidden” way (Kermarrec and
Schön 2017a). Up to now it has never been introduced, tested
nor validated in engineering geodesy for nonlinear func-
tional models. The DCM avoids computational demanding
matrix inversion, which is a non-negligible advantage when
the second-order solution is worth computed, for example,
regarding small objects and/or a high scanning rate. In this
contribution, we propose to validate the use of the DCM in
the light of simulations by analyzing real data from a scanned
plane. This necessitates to choose a model for temporal cor-
relations of range measurements from TLS:We will adopt to
the Matérn model (Matérn 1960). Our proposal is inspired
by the work of Kermarrec and Schön (2014) for GPS and
based on a first investigations for TLS correlations (Kermar-
rec et al. 2019). The Matérn covariance function is widely
used in geostatistics (Gelfand et al. 2010) for modeling spa-
tiotemporal patterns. For some applications of the model, the
interested reader is refereed to Lilly et al. (2017). Its three
parameters, i. e., the smoothness, the correlation parameter,
and the variance, make the covariance function extremely
flexible and able to model all kinds of noise, from Gaussian
to flicker or random walk noise. It has been recently imple-
mented for the analysis of GPS coordinate time series in the
dedicated softwareHector (Bos et al. 2012), highlighting the
high interest of this specific community for this process.

The paper is organized as follows: We summarize in
Sect. 2 the first- and second-order solution when a lineariza-
tion of the functionalmodel is performed.We further describe
in Sect. 3 the stochasticmodel chosen for TLSmeasurements
and its simplification with the DCM. In Sect. 4, we present
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the results derived from both simulated and real TLS mea-
surements from a plane. Sect. 5 concludes our investigations
with some recommendations on how and when to account
for correlations in LS plane fitting.

2 Mathematical background

2.1 Bias in an implicit functional model

The stochastic properties of the estimates derived by means
of the GHM or GMM are related to the solved linearized
substitute problem but not the underlying nonlinear prob-
lem. The well-known linear property of the expectation is
generally invalid for nonlinear functions, i. e.,

E { f (x)} �= f (E {x}) , (1)

where E {·} denotes the expectation operator. The expecta-
tion of the function is unequal to the transformed expectation
value, if f is nonlinear (Carlton and Devore 2017, p. 87). For
that reason, the statistical properties of a linear solver cannot
be passed to the nonlinear case without limitations, i. e., the
derived estimates are biased. Box (1971) derives the bias of
the estimates of explicit nonlinear functional models using
a second-order truncated Taylor expansion. Similar expres-
sions can be found in (e.g., Teunissen 1990; Fang 2015;Wang
and Zhao 2019). Lösler et al. (2020) extend this derivation to
the case of implicit nonlinear functional models including
ill-posed optimization problems. Implicit functional rela-
tionships are known as more general models and, therefore,
provide the widest range of application (Neitzel 2010; Lösler
et al. 2020).

The second-order truncatedTaylor expansionof an explicit
functional model f

(
x̂
) = y + ẽ is given by

f
(
x̂
) ≈ f (x̃) + A�x + 1

2

[
�xTHi�x

]

i
. (2)

Here, x̂ = x̃ + �x is the vector of parameters to be
estimated, A and H are the Jacobian and the Hessian of
f evaluated at x̃, respectively. The vector y contains the
measurements and ẽ is the vector of related true errors with
expectation E {ẽ} = 0 and dispersion E

{
ẽẽT

} = �e.
Since each ẽ yields in a certain estimation error �x, one

can express such dependencies by a corresponding Taylor
series. With restriction to the second order, this series reads

�x = Fẽ + 1

2

[
ẽTGi ẽ

]

i
, (3)

where F andG are the Jacobian and the Hessian evaluated at
ẽ.

By introducing the expectations, one obtains

E {�x} = E {Fẽ} + 1

2
E

{[
ẽTGi ẽ

]

i

}
. (4)

Whereas the linear term becomes zero (e.g., Teunissen 2003,
p. 47), i. e.,

E {Fẽ} = FE {ẽ} = 0, (5)

the quadratic term leads to (e.g., Teunissen 2003, p. 49)

E
{
ẽTGẽ

}
= tr (G�e). (6)

It follows that the second-order improved estimates are given
by

E {�x} = 1

2
[tr (Gi�e)]i , (7a)

E
{
�x�xT

}
= F�eFT + 1

2

[
tr

(
Gi�eG j�e

)]
i j . (7b)

The least-squares parameters are obtained by minimizing
the cost function, i. e.,

� = (
y − f

(
x̂
))T

�−1
e

(
y − f

(
x̂
)) = min, (8)

which leads to the necessary condition

ÂT
x�

−1
e

(
y − f

(
x̂
)) = 0, (9)

where Â = A + [
�xTHi

]
i is the Jacobian evaluated at x̂

(Box 1971). Substituting Eqs. 2, 3 into Eq. 9 and neglecting
the quadratic term yields the Jacobian

F =
(
AT�−1

e A
)−1

AT�−1
e . (10)

For the quadratic term, we finally obtain

[tr (Gi�e)]i = −F
[
tr

(
F�eFTHi

)]

i
. (11)

According to Eq. 7, the bias of the estimated parameters and
the related dispersion yields

E {�x} = −1

2
F [tr (�xHi )]i , (12a)

E
{
�x�xT

}
= �x + 1

2
F

[
tr

(
�xHi�xH j

)]
i j F

T, (12b)

where �x = F�eFT = (
AT�−1

e A
)−1

is the well-known
first-order dispersion of the parameters (Box 1971). It should
be emphasized that the Hessian G is not required in explicit
representation to derive the bias of the estimates.
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As shown by Lösler et al. (2020), the Jacobian in Eq. 10
of an implicit functional model f (x, e) = f (u) = 0, which
is solved by minimizing the Lagrangian function, is given by

Fu =
[ −�xATN−1B �xATN−1

I − �eBT�kB �eBT�k

]
, (13)

where B is the Jacobian of f evaluated at ẽ. The first-order
dispersion of the estimated parameters x and the Lagrangian
k are given by (cf. Höpcke 1980, p. 161f)

�x =
(
ATN−1A

)−1
, (14a)

�k = N−1 − N−1A�xATN−1, (14b)

respectively, where N = B�eBT.
In some application, nullity

(
ATN−1A

) = r > 0 occurs
and, therefore, the inverse in Eq. 14a does not exist. To solve
the resulting ill-posed problem, r further parameter con-
straints are usually introduced and Eq. 14a becomes (e. g.
Pázman and Denis 1999)

�x = U − URTS. (15a)

Here, R is the Jacobian of the further parameter constraint
equations and

U =
(
ATN−1A + RTR

)−1
, (15b)

ST =
(
RURT

)−1
RU. (15c)

The extended Jacobian of an implicit functional model f
containing r parameter constraints to eliminate the rank defi-
ciency reads (Lösler et al. 2020)

Fu =
[ −�xATN−1B �xATN−1 ST

I − �eBT�kB �eBT�k 0

]
. (16)

To derive the bias of the estimates having an implicit func-
tional model, the Jacobian Fu and the Hessian Hu of the
function f evaluated at ũT = [

x̃T ẽT
]
are substituted into

Eq. 12, i. e.,

E {�u} = −1

2
Fu [tr (�uHui )]i , (17a)

E
{
�u�uT

}
= �x + 1

2
Fu

[
tr

(
�uHui�uHu j

)]
i j F

T
u , (17b)

where �u = Fu�eFu
T. A detailed derivation can be found

in Lösler et al. (2020).

