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Abstract
Wepresent anovelmethod for engineering anoptical clock transition that is robust against externalfield
fluctuations and is able toovercome limits resulting fromfield inhomogeneities.The technique is basedon
the applicationof continuousdrivingfields to formapair of dressed states essentially free of all relevant
shifts. Specifically, the clock transition is robust tomagneticfield shifts, quadrupole andother tensor shifts,
and amplitudefluctuationsof thedrivingfields.The scheme is applicable to either a single ionor an
ensembleof ions, and is relevant for several typesof ions, such as Ca40 + , Sr88 + , Ba138 + and Lu176 + . Taking a
spherically symmetricCoulombcrystal formedby400 Ca40 + ions as an example,we showthrough
numerical simulations that the inhomogeneous linewidthof tensofHertz in sucha crystal togetherwith
linearZeeman shifts of order 10MHzare reduced to forma linewidthof around1Hz.Weestimate a two-
order-of-magnitude reduction in averaging timecompared to state-of-the art single ion frequency
references, assumingaprobe laser fractional instability of10 15- . Furthermore, a statistical uncertainty
reaching2.9×10−16 in 1s is estimated for a cascaded clock scheme inwhich thedynamicallydecoupled
Coulombcrystal clock stabilizes the interrogation laser for an Al27 + clock.

1. Introduction

Optical clocks based on neutral atoms trapped in optical lattices and single trapped ions have reached estimated
systematic uncertainties of a few parts in 10−18 [1–4] or even below [5]. Taking advantage of these record
uncertainties for applications ranging from relativistic geodesy [6–9] over fundamental physics [10–12] to
frequencymetrology [13–17] requires achieving statisticalmeasurement uncertainties of the same level within
practical averaging times τ (given in seconds). This has been achievedwith single-ensemble optical lattice clocks
in self-comparison experiments up to a level of1.6 10 16 t´ - [18] and by implementing an effectively dead-
time-free clock consisting of two independent clocks probed in an interleaved fashion [19, 20], reaching a
statistical uncertainty in the range of 5 10 17 t´ - . In contrast to neutral atom lattice clocks, which are
typically probedwith hundreds to thousands of atoms, single ion clocks are currently limited in their statistical
uncertainty by quantumprojection noise [21] to levels of a few parts in 10 15 t- [3, 22, 23]. The statistical
uncertainty can be improved by probing for longer times, ultimately limited by the excited clock state lifetime or
the laser coherence time [24, 25]. Alternatively, the number of probed ions can be increased.

Recently,multi-ion clock schemes have been proposed to address this issue [26–29]. However, several
challenges have to be overcome tomaintain and transfer the small and verywell characterizable systematic shifts
achievable with single trapped ions to larger ion crystals. The oscillating rffield in Paul traps results in ac Stark
and second orderDoppler shifts throughmicromotion [30–32]. Furthermore, electric field gradients from the
trapping fields and the surrounding ions couple to atomic quadrupolemoments, resulting in an electric
quadrupole shift (QPS). The effects ofmicromotion can be avoided by trapping strings of ions in a precision-
machined linear Paul trapwith negligible excessmicromotion from trap imperfections [28, 33]. TheQPS in such
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chains can be avoided by choosing an ion species with negligible differential electric quadrupolemoment
between the clock states, such as In+ or Al+ , or by employing ring traps inwhich theQPS is the same for all ions
[29]. A high-accuracymulti-ion clock based on ion chains containing on the order of tens of ions in a linear
quadrupole trap has been proposed and is expected to achieve trap-induced fractional systematic uncertainties
at the 10−19 level [26].

An alternative approach based on large 3dCoulomb crystals of ions has been theoretically investigated [27]
for ion species for which themicromotion-inducedDoppler shift and the scalar ac Stark shift, both driven by the
rf trapping field, can bemade to cancel at a ‘magic’ rf drive frequency [30]. This cancellation has been employed
for single Sr+ [34], single Ca+ [35], and is currently being investigated for Lu+ [27, 36, 37]. However, electronic
states with J>1/2 are subject to rank 2 tensor shifts, such as rf electric field-induced tensor ac Stark shift (TASS)
andQPS [30, 32]. For 3dCoulomb crystals with tens up to several hundreds of ions, this results in position-
dependent shifts, since the electric field environment of the ions differ. It has been proposed to reduce this
inhomogeneous broadening across the ion crystal by employing a spherical ion crystal tominimize theQPS and
by adding a compensating laser field for the TASS [27], or by operating at a judiciously chosenmagnetic-field-
insensitive point [37] for ionswith hyperfine structure.

