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Abstract:When the vorticity ismonotonewith depth,we present a variational formulation for steady periodic

water waves of the equatorial �ow in the f -plane approximation, and show that the governing equations for

this motion can be obtained by studying variations of a suitable energy functional H in terms of the stream

function and the thermocline. We also compute the second variation of the constrained energy functional,

which is related to the linear stability of steady water waves.
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1 Introduction
Themathematical study of geophysical �ows is currently of great interest since an in-depth understanding of

the ongoing dynamics is essential in predicting features of these large-scale natural phenomena. Geophysical

�uid dynamics is the study of �uid motion where the Earth’s rotation plays a signi�cant role, the Coriolis

forces are incorporated into the governing Euler equations, and applies to a wide range of oceanic and

atmospheric �ows [10, 20, 29, 44]. Because geophysical �uid dynamics is highly complex, one usually uses

the f -plane approximation of Euler equations. This approximation has been applied widely in the study of

the equatorial �ows [3, 4, 9, 34, 35, 41].

Because the Coriolis force vanishes along the equator, equatorial water waves exhibit particular

dynamics. Besides, in this region the vertical strati�cation of the ocean is greater than anywhere else. Both

factors facilitate the propagation of geophysical waves that either raise or lower the equatorial thermocline,

which is the sharp boundary between warm and deeper cold waters. The rigorous mathematical study

of equatorial water waves was initiated by [9], in which Constantin presented the model of wave-current

interactions in the f -plane approximation for underlying currents of positive constant vorticity. Starting

with this pioneering paper, recently some essential results on equatorial water waves have been proved

in the literature. See [5, 6, 9, 10, 14, 19, 20, 32, 36, 45]. In the model constructed by Constantin in [9], the

upper boundary of the centre layer is assumed to be �at, while the lower boundary is the thermocline near

which the equatorial undercurrent resides. See [19, 40] for analytical results concerning the dynamics of the

thermocline in the equatorial region. In recent work [4], the authors continued to study such a model by

considering the general vorticity, and we proved the existence of steady two-dimensional periodic waves in

the f -plane approximation by an application of the Crandall-Rabinowitz bifurcation theory. We also derived

the dispersion relations for various choices of vorticity, including the negative constant vorticity and non-
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constant vorticity. For the classical gravitywaterwaves,we refer the reader to [11–13, 25, 27] for the existenceof

steady periodic waves and the related properties. The study of steady periodic water waves with vorticity has

received much attention since the work [25] by Constantin and Strauss. See [7] for more detailed discussions.

Vorticity plays the key role in describing oceanic �ows, and this aspect was very recently emphasized in

thorough analytical studies [21–23].

In this paper, we obtain the variational formulation for steady equatorial waves with vorticity of the

model in [4, 9]. It has a long history to study the variational formulations for steady water waves for

the irrotational �ows. We refer the reader to [33, 39] for a Lagrangian formulation and [33, 43, 46] for a

Hamiltonian formulation. For the Hamiltonian formulation of the rotational �ows, we refer the reader to

[18] for the constant vorticity, [17] for the piecewise constant vorticity allowing for strati�cation, [15, 16, 37]

for the extension of the Hamiltonian formulation to various scenarios pertaining to equatorial water �ows.

There are many results on variational formulations of the various classical small-amplitude long-wave

approximations to the governing equations–the shallowwater equations, the Boussinesq, and the Korteweg-

de Vries equations all emerge from this process, see [28] and the references therein. For the steady water

waves with vorticity, variational formulations have been given by Constantin, Sattinger and Strauss [24], in

which they provide two variational formulations. When the vorticity varies monotonically with the depth,

they provided a fundamental variational principle which can be expressed entirely in terms of the natural

invariants (energy, mass, momentum and vorticity). Onemotivation of our research is to extend the results in

[26] to the new setting presented here. Somenewaspects originate from the dynamic boundary condition (2.5)

below and the fact that the pressure on the thermocline is not a constant. Note that the latter is in contrast to

the case of classical gravity water waves, where - in absence of surface tension e�ects - the pressure is given

as the constant atmospheric pressure. Of course the Earth’s rotation plays a signi�cant role in our analysis.

By computing and analyzing the second variation of the constrained energy functional, we prove linear

stability results of steady water waves. Remarkable progress on the linear stability and nonlinear stability

properties of steady water waves with vorticity was given by Constantin and Strauss in [26]. In the literature,

there are many works that deals with the stability of the full water wave equations (not their approximate

models). Benjamin and Feir [1] presented a signi�cant analysis for a small-amplitude approximation in the

irrotational case, showing that there always is a sideband instability, whichmeans that the perturbation has a

di�erent period from the steady wave. Bridges andMielke [2] studied the existence and linear stability for the

Stokes periodic wavetrain on �uids of �nite depth, by the Hamiltonian structure of the water-wave problem.

