
Gottfried Wilhelm Leibniz Universität Hannover
Fakultät für Elektrotechnik und Informatik

Efficiently identifying top k similar entities

A thesis submitted in fulfillment of the requirements for the degree of
Master of Science in Internet Technologies and Information Systems (ITIS)

BY

Supreetha Hanasoge Sudheendra
Matriculation number: 10009763

E-mail: hanasoge.sudheedra@stud.uni-hannover.de

First evaluator: Prof. Dr. Sören Auer
Second evaluator: Prof. (Univ. Simon Bolivar) Dr. Maria Esther Vidal

Supervisor: Prof. (Univ. Simon Bolivar) Dr. Maria Esther Vidal

December 12, 2020

www.uni-hannover.de
www.et-inf.uni-hannover.de

Declaration of Authorship

I, Supreetha Hanasoge Sudheendra, declare that this thesis titled, ’Efficiently iden-
tifying top k similar entities’ and the work presented in it are my own. I confirm
that:

• This work was done wholly or mainly while in candidature for a research degree
at this University.

• Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has been
clearly stated.

• Where I have consulted the published work of others, this is always clearly
attributed.

• Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

Supreetha Hanasoge Sudheendra

Signature:

Date:

I

“To action alone hast thou a right and never at all to its fruits; let not the fruits of action
be thy motive; neither let there be in thee any attachment to inaction.”

— Shrimad Bhagawad Gita, Chapter 2, verse 47

Acknowledgements

First and foremost, my deepest thanks to Prof. Dr. Sören Auer and Prof. Dr.
Maria-Esther Vidal for giving me an opportunity to develop my thesis at TIB. I
am extremely grateful for the unwavering support, guidance and mentorship that I
received from Prof. Dr. Maria-Esther Vidal. Having her mentorship and to witness
the accomplishments of the scientists at TIB has been an inspiration and one of the
best outcomes of my masters’ journey. Without the TIB family, the completion of
my thesis would not have been possible.
I would also like to thank the scientists at TIB, Samaneh Jozashoori and Kemele
M. Endris for the insightful discussions and for lending me a patient ear at various
stages of development of my thesis.
I would like to thank my mother for supporting me in my decision to pursue my
career aspirations no matter what and for providing me with the privilege that it
takes to be here. This has been our dream, not just mine and I dedicate this to you.
Special thanks to my husband , Avinash Ramarao , the wind beneath my wings, for
his invaluable support , for always pushing me to never give up and to have always
had the faith in my abilities and progress.

Supreetha Hanasoge Sudheendra

III

Abstract

With the rapid growth in genomic studies, more and more successful researches are
being produced that integrate tools and technologies from interdisciplinary sciences.
Computational biology or bioinformatics is one such field that successfully applies
computational tools to capture and transcribe biological data. Specifically in genomic
studies, detection and analysis of co-occurring mutations is an leading area of study.
Concurrently, in the recent years, computer science and information technology have
seen an increased interest in the area association analysis and co-occurrence com-
putation. The traditional method of finding top similar entities involves examining
every possible pair of entities, which leads to a prohibitive quadratic time complex-
ity. Most of the existing approaches also require a similarity measure and threshold
beforehand to retrieve the top similar entities. These parameters are not always easy
to tune. Heuristically, an adaptive method can have wider applications for identi-
fying the top most similar pair of mutations (or entities in general). In this thesis,
we have presented an algorithm to efficiently identify top k similar pair of mutations
using co-occurrence as the similarity measure. Our approach used an upperbound
condition to iteratively prune the search space and tackled the quadratic complexity.
The empirical evaluations show that the proposed approach shows the computational
efficiency in terms of execution time and accuracy of our approach particularly in
large size datasets. In addition, we also evaluate the impact of various parameters
like input size, k on the execution time in top k approaches. This study concludes
that systematic pruning of the search space using an adaptive threshold condition
optimizes the process of identifying top similar pair of entities.

Keywords: Bioinformatics, genomic studies, similarity, co-occurrence computation,
time complexity, algorithm

IV

Contents

1 Introduction 1

1.1 Motivating example . 2

1.2 Problem and contributions . 4

1.3 Summary of the chapter . 6

2 Background 7

2.1 Analysis of Algorithms . 7

2.2 Similarity measures . 9

2.2.1 Simple Matching Coefficient (SMC) 10

2.2.2 Hamming distance . 10

2.2.3 Jaccard coefficient . 11

2.2.4 Cosine similarity . 12

2.2.5 Euclidean distance . 12

V

2.2.6 Overlap measure . 13

2.3 Data Access . 13

2.4 Evaluation measures . 16

2.5 Summary of the chapter . 18

3 Related Works 19

3.1 Scalability oriented approach . 19

3.2 Computationally Economic Approach 22

3.3 Filtering principle for pruning . 23

4 Approach 26

4.1 Problem statement . 26

4.2 Proposed solution . 29

4.3 General heuristics . 29

4.3.1 Monotonic property of min() 30

4.3.2 Upperbound . 30

4.3.3 Heuristic sorting and filtering 32

4.3.4 Data representation . 33

4.4 Pseudocode . 35

4.5 Runtime analysis . 39

4.6 Summary of the chapter . 42

VI

5 Implementation 43

5.1 Input data source . 43

5.2 Python libraries . 46

5.3 Baseline implementation . 47

5.4 Summary of the chapter . 53

6 Experimental Evaluation 54

6.1 Experimental setup . 55

6.2 Metrics . 55

6.3 Performance study and analysis . 56

6.3.1 Run time analysis based on ’k’ value and input size 56

6.3.2 Reducing the number of false positives 61

6.4 Effect of cardinality on runtime . 62

6.5 Comparison of the number of iterations 65

6.6 Performance analysis for extreme values of k 67

6.6.1 Performance analysis with low values of k 68

6.6.2 Performance analysis with high values of k 68

6.7 Accuracy evaluation . 69

6.8 Summary of the chapter . 72

7 Conclusions and Future work 73

VII

7.1 Discussions . 74

7.2 Limitations . 75

7.3 Future work . 76

7.4 Summary of the chapter . 77

Bibliography 78

VIII

List of Figures

1.1 Motivating example: Representation of pairwise comparisons made using

a brute force process of retrieving topk pairwise similar entities. As shown

in this figure, every item starting with A is compared with every other item

B,C and D for similarity computation. 3

1.2 Example pipeline followed to extract top similar entities 4

2.1 Part of the segregation of top-k data processing techniques as depicted in [14] 14

2.2 In the above example, for a k=2, the lists are ranked according to ranking

functions R1,R2 and R3. Parallely, items are accessed sequentially in each

list. Once k objects X1 and X2 are seen in all the lists, for all the objects

’seen’ which are X1,X2,X3 and X4, the scores are computed by random

access and the top 2 are retrieved. 15

IX

2.3 Working example of TA. If the value of k=2, the process stops after the

iteration 3, and returns items 4 and 3 as top 2 query answer. 15

2.4 The Cranfield arrangement from [16] . 16

4.1 Example of pairwise co-occurrence matrix of mutations, which shows that

the pair of mutations on genes PIK3CA and TP53 are the most frequently

co-occurring, as highlighted. 27

4.2 Example scenario of maxheaplist update procedure that takes place in the

’checkheap’ function call. The current top kth pair in the topklist is replaced

when an incoming pair of mutations has a higher overlap value, 479 in this

case. This new overlap value of top kth pair is then returned as ’marginValue’

to serve as the updated upperbound. 28

4.3 Example graph to show the monotonicity property of the min() 30

X

4.4 Diagrammatic representation of the flow of execution in the proposed ap-

proach. Once the input space is reduced to retain only unique pairwise

combinations, the proposed approach continues to process the pairs to find

the overlap. The preliminary k pairs are stored to get the kthe value as

upperbound. This upperbound is applied to the input data if new pair has

a value grater than the upperbound. This way the false positive pairs are

incrementally pruned. 39

5.1 Example showing the input format of data used in the proposed approach.

The data here is manipulated by grouping based on the ’Mutation’ column. 45

5.2 Lines of code from the data manipulation process 46

5.3 Output of execution: Top 10 similar pairs as returned by the proposed

approach, which takes an overall execution time of approximately 0.25 seconds 47

5.4 From [27] showing the max-first execution of TOP-MATA indicating the

order in which the rows in the upper triangle are chosen for processing. . . 50

5.5 This sorted item matrix of mutations is the adaptation of TOP-MATA for

our use-case. The cell values in the matrix are filled by applying the min()

property to the individual frequencies of every pair of mutations that identify

the respective cell. 51

XI

6.1 Performance analysis with different ’k’ values for two input sizes. 57

6.2 Performance analysis with different ’k’ values for two input sizes, 100 and 300. 58

6.3 Performance analysis with different ’k’ values for two input sizes. 58

6.4 Execution time comparison for different input sizes. As the input size in-

creases, the proposed approach shows increasingly better runtime perfor-

mance, having the lowest runtime for the input size of 1000. 60

6.5 Execution time comparison for input size of 1500. It can be seen that for all

values of k, the proposed approach is showing a runtime that is lower than

that of the TOP-MATA implementation. However, it can also be noticed

here that as the k value increases, the runtimes tend towards sameness as

the percentage of difference is decreasing. 61

6.6 Statistical properties of the cardinality distribution in two datasets, where

’Dataset 1’ has lower overall average compared to ’Dataset 2’. 63

XII

6.7 Comparison of performance to analyse the impact of cardinality distri-

bution on the proposed approach and our implementation of TOP-MATA.

Both approaches show similar behaviour as the overall cardinalities in the

data increase. However, as ’k’ increases, our TOP-MATA implementation

shows a sharper increase in runtime for ’Dataset 2’ compared to the be-

haviour seen in the proposed approach . 63

6.8 Impact of cardinality distribution on execution time in OEM. As seen OEM

shows similar execution times for both datasets thereby proving to be inde-

pendent of the cardinality distribution in the input dataset 64

6.9 Comparison of the number of iterations required to fetch top k entities in an

input of size(=500). Note that the number of required iterations is identical

in the proposed approach and our TOP-MATA implementation and yet

execution times differ. 65

6.10 Analysis and comparison of execution time when k values are extreme . . . 67

6.11 Error rate comparison, where error rate is the proportion of false classifica-

tions among the total results. 71

XIII

6.12 Differences in completeness of results between the our baseline TOP-MATA

and the proposed approach. As highlighted, the results retrieved by TOP-

MATA implementation have exclude some of the top k pairs which are ob-

served to be correctly retrieved by the proposed approach like the pair with

overlap coefficients 727 and 526. 71

XIV

List of Tables

1.1 Contents of ’list1’ . 2

2.1 Contingency table . 17

3.1 Outline of the major differences between TOP-MATA and Proposed approach 21

4.1 In the above characteristic matrix is 4x3 in dimension and, values C (0,0)

= 0 represents ‘absence’ and, C (0,1) = 1 represents ‘presence’ where rows

are in 0,1,2,3 and columns in 0,1,2. 34

4.2 The above table shows the raw format of data input used in this research.Every

mutation is associated with a ’PatientList’ which is list of patients in which

the mutation was observed. The column ’Count’ is the cardinality value of

the respective ’PatientList’ . 34

XV

5.1 Raw format in which the data was received. The data is in long format

where patient id is repeated as many times as the number of mutations that

were observed in each patient. 44

6.1 File size property of different inputs files used in the experimental evaluation.

All the files are in the .csv format. 55

XVI

Acronyms

FA Fagin’s Algorithm

OEM Optimized exhaustive method

SOTA State Of The Art

TA Threshold Algorithm

TOP-MATA Top-k cOsine similarity Pairs using MAx-first TrAversal method

XVII

Chapter 1

Introduction

Co-occurrence of genetic mutations is an important biomarker in identifying charac-
teristics of certain tumour conditions during the diagnostic and prognostic analysis
of patients. In the field of genomics, specifically in genomic studies, presence and/or
absence of certain mutations is an integral part of clinical and academic studies.
Cancer, for example, is regarded as a primary result of genetic mutations that exert
their effects on proto-oncogenes. As explained in [1], several environmental factors
can lead to these proto-oncogenes to change to an oncogene which can cause cancer
either in the form of a tumour or metastases. Every cancer sub-type is caused by a
few mutations that co-occur in combinations. These combinations are reported to
range from two-eight depending on the type of cancer [2]. Thus, evidence shows that
combinations of mutations can be the cause of specific types of cancers, and there-
fore, identifying these combinations as important bio-markers can help in improved
diagnosis, early reports of predispositions, and enhanced targeted drug treatments.

As reported in [1], the human genome contains approximately anywhere from 50,000
to 90,000 genes apart from those obtained from individual unknown sources. Several
thousand mutations can be observed in relatively small number of tissue samples.
This makes the computational aspect of identifying combinations of mutations highly
complex. This research principally undertakes the problem of identifying top-k pair-

1

Chapter 1. Introduction

wise co-occurrences of different gene mutations in an efficient way. The findings could
help in identifying specific biomarkers.The methodology proposed in this thesis fo-
cuses on developing a solution that aims to tackle the problem from the perspective
of handling the high complexity of the search space that is typical of such computa-
tional challenges. Our method is compared with State-Of-The-Art (SOTA) methods
of computing pairwise intersections as a baseline for empirical evaluations. Experi-
mental outcomes suggest that the proposed method is observed to perform at higher
levels of efficiency in time and accuracy.

1.1 Motivating example

The motivation for this work of research comes from more than two of the below
perspectives: the first being numerous areas in which the problem of top-k retrieval
is relevant. The wide-spread applications include the fields of document similarity
detection , association rule mining in market basket analysis, association analysis
for the study of drug-drug interactions, shelf management systems, alternate query
formulations [18], climate studies [19] and the field of bioinformatics which is where
our motivation for this study stems from and, many more fields have seen an increased
interest in identifying top most similar item pairs. The second perspective comes
from the scalability aspect, as to how can the problem be tackled computationally.
We will see more on scalability in the upcoming paragraphs.The motivation for this
study can be understood better with the help of the following example. Consider
the following list of mutations as input ’list1’ :

Mutations Patient ID(s) PatientCount
A 1,2,3,4,5 5
B 1,2,4,5 4
C 6,8,9 3
D 1,2,6,8,9 5

Table 1.1: Contents of ’list1’

The length of list1, i.e., the number of mutations in list1, is 4. The list contains
information about four mutations that we call as A, B, C, D. Each mutation is

2

1.1. Motivating example

associated with different patients who are identified with single digit id(s) in the
field ’Patient ID(s)’. Figure 1.1 illustrates this computational procedure.

Note : Within the context of this research, we shall refer to the data items as being
‘mutations’. But, for the benefit of generalizability, it is important to note here that
‘mutations’ are a particular type of data entity. Therefore, it is interchangeably used
with ’entities’ in this work.