Achieving insensitivity of atomic energy levels to external field fluctuations has been theoretically
investigated using pulsed or continuous dynamical decoupling (CDD) [38–48]. Such schemes have been
experimentally implemented in various systems ranging fromNVcenters and solid state spin systems [49–57] to
neutral atoms [58] and trapped ions [59–64].

CDDor dressed-state engineering in the context of clocks has been proposed for linear Zeeman shift
cancellation in neutral atom clocks through rf dressing of Zeeman substates in a regimewhere the drive Rabi
frequency is larger than the drive frequency [45]. However, this scheme is unable to cancel tensorial shifts, such
as theQPS or TASS. In a similar approach,magnetic field noise suppression up to second order in radio-
frequency clocks via weak rf dressing has been proposed [46] and experimentally implemented to engineer
synthetic clock states for rf spectroscopy in ultra-cold rubidium [65, 66].

Here, we show throughnumerical simulations thatCDDusing four rf frequencies significantly suppresses all
relevant homogeneous (linear Zeeman) and inhomogeneous (micromotion-induced secondorderDoppler,QPS,
scalar and tensor ac Stark) frequency shifts on an optical clock transition for an ion crystal containing 400 ions.We
note that the scheme inprincipleworks for any ionnumber and crystal size.Wedemonstrate the basic principle,
which is illustrated infigure 1, on the S2

1 2 « D2
5 2 clock transition in Ca40 + , but the scheme is directly applicable

to other systems aswell. It therefore allows theoperation of amulti-ion clock [26]using ion specieswhose clock
transitions have a non-vanishing differential electric quadrupolemoment.One of themanypossible applications
of such amulti-ion frequency reference is thephase stabilization of a probe laser for a single ion clock to allownear-
lifetime-limitedprobe times and correspondingly reduced statistical uncertainties [24, 25].

The paper is organized as follows. In section 2wefirst showhow robustness toQPS andTASS can be
achieved by the application of a single continuous detuned driving field. The discussion of only one driving field
gives a simple and intuitive understanding of our approach. In section 3we extend the discussion to the full CDD
scheme employing four driving fields for the construction of a robust optical clock transition. For simplicity and

Figure 1. Schematic representation of the setup. (a)The ion crystal is probedwhile it is beingmanipulated by the rf dressing fields.
(b) Schematic representation of the sequence considered in this scheme. (c) Illustration of the robust clock transition.While the
unperturbed clock transition is subject tomagnetic shifts, quadrupole shifts, and tensor shifts, the dressingfields substantiallymitigate
these shifts and result in a robust clock transition.
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clarity in the discussionwe ignore effects of the counter-rotating terms of the driving fields by assuming the
rotating-wave-approximation (RWA), as well as the cross-driving effects (for example, the effect of the S2

1 2

driving field on the D2
5 2 states). These two effects are, however, taken into account when numerically

optimizing the driving parameters as well as in the simulations presented. In appendices C–E,we show in detail
how this is achieved by incorporating these effects in the optimization. Then, in section 4we consider the
implementation of the scheme in the case of amulti-ion crystal clock and analyze the performance of the scheme
in terms of the expected statistical uncertainties of the robust optical clock transition. After discussing possible
applications in section 5, we endwith the conclusions in section 6.

2. Robustness to tensor shifts

In the absence of hyperfine structure, tensor shifts including theQPS are proportional to Q J J m1 3J m j,
2

j
= + -( )

[32], where J is the total angularmomentumandmJ themagnetic quantumnumber. These shifts reduce the
precision of atomic clockswhennot suppressed by suitable averaging schemes. Previously employed schemes to
suppress thequadrupole shift include averaging the transition frequency over allmJ states, since Q 0m J

J
J m,J jå ==-

[67]. Such an averagewill also eliminate the linear Zeeman shift, assuming thefielddoes not changebetween the
frequencymeasurements contributing to the average.Wepropose a novel dynamical decoupling scheme inwhich
robustness to this typeof shifts is achieved by the applicationof a detuned drivingfield,mixing allmJ states to form
dressed stateswith effective Q 0J m, j

= .While the cancellation scheme is general and applies to tensor shifts of

arbitrary electronic states,we consider in the following theHamiltonian of the D2
5 2 states of e.g.Ca+ ions