Zakharov [46] and Mackay and Sa�man [42] discussed the linear stability for the Hamiltonian system that

arises with the use of the velocity potential in the irrotational case.

2 Preliminaries
The vanishing of the Coriolis parameter along the Equator confers the �ows in this part of the ocean a two-

dimensional character. The vorticity equation plays an appreciable role in proving the two-dimensionality

of gravity wave trains over �ow with constant vorticity vector, and the boundary conditions are decisive

in proving the two-dimensionality. See the rigorous analytical argument in [8]. In a rotating framework,

let the x-axis be chosen horizontally due east, the y-axis horizontally due north and the z-axis vertically

upward. z = −d is the upper boundary of the centre layer and z = −η(x, t) is the thermocline. In the region

−η(x, t) ≤ z ≤ −d, the full governing equations in the f -plane approximation near the equator are the Euler

equations {
u
t
+ uu

x
+ wu

z
+ 2Ωw = −

1

ρ

P
x
,

w
t
+ uw

x
+ ww

z
− 2Ωu = −

1

ρ

P
z
− g,

(2.1)

together with the equation of mass conservation

u
x
+ w

z
= 0, (2.2)
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whereΩ is the rotation speed of the Earth, P is the pressure, g is the gravitational acceleration, ρ is thewater’s

density. The kinematic boundary conditions are

w = −η
t
− uη

x
on z = −η(x, t), (2.3)

and

w = 0 on z = −d. (2.4)

Beneath the thermocline, themotionless colderwater has a slightly higher density ρ+∆ρ (for example, for the

equatorial Paci�c the typical value of ∆ρ/ρ is 0.006, see the discussion in [30]). For this reason, the dynamic

boundary condition

P = P
0
− g(ρ + ∆ρ)z on z = −η(x, t). (2.5)

See [9] and [4] for the details on the above equations (2.1)-(2.5).

Given c > 0, we are looking for the periodic waves traveling at speed c, that is, u, w, P, η have the form

(x − ct) and all of them are periodic with period L. In the new reference frame (x − ct, z) 7→ (x, z), we assume

that there are no stagnation points of the �ow, that is,

u < c for − η(x) ≤ z ≤ −d, (2.6)

throughout the �uid. Due to (2.2), we can de�ne the stream function ψ(x, z) by

ψ
x
= −w, ψ

z
= u, for − η(x) < z < −d.

Thus

−∆ψ = ω = w
x
− u

z
,

where ω is the vorticity.

Throughout this paper, let R := {0 < x < L, −η(x) < z < −d} and S := {(x, −η(x)), 0 < x < L} be the

thermocline, B := {(x, −d), 0 < x < L} be the upper boundary of the centre layer. Since on S the function

ψ − cz is constant, we can choose ψ − cz = 0 on S. Thus on B, ψ − cz = m, where¹

m :=

−d∫
−η(x)

(
u(x, z) − c

)
dz < 0

is the relative mass �ux. It is not di�cult to verify that the equations of motion (2.1)-(2.5) are expressed as

(ψ
z
− c)ψ

xz
− ψ

x
ψ
zz
− 2Ωψ

x
= −

1

ρ

P
x
, for − η(x) < z < −d,

−(ψ
z
− c)ψ

xx
+ ψ

x
ψ
xz
− 2Ωψ

z
= −

1

ρ

P
z
− g, for − η(x) < z < −d,

ψ
x
= (ψ

z
− c)η

x
, on z = −η(x),

ψ − cz = 0, on z = −η(x),

ψ − cz = m, on z = −d.

(2.7)

As was shown in [4], the condition (2.6) ensures that there exists a C

1

vorticity function γ such that

−∆ψ = ω = γ(ψ − cz).

From the �rst two equations in (2.7) we obtain in analogy with Bernoulli’s law for gravity water waves [7],

which states that the expression

E :=

ψ

2

x
+ (ψ

z
− c)

2

2

− 2Ωψ + gz +

P

ρ

− Γ(cz − ψ)

1 Note that m is independent of x.
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is constant throughout R, where

Γ(p) :=

p∫
0

γ(−s)ds, 0 ≤ p ≤ −m.

