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Abstract
Within product development processes, computational models are used with increasing frequency. However, the use of those
methods is often restricted to the area of focus, where product design, manufacturing process, and process chain simulations
are regarded independently. In the use case of multi-material lightweight structures, the desired products have to meet several
requirements regarding structural performance, weight, costs, and environment. Hence, manufacturing-related effects on
the product as well as on costs and environment have to be considered in very early phases of the product development
process in order to provide a computational concept that supports concurrent engineering. In this contribution, we present an
integrated computational concept that includes product engineering and production engineering. In a multi-scale framework,
it combines detailed finite element analyses of products and their related production process with process chain and factory
simulations. Including surrogate models based on machine learning, a fast evaluation of production impacts and requirements
can be realized. The proposed integrated computational product and production engineering concept is demonstrated in
a use case study on the manufacturing of a multi-material structure. Within this study, a sheet metal forming process in
combination with an injection molding process of short fiber reinforced plastics is investigated. Different sets of process
parameters are evaluated virtually in terms of resulting structural properties, cycle times, and environmental impacts.

Keywords Product development · Production engineering · Multi-scale simulation · Machine learning · Multi-material
lightweight structures

1 Introduction

In today’s product development, virtual tools are used more
frequently, leading to a reduction of physical prototypes
and experimental testing. Virtual testing leads to a reduction
of the development time, to cost savings, and to an
increase in quality due to the fast evaluation of different
designs [1]. A development without physical prototypes can
therefore contribute to an improvement in the economic and
environmental efficiency of product development processes.
Especially potential environmental impacts can hardly be
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tested by physical prototypes. Virtual methods, which make
it possible to determine the environmental impacts over
the life cycle of a product, can therefore significantly
support product development with regard to environmental
impact reduction [2]. However, a progressive reduction of
prototypes and experiments is a major challenge, as this
directly depends on the quality and efficiency of virtual
models and methods.

Within the product development process, the product
engineering focuses on product-related properties. In addi-
tion, knowledge of the manufacturing process is necessary
since product design and product properties influence the
manufacturing and vice versa. In order to shorten develop-
ment times, an integrated product development including
design engineering, production engineering, and other dis-
ciplines is used. Such an iterative development method is
referred to as concurrent engineering. In this contribution,
we focus on the interaction between product engineering
and production engineering employing integrated virtual
prototypes.
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Nowadays, digital and virtual representations of the
geometry by computer-aided design (CAD) and numerical
methods, such as the finite element method (FEM), are
commonly used in the field of computer-aided engineer-
ing (CAE). Throughout the entire product development
process, numerous virtual representations exist. Typically,
for each development phase, the geometry is taken from a
central CAD file. Hence, each simulation model is then a
individually modified model with a certain level of abstrac-
tion to evaluate physical properties, such as the structural
performance of a product, or to evaluate manufacturing
aspects (e.g., tool design, process setup, and assembly
of components). For an efficient product development,
the computational models used for product engineering
as well as for the production engineering have to be
combined.

In this case, it is not sufficient to share only geomet-
ric information. It rather requires an intensive exchange
of information between manufacturing simulation and
structural analysis. Multi-scale simulations are suitable
approaches to capture effects at different scales of the prod-
uct as well as of the production. In the context of production
systems, the Integrated Computational Materials Engineer-
ing (ICME) focuses on the microstructure of materials and
the effects of processing [3]. In ICME, methods from com-
putational materials science and multi-scale mechanics are
used to support materials design [4]. Despite the considera-
tion of the manufacturing process, ICME focuses mainly the
material rather than the production (system). A wider range
is represented within the Integrated Computational Mate-
rials and Production Engineering [5] combining materials
and machining simulation with factory and production plan-
ning. The necessity of implementing multi-scale simulation
tools in hierarchical plant models is also pointed out in
[6].

The idea of an integrated computational engineering
approach becomes even more important; when in contrast
to conventional production processes for mono-material
structures, multi-material lightweight structures (MMLS)
are achieved by multi-stage and integrated manufacturing.
They are physical products or parts of products that
consist of different materials with different properties
(e.g., steel and fiber-reinforced plastics) and enable
a required technical functionality at a lower weight
than generally achievable by other means [7]. The
resulting mechanical properties are then significantly
influenced by the manufacturing process [8]. Hence, the
requirements for the virtual modeling along the product
development process of MMLS are increased. Furthermore,
with increasing number and complexity of manufacturing
processes and the use of several dissimilar materials,
a continuously available virtual process chain becomes
mandatory [9].

Despite the lightweight potential of MMLS, their
manufacturing and integration into existing production
systems remain challenging. For example, the use of
fiber-reinforced materials leads to higher material costs
and environmental burdens compared with conventional
steel structures. However, due to the integration of joining
processes in the manufacturing, the number of subsequent
processes decreases, which is beneficial in terms of costs
regarding the total process chain. When processing ther-
moplastic materials, MMLS tend to have more energy
intensive production steps compared to conventional steel
structures. Consequently, integrated production processes
for MMLS cause a higher complexity compared with con-
ventional steel processing. This also raises the question
of their environmental competitiveness, which has to be
assessed in the context of their entire life cycle and can only
be investigated by virtual prototypes.

To address the resulting challenges, we propose a con-
cept for an integrated computational product and production
engineering (ICPPE). In this context, product denotes a
physical product or part of a product. The outlined concept
is generally applicable and shows an integrated multi-scale
scheme in order to connect different engineering disci-
plines along the product development more closely. ICPPE
allows considering product and production impacts and
requirements already in early development stages. More-
over, it enables the estimation of manufacturing times and
costs as well as the environmental impact. In addition,
that information allows a scenario assessment for the life
cycle engineering to identify compromises and potential
improvements in very early development phases. Beyond
the engineering specific tasks, also superordinate factory
planning processes benefit from ICPPE due to the model-
based understanding of processes inside and across process
chains.

In order to illustrate the proposed concept, the paper
is structured as follows. After a short review of current
state of the art methods used in computational engineering
and in the field of process chain modeling (Section 2),
the overall concept of ICPPE is presented in Section 3
(cf. Fig. 2) and the individual levels are described in
detail. The presented concept is demonstrated in Section 4
on a use case example of a MMLS consisting of a
metal component and a fiber-reinforced plastic (FRP)
component (cf. Fig. 7). Conclusion and outlook are given in
Section 5.

2 Computational methods in product and
production engineering

Different computational simulation methods are used during
the product development process. Regarding the entire
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Fig. 1 Structure of simulation models for different production system
elements; inspired by [13, 14]

production system, for example, we find that different
spatial and temporal scales are involved [10–12]. The
modeling and simulation methods used at each of these
scales require a certain level of detail. Figure 1 depicts a
classification of simulation methods for different production
system elements with respect to the level of abstraction and
the system behavior.

The virtual representation of physical systems consists of
mathematical variables. To investigate the system behavior
virtually, computer algorithms are used to manipulate these
variables in accordance with the given set of parameters, and
mathematical and physical models used.

The physically detailed simulations analyzing product
properties due to the production process are based on
principles of computational mechanics, which is generally
referred to as computer-aided engineering. This class
belongs to the field of dynamic systems, where commonly
finite element analyses (FEA) are carried out to estimate the
material behavior.

In modeling virtual manufacturing process chains, the
discrete event simulation paradigm has prevailed. Discrete
event simulations are applied to model and understand
the dynamic interdependence between process steps and to
detect time bottlenecks [15]. Agent-based simulation and
hybrid modeling approaches combining multiple simulation
paradigms within one model (cf. Fig. 1) have been applied
in academia to predict the energy demand of production
systems on different levels such as process, process chain,
and factory level [14, 16, 17].