2.2 Special case of a plane fitting

From now on, we will place ourselves in the specific case of
estimating a plane from a TLS point cloud recorded in polar
coordinates. The nonlinear implicit functional relation of a
plane reads

nTPi = d, (18)

where nT = [
n1 n2 n3

]
is the normalized normal vec-

tor, d is the perpendicular distance from the estimated
plane to the origin of the scanner’s local coordinate system.
PT
i,cart = [

Xi Yi Zi
]
is an arbitrary point of the plane.

Eq. 18 can be written as n1Xi + n2Yi + n3Zi − d = 0 by
considering the constraint nTn = 1 or n21 + n22 + n23 = 1 for
the length of the normal vector.

The raw measurements of a TLS are not Cartesian but
polar coordinates: The range r expressed in meter [m], a
vertical and a horizontal angle called θ and φ, respectively,
expressed in degree [◦] or gradian [gon]. They are depicted
for one pointPi in Fig. 1. The origin of the coordinate system
is the center of the TLS. The Cartesian coordinates in Eq. 18
are expressed by means of polar measurements as

Xi = ri sin θi cosφi , (19a)

Yi = ri sin θi sin φi , (19b)

Zi = ri cos θi , (19c)

with PT
i,pol = [

θi φi ri
]
.

The first- and second-order dispersion corresponding to
a plane fitting are derived from Sect. 2.1 and described in

P

r

φ

θ

TLS

Fig. 1 Polar and Cartesian coordinates. The center of the TLS is the
origin of the coordinate system
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detail by Lösler et al. (2020). The estimates and the a pri-
ori dispersions—whether first or second order—depend on
the VCM �e from Eq. 17. We base our investigations on
the approximation that �e ≈ �y, where �y is the VCM of
the raw TLS measurements. In this contribution, we chose
to model the covariance function of the measurements to
set �y. Other approaches than modeling are, for exam-
ple, based on variance component estimation (Teunissen
and Amiri-Simkooei 2008). Such iterative implementations
are computational demanding and may lead to numeri-
cal inaccuracies—up to the non-symmetry of the estimated
VCM. In this contribution, we avoid this drawback by fol-
lowing thework ofKermarrec and Schön (2014) and suppose
that a physical plausiblemodeling of the correlation structure
is available. Our results can be, thus, read from two different
perspectives when the parameters of the chosen model are
varied in a plausible range: How (i) an inaccurate stochastic
model and/or (ii) correlations affect the biases. We will use
the notation �y = �pol for the sake of readability.

3 Stochastic model for TLSmeasurements

3.1 Heteroscedasticity

The raw TLS measurements are expressed in polar coordi-
nates, they are heteroscedastic and have different variances
σ 2
r , σ

2
θ , and σ 2

φ .

1. The angle measurements are coming from the mechani-
cal rotation of internal mirrors: It is justified to consider
their correlation structure as a combination of flicker
and white noise (Hooge 1994). Our first investigations
with maximum likelihood estimation have confirmed this
assumption and shown that the white noise component
makes more than 70% of the total noise variance for
the scanning scenario used in this contribution. Based
on these results, we allowed ourselves to consider them
as uncorrelated in a first approximation. Their variance
is taken from the manufacturer’s datasheet (Böhler and
Marbs 2002). In this contribution, we will use the spec-
ification of the Z+F 2016 (Zoller & Fröhlich GmbH,
Wangen im Allgäu, Germany) for both, the simulations
and the real data analysis.

2. The range variance σ 2
r will depend on different fac-

tors such as the properties of the scanned object (e. g.
color, roughness), eventually atmospheric transmission,
and the range r or the scanner itself (Soudarissanane
et al. 2011). This value can be constant based on the
manufacturer’s indications or follow empirical models.
Exemplarily,Wujanz et al. (2017)modeled the point-wise
range variance depending on the intensity of the reflected
signal. Using the 1D mode of a TLS, a power function

could be fitted to the range variance versus intensity:
σr = cint + βint I ntαint , where the parameters αint, βint

and cint were determined empirically by regression anal-
ysis for different terrestrial laser scanners and I nt is the
raw intensity expressed in [Inc]. Unfortunately, the inten-
sity value may not be accessible for all TLS. In order to
cope with this challenge, further investigations were car-
ried out (e.g., Schmitz et al. 2019). In this contribution,
we place ourselves in a simulated framework and vary σ 2

r
independently of simulated intensity values.

3.2 Temporal correlations

As aforementioned, we consider the temporal range cor-
relations only and neglect the correlations for angle mea-
surements. This approximation seems justified in a first
approximation and will be the topic of further investigations.

3.2.1 Why the Matérn model: a justification

Range measurements are a measure of time independent
of the TLS under consideration (phase or time of flight)
(Rüeger 1996): We will, therefore, consider the TLS range
measurements as temporally correlated. Many effects act on
correlating the measurements, such as atmospheric turbu-
lence due to the propagation of the laser in a randommedium
(Wheelon 2001) or to the sensor itself (Llopis et al. 2011;
van der Ziel 1970). Phase noise related to fluctuations of the
optical phase of the output, quantum noise due to the random
phase of photons added by spontaneous emission and opti-
cal fiber with scattering phenomena inside the fiber should
be considered as factors acting on correlating the measure-
ments, to name but a few.

Such noise, also called stochastic processes, is well
described by power-law slopes in the frequency domain, so-
called colored noises. By means of differential equations,
the different sources of noise can be modeled, leading to
different power laws; the resulting “global” noise is a com-
bination of all of them. Exemplarily, awidely assumedmodel
for GPS coordinate time series analysis is a combination
of flicker or power-law noise with white noise (Bos et al.
2020). However, many noises exhibit a high-frequency slope
with a low-frequency plateau. Such stationary processes are
better modeled by a Matérn model (Matérn 1960; Guttorp
and Gneiting 2005), which accounts for the short-range
dependence—as the fractional Brownianmotion (fBm,Man-
delbrot and Ness (1968))—but is damped at low frequencies.
The property of the process is intuitively related to a common
feature ofmany physical systems: a pressure to grow together
with a resistance on that growth (Lilly et al. 2017); this phe-
nomenon leads to a balance or equilibrium between the two
forces. The Matérn process accounts for that effect and, as
the length of the time series increases, the stochastic model is
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more adequately modeled with aMatérn model than a purely
fractional noise (see, e.g., He et al. 2019). Such processes
are widely used in spatial geostatistic (Gneiting et al. 2010;
Handcock and Wallis 1994; Stein 1999). The Matérn model
is less popular for modeling noise of time series, although its
flexibility permits a wide range of applications.

