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Abstract

Firstly, we consider U(Nc) Yang–Mills gauge theory on R3,1 with Nf > Nc flavours of scalar fields 
in the fundamental representation of U(Nc). The moduli space of vacua is the Grassmannian manifold 
Gr(Nc, Nf ). It is shown that for strong gauge coupling this 4d Yang–Mills–Higgs theory reduces to the 
Faddeev sigma model on R3,1 with Gr(Nc, Nf ) as target. Its action contains the standard two-derivative 
sigma-model term as well as the four-derivative Skyrme-type term, which stabilizes solutions against scal-
ing. Secondly, we consider a Yang–Mills–Higgs model with Nf =2Nc and a Higgs potential breaking the 
flavour group U(Nf ) =U(2Nc) to U+(Nc)×U−(Nc), realizing the simplest A2 ⊕ A2-type quiver gauge 
theory. The vacuum moduli space of this model is the group manifold Uh(Nc) which is the quotient of 
U+(Nc)×U−(Nc) by its diagonal subgroup. When the gauge coupling constant is large, this 4d Yang–
Mills–Higgs model reduces to the Skyrme sigma model on R3,1 with Uh(Nc) as target. Thus, both the 
Skyrme and the Faddeev model arise as effective field theories in the infrared of Yang–Mills–Higgs mod-
els.
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1. Introduction and summary

In 1975, Faddeev introduced a (3+1)-dimensional SU(2)/U(1) coset sigma model that includes 
a term quartic in derivatives to stabilize classical solutions [1]. This model is similar to the 
Skyrme model [2], which features maps from R3,1 into SU(2). Despite their similarity, these 
models are quite different from one another. Topological solitons of the Skyrme model have a 
point-like core and are supposed to describe baryons and nuclei (see e.g. [3] for a review and 
[4–6] for some recent works). On the other hand, solitons in the Faddeev model take the form of 
stable knotted strings characterized by the Hopf charge (homotopy class of maps S3 → S2). It is 
conjectured that Faddeev-model solitons describe glueballs (see e.g. [7–9] for reviews).

The standard Skyrme model [2] supposedly describes pions. Other mesons can be incorpo-
rated into an extended 4d Skyrme model, which is obtained from 5d Yang–Mills theory on an 
AdS-type manifold M5 with boundary ∂M5 = R3,1 as derived from D-brane configurations in 
string theory and the holographic approach [10] (see e.g. [11–13] for reviews). This extended 
Skyrme model also arises in the adiabatic limit of the 5d Yang–Mills system on R3,1 × I , where 
I is a short interval [14].1 Similarly, also an extended 4d Faddeev model can emerge in a low-
energy limit of 5d maximally supersymmetric Yang–Mills theory with its five adjoint scalars [22]. 
In contrast to the extended Skyrme model, for the extended Faddeev model one needs to keep one 
of the five adjoint scalars and must modify the fifth dimension from I to the half-line R+. The 
boundary conditions required for the reduction to R3,1 are encoded in Nahm equations along 
the fifth dimension [23,24], which reduce to a “baby” Nahm equation on R+ for one adjoint 
scalar [22].

Quantum chromodynamics (QCD) as well as Yang–Mills theory are strongly coupled in the 
infrared limit, and hence the perturbative expansion for them breaks down. In the absence of 
a quantitative understanding of non-perturbative QCD, convenient alternatives at low energy 
are provided by effective models among which nonlinear sigma models play an important role, 
especially the Skyrme and Faddeev models. Both models are the standard two-derivative sigma 
models on R3,1 with a compact Lie group G and a coset space G/H as target spaces, respectively, 
completed with a four-derivative term which stabilizes classical solutions against scaling. In the 
Faddeev model, H is a closed subgroup of G such that G/H is a coadjoint orbit.

As we discussed above, both Skyrme and Faddeev models can be obtained as low-energy 
limit of 5d Yang–Mills–Higgs (YMH) theories on the classical level. On the other hand, in the 
strong-coupling or infrared limit, many YMH models on Rd−1,1 with d ≥ 2 reduce to standard 
two-derivative sigma models governing maps from Rd−1,1 to a moduli space of Higgs vacua. In 
other words, YMH theories flow in the infrared to sigma models on the same space Rd−1,1 (see 
e.g. [25] and references therein). For YMH models which are bosonic parts of supersymmetric 
QCD in d=4, these classical moduli spaces are non-trivial Kähler or hyper-Kähler manifolds [26,
27,25]. Here we will show that the four-derivative Skyrme term also naturally appears in these 
four-dimensional YMH models in the framework of the adiabatic approach.2 To summarize, we 
demonstrate that both the Skyrme model and the Faddeev model occupy an infrared corner of 4d 
YMH models related with N=2 supersymmetric QCD.

1 The adiabatic approach was used in field theory for the first time by Manton [15]. For a review of this approach 
see [16,17]; brief discussions can be found e.g. in [18–21].

2 Some steps in the derivation of Skyrme terms from YMH models were taken in [28,29], but for a different class of 
YMH models and without using the adiabatic method.
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2. Yang–Mills–Higgs model

Notation. On Minkowski space R3,1 � xμ with the metric (ημν) = diag(−1, 1, 1, 1), we consider 
U(Nc) gauge theory with Nf flavours of scalar fields in the fundamental representation of U(Nc), 
combined in an Nc × Nf matrix �. A gauge potential A = Aμ dxμ and the Yang–Mills field 
F = dA + A ∧ A take values in the Lie algebra u(Nc). Its components read Fμν = ∂μAν −
∂νAμ + [Aμ, Aν], where ∂μ := ∂/∂xμ and μ, ν = 0, 1, 2, 3. For the generators Iı̂ of the gauge 
group U(Nc) we use the standard normalization tr(Iı̂Iĵ ) = − 1

2 δı̂ĵ .