Figure 1.1: Motivating example: Representation of pairwise comparisons made using

a brute force process of retrieving topk pairwise similar entities. As shown in this figure,

every item starting with A is compared with every other item B,C and D for similarity

computation.

In order to calculate the top 3 most similar pairs of sets, every mutation in list1
needs to be compared with every other mutation in list1, i.e., (n − 1) other items
in total which is briefly represented in the above figure. Mutation A is shown as
being compared with mutations B, C and D. Similarly, mutation B, C and D will be
compared with the remaining 3 mutations. This way, for an input list of length 4
mutations, 12 comparisons are made before retrieving the top-k pairs that are most
similar, i.e., n(n − 1). Out of these, since similarity as a measure, is symmetric, an
effective number of comparisons amount to n(n− 1)/2. Therefore, in the traditional
approach referred to as the “brute-force” technique, the complexity of this problem
is prohibitively in O(n2). This comes as a massive disadvantage to scalability of this
solution to bigger datasets. Figure 1.2 presents an outline of the traditional approach
that is typically unscalable for larger datasets.

As the number of mutations increases in the dataset, the amount of time required
to evaluate the pairwise similarities or comparisons increases quadratically leading
to sub-optimally performing solutions. The problem of efficiently retrieving top-k
similar entities, or mutations in our context, depends on the number of mutations

3

Chapter 1. Introduction

Figure 1.2: Example pipeline followed to extract top similar entities

present in the input data i.e the value of n, the value of k and depending on the
similarity metric that is chosen, the efficiency of the solution also depends on the
overall distribution of the number of patients that each mutation is associated with.
As the value of n increases, we know that the number of comparisons increase in
O(n2), which means that in order to decrease the time required to retrieve the top-k,
we need to reduce the number of comparisons that need to be made or add more
computational resources to iterate through the solution’s search space. Within the
boundaries of this work, our approach tackles this disadvantage of scalability using
the principle of reducing the number of comparisons in order to optimize the process
of retrieving the top-k similar entities.

1.2 Problem and contributions

The authors in [27] define association analysis as the task of identifying strongly
related subset of items, given a set of objects and their observed co-occurrence infor-
mation.This work presents an approach for minimizing the number of comparisons
required to retrieve top-k similar entities and thereby improve the performance in
terms of run time and also maintaining the required level of accuracy. In order to op-
timize this process, Zhang and Feugenbaum of [26] report that it is uneconomical to

4

1.2. Problem and contributions

compute the coefficients of all the pairs in the process of identifying the highly corre-
lated pairs. This is especially applicable to use-cases where the number of correlated
pairs is smaller than the total number of pairs.

Our approach employs a pruning technique with which the number of pairs to com-
pare are reduced iteratively. One of the straightforward ways to solve this problem
is by adding more computing resources that and employing parallel programming
techniques. We can see that the work in [10] utilizes the map-reduce framework
to solve this problem by breaking it down to efficiently search the solution space.
This approach can improve efficiency by alleviating run time, however, it does not
contribute to handling the complexity of the problem that is polynomial. In this
work, we propose a solution that aims to decrease the time required to efficiently
retrieve topk similar entities by handling the complexity of the problem through an
adaptive upperbound-based pruning strategy. Our research objective is to design
an approach to retrieve topk similar entities following the aforementioned strategy
with the aim to improve performance in terms of time taken and accuracy. We then
compare the performance of our approach to two other approaches that includes a
baseline algorithm used to solve the problem of topk extraction. We know from [21]
that a naive approach compares every pair of entities in the search space which leads
to a prohibitively O(n2) time complexity where n represents the number of input
objects. Other than the dependence on n, this research also contributes a study of
the impact of two more factors on the execution time of the considered algorithm:

• The value of k in top-k.

• The overall size of associations of each object in the input or in other words,
“cardinality” of each set in the input.

From [7], it is known that the run time of an algorithm is determined by the total
number of elementary operations that are executed. Therefore, an important factor
that can be used to understand the runtime of different approaches is by observing
the count of iterations. As a further step, we also look into the count of iterations
or loop count to study of efficiency in the considered approaches.

The remainder of this thesis is structured as follows. In chapter 2, we discuss some of
the related tools and technologies that are preliminaries to the work done here. The
following chapter 3, presents a survey of the related work done in the area of topk al-
gorithms and their application areas. In chapter 4, the proposed solution is presented

5

Chapter 1. Introduction

with a description of the steps followed in chapter 5, detailing the implementation
of the proposed approach. The next section, chapter 6 shows the experimental eval-
uations done in order to measure the performance of the proposed approach and
compare the same with the performance of the SOTA approaches in the form of a
comparative study and analysis. In chapter 7, we present the concluding remarks.
It also includes recommendations and insights for the purposes of future work.

1.3 Summary of the chapter

To summarise, this chapter provides the scope of the work done in this research.
The chapter also provides the motivating example in order to better understand
the existing problem that this work aims to tackle. As part of this goal, additional
contributions made during this study are covered under contributions.

6

Chapter 2

Background

This chapter introduces some of the related concepts and preliminaries that will be
used within the confines of this work. The following section aims to provide a clear
understanding of the concept of ‘similarity’, data access methodologies, and various
technological fields where these concepts are leveraged. Important design dimensions
to be considered when using top-k processing techniques include implementation
levels, scoring functions, and data access methods. In the following sections, we
will look at scoring functions and data access methods and their impact on top-k
processing results.

2.1 Analysis of Algorithms

An algorithm can be informally described as a computational process that takes a
set of values as input and produces a set of values as output. Therefore, algorithms
are regarded as tools for solving computational problems.

7

Chapter 2. Background

As explained in [7], the correctness of an algorithm can be ascertained from its ex-
ecution nature when for every instance of input, it produces the correct output.
The analysis of an algorithm is done by measuring the amount of resources that
the algorithm requires. Various resources like memory consumption, communication
bandwidth, and computer hardware are accounted for primarily but it is computa-
tional time that is often used as a measure of efficiency. Therefore, due to these
system specific parameters, intuitively, it is reasoned that multiple algorithms built
to solve a particular problem can differ in efficiency. Consequently, it is necessary to
have a measure that can be used to compare relative performances and for this, it is
recommended to use asymptotic analysis.

We know that the time required for an algorithm is dependent on the input size.
This size of input is regarded as the size of the problem, an integer that is used to
describe the problem numerically. Like mentioned earlier, an algorithm can also be
regarded as a tool or in other words, it is seen as a black box that takes input values
and processes the same to provide as output the solution to the problem. Therefore,
they can be formally expressed as a function of the problem size. The time required
for an algorithm that is expressed as a function is referred to as the time complexity
of the algorithm.

We understand from [7], whenever the size of input is large enough, such that, only
the increase in run time is studied, it is referred to as the asymptotic analysis of
algorithms. With this measure, it is possible to analyze the relative efficiency of
algorithms that are used to solve a particular problem. With asymptotic analysis,
the main aim is to determine how the execution of the algorithm changes with change
in input size. The asymptotic notation denoted by O, is the upperbound of run time
of the algorithm in the worst-case scenario. If the worst case running time of an
algorithm increases linearly with problem size, the time complexity is said to be
O(n), where n represents the input size. If the upperbound run time of an algorithm
is bounded by a constant time, the algorithm is said to have constant time, O(1).

If the worst case running time of an algorithm is bounded by a polynomial expression
in terms of the problem size, such an algorithm is said to have polynomial time,
O(nk). An algorithm whose upperbound run time is quadratic is represented by
O(n2). On account of the above known grounds, in our body of work, we analyse
run time with increasing input to compare the efficiency in terms of time complexity,
of our proposed approach with the chosen contemporary approaches to establish the
hypothesis.

8

2.2. Similarity measures

2.2 Similarity measures

Different applications of information retrieval and data mining algorithms use differ-
ent measures to identify similar objects. Therefore, it is important to understand the
concept of ‘similarity’ and the various measures that exist. In the following section,
we take a look at the concept of ‘similarity’.

Similarity/Distance measures have been widely used in the field information retrieval
and data mining. A similarity/distance metric measures how close or farther apart
are two objects. The data objects are defined or represented using different charac-
teristics and the distance between the representations of the objects is an estimation
of closeness or distance between them. This way, similarity or distance metrics are
used as ‘scoring functions’ in identifying the “top-most” similar entities. The work
in [13] examines some of the distance measures used in partial clustering of text
documents. The authors in [17] outline conditions that need to be met for a metric
to be considered as a distance metric. Suppose v1,v2 are to objects and d is the
distance between them, then:

1. The first condition is that the value of the distance d cannot be negative, i.e.,
d(v1, v2) ≥ 0.

2. The distance value is 0 if and only if the two documents are identical.

3. The distance measure is symmetric is, d(v1, v2) = d(v2, v1).

4. The measure must satisfy the triangle inequality which is d(v1, v3) ≤ d(v1, v2)+
d(v2, v3).

Document classification and clustering tasks often use binary representations for the
documents called the term-document matrix. In a term-document matrix, every
document in the corpus is represented by a row and every word (feature) in the
corpus is represented by a column. Each value in a cell of the matrix, can contain
either 0 or 1 which corresponds to absence or presence respectively. This way, every
document is represented by an n-dimensional binary vector.

9

Chapter 2. Background

2.2.1 Simple Matching Coefficient (SMC)

A data object can be represented in terms of the absence and presence of a given
set of features. Similarity measures between binary vectors can be evaluated by
taking presence and absence of attributes into account. Consider two binary vector
representations v1, v2 that are being compared. With binary representations there
can be four different types of scenarios for a given feature dimension y1. They are,

S11 : where binary value of y1 is 1 in both vectors v1 and v2 - Mutual presence.

S00 : where binary value of y1 is 0 in both vectors v1 and v2 - Mutual absence.

S10 : where binary value of y1 is 1 in v1 and 0 in v2.

S01 : where binary value of y1 is 0 in v1 and 1 in v2.

The formula for SMC is as shown below:

SMC(v1, v2) =
number of matching attributes

number of attributes

In other words,

SMC =
S00+S11

S11+S00+S10+S01

Therefore, the SMC measure considers only two scenarios from the above enumer-
ation, S11 and S00. This property makes SMC a suitable similarity measure when
mutual absence of a feature in both vectors represented by S00, is as semantically
meaningful as mutual presence , represented by S11. Chapters in future will show
why the above concept is relevant in this work.

2.2.2 Hamming distance

From [21], we know that the concept of similarity is closely related to distance be-
tween the representation of two objects. By logic, the more similar given pair of

10

2.2. Similarity measures

objects are, less is the distance measure between them. Hamming distance is there-
fore defined as the size of their symmetric difference. Given two objects A and B,
the hamming distance is:

H(A,B) = |(A−B) ∪ (B − A)|

Levenshtein or edit distance is another measure of distance [21].

2.2.3 Jaccard coefficient

In the context of text document representation, every word present in the document
is considered as a dimension. Therefore, every document can be represented as a
multidimensional vector. For any two documents represented using vectors v1, v2,
the Jaccard coefficient can be defined using the following equation[21].

J(v1, v2) =
|v1 ∩ v2|
|v1 ∪ v2|

The value of Jaccard coefficient lies between [0,1] where 0 represents dissimilarity
among the documents which means they share no common terms and 1 represents
the highest value of similarity among the documents. As shown above, the Jaccard
coefficient is the ratio of the number of words/tokens shared by the two documents
in consideration and the total number of unique tokens present in either documents.
Therefore, the Jaccard coefficient is sensitive to the length of documents. Longer
documents have higher probability of common words but in essence could actually
be more semantically dissimilar. Such a use-case is not appropriately captured by
the Jaccard measure. The difference between SMC and Jaccard lies in the fact that
Jaccard coefficient only considers intersection in the numerator, i.e., only mutually
present dimensions. This makes Jaccard a more general purpose measure in vectors
that are not necessarily binary.

11

Chapter 2. Background

2.2.4 Cosine similarity

Cosine similarity [27] is a measure of cosine of the angle between vectors v1, v2 that
represent two documents. The formula to calculate the cosine similarity between
vectors v1 and v2 is as shown below:

cos(v1, v2) =
(v1 · v2)

(||v1|| × ||v2||)

For non-negative vectors, the value of cosine similarity is bounded between [0,1]. A
cosine similarity value of 0 means that the vectors are orthogonal to one another.
This implies dissimilarity between them. Whereas, a cosine value of 1 implies that
the vectors are parallel or are closely similar. One of the advantages of using cosine
similarity is that it is independent of the size of the documents being compared. This
measure is used to capture the orientation of the vectors in space rather than being
a comparison of the magnitudes of the vector representations. Cosine similarity is
also effective in ignoring zero-matches which is especially important in the context
of information retrieval where numeric vectors are typically sparse in nature.

2.2.5 Euclidean distance

As reported in [13], the Euclidean distance measure is one of most used measures
of similarity evaluation in clustering problems, K-means being one of the example
algorithms. Euclidean distance between two documents x and y is given by the
following equation, where n is the number of unique dimensions or features present
in the corpus and xi represents the weight of term i in document x and yi represents
the weight of term i in document y.:

d(x, y) =

√√√√ n∑
i=1

(xi − yi)
2

12

2.3. Data Access

2.2.6 Overlap measure

According to [21], overlap measure without normalization is defined as given two sets
A and B, the overlap between the sets is given by the following:

|A ∩B|

This is nothing but the number of set elements that are common in both sets A and
B. Bound of overlap measure Ov is:

{
0 ≤ Ov ≤ min (|A|, |B|)

}
In this thesis, the measure used to identify ’similar’ entities is by counting the fre-
quency of pairwise co-occurrences of mutations in patients. Therefore, we use the
Overlap measure that is not normalized.

2.3 Data Access

The authors in Ilyas et al. [14] survey various top-k processing techniques can be
differentiated based on the type of access methods that they assume to be available in
the data sources they use. The Figure 2.1 provides an overlay of this differentiation.
The data access methods can be of the following different types:

• No random;

• Both sorted and random; and

• sorted+ controlled random probes.

13

Chapter 2. Background

Figure 2.1: Part of the segregation of top-k data processing techniques as depicted in [14]

The performance and efficiency of top-k processing techniques are largely dependent
on the data access methods. By principle, we know that random access is more
expensive than sorted access. In the first type of data access method, the top-k
processing technique assumes that the underlying data source supports both sorted
as well as random access methods. Fagin et al. [12] propose the Fagin’s Algorithm
(FA). In FA, items are ranked using multiple ranking functions each creating multiple
lists. The items in the lists are accessed parallely, with each access being sequential
in nature. The operations stop when k different objects are seen in all the lists. In
the following step, the total score is calculated for all the ‘seen’ or processed items
from which the top k are selected through random access. The example in Figure 2.2
shows the process of FA.

