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The effects of nitrogen incorporation by high-dose ion implantation in epi-
taxial gadolinium oxide (GdO3) films on Si (111) followed by annealing have
been investigated. The nitrogen content in the oxide layer was changed by
altering the implantation dose. The presence of nitrogen incorporation on the
Gdy03 layer was studied using Auger electron spectroscopy. Nitrogen incor-
poration is believed to occur by filling the oxygen vacancies or by removing
hydroxyl group ions in Gd303. A maximum concentration of 11% was obtained
for nitrogen in the interface between the silicon dioxide and GdyO3 layer and
the implanted areas of the Gd,O3 oxide layer after sputter depth profiling. The
nitrogen distribution in the layer was found to be non-uniform. Nitrogen
incorporation sharply reduced the leakage current and effectively suppressed

the hysteresis. Leakage current was two orders lower compared with the pure
Gd0s.
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INTRODUCTION

Due to high direct tunnelling current,’ silicon
dioxide thinner than 1.5 nm cannot be used for the
gate dielectric of complementary metal oxide semi-
conductor (CMOS) devices.? High-dielectric-con-
stant (high-%k) oxides offer an alternative to silicon
dioxide (SiO,) in very-large-scale integrated (VLSI)
devices. The basic concept of using high-dielectric-
constant materials is increasing the film thickness
to reduce the tunnelling leakage current and
improve reliability, while scaling the capacitance
equivalent oxide thickness (CET) below the direct
tunnelling limit of SiO,.® Rare earth oxides (REOs)
have received much attention due to their many
advantages, including high dielectric constant,*™®
sufficiently high breakdown strength, extremely low
leakage current, and well-behaved interface
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properties. REOs”® such as Lay0s,° and Gdy0s,™
have been studied in detail. Also, the epitaxial
growth of crystalline Gd;O3 on silicon in the cubic
bixbyite structure has been widely investigated.!!
This material has a large band gap of about 6 eV
and nearly symmetrical band offsets, as well as a
low lattice mismatch of about —0.4% to Si.'? Layers
grown by an optimized process can display a
sufficiently high- 2 value to achieve equivalent
oxide thickness (EOT) values below 1 nm, combined
with ultra-low leakage current densities, excellent
reliability, and high electrical breakdown voltages.
A variety of metal oxide semiconductor (MOS)
devices have been fabricated based on these
layers.'?

The current field of research into rare earth
nitrides (RENSs) is rapidly expanding, driven by the
material needs of proposed electronic and spintronic
devices. The importance of RENs has been estab-
lished due to their semiconducting and ferromag-
netic properties. The present enthusiasm for the
capability of spintronic devices has increased the
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urgency of investigating intrinsic ferromagnetic
semiconductors, of which the RENs offer a rich
arrangement of illustrations.’® It is exciting to
explore more about the transition between these
two materials (i.e. REOs and RENSs), which form
rare earth oxynitrides. Only a few research publi-
cations about gadolinium oxynitrides are available,
and the concentratlon of nitrogen has not been
studied in detail.’

In addition, ionic oxides generally have abundant
oxygen vacancies (Vos). Considering different high-
k oxides (e.g., HfO,, ZrO,), ab initio calculations
suggest that the presence of Vs is associated with
the degradation of electrical properties.'®'” Differ-
ent methods have been suggested to enhance the
electrical properties of high-£ oxide thin films,
among which dopant incorporation has been found
effective. It is reported that the inclusion of nitrogen
s1gn1ﬁcant1y i mproves the electrlcal properties in
various oxides.’®2° Ayan et al.?! reported that
incorporating a small amount of nitrogen during
the growth of epitaxial Gd,O3 thin films improved
the electrical properties.

In this work, we fabricated gadolinium oxynitride
layers using high-dose nitrogen implantation into
Gd;03 layers grown by molecular beam epitaxy
(MBE). The obtained layers were characterized
structurally using x-ray diffraction (XRD), trans-
mission electron microscopy (TEM), and Raman
spectroscopy. The nitrogen incorporation and the
impact on band structure were evaluated using x-
ray photoelectron spectroscopy (XPS) and have been
reported.”