H g BS g g B t Scos , 1d B z d d B x1 1m m d= + W -[( ) ] ( )

where gdμBB is the Zeeman splitting due to the staticmagnetic fieldB, gd is the gyromagnetic ratio of the D2
5 2

states, Sz and Sx are the z and x spin-5/2matrices, 1W is the Rabi frequency of the driving field, and δ1 is the
detuning.Moving to the interaction picture (IP)with respect toH0=(gdμBB− δ1)Sz and taking the RWA
( g Bd B 1 1m d- W( ) ), results in

H S
g

S
2

, 2I z
d

x1
1d= +

W
( )

whereHI is theHamiltonian in the IP. Since the bare D2
5 2 states have tensor shifts which are proportional to

Q 105 2, 5 2 = - , Q 25 2, 3 2 = + , and Q 85 2, 1 2 = + , the tensor shifts of the dressed states (the eigenstates
ofHI) are proportional to

Q q q q5 , , , , 4 , , 31 1 1 1 1 1d d d= - W + W + W( ) ( ) ( ) ( )

with

q
g

g
,

8

4
. 4d

d

1 1
1
2

1
2

1
2

1
2

d
d
d

W =
- + W

+ W
( )

( )
( )

( )

Hence, by choosing gd1
1

8 1d =  W( ), all of the dressed states have a zero (first order) tensor shift,Q=0

(see figure 2). Similarly, for afixed detuning δ1 choosing g8 d1 1dW = results in a zero tensor shift. This can
also be understood in the lab frame, inwhich the couplingΩ1 drives a rotation among the bare states, averaging
their shifts in time just as in themJ averaging schemementioned above.However, here the averaging takes place
at a rate corresponding to the Rabi frequency rather than the experiment repetition rate, allowing it to suppress
much fasterfieldfluctuations.

The cancellation of the tensor shift tofirst order can also be understood as follows. The tensor and
quadrupole shift operator Q S S3 z

2 2= -ˆ can also bewritten as Q S S S2x y z
2 2 2= + -ˆ .Moving to a rotated basis

(dressed states basis) defined by z z xcos sinq q +( ) ( ) , x x zcos sinq q -( ) ( ) , and y y , and neglecting

purely off-diagonal termswe obtain that Q S S S1 3 cos 1 3 sinz x y
2 2 2 2 2q q» - + - +ˆ ( ( )) ( ( )) . Tofirst order

(diagonal terms)wehave that Q S S S S S2 3 sin 1 3 cos ,z
2 2 2q q» + - + -+ - - +ˆ ( )( ( )) ( ( )) where S±=Sx±iSy

are the spin ladder operators. Hence tofirst order, the tensor shift vanishes for cos 1

3
q =( ) , which is analogous

tomagic-angle spinning in solid-stateNMR spectroscopy [68]. The detuned drivingfield results in dressed
states, which are the eigenstates of equation (2). The rotation to the dressed states basis is given byU e Si y= q ,

where cos
gd

1
2

1
2 1 2

4

q = d

d +
W

( )
( )

. For gd1
1

8 1d = W( )we obtain cos 1

3
q =( ) .
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3. The scheme

Our scheme is based on the application of continuous driving fields for the construction of a robust optical clock
transition.We consider the sub-levels of the S2

1 2 and D2
5 2 states, the usual clock states in Ca+ optical clocks.

Four driving fields are employed, where two driving fields operate on the S2
1 2 states, and two driving fields

operate on the D2
5 2 states. The rf driving fields continuously drive the bare S2

1 2 and D2
5 2 states, that is,

continuously couple between the Zeeman sub-levels, which results in the desired robust optical transition of the
dressed states. Thefirst drivingfield of the D2

5 2 statesmitigates tensor shifts, including theQPS, as shown in the
previous section.However, the D2

5 2 states, as well as the S2
1 2 states, are still sensitive to the linear Zeeman

shift.Moreover, the D2
5 2 states are also sensitive to amplitude fluctuations of the driving field. The purpose of

adding threemore driving fields is to have enough control degrees of freedom that can be tuned such that the
suppression of both linear Zeeman shift and amplitude fluctuations of a single (dressed) S2

1 2 « D2
5 2

transition is achieved.Hence, the driving scheme results in doubly-dressed S2
1 2 and D2

5 2 states where one
S D2

1 2
2

5 2« transition (between the doubly-dressed states) is robust tomagnetic shifts, quadrupole shifts,
tensor shifts, and driving amplitude shifts caused by amplitude fluctuations of the driving fields (see figure 3).
For the D2

5 2 ( S2
1 2) states, the Rabi frequencies, kW , and the detunings, δk, of thefirst and second driving fields

are denoted by {Ω1, δ1} and {Ω2, δ2} ({Ω3, δ3} and {Ω4, δ4}), respectively.We assume that a staticmagnetic field
B is applied, which results in the Zeeman splitting of the S2

1 2 and D2
5 2 states. The rf dressing is based on

magnetic dipole coupling between the Zeeman sub-levels, where the Rabi frequency of a driving field is related to

Figure 2.The tensor shift factorsQ of the dressed states (equation (3)) as function of the detuning δ1. The tensor shifts vanish for

gd1
1

8 1d =  W( ).