In TA, similar to FA, a set of items are sorted based on multiple scoring functions.
An upperbound value based on a scoring function is used to select the items. For
every new object seen/processed in either of the lists, a new threshold is calculated
based on the score of the seen objects. In the next step, for all the objects processed
until now, the total score is calculated, which is performed through random access.
Only those objects whose total score is greater than the threshold, get selected as
output for top-k. Once k number of objects are selected, the algorithm operation
terminates. This way, upperbound based selection and iterative pruning is used to
efficiently identify top-k items in query processing applications. As explained in [14],
in TA, the differences in cost for random access compared to sorted access has not

14

2.3. Data Access

Figure 2.2: In the above example, for a k=2, the lists are ranked according to ranking

functions R1,R2 and R3. Parallely, items are accessed sequentially in each list. Once k

objects X1 and X2 are seen in all the lists, for all the objects ’seen’ which are X1,X2,X3

and X4, the scores are computed by random access and the top 2 are retrieved.

been taken into consideration. Consequently, in the worst case, the TA approach
generates a random access after every sorted access that produces a new object, and
therefore, if there are m number of ways in which the objects were ranked leading
to m lists, every sorted access with new object can lead to (m− 1) random accesses.
Depending on the number of objects, this can lead to very expensive overall cost.
The example in Figure 2.3 after referring [14], serves to understand TA.

Figure 2.3: Working example of TA. If the value of k=2, the process stops after the iteration

3, and returns items 4 and 3 as top 2 query answer.

15

Chapter 2. Background

2.4 Evaluation measures

In the domain of information retrieval, the effectiveness of a classifier is assessed
by measuring how well the system results match the user’s query intent, which is
quantified using relevance judgments. Evaluation measures like precision, recall,
classification accuracy are used to provide a quantitative assessment of an information
retrieval system relative to the query being answered. In the further passages, we
will look at some of the widely used measures, and then discuss how they can be used
in the context of retrieved top-k result verification. In the context of information
retrieval, recall is the proportion of the relevant documents retrieved, and precision
is the proportion of the retrieved documents that are relevant. Most ranking systems
use a series of relevance judgments against the query, which is used cumulatively as
input to quantitatively measure the ranking effectiveness. Recall and precision can
also be measured at each document retrieved.

The Venn diagram in Figure 2.4 from [16] helps to better understand the concepts
of precision and recall. It is to be noted that precision and recall are converse in
nature. With a high recall, precision gets lower and vice-versa.

Figure 2.4: The Cranfield arrangement from [16]

From the fig Figure 2.4, precision is defined as |A|/(|A|+ |B|) and recall is defined as
|A|/(|A|+ |C|). Within the context of IR, Precision is used to measure the efficiency
of identifying true positives or in other words referred to as true positive rate. The

16

2.4. Evaluation measures

below figure Table 2.1 of a contingency table gives a brief overview distribution of
different classes of results in a binary classification task. We shall use the concepts
from this distribution in further sections for better understanding.

Actual classes
Predicted classes Positive Negative

Positive True positive False positive (type I error)
Negative False negative (type II error) True negative

Table 2.1: Contingency table

The recall measure is also referred to as “sensitivity”. Recall is used to evaluate the
efficiency of identifying all the records relevant to the query being answered. Appli-
cations that require high recall, are those for which identifying all relevant objects
i.e. without any false negatives is of priority irrespective of how many irrelevant
objects get retrieved. However, in the context of information retrieval, relevance is
a measure that is calculated as a consequence of human judgement. Algorithms can
be designed to either have high precision or high recall depending upon the require-
ment. For applications designed to have high recall, it is essential that the user is
cognizant of all the relevant answers pertaining to the query, a priory. Pertaining
to this, the authors in [6] opines that the presence of unexamined documents has
always been part of performance evaluation measures. However, in case of high re-
call applications, if a user has no awareness of a particular document, then even if
this document is relevant to the user’s search, it makes no difference in that search.
This makes precision a more straightforward evaluation measure. Also, for systems
with high scalability requirements, this is a disadvantage. In our context, the aim
of the proposed solution is to be able to retrieve all the top k similar entities from
the “unexamined” collection of quadratically growing search space. Therefore, the
disadvantages associated with respect to evaluation can be seen as two folded:

• It is imperative that the results be 100% accurate as the concept of “relevance”
is not pertinent in our context.

• There is no scope for false positives. The k items retrieved by the algorithm,
need to all be true positive.

In order to use the metric of recall in our context, if we interpret the task of retrieving
top-k as a binary classification task, the pair of top similar entities belong in the class

17

Chapter 2. Background

of positives and the remaining pairs of entities can be regarded as belonging to the
class of negative. With the aforementioned disadvantages, even though recall is used
to evaluate the efficiency and correctness of the proposed solution, the goal is for the
proposed approach to have 100% recall. This is because approximations in biomedical
computational services are less desirable. Therefore, to evaluate performance, we opt
to measure the sensitivity of the algorithms to establish completeness of the proposed
approach as compared to the baseline.

2.5 Summary of the chapter

In summary, this chapter on background, provided an introduction to the technolo-
gies and concepts that help in better understanding the motivation of this work,
the problem that we aim to tackle and also the design decisions that have gone into
developing the proposed approach. We also discussed some fundamental evaluation
measures to understand the concept of similarity, how it can be adapted in our work
and the reasoning for our choice of measure.

18

Chapter 3

Related Works

The applications of top-k processing techniques are ubiquitous in nature. The grow-
ing volume of structured and unstructured data being generated warrants the need
for higher levels of optimization as well as techniques that can be adapted to hetero-
geneous data. Optimization calls for computational simplification. In this direction,
promising work has been done and we will present how the problem of topk can be
handled and also highlight the domain-specific requirements.

3.1 Scalability oriented approach

One of the most extensive applications of top-k algorithms is in the field of association
rule mining. Association rule mining plays an important role in the field of market
basket analysis. Market basket analysis involves computational methodologies to
quantify customer preferences and detect patterns in sales that are further used for
promotion, shelf management and marketing.

19

Chapter 3. Related Works

The approach discussed in [27] aims to overcome disadvantages of the traditional sup-
port and confidence framework in association analysis by using the cosine similarity
measure to identify top-k co-occurring items as part of association analysis. Most of
the approaches require a minimum threshold value of the distance measure measure
used and this can be a challenge in real world scenarios dealing with high volume
and/or high dimensional data. In order to circumvent this challenge the authors
in [27] proposed a novel method based on Max-First traversal, an algorithm named
TOP-MATA to retrieve top-k similar item pairs computed using cosine similarity
measure. This approach performs upperbound pruning of the search space using the
monotone property of cosine similarity measure. The advantage of this method as
shown by the authors is that it reduces the number of false-positive computations
by pruning the item pairs without having to calculate the actual similarity value for
all possible pairs.

One of the properties of this approach is that the upper bound is based on the cosine
similarity that is expressed in terms of support measure used in frequent pattern
mining. The approach uses current minimum as threshold to produce a filtering
effect and properties of sorted item matrix as pruning effect. In the max-first traversal
strategy, the iterations are limited to the upper triangle of the sorted item matrix
and rows are selected based on the presence of the item pair with maximum cosine
upper bound. Upon selection of the row, all pairs in the row having the same value
of cosine upper bound are investigated.

A positive aspect of this approach is that it limits the search space to n(n−1)
2

which
is half in comparison to the naive approach of investigating every item with every
item in the input. This leads to improved time efficiency. With the help of the upper
bound, it also ensures that the pool of false-positive pairs that are investigated re-
duces, leading to performance enhancement by further alleviating the computational
costs. In both TOP-MATA and proposed approaches, sorted inputs are used which
ensures faster pruning [21].The motivation behind both approaches also coincide in
that the solutions are driven around the need for efficiently retrieving top similar
items without the presence of an overall minimum threshold value. Both approaches
use the current upperbound to iteratively reduce the search space complexity. The
main difference of this approach from the proposed approach is the usage of a prop-
erty for the pruning effect. The monotone property of the cosine similarity measure
is used to filter out candidate item pairs and only those pairs are investigated further
at every iteration.

In the proposed approach, the current minimum value of co-occurrence in the current

20

3.1. Scalability oriented approach

top-k is used directly to prune the search space with the aim to reduce the complexity
further in each iteration. In order to adapt the approach presented in [27] to the
research problem of our undertaking, “minimum” of property is used. The sorted
item-matrix is constructed by inserting the minimum cardinality of the two items as
shown below:

card(item1, item2) = min(| cardinality of item1 |, | cardinality of item 2 |)

The work in this study and our proposed approach can be understood better with
the help of the following high level comparison reported in Table 3.1.

Property TOP-MATA Proposed approach

Data input format

Sorted item matrix
where each value is
given by the upper-
bound condition.

Sorted table of columns mu-
tations, associated list of
patients and the column for
cardinality of this list of pa-
tients

Upperbound condition
In terms of support
values of the pair of
entities

In terms of the minimum()
of the cardinalities of the
pair of entities

Traversal

Uses max-first diago-
nal traversal starting
from the row with the
highest value in the
item matrix

Using combinations of mu-
tations retrieved after sort-
ing the mutations in de-
scending order of their car-
dinalities

Optimization strategy

Selective processing of
pairs in every row
of the sorted item-
matrix

Iterative pruning of the in-
put data using the updated
value of threshold

Similarity metric Cosine similarity Overlap coefficient

Table 3.1: Outline of the major differences between TOP-MATA and Proposed approach

21

Chapter 3. Related Works

3.2 Computationally Economic Approach

Another one of the applications of efficient top-k retrieval has been in the field of
document similarity assessment for clustering and information retrieval. The work
in [17] defines the problem of document similarity computation as the process of
computing the topk pair of similar documents using a specific term weighing model
given a collection c where each document is represented by d.

This study proposes the use of shingles having a user-specified length to extract
candidate pairs, where a ’k-shingle’ for any document is defined as any substring of
length k found within the document. Shingles are used to represent documents as
a set of consecutive substrings that appear in the document. If the value of k is 4,
then the document is divided into sets of 4 unique substrings that appear consecu-
tively in the document. A given computational disadvantage that the models have
to overcome is their quadratic runtimes. If a given dataset contains n documents,
then, computing pairwise document similarities implies comparing every document
with the remaining (n − 1) documents. The runtime with this approach increases
quadratically with n, i.e., O(n2). The proposed model in this approach tackles the
problem of high computational costs by employing heuristic methods to reduce the
number of candidate comparisons. The shingles that each document is associated
with, play an important role in the computation time. This is because each docu-
ment can be associated with a large number of shingles leading to quadratic time
complexity. The large number of shingles could also imply high storage complexity
as it would require external memory. In this work, the authors have designed an
algorithm to create relation triples of the form (U,V,W) where document U contains
shingle V and shingle V is also present in document W and are to be used as candi-
dates in the similarity evaluation process. The process of generating these relation
triples involves pruning the documents to be compared by reducing the number of
shingles that are remaining thereby reducing the overall runtime required to generate
pairwise document similarities. The proposed solution performs in logarithmic time
complexity O(nlogm) where m is the number of documents and on an average re-
duces the number of comparisons by 71% compared to the Allpairs search algorithm
by [4] thereby increasing time efficiency. This work is similar to our approach in that
it aims to reduce the runtime costs by aiming to reduce the problem complexity in-
stead of adding more computing resources to solve the problem of identifying top-k.
Another similarity with respect to design is that both the solutions involve reducing

22

3.3. Filtering principle for pruning

the number of candidate pairs by heuristically limiting the number of comparisons
to be evaluated. Both the solutions also consider data pre-processing in order to
save the space complexity of our approaches. A characteristic matrix is a data struc-
ture where each row represents a document and columns represent different tokens
present in the corpus. A cell in such a matrix can have either 0 or 1 as a value
where 1 implies presence and 0 implies absence. Such characteristic matrices are
usually sparse owing to the fact that the number of tokens in a corpus are always
exponentially greater than the number of documents in the corpus.

In both solutions, the number of comparisons to be made are further reduced by
sorting the input in decreasing order of size. The solution design in both cases
reduces the input data size based on frequency and uses a relation data structure
to store information from only those cells from the characteristic matrix where the
value is 1. However, the difference between our work and the proposed solution in
[17] is that the problem domain in both cases are vastly different. The distance
measure used for identifying top-k is also different as our aim is to identify actual
co-occurrences as similarity in a pair of mutations in terms of patients is semantically
meaningless. The choice of distance measure also leads to a different , it pruning
criteria.

3.3 Filtering principle for pruning

As mentioned earlier, topk algorithms have diverse applications in the field of knowl-
edge discovery. One such application in the field of text mining is for near duplicate
detection. The rising growth of data on the internet is leading to more complex
challenges like data integration from heterogeneous sources. One of the issues in this
domain is redundancy and this is where near duplicate detection techniques become
highly relevant. Near duplicate documents have a high degree of similarity quan-
titatively but have different bitwise. Therefore, even though they are semantically
equivalent, they are different in terms of representation. Identifying near duplicates
efficiently can lead to more focused web crawling application, increased diversity and
accuracy of query results, spam detection, detecting plagiarism, community mining
in social networking sites etc. This leads to the requirement of identifying near dupli-
cate records efficiently. The work of research in [21] aims to identify pairs of records

23

Chapter 3. Related Works

that have a similarity value that is at least equal to a given similarity threshold.

This study proposes an approach based on the principle of positional filtering of
tokens in a record to efficiently identify near duplicates quantitatively using Jaccard
similarity measure. This study proposes an algorithm that additionally includes
suffix filtering principle to prune candidate records efficiently. The first stage is a
candidate generation stage where potential records are extracted which are essentially
the superset of the final set. In the next stage called the optimized verification
algorithm, the actual similarities are computed and the near duplicates are identified
using a given similarity threshold. In positional filtering, the inverted indices are also
sorted based on a universal order and using of the index position of the last overlap
in the prefix of any two records, a maximum possible overlap value is calculated.
This helps in pruning records that are false positive and thereby reduces the number
of candidate records to a large extent. This is an extension of the prefix filtering
principle which is based on the intuition that if two canonicalized documents show
similarity then it follows that some fragments of the two documents intersect. This
has been implemented in the work by [5].

The empirical evaluations in this work showed that the proposed ppjoin+ algorithm
outperformed the ppjoin algorithm which combines prefix filtering and positional
filtering techniques also proposed in the same work, as well as its contemporary
approach AllPairs. The experiments were performed on several real world datasets
like DBLP, DBLP-3GRAM, TREC-4GRAM, TREC-Shingle, and the performance
was compared with SOTA approaches that use prefix filtering principle. The results
showed that the reduction in execution time in the proposed ppjoin+ was greater
for smaller values of similarity threshold.

One of the positive aspects of this study is that the work also proved generality of its
applications by extending their solution to other similarity and distance measures.
Another point to note is that, this work adds to the growing corpus of research where
exact computations and not approximation is used to identify near duplicates. The
work proposed in this paper successfully improved the recall in near duplicate web
page detection when applied on similarity join in web pages represented by shingles.