We aimed to determine the nitrogen concentra-
tion in the layer using sputter depth profiling in an
Auger electron spectroscopy (AES) system and
investigated the changes in the electrical properties
of the layer due to nitrogen incorporation.

EXPERIMENT

The sam£les were prepared using the MBE
technique.?® The process flow of sample prepara-
tion, nitrogen ion implantation, and the conditions
were elaborated in a previous publication.?? To
perform electrical characterization, platinum (Pt)
metal contacts were deposited on the implanted
layers. The samples were characterized electrically
by measuring their room temperature leakage cur-
rent versus voltage (I-V) characteristics using a
semiconductor parameter analyzer (Agilent 4156C).
The hysteresis of the samples was studied by
capacitance—voltage (C—V) measurements using an
impedance analyzer (Agilent 4294A).

An AES technique, in conjunction with ion sput-
tering, was used to obtain elemental concentrations
in high-dose nitrogen-implanted samples. For the
depth Proﬁling rocess, we used a high-dose
(2 x 10" atom/cm?) nitrogen-implanted sample
with 20 nm SiO, and 120 nm GdyOs, which was
annealed at 800°C in Ny, ambient for 1 min.

Sputtering details: Ion: Ar+, Energy: 4 keV,
Angle: 38.8° angle of incidence to the surface
normal, Beam current: ~ 1 uyA.

RESULTS AND DISCUSSION

In this section, we summarize our findings for the
samples obtained after different processing steps.
XRD measurements were employed first. XRD data
do not exhibit additional phases, but we observed a
drop in the intensity and broadening of the oxide
peak after implantation, which may be attributed to
the reduction in the thickness of the crystalline
oxide layer (Fig. 1). The strain effects in the GdsO3
layer may also be a reason for peak broadening,
which reduces after rapid thermal annealing (RTA).

The TEM image in Fig. 2 shows a very rough
surface, and strong implantation effects are
observed in the upper portion of the oxide layer,
whereas the effects are comparatively weak near
the substrate. These findings agree well with the
stopping range of ions in matter (SRIM) implanta-
tion profile and with the structure of GAN reported
by McKenzie et al.>* We observed the presence of an
interfacial layer of thickness ~ 7 nm which formed
due to annealing after 1mplantat10n 25

The concentration of nitrogen in the interface
between the SiO; and Gdy,Oz layer and the
implanted areas of the Gd,Os; oxide layer after
sputter depth profiling is summarized in Table I.
The atomic percentages of all elements were
obtained from the Auger spectra, depicted in
Fig. 3. Because the sputtering rate for Gd,Os is
not known, we plotted the depth distribution as a
function of sputtering time, illustrated in Fig. 4.

The quantitative Auger method calculations are
on the assumption that:

S1(222)
GdZO3 (444)
—— As implanted

—— Annealed o

Intensity (arb.units)

I j
il \\u "

‘W‘ \‘ i I | “\

i w “IJ“‘U‘ il i il ww‘u hid

56 58 60 62 64
20 (degrees)

Fig. 1. X-ray diffraction pattern of ref. Gd,O3 sample, as-implanted
and after annealing steps (all patterns were normalized to the Si
(222) peak).
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Fig. 4. Graph-sputtering time versus nitrogen concentration.

Fig. 2. TEM bright-field image analysis of the sample with the

highest implantation dose.

Table I. Concentration of Gd, O and N at different sputtering time

Sputtered region Sputtering time (s) Gd (at.%) O (at.%) N (at.%) Ar (at.%)
SiO, 360 54.7 39.9 5.2 -
Gdz03 36 54.1 39.8 3.8 2.3
72 50.7 40.2 6.9 2.2
144 49.5 37.2 11.0 2.2
216 48.9 39.9 8.5 2.7
Numbers in bold indicate maximum nitrogen concentration obtained
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Fig. 3. Auger spectra after 72 s sputtering of the Gd,O3 layer. Elements present in the layer are marked in bold letters.
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Ixn = SANy, (1)

where I, is the measured Auger current from
element A, S, is the Auger sensitivity factor of
element A, and N, is the number density of atoms of
type A.