Transformations of fields. The covariant derivative of the complex Higgs field � in the bi-
fundamental representation of U(Nc)×U(Nf ) with Nf > Nc reads

Dμ� = ∂μ� +Aμ� (2.1)

since the U(Nf ) flavour group acts on � only by global transformations

� �→ �gf . (2.2)

We denote by G the infinite-dimensional group C∞(R3,1, U(Nc)) of gauge transformations 
which are parametrized by gc(x) ∈ G for x ∈R3,1. Then A and � are transformed as

A �→ gcA = gcAg−1
c + gcdg−1

c and � �→ gc� = gc� . (2.3)

For the infinitesimal action of G we have

A �→ δεcA = dεc − [A, εc] and δεc� = εc� with gc = exp(εc) . (2.4)

Similarly, for the U(Nf ) flavour symmetry we have

δεf
A = 0 and δεf

� = �εf , (2.5)

where εc ∈ LieG = C∞(R3,1, u(Nc)) and εf ∈ u(Nf ).

Lagrangian. We consider the Yang–Mills–Higgs (YMH) action functional

S = −
∫

R3,1

d4x
{
tr

( 1
2e2 F†

μνFμν + Dμ�(Dμ�)†) + e2

4 V (�)
}

, (2.6)

where † denotes Hermitian conjugation, e is the gauge coupling constant, and

V (�) = tr
(
M21Nc − ��†)2

(2.7)

is the Higgs potential with a mass parameter M . The Lagrangian from (2.6) is related with the 
bosonic part of the Lagrangian for N=2 supersymmetric QCD, and such Lagrangians are often 
considered in the literature (see e.g. [25,30] and references therein).

The energy density H of YMH configurations described by (2.6) is

H = tr
( 1

e2 F†
0aF0a + D0�(D0�)† + 1

2e2 F†
abFab + Da�(Da�)†) + e2

4 V (�) , (2.8)

where a, b = 1, 2, 3. Here both V (�) and H are positive-semidefinite and gauge-invariant func-
tions. They are also U(Nf )-invariant.

Vacua. A YMH vacuum configuration (Â, F̂, �̂) is defined by the vanishing of the energy den-
sity (2.8). This is achieved by
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F̂μν = 0 , D̂μ�̂ = 0 and V (�̂) = 0 , (2.9)

where the last equation defines the Higgs vacuum manifold. Denote by M̃ the space of solutions 
of (2.9) with Â= 0 = F̂ and �̂ ∈ Mat(Nc, Nf ; C) (complex Nc × Nf matrices) such that

�̂�̂† = M21Nc , (2.10)

i.e. M̃ is the space of solutions to (2.10). The group U(Nc) acts freely on M̃ by left multiplica-
tion, �̂ �→ gc�̂. It is not difficult to show [31] that M̃ is fibred over the Grassmannian

Gr(Nc,Nf ) = [U(Nc) × U(Nf − Nc)]\U(Nf ) =: M (2.11)

with the projection

π : M̃ U(Nc)−→ M (2.12)

and the group U(Nc) as fibres.
It is important to distinguish between the Higgs field � depending on x ∈ R3,1 and the vacua 

�̂ ∈ Mat(Nc, Nf ; C), which solve (2.10). The moduli space of vacua M is the Grassmannian 
(2.11), any element of which can be obtained from a reference vacuum �̂0. We choose �̂0 =
(1Nc 0Nc×(Nf −Nc)) so that the isotropy group of �̂0 for the right U(Nf ) action is

U(Nc) × U(Nf − Nc) = {
gf ∈ U(Nf ) : �̂0 gf = gc�̂0 for some gc ∈ U(Nc)

}
. (2.13)

It is obvious [31] that such gf have the form diag(gc, gf −c) with gf −c ∈ U(Nf − Nc). In other 

words, the right action of the isotropy group U(Nc) × U(Nf −Nc) on �̂0 is equivalent to the left 
action of the gauge group U(Nc), and we simply have

M̃ = U(Nf − Nc)\U(Nf ) . (2.14)

3. Moduli space of vacua

Geometry of Gr(Nc, Nf ). The space M̃ in (2.12) parametrizes all vacua for the model (2.6), 
and the Grassmannian M in (2.11) and (2.12) parametrizes gauge inequivalent vacua, i.e. the 
vacuum moduli space. Both M̃ and M are homogeneous spaces with a right action of U(Nf ). 
Note that right cosets can be changed to left cosets by interchanging �̂ with �̂†.