A disadvantage of this approach is that, it has a significant dependence on the
similarity threshold. The reduction in execution time of this approach reduces as the
similarity threshold increases. This is due to the increasing size of inverted indices
when the similarity threshold is lower. Therefore in such a scenario, approaches with
suffix filtering seem to outperform the other contemporary approaches.

24

3.3. Filtering principle for pruning

As the similarity threshold increases closer to 1.0, the speed-up achieved seem to
lessen. This approach is also tailored strictly to the domain of document similarity
computation. The similarity between this work and our proposed solution is that
both the works are built based on using pruning as a principle technique. In this
work by [21], the Jaccard similarity is used with an upperbound threshold given by
sim(x, y) ≥ t

1+1
· (|x|+ |y|).

Jaccard similarity differs from cosine similarity measure in that, Jaccard is influenced
by the length of documents being compared. Whereas, cosine similarity aims to
compare the direction in which the vector representations of the two objects are
aligned. Jaccard measure is also insensitive to repeation of features whereas cosine
similarity is affected by terms that repeat in a document. However, cosine similarity
is a better choice of measure when the vectors are more high dimensional as well as
sparse. In our proposed solution, the upperbound threshold is computed iteratively
based on the current kth value of overlap and using the minimum() heuristic, the
data is pruned for false positives.

Another similarity is the usage of sorting. The records are canonicalized using the
document frequency ordering of the tokens. The tokens in the inverted index are
sorted in ascending order of document frequency so that the tokens that are rare
appear first, leading to small candidate set and hence speeding up execution time.
Similarly, in our solution, the records are sorted based on the cardinality of their
associated sets so that the more likely pair of top k records are identified faster and
further causes the pruning process to accelerate. We shall see in further sections
how randomizing the order can lead to sub-optimal results. However, the proposed
solution in [21] largely uses a pre-determined value of similarity to build the threshold
function for pruning. This makes this approach not directly suitable in our case where
the requirement is to retrieve the k top most similar entities. Since the similarity
measure here is the Overlap coefficient, it is not possible to provide a value of Overlap
as threshold especially when the datasets are large in volume.

25

Chapter 4

Approach

As stated earlier, the goal of this work was to design a method that can efficiently
identify the ‘k’ top most similar entities. The motivation for an efficient solution
to identify the top-most similar entities can be attributed to the quadratic nature
of this research problem’s complexity. Given the wide applications of our research
question, this work was motivated by the need to view this problem from the per-
spective of working on the complexity of the problem space rather than adding more
computational resources to optimize the process of identifying the topk similar items.
It is worthy to note here that, in this study the focus is on building an in-memory
based implementation approach.

4.1 Problem statement

Most of the application areas of top-k retrieval have the advantage of using a simi-
larity threshold in-order to continuously filter the pairs that do not meet the criteria.

26

4.1. Problem statement

And so, some of the strategies are centered around using a similarity threshold and
incorporating it in different ways to solve the problem of scaling and optimizing top-
k. This can be seen in the domains of document similarity detection, near duplicate
detection, alternate query formulations, to name a few.

Our context however is in the application of topk in the biomedical domain. Specif-
ically, our motivation, as discussed earlier comes from the proposition that using
frequently co-occurring mutations of different genes, with the aim of finding poten-
tial biomarkers or patterns that can help in targeted treatments, disease prevention
and/or better patient care management. One of the disadvantages in our context is
that a threshold cannot be known apriori and therefore, we adapt to find solutions
to optimize the process of finding top-k. Figure 4.1 shows a pairwise co-occurrence
matrix of a small subset of oncogenic mutations.

Figure 4.1: Example of pairwise co-occurrence matrix of mutations, which shows that the

pair of mutations on genes PIK3CA and TP53 are the most frequently co-occurring, as

highlighted.

27

Chapter 4. Approach

Typically, genomic datasets are large in size, and therefore, scale and complexity of
finding co-occurring mutations is a challenge. For instance, the UKBiobank data for
dementia disease consisted of 46,000 unique mutations in the sequencing data that
was taken from across 1,729 patients. For pairwise co-occurrences, we are already
looking at a worst-case search space complexity of (46, 000)2. Furthermore, the idea
of co-occurring mutations is well-beyond just pairwise occurrences. An exploration
for dyads, triads, and even tetrads could potentially yield interesting results and serve
as starting points for deeper studies. Nonetheless, within the confines of this study,
we will only look at pairwise similarities. A brute force approach to solve this problem
implies sequentially processing every pair of mutations, retrieving their similarity
scores and then extract top-k pairs as explained in Figure 4.2. The motivation
and relevance of this research comes from the need to devise an approach that can
optimise the problem of top-k co-occurring mutations when a similarity threshold is
not known. This solution will help in acting as an optimal first step in the study of co-
occurring mutations in genomic studies more efficiently in terms of time complexity
by tackling the problem complexity.

Figure 4.2: Example scenario of maxheaplist update procedure that takes place in the

’checkheap’ function call. The current top kth pair in the topklist is replaced when an

incoming pair of mutations has a higher overlap value, 479 in this case. This new overlap

value of top kth pair is then returned as ’marginValue’ to serve as the updated upperbound.

28

4.2. Proposed solution

A formal definition of the problem is as follows: Given a dataset D with, X number
of unique entities each represented in row entries of D, having a column that is the
set of all patients associated with each entity, where entity xi ⊂ X is associated with
a set si ⊂ S, entity xj ⊂ X is associated with a set sj ⊂ S , find the top-k similar
pair of entities (xi, xj) where, S in our case is, the set of all patients in the cohort

and k ∈ Z such that {1 ≤ k ≤ (X
2−X
2

)}, similarity is given by:

sim(xi, xj) = si ∩ sj

4.2 Proposed solution

The aim of this study is to tackle the problem of polynomial runtime by devising an
approach that reduces the complexity of the problem in order to optimize the process
and also achieve high recall in the results. The hypothesis made in this study is, by
using an upper bound as threshold to iteratively prune the search space , retaining
high level accuracy as well as reducing complexity can bring down the time required
to identify the top-k similar entities. This study also aims to investigate the impact
of change in input size , change in the value of k on the execution time. Another
aim of this research is to understand the impact of size and k value on contemporary
approaches to better understand the computational nuances of the top-k problem.

4.3 General heuristics

In this subsection, we will look at some of the heuristics based on which the proposed
solution was based on and built. These cognitive strategies were built to be applied
irrespective of the format in which data is used. They are used as foundations
around which the proposed solution and the pipeline to extract top-k similar entities
are built. These heuristics are explained below, followed by pseudocodes.

29

Chapter 4. Approach

4.3.1 Monotonic property of min()

A function on real numbers is referred to as monotonic if it is either entirely increas-
ing or entirely decreasing. For our problem, the Minimum() gives the Upperbound
for overlap measure between any two non-empty sets. Given two non-empty sets
A, B with cardinalities, |A|, |B|, respectively, |A| > |B| and a fixed value of |A|,
minimum(|A|, |B|) monotonically increases (decreases) with |B|. The following Fig-
ure 4.3 helps in understanding this better. As seen in the graph, consider the min()
being applied in the setting of two sets. As the cardinality of set B decreases, the
maximum possible overlap between the sets given by minimum(|A|, |B|) decreases
monotonically with B. This is shown using the green line in the graph.

Figure 4.3: Example graph to show the monotonicity property of the min()

Therefore, we can say that when mutations are sorted in decreasing orders of their
associated cardinalities, the maximum possible overlap coefficients monotonically
decreases.

4.3.2 Upperbound

In order to prune the search space, the proposed solution uses the minimum property
as upperbound. This is done in-order to reduce the number of false-positive computa-
tions during the process of generating the top-k similar entities, thereby guaranteeing
lesser computation time and higher efficiency. Along with this background, we know

30

4.3. General heuristics

that the ’interestingness’ measure used in our context is the overlap coefficient. By
logic we know that, the overlap operation is bound by the lesser valued item, i.e., the
overlap coefficient between two non-empty sets A and B has an upper limit which is
given by the following:

upperbound(Overlap(A,B)) = min(|A|, |B|). 1○

where |A| represents the cardinality of set A and |B| represents the cardinality of
set B. Sets, in our context, refers to the mutations and the contents of each set
is formed by the unique patients in which the particular mutation was observed,
for that specific set of patient biopsies. In the following example, the mutation
‘ALK_chr2_29445475_-~C’ was found to be in 4 patients and the set representation
is as shown.

ALK_chr2_29445475_-~C =
[
296833, 664662, 998317, 1189366

]

At any given point in time during the operation, the Overlap value of the current
top-kth pair is considered as the ‘threshold_value’ for that iteration. Therefore,
the above mutation can have a maximum Overlap coefficient value of 4 with any
other mutation having a non-zero cardinality. Using this condition, while search-
ing the space of mutations, given a current ‘threshold_value’ for the Overlap
coefficient, only mutations that have an associated cardinality that is at least equal
to the ‘threshold_value’ can only get selected for further processing. All other
mutations with cardinalities less than this ’threshold_value’ are incrementally
pruned from the search space thereby reducing the number of pairs to be pro-
cessed further. Therefore, if any mutation ‘m’ is associated with a cardinality ‘c’, if
c < ’threshold_value’, then the mutation ’m’ is pruned from the search space.

Formally, when an upperbound threshold of ’u’ is applied on a column say ’c’, at
any given point in time, if ri is a record with column ’c’ value being vi, in the input
collection of records R, having a total of ’n’ number of records, input collection of
records R is given by the following expression where, {1 ≤ i ≤ n}.

{
∀ri ∈ R | vi ≥ u

}
31

Chapter 4. Approach

Using this property, the proposed solution reduces the number of false-positive com-
putations incrementally. All the pairs of mutations that do not fulfill this criteria
need not be investigated. This provides the required pruning effect of the search
space, thereby building an overall optimal solution to the problem of top-k. There-
fore, it can be said that the proposed solution uses a greedy approach, as the pruning
threshold is locally updated, to find the top k similar entities without needing any
similarity threshold value in advance.

4.3.3 Heuristic sorting and filtering

Size-based sorting: We know from [5] that sorting tokens in decreasing order of
document frequencies can expedite the process of similarity join. In order to further
reduce the time complexity, a heuristic based strategy is to order the items in de-
creasing order of their cardinalities. In doing so, with decreasing cardinalities, the
pairs with highest values of Overlap get identified during the early iterations. Follow-
ing the monotonic property of min(), we can say that the Overlap values decrease
with decreasing cardinality and therefore, reducing the chances of investigating the
pair of entities that potentially could belong in the top k list. Therefore, the input
mutations are ordered in decreasing order of their cardinalities [27].

Size-based filtering: In the Overlap operation , the minimum value of overlap
that can occur is 1. As a pre-processing step, we remove the mutations that occur
in a single patient. This is because such a mutation can only have a maximum
overlap value of 1 and this can occur only with mutations occurring in that very
patient only, Semantically, this does not provide any meaningful information about
the cohort of patients being studied. Therefore, our data is pre-processed to contain
only mutations that have a minimum individual occurrence in at least two unique
patients from the cohort. Therefore, the following can be said about the range of
Overlap coefficient O in the sample:

For a set of items S, where each s ⊂ S , is associated with a finite numbered set
with si having the least cardinality of mi and set sj having the highest cardinality
of mj, the pairwise overlap coefficient over the set of items S has the following range
properties: {

2 ≤ 0 ≤ mj

}
. 2○

32

4.3. General heuristics

Combinations: Similarity between two entities is symmetric in nature. So is the
case with the intersection operation. This implies that, given two sets A and B,
intersection(A,B) = intersection(B,A). By using this property, it is possible to reduce
the search space further by considering non-repeating pairwise combinations of all the
unique mutations from the input [27]. Therefore, the input is processed to identify
all possible unique pairwise combinations of the mutations to improve computation
time. The presence of this operation in our approach provides the opportunity for
this algorithm to be used in the context of identifying not just pairwise but polyads
of co-occurring mutations/entities. For pairwise, where N is the number of unique
mutations, (

n

2

)

4.3.4 Data representation

A popular method of representing data in information retrieval applications is the
term-document matrix , a vector space model of data introduced by them. In this
method, every document is represented by rows of a matrix and the collection of
words are represented using columns. The words that are present in a document
are identified by a value of 1 and absence of a word is denoted by a value 0. The
resultant matrix is known as a characteristic matrix. The method has been used
in [17], where it is slightly improved by limiting the columns set to only shingles of
words to reduce the computation time as it leads to a reduced number of pairwise
comparisons. The same data representation idea can be extended to our context
where a patient is represented using rows and mutations can be represented using
columns. A patient in row p having a mutation in column m, will give the cell value
in a matrix C,

C (p,m) = 1 {0 , otherwise}

The Table 4.1 serves as an example of a characteristic matrix.

In our context, the nature of the datasets is that the number of mutations is higher in
number compared to the number of patients much like the scale of document count
vs word count. Another disadvantage is the eventual sparsity of such an adjacency
matrix. Since the sequencing data for a single patient can be completely different
from another patient, depending on the type of biopsy, the patients could have very

33

Chapter 4. Approach

Patient ID PIK3CA_chr3_178936092_A~C TP53_chr17_7578475_G MAP2K1_chr15_66729146_G~T

17581 0 1 0
170471 0 0 0
192872 1 0 1
264735 0 1 1

Table 4.1: In the above characteristic matrix is 4x3 in dimension and, values C (0,0) = 0

represents ‘absence’ and, C (0,1) = 1 represents ‘presence’ where rows are in 0,1,2,3 and

columns in 0,1,2.

few mutations in common. This is especially the case when the mutation counts are
exponentially higher when compared to the number of patients. This implies higher
computational time as well as higher storage storage space requirements. Further-
more, unlike in the domain of text mining and document similarity computation,
semantically, the absence of specific mutations in patients does not imply higher
similarity.

We have previously seen the different possible cases in binary vectors in section
2.1.1. In other words, in our use-case of overlap coefficient, we are only interested
in one of the possible cases of ‘S11’ (refer section 2.1.1) i.e., the case where value is
1 or represents presence in both vectors. This way of representing can prove to be
disadvantageous in large datasets, as it can lead to a highly sparse matrix, proving
to be expensive computationally as well as for storage. Due to the above discussed
scenarios, a different representation will be used in this work of research. Since
we are only interested in ‘presence’ information, it is more favourable to store only
information about the mutations that are known to be present in a patient. This
helps in lowering the computation time [17] and also requiring reduced storage space
for the operation. To be more precise about the tailored representation, since we are
interested in co-occurring mutations, we store mutations (entities) and the unique
patients in which they are known present. Table 4.2 shows the data representation
used in our approach.