As shown in [4], the governing equations (2.1)-(2.5) are equivalent to problem
∆ψ = −γ(ψ − cz), for − η(x) < z < −d,

|∇(ψ − cz)|2 − 2(g̃ + 2Ωc)z = Q, on z = −η(x),

ψ − cz = 0, on z = −η(x),

ψ − cz = m, on z = −d,

(2.8)

where Q := 2(E −

P
0

ρ

) is the physical constant and

g̃ := g

∆ρ

ρ

is the reduced gravity [30].

3 Main results

3.1 Invariants

Let R(t) := {(x, z) ∈ R2

: 0 < x < L, −η(x, t) < z < −d} be a periodic cell of the �uid domain. We will

obtain several invariants for the equatorial �ow, which are in analogy to the well-known results in [38] for

the classical gravity water waves. Two of them have to be modi�ed due to the Earth’s rotation and the non-

constant density, cf. the dynamic boundary condition (2.5). First the �uid mass

M :=

∫∫
R(t)

dzdx

is invariant. Secondly, for an arbitrary C

1

−function F, the integral

F :=

∫∫
R(t)

F(ω)dzdx

is invariant². In fact, as done in [24], to prove that F is invariant, we only need to show

Dω

Dt

= ω
t
+ uω

x
+ wω

z
= 0,

which is indeed a fact following from the equations (2.1). Now we consider the third invariant given as

E :=

∫∫
R(t)

[
u

2

+ w

2

2

− g̃z

]
dzdx.

In fact, let C be the boundary of R(t), using Green’s identity, the conditions (2.5) and (2.2), we obtain

dE

dt

=

∫∫
R(t)

D

Dt

(
u

2

+ w

2

2

)
dzdx − g̃

∫∫
R(t)

D

Dt

(z)dzdx

= −

1

ρ

∫∫
R(t)

(uP
x
+ wP

z
)dzdx − g

∫∫
R(t)

wdzdx − g̃

∫∫
R(t)

wdzdx

2 The freedom of choosing F will be used later on.
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= −

1

ρ

∫
C

P(wdx − udz) − g

∫∫
R(t)

wdzdx − g̃

∫∫
R(t)

wdzdx

= −

P
0

ρ

∫
C

(wdx − udz) +

g(ρ + ∆ρ)

ρ

∫
C

z(wdx − udz) − (g̃ + g)

∫∫
R(t)

wdzdx

= −

P
0

ρ

∫
C

(wdx − udz) +

g(ρ + ∆ρ)

ρ

∫∫
R(t)

wdzdx − (g̃ + g)

∫∫
R(t)

wdzdx

= −

P
0

ρ

∫
C

(wdx − udz)

= −

cP
0

ρ

L∫
0

η
x
(x, t)dx

= 0.

Finally we consider the fourth invariant de�ned as

U :=

∫∫
R(t)

(
u(x, z, t) + 2Ωz

)
dzdx.

To see that U is invariant, by the fact

∫
C

zdz =

∫
S

η(x, t)η
x
(x, t)dx = 0, we compute

dU

dt

=

∫∫
R(t)

D

Dt

(u)dzdx + 2Ω

∫∫
R(t)

D

Dt

(z)dzdx

=

∫∫
R(t)

(u
t
+ uu

x
+ wu

z
)dzdx + 2Ω

∫∫
R(t)

wdzdx

=

∫∫
R(t)

(−

1

ρ

P
x
− 2Ωw)dzdx + 2Ω

∫∫
R(t)

wdzdx

= −

1

ρ

∫∫
R(t)

P
x
dzdx

=

1

ρ

∫
C

(
P
0
− g(ρ + ∆ρ)z

)
dz

=

1

ρ

∫
C

P
0
dz.

3.2 Variational formulation

Now we will write the above functionals in terms of ψ and η, which are de�ned on the function space

F :=

{
(ψ, −η) ∈ C2

per
(R × (−∞, −d]) × C

1

per
(R) ×R : ψ

z
< c

}
,

where c is the travelling speed. We will restrict perturbations (ψ
1
, −η

1
) of (ψ, −η) to the subspace

D :=

{
(ψ, −η) ∈ F :

∫
B

ψ
z
dx = 0

}
.

