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Abstract

Apple replant disease (ARD) is a serious threat to producers of apple trees and fruits world-

wide. The ARD etiology is not unraveled and managing options are either economically not

applicable or environmentally harmful. Thus, interest is given in biomarkers that allow to indi-

cate ARD situations at early time points in order to classify soils according to ARD severity

but also to analyze the effectiveness to potential countermeasures. This study aimed at (i)

identifying ARD biomarkers on the transcriptional level in root tissue by analyzing the

expression of previously identified candidate genes in ARD soils of different origin and tex-

ture and (ii) testing the specificity of these marker genes to ARD. In vitro propagated M26

plantlets were submitted to a bio-test with three ARD soils, either untreated or disinfected by

γ-irradiation. Expression of seven candidate genes identified in a previous transcriptomic

study was investigated by RT-qPCR in a time course experiment. Already three days after

planting, a prominent upregulation of the phytoalexin biosynthesis genes biphenyl synthase

3 (BIS3) and biphenyl 4-hydroxylase (B4Hb) was observed in the untreated ARD variants of

all three soils. The phytoalexin composition in roots was comparable for all three soils and

the total phytoalexin content correlated with the expression of BIS3 and B4Hb. The third

promising candidate gene that was upregulated under ARD conditions was the ethylene-

responsive transcription factor 1B-like (ERF1B). In a second experiment M26 plantlets were

exposed to different abiotic stressors, namely heat, salt and nutrient starvation, and candi-

date gene expression was determined in the roots. The expression levels of BIS3 and B4Hb

were highly and specifically upregulated in ARD soil, but not upon the abiotic stress condi-

tions, whereas ERF1B also showed higher expression under heat stress. In conclusion,

BIS3 and B4Hb are recommended as early ARD biomarkers due to their high expression

levels and their high specificity.
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Introduction

Apple replant disease (ARD) presents a serious economic risk in orchards and tree nurseries

where apple trees are frequently replanted [1, 2]. Characterized by its distinctive symptoms of

reduced shoot growth, stunting, shortened internodes, root damage and root tip necrosis [3–

5], ARD leads to reduced and delayed fruit yields as well as reduced fruit quality [1, 2]. The

estimated yield losses caused by ARD range from 20–50% [6]. Eventually, ARD can render a

site unprofitable for apple cultivation [7, 8]. Due to intensification of apple cultivation to cer-

tain areas accompanied by an increase of planting density, the problem of ARD has increased

over the last decades. Crop rotation systems and soil exchange are usually difficult to employ

in apple cultivation, mainly due to the high degree of technical specialization in apple growing

sites and the perennial nature of the trees [9].

Numerous potential causal agents of ARD have been identified over the years. The growth-

reducing effect of ARD can be abolished by disinfection of the affected soil, impressively dem-

onstrating the biotic nature of the main causes of ARD [e.g. 10–12]. Among these an increase

of detrimental oomycetes (Pythium [1, 2, 13] and Phytophthora [1, 13]) fungi (Cylindrocarpon
[1, 2, 14–16] and Rhizoctonia [1, 13, 15]) and nematodes like Pratylenchus penetrans [10, 17–

20] have been mostly attributed. Along with this, a decrease in beneficial soil organisms such

as fluorescent Pseudomonas species has been reported [21, 22]. The abundance as well as the

activity of these biotic factors can be influenced by abiotic factors such as soil texture, organic

matter and pH [23, 24]. Overall, ARD presents a complex phenomenon which can best be

characterized as a dysbiosis or negative plant-soil feedback. This is reflected in the most recent

definition of Winkelmann et al. [9], which attributes the detrimental effect of the previous

apple culture on the replant generation to a harmful shift in soil-borne (micro)organism

communities.

The major counteractions employed against ARD are chemical soil disinfection (fumiga-

tion), biofumigation using Brassicaceae plant material, inter-row planting and soil substitution

[9]. Because of its detrimental effects on the environment, chemical soil disinfection is not

available any longer to several European countries due to its discontinued registration or its

application is strictly regulated. Thus, an integrated solution to overcome ARD is of higher

interest than ever before. Novel approaches aim at using Brassicaceae plant parts and seed

meal for a biological relief from the ARD agents, anaerobic soil disinfestation or the incorpo-

ration of beneficial microorganisms to the soil to fight the disease [21, 25–30]. Apple genotypes

with an increased tolerance towards ARD have been described [31, 32] and a long-term aim is

breeding for ARD-resistant rootstocks. Until now, however, no feasible counteraction is

available.

In order to develop sustainable countermeasures against ARD, its underlying complex

causes have to be unraveled on the soil side but also inside the plant. Recently, Weiß et al. [11]

examined the transcriptomic response in the roots of the ARD-sensitive apple rootstock M26

(hereafter indicated as M26) [10, 26] and observed a down-regulation of primary metabolism

genes. At the same time, genes involved in secondary metabolite production, plant defense

and regulatory and signaling genes were upregulated in response to ARD. Among the genes

with a function in the secondary metabolism, those involved in phytoalexin biosynthesis were

strongly upregulated. In addition, high amounts of the products of this biosynthesis pathway,

namely 3-hydroxy-5-methoxybiphenyl, aucuparin, noraucuparin, 2-hydroxy-4-methoxydi-

benzufuran, 2’-hydroxyaucuparin and noreriobofuran, could also be detected in the ARD-

affected roots [33]. These compounds are part of the biotic stress response and have been

described to act in particular against fungal pathogens [34], which have been attributed an

enhanced role in ARD [2, 16].
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Interest is given in biomarkers that allow an early detection and possibly also a quantifica-

tion of the reaction of apple to ARD. These biomarkers would not only support breeding

approaches for ARD tolerance but also allow to evaluate the efficacy of newly developed man-

agement options. In this study, seven genes that were identified to be strongly regulated in

apple roots upon contact with ARD-affected soil [11], i.e. 1-aminocyclopropane-1-carboxylate
oxidase homolog 1-like, ethylene-responsive transcription factor RAP2-11-like, ethylene-respon-
sive transcription factor 1B-like, gibberellin-regulated protein 1-like, zinc finger domain-contain-
ing protein 10-like, biphenyl synthase 3 and biphenyl 4-hydroxylase, were chosen to be tested for

their suitability as potential transcriptional biomarkers for an early detection of ARD. Gene

expression was analyzed in apple roots growing on three different either untreated or γ-irradi-

ated ARD-affected soils to provide a comparison to disease-free conditions, and was comple-

mented by phytoalexin analysis. In a first experiment, the comparison of ARD-affected soils of

different soil texture and chemical characteristics allowed distinguishing universal ARD

responses from soil-specific responses regarding candidate gene expression. The promising

biomarker candidates resulting from this approach were then tested in a second experiment

for their specificity. Therefore, apple plants were exposed to different abiotic stressors, such as

heat, salt stress, and nutrient starvation, and candidate gene expression was determined in the

roots. Since the disinfected γ-irradiated ARD-affected soil can be regarded as a rather artificial

control, the specificity test also included virgin (healthy) soils from plots adjacent to three

ARD plots were included as an additional control.

Material and methods

Soil origin and disinfection

For the first experiment (candidate gene identification), soils from the three BonaRes-ORDIA-

mur ARD reference sites (www.ordiamur.de) in Germany were sampled in a depth of 0–20 cm

in January 2017: Ruthe (Leibniz University Hannover, Sarstedt, 52˚14’39.8"N 9˚49’08.2"E),

Heidgraben (Baumschule Harald Klei, Heidgraben, 53˚41’57.5"N 9˚40’59.6"E), and Ellerhoop

(Gartenbauzentrum Schleswig-Holstein, Ellerhoop, 53˚42’51.9"N 9˚46’13.0"E). These soils

were chosen to represent different soil textures. The Ruthe soil is of a loamy texture, while soil

from Heidgraben is of a very sandy consistency and Ellerhoop soil is a loamy sand [12]. The

soils were homogenized by sieving through an 8-mm mesh. One aliquot of each soil volume

was packed in autoclavable plastic bags at a volume of 12 L each and sent for γ-irradiation with

a minimum dose of 10 kGy (recorded dosages: 11.16 kGy minimum, 32.81 kGy maximum,

Beta Gamma Service, Wiehl, Germany). The remaining untreated soil was transferred to buck-

ets, covered with breathable MyPex fabric (Don & Low Limited, Angus, Scotland) and stored

at outdoor temperature for approximately one month during which the γ-irradiation took

place. The untreated soil will be referred to as ARD and the γ-disinfected soil as γARD. At the

start of the experiment, all soil variants were supplemented with 2 g L-1 of the slow-release fer-

tilizer Osmocote Exact Standard 3–4 M (16% total nitrogen, 9% phosphorus pentoxide, 12%

potassium oxide, 2% magnesium oxide + trace elements, Everris International B.V., Gelder-

malsen, The Netherlands, https://icl-sf.com/global-en/products/ornamental_horticulture/

8840-osmocote-exact-standard-3-4m).

