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Abstract. Aeroelasticity is one of the biggest challenges in wind turbine rotor design, as the
length of rotor blades increases which comes along with a slenderer design. The knowledge of
the aeroelastic turbine behavior is of great importance. A comparison to field measurements is
of huge importance when validating aeroelastic tools. However, the measurement of deformation
and torsion in the field is not trivial and the conduction of realistic post-test simulations is a
challenge. One crucial factor for these simulations is the wind field, which needs to be captured
in a high spatial and temporal resolution. In this paper, the results of deformation measurements
conducted in the field with an optical measurement method called Digital Image Correlation
(DIC) on one rotor blade will be shown and compared to aeroelastic post-test simulations using
highly resolved wind fields measured with a SpinnerLidar.

1. Introduction
Aeroelasticity is one of the biggest challenges in wind turbine rotor design. As the market
demands a reduction of cost for nominal power, wind turbine manufacturers are driven to build
bigger wind turbines. This comes along with a growth of the rotor blades that become longer
and slenderer at the same time. The knowledge of the aeroelastic turbine behavior in the field
is of great importance.

However, it is not trivial measure deformation and torsion in the field. And just as important
as good field measurement data are realistic post-test simulations for validation. One crucial
factor for these simulations is the wind field, which needs to be captured with high spatial and
temporal resolution.

In the project SmartBlades2, a new rotor with bend-twist coupled blades was designed for a
700 kW wind turbine. The blades were manufactured and analyzed with high detail and effort, so
that the blades’ structure is well characterized. In addition to this, the manufactured blades were
equipped with many different measurement techniques and installed on the Controls Advanced
Research Turbine (CART3) at the test site of the National Renewable Energy Laboratory
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(NREL) in Boulder. During a field measurement campaign in January 2019, field data was
recorded and will be used for validation of design tools.

A validation of aeroelastic simulations of wind turbines is usually based on a huge database
of long-term measurements, as e.g. found in [1] and [2]. In this paper, the measurement results
of rotor blade deformations are based on an optical measurement method called Digital Image
Correlation (DIC). The measurement duration of this method is usually not longer than ten
minutes, due to changes in illumination conditions in the field. This requires a highly-resolved
description of the actual prevailing wind conditions for a validation of aeroelastic simulations
based on those measurements.

One way to improve the characterization of the wind is the integration of LiDAR data into
aeroelastic simulations. As mentioned in [3], it is beneficial to increase the detail of inflow
information to achieve a better accuracy in the simulation of wind turbine fatigue loads. In
[4], a detailed analysis of the implementation of LiDAR-based inflow information is given and
it turns out that the load estimation uncertainty decreases in most of the cases if LiDAR-based
signals are used, in comparison to met mast data.

In this paper, the results of deformation measurements conducted with DIC on one rotor
blade are presented and compared to aeroelastic post-test simulations using highly-resolved
wind fields measured with a SpinnerLidar. A method for the reconstruction of realistic wind
fields for aeroelastic simulations based on SpinnerLidar data will be presented. The derived wind
field is compared to actual measured wind conditions from anemometers for a first verification
of the wind field fed into the simulation. Afterwards, a comparison of simulated and measured
wind turbine conditions and blade tip deformations is shown.

2. Methodology
This part describes the experimental setup, which was used for the investigations, shortly
introduces the feasibility of DIC for the application on full scale wind turbines and explains
the data processing of the LiDAR data for implementation in the aeroelastic simulations.

2.1. Experimental setup
In this measurement campaign, the test wind turbine was equipped with many different
measurement techniques. To name a few, strain gauges in all rotor blades at different radial
positions, an optical measurement system inside the blades ([5]) as well as outside the blades
(in form of speckles for DIC) on the pressure side for the detection of rotor blade deformation
and torsion were installed. An overview of the spatial positioning of the turbine and external
instrumentation is given in Figure 1.

The wind field was investigated with a met mast equipped with cup anemometers at different
heights in a distance of approximately 2.0 D and a SpinnerLidar was installed on top of the
nacelle of the turbine by ForWind Oldenburg. The SpinnerLidar measures the wind velocity in
a distance of approximately 1.4 D upstream of the turbine with high spatial and temporal
resolution. A spherical area with a diameter of approximately 60 m is scanned with 624
measurement points at a scan rate of 312 Hz. This results in a total scan-rate of the area in front
of the turbine of 0.5 Hz. More information on the LiDAR can be found in [6]. Additionally, a
cup anemometer on top of the nacelle was installed.

