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Abstract

Southeast Asian countries, such as Thailand and Vietnam, have made remarkable progress

in terms of economic development over the past decades. Yet, rural areas in these countries

lag behind. This dissertation studies households in such rural areas in Thailand and

Vietnam. It sheds light on (i) the influence of local shocks on individual well-being, (ii)

household debt behaviour and expectations towards future income, and (iii) the role of

non-cognitive skills on individual labour market outcomes. Hence, it provides rich insights

into the factors influencing household perceptions and decision making behaviour as well

as the importance of non-cognitive skills in rural areas of Southeast Asia.

The first chapter of this dissertation provides information on the study background,

the data and presents an overview of each Chapter. The remainder of the dissertation

consists of four essays stretching out over the next Chapters. Chapter 2 analyses the

impact of witnessing nearby flood events on a person’s individual subjective well-being.

While previous studies find a negative effect of directly experienced environmental shocks,

this Chapter shows that observing such events also has detrimental consequences for

individual well-being. We hereby compare individuals that self-reported a direct flood

shock with those who did not. Additionally, it demonstrates that observing traumatic

events not only impact current evaluations of subjective well-being but translate into

negative future well-being expectations.

Chapter 3 studies the relation between high income expectations and over-in- debt-

edness. Extensive survey data on households’ borrowing behavior and future income ex-

pectations were collected for this study. Using indicators of objective and subjective over-

indebtedness, a strong positive relation between high income expectations and household

over-indebtedness can be shown. An additional lab-in-the-field experiment reveals that

over-confidence is related to over-borrowing.

The last two Chapters (Chapter 4 and 5) focus on the importance of non-cognitive

skills for individual labour market outcomes in a rural labour market setting. Measures of

non-cognitive skills are validated in Chapter 4, studying one of the most commonly used

models capturing a person’s personality, the Big Five Factor model. The results reveal

a five factor structure similar to that found in samples from industrialised countries.

In a next step, Chapter 5 analyses the importance of non-cognitive skills for individual

occupational attainment and earnings. The findings show that non-cognitive skills are

important determinants for labour market outcomes in rural labour markets. A high level

of responsibility and efficiency are important characteristics with respect to occupational

attainment and emotional stability is associated with higher earnings.
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Kurzzusammenfassung

Südostasien hat in den letzten Jahrzehnten ein anhaltendes Wirtschaftswachstum erlebt,

das zu einer starken Reduktion der Armut in Ländern wie Thailand und Vietnam geführt

hat. Trotz des insgesamt starken Wachstums gibt es in Teilen der Bevölkerung weiter-

hin unbefriedigende Lebensverhältnisse. Dies ist vor allem in ländlichen Gebieten der

Fall. Diese Dissertation untersucht ländliche Haushalte in Thailand und Vietnam. Dabei

werden die folgenden Themen erörtert: (i) der Einfluss von lokalen Wetterschocks auf

das subjektive Wohlbefinden; (ii) der Einfluss von positiven Einkommenserwartungen auf

den Überschuldungsgrad von Haushalten; (iii) die Rolle von nicht-kognitiven Fähigkeiten

für die Berufswahl und das Einkommen. Insgesamt untersucht die Arbeit, welche Fak-

toren sich auf die Wahrnehmung von Haushalten auswirken und welche Entscheidungen

damit verbunden sind. Abschließend beleuchtet sie die Bedeutung von nicht-kognitiven

Fähigkeiten auf dem Arbeitsmarkt.

Das erste Kapitel dieser Arbeit gibt einen Überblick über den Studienhintergrund,

die Datenbasis und einen Überblick über die einzelnen Kapitel. Im Folgenden besteht

die Dissertation aus vier Essays zu den oben beschriebenen Themen. Das zweite Kapi-

tel analysiert die Auswirkungen von wahrgenommenen Flutschocks auf das individuelle

Wohlbefinden. Studien haben herausgefunden, dass direkt erlebte Umweltschocks nega-

tive Folgen für das individuelle Wohlbefinden haben. Dieses Kapitel zeigt, dass allein das

Beobachten eines solchen Schocks negative Auswirkungen auf das subjektive Wohlbefinden

hat. Dabei werden Individuen, die laut Selbstauskunft im Fragebogen keinen direkten

Flutschock erlebt haben, mit solchen verglichen, die eine Schockerfahrung angegeben

haben. Diese negativen Konsequenzen wirken sich auch auf zukünftige Einschätzungen

in Bezug auf das subjektive Wohlbefinden aus.

Kapitel 3 untersucht den Zusammenhang zwischen hohen Einkommenserwartungen

und Haushaltsüberschuldung. Hierzu wurden umfangreiche Daten zum Thema Haushalts-

überschuldung und zukünftigen Einkommenserwartungen erhoben. Anhand der Daten

werden zwei verschiedene Überschuldungsindikatoren erstellt: ein Indikator, der sich auf

die objektive Überschuldung bezieht und ein zweiter Indikator, welcher die subjektive

Haushaltsverschuldung abbildet. In der Analyse kann ein starker Zusammenhang zwischen

positiven Einkommenserwartungen und Haushaltsüberschuldung festgestellt werden. In

einem sogenannten lab-in-the-field Experiment wird zusätzlich gezeigt, dass Selbstüber-

schätzung mit Überschuldung zusammenhängt.

Die letzten zwei Kapitel dieser Arbeit (Kapitel 4 und 5) fokussieren sich auf die Be-

deutung von nicht-kognitiven Fähigkeiten für den Arbeitsmarkt. Dafür werden in Kapi-

tel 4 zunächst bestimmte Messinstrumente für nicht-kognitive Fähigkeiten validiert. Hi-

erbei handelt es sich um eines der meist verwendeten Messmodelle für nicht-kognitive
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Fähigkeiten: das Big Five Faktor Model. Die Ergebnisse zeigen eine Faktorstruktur, die

vergleichbar mit Ergebnissen von Stichproben aus Industriestaaten ist. In Kapitel 5 wird

die Bedeutung dieser Fähigkeiten für die individuelle Berufswahl und das Einkommen

analysiert. Es lässt sich feststellen, dass nicht-kognitive Fähigkeiten eine wichtige Rolle

in ländlichen Arbeitsmärkten spielen. Eigenschaften wie Verantwortungsbewusstsein und

Effizienz sind wichtige Determinanten bei der Berufswahl. Eine hohe emotionale Belas-

tungsfähigkeit steht im Zusammenhang mit höheren Gehältern.

Schlagwörter: Erwartungen, Haushaltsüberschuldung, lokale Schocks, nicht-kognitive

Fähigkeiten, Südostasien, subjektives Wohlbefinden
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Chapter 1

Introduction

Development is about transforming the lives of people,

not just transforming economies.

Joseph Stiglitz

Southeast Asian countries have made remarkable progress in terms of economic develop-

ment over the past decades. Rapid economic growth resulted in a substantial reduction

in poverty levels throughout the region (World Bank, 2018). In Thailand and Vietnam,

national poverty was reduced from more than 60 percent in the 1980s to under 10

percent in 2018 (Wang et al., 2020; World Bank, 2020). While the majority of the pop-

ulation profited from this overall economic development, inequality between rural and

urban areas persists, with poverty concentrated in the rural areas (Amare and Hohfeld,

2016; Pimhidzai, Pimhidzai; ADB, 2020). Such regions do not offer the same diverse

earning opportunities as urban centres, like Bangkok or Hanoi, and the majority of

households living in rural areas still depend on income from agricultural production or

small-scale businesses (Angelsen et al., 2014; Gloede et al., 2015; Parvathi and Nguyen,

2018). These income sources are highly susceptible to external shocks and therefore

volatile. Especially, weather shocks, which have increased in recent years due to the im-

pacts of climate change, bear the potential to threaten livelihoods as they can destroy

livestock and productive assets. This makes rural households vulnerable to remain poor

or being pushed back below the poverty line.

In addition to external factors, increasing household debt puts further pressure on

households already struggling to cope with shocks and uncertain incomes (Schicks,

2013). Household debt is rising worldwide, especially in some countries in Southeast

1



Chapter 1 2

Asia. Thailand, for example, is the emerging economy with the highest household debt

to GDP ratio in the world (IMF, 2017). High levels of consumer indebtedness not only

pose a threat to the stability of the financial system as a whole, but can be detrimental

for household well-being. It is therefore crucial to understand the determinants that

lead to households taking too much debt.

Another reason for why people remain vulnerable to poverty is a lack of skills.

The formation of skills is a crucial prerequisite to find quality jobs that provide secure

incomes (Van Trotsenburg, 2018; World Bank, 2017). In addition to cognitive skills, like

education, the importance of non-cognitive skills for occupational outcomes has been

highlighted extensively (e.g., Almlund et al., 2011; Heckman and Kautz, 2012) Non-

cognitive skills, i.e., a person’s personality and preferences, are especially important for

individuals with lower levels of education. In settings where education is distributed

rather homogeneous, non-cognitive skills may explain why some individuals do better

than others (Heckman et al., 2006; Laajaj et al., 2019).

This dissertation contributes to understanding different factors that influence vul-

nerability to poverty. It consists of four essays that are presented over the next Chapters.

While the first two essays focus on the impacts of external shocks and household debt

behaviour, the remaining two essays concentrate on the importance of individual skills

for development outcomes. In particular, the first essay studies the impact of observing

adverse weather events on individual well-being. The second essay studies one possi-

ble reason of household over-indebtedness: high income expectations. Essays three and

four concentrate on non-cognitive skills and rural labour market outcomes. Measures

for non-cognitive skills are first validated for a rural sample in Southeast Asia and then

used to analyse the importance for occupational attainment and earnings.

The findings of this thesis are meaningful beyond the context of rural households in

Thailand and Vietnam for three reasons: (i) most of the world’s poor live in rural areas

(IBRD, 2017), therefore, the findings in this thesis provide relevant insights for other

rural regions, (ii) household over-indebtedness can be regarded as a global problem.

Yet, this field is under researched and lacks answers as to why people are over-indebted

(Zinman, 2015). This dissertation provides valuable insights regarding the problem of

rising household debt and its determinants, (iii) the increasing frequency of adverse

weather events is a worldwide phenomenon and challenges development efforts around

the globe.
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All chapters are based on empirical data from the Thailand Vietnam Socio Economic

Panel (TVSEP)1 and a TVSEP add-on project conducted in Thailand. The TVSEP

sample covers around 4,000 households in three Thai (Buriram, Nakhon Panom, and

Ubon Ratchathani) and three Vietnamese (Dak Lak, Ha Tinh, and Thua Thien Hue)

provinces. The first wave was collected in 2007, with subsequent waves in 2008, 2010,

2011, 2013, 2016, 2017, and 2019. The sample is representative of the rural population on

the household level. This thesis utilises data from the waves collected between 2007 and

2017. While Chapter 2 draws on data from all of these years and combines them with

geo-spatial data on local flooding, Chapter 4 and 5 capitalise on the data collected in

2017. Chapter 3 is based on data from a special add-on project conducted in November

2017. These data are complemented with data from previous TVSEP waves. The add-

on project took place in Ubon Ratchathani, Thailand. It collected survey data among

750 households and another 604 of those households participated in a lab-in-the-field

experiment, complementing the survey data.

Summary of Chapters

Chapter 2, co-authored with Reinhard Weisser, analyses the effects of observing local

flood events on individual subjective well-being. Previous studies found a negative effect

of directly experienced environmental shocks on subjective well-being levels (e.g., Mad-

dison and Rehdanz, 2011; von Möllendorff and Hirschfeld, 2016; Sekulova and Van den

Bergh, 2016). However, evidence on how such events affect individuals merely observ-

ing them is lacking. Therefore, we study the impact of local floods on the subjective

well-being of individuals who did not report any direct flood shock experience but wit-

nessed a flood event in their close vicinity. Our hypothesis is based on findings from

the psychological field which find that witnessing traumatic events can cause severe

mental stress, which can ultimately lead to a decrease in quality of life (e.g., Figley,

1995; Potter et al., 2010; Cocker and Joss, 2016).

We link the TVSEP panel data with extensive geo-spatial data from a NASA flood

mapping project. This allows us to identify shocks that have been witnessed by respon-

dents that did not report any actual flood experience. We call such events tangential

shock events and specify them based on the geo-spatial data that provide precise infor-

mation on any flood event occurring in a person’s sphere of interest.

Employing a multinomial logit model, we show that tangential shock events indeed

lower individual subjective well-being for those individuals without a direct shock expe-

1 More information can be found on the project webpage: https://www.tvsep.de/overview-tvsep.
html.

https://www.tvsep.de/overview-tvsep.html.
https://www.tvsep.de/overview-tvsep.html.
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rience. These effects also translate into negative expectations regarding person’s future

well-being evaluations. Overall, we contribute to the literature on the determinants of

subjective well-being dynamics and show that not just directly experienced flood shocks

but also tangential shock events have negative consequences for well-being levels.

Chapter 3 studies the relationship between positive future income expectations and

over-indebtedness. In this essay, which is joint work with Theres Klühs and Melanie

Koch, we study one possible driver of household debt: high income expectations. We

contribute to the scarce literature on the determinants of household over-indebtedness,

offering insights into the role of income expectations. Employing data from the TVSEP

add-on project in Thailand, we construct indicators for subjective and objective over-

indebtedness as well as a new indicator for income expectations.

We control for a variety of individual and household characteristics, as well as for

shock exposure. Finally, we examine data from a lab-in-the field experiment to analyse

whether overconfidence acts as a possible channel between expectations and household

debt. The results show that positive income expectations are indeed linked to household

over-indebtedness. We observe some variation in results with respect to the objective

and subjective debt-measures and additionally show that higher certainty regarding

expected income is also linked to higher debt levels. Our results are supported by the

additional lab-in-the field experiment: Respondents who overspend in the experiment

are also more likely to display higher real-life debt levels. Moreover, we find that over-

confidence is related to overspending in the experiment.

Chapter 4 and 5 focus on the measurement of non-cognitive skills and their impor-

tance for labour market outcomes in rural Thailand and Vietnam. These chapters are

joint work with Dorothee Bühler and Rasadhika Sharma. They are motivated by the

fact that pre-existing studies on measurement and importance of non-cognitive skills

concentrate on samples from western, educated, industrialised, rich, and democratic,

also referred to as WEIRD (Heinrich et al., 2010) countries (e.g., Cobb-Clark and Tan,

2011; Thiel and Thomsen, 2013; Wells et al., 2016). Labour markets in emerging and

developing countries differ from those in industrialised countries, because they are more

labour intensive, credit constrained, and prone to greater earnings instability (Baner-

jee and Duflo, 2007; Campbell, 2011; Campbell and Ahmed, 2012; Gollin et al., 2014).

Therefore, personality traits may be valued differently between labour markets.

Only few studies address the importance of personality in non-WEIRD populations.

Existing studies employ data from students and relatively better educated individuals

living in urban centers (e.g., Laajaj et al., 2019; Schmitt et al., 2007). We expand the

discussion on the validity of the measures on non-cognitive skills and the importance
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of those skills for labour market outcomes to a rural sample. We thereby contribute to

the literature on the factor structure of personality traits as well as their importance

for occupational outcomes outside WEIRD populations.

Chapter 4 validates the standard measurement model of personality, the Big Five

Factor model, for a rural sample. We test the internal and external validity of the mea-

sures, their stability over time and check for measurement bias. We find five factors

similar to the structure of the standard Big Five Factor model. The results further

show internal and external validity of the measures. The tests for internal consistency

of the measures reveal lower values for our rural sample when compared with studies

from industrialised countries. This is in line with observations from Laajaj et al. (2019).

Analysing the stability of the traits over time reveals stronger stability for higher edu-

cated respondents. Overall, we conclude that the measures can be applied for a rural

sample in Southeast Asia.

Chapter 5 addresses the importance of non-cognitive skills for occupational attain-

ment and earnings in non-WEIRD populations. To capture a person’s personality, we

use nine measures (the previously validated measures on the Big Five personality traits,

locus of control, risk, trust, and patience). The results reveal that non-cognitive skills

are relevant determinants for occupational outcomes in rural Thailand and Vietnam.

We observe that being responsible, efficient and hardworking (referred to as conscien-

tiousness in the model) is especially important with respect to occupational attainment.

Individuals with higher levels of conscientiousness are more likely to be employed in jobs

outside farming. The importance of conscientiousness for occupational attainment has

also been highlighted by studies from industrialised countries (e.g., Barrick and Mount,

1991; John and Thomsen, 2014). Findings with regards to occupational earnings differ

from those in WEIRD populations. We find that emotional stability, i.e., the ability to

cope well with stress, play a vital role for higher earnings. This is in line with findings

from Laajaj et al. (2019). Additionally, we show that effects of non-cognitive skills differ

across the earnings distribution. This paper is published in Labour Economics.
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2.1 Introduction

Extreme weather events, such as floods and heavy rain, can not only severely affect a

person’s economic situation but can also have repercussions on a person’s subjective

well-being.1 Recent studies address the impact of directly experienced shock events on

individual subjective well-being (SWB) and demonstrate that adverse shock events can

lower SWB levels (e.g., Maddison and Rehdanz, 2011; von Möllendorff and Hirschfeld,

2016; Sekulova and Van den Bergh, 2016). However, until now, there has been little

evidence on how shock events that are witnessed but not directly experienced affect

individual SWB. Psychological and medical research, in contrast, has long discussed

the impacts of traumatic events on the mental well-being of individuals who observe

such events or hear about them from others (e.g., Figley, 1995; Potter et al., 2010;

Cocker and Joss, 2016). These studies show that witnessing traumatic events can cause

severe stress, consequently resulting in a decrease in quality of life. However, the topic

has received little attention in the literature on SWB dynamics or in the economics

literature in general. Thus, the potential ramifications of these experiences for economic

decision-making are neither known nor incorporated into economic analyses.

We investigate this phenomenon from an economics viewpoint and ask the following

question: What are the repercussions of witnessing nearby shock events on the SWB

of individuals who did not experience any direct shock exposure? We call such events

tangential shock events (TSEs) and argue that a recorded decline in well-being may not

exclusively reflect shock-related economic losses but may also entail a transitory shift

in perceptions.

The scenario we study to demonstrate the impact of TSEs on subjective well-being

is flooding in rural villages in Thailand and Vietnam. Floods pose a severe threat to

livelihoods, in particular to rural agricultural communities. Their frequency and severity

have increased in many regions and will likely become even more prominent in the future

(IPCC, 2014). This also suggests an increase in the relevance of TSEs in the future.

To study the influence of witnessing shock events, we use data from an extensive

household panel survey in Southeast Asia, as well as high-resolution satellite-based

flood data. Within our analysis, we apply a multinomial logit model, which allows us

to identify whether TSEs (and other factors) exert a differential effect on positive and

negative well-being dynamics. This approach is related to prospect theory (Kahnemann

1 Subjective well-being can be defined as a function of an individual’s personality and his/her reactions
to different life events (Stevenson and Wolfers, 2008), or as Diener (2006, p. 400) puts it: “Subjective
well-being is an umbrella term for the different valuations people make regarding their lives, the
events happening to them, their bodies and minds, and the circumstances in which they live”.
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and Tversky, 1979) and accounts for different evaluations of SWB above and below a

reference point.2 Ultimately, we find that the mere presence of a flood event can indeed

lower individual subjective well-being levels, even if individuals were not affected by

the flood itself. Individual behavioural reactions might thus be triggered not only by

directly experienced events but also by tangential shocks.

In our sensitivity analysis, we demonstrate that this effect is a robust phenomenon:

it is seen even when controlling for potential village network effects, the emergence

of coping strategies, unobserved household characteristics, agricultural dependency or

indirect psychological effects.

Having established a robust relation between TSEs and subjective well-being, we

further investigate whether this is merely a temporary phenomenon or has lasting con-

sequences.

Our research adds to the literature on the determinants of SWB, particularly to a

better understanding of the impact of severe weather events. These events will become

more prominent in the future due to the effects of climate change. This is especially true

for vulnerable households living in rural developing areas of the world. We therefore

demonstrate that flood shocks not only have the potential to destroy a person’s economic

well-being but also may have severe indirect effects on the individuals witnessing these

shock events by lowering their subjective well-being. The phenomenon we describe not

only results in current evaluations of SWB being altered but it impacts the formation

of expected future SWB dynamics.

The paper is organised as follows: We first present a short literature overview (Sec-

tion 2.2). In Section 2.3, we explain our empirical approach and the derivation of our

tangential shock indicators. This is followed by our empirical analysis (Section 2.4), in-

cluding a detailed sensitivity analysis. We end with a discussion of our results in Section

4.4.

2.2 Related Literature

For our research on the impact of tangential shock events, we built upon the literature

on the determinants of subjective well-being, such as sociodemographic and socioeco-

nomic factors. In addition, our research also draws upon the literature on shock events,

both from an economic and psychological perspective. To subsequently showcase our

2 A $1,000 increase in income might raise SWB to a lesser extent than a $1,000 decrease would lower
SWB. Within our research, the presence of a shock could result in negative SWB dynamics, yet its
absence would not necessarily translate into positive SWB dynamics.
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contribution, i.e., establishing the relevance of TSEs, we briefly sketch the main lines

of thought in the relevant strands of the literature.

Sociodemographic factors Sociodemographic determinants of SWB have been

reviewed extensively (e.g., Myers and Diener, 1995; Easterlin, 2003; Helliwell, 2006;

Reyes-Garćıa et al., 2016). Factors such as age, education, gender, health, and person-

ality explain a substantial degree of the variation in SWB levels (Diener, 1994; van

Praag et al., 2003; González et al., 2005). Moreover, close relationships (mostly mea-

sured through marital status) and strong religious beliefs have a positive effect on SWB.

Poor health, in contrast, is mostly associated with lower levels of SWB (González et al.,

2005; Dolan et al., 2008).3 Many studies address the relationship between SWB and per-

sonal life events, such as unemployment, marriage/divorce, educational achievements,

or the death of a family member (Clark and Oswald, 1994; Luhmann et al., 2012; Ped-

ersen and Schmidt, 2014). Most of the authors argue that the impacts of such events

only prevail in the short run (Diener, 1996; Luhmann et al., 2012).4

Socioeconomic factors Another intensively investigated group of determinants

are material circumstances, i.e., income or assets. In general, these studies find a posi-

tive relationship between income levels and SWB (Easterlin, 2008). Currently, there is

some level of consensus that income has positive but diminishing returns (Dolan et al.,

2008). In lower-income countries, income plays a more prominent role in individuals’

happiness than in wealthier nations (Diener and Biswas-Diener, 2002; Reyes-Garćıa

et al., 2016). Evidence also suggests that relative income matters for SWB (Luttmer,

2005; Clark et al., 2008; Dolan et al., 2008). In the context of our research (with Thai-

land and Vietnam being the countries of interest), income plays a significant role in

the determination of personal well-being. These economic factors are of particular rele-

vance for our research since they are almost surely affected by flood shocks and are thus

correlated with our variables of interest. We therefore include controls for a person’s

sociodemographic and socioeconomic situation in the analysis.

3 Although most studies on sociodemographic traits focus on high-income countries, it is worth noting
that different studies find a sort of “unique happiness equation” (Veenhoven, 2010; Sarracino et al.,
2013; Reyes-Garćıa et al., 2016; Markussen et al., 2018). Ultimately, the most essential findings on
SWB not only hold in high-income countries but also hold in lower and middle-income countries.

4 Recent work on panel data has revealed mixed results, showing that the effects of life events are
heterogeneous and can have long-lasting repercussions on SWB (Lucas et al., 2003; Lucas, 2005).
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Environmental shocks Other recent studies assess the direct impact of severe

weather events on SWB levels and have demonstrated that the adverse effects on SWB

may also result from unfavourable climate conditions or environmental shocks (Mad-

dison and Rehdanz, 2011). Flooding has an especially persistent and strong negative

effect on SWB (Luechinger and Raschky, 2009; Sekulova and Van den Bergh, 2016; von

Möllendorff and Hirschfeld, 2016). Sekulova and Van den Bergh (2016) compare data

from individuals living in flood-prone regions in Bulgaria to data from those who live in

areas without flood occurrence. While they find a strong negative impact of flooding on

SWB, they also point out that intangible factors, e.g., psychological damage, explain

a large part of the negative effects on SWB levels. They stress that “expecting a flood

can be equally traumatic as experiencing the disaster itself” (Sekulova and Van den

Bergh, 2016, p.56). We follow this idea of indirect psychological consequences from

(flood) shocks and shift the attention from expecting to observing an environmental

shock without being hit by it.

Observing traumatic events Our research therefore also relates to psychological

and medical studies on the effects of witnessing traumatic events (Figley, 1995; Aben-

droth and Flannery, 2006; Sabo, 2006; Frančǐsković et al., 2007; Potter et al., 2010;

Patki et al., 2014, 2015; Cocker and Joss, 2016) and the literature on the externalities

associated with terrorist attacks (Bozzoli and Müller, 2011; Finseraas and Listhaug,

2013). Psychological studies have revealed, for instance, that caring for traumatized

individuals can cause severe mental trauma for the caregiver, such as nurses or social

workers, as well as the wives of veterans. Experimental studies have shown that even

rats are affected by tangential shocks, i.e., observing other rats being socially defeated

by a predator (Patki et al., 2014). Overall, observing traumatic events may increase

the risk of developing post-traumatic stress disorder or may raise levels of anxiety, even

without direct exposure to the threatening event. Both outcomes are ultimately related

to a decrease in quality of life and well-being.

2.3 Study Design

2.3.1 Data

In this paper, we use two types of data. First, we draw upon micro data originating

from an extensive household survey in rural Thailand and Vietnam, called the Thai-

land Vietnam Socio Economic Panel (TVSEP) (Klasen and Waibel, 2013).We link these
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household data with high-resolution satellite-based flood data to investigate the differ-

ential responses of individuals to precisely localised flood shock events.

2.3.1.1 Household data

The TVSEP data have been collected since 2007 in Thailand and Vietnam. For the

purposes of this research, we use the data obtained from the six waves between 2007

and 2016.5 The survey is conducted in six rural provinces, three in each country (cf.

Figure A.1). When the survey started in 2007, 4,381 households in 440 villages were

interviewed.6 The same households have been interviewed in each wave.7 Across the

different waves, the respondents within the households have varied in a number of

cases. We thus treat the data set as linked cross-sectional observations of individuals in

our main analysis and use the full household panel structure in our sensitivity analysis.8

Respondents in our sample typically originate from rural, multigenerational house-

holds. They are on average 50 years old, and the majority are married (84%) and

engaged in subsistence farming (70%). The sample is balanced in terms of gender, and

education levels are relatively low-76% have completed primary schooling at best. The

information on individual health dynamics is mixed; approximately 30% (11%) of the

respondents stated that their health status is worse (better) than one year before. A

detailed overview of all variables used in the analysis can be found in Table A.1 in the

appendix. For our analysis, we use a pooled sample that includes respondents at least

15 years of age who lived in households that did not move between 2007 and 2016 and

for whom the interview date could be identified reliably.9

In addition to information on sociodemographic characteristics, the survey’s house-

hold questionnaire elicits detailed information on agricultural production, income sources

and assets, and individual or household well-being. We enrich the basic household

dataset with information on household location, which is available from 2016 onward.

Household locations are recorded using GPS devices, which provides us with coordi-

nates for most households in the sample. Since the TVSEP survey has a particular focus

5 The waves took place in 2007, 2008, 2010, 2011, 2013, and 2016.
6 To identify a group that is representative for the rural population, approximately 2,000 households

in each country were selected through a three-stage cluster sampling strategy (cf. Hardeweg et al.
(2013)).

7 In 2011 only one province in each country was surveyed.
8 We follow the idea of Ferrer-i Carbonell and Frijters (2004), pointing out the relevance of unobserved,

time-invariant factors correlated with likely determinants of subjective well-being. Therefore, we also
present random- and fixed-effects specifications (Tables A.9 and A.10).

9 Sometimes the interview date could not be determined. The household was then excluded from the
analysis since we need a precise interview date to link the data with the respective shock events.
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on the effects of shocks on vulnerable households in Southeast Asia, respondents also

answer detailed questions about their own and their household’s shock experience since

the last survey. We use this information as our measure of direct flood shock experience.

10% of respondents stated that their household was hit by a flood or heavy rain shock,

and more than half of these households were affected by a severe shock event.

Our outcome variable is self-reported subjective well-being.10 The relevant survey

item is formulated such that respondents identify their level of well-being in relation to

one year ago. The question posed to the respondent reads: “Do you think you in person

are better off than last year?”. Each respondent can choose between five answers, namely,

(1) Much better off, (2) Better off, (3) Same, (4) Worse off, and (5) Much worse off.

Only a few respondents chose categories (1) or (5) (see Figure 2.1). We therefore regroup

the categories, such that answer options (1) and (2) are summed up in one category

and options (4) and (5) form another category, yielding three categories of well-being

dynamics: “better off” (∆SWB+), “same”, and “worse off” (∆SWB−).

Figure 2.1: Distribution of subjective well-being on the individual level (5-point scale)
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Note: The figure displays the relative frequency of individually reported subjective well-being dynam-

ics. The number of individual-year observations (N=19,901) refers to the unrestricted base sample and

includes respondents from all waves from 2007 to 2016.

We also conduct a balance test to evaluate the ex-ante comparability of respondents

across a range of sociodemographic variables with respect to both their direct expe-

10 We focus on individual subjective well-being levels because the respondents’ assessment of well-
being at the household level would still be the outcome of a cognitive process on the individual level,
and thus susceptible to the influence of individual traits and perceptions. Our data also show that
reported well-being dynamics at the household and the individual level are highly correlated.
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rience of flood shocks and their exposure to tangential shocks (cf. Table A.2). Only

in the case of Vietnamese respondents did we observe some differences between those

who experienced a direct shock and those lacking such an experience. To address this,

we include the respective sociodemographic variables (income measures, age, marital

status, health dynamics, educational attainment and occupation) as control variables

in all our models, as well as a country dummy.

2.3.1.2 Spatial data on flood events

In addition to the household data, we use derivatives of the NASA/DFO MODIS11 near-

real-time global flood mapping product (Nigro et al., 2014) to identify tangential flood

shock events (see Section 2.3.2 for a detailed definition and explanation of our identi-

fication approach). Based on the satellite data, the flood mapping algorithm provides

information on flood water (FW) events with a relatively high degree of spatiotemporal

precision. Flood events are identified if the algorithm detects water-like electromagnetic

emissions outside reference water areas, i.e., the sea, lakes or rivers. The information on

flood water events is provided at a spatial resolution of approximately 250x250 meters:

for each of these tiles (or pixels), the number of flood water days within the observation

interval is recorded.12 Based on the derivation algorithm (Nigro et al., 2014), the day

count for flood water can be interpreted as a lower bound.

11 The measuring instrument on board the satellites is called Moderate Resolution Imaging Spectrodi-
ameter, hence the acronym MODIS.

12 Since the detection algorithm relies on surface reflections, cloud coverage imposes a severe limitation.
To overcome this issue, we use the 14-day composite product. Each daily observation in this interval
is included as non-missing if three cloud-free observations originating from the respective reference
day or the two previous days are available. In addition, a flood water day is only recorded if water
has been detected at least three times among the six satellite transits within this 3-day interval. The
corresponding data for Thailand and Vietnam (covering 2004 to 2016) have been kindly provided by
NASA on special request. We are grateful for their support. A further merit of flood identification
based on multiple water detections is a substantially reduced likelihood of false positives, which can
be caused by cloud or terrain shadows, both generating emissions in a wavelength similar to water.
Ultimately, recorded flood water days for each tile and each of the 26 yearly observation intervals
range from 0 to 14 days (15 or 16 in the case of a year’s last interval).
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2.3.2 Definition and identification of shock events

In our research, we want to distinguish between the impact of directly experienced

shocks and tangential shock events. We define the latter as follows:

A tangential shock event (TSE) is an event of potential shock exposure, i.e.,

a shock event occurring in the local or social vicinity (sphere of interest) of

an individual or household. Such an event may be merely observed by an

individual without any immediate consequence for the observer’s economic

well-being or health.

This implies that tangential shocks should only be observed, i.e., their occurrence could

have been noticed, but actual shocks were not directly experienced or reported as an

adverse event hitting a household or individual. Relevant direct shock events are those

with the potential to reduce levels of well-being in general and in an economic sense,

i.e., by causing income or productive factor losses, unforeseen expenditures, or the loss

of assets. Ultimately, this relevance criterion implies that an individual or household

is vulnerable to such a shock, or otherwise well-being should not be affected directly.

The relevance criterion is met by the households in the TVSEP. Households in the

sample are mainly dependent on agricultural or livestock production and thus can be

considered vulnerable to shocks (cf. Klasen and Waibel, 2013). Additionally, these data

feature detailed information on a wide range of actual shock experiences.

In the context of these vulnerable households, flood shocks are especially harmful

because they can diminish crop yields and livestock production, with the potential to

be life-threatening. Furthermore, flood and heavy rain shocks have the potential to

destroy nonproductive factor assets, such as homesteads.13 Another characteristic of

these shocks is their high degree of visibility: Flooded fields or drowned livestock can

be visually detected by respondents. Such a severe event can be recalled easily and

reliably at the interview.

In the analysis, we want to contrast these direct flood shock experiences (as reported

in the TVSEP) with tangential flood shock exposure. Therefore, we need to differentiate

between the two types of shocks. Whereas direct shock experience can be identified

based on the self-reported shock measure from the survey, the identification of tangential

shock events is more challenging. Due to their subliminal nature, i.e., they only had

13 The incorporation of heavy rain shocks is justifiable for two reasons: first, heavy rain may directly
cause spontaneous flooding on a localised scale, hence, cause damage to agricultural production.
Second, these events tend to coincide, therefore making it hard to discern them when interviewed
several months after such an event.
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to be potentially observable, reliable information retrieval in a survey is infeasible. To

quantify tangential shock exposure, we therefore need an external measure of shock

occurrences. To precisely evaluate whether any individual could have observed a shock

event, i.e., whether such an event happened near the individual’s homestead, these data

have to be of sufficient spatiotemporal resolution.