2.1 Computer-aided engineering

In the field of computational mechanics, numerical methods
such as FEM are commonly used for solving problems in
engineering and mathematical physics. Basic differential
equations are the balance of linear momentum, the first law
of thermodynamics, and in the case of fluid problems the
Navier-Stokes equations [18, 19]. Numerical solutions of
those basic equations are available in numerous commercial
software systems. In this work, we focus on the numerical

analysis of the manufacturing processes deep drawing and
injection molding.

2.1.1 Sheet metal forming

Nowadays, three-dimensional computations of deep draw-
ing processes under consideration of a planar anisotropy
have become a matter of course. With the help of addi-
tional adaptive mesh refinement algorithms, even complex
sheet metal components can be efficiently simulated within
acceptable computing times [20]. In early 2000s, the state
of the art of process variables that can be calculated reli-
ably using FEM were successively extended [21–23]. This
includes failure due to fracture, sheet thickness, strain dis-
tribution, wrinkling, blank-holder force, and strain-based
damage. Therefore, it is possible to achieve improved tool
designs and process times, as well as a high product quality.
For determining the stress distribution in deep-drawn parts,
the calculation of the elastic-plastic part of the forming pro-
cess is necessary, since even small deviations of plastic
deformations have a considerable influence on the spring-
back [24, 25]. Springback and stress-based damage are still
challenging issues in deep drawing simulations. Also, fail-
ures due to friction are difficult to predict. In this respect,
existing friction models are constantly being advanced and
improved [26]. With the growing demand for new materials
like fiber-reinforced thermoplastics as well as their func-
tional combination to metals, temperature effects due to
forming at elevated temperatures have become an important
factor as well [27].

2.1.2 Injection molding

Injection molding of thermoplastics is a highly efficient
manufacturing process and therefore commonly used for
plastic parts in large-scale production industries. The
numerical analysis of the injection molding process is used
for improving tooling and product quality [28, 29]. Process
parameters can be identified finding optimal process
settings for mold filling. Furthermore, cooling [30, 31] and
runner systems [32, 33] can be optimized. In addition to the
process and tool design, effects influencing the structural
performance can also be analyzed. Those effects are e.g. the
position of weld lines [34] or, in the case of FRP, the fiber
orientation due to the plastic flow [35–37]. In this work,
we focus on short fiber-reinforced thermoplastics (SFRTP),
where the obtained fiber orientation mainly influences the
thermoelastic properties [38] and the failure [39]. For
the structural analysis, the fiber orientation is mapped
onto the structural mesh to consider the process-induced
anisotropy [40, 41]. Furthermore, residual stresses due to
the manufacturing process are considered in subsequent
analyses for computing distortions of the structure [42, 43].
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2.2 Model order reduction and surrogatemodeling

The simulations in the field of CAE are usually computa-
tionally expensive. In order to speed up the computing time,
methods from model order reduction (MOR) and machine
learning can be exploited to reach real-time applications.
Based on those techniques, surrogate models are derived
from a parametric solution that contains (all) possible sce-
narios [44]. MOR techniques approximate the solution of
a physical system without simplifying the model and the
underlying physics. MOR is closely related to the field of
surrogate modeling. The dimension reduction by Principal
Component Analysis (PCA) of data builds the first step [45].
Based on PCA, the proper orthogonal decomposition (POD)
[46] can be used for a projection-based model reduction,
where the projection vectors are determined from precom-
puted parametric solutions. In the context of robot-based
incremental sheet metal forming, Rademacher et al. [47]
have applied a selective POD to reduce the computational
effort. It is also suitable for the analysis of material non-
linearities and large deformations [48, 49]. An extension of
POD is the Proper Generalized Decomposition (PGD) [50–
52], where the reduced basis functions are computed on the
fly. According to [44], such numerical models are referred
to as virtual twins. Furthermore, PGD-based virtual twins
can be used in combination with online process data for a
cyber physical system approach in order to allow predictive
maintenance [53].

Surrogate modeling, according to [54], is a “technique
that makes use of the sampled data to build surrogate
models, which are sufficient to predict the output of an
expensive computer code at untried points in the design
space”. In the context of process simulation, the sampled
data are derived by a FEM parameter study (details on
this approach can be found in Sections 3.3 and 4.3).
The surrogate models enable a fast and accurate search
throughout the parameter space, e.g., quickly delivering
sweet spots for the part design and the production
engineering. Surrogates can further be used to bridge the
gap between the high level of detail needed for dynamic
systems in CAE to more abstraction at process chains or
factory simulations.

The general procedure for building surrogate models
from FEA covers the following consecutive phases:
definition of design space and sample points via a design
of experiment (DoE), a sufficient amount of FEM runs
for the derivation of a sampled data base on which the
surrogate models are trained (e.g., through machine learning
approaches), and finally evaluation of the trained surrogate
models [54]. For covering the surrogate learning task, some
approaches have been demonstrated in literature that all
rely on machine learning concepts—polynomial response
surface model (RSM), kriging algorithm, radial basis

functions (RBFs) [54], artificial neural network (ANN) [55,
56], multiple adaptive regression splines (MARS), as well
as support vector regression (SVR) [57].

A demonstration of machine learning-based surrogate
modeling of FEM is shown by [58] in the medical
technology context of estimating wall stress distribution of
an 3D aorta shape. The deep learning approach comprises
three steps: (I) shape decoding of input shape, (II) nonlinear
mapping of input shape code to output stress code, and
(III) stress decoding to wall stress distributions. For shape
decoding, PCA is applied. Machine learning approaches
are deployed for nonlinear mapping and stress decoding in
terms of multilayer neural network and convolutional neural
network approaches.

2.3 Process chainmodeling using discrete event
and agent-based simulation

Traditional process chain modeling and simulation has
been applied by practitioners in academia and industry
for general system design and manufacturing system
operation [59]. Dimensioning the capacity of machines
and buffers, detecting bottlenecks, and reducing costs are
typical objectives of traditional process chain simulation
approaches [59]. Over the past years, modeling and
simulation have been accepted as a suitable approach for
investigating also the energy demands of manufacturing
systems on different system levels [60, 61]. In this context,
agent-based modeling approaches have seen an emerging
application [62]. Energy-oriented simulation approaches of
production systems address different elements of factory
systems, ranging from process and machine [63] over to
process chains with or without technical building services
(TBS) [64] and holistic multi-scale production system
simulations including all levels of a production system [14,
65]. In the context of lightweight structures, Schönemann
et al. [66] introduce a multi-scale modeling and simulation
approach that combines multiple models on different scales
(e.g., product, process, process chain, and factory building)
to simulate the accurate energy demand of manufactured
products.

3 Concept for an integrated computational
product and production engineering

The proposed concept of ICPPE is depicted in Fig. 2. It
combines product engineering and production engineering
within an integrated computational concept. During the
product development, different tasks have to be solved
that require specific levels of abstraction. Hence, different
models and methods are needed in each phase according
to the regarded system (cf. Fig. 1) and the relevant
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Fig. 2 Concept of the Integrated Computational Product and Production Engineering (ICPPE)

tasks. Within the integration of product engineering and
production engineering, the three levels Product Level,
Process Level, and Process Chain/Factory Level are
distinguished. At each level, different simulation methods
are utilized with respect to the desired level of detail.
At the beginning of the product development, certain
specifications concerning the product properties such as
the mechanical performance (e.g., strength, stiffness) are
defined. The mechanical properties are mainly influenced
by structural parameters, such as fiber orientation in
composite materials or thickness distribution for sheet
metal structures. In order to estimate the mechanical
response due to the structural properties, finite elements are
well established. However, the desired product properties
give requirements for the structural parameters. To take
up the example of composites, the fiber orientation is
mainly influenced by the manufacturing process. Hence,
the process parameters have a significant impact on the
structural parameters and consequently on the product
properties. The relation between process and structural
parameters can be investigated numerically by FEM. In
computer-aided engineering, this leads to a virtual process
chain, where the simulation of the manufacturing process
is coupled with the stress analysis of the virtual product.
Since detailed FEA on product and process level are time
consuming, surrogate models can be exploited in order to
allow fast optimization tasks. In the present concept, those
surrogate models use data analysis techniques to obtain
surrogate models from FEM data.