Let m be the tangent space to the Grassmannian M at the fixed point �̂0. Then we have the 
splitting

u(Nf ) = m⊕ u(Nc) ⊕ u(Nf − Nc) , (3.1)

and m̃=m ⊕u(Nc) can be identified with the tangent space of M̃ at any given point. For u(Nf )

we choose a basis

{Ii} = {Iı̄ , Iı̂ , Ii′ } with

⎧⎪⎨⎪⎩
ı̄ = 1, . . . ,dimm= 2Nc(Nf − Nc) ,

ı̂ = dimm+1, . . . ,dimm+N2
c ,

i′ = dimm+N2
c + 1, . . . ,dimm+N2

c +(Nf − Nc)
2 ,

(3.2)

so that Iı̄ , Iı̂ and Ii′ form orthogonal bases for m, u(Nc) and u(Nf − Nc), respectively. One can 
associate to Ii vector fields Vi on U(Nf ) and a basis {ei} = {eı̄ , eı̂ , ei′ } of one-forms which is 
dual to {Vi}, i.e. Vi� ej = δ

j . These one-forms obey the Maurer-Cartan equations
i
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deı̄ = −f ı̄

ĵ k̄
eĵ ∧ ek̄ − f ı̄

j ′ k̄ ej ′ ∧ ek̄ ,

deı̂ = − 1
2 f ı̂

j̄ k̄
ej̄ ∧ ek̄ − 1

2 f ı̂

ĵ k̂
eĵ ∧ ek̂ ,

dei′ = − 1
2 f i′

j̄ k̄
ej̄ ∧ ek̄ − 1

2 f i′
j ′ k′ ej ′ ∧ ek′

,

(3.3)

where we used the fact that Gr(Nc, Nf ) is a symmetric space.
The Grassmannian M = Gr(Nc, Nf ) supports an orthonormal frame of one-forms {eı̄} locally 

giving the U(Nf )-invariant metric as

ds2
M = δı̄j̄ eı̄ej̄ = δı̄j̄ eı̄

αe
j̄
β dXαdXβ

=: gαβ dXαdXβ

for α,β = 1, . . . ,2Nc(Nf − Nc), (3.4)

where {Xα} is a set of real local coordinates of a point X ∈ Gr(Nc, Nf ), and ∂α = ∂/∂Xα will 
denote derivatives with respect to them.

Canonical connection. On the principal U(Nc)-bundle (2.12) there exists a unique U(Nf )-equi-
variant connection, the so-called canonical connection (see e.g. [32–35]),

AGr = AGr
α dXα = eı̂Iı̂ = eı̂

αIı̂ dXα (3.5)

taking values in u(Nc). It satisfies both Yang–Mills and generalized instanton equations on 
Gr(Nc, Nf ) [33–35]. The curvature of the canonical connection (3.5) in the bundle (2.12) follows 
as

FGr = 1
2 F

Gr
αβ dXα ∧ dXβ = − 1

2 f ı̂

j̄ k̄
Iı̂ e

j̄ ∧ ek̄ = − 1
2 f ı̂

j̄ k̄
Iı̂ e

j̄
αek̄

β dXα ∧ dXβ . (3.6)

Variation of �̂. By letting Xα run over M we obtain a local section �̂(Xα) of the bundle (2.12). 

The infinitesimal changes of this section are given by the covariant derivatives (cf. [18,19])

δα�̂ = ∂α�̂ +AGr
α �̂ , (3.7)

where AGr
α are the components of the connection (3.5) in the principal U(Nc) bundle (2.12).

4. Faddeev model in the infrared limit of 4d YMH

Dependence on xμ. Now we return to Yang–Mills–Higgs theory on R3,1. In Section 3 we de-
scribed the moduli space M = Gr(Nc, Nf ) of vacua for the YMH model (2.6)–(2.8). For small 
exitations around M, in the strong gauge-coupling limit e2 � 1, the Higgs field �(x) can be 
considered as a map

� : R3,1 → Gr(Nc,Nf ) (4.1)

since for e2 � 1 it should be at a minimum of the Higgs potential (2.7). The moduli-space ap-
proximation then postulates that all fields depend on the spacetime coordinates x = {xμ} only 
via coordinates Xα = Xα(x) on M (see e.g. [15–21] and references therein). By substituting 
�(Xα(x)) and A(Xα(x)) into the initial action (2.6), we obtain an effective field theory describ-
ing small fluctuations around the vacuum moduli space M.
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Two-derivative part of effective action. Multiplying (3.7) by ∂μXα , we obtain

∂μ� = (∂μXα) ∂α� = (∂μXα)δα� − εμ� with εμ = (∂μXα)AGr
α , (4.2)

where εμ ∈ u(Nc) is the pull-back of AGr from Gr(Nc, Nf ) to R3,1. It immediately follows that

Dμ� = ∂μ� +Aμ� = (∂μXα)δα� + (Aμ − εμ)� . (4.3)

We see that Dμ� are tangent3 to C∞(R3,1, Gr(Nc, Nf )) if

Aμ = εμ . (4.4)

Substituting (4.3) with (4.4) into the (2.6), we obtain

Skin = −
∫

R3,1

d4x ημν tr
{
Dμ�(Dν�)†} = −M2

2

∫
R3,1

d4x ημν gαβ ∂μXα∂νX
β , (4.5)

where

gαβ = 2
M2 tr

{
δα�(δβ�)†} = δı̄j̄ eı̄

αe
j̄
β (4.6)

are the components of the metric (3.4) on Gr(Nc, Nf ) pulled back to R3,1, so gαβ(Xγ (x)) now 
depend on x. We introduced the mass scale M from (2.7) into (4.6) to render gαβ dimensionless. 
Thus, this part of the action (2.6) reduces to the standard non-linear sigma model on R3,1 with 
the Grassmannian Gr(Nc, Nf ) as its target.