In the second experiment (candidate gene validation), salt and heat stressed plants were

potted into a mix of peat substrate and sand (Steckmedium, Klasmann-Deilmann GmbH,

Geeste, Germany, with perlite (1–1.7 mm), white peat (0–7 mm) and white sod peat (1–7 mm)

+ sand, 2 + 1, 60 mg L-1 nitrogen, 70 mg L-1 phosphorus, 120 mg L-1 potassium, 85 mg L-1

magnesium, 60 mg L-1 sulfur). Peat substrate mixed with sand without any additional stress

served as a control. All substrate variants (heat, salt stress and peat substrate) were fertilized
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with 2 g L-1 Osmocote Exact Standard 3–4 M as described above. Nutrient starvation was

applied by potting the plants into unfertilized quartz sand. Further variants included soils

from ARD and grassland plots from Heidgraben as references representing field conditions. In

the grassland plots within the reference sites, no members of the Rosaceae had been grown.

Thus, this soil served as a control soil that was not affected by replant disease but contained

microorganism communities native to the site. The soils were sieved and fertilized as described

above. All variants of experiments 1 and 2 with their respective substrates and stress treatments

are depicted in Table 1.

The sampling and evaluation schedules of for both experiments are presented in S1 Table.

Plant cultivation and sampling

For both experiments, plants of the ARD sensitive apple rootstock M26 were clonally propa-

gated in vitro via axillary shoots on a modified MS medium [35] containing 3% sucrose,

0.5 μM indole-3-butyric acid (IBA) and 4.4 μM 6-benzylaminopurine (BAP). They were

grown at 24˚C and 16 h light / 8 h darkness provided by Philips MASTER TL-D 58W/865 fluo-

rescence tubes at a photosynthetically active photon flux density (PAR) of 25–30 μmol m-2 s-1.

In vitro rooting was induced on ½ MS medium supplemented with 2% sucrose and 4.92 μM

(IBA) [11]. The rooted plants were transferred to substrate for cutting propagation (Steckme-

dium, Klasmann-Deilmann GmbH, see above) and kept under a foil tent in the greenhouse for

acclimatization. After two weeks, subsequently increasing ventilation of the tent was started

until the plants were fully adapted to greenhouse conditions.

After approximately four weeks in the greenhouse the plants were transferred into the test

soils (see Table 1). The first experiment used the ARD soils from the three sites Ruthe, Heid-

graben and Ellerhoop (see above) either untreated or disinfected by γ-irradiation. The second

experiment aiming at specificity testing used either ARD soil from Heidgraben, peat substrate

(Steckmedium, Klasmann-Deilmann GmbH + sand, 2 + 1) or sand alone (Table 1). The differ-

ent variants were prepared as follows: For salt stress, the plants were potted into fertilized peat

substrate (Steckmedium, Klasmann-Deilmann GmbH + sand, 2 + 1, + 2 g L-1 Osmocote) and

initial watering was carried out with 50 mL of a 0.17 M NaCl solution per pot. From then on,

irrigation was carried out with regular tap water. For the heat treatment, the plants were potted

into fertilized peat substrate and grown for four days in the greenhouse. Thereafter, they were

transferred to a culture cabinet (Rubarth Apparate GmbH, Laatzen, Germany) for three days

Table 1. Overview of the treatments utilized for experiment 1 and 2 (candidate gene validation). Fertilized variants were supplemented with 2 g L-1 Osmocote Exact

3–4 M before filling of the pots. Peat substrate refers to Steckmedium by Klasmann-Deilmann GmbH, Geeste, Germany (see above).

Abbreviation Substrate / soil Treatment / specifications

Experiment 1 ARD Ellerhoop ARD soil Ellerhoop Fertilized

γARD Ellerhoop ARD soil Ellerhoop γ-irradiated, fertilized

ARD Heidgraben ARD soil Heidgraben Fertilized

γARD Heidgraben ARD soil Heidgraben γ-irradiated, fertilized

ARD Ruthe ARD soil Ruthe Fertilized

γARD Ruthe ARD soil Ruthe γ-irradiated, fertilized

Experiment 2 ARD ARD soil Heidgraben Fertilized

Grass Control soil Heidgraben Fertilized

Peat (substrate) Peat substrate + quartz sand (2 + 1) Fertilized

Heat Peat substrate + quartz sand (2 + 1) fertilized, plants 3 days at 37˚C

Salt Peat substrate + quartz sand (2 + 1) one-time application of 50 mL 0.17 M NaCl (10 g L-1) at the start of the experiment, fertilized

Nutrient starvation Quartz sand not fertilized

https://doi.org/10.1371/journal.pone.0238876.t001
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at 37˚C and a 16 h photoperiod, after which they were placed back into the greenhouse. Nutri-

ent starvation was induced to the plants with unfertilized quartz sand. Controls included soil

from the Heidgraben reference site from the ARD patches (ARD, positive control) and from

patches covered in grass (Grass soil, negative control) as well as fertilized peat substrate-sand

mix (substrate control, second negative control).

Round pots of 0.46 L volume and 10.5 cm diameter were used for the plants sampled after

1, 3, and 7 days in the first experiment and all plants in the second experiment. Additionally, 1

L pots were used for plants sampled after 8 weeks in the first experiment. All pots were lined

with MyPex fabric to avoid washing out of soil or substrate during irrigation. They were placed

in the greenhouse in a randomized design. Cultivation during the first three days was carried

out without additional lighting. From then on, additional light was provided by SON-T Philips

Master Agro 400 W lamps (Hamburg, Germany) if solar radiation fell below 25 klx to provide

16 h of daylight and thus comparable growing conditions over the whole year. The tempera-

ture in the greenhouse chamber was 21.1 ± 1.3˚C and the relative air humidity 58.1 ± 7.9%

during the first experiment and 22.6 ± 3.1˚C and 64.2 ± 10.6%, respectively, for the second

experiment. Plants were irrigated by hand on a daily basis and plant protection was carried out

according to horticultural practice.

For the first experiment (candidate gene identification), complete root systems were har-

vested for gene expression analysis at day 0 (acclimatized plants before potting) and 1, 3 and 7

days after potting into the experimental soils. For this, 20 plants per soil variant and sampling

day were selected randomly. They were unified into four pooled samples consisting of five

plants each (S2 Table). For the second experiment (candidate gene validation), sampling was

carried out after 7 and 14 days. Complete root systems of 15 plants per variant and time point

were harvested for gene expression analysis yielding five pooled samples consisting of three

individual plants each (S3 Table). After the seven-day sampling point in the second experi-

ment, the heat-stressed plants were moved to the greenhouse until the end of the experiment.

Therefore, these plants were no longer exposed to the heat at the second sampling point.

The plants were quickly but gently washed with tap water, blotted dry briefly and the com-

plete root system was separated from the shoot, transferred to 2 mL reagent tubes (Sarstedt,

Nümbrecht, Germany) and frozen in liquid nitrogen. Storage took place at -80˚C until RNA

extraction. In both experiments, the shoot length was measured weekly. At the final day of

sampling, the roots were separated from the shoots and the fresh masses of shoots and roots

were recorded. Shoots and roots were then frozen at -20˚C and freeze dried for three days

(Christ ALPHA 1–4 LSC, Osterode, Germany) to determine the dry mass. The freeze-dried

samples were stored above silica gel (Carl Roth, Karlsruhe, Germany) until preparing for phy-

toalexin analysis (see below). In the second experiment, dry mass was recorded after oven-dry-

ing for three days at 80˚C.