In this contribution, we will model the temporal cor-
relations of TLS range measurements with this process,
following the work of the first author on GPS phase cor-
relation and the strong parallel between TLS and GPS
measurements and processing (Kermarrec et al. 2019). First
investigations based on residual analysis and the empirical
mode decomposition have empirically confirmed the theo-
retical expectation about the noise structure of TLS range
measurements (Kermarrec et al. 2020b) (please note that in
Tab. 1 of this contribution, the smoothness is given by the
third and not the second value; the correlation parameter is
the fourth value and should be 1.18, see erratum). The authors
could successfully justified the use of the Matérn model. In
the next section, we propose introducing theMatérnmodel in
detail, which is a mandatory step to understand the concepts
of smoothness and correlation length and their impact on the
biases defined in Sect. 2.1.

3.2.2 Statistical description

A Matérn process z is stationary, and its spectrum is of the
form

Szz (ω) = A2

(
ω2 + α2

)ν , ν ≥ 1

2
. (20)

The parameter A sets the spectral level, and ν is called the
smoothness of the process and is related to the slope of the
power spectral density (psd) as the frequency ω → ∞. For
ν = 1

2 the Matérn model is identical to the exponential
model; the limit case as ν → ∞, is the Gaussian model.
ν = 1 was used exemplarily in Rodríguez-Iturbe and Mejía
(1974) to model the volume of rainfall. A smoothness larger
than 1 is linked to the mean-square differentiability of the
process (Stein 1999), i. e., with the smooth decrease in the
covariance function at the origin. The parameter α is a pos-
itive range parameter which has units of angular frequency.
It acts as a damping of the psd as ω → 0 and, thus, controls
the transition between two regimes:

Szz (ω) →
⎧
⎨

⎩

A2

(α2)
ν |ω| � α

A2

(ω2)
ν |ω| 	 α

(21)

To illustrate this property, Fig. 2 shows the psd of differ-
ent processes corresponding to different set of values [α, ν].
Without lack of generality, we assumed a sampling of 1 s.

Fig. 2 �psd corresponding to a Matérn process. a The covariance func-
tion in [m2] versus time in [s] by varying the smoothness parameter
and yielding the correlation parameter constant to 1.5. The smoothness
affects the mean-squared differentiability of the function at the origin
strongly. The corresponding legend is depicted in b, which represents
the psd: The slopes change with the smoothness. c The covariance
function by varying the correlation parameter and keeping the smooth-
ness parameter to 1. d The psd. The slopes are constant, α affects the
cutoff frequency of the psd from which it becomes constant. e The psd
by adding white noise to the correlated noise (CN). The CN gives the
part of correlated noise regarding white noise; CN=1 corresponds to
no white noise. f psd of processes where the variance of the total noise
is not scaled

Changing the sampling does not affect the figure due to the
scaling effect. Clearly, theMatérn psd is constant for low fre-
quencies and decreases as a power law at higher frequencies,
similarly to a damped fBm. A high smoothness (exemplary
ν = 3, magenta curve) is linked to a strong decay of the psd
as |ω| � α and a constant regime as |ω| 	 α. This latter
case corresponds to a white noise having the same power
level for all frequencies.

For a high correlation parameter (exemplary α = 1.5),
Fig. 2b shows a longer plateau regarding a noise generated
with a low α = 0.5. This latter has a psd similar to the one
of a fBm.

The covariance Czz of a second-order stationary process
is related to the spectrum through the inverse Fourier rela-
tionship Szz (ω) = ∫ ∞

−∞ Czz (τ ) e−iωτdτ , where τ > 0 is the
time difference. For a Matérn process, Czz (τ ) is given by

Czz (τ ) = σ 2Mν (ατ) . (22)

We introduce the Matérn function as

Mν (x) = 2



(
ν − 1

2

)
2

(
ν− 1

2

) |x |
(
ν− 1

2

)

K(
ν− 1

2

) (|x |) , (23)

where 
 denotes the gamma function and K(
ν− 1

2

) the decay-

ing modified Bessel function of the second kind of order
ν − 1

2 (Abramowitz and Stegun 1972). The variance of the
process is denoted by σ 2.

Figure 2a, c, e shows the covariance function for the same
parameter values as Fig. 2b, d, f. Clearly, for ν = 3, the
function decreases slowly at the origin compared to the expo-
nential model ν = 1

2 . The Matérn covariance has asymptotic
behavior for large and small timescales (Lilly et al. 2017).

3.2.3 Our proposal to model TLS range temporal
correlations

Following the proposal of Kermarrec et al. (2019), we model
the temporal correlations of TLS range measurements with
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(a) (b)

(c) (d)

(e) (f)
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a separable covariance function (Gelfand et al. 2010). This
function is built as follows:

1. We assume that the variance of the range measurements
will account for or “catch” all spatial effects, i. e., the
impact of surface properties and atmospheric transmis-
sion on the signal-to-noise ratio by means of the intensity
model proposed by Wujanz et al. (2017).

2. The temporal correlations are modeled independently
with a Matérn covariance function.

The resulting function is a product of the modeled vari-
ance and the chosen covariance function. In this contribution,
we assume that the variance of additional white noise is
small compared to the correlated one. Increasing the impact
of white noise decreases the one of correlations in the LS
adjustment: Such cases are less relevant to study, as the
results obtained will be similar to the one corresponding to a
diagonal VCM. We illustrate this behavior in Fig. 2e, where
we show exemplarily the psd of a simulated noise defined
as a combination of white noise and a Matérn process. In
this example, the total variance is the same for all simulated
time series (the green line corresponds to a pure white noise
and the blue one to a pure correlated noise). In Fig. 2f, we
increased the power of white noise gradually as well as the
total variance. From these two figures, we see that only the
high-frequency regionof the psd is impactedby the additional
source of noise, provided that the latter has approximately the
same variance as the correlated one (yellow line in Fig. 2f). If
the white noise has a smaller variance (red line), its impact on
the shape of the psd is less pronounced than in the previous
case. Thus, additional white noise will have a similar effect
as decreasing the smoothness.

The Matérn parameters can be estimated from time series
such as LS residuals with the Whittle maximum likelihood
estimator, which we briefly explain in “Appendix A” for the
sake of completeness.

3.3 VCM of the rawmeasurements

3.3.1 Building the VCM

In building the VCM of the raw measurements, we propose
to account for the scanning time and model the correlation
“linewise”: For a given object extracted from the whole point
cloud, we consider that the last point of a scanned line (Fig. 3
for t = 10), is not directly recorded before the first point of
the second line (Fig. 3, t = 11) after the horizontal angle has
been incremented.