Four-derivative part of effective action. As discussed earlier, the potential term in (2.6) van-
ishes since �(x) takes values in the manifold M = Gr(Nc, Nf ) of gauge-inequivalent vacua. For 
calculating the first term in (2.6), we use (4.4), and for the curvature of A =Aμdxμ we obtain

F = dA+A∧A = 1
2 Fμν dxμ ∧ dxν = − 1

2 f ı̂

j̄ k̄
Iı̂ e

j̄
αek̄

β ∂μXα∂νX
β dxμ ∧ dxν , (4.7)

allowing one to extract the components Fμν . Substituting (4.7) into (2.6) we arrive at

SFad = − 1
2e2

∫
R3,1

d4x tr
(
F†

μνFμν
)

= − 1
4e2

∫
R3,1

d4x δı̂ĵ f
ı̂

l̄k̄
f

ĵ
m̄n̄ el̄

αek̄
βem̄

γ en̄
δ ∂μXα∂νX

β∂μXγ ∂νXδ ,

(4.8)

where ∂μ := ημσ ∂σ . Thus, in the infrared limit the Yang–Mills–Higgs action (2.6) is reduced to 
the Faddeev action,

Seff = −
∫

R3,1

d4x
{M2

2
gαβ∂μXα∂μXβ

+ 1

4e2 δı̂ĵ f
ı̂

l̄k̄
f

ĵ
m̄n̄ el̄

αek̄
βem̄

γ en̄
δ ∂μXα∂νX

β∂μXγ ∂νXδ
}

(4.9)

for scalar fields Xα with values in the Grassmannian Gr(Nc, Nf ).

3 This is a key requirement of the adiabatic approach. It is necessary for the description of small fluctuations around 
the initial moduli space when the dynamical fields are collective coordinates (see e.g. [18,19,36]).
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5. A2⊕A2-quiver gauge theory

Fields. It is possible to obtain not only the Faddeev model but also the standard Skyrme model 
from Yang–Mills–Higgs theory in four dimensions. To achieve this, we should consider a 4d 
YMH model with a group manifold, say U(N ), as the moduli space M of vacua. The simplest 
way to do this is to specialize the model (2.6) to Nf = 2Nc =: 2N but with a potential different 
from (2.7). We parametrize

� =: (φ−, φ+) with φ± ∈ Mat(N,N;C) . (5.1)

Thus, we have a u(N)-valued gauge field F , an N×2N complex Higgs field � = (φ−, φ+), 
the group of gauge transformations G = C∞(R3,1, U(N)) and transformations (2.2)–(2.5) for 
Nf = 2Nc = 2N .

Action. We consider the Yang–Mills–Higgs (YMH) action functional

S = −
∫

R3,1

d4x
{
tr

( 1
2e2 F†

μνFμν + Dμ�(Dμ�)†) + e2

4 V (�)
}

, (5.2)

and the two-term potential

V (�) = tr
(
m21N − φ−φ

†
−
)2 + tr

(
m21N − φ+φ

†
+
)2 (5.3)

with a mass parameter m. This action can be obtained from A+
2 ⊕A−

2 quiver gauge theory (see 
e.g. [37,38] and references therein) corresponding to a direct sum of quivers

A±
2 : CN φ±−→ CN , (5.4)

where four copies of CN at four vertices carry the fundamental U(N ) representation, and the 
arrows φ± denote maps between them.

The form (5.3) of the Higgs potential breaks the flavour group U(2N) to the subgroup G =
U−(N) × U+(N). Let {Ii} be a basis of the Lie algebra g = LieG = u−(N) ⊕ u+(N) realized 
as 2N×2N block-diagonal matrices with the normalization tr(IiIj ) = − 1

2δij for i = 1, . . . , 2N2. 
The covariant derivative in (5.2) reads

Dμ� = (Dμφ− , Dμφ+) with Dμφ± = ∂μφ± +Aμφ± , (5.5)

with a u(N)-valued gauge potential A =Aμdxμ.

Vacua. The energy density of YMH configurations described by the action (5.2) has the form 
(2.8) with V (�) given by (5.3). The vacuum configurations are defined by (2.9), which implies

φ̂−φ̂
†
− = m2 1N and φ̂+φ̂

†
+ = m2 1N . (5.6)

Equations (5.6) are solved by some

(φ̂−, φ̂+) ∈ U−(N)×U+(N) = M̃ (5.7)

subject to global gauge transformations

(φ̂−, φ̂+) �→ (hφ̂−, hφ̂+) for h ∈ U(N) . (5.8)

The group U(N) acts freely on the vacuum manifold M̃ by left multiplication, and one can 
define the projection
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π : M̃ U(N)−→ M via (φ̂−, φ̂+) �−→ (1N, φ̂) with φ̂ = φ̂−1− φ̂+ . (5.9)

Hence, the moduli space of vacua

M = U(N)\[U−(N) × U+(N)] (5.10)

is diffeomorphic to the group manifold U(N ), any element of which can be obtained from a ref-
erence vacuum �̂0. We choose 1

m
�̂0 = (1N, 1N) so that the isotropy group for the right G action 

is

U(N) = {
g ∈ G : �̂0 g = h�̂0 for some h ∈ U(N)

}
. (5.11)

It is obvious that g = diag(h, h), i.e. the isotropy group is

diag(G) ∼= Udiag(N) = U(N) =: H , (5.12)

and the global gauge transformations form the stability subgroup in a realization of the group 
manifold U(N) as the coset space H\G in (5.10). This is also seen from the fact that 
(hφ̂−)−1(hφ̂+) = φ̂−1− φ̂+, i.e. φ̂ is inert under the action of H . From (5.9) it follows the de-
composition

g = u−(N) ⊕ u+(N) = m⊕ h = m⊕ u(N)diag with h = {
(η, η)

∣∣ η ∈ u(N)
}

.