Mutation ID PatientList Count
CDK6_chr7_92355106_-~A [306631, 1110078, 1124004, 1133311, 2760928, 2763499] 6
ALK_chr2_29445475_-~C [296833, 664662, 998317, 1189366] 4
TP53_chr17_7578225_-~A [344754, 664662, 792708] 3
APC_chr5_112175640_-~A [2725809, 2763499] 2

Table 4.2: The above table shows the raw format of data input used in this research.Every

mutation is associated with a ’PatientList’ which is list of patients in which the mutation

was observed. The column ’Count’ is the cardinality value of the respective ’PatientList’

34

4.4. Pseudocode

The number of patients that each mutation is observed to be in , is stored in the
column ‘Count’ which, as we shall see in the further sections, will be used in the
proposed solution to prune the search space. This value is basically the cardinality
of the set of patients stored in the column ‘PatientList’. From this point forward
in this book, we shall refer to the column ‘Count’ as the “cardinality associated
with the” respective mutation and the column ‘PatientList’ as the “set of patients
associated with the“ respective mutation.

4.4 Pseudocode

Pseudocodes are useful in conveying the overall structure of an algorithm clearly and
succinctly. A pseudocode is a set of instructions written using the most expressive
language in order to avoid the idiosyncrasies of any particular programming language
from obscuring the essence of the concept being conveyed. The heuristics discussed
in the previous section were integrated into constructing the algorithm to efficiently
identify top k similar entities. The proposed solution uses two function routines
to accomplish this task. The main pseudocode aims to retrieve the top k similar
entities by taking the input relation and displaying the top k results. The solution
uses the algorithm 2, to iteratively examine the pair of mutations, and determine if
the Overlap coefficient computed is high enough to be selected into the top k list.

35

Chapter 4. Approach

We will now look at the pseudocodes for both the routines in the following sections.

Data: SD : input relation; SD.index : Unique mutations used as index to
SD; SD.PatientList: Set of patients associated with each mutation;
SD.cnt : cardinality associated with that row; k: user input value;

Result: Top k similar entities

1 curr inter ← 0;
2 marginValue ← 0;
3 initialize maxheaplist ;

4 for 2-combinations of SD.index el(index1,index2) do
5 if el is in current SD.index then
6 curr inter ← Overlap(SD.index1.PatientList,SD.index2.PatientList);
7 marginValue ← checkheap(SD,curr inter,k,el);

8 if marginValue is not equal to 0 then
9 Drop all indices from SD where cardinality is less than

marginValue;

10 end

11 end

12 end
13 Retrieve top k similar items from maxheaplist ;

Algorithm 1: To generate top-k similar entities

The algorithm 1 takes as input the set of all mutations in a relation data structure.
The unique mutations are used as an index in the relation. Each mutation index is
associated with two columns, one of them contains a list of patients that the mutation
is observed in and the second column contains the cardinality or the count of patients
present in this list. The algorithm also takes as input the value of k. The lines from
1-3 are used to declare and initialise the variables. The variable ‘maxheaplist’ is used
to store the list containing the Overlap coefficient value of different pairs in a 3-item
list. The unique pairwise combinations of mutations are extracted in line 4, and serve
as input to the core operation of the algorithm. The lines from 5-9 , iterate over
each of these combinations, to calculate the co-occurrence or intersection between
their associated patient lists. This value, called ‘curr inter’, is then inspected in the
‘checkheap’ routine if it belongs in the top k list. The response from ‘checkheap’
then determines whether or not the input data can be pruned further.

Any value of the variable ‘marginValue’ that is greater 0, results in a pruning mecha-

36

4.4. Pseudocode

nism that is implemented at line 9. The pruning here is an operation of removing all
the mutations that do not have the minimum cardinality of the associated patients
list, in order to potentially belong in the top k list. All rows identified by muta-
tions, where the number of patients in which the mutation is found is less than the
threshold for that iteration, is dropped from the input relation.

The ensuing section explains the subroutine ‘checkheap’ to understand how each pair
of mutations are investigated. The pseudocode for this routine is presented in the
figure below. The algorithm 2 takes as input the input relation, the current Overlap
coefficient value i.e. the intersection value of the pair of mutations being examined,
the input value of k, and the pair of mutations. The output of this algorithm is an
integer value that determines the next step to be taken in algorithm 1.

Data: SD : input relation; curr inter; k ;maxheaplist; el (index1,index2)
Result: A value ‘marginValue’ that is used to determine if the pair of

entities belong in topk list

1 if length of maxheaplist is less than k then
2 tuple ← [curr inter, index1,index2];
3 maxheaplist← insert tuple;
4 return 0;

5 else
6 lowestvalueinheap← maxheaplist[k][0];
7 if (curr inter >= lowestvalueinheap) then
8 tuple ← [curr inter, index1,index2];
9 maxheaplist← append tuple;

10 return lowestvalueinheap;

11 else
12 return lowestvalueinheap;
13 end

14 end

Algorithm 2: To verify if given pair of entities belong in the top k list

The proposed solution stores the first k iterations into the ‘maxheaplist’.The premise
for this being that the input relation already has mutations sorted in the descending
order of their cardinalities.Therefore, we hypothesize that the true-positive outcomes
are likely to be retrieved in the initial iterations. During these first k iterations, no
change to the input relation takes place. In order to ensure this, the return value for
this scenario is set to zero. Refer to lines 1-4 in algorithm 2.

37

Chapter 4. Approach

From the k+1th iteration onwards, each pair of mutations and their associated Over-
lap coefficient value is compared with the kth coefficient value in the heaplist in the
lines from 7-12 of the algorithm 2’s pseudocode.

If the current overlap coefficient value is greater than or equal to the kth value, the
current pair of mutations and their associated value of overlap coefficient, is inserted
into the heap accordingly. In the scenario when the current overlap value is greater
than the kth value, upon insertion of this current pair into the heap list, the list
instance could now be different from before. This means the kth value in the list
may or may not be different.Refer the Figure 4.2 for a diagrammatic representation
of this use-case. Therefore, the next step in the sequence of operations is to retrieve
the current kth value in the list. This value is set as the return value of this routine
and is captured by the variable ‘marginValue’ in algorithm 1. This value is also
referred to as the threshold value for the current iteration. With a new kth largest
value in the updated heaplist, we know from 4.3.2 that in-order for remaining mu-
tations in the input relation to qualify for the future iterations, they need to have
an associated value of cardinality that is equal to or greater than the kth Overlap
coefficient value in the heaplist. Consequently, the ‘marginValue’ variable is then
used to prune the search space by dropping all rows of mutations with cardinalities
less than ‘marginValue’ in the line 9 of algorithm 1.

If the kth largest value in the heaplist is not greater than or equal to the current value
of overlap, the routine continues to return the kth largest value in the heap list for the
pruning process to continue for the respective iteration. The process continues until
the unique number of pairs of mutations are exhausted at which point the loop ends.
The top-k pairs of similar entities can now be retrieved from the ‘maxheaplist’. The
overall flow of execution in the proposed solution is summarized diagrammatically
in the flow diagram in Figure 4.4.

38

4.5. Runtime analysis

Figure 4.4: Diagrammatic representation of the flow of execution in the proposed approach.

Once the input space is reduced to retain only unique pairwise combinations, the proposed

approach continues to process the pairs to find the overlap. The preliminary k pairs are

stored to get the kthe value as upperbound. This upperbound is applied to the input data

if new pair has a value grater than the upperbound. This way the false positive pairs are

incrementally pruned.

4.5 Runtime analysis

In order to theoretically interpret the behaviour of the algorithm, time complexity
analysis is performed. In this section, we shall look at the worst case upperbound
of the proposed solution. The proposed solution, as seen in the previous sections,
consists of two main functions: The main function presented in algorithm 1, and

39

Chapter 4. Approach

the sub-routine presented in algorithm 2. The bottleneck in algorithm 1 comes from
retrieving non-repeating pairwise combinations of the mutations. We know that the
formula for this is given by the following, where n represents the number of items
and k represents the number of items chosen at a time:(

n

k

)
=

n!

k!(n− k)!

We also know that the total number of combinations that can be formed for all
0 <= k <= n, is given by 2n. This set consists of all possible subsets of ‘n’ including
the empty set and n itself. In our context however, we are looking at pairwise
co-occurrences, and therefore, the value of k remains a constant, i.e. :

k = 2

We also know that in biomedical application domains like ours, the number of mu-
tations (=n) is always sufficiently large enough to say that,

k ≤ (n− k)

40

4.5. Runtime analysis

Consider the example where n=10, k=3. Then,

(
n

k

)
=

10!

7 ! 3 !

=
10 ∗ 9 ∗ 8 ∗ 7!

7 ! 3 !

Let us say for large values of n, the previous equation can be re-written as:

(
n

k

)
=

10 ∗ 10 ∗ 10

3 !

=
103

3 !

We know that k=3, n=10. Therefore,

(
n

k

)
=

nk

k !

The worst case complexity of retrieving non-repeating combinations lies in:

o (nk) when, k ≤ (n− k)

Since the study in this research is limited to pairwise combinations, the value of k is
2 as mentioned earlier. Therefore, the overall worst case complexity is still quadratic
similar to the naive approaches that process n(n−1) different pairs. However, in our
case, the worst case holds only when the associated cardinalities of all mutations are
equal. One of the ways to reduce the runtime behaviour is by reducing the number of
pairs to be processed and that is achieved by the help of the upperbound condition
that iteratively updates the upperbound condition to prune the input space.

41

Chapter 4. Approach

In algorithm 2, insertion into list operation can be done in constant time and there-
fore, the expense comes from the sorting operation performed at the beginning of
the routine to ensure that the tuples are ordered in descending order of the Overlap
coefficient. The sort operation implemented in native Python 3.7 has a worst case
complexity that is in logarithmic class, nlogn.

4.6 Summary of the chapter

This chapter presented a comprehensive explanation of the proposed solution. The
chapter was segmented into the different parts to cover the heuristics, properties and
data representations used in building the solution. The proposed solution was pre-
sented in the form of pseudocodes that help in understanding the flow of execution
of the approach which makes it easier to be implemented in a programming lan-
guage agnostic method. An analysis of the runtime behavior was also presented to
understand how our approach differs in its nature compared to the naive approach.

42

Chapter 5

Implementation

This chapter explains the implementation of the proposed solution presented in the
previous chapter. The pseudocode of the proposed approach has been implemented
using the programming language Python in version 3.7

5.1 Input data source

The data required for this research work was obtained using the next generation
sequencing, a DNA sequencing methodology in genomic research. To get a basic
idea of NGS, from [20], we can understand that NGS platforms are used to perform
parallel sequencing of many small DNA fragments. Each base in the human genome
is sequenced multiple times, thus providing highly accurate data and information
about unseen mutations in the DNA. The NGS process can be applied to either
complete genome sequences of particular areas, like the a whole exome or even a few
individual genes.

43

Chapter 5. Implementation

The data we received consists of information about the different genomic mutations
present in the biopsy results of several patients of a specific disease. The raw data
was in the form of a .csv file with each row containing patient identification number
and the mutation present. The mutations were identified and named using a specific
format as per the project guidelines. The data was stored in the form of a table with
two columns, one containing the patient identifier and the second column with the
mutation observed to be present in the patient. Every patient is observed to have
multiple mutations of various genes and this is stored in the form of multiple rows
corresponding to a single patient. The Table 5.1 shows the format of data that was
received and further used as input our pre-processing pipeline.

Patient id Mutation
2239685 TP73_chr1_3570883_C~T

4265751 TP73_chr1_3570883_C~T

5201126 TP73_chr1_3570883_C~T

.......
2526011 TP73_chr1_3574756_T~C

Table 5.1: Raw format in which the data was received. The data is in long format where

patient id is repeated as many times as the number of mutations that were observed in

each patient.

As mentioned earlier, to optimize the process of finding top-k similar entities, the
proposed solution works in the direction of reducing the problem complexity by
pruning the search space. The above data is pre-processed in-order to transform
it into a format that is suitable to be used as input into the proposed solution.
The proposed solution takes as input, the data in the form of a relation.The main
operation is based on the 3 essential columns listed below.

1. Mutations

2. Patient list

3. Count of patients

Inorder to convert the input data in the format shown in the above figure, the
preprocessing pipeline has been implemented in R Studio.

44

5.1. Input data source

To convert the long form of data into the wide format, reshape2 library’s ’dcast’
functionality has been used. This results in a binary representation of the data
where each patient is represented by a row, with presence and absence of a particular
mutation is represented by either 1 or 0 respectively. But, this form of representation
as already discussed requires more storage space and also the triviality of the absence
information of mutations leads to the format where only the presence information
is stored. Therefore, from the binary representation, the data is combined column-
wise based on mutations and aggregated to over rows (patients) where the value is
equivalent to presence or 1. This is achieved using the native aggregate() function in
R. Applying the aggregate function results in a column with comma separated list
of patients associated with each mutation.

The cardinality of each set of patients is important for the implementation of the
proposed approach and to accomplish this, strsplit() functionality has been applied
to each row of the ‘PatientList’ column and number of items in the set are counted
and stored in a new column ‘Count’. The table in Figure 5.1 represents the final
result of applying the aforementioned data manipulation pipeline in order to convert
the raw data into a format suitable for the proposed approach.

Figure 5.1: Example showing the input format of data used in the proposed approach. The

data here is manipulated by grouping based on the ’Mutation’ column.

This data is further filtered to remove those mutations that occur in less than 2
patients. The data is also sorted in the descending order of the ‘Count’ column so
that the most highly frequent mutations are processed during the first iterations.
After applying the data manipulation pipeline, the files are exported locally in the
.csv format and later imported as input to the proposed approach. The Figure 5.2
depicts the main lines of code used in this initial processing step.

45

Chapter 5. Implementation

Figure 5.2: Lines of code from the data manipulation process

5.2 Python libraries

The implementation of the proposed approach has been done in Python version 3.7.
Jupyter notebook has been used as the choice of editor and execution environment.
One of the important libraries used in the implementation is the ‘combinations’
package of the ‘itertools’ module version 8.0.2 of the Python Package Index.

The ‘combinations’ generator module takes an array of given length n as input and
generates non-repeating combinations of length r. The ‘Mutation’ column is indexed
into the input relation and is used as input to the combinations() module with a value
of r = 2 for pairwise combinations.

The second important package used is the ‘heapq’ module. The nlargest() function
of this module is used to extract the k most similar entities in the proposed solution.
This function takes the list or iterable specified as input along with the value of k.
Normally, this module is used for heap ordered data structures. However, in the
implementation of the proposed approach, the input here is a list of tuples with
3 items, the Overlap coefficient value, and the identifiers of the associated pair of
mutations. The Figure 5.3 shows an instance of how the proposed solution outputs
the top 10 pair of similar entities on an execution.