We resume the stochasticity of the TLSmeasurements in a
matrix form, �̂pol being the VCM of the polar measurements
defined as:

Fig. 3 Linewise modeling of correlations: We account for the time for
the scanner to come back to the initial elevation as acting as decorrelat-
ing the two measurements t = 10 and t = 11. We consider a plane as
the object being fitted
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Fig. 4 Example of a fully populated VCM accounting for temporal
range correlations. The values are given in [mm2]. �̂θ , �̂φ are sorted
time-wise, and diagonal is not depicted; 2000 values were simulated

�̂pol =
⎡

⎣
�̂θ 0 0
0 �̂φ 0
0 0 �̂r

⎤

⎦ , (24)

where the diagonal block matrices �̂θ , �̂φ are sorted time-
wise. Their elements are given by the corresponding vari-
ances σ 2

θ , σ 2
φ . �̂r is the fully populated VCM of the range,

and is filled using the proposed Matérn covariance model of
Eqs. 22 and 23 with σ 2 = σ 2

r as the range variance. The
time increment between two measurements is given from the
scanning setting chosen, e. g. high, superhigh or extremely
high. The correspondingmatrix �̂r is visualized in Fig. 4, for

123



How to account for temporal correlations ... Page 9 of 21 5

which [α, ν] = [0.05, 1.5]. Clearly, the number of elements
of the covariance function that are non-null depends on the
chosen set of Matérn parameters.

We denote furthermore �̂pol,diag, the diagonal Matrix cor-
responding to �̂pol, where diag states for diagonal, i. e.,
without accounting for temporal correlations.

3.3.2 Impact of the measurement configuration

Each coordinate based functional model can be expressed in
polar and Cartesian representation. According to Suchomski
(1999), the transformation of the polar coordinates into their
Cartesian representations yields biased results, if a linearized
substitute problem is used. In this contribution and follow-
ing Sect. 2, we avoid this drawback: No transformation of
the VCM of the rawmeasurements by means of the propaga-
tion law is needed. However, the biases defined in Sect. 2.1
will still depend on the scanning configuration through the
Jacobian and Hessian matrices (Eq. 17). The orientation of
the scanned object in space will affect the biases of second
order described in Sect. 2.1.

3.3.3 The equivalent diagonal model or DCM

Using fully populatedVCMinLSadjustmentmaybe compu-
tational demanding. Based on the work of Luati and Proietti
(2011), Kermarrec and Schön (2016) developed an alterna-
tive based on diagonal VCM: the so-calledDCM. Thismodel
was successfully used in LS adjustment with GPS phase
observations for the specific use of ambiguity resolution or
coordinates estimation to avoid introducing fully populated
matrices (Kermarrec and Schön 2017b). In this section, we
propose to shortly summarize the main idea behind this sim-
plified yet powerful stochastic model.

We call �̂equi the equivalent diagonal matrix to �̂pol.The
conditions underwhich theLSestimatewith �̂equi is identical
to the one given by �̂pol are given in Luati and Proietti (2011)
and are based on a decomposition of the design matrix of
the linear LS adjustment as a product of the eigenvectors of
�̂pol�̂

−1
equi.

In the case of a mean estimator, a necessary and sufficient
condition for the equivalence between the generalized LS
and the DCM to hold is that each element of the diagonal
matrix �̂−1

equi is the sum of the row elements of the inverse of

the fully populated covariance matrix �̂−1
pol . Kermarrec and

Schön (2016) tested empirically the generalization of this
equivalence for more sophisticated linear functional models:
They showed thatmatrixmultiplication involving non-sparse
fully populated VCM could be avoided.

Figure 5 explains graphically how to compute the equiva-
lentmatrix.We point out that the semi-equivalence holds true
for the estimates and their a priori cofactor matrices in a lin-

Fig. 5 Computation of the equivalent diagonalmatrix of theDCM from
the inverse of the fully populated VCM

earmodel. In this contribution, wewill investigate whether it
can be used in the second-order solution derived in Sect.2.1.

When the inverse of the VCM exists explicitly, the VCM
can be replaced by a simple factor, which we call the Vari-
ance Inflation Factor (VIF), see Kermarrec et al. (2020a) and
“Appendix B.” An explicit formulation of the inverse exists
when the correlation structure can be modeled with a Matérn
model corresponding to ν = 1

2 , which corresponds in one
dimension to a so-called autoregressive model of first order
AR(1), see (Rao and Toutenburg 1995) or (Rasmussen and
Williams 2006). Thus, the use of a VIF will be justified if the
simulations show that misspecifying the smoothness do not
affect strongly the bias of second order.

4 Simulations

4.1 Simulated observation

WesimulateTLS rawmeasurements fromaplane to study the
impact of both scanning configuration and temporal correla-
tions on the first-order and second-order bias in a controlled
framework, see Eq. 17 and cf. Sect. 2.2. In the following sec-
tions, we propose describing the setup that was adopted to
make the simulations as close as possible to a real scenario.
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5 Page 10 of 21 G. Kermarrec, M. Lösler

Fig. 6 Example of two simulated planes corresponding to two scanning
configurations. The scanning rate for the representation of theTLSplane
generated is constant and taken here to dt = 1 × 10−5 s: This corre-
sponds to a value for which the covariance function reaches the 0 value

inside one line and not to the reference value in both cases. Please note
that we consider that the main axis of the TLS crosses the plane in its
center in all simulated cases

4.1.1 General configuration

The optimal scanning configuration for which the regular
points lie on a regular grid corresponding to a null horizontal
and vertical tilt regarding the TLS main axis is depicted in
Fig. 6. For this reference configuration, we have [θ, φ] =
[0, 0]◦. All planes are generated having the size 1 m × 1 m
and scanned at a distance of 10 m. We chose a temporal
spacing between the points of dt = 5 × 10−5 s so that the
reference number of points per scanning line reaches 25.
This value corresponds to the setting “premium, high” or
“preview, normal” for the Z+F 2016 used in this contribution
for the real data analysis.

4.1.2 Positive definite VCM

In order to study the impact of the scanning configuration on
the biases, we generated different point clouds by adapting
the horizontal and vertical tilts of the planes. Because we
account for the slight increase in distance coming from the
tilt, not all the scanning lines have 25 measurements, simi-
larly to a real case scenario. For the sake of comparison—and
in order to also ensure that all VCM are positive definite—
we need to adapt the scanning rate to reach the reference
number of 25 points per scanning line for all configurations.
An example of this problematic is presented in Fig. 6: The
reference scanning configuration shown in Fig. 6a is com-
pared with the one corresponding to a horizontal tilt of and
a vertical tilt of 40% (see Fig. 6b). A temporal spacing of
dt = 1 × 10−5 s was chosen for both cases and not the
reference value of dt = 5 × 10−5 s. Without decreasing dt
accordingly, the number of points per scanning line is lower

for the case corresponding to Fig. 6b than for the reference
one. Unfortunately, when the number of measurements per
scanning lines is low and the level of the chosen correlations
high, the covariance function will not reach the 0 value inside
one line: The corresponding VCM are badly conditioned and
cannot be used in the adjustment, i. e., they are not posi-
tive definite. This effect is highlighted in Fig. 7a, for which
α = 0.2. Clearly, the covariance function does not reach the
0 value inside one line of 25 values. Since this effect occurs
when the number of points per scanning line is small regard-
ing the correlation length, we avoid it by fixing the minimal
number of points per scanning line equal to the number of
points chosen for the reference configuration. Concretely dt
may be smaller, for some scanning configurations, than the
reference value. This allows to compare the results when α

is varied, see Sect. 4.2. We note that this effect is not likely
to happen with real data as the number of points per line is
much higher. We intentionally chose in this contribution to
follow the configuration used in Lösler et al. (2020)

4.1.3 Configurations

To answer the first and second scientific questions raised in
the introduction, we simulated different configurations by
changing the horizontal and vertical tilts of the plane. θ and
φ are, thus, varied in the range [0, 20, 40, 60]◦ independently.
An example of the planes obtained is depicted in Fig. 6, for
which a distance of 10 m was chosen. The distance between
the center of the TLS and the plane was held fixed.