2.2. Digital Image Correlation
The term DIC describes an optical measurement method that can detect deformation and/or
motion of certain objects [8]. To apply DIC on wind turbines, a random speckle pattern needs
to be applied on the surface of the rotor blades, as shown in Figure 2. The wind turbine is
then monitored with a stereo camera system from the ground. Based on these pictures, the
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Figure 1. Experimental setup at the National
Wind Technology Center (NWTC) of NREL in
Boulder, Colorado, USA

Figure 2. Measurement setup for DIC
measurements on wind turbines [7]

deformation and torsion of the blades can be determined in those areas, where the speckles were
applied. More information on the functionality of DIC can be found in [8].

DIC was tested and developed over the last few years by ForWind Hanover for full scale wind
turbine applications ([9], [10], [7]) and can be considered a suitable measurement technique for
the detection of rotor blade deformations of full scale wind turbines. The commercial software
Vic3D, a DIC software from Correlated Solutions, Inc., is used for the investigations [11]. A first
comparison with aeroelastic simulations based on 10-minute averaged statistical wind conditions
was already shown in [12]. It turned out that a direct comparison of measurements and those
simulations is not easy to implement, and the integration of the prevailing wind condition is of
huge importance for a comparison of measurements with simulations.

2.3. Wind field reconstruction and implementation in aeroelastic simulations
The SpinnerLidar measures the line-of-sight (vlos) projection of the 3-dimensional wind speed
along the laser beam which can be represented as:

vlos = cosχ cos δ · u+ sinχ cos δ · v + sinχ · w (1)

where χ and δ are the azimuth and elevation angle of the laser beam and u, v, w are the 3D
wind velocity components at the measurement point. As the longitudinal component (u) is
much higher than the lateral and vertical component, it is a reasonable assumption that the
longitudinal wind speeds can be obtained from the SpinnerLidar by setting v, w = 0 in equation
1. The wind field measured by a SpinnerLidar, which is a combination of vlos speeds at the
different measurement points, can be represented as a combination of wind field parameters as
defined in [13]:

vlos(y, z) = (uo + shy + svz)

cos(δv) cos(δh)
cos(δv) sin(δh)

sin(δv)

 (2)

The mean wind speed u0 is inclined to the rotor plane with the wind directions δh and δv. The
shear is calculated as the linearly changing wind speed along the horizontal (y) and vertical
(z) axes. A simplified three-parameter model is created by assuming that both the vertical
up-flow and the horizontal shear are zero and an exponential shear parameter (α) is included.
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Figure 3. Methodology for creating FAST input files based on SpinnerLidar measurements [15]

For performing aeroelastic simulations with the wind inflow, LiDAR measurements cannot be
directly used as an input wind field due to the directional bias effects and the spatial-temporal
measurement limitations of the device. The SpinnerLidar measures the inflow at a focus distance
of 60 m upstream of the rotor in a spherical plane of 60 m diameter. As this scan pattern is
not enough to capture the wind field variations from the tower bottom to the upper blade tip
position, this data needs to be extrapolated from the LiDAR measurements.

To generate the missing data for the aeroelastic wind field input file, the results of the three-
parameter model are used. The wind field parameters u0, α and δh are used to generate the
wind velocities at grid points outside the 60 m diameter measurements from the SpinnerLidar.
For those points inside the rosette pattern of the SpinnerLidar, the longitudinal component of
the velocity u is simply calculated by projecting the line-of-sight velocity vlos to the horizontal
direction. For extrapolating the velocities outside the SpinnerLidar measurement plane, a power
law extrapolation scheme based on the shear parameter α is used. For those points outside the
rosette pattern and in the hub height horizontal line of the grid, the longitudinal component
of the wind u is calculated based on the mean wind speed (u0), the horizontal inflow direction
δh and the location of the point with respect to its horizontal position. The velocity on the
grid points on the vertical plane are calculated based on the shear parameter α from the three-
parameter model. The lateral component of the wind v is calculated based on the longitudinal
component u and the instantaneous yaw misalignment δh. With this extrapolation scheme, full
grid information from the tower bottom to the blade tip is obtained, sampled at 0.5 Hz.

As specified in [14], for performing aeroelastic simulations, the wind fields must be generated
with a time step of at least 0.05 s (typically a 20 Hz sampling rate of a TurbSim file) in order
to obtain reasonable results. The SpinnerLidar data is up-sampled to 20 Hz by means of an
anti-aliasing finite impulse response (FIR) low-pass filter in order preserve the energy content
in the signal. Finally, the time series for the velocities at the grid points are written in the
form of a 4D array in a .bts file and used as an input wind file for FAST. The entire process of
implementing the SpinnerLidar data in FAST is shown in Figure 3. Figure 4 shows an example
of the wind field generated from SpinnerLidar measurements.