46

5.3. Baseline implementation

Figure 5.3: Output of execution: Top 10 similar pairs as returned by the proposed

approach, which takes an overall execution time of approximately 0.25 seconds

5.3 Baseline implementation

A baseline can be defined as any method or a “starting point” that is used as a
comparison.As a baseline, the proposed approach has been compared to two other
methods of efficiently retrieving top-k. The following section discusses the imple-
mentation of two state-of-the-art approaches that we will refer to as our baselines or
‘contemporaries’ and compare the efficiencies in terms of runtimes to evaluate the

47

Chapter 5. Implementation

proposed approach against the baseline approaches.

Data: input data; input columns;k
Result: Top k similar entities

1 resultArray ← [];
2 for non-repeating pairwise combinations of input columns do
3 resultArray ←

append(combination pair, # of rows where both columns have value 1);

4 end
5 resultData ←

table created from resultArray with columns = [”Var1”, ”Var2”, ”Frequency”];

// where "var1" & "var2" columns store entity pair identifiers

6 Display ‘k’ largest according to column ‘Frequency’ ;

Algorithm 3: To retrieve top k similar entities using ‘non-exhaustive brute

force computation’ also referred to as ’OEM’ in this thesis.

The first baseline, algorithm 3, is an implementation of an improved “naive ap-
proach”. As we already know, the traditional approach is brute force in nature,
with a time complexity in O(n2). This is because, in this approach, to find the top
most similar entities , every entity in the set is compared with every other entity
to calculate the similarity value and then the top similar pairs are retrieved. This
process does not use any strategy to reduce the number of computations required.
And therefore, the run time and efficiency becomes a bottleneck as the size of the
input increases, essentially leading to a quadratically increasing runtime.

However, we also know from [17] that similarity is a measure that is symmetric and
therefore, by applying this property, the effective number of computations can be
reduced to n(n − 1)/2. Even though this approach is still brute force in nature,
in that every pair of non-repeating entities are processed, it is less exhaustive in
nature. Consequently, even with the same worst-case time complexity in O(n2), the
runtime behaviour is lower. In the context of this work, this approach is referred to
as the “optimized exhaustive method” method of computation or “baseline-I”. The
algorithm 3, explains the steps used in implementing this approach as one of the
baseline methodologies that will be studied and analysed in this work of research.

48

5.3. Baseline implementation

The input data for this approach is, however, a binary representation of the various
‘Mutations’ found to be observed in different patients of the cohort. The Table 4.1
serves as a diagrammatic reference.

This approach has also been implemented using Python 3.7, the execution environ-
ment and editor of choice being Jupyter notebook. As with the proposed approach,
the implementation of this baseline-I uses Python’s itertools module for its ‘combi-
nations()’ package to retrieve non-repeating combinations of the Mutations and the
‘heapq’ module’s ‘nlargest()’ function to retrieve the top k similar entities.

The second baseline approach used in the context of this research is the Top-k cO-
sine similarity Pairs using MAx-first TrAversal method or ’TOP-MATA’ algorithm
[27]. TOP-MATA is implemented in the domain of association analysis to find top
k strongly related item pairs. Being in the high-dimensional space is typically char-
acterized by large scale datasets and it uses cosine similarity as the ’interestingness’
measure of choice. Consequently, the properties of cosine similarity in terms of
support measure has been used to build the upperbound condition. TOP-MATA
processes item pairs in a max-first traversal approach. In this approach, the pro-
cessing starts with the row containing the highest valued item pair. Refer to the
Figure 5.4 for a visual depiction of the execution, where items are represented in the
rows and columns of the matrix.

49

Chapter 5. Implementation

Figure 5.4: From [27] showing the max-first execution of TOP-MATA indicating the order

in which the rows in the upper triangle are chosen for processing.

Since the domain of implementation of TOP-MATA is in association analysis, the
items are represented using binary vectors. The sorted matrix is built using the
upper cosine value of a pair given by the following equation, where X and Y represent
different items.

upper(cos(X, Y)) =

√
support(X)

support(Y)

This is the pruning criteria / upperbound used. TOP-MATA basically uses a two-
tier examination of the item-pairs in each iteration. The first step is in selecting
only those item pairs that have the highest value of upper cosine in a row and in the
second step, is the calculation of the actual cosine similarity of the chosen item pairs
which is then checked against a minimum value of cosine similarity to determine if
the item pair deserves a position in the top-k. The following are the three theorems
that have been applied in the implementation of the max-first traversal strategy in
TOP-MATA to scale top k computation that are demonstrated in [27].

50

5.3. Baseline implementation

Theorem 1 [27]: Given two items X and Y with support(X) >= support(Y),
upper(cos(X, Y)) is monotonically increasing in support(Y) and monotonically de-
creasing in support(X).

Theorem 2 (The filtering effect) [27]: A new pair X,Y can enter the top-k list
only if upper(cos(X, Y)) >= minCos.

Theorem 3 (The pruning effect) [27]: Given the current top-k list and its minCos,
for pairs in sorted item-matrix, if upper(cos(P [i, j])) <= minCos , then for all k <= i
and l >= j, upper(cos(P [k, l])) <= minCos.

In order to implement TOP-MATA, the following adaptations were executed. In
the approach presented in [27], the upperbound condition is changed using min()
property of sets instead of the upper(cos(X, Y)) property. Therefore, the sorted
item-matrix has values of absolute cardinality and is constructed by arranging them
in the descending order of cardinality as is followed in TOP-MATA.

With the aforementioned changes, the table in Figure 5.5 represents the sorted item-
matrix M of dimensions n× n, where each cell identified by row i and column j, has
a value that is given by the following, where , {1 ≤ i ≤ n} and {1 ≤ j ≤ n}:

M (row i , column j) = min (| associated cardinality of mutation at row i |,
|associated cardinality of mutation at column j |)

Figure 5.5: This sorted item matrix of mutations is the adaptation of TOP-MATA for our

use-case. The cell values in the matrix are filled by applying the min() property to the

individual frequencies of every pair of mutations that identify the respective cell.

Apart from this change in upperbound condition, the rest of the implementation
follows the same procedure as in TOP-MATA. The pseudocode of TOP-MATA im-
plemented in this work of research is shown in algorithm 4.

51

Chapter 5. Implementation

Data: input relation SD; SD.index : Unique mutations used as index
to SD; SD.PatientList: Set of patients associated with each
mutation; SD.cnt: cardinality associated with that row; k: user
input value;

Result: Top k similar entities

1 minCos← 0;
2 N ← size of SD;
3 k ← user input value;
4 for i = 0 to N do
5 j ← i + 1;
6 value← min(i, j) ;
7 Append(maxheap, (i,j,value));

8 end
9 maxUpper ← maxheap.Root;

10 while maxUpper ≥minCos do
11 rowi = row index of maxheap.Root;
12 rowj = column index of maxheap.Root;
13 je = item index whose min value is less than rowjth;
14 for j = rowj to je− 1 do
15 cos = Overlap(SD.rowi.PatientList , SD.rowj.PatientList);
16 if cos > minCos then
17 Add to topKPairs;
18 end

19 end
20 if je < length(SD) then
21 upper = min(SD.rowi.cnt , SD.je.cnt);
22 else
23 upper= min(SD.rowi.cnt, SD.rowj.cnt);
24 end
25 if upper > minCos then
26 maxheap.Root = rowi,je,upper;
27 else
28 maxheap.Root=rowi,N,-1;
29 end
30 Heapify maxheap;
31 if length(maxheap) ≥ k then
32 minCos= topKPairs[k][0];
33 else
34 minCos=1;
35 end
36 maxUpper=maxheap.Root ;

37 end
38 Retrieve top k similar entities from topKPairs

Algorithm 4: TOP-MATA adaptation to find top k similar pairs

52

5.4. Summary of the chapter

The implementation of TOP-MATA has been done using Python 3.7. The ‘heapq’
module is used to implement its ’nlargest()’ function in order to extract the k most
frequently co-occurring pairs of entities at the end of the procedure.

5.4 Summary of the chapter

This chapter provided a detailed explanation of how the proposed solution was im-
plemented covering the technology that was used, the important libraries used in
the implementation of the proposed solution and also provided an insight into how
the state-of-the-art approaches were adapted and implemented to solve the problem
statement in our domain.

53

Chapter 6

Experimental Evaluation

This chapter presents a study of the performances of the three different algorithms
that were implemented on datasets of several different sizes. Specifically, the aim is
to demonstrate the following:

1. Runtime behaviour analysis of the algorithms

2. Completeness in terms of accuracy in performance of the algorithm

In this chapter, apart from presenting the proposed approach to efficiently iden-
tify the top k similar entities, our work also aims to answer the following research
questions and further present the empirical analysis of the research questions.

1. The impact of different input size on execution time;

2. The impact of different k values;

3. Number of iterations required;, and

4. the influence of cardinality distribution on execution time.

54

6.1. Experimental setup

6.1 Experimental setup

All the experiments were run on a 64-bit windows 10 system with 16GB RAM,
single core i7-8550U 1.8GHz processor. To convert the data into a suitable format
for the different approaches, the data manipulation processes was performed using
R programming. The files were then exported locally in comma separated format
before using as input in the Python implementations of the approaches. The following
Table 6.1 gives size characteristics of the different datasets used in the experimental
evaluation.

Number of unique mutations File size
40 132 KB
66 175 KB
100 273 KB
300 815 KB
500 1261 KB
1000 2813 KB
1500 4332 KB

Table 6.1: File size property of different inputs files used in the experimental evaluation.

All the files are in the .csv format.

6.2 Metrics

In order to evaluate the completeness of our proposed algorithm, we shall compute
sensitivity/recall. Recall is given by the fraction of total relevant instances that get
retrieved. Within the context of our domain, the top k similar items are considered
as belonging to the true positive class and the rest of the mutation pairs are regarded
as true negative thereby, considering this problem in terms of binary classification.
In the context of binary classification, we know that recall is also referred to as

55

Chapter 6. Experimental Evaluation

Sensitivity or true positive rate. It is given by the number of true positives over
the sum of true positives and false negatives. In our context, it is more important
to identify how many of the retrieved top similar entities are ‘false positives’ and
hence do not belong. Therefore , to evaluate the completeness of the approaches,
we measure misclassification rate or error rate which is given by the number of
incorrectly retrieved instances.

Misclassification rate =
False positives + False negatives

Total

6.3 Performance study and analysis

The contributions of this work of research includes the study of how the perfor-
mance of the proposed approach is impacted by different values k, different sizes
of input the number of iterations required for different values of input size and the
influence of cardinality distribution on execution time. As part of the empirical eval-
uation and study of the proposed approach, various experiments were performed to
study the aforementioned use-cases and the results were compared with two baseline
approaches. This helps in understanding the complexity of the research question
deeper and to hypothesize solutions for future work. This section is further divided
into 3 subsections to present the results of the experimental evaluation, followed by
a discussion these results of the 3 different experimental use-cases.

6.3.1 Run time analysis based on ’k’ value and input size

In this section of the study, the execution time if used as a measure to evaluate the
performance of the proposed approach when compared to the optimized exhaustive
approach and the baseline methodology, TOP-MATA. The experiments are con-
ducted for different values of k in top-k. This is done in-order to understand the
impact of increasing or decreasing the k value has on the three different approaches.
Further, this is also implemented for various sizes of input to analyse the dependence
of execution time on input size. The above Table 6.1 gives a brief overview of the

56

6.3. Performance study and analysis

various input volumes and the size of the input data source used in the experiments.

The graphs in Figure 6.1, show the execution time of three approaches for four
different increasing values of ’k’ for data input of sizes 40 and 66. This input data
consists of 40 and 66 unique mutations present in x number of patients, respectively.
Considering that this is an input of small volume, we observe small execution times.
The proposed approach has also been executed by taking unsorted input. This
implies that, the mutations in the input are not sorted based on their associated
cardinalities. Since the proposed approach relies on retrieving pairs with higher
values of co-occurrence in the early iteration, the performance with unsorted values
of input shows higher execution time values. In both these cases shown in Figure 6.1a
and Figure 6.1b, we observe that the ’optimized exhaustive method (OEM)’ performs
worse than other methods recording execution time of approximately 0.65 seconds
for the ’k’ value of 40. In this section of experiment, TOP-MATA is observed to
have superior performance compared to other approaches. Another aspect observed
in the behaviour of TOP-MATA is the close range of runtimes for different values
of ’k’. With the increasing values of ’k’, the increase in runtime is not significant
enough and therefore shows scales well with ’k’. The proposed approach in this case
also shows better performance compared to OEM, however, the execution time is
slightly higher than TOP-MATA for all values of ’k’.

(a) Execution time for input size of 40. (b) Execution time for input size of 66.

Figure 6.1: Performance analysis with different ’k’ values for two input sizes.

The results in Figure 6.2 depicts the performance of the approaches with slightly
higher volume of input data, i.e., 100 unique mutations in Figure 6.2a and 300
unique mutations in Figure 6.2b. It is interesting to note at this point that the OEM
approach performs slightly better compared to the performance of the proposed

57

Chapter 6. Experimental Evaluation

approach on unsorted input. This is owing to the ’checkheap’ routine that gets
called more number of times when the input is sorted in a random order. As a worst
case scenario, it logically follows that, if the input is sorted in ascending order of
associated cardinalities, every reduction/pruning of the search space leads to very
few records from being pruned at every iteration. This is one of the reasons that
leads to higher execution time and lower performance compared to the brute force
approach. It can be seen in the use-case of Figure 6.2b that the proposed approach
performs with runtimes that are similar to TOP-MATA.

(a) Execution time for input size of 100. (b) Execution time for input size of 300.

Figure 6.2: Performance analysis with different ’k’ values for two input sizes, 100 and 300.

(a) Execution time for input size of 500 (b) Execution time for input size of 1000

Figure 6.3: Performance analysis with different ’k’ values for two input sizes.

58

6.3. Performance study and analysis

In both Figure 6.1 and Figure 6.2, with increase in ’k’ value, the increase in execution
time is in small quantities in both the proposed approach as well as TOP-MATA.
However, the execution time remains fairly stable in case of OEM.

Further, the performance comparisons depicted in Figure 6.3a for input data of size
500 and Figure 6.3b for input data of size 1000 show slight changes in pattern. In
Figure 6.3a, it can be seen that the execution times of TOP-MATA and the proposed
approach are identical, with OEM still continuing to show sub-par performances for
all values of ’k’. Also, to be observed is that both the proposed approach as well as
the TOP-MATA show minimal changes with increasing ’k’, and are scalable in ’k’.

Depicted in Figure 6.3b, for a relatively large number of unique mutations, the
proposed approach is seen to perform with the lowest execution time for all values ’k’
and therefore showing highest efficiency comparatively. In all of the cases, the change
in the value of ’k’ shows the highest impact in execution time when the proposed
approach is executed on unsorted input. However, the baseline TOP-MATA shows
the most optimal performance when the size of the input is relatively smaller with
lowest values of execution time across all values of ’k’. Whereas, for larger values of
input i.e. the proposed approach performs better than all other, across all values of
’k’.