Figure 3.Robustmulti-ion crystal clock. (a)Typical Zeeman, tensor and quadrupole shifts of the unperturbed clock transition.
(b)Two driving fields with aRabi frequency ofΩS (ΩD) couple the Zeeman substates in the S2

1 2 ( D2
5 2)manifold, respectively. In our

scheme, we employmulti-frequency fields for coupling, as discussed in detail in themain text. (c)The double-dressed states. A robust
optical transitionwith a total shift 1 Hz and inhomogeneous linewidth∼1 Hz is constructed between the S2 ñ∣ and D4 ñ∣ states.
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themagnetic dipolemoment by Brf mW =
 

· , where m

is themagnetic dipolemoment and Brf


is the amplitude

vector of the oscillating rf field.
For simplicity and clarity, in the following analysis we neglect the effect of the counter-rotating terms of the

driving fields by assuming the RWA, as well as the cross-driving effects. Both the counter-rotating terms and the
cross-driving fields result in small energy shifts, which are taken into account when optimizing the driving
parameters. This, however, does not change the overall physical picture, and results only in small variations of
the optimal driving parameters. In appendices C–Ewe showhow this can be done by incorporating these effects
in the following optimization.

Similar to the derivation in section 2, bymoving to thefirst IPwith respect to the frequencies of the first
driving fields we obtain the dressed states, which are the eigenstates of

H S
g

S s
g

s
2 2

, 5z
d

x z
s

xI 1
1

3
3d d= +

W
+ +

W
( )

where Si and si are the spinmatrices of the D2
5 2 and S2

1 2 states and gd=6/5 and gs=2 are the gyromagnetic
ratios of the D2

5 2 and S2
1 2 states, respectively.We proceed bymoving to the basis of the dressed states and then

to the IPwith respect to the frequencies of the second driving fields and obtain the doubly-dressed states, which
are the eigenstates of

H S
g

S s
g

s
4 4

, 6z
d

y z
s

yII 2
2

4
4d d= +

W
+ +

W
( )˜ ˜̃

wherewe denote by z̃ and z̃̃ the diagonalized basis of the dressed D2
5 2 and S2

1 2 states, respectively. A detailed
derivation is given in appendix A.

We consider the doubly-dressed S2
1 2 and D2

5 2 states with the smallest positive eigenvalue as the robust

optical clock states. By setting gd1
1

8 1d = W( ) robustness to quadrupole and tensor shifts is attained.We denote

by δB=μBδB and δΩ amagneticfield shift and the relative driving amplitude shift respectively (please recall that
the detunings of the driving fields are denoted by δk, see above). In order to achieve robustness to shifts in the
magnetic and drivingfields, wefirst add to theHamiltonian themagnetic shift terms gdδBSz+gsδBsz, and the
driving amplitude shift terms δΩΩk (so the driving amplitude including the shift is given by (1+δΩ)Ωk).We use
a single parameter δΩ to describe thefield amplitude fluctuations, whichwe assume to be correlated across all
four dressing fields. This describes the experimental situationwhere the dominant variations in dressing-field
amplitude are due to spatial inhomogeneities or to a common rf amplifier throughwhich all four signals pass.
TheHamiltonian of the double-dressed statesHII (equation (6)) now includes both δB and δΩ, whichmodify the
eigenvalues (the energies) of the double-dressed states, and hence the optical transition frequency. Our aim is to
mitigate the sensitivity of the optical transition frequency to δB and δΩ.We achieve this by tuning the driving
parameters such that the leading order contributions of δB and δΩ to the eigenvalues of the double-dressed S2

1 2

and D2
5 2 states will be as close as possible (and ideally identical).We therefore calculate the power series

expansion of the eigenvalues to orders of i
Bd and idW (i=1, 2,K).We denote the series expansion terms of the

magnetic shift of the S2
1 2 and D2

5 2 states by ZS
i
Bi

d and ZD
i
Bi

d respectively. Similarly, we denote the series

expansion terms of the amplitude driving shift of the S2
1 2 and D2

5 2 states by OS
i

i
dW and OD

i
i
dW respectively.