The MODIS near-real-time flood mapping product satisfies the criterion of exter-

nal measurability for tangential flood shocks. We therefore use the MODIS data to

construct an indicator for tangential shock exposure. Based on households’ homestead

coordinates from the TVSEP, the closest 250x250 meter tile in the MODIS flood data

is identified as the ’home pixel’. In the next step, all relevant tiles within varying radii

up to five kilometer are identified. We call this area around a household’s homestead

the individual’s sphere of interest. This five kilometer threshold was chosen because it

comprises 95% of a household’s cultivation areas and hence comprises the land most

relevant for the livelihood of households that are dependent on agricultural production.

Figure 2.2 is a stylised representation of the MODIS flood water data for a fictitious

household. In addition to the home pixel, it also depicts the relevant pixels in the 500

and 1,000 meter radii.

Figure 2.2: Stylised MODIS flood water data

The TSE indicator captures the highest number of flood days that affected any tile

within a certain radius of the home pixel. Such a maximum day count provides an
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indicator for the maximum local severity of flooding: the longer it lasts or the more

events that occur within a given time horizon, the more likely agricultural production

will suffer. Maximum local flood severity, i.e., the maximum number of flood days in a

pixel, mirrors potentially threatening events in a precise manner.

Conditioning on the exact interview date, we further construct time horizon-specific

TSE indicators. Evaluating TSE exposure over the last one-month, three-months or

12-months horizon allows us to test whether any potentially observed tangential shock

effects are transitory or more permanent. Table A.3 provides a descriptive overview of

the TSE indicator for all three time horizons.

2.3.3 Econometric specification

The premise of our research is to analyse the effects of tangential shock events on

individual subjective well-being. The relationship between individual i ’s subjective well-

being (SWBi), individual characteristics xi and shocks si can be represented by the

linear model

SWBi = xiβ + s′iγ1 + sTSEi γ2 + sis
TSE
i θ (2.1)

To isolate the effect of TSEs from well-being dynamics induced by direct shock ex-

perience and potentially correlated changes in individual circumstances, the vector xi

comprises the set of sociodemographic and socioeconomic SWB determinants known

from the literature: age, age squared, health status, marital status, educational at-

tainment, religious beliefs, and occupational status.14 Economic determinants, i.e., a

measure of household income per capita and income dynamics, are represented in xi as

well.

In line with the literature on environmental shocks, experienced adverse shocks

(si) may not only have an indirect effect, e.g., by lowering income, but may also have

an immediate impact on subjective well-being. Being hit by a shock translates into

diminished levels of subjective well-being by, for instance, reducing quality of life or

deteriorating expectations for the future. The vector si includes a binary indicator.

This binary indicator reflects whether an individual experienced a flood shock event.

In our data, subjective well-being is measured as a change over the preceding 12

months. This yields a difference interpretation for reported subjective well-being in

year t, i.e., a well-being dynamic. Our dependent variable (∆SWB) has three cate-

14 Individual educational attainment may also be correlated with (individual or household) income.
This supports its inclusion into a model of individual well-being.
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gories: Subjective well-being may have increased, decreased or stayed the same–the final

option being a natural reference point. A valid modelling approach to estimate such a

categorical dependent variable (with a natural reference point) is to fit a multinomial

logit model (cf. Greene, 2012, p.763), given by

P(∆SWBi,t = j|xi,t, si,t, sTSEi,t ) =
exp(xi,j,tβj+s′i,j,tγ1,j+sTSE

i,j,t γ2,j+si,j,ts
TSE
i,j,t θj)

1+
∑2

k=1 exp(xi,k,tβk+s′i,k,tγ1,k+sTSE
i,k,t γ2,k+si,k,ts

TSE
i,k,t θk)

(2.2)

For each of the two nonreference response categories (worse off and better off), we

obtain a distinct set of parameter estimates. This approach is more flexible than other

estimation approaches for categorical variables, e.g., an ordered logit model: it allows for

modelling asymmetric effects of the explanatory variables across the response categories.

In contrast to other studies that analyse the impacts of directly experienced flood

shocks on well-being, our research is guided by the hypothesis that tangential shocks

may also sway perceptions of well-being.15 Thus, tangential shocks may be interpreted

as important externalities. The impact of observing such a local tangential shock sTSE

is modelled by an interaction with the reported shock experience (si). The respective

interaction coefficient θ allows us to retrieve the influence of tangential shocks as the

relative SWB difference between individuals from households not reporting any actual

shock experience and those having suffered a relevant shock. Tangential shocks play a

role if we observe θ 6= 0.

With respect to our analysis, we expect that the overall effect will differ between

those with and those without a direct shock experience. Referring to the multinomial

logit specification in equation (2.2) with the two categories “better off” (b) and “worse

off” (w), we anticipate θb < 0 and θw > 0. The presence of a tangential shock will

reduce (increase) the probability someone without direct shock experience will be better

(worse) off. This is then evidence in favour of a divergence in subjective and economic

well-being induced by the mere perception of shocks.

Apart from our main analysis in Section 2.4.1, we present a sensitivity analysis in

which we run several modifications of our model to test the robustness of our results.

The results are presented in Section 2.4.2.

After we establish a robust relation between tangential shocks and SWB dynam-

ics, we examine the consequences of TSE for respondents’ future subjective well-being

15 Our research relates to Guiteras et al. (2015) pointing out the limitation of focusing solely on self-
reported shock measures.
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expectations in Section 2.4.3.

2.3.4 The distribution of well-being dynamics and flood shocks

Figure A.1 provides insight into the distribution of flood shock exposure for the year

2013. It illustrates the locations of villages in Thailand and Vietnam where at least three

households have been interviewed. For each enlarged province, the left panel reports

the share of villagers (in blue) who were exposed to a satellite-detected flood shock

occurring in a radius of 5,000 meters around their homestead and a time horizon of

12 months. The right panel displays negative well-being dynamics, i.e., the shares of

respondents in a village reporting that they are worse off (in red).

We observe that households in villages close to the Mekong River and those situated

in river deltas are more likely to have witnessed a flood event. The occurrence of adverse,

unconditional well-being dynamics, however, does not seem to be systematically related

to satellite-detected flood shock exposure. On the one hand, villagers in these areas

might witness such a shock more frequently. On the other hand, they should also be

more familiar with recurring flooding and their judgement less sensitive to tangential

shocks. We account for past shock exposure in our sensitivity analysis.

Table A.3 presents descriptive statistics for our tangential shock indicator for all

considered time horizons and a selection of sphere-of-interest radii (1 km, 3km, and 5

km). The tangential shock indicators display a substantial degree of variation. While the

mean values for smaller radii or shorter time horizons can be relatively small, extending

the time horizon or the radius reveals a notable share of households that might have

observed severe flood events in their vicinity. The sample average for the largest sphere

of interest amounts to 4.5 days of flooding over three months and 21 days for the 12-

month horizon. These values reflect a substantial likelihood that one longer or several

shorter flood events occurred during the growing season. This measure also captures

the fact that longer (or more frequent) events increase the likelihood that a flood event

is observed by an individual and thus might impinge on subjective well-being.

In the subsequent econometric analysis, we examine whether this variation allows

us to detect any robust micro-founded conditional interdependencies. This would be

evidence confirming the relevance of tangential shocks in the evaluation of subjective

well-being.
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2.4 Econometric Analysis

2.4.1 Main Results

In this section, we analyse our main research question: Do tangential shocks shift sub-

jective well-being? To answer this question, we estimate different versions of our multi-

nomial logit model, as given by equation (2.2). Due to an unbalanced panel at the

respondent level and to exploit a sufficient number of person-year observations, we use

a pooled sample, as described in Section 3.2.16 To account for systematic (measurement)

error at the household level, we cluster our standard errors at the household level. Po-

tential year- and country-specific effects are absorbed by wave and country fixed effects.

We include controls for individuals’ demographic and economic background in all our

estimations.

The first analysis of subjective well-being determinants is presented in Table A.4 in

the Appendix. The results from the baseline specification (Columns (1) and (2)) show

the expected effects of our control variables on subjective well-being. Higher per-capita

household income is associated with an increased likelihood of reporting a positive well-

being dynamic (∆+), and analogously, it translates into a lower probability of reporting

a negative well-being dynamic (∆−). Higher income fluctuations reduce (raise) the

probability of being better (worse) off. In line with the literature, we document a direct

effect of actual flood shock experience on subjective well-being: those without such an

experience are less likely to report negative SWB dynamics.

Having established the basic determinants of subjective well-being dynamics in our

sample, we now include our tangential shock indicator in the analysis. Since we are

interested in differentiating the effects of TSE for those with and without an actual shock

experience, we interact the binary flood experience indicator (si,t) and the tangential

shock measure (sTSE). This allows for differentiation of the likely impact of tangential

shocks on those individuals who reported an actual shock experience (the reference

group) and those who were merely observers. We concentrate on this interaction effect

in our main analysis and run several multinomial logit regressions using the tangential

shock indicator with various time horizons and radii, as described in Section 2.3.4.

Coefficient estimates for the tangential shock interactions θ are reported in Table 2.1.17

16 We account for household fixed effects in our sensitivity analysis. We also run alternative specifica-
tions controlling for common effects on the province level.

17 Table A.4 in the appendix exemplifies further details on control variables and model fit using the
tangential shock indicator with our baseline thresholds (i.e., 5 km radius and a 12-month time
horizon). We abstain from presenting full regression outputs for all specifications for the sake of
simplicity.
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Table 2.1: TSE interaction estimates for θ (various time horizons and spheres of
interest)

1 Month 3 Months 12 Months

SWB response

category

∆+ ∆− ∆+ ∆− ∆+ ∆−

1 km -0.063 -0.052 -0.015 -0.010 -0.003 -0.000

(0.067) (0.067) (0.024) (0.026) (0.005) (0.005)

2 km 0.023 0.021 0.004 0.016 0.000 0.004

(0.038) (0.039) (0.013) (0.016) (0.003) (0.003)

3 km 0.034 0.034 0.009 0.021* 0.003 0.006**

(0.030) (0.029) (0.010) (0.012) (0.002) (0.003)

4 km 0.019 0.041* 0.007 0.021** 0.002 0.006**

(0.022) (0.023) (0.008) (0.010) (0.002) (0.002)

5 km 0.018 0.043** 0.007 0.021*** 0.002 0.005***

(0.019) (0.019) (0.007) (0.008) (0.002) (0.002)

*** p<0.01, ** p<0.05, * p<0.1

Note: All specifications include sociodemographic (age, age squared, gender, health

dynamics, marital status, religion, educational attainment and occupational status)

and socioeconomic (relative income, income dynamics) controls, as well as year and

country FE. Standard errors (in parentheses) are clustered at the household level.

All estimations are based on the identical sample comprising of 17,346 observations.

The results in Table 2.1 document significant interaction effects, mostly for larger radii

(with a radius of at least 3 km). We also see that these findings are asymmetric, i.e.,

restricted to negative well-being dynamics (∆−). A positive interaction coefficient θ

implies that the well-being dynamics of individuals without any shock experience are

indeed sensitive to exposure to a tangential shock: they seem more likely to report a

decline in subjective well-being than those who reported a shock experience in the last

12 months.

To provide a more refined interpretation of the results for the tangential shock in-

dicator, we transform coefficient estimates from the nonlinear multinomial logit model,

displayed in Table 2.1, into directly interpretable average marginal effects (AME). This

allows us to investigate the overall relevance of the observed effects based on the signifi-

cant coefficient estimates in Table 2.1. Figure 2.3 therefore illustrates the corresponding

average marginal effects in the negative SWB domain.18

18 Figure A.2 in the Appendix provides an overview of both the positive and negative SWB dynamics.
There we also account for different effects depending on the intensity of the tangential shock; AMEs
are evaluated at the TSE indicator’s mean, 90th and 95th percentile.
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A first comparison of the absolute sizes of the average marginal effects reveals a

more differentiated picture than the previous coefficient estimates suggested. Average

marginal effects decrease with higher radii and increasing time horizons; i.e., the effect

of tangential shocks is stronger for events that occur closer to a respondent’s residence

and in the more recent past.

Figure 2.3: Average marginal effects for negative SWB dynamics
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Note: All marginal effects draw upon the same sample comprising of 17,346 observations. The depicted

response and shock-experience-specific average marginal effects have been evaluated over the range of

the tangential shock measure, depicted on the x-axis. The shaded areas indicate the 90% confidence

intervals.

With the 90% confidence band being just above zero (dashed line), the results suggest

that individuals without any shock experience (blue graph) are on average more likely

to report negative well-being dynamics only for smaller spheres of interest (up to 2,000

m). In the case of at least intermediate radii or time horizons, the confidence bands of

the two groups (those with and without actual shock experience) do not overlap–the

average marginal effects, and thus perceptions of SWB, differ notably between these

groups.
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The average marginal effects for those with an actual shock experience (red graph)

are inverted and significantly negative for more severe tangential shock events: given

an actual shock experience, prolonged tangential shock exposure does not increase the

likelihood a respondent reports a negative subjective well-being dynamic. In fact, those

who suffered an actual shock seem less affected by an incremental increase in tangen-

tial shock exposure since they are less likely to report a deterioration of their SWB.

This could be interpreted as a form of resilience to such an adverse condition. Yet,

ever-increasing TSE exposure has a dampening effect on negative SWB dynamics for

individuals with actual shock experience. The positive slope of the AME curve for

this group, gradually converging towards zero, indicates that more intensive tangential

shocks may increase resilience only up to a certain point.

To demonstrate the size of the observed effects, Figure 2.4 shows the predicted

probabilities of negative SWB dynamics for different levels of TSE intensities on the

x-axis.

Figure 2.4: Predicted probabilities for negative SWB dynamics
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Note: Horizontal dashed lines represent the group-specific in-sample probabilities

for negative SWB dynamics. The x-axis depicts the intensity of TSE.

We see a mild increase in the probability of a negative SWB dynamic for those without

actual shock experience if the intensity of the TSE increases. This reflects our initial

expectation that those without any actual shock experience will still feel worse off
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if they are exposed to tangential shock events. For those actually suffering a shock,

predicted negative SWB dynamics are substantially dampened and notably below the

group-specific unconditional probability (26%, depicted as a dashed red line): exposure

to a tangential shock event lasting for a cumulative month (30 days) in the last quarter

reduces the expected probability of a negative SWB dynamic by almost 10 percentage

points relative to the unconditional probability. A similar TSE in the last 12 months

would still result in a 4 percentage-point reduction in negative SWB dynamics.

These findings have an important implication: if SWB is measured during a season

with frequent TSE exposure, individuals not hit by a shock may report more negative

outcomes, whereas those actually hurt by the shock may develop resilience due to

the additional TSE exposure. Thus, the reporting of subjective well-being might be

distorted. Interviewing individuals and asking for their subjective evaluations directly

after they observed a shock or traumatic event may result in a misrepresentation of

well-being levels.

2.4.2 Sensitivity analyses

This section describes various robustness tests for our main analysis, addressing con-

cerns about control variables, attrition and unobserved heterogeneity. Output tables

are presented in the Appendix.

Shock severity Our analysis builds on different intensities of TSE exposure. So far,

however, we have not accounted for variation in the intensity levels of actual flood shock

experiences; respondents were either affected or not. In the first sensitivity analysis, we

demonstrate that our findings are upheld if we allow actual shock experience to vary in

its severity. Table A.4 (Models 2 and 4) shows that both the magnitude and precision

of our TSE estimate remain comparable for different specifications of the actual shock

indicator variable.19

Exposure to other environmental shocks The households in our sample are largely

involved in agricultural activities, which explains their overall responsiveness to an en-

vironmental shock such as flooding. However, other (possibly correlated) environmental

shocks could also be impacting on SWB dynamics. To this end, we integrate three ad-

ditional environmental shock experiences during the last 12 months: drought, storm,

and snow or freezing rain. This does not impact our TSE estimate. However, all three

19 We show results for the 5 km- and 12-month TSE indicator.
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environmental shocks are relevant predictors for negative SWB dynamics (cf. Table A.5,

model 1).20 The same robustness can be observed in the specification where we control

for a full set of shocks, including falling victim to a property crime, experiencing a job

loss, adverse financial shocks, the death of a household member, etc. (see Table A.5,

model 2).

Network effects We also control for the potential transfer of shock-related well-being

dynamics between households in the village network. This transfer may be the result

of household interdependencies or communication within the village community. The

network variable corresponds to the log distance-weighted share of in-sample house-

holds (in the same village) who were exposed to a tangential flood shock during the

corresponding time horizon.21 Shock exposure of neighbouring households is weighted

more heavily than shock exposure of remote households. With a range between zero

and one, our network variable is a proxy for the likelihood of interacting with a fellow

villager exposed to a tangential shock. Table A.6 (Model 2) documents the robustness

of our findings for various time horizons (3 and 12 months) and spheres of interest (3

and 5 km). Notably, our network variable is significant across specifications with a time

horizon of 12 months, yet only for positive well-being dynamics: the larger the share of

other households exposed to a tangential shock, the lower is the likelihood a respondent

reported an improvement in well-being. Intra-village shock correlation seems to play a

relevant role in the formation of subjective well-being, although it does not affect our

main results.

Coping strategies Next, we account for the emergence of coping strategies. Households

with frequent past exposure to flood shocks might have adapted, and their well-being

could be unaffected by tangential shocks. Model 3 in Table A.6 displays the robustness of

our findings to controlling for flood history. Accounting for the yearly average exposure

to tangential shocks (based on the history from 2004 to the last year prior to the

interview in a survey year) does not alter our findings. The same holds for an alternative

measure (results not reported) where we only focus on the flood history in the two years

prior to the 12-month pre-interview time horizon.

20 As a type of falsification test, we run a further set of estimations where we interacted all environmen-
tal shock experiences with the tangential flood shock measure (model 3). The only significant TSE
interaction for negative SWB dynamics is the interaction with the actual flood shock experience.

21 We also applied equal and linear distance weights. The results were unaffected. We selected the
log-distance weights due to a specific desirable feature, i.e., partially reducing the dominance of one
very close neighbour over a number of more distant neighbours.
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Land usage In another specification (Table A.6, Model 4), we investigate the robust-

ness of our results depending on how households make their livelihoods. In principle,

we account for respondents’ main occupation in our main analysis; this accounts for

the fact that farming households might be more susceptible to (tangential) flood shocks

in general. Next, we further account for households’ land use, i.e., the overall number

of cultivation plots (or the cultivation area) used or owned by the household. Eventu-

ally, this could yield a refined interpretation of our results if individuals from farming

households with productive assets at stake were particularly sensitive with respect to

tangential shock events. Although individuals with more farmland at stake (i.e., those

that are relatively better off) display positive well-being dynamics more frequently, we

still observe the familiar impact of tangential shocks on negative well-being dynamics.

Psychological factors Another important sensitivity check investigates the extent to

which observed well-being dynamics are driven by psychological factors. Since our re-

search examines the impact of potentially traumatic events on subjective well-being,

these factors could be a potential source of omitted variable bias: both direct shock

experience and tangential shock exposure might adversely impact mental health (e.g.,

Sekulova and Van den Bergh, 2016; von Möllendorff and Hirschfeld, 2016). Simultane-

ously, we expect worsening mental health to affect subjective well-being levels. To in-

vestigate the relevance of indirect psychological effects, we integrate measures of mental

health into our analysis. Since there are no direct measures available for our sample, we

resort to the self-reported prevalence of mental issues and headaches as predictors for

underlying mental health conditions.22 This specific sensitivity analysis comes with two

additional caveats: first, the sample is reduced by ca. 10% due to a substantial share

of missing values in the underlying health-related variable. Another issue is the low

general prevalence of both conditions: only 0.3% of respondents declare mental issues,

and only 1.2% report headaches.

Table A.7 illustrates that there is no strong correlation between TSE exposure and

mental issues or headaches. The retrieved TSE interaction coefficient for the negative

well-being domain corresponds to our earlier results. The last two columns of Table A.7

present the direct correlation structure between flood shock experience and exposure

and our mental health proxies. We see a minor but significant correlation between men-

22 The TVSEP questionnaire does not include specific questions on a person’s mental health but rather
asks the respondent to report on any impairment over the past year. We chose the answer options
most closely related to mental health, i.e., mental issues (including unspecified mental disease or
depression) and headaches, which have been found to be a comorbidity of anxiety or psychic disorders
(Baskin et al., 2006; Mercante et al., 2011; Lampl et al., 2016).
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tal issues and TSE exposure. However, this effect does not translate into a differential

effect of mental issues on SWB between those with and those without direct shock

experience. Overall, we do not find evidence that our previously uncovered TSE effects

are driven by unobserved psychological conditions.

Sample attrition A further sensitivity analysis assesses whether sample attrition might

invalidate our findings. Overall sample attrition is relatively low, with a rate of approx-

imately 2% between each wave. We re-estimate our baseline model, including only re-

spondents from households that are represented in all waves.23 This approach, following

Gröger and Zylberberg (2016)24, reduces our sample by 140 households (corresponding

to 537 respondent-year observations). Our main results in this zero-attrition sample

(cf. Table A.8) are highly comparable to the overall sample.25 We thus conclude that

sample attrition does not bias our general findings.

Unobserved heterogeneity Our last robustness check assesses the reliability of our

previous estimation results with respect to unobserved heterogeneity. Thus far, our

estimations were based on a multinomial logit framework in a cross-sectional pooled

sample where observations are linked at the household level. This allowed us to exam-

ine asymmetric relations between potentially relevant factors across the positive and

negative well-being domains. These dynamics, however, are rooted in the cognitive eval-

uation processes of a responding household member. If certain unobserved household

characteristics or respondent traits were correlated with our variables of interest and,

at the same time, relevant to the formation of subjective well-being, our previously

presented estimates might be biased.

We investigate the influence of such unobserved characteristics, both on the house-

hold and the respondent level, by re-estimating our benchmark models (3 km/5 km

spheres of interest and 1-/3-/12-month time horizons) in a panel setting. We run fixed-

effect multinomial logit models (Pforr, 2014) and panel fixed- and random-effect models.

The latter corresponds to a more conventional panel setting and is based on a binary

dependent variable, with negative well-being dynamics coded as one. Positive well-being

dynamics and stable well-being levels are combined in the reference category. Tables A.9

23 The 2011 wave was run in two provinces only. For a respondent from these provinces to be included,
we thus require that their household is represented in six waves in our dataset. For all other provinces,
the zero attrition condition requires a household to be present in five waves.

24 Gröger and Zylberberg (2016) use the Vietnam TVSEP data.
25 As in our previous findings, we do not obtain any significant shock estimates for positive SWB

dynamics.
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and A.10 report the results from our panel models on the respondent level (Panel A)

and the household level (Panel B) respectively. In the respondent panel, by controlling

for unobserved heterogeneity on the respondent level, significant interaction coefficients

can be retrieved from the fixed-effects multinomial logit and the random-effects model

when larger spheres of interest and longer time horizons are considered but not from

the standard panel fixed-effects model. Controlling for unobserved heterogeneity at the

household level, however, we once more establish a familiar set of TSE interaction coeffi-

cients (Table A10, Panel B). In accordance with our earlier results, coefficient estimates

are significant and of a similar size across all three types of panel estimation models.

For the maximum sphere of interest and a time horizon of 3 months, for instance, we

obtain an estimate of 0.0029 (corresponding to a 0.29 percentage-point change) in both

the panel FE and RE specifications: in these linear models, an additional flood expo-

sure episode of one week translates into a 2 percentage point (7×0.29) increase in the

probability that a respondent without actual shock experience reports being worse off.

Given their baseline response behaviour (20% stating they are worse off), this implies

a 10% increase over baseline.

Ultimately, we are confident that controlling for unobserved, potentially correlated

factors at the individual or household level in a panel model supports our findings in

the linked cross-sectional analysis: the distortionary effects of tangential shocks impinge

on the formation of subjective well-being in an asymmetric manner, e.g., by prompting

negative well-being dynamics.

2.4.3 The propagation of TSE into future expectations

In the previous sections, we have shown that tangential shock exposure may sway

current SWB dynamics such that respondents without actual shock experience are more

likely to report deteriorating SWB (cf. Figure 2.4). This effect is more pronounced for

more recent TSEs, and thus timing matters. In the next step, we are interested in the

consequences of this effect. Therefore, a related question is whether this distortionary

impact of TSE exposure is restricted to evaluations of current well-being dynamics or

if it propagates into the formation of well-being expectations for the future.
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To investigate a potential forward-carrying effect of TSE exposure, we first examine

whether TSE exposure is associated with an update to beliefs about future flood shocks,

i.e., respondents are more likely to expect flooding in the future.26 Subsequently, we

investigate whether belief updates are relevant drivers of expectations for future well-

being.

Table 2.2 (Model 1) presents coefficient estimates from a linear probability model

predicting a respondent’s update to flood shock beliefs. Here, the dependent variable is

one if an individual expects a flood shock to occur in the next five years.27 Individuals

without an actual flood shock experience are 51 percentage points less likely to expect

a flood shock event in the future than those who experienced a flood shock. Individ-

uals’ belief updates seem to be in line with their actual experience. Insignificant TSE

estimates, on the other hand, highlight that their exposure to TSEs does not impact

their belief formation.

Model (2) presents results for future SWB expectations, which include the full set

of our standard controls.28 We obtain a significant positive TSE interaction coefficient

for expected negative SWB dynamics (∆−F ). Interestingly, there is also a significant

negative interaction estimate for expected positive SWB dynamics (∆+
F ): compared to

those with actual shock experience, individuals without such an experience seem to

be less optimistic about their future prospects when their TSE exposure is more pro-

nounced. Furthermore, expectations of SWB dynamics are conditional on current SWB

evaluations. Individuals reporting positive SWB dynamics over the last year are also

more likely to expect future SWB improvement, as signified by the positive coefficient

estimate. Those displaying negative past SWB dynamics expect a further downward

spiral in the future.

Turning to model (3), which accounts for belief updating in regard to the future

occurrence of flood shocks (sF ), we find two interesting insights: (i) flood shock belief

updates do not translate into changing SWB expectations, since all estimates related to

future flood shock expectations (sF ) are insignificant, and (ii) the influence of tangential

shock exposure also remains prevalent in this setting.

26 The household questionnaire includes a section on expected future shocks. The question posed to
respondents is: “Do you think that (event xyz) will occur in the next 5 years?” We use this question
to measure a respondent’s belief updates. A respondent updates his/her belief if he/she becomes
more likely to expect a future flood shock in response to a past flood shock experience or TSE
exposure.

27 The full set of variables is only available for the years 2008 to 2016, hence the smaller sample.
28 Future SWB expectations are captured through the following question: “Do you think you personally

will be better off next year?”
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Table 2.2: Belief updates and future SWB expectations (maximum flood exposure,
5km, 12 months)

(1) (2) (3)
FW shock

believe
update

Future SWB
expectations

Future SWB
expectations +
belief updating

sF ∆+
F ∆−

F ∆+
F ∆−

F

s −0.5119∗∗∗ 0.0903 0.0936 −0.0222 −0.0507
(0.0135) (0.0760) (0.1185) (0.1480) (0.2355)

sTSE −0.0002 0.0042∗∗∗ −0.0061∗∗ 0.0042∗∗∗ −0.0060∗∗

(0.0003) (0.0016) (0.0030) (0.0016) (0.0029)
s× sTSE 0.0003 −0.0037∗∗ 0.0063∗∗ −0.0037∗∗ 0.0062∗∗

(0.0003) (0.0017) (0.0031) (0.0017) (0.0031)
Present SWB ∆+ 1.4270∗∗∗ −0.0587 1.4269∗∗∗ −0.0587

(0.0469) (0.1011) (0.0469) (0.1011)
Present SWB ∆− −0.0247 1.2130∗∗∗ −0.0246 1.2131∗∗∗

(0.0532) (0.0714) (0.0532) (0.0714)
sF −0.1405 −0.1858

(0.1562) (0.2531)
s× sF 0.1339 0.1696

(0.1652) (0.2636)

N 13692 13692 13692

*** p<0.01, ** p<0.05, * p<0.1

Note: All specifications include sociodemographic (age, age squared, gender, health dy-
namics, marital status, religion, educational attainment and occupational status) and so-
cioeconomic (relative income, income dynamics) controls, as well as year and country FE.
Standard errors (in parentheses) are clustered at the household level.

Future SWB expectations are hence highly sensitive to TSE exposure. Thus, TSE

exposure has the potential to be carried over into the future by lowering an individual’s

outlook on future well-being dynamics. Most importantly, this is not a result of ra-

tionally updated beliefs based on newly acquired information of flood shock frequency

or severity in one’s sphere of interest. Observing a flood shock, even without being

hit or updating beliefs regarding underlying flood risks, is sufficient to trigger negative

expectations of future well-being.

2.5 Conclusion

Employing a unique household sample from Southeast Asia, we investigate the sensitiv-

ity of subjective well-being dynamics to the observation of environmental shocks. We

investigate the implications of such tangential shock exposure by studying flood events

in rural villages in Thailand and Vietnam.
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Capitalising on satellite-based, near-real-time flood event data, we compare the well-

being dynamics of individuals reporting an actual flood shock experience with the dy-

namics of those who were not directly hit but lived in close proximity to the flood

event.

In the analysis, we establish two essential findings. (i) In our main analysis, we

document that merely witnessing a flood event can be sufficient to trigger negative well-

being dynamics. The effects of these tangential shocks are found to be heterogeneous

across households and depend on the relative position of a household as well as the

timing of the interview. Moreover, the analysis of marginal effects shows that individuals

with direct actual flood experience are more resilient to the occurrence of more severe

flood events. Once an individual is directly affected by a flood shock of any severity,

more extreme flood events do not further depress the subjective well-being dynamics

of that individual. For individuals who were not hit by a flood shock, on the other

hand, it seems that the lack of direct self-experience translates into an overemphasis

on potentially adverse, yet not experienced, consequences. (ii) Our results demonstrate

that TSEs not only affect contemporary outcomes but they may also further distort the

formation of expectations for the future. We find that witnessing flood shocks without

actually being hit translates into less optimistic expectations with respect to the future

development of SWB. Notably, we establish that this outcome is not the consequence

of a rational belief update.

In conclusion, our findings show that present and future subjective well-being are

determined not only by direct (shock) experiences but also by subjective perceptions

related to the observation of tangential shock events. Our findings are in line with

psychological research on witnessing traumatic events. However, we illustrate that the

impacts of such events are also relevant in regard to adverse environmental shocks and

individuals’ subjective well-being dynamics. Hence, we add a new dimension to the re-

search on subjective well-being determinants and provide new insights into individuals’

behavioural patterns in the aftermath of a shock event. While we draw upon a sample

taken from a rural population in Thailand and Vietnam, we argue that the relevance of

our results may extend beyond this population. Various studies (Sarracino et al., 2013;

Markussen et al., 2018; Reyes-Garćıa et al., 2016) have identified a so-called ‘unique

happiness function’ and have found that determinants of subjective well-being hold for

individuals across countries and cultures.

Our findings therefore call for a more cautious interpretation of behavioural re-

sponses and well-being measures, as well as a more thorough consideration of the cir-

cumstances in which individuals were encountered. Traditional survey instruments do
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not capture such tangential events. However, in light of our results, researchers might

want to consider the dynamic environment respondents face and how they interact with

changing conditions in their surroundings.

Moreover, our findings have implications for policy design in the aftermath of (en-

vironmental) shock events. Policies designed to alleviate the ramifications of adverse

shocks may yield an inefficient usage of resources if target groups are not directly

identified based on their true shock experience. Instead, it might be worthwhile to dif-

ferentiate between individuals who actually suffered a decline in economic well-being

due to the shock and those displaying transitory negative well-being dynamics. The

former would require material relief, whereas the latter might benefit from information

on how to cope with the risk of a recurring shock event.
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3.1 Introduction

For households, taking out debt is a valuable tool to smooth consumption and often a

necessary precursor of private investments. However, as consumer indebtedness is signif-

icantly increasing worldwide, there is widespread concern that it may turn detrimental.

Specifically, when households face increasing difficulties to repay their debts, household

well-being and consumption are threatened. Moreover, household over-indebtedness

poses a serious threat to the stability of the financial system as a whole; for exam-

ple, as experienced during the U.S. financial crisis in 2007-08.

Emerging market economies are especially at risk of low growth and even financial

crises when the level of household debt is high, as not only are their institutions and

financial regulations weaker, but income inequality is also higher (IMF, 2017). There-

fore, understanding the factors and reacting to the consequences of over-indebtedness

are crucial for improving living conditions while also ensuring a stable development of

emerging economies. Building on the “permanent income hypothesis”, where income

expectations determine current consumption and borrowing, this paper studies one

potential driver of over-indebtedness: too high income expectations. Although being

positive about the future might have a net positive effect on lifetime utility (see Brun-

nermeier and Parker, 2005), being too positive might lead to serious financial distress

and over-indebtedness.

In general, households’ borrowing behaviour around the world is still puzzling in

various aspects and often hard to reconcile with standard neoclassical and behavioural

models. Zinman (2015) argues that one reason for many unresolved puzzles is that

household debt is vastly under-researched within household finance. In the last decade,

a vibrant literature on measuring over-indebtedness has emerged (e.g., D’Alessio and

Iezzi, 2013; Keese, 2012; Schicks, 2013). In contrast, its determinants are still mostly

unidentified. Our paper contributes to closing this gap by focusing on high income

expectations as one likely cause. To the best of our knowledge, we are the first to study

the relationship between real income expectations and over-indebtedness.

We investigate the relationship between positive expectations and over-indebtedness

using extensive survey data on the financial situation and financial behaviour of one

of the most vulnerable populations in Thailand: rural households in the north-east.

A crucial part of our survey was to collect objective and subjective data on potential

symptoms of over-indebtedness.
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This allows us to construct different objective and subjective over-indebtedness indica-

tors.1

Additionally, we quantify households’ predictions of their future income. Instead of

relying on qualitative Likert scale measures, we elicit individual distributions of ex-

pected household income and set these in relation to actual income. Hence, a major

contribution to the literature is that we relate the over-indebtedness indicators to a

sophisticated measure of subjective income expectations. In our regression analysis, we

control for relevant household characteristics and unexpected shocks faced by house-

holds, thereby reducing reverse causality concerns. In order to further strengthen the

contribution of our paper, we delve deeper into the causal effect of positively biased

expectations on overborrowing by carrying out a lab-in-the-field experiment with the

exact same respondents. In the experiment, we concentrate on one particular expecta-

tion bias: overconfidence. We exogenously bias income expectations via two treatments

that vary the level of self-confidence of the respondents and, thereby, their expected

earnings. Subsequently, we investigate if participants spend more on goods they can

buy in the experiment and, as a consequence, potentially overborrow.