Besides physical properties, also cycle times, tempera-
tures, and machine forces can be estimated already from
FEA. This information is necessary for the production
engineering in order to provide machine availability and
corresponding process chains to meet the lead time. A single
process step is embedded into a process chain. Thus, pro-
cess and process chain parameters directly influence each
other. In addition with machine data and information on
the process sequences, the FEA data obtained on the pro-
cess level are used as input for the process chain simulation.

On the process chain/factory level, the detailed physics of
the process level are less important and therefore mainly
agent-based and discrete event simulations are exploited.
Furthermore, the process chains set requirements for the
factory in terms of TBS and vice versa.

The present concept allows to investigate effects at
each level during the product development to deduce
requirements for the factory depending on the desired
product properties. Also, it is possible to determine if
an existing TBS is sufficient to produce new developed
products with existing installations. This fact becomes
even more important when new materials or manufacturing
processes are to be introduced into existing production
lines. Hence, within this concept, an integrated scheme is
available to speed up the development times from the first
design phase to the start of production. In the following, a
detailed description of the three levels is given in terms of
input, output, and the used methods.

3.1 Product level

In general, the product development starts with the idea
and first design sketches. Under consideration of several
restrictions concerning process and design space, usually
computational-aided design (CAD) tools (potentially in
combination with topology optimization) are used for the
first product design [67].

Afterwards, an iterative process starts, where methods
of computational engineering are employed to evaluate
product properties such as stiffness, static, dynamic
and fatigue strength. Different designs and material
combinations are tested virtually to optimize the desired
product. Using e.g. FEM, those simulations yield detailed
information about the physical behavior of the product
and the mechanical product requirements can be assured.
However, for many applications, these simulations cannot
be regarded without information of the production at the
process level. In the context of ICPPE, residual stresses,
distortion, and the fiber orientation of FRP have to be
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mapped onto the product level instead of using ideal
CAD geometries and material orientations. Especially, for
composite materials and MMLS, the manufacturing process
has a main influence on the product properties.

In Fig. 3, the methodology is shown exemplary. The input
for the simulation is given by the results of the process
level either from detailed FEA results or in the form of
surrogate models. These input data contain the geometry
after manufacturing and effects induced by the process.
Together with the corresponding material parameters, a
structural analysis by FEM is utilized. As an direct output,
reaction forces, stresses, and other field variables can be
evaluated to estimate the product properties.

3.2 Process level

The process level represents a single manufacturing process.
A challenge in current engineering practice is the lack of
knowledge of the manufacturing process in early stages
of product development. Hence, the product engineer may
not have all relevant information (e.g., fiber orientation,
weld lines, or springback) needed for the FEA. Due to
the lack of time, it is often not practicable to carry out
a manufacturing analysis as an input for the structural
analysis. The more complex material and geometry are,
the more detailed the simulation model has to be set up
and field variables have to be mapped between different
finite element meshes. However, process simulations are
necessary for a computational production engineering to
investigate process and tool designs as well as the influence
on structural parameters.

On the process level, the influence of the process on
the product properties is investigated numerically. Typical
input parameters are the material data of the processed
materials, process and machine parameters, and geometric
information in terms of effective surfaces and cavities. In
order to analyze the process in detail, numerical methods
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Fig. 3 Methodology for virtual prototyping on the product level

such as FEM are used. The output of the process simulation
is the final geometry with its process-induced effects and
defects. The procedure on the process level is summarized
in Fig. 4.

In addition, parametric studies allow computing manu-
facturing process output for different sets of process param-
eters. The obtained FEA data can be used to develop surro-
gate models that overcome large computation times. Such
models provide a fast yet accurate tool to estimate directly
the output in dependence of the input parameters. Having a
suitable surrogate model at hand, it can be used at different
phases during the product development for fast and accurate
assessments of parameter variations or as a direct input in
the simulation on the product level (cf. Fig. 3).

Furthermore, demands for tooling and machines can be
estimated. Parametric studies at the process level serve
as input for process chain and factory simulation. Here,
machine-related requirements can be evaluated to estimate
e.g. the demand for energy and to optimize the material flow
within the factory.

3.3 Surrogatemodeling

Surrogate models strive to describe the underlying phe-
nomena in an appropriate manner, which enables a fast
and accurate search across the parameter space. Especially,
the manufacturing discipline of engineering design, e.g.,
CFD or FEM, deploys computational expensive codes, con-
suming days or weeks for a parameter study. However, an
adequate FEA result within a few seconds is crucial for a
precise estimation of the process settings influences single
production processes on the part properties, e.g., structural
properties like the fiber orientation in fiber injection mold-
ing. Solving a classical FEM problem is unsuitable for this
due to its high computing time. A possible approximation,
especially for not computed process parameter combina-
tions, can be realized via a lookup table with interpolation

Final Geometry with its process induced properties

Method

Output

Finite Element Simulation 

Effective surface/ cavityInput

Manufacturability, e.g.
Form Filling

Damage

Max. Machine Forces

Process Parameters

Material Parameters

Machine Parameters

Effects and defects, e.g.
Residual stresses

Wall thickness

Fiber orientation

Fig. 4 Methodology for virtual manufacturing on the process level
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between parameters. However, for a fast, precise, and
nonlinear approximation, a method based on supervised
machine learning is presented for surrogate modeling of a
FEM parameter study. The FEM surrogate model can then
be used for adequate simulation parametrization on process
chain and factory level.

In FEM surrogate modeling, machine learning concepts
are deployed on FEM parameter studies to facilitate a rapid
estimation of part properties. Figure 5 depicts the general
modeling procedure, exemplified by a tensile test specimen
manufactured through injection molding.

The procedure is adapted from [58], who proposed a deep
learning approach for the estimation of stress distribution of
an aorta and is separated into three consecutive parts—input
for modeling, nonlinear modeling, and modeling output,
i.e., the FEM surrogate model. The surrogate model does not
necessarily capture only a single part property, i.e., single
output regression, but can comprise multiple properties,
i.e., multi output regression, like the fiber orientation and
final geometry of the tensile test specimen (see Fig. 5).
The non-linear modeling, i.e., multi output regression,
connects the input data with the part properties by assigning
each input sample a set of target variables, i.e., part
properties. Because of the labeled data set, FEM surrogate
modeling is a supervised learning task. Furthermore, the
part properties have a numeric scale of measure, making
it a regression task. Machine learning methods that meet
these characteristics are, for example, regression trees and
multilayer neural networks for regression.