We assume that F : R → R is a C

2

−function for which F

′′
vanishes nowhere, that is, F is either

strictly convex or strictly concave. Let us de�ne the C

1

−function γ by γ = (F

′
)

−1

. Obviously, the function γ

is monotone.
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We say that (ψ, −η) ∈ F is a steady periodic equatorial water wave with the vorticity function γ if there

exist k, Q ∈ R such that
∆ψ = −γ(ψ − cz − k), for − η(x) < z < −d,

|∇(ψ − cz)|2 − 2(g̃ + 2Ωc)z = Q, on z = −η(x),

ψ − cz = k, on z = −η(x),

ψ − cz = m + k, on z = −d,

(3.1)

where the constants g̃, Q are described above and

m :=

−d∫
−η(0)

(ψ
z
(0, z) − c) dz.

Obviously, (ψ − k, −η) solves the equations (2.8) if (ψ, −η) is a steady periodic equatorial water wave with the

vorticity function γ.

We remark that the stream function ψ, determined up to a constant by (3.1) and the free surface pro�le η

completely determine the steady �ow.

Theorem 3.1. Any critical point in F of E − F, subject to the constraints of M and U, is a steady periodic

equatorial water wave with the vorticity function γ.

Proof. Let (ψ, −η) ∈ F be a critical point of E − F. Then (ψ, −η) satis�es the Euler-Lagrange equation

δ(E − F) = λδU + µδM, (3.2)

where λ and µ are Lagrange multipliers. Let (ψ
1
, −η

1
) ∈ D denote a perturbation of (ψ, −η) and set ω := −∆ψ

and ω
1
:= −∆ψ

1
. By direct computations, we obtain

δM(ψ, −η)(ψ
1
, −η

1
) = lim

ε→0

M(ψ + εψ
1
, −η − εη

1
) −M(ψ, −η)

ε

=

∫
S

η
1
dx,

δU(ψ, −η)(ψ
1
, −η

1
) =

∫∫
R

u
1
dzdx +

∫
S

(u + 2Ωz)η
1
dx,

δF(ψ, −η)(ψ
1
, −η

1
) =

∫∫
R

F

′
(ω)ω

1
dzdx +

∫
S

F(ω)η
1
dx,

and by Green’s formula

δE(ψ, −η)(ψ
1
, −η

1
) =

∫∫
R

(uu
1
+ ww

1
)dzdx +

∫
S

(
u

2

+ w

2

2

− g̃z

)
η
1
dx

=

∫∫
R

∇ψ ·∇ψ
1
dzdx +

∫
S

( |∇ψ|2
2

− g̃z

)
η
1
dx

=

∫
S

{( |∇ψ|2
2

− g̃z

)
η
1
+ ψ(ψ

1z
+ η

x
ψ
1x
)

}
dx

−

∫∫
R

ψ∆ψ
1
dzdx −

∫
B

ψψ
1z
dx.

By de�nition, any critical point (ψ, −η) satis�es (3.2), so that∫
S

{ |∇ψ|2

2

− (g̃ + 2Ωλ)z − F(ω) − µ − λψ
z

}
η
1
dx −

∫
B

ψψ
1z
dx
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+

∫
S

ψ(ψ
1z
+ η

x
ψ
1x
)dx −

∫∫
R

{
ψ∆ψ

1
+ F

′
(ω)ω

1
+ λψ

1z

}
dzdx = 0,

which can be rewritten in the following equivalent form∫
S

{ |∇(ψ − λz)|2

2

−

λ

2

2

− (g̃ + 2Ωλ)z − F(ω) − µ

}
η
1
dx −

∫
B

(ψ − λz)ψ
1z
dx

+

∫
S

(ψ − λz)(ψ
1z
+ η

x
ψ
1x
)dx −

∫∫
R

{
(ψ − λz)∆ψ

1
+ F

′
(ω)ω

1

}
dzdx

−λ

∫∫
R

(ψ
1z
+ z∆ψ

1
)dzdx − λ

∫
B

zψ
1z
dx + λ

∫
S

z(ψ
1z
+ η

x
ψ
1x
)dx = 0.

Let n be the unit outer normal on the surface S and dl be the measure of arclength. It is easy to see that∫∫
R

(z∆ψ
1
+ ψ

1z
)dzdx −

∫
S

z

∂ψ
1

∂n

dl +

∫
B

zψ
1z
dx = 0.

Therefore we obtain that∫
S

{ |∇(ψ − λz)|2

2

−

λ

2

2

− (g̃ + 2Ωλ)z − F(ω) − µ

}
η
1
dx −

∫
B

(ψ − λz)ψ
1z
dx (3.3)

+

∫
S

(ψ − λz)

∂ψ
1

∂n

dl −

∫∫
R

{
(ψ − λz)∆ψ

1
+ F

′
(ω)ω

1

}
dzdx = 0.