Thailand is, on the one hand, an exemplary emerging market, but, on the other,

outstanding when it comes to household finances: Financial inclusion is comparatively

high, with four out of five persons participating in the formal financial system. Simul-

taneously, household debt has increased to over 78.03% of the country’s GDP. This

makes it the emerging market with the highest household debt to GDP ratio in the

world (IMF (2017), see Figure B.1). Given these numbers, it is hardly surprising that

both local policy makers and international institutions agree that over-indebtedness is

a growing problem in Thailand (Tambunlertchai, 2015). Additionally, there are circum-

stances that make our sample especially vulnerable to over-indebtedness and to struggle

with financial hardship. This part of the population faces higher uncertainty regarding

their future incomes in two ways: through the generally high level of macroeconomic

volatility in emerging markets and through individual, mostly weather-related shocks,

common to poor, small-scale agricultural households (see Loayza et al., 2007; Klasen

and Waibel, 2015).

Our survey results show that there is a strong and robust relationship between high

expectations and over-indebtedness. Those who have positive expectations are more

likely to be over-indebted than those with neutral or negative expectations, which we

interpret as a sign that these expectations are truly too high for some households. The

1 It is still a highly debated topic how to measure over-indebtedness and there is no clear-cut answer on
the right method of elicitation, which is why we construct a variety of over-indebtedness measures.
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results vary slightly with respect to different debt indicators. The relationship between

high expectations and the objective over-indebtedness indicator is more pronounced

in comparison to the subjective indicator, but both relationships are significant. Our

results indicate that the subjective indicator is not only driven by actual debt levels

but also by personal characteristics and perceptions, such that it measures a different

dimension of over-indebtedness. In an additional exercise, we can show that the subjec-

tive over-indebtedness indicator is highly correlated to a qualitatively assessed income

forecast (error) measure. Eventually, we find that being more certain about the future

income realization, which can be another form of forecast error, is also positively re-

lated to our objective over-indebtedness indicator. Rural households are exposed to a

highly uncertain environment; hence, being too certain about ones future income may

be harmful. Our results are robust to various sample specifications and become more

precise if we exclude parts of the sample that may have had difficulties understanding

the questions on eliciting future income expectations.

In the supplemental experiment, we find that overconfidence is related to more

spending and overborrowing. However, our treatments themselves have no impact on

overborrowing, which is why we cannot claim a causal relationship of overconfidence

on overborrowing. These results are not driven by presumably confounding factors that

the treatments could have affected and are relatively robust. Rather, we find evidence

for “sticky” overconfident beliefs, which also points to a high level of perceived certainty

in our sample. Furthermore, participants who overspend in the lab are also those who

experience over-indebtedness in real life. This shows that our experiment is not “too

artificial” to capture real life behaviour.

Our study touches on three strands of literature: First, the literature on eliciting and

using subjective expectations data; second, research on potential behavioural biases in

financial decision-making and debt illiteracy; and, third, the literature on households’

(over-)indebtedness in emerging economies. There are at least two reasons why the

relationship between income expectations and over-indebtedness should be explicitly

studied in an emerging market setting and why findings from “WEIRD”2 populations

might not translate to rural populations. First, financial literacy is substantially lower.

This implies lower debt literacy, which might hamper expectation formation on finan-

cial matters. For example, Lusardi and Tufano (2015) find that debt illiteracy is related

to higher debt burdens and the inability to evaluate the own debt position. Burke and

Manz (2014) experimentally show that economic illiteracy increases financial forecast

errors. Second, the higher uncertainty that respondents are facing distinguishes this

2 Western, educated, industrialised, rich and democratic (Heinrich et al., 2010)
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research from work done in “WEIRD” societies. A more volatile economic environment

requires more individual belief formation, which makes biased expectation formation

more likely (see for example Johnson and Fowler, 2011) and at the same time more

dangerous. In any case, the empirical evidence from WEIRD countries on the rela-

tionship between income expectations and over-indebtedness is sparse as well. To the

best of our knowledge, there is no study that explicitly concentrates on real-life income

expectations.

Our work is most closely related to Hyytinen and Putkuri (2018) and Grohmann

et al. (2019). The former find a correlation between Finnish households’ overborrow-

ing and extreme positive forecast errors about the financial situation of the household.

They do not analyse the effect of income expectations on overborrowing but the effect

of financial expectations in general, which gives more rise to issues of reverse causality.

Furthermore, the forecast errors are constructed using Likert scales and hence, cannot

be quantified. They show that households exhibiting high positive forecast errors are

more likely to overborrow than households exhibiting smaller errors. Grohmann et al.

(2019) conduct a lab experiment among students in Germany that is similar to ours

and link the experiment data with data from the German Socio-Economic Panel. They

find a causal link between overconfidence and debt taking in the lab and a correlation

between a simple measure for overconfidence and the level of household debt in the

panel sample. Our study differs from these two studies in that it contributes to the

literature by (i) explicitly eliciting and quantifying real income expectations and pre-

cisely measuring over-indebtedness; and (ii) analyzing the research question in a setting

where expectation formation is generally difficult and over-indebtedness bears severe

consequences.

The paper proceeds as follows: Section 3.2 presents the survey data, discusses the

setting, and explains how our variables of interest are constructed. In Section 3.3, the

estimation strategy is outlined and survey results are presented. Section 3.4 describes

the experiment and its results. Section 4.4 concludes.

3.2 Data

This section introduces the data collected during the survey and explains how the main

variables of interest are derived. We develop a measure that approximates future income

expectations, which we call the quantitative income forecast. Further, we construct

various over-indebtedness indicators to capture the different dimensions of household

debt.



Chapter 3 37

3.2.1 The Thailand Vietnam Socio Economic Panel

The survey was conducted in Thailand in November 2017 and is an add-on project of the

Thailand Vietnam Socio Economic Panel (TVSEP).The TVSEP has conducted panel

surveys in rural Thailand and Vietnam on a regular basis since 2007, with recurrent

surveys in 2008, 2010, 2011, 2013, 2016, 2017, and 2019, so far. The TVSEP survey

captures the living conditions of households in rural areas that are largely engaged in

agriculture. It focuses on factors affecting households’ vulnerability to poverty. Among

others, the survey includes socioeconomic characteristics of every household member,

sections on household consumption and savings, crop farming, livestock rearing, and,

in particular, questions on exposure to shocks and anticipated risks. Furthermore, each

wave captures topics of current research interest. About 4000 rural households in 440

villages across six provinces in Thailand and Vietnam are interviewed for the survey.

The sample is set to represent the rural population in these two countries while urban

households are deliberately excluded. To obtain a representative sample, a three-stage

cluster sampling is used. The procedure is described in Hardeweg et al. (2013).

Our study is conducted in only one of the TVSEP provinces in Thailand, Ubon

Ratchathani, which borders Cambodia and Laos (Figures 3.1 and 3.2). The sample

consists of about 750 households in 97 villages. For the majority of our analysis, we

concentrate on our own survey, adding data from the 2016 and 2017 general TVSEP

survey as necessary.

Figure 3.1: Study Site, Ubon Ratchathani Figure 3.2: Sampled Subdistricts
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With our study, we want to gain new insights into the determinants of debt in-

duced financial distress within a vulnerable population. Therefore, our survey includes

extensive question batteries on objective and subjective over-indebtedness (see Sub-

Section 3.2.4), savings, financial literacy, borrowing behaviour in general, and income

expectations (see Sub-Section 3.2.3). In addition, we collect data on health, subjective

well-being, personality traits, and risk preferences. We use established items to assess

these data. For example, personality traits are measured using the short version of the

Big Five Inventory “BFI-S” (John and Srivastava, 1999; Gerlitz and Schupp, 2005).

We develop a broad financial literacy score, which not only encompasses numeracy but

also questions on financial behaviour and attitude. The score is similar in style to that

developed by the OECD (OECD, 2018). Furthermore, we construct a score for risk

preference out of two questions: The first one asks whether the person is generally fully

prepared to take risks and the second question specifically asks for risk-taking behaviour

in financial decision-making (i.e., investing and borrowing). Self-control is assessed us-

ing the well-established scale of Tangney et al. (2004). Given the low numeracy within

the sample, we add a phrase to each numerical value on questions involving scales.3

We use a restricted sample for the analysis in Section 3.3 and exclude outliers by

the following means: We exclude (i) the 1 percent highest monthly household incomes

in 2016 and 2017, (ii) households who have a debt service to income ratio greater than

four, and (iii) those whose income is negative in general. For the latter case, we trim

them as we do not know whether a negative income itself means that the households

are in financial distress. Regression results without trimming are very similar to those

with trimming. In any case, trimming (marginally) downward biases our results.

In our trimmed sample, the average respondent is 57 years old, female, the spouse of

the household head, and has 5.7 years of education. Our financial literacy score indicates

a relatively low level of financial literacy. On average, respondents answered four out of

seven knowledge questions correctly, reached five out of nine possible points concerning

financial behaviour, and three out of seven possible points with regard to financial atti-

tude. This is in line with findings from the OECD/INFE study for Thailand from 2016

(OECD, 2016). While 57.27% of our respondents are the sole financial decision makers

in their households, 28.05% share this task with someone else. Hence, when sometimes

using respondent- and not household-specific characteristics or perceptions in the anal-

ysis, we are still confident that these individual traits determine the household’s state

of indebtedness because the majority of respondents is in charge of making financial

3 Our main questionnaire can be downloaded here.

https://www.wipol.uni-hannover.de/de/stein/drittmittelprojekte/?tx_t3luhresprojects_t3luhresprojectlist%5BresearchProject%5D=279&tx_t3luhresprojects_t3luhresprojectlist%5Baction%5D=show&tx_t3luhresprojects_t3luhresprojectlist%5Bcontroller%5D=ResearchProject&cHash=4c223a3b7bf1cd19b1c29ce6c4f8f2bf


Chapter 3 39

decisions.4

3.2.2 The Thai Rural Credit Market

In Thailand, over 80% of the population has a bank account and over 60% uses it for

digital payments. The gaps in financial inclusion between women and men as well as

between the rural and urban population have declined and are now relatively small

(Demirguc-Kunt et al., 2018). Financial inclusion in our sample is similar: 78.34% of

our sample households have an account with a formal banking institution.

Simultaneously, the rural credit market has evolved extensively, providing manifold

loan options for consumers. This is mainly due to heavily subsidized government pro-

grammes. The market is dominated by government-financed institutions (Chichaibelu

and Waibel, 2017). The most important ones are the Bank for Agriculture and Agri-

cultural Cooperatives (BAAC) and the Village and Urban Community Fund (VF) pro-

gramme,5 with the former reaching approximately 95% of all farm households (Terada

and Vandenberg, 2014). This massive expansion can also be observed in our sample,

where the majority (73.4%) of households has a loan that is either still owed or has

been paid back within the last 12 months. Figure 3.3 provides a graphic overview of

the loan situation. Conditional on having a loan, households have on average 2.4 loans.

Households borrow from formal and informal sources alike. In fact, loan sources are

diverse, with the two most important credit sources being the BAAC and the VF. This

lending pattern is similar across all districts we consider. Households also borrow from

other sources, for example, from agricultural cooperatives, business partners, money

lenders, relatives, and friends. Loans are taken out for various reasons. Most loans are

primarily used for agricultural related goods like fertilizer or pesticides (23.96%), for

consumption goods (22.39%), and for agricultural investments, e.g., farm land or agri-

cultural machines (16.58%). Loans are also used for paying back another loan (9.87%),

buying durable household goods (6.72%), and for education (3.15%).

4 Still, as a robustness check, we re-run the analysis without respondents who are not at all in charge
of financial decision-making within the household.

5 The aim of the VF is to improve financial access in rural areas in Thailand. It is one of the largest
microfinance programmes in the world (Menkhoff and Rungruxsirivorn, 2011).
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Figure 3.3: Number of Loans
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3.2.3 Income Expectations

Households can form positive or negative income expectations. We are interested in

studying households that exhibit high (positive) income expectations. In order to ob-

tain a positive income expectation measure, we must elicit income expectations in the

first place. Expectations play a central role in the economic theory of household decision-

making, for example, with respect to determining saving, borrowing, and consumption

(Friedman, 1957), or with respect to occupation choices (Becker, 1964). Manifold re-

search has tried to predict this choice behaviour based on expectations. Yet, expecta-

tions are challenging to elicit empirically.

3.2.3.1 Eliciting Income Expectations

Expectations from Former Income Realizations The traditional way of elicitation -

referred to as revealed preference analysis - assumes that individuals have rational expec-

tations (Dominitz and Manski, 1997; Manski, 2004) and infers expectations from data

on past income realizations. For this approach, strong assumptions on the expectation

formations process are needed, with both the researcher and the respondent needing to

have the same information set (Guiso et al., 2002). Given these strong assumptions and

our conjecture that mistakes in expectation formation are likely to occur in our setting,

we decide for two alternative elicitation methods, which are explained in what follows.
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Qualitative Expectations Questions The first way is to elicit expectations via quali-

tative questions, e.g., using Likert scales for questions on future expected events. We use

this method in the appendix to replicate the results of Hyytinen and Putkuri (2018),

who use Likert scales to elicit financial expectations. However, this approach suffers

from two main drawbacks: First, answers might not be comparable across respondents

and, second, response options may be too coarse and leave room for responses different

from what is proposed.

Subjective Probabilistic Income Expectations Dominitz and Manski (1997) suggest

to elicit probabilistic expectations. This approach is particularly useful for calculating

individual cumulative distribution functions and moments of the relevant variable (At-

tanasio, 2009). By allowing researchers to retrieve different moments of the expected

income distribution, it becomes possible to algebraically study the internal consistency

of elicited expectations (e.g., apply the laws of probability) and to use these proba-

bilistic expectations as actual probabilities describing how respondents assess future

outcomes. We use this approach in our main analysis to retrieve positive expectations.

As we elicit expectations within a rural sample in an emerging economy, we rephrase

percent change questions in a way similar to “how sure are you” and use visual aids

to make the concept of probability more comprehensible.6 Thereby, we address the

concerns of Attanasio (2009) and Delavande et al. (2011), who state that the concept

of probability might be hard to convey in contexts where people have low levels of

education.7

To check whether respondents adhere to the basic laws of probability, we first ask

them how sure they are that it will rain tomorrow and how sure they are that it will

rain within the next two weeks. They can indicate their answer by putting between zero

and ten marbles that we gave them beforehand into a cup, with zero marbles meaning

they are absolutely sure it will not rain and ten marbles meaning they are absolutely

sure it will rain. There are 182 out of 748 respondents (24.33 %) who do not obey

the laws of probability: they set a zero chance that it will rain within the next two

weeks but a positive probability that it will rain tomorrow. This is a substantial share

6 Studies dealing with these kind of expectation elicitation include, among others, Attanasio and
Augsburg (2016), who study income processes in India, McKenzie et al. (2013), who investigate
income expectations of Tongans, and Attanasio and Kaufmann (2014), who elicit income expectations
among high school students in Mexico.

7 The average respondent in our sample only attended school for six years.
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of respondents, most likely caused by the low educational level in our sample. In the

subsequent analysis, we run our regression both with and without these individuals.

After this “warm-up” exercise, we ask respondents how sure they are that their

monthly household income in the next twelve months will be in a predefined range.

We use income quartiles from the 2013 TVSEP wave to predetermine the four bins to

which respondents allocate their ten marbles. The four bins range between 0 - 3,300

Thai Baht (THB), 3,300 - 8,100 THB, 8,100 - 16,590 THB, and 16,590 - 921,000 THB.8

Respondents distribute their ten marbles based on how likely they think it is that their

future monthly income will lie in each specific bin.9 Hence, we are able to calculate the

individual cumulative distribution function (CDF) for the expected monthly income as

we interpret the number of marbles distributed between the cups as points on their

individual CDFs.

We then fit a subjective income distribution following Attanasio and Augsburg

(2016) and assume a piecewise (i.e., per cup) uniform probability distribution. This

enables us to calculate a specific expected mean and median income, as well as the

standard deviation, for each household.

Table 3.1: Probabilities Assigned to Sections of the Income Distribution

Observations Minimum Maximum Median Mean S.D.

0-3300 THB 737 0 100 20 32.18 35.1

3301-8100 THB 737 0 100 30 30.71 29.27

8101-16590 737 0 100 20 24.03 28.38

16591-300000 737 0 100 0 13.08 24.08

Respondents allocate the number of marbles to the cups as a function of their under-

lying subjective probability to earn income in the specific income range. The average

distribution of marbles per cup, i.e., the average implied probabilities to earn income in

the respective income quartile is shown in Table 3.1. Additionally, Figure 3.4 presents

the probability density function of expected income in our sample. The average re-

spondent’s expected income distribution is skewed to the right; that is, on average,

8 The range of the last bin is very broad. Compared to the maximum monthly income respondents
state, we find that only two respondents expect an income as high as 921,000 THB. All other
maximum income guesses range between 0 - 300,000 THB. In order to avoid artificially high expected
median incomes, we restrict the range of the last bin in our calculation of expected median income
to a maximum of 300,000 THB.

9 The enumerator places four cups in front of them, each labelled with a different income range and
makes sure that all marbles are allocated at the end of the exercise.
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respondents believe it is more probable that their average monthly future income is in

the lower cups.

Figure 3.4: Probability Density Function of Expected Income

0
20

40
60

80
10

0
PD

F 
- P

ie
ce

w
is

e 
U

ni
fo

rm
 D

is
tri

bu
tio

n

0 - 3300 THB 3300 - 8100 THB
8100 - 16590 THB 16590 - 300000 THB

We also ensure that the elicited expected income is not completely at odds with the

actual income process. As measure for the income process, we use the realized income

in 2016 and a measure averaging the self-reported income in a very bad and a very

good month. Correlations between these and our expected income measure are always

statistically significant and range between 0.27 and 0.33, which is encouragingly high

given that the correlation between actual income in 2016 and 2017 is 0.48. Furthermore,

as Attanasio (2009) proposes, we check how the subjective expected median income co-

varies with household characteristics, particularly with the composition, education, and

realized income (results available upon request). Beyond the already stated relationship

with income, household total education is significantly, positively related to the expected

median income. A little ambiguous is the correlation to household composition: While

a larger number of elders in the household is associated with lower expected income

(albeit not significantly), more workers in the household also seem to decrease it.10

10 Reflecting on this last result, we assume that households with more working members are, in general,
poorer and have less stable incomes. There is a tendency in Thailand to abolish multi-generational
households for small family homes, which is, however, only possible if income is high enough and
stable.
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3.2.3.2 Defining Positive Income Expectations

We develop a new kind of positive income expectation measure that is based on the

expected future monthly income and the current income. To derive a quantitative income

forecast (Quant. IF), we first calculate the percentage change between actual monthly

income generated in t and future expected monthly income in t + 1, which is elicited

by the procedure explained in this Section. Specifically, t refers to the year 2017, for

which we have actual income data. Consequently, t + 1 considers income expectations

for 2018.

Quantitative Income Forecast (Quant. IF ) =
Et(Inci,t+1)− Inci,t

Inci,t
× 100 (3.1)

In a second step, we divide the quantitative income forecast into quintiles such that

our outcome measure allows for five categories ranging from a very negative, negative,

mildly negative income forecast, via a neutral income forecast to a positive quantitative

income forecast. Thus, the negative (positive) forecasts capture households that expect

relatively less (more) future monthly income as compared to their actual earned income

in the current year. Each quintile enters the regression via a dummy variable where

households with a mildly negative quantitative income forecast (i.e., respondents that

range in the third quintile) serve as the omitted group.

In general, respondents are rather pessimistic with regard to their future income.

The distribution of changes in expected future income ranges from -98.6% to 19528.6%

whereas the maximum is a clear outlier, which also drives the average increase of ex-

pected future income of about 35%. If we exclude this household the average shrinks

to 6.9%.11 The median household expects a 51% decrease of future income relative to

actual income. Thus, the distribution is skewed to the right. In total, 75% of the sample

expect their future income to be lower than the one in the year of the survey. This ex-

plains why three of the quintiles clearly range in the negative scope of the distribution

and are thus coined “negative income forecast.” Only the highest quintile is composed

of households that have a clearly positive outlook.12 The negative outlook on future

income may be explained by two developments: First, respondents may fear further

political turmoil following the 2014 military coup. Second, the negative outlook may be

due to the persistent, regional, economic inequality. People from north eastern Thai-

11 The corresponding respondent has a very low income in 2017, but - in the cup game - used all ten
balls for the highest income range. We suspect the respondent had not fully grasped the elicitation
game.

12 Variables that covary with each respective forecast group can be found in the Online Appendix.
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land still earn substantially less than people from other regions and, thus, might feel

disadvantaged throughout (Lao et al., 2019). According to the World Bank, inequality

in Thailand has increased between 2015 and 2017, despite overall economic growth in

the country (World Bank, 2019).

While we cannot formally test accuracy of expectations with our subjective expected

income data,13 we assume that a high and positive relative difference between expected

income in 2018 and realized income in 2017 is partly due to respondents being too

optimistic regarding what they will earn in the future. This assumption is based on

studies finding that expectations about various future outcomes may tend toward being

positively biased (see for example Zinman, 2015). Furthermore, considering the median

household’s negative expectation on future monthly income, we are confident that we

capture very optimistic households with regard to income development in the highest

quintile of the distribution.

We also account for perceived income uncertainty in our analysis. In addition to

asking respondents how they think that their income will develop over the next 12

months, we ask how certain they are that this income development will truly become

reality. Being potentially too certain about future realizations of stochastic processes

can be a form of biased expectation called “overprecision” (Moore and Healy, 2008).

Figure 3.5 provides a graphic overview of the results on our measure for perceived

income certainty: 55.56% of respondents are at least somewhat certain about their

income development and 28.44% are very certain. The survey took place during the

harvest season, so that respondents might have an idea about the harvest outcome and,

therefore, perceive their expected future income as rather certain or they truly suffer

from overprecision.

13 For example, because we lack data about realized income in 2018, the year after we asked for expected
income, and we do not know (yet) about shocks households endured during that time.
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Figure 3.5: Income Certainty
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Last, we derive a measure of expectation accuracy following Souleles (2004) and Hyyti-

nen and Putkuri (2018). It is based on a coarser assessment of a household’s future

income. We can actually determine its accuracy, which is why we call this measure the

qualitative forecast error. The derivation and estimation results are found in Appendix

B2.

3.2.4 Over-indebtedness Indicators

There is no consensus regarding a single set of indicators measuring indebtedness pre-

cisely, even less so for over-indebtedness.14 In general, all measures share economic,

social, temporal, and psychological dimensions such as that the amount of debt exceeds

income over a medium- to long-term time horizon and the household is not able to

fulfill its debt commitments without increasing its income or lowering its standard of

living, which might lead to stress and worry (D’Alessio and Iezzi, 2013). Furthermore,

so-called objective debt measures relate to the household’s debt service capacity, sub-

jective measures rather emphasize the psychological consequences of being indebted

(Keese, 2012).

Based on the existing literature, we decide to construct two measures of over-

indebtedness. The first index captures different dimensions of being “objectively” over-

indebted (based on best practices from the literature) while the second index rather

refers to “subjectively” felt factors related to financial distress.

14 Among others, D’Alessio and Iezzi (2013) provide a summary on different indebtedness indicators,
their usage, and possible drawbacks.
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Objective Over-Indebtedness Index The objective over-indebtedness measure is an

aggregated and standardized index that combines four indicators. We include the fol-

lowing components in the index: an indicator variable if the debt service to income ratio

(DSR) is greater than 0.4, an indicator variable if the overall remaining debt service to

income ratio exceeds 0.4, an indicator for if the household holds more than two loans at

the same time, and one indicator for if the household paid late or defaulted on a loan

in the last 12 months. Each component is well established in the literature (see, for ex-

ample D’Alessio and Iezzi, 2013). Among these variables, the DSR is widely recognized

as standard measure to capture indebtedness. The threshold we set for the DSR to

indicate over-indebtedness is based on considerations from the literature where a range

between 0.3 and 0.5 is used (Chichaibelu and Waibel, 2017; D’Alessio and Iezzi, 2013).

In constructing the objective over-indebtedness index we follow Kling et al. (2007). We

explain how the index and its components are derived in the Online Appendix. When

deriving our debt measures, we include all types of loans that households report. Those

can be formal or informal loans, as well as loans taken from friends and family members.

During the interview, respondents were highly encouraged to report all loans regardless

of the source. Hence, we are confident that we capture a household’s true debt level.

Subjective Over-Indebtedness Index While objective debt indicators provide nu-

merically accurate debt measures, they are sometimes criticized for failing to account

either for the reasons why households overborrow or for the household’s undisclosed

ability to pay back debt. Therefore, we also include subjective, “respondent driven”

over-indebtedness measures in our analysis. As before, we derive a standardized index

aggregating different indicators of subjective over-indebtedness. The indicators include

an assessment identifying if the household feels it has too much debt, if it has difficulties

paying debt off, and the so-called “sacrifice index.”15 The index and its components are

explained in detail in the Online Appendix. Schicks (2013) prefers to use subjective

over objective debt measures in her work analyzing over-indebtedness from a customer-

protection point of view in microfinance. D’Alessio and Iezzi (2013) also rely heavily on

a subjective measure to study over-indebtedness in Italy. In line with Keese (2012) and

Lusardi and Tufano (2015), we argue that subjective measures describe a situation of

financial distress for the respective households but are, naturally, highly subjective to

the respondent such that these measures should not be used without considering ob-

jective indicators as well. For all indices derived, higher scores point at a higher value

of accumulated debt.

15 We closely follow Schicks (2013) in constructing the sacrifice index.
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Table 3.2 depicts the summary statistics of the objective and subjective over-indebtedness

indices. The objective index ranges from -1 to 3 with higher values indicating a more

severe level of over-indebtedness. While the average DSR lies at 0.23, about 18% of the

households have a DSR that is higher than 0.4. More strikingly, about 23% of our sam-

ple households have more than two loans. The range of the subjective index is between

-2 and 3, again oriented in a way that higher numbers point to higher indebtedness. On

average, households state that they have the “right amount of debt” (Mean = -0.02 for

the debt position variable) and that they have no difficulties paying off debt. However,

the average household admits to have made at least some sacrifices regarding house-

hold needs due to lack of money as the average value is -0.08 and a household with no

sacrifices would be found at the lowest end of the sacrifice index distribution.

Furthermore, Table B.1 presents correlations between all our debt indicators. Nat-

urally, the objective and subjective indices are significantly correlated with their re-

spective sub-indicators. However, our objective and subjective measures also correlate

significantly with each other. This is encouraging, since it rebuts criticism with respect

to objective over-indebtedness measures neglecting important dimensions of financial

distress.
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Table 3.2: Summary Statistics - Over-Indebtedness Variables

Mean S.D. Min Max Observ.

Objective Index 0.00 0.99 -1 3 688

DSR > 0.4 (=1) 0.18 0.39 0 1 688

Holds > 2 Loans (=1) 0.23 0.42 0 1 688

RDSR > 0.4 (=1) 0.40 0.49 0 1 688

Paid Late/Default (=1) 0.15 0.36 0 1 685

Subjective Index -0.02 0.98 -1 4 688

Debt Position -0.02 0.86 -1 1 688

Diff. Paying Debt (=1) 0.06 0.25 0 1 686

Sacrifice Index -0.08 1.19 -2 4 688

Note: The debt index variables are standardized. The components of the indices are given in non-standardized real

terms.

3.3 Survey Results

In the following, we relate the quantitative income forecast to the over-indebtedness

indices by running OLS regressions, estimating correlations between the respective vari-

ables.

3.3.1 Estimation Strategy

The regressions we run take the following form:

Over-Indebtedness Indexi = β0 + β1Quant. IFi +X
′

iβ2 + εi (3.2)

The dependent variable Over-Indebtedness Indexi represents the debt measures

we apply to mirror financial distress of the household. It contains either the objective

over-indebtedness index,16 or the subjective over-indebtedness index.17 The main vari-

ables of interests are captured in Quant. IFi. It comprises the income forecast groups

(quantitative income forecast) we derived in Section 3.2.3, where the mildly negative

16 Standardized average of a dummy equaling one if the debt service to income ratio is greater than 0.4,
a dummy equaling one if the remaining debt to income ratio is greater than 0.4, a dummy regarding
whether the household paid late or defaulted on a loan, and a dummy equaling one if the household
has more than two loans.

17 Standardized average of the sacrifice index, answers to questions on debt position and whether the
household has difficulties paying off debt.



Chapter 3 50

forecast group serves as reference group. We cluster our standard errors at the district

level.18

The vector Xi controls for household and respondent characteristics that are likely

to influence household over-indebtedness: dummies for farming, self-employment, and

wage employment, monthly household income in 2016 and 2017, the number of chil-

dren between the age of 0-6, 7-10, and 11-16 years, the number of elders and working

members, total household education (sum of all educational levels in the hh), age and

age squared of the respondent, and respondent’s financial literacy score. The vector

also captures the monetary loss from past shocks. We use detailed information from

2016 and 2017 about monetary losses directly related to a shock. We differentiate be-

tween losses from farming related shocks, environmental shocks, economic shocks, crime

shocks, and other shocks.

3.3.2 Main Results

To begin with, we relate the quantitative income forecast groups to each over-indebtedness

index (OI-Index). In a second step, we add the aforementioned control variables to our

regression as the indices depend on other respondent and household specific charac-

teristics as well. Tables 3.3 and 3.4 provide results for the objective and subjective

OI-Indices. The tables show results for the four income forecast groups as well as for

the shock loss control variables. Tables presenting results for all covariates included in

the regression analysis are presented in the Online Appendix. The first column in each

table represents the standardized and averaged index whereas the subsequent columns

depict results for the single non-standardized components of the indices.

Objective Over-Indebtedness We find a strong, statistically significant, relationship

between positive income forecasts and the objective OI-Index. Households with high

future income expectations compared to their actual income are more likely to be over-

indebted. The over-indebtedness index increases by 0.29 - 0.31 points for positive income

expectations (columns (1) and (2), Table 3.3). This relationship is mainly driven by the

remaining debt ratio and the dummy on if the household paid late or defaulted on a

loan. The debt service to income ratio is only marginally significantly related to positive

expectations and having more than two loans shows no relation at all. The RDSR

increases by 18.7 - 20.7 percentage points (columns (5) and (6)) and the probability

18 Cameron and Miller (2015) advise to cluster at least at the primary sampling unit, which is the
district level in our case. Since this gives us a small number of clusters, as a robustness check, we
use wild cluster bootstrap. This does not change our main findings.
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that a household paid late or defaulted on a loan increases by 10.9 - 12.4 percentage

points for households whose expected future median income is greater than the current

income (columns (7) and (8)). Furthermore, the coefficient of the dummy indicating a

DSR greater than 0.4 increases by 8.4 - 9.8 percentage points (columns (3) and (4)) for

those households.

With regard to the other income forecast groups, we do not find consistent results.

While the probability of a household defaulting or paying late slightly increases for

households with a negative forecast, overall, results for the non-positive income forecast

groups are insignificant, if not showing a negative sign. A significant and robust link

to over-indebtedness can only be found for households with positive future income

expectations.
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Table 3.3: Objective Over-Indebtedness

Obj. Index DSR > 0.4 RDSR > 0.4 Paid Late/Default > 2 Loans

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Very Negative −0.125 −0.017 −0.097∗ −0.022 −0.073 0.011 0.017 −0.015 0.001 0.010

(0.151) (0.143) (0.047) (0.050) (0.081) (0.079) (0.033) (0.036) (0.059) (0.060)

Negative 0.050 0.058 −0.067 −0.054 0.075 0.100∗ 0.081∗∗ 0.066∗∗ −0.029 −0.037

(0.134) (0.132) (0.045) (0.048) (0.058) (0.057) (0.032) (0.029) (0.057) (0.058)

Neutral 0.153 0.135 0.025 0.002 0.079 0.067 0.074 0.095∗ −0.002 −0.010

(0.153) (0.168) (0.050) (0.060) (0.058) (0.064) (0.045) (0.051) (0.061) (0.063)

Positive 0.289∗∗ 0.333∗∗ 0.098∗∗ 0.087∗ 0.187∗∗ 0.210∗∗∗ 0.109∗∗∗ 0.133∗∗∗ −0.054 −0.037

(0.134) (0.136) (0.042) (0.047) (0.072) (0.069) (0.038) (0.041) (0.055) (0.060)

Farming Shocks −0.000 −0.000 0.000 −0.000 0.000

(0.002) (0.000) (0.001) (0.001) (0.001)

Environ. Shocks 0.005∗∗∗ −0.000 0.002∗∗∗ 0.002∗∗ 0.002∗∗∗

(0.001) (0.001) (0.001) (0.001) (0.001)

Economic Shocks 0.003∗∗∗ 0.000 0.002∗∗∗ 0.001∗ 0.000

(0.001) (0.000) (0.001) (0.001) (0.001)

Crime Shocks −0.016∗ −0.004∗ −0.013∗∗∗ −0.002 −0.001

(0.009) (0.002) (0.003) (0.004) (0.004)

Other Shocks −0.000 −0.000 −0.000 0.000∗∗ −0.000

(0.000) (0.000) (0.000) (0.000) (0.000)

Constant −0.073 −1.425∗∗ 0.189∗∗∗ 0.119 0.343∗∗∗−0.617∗∗ 0.099∗∗∗ −0.016 0.245∗∗∗−0.291

(0.144) (0.576) (0.048) (0.296) (0.072) (0.286) (0.019) (0.243) (0.063) (0.280)

Controls No Yes No Yes No Yes No Yes No Yes

Observations 688 676 688 676 688 676 685 673 688 676

Adj. R-squared 0.014 0.099 0.025 0.046 0.025 0.125 0.007 0.044 -0.003 0.053

*** p<0.01, ** p<0.05, * p<0.1

Note: Clustered standard errors in parentheses. The variables very negative, negative, neutral, and positive represent the

income forecast groups. Households with a mildly negative income forecast serve as the reference group. Additional con-

trols: age, age squared, children (0-6), children (7-10), children (11-16), financial literacy score, main income farming,

main income employed, main income self-employed, main income remittances, monthly household income 2017, no. of

elders in hh, no. of working members in hh, risk preference, self-control, social status, total hh education.