The expansion terms of the correlated shifts are denoted by ZOS
i
Bi

d dW and ZOD
i
Bi

d dW for the S2
1 2 and D2

5 2

states respectively.We calculate themagnetic energy shifts, ZS
i
Bi

d and ZD
i
Bi

d , up to fourth order (i=1,K, 4),
driving energy shifts, OS

i
i
dW and OD

i
i
dW, up to second order (i=1, 2), and the correlated shifts, ZOS

i
Bi

d dW and
ZOD

i
Bi

d dW (i=1, 2) as function of the driving parameters,Ωk and δk. A detailed derivation is given in
appendix B.We continue by defining a goal function

G Z Z O O ZO ZO . 7
i j

i j

S D
i

S D
j

S D
j

1, 1

4, 2

B Bi i j j j jå d d d d= - + - + -
= =

= =

W W∣ ∣ ∣ ∣ ∣ ∣ ( )

Given distributions of the shifts, δB and δΩ, of a specific experimental set-up, we then define an averaged goal
function

G G , , 8A
m n

m nB ,d d= á ñW( ) ( )

where m
Bd and ndW are chosen randomly according to the given distributions, and numericallyminimizeGA over

the driving parameters,Ωk and δk. The numericalminimization results in optimal sets of values of the driving
fields, for which robustness to shifts in themagnetic and driving fields is obtained.Wenote that because it is
experimentally possible to generate very precise and stable frequencies we do not consider uncertainties in the
frequencies of the driving fields.

As alreadymentioned, in this derivation of the optimal driving parameters we assumed the RWAand
neglected cross-driving effects. However, these effects, which result in small energy shifts, can be integrated in
the optimization as we show in appendices C–E. Indeed, in the numerical analysis of the resulting shift
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distribution in section 4we took the counter-rotating terms of the drivingfields and the cross-driving effect into
account and integrated them in the optimization. In addition, the simulationswhere performed using the full
drivingHamiltonianwithoutmaking any approximations.

4. Robustmulti-ion crystal clock

Wenow consider the implementation of a robustmulti-ion clock employing the proposed scheme and
realizable with current ion trap technology.We estimate the dominating field inhomogeneities (QPS andTASS)
for Ca40 + as awidely used clock species [69–71]with convenient properties, and discuss effects ofmicromotion.

As a trap platform, we consider a linear Paul trap, inwhich axialmicromotion can bemade sufficiently small
[28, 33]. In large three-dimensional ion crystals, each ionwill experiencemicromotion driven by the rf-field of
the trapwith an amplitude proportional to the distance from the trap’s symmetry axis. Due to the construction
of the trap, thismicromotion is oriented along the radial axis (perpendicular to the trap axis).When probing
along the radial degrees of freedom, the ions’ coupling to the probe laser is diminished by the strongDoppler
modulation of the laser in the ions’ frame.We therefore choose to probe along the trap symmetry axis zwith a
magnetic field oriented along the same direction.

TheQPS of an ion in amulti-ion crystal is caused by electrical field gradients originating from the space
charge of all other ions, and the electrical field gradients of the trap itself. The overall scale of theQPS is
determined by the quadrupolemoment expressed as a reducedmatrix element, which for Ca40 +wasmeasured
to be d ea3 , 5 2 1.83 1 0

2Q =( ) ( ) [72]. TheQPS depends on the angle between the quantization axis and the
electric field gradient as well as the state of the ion. The angle dependence is given by [27, 32, 72]

f
E

z

E

z

E

z

E

x

E

y

E

y

, ,
1

4
3 cos 1

1

2
sin 2 cos sin

1

4
sin cos 2 2 sin 2 9

z x y

x y x

2

2

a b g b b a a

b a a

=
¶
¶

- +
¶
¶

+
¶

¶

+
¶
¶

-
¶

¶
+

¶
¶

⎛
⎝⎜

⎞
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⎦
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( ) ( ( ) ) ( )

( ) ( ) ( )

with the Euler angles {α,β, γ} defined as in [32]. The state dependence can be described by

g J m
J J m

J J
,

1 3

2 1
, 10J

J
2

=
+ -

-
( )

( )
( )

( )

with a total QPS of f f g J m, , ,
h JQPS a b gD = ´ ´Q ( ) ( ).