Let us choose four di�erent types of perturbation functions.

(i) Firstly, we take η
1
= 0 and aim ψ

1
to be a solution of the elliptic problem

∆ψ
1
= −ω

1
, in R,

ψ
1z
= 0, on B

∂ψ
1

∂n

= 0, on S.

Then (3.3) reduces to ∫∫
R

{
ψ − λz − F

′
(ω)

}
ω
1
dzdx = 0.

The latter is valid for all smooth functions ω
1
with

∫∫
R
ω
1
dzdx = 0, implying that

ψ − λz = F

′
(ω) + k in R, (3.4)

for some constant k. Therefore ω = γ(ψ − λz − k). By taking λ = c, we obtain the �rst equation in (3.1).

Plugging (3.4) into (3.3), we obtain∫
S

{ |∇(ψ − λz)|2

2

−

λ

2

2

− (g̃ + 2Ωλ)z − F(ω) − µ

}
η
1
dx (3.5)

−

∫
B

(ψ − λz − k)ψ
1z
dx +

∫
S

(ψ − λz − k)

∂ψ
1

∂n

dl = 0.

(ii) Secondly, we choose η
1
= 0 and ψ

1
is a solution of the elliptic problem
∆ψ

1
= 0, in R,

ψ
1z
= 0, on B

∂ψ
1

∂n

= f , on S,
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where f is an arbitrary smooth function de�ned on S. Now (3.5) reduces to∫
S

(ψ − λz − k)fdl = 0.

Thus ψ − λz − k = 0 on S. Therefore, we get the third identity in (3.1) by taking λ = c.

(iii) Next we take η
1
= 0 and ψ

1
is a solution of the elliptic problem

∆ψ
1
= 0, in R,

ψ
1z
= f , on B

∂ψ
1

∂n

= 0, on S,

where f is an arbitrary smooth function de�ned on B with

∫
B

fdx = 0. Now (3.3) reduces to∫
B

(ψ − λz − k)fdx = 0.

Thus ψ − λz − k = k
B
on B with a constant k

B
. Therefore, we get the fourth identity in (3.1) by taking λ = c.

Note that k
B
= m when λ = c.

(iv) Finally, we take ψ
1
= 0 throughout R with η

1
arbitrary, we obtain∫

S

{ |∇(ψ − λz)|2

2

−

λ

2

2

− (g̃ + 2Ωλ)z − F(ω) − µ

}
η
1
dx = 0

for all smooth functions η
1
. Therefore,

|∇(ψ − λz)|2

2

−

λ

2

2

− (g̃ + 2Ωλ)z − F(ω) − µ = 0, on S.

It follows from (3.4) and (ii) that F

′
(ω) = 0 on S, and since F

′
is strictly monotone, this is only possible, if ω is

constant on S, e.g., ω = ω
0
on S. Hence letting λ = c we �nd that

|∇(ψ − cz)|2

2

− (g̃ + 2Ωc)z =

c

2

2

+ F(ω
0
) + µ, on S.

It remains to choose Q = c

2

+ 2µ + 2F(ω
0
) in order to full�l also the second equation in (3.1).

Theorem 3.2. a) If (ψ, −η) ∈ F is a solution of the equations (2.8) then

δH(ψ, −η)(ψ
1
, −η

1
) = 0, (3.6)

for all (ψ
1
, −η

1
) ∈ D, where the functionalH is given as

H(ψ, −η) =

∫∫
R

[ |∇(ψ − cz)|2

2

− (g̃ + 2Ωc)z −

Q

2

− F(−∆ψ)

]
dzdx

so that the variation ofH at (ψ, −η) is given by δH = δH
1
+ δH

2
+ δH

3
, where

δH
1
=

∫∫
R

{
(ψ − cz)ω

1
− F

′
(ω)ω

1

}
dzdx,

δH
2
=

∫
S

{ |∇(ψ − cz)|2

2

− (g̃ + 2Ωc)z −

Q

2

− F(ω)

}
η
1
dx,

δH
3
=

∫
S

(ψ − cz)

∂ψ
1

∂n

dl −

∫
B

(ψ − cz)ψ
1z
dx.

b) Conversely, assume that (ψ, −η) ∈ F satis�es (3.6) for all (ψ
1
, −η

1
) ∈ D. Then (ψ, −η) is a steady periodic

water wave with the vorticity function γ.
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Proof. a) We �rst show that (3.6) holds for any (ψ
1
, −η