(5.13)

Geometry of H\G. The geometry of a group manifold considered as a homogeneous space 
has some characteristic features (see e.g. [31,39,40]) which we briefly describe here. In the split 
(5.13), m is not necessarily orthogonal to h with respect to the Cartan–Killing form. In fact, there 
are three natural reductive decompositions of g with the following versions of m:

m0 = {
(−θ, θ)

}
, m− = {

(−θ,0)
}

, m+ = {
(0, θ)

}
, with θ ∈ u(N) .

(5.14)

The first case yields H\G as a symmetric space with m0 orthogonal to h. With the choice m+
or m− the coset (5.10) becomes a nonsymmetric homogeneous manifold. Obviously, m ∼= u(N)

in all three cases. The choices of m0, m− and m+ correspond to the gauges φ̂−= φ̂
†
+, φ̂+=m1N

and φ̂− =m1N , respectively, which determine different coset representatives, i.e. sections of the 
bundle (5.9) with M̃= G and M = H\G.

We split the basis of g according to the decomposition (5.13),

{Ii} = {Iı̄ , Iı̂} with

{
ı̄ = 1, . . . ,N2 for m ,

ı̂ = N2+1, . . . ,2N2 for h .
(5.15)

We have an orthonormal frame of one-forms {eı̄} on H\G, the metric (3.4) with α, β = 1, . . . , N2

and the canonical connection Acan = eı̂ Iı̂ = eı̂
α Iı̂ dXα for all three cases m0, m− and m+. How-

ever, the Maurer–Cartan equations depend on the case:

m0 : deı̄ = −f ı̄

ĵ k̄
eĵ ∧ ek̄ and deı̂ = − 1

2 f ı̂

j̄ k̄
ej̄ ∧ ek̄ − 1

2 f ı̂

ĵ k̂
eĵ ∧ ek̂ ,

m− : deı̄ = −f ı̄

ĵ k̄
eĵ ∧ ek̄ + 1

2 f ı̄

j̄ k̄
ej̄ ∧ ek̄ and deı̂ = − 1

2 f ı̂

ĵ k̂
eĵ ∧ ek̂ ,

m+ : deı̄ = −f ı̄ ¯ eĵ ∧ ek̄ − 1 f ı̄ ¯ ej̄ ∧ ek̄ and deı̂ = − 1 f ı̂ eĵ ∧ ek̂ .

(5.16)
ĵ k 2 j̄ k 2 ĵ k̂
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Furthermore, on the group manifold (5.10) one can introduce a family of connections

A�
U(N) = � eı̂Iı̂ = � eı̂

αIı̂dXα =: A�
α dXα with � ∈ R (5.17)

with curvature

F�
U(N) = 1

2 �(� − 1) f ı̂

ĵ k̂
Iı̂ e

ĵ ∧ ek̂ − 1
2 � f ı̂

j̄ k̄
Iı̂ e

j̄ ∧ ek̄ . (5.18)

For the cases m± the last term in (5.18) vanishes. The connection (5.17) is the unique 
G-equivariant family of connections on the bundle (5.9) [31,39].

Variation of �̂. In the following we adopt the gauge 1
m

φ̂− = 1N fixing m = m+, so f ı̂

j̄ k̄
= 0 in 

(5.18). Then, abbreviating φ̂+ ≡ φ̂,

A�
U(N) = � φ̂ (∂αφ̂−1)dXα ⇒ A�

α = � φ̂ ∂αφ̂−1 , (5.19)

and letting Xα run over M ∼= U(N) we obtain a local section �̂(Xα) = m(1N, φ̂(Xα)) of the 
bundle (5.9). Infinitesimal changes of this section are given by the covariant derivatives (cf. [18,
19])

δα�̂ = ∂α�̂ +A�
α�̂ = m

(
A�

α , ∂αφ̂ +A�
αφ̂

)
. (5.20)

6. Skyrme model in the infrared limit of 4d YMH theory

The derivation of the Skyrme model as an effective theory for the 4d YMH model (5.2) is 
similar to the derivation of the Faddeev model from the YMH action (2.6). The main difference 
is that now the vacuum moduli space M = H\G = U(N) is a group manifold, whose geometry 
was described in Section 5. According to the philosophy of the adiabatic method, we assume that 
the gauge potential A = Aμdxμ and the Higgs field � depend on the R3,1 coordinates x only 
via real coordinates Xα = Xα(x) on U(N ), and we substitute A(Xα(x)) and �(Xα(x)) into the 
action (5.2) by using results of Section 5.

Kinetic term. Multiplying (5.20) by ∂μXα , we obtain

Dμ� = ∂μXα δα� + (Aμ − εμ)� , (6.1)

where εμ = (∂μXα)A�
α ∈ u(N) is the pull-back of A�

U(N) from U(N) to R3,1. To render 

(Dμ�)�† tangent to C∞(R3,1, U(N)), we choose

Aμ = εμ = � (∂μXα)φ ∂αφ−1 = � φ ∂μφ−1 , (6.2)

where φ is a U(N )-valued function. Notice that (5.19) and (5.20) imply

δα� = −m
(
� (∂αφ)φ†, (� − 1) ∂αφ

) ⇒ Dμ� = −m
(
� (∂μφ)φ†, (� − 1) ∂μφ

)
.