RNA extraction and first strand cDNA synthesis

Within the variants, pooling for both experiments (experiment 1: n = 4 pooled

samples = biological replicates, see S2 Table, experiment 2: n = 5 pooled samples = biological

replicates, see S3 Table) took into account that the mean shoot length of the pooled plants was

comparable. The pooled root systems were homogenized at 29 Hz for 1 min using a mixer mill

(Mixer Mill MM400, Retsch, Haan, Germany) cooled with liquid nitrogen. RNA extraction

from 100 mg fresh mass of ground root powder was carried out with the InviTrap Spin Plant

RNA Mini Kit (Stratec, Birkenfeld, Germany) according to the manufacturer’s instructions.

The included extraction buffer for phenol-containing plants was used (RP lysis buffer) and

40 μL of the provided elution buffer. Genomic DNA was removed from the RNA via digestion
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with DNase I (Thermo Scientific, Waltham, MA, USA) following the manufacturer’s instruc-

tions. The concentration and quality of the obtained RNA was determined spectrophotometri-

cally (NanoDrop 2000c, Peqlab, Erlangen, Germany) and the quality was checked on a 1%

agarose gel. The isolated RNA was stored at -80˚C until first strand cDNA synthesis using the

RevertAid First Strand cDNA Synthesis Kit (Thermo Scientific, Waltham, MA, USA) with an

input of 1 μg RNA and with random hexamer primers. The resulting cDNA was aliquoted for

the qPCR measurements and stored at -20˚C until then.

Quantitative PCR

All reactions were carried out on a CFX Connect™ cycler (Bio-Rad, Hercules, CA, USA) using

the SYBR Green Supermix (Bio-Rad, Hercules, CA, USA). The primers used (Table 2) had

been previously validated for the apple rootstock genotype M26 by Weiß et al. [11]. As refer-

ence genes, elongation factor 1-α (EF1a), elongation factor 1-β (EF1b) and tubulin beta chain

(TUBB) [11] were selected after testing their expression stability between ARD and γARD vari-

ants (Table 2) at each time point for experiment 1 and between all six variants in experiment 2.

Each forward and reverse primer were used in a concentration of 20 nM and amplification

efficiency was determined for each experiment separately. A pool of all cDNA samples in

equal amounts was created and the quantification cycles (cqs) for the dilutions 1:5, 1:10, 1:50,

1:100, 1:500, 1:1000 and 1:2000 were determined. The protocol used for the efficiency tests and

the following qPCRs was as follows: 3 min at 95˚C, followed by 10 s at 95˚C and 30 s at 60˚C

for 40 cycles and a melt curve analysis (65˚C to 95˚C for 5 s each with an increment of 5˚C).

The amplification efficiencies for each primer pair were calculated with the CFX manager

Table 2. Primer sequences and amplicon lengths of candidate and reference genes used in RT-qPCR analyses [11]. MDP ID: Malus domestica predicted gene ID [38].

Amplification efficiency in % (E [%]) with corresponding coefficient of correlation (R2). n.a. = not analyzed, excluded from the second experiment.

Gene name (MDP ID) Abbreviation Primer sequence 5’– 3’ Amplicon length

[bp]

experiment

1

experiment

2

E [%] R2 E [%] R2

1-aminocyclopropane-1-carboxylate oxidase homolog 1-like
(MDP0000314499)

ACO1 f: CGCAGTTGGAGATGAACTTG 167 98.2 0.995 n.a.1 n.a.

r: CATGCCGTGATGGACAGTAG

ethylene-responsive transcription factor RAP2-11-like
(MDP0000177547)

ERF RAP2.11 f: TTCCAACAGCCGAAGCAAG 169 71.3 0.980 n.a. n.a.

r:
CTTTGATCTCAGCAACCCATCTC

ethylene-responsive transcription factor 1B-like
(MDP0000127134)

ERF1B f: GTCACCTGAATCTTCGTTTG 121 90.8 0.994 96.5 0.986

r: GGAAATCAGACCGTAGAGAAG

gibberellin-regulated protein 1-like (MDP0000140078) GASA1 f: CGTTGCAGCTGTGTTCCTC 156 92.5 0.993 n.a. n.a.

r: CATCTGCATGCCCGAATATGAG

zinc finger domain-containing protein 10-like
(MDP0000922823)

GATAD10 f: GCTCGTTTCTGGAGGAGTC 153 91.3 0.983 n.a. n.a.

r: GATTCCCGCTGTCGTAGAATC

biphenyl synthase 3 (MDP0000287919) BIS3 f: GGCAAGAAGCAGCATTGAAAG 105 97.8 0.997 94.6 0.998

r: CACAACCTGGCATGTCAAC

biphenyl 4-hydroxylase (MDP0000152900) B4Hb f: GCTGAGTATGGCCCGTATTG 156 98.7 0.996 96.7 0.999

r: AGGAACCCGTCGATTATTGG

elongation factor 1-alpha (MDP0000304140) EF1a f: GAACGGAGATGCTGGTATGG 159 94.5 0.997 94.9 0.998

r: CCAGTTGGCTCCTTCTTCTC

elongation factor 1-beta 2-like (MDP0000903484) EF1b f: GAGAGTGGGAAATCCTCTG 138 100.1 0.994 95.4 0.998

r: ACCAACAGCAACCAATTTC

tubulin beta chain (MDP0000951799) TUBB f: TTCTCTGGGAGGAGGTACTG 147 99.8 0.998 90.6 0.998

r: GTCGCATTGTAAGGCTCAAC

https://doi.org/10.1371/journal.pone.0238876.t002
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software version 3.0 according to Pfaffl [36] for both experiments separately. Only primers

with an efficiency between 90 and 110% [37] were used for the following analyses leading to an

exclusion of ethylene-responsive transcription factor RAP2-11-like (ERF RAP2.11) (Table 2).

Gene expression analysis was performed in two technical and four (experiment 1) or five

(experiment 2) biological replicates per time point and soil variant. Normalized gene expres-

sion was calculated according to Pfaffl [36].

Phytoalexin extraction and analysis

Complete root systems were harvested at different time points to measure total phytoalexin

contents and correlate them to expression of genes involved in phytoalexin biosynthesis and

growth parameters (S1 Table). The samples for phytoalexin analysis were taken as follows for

experiment 1: At days 0, 3, 7, 10 and after 8 weeks (day 56) in replicates of 10 single plants per

treatment, which were later unified to obtain a minimal dry mass of 42.2 mg for the analyses

(S2 and S4 Tables). For the second experiment, subsets of the 14 days gene expression samples

(n = 5 pooled samples) were analyzed (n = 5 individual plants, S3 Table). The dried roots were

ground to a fine powder using a mixer mill (Mixer Mill MM400, Retsch, Haan, Germany) at

29 Hz for 1 min.

Extraction of total phytoalexins was carried out as described previously [39]. In short, 1 mL

of methanol supplemented with 50 μg of 4-hydroxybiphenyl (internal standard for relative

quantification) were added to each samples in a 2 mL reagent tube. The samples were vortexed

continuously with Vortex Genie 2 (Scientific Industries, Bohemia, NY, USA) at the maximum

speed of 2.700 rpm. The resulting extracts were centrifuged at 13,000 rpm for 10 min and the

supernatant was transferred into a new tube. A 200 μL aliquot of supernatant was transferred

to a new 1.5 mL reagent tube. After drying under an air stream, the residue was re-dissolved in

200 μL ethyl acetate and centrifuged at 13,000 rpm for 10 min. The clear supernatant was

transferred to a GC-MS vial with glass inlet. The ethyl acetate was evaporated by air stream

and the residue was silylated with 50 μL N-methyl-N-(trimethylsilyl)trifluoroacetamide

(MSTFA; Alfa Aesar, Thermo Fischer, Kandel, Germany) at 60˚C for 30 min. Silylated samples

were analyzed by gas chromatography—mass spectrometry (GC-MS) using the following tem-

perature program: 70˚C for 3 min, then linear increase of temperature from 70˚C to 310˚C

over 24 min (10˚C min-1) and finally 310˚C for 5 min. Helium was the carrier gas with a flow

rate of 1 mL min-1. The injection volume was 1 μL with split ratio 1:10. One technical replicate

was measured per sample (biological replicate) after testing the stability of the system with two

injections per sample. Furthermore, technical reproducibility was ensured by repeated mea-

surements of the alkane standards at the beginning and the end of the sequences and addition-

ally in the middle if the sequence contained more than 40 samples. At the same time, the

alkanes served to calculate the retention index (RI). Quantification of individual compounds

was done based on the internal standard 4-phenylphenol. A response factor of 1 was assumed

for all compounds.