1
) ∈ D if (ψ, −η) satis�es the equations (2.8). Note that

−∆ψ = ω = γ(ψ − cz) implies F

′
(ω) = ψ − cz, so that δH

1
= 0. By the later two boundary conditions of (2.8)

and the fact

∫
B

ψ
1z
dx = 0, we know that ∫

S

(ψ − cz)

∂ψ
1

∂n

dl = 0

and ∫
B

(ψ − cz)ψ
1z
dx = m

∫
B

ψ
1z
dx = 0,

and therefore δH
3
= 0. By the second equation of (2.8), we obtain

δH
2
= −

∫
S

F(ω)η
1
dx = 0

by letting F(γ(0)) = 0 and using the fact ω = γ(0) on S. The choice of F satisfying F(γ(0)) = 0 does not change

the vorticity function γ since γ = (F

′
)

−1

.

b) Let (ψ, −η) ∈ F be given and assume that for any (ψ
1
, −η

1
) ∈ D (3.6) holds. As in the proof of Theorem

3.1 it follows that

ψ − cz = F

′
(ω) + k in R

for some constant k. Plugging this into (3.6), we have

0 =

∫
S

{ |∇(ψ − cz)|2

2

− (g̃ + 2Ωc)z −

Q

2

− F(ω)

}
η
1
dx (3.7)

+

∫
S

(ψ − cz − k)

∂ψ
1

∂n

dl −

∫
B

(ψ − cz − k)ψ
1z
dx.

By choosing η
1
= 0 and

ψ
1
(x, z) = zχ(

z + d

ϵ

)f (x)

with a cut-o� function χ ∈ C∞
0
(R) satisfying χ(z) = 1 for |z| ≤ 1 and f ∈ C1

per
(R) with

∫
B

fdx = 0. Taking ϵ > 0

small enough, we obtain ∫
B

(ψ − cz − k)fdx = 0

for any f ∈ C1
per

(R) with

∫
B

fdx = 0, so that

ψ − cz − k = C, on B (3.8)

for some constant C. Moreover, for any f ∈ C1
per

(R), we can construct ψ
1
satisfying

∂ψ
1

∂n

= f on S and ψ
1
= 0

outside of a small neighborhood of S, so that one has

ψ − cz − k = 0, on S. (3.9)

Now let us take ψ
1
= 0 throughout R with η

1
arbitrary, we obtain∫

S

{ |∇(ψ − cz)|2

2

− (g̃ + 2Ωc)z −

Q

2

− F(ω)

}
η
1
dx = 0.

Thus

|∇(ψ − cz)|2

2

− (g̃ + 2Ωc)z −

Q

2

− F(ω) = 0, on S. (3.10)

Since F

′
is strictly monotone and F

′
(ω) = ψ − cz − k = 0 on S, we know that ω is constant on S, e.g., ω = ω

0

on S. Hence

|∇(ψ − cz)|2

2

− (g̃ + 2Ωc)z −

Q

2

− F(ω
0
) = 0, on S.
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Thus we obtain 
∆ψ = −(F

′
)

−1

(ψ − cz − k), for − η(x) < z < −d,

|∇(ψ − cz)|2 − 2(g̃ + 2Ωc)z = Q + 2F(ω
0
), on z = −η(x),

ψ − cz − k = C, on z = −η(x),

ψ − cz − k = 0, on z = −d.

(3.11)

By the choice of the space F, we know that ψ − cz is strictly decreasing from the upper bound B to the surface

S, and therefore C < 0. Thus we obtain the equations (3.1) by taking m = C and F(ω
0
) = 0, and also obtain

the equations (2.8) by adding the constant k to ψ. The choice of F satisfying F(ω
0
) = 0 does not change the

vorticity function γ since γ = (F

′
)

−1

.

Remark 3.3. (a) It is worthwhile to note that the choice of the spaces F and D is important to ensure the

e�ciency of Theorem 3.2. To explain this point, we �rst note that the restriction ψ
z
< c in the de�nition of

the space F is quite natural in view of (2.6). However this restriction ensures that the constant C in the proof

of Theorem 3.2 is negative.

(b) Next we show that the restriction in D is needed in Theorem 3.2. Indeed, if F is used as the space of

perturbations, then, as in the in the proof of Theorem 3.2 we would obtain³

ψ − cz = k, on B,

and consequently also (3.9). Thus we get the equations (3.11) with C = 0, which is essentially the same as (2.8)

with m = 0, and this contradicts the assumption (2.6).