Both wind measurements from the LiDAR and the met mast are corrected by the influence
of the axial induction with a factor of a = 0.3, according to the vortex sheet theory as described
in [16].

The aeroelastic model is implemented in OpenFAST [17]. The blade information is derived
from the design phase of the blade development and was set up by Fraunhofer IWES. The loads
on the blades are calculated with ElastoDyn.
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Figure 4. Exemplary wind field reconstructed from SpinnerLidar data

3. Results
This section compares the wind fields implemented in OpenFAST with measured wind conditions
to evaluate the quality of the implementation method. Afterwards, the simulated turbine
conditions in form of rotational speed and pitch angle are compared to measured data. This is
followed by a comparison of the simulated out-of-plane (OoP) and in-plane (IP) deformation at
the blade tip with DIC measurement results. The simulations were run for a five minute time
series, whereof only the last three minutes will be shown to keep the overview.

3.1. Wind simulation vs. measurements
Figure 5 shows the wind speed at the wind turbine nacelle from measurements and derived
wind data. From the measurements, the nacelle anemometer and one measurement point of the
LiDAR at the horizontal position of the turbine in wind direction at hub height is extracted.
The derived wind field (as .bts file) fed into OpenFAST is shown, as well as the output from the
simulation at the same position as the LiDAR data point. The nacelle anemometer data is not
corrected by the induction factor and is only used to demonstrate the similarity of the trend of
all curves.

The time signals of all data sets were synchronized according to the nacelle anemometer, to
compare all results directly to the simulations. The nacelle anemometer shows a clear offset
in comparison with the other values, which can be explained by the effect of axial induction
during power production of the turbine, as the anemometer was not corrected by this factor.
The LiDAR data has several gaps, which are caused by the blockage of the laser beam by the
rotating blades in front of the LiDAR. The .bts file is based on all LiDAR measurement points,
thus it has no gaps and clearly follows the LiDAR signal. The wind exported from the simulation
is remarkably close to the .bts file results, which are also shown as a scatter plot in Figure 6
with a high value of the linear regression fit coefficient R2 of 0.914. Thus, the .bts file results
can be considered nearly identical to the wind exported from the simulation and represents the
simulation results in the following Figure. The trends of all curves are similar, which proves
that the wind data fed into OpenFAST correspond to the actual prevailing wind conditions at
hub height. Comparisons of time slots when the turbine is in stand-still mode are in particularly
good agreement, which proves this statement.

Figure 7 shows time series of the met mast anemometer at hub height in comparison with
one measurement point of the LiDAR, .bts file and simulation at the same height and as close
as possible to the same horizontal position. The met mast data is corrected so that it shows
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Figure 5. Wind velocity at the position:
horizontal: wind turbine, vertical: hub height

Figure 6. Comparison of wind field from
simulation and .bts file at the wind turbine
nacelle position at hub height

Figure 7. Wind velocity at the position: horizontal: met mast, vertical: hub height

only the wind propagating in turbine direction. The wind signals from the LiDAR, .bts file and
simulation are in particularly good agreement, while the anemometer shows small differences.
This could be caused by a difference in the actual position of the measurement points, as the
LiDAR did not measure exactly at the same horizontal position as the met mast. Another factor
could be the influence of the turbulence on the wind. As the LiDAR does not measure in the
same distance as the met mast, the wind propagating to the turbine could be influenced by local
turbulence.

In summary, the simulated wind conditions are in good agreement with the measured wind
conditions and the wind field that is fed into OpenFAST can be considered realistic and
synchronized with turbine measurement data.

3.2. Wind turbine operational data simulation vs. measurements
Given that the wind field can be considered realistic, a comparison of measured and simulated
turbine conditions can be made.

Figure 8 shows a comparison of measured and simulated pitch angle. The DIC measurements
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are in particularly good agreement with the supervisory control and data acquisition (SCADA)
data of the turbine. The simulated pitch angle shows the same trend as SCADA and DIC.
However, there is an offset in the maximum simulated pitch angle of approximately 5◦, which is
significantly lower than in reality. A hypothesis explaining the differences is given below. This
has without doubt a big impact on the following comparisons. Nevertheless, the regions of fixed
and changing pitch angle are in the same time slots for all curves proving that the simulated
turbine reacts to changes of the wind conditions and shows the same qualitative behavior.

Figure 8. Pitch angle from simulation and
experiment

Figure 9. Rotational speed from simulation
and experiment

Consequently, similar observations can be made regarding the rotational speed in Figure 9.
It can be seen that the nominal rotational speed for both simulation and measurement has the
same mean value of around 33 rpm as defined by the controller. When the wind speed decreases,
the turbine behavior shows the same trend for all curves. However, there is a clear offset of the
minimum rotational speed of approximately 2 rpm. The point of time, when the turbine starts
to set the pitch angle to 0◦ has a big influence on the rotational speed, as it indicates a decrease
in wind speed. The simulation model starts earlier to set the pitch to 0◦ and thus the rotational
speed decreases earlier than in reality and therefore needs more time to recover to nominal
rotational speed.