Nutrient analysis

Nutrients were analyzed in the oven-dried leaves of plants from the second experiment sam-

pled after 8 weeks. Leaves from the top, middle and bottom region of each shoot were col-

lected. Material from one plant each was collected, which yielded 5 biological replicates, except

for salt stress, where only four plants were available (S3 Table). Nutrients in each of these sam-

ples were measured in one technical replication. The samples were ground to a fine powder

using 50 mL grinding vessels of a mixer mill (Mixer Mill MM400, Retsch, Haan, Germany) at

30 Hz for 1 min. Fifty mg of each homogenized sample were transferred into 50 mL glass
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vessels. They were incinerated over night at 480˚C until the ash was greyish-white. After cool-

ing down of the ashes, 1 mL of extraction solution (1.5% w/v hydroxylammonium chloride in

6 M HCl) was added to each sample. After 10 minutes of incubation, 9 mL of deionized water

were added. The solution was thoroughly shaken and filtered through a blue band filter. The

following elements were analyzed: zinc, boron, barium, strontium, aluminum, iron, manga-

nese, calcium, magnesium, phosphorus, sodium and potassium. The measurements took place

on an inductively coupled plasma optical emission spectrometer (ICP-OES; Varian 725-ES,

Agilent Technologies, Santa Clara, CA, USA).

Total carbon and nitrogen contents were analyzed in 5–7 mg of the oven-dried and homog-

enized leaf material after dry combustion on a Vario EL III elemental analyzer (Elementar

Analysensysteme, Hanau, Germany). The high organic standard (HOS; IVA Analysentechnik,

Meerbusch, Germany) with 7.45% C and 0.52% N was used as a reference (charge 287371/

264236).

Statistical analyses

All statistical analyses were conducted with the statistics software R version 3.5.1 [40] in RStu-

dio version 1.1.456. For experiment 1, the influence of soil texture (soil origin) and soil treat-

ment on shoot length after eight weeks, shoot and root dry mass and their interaction was

investigated by a two-way analysis of variance (ANOVA). Differences of normalized gene

expression between untreated ARD soil and γ-irradiated ARD soil of the first experiment were

analyzed using Student’s t-Test for each soil and time point separately. For the second experi-

ment, a linear model was fitted for the expression data of each gene of interest, considering

each time point separately. Multiple comparisons were calculated using a Tukey test within the

“multcomp” package version 1.4–10 [41]. Shoot lengths were analyzed separately by week. A

linear model was fitted and differences between the soil treatments were assessed with a

Tukey-Duckworth test for p< 0.05 using the “multcomp” package.

Phytoalexin data were evaluated with all-pairs interaction contrast analysis using sandwich

estimator (Tukey test) in R with the packages “sandwich” [42] and “multcomp” [41] and

p< 0.05 for the compact letter display. For the data containing multiple zeros (non-detected

amounts of phytoalexins), nonparametric multiple comparisons for relative contrast effects

were applied within the R package “nparcomp” version 3.0 [43].

Significant differences for the nutrient analysis were evaluated using linear models and least

square means in R. The correlation analysis of the relationship between two parameters was

performed using linear regression analysis. The Pearson correlation coefficient, r, was calcu-

lated using Sigma Plot 11.0 (Systat Software Inc., San Jose, USA). Statistical significance (P-

value) was tested using one-way univariate ANOVA with p < 0.05.

Results

The following section separately describes the results of the two experiments, starting with

data of candidate gene identification (experiment 1) and followed by results from candidate

gene validation (experiment 2).

Experiment 1: ARD affected soils influenced growth of apple rootstock

M26 to different extents

The three ARD soils tested in this experiment influenced plant growth to different extents,

with the sandy soil Heidgraben having the strongest overall impact. After eight weeks, the

strongest reduction in shoot growth was visible in soil from Heidgraben (34.9 ± 4.1 cm in

γARD to 10.5 ± 5.7 cm in ARD), followed by Ruthe (37.6 ± 4.7 cm in γARD to 27.4 ± 7.4 cm in
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ARD) and Ellerhoop (22.7 ± 7.0 cm to 16.7 ± 5.8 cm). In soil from Ellerhoop, shoot length did

not differ significantly from week 7 on and individual plants even had a greater shoot length in

ARD soil compared to γARD (Fig 1). The ANOVA showed a significant influence of both the

soil origin and soil treatment (untreated, disinfected) on shoot length after 8 weeks (p< 0.001

for both). Additionally, shoot length was affected differently by the combination of soil texture

and treatment, significantly as seen by a p-value of 1.884e-05 for the interaction of the two

parameters.

All ARD variants negatively affected the root system, showing a darker coloration and con-

siderably less branching and biomass (Figs 1 and 2). Browning and blackening of the roots was

also visible for the plants showing only little to no reduction in shoot growth. In general, plants

grown in Ruthe soil achieved the longest shoots, followed by Heidgraben and Ellerhoop.

Fig 1. Growth of M26 plants in untreated ARD soil (ARD) and γ-irradiated ARD soil (γARD) from the three sites

Ellerhoop, Heidgraben and Ruthe over eight weeks. Photos depict representative plants of each variant at the end of

the experiment. Means ± SD, n = 10, Tukey-Duckworth test, significant differences at each time point shown for p<

0.05 (�), p< 0.01 (��) and p< 0.001 (���).

https://doi.org/10.1371/journal.pone.0238876.g001
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The pattern of shoot dry mass followed that of the shoot length (Fig 2). The strongest reduc-

tion in shoot dry mass of ARD versus γARD plants was present in Heidgraben, followed by

Ruthe and Ellerhoop, where the reduction was not statistically significant after 8 weeks. The

root dry masses on the other hand showed a significant reduction in Heidgraben and Eller-

hoop soil, but no reduction was observed for plants grown in soil from Ruthe (Fig 2). Both

shoot and root dry mass were significantly influenced by both soil and treatment (p< 0.001

for both shoot dry mass and p< 0.001 and p< 0.05 for root dry mass respectively). An inter-

action between soil texture and disinfection treatment was again present for shoot dry mass

with p = 0.012.

Experiment 1: The transcription factor ERF1B and the phytoalexin

biosynthesis genes BIS3 and B4Hb showed distinct early differences

between γARD and ARD variants

The four potential biomarker genes for early detection of ARD, 1-aminocyclopropane-1-car-
boxylate oxidase homolog 1-like (ACO1), gibberellin-regulated protein 1-like (GASA1) and

GATA zinc finger domain-containing protein 10-like (GATAD10) were not distinctly expressed

between the γARD and ARD variants in the three ARD soils investigated (S1 Fig). ACO1
showed a slight trend of higher expression in the γARD variants, which was significant at day

3 in the soil from Ruthe and at day 7 in Ellerhoop soil. In general, the ACO1 transcript was of

low abundance in all variants (S1 Fig). The GATAD10 transcript of the ARD variant showed a

peak on day 1. This was due to only one of the four biological replicates each from Ruthe and

Heidgraben showing a considerably higher GATAD10 expression than the other three repli-

cates, as indicated by the high standard deviation.

The ethylene-responsive transcription factor 1B-like (ERF1B) showed significant differences

in gene expression between the untreated and irradiated variants of all three ARD soils from

day 3 on (Fig 3A). In Ellerhoop soil, a slight trend of higher upregulation was observed at day

Fig 2. Shoot and root dry masses of M26 plants after 8 weeks of cultivation in ARD or γARD soil from the three

sites Ellerhoop, Heidgraben and Ruthe. Means ± SD, n = 10, differences between ARD and γARD assessed with

Tukey-Duckworth test for each soil (p< 0.05 (�), p< 0.01 (��) and p< 0.001 (���)).

https://doi.org/10.1371/journal.pone.0238876.g002
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7 in comparison to Ruthe and Heidgraben, where the expression was rather comparable

between day 3 and 7.

A strong and fast gene expression response was found for the two phytoalexin biosynthesis

genes biphenyl synthase 3 (BIS3) and biphenyl 4-hydroxylase (B4Hb). A significant difference

in gene expression between ARD and γARD was found for all soils after 3 days with a higher

expression of both genes in the ARD variants. B4Hb was the only exception in Ellerhoop

where the expression differed significantly only after 7 days (Fig 3B and 3C). The fastest

response was observed in soil from Ruthe, where the BIS3 transcript reached a plateau already

after 3 days. The highest BIS3 expression was found after 56 days in soil from Ellerhoop. B4Hb
expression showed similar patterns as BIS3, but on a lower overall expression level.