We are aware that the scanning configuration also includes
the edge length and the distance to the instrument. These
effects on the first- and second-order solutions have already
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Fig. 7 First line of the
covariance function in [m2] for a
different value of α and ν. The
scanning rate is taken to
dt = 5 × 10−5 s, which
corresponds to 25 points per line
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been studied in Lösler et al. (2020), who simulated planes
with different edge lengths, at the same distance and scanned
with different scanning rates by increasing the number of
points per scanning line and/or the number of scanning lines.

Based on their study, we highlight the following points:

1. Changing the distance is similar to acting on the a pri-
ori variance factor of the measurements. Exemplarily,
increasing the distance corresponds to an increase in σ 2

r
and thus of the bias (Wujanz et al. 2017).

2. Acting on the distance is, moreover, linked to varying the
scanning rate but for a fixed distance: For a given edge
length, increasing dt is related to decreasing the number
of grid points, which increases the bias.

3. A high bias was found for small edge lengths.

These effects have already been investigated in Lösler
et al. (2020). We do not aim to repeat their investigations
and, thus, concentrate on the impact of the correlation struc-
ture on these biases only and not on their absolute values.

4.2 Stochastic model

We account for the heteroscedasticity and correlations of the
TLSmeasurements as proposed in Sect. 3.1. The setup of the
VCM of the measurements is as follows:

Table 1 Stochastic and configuration parameters used for the simula-
tions

Stochastic parameters
α ν σr ,0

0.5, 0.75, 1, 1.25, 1.5, 2 0.5, 0.75, 1, 1.25 1, 5

Configuration parameters
d θ φ

10 m 0◦, 20◦, 40◦, 60◦ 0◦, 20◦, 40◦, 60◦

1. The polar angle variances are held fixed and the measure-
ments are considered to be uncorrelated. The variance is
taken fromamanufacturer’s datasheet Z+F2016 andfixed
to σφ = σθ = 0.007◦.

2. The range variance is varied starting with σr ,0 = 1 mm
up to σr ,0 = 5 mm. Intermediate results can be easily
deduced from these two cases, as well as the one corre-
sponding to more extreme values of σr ,0.

3. The range measurements are temporally correlated. We
use the simplified Matérn model described in Sect. 3.2.
Different correlation structures are tested corresponding
to four different smoothnesses and six correlation param-
eters.

We summarize the different stochastic and configuration
models in Table 1.
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4.3 How to compare the results and what is
expected?

We define the following ratios in order to provide an answer
to the three main questions raised in the introduction:

• To investigate the difference between the second- and
first-order solution for the estimated range d̂ and the stan-
dard deviation σd of the range of the plane:

Rd̂,2/1 = d̂2nd − d̂1st

d̂2nd
, (25a)

Rσ,2/1 = σd,2nd − σd,1st

σd,2nd
. (25b)

• To study howa simplification of the fully populatedVCM
with its diagonal counterpart �̂pol,diag will impact the
second-order solution:

Rd̂,2/2diag = d̂2nd − d̂2nd,diag

d̂2nd
, (26a)

Rσ,2/2diag = σd,2nd − σd,2nd,diag

σd,2nd
. (26b)

• To testwhether theDCMusing �̂equi can replace the fully
populated VCM in the LS adjustment:

Rd̂,2/2equi = d̂2nd − d̂2nd,equi

d̂2nd
, (27a)

Rσ,2/2equi = σd,2nd − σd,2nd,equi

σd,2nd
. (27b)

We call d̂2nd , d̂2nd,diag, d̂2nd,equi the second-order solution

computed with �̂pol, �̂pol,diag and �̂equi, respectively, for
the range r of the TLS. d̂1st is the corresponding first-order
solution. The dispersions σd are defined similarly. All ratios
will be given in %, with as many digits as necessary for the
sake of comparison. Please note that we always consider the
second-order solution as the reference one.

We propose to initially discuss the expected results intu-
itively to simplify the understanding of the simulations:

1. Since we consider having a fixed number of points per
line, increasing the correlation parameter α will act as
decreasing the impact of correlations: The solution will
tend to the one obtained with a diagonal matrix �̂pol,diag.

2. Increasing the smoothness will increase the impact on the
bias regarding the diagonal solution or for a given α. The
diagonal solution is close to the one obtained for ν = 1

2
as α increases: Exemplarily Fig. 7a, b shows the decay of

the covariance function in that specific case, as the time
increases.

3. We expect that a larger σr will increase the ratios.
4. A suboptimal scanning configuration is expected to

decrease the impact of the temporal correlations on the
ratios.

In the following, we choose intentionally to present in
details the results for two configurations only. Further results
will be discussed in text form in order not to overload our
contribution.

4.4 Results

4.4.1 Reference scanning configuration
[
�, �

] = [0, 0]◦

1. Difference between the second- and first-order solution
Rd̂,2/1 and Rσ,2/1.
The corresponding results are presented in Fig. 8a,
b (top). Under the reference scanning configuration,
[θ, φ] = [0, 0]◦ and for σr ,0 = 1 mm, Rd̂,2/1 is nearly
constant (around 0.003%) independently of the corre-
lation structure. Rσ,2/1 is between 1% and 2% for the
range of values chosen. Both ratios tend to a constant
value, which is reached for α > 2. We see clearly that
for σr ,0 = 5 mm an increase in correlations is linked to a
slight decrease in the ratio, i. e., from 0.0045 to 0.004%
for the parameter (magenta line versus blue line) and
0.25% for Rσ,2/1, forα = 0.5, ν = [0.5 − 1.5]:Account-
ing for correlations damped the difference between the
first- and second-order solution for both parameter and
dispersion. This effect can be interesting to avoid com-
puting the second-order solution when small objects are
scanned, for which the absolute bias is not negligible.
However, we note that the ratios are under 1% and can be
considered as small. To summarize, when temporal cor-
relations are accounted for, the ratios decrease so that it
becomes less interesting to use the second-order solution.
This effect is at the same time a risk when correlations
are underestimated and the first-order solution is com-
puted. For that reason, it is still always preferable not to
compute the first-order solution for small objects.
Please note that we were not considering the absolute
value of the differences—which depends on the edge
length—and only analyzed how correlations affected the
difference.