In order to find a well-fitting surrogate model, the
nonlinear modeling step comprises a model parameter
refinement for each deployed method as well as a model
benchmark. Due to the multi-output modeling approach,
an ensemble of regression methods, e.g., each model being
responsible for a specific part property, may be the best
fit, forming the final FEM surrogate model. As model
input, i.e., independent variables, the FEM mesh of the

FEM Surrogate Model
Comprising Part Properties

Output

Multi Output Regression Methods
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FEM Mesh of PartInput Design of Experiments

Process Parameters, e.g.
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Fig. 5 Nonlinear modeling procedure for FEM surrogate modeling

part as well as a sufficient DoE of process setting values
is used. Depending on the part, the FEM mesh consists
of several thousand nodes each representing a sample data
point that the output is mapped on. Each sample comprises
the x, y, and z coordinates of the node, i.e., features of
the model. These features are supplemented by the setting
values of the DoE, e.g., a fiber interaction value. If complex
parts or extensive DoEs are investigated, a model reduction
approach prior to non-linear modeling may be vital, in order
to reduce the computational effort. Subsequent to non-linear
modeling, a mapping to the original parameter space could
be performed.

3.4 Process chain and factory level

The modeling approach on the process chain level, shown
in Fig. 6, integrates energy-oriented bottom-up machine
models in a generic process chain model. Modeling and
simulation on process chain and factory level provide
valuable inputs for the design of the process chain and a
successive life cycle evaluation.

The bottom-up machine models provide state-based
energy demands of main machine components, such as
drives, tempering units, and hydraulic components. The
machine models permit an energy assessment of the
production process as a function of process parameters
coming from numeric process simulation or surrogate
models. The modeling of different machines follows the
same generic states, as recommended by [65]: off, ramp-up,
standby, and processing. The processing state is machine
specific and includes further sub-states to model the process
sequence accurately. Parametrization of the machine models
is facilitated with product, process, and machine parameters.

Product parameters include characteristics that influence
the direct energy demand for processing such as mass,
specific heat capacity, and geometry. Furthermore, product

Energy and time assessment

Method

Output

Combination of agent based and discrete event simulation

Input

Energy study
Product energy intensity

Value/ non-value adding energy 

demand

Energy hotspots

Process chain 

modeling environment
Bottom-up machine 

models

Process Parameters, 
e.g.

Processing times

Quality rates

…

Machine Parameters, 
e.g.

Efficiency factors

Buffer size

…

Product Parameters, 
e.g.

Weight

Spec. heat capacity

…

Time study
Lead time, Cycle time

Time bottlenecks

Utilization of machines and 

buffers

Integration

Fig. 6 Integration of energy-oriented machine models into a generic
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characteristics that describe the mechanical performance of
the product such as ductility, strength, or fiber orientation
are not further relevant for the process chain modeling
approach. Process parameters describe the execution of
the process. Typical parameters in the field of MMLS
are processing times, temperatures, and pressures. Machine
parameters cover the dimensioning and efficiency of
machine components, such as nominal power or flow
rates and efficiency factors at different operating points.
Product and process parameters are imported from the
numeric process simulation or surrogate models. Machine
parameters are either based on existing machines or on
empirical values based on expert knowledge. Process
and machine parameters provide the basis for calculating
the energy demand for the machine components. The
calculations follow a backward logic: firstly defining the
energy required for the production process itself and
secondly calculating each component’s power demand
considering the efficiency of machine components.

The generic process chain model represents a modeling
environment for flexibly setting up process chains and
embedding them in a factory environment. Connecting
several machine models to a process chain allows for
further analyses beyond solely energy demands. Isolated
machine models do calculate the direct energy demand of
one product. They neglect however indirect energy demands
for waiting times and machine ramp-ups. The model logic
distinguishes between the direct energy demand EDdirect

and the indirect energy demand EDindirect. Both direct and
indirect energy demands are summed up over all process
steps to form the product’s energy intensity. The distinction
between direct and indirect energy demands builds up on the
definitions provided by [61, 68]. In this modeling approach,
the direct energy demand arises from the processing stage
of the machine while the energy demand from all other

stages accounts for the indirect energy demand. Individual
process times on machine level lead to an uneven utilization
of machines and bottlenecks in the process chain. This
again leads to indirect energy demands occurring in waiting
times, which have to be allocated on the produced parts.
The process chain perspective also allows for assessing the
impacts of quality rates and the placement of quality gates
in the process chain on the material and energy efficiency.
As an example, a lower quality rate decreases the material
efficiency, increases the indirect energy demand of good
parts, and affects the utilization of upstream machines
as well. In addition to quality rates, the machine models
also consider the material efficiency of the processes. This
allows for evaluating the required total input material for
producing a final product.

4 Case study on amulti-material lightweight
structure

In this section, we demonstrate the potential of the pro-
posed computational concept on a generic MMLS. In the
concept of multi-material design, different classes of mate-
rials are combined within one or more manufacturing steps.
This enables a highly efficient use of material and an opti-
mized structural design [69]. In automotive applications,
the combination of sheet metals with fiber reinforced ther-
moplastics (FRTP) leads to significant weight reduction
and an improvement of the crash behavior [70]. Compared
with solely composite solutions, hybrid FRTP-metal struc-
tures often exhibit an economical advantage in terms of
material and production costs [71]. A conventional pro-
cess chain of those hybrid structures consists of a deep
drawing process of the sheet metal and the application of
FRTP components (e.g., organic sheets or unidirectional

Cutting Injection MoldingDeep Drawing

Production Processes

Surrogate Modeling Multilayer Perceptron, Simple Regression, Random Forest, Gradient Boosted Trees (cf. 4.3)

Product

Sheet Metal Blank Deep-Drawn Cup Metallic Insert Final Structure

Process Chain Simulation Discrete Event Simulation, Agent Based Simulation (cf. 4.4)

Numerical Parameter Studies FEM Simulation (cf. 4.1) FEM Simulation (cf. [79-82]) Fluid Simulation (cf 4.2)

Fig. 7 Schematic view of the investigated process chain within the case study, the corresponding intermediate products, and the methods applied
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laminates) in a second thermoforming process [72]. Vol-
umetric reinforcements can be realized by compression
molding of long fiber reinforced thermoplastics or injection
molding of SFRTP [73]. Novel process chains for intrin-
sic hybrid structures are given in [74]. The combination of
different process steps consequently leads to challenges in
terms of integrated simulation methods [75].

At the research factory Open Hybrid LabFactory in
Wolfsburg (OHLF), Germany, [76] integrated manufactur-
ing processes for MMLS in high-volume applications are
investigated. In the present use case, theMMLS consists of a
sheet metal cup in combination with SFRTP reinforcements.
The investigated process chain, the intermediate product,
and the methods used are depicted in Fig. 7. The design
of the final structure is chosen for demonstration purposes
following the geometries investigated in [77, 78].

The use case description is divided into four sections
representing the different simulation methods applied at
each level. Hereby, the focus is on the forming and
molding process. In 4.1, a numerical parameter study
analyzing process influences on deep drawing is carried
out. The subsequent cutting process is neglected in the
numerical analysis. However, the integration into ICPPE
is generally possible. Modeling approaches for different
cutting processes can be found in e.g. [79–82]. The resulting
metal cup is then used as a part insert in the injection
molding process. The corresponding numerical parameter
study on temperature influences during the overmolding is
described in 4.2. The data obtained from both numerical
studies are used to train the surrogate model in 4.3. Different
machine learning methods are evaluated and compared.
Finally, in 4.4, the process chain simulation is carried out to
investigate cycle times and energy demands.

4.1 Parametric study on deep drawing

First, a numerical simulation for deep drawing of a rectangular
cup was modeled. Deep drawing is one of the most impor-
tant and proven sheet metal forming processes. Based on this
example, a parameter study is carried out varying the blank
holder force and the punch speed. The corresponding param-
eters provide input for the surrogate models and process
chain simulation in the further process of this article.