Due to their consistent upregulation in roots affected by ARD, the three genes ERF1B, BIS3
and B4Hb were further tested in experiment 2 for their specificity for ARD.

Fig 3. Normalized gene expression of ethylene-responsive transcription factor 1B-like (ERF1B), biphenyl synthase 3 (BIS3) and biphenyl 4-hydroxylase (B4Hb) in

M26 roots growing in ARD and γARD soil from the three sites Ellerhoop, Heidgraben and Ruthe. Means ± SD, n = 4 pooled samples. Significant differences at each

time point shown for p< 0.05 (�), p< 0.01 (��) and p< 0.001 (���) as investigated by Tukey tests.

https://doi.org/10.1371/journal.pone.0238876.g003
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Experiment 1: Phytoalexin contents were elevated in the root shortly after

potting into untreated ARD soil

Total phytoalexin contents in roots grown in ARD soils for 56 days were significantly

increased compared to those grown in γARD soils from all three locations (Fig 4). The highest

total phytoalexin content was found in roots grown in soil from Heidgraben with an average

content of 1.082 mg g-1 DW. In all three soils, the total phytoalexin contents increased rapidly

during the initial days they were still high at day 56 (S3 Fig and Fig 4). The total phytoalexin

content in the roots correlated strongly with shoot dry mass (p< 0.0001) and less pronounced

with root dry mass (p< 0.05).

Among the four biphenyls and four dibenzofurans identified by GC-MS, 2-hydroxy-

4-methoxydibenzofuran (RI = 2131) was the only phytoalexin that was detected in all samples

including day 0. The average content of 2-hydroxy-4-methoxybiphenyl in roots grown for 56

days on γARD soil was 0.014 mg g-1 DW, whereas it reached to 0.657 mg g-1 DW in roots

grown in ARD soils for 56 days, which corresponds to a 47-fold increase. Also, all other seven

phytoalexin compounds were induced in the ARD variants (Fig 4). Noraucuparin (RI = 2121)

and noreriobofuran (RI = 2259) were the most strongly induced biphenyl and dibenzofuran

compounds, respectively, in roots from ARD soils, with a significant increase in Ellerhoop and

Ruthe ARD variants (Fig 4). These individual compounds showed a significant negative corre-

lation with shoot dry mass: noraucuparin (p = 0.0001), noreriobofuran (p< 0.001), hydor-

xyeribofuran (p< 0.001), eribofuran (p< 0.05) and 2-hydroxy-4-methoxydibenzofuran

(p = 0.0001). Furthermore, noraucuparin (p< 0.05), 2-hydroxy-4-methoxydibenzofuran

(p< 0.01), and eribofuran (p< 0.05) were negatively correlated with the root dry mass.

Experiment 2: Abiotic stressors influenced plant growth and nutrient

composition

For experiment 2, plants were grown under different abiotic stress conditions (heat, salt and

nutrient starvation) and in a “healthy” control soil from a grass plot (grass) (Table 1) to further

characterize the selected early ARD biomarker candidate genes ERF1B, BIS3 and B4Hb from

experiment 1. Plants showed characteristic symptoms related to the applied stresses. The lack

Fig 4. Means and standard deviations of individual phytoalexin compounds measured in M26 roots grown in

ARD or γARD soil from the sites Ellerhoop, Heidgraben and Ruthe after 8 weeks. n = 7 for Ellerhoop ARD, n = 8

for Ellerhoop γARD, n = 6 for Heidgraben and Ruthe. Different letters indicate significant differences in total

phytoalexin content as calculated by multiple comparisons (Tukey test, p< 0.05). The results of the statistical

comparisons of the individual compounds are given in Table 3 below.

https://doi.org/10.1371/journal.pone.0238876.g004
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of nutrients especially inhibited both shoot and root biomass in the nutrient starvation variant

and led to stunting and leaf chlorosis (Fig 5 and S4 Fig). The oldest leaves of the heat stress var-

iant showed light brown angular necrotic spots as heat stress symptoms (S4 Fig). When the

plants were transferred to the greenhouse, newly grown leaves did not show these specific

symptoms anymore. The plants subjected to salt stress showed symptoms of leaf margin necro-

sis at the oldest leaves (S4 Fig). As watering was continued with regular tap water, the newly

grown leaves did not show such symptoms anymore. Plants grown in ARD soil showed short-

ened internodes and darkened roots. In comparison to the variants grown in peat substrate,

both variants grown in soil, ARD and grass, showed a browning of roots and reduced growth

(Fig 5 and S4 and S5 Figs). Growth inhibition by the abiotic stresses was also reflected in a sig-

nificant reduction in both shoot and root dry mass after 8 weeks (Fig 5).

A nutrient analysis of the plants from experiment 2 was conducted to test if (i) the nutrient

starvation variant indeed caused deficient levels of nutrients in the plants and (ii) a possible

connection between candidate gene expression and general nutrient status exists. All variants

except the nutrient starvation variant were fertilized with Osmocote Exact 3–4 M (Table 1).

Consequently, the nutrient starvation variant had significantly smaller contents of nitrogen

(7.71 mg g-1 DM) and phosphorous (0.81 mg g-1), which were approximately half the content

of the other variants (Table 4). For potassium, however, contents were smaller in all non-soil

Fig 5. Shoot and root dry masses of M26 plants grown in the variants ARD soil, grass soil, peat substrate, heat,

salt stress and nutrient starvation after 8 weeks (n = 5, except for salt stress n = 4). Different letters indicate a

statistical difference (Tukey Test, p< 0.05) between variants. See Table 1 for details on the variants.

https://doi.org/10.1371/journal.pone.0238876.g005

Table 3. Results of all-pairs interaction contrast analysis using sandwich estimator of individual phytoalexin compounds measured in M26 roots grown in ARD or

γARD soil from the sites Ellerhoop, Heidgraben and Ruthe after 8 weeks (see Fig 4). Different letters indicate significant differences in content as calculated by multiple

comparisons (all-pairs interaction contrast analysis using sandwich estimator or nonparametric multiple comparisons for relative contrast effects, p< 0.05).

Phytoalexin compound Ellerhoop Heidgraben Ruthe

ARD γARD ARD γARD ARD γARD

2-hydroxy-4-methoxydibenzofuran a bc ab c ac c

3-hydroxy-5-methoxybiphenyl a a a a a a

2’-hydroxyaucuparin a a a a a a

eriobofuran a a a a a a

hydroxeriobofuran ab ab a b ab b

noreriobofuran a b ab b a b

aucuparin a a a a a a

noraucuparin a b ab b a b

https://doi.org/10.1371/journal.pone.0238876.t003

PLOS ONE Early genetic biomarkers for apple replant disease

PLOS ONE | https://doi.org/10.1371/journal.pone.0238876 September 24, 2020 13 / 26

https://doi.org/10.1371/journal.pone.0238876.g005
https://doi.org/10.1371/journal.pone.0238876.t003
https://doi.org/10.1371/journal.pone.0238876


based variants with 6.38 mg g-1 DM in nutrient starvation, 7.5 mg g-1 DM in heat stress, 9.47

mg g-1 DM in salt, and 7.36 mg g-1 DM in the peat substrate variant. Interestingly, the calcium

content in the nutrient starvation variant was almost twice as high as in the other variants

(Table 4).

Experiment 2: Expression of BIS3 and B4Hb increased in ARD affected

roots from week 1 to week 2, but was barely influenced by abiotic stressors

Gene expression of the two early ARD biomarker candidate genes belonging to the phyto-

alexin biosynthesis pathway, biphenyl synthase 3 (BIS3) and biphenyl 4-hydroxylase b (B4Hb)

showed a significantly higher normalized expression level in ARD soil compared to the abiotic

stress conditions investigated (Fig 6A and 6B). Interestingly, a considerable expression of both

BIS3 and B4Hb was found in roots of the grass variant. At week 1, normalized expression

between the grass and ARD variant was very similar. At week 2, BIS3 and B4Hb expression

remained at a similar level in the grass variant but was elevated in the ARD variant. For BIS3,

the expression level in the heat, salt and nutrient starvation variants was significantly lower

than in the ARD and grass variants for both time points. Gene expression in the abiotic stress

variants did not differ significantly from the expression of the acclimatized plants (day 0) and

the peat substrate variant (Fig 6A). B4Hb expression on the other hand was significantly higher

in the heat and salt variants compared to the peat substrate variant at week 1, reaching a com-

parable level to the grass variant but being lower than in roots of the ARD variant (Fig 6B). At

week 2, the B4Hb expression pattern resembled that of BIS3. Overall, these two biosynthetically

linked genes followed almost the same expression pattern across all variants and time points,

with BIS3 being the more highly expressed gene.