The Paul trap features two types of electrical field gradients: the rf-field employed for radial confinement and
the staticfield gradient for axial confinement. The rf-field is averaged out and therefore does not lead to a
quadrupole shift of the transition. The static gradient for axial trapping is constant and the same for all ions,
causing no line broadening but a constant shift for each individual ion of the crystal. Provided the axial trap
voltages are well controlled, this constant shift does not pose a limit on clock stability. Furthermore, this
constant shift is canceled by the dynamical decoupling scheme, see below.

The shift originating from the space chargewill in general lead to inhomogeneous line broadening. The
space charge-induced quadrupole shift falls off cubicly with distance and is therefore dominated by the ion’s
local environment. In a linear chain of ions, for instance, the quadrupole shift caused by the space charge results
in a significant shift depending on the position of the ion, since contributions from the individual ions add up.
For example, a chain of 30 Ca40 + ions exhibits an inhomogeneous shift of about 80Hz across the chain (radial
trap frequencyωr=2π×1MHz and axial trap frequencyωa=ωr/12). In a spherically symmetric crystal
configuration, in contrast, the symmetry suppresses the quadrupole shift due to space charge to a large extent. In
the limit of a crystal of infinite size a body-centered-cubic lattice forms and the quadrupole shift vanishes [27].

For this reason, we consider a spherical trap configuration inwhich it is straightforward to obtain near
isotropic trap frequencies 2 1r x r y a, ,w w w p» » » ´ MHz. A slight deviation from complete symmetry is
desirable to pin the orientation of the crystal and allow efficient Doppler cooling. For our scheme, we assume
ions cooled to the ground state, as for instance shown experimentally for large crystals in [73]. It is advantageous
toworkwith asmany ions as possible in order to improve the signal-to-noise ratio and hence the stability of the
clock.On the other hand, cooling and trapping large crystals can be challenging and the size of the crystal needs
to be reasonable so that the probe, cooling, and control lasers can address all the ions. Also, the probability of a
background gas collision during clock interrogation growswith the number of ions. For our purpose, we
consider a realistic implementation employing 400 Ca40 + ions, resulting in an isotropic crystal with
approximately 30μmradius for our proposed trap parameters.

For this configuration, we estimate theQPS by firstfinding the equilibriumpositions of the ions in the crystal
byminimizing the pseudo-potential energy in the linear Paul trap.We next calculate the effective electric field
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tensor E

x
i

j

¶
¶

and the resulting quadrupole shift. Infigure 4we show the resulting distribution of theQPS. The

distribution shows amean shift of about 10Hzdue to the static axialfield gradient of the trap and a standard
deviation of 0.74Hz.

In a spherical ion crystal,most of the ions are trapped away from the symmetry axis and the resulting rf-field
at the individual ions’ position causes a scalar andTASS.While for Ca40 + the scalar shift can be canceled by
operating the trap at the ‘magic’ drive frequency [35], the TASSwill result in shifted transition frequencies for
each individual ion depending on its position.We estimate the TASS in our systemby first calculating the
amplitude of the rf-field due to the trap drive at each ion’s position, employing a numerical simulation. The
resulting TASS is then estimated by evaluating the time average ...á ñover one cycle of the squared electrical field
E [27]:

f

f

g J m

h
E

,

4
, 11J dc 2d a

n
= á ñ

( ) ( )

with the dc tensor polarizabilityαdc from [74]. Figure 5 shows the result for our configuration, exhibiting an
approximately uniformdistributionwith about 25Hzwidth (see appendix F).

With the distributions as described above, we now turn to the implementation and optimization of theCDD
sequence.

For the numerical optimization of the goal function equation (7), we consider a staticmagnetic field such
that the Zeeman splitting of the S2

1 2 states is equal to 10MHz,where the uncertainty of the Zeeman splitting
gsδB is normally distributedwith a zeromean and awidth of 1kHz. There is also a small contribution due to the
second order Zeeman effect. For the assumedmagnetic field noise, this shifts amounts to an additional
broadening of about 0.5mHz (averaged over all relevant levels) and can therefore be neglected. In a real
experiment, the rf driving fields used for dressing the states will be imperfect and show some fluctuations.We

Figure 4.Quadrupole shift for the mj
5

2
=  states for 400 ions in a linear Paul trap (spherical, isotropic crystal configuration). The

distribution shows a standard deviation of 0.74Hz and a static shift due to trap endcap voltage employed for axial confinement of
about 10 Hz.