The overall comparison of performances with respect to different input sizes for a
single value of ’k’ is shown in Figure 6.4. This helps to provide a comprehensive
understanding of how the different approaches are dependent on the input size and
’k’ value. As seen, the proposed approach shows optimal performances for increasing
sizes of input, showing better performance than TOP-MATA with increasing values
of input.

59

Chapter 6. Experimental Evaluation

Figure 6.4: Execution time comparison for different input sizes. As the input size increases,

the proposed approach shows increasingly better runtime performance, having the lowest

runtime for the input size of 1000.

Since the OEM showed a timeout for an input data of size 1500, only the proposed
approach and our implementation of TOP-MATA were applied. The results can be
seen in the Figure 6.5.

60

6.3. Performance study and analysis

Figure 6.5: Execution time comparison for input size of 1500. It can be seen that for

all values of k, the proposed approach is showing a runtime that is lower than that of

the TOP-MATA implementation. However, it can also be noticed here that as the k value

increases, the runtimes tend towards sameness as the percentage of difference is decreasing.

From the graph in Figure 6.5 , we can observe that the proposed approach is executes
with the least runtime in this case when compared to our TOP-MATA implementa-
tion. This can be seen across all the values of k. Therefore, from our experimental
evaluation, we can say that with increasing volume of input, the proposed approach
is more efficient in terms of runtime with TOP-MATA consistently showing higher
execution times.

6.3.2 Reducing the number of false positives

One of the strategies that TOP-MATA uses to optimize it’s design is by reducing the
number of false positive computations. The process is also maximized with the max-
first traversal strategy. This design seems to work better when the size of the input
data is small. The proposed approach however, shows sub-optimal performance with
small sized input data as they complexity of calling the ’checkheap()’ routine adds
to the execution time. Specifically the sort operations adds to the time complexity
thereby leading to lower measures of performance. However, in case of input data

61

Chapter 6. Experimental Evaluation

of bigger size, the pruning leads to faster reduction in search space compared to
max-first traversal and therefore, the proposed approach seems more suited for all
the considered values of ’k’ as the input data size increases.

6.4 Effect of cardinality on runtime

In this study, the impact of the cardinality distribution on runtime of the different
approaches is studied. We know that each of the mutations in the input data is
associated with a ’count’ value which corresponds to the number of patients in which
the mutation was observed to be present in the particular patient cohort. We refer
to this value as the ’associated cardinality’. This associated cardinality value has an
impact on execution time as the operation of calculating the intersection is directly
dependent on the length of the sets being evaluated. The average case of time
complexity is given by the following, where s and t are both sets.

O(min(len(s), len(t)))

Since both the proposed approach as well as our baseline implementation of TOP-
MATA calculate overlap coefficient as the raw value of intersection of the two sets
associated with the mutations, this becomes an interesting use-case. In order to
perform this experiment, two different datasets have been used with different cardi-
nality distributions. for simplicity, the first dataset, will be referred to as ’Dataset 1’.
Dataset 1 , is observed to have a lower average cardinality compared to the second
dataset , referred to as ’Dataset 2’. The Figure 6.6 shows the statistical distributions
of the two datasets.

62

6.4. Effect of cardinality on runtime

(a) Statistical properties of ’Dataset 1’ (b) Statistical properties of ’Dataset 2’

Figure 6.6: Statistical properties of the cardinality distribution in two datasets, where

’Dataset 1’ has lower overall average compared to ’Dataset 2’.

In order to limit the impact of the input size on the execution times, the size of
input data for this experiment has been limited to 66 for all approaches.The Fig-
ure 6.7 illustrates the execution times for selected ’k’ values in two datasets when
the proposed approach and our implmentaion of TOP-MATA is applied.

(a) Performance of the proposed approach (b) Performance of TOP-MATA

Figure 6.7: Comparison of performance to analyse the impact of cardinality distribu-

tion on the proposed approach and our implementation of TOP-MATA. Both approaches

show similar behaviour as the overall cardinalities in the data increase. However, as ’k’ in-

creases, our TOP-MATA implementation shows a sharper increase in runtime for ’Dataset

2’ compared to the behaviour seen in the proposed approach

63

Chapter 6. Experimental Evaluation

We can say that the results in Figure 6.7 are in alignment with the conjecture that
the distribution of cardinality impacts the execution time in both approaches. The
’Dataset 2’ with higher avg cardinality, is observed to take more time as 50% of the
values of cardinalities has a maximum of 334.5 when in ’Dataset 1’ the 50% percentile
value of 201. However, the above Figure 6.8 shows the impact of cardinality on the

Figure 6.8: Impact of cardinality distribution on execution time in OEM. As seen OEM

shows similar execution times for both datasets thereby proving to be independent of the

cardinality distribution in the input dataset

OEM, which is executed on a binary representation of the data with co-occurrence
computed as a count of rows where both mutations show presence for a given patient.
This implies that, the complexity is dependent on the total number of unique patients
represented by the number of rows, since each row is examined for a given pair of
mutations. Consequently, this leads to O(n) time where n is the number of items to
be summed. Therefore, the increase or decrease in number of co-occurrences does
not have significant impact on execution time. In case of both datasets, the OEM
shows similar execution time for all the selected values of ’k’.

64

6.5. Comparison of the number of iterations

6.5 Comparison of the number of iterations

The graphs Figure 6.9, shows the number of iterations required by the various ap-
proaches, in order to fetch the top k similar entities from an input data of size 500.
The count of iterations is dependent on the strategy used by the different approaches
in solving the problem of top k.Apart from time intensive operations, heuristically,
it is clear that higher number of iterations implies a higher execution time value.
Empirical evidences in Figure 6.9, show that the brute force approach OEM clearly
requires significantly larger number of iterations compared to the other approaches.
Considering that in OEM, other than the symmetric property of combinations, no
other process is employed to reduce the number of false positive computations, it
shows consistently higher number of iterations in comparison. Therefore, instead of
requiring a naive n(n−1) number of operations before retrieving the top k pairs, the
OEM only uses: n(n− 1)/2 operations. And as OEM does not include any strategy
to reduce the number of computations, the iteration count for all the values of ’k’ in
a given input space, does not change.

(a) Number of iterations in different approaches in-

cluding unsorted input in proposed approach

(b) Number of iterations in different approaches ex-

cluding the performance of proposed approach on un-

sorted input.

Figure 6.9: Comparison of the number of iterations required to fetch top k entities in an

input of size(=500). Note that the number of required iterations is identical in the proposed

approach and our TOP-MATA implementation and yet execution times differ.

65

Chapter 6. Experimental Evaluation

However, we know that the search space can be further reduced by employing heuris-
tic measures. This is evident in the number of iterations required by TOP-MATA
and the proposed approach. The key operation used to evaluate the overlap coeffi-
cient in both TOP-MATA and the proposed approach is the same but the difference
in time required arises from the ’checkheap’ routine in the proposed approach that
investigates the pairs against the current upperbound every iteration. But, it can be
observed that the number of required iterations in both the proposed approach and
TOP-MATA presents to be comparable.

It is interesting to note the dependence of the proposed approach on the format
of input data. In section 2.3, the importance of data access was presented.The
cost of random access as compared to sorted access in the context of the proposed
approach can be seen in Figure 6.9a. The proposed approach on unsorted input
shows suboptimal performance with respect to the iteration count in comparison to
both TOP-MATA and proposed approach on sorted input. This is potentially due
to the below surmised reasons:

1. With unsorted input, the process of pruning the search space becomes slower
due to randomly distributed records with lower associated cardinality values

2. With random distribution of records in input, it also leads to more number of
insert operations into the heap and re-shuffling of the current top k pairs as
records with higher associated cardinalities are processed during later iterations

The rate of increase in the number of required iterations with increasing values of
k, could indicate how well the approach scales. As seen in Figure 6.9, the OEM
has significantly high values of iteration count for all the selected values of k. The
number of iterations however, does not change across different k values. However,
in the proposed approach as well as our baseline TOP-MATA implementation, the
number of iterations are affected by the ’k’ value. In the proposed approach, when
the k value increases by 5 times, the number of required iterations become 33.76%
more. But in the case of our implementation of TOP-MATA, the number of required
iterations increase by only 27.3%, for a similar increase in k value.

66

6.6. Performance analysis for extreme values of k

6.6 Performance analysis for extreme values of k

The next use-case in this study is the investigation of how the approaches perform
with very high values of k as compared to lower values. Most of the applications
are concerned with the low values of k compared to the relatively high input sizes.(
provide paper reference) However, for the sake of comprehensive research it is impor-
tant to understand how the approaches scale not just with increasing input size but
also with increasing values of k. In applications related to market basket analysis,
frequent itemset mining, the top k similar entities are not limited to top 5 or top 10
rather at more commercial scales. Therefore, in order to assess the generality of the
proposed approach, this use-case was deemed to be important.

(a) Comparison of performance when selected k val-

ues are low

(b) Comparison of performance when selected k val-

ues are high

Figure 6.10: Analysis and comparison of execution time when k values are extreme

In this particular experiment, the three comparable approaches were run on the
same dataset of mutations and patients of size 500. The aim of this experiment as
mentioned was to study the behaviour of the execution times with extremely low
and extremely high values of k.

67

Chapter 6. Experimental Evaluation

6.6.1 Performance analysis with low values of k

The results of this use-case are depicted in figure 5.9 (a). The results are not very
different from the results that the previous use-cases has seen. This is due to the
similar range of values selected for k. As in other results, the baseline approach
TOP-MATA is observed to show the lowest execution time for all values of k. The
trend of execution times is the same in case of OEM, where it shows no significant
change in execution times with increasing values of k. Therefore, it can be inferred
that for small increases in the values of k and for low values of k, the increase in
execution times, for TOP-MATA and the proposed approach is minimal.

6.6.2 Performance analysis with high values of k

This subsection presents an interesting analysis to investigate how scalable the ap-
proaches are when the values of k increase. The aim of this analysis is also to answer
the research question of how the approaches are impacted by the value of k. The
results of this experiment are depicted in figure 5.9 (b). For this study, relatively
high values of k , 100,500,1000,1500 were chosen. Evidently, OEM records consis-
tently high execution times, however shows negligible changes as the values of k are
doubled. It is essential to note the trend of execution times followed by TOP-MATA
and the proposed approach. TOP-MATA shows a steady increase in execution times
as the value of k doubles, recording a maximum of 104.23 seconds.

As the value of k increases, the increasing execution times in our TOP-MATA im-
plementation and the proposed approach come from different operations in the re-
spective approaches. In our TOP-MATA, the sequence of operations change once
the number of items in maxheap reach k, in that beyond a length of k, the approach
uses a single ’if’ operation followed by an update of minCos depending upon the top
k entries. Therefore, a large part of the execution time is due to the nature of the
implementation itself.

In our implementation of TOP-MATA, as the value of k increases the list storing
topk pairs is sorted to store the {overlap coefficient, mutation 1, mutation 2}. This
operation is linear in the length of the iterable ie the number of such 3-item sets.
Therefore, as the value of k increases, there is a steady increase in execution time.
Another common operation that contributes to the execution time is the operation

68

6.7. Accuracy evaluation

to retrieve the k largest pairs from the topk heap. The time complexity of this
operation is in O(Nlog(k)) where N is the length of the iterable. As long as the
value of k is small , this operation proves to be inexpensive. But in this use-case,
with large values of k, this operation increases the cost and thereby bringing down
the efficiency in both TOP-MATA and the proposed approach. However, as a result
of the aforementioned reasons, TOP-MATA’s performance shows an average level of
dependence on the values of k.

Moving on to the performance of the proposed approach, the results of the experi-
ment are illustrated in figure 5.9 (b). The empirical evidences show that as the value
of k increases by 5 times, TOP-MATA shows an increase in execution time of ap-
proximately 134% whereas in the proposed approach , the execution time increases
by approximately 556.25%. This exponential increase in runtime can be attributed
to the list append and heapify operations that are performed at every iteration of k.

Once the value of k is reached, the algorithm then performs the operations required to
retrieve the updated value of the threshold upper bound for every iteration. The time
complexity of the above operations contribute to the steep increase in execution time.
Therefore, as seen in the results, OEM and TOP-MATA outperform the proposed
approach when the k values are very high i.e. equal to greater than n, where n is the
number of unique mutations in the input. Another reasoning is the limitations of this
domain. It is important to note that , in our specific domain, the requirements are
limited to high volume of input data and a k value that is low. However, these time
complex operations are required in order to reach the desired level of accuracy. The
upcoming section covers a comparison and analysis of performance accuracy in the
comparable approaches and why it is favourable in our context to trade a marginal
increase in execution time for completeness in results.

6.7 Accuracy evaluation

In order to empirically evaluate the completeness of the proposed approach and the
baseline approaches, error rate has been used as the measure. In this problem of top
k, it is the recall rate that is more important than precision.

69

Chapter 6. Experimental Evaluation

To revisit, recall is defined by the proportion of total number of correct records that
are retrieved and precision is given by the proportion of correct records among the
retrieved. If we consider the problem of top-k as a binary classification task, it follows
that the top k similar pairs belong to the positive class and the rest of the pairs are
considered as negative or in other words, ’false positives’. Therefore, our application
is an example of a use-case where 100% recall is desired, i.e. all the pairs that have
the top k similarity measures have to be retrieved by the algorithm.

In our previous discussions, we highlighted the need to know the correct topk results
apriori in-order to build a high recall application. The OEM approach is straightfor-
ward and therefore, the results retrieved by OEM serves as a reference to know the
correct results of topk. Therefore, to evaluate the completeness, the approaches are
examined for the falsely retrieved pairs in the top k results. This implies that the
total number of retrieved results will be equal to k for a given execution. To recall,
error rate is given by the following:

Misclassification rate =
False positives + False negatives

Total

To evaluate the accuracy of results, top 10 similar pairs were retrieved from data
inputs of different sizes using both TOP-MATA and the proposed approach. The
results were then compared to examine completeness in the result sets.

As seen from the graph in Figure 6.11, the baseline approach TOP-MATA, showed
incompleteness in its results for some of the executions. For example, in the execu-
tion where the input size is 1000, our TOP-MATA implementation retrieved 2 false
positive pairs, implying that 2 pairs of results were discarded as false negatives.

70

6.7. Accuracy evaluation

Figure 6.11: Error rate comparison, where error rate is the proportion of false classifications

among the total results.

Figure 6.12: Differences in completeness of results between the our baseline TOP-MATA

and the proposed approach. As highlighted, the results retrieved by TOP-MATA imple-

mentation have exclude some of the top k pairs which are observed to be correctly retrieved

by the proposed approach like the pair with overlap coefficients 727 and 526.