(6.3)

Substituting (6.1)–(6.3) into (5.2), we obtain

Skin = −
∫

R3,1

d4x ημν tr
{
Dμ�(Dν�)†} = 1

4 f 2
π

∫
R3,1

d4x ημν tr(RμRν) (6.4)

with
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Rμ := φ ∂μφ−1 and 1
4 f 2

π = (
�2 + (� − 1)2)m2 , (6.5)

where fπ may be interpreted as the pion decay constant. Thus, this part of the action (5.2) reduces 
to the standard non-linear sigma model on R3,1 with a U(N) target space.

Skyrme term. For calculating the F2-terms in (5.2) we employ (6.2) and find

F = dA+A∧A = �(� −1) φ dφ−1 ∧φ dφ−1 = 1
2 �(� −1) [Rμ,Rν]dxμ ∧dxν (6.6)

since Aμ = � φ ∂μφ−1 = �Rμ after the pull-back to R3,1. Substituting (6.6) into (5.2), we obtain

SSky = − 1

2e2

∫
R3,1

d4x tr
(
F†

μνFμν
) = 1

32ζ 2

∫
R3,1

d4x ημληνσ tr
([Rμ,Rν][Rλ,Rσ ]) ,

(6.7)

where

1

32ζ 2 = �2(� − 1)2

8e2 , (6.8)

and ζ is the dimensionless Skyrme parameter. Hence, in the infrared limit the Yang–Mills–Higgs 
action (5.2) is reduced to the action of the Skyrme model,

Seff =
∫

R3,1

d4x
{f 2

π

4
ημν tr

(
RμRν

) + 1

32ζ 2 ημληνσ tr
([Rμ,Rν][Rλ,Rσ ])} . (6.9)

Thus, both Skyrme and Faddeev models appear as effective field theories in the infrared of Yang–
Mills–Higgs models.

Acknowledgements

This work was partially supported by the Deutsche Forschungsgemeinschaft grant LE 838/13. 
It is based upon work from COST Action MP1405 QSPACE, supported by COST (European 
Cooperation in Science and Technology).

References

[1] L. Faddeev, Quantization of solitons, IAS preprint, Print-75-QS70, Princeton, 1975.
[2] T.H.R. Skyrme, A unified field theory of mesons and baryons, Nucl. Phys. 31 (1962) 556.
[3] I. Zahed, G.E. Brown, The Skyrme model, Phys. Rep. 142 (1986) 1.
[4] R.A. Battye, N.S. Manton, P.M. Sutcliffe, S.W. Wood, Light nuclei of even mass number in the Skyrme model, 

Phys. Rev. C 80 (2009) 034323, arXiv :0905 .0099 [nucl -th].
[5] M. Gillard, D. Harland, E. Kirk, B. Maybee, M. Speight, A point particle model of lightly bound skyrmions, Nucl. 

Phys. B 917 (2017) 286, arXiv :1612 .05481 [hep -th].
[6] C. Adam, M. Haberichter, T. Romanczukiewicz, A. Wereszczynski, Roper resonances and quasi-normal modes of 

Skyrmions, J. High Energy Phys. 03 (2018) 023, arXiv :1710 .00837 [hep -th].
[7] L.D. Faddeev, Knots as possible excitations of the quantum Yang–Mills fields, in: M.-L. Ge, C.H. Oh, K.K. Phua 

(Eds.), Proc. Conf. in Honor of C.N. Yang’s 85th Birthday, Statistical Physics, High Energy, Condensed Matter and 
Mathematical Physics, World Scientific, Singapore, 2008, p. 18, arXiv :0805 .1624 [hep -th].

[8] P. Sutcliffe, Knots in the Skyrme–Faddeev model, Proc. R. Soc. Lond. A 463 (2007) 3001, arXiv :0705 .1468 [hep -
th].

http://refhub.elsevier.com/S0550-3213(19)30161-0/bib536Bs1
http://refhub.elsevier.com/S0550-3213(19)30161-0/bib5A42s1
http://refhub.elsevier.com/S0550-3213(19)30161-0/bib424D5357s1
http://refhub.elsevier.com/S0550-3213(19)30161-0/bib424D5357s1
http://refhub.elsevier.com/S0550-3213(19)30161-0/bib47484B4D53s1
http://refhub.elsevier.com/S0550-3213(19)30161-0/bib47484B4D53s1
http://refhub.elsevier.com/S0550-3213(19)30161-0/bib41485257s1
http://refhub.elsevier.com/S0550-3213(19)30161-0/bib41485257s1
http://refhub.elsevier.com/S0550-3213(19)30161-0/bib466164s1
http://refhub.elsevier.com/S0550-3213(19)30161-0/bib466164s1
http://refhub.elsevier.com/S0550-3213(19)30161-0/bib466164s1
http://refhub.elsevier.com/S0550-3213(19)30161-0/bib53757431s1
http://refhub.elsevier.com/S0550-3213(19)30161-0/bib53757431s1


O. Lechtenfeld, A.D. Popov / Nuclear Physics B 945 (2019) 114675 11
[9] D. Harland, Topological energy bounds for the Skyrme and Faddeev models with massive pions, Phys. Lett. B 728 
(2014) 518, arXiv :1311 .2403 [hep -th].

[10] T. Sakai, S. Sugimoto, Low energy hadron physics in holographic QCD, Prog. Theor. Phys. 113 (2005) 843, arXiv :
hep -th /0412141.

[11] J. Erdmenger, N. Evans, I. Kirsch, E. Threlfall, Mesons in gauge/gravity duals – a review, Eur. Phys. J. A 35 (2008) 
81, arXiv :0711 .4467 [hep -th].