Figure 5.Tensor shift for 400 ions for the mj
5

2
=  states in a linear Paul trap (spherical, isotropic crystal configuration). The shift

distribution is calculated for a spherical, isotropic crystal configuration (for details see text). The tensor shift is approximately
uniformly distributedwith awidth of∼25Hz (see appendix F).
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estimate the corresponding relative amplitude shifts of the driving fields δΩ to be normally distributedwith a
zeromean and awidth of 4×10−4.

In order to test the performance of the scheme in themulti-ion spherical crystal configuration, we have
realized the averaged goal functionGA, which is given by equation (8), with an average over 100 pairs of {δB, δΩ}
chosen randomly according to the above distributions, and then numericallyminimizedGA to obtain optimal
driving parameters (all in units of kHz):Ω1=2π×225.3, δ1=2π×95.6,Ω2=2π×13.6, δ2=2π×5,
Ω3=2π×93.6, δ3=2π×27.2, andΩ4=2π×14.8, δ4=2π×25.6.We then integrated the effect of the
counter-rotating terms of the drivingfields and the cross driving fields (the effect of the S2

1 2 D2
5 2( ) drive on

the D2
5 2 S2

1 2( ) states) and adjusted the optimal driving parameters accordingly.We simulated 4927 trials of
the robust clock-transitionwith these optimal driving parameters and the above distributions of the Zeeman,
quadrupole, tensor and driving amplitude shifts. In the simulationswe used the full drivingHamiltonian
withoutmaking any approximations. Formore details see appendices C–E. The simulation results, shown in
figure 6, indicate that the shift distribution of the robust transition has a narrowwidth of∼1Hz.

The distribution shown in the figure is slightly asymmetric and shifted away from zero. The asymmetry is not
a problemwhen using Ramsey interrogationwith short broadbandπ/2 pulses which address all the ions at once,
yielding a symmetric (cosine) central resonance.However, the overall shift and the asymmetry lead to a probe-
time dependent fractional bias in the clock frequency of around 0.12Hz for a probe time of 150ms,which
would have to be evaluated and corrected in absolute frequencymeasurements.

This shift from the non-perturbed virtual (dressed) m m QS , 0 D , 0J J J m
2

1 2
2

5 2 , J
= « = = transition

depends on the initial distribution of inhomogeneously shifted line centers and the shift suppression achievable
with the selected dynamical decoupling parameters. A qualitative understanding of the influence of different
parameters on this shift can be developed from simulation results for the scaling of the shift of the robust
transition as a function of themagnitude of the individual shifts, namely, the Zeeman shift uncertainty,
quadrupole and tensor shifts, and driving amplitude shift. The simulations shown infigure 7were performed
with the driving parameters used in the simulations offigure 6. For each individual shift, several simulations
were conductedwith different values of that individual shift while all other shift contributions were set to zero.
When varying themagnetic field uncertainty, we see some higher-order (quadratic and cubic) contributions but
no linear dependence, showing that the decoupling fields have greatly suppressed the first-order Zeeman shift.
This can be understood as an avoided crossing of the dressed levels with respect to themagnetic shift uncertainty
δB. The shift of the robust transition as function of the quadrupole and tensor shifts scales linearly. For a perfect
drive of the D2

5 2 states (assuming the RWAandno effect of the S2
1 2 drive)we expect a quadratic scaling.

However, the S2
1 2 drive and the counter-rotating terms of the D2

5 2 drive result in an amplitudemixing
between the ideal dressed D2

5 2 states, which reintroduces afirst order contribution to the quadrupole and
tensor shifts. The shift of the robust transition as a function of the drive amplitude error scales linearly as the
robust transition frequency depends linearly on the drive amplitude. In an experiment the described scaling
behavior could be exploited to verify the correct parameter set for the dynamical decoupling scheme by
measuring the expected scaling and identifying the correct operating point. Note that the simulationswere
performedwithfixed driving parameters, optimized as described above for a particular distribution offield

Figure 6. Simulation results. Total shift distribution of the robust optical transition in themulti-ion spherical crystal configuration.
4927 simulation trials were realized assuming the following distributions: (i)magneticfield uncertainty—the uncertainty of the S2

1 2

Zeeman splitting is normally distributedwith a zeromean and awidth of 1kHz, (ii) driving fields uncertainty—the relative drive
amplitude uncertainty is normally distributedwith a zeromean and awidth of 4×10−4, (iii) quadrupole shift—the quadrupole shift
of the mj

5

2
=  states is normally distributedwith amean of−10Hz and awidth of 1Hz, and (iv) tensor shift—the tensor shift of the

mj
5

2
=  states is uniformly distributed between−30 and 0Hz.
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shifts and drive amplitudes. For different assumptions on the distribution offield and amplitude fluctuations,
different driving parameters could be derived that improve the scheme’s performance case-by-case.Moreover,
as in other CDD schemes, the performance of the scheme could, in principle, be improved by addingmore
driving fields.