2. Simplification of the fully populated VCM with its diag-
onal counterpart Rd̂,2/2diag and Rσ,2/2diag

The results are presented in Fig. 8a, b (middle). The
impact of the fully populated VCM at the parameter level
regarding its diagonal counterpart is nearly negligible.
For Rσ,2/2diag, the expected high difference between fully
populated VCM and diagonal VCM can be confirmed:
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Fig. 8 Reference scanning
configuration [θ, φ] = [0, 0]◦
for σr ,0 = 1 mm (left), and
σr ,0 = 5 mm (right). For a and
b, we have: top: Rd̂,2/1, middle:
Rd̂,2/2diag, bottom: Rd̂,2/2equi, as
mentioned in the corresponding
title of the subplots. Please note:
For the sake of readability, we
intentionally choose the same
y-axis for the two σr ,0

(a)

(b)
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for σr ,0 = 1 mm and [α, ν] = [0.5, 1.25], the ratio
Rσ,2/2diag reaches nearly 40% and 60% for σr ,0 = 5 mm.
For a lower smoothness and high correlation parame-
ter, we have less significant values: For the exponential
covariance function [α, ν] = [0.5, 0.5], the ratio reaches
20%and 50% forσr ,0 = 1 mmandσr ,0 = 5 mm, respec-
tively. We note further that the correlation parameter α

should be high to reach Rσ,2/2diag = 0, particularly for
σr ,0 = 5 mm: Even low correlations lead to a high ratio.
A strong smoothness ν increases the ratio for a given α,
which is a logical effect as the VCM is less sparse.
This reference case highlights that correlations should not
be disregarded for computing the dispersion. This con-
clusion would be the same if the first-order solution had
been used, due to the aforementioned small difference
between the first- and second-order solution (see previ-
ous point). Not accounting for correlations and using a
diagonal VCM is linked to a risk of making a high error
in terms of dispersion.

3. Simplification of the fully populated VCM with its diag-
onal counterpart Rd̂,2/2equi and Rσ,2/2equi derived by the
DCM approach
Figure 8a, b (bottom) shows the good adequation between
the results given with the DCM and the fully popu-
lated VCM. At the parameter level, the ratio Rd̂,2/2equi
is not higher than 0.002% for the case corresponding to
[α, ν] = [0.5, 1.25] and σr ,0 = 5 mm. Rσ,2/2equi high-
lights the strength of the approximation with the DCM
regarding using the diagonal VCM: Rσ,2/2equi reaches
a maximum value of approximately 4% for [α, ν] =
[0.5, 1.25] and σr ,0 = 1 mm, about one order of mag-
nitude better than Rσ,2/2diag for the same configuration.
We note that Rσ,2/2equi is getting smaller as σ0,r increases
(Fig. 8b right bottom), which we interpret as coming
from the closeness of the range variance to the angle
one. Additional tests by increasing the angle variance to
0.01◦ instead of 0.007◦ led to an increase in Rσ,2/2equi

comparable with the values given for σr ,0 = 1 mm and
the reference angle variance chosen. This study confirms
empirically that the equivalence holds true for a nonlin-
ear LS plane fitting: The DCM can be used with high
confidence to replace the fully populated VCM.
We also mention an important point for computational
efficiency: The difference by varying the smoothness
for a fixed α is below 0.1%. This result is promis-
ing. Indeed, even if the estimated smoothness is higher
than 0.5, we can replace it by ν = 0.5 and slightly
decrease the estimated α from 0.5 without impacting the
results for the parameters and dispersion. Alternatively,
one could directly assume that the temporal correlation
model follows an AR(1) process and estimate or model
the correlation length only: The AR(1) model for one-
dimensional time series is corresponding to a Matérn

model with ν = 1
2 (Rasmussen and Williams 2006). As

aforementioned in Sect. 3.3.3, the inverse of the VCM
from an AR(1) model can be replaced by a scaled iden-
tity in the LS adjustment, see Kermarrec et al. (2020a)
for a detailed explanation.
The authors recommend using the AR(1) model due to
the potential numerical instability of the DCM for high
smoothness and low α (see, e. g., Fig. 8, bottom, yellow
line). These computational inaccuracies are linked to the
high number of relevant values, i. e., not close to zero, on
one line of the fully populated VCM. Additionally com-
bined with suboptimal scanning configurations, they can
lead to a ratio of up to 1% for [θ, φ] = [60, 20]◦ and
[α, ν] = [0.5, 1.25]. This effect—although of a small
magnitude—gives weight to the use of a more stable
AR(1) model in the DCM, besides the fact that for that
model a close formula for the inverse of the VCM exists.

4.4.2 Impact of the scanning configuration

We further analyzed different scanning configurations fol-
lowing Table 1 for the sake of completeness. Without loss of
generality, we chose to present the case [θ, φ] = [40, 0]◦
graphically in Fig. 9. Further results are given in text form.

1. Difference between the second- and first-order solution
Rd̂,2/1 and Rσ,2/1

From Fig. 9a (top), the impact of the scanning configu-
ration chosen is shown to affect Rd̂,2/1 negatively, which
increases by a factor of 10 regarding the reference case
(Fig. 8): The difference between the second- and first-
order solution still decreases with increasing correlations
and tends to 0.03%. On the contrary, Rσ,2/1 reaches
approximately 0.075% in mean over all simulated corre-
lation structure. It is lower thanwith [θ, φ] = [0, 0]◦; the
scanning configuration lead to a decrease in the impact
of the temporal correlations on the second-order solution
compared to the first-order one.
These results were confirmed for other scanning con-
figuration. Exemplarily for [θ, φ] = [60, 20]◦, we got
a mean of Rd̂,2/1 = 0.06% and Rσ,2/1 = 0.08%, for
[θ, φ] = [40, 40]◦, Rd̂,2/1 = 0.07% and Rσ,2/1 =
0.06%. We conclude, therefore, that the non-optimality
of the scanning configuration leads to ratios close to 0:
The first- and second-order solutions are similar in terms
of parameter and dispersion when temporal correlations
are additionally considered.

2. Simplification of the fully populated VCM with its diag-
onal counterpart Rd̂,2/2diag and Rσ,2/2diag

Figure 9a, b (middle) highlights further the non-necessity
of accounting for correlations as the scanning con-
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Fig. 9 [θ, φ] = [40, 0]◦. Left
(top, middle and bottom,
respectively): Rd̂,2/1, Rd̂,2/2diag,
Rd̂,2/2equi, right: σr ,0 = 1 mm,
left σr ,0 = 5 mm. Right Rσ,2/1,
Rσ,2/2diag, Rσ,2/2equi, right:
σr ,0 = 1 mm, left σr ,0 = 5 mm,
as mentioned in the
corresponding title. Please note:
For the sake of readability, we
intentionally did not choose the
same y-axis for the two σr ,0 for
Rd̂,2/1, Rd̂,2/2diag, Rd̂,2/2equi

(a)

(b)
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figuration becomes worth more: Rd̂,2/2diag is below

1 × 10−5 and Rσ,2/2diag is not higher than 1.5% for
σr ,0 = 5 mm. Similar results were found, for example,
for [θ, φ] = [60, 20]◦ with Rσ,2/2diag reaching maxi-
mal 1% or [θ, φ] = [40, 40]◦ with Rσ,2/2diag ≈ 0.5%.
As the configuration deviates from the optimal condition,
the fully populated VCM can be replaced by its diagonal
counterpart.