We account for monetary losses from various shock events, because a shock might

influence both the level of over-indebtedness and income expectations at the same time

(i.e., an expectation to return to pre-shock-level income). The results show that higher

losses are associated with higher debt levels. However, while we find statistically signifi-

cant effects, these effects are economically rather small. For example, if an environmental

shock loss increases by 1000 Thai Baht (ca. 26AC in 2017), the objective OI-Index in-

creases by 0.05 points. Even when accounting for monetary losses induced by shocks,

the relationship between positive income forecasts and over-indebtedness remains sig-

nificant, confirming a robust relationship between the two. Concerning additional co-

variates, household income and the perceived social status are significantly negatively
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related to household over-indebtedness. Age is positively and age squared negatively

significant, suggesting a hump-shaped pattern in line with life-cycle-income-smoothing.

Furthermore, over-indebtedness remains largely unaffected by household composition

and education.

Subjective Over-Indebtedness Our analysis of subjective over-indebtedness reveals

that the relationship to the positive income forecast group is less pronounced than

for the objective over-indebtedness index but still significant for the index and all its

components.
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Table 3.4: Subjective Over-Indebtedness

. Subj. Index Debt Position Diff. Pay off Debt Sacrifice Index

(1) (2) (3) (4) (5) (6) (7) (8)

Very Negative 0.182 0.215∗ 0.040 0.036 0.065∗∗ 0.058 0.118 0.245∗∗

(0.112) (0.122) (0.114) (0.110) (0.029) (0.039) (0.106) (0.103)

Negative 0.157 0.150 0.096 0.046 0.037 0.033 0.108 0.178

(0.135) (0.110) (0.111) (0.109) (0.025) (0.026) (0.174) (0.154)

Neutral −0.007 0.048 −0.021 0.008 0.022 0.031 −0.098 −0.035

(0.104) (0.092) (0.096) (0.094) (0.021) (0.019) (0.128) (0.095)

Positive 0.144 0.258∗∗ 0.113 0.181∗∗ 0.024 0.041∗ 0.113 0.245∗

(0.086) (0.101) (0.071) (0.084) (0.021) (0.023) (0.120) (0.122)

Farming Shocks −0.001 0.002 −0.000∗ −0.002

(0.001) (0.001) (0.000) (0.002)

Environmental Shocks 0.007∗∗∗ 0.003∗∗∗ 0.002∗∗ 0.003

(0.001) (0.001) (0.001) (0.002)

Economic Shocks 0.001 0.003∗∗ −0.000 −0.000

(0.001) (0.001) (0.000) (0.002)

Crime Shocks 0.000 −0.006 0.003 −0.005

(0.014) (0.007) (0.003) (0.014)

Other Shocks 0.002∗∗∗ 0.000 0.001∗∗∗ 0.002∗∗∗

(0.001) (0.000) (0.000) (0.000)

Constant −0.115 −0.482 −0.064 −1.480∗∗∗ 0.035∗∗ 0.140 −0.131 0.344

(0.082) (0.593) (0.081) (0.514) (0.016) (0.155) (0.111) (0.591)

Controls No Yes No Yes No Yes No Yes

Observations 688 676 688 676 686 674 688 676

Adj. R-squared 0.001 0.133 -0.002 0.094 0.002 0.073 -0.001 0.119

*** p<0.01, ** p<0.05, * p<0.1

Note: Clustered standard errors in parentheses. The variables very negative, negative, neutral, and pos-

itive represent the income forecast groups. Households with a mildly negative income forecast serve as

the reference group. Households with a mildly negative income forecast serve as the reference group.

Additional controls: age, age squared, children (0-6), children (7-10), children (11-16), financial lit-

eracy score, main income farming, main income employed, main income self-employed, main income

remittances, monthly household income 2017, no. of elders in hh, no. of working members in hh, risk

preference, self-control, social status, total hh education.

As shown in Appendix 5, the qualitative forecast error is more strongly related to

the subjective OI-Index. This hints at two possible explanations: One, the subjective

OI-Index is rather a concept of perceived financial distress and, thus, more related to

the “more subjective” qualitative forecast error. Two, financial distress is not only de-

termined by the household’s true debt situation but more so by its perception. When
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analyzing the control variables, we find that risk seeking and the perceived social sta-

tus of the household are highly significantly related to the subjective OI-Index, much

more so than other control variables. Delving deeper into respondent characteristics,

we run regressions including the Big Five measures,19 (results are presented in the

Online Appendix). For respondents who score high on openness and neuroticism, the

subjective OI-Index and its components are larger than for those who score low. Eventu-

ally, shocks are similarly related to subjective over-indebtedness as they are to objective

over-indebtedness: Households experiencing an environmental shock have a significantly

higher perceived debt level.

Income Certainty In an additional exercise, we investigate whether being poten-

tially too certain about the future income development is related to over-indebtedness.

As shown in Tables 3.5 and 3.6, there is no relation between certainty about future in-

come and subjective over-indebtedness, although we find that higher income certainty

is related to objective over-indebtedness. If a respondent is very certain about the de-

velopment of future household income, this is linked to an augmented over-indebtedness

index. This result is mainly driven by the debt to service ratio and by having more than

two loans (columns (2) and (5), Table 3.5). Thus, certainty is likely to constitute a part

of the positive forecast we derived.

19 The Big Five comprise the following personality traits: openness, conscientiousness, extraversion,
agreeableness, and neuroticism. More details on their construction are found in the Online Appendix.
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Table 3.5: Certainty Measure - Objective Over-Indebtedness

. Obj. Index DSR > 0.4 RDSR > 0.4 Paid Late > 2 Loans

(1) (2) (3) (4) (5)

Very Negative −0.017 −0.023 0.012 −0.017 0.013

(0.144) (0.050) (0.079) (0.036) (0.061)

Negative 0.047 −0.062 0.104∗ 0.057∗ −0.034

(0.129) (0.044) (0.054) (0.030) (0.057)

Neutral 0.122 −0.002 0.062 0.092∗ −0.013

(0.167) (0.060) (0.064) (0.051) (0.063)

Positive 0.323∗∗ 0.084 0.201∗∗∗ 0.131∗∗∗ −0.037

(0.140) (0.051) (0.070) (0.043) (0.061)

Certainty 0.129∗∗ 0.052∗∗ 0.046∗ −0.008 0.061∗∗

(0.061) (0.022) (0.026) (0.024) (0.022)

Constant −1.564∗∗ 0.074 −0.705∗∗ 0.064 −0.413

(0.552) (0.299) (0.284) (0.268) (0.276)

Controls Yes Yes Yes Yes Yes

Observations 664 664 664 661 664

Adj. R-squared 0.101 0.054 0.125 0.042 0.060

*** p<0.01, ** p<0.05, * p<0.1

Note: Clustered standard errors in parentheses. The variables very negative, negative, neutral, and pos-

itive represent the income forecast groups. Households with a mildly negative income forecast serve as

the reference group. Households with a mildly negative income forecast serve as the reference group.

Additional controls: age, age squared, children (0-6), children (7-10), children (11-16), financial liter-

acy score, loss from crime shocks, loss from economic shocks, loss from environmental shocks, loss from

other shocks, main income farming, main income employed, main income self-employed, main income

remittances, monthly household income 2017, no. of elders in hh, no. of working members in hh, risk

preference, self-control, social status, total hh education.
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Table 3.6: Certainty Measure - Subjective Over-Indebtedness

. Subj. Index Debt Position Diff. Pay off Debt Sacrifice Index

(1) (2) (3) (4)

Very Negative 0.220 0.049 0.057 0.247∗∗

(0.133) (0.117) (0.041) (0.108)

Negative 0.144 0.045 0.032 0.168

(0.109) (0.108) (0.026) (0.150)

Neutral 0.043 0.010 0.030 −0.048

(0.092) (0.095) (0.019) (0.097)

Positive 0.238∗∗ 0.177∗ 0.035 0.227∗

(0.110) (0.098) (0.023) (0.125)

Certainty 0.069 0.092 0.006 0.031

(0.086) (0.066) (0.020) (0.104)

Constant −0.673 −1.802∗∗∗ 0.143 0.273

(0.651) (0.578) (0.165) (0.699)

Controls Yes Yes Yes Yes

Observations 664 664 662 664

Adj. R-squared 0.133 0.098 0.072 0.115

*** p<0.01, ** p<0.05, * p<0.1

Note: Clustered standard errors in parentheses. The variables very negative, negative, neutral, and pos-

itive represent the income forecast groups. Households with a mildly negative income forecast serve as

the reference group. Households with a mildly negative income forecast serve as the reference group.

Additional controls: age, age squared, children (0-6), children (7-10), children (11-16), financial liter-

acy score, loss from crime shocks, loss from economic shocks, loss from environmental shocks, loss from

other shocks, main income farming, main income employed, main income self-employed, main income

remittances, monthly household income 2017, no. of elders in hh, no. of working members in hh, risk

preference, self-control, social status, total hh education.

Overall, we conclude, (i) that there is indeed a significant positive and robust re-

lationship between positive quantitative income forecasts and objective as well as sub-

jective over-indebtedness; (ii) We are also reassured that, although correlated to each

other, subjective and objective over-indebtedness indicators measure different dimen-

sions of indebtedness. The “hard” objective OI-Index is much stronger related to posi-

tive income forecasts than the subjective OI-Index; (iii) Certainty about the household’s

income development is also related to over-indebtedness, primarily to objective over-

indebtedness.
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3.3.3 Robustness

Excluding Possibly Confounding Observations. Before eliciting the subjective ex-

pected income of respondents, we ask two questions testing the understanding of the

concept of probability. We re-run the analysis including only those respondents who do

not violate the laws of probability and examine whether our main results hold. Results

are presented in Tables B.2 and B.3 in the Appendix. The coefficients for this sub-

sample stay highly significant and almost all coefficients increase in size emphasizing

the link between a positive income forecast and objective over-indebtedness.

In order to verify that respondents have an actual understanding of their household’s

finances, we again re-run the regressions, including only those individuals who are in

charge of the household’s financial decisions either alone or together with someone else

(see Appendix Tables B.4 and B.5). Overall, the results stay virtually unchanged with

regard to the significance of our coefficients of interest. Point estimates change slightly.

Interacting the Income Forecast with Personality Traits. We do not claim to show a

causal effect because - among other reasons - we acknowledge that the relation between

over-indebtedness and positive income expectations may also work in the reverse. For

example, if people are indebted, they might have a great bias regarding future expected

income as they plan to work harder in the future to pay down their debt. We expect such

people to exhibit a high level of conscientiousness, the personality marker describing

achievement oriented (McClelland et al., 1953), hard-working, effective, and dutiful

characters (Barrick and Mount, 1991). Hence, we interact our income forecast measure

with this character trait, expecting to find significant effects for conscientious people.

Results for the aggregated indices as dependent variables are presented in Appendix

Table B.6. The interaction is not significant for the positive income forecast and any of

the OI-Indices. This counteracts the assumption that the achieving respondents with

distorted expectations drive the relationship between our positive income forecast and

debt status.

Exchanging the Forecast Groups with One Single Indicator. We apply a coarser indi-

cator measuring positive future income expectations to counteract the possible criticism

that our results hinge on the choice of the reference category with respect to our in-

come forecast groups. In lieu of the five quantitative income forecast groups, we define

an indicator variable to turn one if the relative difference between expected future

and actual income is greater than zero. Results for the objective and subjective over-
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indebtedness indices as well as for the certainty measure are presented in Appendix

Tables B.7, B.8, B.9, and B.10. Probably due to the broader category that we use as

the main explanatory variable, point estimates gain in significance, but are numerically

a little smaller when compared to the positive income forecast group. This actually

supports our finding that it is exactly those respondents with high expectations about

their future income who are also relatively more indebted. Generally, this robustness

check confirms that our results remain significant and similar in size with respect to

the objective and subjective over-indebtedness indicators when using a broader income

expectation indicator. Hence, it is not the choice of the reference group that drives our

results.20

3.4 The Experiment

The preceding section shows that high expectations and over-indebtedness are strongly

related to each other in our rural Thai population, even when controlling for important

socioeconomic characteristics and shocks. However, methodologically, the implemented

regression analysis only represents correlations. Furthermore, we are specifically inter-

ested whether overconfidence, a systematic behavioural bias that might be responsible

for having too high expectations in the first place, can actually cause overspending and

overborrowing. In what follows, we analyse if overconfidence is one potential cause why

households in our sample spend more than they can actually afford.

Theoretically, upward biased expectations can arise for two reasons; either an indi-

vidual is overly optimistic or overly confident. We follow Heger and Papageorge (2018)

in defining overoptimism as the tendency to overestimate the probability of preferred

outcomes and overconfidence as the tendency to overestimate one’s own performance.

We acknowledge that in our rural, agricultural setting, overoptimism might occur as fre-

quently if not more than overconfidence. Since agricultural activities and the exposure

to weather shocks are rather homogeneous in our sample and less driven by personal

abilities, a more positive view on the future might originate from an optimistic view

on the world in general. Still, there is scope for overconfidence as the adoption of new

agricultural technologies and crops, the working pace (that can influence agricultural

output) and the bargaining power in selling crops is strongly dependent on beliefs about

individual performance and might lead to positive income expectations as well. For our

experiment, we concentrate on overconfidence because numerous studies show that over-

20 Additionally, we also used different reference groups in the first place and our regression results
remain similar. Results are available upon request.
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confidence is related to important life and financial decisions, while overoptimism is less

so.21

3.4.1 Experimental Design

As final part of the survey, we play a “market game” in which respondents can buy

different kinds of goods for a discounted price with money they earn in the experiment.

They can buy packs of coffee, chips, dried mango, or detergent for 10 THB (ca. 0.25AC)

each instead of the 20 THB list price.22 Each participant receives an endowment of 40

THB. Additional money can be earned by answering questions in a trivia game. Earnings

depend on how many questions the participant answers correctly in comparison to the

other participants. We rank them from 1-10, where rank ten corresponds to answering

the most questions correctly and rank one to answering the least number of questions

correctly.23 People ranked 1-4 do not earn anything on top of their endowment, those

ranked 5-6 earn 10 THB, those ranked 7-8 20 THB, and those ranked 9-10 earn 40

THB additionally. Thus, participants can earn up to 80 THB and can buy at most

eight goods.

We make expectations a crucial factor in the game by requiring participants to

decide how much and what to buy before they take the pay-off relevant quiz, i.e.,

before they know their final payoff. We divide participants in two treatment groups;

one group faces a “hard” quiz and the other one an “easy” trivia quiz. To convey the

difficulty of each quiz and to exogenously vary expectations about relative performance,

participants do a test quiz with seven questions upfront where difficulty again depends

on treatment. Based on the test quiz, participants infer how good they will be in the

pay-off relevant main quiz and form expectations about the performance of the others

21 For example, Camerer and Lovallo (1999), who experimentally test the effect of overconfidence on
entrepreneurial decision-making (this relationship is a well-researched field of study), conclude that
excess entry in a market game is strongly related to overconfidence and not to overoptimism.

22 At least for the bag of chips, it is common knowledge that they usually cost 20 THB as, for a long
time, they had the price printed on their front. To further convince participants that the products
are truly discounted, we attached “20 THB” price tags to each product.

23 In the field, participants from the first villages were ranked against participants from our pilot villages
and our interviewers who also took the quizzes. For later villages, we replaced our interviewer data
with data from the previous villages and told participants that they are ranked against ten persons
who live in a village similar to theirs. For the final analysis, we use all the observations to create a
ranking. In each treatment, we have two accumulation points in the number of correctly answered
questions that are next to each other and around the mean. We set these two points as rank five and
six. Each one point deviation in correctly answered question then constitutes a one point deviation
in rank (e.g., if rank five means nine questions answered correctly, rank four means eight questions
answered correctly). Since there are more questions than possible ranks, we have some bunching of
correctly answered questions around rank one and rank ten, the boundaries of the ranking.
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and, thereby, their relative rank. They are ranked within each treatment group and they

are told that everybody they are ranked against took the exact the same quiz. With this

design, we can exploit the so-called hard-easy gap analogous to Dargnies et al. (2019)

and very similar to Grohmann et al. (2019). Much research finds that people tend to

overplace themselves in easy tasks and to underplace themselves in hard tasks (for

example Merkle and Weber, 2011; Hartwig and Dunlosky, 2014; Benoit et al., 2015).

Over-(under-)placing is a form of over-(under-)confidence in which individuals over-

(under-)estimate their relative performance in comparison to others. Thus, by assigning

participants to two different treatments, we exogenously vary their expectations through

varying self-confidence (see Figure 3.6).24 We subsequently measure confidence as the

difference between expected rank and actual rank:

confidence = rankexp − rankact (3.3)

Figure 3.6: Experimental Flow

1. Round:

Test quiz

Prime self confidence

Consumption

decision using

expectations

2. Round:

Payoff

relevant quiz

Consumption

decision

realized

Except for the difference in difficulty, the procedure is the same for every partici-

pant: If participants agree to play the game, the interviewer prepares the set-up and

starts reading the instructions. The instructions include comprehension questions to

test whether participants understand how their rank is determined and how much they

can earn. If participants do not answer these questions correctly, the interviewer does

not continue with the instructions.25

24 The exogenous variation is one reason why we do not include this measure for self-confidence in
our survey regressions as a measure for expectation bias. Another reason is that self-confidence is
domain dependent.

25 Still, there are participants who had serious difficulties in understanding the game such that we
exclude them from the main analysis
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After they have finished the instructions, the participants start answering the test quiz,

which has seven trivia questions. They have five minutes to answer all the questions.

For each question, four possible answers are given. When the time is up or participants

have finished answering, they receive a decision sheet. On the decision sheet, they first

have to write down the rank and the earnings they expect to reach in the following main

quiz. Then, they must indicate their buying decision based on their expected earnings.

Afterwards, participants continue with the main quiz where they have to answer 15

questions in ten minutes. Following the quiz, there are three debriefing questions in-

cluding a question on the expected rank after the second quiz has actually taken place

(such that we can check for belief updating). Finally, the interviewer calculates the rank

and earnings, then hands over the products and money, if applicable.

In most cases, participants could read, write, and answer the quizzes on their own.

Sometimes, people, in particular the elderly, needed assistance in reading and writing,

which was provided by the interviewer. The supplemental material for the experiment is

found in the Online Appendix in English (for the experiment everything was translated

to Thai).

Rational Decisions

If participants want to buy more than they can afford, including their endowment, their

consumption has to be restricted. They receive at most as many goods as they can buy

with their earnings and nothing beyond that amount. Participants are aware of this

fact.

We implicitly assume that expectations influence buying decisions. If this does not

hold, the aforementioned design feature seriously distorts our results as follows. If it

was the case that “rational” participants strictly prefer goods over money because, for

example, they are cheaper than list price and can be stockpiled, expectations would

become meaningless for the consumption decision. Indicating to buy eight goods is

weakly dominating any other number of goods for this kind of participants, since they

clearly prefer goods over money independent of the budget.26

Eventually about 4% of our participants decided to buy eight goods even though they

expect to earn less. An additional 3% wanted to buy more than they expected to earn

but less than eight goods. In our main analysis, these observations are excluded because

i) we already know that expectations do not impact consumption in this setting for them

26 If the participant expects less than 80 THB, there is a potential loss in indicating to buy less than
eight goods because the prediction might be underconfident. However, given our setting, there is no
loss if she indicates buying eight goods but actual earnings are less than 80 THB.
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and ii) they could artificially inflate our results. We present additional analyses on this

sub-sample in the Appendix Section “The Rationals” (B.3.4) and discuss whether they

truly acted in a rational way or rather had difficulties understanding the game.

For the other 93%, we still assume that respondents generally prefer a bundle of

products and cash. The exact composition depends on individual preferences but also

expected earnings. Thus, being overconfident (or underconfident) creates a distortion

in utility. Following these reflections, we derive the following hypotheses:

Hypothesis 1: On average, individuals in the easy treatment will buy more than in-

dividuals in the hard treatment.

Hypothesis 2: A great level of overconfidence will lead to excessive spending.

Hypothesis 1 is implied by the finding on the hard-easy gap. Hypothesis 2 follows

from the fact that we define respondents to be overconfident if their expected rank is

higher than their actual rank, which implies that they earn less than expected. Since

we cannot allow respondents to pay from personal money if experimental money is

insufficient, restricting consumption in some cases is necessary. Therefore, people can-

not accumulate debt. Still, we try to mimic real life financial decision making with

this design, especially the fact that sometimes (and optimally) consumption decisions

must be made before income is realized. In that sense, participants still have to take a

loan, although only for a short time and without serious consequences, if they want to

consume. Further, if they have biased beliefs, they might end up with a consumption

bundle that is sub-optimal, thus overborrowing. The process can also be seen as a form

of household budgeting; however, we prefer the term overborrowing as participants have

to plan with money they do not have in the moment of planning. In real life those who

overborrow accumulate more debt than optimal, perhaps more than they are able to

repay.

3.4.2 Experimental Results

Overall, 604 respondents participated in the game. Since participation is self-selected,

participants and non-participants are compared in Table B.3.1 in the Appendix. As

can be seen, participants and non-participants differ significantly in some variables.27

In all these variables, the difference is in the expected direction: female, older, less

occupied, less educated, financial illiterate and less numerate, and more financial risk

27 A complete list of all variables and their explanation is provided in the Online Appendix.
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averse respondents are less likely to participate in the game. Several of these variables are

significantly correlated with each other. Running a simple regression on the likelihood

to participate, we find that some of these variables are insignificant and that the time

of day is one of the strongest predictors of game participation (see B.3.2). Since the

time of day at which we visited households for the interviews is mostly exogenous,28

self-selection into the game is less pronounced than initially expected.

Out of the 604, seven observations are excluded because either treatments for them

are mixed up, personal information is missing, or a third person helped them answer the

questions. We exclude 44 observations that are also excluded from the survey regression

analysis because they are outliers in income or the debt service to income ratio (see

Section 3.2.1).29 Additionally, 84 observations are excluded because it can be inferred

from the data that comprehension was insufficient30 or because they want to buy more

than they expect to earn in total (see previous Sub-Section on these special cases).

Those 84 cases differ only in their number of children between 7-10 years.

In Table 3.7 characteristics of the remaining 471 participants are compared across

treatments. The significantly unequal number of participants per treatment is due to

fact that we slightly over-sampled the easy treatment. Results from previous studies

suggest that the effect of easy tasks on self-confidence is generally stronger than the

effect of hard tasks (see for example Dargnies et al., 2019). The characteristics depicted

here might be important for the general level of self-confidence and the willingness to

buy products. Given the sample size and the number of variables analysed, randomizing

participants into the treatments worked well; the two groups only significantly differ

with regard to their health status, their monthly household income, and their (objective)

over-indebtedness index. Controlling for these variables leaves our results virtually un-

changed and a f-test on joint orthogonality finds that controls do not jointly determine

the treatment group.

28 We interviewed households according to a schedule we designed together with our interview team
manager, which tried to minimize travel distances for each interview team. Hence, this schedule was
exogenous to individual household characteristics, except for the village that the household resides
in. However, a few houses were empty the first time we visited them and we had to reschedule
another date with the household itself.

29 The results are robust to this exclusion.
30 For example, one participant writes that he expects to earn 30 Baht from the game, which is,

however, not an possible option. Another one wants to buy 35 products although the maximum
affordable number is eight.
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Table 3.7: Descriptive Statistics across Treatments

Full Sample Hard Treatment Easy Treatment Difference

Sex 1.64 1.60 1.67 −0.07

Age 56.16 55.23 56.93 −1.70

Relation to HH Head 1.70 1.69 1.71 −0.02

Marital Status 2.13 2.09 2.16 −0.07

Main Occupation 4.79 4.29 5.20 −0.90

Years of Schooling 5.92 6.08 5.79 0.28

Children (0-6 years) 0.33 0.37 0.29 0.08

Children (7-10 years) 0.26 0.26 0.26 0.01

Numeracy 2.14 2.09 2.19 −0.10

Health Status 1.38 1.32 1.43 −0.11∗∗

BMI 23.58 23.25 23.86 −0.61

Fin. Decision Maker 1.57 1.55 1.59 −0.03

Self Control 20.94 21.19 20.75 0.44

Risk Taking 4.02 3.96 4.07 −0.12

Fin. Risk Taking 4.06 3.99 4.12 −0.13

FL-Score 5.66 5.55 5.75 −0.20

Monthly Inc. 2017 18653.06 20802.79 16893.44 3909.35∗∗

Obj. OI-Index 0.01 −0.09 0.09 −0.18∗∗

Subj. OI-Index −0.04 −0.03 −0.06 0.03

Morning 0.53 0.51 0.54 −0.03

Midday 0.27 0.26 0.28 −0.02

Read Alone 1.44 1.44 1.44 −0.00

Difficulties in Game 1.14 1.15 1.13 0.01

Observations 471 212 259 471

*** p<0.01, ** p<0.05, * p<0.1

Shift in Beliefs

On average, participants answered 9.07 out of 15 trivia questions correctly in the easy

treatment and 5.09 out of 15 in the hard treatment. Thus, it can be assumed that, for

our sample, the easy treatment is truly “easier” than the hard treatment. The average

expected rank in the hard treatment is 6.89 whereas the average expected rank in

the easy treatment is 7.22. In Figure 3.7 the cumulative distribution functions of the

expected ranks for both treatments are plotted. It seems that there is only a small shift

in beliefs, since the distributions are still almost overlapping.31 Indeed, if we compare the

distributions of the “second” expectations that are elicited after respondents actually

31 We focus on the expected rank in our analysis but everything holds analogously for expected earnings.
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took the main quiz, we find a much larger shift (see Appendix Figure B.3.1). Thus,

either our test quizzes are not as hard or easy as the main quizzes and, therefore, the

shift in first beliefs is smaller or participants have such strong beliefs that they only

gradually update their beliefs. Still, the distributions of first beliefs are significantly

different from each other (Kolmogorov-Smirnov one-sided p=0.056; Wilcoxon rank-

sum two-sided p=0.041). The t-test for mean expectations is significant at the 5% level

(one-sided) as well (Figure 3.10).
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Figure 3.7: Cumulative Density Distribution of Expected Rank by Treatment

The difference in self-confidence is larger than the difference in expected rank (see

Figure 3.8). This might be driven by our ranking procedure or by the fact that the

easy quiz is not a perfect shift of the hard quiz with respect to the number of questions

answered correctly. In any case, this suggests that our manipulation via the treatments

to shift the level of beliefs and thereby self-confidence worked.
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Figure 3.8: CDFs of Self-Confidence
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Figure 3.9: Histogram for Self-Confidence

As seen in Figure 3.9, across both treatments, the mean and median respondents

are slightly overconfident (even in the hard treatment). The whole distribution is a

little bit skewed to the left but still resembles a normal distribution. Over 14% of

the sample have perfectly accurate beliefs and have a self-confidence of “0.” Small

deviations from 0 could be considered accurate as well because they could present a

form of Bayesian updating.32 Still, a substantial fraction of participants seems to be

tremendously overconfident.

Buying Decision

We find a significant positive correlation between expected rank (earnings) and the

number of goods participants want to buy. However, there is no significant relation

between the treatment itself and mean desired consumption as presented in Figure

3.11.

32 On this discussion, see Merkle and Weber (2011).
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Figure 3.10: Mean Expected Rank by
Treatment
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Figure 3.11: Mean Consumption by
Treatment

If we run regressions where we can control for the variables that are unbalanced

across treatments, the picture stays the same: the treatment is positively related to the

expected rank, the expected rank is positively related to the desired amount of goods,

but the treatment is not related to the amount of goods (see Table 3.8).

Table 3.8: Consumption Decision

. Exp. Rank No. Goods

(1) (2) (3) (4)

Treatment 0.377∗∗ −0.133 −0.189

(0.175) (0.173) (0.171)

Exp. Rank 0.144∗∗∗ 0.149∗∗∗

(0.046) (0.046)

Controls Yes Yes Yes Yes

Observations 470 470 470 470

*** p<0.01, ** p<0.05, * p<0.1

Note: Robust standard errors in parentheses. Treatment: 0=Hard Quiz, 1=Easy Quiz; A higher ex-

pected rank corresponds to a higher expected performance. Controls: Health Status, Monthly HH in-

come and Objective OI-Index.

A similar pattern emerges if we look explicitly at spending behaviour (see Table 3.9).

We distinguish overborrowing, meaning buying more than actual earnings including

endowment can pay for, from overspending, meaning buying more than actual game

earnings can pay for, but the spending can still be paid with the endowment. The
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expected rank as well as confidence have a significant effect on both variables, but

treatment does not.33

Table 3.9: Overborrowing and Overspending

. Overconfidence Overborrowing Overspending

(1) (2) (3) (4)

Treatment 1.217∗∗∗ 0.010 −0.007 −0.034

(0.284) (0.019) (0.019) (0.045)

Overconfidence 0.014∗∗∗ 0.044∗∗∗

(0.004) (0.007)

Controls Yes Yes Yes Yes

Observations 470 470 470 470

*** p<0.01, ** p<0.05, * p<0.1

Note: Robust standard errors in parentheses. Treatment: 0=Hard Quiz, 1=Easy Quiz; Controls: Health

Status, Monthly HH income and Objective OI-Index.

Summarized, our treatments shifted expectations in hypothesised directions; expec-

tations are positively related to spending behaviour, but the treatment has no impact on

the latter. Therefore, we cannot claim that there is a causal link between expectations

and overborrowing in our experiment.

3.4.3 Confounding Factors

The previous findings are robust to various restrictions. For example, they are not

driven by participants who are very old or have mild comprehension difficulties (we

already excluded those with large difficulties in the main analysis). It is also not the

case that the treatments only affect expected ranks but not expected earnings.34 This

suggests that there are confounding factors or “noise” interfering with our treatments.

We run further analyses to rule out that the treatments affected factors other than

expectations:

Frustration and Gratification. One of the most likely confounds could be that partic-

ipants in the hard treatment feel frustrated because of the difficult questions and want

33 The level of significance is higher not lower when we exclude possibly “rational” participants who
want to buy more than they expect to earn in total.

34 This could happen if there is a piecewise treatment effect (shifting expectations only within the same
earnings category) because earnings are only piecewise increasing in ranks and not equidistant.
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to treat themselves with “shopping.” In contrast, some others might be proud of mas-

tering such a hard quiz and also want to reward themselves. Both motives should lead

to the result that, specifically, participants with extreme expectations behave differently

across treatments. Participants who are frustrated should rank themselves rather low

whereas participants that are proud should rank themselves rather high. Subsequently,

the buying behaviour of participants with the same expected rank across treatments

should be significantly different for the lowest and highest ranks. However, the only

(marginally) significant difference we can detect is for the five participants who ex-

pected to reach rank two: here, participants in the hard treatment want to buy more

than participants in the easy treatment. Excluding these observations does not change

our results. For all other ranks, participants in both treatments exhibit the same spend-

ing pattern. This finding does not favour frustration and gratification as being possible

confounding factors.

Temptation. Another possibility is that participants in the hard treatment are more

susceptible to temptation goods. They have to exercise more cognitive effort, which

decreases their self-control, so-called “ego depletion” (see, for example, Hagger et al.,

2010). Running separate regressions on each product, we find a significantly different

treatment effect only for dried mango. Still, self-control (measured with the scale from

Tangney et al., 2004) and BMI do not have significant effects on buying mango, which

opposes the ego depletion interpretation. We also do not find evidence that frustrated

(more depleted) participants are more likely to buy mango. Furthermore, detergent is

the most popular product and the share of detergent in all goods desired is not different

across treatments, whereas mango is the least popular. Detergent is the one product

we would expect to be least related to self-control issues. Summarized, we do not find

convincing evidence that persons in the hard treatment are more likely to give in to

temptation.

Based on these tests, we argue that we can rule out the most probable factors interfer-

ing with our treatment. We believe that the reason we do not find a treatment effect

on spending and borrowing is that the shift in beliefs was not strong enough to even-

tually be reflected in spending. We find additional evidence for this proposition when

employing IV estimation, where we instrument expected rank with treatment. Several

tests indicate that treatment is a weak instrument for expected rank.
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3.4.4 Behaviour in the Lab and in Real Life

A supplementary result we find worth mentioning is that being over-indebted in “real

life” is actually related to spending behaviour in our experiment (see Table 3.10). Those

respondents who have problems controlling their spending in real life are also those who

spend less carefully in the game. Eventually, we see this as evidence that our experiment,

although highly artificial, still captures aspects of real life behaviour.

Table 3.10: Overborrowing in the Game and in Real Life

. No. Goods Overborrowing Overspending

(1) (2) (3) (4) (5) (6)

Obj. OI-Index −0.000 −0.001 0.050∗∗

(0.077) (0.008) (0.021)

Subj. OI-Index 0.105 −0.005 0.043∗

(0.078) (0.008) (0.022)

Controls Yes Yes Yes Yes Yes Yes

Observations 471 471 471 471 471 471

*** p<0.01, ** p<0.05, * p<0.1

Note: Robust standard errors in parentheses. Controlled for confidence as defined in Equation 3.3.

We can only speculate why the well-established hard-easy gap is so small in our

setting. Consulting our interviewers, we have no reason to believe that participants did

not perceive the test quizzes as hard or easy when they should. Several other studies

find larger shifts in beliefs, although participants had less exposure to manipulation.35

The rural Thai population may have more persistent beliefs than WEIRD populations.

This makes changing these beliefs more difficult. Given the tremendous level of overcon-

fidence we find in the lab, this circumstance might not be beneficial for our participants.