The expression pattern of the ethylene-responsive transcription factor 1B (ERF1B) was prone

to much higher variation in comparison to the highly expressed phytoalexin biosynthesis

genes (Fig 6C). The high variation is likely caused by its low overall expression level. ERF1B
expression followed a similar pattern as the two other candidate genes with a significant higher

expression in the ARD variant at week 2 compared to the other variants. However, for ERF1B

Table 4. Nutrient contents [mg g-1dry mass] in leaf material of M26 plants grown under the conditions ARD, grass soil, peat substrate, heat, salt stress and nutrient

starvation as depicted in Table 1. Different lower case letters indicate significant differences between treatments (tested by estimated marginal means, p = 0.05),

(means ± SD of n = 5, except for salt stress n = 4).

Content ARD Grass Peat substrate Heat Salt Nutrient starvation

[mg g-1 DM]

Al 0.22 ± 0.05a 0.3 ± 0.06a 0.26 ± 0.04a 0.24 ± 0.03a 0.25 ± 0.04a 0.31 ± 0.08a

B 0.2 ± 0.06ab 0.27 ± 0.05a 0.25 ± 0.05a 0.21 ± 0.03ab 0.21 ± 0.02ab 0.15 ± 0.01b

Ba 0.16 ± 0.04ab 0.21 ± 0.05a 0.17 ± 0.03ab 0.16 ± 0.02ab 0.16 ± 0.02ab 0.12 ± 0.01b

C 480.63 ± 3.15a 478.97 ± 2.72a 477.35 ± 2.8a 478.37 ± 3.71a 477.41 ± 3.53a 459.33 ± 4.2a

Ca 7.58 ± 0.64a 7.18 ± 0.92a 8.87 ± 0.84a 8.1 ± 0.22a 8.43 ± 0.93a 13.39 ± 1.38b

Fe 0.06 ± 0.01a 0.09 ± 0.01ab 0.06 ± 0.01a 0.06 ± 0.01a 0.06 ± 0.02a 0.13 ± 0.05b

K 11.93 ± 1.82ab 12.88 ± 1.71a 7.36 ± 0.42c 7.5 ± 2.1c 9.47 ± 1.35bc 6.38 ± 0.71c

Mg 2.09 ± 0.18a 2.17 ± 0.14a 2 ± 0.25a 1.94 ± 0.2a 2.03 ± 0.12a 1.5 ± 0.19b

Mn 0.05 ± 0a 0.04 ± 0b 0.05 ± 0.01a 0.04 ± 0.01ab 0.04 ± 0b 0.04 ± 0b

N 18.14 ± 3.04a 17.27 ± 2.07ab 12.73 ± 1.16b 13.39 ± 2.55b 14.09 ± 2.7b 7.71 ± 1.69b

Na 2.23 ± 0.38ab 3.14 ± 0.38c 2.87 ± 0.46ac 2.61 ± 0.4ac 2.73 ± 0.59ac 1.59 ± 0.2b

P 1.62 ± 0.16a 1.88 ± 0.4a 1.69 ± 0.34a 1.66 ± 0.12a 1.8 ± 0.14a 0.81 ± 0.13b

Sr 0.016 ± 0.002ab 0.019 ± 0.003a 0.015 ± 0.001ab 0.014 ± 0.002b 0.014 ± 0.002b 0.037 ± 0.003c

Zn 0.04 ± 0a 0.04 ± 0a 0.03 ± 0bc 0.03 ± 0.01bc 0.02 ± 0c 0.04 ± 0.01ab

https://doi.org/10.1371/journal.pone.0238876.t004
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a clear response to heat stress was observed. At week 1, ERF1B gene expression showed a clear

peak for the heat stressed plants (Fig 6C), which was not present anymore at week 2, after the

plants had been relieved from the stress.

Fig 6. Normalized gene expression of the biomarker candidate genes biphenyl synthase 3 (BIS3) and biphenyl
4-hydroxylase (B4Hb) and ethylene-responsive transcription factor 1B-like (ERF1B) in roots of M26 plants grown

under the conditions ARD, grass soil, peat substrate, heat, salt stress and nutrient starvation as depicted in

Table 1. Means ± SD, n = 5, differences between variants were assessed with a Tukey test for each week (p< 0.05).

Different letters indicate significant differences between variants for week 1 (small letters) and week 2 (capital letters).

https://doi.org/10.1371/journal.pone.0238876.g006
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Phytoalexin composition was most diverse in the ARD variant compared to

other stressors

The total phytoalexin content in roots from experiment 2 after two weeks (Fig 7) correlated

with not only the expression of the phytoalexin biosynthesis genes biphenyl synthase 3 (BIS3,

p< 0.0001) and biphenyl 4-hydroxylase b (B4Hb, p< 0.0001) but also with the ethylene-respon-
sive transcription factor 1B-like (ERF1B, p< 0.0001) (Fig 6A and 6B). The highest total phyto-

alexin content was present in the ARD variant, followed by the grass variant. In addition, the

composition of individual phytoalexin compounds was more diverse in the soil variants ARD

and grass than in the other variants. 2-Hydroxy-4-methoxydibenzofuran was again the only

phytoalexin detected at a base level in all variants (Fig 7). Hydroxyeriobofuran was present in

the soil variants ARD and grass and in the abiotic stress variants heat, salt and nutrient starva-

tion. Furthermore, the salt variant contained an additional small amount of noreriobofuran

(Fig 7), which was significantly smaller compared to the ARD and grass variants. The peat sub-

strate did not induce any new phytoalexin. Roots grown in grass soil contained the same pro-

file of phytoalexins as the ARD variant with only 3-hydroxy-5-methoxybiphenyl being

exclusively present in the ARD variant. Although noraucuparin was detected in both ARD and

grass variants, it was only significantly induced in the ARD variant as well (Fig 7).

The detected content of all phytoalexin compounds, except for 2‘hydroxyaucuparin and

hydroxyeriobofuran, strongly correlated (p =< 0.0001) with the gene expression levels of

BIS3, B4Hb and ERF1B (see Table 5). The abundance of single phytoalexin compounds was

correlated with shoot and root dry mass, e.g. for noraucuparin (shoot p< 0.05, root p< 0.05),

eribofuran (shoot p< 0.05, root p< 0.05), noreriobofuran (shoot p< 0.05, root p< 0.05) and

hydroxyeriobofuran (shoot p< 0.05, root p< 0.001).

Discussion

The experiments conducted in this study aimed at the identification and validation of univer-

sal and early biomarkers for ARD responses within the apple roots on the gene expression

level. The first experiment compared the reaction of M26 apple plants growing in soils from

three ARD sites to identify genes that are universally expressed under ARD conditions. The

second experiment investigated the responses of three selected biomarkers to different abiotic

stressors to exclude general stress response genes.

Fig 7. Means of individual phytoalexin compounds measured in M26 roots grown under the conditions ARD,

grass soil, peat substrate, heat, salt stress and nutrient starvation after 14 days of culture as depicted in Table 1.

Means and standard deviations of 5 plants, except for salt stress (n = 4) are given in the table below.

https://doi.org/10.1371/journal.pone.0238876.g007
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Differences in shoot growth alone may not be suitable to assess ARD

severity in a soil

With ARD coming to the awareness of fruit and tree producers, methods of identifying and

quantifying the disease in the soil are more than ever of interest. Yim et al. [10] developed a

bio-test by means of linking the shoot length reduction of the highly ARD-susceptible root-

stock M26 in ARD-affected soils compared to the respective disinfected soils as an indication

for the presence of ARD. We used this bio-test to compare the reaction of M26 when grown in

soil from three ARD sites in a greenhouse experiment. At these sites (Ellerhoop, Heidgraben

and Ruthe), ARD had been intentionally induced by repeatedly replanting the apple rootstock

‘Bittenfelder Sämling’ [12]. The ARD sites share the same cropping history, but differ in their

soil structural/physical and chemical parameters and were exposed to different climatic

conditions.