4.1.1 Material andmodel

Conventional deep drawing steel DX56 was applied as a
material, which is mainly used in automotive body design.
The low-carbon deep drawing steel shows a purely ferritic
microstructure that ensures a good slipping of grains to
achieve a good formability. The sheet thickness of the
material is h = 1.2mm. To determine the mechanical
properties and the flow curves that are required for

Table 1 Material-specific parameters of DX56 for different strain rates

ϕ̇ A B C D

1 s−1 1650MPa 0.025715 0.07019 1106MPa

0.1 s−1 2530MPa 0.02578 0.04247 1995MPa

0.01 s−1 2115MPa 0.01366 0.04191 1620MPa

the simulation, tensile tests were carried out at room
temperature. Furthermore, three strain rates ϕ̇ = 0.01 s−1,
0.1 s−1, and 1 s−1 were tested. These are generally used
for deep drawing applications. In the tensile test, only
true stress values up to the beginning of the necking can
be evaluated accurately. However, higher strains can be
achieved at deep drawing processes. Therefore, values are
also necessary for the further progression of the plastic
strain. Thus, the experimental results were extrapolated by
means of different model approaches to consider advanced
plastic work behavior, where for DX56 the model approach
of Ghosh (cf. [83]):

kf,Ghosh(ϕ) = A · (B + ϕ)C − D (1)

provides a good qualitative agreement. Therein kf,Ghosh

corresponds to the true stress, ϕ to the effective plastic strain
and A, B, C, D to the derived material-specific parameters
given in Table 1.

The resulting flow curves are presented in Fig. 8.
The diagram shows a comparison between experimentally
measured and extrapolated flow curves depending on
different strain rates. It can be seen that with increasing
strain rate the strain hardening rises. However, this influence
decreases with higher strain rates. The remaining physical
and mechanical properties, which have been used within the
numerical study, are summarized in Table 2.

Fig. 8 Approximated flow curves of DX56 according to Ghosh (1) in
comparison to the experimental values for the strain rates ϕ̇ = 1 s−1,
ϕ̇ = 0.1 s−1 and ϕ̇ = 0.01 s−1
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Table 2 Physical and mechanical properties of DX56

Young’s modulus Poisson’s ratio Yield stress Density Specific heat Thermal conductivity

E ν Rp0.2 ρ cp λ

211 GPa 0.29 172 MPa 7.8 g/cm3 460 J/kgK 29 W/mK

The simulation of the deep drawing process was created
in LS-DYNA and an explicit time integration has been
used. As material model MAT 24 is chosen describing
an elasto-plastic material behavior with an arbitrary stress
versus strain curve and strain rate dependency. In order to
consider the strain rate dependence, a table function was
used. The table defines for each strain rate value a flow
curve giving the stress versus effective plastic strain for that
rate [84]. By means of the presented properties, the model
got parameterized. It already has been validated for DX56
within the context of [85]. The tool selection as well as the
cutting of the sheet metal was chosen by means of the sheet
thickness. Thus, the functional surfaces were derived from
the existing CAD data and meshed as shell elements.

The general structure of the simulation model and the
initial blank are shown in Fig. 9.

The displayed tools consist of blank holder, die, and
punch (left). The sheet metal blank (right) is clamped
between blank holder and die with a defined force Fbh. The
mesh of the blank consists of 13,300 elements and 13,403
nodes. During the test procedure, the punch is deep drawing
the blank with a constant speed vp through the cavity of the
die. The punch has a rectangular body with the dimensions
160mm×80mm. All tools are modeled as rigid bodies.
For friction, the standard value for sheet metal forming of
μ = 0.15 has been applied. In the parametric study, the
process parameters blank holder force Fbh and punch speed
vp are varied according to Table 3.

Therefore, Fbh was varied starting from 50 kN in 10 kN
increments to 200 kN at a constant punch speed of 20
mm/s. In the second step, vp was varied in steps of 10mm/s
between 20 and 60mm/s with a blank holder force Fbh =
100 kN. In order to reduce the computation time, the pro-
cess time in the simulation was scaled down. To guarantee
the accuracy of the results and to avoid influences on the

Fig. 9 General structure of the simulation model used for parametric
study

process chain, all time-dependent variables were scaled, as
well. Exemplary simulations without time scaling showed
no differences in the results. For the process chain simula-
tion in 4.4, the unscaled time is used to compute the corre-
sponding cycle times. In total, 20 simulations were carried
out. Each simulation was stopped after reaching the drawing
depth of d = 40mm, so that comparable parts are available.

4.1.2 Numerical results

First, the punch forces and the duration of the deep
drawing process were evaluated as a function of the process
parameters that are supposed to be applied in the process
chain simulation. These data are used in Section 4.4 for
the demand of machine components. Thus, the amount of
energy required for forming can be estimated. Figure 10
shows the maximum punch force Fp,max achieved during
deep drawing and the punch force in the last stage Fp,f inal

for the various blank holder forces.
The diagram shows that with an increasing blank holder

force, a higher maximum punch force is necessary to deep
draw the blank at a constant speed of vp = 20mm/s. Due to
higher holding pressure, less material flows, so the general
resistance of the material during deep drawing increases. In
the last stage, when the drawing depth of d = 40mm is
reached, the force Fp,f inal decreases as a result of the strong
thinning of the cup wall.

Figure 11 shows how the maximum punch force changes
at different punch speeds. With increasing punch speed,
the process works faster to reach the prescribed drawing
depth of d = 40mm. Due to strain rate dependence, the
maximum punch force rises with higher punch speed. Also,
strong thinning of the cup wall takes places as the process
accelerates.

Table 3 Overview of the varied process parameters in the simulation

vp in mm/s Fbh in kN

50 60. . . 90 100 110. . . 190 200

20 X X X X X

30 X

40 X

50 X

60 X
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Fig. 10 Punch force vs. blank holder force

For the data analysis in Section 4.4, the last stage of the
deep drawing process was evaluated. From each simulation,
the x-, y-, and z-coordinates of all nodes of the blank were
plotted. Furthermore, for each element of the blank, the param-
eters effective plastic strain ϕ, von Mises stress σvM , and
the thickness t were exported. Figure 12 shows exemplary
results of the simulations for elevated blank holder forces.

In the surrogate modeling, all shown parameters are taken
into account. The matrix can be extended at any time. In
general, it can be seen that with an increasing blank holder
force the blank is clamped more strongly. As a result, the
flange is not drawn insufficiently. This has an influence on
all shown parameters. The effective plastic strain ϕ and von
Mises stress σvM at 50 kN mainly show maximum values in
the corners of the cup. This is where the cup thins out the
most. With increasing blank holder force, maximum values
of plastic strain, stress, and shell thickness are moving in
the direction of the cup wall. In the case of shell thickness,
differences can be observed in the flange area, as well.
As the blank holder force decreases, more material flows
from the flange into the cup wall. Therefore, radial tension
stress and tangential compression stress are increasing. This
causes a thickening of the material in the edge area of the
flange. At 200 kN, a thickening is prevented, which means

Fig. 11 Punch force and test duration vs. punch speed

Fig. 12 Effective plastic strain (a), von Mises stress (b), and shell
thickness (c) for blank holder forces of Fbh,1 = 50 kN, Fbh,2 =
100 kN, and Fbh,3 = 200 kN

that the shell thickness remains at its initial value of h =
1.2mm. In order to get an overview of the distribution of the
sheet thickness, the global maximum and minimum values
were written out and shown in Fig. 13 as a function of the
process parameters.