3. Simplification of the fully populated VCM with its diag-
onal counterpart Rd̂,2/2equi and Rσ,2/2equi derived by the
DCM approach

The results obtained with the DCM are similar to the pre-
vious case. Once more, the equivalent model can replace
the fully populated VCMwith a high confidence. Even if
at the parameter level, Rd̂,2/2equi is higher than Rd̂,2/2diag,
it remains at a level close to 0. Similar to the refer-
ence case, Rσ,2/2equi is approximately five times lower
than Rσ,2/2diag. As Rσ,2/2diag, Rσ,2/2equi decreases as
the scanning configuration becomes worth more. These
conclusions were similar for all other scanning configu-
rations we simulated, and are not discussed further.

4.5 Using the DCM in a real case

To highlight how to use the DCM in real case, a white plane
of size 1 m × 1 m was scanned at a distance of 10 m with a
Z+F 2016 using the scanning modus “high” and “superhigh”
(premium). This corresponds approximately to a scanning
rate as chosen in the simulations. We chose two scanning
configurations, i. e., the optimal one with no tilt (see Sect. 4)
and a scanning configuration with a slight tilt of 20◦ for θ .
The point clouds were preprocessed to avoid edge effects
and outliers, and finally cut using a free software. The point
clouds obtained resulted in 30 lines of 30 points, similar to
our simulated planes. We adopted a standard deviation of
0.004◦ for the angles and 0.2 mm for the range. The values
were taken from the manufacturer’s datasheet and agree with
the one of more accurate model based on the intensity value
such as in Wujanz et al. (2017).

The first-order solution was computed in a first approx-
imation using the corresponding diagonal VCM built as
explained in Sect. 3.3. The correlation structure of the range
was estimated from the residuals using a Matérn model by
fixing the smoothness to 1

2 : This corresponds to an autore-
gressive process of first order AR(1) in one dimension, see
Rasmussen and Williams (2006). Due to the chosen param-
eterization of the Matérn covariance function, a balance
between ν andα occurs, i. e., the estimated correlation param-
eter will be smaller than if a higher smoothness would have
been estimated, see Stein (1999). As shown in Sect. 4.4.1
within a simulated framework, we are allowed—even for the

suboptimal scanning configuration—to make this simplifi-
cation. A second possibility is to estimate the parameters of
a Matérn model and decrease α by 0.5 by keeping ν fixed
to 1

2 : This approximation is valid for the use in the DCM
and not for an accurate correlation modeling, it leads to less
computational demanding matrix inversion. We make use
of the first strategy in this contribution and further adopt a
“global” correlation model, i. e., the white noise component
is not independently estimated and considered to decrease
the correlation length accordingly, see Kermarrec and Schön
(2017b). We performed the estimation linewise using the
MATLAB function ar. For the optimal scanning configu-
ration, the mean values were 0.11 (respectively, 0.14 for
the suboptimal scanning configuration) over the lines with
a standard deviation of 1 × 10−3, respectively, 3 × 10−3

for the correlation coefficient for the setting high. We found
for the setting superhigh a higher correlation coefficient of
0.31 with a standard deviation of 0.7 × 10−3 (respectively,
0.35 with a standard deviation of 1.5× 10−3 for the subopti-
mal scanning configuration). The correlation coefficients are
nearly independent of the scanning configuration: This val-
idates that temporal correlations can be estimated from the
residuals, i. e., at a distance of 10 m under labor condition,
we do not expect atmospheric effects to affect the correlation
structure. We are aware that this estimation may be biased
due to the small samples under consideration; however, the
stable results are a validation that the bias is probably kept
small: Otherwise some numerical instability in the parameter
estimation would have been visible. An accurate determina-
tion of the parameters is beyond the scope of the present
paper and would overload it, i. e., we wish to validate the use
of the DCM so that a rough approximation is enough here to
show its range of application. Simulations having shown that
the parameter estimation is not affected by this approxima-
tion, we only concentrate on the dispersion for the real data
analysis.

4.5.1 Optimal scanning configuration

For the optimal scanning configuration, the first-order dis-
persion of the range d using the estimated fully populated
VCM reaches 0.101 mm for the setting high (respectively,
0.08 mm for the setting superhigh). We found an increase
lower than 1% for both case using the second-order disper-
sion, which is coherent with the simulation results for the
chosen standard deviation of the range; the value of the cor-
relation coefficient corresponds approximately to α = 1.
Using a diagonal VCM resulted in an underestimated dis-
persion of 0.076 mm (respectively, 0.068 mm), which also
corresponds to the value found in the simulations (see Fig. 8b,
left, middle). We made use of the DCM for the range by
means of the V I F computed from the correlation coefficient
(see “Appendix B”). The corrected dispersion value reached
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Fig. 10 Flowchart of the data analysis procedure

0.098 mm (respectively, 0.079), which is close to the value
found using the fully populated VCM, thus, validating the
effectiveness of the DCM. The DCM has a similar effect as
if the range standard deviation would have been increased by
a factor

√
V I F .

4.5.2 Suboptimal scanning configuration

In that case, and following the simulations, the second-
order dispersion is not worth computing for the range
standard deviation under consideration (see Fig. 9b, left,mid-
dle). Using the estimated fully populated VCM, a value of
0.35 mm for the setting high (respectively, 0.28 mm for the
setting superhigh) was found. This is a slightly higher value
than for the optimal scanning configuration. Using a diago-
nal VCM or the DCM changed the results by less than 0.2%
and can replace with a high trustworthiness the fully pop-
ulated VCM in the computation of the dispersion. Please
note, the increased number of digits of the presented results
is only used for the sake of comparability. We additionally
performed the parameter estimation for all four cases. As
shown in the simulation, an improved stochastic model has a
low impact on the solution. This effect was confirmed in the
real data analysis and is here not presented with the sake not
to overload the present contribution.

4.5.3 Conclusion of the real data analysis

The DCM is a simplification based on the AR(1) model: a
Matérn model with a fix smoothness, balanced by a corre-

sponding “decrease” in the estimated correlation parameter.
Themethodology for using theDCMwith real data is summa-
rized in a flowchart form in Fig. 10. Simulations have shown
that the DCM can be used with a high trustworthiness, which
we validated by means of the real data analysis from a plane
fitting. It allows one, in a first approximation, to correct the
first- or second-order dispersion adequately, as well as for
parameter estimation when needed. Further investigations
will concentrate on how to estimate the AR(1) parameter and
the white noise component, following, for example, Kargoll
et al. (2018).