After growing in the soils for eight weeks, M26 plants showed typical ARD symptoms in

comparison to the respective γ-disinfected controls (Fig 1). The roots of the plants grown in

the untreated ARD soil were dark in coloration, which has been reported to be due to cellular

damage and necrosis [1, 10, 44] but also deposition of phenolic compounds [10]. In addition,

the plants of the untreated ARD variants in all soils had fewer fine roots, which resulted in a

significantly reduced root dry mass in ARD soil from Ellerhoop and Heidgraben (Fig 2). A

reduction in shoot length and biomass, another major feature of ARD (reviewed in [1]), was

observed for soils from Ruthe and Heidgraben (Figs 1 and 2). In the Ellerhoop soil, shoot

length and shoot dry mass did not significantly differ between the ARD and γARD variants

after eight weeks. This could point to the fact that either chemical or physical characteristics of

this soil caused slower growth, beneficial soil organisms were lacking or pathogens survived

the irradiation and thus occurred in the γ-irradiated soil. The latter speculation is supported

by the observation that roots grown in γ-irradiated Ellerhoop soil contained significantly

higher phytoalexin contents compared to the γ-irradiated soils of the other two sites investi-

gated (Fig 4).

The strongest ARD effect in terms of shoot length and fresh mass reduction was found for

the sandy soil from Heidgraben (Figs 1 and 2). It has been reported that ARD is easier and

faster induced in sandy soils [45]. Ruthe, as a considerably clayey soil, might have had a greater

ARD suppressing capacity as reviewed for general disease suppressiveness by Garbeva et al.

[45]. The different water holding capacities of the sandy and loamy soil could have also con-

tributed to the observed differences. The lower ARD incidence in this experiment in Ruthe as

well as Ellerhoop soil may also be due to waterlogging after heavy rain falls at the experimental

Table 5. Results of all-pairs interaction contrast analysis using sandwich estimator of individual phytoalexin compounds measured in M26 roots grown under the

conditions ARD, grass soil, peat substrate, heat, salt stress and nutrient starvation after 14 days of culture (Table 1, Fig 7). Different letters indicate significant differ-

ences in content as calculated by multiple comparisons (all-pairs interaction contrast analysis using sandwich estimator or nonparametric multiple comparisons for relative

contrast effects, p< 0.05).

Phytoalexin compound day 0 ARD grass peat substrate heat salt nutrient starvation

2-hydroxy-4-methoxydibenzofuran d a ab bc bc c bcd

3-hydroxy-5-methoxybiphenyl b a b b b b b

2’-hydroxyaucuparin a a a a a a a

eriobofuran b a a b b b b

hydroxeriobofuran c a ab c b abc bc

noreriobofuran c a b c c bc c

aucuparin b a a b b b b

noraucuparin b a b b b b b

https://doi.org/10.1371/journal.pone.0238876.t005
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sites. Anaerobic conditions in the soil caused by waterlogging may have an effect similar to

other disinfecting measures leading to a weakening of the ARD effect [28, 46, 47].

With only information on shoot length differences from the bio-test, the Ellerhoop soil

would have been classified as not or only weakly affected by ARD. It is likely that factors apart

from ARD influenced plant growth in this variant. As the precise cropping history of the site

Ellerhoop is known, the presence of a replant situation can here be confirmed. However, if the

precise history is unknown, as it is the case for most commercial sites, shoot growth reduction

alone might not be sufficient to test for the presence of ARD. Other typical ARD symptoms

could be observed in the Ellerhoop ARD variants such as root discoloration and reduction in

fine roots. A microscopic evaluation of root symptoms has been proposed as a measure to eval-

uate the presence and severity of ARD early on [44]. An advantage of this analysis is an early-

on diagnosis, but routine and experience are required for a microscopic evaluation and the

analysis of a large number of samples is time consuming. Therefore, alternative measures for

early ARD diagnosis are needed and were identified in the marker genes described below.

BIS3 and B4Hb are promising candidates for early ARD indication

Finding an early indicator to assist in the diagnosis of ARD is of major importance. The same

importance is attributed to a better understanding of the molecular etiology of ARD in order

to deduce effective strategies against it, as the present counteractions present only temporal

solutions and are uneconomic and not sustainable (reviewed in [9]). The selection of differ-

ently regulated genes from Weiß et al. [11, 33] was narrowed down by testing their expression

on further ARD soils in this study. ACO1, GASA1 and GATAD10 did not show the same dif-

ference in regulation between the untreated and γARD variants as reported by Weiß et al. [33],

although there was a slight consensus in the expression patterns over time (S1 Fig). The dis-

crepancy between the results obtained in this experiment and the results from Weiß et al. [11,

33] may be caused by other environmental factors during the experiment, which could have

triggered the regulation of these genes. As experiment 1 took place in winter (February and

March 2017) and Weiß et al. conducted their experiment in March 2014 [11] and September

2014 [33], differences in light and temperature as well as pathogen pressure due to the time of

year are expected. Further differences in plant growth and molecular response are anticipated

due to the usage of different soils, connected with different cropping histories and inherent

microbiome.

In contrast, the remaining three genes, ERF1B, BIS3 and B4Hb, are promising candidates

for a linkage with ARD and therefore as potential biomarkers for ARD. Taken the presented

results into account, the expression of these genes has been shown to differ in response to

ARD in three different experiments and in five ARD soils of different origin (this study and

[11, 33]). Analyzing these three candidate genes in apple roots in response to the abiotic stress-

ors heat and salt stress and nutrient starvation yielded different specificities, which are pre-

sented in detail below.

Expression of the ERF1B transcription factor was lower than that of the enzyme-coding

genes BIS 3 and B4Hb, resulting in a higher variation in qPCR measurements. Its expression

roughly followed the phytoalexin biosynthesis genes with the exception of a clear induction

upon heat stress (Fig 6C). At week 2, expression in the heat treated plants resumed to a level

comparable to the peat substrate without additional stress. The heat stress was removed after

the week 1 sampling time point, indicating that the heat stress induction of ERF1B gene

expression was temporarily limited to the incidence of stress and declined after that.

Ethylene response factors (ERF) are integral components of ethylene signaling and

response. They play a major regulatory role in the molecular response to biotic stressors. Upon
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activation, they bind to GCC box elements [48]. The ERF1B transcription factor may link

plant hormone signaling pathways of ethylene, jasmonic acid and salicylic acid [49, 50] and is

involved in biotic stress responses [49, 51, 52]. Constitutive expression of ERF1B has been

reported to increase resistance against the necrotrophic fungi Botrytis cinerea and Plecto-
sphaerella cucumerina in Arabidopsis thaliana [49]. In our study, ERF1B expression showed a

clear induction in ARD soil (Figs 3 and 6C). ERF1B expression can be related to the presence

of biotic agents in the soil, which are the main causal agents of ARD [5, 10, 53]. As demon-

strated in this study, ERF1B expression in apple was additionally linked to heat stress. ERF

transcription factors are next to biotic stress responses heavily involved in plant responses to

abiotic stresses via binding to dehydration-response elements [54]. Abiotic stresses that induce

ERF transcription factor expression include salt stress, drought, cold, heat and changes in light

availability (reviewed by [48]). In apple, especially drought and salt stress responses are co-reg-

ulated [55, 56]. However, an expression induction of this specific ERF1B upon salt stress was

not observed in our study (Fig 6C).

BIS3 and B4Hb are coding for enzymes catalyzing subsequent steps in phytoalexin biosyn-

thesis [33]. Phytoalexins are part of the biotic stress response and have been described in mem-

bers of the Rosaceae including Malus, Pyrus and Sorbus [34, 57, 58]. Evidence of their presence

in apple roots was first reported by Weiß et al. [11, 33] and in this study. Expression of BIS3
and B4Hb followed a similar expression pattern upon exposure to ARD (Fig 3). They showed

an early significant increase on all soils tested as early as three days after the plants were intro-

duced to the ARD soils, with B4Hb in Ellerhoop soil as the only exception. Evaluating BIS3
and B4Hb responses to abiotic stressors indicated that they were outstandingly highly

expressed in roots of the ARD variant (Fig 6A and 6B). In addition, they were more highly

expressed in the grass soil variant (Fig 6A and 6B). This unspecific response is important to

consider regarding the limitations of the explanatory power as expression markers but may

also give further insights into the ARD etiology as discussed below. The other stresses investi-

gated did not lead to significant induction of these phytoalexin biosynthesis genes. In the liter-

ature, phytoalexins are described to be a part of the induced defense response against biotic

stressors, fungi in particular [59]. BIS3 expression was reported previously in apple upon fire

blight infection [60] and upon infection with Pythium ultimum, one causal agent of ARD [61,

62]. Taking these studies together with further studies from our group [11, 32, 33, 63], the phy-

toalexin biosynthesis is a clear and highly specific part of the Malus response to ARD.