Depending on the punch speed, the maximum sheet
thickness remains constant at t ≈ 1.3mm. This is the
area in the flange that increases in thickness. The minimum
sheet thickness, on the other hand, decreases further with an
increasing punch speed. For vp > 30mm/s, the strain rate
dependence leads to significant thinning of the cup wall.
A similar behavior can be observed as a function of the
blank holder force. Both the maximum and the minimum
shell thickness are decreasing with rising forces due to the
reduction of radial and tangential stresses in the flange.
The minimum shell thickness drops very sharply between
Fbh = 110 kN and Fbh = 150 kN. For these parameter
sets, the cup wall begins to thin more strongly because the
pressure in the flange is sufficient to prevent the material
from flowing any further.

4.2 Overmolding

The analysis of the injection molding process is performed
using Autodesk Moldflow [86]. The geometric model setup
is depicted in Fig. 14.
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Fig. 13 Shell thickness vs. punch speed at Fbh = 100 kN (a), shell
thickness vs. blank holder force at vp = 20mm/s (b)

4.2.1 Material andmodel

The displayed model consists of two volume bodies repre-
senting the mold cavity (black) and the metallic insert part
(gray). For both parts, tetrahedral elements are used, where
the mold cavity is discretized with eight elements over the
wall thickness to ensure a fine grid for the plastic flow anal-
ysis. The injection location (yellow) is placed in the center.
The sheet metal insert has been modeled with a constant

Fig. 14 Model setup and first eigenvector aI of orientation tensor a

Fig. 15 Viscosity over shear rate for the used SFRTP from Moldflow
material database [86]

sheet thickness of 1.2mm. The initial temperature is set con-
stant to room temperature. The contact time between mold
surface and insert is set 5 s before the injection starts. This
ensures that the temperature of the metallic insert is high
enough to prevent a fast solidification of the plastic melt
when in contact with the insert. The mechanical and ther-
mal properties of the insert are summarized in Table 2. For
the analysis of the fluid flow, the Cross-WLF viscosity [87]
model is used. Therein, the melt viscosity:

η = η0

1 + η0 γ̇
τ∗

1−n
(2)

is described by the shear rate γ̇ , an critical stress level τ ∗
and a power law index n. The Newtonian limit:

η0 = D1 exp

[
− A1(T − T ∗)

A2 + (T − T ∗)

]
(3)

with A2 = A3 + D3 p, the glass transition temperature
T ∗ = D2+D3 p and the pressure p is described by material
specific coefficients A1, A3, D1, D2, and D3. In this study,
we use a polyamide 6 material with 30mass-% glass fibers.
In Fig. 15, the viscosity over shear rate is plotted for the
listed parameters.

The Cross-WLF coefficients of the SFRTP used within
the injection molding simulations are given in Table 4.

Table 4 Cross-WLF coefficients for the used SFRTP taken from
Moldflow material database [86]

Parameters

n 0.3

τ ∗ 137MPa

D1 1.5e+15MPa s

D2 333K

D3 0K/MPa

A1 43.8

A3 51.6K
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The mechanical behavior of the final structure is mainly
determined by the fiber orientation a within the SFRTP
component. In the numerical analysis, it is computed by
the Folgar-Tucker model [88–91] with a fiber interaction
coefficient of ca = 0.0156.

For the parametric study, the mold temperature TMold

was varied in 10 °C increments between 70 and 100 °C.Within
the DoE for the melt temperature TMelt the discrete values
270 °C, 280 °C and 290 °C are used. Hence, a virtual experi-
ment with 12 simulations for the overmolding was set up.

4.2.2 Numerical results

The parametric study described above yields 12 virtual
injection molding results. In the variation of mold and melt
temperature already information in injection pressure and
time are obtained. In Fig. 16a the injection pressure for
the different melt temperature is plotted over the mold
temperature. The maximum injection pressure pInj of
10.4MPa is computed at TMold = 70 °C and TMelt =
270 °C. The lowest injection pressure is computed for the
parameter combination TMold = 100 °C and TMelt =
290 °C. In general, the injection pressure increase with
increasing mold and melt temperature. Regarding Fig. 15,
this is obvious since the higher the temperature of the
melt the lower the viscosity is. With a higher mold

Fig. 16 Injection pressure over mold temperature (a), injection time
over mold temperature (b)

temperature the cooling of melt arises slower which leads
to less viscosity and a better flow. Consequently, higher
temperatures support the fluid flow. However, in Fig. 16b,
the diagrams show an increase of the injection time with
increasing mold temperature.

Besides the energy and time related global properties of
the process, detailed information on local field variables
is obtained. In the case of SFRTP, the fiber orientation
determines the mechanical properties of the structure and
yields anisotropic behavior. Hence, for each simulation
result, the tensor of fiber orientation a, exemplary depicted
in Fig. 14b, is exported and used for the subsequent data
analysis to achieve a fast and robust surrogate model for the
fiber orientation.

4.3 FEM surrogatemodeling

According to the proposed framework of ICPPE, results
of detailed FEA are used for adequate parametrization of
process chain and factory simulation. In order to make
FEM feasible for scenario analysis of the aforementioned
simulations, FEM surrogate modeling is proposed. In the
following, the method of FEM surrogate modeling is
exemplary applied to a sheet metal cup that is reinforced by
a plastic rib structure (see Sections 4.1 and 4.2).

4.3.1 Modeling and input parameters

Firstly, the sheet metal cup is deep drawn on a forming
press. Afterwards, the plastic rib structure is integrated
through fiber injection molding. For both processes, FEM
simulations are performed, covering a specific DoE on
process parameters (see Fig. 17). For deep drawing, the
process parameters 50 kN ≤ Fbh ≤ 200 kN and punch
speed 20mm/s ≤ vp ≤ 60mm/s are analyzed. The FEM
simulation delivers structure properties, like the deep drawn

Fig. 17 Workflow for FEM surrogate modeling of a deep drawing and
injection molding process
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geometry, wall thickness, strain, and stress, dependent on
the parameters. The process-specific surrogate model for
deep drawing should reflect these properties with a low error
rate. Subsequently, for the fiber injection molding process,
the FEM simulates the fiber orientation of the rib structure.
The fiber orientation is described by the symmetric tensor
a comprising the six elements axx , ayy , azz, axy , axz, and
ayz, which makes the FEM surrogate modeling a multi-
output regression task as well. Similar to deep drawing,
two process parameters are evaluated in terms of a DoE
for fiber injection molding. Firstly, the melt temperature
TMelt , covering the temperature range of 270 to 290 °C and
secondly, the mold temperature TMold , having a temperature
zone from 70 to 100 °C. Supplementary to the process
parameters, the FEM mesh of each part is considered input
feature for modeling. Within this use case, the mesh for
deep drawing consists of 13,300 elements; the rib structure
is modeled by 12,240 nodes.

For deriving a generalized process-specific FEM sur-
rogate model, nonlinear modeling techniques in the form
of multi-output regression methods are deployed for map-
ping the features, i.e., mesh and parameters, to the target
variables, i.e., part properties. The ability for FEM surro-
gate modeling of four machine learning methods (simple
regression tree, random forest, multilayer perceptron, and
gradient boosted trees) is tested for each process variant. In
order to achieve low error rates, respectively high scores for
R2, a model parameter optimization, i.e., hyper parameter
optimization, is performed. Table 5 lists the varied model
parameters, their variation range, and the amount of vari-
ation steps for each method. Furthermore, the modeling
results are evaluated through a 6-fold cross-validation, due
to the prevention of overfitting and the target of deriving a
generalized model for untested points within the parameter
space. Table 5 also shows the best found model parame-
ters. Interestingly, in injection molding, the best parameters

for the methods simple regression tree and gradient boosted
trees are found at the outer limit of the variation range, e.g.,
amount of trees = 260 for gradient boosted trees. Hence, a
further increase in R2 could be expected when increasing
the parameter limit.