It relates to our regression result that being too certain about future income is related

to over-indebtedness. “Sticky,” biased expectations, bear implications for policy mak-

ing and must be taken into account when measures to reduce over-indebtedness are

designed.

35 For example, Grohmann et al. (2019) only use four questions they frame as “example questions”
and find larger treatment effects on expectations.
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3.5 Conclusion

Over-indebtedness can pose a serious threat to households’ welfare and the financial

stability of a country, especially in emerging markets. However, the determinants un-

derlying over-indebtedness globally are, so far, not well understood. Theoretically, as

modelled in various permanent income hypotheses, higher income expectations should

lead to a higher level of borrowing.

In this study, we analyse the relationship between high income expectations and

over-indebtedness using data from an extensive household survey and a lab-in-the-field

experiment. Low levels of financial knowledge and high income uncertainty demand for

explicit research in emerging countries because relying on results for Western popula-

tions is insufficient. Our sample belongs to a panel survey of relatively poor and rural

households in Thailand. Indeed, we can confirm a low level of financial literacy in sev-

eral dimensions and find substantial uncertainty in income expectations for our sample.

While over-indebtedness is increasingly recognized as a growing problem in Thailand,

our study sheds light on one potential driver.

In our regression analysis, we find a strong and robust positive relationship between

high expectations concerning future income and over-indebtedness controlling for vari-

ous household characteristics and shocks. We think this is a sign that these expectations

are actually too high for some households. This finding holds for various measures of

over-indebtedness. They are stronger for objective measures, if we use a quantitative

elicitation method for positive income expectations based on probabilistic expectations

and stronger for subjective over-indebtedness, if we use a qualitative, more subjective

forecast error. In any case, they are always significant. The results reflect that subjec-

tive over-indebtedness indicators are likely to be influenced more heavily by personal

perceptions on the household’s financial situation as well as by respondents’ person-

ality traits and that objective and subjective measures capture different dimensions

of over-indebtedness. Eventually, higher certainty about the future household income

development is also related to more household over-indebtedness, which might be the

case because being too certain is not optimal given the highly uncertain environment.

The results are robust to a diverse set of different sample specifications and we do not

find evidence of reverse causality issues.

We attempt to establish a causal relationship between overconfidence as a form of

biased expectation and overborrowing in our experiment by exogenously biasing self-

confidence via the so-called hard-easy gap. Thereby, we change expectations about the

future payout in the game. Our results show that, in the experiment, overconfidence
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is related to more spending and overborrowing, but we cannot claim causality. The

most probable reason why our treatments do not affect spending behaviour are too

“sticky” beliefs. This also suggests that rural households are indeed too certain about

their income expectations. Interestingly, we find that overspending in the experiment

is related to overspending in real life, which confirms that the artificial experiment still

captures real life behaviour.

As we will never know the true income generating process, we cannot know whether

the expectations of our respondents are systematically biased or positive for other rea-

sons. A systematic overestimation of future income would have much more devastating

effects than a random, one-shot, inaccurate guess. Nevertheless, we find reassuring ev-

idence that even one-time high expectations are positively related to household over-

indebtedness, thus pushing households into severe poverty. One of the potential channels

through which high expectations are related to over-indebtedness is being too certain

about own expectations in the highly uncertain environment that rural households in

emerging markets are living in. Given the supplemental evidence for sticky beliefs from

our experiment, to change beliefs or their certainty seems to be challenging. More appro-

priate policy measures might reduce vulnerability and uncertainty with the expansion

of assistance and insurance schemes, especially for households engaged in agriculture.
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4.1 Introduction

The importance of personality traits for economic research has been highlighted exten-

sively over the past two decades. However, the measurement of personality is a complex

endeavour, since context and sub-group characteristics can hamper the applicability

of existing models. The standard measurement model of personality is the Big Five

Factor model by Costa and McCrae (1992) that defines personality along five dimen-

sions. The typology and measurement of this model were developed and tested mainly

in industrialised countries among highly educated samples.1 Therefore, it is not self-

evident that the structure of this model is universally applicable, i.e., that it also holds

in non-WEIRD populations. A handful of recent studies from developing countries pro-

vide further ground to these concerns. For instance, Gurven et al. (2013) find only two

personality factors instead of the usual five in their data from rural Bolivia. Other pa-

pers highlight more issues such as lack of internal consistency, wrong factor loadings

and measurement errors (Schmitt et al., 2007; Cheung, 2009; Ludeke and Larsen, 2017).

Evidence from Laajaj et al. (2019) shows that the survey mode, i.e., whether the survey

is self-administered or not, also plays an important role.

Our study contributes to this string of literature on the measurement and factor

structure of personality traits outside WEIRD populations. While studies such as Laa-

jaj et al. (2019) and Schmitt et al. (2007) employ data from students and relatively

better educated individuals living in urban centers, we expand the discussion to a rural

sample. In particular, we introduce and validate the Big Five measure of personality

traits for individuals in rural Southeast Asia. Using a rich panel data set from rural

Thailand and Vietnam of some 4,000 individuals,2 we analyse the internal and external

validity of the Big Five factor structure. Therewith, we specifically address whether

the factor structure holds, and, if survey measures can be applied in rural samples in

Southeast Asia. We further provide insights into the stability of the traits over time

using individual-level data.

In this paper, we (i) test the scales for internal consistency; (ii) test the stability

of personality traits over time; (iii) test the scales for external validity; (iv) correct

our scales for acquiescence bias. The results reveal that the underlying factor structure

in our sample population from rural Southeast Asia is similar to the structure of the

standard Big Five model. We find five factors that can be largely mapped to the Big Five

factors. Results further suggest that the survey measure is internally and externally valid

1 These are also often referred to as western, educated, industrialised, rich, and democratic (WEIRD)
countries (Heinrich et al., 2010).

2 The data were collected under the Thailand Vietnam Socio Economic Panel (TVSEP).
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in the context of rural households in Thailand and Vietnam. In line with Laajaj et al.

(2019), measures of internal consistency are lower for our sample compared to expected

values from WEIRD populations. Additionally, results show that retest stability across

different survey waves is stronger among higher educated respondents, which matches

findings from other studies (e.g., Schmitt et al. (2007)).

The remainder of the paper is organised as follows: Section 4.2 introduces the data

and measurement of personality traits. Section 4.3 presents the econometric methods

and discusses the results. Section 4.4 concludes.

4.2 Data and Measurement

We analyse Big Five data from the 7th wave of the Thailand Vietnam Socio Economic

Panel (TVSEP), collected in the summer of 2017.3 The data were collected in three ru-

ral provinces in each country. In Thailand, these are the provinces of Buriram, Nakhon

Panom and Ubon Ratchathani and in Vietnam the data are gathered in the provinces

of Thua Thien Hue, Ha Tinh and Dak Lak. Figure C.1 in the Appendix exhibits an

overview of the survey region. For the purpose of this study, we utilise data on 3,811 in-

dividual respondents - 1,913 Thais and 1,898 Vietnamese, who answered the subsection

on personality traits.

In both countries, an almost identical household survey is applied. It consists of nine

sections covering individual information on household members (e.g., age, education,

health, and employment) as well as household-level information (such as household

income, housing conditions and experienced shocks). In wave 7 of the TVSEP database,

an additional module asking for the established psychological personality inventories

was included. These questions allow to study personality traits and their consequences

on a large sample of individuals living in rural Thailand and Vietnam, and, to relate

them to a rich set of socioeconomic variables.

The survey questionnaire includes items that measure personality following the Big

Five model developed by Costa and McCrae (1992, 1997). This model is the most

cross-culturally validated model of personality traits (Stuetzer et al., 2018). It defines

personality along the five following factors: Openness, Conscientiousness, Extraversion,

Agreeableness, and Neuroticism. The survey questions included in the TVSEP are based

3 The TVSEP is a panel survey that runs since 2007 and regularly administers surveys among rural
households in Thailand and Vietnam. Until now, eight waves have been conducted. The survey covers
some 4,400 households in 440 villages. The household sample in each province was randomly drawn
based on a stratification process considering the heterogeneous agro-ecological conditions within the
regions. Please refer to Hardeweg et al. (2013) for a detailed review of the sampling strategy.
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on the Big Five personality inventory questions used in the German Socio Economic

Panel (SOEP). Similar questions are used in the British micro panel survey and World

Bank surveys across different countries (Guerra et al., 2016). In the respective TVSEP

questionnaire section, respondents are asked how much they agree with different state-

ments about themselves. They rank their answers on a 7 point Likert scale ranging

from 1 to 7, where 1 means ”Does not apply to me at all” and 7 means ”Applies to me

perfectly”. Respondents are presented with 15 survey questions in total. Each factor is

captured by three questions. Table C.1 in the appendix illustrates the relation between

the personality traits and survey questions. To obtain the Big Five traits, we construct

simple averages using three questions for each respective trait.

Additional Data for Stability Testing In Section 4.3.2 we test stability of the data

over time and compare data from wave 7 to the 8th TVSEP wave, that was conducted

in the summer of 2019.4 For this wave, data were collected in Thailand only. Therefore,

comparison data for Vietnam are not available. The questions and answer options are

identical to the ones in the wave 7 questionnaire. The dataset includes data on per-

sonality traits for all three Thai provinces. We identify 933 households with the same

respondent in 2017 and 2019. While the same households are interviewed for every

TVSEP wave, the respondent within the household may vary over time, e.g., if the

household head is not available his or her spouse might answer the survey. Therefore,

we only include cases, where the respondent was the same in both years. Hence, the

lower sample size. The questions and scales on personality traits in the 2019 survey are

identical to the ones in the 2017 survey.

4.3 Results

4.3.1 Internal Validity

We conduct a series of psychometric indicators to document the internal validity and

consistency of our survey measures. Following Laajaj et al. (2019) these indicators in-

clude: (i) the within correlation that is the average correlation within the items belong-

ing to one personality trait, (ii) the between correlation that is the average correlation

between items of different personality traits, and (iii) the Cronbach’s itemized alpha co-

efficient which tests for the internal consistency of scales across the survey questions and

4 These data sets are used only in this specific Section. Throughout the rest of the paper, we use the
full data set from wave 7 for both countries.
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the personality traits. We compute the psychometric indicators separately for Thailand

and Vietnam as well as jointly for the whole database.

Within and Between Correlation Table 4.1 provides the results for the within and

between correlations. A strictly positive correlation either in the within or the between

correlation coefficient suggests that the indicator captures something that the tested

items have in common rather than just noise. If the expected factor structure exists,

the correlation within items belonging to one trait should be positive. Further, the

correlation between items of different personality traits should be close to zero. The

results show that the within correlation is strictly positive and varies between between

19% to 21%. The between correlation is significantly lower and ranges between 4% to

6%. Other studies using data from developing countries such as Laajaj et al. (2019)

report higher within correlations. However, since the between correlation shows there

is very little correlation across items belonging to different factors, the factor structure

still holds.

Table 4.1: Psychometric Indicators

No. of
Items

No. of
Observations

Within
Correlation

Between
Correlation

Cronbach’s
Alpha*

All 15 3090 0.21 0.048 0.45
Thailand 15 1447 0.19 0.040 0.41
Vietnam 15 1643 0.21 0.064 0.43

Note: Own calculations with TVSEP data from wave 7. * average for five character traits.

Cronbach’s Alpha The Cronbach’s itemized alpha coefficient (Cronbach, 1951) is

one of the most widely used tests of internal consistency (Gosling et al., 2003). It

tests the internal consistency of scales across the survey questions and across the five

personality traits. The coefficient can take values between 0 and 1 and increases with

higher correlation between the items of the same personality trait. Thus, the higher the

alpha coefficient, the better the items measure the same underlying factor (Laajaj et al.,

2019). The minimum threshold for the alpha coefficient is often set at 0.7. However,

the threshold also depends on the extend of the applied measure, with alpha usually

increasing with more items (Gosling et al., 2003).5 The TVSEP questionnaire includes a

5 Gosling et al. (2003) suggest to also look at the test-retest correlation as a further reliability check,
which we do in the Section 4.3.2.
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short measure of 15 questions, which is standard for most household surveys.6 Therefore,

we expect alpha values below 0.7.

The results of the Cronbach’s alpha coefficient for each factor are displayed in Table

4.1 and Table C.2. The individual coefficients range between 0.25 and 0.62 across the

different items and factors. As expected, the coefficients are below the 0.7 benchmark.

However, the results are similar to that of other Big Five surveys using a short version

of the measure (e.g., Schäfer (2016); Laajaj et al. (2019)). The average reliability for

the five factors for the whole sample is 0.44. The values per country are slightly lower.

Table C.2 in the Appendix displays detailed results per trait. The factors openness,

conscientiousness and agreeableness display higher values of internal consistency, while

the values for neuroticism and extraversion are lower.

4.3.2 Stability

In order to further check the reliability of the data, we test the congruence of the survey

results over time. We do so by: (i) comparing the two sample means for each factor;

(ii) calculate the test-retest correlation; (iii) present superimposed histograms to take

a closer look at the answer distributions. The time difference between the two survey

waves is two years. While personality traits are regarded as relatively stable for adults

(Cobb-Clark and Schurer, 2012), certain life events as well as changes in demographic

factors can lead to a change in personality traits over the course of a lifetime. We would

therefore expect to see somewhat stable results.

The results for the mean comparison between wave 7 and wave 8 are presented in

Table 4.2. We observe significant differences in the means between both waves for all

five factors. However, these differences are relatively small and mean values are still

similar. We also provide results for the test-retest correlations in Table C.3 in the Ap-

pendix. The test-retest correlation ranges between 0.21 and 0.25. Other studies observe

higher test-retest correlations (see for example Gosling et al. (2003)). We therefore

look at sub-samples of the data set and see that our results improve when excluding

possible confounding factors, i.e., respondents that may had difficulties understanding

the questions.7 We also see some differences between the three survey provinces, with

Ubon Rathchathani pertaining a lower retest correlation for openness, neuroticism and

6 Surveys centering on the assessment of the Big Five model often use the 44-item Big-Five Inventory
(see for example John and Srivastava (1999)) or the the 60-item NEO Five-Factor Inventory (Costa
and McCrae, 1992).

7 We defined these as respondents with a difference between the test and the retest that is greater
than two points on the Likert scale
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extraversion. We also test the correlations and means per province, but do not find

strong provincial effects. To get a more comprehensive understanding of the differences

between waves, we present superimposed histograms in the appendix. They show that

answers in wave 8 are on average more moderate, i.e., respondents choose less extreme

values, than in wave 7. We think that this might indicate that respondents are getting

used to the questions and therefore slightly alter there answer patterns.

Table 4.2: Comparison of Sample Means

Thailand Wave 7 Thailand Wave 8 Difference

Openness 4.610 4.384 0.225***

Conscientiousness 5.688 5.564 0.124**

Extraversion 4.521 4.410 0.111**

Agreeableness 5.801 5.634 0.167***

Neuroticism 3.313 3.411 -0.098**

Observations 933 933 933

*** p<0.01, ** p<0.05, * p<0.1

Note: Own calculations with 2017 and 2019 TVSEP data. First two columns show results

for the sample means. Column three displays results from the two-sided ttests. Own calcu-

lation with TVSEP data from wave 7 and wave 8 in Thailand.

Furthermore, we delve deeper into the causes of differences in results between the two

waves. We find that males and more educated individuals are less likely to alter their

responses over the two years. Studies from other data sets also observe that a higher level

of education and literacy in the survey population favours replication and reliability of

the Big Five model (e.g., Schmitt et al. (2007); Laajaj et al. (2019)).

Overall, the results show that answers vary over the medium run. However, the

differences in are still small and we would expect some variation over a time period of two

years, since respondents are exposed to different life events that could possibly change

answers. We further see that demographic factors have an influence on the answer

stability. Therefore, we recommend to run robustness checks for different subgroups

when using the data in an analysis.

4.3.3 External Validity

We test for the underlying structure of personality traits and the external validity of

our survey measures. In particular, we (i) perform a Principal Component Analysis
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to explore the underlying factor structure in our sample, (ii) correlate our factors to

the conventional Big Five personality traits, and (iii) compare our findings with SOEP

(Germany), HILDA (Australia) and SAPA (United States of America).

Principal Component Analysis We conduct a Principal Component Analysis (PCA)

to analyse the factor structure in our sample. A PCA is advantageous when data sets

contain a large number of variables. It uses the dependencies between the input vari-

ables to reduce the dimensionality and creates groups which are homogeneous within

themselves and heterogeneous between each other (Backhaus et al., 2011). We base

the PCA on the 15 questions on personality traits administered to respondents in the

household questionnaire (see Section 4.2). To conclude that the factor structure of the

Big Five model can be applied to our sample, the PCA should produce five factors and

the underlying 15 items should load on the expected factors.

Figure 4.1 clearly shows the presence of a five-factor structure. The Kaiser criterion

(K1) (Ford et al., 1986) which retains all factors with eigenvalues greater or equal to

one, is used to determine the number of factors to be retained. Together, these factors

explain a total of 56 % of the variance.

Figure 4.1: Scree Plot of Eigenvalues after PCA

Note: Own illustration with 2017 TVSEP data.

Factor loadings from the PCA are shown in Table 4.3. Following Hair et al. (2009),

only the factors with loadings greater than 0.30, i.e., meeting the minimum practical

significance level, are interpreted.
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Table 4.3: Factor Loadings according to PCA

BFI-Items Factor 1 Factor 2 Factor 3 Factor 4 Factor 5

Artistic 0.30 -0.27 -0.10 0.01 0.08

New ideas 0.31 -0.12 0.12 0.31 -0.35

Active imagination 0.32 -0.26 0.10 0.05 -0.14

Work thoroughly 0.30 0.22 0.10 0.04 -0.39

Efficient 0.35 0.11 -0.08 -0.06 -0.30

Lazy (reversed) 0.10 0.53 -0.08 0.05 -0.31

Talkative 0.24 -0.12 -0.03 0.45 0.22

Sociable 0.32 -0.02 0.00 0.30 0.30

Reserved (reversed) -0.15 0.24 -0.12 0.65 0.15

Forgiving 0.28 0.25 0.04 -0.19 0.48

Kind 0.35 0.23 0.00 -0.18 0.33

Rude (reversed) 0.00 0.53 -0.14 -0.04 0.06

Worries 0.00 0.15 0.67 0.01 -0.01

Nervous 0.00 0.01 0.66 -0.02 0.12

Relaxed -0.31 0.12 0.17 0.32 0.00

Note: Own calculations with 2017 TVSEP data. We only interpret variables that

have factor loadings greater than or equal to 0.30.

Factor 1 has a positive loading in relation to seven items and a negative loading from

one item. The positive loading includes all three questions related to the Big Five

factor of openness - artistic, new ideas and active imagination and two items related

to conscientiousness - work thoroughly and efficient. In addition, the positive loadings

also include the items sociable and kind. Further, this factor loads negatively on the

item relaxed. Thus, Factor 1 is a mix of two Big Five traits. Factor 2 loads positively

on two items, hard working and polite. This factor cannot be directly mapped to one

of the conventional traits in the Big Five with respect to the items. Factor 3 loads

positively on two items, worries and nervous. Therewith, the factor falls into the same

category as the Big Five factor of neuroticism. Factor 4 loads positively on five items. Of

these, the three items with the highest positive loadings, talkative, sociable and reserved

(reversed), belong to the Big Five factor extraversion. In addition, this factor also loads

positively on the items new ideas and relaxed. While there is a clear congruence with

extraversion, this factor slightly overlaps with Factor 1. Factor 5 loads positively on

three and negatively on four items. Among the positive loadings are forgiving and kind.

The factor loads negative on the items new ideas, work thoroughly, efficient, and lazy
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(reversed). Thus, the factor describes a mix of searching for social acceptance while at

the same time avoiding hard work. The factor does not seem to be directly related to

any of the Big Five factors per se. Overall, the results from the PCA reveal a five factor

structure similar to that of the Big Five Factor model. However, we observe that the

items do not always load on the expected factors. This finding is largely in line with

a meta study from Schmitt et al. (2007) showing that populations from Asia might

diverge from the factor structure as well as the average scores per factor, in relation

to other areas of the world. In the next section, we therefore take a closer look at the

obtained factors and compare them to the Big Five factors.

Correlations with Big Five Factors In this part of the analysis, we compare factors

obtained from the PCA with the Big Five factors to assess their similarity. As explained

in section 4.2, we construct the Big Five factors using simple averages of the three

questions for each respective trait. Table 4.4 shows the correlations between the two

sets of factors.

Table 4.4: Correlation between Big Five and Factors from PCA

Openness Conscientiousness Extraversion Agreeableness Neuroticism

Factor 1 0.76 0.63 0.38 0.50 -0.23

Factor 2 -0.37 0.51 0.12 0.64 -0.12

Factor 3 -0.02 0.13 -0.06 0.09 0.92

Factor 4 0.22 0.08 0.75 -0.24 0.11

Factor 5 -0.21 -0.42 0.46 0.32 0.07

Note: Own calculations with 2017 TVSEP data.

Factor 1 is significantly correlated to the factor openness from the Big Five model.

Similarly, Factor 3 can be clearly mapped to the factor neuroticism, and, Factor 4 to the

Big Five factor, extraversion. However, the trait structure differs with respect to Factor

2, which comprises hard working and polite individuals. Therefore, it correlates with

both Big Five factors of conscientiousness and agreeableness. Our analysis reveals that

these qualities are a particular feature of personality traits in our sample population.

Overall, we find that the PCA factors are relatively close to the Big Five factors.

Comparison with other surveys In general, Southeast Asians score lower on ex-

traversion and conscientiousness, and higher on agreeableness compared to their West-

ern counterparts. The scores reported are very similar in case of openness and neuroti-

cism (Schmitt et al., 2007). We inspect if the same patterns are observed in case of our
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sample. We compare our results for personality traits means with those from three other

surveys, namely – the German Socio-Economic Panel (SOEP), the Australian House-

hold Income and Labour Dynamics in Australia (HILDA) and the American Synthetic

Aperture Personality Assessment (SAPA) 2015.

Table 4.5: Comparison between TVSEP and other surveys

Trait Thailand Vietnam Germany Australia USA

(rural) (rural) (SOEP) (HILDA) (SAPA)

Openness 4.60a,b 4.04a,b 4.49 4.24 x

(1.26) (1.37) (1.169) (1.052)

Conscientiousness 5.66a,b,c 5.79a,b,c 5.93 5.15 4.20

(1.01) (0.89) (0.872) (1.005) (1.02)

Extraversion 4.48a,b,c 4.55a,b,c 4.82 4.40 3.84

(1.05) (1.09) (1.134) (1.087) (0.08)

Agreeableness 5.76a,b,c 5.89a,b,c 5.35 5.40 4.69

(0.96) (0.89) (0.965) (0.888) (0.06)

Neuroticism 3.31 4.41 x x x

(1.12) (1.08))

Note: Thailand and Vietnam means are calculated by authors based on TVSEP 2017 (NTH =

1,913, NVN = 1,898). German SOEP means are taken from Schäfer (2016) (N = 17,028). Aus-

tralian HILDA means are taken from Cobb-Clark and Schurer (2012) (N = 6,104). American

SAPA 2015 means are taken from Elleman et al. (2018) (N = 134,858). x - Schäfer (2016), Cobb-

Clark and Schurer (2012) and Elleman et al. (2018) use a different factor, called Emotional Sta-

bility and do not calculate neuroticism. a – Independent ttest comparison with SOEP.b – Inde-

pendent ttest comparison between HILDA. c – independent ttest comparison with SAPA 2015.

The results are broadly in line with the aforementioned proposition. The rural popu-

lation in Thailand reports the highest levels of openness. However, Germans are more

conscientious than all other samples. On average, Thais and Vietnamese tend to be less

extroverted and score highest on agreeableness.

4.3.4 Acquiescence Bias

Acquiescence is a common bias, where the respondent agrees or disagrees with a question

irrespective of the content (Ferrando et al., 2004). For instance, in the TVSEP ques-

tionnaire, the questions “Do you see yourself as someone who does tasks efficiently?”

and “Do you see yourself as someone who tends to be lazy?”, capture conscientiousness.
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The second question is coded reversely. If an individual strongly agrees to both these

questions, this contradiction indicates Acquiescence Bias (AB). This systematic error

can affect the mean levels in item responding, factor structure and hence the overall

validity of personality questionnaires (Rammstedt et al., 2017; Danner et al., 2015).

To test for AB in our sample, we construct personality trait factors corrected for

AB. This requires that at least one of the questions measuring each factor is reversed.

The TVSEP questionnaire does not contain reversed questions for openness and agree-

ableness. Therefore, we estimate the AB for the other factors and subsequently apply

the correction to all items. This method is also illustrated in Laajaj et al. (2019). These

AB corrected factors are compared to our Big Five factors. Table 4.6 shows that all

factors are statistically different from each other. This highlights that there is evidence

of acquiescence bias in our data. As this could affect our factorial structure and other

aspects pertaining to validity, we also execute internal and external validity tests with

the Big Five factors corrected for acquiescence bias.

Table 4.6: Comparison between Sample means and AB corrected sample means

Mean Sample Mean AB corrected Mean Difference

Openness 4.32 4.04 0.28***

Conscientiousness 5.71 5.62 0.09***

Extraversion 4.52 4.42 0.09***

Agreeableness 5.83 5.73 0.09***

Neuroticism 3.86 3.77 0.09***

*** p<0.01, ** p<0.05, * p<0.1

Note: Own calculation with TVSEP wave 7 data. First two columns show the means. Column three

displays results from the two-sided ttests.

We find that the scree plot in Figure 4.2 and the PCA (refer to table C.4) reveal a five

factor structure. The Chronbach’s alpha lies at 0.51, which is similar to the original

value (refer to Table C.5). Hence, we can conclude that the acquiescence bias does not

impact the internal and external validity of our results.
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Figure 4.2: Scree Plot of Eigenvalues after PCA - Acquiescence Bias corrected

Note: Own illustration with 2017 TVSEP data.

4.4 Conclusion

This paper validates the Big Five model in a rural developing country setting. Our

results suggest that the survey measure is internally and externally valid in the context

of rural households in Thailand and Vietnam. We further find that the underlying factor

structure is similar to the structure of the Big Five model. In particular, (i) we test the

scales for internal consistency, (ii) we test the stability of personality traits over time,

(iii) we test the scales for external validity, (iv) we correct our scales for acquiescence

bias. For this, we use data on 3,811 individuals collected under the Thailand Vietnam

Socio Economic Panel.

The first research objective relates to the internal validity of the sample measures.

The psychometric indicators (within correlation, between correlation, and Cronbach’s

alpha) estimated for the sample indicate that the factor structure holds. Results show

very low between correlations. In terms of the alpha values, we see that the factors open-

ness, conscientiousness and agreeableness display higher alpha values and neuroticism

and extraversion relatively lower values. The fact that the alpha values range below

0.7 is not unusual in sample with a short version of the Big Five measures and is also

observed in other data sets with short measures.

Our second research objective examines the stability of the results over time. We

compare results from wave 7 and 8 of the TVSEP. We find significant differences in
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the means between the two waves, with relatively lower values reported in the wave 8.

Here, we also show that respondents education level is vital. Individuals with higher

education exhibit more stable personality traits over time.

The third research objective was checks the external validity of the model. The PCA

and the scree plot reveal a five-factor structure. However, the groups of input variables

do not always load on the expected traits. Still, we find high correlations between

the factors obtained from the PCA and the factors created using weighted averages

of items according to the common Big Five structure. A comparison of sample means

for traits from our sample with those from other surveys conducted in other countries

further shows that Southeast Asians are less conscientious but more agreeable than

their counterparts from WEIRD countries.

Last, we construct acquiescence bias corrected factors and compare these with our

Big Five factors. We find evidence for acquiescence bias in our results. However, the

bias does not render substantial effects on the internal and external validity of our

estimations.

While we acknowledge that we cannot reject all the concerns highlighted by existing

studies (e.g., with respect to stability), our results provide substantial evidence on

the validity of the Big Five model in a developing country setting. Specifically, they

demonstrate that the model is applicable in the context of rural households in Southeast

Asia.
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SOEP. DIW Research Notes 4, 2005.

Gloede, O., L. Menkoff, and H. Waibel (2015). Shocks, individual risk attitude, and vulnerability to

poverty among rural households in Thailand and Vietnam. World Development 71, 55–78.

Gollin, D., D. Lagakos, and M. E. Waugh (2014). The agricultural productivity gap. The Quarterly

Journal of Economics 129 (2), 939–993.
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Table A.1: Description of Variables

Variable label Short description min max mean std.dev.

Dependent variables

past well-being dynamic individual well-being compared to last year

(1: better off 36.2%, 2: same 42.8%, 3: worse

off 21.0%)

1 3 - -

future well-being dynamic individual well-being in one year (1: better

off 51.3%, 2: same 38.3%, 3: worse off 10.4%)

1 3 - -

shock expectations flood shock expected to occur within the

next five years

0 1 0.301 -

distributional preferences support for more government redistribution 0 1 0.626 -

Control variables

HH income p.c. (log) HH income (2005 PPP U.S. Dollar) per nu-

cleus HH member relative to province me-

dian

0 205.921 1.604 3.338

HH income fluctuation fluctuation of HH income (1: not at all

39.4%, 2: a bit 49.1%, 3: a lot 11.5%)

1 3 - -

gender respondent’s gender (0: male, 1: female) 0 1 0.503 -

age respondent’s age 15 93 50.352 13.426

health dynamics health status compared to one year before

(1: worse 32.1%, 2: same 56.9%, 3: better

11.1%)

1 3 - -

marital status relationship indicator (1: unmarried 5.3%,

2: married 83.9%, 3: widowed 10.9%)

1 3 - -

religion respondent is religious (0: no, 1: yes) 0 1 0.595 -

educational attainment highest completed educational attainment

(0: no schooling 47.8%, 1: primary 27.2%, 2:

lower secondary 16.3%, 3: upper secondary

8.6%

0 3 - -

main occupational status main occupational status in the last year

(0: no occupation 4.4%, 1: housewife/HH-

member caretaker 3.1%, 2: casually em-

ployed 9.3%, 3: permanently employed

3.6%, 4: own agriculture/hunting 68.8%, 5:

own off-farm business 8.7%, 6: government

official 2.0%, 7: student/pupil 0.1%)

0 7 - -

Shock experience vari-

ables

(0: no, 1: yes, reversed in estimations for rea-

sons of interpretability

flood shock flood shock experience in last 12 months 0 1 0.080 -

flood or heavy rain shock flood or heavy rain shock experience in last

12 months

0 1 0.090

Table continues on next page
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Variable label Short description min max mean std.dev.

severe flood or heavy rain

shock

severe flood or heavy rain shock experience

in last 12 months

0 1 0.051

drought shock drought shock experience in last 12 months 0 1 0.044 -

storm shock experience of storm shock experience in last

12 months

0 1 0.019 -

ice or snow rain shock ice or snow rain shock experience in last 12

months

0 1 0.005 -

Sensitivity analyses

network (r=5000, m=12) distance weighted share of village HH ex-

posed to TS in r and m

0 1 0.661 0.464

flood history (r=5000) HH specific average maximum yearly TS ex-

posure in r

0 195.333 20.074 37.336

land-use (r=5000) number of cultivation plots in r 0 28 3.186 1.857

mental issues serious incidence of mental disease or de-

pression (0: no, 1: yes)

0 1 0.03

headache serious incidence of headache in the last year

(0: no, 1: yes)

0 1 0.012

Note: Descriptive statistics for explanatory variables on the household / individual level and flood exposure

variables are conditioned on the sample used in the main analysis (n=17,346). Variables from the sensi-

tivity analyses refer to the corresponding sample of each analysis. The same holds for the variables used

in Section 4.2 and 4.3. In case of categorical variables, no means or standard deviations are reported. For

binary indicators, the means indicate the share of responses coded as one.
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Figure A.1: Distribution of Environmental conditions and well-being dynamics in 2013

Note: The graph provides an overview of the environmental conditions, village-level shares of indi-

viduals with potential flood shock exposure and well-being dynamics for the year 2013. The left side

shows the Thai provinces and the right side the Vietnamese provinces. Only villages with at least three

interviewed households are depicted. The size of the provinces is not necessarily true to scale.



Appendix A 104

Table A.2: Ex-ante Comparability of Respondents

Vietnam Thailand

direct experience TS exposure direct experience TS exposure

no yes P(Test) no yes P(Test) no yes P(Test) no yes P(Test)

N 1,058 447 171 1,334 1,393 243 106 1,530

Continuous and binary variables

rel income p.c. 1.76 1.35 0.0050 1.34 1.68 0.1009 1.65 1.26 0.0256 1.28 1.61 0.1814

female 0.36 0.39 0.3117 0.34 0.38 0.3446 0.53 0.55 0.5568 0.58 0.53 0.3319

age 46.02 43.92 0.0052 42.52 45.77 0.0027 50.81 50.35 0.6068 49.91 50.8 0.4838

Categorical variables

income fluct. 0.0000 0.0430 0.1460 0.366

health fluct. 0.0040 0.8180 0.2400 0.894

marital status 0.0920 0.0060 0.5200 0.661

education 0.0170 0.6540 0.8230 0.946

occupation 0.0000 0.1390 0.8390 0.3370

Note: Table shows ex-ante comparability of respondents in 2007 by direct shock experience and tangential shock exposure. For con-

tinuous and binary variables, we report group means and applied a T-test with H0: Group means are identical. Groups are defined

as having ever experienced a direct shock experience or having been exposed to a tangential shock (TS). In case of categorical vari-

ables with three or more categories, the samples are evaluated based on a χ2 test with H0: Independence of categories and shock

experience/exposure.