In summary, the simulated turbine seems to be more sensitive to a decrease in wind speed
than the real turbine, which can have several reasons. One obvious reason is a difference between
the simulation model and the real turbine, as it is a challenge to build a model which represents
the real turbine. The simulation model which is used here is based on blade information out
of the design phase and will be updated in the future to represent a more realistic simulation
model.

However, the wind field does also have a huge impact on the turbine behaviour and needs to
be investigated in more detail to make sure that it reproduces the reality. In a short study, the
wind conditions were modified by different offset values to estimate the influence of a change in
wind conditions on the simulation results. The results for an offset of +0.75 m/s are shown in
Figures 10 and 11. This offset brings all curves for the measured and simulated pitch angle and
rotational speed significantly closer together. This demonstrates that the wind field has a big
impact on the turbine behavior and needs to be validated as accurately as possible to serve as
a base for aeroelastic simulations. As the impact of an update of the aeroelastic model on the
simulation results cannot be estimated at this point of time, it is unclear which source of error
is more likely in this case. This is subject to further investigation.
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Figure 10. Pitch angle from simulation
and experiment; wind conditions in simulation
modified by + 0.75 m/s

Figure 11. Rotational speed from simulation
and experiment; wind conditions in simulation
modified by + 0.75 m/s

3.3. Deformation simulation vs. DIC measurement
Lastly, DIC measurements are compared to deformations of the simulation model.

Figures 12 and 13 show the OoP and IP deformation of DIC and simulation of a 1:30 minutes
time series, which were all reduced by their moving average over one rotor revolution for an
improved comparability.

Figure 12. OoP deformation at the blade tip Figure 13. IP deformation at the blade tip

Both plots show that the amplitude measured with DIC is significantly higher when compared
to the deformation simulations, which might have the same reasons as explained at the end of
section 3.2. However, all curves show a similar behavior. The amplitude of deformation at the
beginning and at the end of the time slot has a similar value, while in the middle it is clearly
decreased. This can be analyzed in more detail by looking at the next figures.
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Figure 14. IP deformation at the blade tip -
Zoom 1

Figure 15. IP deformation at the blade tip -
Zoom 2

These plots show the IP deformation for a period of 15 seconds at the beginning (Figure 14)
and in the middle of the time series (Figure 15). In Figure 14, a lot of additional small peaks on
the basic vibration curve can be observed in the IP vibration curve. During this time slot, the
additional vibration seems to be well developed when compared to the next time slot in Figure
15. Here, both curves - for simulation and measurement - show the basic vibration with only
minor additional peaks. The time slots for strong or damped additional vibration seem to be
well predictable with the simulation model, even if the amplitude of vibration is different.

This shows that a direct comparison of measurement and simulation seems to be feasible
based on fed-in wind data measured with a SpinnerLidar.

4. Conclusions
This paper shows results from a direct comparison of aeroelastic simulations, based on a wind
field obtained from SpinnerLidar measurements, in comparison with deformation measurements,
based on DIC, in a time series of the length of 1:30 minutes. The method for the direct integration
of SpinnerLidar data into OpenFAST is described as well as the optical measurement method.

The wind field read into OpenFAST is very similar to the measured one in front of the
turbine due to the direct transfer of measured values. This can be observed from comparisons
with measured wind speeds from cup anemometers on a met mast and on the nacelle of the
turbine. First comparisons of simulation results to measurements show that the trend of the
time-resolved turbine behavior, exemplarily shown in form of pitch angle and rotational speed,
can be reproduced with this method. The trend of simulated deformations is similar to that
measured with DIC. Although the amplitude measured with DIC is significantly higher, the time
slots of well-developed or damped additional vibrations can be reproduced from the simulations.

The differences between these data sets can have several different causes. One highly probable
cause is the difference between the simulation model and the real turbine, as the model is based
on rotor blade data obtained from the design process of the blades. The model runs with
ElastoDyn at this point of time which does not take into account torsional deformation of the
blades, which needs to be updated to reproduce the behavior of bend-twist coupled blades.
Another big factor is the wind field which has a huge impact on the turbine behavior as shown
in a short modification study. This needs to be investigated in more detail to make sure that it
reproduces the reality. These points will be considered for further investigation.

In summary, this is a successful first step for a direct comparison of measurements and
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simulations and shows that SpinnerLidar data can make a valuable contribution when validating
aeroelastic codes.
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