4.3.2 Results of surrogate modeling

Results for R2 of each part property and the original
FEM model compared with those of the FEM surrogate
model as a 3D plot are shown in Fig. 18 for each
process variant. The 3D plot of the deep drawn part,
which shows the wall thickness for Fbh = 110 kN
and vp = 20mm/s, reveals the well fit between the
original FEM model (Fig. 18a) and its surrogate model
built through a random forest (Fig. 18b). For example,
the material withdrawal in the cup corner is precisely
reproduced. Deviations between FEM and surrogate are
located on the cups’ short edge. The comparison of R2

over all four regression methods (Fig. 18c) shows that the
plotted wall thickness and strain and stress are the least
correlated part properties, still reaching good values for
R2 for simple regression tree and random forest. On the
contrary, the part property deep drawn geometry, i.e., X-
Final, Y-Final, and Z-Final, yields the highest scores for
R2. A reason for this can be found in the small deviations
of the final deep drawn geometry across the whole DoE.
As for deep drawing, an exemplary plot for fiber injection
molding of the plastic rib structure for the original FEM
yielded by Moldflow (Fig. 18d) and the FEM surrogate
model built through a random forest approach (Fig. 18e) is
drawn for the fiber direction element axx . The underlying
injection molding process parameters are melt temperature
TMelt = 270 °C and mold temperature TMold = 70 °C.
Both plots show just minor deviations in the color hue. The
bar plot for R2 (Fig. 18f) emphasizes the good modeling

Table 5 Overview of deployed regression methods and their tested and best hyperparameters

Method Parameter Variation range # variation steps Best parameters for
deep drawing

Best parameters for injection
molding

Multilayer # Layer 1–6 6 2 5

perceptron # Nodes 1–40 40 38 22

simple re- Max. tree depth 1–20 20 19 20

gression tree Min. node size 1–50 50 1 20

Random # trees 10–20 11 15 19

forest Max. tree depth None 1 - -

Min. node size None 1 - -

Gradient Learning rates 0.2–0.8 4 0.4 0.8

boosted # trees 100–260 9 120 260

trees Max. tree depth 4 1 - -

α 0.95 1 - -
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Fig. 18 Results for FEM surrogate modeling. Original wall thickness
for deep drawing from LS-DYNA (a) and its surrogate through ran-
dom forest as a 3D plot for blank holding force Fbh = 110 kN and
punch speed vp = 20mm/s (b). Comparison of R2 for all tested
regression approaches for deep drawing (c). Original fiber orientation

(axx ) for fiber injection molding from Moldflow (d) and its surro-
gate through random forest approach as a 3D plot for TMelt = 270°C
and TMold = 70°C (e). Comparison of R2 for all tested regression
approaches for injection molding (f)

performance. Especially the random forest approach yields
constant high scores for R2 with a minimum of 0.909
for ayz and a maximum score of 0.977 for axz. The
methods simple regression tree and gradient decision tree
delivered similar modeling performance, just the multilayer
perceptron approach performed weak for injection molding.
The obtained process-specific FEM surrogate models are
feasible to be applied for untried process parameter
combinations in scenario analysis delivering adequate
information on part properties for process chain and factory
simulation.

4.4 Process chain simulation

The process chain contains an injection molding machine
and a hydraulic press. The goal was to investigate the effect
of parameter variation in the two processes on the overall
process chain performance regarding lead times and energy
intensities.

4.4.1 Model logic and input parameters

The process chain model starts with pre-cut steel sheets
that enter the process chain at a hydraulic press for deep
drawing. A buffer follows the press for the temporary
storage of the formed sheets. The cutting step has not
been modeled in detail. Rather, it is represented by a
simple discrete event block. The reinforcing ribs are formed
thereafter in an injection molding machine. The last process
step is quality control, where reject parts are sorted out.

Bottom-up machine models are connected together with
buffers and a quality control station to form a process chain
model. The modeling environment for both the machine
modeling and process chain modeling is AnyLogic. The
models were developed combining the principles of agent
based and discrete event simulation. Machines and products
act in this modeling approach as agents with individual
parameters, behavior, and communication interfaces to
other agents. The product agents pass through a discrete
event process chain that utilizes the machines as resources.
After the machines are ready for production after ramp-
up, the product agents are created and enter the process
chain. When a product agent enters a machine agent,
the machine agents start processing the product according
to the defined process-specific steps. During each step,
the electrical power is calculated based on the process
parameters (e.g., temperature or processing time), machine
parameters (e.g., efficiency of machine components) and
product parameters (e.g., weight, material). The quality of
the produced part is defined in each process step according
to a probability distribution. If a reject part is produced,
a new product agent is generated and sent to the process
chain. The output parameters, such as direct energy demand,
waiting time, or reject/good part, are stored in the product
agent. After processing ended for the whole production
batch including the additional parts due to reject parts, the
indirect energy demand per part is calculated. To this end,
the total indirect energy demand of the machines and direct
energy demand of reject parts are allocated equally on all
good parts. The machine models and the process chain
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Table 6 Parameters from the injection molding simulation used in the
process chain simulation

Parameter Dimension Value

Injection time s 1.5–2

Holding pressure time s 10

Mold surface temperature K 343.2–373.2

Melt temperature K 543.2–563.2

Injection pressure MPa 6.6–9.9

Clamp force kN 46–71.1

Time to eject s 57.1–76.5

Total mass g 80.6–81.5

model are connected via a spreadsheet interface with the
numerical process models.

Machine parameters were determined based on the
machine pool at the OHLF. Process parameters were
acquired based on a parametric study of the numerical
process simulation of forming and injection molding.
Tables 6 and 7 provide in this context an overview
of the employed parameters and the respected intervals.
Altogether, the parametric study provided twenty parameter
sets for forming and twelve sets for injection molding. In
the process chain simulation, all parameter set combinations
were tested out; altogether 240 simulation runs were
carried out. Remaining process parameters (that could not
be retrieved from the process simulation) were defined
according to typical process windows from literature and
expert interviews.

The case study simulated the manufacturing of 100 parts.
The quality rate of both machines was assumed to be
98%, thus addressing also inefficiencies by reject parts that
indirectly lead to an increase of the indirect energy demand
of products. The goal was to illustrate the interdependencies
between process parameters, which are decided on in the
process simulation, and the product energy intensity as well
as lead time.

4.4.2 Results of the process chain simulation

Figure 19 compares the minimum and maximum values of
the cycle times on both machines. In an ideal case, the cycle

Table 7 Parameters from the deep drawing simulation used in the
process chain simulation

Parameter Dimension Value

Blank holder force kN 50–200

Forming speed mm/s 20–60

Forming time s 6.5–20

Maximum forming pressure kN 157.3–192.2

Fig. 19 Maximum and minimum of cycle times for each process

times are even or close to even at each process step. This is
here however not the case since we choose a strong criterion
for the cooling time. The cycle time of injection molding
exceeds the cycle time of the press for all parameter sets.
The higher cycle time on the injection molding machine
causes a time bottleneck and drives the lead time of the
production upwards. The case study illustrates however
effectively that process time reduction on single-process
steps does not necessarily lead to a reduced lead time.
Instead, the whole process chain needs to be considered. In
this case, the process time for injection molding should be
minimized. The process time for deep drawing could even
be longer without affecting the lead time negatively.