Table A.3: Overview of Tangential Shock Indicators

Sphere of interest (Radius in meter)

Time horizon 1000 2000 3000 4000 5000

1 month mean 0.21 0.46 0.77 1.14 1.51

maximum 22 26 26 27 27

stand. dev. 1.40 2.25 2.97 3.56 4.09

3 months mean 0.67 1.42 2.32 3.42 4.54

maximum 59 77 77 77 77

stand. Dev. 3.63 5.77 7.70 9.27 10.78

12 months mean 4.57 8.71 13.07 17.29 21.52

maximum 173 226 226 226 226

stand. dev. 16.67 24.31 30.86 35.60 40.02

Note: Table is based on the sample used in the main analysis (17,346 observations). Min-

imum values across indicators, radii and time horizons are zero. The average numbers of

included pixels for a given radius are 53, 493 and 1367.
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Table A.5: The Influence of Other Types of Shocks

Model (1) (2) (3)

∆+ ∆− ∆+ ∆− ∆+ ∆−

no flood shock experience (s) −0.0522 −0.2283∗∗∗ −0.0596 −0.1880∗∗ −0.0668 −0.1866∗∗

(0.0790) (0.0815) (0.0794) (0.0824) (0.0799) (0.0826)

TSE exposure (sTSE) −0.0021 −0.0046∗∗ −0.0019 −0.0041∗∗ 0.0048 −0.0063

(0.0019) (0.0019) (0.0019) (0.0019) (0.0048) (0.0055)

s× sTSE 0.0020 0.0052∗∗∗ 0.0019 0.0046∗∗ 0.0018 0.0048∗∗

(0.0019) (0.0020) (0.0019) (0.0019) (0.0019) (0.0019)

no drought shock 0.1782∗∗∗ −0.1050∗ 0.1708∗∗∗ −0.0444 0.1780∗∗∗ −0.0568

(0.0530) (0.0601) (0.0535) (0.0626) (0.0576) (0.0680)

no storm shock −0.0392 −0.2394∗∗ −0.0386 −0.1931∗ −0.0990 −0.1544

(0.0895) (0.0979) (0.0898) (0.1003) (0.1050) (0.1186)

no snow / ice rain shock 0.0013 −0.4923∗∗∗ −0.0026 −0.4982∗∗∗ 0.2268 −0.5526∗∗∗

(0.1448) (0.1422) (0.1454) (0.1447) (0.1834) (0.1782)

other shocks No Yes Yes

env. shock ×sTSE No No Yes

N (HH clusters) 17,346 (3,543) 17,346 (3,543) 17,346 (3,543)

Wald χ2 (P > χ2) 1800.17 (0.0000) 1955.35 (0.0000) 1965.80 (0.0000)

*** p<0.01, ** p<0.05, * p<0.1

Note: All specifications include the full set of sociodemographic and socioeconomic controls, as well as

year and country FE. Standard errors are clustered at the household level. x denotes an interaction.
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Table A.6: Sensitivity Analysis - Network Effects, Coping Strategies and Land Usage

(1) (2) (3) (4)

∆+ ∆− ∆+ ∆− ∆+ ∆− ∆+ ∆−

Panel A: 3000m, 3 months

s −0.0360 −0.1342∗ −0.0431 −0.0925 −0.0432 −0.0929 −0.0267 −0.0954

(0.0721) (0.0755) (0.0762) (0.0807) (0.0762) (0.0807) (0.0766) (0.0808)

sTSE −0.0079 −0.0138 −0.0112 −0.0150 −0.0106 −0.0177 −0.0099 −0.0177

(0.0101) (0.0115) (0.0108) (0.0124) (0.0114) (0.0132) (0.0114) (0.0132)

s× sTSE 0.0088 0.0197∗ 0.0111 0.0198 0.0110 0.0198 0.0109 0.0195

(0.0100) (0.0118) (0.0104) (0.0125) (0.0104) (0.0125) (0.0104) (0.0125)

Network −0.0047 0.0210 −0.0006 0.0014 −0.0004 −0.0002

(0.0674) (0.0743) (0.0722) (0.0820) (0.0722) (0.0825)

Flood history −0.0002 0.0010 −0.0001 0.0010

(0.0015) (0.0017) (0.0015) (0.0017)

Land use 0.0453∗∗∗−0.0154

(0.0119) (0.0141)

Panel B: 3000m, 12 months

s −0.0522 −0.1601∗∗−0.0650 −0.1148 −0.0690 −0.1227 −0.0521 −0.1245

(0.0752) (0.0790) (0.0797) (0.0842) (0.0797) (0.0843) (0.0801) (0.0844)

sTSE −0.0028 −0.0043∗ −0.0031 −0.0040 −0.0062∗ −0.0092∗∗∗−0.0059∗ −0.0091∗∗∗

(0.0024) (0.0025) (0.0026) (0.0027) (0.0032) (0.0034) (0.0032) (0.0035)

s× sTSE 0.0028 0.0055∗∗ 0.0033 0.0051∗ 0.0035 0.0054∗ 0.0034 0.0053∗

(0.0024) (0.0026) (0.0026) (0.0027) (0.0025) (0.0027) (0.0026) (0.0027)

Network −0.0837∗ −0.0134 −0.0871∗ −0.0199 −0.0893∗ −0.0156

(0.0470) (0.0535) (0.0471) (0.0538) (0.0472) (0.0540)

Flood history 0.0033 0.0055∗∗ 0.0033 0.0055∗∗

(0.0022) (0.0023) (0.0022) (0.0024)

Land use 0.0455∗∗∗−0.0155

(0.0119) (0.0141)

Table continues on next page.
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Panel C: 5000m, 3 months

s −0.0511 −0.1668∗∗−0.0570 −0.1233 −0.0572 −0.1240 −0.0392 −0.1269

(0.0752) (0.0783) (0.0795) (0.0837) (0.0795) (0.0838) (0.0800) (0.0838)

sTSE −0.0078 −0.0156∗∗−0.0071 −0.0161∗∗−0.0087 −0.0181∗∗−0.0079 −0.0178∗∗

(0.0070) (0.0072) (0.0074) (0.0078) (0.0079) (0.0085) (0.0079) (0.0085)

s× sTSE 0.0074 0.0178∗∗ 0.0076 0.0172∗∗ 0.0076 0.0172∗∗ 0.0076 0.0169∗∗

(0.0070) (0.0075) (0.0072) (0.0079) (0.0072) (0.0079) (0.0072) (0.0079)

Network −0.0338 0.0370 −0.0436 0.0242 −0.0485 0.0213

(0.0577) (0.0641) (0.0606) (0.0684) (0.0608) (0.0686)

Flood history 0.0006 0.0008 0.0007 0.0008

(0.0012) (0.0014) (0.0012) (0.0014)

Land use 0.0472∗∗∗−0.0160

(0.0118) (0.0144)

Panel D: 5000m, 12 months

s −0.0596 −0.1880∗∗−0.0749 −0.1390 −0.0767 −0.1429 −0.0572 −0.1444

(0.0794) (0.0824) (0.0842) (0.0880) (0.0843) (0.0880) (0.0848) (0.0880)

sTSE −0.0019 −0.0041∗∗−0.0017 −0.0038∗ −0.0026 −0.0055∗∗−0.0024 −0.0054∗∗

(0.0019) (0.0019) (0.0020) (0.0020) (0.0025) (0.0026) (0.0025) (0.0026)

s× sTSE 0.0019 0.0046∗∗ 0.0021 0.0043∗∗ 0.0022 0.0043∗∗ 0.0021 0.0042∗∗

(0.0019) (0.0019) (0.0020) (0.0020) (0.0020) (0.0020) (0.0020) (0.0020)

Network −0.1066∗∗ 0.0090 −0.1075∗∗ 0.0070 −0.1111∗∗ 0.0168

(0.0475) (0.0546) (0.0475) (0.0547) (0.0477) (0.0550)

Flood history 0.0010 0.0019 0.0010 0.0018

(0.0016) (0.0019) (0.0016) (0.0019)

Land use 0.0478∗∗∗−0.0159

(0.0118) (0.0143)

N (HH cluster) 17,346 (3,543) 15,310 (3,159) 15,310 (3,159) 15,230 (3,159)

Other shocks Yes Yes Yes Yes

*** p<0.01, ** p<0.05, * p<0.1

Note: All models include our full set of sociodemographic controls, as well as year and country

FE. Standard errors (in parentheses) are clustered at the household level. Network refers to the

distance weighted share of in-sample households within a village which have been exposed to a

tangential shock in their maximum sphere of interest in the previous year. Flood history repre-

sents the household specific average yearly exposure to the corresponding tangential shock since

2004. The land-use control specification accounts for the number of cultivation area plots in a

sphere of interest.
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Table A.7: Tangential Shocks and Indirect Psychological Effects

SWB mental

issues

headache

∆+ ∆− ∆+ ∆−

TSE radius / time horizon 5km / 3 months 5km / 12 months 5km / 12 months

no shock experience (s) −0.0610 −0.2400∗∗∗ −0.0675 −0.2555∗∗∗ −0.0004 0.0009

(0.0779) (0.0809) (0.0823) (0.0850) (0.0015) (0.0042)

TSE exposure (sTSE) −0.0052 −0.0138∗ −0.0013 −0.0035∗ −0.0000∗ −0.0001

(0.0072) (0.0077) (0.0020) (0.0020) (0.0000) (0.0001)

s× sTSE 0.0049 0.0170∗∗ 0.0013 0.0043∗∗ 0.0000 0.0001

(0.0073) (0.0080) (0.0020) (0.0021) (0.0000) (0.0001)

mental issues 0.2370 0.5719 0.2367 0.5735

(0.3496) (0.4118) (0.3495) (0.4120)

headache −0.1902 0.2340 −0.1900 0.2314

(0.1831) (0.1880) (0.1832) (0.1882)

N 15,885 15,885 15,885 15,885

Note: All models include our full set of sociodemographic and socioeconomic controls, as well as year

and country FE. Standard errors are clustered at the household level.

Table A.8: Attrition Analysis: Shock-related Estimates for Negative SWB
Dynamics

radius (meter) 3000 4000 4000 5000 5000 5000

months 12 3 12 1 3 12

no shock experience (s) −0.1994∗∗ −0.1959∗∗ −0.2176∗∗∗ −0.1937∗∗ −0.2144∗∗∗ −0.2336∗∗∗

(0.0792) (0.0770) (0.0807) (0.0770) (0.0783) (0.0824)

TSE exposure (sTSE) −0.0037 −0.0155∗ −0.0042∗ −0.0314∗ −0.0157∗∗ −0.0040∗∗

(0.0026) (0.0092) (0.0022) (0.0187) (0.0074) (0.0019)

s× sTSE 0.0047∗ 0.0178∗ 0.0046∗∗ 0.0371∗ 0.0177∗∗ 0.0045∗∗

(0.0027) (0.0095) (0.0022) (0.0194) (0.0077) (0.0020)

N 16,809 16,809 16,809 16,809 16,809 16,809

Note: All models include the full set of sociodemographic and socioeconomic controls, as well as

year and country FE. Standard errors are clustered at the household level.
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Table A.9: Fixed and Random Effects Models for Negative SWB Dynamics -
Respondent Level

Model (1) (2) (3) (4) (5) (6)

Radius 3km 5 km

Estimation FEMlogit FE RE FEMlogit FE RE

∆+ ∆− ∆− ∆− ∆+ ∆− ∆− ∆−

Month Panel A: Respondent panel

s 1 0.0943 −0.1345 −0.0079 0.0012 0.0612 −0.1510 −0.0340∗∗−0.0343∗∗∗

(0.0951) (0.1033) (0.0073) (0.0052) (0.0981) (0.1064) (0.0152) (0.0130)

sTSE −0.0328 −0.0667 −0.0314∗∗−0.0283∗∗−0.0341 −0.0560∗ −0.0074∗ −0.0037

(0.0422) (0.0484) (0.0146) (0.0125) (0.0252) (0.0305) (0.0038) (0.0030)

s× sTSE 0.0348 0.0527 0.0047 0.0010 0.0368 0.0367 0.0037 0.0048

(0.0388) (0.0449) (0.0069) (0.0054) (0.0238) (0.0276) (0.0035) (0.0031)

s 3 0.1041 −0.1561 −0.0042 −0.0015 0.0607 −0.1713 −0.0371∗∗−0.0386∗∗∗

(0.0959) (0.1035) (0.0027) (0.0020) (0.0997) (0.1075) (0.0154) (0.0132)

sTSE −0.0039 −0.0299 −0.0360∗∗−0.0325∗∗−0.0130 −0.0188 −0.0022 −0.0020∗

(0.0143) (0.0190) (0.0148) (0.0127) (0.0096) (0.0121) (0.0015) (0.0011)

s× sTSE 0.0057 0.0287∗ 0.0039 0.0025 0.0117 0.0178 0.0020 0.0026∗∗

(0.0126) (0.0173) (0.0025) (0.0021) (0.0087) (0.0109) (0.0014) (0.0012)

s 12 0.0853 −0.1854∗ −0.0014∗∗−0.0006 0.0559 −0.1818 −0.0393∗∗−0.0430∗∗∗

(0.1009) (0.1077) (0.0006) (0.0004) (0.1064) (0.1123) (0.0163) (0.0140)

sTSE −0.0033 −0.0096∗∗−0.0400∗∗−0.0370∗∗∗−0.0025 −0.0046 −0.0007 −0.0006∗∗

(0.0041) (0.0046) (0.0155) (0.0134) (0.0030) (0.0036) (0.0005) (0.0003)

s× sTSE 0.0023 0.0071∗∗ 0.0009∗ 0.0008∗ 0.0027 0.0042 0.0005 0.0007∗∗

(0.0031) (0.0036) (0.0005) (0.0004) (0.0024) (0.0027) (0.0004) (0.0003)

N 12,958 15,534 15,534 12,958 15,534 15,534

*** p<0.01, ** p<0.05, * p<0.1

Note: We report results for the 3km (models 1-3) and 5km (models 4-6) radius. Model (1) and (4)

report results for the fixed effects multinomial logit model for positive and negative SWB dynamics.

Model (2), (3), (5), and (6) show results for fixed effects (FE) and random effects (RE) models, with a

binary dependent variable that is coded as one if a respondent reported to be worse off, and zero oth-

erwise. The set of explanatory variables comprises the full set of sociodemographic and socioeconomic

controls. Samples comprise those individuals (or households) for which we have at least two observa-

tions in the dataset. Standard errors (reported in parentheses) are clustered on the household level.
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Table A.10: Fixed and Random Effects Models for Negative SWB Dynamics -
Household Level

Model (1) (2) (3) (4) (5) (6)

Radius 3km 5 km

Estimation FEMlogit FE RE FEMlogit FE RE

∆+ ∆− ∆− ∆− ∆+ ∆− ∆− ∆−

Month Panel B: Household panel

s 1 0.0591 −0.1368 −0.0129∗ −0.0004 0.0373 −0.1633∗ −0.0326∗∗−0.0332∗∗∗

(0.0812) (0.0896) (0.0067) (0.0050) (0.0845) (0.0923) (0.0137) (0.0122)

sTSE −0.0227 −0.0888∗∗−0.0290∗∗−0.0273∗∗−0.0275 −0.0701∗∗∗−0.0094∗∗∗−0.0045

(0.0358) (0.0401) (0.0132) (0.0118) (0.0217) (0.0257) (0.0036) (0.0029)

s× sTSE 0.0270 0.0612 0.0080 0.0030 0.0252 0.0500∗∗ 0.0063∗ 0.0057∗

(0.0326) (0.0376) (0.0064) (0.0052) (0.0200) (0.0233) (0.0033) (0.0030)

s 3 0.0624 −0.1516∗ −0.0051∗∗−0.0018 0.0333 −0.1839∗ −0.0358∗∗−0.0371∗∗∗

(0.0821) (0.0903) (0.0025) (0.0019) (0.0859) (0.0939) (0.0140) (0.0124)

sTSE −0.0060 −0.0338∗∗−0.0321∗∗−0.0311∗∗∗−0.0131 −0.0249∗∗−0.0031∗∗−0.0023∗∗

(0.0123) (0.0169) (0.0134) (0.0119) (0.0086) (0.0104) (0.0014) (0.0011)

s× sTSE 0.0064 0.0297∗ 0.0044∗ 0.0029 0.0089 0.0226∗∗ 0.0029∗∗ 0.0029∗∗

(0.0106) (0.0154) (0.0023) (0.0020) (0.0076) (0.0094) (0.0013) (0.0011)

s 12 0.0394 −0.1796∗ −0.0014∗∗−0.0006 0.0228 −0.1958∗∗−0.0384∗∗∗−0.0409∗∗∗

(0.0866) (0.0938) (0.0006) (0.0004) (0.0915) (0.0982) (0.0148) (0.0132)

sTSE −0.0032 −0.0094∗∗−0.0358∗∗−0.0346∗∗∗−0.0032 −0.0052∗ −0.0008∗ −0.0006∗∗

(0.0035) (0.0039) (0.0140) (0.0125) (0.0026) (0.0030) (0.0004) (0.0003)

s× sTSE 0.0028 0.0071∗∗ 0.0010∗∗ 0.0008∗ 0.0023 0.0052∗∗ 0.0007∗∗ 0.0008∗∗∗

(0.0027) (0.0030) (0.0005) (0.0004) (0.0021) (0.0023) (0.0003) (0.0003)

N 16,289 17,313 17,313 16,289 17,313 17,313

*** p<0.01, ** p<0.05, * p<0.1

Note: We report results for the 3km (models 1-3) and 5km (models 4-6) radius. Model (1) and (4)

report results for the fixed effects multinomial logit model for positive and negative SWB dynamics.

Model (2), (3), (5), and (6) show results for fixed effects (FE) and random effects (RE) models, with a

binary dependent variable that is coded as one if a respondent reported to be worse off, and zero oth-

erwise. The set of explanatory variables comprises the full set of sociodemographic and socioeconomic

controls. Samples comprise those individuals (or households) for which we have at least two observa-

tions in the dataset. Standard errors (reported in parentheses) are clustered on the household level.
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Figure A.2: Average Marginal Effects (%) for SWB Dynamics - Maximum Days of
Flood Exposure Measure

-1
0

1
2

3

1 month, 1000 m

-1
.5-1

-.5
0

.5
1

1 month, 2000 m

-1
.5

-1
-.5

0
.5

1 month, 3000 m

-1
-.5

0
.5

1 month, 4000 m

-1
-.5

0
.5

1 month, 5000 m

-.5
0

.5
1

3 months, 1000 m

-.4
-.2

0
.2

.4

3 months, 2000 m

-.4
-.2

0
.2

.4

3 months, 3000 m

-.4
-.2

0
.2

3 months, 4000 m

-.4
-.2

0
.2

3 months, 5000 m
-.1

0
.1

.2

12 months, 1000 m

-.1
-.0

5 0
.0

5 .1
.1

5

12 months, 2000 m

-.1
-.0

5
0

.0
5

12 months, 3000 m

-.1
5-.1

-.0
5

0
.0

5

12 months, 4000 m

-.1
-.0

5
0

.0
5

12 months, 5000 m

pos. SWB dynamic (no shock experience)

pos. SWB dynamic (shock experience)

neg. SWB dynamic (no shock experience)

neg. SWB dynamic (shock experience)

mean       p90          p99

Note: All marginal effects draw upon the main sample of 17,346 observations. The depicted

response and shock experience specific average marginal effects have been calculated at the

mean, the 90th and 99th percentile of the tangential shock variable (maximum days of flood

exposure). The whiskers indicate the 90% confidence intervals.



Appendix B 113



Appendix B - Appendix for Chapter 3

114



Appendix B 115

B.1 Survey Appendix

Figure B.1: Household Debt to GDP Ratio, Selected Emerging Markets
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Table B.2: Subsample Probability Question: Objective OI-Indicators

. Obj. Index DSR > 0.4 RDSR > 0.4 Paid Late > 2 Loans

(1) (2) (3) (4) (5)

Very Negative −0.088 −0.067 −0.024 −0.003 −0.008

(0.166) (0.052) (0.093) (0.043) (0.061)

Negative 0.061 −0.071 0.075 0.079∗∗ −0.009

(0.178) (0.064) (0.075) (0.038) (0.066)

Neutral 0.109 0.010 0.033 0.090 −0.014

(0.196) (0.076) (0.066) (0.060) (0.068)

Positive 0.373∗∗ 0.105∗∗ 0.218∗∗∗ 0.141∗∗∗ −0.025

(0.137) (0.047) (0.063) (0.043) (0.058)

Constant −1.978∗∗ −0.103 −0.914∗∗∗ −0.008 −0.448

(0.845) (0.315) (0.316) (0.303) (0.383)

Controls Yes Yes Yes Yes Yes

Observations 525 525 525 522 525

Adj. R-squared 0.092 0.054 0.124 0.044 0.039

*** p<0.01, ** p<0.05, * p<0.1

Note: Clustered standard errors in parentheses. The variables very negative, negative, neutral, and pos-

itive represent the income forecast groups. Households with a mildly negative income forecast serve as

the reference group. Households with a mildly negative income forecast serve as the reference group.

Additional controls: age, age squared, children (0-6), children (7-10), children (11-16), financial liter-

acy score, loss from crime shocks, loss from economic shocks, loss from environmental shocks, loss from

other shocks, main income farming, main income employed, main income self-employed, main income

remittances, monthly household income 2017, no. of elders in hh, no. of working members in hh, risk

preference, self-control, social status, total hh education.
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Table B.3: Subsample Probability Question: Subjective OI-Indicators

. Subj. Index Debt Position Diff. Pay off Debt Sacrifice Index

(1) (2) (3) (4)

Very Negative 0.210 −0.003 0.059 0.282∗∗

(0.131) (0.115) (0.047) (0.106)

Negative 0.124 0.044 0.012 0.207

(0.118) (0.135) (0.027) (0.154)

Neutral 0.019 0.026 0.017 −0.073

(0.115) (0.127) (0.024) (0.094)

Positive 0.343∗∗∗ 0.213∗∗ 0.057∗∗ 0.351∗∗∗

(0.092) (0.083) (0.025) (0.120)

Constant −0.872 −1.816∗∗ 0.059 0.154

(0.829) (0.726) (0.181) (0.688)

Controls Yes Yes Yes Yes

Observations 525 525 523 525

Adj. R-squared 0.109 0.076 0.055 0.119

*** p<0.01, ** p<0.05, * p<0.1

Note: Clustered standard errors in parentheses. The variables very negative, negative, neutral, and pos-

itive represent the income forecast groups. Households with a mildly negative income forecast serve as

the reference group. Households with a mildly negative income forecast serve as the reference group.

Additional controls: age, age squared, children (0-6), children (7-10), children (11-16), financial liter-

acy score, loss from crime shocks, loss from economic shocks, loss from environmental shocks, loss from

other shocks, main income farming, main income employed, main income self-employed, main income

remittances, monthly household income 2017, no. of elders in hh, no. of working members in hh, risk

preference, self-control, social status, total hh education.
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Table B.4: Subsample Financial Decision Makers: Objective OI-Indicators

. Obj. Index DSR > 0.4 RDSR > 0.4 Paid Late > 2 Loans

(1) (2) (3) (4) (5)

Very Negative −0.098 −0.024 −0.032 −0.027 −0.031

(0.154) (0.055) (0.085) (0.040) (0.067)

Negative −0.016 −0.064 0.076 0.045 −0.069

(0.141) (0.051) (0.064) (0.035) (0.072)

Neutral 0.094 0.002 0.041 0.083 −0.023

(0.197) (0.070) (0.067) (0.060) (0.078)

Positive 0.352∗∗ 0.093 0.212∗∗∗ 0.132∗∗∗ −0.023

(0.153) (0.055) (0.073) (0.042) (0.064)

Constant −1.394∗ 0.082 −0.634∗∗ 0.076 −0.299

(0.676) (0.340) (0.292) (0.236) (0.308)

Controls Yes Yes Yes Yes Yes

Observations 575 575 575 572 575

Adj. R-squared 0.094 0.040 0.141 0.046 0.046

*** p<0.01, ** p<0.05, * p<0.1

Note: Clustered standard errors in parentheses. The variables very negative, negative, neutral, and pos-

itive represent the income forecast groups. Households with a mildly negative income forecast serve as

the reference group. Households with a mildly negative income forecast serve as the reference group.

Additional controls: age, age squared, children (0-6), children (7-10), children (11-16), financial liter-

acy score, loss from crime shocks, loss from economic shocks, loss from environmental shocks, loss from

other shocks, main income farming, main income employed, main income self-employed, main income

remittances, monthly household income 2017, no. of elders in hh, no. of working members in hh, risk

preference, self-control, social status, total hh education.
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Table B.5: Subsample Financial Decision Makers: Subjective OI-Indicators

. Subj. Index Debt Position Diff. Pay off Debt Sacrifice Index

(1) (2) (3) (4)

Very Negative 0.141 −0.041 0.047 0.204∗

(0.122) (0.134) (0.040) (0.116)

Negative 0.108 −0.042 0.021 0.245

(0.120) (0.116) (0.027) (0.208)

Neutral −0.030 −0.053 0.013 −0.074

(0.115) (0.114) (0.018) (0.135)

Positive 0.252∗∗ 0.148∗∗ 0.040 0.278∗

(0.100) (0.069) (0.026) (0.156)

Constant −0.181 −1.442∗∗ 0.194 0.848

(0.710) (0.563) (0.179) (0.787)

Controls Yes Yes Yes Yes

Observations 575 575 573 575

Adj. R-squared 0.140 0.108 0.065 0.132

*** p<0.01, ** p<0.05, * p<0.1

Note: Clustered standard errors in parentheses. The variables very negative, negative, neutral, and pos-

itive represent the income forecast groups. Households with a mildly negative income forecast serve as

the reference group. Households with a mildly negative income forecast serve as the reference group.

Additional controls: age, age squared, children (0-6), children (7-10), children (11-16), financial liter-

acy score, loss from crime shocks, loss from economic shocks, loss from environmental shocks, loss from

other shocks, main income farming, main income employed, main income self-employed, main income

remittances, monthly household income 2017, no. of elders in hh, no. of working members in hh, risk

preference, self-control, social status, total hh education.
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Table B.6: Interaction of Over-Indebtedness Indices with Conscientiousness

. Obj. Index Subj. Debt Index

(1) (2)

Very Negative −0.409 1.102

(0.747) (0.867)

Negative −0.767 0.834

(0.498) (0.668)

Neutral −0.184 0.169

(0.801) (0.596)

Positive −0.071 0.909

(0.773) (0.592)

Conscientiousness −0.105 0.077

(0.069) (0.085)

Very neg. x Conscient. 0.068 −0.155

(0.127) (0.140)

Negative x Conscient. 0.144∗ −0.119

(0.076) (0.107)

Neutral x Conscient. 0.056 −0.021

(0.127) (0.103)

Positive x Conscient. 0.071 −0.113

(0.122) (0.106)

Constant −0.859 −0.942

(0.777) (0.769)

Controls Yes Yes

Observations 676 676

Adj. R-squared 0.095 0.130

*** p<0.01, ** p<0.05, * p<0.1

Note: Clustered standard errors in parentheses. The variables very negative, negative, neutral, and pos-

itive represent the income forecast groups. Households with a mildly negative income forecast serve as

the reference group. Households with a mildly negative income forecast serve as the reference group.

Additional controls: age, age squared, children (0-6), children (7-10), children (11-16), financial liter-

acy score, loss from crime shocks, loss from economic shocks, loss from environmental shocks, loss from

other shocks, main income farming, main income employed, main income self-employed, main income

remittances, monthly household income 2017, no. of elders in hh, no. of working members in hh, risk

preference, self-control, social status, total hh education.
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Table B.7: Objective Over-Indebtedness, Quantitative Inc. Forecast Dummy

Obj. Index DSR > 0.4 RDSR > 0.4 Paid Late/Default > 2 Loans

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Forecast Dummy 0.269∗∗ 0.245∗∗ 0.131∗∗∗ 0.095∗∗ 0.163∗∗∗ 0.137∗∗ 0.058∗ 0.077∗∗ −0.033 −0.022

(0.097) (0.101) (0.036) (0.038) (0.049) (0.049) (0.031) (0.034) (0.035) (0.040)

Farming Shocks −0.000 −0.000 −0.000 −0.000 0.000

(0.002) (0.000) (0.001) (0.001) (0.001)

Environ. Shocks 0.005∗∗∗ −0.000 0.002∗∗∗ 0.002∗ 0.002∗∗∗

(0.001) (0.001) (0.000) (0.001) (0.001)

Economic Shocks 0.003∗∗∗ 0.000 0.002∗∗∗ 0.001∗ 0.000

(0.001) (0.000) (0.001) (0.001) (0.001)

Crime Shocks −0.014 −0.003 −0.012∗∗∗ −0.001 −0.001

(0.009) (0.002) (0.003) (0.004) (0.004)

Other Shocks −0.000 −0.000 −0.000 0.000∗ −0.000

(0.000) (0.000) (0.000) (0.000) (0.000)

Constant −0.061 −1.274∗∗ 0.150∗∗∗ 0.133 0.358∗∗∗−0.518∗ 0.141∗∗∗ 0.074 0.237∗∗∗−0.314

(0.091) (0.546) (0.031) (0.285) (0.042) (0.294) (0.015) (0.226) (0.044) (0.265)

Controls No Yes No Yes No Yes No Yes No Yes

Observations 686 676 686 676 686 676 683 673 686 676

Adj. R-squared 0.012 0.099 0.020 0.048 0.019 0.121 0.003 0.037 -0.000 0.055

*** p<0.01, ** p<0.05, * p<0.1

Note: Clustered standard errors in parentheses. The variables very negative, negative, neutral, and positive represent the

income forecast groups. Households with a mildly negative income forecast serve as the reference group. Households with

a mildly negative income forecast serve as the reference group. Additional controls: age, age squared, children (0-6), chil-

dren (7-10), children (11-16), financial literacy score, loss from crime shocks, loss from economic shocks, loss from envi-

ronmental shocks, loss from other shocks, main income farming, main income employed, main income self-employed, main

income remittances, monthly household income 2017, no. of elders in hh, no. of working members in hh, risk preference,

self-control, social status, total hh education.
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Table B.8: Subjective Over-Indebtedness, Quantitative Inc. Forecast Dummy

Subj. Index Debt Position Diff. Pay off Debt Sacrifice Index

(1) (2) (3) (4) (5) (6) (7) (8)

Quant. Inc. Forecast Dummy 0.063 0.172∗ 0.105 0.165∗ −0.005 0.019 0.054 0.146

(0.097) (0.093) (0.094) (0.086) (0.020) (0.024) (0.079) (0.087)

Farming Shocks −0.001 0.001 −0.000∗∗ −0.003

(0.001) (0.001) (0.000) (0.002)

Environmental Shocks 0.007∗∗∗ 0.003∗∗∗ 0.002∗∗∗ 0.004∗

(0.001) (0.001) (0.001) (0.002)

Economic Shocks 0.000 0.003∗∗ −0.001 −0.000

(0.001) (0.001) (0.000) (0.002)

Crime Shocks 0.000 −0.006 0.003 −0.006

(0.014) (0.008) (0.003) (0.015)

Other Shocks 0.002∗∗∗ 0.000 0.001∗∗∗ 0.002∗∗∗

(0.001) (0.000) (0.000) (0.000)

Constant −0.037 −0.430 −0.044 −1.447∗∗∗ 0.066∗∗∗ 0.152 −0.100∗ 0.377

(0.040) (0.566) (0.045) (0.504) (0.011) (0.147) (0.050) (0.584)

Controls No Yes No Yes No Yes No Yes

Observations 686 676 686 676 684 674 686 676

Adj. R-squared -0.001 0.133 0.001 0.099 -0.001 0.073 -0.001 0.117

*** p<0.01, ** p<0.05, * p<0.1

Note: Clustered standard errors in parentheses. The variables very negative, negative, neutral, and positive repre-

sent the income forecast groups. Households with a mildly negative income forecast serve as the reference group.

Households with a mildly negative income forecast serve as the reference group. Additional controls: age, age

squared, children (0-6), children (7-10), children (11-16), financial literacy score, loss from crime shocks, loss from

economic shocks, loss from environmental shocks, loss from other shocks, main income farming, main income em-

ployed, main income self-employed, main income remittances, monthly household income 2017, no. of elders in

hh, no. of working members in hh, risk preference, self-control, social status, total hh education.
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Table B.9: Certainty Measure - Objective Over-Indebtedness - Quantitative Inc.
Forecast Dummy

. Obj. Index DSR > 0.4 RDSR > 0.4 Paid Late > 2 Loans

(1) (2) (3) (4) (5)

Quant. Inc. Forecast Dummy 0.242∗∗ 0.096∗∗ 0.130∗∗ 0.079∗∗ −0.023

(0.103) (0.040) (0.050) (0.035) (0.041)

Certainty 0.127∗ 0.053∗∗ 0.043 −0.008 0.062∗∗

(0.061) (0.023) (0.027) (0.024) (0.022)

Constant −1.406∗∗ 0.080 −0.587∗ 0.160 −0.443

(0.526) (0.286) (0.299) (0.247) (0.262)

Controls Yes Yes Yes Yes Yes

Observations 664 664 664 661 664

Adj. R-squared 0.102 0.056 0.121 0.035 0.063

*** p<0.01, ** p<0.05, * p<0.1

Note: Clustered standard errors in parentheses. The variables very negative, negative, neutral, and pos-

itive represent the income forecast groups. Households with a mildly negative income forecast serve as

the reference group. Households with a mildly negative income forecast serve as the reference group.

Additional controls: age, age squared, children (0-6), children (7-10), children (11-16), financial liter-

acy score, loss from crime shocks, loss from economic shocks, loss from environmental shocks, loss from

other shocks, main income farming, main income employed, main income self-employed, main income

remittances, monthly household income 2017, no. of elders in hh, no. of working members in hh, risk

preference, self-control, social status, total hh education.
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Table B.10: Certainty Measure - Subjective Over-Indebtedness - Quantitative Inc.
Forecast Dummy

. Subj. Index Debt Position Diff. Pay off Debt Sacrifice Index

(1) (2) (3) (4)

Quant. Inc. Forecast Dummy 0.156 0.160∗ 0.014 0.133

(0.094) (0.091) (0.022) (0.091)

Certainty 0.064 0.090 0.005 0.023

(0.089) (0.066) (0.021) (0.107)

Constant −0.609 −1.761∗∗∗ 0.154 0.331

(0.630) (0.571) (0.153) (0.726)

Controls Yes Yes Yes Yes

Observations 664 664 662 664

Adj. R-squared 0.133 0.103 0.072 0.112

*** p<0.01, ** p<0.05, * p<0.1

Note: Clustered standard errors in parentheses. The variables very negative, negative, neutral, and pos-

itive represent the income forecast groups. Households with a mildly negative income forecast serve as

the reference group. Households with a mildly negative income forecast serve as the reference group.