[12] V. Kaplunovsky, D. Melnikov, J. Sonnenschein, Baryonic popcorn, J. High Energy Phys. 11 (2012) 047, arXiv :
1201 .1331 [hep -th].

[13] P. Sutcliffe, Holographic skyrmions, Mod. Phys. Lett. B 29 (2015) 1540051.
[14] T.A. Ivanova, O. Lechtenfeld, A.D. Popov, Skyrme model from 6d N = (2, 0) theory, Phys. Lett. B 783 (2018) 222, 

arXiv :1805 .07241 [hep -th].
[15] N.S. Manton, A remark on the scattering of BPS monopoles, Phys. Lett. B 110 (1982) 54.
[16] N.S. Manton, P. Sutcliffe, Topological Solitons, Cambridge University Press, Cambridge, 2004.
[17] E.J. Weinberg, P. Yi, Magnetic monopole dynamics, supersymmetry, and duality, Phys. Rep. 438 (2007) 65, arXiv :

hep -th /0609055.
[18] J.A. Harvey, A. Strominger, String theory and the Donaldson polynomial, Commun. Math. Phys. 151 (1993) 221, 

arXiv :hep -th /9108020.
[19] J.A. Harvey, G.W. Moore, A. Strominger, Reducing S-duality to T-duality, Phys. Rev. D 52 (1995) 7161, arXiv :

hep -th /9501022.
[20] A. Deser, O. Lechtenfeld, A.D. Popov, Sigma-model limit of Yang–Mills instantons in higher dimensions, Nucl. 

Phys. B 894 (2015) 361, arXiv :1412 .4258 [hep -th].
[21] T.A. Ivanova, O. Lechtenfeld, A.D. Popov, Non-Abelian sigma models from Yang–Mills theory compactified on a 

circle, Phys. Lett. B 781 (2018) 322, arXiv :1803 .07322 [hep -th].
[22] O. Lechtenfeld, A.D. Popov, Skyrme-Faddeev model from 5d super-Yang–Mills, Phys. Lett. B 786 (2018) 39, 

arXiv :1807 .11803 [hep -th].
[23] D. Gaiotto, G.W. Moore, Y. Tachikawa, On 6d N = (2, 0) theory compactified on a Riemann surface with finite 

area, PTEP 2013 (2013) 013B03, arXiv :1110 .2657 [hep -th].
[24] B. Assel, S. Schäfer-Nameki, J.M. Wong, M5-branes on S2 × M4: Nahm’s equations and 4d topological sigma-

models, J. High Energy Phys. 09 (2016) 120, arXiv :1604 .03606 [hep -th].
[25] M. Eto, Y. Isozumi, M. Nitta, K. Ohashi, N. Sakai, Solitons in the Higgs phase: the moduli matrix approach, J. Phys. 

A 39 (2006) R315, arXiv :hep -th /0602170.
[26] N. Seiberg, Exact results on the space of vacua of four-dimensional SUSY gauge theories, Phys. Rev. D 49 (1994) 

6857, arXiv :hep -th /9402044.
[27] C. Beasley, E. Witten, New instanton effects in supersymmetric QCD, J. High Energy Phys. 01 (2005) 056, arXiv :

hep -th /0409149.
[28] E. Babaev, Non-Meissner electrodynamics and knotted solitons in two-component superconductors, Phys. Rev. B 

79 (2009) 104506, arXiv :0809 .4468 [cond -mat .supr-con].
[29] A. Mohamadnejad, Skyrme-Faddeev Lagrangian from reformulated Georgi-Glashow model, Europhys. Lett. 123 

(2018) 61001, arXiv :1609 .05605 [hep -th].
[30] D. Tong, Quantum vortex strings: a review, Ann. Phys. 324 (2009) 30, arXiv :0809 .5060 [hep -th].
[31] S. Kobayashi, K. Nomizu, Foundations of Differential Geometry, vol. 2, Interscience Publishers, New York, 1969.
[32] S. Kobayashi, K. Nomizu, Foundations of Differential Geometry, vol. 1, Interscience Publishers, New York, 1963.
[33] J.P. Harnad, J. Tafel, S. Shnider, Canonical connections on Riemannian symmetric spaces and solutions to the 

Einstein-Yang–Mills equations, J. Math. Phys. 21 (1980) 2236.
[34] D. Harland, T.A. Ivanova, O. Lechtenfeld, A.D. Popov, Yang-Mills flows on nearly Kähler manifolds and 

G2-instantons, Commun. Math. Phys. 300 (2010) 185, arXiv :0909 .2730 [hep -th].
[35] D. Harland, C. Nölle, Instantons and Killing spinors, J. High Energy Phys. 03 (2012) 082, arXiv :1109 .3552 [hep -th].
[36] K. Uhlenbeck, Moduli spaces and adiabatic limits, Not. Am. Math. Soc. 42 (1995) 41.
[37] A.D. Popov, R.J. Szabo, Quiver gauge theory of non-Abelian vortices and noncommutative instantons in higher 

dimensions, J. Math. Phys. 47 (2006) 012306, arXiv :hep -th /0504025.
[38] O. Lechtenfeld, A.D. Popov, R.J. Szabo, Rank two quiver gauge theory, graded connections and noncommutative 

vortices, J. High Energy Phys. 09 (2006) 054, arXiv :hep -th /0603232.
[39] Y.A. Kubyshin, V.O. Malyshenko, D. Marin Ricoy, Invariant connections with torsion on group manifolds and their 

application in Kaluza–Klein theories, J. Math. Phys. 35 (1994) 310, arXiv :gr-qc /9304047.
[40] D. Harland, The Skyrme model and chiral perturbation theory, arXiv :1612 .07259 [hep -th].