The cycle time difference between the two processes is
represented in the composition of the lead time. Waiting
time occurs while a product is stored temporarily in the
buffer between the press and injection molding machine.
The comparison of average processing times with average
waiting times (see Fig. 20) illustrates the impact of uneven
cycle times. The figure illustrates the shares of processing
and waiting time for the minimum, average, and maximum
lead time. In all three cases, the lead time is largely
composed of waiting time with a share of up to 90%. For
the present use case, this indicates that cooling times seem
to be too large and can most probably be reduced in order
to reduce the waiting time. However, in order to decide

Fig. 20 Breakdown of lead time on processing and waiting time
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Fig. 21 Breakdown of value/non-value added energy demands on
processes

whether the lead time is too high and needs to be reduced,
it needs to be compared with the customer tact time. For the
calculation of the customer tact time, further information
regarding the working hours, working days, and customer
demand is needed. Therefore, it has been excluded in this
case study. Based on the customer tact time and the current
lead time, further decisions can be made, e.g., whether a new
machine should be installed to increase the output.

Figure 21 illustrates the highest, lowest, and average
product energy intensity for all 240 simulation runs, broken
down into direct and indirect energy demands. While direct
energy demands are considered as value adding, indirect
energy demands represent the share of non-value adding
energy demand. The direct energy demand of one product
represents the sum of each machine’s energy demand in the
processing state that is related to one good part. The direct
energy demand of reject parts is assigned to the indirect
energy demand. The indirect energy demand per part further
includes the energy demand of the machines in the ramp-up
and standby stages. As explained above, the buffer between
the machines permits a high utilization without noteworthy
waiting times of the machines. The indirect energy demand
is consequently diminishing in comparison with the direct
energy demand. Regarding the direct energy demand, the
parameter variation on the injection molding machine shows
an over 200% difference between the best and worst cases.
In contrast to that, the difference on the hydraulic press
stays below 1%. This may be due to the higher range of
process windows that were applied on the injection molding
machine.

The initial concern of the case study on the process
chain level was to investigate the interdependencies between
the lead time and product energy intensity. This should
help product, process, and factory planners to design a
product and production system that fits best economic
and environmental targets. Figure 22 illustrates the relation

Fig. 22 Comparison of the direct energy demand of deep drawing and
injection molding with the cycle time

between the cycle times of the process steps and the
resulting direct energy demand on the press and injection
molding machine. It confirms the abovementioned small
variation of the direct energy demand on the press. The
results indicate that the energy demand per part increases
only slightly with a higher process time.

The injection molding machine shows contrast to that a
much higher effect. A higher cycle time seems to lead to
a higher direct energy demand. This is a favorable effect,
as the cycle time of the injection molding machine needs
to be minimized in order to reduce the difference between
the two process steps. This way, not only the lead time can
be reduced, but also the energy demand of the injection
molding machine. It should be noted that not all process
parameter sets with a lower cycle time lead to a reduction in
the energy demand. In order to explore the contribution of
the input parameters to the energy intensity in detail, further
parameter studies are needed.

In conclusion, the process chain simulation enhanced
with the integration of numeric process simulation results
can support planning processes in production engineering.
It can contribute to understanding the effects of process
parameter variation on the whole process chain and
explore different scenarios regarding lead times and energy
demands.

5 Concluding remarks

Driven by the trend of industrial digitization, likewise prod-
uct and production engineering involve more and more
virtual and digital methods in order to increase the effi-
ciency, shorten development times, and reduce prototyping
for a shorter and cost-efficient time to market. The usage of
virtual methods allows the parallelization of different engi-
neering steps in concurrent engineering within the product
development process. However, this requires an integrated
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simulation concept that allows the exchange of data of
each numerical analysis. This paper illustrates an integrated
simulation modeling approach for engineering and assess-
ing new manufacturing processes, exemplified by the use
case of MMLS. The multi-scale modeling approach (i.e.,
product, process, process chain, and factory level) was pro-
totypically implemented and its functionality demonstrated
at an exemplary process chain. Results of parametric stud-
ies on the process level have been used as input for a
machine learning-based surrogate model that allows a fast
and accurate search across the underlying design space.
In this way, the surrogate models can offer accurate prod-
uct properties at different process setting values for process
chain simulation within milliseconds. Supplementary results
like processing time and energy consumption obtained on the
process level are used as further input for process chain
modeling for an integrated computational approach. Thus,
ICPPE provides a multi-scale framework to link design and
the production phase more closely.

The interaction between the different levels and the
corresponding parameters allows a bottom-up engineering
of all relevant manufacturing steps throughout the process
chains. By methods of computational engineering each
process and the product itself are virtually verified. The
information obtained is transferred to the process chain
level to fulfill a multi-criteria assessment and planning of
the individual process chains and the factory. Due to the
continuity, also top-down developments can be fulfilled.
Hence, it is possible to estimate whether an existing factory
with its TBS is suited for the production of a certain
product. Such procedure is often present when MMLS are
introduced into new product concepts but existing machines
and production lines need to be used. However, the
integrated approach can be applied to all fields of product
development and supports both the product engineering
and the production engineering. Furthermore, by adding
and training continuously surrogate models at the different
levels, fast prediction tools are available. They can be used
efficiently for optimization tasks during the development
phase or as quality measures during the operating phase.

The combination of sophisticated surrogate models
together with detailed finite element simulations and agent-
based or discrete event simulations depicted in the concept
of ICPPE (Fig. 2) has great potential to realize an integrated
computational product and production engineering in
product development.

Acknowledgements This research and results published are based on
the research program MOBILISE funded by the Ministry of Science
and Culture of Lower Saxony and the Volkswagen Foundation.

Funding Open Access funding provided by Projekt DEAL.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate
if changes were made. The images or other third party material in
this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds
the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http://
creativecommonshorg/licenses/by/4.0/.

References

1. Rix J, Haas S, Teixeira J (eds) (1995) Virtual prototyping: virtual
environments and the product design process. Springer, Boston

2. Cerdas F, Thiede S, Herrmann C (2018) Integrated computational
life cycle engineering — application to the case of electric vehi-
cles. CIRP Ann 67(1):25–28. https://doi.org/10.1016/j.cirp.2018.
04.052

3. Allison J, Backman D, Christodoulou L (2006) Integrated com-
putational materials engineering: a new paradigm for the global
materials profession. JOM 58(11):25–27. https://doi.org/10.1007/
s11837-006-0223-5

4. Panchal JH, Kalidindi SR, McDowell DL (2013) Key compu-
tational modeling issues in Integrated Computational Materials
Engineering. Comput Aided Des 45(1):4–25. https://doi.org/10.
1016/j.cad.2012.06.006

5. Bleck W, Brecher C, Herty M, Hirt G, Hopmann C, Klocke
F, Borchmann N, Dierdorf J, Farivar H, Fayek P, Häck A,
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Brecher C, Özdemir D (eds) Integrative production technology:
theory and applications. Springer International Publishing, Cham,
pp 253–364

6. Mourtzis D, Doukas M, Bernidaki D (2014) Simulation in
manufacturing: review and challenges. Procedia CIRP 25:213–
229. https://doi.org/10.1016/j.procir.2014.10.032

7. Herrmann C, Dewulf W, Hauschild M, Kaluza A, Kara S, Skerlos
S (2018) Life cycle engineering of lightweight structures. CIRP
Ann 67(2):651–672. https://doi.org/10.1016/j.cirp.2018.05.008

8. Fleischer J, Teti R, Lanza G, Mativenga P, Möhring HC, Caggiano
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