Additional controls: age, age squared, children (0-6), children (7-10), children (11-16), financial liter-

acy score, loss from crime shocks, loss from economic shocks, loss from environmental shocks, loss from

other shocks, main income farming, main income employed, main income self-employed, main income

remittances, monthly household income 2017, no. of elders in hh, no. of working members in hh, risk

preference, self-control, social status, total hh education.
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B.2 The Qualitative Forecast Error

Deriving the Qualitative Forecast Error

We develop a measure of expectation accuracy closely following Souleles (2004) and Hyytinen and

Putkuri (2018), which enables us to replicate the latter authors’ results. We make use of the available

panel data and combine categorical answers to the question, “How do you think your average monthly

income will develop in the next twelve months?” (Et−1(Inci,t)) asked in 2016 (one year prior to our

survey) with responses to the question “Do you think your household is better off than last year” asked

in 2017 (A(Inci,t)).
1 We call the difference between these two questions qualitative forecast error:

Qualitative Forecast Error = A(Inci,t)− Et−1(Inci,t) (B.2.1)

A positive qualitative forecast error occurs if the expected household situation is better than the realized

one and a negative if the opposite is true. We form five categories ranging from a very negative to a

very positive qualitative forecast error, which enter the regression analysis as dummy variables. The

category with households making no forecast error serves as omitted group.

As the qualitative forecast error is derived at the household level, the respondent may not be the

same for all three data points. Therefore, we re-run the analysis for a sub-sample with only identical

respondents, which does not change the results. We assume that the household’s qualitative assessment

regarding its own development stays similar for a time period of two years and, thus, is able to explain

indebtedness in 2017. There are two reasons encouraging this view: We are able to control for a rich set

of socio-economic variables that capture household formation and, as incomes are rather stationary,

expectations may also change slowly.

Results for the Qualitative Forecast Error

The regressions we run for the qualitative forecast error take the same form as the ones for the

quantitative income forecast (standard errors are clustered at the district level):

Over − Indebtedness Indexi = β0 + β1Qual.FEi +X
′

iβ2 + εi (B.2.2)

Results for the objective and subjective over-indebtedness indices are presented in Tables B.2.1 and

B.2.2. With regards to the relationship between the objective OI-Index and the qualitative forecast

error, we find that over-indebtedness increases by 0.42 points if respondents exhibit a very positive

forecast error. The results are driven by two components: the remaining debt to service ratio (columns

(5) and (6), Table B.2.1) and the probability of whether people paid late or defaulted on a loan (columns

(7) and (8)). The results are similar to those of the quantitative income forecast. We again find that

very positive forecasts are related to a higher probability of being objectively over-indebted. Point

estimates are slightly higher for results from the qualitative forecast error. Regarding the impact of

losses from shocks as well as additional control variables, results are similar to those of the quantitative

1 Answer options range on a scale from 1-5. For the question asked in 2016, one means “increase a
lot” and five “decrease a lot.” The question asked in 2017 ranges from one being “much better off”
to five “much worse off.”



Appendix B 127

income forecast. Overall, results from the qualitative forecast error confirm the findings from the

quantitative income forecast: positive future income expectations are related to increasing objective

over-indebtedness.

Table B.2.1: Qualitative Forecast Error - Main Results Objective OI-Indicators

Obj. Index DSR > 0.4 RDSR > 0.4 Paid Late/Default > 2 Loans

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Very negative 0.130 0.179 −0.089 −0.073 0.118 0.148 0.106 0.109 0.024 0.034

(0.222) (0.236) (0.061) (0.067) (0.129) (0.142) (0.106) (0.101) (0.067) (0.065)

Negative −0.158∗∗ −0.055 −0.046 −0.030 −0.033 0.006 −0.026 −0.003 −0.076 −0.033

(0.063) (0.069) (0.032) (0.035) (0.040) (0.044) (0.028) (0.029) (0.047) (0.048)

Positive 0.165∗∗ 0.069 0.007 −0.009 0.087∗ 0.044 0.035 0.014 0.069 0.034

(0.064) (0.070) (0.031) (0.034) (0.045) (0.040) (0.036) (0.035) (0.041) (0.039)

Very Positive 0.443∗∗ 0.410∗∗ 0.070 0.052 0.194∗∗∗ 0.182∗∗∗ 0.151∗ 0.149∗∗ 0.100 0.093

(0.170) (0.144) (0.073) (0.068) (0.058) (0.050) (0.073) (0.067) (0.063) (0.057)

Farming Shocks 0.000 0.000 −0.000 0.000 0.000

(0.001) (0.000) (0.000) (0.000) (0.000)

Environm. Shocks 0.003∗∗ −0.000 0.002∗∗∗ 0.001 0.001∗∗

(0.001) (0.001) (0.001) (0.001) (0.001)

Economic Shocks 0.003∗∗∗ 0.001∗∗ 0.001∗∗∗ 0.001∗∗ 0.000

(0.001) (0.000) (0.000) (0.000) (0.000)

Crime Shocks −0.012∗∗∗ −0.003∗∗∗ −0.006∗∗ −0.002 −0.003

(0.004) (0.001) (0.002) (0.002) (0.002)

Other Shocks −0.000 −0.000∗∗ −0.000 0.000 −0.000

(0.000) (0.000) (0.000) (0.000) (0.000)

Constant −0.059 −1.264∗∗ 0.184∗∗∗ 0.190 0.359∗∗∗−0.508∗ 0.132∗∗∗ 0.059 0.214∗∗∗−0.355

(0.082) (0.584) (0.032) (0.320) (0.032) (0.290) (0.020) (0.229) (0.038) (0.275)

Controls No Yes No Yes No Yes No Yes No Yes

Observations 688 676 688 676 688 676 685 673 688 676

Adj. R-squared 0.022 0.120 0.002 0.044 0.014 0.124 0.013 0.050 0.011 0.063

*** p<0.01, ** p<0.05, * p<0.1

Note: Clustered standard errors in parentheses. The variables very negative, negative, positive, and very positive represent

the forecast groups. Households with no forecast error serve as the reference group. Additional controls: age, age squared,

children (0-6), children (7-10), children (11-16), financial literacy score, main income farming, main income employed,

main income self-employed, main income remittances, monthly household income 2017, no. of elders in hh, no. of working

members in hh, risk preference, self-control, social status, total hh education.

We also find a strongly significant relationship between positive qualitative forecast errors and

subjective over-indebtedness. This relationship is much stronger than for the quantitative income

forecast. Again, we only find a robust relationship for households in the group with the largest positive

forecasts. The subjective OI-Index increases by 0.42 points for respondents who exhibit very positive

forecast errors (columns (1) and (2), Table B.2.2). Mainly, this is due to the positive relationship

between the forecast error and the “debt position” component of the index and the sacrifice index

component. Households with a very positive error tend to state more frequently that they “have too

much debt right now” (columns (3) and (4)) and that they make an increasing number of everyday

sacrifices to repay their loans (column (7) and (8)). We conclude that the nature of the qualitative
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forecast error being more “subjectively” elicited than the calculated quantitative income forecast per

se, might be reflected in more pronounced results regarding subjectively “felt” debt. This is also in line

with our analysis from the quantitative income forecast that subjective over-indebtedness may rather

be a concept of perceived financial distress affected by not only the household’s true debt situation

but also by respondent characteristics.

Table B.2.2: Qualitative Forecast Error - Main Results Subjective OI-Indicators

. Subj. Index Debt Position Diff. Pay off Debt Sacrifice Index

(1) (2) (3) (4) (5) (6) (7) (8)

Very negative 0.218 0.140 0.064 0.055 0.052 0.027 0.243 0.167

(0.258) (0.245) (0.230) (0.261) (0.068) (0.060) (0.214) (0.198)

Negative −0.025 0.030 −0.091 −0.011 0.030 0.028 −0.096 −0.046

(0.127) (0.103) (0.072) (0.061) (0.035) (0.031) (0.153) (0.134)

Positive 0.208∗∗ 0.105 0.139∗ 0.065 0.021 0.011 0.265∗ 0.134

(0.077) (0.083) (0.072) (0.069) (0.016) (0.019) (0.150) (0.133)

Very Positive 0.476∗∗ 0.455∗∗ 0.351∗ 0.361∗∗ 0.091 0.086 0.352∗ 0.308∗

(0.208) (0.186) (0.177) (0.155) (0.053) (0.053) (0.187) (0.160)

Farming Shocks 0.000 0.000 0.000 −0.001

(0.001) (0.001) (0.000) (0.001)

Environ. Shocks 0.002 0.001 0.001 0.001

(0.002) (0.001) (0.001) (0.002)

Economic Shocks 0.000 0.002∗∗ −0.000∗ 0.001

(0.001) (0.001) (0.000) (0.001)

Crime Shocks −0.003 −0.000 −0.000 −0.007

(0.007) (0.007) (0.002) (0.006)

Other Shocks 0.001∗∗∗ 0.000 0.000∗∗∗ 0.001∗∗

(0.000) (0.000) (0.000) (0.000)

Constant −0.122∗∗ −0.499 −0.074 −1.459∗∗ 0.043∗∗∗ 0.122 −0.176∗∗ 0.357

(0.057) (0.664) (0.050) (0.530) (0.014) (0.175) (0.072) (0.626)

Controls No Yes No Yes No Yes No Yes

Observations 688 676 688 676 686 674 688 676

Adj. R-squared 0.019 0.136 0.015 0.102 0.006 0.073 0.012 0.115

*** p<0.01, ** p<0.05, * p<0.1

Note: Clustered standard errors in parentheses. The variables very negative, negative, positive, and

very positive represent the forecast groups. Households with no forecast error serve as the reference

group. Additional controls: age, age squared, children (0-6), children (7-10), children (11-16), financial

literacy score, main income farming, main income employed, main income self-employed, main income

remittances, monthly household income 2017, no. of elders in hh, no. of working members in hh, risk

preference, self-control, social status, total hh education.

Furthermore, we again add an income certainty measure to the regression. Results are presented
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in Tables B.2.3 and B.2.4. There is no relationship between future income certainty on objective and

subjective over-indebtedness. For the subjective OI-Indicators, results are in line with those from the

quantitative income forecast. However, they differ for objective over-indebtedness. While we find that

higher income certainty is related to higher objective over-indebtedness with respect to the quantitative

income forecast, we do not find that relationship with the qualitative error. This may be due to the

more subjective nature of the qualitative forecast error.

Table B.2.3: Objective Over-Indebtedness - Income Certainty

. Obj. Index DSR > 0.4 RDSR > 0.4 Paid Late > 2 Loans

(1) (2) (3) (4) (5)

Very negative 0.180 −0.075 0.151 0.110 0.034

(0.242) (0.067) (0.145) (0.102) (0.066)

Negative −0.056 −0.030 0.007 −0.004 −0.034

(0.068) (0.035) (0.044) (0.029) (0.048)

Positive 0.070 −0.010 0.045 0.015 0.034

(0.069) (0.034) (0.040) (0.035) (0.039)

Very Positive 0.465∗∗ 0.093 0.187∗∗∗ 0.153∗ 0.104∗

(0.164) (0.078) (0.059) (0.074) (0.058)

Certainty 0.046 0.030 0.008 0.004 0.011

(0.049) (0.020) (0.017) (0.019) (0.024)

Constant −1.481∗∗ −0.001 −0.640∗∗ 0.066 −0.297

(0.551) (0.295) (0.280) (0.262) (0.261)

Controls Yes Yes Yes Yes Yes

Observations 663 663 663 660 663

Adj. R-squared 0.118 0.050 0.122 0.046 0.058

*** p<0.01, ** p<0.05, * p<0.1

Note: Clustered standard errors in parentheses. Households with no forecast error serve as the reference

group. The variables very negative, negative, positive, and very positive represent the forecast groups.

Households with no forecast error serve as the reference group. Additional controls: age, age squared,

children (0-6), children (7-10), children (11-16), financial literacy score, loss from crime shocks, loss

from economic shocks, loss from environmental shocks, loss from other shocks, main income farming,

main income employed, main income self-employed, main income remittances, monthly household in-

come 2017, no. of elders in hh, no. of working members in hh, risk preference, self-control, social status,

total hh education.
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Table B.2.4: Subjective Over-Indebtedness - Income Certainty

. Subj. Index Debt Position Diff. Pay off Debt Sacrifice Index

(1) (2) (3) (4)

Very negative 0.150 0.063 0.026 0.186

(0.242) (0.258) (0.060) (0.192)

Negative 0.028 −0.012 0.028 −0.048

(0.104) (0.061) (0.031) (0.136)

Positive 0.109 0.068 0.011 0.141

(0.085) (0.071) (0.019) (0.135)

Very Positive 0.578∗∗ 0.429∗∗ 0.116∗ 0.400∗∗

(0.211) (0.191) (0.064) (0.169)

Certainty −0.035 −0.033 0.010 −0.103

(0.058) (0.048) (0.012) (0.072)

Constant −0.356 −1.374∗∗ 0.128 0.605

(0.667) (0.563) (0.181) (0.629)

Controls Yes Yes Yes Yes

Observations 663 663 661 663

Adj. R-squared 0.143 0.104 0.076 0.121

*** p<0.01, ** p<0.05, * p<0.1

Note: Clustered standard errors in parentheses. Households with no forecast error serve as the reference

group. The variables very negative, negative, positive, and very positive represent the forecast groups.

Households with no forecast error serve as the reference group. Additional controls: age, age squared,

children (0-6), children (7-10), children (11-16), financial literacy score, loss from crime shocks, loss

from economic shocks, loss from environmental shocks, loss from other shocks, main income farming,

main income employed, main income self-employed, main income remittances, monthly household in-

come 2017, no. of elders in hh, no. of working members in hh, risk preference, self-control, social status,

total hh education.

Overall, results from the qualitative forecast error confirm the main findings from the quantitative

income forecast: very positive forecasts are related to a higher level of over-indebtedness. There is no

such relationship for negative forecasts and over-indebtedness. The results also support the analysis

from the quantitative income forecast that subjective and objective over-indebtedness indicators mea-

sure different dimensions of indebtedness. Finally, our results from the qualitative forecast error are in

line with those of Hyytinen and Putkuri (2018). They report that households with a very positive fore-

cast error are more likely to be over-indebted and that such a pattern cannot be found for households

with negative forecast errors. Our results show the same relationship.



Appendix B 131

B.3 Experiment Appendix

Table B.3.1: Descriptive Statistics by Participation in Game

Full Sample Participating Non-Participating Difference

Sex 1.66 1.63 1.76 0.12∗∗∗

Age 57.01 56.35 59.78 3.43∗∗∗

Relation to HH Head 1.67 1.66 1.71 0.05

Marital Status 2.15 2.14 2.22 0.09

Main Occupation 4.97 4.66 6.29 1.64∗

Years of Schooling 5.74 5.83 5.33 −0.51∗

Children (0-6 years) 0.32 0.32 0.33 0.01

Children (7-10 years) 0.24 0.23 0.25 0.02

Numeracy 2.05 2.13 1.69 −0.45∗∗∗

Health Status 1.40 1.38 1.46 0.08

BMI 23.64 23.70 23.41 −0.28

Fin. Decision Maker 1.57 1.56 1.60 0.03

Self Control 21.26 21.02 22.26 1.24

Risk Taking 3.95 3.99 3.78 −0.21

Fin. Risk Taking 3.94 4.04 3.57 −0.47∗∗

FL-Score 5.50 5.63 4.95 −0.68∗∗∗

Monthly Inc. 2017 19197.02 19313.71 18704.57 −609.14

Obj. OI-Index 0.00 0.00 −0.00 −0.00

Subj. OI-Index −0.00 −0.01 0.03 0.04

Morning 0.53 0.53 0.53 0.00

Midday 0.24 0.26 0.17 −0.09∗∗∗

Observations 748 604 144 748

*** p<0.01, ** p<0.05, * p<0.1
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Table B.3.2: Linear Probability Model Participation in Game

. Participation

Sex −0.077∗∗

(0.036)

Age −0.003∗∗

(0.002)

Fin. Risk Taking 0.023∗∗

(0.010)

FL-Score 0.020∗∗

(0.010)

Morning 0.083∗∗

(0.040)

Midday 0.144∗∗∗

(0.043)

Observations 717

*** p<0.01, ** p<0.05, * p<0.1

Note: Only significant variables reported, remaining variables are the same as in Table B.3.1.
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Table B.3.3: Descriptive Statistics for Excluded Sample

Full Sample In Out Difference

Sex 1.65 1.64 1.67 −0.03

Age 56.40 56.16 57.75 −1.59

Relation to HH Head 1.68 1.70 1.56 0.14

Marital Status 2.14 2.13 2.24 −0.11

Main Occupation 4.68 4.79 4.08 0.71

Years of Schooling 5.87 5.92 5.60 0.32

Children (0-6 years) 0.31 0.33 0.25 0.08

Children (7-10 years) 0.24 0.26 0.13 0.13∗∗∗

Numeracy 2.13 2.14 2.04 0.11

Health Status 1.38 1.38 1.38 0.00

BMI 23.69 23.58 24.27 −0.68

Fin. Decision Maker 1.56 1.57 1.52 0.05

Self Control 21.05 20.94 21.62 −0.67

Risk Taking 3.98 4.02 3.74 0.28

Fin. Risk Taking 4.03 4.06 3.90 0.15

FL-Score 5.62 5.66 5.40 0.26

Monthly Inc. 2017 18523.65 18653.06 17798.04 855.02

Obj. OI-Index 0.01 0.01 −0.02 0.03

Subj. OI-Index −0.03 −0.04 0.05 −0.09

Read Alone 1.45 1.44 1.49 −0.04

Difficulties 1.15 1.14 1.21 −0.08

Observations 555 471 84 555

*** p<0.01, ** p<0.05, * p<0.1

Figure B.3.1: CDF for the Expected Rank by Treatment, After the Main Quiz
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The Rationals

As mentioned above, so far we have excluded experiment participants who want to buy more than

they expect to earn. We refer to these persons as “rationals.” In this section, we discuss whether

these participants are actually rational or had difficulties in understanding the experiment and how

including these observations change our results. Comparing our main sample against all rationals does

not yield results that differ substantially from those presented in Table B.3.3. However, if we divide

the rationals into those participants who want to buy more than expected earnings could pay for but

less than eight goods and those who want to buy exactly eight goods (which would be the “truly”

rational decision), we find interesting differences. The former group has significantly lower education,

numeracy, and financial literacy than the main sample (see Table B.3.4). We see this as evidence that

they may have had difficulties understanding the game (from here on, we refer to these individuals as

non-rationals). It does not seem to be the case, however, that these are persons who generally have

problems controlling their own spending behavior (also outside the lab) because their debt to service

ratio is significantly smaller compared to the main sample.

Table B.3.4: Descriptive Statistics for Non-Rationals (only significant effects reported)

Full Sample Others Non-Rationals Difference

Years of Schooling 5.84 5.91 5.00 0.91∗∗∗

Children (7-10 years) 0.24 0.26 0.12 0.14∗∗

Numeracy 2.10 2.13 1.76 0.36∗

FL-Score 5.60 5.64 5.10 0.54∗

Observations 532 490 42 532

*** p<0.01, ** p<0.05, * p<0.1

The remaining rationals, however, not only have significantly higher numeracy and financial lit-

eracy, but also have a better understanding of the game as perceived by the interviewers (see Table

B.3.5) (for non-rationals the difference is in the opposite direction, but not significant). Thus, these

participants might have taken advantage of the set-up and reasoned that it is optimal for them to buy

as many goods as possible because of the large discount.

Table B.3.5: Descriptive Statistics for Rationals (only significant effects reported)

Full Sample Others Rationals Difference

Main Occupation 4.70 4.76 3.48 1.28∗

Numeracy 2.16 2.13 2.78 −0.66∗

FL-Score 5.66 5.64 6.22 −0.58∗

Difficulties in Game 1.15 1.16 1.00 0.16∗∗∗

Observations 513 490 23 513

*** p<0.01, ** p<0.05, * p<0.1

Including these two groups into the analysis, the results change as anticipated: the effect of ex-

pected rank on goods turns insignificant and negligible (see Table B.3.6). All other effects are almost

unchanged.
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Table B.3.6: Consumption Decision including Rationals

. Exp. Rank No. Goods

(1) (2) (3) (4)

Treatment 0.373∗∗ −0.234 −0.254

(0.168) (0.199) (0.199)

Exp. Rank 0.048 0.054

(0.052) (0.052)

Controls Yes Yes Yes Yes

Observations 511 511 511 511

*** p<0.01, ** p<0.05, * p<0.1

Note: Standard errors in parentheses. Treatment: 0=Hard Quiz, 1=Easy Quiz; A higher expected rank

corresponds to a higher expected performance. Controls: Health Status, Monthly HH income and Ob-

jective OI-Index.
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B.4 Online Appendix

Additional Regression Tables

Table B.4.1: Full Regression Output for Main Regression - Objective Over-Indebtedness

Obj. Index DSR > 0.4 RDSR > 0.4 Paid Late/Default > 2 Loans

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Very Negative −0.125 −0.017 −0.097∗ −0.022 −0.073 0.011 0.017 −0.015 0.001 0.010
(0.151) (0.143) (0.047) (0.050) (0.081) (0.079) (0.033) (0.036) (0.059) (0.060)

Negative 0.050 0.058 −0.067 −0.054 0.075 0.100∗ 0.081∗∗ 0.066∗∗ −0.029 −0.037
(0.134) (0.132) (0.045) (0.048) (0.058) (0.057) (0.032) (0.029) (0.057) (0.058)

Neutral 0.153 0.135 0.025 0.002 0.079 0.067 0.074 0.095∗ −0.002 −0.010
(0.153) (0.168) (0.050) (0.060) (0.058) (0.064) (0.045) (0.051) (0.061) (0.063)

Positive 0.289∗∗ 0.333∗∗ 0.098∗∗ 0.087∗ 0.187∗∗ 0.210∗∗∗ 0.109∗∗∗ 0.133∗∗∗ −0.054 −0.037
(0.134) (0.136) (0.042) (0.047) (0.072) (0.069) (0.038) (0.041) (0.055) (0.060)

Monthly Inc. 2017 −0.000 −0.000∗ −0.000∗∗∗ 0.000 0.000
(0.000) (0.000) (0.000) (0.000) (0.000)

Age 0.061∗∗∗ 0.007 0.031∗∗∗ 0.015∗ 0.019∗∗∗

(0.017) (0.008) (0.009) (0.008) (0.007)
Age Squared −0.001∗∗∗ −0.000 −0.000∗∗∗ −0.000∗∗ −0.000∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000)
FL-Score 0.021 0.008 0.018∗∗∗ −0.010 0.012

(0.018) (0.007) (0.006) (0.006) (0.007)
Risk Preference 0.054∗∗∗ 0.013∗ 0.026∗∗∗ 0.012 0.013

(0.018) (0.007) (0.008) (0.008) (0.008)
Self-Control 0.001 −0.002 −0.001 0.003 0.001

(0.006) (0.002) (0.003) (0.002) (0.002)
Main Inc. Farming −0.122 −0.066 −0.006 −0.090 0.032

(0.155) (0.059) (0.091) (0.057) (0.044)
Main Inc. Employed −0.194 −0.106∗ −0.032 −0.022 −0.063

(0.166) (0.059) (0.076) (0.057) (0.055)
Main Inc. Self-Emp. −0.163 −0.087 −0.025 −0.025 −0.053

(0.212) (0.089) (0.099) (0.068) (0.061)
Main Inc. Remitt. −0.151 −0.068 −0.016 −0.070 −0.015

(0.144) (0.060) (0.057) (0.058) (0.037)
Children (0-6 yrs) −0.085∗ −0.012 −0.057∗∗ 0.007 −0.045∗∗

(0.047) (0.017) (0.026) (0.027) (0.020)
Children (7-10 yrs) 0.092 0.012 0.079∗∗ 0.008 0.019

(0.082) (0.048) (0.033) (0.022) (0.036)
Children (11-16 yrs) 0.030 −0.017 0.017 0.025 0.009

(0.040) (0.020) (0.021) (0.020) (0.019)
No. of Elders 0.036 0.003 0.036∗ 0.034∗ −0.032

(0.040) (0.024) (0.018) (0.020) (0.023)
No. of Working Mem. 0.072∗ 0.022 0.008 0.002 0.051∗∗

(0.042) (0.015) (0.019) (0.019) (0.021)
Total HH Education −0.001 −0.000 0.002 −0.000 −0.003

(0.005) (0.002) (0.003) (0.002) (0.002)
Farming Shocks −0.000 −0.000 0.000 −0.000 0.000

(0.002) (0.000) (0.001) (0.001) (0.001)
Environ. Shocks 0.005∗∗∗ −0.000 0.002∗∗∗ 0.002∗∗ 0.002∗∗∗

(0.001) (0.001) (0.001) (0.001) (0.001)
Economic Shocks 0.003∗∗∗ 0.000 0.002∗∗∗ 0.001∗ 0.000

(0.001) (0.000) (0.001) (0.001) (0.001)
Crime Shocks −0.016∗ −0.004∗ −0.013∗∗∗ −0.002 −0.001

(0.009) (0.002) (0.003) (0.004) (0.004)
Other Shocks −0.000 −0.000 −0.000 0.000∗∗ −0.000

(0.000) (0.000) (0.000) (0.000) (0.000)
Social Status −0.140∗ −0.021 −0.028 −0.056∗∗∗ −0.051

(0.071) (0.023) (0.033) (0.019) (0.032)
Constant −0.073 −1.425∗∗ 0.189∗∗∗ 0.119 0.343∗∗∗ −0.617∗∗ 0.099∗∗∗ −0.016 0.245∗∗∗ −0.291

(0.144) (0.576) (0.048) (0.296) (0.072) (0.286) (0.019) (0.243) (0.063) (0.280)

Controls No Yes No Yes No Yes No Yes No Yes
Observations 688 676 688 676 688 676 685 673 688 676
Adj. R-squared 0.014 0.099 0.025 0.046 0.025 0.125 0.007 0.044 -0.003 0.053

*** p<0.01, ** p<0.05, * p<0.1

Note: Clustered standard errors in parentheses.
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Table B.4.2: Full Regression Output for Main Regression - Subjective
Over-Indebtedness

Subj. Index Debt Position Diff. Pay off Debt Sacrifice Index

(1) (2) (3) (4) (5) (6) (7) (8)

Very Negative 0.182 0.215∗ 0.040 0.036 0.065∗∗ 0.058 0.118 0.245∗∗

(0.112) (0.122) (0.114) (0.110) (0.029) (0.039) (0.106) (0.103)
Negative 0.157 0.150 0.096 0.046 0.037 0.033 0.108 0.178

(0.135) (0.110) (0.111) (0.109) (0.025) (0.026) (0.174) (0.154)
Neutral −0.007 0.048 −0.021 0.008 0.022 0.031 −0.098 −0.035

(0.104) (0.092) (0.096) (0.094) (0.021) (0.019) (0.128) (0.095)
Positive 0.144 0.258∗∗ 0.113 0.181∗∗ 0.024 0.041∗ 0.113 0.245∗

(0.086) (0.101) (0.071) (0.084) (0.021) (0.023) (0.120) (0.122)
Monthly Inc. 2017 −0.000 −0.000 −0.000 −0.000

(0.000) (0.000) (0.000) (0.000)
Age 0.061∗∗∗ 0.063∗∗∗ 0.007∗ 0.042∗∗

(0.014) (0.015) (0.004) (0.018)
Age Squared −0.001∗∗∗ −0.001∗∗∗ −0.000∗∗ −0.000∗∗

(0.000) (0.000) (0.000) (0.000)
FL-Score −0.026∗∗ 0.007 −0.007∗∗ −0.047∗∗

(0.012) (0.010) (0.003) (0.018)
Risk Preference 0.044∗∗ 0.057∗∗∗ 0.003 0.023

(0.017) (0.018) (0.005) (0.019)
Self-Control 0.009∗∗ 0.005 0.001 0.015∗∗∗

(0.004) (0.004) (0.001) (0.005)
Main Inc. Farming −0.192∗∗ −0.159 0.007 −0.323∗∗

(0.078) (0.100) (0.032) (0.140)
Main Inc. Employed 0.042 0.017 0.047 −0.138

(0.121) (0.114) (0.037) (0.176)
Main Inc. Self-Emp. −0.019 −0.019 0.031 −0.178

(0.139) (0.108) (0.046) (0.164)
Main Inc. Remitt. −0.159 −0.251∗∗ 0.020 −0.176

(0.102) (0.090) (0.036) (0.165)
Children (0-6 yrs) −0.091 −0.101∗∗ −0.012 −0.046

(0.062) (0.048) (0.016) (0.063)
Children (7-10 yrs) −0.084 0.039 −0.026 −0.162

(0.075) (0.071) (0.019) (0.094)
Children (11-16 yrs) 0.007 −0.002 −0.022 0.123∗

(0.063) (0.037) (0.022) (0.066)
No. of Elders 0.026 0.043 0.012 −0.045

(0.036) (0.042) (0.011) (0.056)
No. of Working Mem. 0.121∗∗∗ 0.123∗∗∗ −0.005 0.182∗∗∗

(0.042) (0.033) (0.014) (0.045)
Total HH Education −0.009∗∗ −0.008∗∗ 0.001 −0.019∗∗∗

(0.004) (0.003) (0.001) (0.005)
Farming Shocks −0.001 0.002 −0.000∗ −0.002

(0.001) (0.001) (0.000) (0.002)
Environmental Shocks 0.007∗∗∗ 0.003∗∗∗ 0.002∗∗ 0.003

(0.001) (0.001) (0.001) (0.002)
Economic Shocks 0.001 0.003∗∗ −0.000 −0.000

(0.001) (0.001) (0.000) (0.002)
Crime Shocks 0.000 −0.006 0.003 −0.005

(0.014) (0.007) (0.003) (0.014)
Other Shocks 0.002∗∗∗ 0.000 0.001∗∗∗ 0.002∗∗∗

(0.001) (0.000) (0.000) (0.000)
Social Status −0.353∗∗∗ −0.184∗∗∗ −0.069∗∗∗ −0.371∗∗∗

(0.079) (0.045) (0.023) (0.092)
Constant −0.115 −0.482 −0.064 −1.480∗∗∗ 0.035∗∗ 0.140 −0.131 0.344

(0.082) (0.593) (0.081) (0.514) (0.016) (0.155) (0.111) (0.591)

Controls No Yes No Yes No Yes No Yes
Observations 688 676 688 676 686 674 688 676
Adj. R-squared 0.001 0.133 -0.002 0.094 0.002 0.073 -0.001 0.119

*** p<0.01, ** p<0.05, * p<0.1

Note: Clustered standard errors in parentheses.
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Table B.4.3: Additional Regression on Big5 Measures - Objective Over-Indebtedness

Obj. Index DSR > 0.4 RDSR > 0.4 Paid Late/Default > 2 Loans

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Very Negative −0.125 −0.032 −0.097∗ −0.026 −0.073 0.006 0.017 −0.021 0.001 0.008

(0.151) (0.137) (0.047) (0.050) (0.081) (0.076) (0.033) (0.036) (0.059) (0.059)

Negative 0.050 0.056 −0.067 −0.052 0.075 0.097∗ 0.081∗∗ 0.062∗∗ −0.029 −0.035

(0.134) (0.133) (0.045) (0.050) (0.058) (0.056) (0.032) (0.029) (0.057) (0.061)

Neutral 0.153 0.111 0.025 −0.001 0.079 0.059 0.074 0.087∗ −0.002 −0.019

(0.153) (0.160) (0.050) (0.058) (0.058) (0.060) (0.045) (0.050) (0.061) (0.063)

Positive 0.289∗∗ 0.311∗∗ 0.098∗∗ 0.084∗ 0.187∗∗ 0.206∗∗∗ 0.109∗∗∗ 0.128∗∗∗ −0.054 −0.050

(0.134) (0.135) (0.042) (0.046) (0.072) (0.072) (0.038) (0.040) (0.055) (0.060)

Openness 0.100∗∗∗ 0.028∗∗∗ 0.040∗∗ 0.027∗∗ 0.022

(0.030) (0.008) (0.016) (0.012) (0.016)

Conscientiousn. −0.083∗∗ −0.016 −0.036∗∗ −0.025 −0.020

(0.031) (0.014) (0.014) (0.016) (0.013)

Extraversion −0.003 0.013 −0.013 −0.018 0.014

(0.038) (0.013) (0.021) (0.015) (0.015)

Agreeableness 0.039 0.007 −0.008 0.009 0.034∗

(0.049) (0.019) (0.019) (0.019) (0.019)

Neuroticism 0.033 0.001 0.008 0.002 0.029∗

(0.034) (0.010) (0.018) (0.017) (0.015)

Constant −0.073 −1.493∗ 0.189∗∗∗ 0.053 0.343∗∗∗−0.464 0.099∗∗∗ 0.073 0.245∗∗∗−0.539∗

(0.144) (0.783) (0.048) (0.367) (0.072) (0.360) (0.019) (0.264) (0.063) (0.305)

Controls No Yes No Yes No Yes No Yes No Yes

Observations 688 676 688 676 688 676 685 673 688 676

Adj. R-squared 0.014 0.108 0.025 0.047 0.025 0.129 0.007 0.046 -0.003 0.061

*** p<0.01, ** p<0.05, * p<0.1

Note: Clustered standard errors in parentheses. Households with no forecast error serve as the reference group. Addi-

tional controls: age, age squared, children (0-6), children (7-10), children (11-16), financial literacy score, loss from crime

shocks, loss from economic shocks, loss from environmental shocks, loss from other shocks, main income farming, main

income employed, main income self-employed, main income remittances, monthly household income 2017, no. of elders

in hh, no. of working members in hh, risk preference, self-control, social status, total hh education.
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Table B.4.4: Additional Regression on Big5 Measures - Subjective Over-Indebtedness

Subj. Index Debt Position Diff. Pay off Debt Sacrifice Index

(1) (2) (3) (4) (5) (6) (7) (8)

Very Negative 0.182 0.213∗ 0.040 0.035 0.065∗∗ 0.056 0.118 0.252∗∗

(0.112) (0.115) (0.114) (0.103) (0.029) (0.039) (0.106) (0.102)

Negative 0.157 0.136 0.096 0.032 0.037 0.034 0.108 0.155

(0.135) (0.113) (0.111) (0.109) (0.025) (0.026) (0.174) (0.157)

Neutral −0.007 0.030 −0.021 −0.003 0.022 0.030 −0.098 −0.061

(0.104) (0.089) (0.096) (0.090) (0.021) (0.020) (0.128) (0.100)

Positive 0.144 0.239∗∗ 0.113 0.170∗∗ 0.024 0.041∗ 0.113 0.206∗

(0.086) (0.091) (0.071) (0.077) (0.021) (0.023) (0.120) (0.113)

Openness 0.094∗∗ 0.058∗ 0.012 0.113∗∗

(0.036) (0.033) (0.009) (0.049)

Conscientiousness −0.007 0.005 −0.017 0.054

(0.054) (0.042) (0.014) (0.056)

Extraversion −0.042 −0.055 0.007 −0.072

(0.042) (0.037) (0.012) (0.042)

Agreeableness −0.021 −0.026 −0.001 −0.019

(0.042) (0.037) (0.011) (0.050)

Neuroticism 0.058∗ 0.031 −0.002 0.123∗∗

(0.031) (0.029) (0.009) (0.044)

Constant −0.115 −0.577 −0.064 −1.401∗∗ 0.035∗∗ 0.183 −0.131 −0.209

(0.082) (0.706) (0.081) (0.646) (0.016) (0.154) (0.111) (0.812)

Controls No Yes No Yes No Yes No Yes

Observations 688 676 688 676 686 674 688 676

Adj. R-squared 0.001 0.143 -0.002 0.098 0.002 0.072 -0.001 0.141

*** p<0.01, ** p<0.05, * p<0.1

Note: Clustered standard errors in parentheses. Households with no forecast error serve as the ref-

erence group. Additional controls: age, age squared, children (0-6), children (7-10), children (11-16),

financial literacy score, loss from crime shocks, loss from economic shocks, loss from environmen-

tal shocks, loss from other shocks, main income farming, main income employed, main income self-

employed, main income remittances, monthly household income 2017, no. of elders in hh, no. of work-

ing members in hh, risk preference, self-control, social status, total hh education.