If the sample contains two elements A and B, the
expression gives the number density N o of A%°:

In

Sa
Ny = ﬁ (2)
Sa Sg

We calculated the elemental concentration using
Eq. 2.

To find out nitrogen concentration Np;tro
é nitro
— nitro 3
Lnitro + Iﬂ IOJ —+ Iﬂ ( )
Snitro SGd SOxy SAr

The main observation during sputter depth profiling
is that the nitrogen distribution in the oxide layer is
non-uniform. It takes 360 s to remove 20 nm SiO,.
The sputtering rate of SiOs is 3.33 nm/min. The
concentration of nitrogen on the surface of the
Gd;0O3 layer seems to be around 5 at.%. Going
deeper into the GdsO3 layer, we obtain a maximum
nitrogen concentration of 11 at.%. According to the
SRIM ion distribution profile, the ion range is at
46.7 nm.?? The concentration of oxygen decreases
with increasing nitrogen content, which can be
explained as a result of preferential oxygen
sputtering.?’

Electrical Characterization

The effect of nitrogen ion implantation on the dc
leakage conduction of the epitaxially grown GdsOs;
thin films was investigated by standard I-V mea-
surements shown in Fig. 5. At applied electric fields
below 1 MV/cm, the leakage current density of the
high-dose nitrogen-implanted epitaxially grown
Gd,0O3 samples were found to be about two orders
of magnitude lower than the Gd,O3 samples grown
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Fig. 5. Room temperature leakage current density of nitrogen-
implanted Gd,03.

under similar oxygen partial pressure (POy). A
previous publication from the same group reports
that Gd,O5 layers grown at POy ~ 5 x 10~ % mbar
show leakage current of the order 1072 A/cm?
whereas the same partial pressure in nitrogen
ambient growth (PNyO ~ 5 x 10°® mbar) gave
leakage current in the range of 1072 A/em? %! For
our high-dose nitrogen-implanted sample (Fig. 5),
leakage current density reduced sharply to
1.8 x 10°* A/em®.

To elucidate the enhanced electrical properties of
nitrogen-implanted Gdy,O3 layers, we have to take
into account the effect of nitrogen in the electrically
active defects present in GdyO3. In complex oxides
grown at a higher temperature, Vps are the dom-
inant electrically active defect sites.?®**° Reports
show that the presence of Vgs that induce an
electron conduction path and the migration of Vgs
in the large electric field are the two main reasons
for the enhanced leakage current density in complex
oxides.!”3%-35 When nitrogen is incorporated in the
oxide layer, nitrogen atoms occupy the oxygen
vacant sites and therefore change their energy
levels and also immobilize the Vs, which may
successively reduce the leakage current due to the
movement of the Vs.36

Further, we investigated the impact of nitrogen
incorporation on the C—V behaviour of the nitrogen-
implanted epitaxially grown GdsOj3 layers. Figure 6
depicts the C-V hysteresis characteristics of high-
dose nitrogen-implanted Gd,Os. Reports show that
C-V of a pure GdyO3 sample grown at lower Pgo
(~ 2 x 10”7 mbar) exhibits strong hysteresis.?” As
shown in Fig. 6, nitrogen implantation in GdsOs3
already results in nearly ideal dielectric behaviour
because of the possibility to reduce the effect of
mobile oxide charges formed from the Vgs.

CONCLUSION

Nitrogen concentrations in high-dose-implanted
samples were obtained using AES, in conjunction
with ion sputtering. By conducting sputter depth
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Fig. 6. C-V hysteresis of nitrogen-implanted epitaxial Gd,Os.
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profiling, we obtained a maximum concentration of
11 at.% nitrogen in the Gd,O3 layer, which was not
in complete agreement with the SRIM implantation
profile. Ion implantation caused damage to the
layer, and there were no other prominent structural
changes in XRD. For uniform nitrogen distribution
in the oxide layer, we need further work on implan-
tation parameters.

Nitrogen ion implantation is an effective method
for reducing leakage current and enhancing the
electrical behaviour of rare earth oxides.
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