71

Chapter 6. Experimental Evaluation

Similarly , when top 10 pairs were extracted from data inputs of size 300, 500, 700
and 1,500 TOP-MATA retrieved incomplete results when the proposed approach
retrieved accurate results of top 10 pairs.

6.8 Summary of the chapter

This chapter described the experimental configurations and the parameters that
were used in the evaluations. Further, we also assessed the performance of the newly
devised approach as against the baseline approaches for various selected use-cases and
interpreted the empirical evidences with the help of visualizations and tabular data
descriptions. The aim of this chapter was to cover the feasibility of the hypothesized
solution and to answer the research questions that were raised in the former sections
of this study.

72

Chapter 7

Conclusions and Future work

This study addressed the specific aspect of scalability associated with the task of
retrieving the top k pairs of similar entities. In this direction, we proposed a new
approach that heuristically reduces the search space complexity thereby optimizing
the task of top k retrieval. This newly devised approach is presented in the form of an
algorithm which is built by utilizing the monotonicity property of the interestingness
measure that is identified as suitable for this problem domain. This research also
aimed to examine the impact of input size, k value and cardinality distribution on
the execution time. The proposed approach was implemented on a real word dataset
in order to establish the applicability of the approach. As part of this scientific
work, experimental evaluations were conducted to answer the research questions
empirically. Every use-case was further subjected to several parameters and the
results were interpreted. The broad implication of the this research shows that the
dataset , the underlying domain and the similarity measure of choice collectively
influence the design of approach.

More generally, our results appear consistent with the research showing that pruning
of the search space optimizes execution time by minimizing the number of false
positive comparisons.

73

Chapter 7. Conclusions and Future work

The remainder of this chapter includes discussions about the results of the experi-
ments detailed in the previous chapter, followed by a review of the limitations of this
study and recommendations for future research.

7.1 Discussions

The experimental evaluation of our proposed approach was aimed at addressing
practical aspects of this scientific study like applicability and also generalizability.
The interpretations of the results were explained in the previous sections along with
a causal analysis was presented. In order to ascertain the generalizability of this
work, it is important to understand the implications of these results. As the value
of k increases, TOP-MATA as well as the proposed approach showed an increasing
trend in the execution time. This suggests that the value of k is directly proportional
to execution time in approaches that utilise upperbound based pruning methods.

In OEM however, since there was no dynamic changes to the search space, the exe-
cution time showed no correlation with the k value. This suggests that apart from
the high time complexity in OEM, a method that is independent of k is beneficial to
augmenting the generalizability and domain independence. Even though for smaller
input sizes, the proposed approach has an execution time that is approximately 23%
more than TOP-MATA, the completeness of the proposed approach makes it a bet-
ter choice of tool. When the input is larger i.e., for 1000 and 1500, the TOP-MATA
implementation shows an average increase in execution time of 18.28% across the 4
chosen values of k. It can be said that a straightforward sequential access of records
in the proposed approach and a more aggressive pruning strategy contributes to the
lower execution time. Another use-case was the influence of cardinality distribution
on execution time in case of TOP-MATA and the proposed approach. The signif-
icant difference in runtimes between two equal sized datasets but having different
set lengths shows that both the approaches are operationally influenced by this fac-
tor. In this particular use-case, TOP-MATA as well as the proposed approach are
similarly impacted.

Another use-case that we studied was how the number of iterations taken by different
approaches fared. We have shown that, the proposed approach and TOP-MATA

74

7.2. Limitations

require similar number of iterations for any given value of k. This implies that
the difference in execution time then , comes from the computationally intensive
operations used in their respective implementations. The results in this use-case
also showcase the importance of size-based sorted access in the proposed approach
throwing light on the cost of unsorted access. The proposed approach when applied
on an unsorted data input requires higher number of iterations to retrieve the top k
pairs compared to all approaches and proves to be inefficient. Further, we found that,
in the case of larger size dataset and for small values of k , the proposed approach
outperforms the OEM and TOP-MATA, in terms of execution time and accuracy.

Based on the quantitative analysis of execution time behaviour, it can be concluded
that the size of input, the value of k and the associated cardinality distribution
in the dataset are important factors to be considered when selecting an approach
to efficiently retrieve the top k similar pair of entities. To answer our research
question, the execution time in our proposed approach are directly proportional
to these parameters. This experiment adds to a growing corpus of research that
highlights the motivation for an efficient top k retrieval tool and the complexity
of this problem. This study also reiterates our hypothesis of the significance of a
pruning criteria in order optimize the process of top k retrieval.

7.2 Limitations

Even though the search space is iteratively pruned, memory required is still at least
equal to the size of the dataset. From the experimental section , we know that
there are selected scenarios where our approach works and selected scenarios where
our proposed approach does not work. The empirical evidences suggest that , one
such use-case where our approach shows sub-optimal performance is when the size
of the dataset is small and comparable in value to the value of k. In such a scenario,
TOP-MATA is seen to have the lowest execution times and with completeness in
results. The proposed approach although comparable execution times, is still higher
than TOP-MATA. Apart from this, we also observed that the proposed approach
was regrettably, not scalable in k.

The proposed solution only works in the given domain. To elaborate, it has been

75

Chapter 7. Conclusions and Future work

developed by keeping in mind a tailored set of requirements. This makes it heavily
domain dependent. The data pre-processing, the design of the approach and the
suitability are influenced by data of very specific nature. This, although gives accu-
rate results, diminishes the overall generalizability of the approach in itself. Further,
the proposed approach has been designed by focusing only on datasets that can be
processed in memory. For larger volumes of data, the approach did not terminate ex-
ecution in a reasonable amount of time. This creates a bottle neck for implementing
on largescale datasets.

The execution time in the proposed approach also depends on the distribution of
cardinality in the data. As we saw in the experimental evaluations , the dataset with
lower overall distribution of cardinality required lesser time to extract top k similar
pairs when compared to the dataset with higher overall cardinality.

Another unfortunate inadequacy in our solution is the lack of semantic awareness.
This can be better explained with the help of the following example: Consider two
items A and B having with cardinalities {486} and {400} respectively, having an
overlap co-efficient of value of 86. Let item C have a cardinality of {86} and D
have a cardinality of {86}. The overlap co-efficient value between C and D is also 86.
The proposed approach assumes quantitative equivalence to the overlap values of the
pairs (A,B) and (C,D). But semantically, depending on the dataset domain, in our
case, A and B can be regarded as frequently occurring mutations having a rather low
value of absolute co-occurrence whereas, the mutations C and D are comparatively
less frequent in the dataset and yet shows complete co-occurrence with respect to
one another. Such an information may be significant as a finding and unfortunately
, our approach does not factor in a weight value to the co-occurrence with respect to
the mutual cardinalities of the items in the pair.

7.3 Future work

In this work of research, our hypothesis was that the use of a pruning based, adaptive
approach to iteratively reduce the search space , optimizes the top k problem. The
empirical evaluations highlighted certain aspects of the study that do not live up to
the expectations of reduced execution time. We know that, currently, the execution

76

7.4. Summary of the chapter

time is impacted by the distribution of the associated cardinality. Meaning that
the operation of the actual intersection adds significant overhead computationally.
One way to empower the approach would be to introduce an intermediate phase
for candidate generation and limit the computation of pairwise intersection to only a
subset of candidates that are likely to be in the top k set. We recommend that further
investigation can be in the direction of using positional filtering techniques used in
the context of inverted indices and near duplicate detection to generate a candidate
set. We propose that further research could be done to make this parameter have an
influence on the proposed approach that is statistically insignificant. Another aspect
of this work that could be further researched is ,in making the proposed approach
more semantically aware. In light of this, the following ideas could be tested:

1. Instead of assuming quantitative equivalence in pairs of entities that have the
same value of overlap, the results can be grouped based on their overlap co-
efficient. This would also diversify the results and reduce redundancy.

2. In order to better recognise the semantic information in pairs that have equal
values of overlap, a weight function can be used to capture the numerical
difference in their respective individual frequencies/cardinalities.

Our approach can be used not only in the context of pairwise co-occurring mutations
but have more widespread applications in identifying more than 2 co-occurring enti-
ties. More research on making the approach scalable with big data can be beneficial
in furthering its applications in the domain of biomedical data mining. The empirical
evidences also show promising results when an adaptive pruning of the search space
is performed.

7.4 Summary of the chapter

This chapter was devoted to a high level discussion of the experimental results and
their implications as concluding remarks. We also identified and presented the nature
and source of the limitations of this study. Finally, we recommended aspects of this
research that warrants further investigation.

77

Bibliography

[1] Griffiths AJF et al. An introduction to genetic analysis. 7th edition. 2000.

[2] Ramu Anandakrishnan et al. “Estimating the number of genetic mutations (hits) required

for carcinogenesis based on the distribution of somatic mutations”. In: PLoS computational

biology 15.3 (2019), e1006881.

[3] Arvind Arasu, Venkatesh Ganti, and Raghav Kaushik. “Efficient exact set-similarity joins”.

In: Proceedings of the 32nd international conference on Very large data bases. 2006, pp. 918–

929.

[4] Roberto J Bayardo, Yiming Ma, and Ramakrishnan Srikant. “Scaling up all pairs similarity

search”. In: Proceedings of the 16th international conference on World Wide Web. 2007,

pp. 131–140.

[5] Surajit Chaudhuri, Venkatesh Ganti, and Raghav Kaushik. “A primitive operator for similar-

ity joins in data cleaning”. In: 22nd International Conference on Data Engineering (ICDE’06).

IEEE. 2006, pp. 5–5.

78

Bibliography

[6] William S Cooper. “On selecting a measure of retrieval effectiveness”. In: Journal of the

American Society for Information Science 24.2 (1973), pp. 87–100.

[7] Thomas H Cormen et al. Introduction to algorithms. MIT press, 2009.

[8] Qinghua Cui. “A network of cancer genes with co-occurring and anti-co-occurring mutations”.

In: PLoS One 5.10 (2010), e13180.

[9] Dong Deng, Yufei Tao, and Guoliang Li. “Overlap set similarity joins with theoretical guar-

antees”. In: Proceedings of the 2018 International Conference on Management of Data. 2018,

pp. 905–920.

[10] Tamer Elsayed, Jimmy Lin, and Douglas W Oard. “Pairwise document similarity in large

collections with MapReduce”. In: Proceedings of ACL-08: HLT, Short Papers. 2008, pp. 265–

268.

[11] Brian Eriksson. “Learning to top-k search using pairwise comparisons”. In: Artificial Intelli-

gence and Statistics. 2013, pp. 265–273.

[12] Ronald Fagin, Amnon Lotem, and Moni Naor. “Optimal aggregation algorithms for middle-

ware”. In: Journal of computer and system sciences 66.4 (2003), pp. 614–656.

[13] Anna Huang. “Similarity measures for text document clustering”. In: Proceedings of the sixth

new zealand computer science research student conference (NZCSRSC2008), Christchurch,

New Zealand. Vol. 4. 2008, pp. 9–56.

[14] Ihab F Ilyas, George Beskales, and Mohamed A Soliman. “A survey of top-k query processing

techniques in relational database systems”. In: ACM Computing Surveys (CSUR) 40.4 (2008),

pp. 1–58.

79

Bibliography

[15] Christopher D Manning, Hinrich Schütze, and Prabhakar Raghavan. Introduction to infor-

mation retrieval. Cambridge university press, 2008.

[16] Alistair Moffat and Justin Zobel. “Rank-biased precision for measurement of retrieval effec-

tiveness”. In: ACM Transactions on Information Systems (TOIS) 27.1 (2008), pp. 1–27.

[17] Papias Niyigena et al. “Efficient Pairwise Document Similarity Computation in Big Datasets”.

In: International Journal of Database Theory and Application 8.4 (2015), pp. 59–70.

[18] Mehran Sahami and Timothy D Heilman. “A web-based kernel function for measuring the

similarity of short text snippets”. In: Proceedings of the 15th international conference on

World Wide Web. 2006, pp. 377–386.

[19] Hans von Storch and Francis W Zwiers. Statistical analysis in climate research.

[20] “What is next generation sequencing”. In: Archives of disease in childhood. Education and

practice edition. 98(6) (2013), pp. 236–238.

[21] Chuan Xiao et al. “Efficient similarity joins for near-duplicate detection”. In: ACM Transac-

tions on Database Systems (TODS) 36.3 (2011), pp. 1–41.

[22] Chuan Xiao et al. “Top-k set similarity joins”. In: 2009 IEEE 25th International Conference

on Data Engineering. IEEE. 2009, pp. 916–927.

[23] Hui Xiong, Mark Brodie, and Sheng Ma. “Top-cop: Mining top-k strongly correlated pairs

in large databases”. In: Sixth International Conference on Data Mining (ICDM’06). IEEE.

2006, pp. 1162–1166.

80

Bibliography

[24] Hui Xiong et al. “Exploiting a support-based upper bound of Pearson’s correlation coeffi-

cient for efficiently identifying strongly correlated pairs”. In: Proceedings of the tenth ACM

SIGKDD international conference on Knowledge discovery and data mining. 2004, pp. 334–

343.

[25] Zhong Yang et al. “Adaptive Top-k Overlap Set Similarity Joins”. In: 2020 IEEE 36th In-

ternational Conference on Data Engineering (ICDE). IEEE. 2020, pp. 1081–1092.

[26] Jian Zhang and Joan Feigenbaum. “Finding highly correlated pairs efficiently with powerful

pruning”. In: Proceedings of the 15th ACM international conference on Information and

knowledge management. 2006, pp. 152–161.

[27] Shiwei Zhu et al. “Scaling up top-k cosine similarity search”. In: Data & Knowledge Engi-

neering 70.1 (2011), pp. 60–83.

81

	Introduction
	Motivating example
	Problem and contributions
	Summary of the chapter

	Background
	Analysis of Algorithms
	Similarity measures
	Simple Matching Coefficient (SMC)
	Hamming distance
	Jaccard coefficient
	Cosine similarity
	Euclidean distance
	Overlap measure

	Data Access
	Evaluation measures
	Summary of the chapter

	Related Works
	Scalability oriented approach
	Computationally Economic Approach
	Filtering principle for pruning

	Approach
	Problem statement
	Proposed solution
	General heuristics
	Monotonic property of min()
	Upperbound
	Heuristic sorting and filtering
	Data representation

	Pseudocode
	Runtime analysis
	Summary of the chapter

	Implementation
	Input data source
	Python libraries
	Baseline implementation
	Summary of the chapter

	Experimental Evaluation
	Experimental setup
	Metrics
	Performance study and analysis
	Run time analysis based on 'k' value and input size
	Reducing the number of false positives

	Effect of cardinality on runtime
	Comparison of the number of iterations
	Performance analysis for extreme values of k
	Performance analysis with low values of k
	Performance analysis with high values of k

	Accuracy evaluation
	Summary of the chapter

	Conclusions and Future work
	Discussions
	Limitations
	Future work
	Summary of the chapter

	Bibliography