http://refhub.elsevier.com/S0550-3213(19)30161-0/bib486131s1
http://refhub.elsevier.com/S0550-3213(19)30161-0/bib486131s1
http://refhub.elsevier.com/S0550-3213(19)30161-0/bib5353s1
http://refhub.elsevier.com/S0550-3213(19)30161-0/bib5353s1
http://refhub.elsevier.com/S0550-3213(19)30161-0/bib45454B54s1
http://refhub.elsevier.com/S0550-3213(19)30161-0/bib45454B54s1
http://refhub.elsevier.com/S0550-3213(19)30161-0/bib4B4D53s1
http://refhub.elsevier.com/S0550-3213(19)30161-0/bib4B4D53s1
http://refhub.elsevier.com/S0550-3213(19)30161-0/bib53757432s1
http://refhub.elsevier.com/S0550-3213(19)30161-0/bib494C5031s1
http://refhub.elsevier.com/S0550-3213(19)30161-0/bib494C5031s1
http://refhub.elsevier.com/S0550-3213(19)30161-0/bib4D61s1
http://refhub.elsevier.com/S0550-3213(19)30161-0/bib4D53s1
http://refhub.elsevier.com/S0550-3213(19)30161-0/bib5759s1
http://refhub.elsevier.com/S0550-3213(19)30161-0/bib5759s1
http://refhub.elsevier.com/S0550-3213(19)30161-0/bib4853s1
http://refhub.elsevier.com/S0550-3213(19)30161-0/bib4853s1
http://refhub.elsevier.com/S0550-3213(19)30161-0/bib484D53s1
http://refhub.elsevier.com/S0550-3213(19)30161-0/bib484D53s1
http://refhub.elsevier.com/S0550-3213(19)30161-0/bib444C50s1
http://refhub.elsevier.com/S0550-3213(19)30161-0/bib444C50s1
http://refhub.elsevier.com/S0550-3213(19)30161-0/bib494C5032s1
http://refhub.elsevier.com/S0550-3213(19)30161-0/bib494C5032s1
http://refhub.elsevier.com/S0550-3213(19)30161-0/bib4C65506Fs1
http://refhub.elsevier.com/S0550-3213(19)30161-0/bib4C65506Fs1
http://refhub.elsevier.com/S0550-3213(19)30161-0/bib474D54s1
http://refhub.elsevier.com/S0550-3213(19)30161-0/bib474D54s1
http://refhub.elsevier.com/S0550-3213(19)30161-0/bib417373656Cs1
http://refhub.elsevier.com/S0550-3213(19)30161-0/bib417373656Cs1
http://refhub.elsevier.com/S0550-3213(19)30161-0/bib45746Fs1
http://refhub.elsevier.com/S0550-3213(19)30161-0/bib45746Fs1
http://refhub.elsevier.com/S0550-3213(19)30161-0/bib536569s1
http://refhub.elsevier.com/S0550-3213(19)30161-0/bib536569s1
http://refhub.elsevier.com/S0550-3213(19)30161-0/bib4257s1
http://refhub.elsevier.com/S0550-3213(19)30161-0/bib4257s1
http://refhub.elsevier.com/S0550-3213(19)30161-0/bib426162s1
http://refhub.elsevier.com/S0550-3213(19)30161-0/bib426162s1
http://refhub.elsevier.com/S0550-3213(19)30161-0/bib4D6F68s1
http://refhub.elsevier.com/S0550-3213(19)30161-0/bib4D6F68s1
http://refhub.elsevier.com/S0550-3213(19)30161-0/bib546F6E67s1
http://refhub.elsevier.com/S0550-3213(19)30161-0/bib4B4E7632s1
http://refhub.elsevier.com/S0550-3213(19)30161-0/bib4B4E7631s1
http://refhub.elsevier.com/S0550-3213(19)30161-0/bib48615453s1
http://refhub.elsevier.com/S0550-3213(19)30161-0/bib48615453s1
http://refhub.elsevier.com/S0550-3213(19)30161-0/bib48494C50s1
http://refhub.elsevier.com/S0550-3213(19)30161-0/bib48494C50s1
http://refhub.elsevier.com/S0550-3213(19)30161-0/bib484Es1
http://refhub.elsevier.com/S0550-3213(19)30161-0/bib55686Cs1
http://refhub.elsevier.com/S0550-3213(19)30161-0/bib5053s1
http://refhub.elsevier.com/S0550-3213(19)30161-0/bib5053s1
http://refhub.elsevier.com/S0550-3213(19)30161-0/bib4C5053s1
http://refhub.elsevier.com/S0550-3213(19)30161-0/bib4C5053s1
http://refhub.elsevier.com/S0550-3213(19)30161-0/bib4B4D52s1
http://refhub.elsevier.com/S0550-3213(19)30161-0/bib4B4D52s1
http://refhub.elsevier.com/S0550-3213(19)30161-0/bib486132s1

	Skyrme and Faddeev models in the low-energy limit of 4d Yang-Mills-Higgs theories
	1 Introduction and summary
	2 Yang-Mills-Higgs model
	3 Moduli space of vacua
	4 Faddeev model in the infrared limit of 4d YMH
	5 A2⊕A2-quiver gauge theory
	6 Skyrme model in the infrared limit of 4d YMH theory
	Acknowledgements
	References