3.3 Second variation

Next we calculate the second variation ofH. Beginning with a critical point (ψ, −η) ∈ F, we denote a pair of

variations of (ψ, −η) by (ψ
1
, −η

1
) ∈ D and (ψ

2
, −η

2
) ∈ D. We further let ω

2
= −∆ψ

2
.

Theorem 3.4. Let (ψ, −η) ∈ F be a solution of the equations (2.8). Then the second variation ofH is

δ

2H =

∫
S

(
∂ψ

∂z

− c

){
∂ψ

2

∂n

η
1
+

∂ψ
1

∂n

η
2

}
dl +

∫∫
R

{
∇ψ

2
·∇ψ

1
− F

′′
(ω)ω

1
ω
2

}
dzdx

+

∫
S

{
(g̃ + 2Ωc) −

1

2

∂

∂z

[|∇(ψ − cz)|2]
}
η
1
η
2
dx.

Proof. We start from the formulas given in Theorem 3.2 and calculate further variation of each term. First,

δ

2H
1
=

∫∫
R

{
ψ
2
ω
1
− F

′′
(ω)ω

2
ω
1

}
dzdx +

∫
S

{
(ψ − cz)ω

1
− F

′
(ω)ω

1

}
η
2
dx

=

∫∫
R

{
ψ
2
ω
1
− F

′′
(ω)ω

2
ω
1

}
dzdx

=

∫∫
R

{
∇ψ

2
·∇ψ

1
− F

′′
(ω)ω

2
ω
1

}
dzdx −

∫
S

ψ
2

∂ψ
1

∂n

dl +

∫
B

ψ
2

∂ψ
1

∂z

dx,

where we used the fact ψ − cz = F

′
(ω) = 0 on S.

3 Note that

∫
B

fdx = 0 implies that

∫
B

ψ
1z
dx = 0.
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We can compute the remaining two terms as follows

δ

2H
2
=

∫
S

{
ψ
x
ψ
2x
+ (ψ

z
− c)ψ

2z
− F

′
(ω)ω

2

}
η
1
dx

−

∫
S

{
ψ
x
ψ
xz
+ (ψ

z
− c)ψ

zz
− (g̃ + 2Ωc) − F

′
(ω)ω

z

}
η
2
η
1
dx

=

∫
S

{
ψ
x
ψ
2x
+ (ψ

z
− c)ψ

2z

}
η
1
dx

−

∫
S

{
ψ
x
ψ
xz
+ (ψ

z
− c)ψ

zz
− (g̃ + 2Ωc)

}
η
2
η
1
dx

=

∫
S

(ψ
z
− c)

∂ψ
2

∂n

η
1
dl +

∫
S

{
(g̃ + 2Ωc) −

[
1

2

|∇(ψ − cz)|2
]
z

}
η
2
η
1
dx,

and

δ

2H
3
=

∫
S

{
ψ
2
+ (ψ

z
− c)η

2

}
∂ψ

1

∂n

dl −

∫
B

ψ
2

∂ψ
1

∂z

dx.

Combining all the terms, we obtain

δ

2H =

∫∫
R

{
∇ψ

2
·∇ψ

1
− F

′′
(ω)ω

2
ω
1

}
dzdx +

∫
S

(ψ
z
− c)

∂ψ
2

∂n

η
1
dl

+

∫
S

{
(g̃ + 2Ωc) −

[
1

2

|∇(ψ − cz)|2
]
z

}
η
2
η
1
dx +

∫
S

{
(ψ

z
− c)η

2

}
∂ψ

1

∂n

dl.

Now we obtain the desired equality and the proof is �nished.

The second variation of the functional H is related to the stability properties of steady periodic waves. In

order to explain this, let us take ψ
1
= ψ

2
and η

1
= η

2
in Theorem 3.4, to obtain the quadratic form

δ

2H =

∫∫
R

{
|∇ψ

2
|2 − F′′(ω)|ω

2
|2
}
dzdx + 2

∫
S

(ψ
z
− c)

∂ψ
2

∂n

η
2
dl

+

∫
S

{
(g̃ + 2Ωc) −

[
1

2

|∇(ψ − cz)|2
]
z

}
|η

2
|2dx.

(3.12)

De�nition 3.5. The traveling wave (ψ, −η) is linear stable if for any (ψ
2
, −η

2
) ∈ D, the quadratic form δ

2H is

nonnegative.

Therefore, when we try to obtain the stability results, we need to �nd suitable conditions under which the

symmetric quadratic form (3.12) is nonnegative. First we state the following almost trivial stability result.