5 Conclusion

A knowledge of the stochastic properties of TLS errors is of
great importance to avoid untrustworthy test decisions for
deformation, and unrealistic dispersion or parameter esti-
mation. When a linearization of the functional model is
performed, biases are introduced in the LS approximation
and a second-order solution may be more appropriate to get
realistic estimates.Unfortunately, physical correlations of the
raw TLS measurements combined with the scanning config-
uration are expected to impact this improved solution. We
modeled the correlation structure of the TLS range mea-
surements with the Matérn covariance function to analyze
this impact. The three model parameters, i. e., smoothness,
correlation length and variance, can be trustworthily esti-
mated, even for small samples, by means of the de-biased
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Whittle likelihood. Alternatively, they could be fixed without
further estimation based on empirical investigation or mod-
eling. Accounting for an improved stochastic model for TLS
measurements leads to fully populated VCM. The estimation
of the second-order solution may become computationally
demanding: Some investigations were needed to weight
the corresponding benefits against computing the first-order
solution only. Based on simulated TLS measurements from
a plane scanned with different measurement configurations
and considering various correlated noise structures, we have
shown that the ratio between the first- and second-order solu-
tion was below 2% for the dispersion and 0.05% for the
estimation of the range for a reference configuration with-
out tilt of the plane. The ratio was found to decrease as the
correlations increased, as well as for suboptimal scanning
configurations: There is, thus, a high risk of miss-estimating
the dispersionwhen the first-order solution is computed. This
effect is getting higher when correlations are further underes-
timated. Indeed, we investigated whether a simple diagonal
VCM without taking correlations into account would have
led to the same LS results and found that the dispersion
increased with the level of correlations to reach a ratio of
up to 60% between the results obtained with fully popu-
lated and diagonal VCM for a range standard deviation of
5 mm. The ratio decreased as the scanning configuration
deviated from the reference one. We concluded that account-
ing for correlations with a fully populated VCM in the LS
adjustment is crucial when objects are scanned under optimal
scanning conditions, particularly if the first-order solution is
computed. This result has driven our research to answer our
third scientific question: Is it possible to replace the fully
populated VCM with a DCM or equivalent diagonal model
for a LS plane fitting? In this contribution, we could success-
fully confirm the empirical results found for GPS adjustment
by modeling various scanning conditions: A fully populated
VCM can be resumed to a diagonal matrix, which accounts
in a “hidden” way for correlations in a LS adjustment. The
ratio differences DCM versus fully populated VCM were
smaller than 2%, compared with values up to 60% for the
corresponding diagonal matrix. We advise making use of an
AR(1) model for the correlation structure with the DCM for
numerical stability. This assumption further simplifies the
computation of the inverse of the VCM, resuming it to a sim-
ple factor. Empirical estimations or physical modeling of an
accurate correlation structure of TLS range measurements
remain the topic of further contributions.

Acknowledgements This study was supported by the Deutsche
Forschungsgemeinschaft under the project KE2453/2-1.

Author contributions GK designed the research, generated and pro-
cessed the data and wrote the manuscript. ML contributed to the
research, helped with data analysis, wrote and revised the manuscript.

Funding Open Access funding enabled and organized by Projekt
DEAL.

Data availability statement The datasets generated and analyzed dur-
ing the current study are available from the corresponding author on
reasonable request.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

A Appendix: Estimation of theMatérn
parameters in real case

The three parameters of the Matérn covariance function,
the variance, the range and the smoothness of the corre-
lation function, have to be estimated in real cases. This
estimation can be performed from the residuals of the LS
adjustment. The most important parameter is the smooth-
ness, as it impacts strongly on the first values of the inverse
of the VCM and, thus, the value of the dispersion (Kermarrec
and Schön 2016).

The estimation can be done with MLE, as in the Hector
software (Bos et al. 2012) or with the powerful Whittle max-
imum likelihood, which we propose to describe briefly for
the sake of completeness. The poor performance of the MLE
for short samples (Sykulski et al. 2019) can be avoided using
this estimator, which aims to provide faster estimation with
only a slight inaccuracy. In that case, the Whittle likelihood
in its discretized form is given by

lW (H) = −
∑

ω∈�

[
log

(
f̃ (ω, H)

)
+ I (ω)

f̃ (ω, H)

]
(28)

with � as the set of discrete Fourier frequencies, f̃ (ω, H)

the continuous-time process spectral density and I (ω) the
periodogram, i. e.,

I (ω) ∝
N∑

j=1

∣∣∣z j e−i jω
∣∣∣
2
. (29)

The Whittle estimator assumes a priori that the power
spectrum of the underlying process of the dataset is known
and should only be used, if a time series is consistent with the
process under consideration. This can be checked visually in
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a first approximation with the MATLAB function pwelch to
estimate the psd of the process.

B Appendix: Variance inflation factor

The noisemodel of TLS rangemeasurements can be approxi-
mated with the autoregressive model of the first order AR(1),
which assumes a weak stationarity. The correlation matrix of
the corresponding process has a Toeplitz structure (Rao and
Toutenburg 1995), i. e.,

QAR(1) =

⎡

⎢⎢⎢⎢⎢
⎢⎢⎢⎢
⎣

1 ρ ρ2 . . . ρn−1 ρn

ρ 1 ρ . . . ρn−2 ρn−1

ρ2 ρ 1
. . . ρn−3 ρn−2

...
...

. . .
. . .

. . .
...

ρn−1 ρn−2 . . .
. . . 1 ρ

ρn ρn−1 . . . . . . ρ 1

⎤

⎥⎥⎥⎥⎥
⎥⎥⎥⎥
⎦

, (30)

where ρ is the autocorrelation coefficient, which can be esti-
mated or fixed a priori. Themain advantage of theAR(1) over
other correlation models is that an explicit inverse Q−1

AR(1)
exists, i. e.,

Q−1
AR(1) = 1

1 − ρ2

⎡

⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢⎢
⎢
⎢
⎣

1 −ρ 0 . . . 0 0

−ρ 1 + ρ2 −ρ
. . . 0 0

0 −ρ 1 + ρ2
. . . 0 0

...
. . .

. . .
. . .

. . . 0

0 0 0
. . . 1 + ρ2 −ρ

0 0 0 . . . −ρ 1

⎤

⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥⎥
⎥
⎥
⎦

.

(31)

Consecutively, the diagonal equivalent matrix, following
Sect. 3.3.3 is given by

Q−1
AR(1),equi = 1

1 − ρ2

⎡

⎢⎢⎢
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

1 − ρ 0 0 . . . 0 0

0 (1 − ρ)2 0
. . . 0 0

0 0 (1 − ρ)2
. . . 0 0

.

.

.
. . .

. . .
. . .

. . . 0

0 0 0
. . . (1 − ρ)2 0

0 0 0 . . . 0 1 − ρ

⎤

⎥⎥⎥
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

.

(32)

Thus, assuming that for large matrices, the first and
last terms of the diagonal that have different values than
the rest can be neglected, we approximate QAR(1),equ by
QAR(1),equi = V I FI, where I is the identity matrix and
the variance inflation factor is defined as V I F = 1+ρ

1−ρ
.

The corresponding VCM �̂r for the range is obtained by
�̂r ,equi = σ 2

0,r V I FI.
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