The expression of BIS3 and B4Hb strongly correlated with the abundance of phytoalexin

compounds. The maximum total phytoalexin amounts found in this study, reaching up to 1.08

mg g-1 dry mass in the ARD variant of Heidgraben in experiment 1 (Fig 4) were similar to

maximum amounts of 1.7 mg g-1 dry mass after 14 days reported by Weiß et al. [33]. The

authors hypothesized about a possible autotoxic effect of the phytoalexin compounds [33],

because comparable concentrations of the phytoalexin compounds camalexin and phaseolin

were shown to be cytotoxic to Arabidopsis thaliana, Phaseolus vulgaris and Beta vulgaris cells,

respectively [64, 65]. In the second experiment, where phytoalexins were detected after 14

days, the measured contents were lower. The highest total content was 0.66 mg g-1 dry mass in

the ARD variant (Fig 7). One explanation may be the shorter exposure of the plants to ARD in

experiment 2 (14 days) compared to experiment 1 (56 days). However, the amounts detected

in the study of Weiß et al. [33] were considerably larger after 14 days. This may indicate further

factors influencing the total amount of phytoalexins produced.

Individual phytoalexin compounds differed considerably between variants of both experi-

ments. In experiments 1 and 2, 2-hydroxy-4-methoxydibenzofuran was present in all variants

and contributed to the total phytoalexin amount detected in the γARD variants (Fig 4) and

considerably to the stress variants (Fig 7). Thus, 2-hydroxy-4-methoxydibenzofuran may not
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only be considered as a phytoalexin in apple roots, which by definition is synthesized de novo

as a (biotic) stress response. As this compound is already present in the plant before stress

application, it may be referred to as phytoanticipin, as suggested by van Etten [66].

The phytoanticipin/phytoalexin 2-hydroxy-4-methoxydibenzofuran was present in all the

tested variants and contributed considerably to the total phytoalexin amount detected in the

γARD variants (Fig 4) and stress variants (Fig 7). When the apple plants were grown in ARD

soil, more phytoalexins including four biphenyls and three dibenzofurans were induced. These

changes in the phytoalexin profiles were strongly correlated with the expression pattern of the

phytoalexin biosynthetic genes (Figs 3 and 6). Of particular interest is 3-hydroxy-5-methoxybi-

phenyl, which was only detected in the ARD variant of experiment 2 and at day 10 of experi-

ment 1 (S2 Fig), but was absent in all abiotic stresses as well as in grass soil (Fig 7). Apart from

3-hydroxy-5-methoxybiphenyl, the phytoalexin composition of the ARD and grass soils was

almost identical. BIS3 is located at the beginning of the biphenyl biosynthesis pathway, while

B4Hb converts 3-hydroxy-5-methoxybiphenyl to noraucuparin [33]. The accumulation of

3-hydroxy-5-methoxybiphenyl at earlier time points of ARD indicates a stronger or faster

induction of BIS3 than of B4Hb in ARD soil. In contrast, the induction of BIS3 and B4Hb in

grass soil was weaker and equal, therefore no accumulation of 3-hydroxy-5-methoxybiphenyl

was detected. To improve our understanding of ARD, the role of particularly 3-hydroxy-

5-methoxybiphenyl and the enzyme catalyzing its biosynthesis, caffeic acid 3-O-methyltrans-

ferase (SaOMT1), may be of interest. In apple, it was shown that OMTa expression showed a

significant increase in its transcript level, following the same pattern as BIS3 and B4Hb [33].

The nutrient starvation variant showed the smallest contents in all nutrients, especially of

N, P and K. An exception was calcium, which had twice the contents than the other variants.

Thus, in this nutrient starvation variant, the visual symptoms of nutrient deficiency are

proved. Demidchik et al. [67] showed that a decrease of extracellular K leads to a hyperpolari-

zation of the epidermal plasma membrane followed by an increase of cytosolic Ca in Arabidop-
sis thaliana. This would explain the high calcium content in shoot material of the nutrient

starvation variant. Based on the gene expression study and phytoalexin concentration inside

the root, it can be concluded that abiotic stress has no effect on phytoalexin synthesis and only

biotic factors affect the expression of these biomarker genes.

Further studies including soils from more sites should follow to shed additional light on the

quantitative correlation between ARD severity and candidate gene expression.

Buildup of the phytoalexin defense reaction as possible cause of ARD

Results from both experiments presented in this study indicate a time effect in candidate gene

expression, with gene expression increasing in the ARD variants (Figs 3 and 6 and S3 Fig). Weiß

et al. [33] investigated gene expression in apple roots grown 3, 7, 10 and 14 days in ARD versus

γARD soil and observed patterns similar to those we report in this study. With the comparison to

grass soil, we have now proven that pathogens present in this control soil also induce the expres-

sion of our candidate genes BIS3, B4Hb and ERF1B to a certain extent (Fig 6). Candidate gene

expression in ARD soil was complemented by the phytoalexin analysis. After one week, the

expression of all three genes in grass soil was nearly comparable to the one in ARD soil, but after

two weeks there was a significantly higher expression in ARD soil. Previous studies also reported

growth reduction and browning of roots in grass soil in comparison to γ-irradiated grass or ARD

soil [12, 44]. Thus, we assume a molecular defense reaction against biotic stress to be also initiated

in grass soil, but in ARD soil it was becoming much stronger with time.

ARD develops in healthy soil and consequently an interaction of the plant with the soil

leads to the formation of a replant situation. This plant-soil-interaction must be quite unique
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to Malus and closely-related rosaceous species, as ARD is not affecting non-related species out-

side the family. Winkelmann et al. [9] proposed the cause of ARD to be harmful shifts in soil

microbiota (dysbiosis) regarding their structure as well as their functions. Radl et al. [68]

attributed these harmful shifts to the previous culture of the same or closely-related species. As

biphenyls and dibenzofurans are defense compounds specific to the subtribe Malinae and pro-

duced in lower amounts in healthy soils, one could speculate on their involvement in the shift

of soil microbiota leading to the development of ARD. This hypothesis would require ARD

agents to survive or even utilize these defense compounds where other microorganisms can-

not. Further studies are required to test this hypothesis. One of the promising strategies to

prove this hypothesis could be the isolation and identification of microbes from ARD soils and

then to investigate the effects of biphenyls and dibenzofuran phytoalexin on these isolated

microbes. In case the phytoalexins could serve as carbon source to support or even promote

the growth of specific microbes, the increased microbes will further induce the phytoalexin

production in roots, which could then cause the damage of root cells by cytotoxic properties of

phytoalexins. However, this hypothesis needs to be addressed in future research.

Conclusions

In the present study, we identified the expression of the phytoalexin biosynthesis genes BIS3
and B4Hb as suitable biomarkers for apple replant disease (ARD). Their expression was

strongly and consistently induced in roots of apple plants grown in three different soils

affected by ARD compared to γ-irradiated ARD soil. Furthermore, their expression was not

influenced by common abiotic stresses. The expression of BIS3 and B4Hb was strongly corre-

lated with the abundance of phytoalexin compounds. Hence, due to their high expression lev-

els and their high specificity, BIS3 and B4Hb can be recommended as early ARD markers.

Future studies should include expression analyses of the ARD marker genes after inoculation

with causal agents that are part of the ARD complex. Furthermore, it would be interesting to

correlate gene expression levels to the microbial community composition in the respective

ARD soils. In ARD soil, phytoalexin biosynthesis was increased in comparison to healthy soil.

The presence of these apple-specific defensive compounds in healthy soil led to the hypothesis

that they might play a role in the ARD etiology by attracting specific communities of soil-

borne pathogens.
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