Appendix B 140

Table B.4.5: Additional Regression on Predictors for Income Forecast Groups

Very Negative Negative Mildly Negative Neutral Positive

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Monthly Inc. 2017 0.000∗∗∗ 0.000∗∗∗ 0.000 0.000 −0.000∗∗ −0.000∗∗ −0.000∗∗∗ −0.000∗∗∗ −0.000∗∗∗ −0.000∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Age 0.016∗∗ 0.018∗∗∗ 0.003 0.000 0.004 0.006 −0.008 −0.006 −0.015∗ −0.019∗∗

(0.006) (0.006) (0.008) (0.008) (0.007) (0.006) (0.006) (0.006) (0.008) (0.008)

Age Squared −0.000∗∗ −0.000∗∗ −0.000 −0.000 −0.000 −0.000 0.000 0.000 0.000∗ 0.000∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

FL-Score −0.022∗∗∗ −0.020∗∗∗ −0.001 −0.001 0.002 0.003 0.019∗∗∗ 0.017∗∗∗ 0.002 0.001

(0.007) (0.007) (0.007) (0.007) (0.006) (0.006) (0.005) (0.005) (0.006) (0.007)

Risk Preference 0.006 0.007 −0.015∗ −0.015 0.018∗∗ 0.015∗ −0.008 −0.007 −0.001 −0.000

(0.006) (0.007) (0.008) (0.009) (0.008) (0.008) (0.007) (0.007) (0.008) (0.008)

Self-Control −0.002 −0.002 0.002 0.002 −0.001 −0.000 0.002 0.002 −0.001 −0.002

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.001) (0.001) (0.001) (0.001)

Main Inc. Farming 0.131∗∗∗ 0.136∗∗∗ 0.032 0.035 0.008 0.011 0.058 0.053 −0.230∗∗∗ −0.236∗∗∗

(0.034) (0.037) (0.041) (0.044) (0.053) (0.055) (0.060) (0.062) (0.069) (0.070)

Main Inc. Employed 0.184∗∗∗ 0.197∗∗∗ 0.086∗ 0.089∗ 0.046 0.034 −0.021 −0.021 −0.295∗∗∗ −0.298∗∗∗

(0.028) (0.033) (0.049) (0.049) (0.059) (0.064) (0.054) (0.057) (0.078) (0.080)

Main Inc. Self-Emp. 0.144∗∗∗ 0.155∗∗∗ 0.116 0.107 −0.146∗∗ −0.145∗∗ 0.070 0.073 −0.184∗ −0.190∗∗

(0.046) (0.047) (0.071) (0.071) (0.062) (0.061) (0.068) (0.071) (0.091) (0.087)

Main Inc. Remitt. 0.075∗ 0.089∗∗ 0.001 0.007 0.103 0.094 0.062 0.060 −0.241∗∗∗ −0.251∗∗∗

(0.036) (0.040) (0.043) (0.040) (0.067) (0.071) (0.066) (0.067) (0.083) (0.083)

Children (0-6 yrs) −0.006 −0.002 0.045 0.044 −0.011 −0.020 −0.022 −0.019 −0.006 −0.003

(0.021) (0.020) (0.028) (0.030) (0.023) (0.023) (0.028) (0.029) (0.030) (0.028)

Children (7-10 yrs) −0.038 −0.038 0.004 −0.009 0.094∗∗ 0.095∗∗ −0.039∗ −0.035 −0.021 −0.014

(0.031) (0.032) (0.031) (0.029) (0.035) (0.034) (0.021) (0.022) (0.025) (0.025)

Children (11-16 yrs) 0.028 0.027 0.023 0.018 −0.028 −0.028 −0.000 0.004 −0.023 −0.021

(0.032) (0.032) (0.032) (0.032) (0.024) (0.023) (0.025) (0.025) (0.021) (0.019)

No. of Elders 0.047∗∗ 0.045∗∗ 0.026 0.024 0.008 0.008 −0.023 −0.017 −0.058∗∗ −0.060∗∗

(0.018) (0.019) (0.019) (0.020) (0.019) (0.018) (0.017) (0.019) (0.022) (0.023)

No. of Working Mem. 0.021 0.019 0.037∗ 0.035∗ −0.003 0.000 −0.004 −0.004 −0.050∗∗ −0.050∗∗

(0.016) (0.016) (0.018) (0.019) (0.019) (0.018) (0.016) (0.017) (0.018) (0.018)

Total HH Education −0.003∗ −0.003∗ −0.000 −0.000 −0.003 −0.003 0.001 0.001 0.005∗∗ 0.005∗∗

(0.002) (0.001) (0.001) (0.001) (0.003) (0.003) (0.002) (0.002) (0.002) (0.002)

Social Status −0.021 −0.028 −0.015 −0.015 −0.031 −0.034 0.010 0.006 0.057∗∗ 0.070∗∗

(0.018) (0.018) (0.027) (0.028) (0.023) (0.025) (0.021) (0.021) (0.023) (0.025)

Farming Shocks 0.000 −0.000 0.001 −0.000 −0.001∗∗

(0.001) (0.001) (0.001) (0.001) (0.000)

Environmental Shocks 0.002 0.001 −0.001 −0.000 −0.002∗∗

(0.001) (0.001) (0.000) (0.000) (0.001)

Economic Shocks −0.000 −0.000 −0.001 0.000 0.001

(0.000) (0.001) (0.001) (0.001) (0.001)

Crime Shocks −0.006∗∗ −0.001 −0.003∗∗ 0.000 0.009∗∗

(0.002) (0.004) (0.001) (0.001) (0.004)

Other Shocks 0.000∗ −0.000 0.000 −0.000 −0.000∗

(0.000) (0.000) (0.000) (0.000) (0.000)

Certainty −0.001 −0.012 0.020 0.033 −0.040∗

(0.022) (0.024) (0.034) (0.022) (0.019)

Constant −0.286 −0.363∗ 0.035 0.151 0.209 0.089 0.207 0.075 0.835∗∗∗ 1.047∗∗∗

(0.219) (0.209) (0.259) (0.267) (0.264) (0.280) (0.220) (0.247) (0.261) (0.269)

Observations 676 664 676 664 676 664 676 664 676 664

Adj. R-squared 0.221 0.224 0.025 0.017 0.041 0.037 0.063 0.055 0.072 0.087

*** p<0.01, ** p<0.05, * p<0.1

Note: Clustered standard errors in parentheses.
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Description of Variables

Debt Indices

Objective Over-
Indebtedness
Index

It contains the equally weighted average of z-scores of four debt in-
dicators. The procedure of aggregating these specific outcomes is
adapted from Kling et al. (2007). It “improves statistical power”
and helps “to detect effects that go in the same direction” among
indicators (Kling et al., 2007, p.89). The objective over-indebtedness
index captures households with a debt service to income ratio greater
than 40%, a remaining debt service to income ratio greater than 40%,
households, who defaulted on a loan or paid late in the last 12 months
and households with more than two loans. The literature has defined
(kind of arbitrary) thresholds for the DSR indicator beyond which
a household is over-indebted. A household is deemed over-indebted,
for example, if its DSR exceeds - depending on the study - 0.3 to 0.5
(Chichaibelu and Waibel, 2017). Hence, we set the over-indebtedness
threshold at a DSR of 0.4 following what we deem is best practice
among researchers (Georgarakos et al., 2010).

Subjective Over-
indebtedness
Index

It contains the equally weighted average of z-scores of three debt
indicators: the standardized sacrifice index and two assessments on
whether the household has too much debt and whether it has diffi-
culties paying them off.

Debt Measures

Debt Service to
Income Ratio

It is the ratio of all annual interest and principal payments on loans
divided by all annual income generating activities of the household.

Debt Position The question if the household has too much debt right now is asked
twice in almost identical fashion. For this reason, we combine both
questions by deriving two dummy variables, standardize them and
calculate their mean. The exact formulation of both questions is the
following: “I have too much debt right now” (Disagree fully, disagree
strongly, disagree a little, neither agree nor disagree, agree a little,
agree strongly, agree fully) and “Which of the following best describes
your current debt position?” (I have too little debt; I have about the
right amount of debt; I have too much debt right now.). The first
dummy equals 1 if the respondent at least agrees a little and the
second equals 1 if they feel they have too much debt right now.

Difficulties to Pay
Off Debt

Dummy variable derived from the categorical question with answer
options 1-“I have no difficulties paying off my debt”, 2-“I have some
difficulties [...]”, and 3-“I have a lot of difficulties [...]”, where 1 and
2 are coded to 0 in the dummy and 3 is coded to 1.
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Remaining Debt
to Income Ratio

The ratio relates a household’s actual, yearly debt burden to the
average income of 2016 and 2017.

Sacrifice Index This index is adapted by Schicks (2013), which asks for several sac-
rifices households may make because they lack money. Like them,
we combine these indicators into one “sacrifice index” applying poli-
choric principal component analysis such that a continuous index is
created giving more weight to more serious sacrifices people have to
make and transforming the categorical responses into a continuous
measure (Kolenikov and Angeles, 2009; Smits and Günther, 2017).
In total, we ask respondents about ten possible sacrifices both for a
shorter term (i.e., twelve months) and for a longer term (five years).
Unlike Schicks (2013), we do not pose questions about the accept-
ability of sacrifices made but ask only for the frequency of distress
events that occurred in the household. We added two questions intro-
duced by Smits and Günther (2017) and two new questions that are
more context-specific to the rural setting in North-East Thailand. De-
pending on the question asked, respondents could answer on a scale
from 1-3 (e.g., had to work much more, more, not more) or from 1-5
(e.g., had to buy less food: never, sometimes, regularly, often, almost
always, always).

Income Forecasts

Quantitative
Income Forecast

Relative change between expected median income from the proba-
bilistic expectations elicitation and the actual income in 2017.

Qualitative
Forecast Error

Difference between expected income in 2016 and actual welfare of the
household as evaluated in 2017.

Expectation
Measures

Actual welfare of
the household

Answer to “Do you think your household is better off than last year?”,
from 1-“much worse off” to 5-“much better off”.

Certainty Answer to “How certain are you that this income development will
truly become reality?”. The scale ranges from 1-“Very uncertain” to
4 “Very certain”.

Expected income Answer to “How do you think your average monthly income will
develop in the next twelve months?”, from 1-“Decrease a lot” to 5-
“Increase a lot”.

Probabilistic
expectations

Probabilities assessing how individuals assess future outcomes.
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Experiment
Measures

Treatment 1=Hard Quiz, 2=Easy Quiz.

Expected Rank Rank that participant expects to reach after taking the test quiz
from 1-“Least questions answered correctly” to 10-“Most questions
answered correctly”.

Number of Goods Amount of goods participant wants to buy.

Overconfidence Difference between expected and actual rank of participant.

Overborrowing Dummy variable, that takes the value 1 if participant wants to buy
more than earnings including endowment can pay for.

Overspending Dummy variable, that takes the value 1 if participant wants to buy
more than earnings excluding endowment can pay for.

Controls

Age Age of respondent in years.

Age Squared Squared term of age.

Financial Literacy
Score

Our index is based on seven questions eliciting financial knowledge,
on nine assessments concerning financial behavior, and on three ques-
tions regarding financial attitude. The overall index is composed of
the sum of the sub indices and ranges between 0 and 22 with higher
numbers indicating a higher level of financial literacy.

Financial Risk
Taking

Answer to “Attitudes towards risk change in different situations.
When thinking about investing and borrowing are you a person who is
fully prepared to take risk or do you try and avoid taking risk?”, from
1-“Fully unwilling to take risks” to 7-“Fully willing to take risks”.
Part of our risk preference measure.

Main Income
Dummies

We include four income dummies that tell us whether the main in-
come comes from farming, off-farm employment, self employment or
remittances.

Monthly Inc.
2017

Monthly household income in 2017

Number of
children

This variable is split in three age categories for the analysis. Num-
ber of children aged 0-6 years; Number of children aged 7-10 years;
Number of children aged 11-16 years.
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Number of Elders Number of elder household members, defined as people older than 60
years.

Shock loss
indicators

We include information on monetary losses from various shock events
for 2016 and 2017. We hereby separate by five shock categories: Farm-
ing Shocks, Environmental Shocks, Economic Shocks, Crime Shocks,
Other Shocks.

Number of
Working
Members

Number of working household members.

Risk Preference Equally weighted average of risk taking and financial risk taking.

Risk Taking Answer to “Are you generally a person who is fully prepared to take
risks or do you try to avoid taking risk?”, from 1-“Fully unwilling to
take risks” to 7-“Fully willing to take risks”. Part of our risk prefer-
ence measure.

Self-Control We use the questions introduced by Tangney et al. (2004) and add
up the Likert-Scale answers to one score. The scale ranges from 1-
“Disagree fully” to 7-“Agree fully”. The final score ranges from 0 to
49 where lower numbers indicate a higher level of self-control.

Total HH
Education

Sum of years all working household members went to school.

Big Five -
Personality Traits

Agreeableness A person, who scores high on Agreeableness (Item scale ranges from
1 to 7 for all items) has a forgiving nature, is considerate and kind
and not rude to others.

Conscientiousness A person, who scores high on Conscientiousnes does a thorough job,
works efficiently and is not lazy.

Extraversion A person, who scores high on Extraversion is communicative,
talkative, outgoing and not reserved.

Neuroticism A person, who scores high on Neuroticism worries a lot, gets nervous
easily and is not relaxed.

Openness A person, who scores high on Openness values artistic experiences, is
original and has an active imagination.
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Additional
Controls
Experiment

BMI Respondent’s Body Mass Index as of 2017.

Difficulties in
Game

Answer to “Did the respondent have difficulties answering ques-
tions?” with 1-“Not at all”, 2-“Yes, a little bit”, 3-“Yes, very much”.
Filled in by the enumerator.

Financial
Decision Maker

Answer to question “Who is responsible for making day-to-day de-
cisions about money in your household?” where means 1-“Myself”,
2-“Myself and someone else” and 3-“Someone else”.

Health Status Health status of the respondent in 2017: 1-“Good”, 2-“Can manage”,
3-“Sick”

Marital Status Respondent’s marital status: 1-“Unmarried”, 2-“Married”, 3-
“Widow”, 4-“Divorced/separated”.

Morning Dummy variable that takes the value 1 if the interview took place in
the morning, i.e., before 11am.

Midday Dummy variable that takes the value 1 if the interview took place
around noon, i.e., between 12am and 2pm.

Numeracy The numeracy index is based on six questions about simple arithmetic
problems. It ranges between zero and six. Zero, if the respondent
does not give any correct answer and six if the respondent gives only
correct answers.

Read Alone Dummy variable that takes the value 1 if the participant could read
the experimental instructions without help. Filled in by the enumer-
ator.

Relation to HH
Head

Respondent’s relation to the household head: 1-“Head”, 2-
“Wife/Husband”, 3-“Son/Daughter”, 4-“Son/Daughter in law”, 5-
“Father/Mother”, 8-“Grandchild”, 9-“Nephew/Niece”, 11-“Other
relatives”.

Sex Sex of respondent: 1-“Male”, 2-“Female”.

Years of
Schooling

Years respondent went to school.
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Experimental Material

Material B.1: Instructions Experiment

Read out:

I want you to ask some test question to check whether the procedure of the ranking is clear to 
you. If not, I will explain it again.

After you answered this first set of questions, you have to decide how many goods you want 
to buy. The 40 THB that are already in your account are given you as a credit that you can use 
to buy the goods. With the money you earn in the second round in the quiz you will pay back 
your credit. If you spend more money than you earned we will keep the money from your 
account and give you the goods you have bought. If you earned more than you bought, you 
pay back your credit and can keep the rest of the money and goods.

[Hand respondent the first quiz (green paper). If respondent cannot read, assist in all tasks]

If you don’t have any further questions we start with the first round. [FAQ]

In the first round, you will get 7 test questions, which are very similar to the questions you will 
get in the second round. But again, you can ONLY earn money in the second round. 

[Show picture of ranks, payoffs and people]

Test Question 1: What does it mean to be ranked 6? [Open answer; enumerator please 
continue if you think the respondent gave a correct answer]

Test Question 2: How much money do you earn if you are ranked 6? [Answer: 10 THB]

Test Question 3: How many goods you can buy for 10 THB? [Answer: 1]

The money you earn, will be put on your game account which already has 40 THB in it. As you 
can see from the picture, you can earn up to additional 40 THB. The quiz for which you will 
receive money will be played in the second round.

Experiment Script

We want to play a market game with you. In this game you can earn money and buy goods. 
The kind of goods you can buy are placed right next to you. Each piece has a value of 20 THB, 
but we offer them to you for a discounted price of 10 THB. You don’t have to buy one kind of 
product, but can buy different kinds (for example 2 chocolate bars and 1 bag of chips). If you 
don’t like to buy anything you can keep the money you earn. 

To earn money, you have to play a quiz which consists of 15 questions. 10 persons from 
another village, which is similar to your village, took the same quiz before. The amount of 
money you earn is dependent on how many questions you answered right in comparison to 
these villagers. In this picture, the person who has given the most correct answers is ranked 
10, the person who has given the second most correct answers is ranked 9, the person who 
has given the third most correct answers is ranked 8, and so on. In the picture you can also see 
how much money you will earn dependent on your ranking. For example, if you are ranked 7 
you will earn 20 THB. Please take your time to understand how you can earn money in this 
game.
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[Please note which goods were finally kept]

Thank you very much for your participation, we hope you enjoyed the game. I will now 
calculate your earnings and inform my STL which will bring you your payment and goods.

Question 3 [Only ask if expected earning of respondent was more than 0 THB]: Would you 
have buy less goods, if you thought your earnings would be lower?

[Calculate rank, earnings and cash/goods payoff. Wait for STL to hand the money/goods]

{In the very unlikely case, that more goods were wanted than earnings are generated:}

I calculated your earnings and you cannot afford all the goods you want to buy. You want to 
buy […] goods but can only afford […] goods. Please, choose which goods you want to keep.

[Hand the second quiz, set your alarm clock to 10 minutes and tell respondent to start]

The time is up. Please, hand me the second quiz. Before we conclude, I have some final 
questions for you.

Question 1: After taking the quiz, when 1 is the villager who gave the least correct answers 
and 10 is the villager who gave the most correct answers, where do you see yourself in this 
picture?

Question 2 [Only ask if expected earning of respondent was smaller than 40 THB]: Would you 
have buy more goods, if you thought your earnings would be higher?

[Set your alarm clock to 5 minutes and tell the respondent to start]

The 5 minutes are over. Please, stop answering the test quiz and make your decisions on the 
white sheet of paper. Give me a sign when you have made your decisions, then I will collect 
the white paper.

[During the time the respondent takes the second quiz, evaluate the white sheet of paper 
and enter the numbers on the tablet]

Now, in the second round, you play the quiz that decides how much money you earn. You 
have 10 minutes to answer the questions. Afterwards, I will collect the quiz, calculate your 
earnings and hand you the goods and money.

Please read through the questions on the green sheet of paper and try to answer as many 
questions as you can. You have 5 minutes to answer the questions. I will tell you when the 5 
minutes are over. After you have finished the quiz, please have a look on the white piece of 
paper and answer these questions and make your buying decision. When you have finished 
the first round, I will collect the white piece of paper. You can keep the green paper with the 
test quiz. It is only for you, so that you know what kind of questions to expect in the quiz of 
the second round.
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Material B.2: Guideline for Interviewers to Answer Questions from Participants

Frequently Asked Questions

Respondent: “What if I don’t want to buy anything?”
You: “You don’t have to buy anything, you can also keep the money.”

Respondent: “Can I spend all my money on buying products?”
You: “Yes you can, but if you do not earn enough money to pay all the products you wanted to
buy, you will only get the part of the products you can afford.”

Respondent: “Can I change my buying decision after I took the second quiz?”
You: “No, your decision is fixed. Only in the case where you wanted to buy more products than
you have money available, you can decide on which products to keep”

Respondent: “What happens if I spend more money on products than I earn?”
You: “Then we will take the money from the 40 THB that are already on your virtual bank
account for the game. If even this is not enough, you only get as many products as you have
money. We will NOT take any out of your pocket and we will NOT take money from the 50 THB
you get for the questionnaire. We only count the money you get in the game.”

Respondent: “Does being on rank 7 means that I need to get 7 questions correct?”
You: “No! It means that three persons have answered more questions correctly than you and six
persons have answered less questions correctly than you. The rank is always dependent on how
many questions you have correct in comparison to the other 10 villagers. In this case you are as
good as the villager who was ranked 7.”

Respondent: “Does it make a difference which questions I answer correctly?”
You: “No, all questions count the same.”

Respondent: “Do the products really cost 20 THB per piece?”
You: “Yes, if you buy them as presented here, they cost 20 THB.”

[Respondent: “What if I don’t know the answer to a question at all?”
You: “Just take a guess. You don’t receive some sort of minus points for wrong answers.”]

Respondent: “What if I cannot finish the quiz in time?”
You: “That is no problem. Please, try to answer as many questions as you can in the given time
frame. There will be no minus points for unanswered questions.”

Respondent: “Who are the other 10 persons who have answered the quiz before?”
You: “They are just some randomly selected persons from another village, that is similar to your
village.”
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Material B.3: Quiz-Hard Treatment

Ottawa O positive

Vancouver AB positive

Montreal B positive

Toronto A positive

Chicken Pineapple

Duck Mango

Penguin Banana

Squirrel Passion Fruit

144 Leo

94 Pisces

88 Dragon

126 Scorpio

Hokkaido and Kyushu

Shikoku and Hashima

Okinawa and Okinoshima

Hiroshima and Nagasaki

2. What is the most common blood 
type in the world?

7. Which are the Japanese cities that were hit by atomic 
bombs of the U.S. army during WWII?

5. How many days does Mercury need 
to orbit the sun?

3. Which animal cannot fly? 4. Which fruit contains the most 
amount of Vitamin C per 100g?

6. Which animal is not part of the 
Zodiac?

1. What is the biggest city in Canada by 
population?

Test Quiz
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Tiger Euro

Eagle US. Dollar

Lion Pound

Panda Deutsche Mark

47 provinces Grasshopper 

48 provinces Spider

49 provinces Beetle

50 provinces Centipede

Austria Coca Cola

France Beer

Sweden Tea

Poland

Italy Lungs

France Heart

Spain Liver

Portugal Brain

5. Which of these countries does 
NOT border Germany?

6. Which is the most drank 
beverage in the world?

Coffee

1. What is the national animal of 
China?

7. Which country is the origin of 
pizza?

8. Which of these four is the 
biggest organ of the human body?

Quiz

2. If Thai currency is THB, what is 
the currency of Germany?

3. How many provinces does Japan 
have currently?

4. Which is the heaviest insect in 
the world?



Appendix B 151

Susilo Bambang Yudhoyono Red

Joko Widodo Gold

Abdurrahman Wahid Green

Megawati Sukarnoputri Pink

Black, Blue and Gold Blueberry

Black, Red and White Pear

Black, Red and Gold Apple

Black, Red and Blue Kiwi

Grey

Dark green

Black

Brown 2 seasons including rainy and winter

Nabi Muhammad

Yahweh

Allah

Moses QID:

3 seasons including rainy, 
winter and spring  

2 seasons including summer 
and winter15. Who is the God of Islam?

10. What color is traditionally not 
associated with Christmas Day?

13. What color will you get if you 
mix blue, red and yellow?

14. How many seasons are there in 
Germany? And which ones?

11. Of which colors is the flag of 
Germany composed of?

12. Which fruit is blue?

4 seasons including spring, 
summer, autumn and winter.

9. Who is the president of 
Indonesia?



Appendix B 152

Material B.4: Quiz-Easy Treatment

Ubon Ratchathani Grey

Chiang Mai Green

Bangkok White

Surat Thani Pink

Asian Buffalo Banana

Dog Papaya

Elephant Durian

Tiger Apple

Vietnam Monkey

Laos Horse

Cambodia Cat

Myanmar Dragon

Blue

Brown

Green

Hazel

3. Which animal cannot jump? 4. Which fruit is prohibited in public 
transport around South-East Asia?

6. Which animal is not part of the 
Chinese Zodiac?

Test Quiz

5. Which of these countries does NOT 
border Thailand?

2. What color will you get if you mix 
blue and yellow?

7. What is the most common eye color 
in the world?

1. What is the biggest city in Thailand?
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Elephant Euro

Eagle US Dollar

Lion Pound

Naga (Thai Dragon) Franc

76 provinces Blue Shark

77 provinces Killer Whale

78 provinces Blue Whale

79 provinces Elephant

6 3 seasons including summer, rainy and winter

5 2 seasons including summer and rainy 

4 2 seasons including rainy and winter

7

Coconut Milk Skin

Tomatoes Eyes

Oyster Sauce Mouth

Chili Paste Ears

5. How many months have 31 
days?

6. How many seasons are there in 
Thailand? And which ones?

4 seasons including summer, 
rainy, autumn and winter

1. What is the national animal of 
Thailand?

7. Which of these do you need to 
make traditional Som Tam Thai?

8. Which is the biggest sense organ 
of the human body?

Quiz

2. If Thai currency is THB, what is 
the currency of USA?

3. How many provinces does 
Thailand have currently?

4. Which is the biggest animal in 
the world?



Appendix B 154

Donald Trump Red

Barack Obama Pink

Angela Merkel Green

Bill Clinton Light blue

Green, White and Red Durian

Green, White and Blue Jackfruit

Blue, White and Red Rambutan

Blue, Red and Yellow Salak

4th Reign Thailan

5th Reign

6th Reign Cambodia

7th Reign

Nabi Muhammad

Jesus

Guanyin

Vishu QID:

China

15. Who is the son of god of 
Christianity?

10. What is the color of the day on 
Wednesday?

13. Which reign of Thailand 
abolished slavery?

Germany

14. Which country has the highest 
total rice consumption?

11. Of which colors is the flag of 
Thailand composed of?

12. Which fruit does not have 
thorns?

9. Who is currently the president 
of the United States of America?
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Material B.5: Decision Sheet

Question 2: We told you that the money you will earn in the second
quiz depends on how you actually are ranked in this picture above. For
example if you are ranked 7, which means that 3 villagers gave more
correct answers than you and 6 villagers gave less correct answers
than you,  you will get 20 THB. What do you think, how much money
will you earn?

7

฿

Before you take the second quiz where you can earn money, we have
some questions for you and you have to decide which goods and how
many you want to buy.

8 9 10
0 ฿ 10 ฿ 20 ฿ 40 ฿

1 2 3 4 5 6

Question 1: As mentioned before, 10 persons from another village
took the same quiz as you will have to take now. After taking the test
quiz and knowing the second quiz will be similar: When the villager on
the left side of this picture is the one who gave the least correct
answers and the villager on the right side of this picture is the one
who gave the most correct answers, where do you see yourself in this
picture? Please cross the respective box.
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Detergent

QID:

MangoCoffee

Chips

If you have earned 10 THB for example, we will give you the
goods you wanted to buy and we will deduct 10 THB from the
40 THB credit we gave you. All in all, you have two goods then
and 30 THB.

Please indicate here how many of each good you want. If you do not
want to buy some kind of good put 0 there:

Example: You think you are ranked 7, so you earn 40 THB, and you
want to buy one pack of coffee and one bag of chips. That will cost you
20 THB. After you have answered the second quiz, we will calculate
your earnings.

If you have earned 40 THB for example, we will give you the
goods you wanted to buy and additionally 20 THB.
All in all, you have two goods then and 60 THB.

Question 3: Now, you have to decide how many and which kind of
goods you want. You have to think about how much you will possibly
earn including your credit and how much you can spend on the goods.
You don’t have to buy anything at all. But if you want to, remember
each piece has a discounted price of 10 THB and you can buy as many
different kinds as you want.
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Figure C.1: Overview of Survey Region

Note: The six TVSEP provinces are highlighted in red. The green dots represent

internal migrants from the survey rural regions.

Source: Hardeweg et al. (2013), based on ESRI World Map.

Table C.1: Overview of Survey Questions

Do you see yourself as someone who... Big Five Factor

. . . values artistic, aesthetic experiences?

. . . is original, comes up with new ideas? Openness

. . . has an active imagination?

. . . works thoroughly?

. . . does tasks efficiently? Conscientiousness

. . . tends to be lazy?

. . . is talkative?

. . . is outgoing, sociable? Extraversion

. . . is reserved?

. . . has a forgiving nature?

. . . is considerate and kind to almost everyone? Agreeableness

. . . is sometimes a bit rude to others?

. . . worries a lot?

. . . gets nervous easily? Neuroticism

. . . is relaxed, handles stress well?

Note: Questions from the The TVSEP survey questionnaire. Same ques-

tions were administered for wave 7 and 8.
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Figure C.2: Item Scale TVSEP questionnaire wave 7 and wave 8

Table C.2: Cronbach’s Alpha

Personality Trait Cronbach’s alpha No. of items

Openness 0.59 3

Conscientiousness 0.48 3

Extraversion 0.29 3

Agreeableness 0.43 3

Neuroticism 0.48 3

Average 0.45

Note: Own calculations with TVSEP data from wave 7.

Table C.3: Test-Retest Correlation

Openness 0.21

Conscientiousness 0.25

Extraversion 0.24

Agreeableness 0.25

Neuroticism 0.23

Average 0.24

Note: Own calculations with

TVSEP data wave 7 and 8.

Table shows the test retest

correlation between wave 7

and wave 8. N = 933.
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Figure C.3: Openness

Note: Own illustration with TVSEP wave 7 and wave 8 data.

Figure C.4: Conscientiousness

Note: Own illustration with TVSEP wave 7 and wave 8 data.
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Figure C.5: Extraversion

Note: Own illustration with TVSEP wave 7 and wave 8 data.

Figure C.6: Agreeableness

Note: Own illustration with TVSEP wave 7 and wave 8 data.
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Figure C.7: Neuroticism

Note: Own illustration with TVSEP wave 7 and wave 8 data.
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Table C.4: Factor Loadings according to PCA - Acquiescence Bias corrected

BFI-Items Factor 1 Factor 2 Factor 3 Factor 4 Factor 5

Artistic 0.2367 0.2395 0.2417 0.1869 0.3057

New Ideas 0.2466 0.0717 0.3626 0.3573 0.0858

Active Imagination 0.2292 0.1214 0.3202 0.4466 0.1836

Works thoroughly 0.2921 0.2388 0.0027 0.0443 0.4511

Efficient 0.3564 0.0002 0.0090 0.0724 0.4057

Lazy (reversed) 0.3249 0.1886 0.2479 0.2162 0.2327

Talkative 0.1796 0.0274 0.3103 0.3223 0.0243

Sociable 0.2832 0.0112 0.1953 0.1568 0.3927

Reserved (reversed) 0.1454 0.2201 0.4653 0.4757 0.1088

Forgiving 0.2547 0.2096 0.2388 0.2883 0.2105

Kind 0.3497 0.1592 0.2045 0.2323 0.1620

Rude (reversed) 0.2848 0.1768 0.3391 0.1392 0.4070

Worries 0.1368 0.5655 0.0617 0.1948 0.0206

Nervous 0.1975 0.4931 0.0774 0.1848 0.1789

Relaxed (reversed) 0.2304 0.3427 0.2672 0.0257 0.0887

Note: Own calculations with TVSEP data from wave 7. Factor loadings greater

than or equal to 0.30 are shown in bold.

Table C.5: Cronbach’s Alpha - Acquiescence Bias corrected

Personality Trait Cronbach’s alpha No. of items

Openness 0.49 3

Conscientiousness 0.55 3

Extraversion 0.36 3

Agreeableness 0.56 3

Neuroticism 0.59 3

Average 0.51

Note: Own calculations with TVSEP data from wave 7.
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