Theorem 3.6. Assume that ω
z

> 0. Then a classical travelling wave is linearly stable if the surface is

unperturbed.⁴

Proof. The hypothesis ω
z
> 0 implies that F

′′
< 0. Therefore the �rst integral in (3.12) is nonnegative. When

the surface is unperturbed, we have η
2
= 0, and thus all the rest terms in (3.12) are zero. Therefore in this

case, δ

2H ≥ 0.

In order to analyze the cases of perturbed surface, we �rst prove the following result.

4 This means that the restricted form δ

2H|F
1

is nonnegative, where F
1
:= {(ψ

2
, −η

2
) ∈ D : η

2
= 0}.
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Lemma 3.7. Assume that

γ(m)(c − u|
B
) < g̃ + 2Ωc. (3.13)

Then we have

(g̃ + 2Ωc) −

[
1

2

|∇(ψ − cz)|2
]
z

≥ 0

on the thermocline S.

Proof. We calculate {
1

2

|∇(ψ − cz)|2
}
z

− (g̃ + 2Ωc)

= ψ
x
ψ
xz
+ (ψ

z
− c)ψ

zz
− (g̃ + 2Ωc)

=

{
−

P

ρ

+ 2Ω(ψ − cz) + Γ(cz − ψ) − (g + g̃)z

}
z

.

It follows from (2.7) that

∆P

ρ

= 2Ω(ψ
xx
+ ψ

zz
) + 2ψ

xx
ψ
zz
− 2ψ

2

xz
.

Since ∆ψ = −γ(ψ − cz), we obtain

∆Γ(cz − ψ) = −γ

′
(ψ − cz)|∇(ψ − cz)|2 − γ(ψ − cz)(ψ

xx
+ ψ

zz
)

= −γ

′
(ψ − cz)|∇(ψ − cz)|2 + (∆ψ)2.

Therefore,

∆

{
−

P

ρ

+ 2Ω(ψ − cz) + Γ(cz − ψ) − (g + g̃)z

}
= −2ψ

xx
ψ
zz
+ 2ψ

2

xz
− γ

′
(ψ − cz)|∇(ψ − cz)|2 + (∆ψ)2

= 2ψ

2

xz
+ ψ

2

xx
+ ψ

2

zz
− γ

′
(ψ − cz)|∇(ψ − cz)|2 ≥ 0

because γ

′
< 0. Thus

P

ρ

− 2Ω(ψ − cz) − Γ(cz − ψ) + (g + g̃)z

is superharmonic and by the maximum principle [31], its minimum can only be attained on the thermocline

S or on the upper boundary B of the centre layer unless it is a constant.

On the upper boundary z = −d of the centre layer, we have ψ
x
= w = 0 and ψ − cz = m, thus{

−

P

ρ

+ 2Ω(ψ − cz) + Γ(cz − ψ) − (g + g̃)z

}
z

= ψ
x
ψ
xz
− (ψ

z
− c)[ψ

xx
+ γ(ψ − cz)] − (g̃ + 2Ωc)

= −(ψ
z
− c)γ(ψ − cz) − (g̃ + 2Ωc)

= γ(m)(c − u|
B
) − (g̃ + 2Ωc) < 0

by using the condition (3.13). Thus the minimum of

P

ρ

− 2Ω(ψ − cz) − Γ(cz − ψ) + (g + g̃)z

must be attained on the thermocline S.

However, on S we know that the function is constant because

P

ρ

− 2Ω(ψ − cz) − Γ(cz − ψ) + (g + g̃)z =

P
0

ρ

− 2Ω(ψ − cz) − Γ(cz − ψ) =

P
0

ρ

,

by the condition (2.5). Thus it is minimized at every point of S. Therefore

0 <

{
P

ρ

− 2Ω(ψ − cz) − Γ(cz − ψ) + (g + g̃)z

}
z

∣∣∣
S
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= −

[
1

2

|∇(ψ − cz)|2
]
z

+ (g̃ + 2Ωc)

by the Hopf maximum principle [31].

Theorem 3.8. Assume that ω
z
> 0 and that (3.13) is satis�ed. Then a classical travelling wave is linearly stable

if the surface is perturbed only normally.

Proof. The hypothesis ω
z
> 0 is equivalent to F

′′
< 0. By Lemma 3.7 the �rst and third integral in (3.12) are

nonnegative.

For the velocity on the surface to be perturbed only normally, it means that the tangential component of

the velocity perturbation vanishes. But this means that ∂ψ
2
/∂n = 0 on S. Therefore the second term in (3.12)

vanishes. Therefore, δ

2H ≥ 0 and the proof is �nished.
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