In our analysis we assumed that all driving fields suffer fromdrivingfluctuations. Generating the second
driving fields (Ω2 andΩ4) by a phasemodulation, as proposed in [41], should result in stable drivingfields with
negligible amplitude fluctuations. In this case we expect a further improvement in the performance of the
scheme.

The coupling strength between the dressed S2
1 2 states and the dressed D2

5 2 states is achieved via the laser
coupling between the bare states that have a non-vanishing amplitude in the desired dressed states. Hence, the
effective laser coupling strength ismodified by the overlap between the bare states and the single or double
dressed states. In our case the laser coupling of the bare m mS , D ,J J

2
1 2

1

2
2

5 2
5

2
= + « = + transition is

reduced by a factor of 0.51 (0.3) for the transition between a single (double) dressed S2
1 2 state and a single

(double) dressed D2
5 2 state. Note that the effective laser coupling strength should in any case be smaller than the

energy gap of the double dressed states, which in our case is∼6 kHz.
Using the results of [25], we estimate the achievable statistical uncertainty of a 400ion Ca+ clockwhen

probedwith aflicker floor-limited probe laser at 10−14 (10−15) to be 5.8 10 s16 t´ - (1.8 10 s16 t´ - ).
This represents an order ofmagnitude improvement in instability over current single ion clocks [3, 22, 23],
corresponding to a reduction in averaging time by a factor of 100.

5. Applications

One of themany potential applications of the proposed scheme is a cascaded clock [75–77] inwhich a clock laser
isfirst stabilized to an ensemble of Ca+ ions to improve its phase coherence time and thus allow extended
probing times [24, 25] in a high-accuracy single-ion clock (e.g. Al+ or Yb+ ). To bridge the difference in clock
transition frequencies, a transfer scheme using a frequency combwould be employed [77–79]. Table 1 shows the
achievable instabilities of an Al+ clock for different initial clock laser instabilities.We have used the results from
[25] to determine the optimumprobe times assumingflicker-floor limited laser instability and neglecting
spontaneous emission from the excited clock state. Note that after stabilization to the Ca+ ion crystal the laser
exhibits a white frequency noise spectrum. As expected, the reduction in required averaging time is largest when
the initial laser instability is large. As the laser improves, it approaches the quantumprojection noise limit of the
400Ca+ ions and the gain is reduced. Even higher gain can be obtained from larger crystals or reference atoms
with narrower linewidth than Ca+ , such as Lu176 + [27, 36], Sr88 + [80, 81], or Ba138 + [82, 83]. Our schemeworks in
the sameway for other atomic species, however, the contribution of the different broadeningmechanisms

Figure 7. Scaling of the robust transition shift. The shift of the robust transition as function of (i) the Zeeman shift of the S ;1 2
1

2
+ ñ∣

state (left), (ii) the quadrupole and tensor shifts of the the D ;2
5 2

5

2
 ñ∣ states (middle), and (iii) the relative amplitude error of the

driving fields.

Table 1.Estimated statistical uncertainties. The flicker-floor limited performance of the clock laser is denoted byσl,
which is assumed to be independent of the averaging time. TheAllan deviations and optimumprobe times for
different configurations k are denoted byσk andTk, respectively. The investigated systems are 400Ca+ ions using the
describedCDD scheme (k=Ca), a single Al+ ion (k=Al), and a cascaded scheme inwhich a single Al+ ion is
probed by a laser pre-stabilized through a cloud of 400Ca+ ions (k=CaAl). The reduction in averaging time to
achieve a certain statisticalmeasurement uncertainty is given byG.

σl TCa (s) sCas t t( ) TAl (s) sAls t t( ) TCaAl (s) sCaAls t t( ) G

10−14 0.015 5.8×10−16 0.003 5 3.6×10−15 0.25 5.1×10−16 50

10−15 0.15 1.8×10−16 0.035 1.1×10−15 0.78 2.9×10−16 14
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depend on the employed species and specific properties of the experimental setup.Wenote that in our case a
narrower atomic linewidth (as for example provided by a different atomic species such as Sr88 + )would not
necessarily lead to a narrower linewidth of the robust transition, due to the remnant effects of themagnetic
noise, the amplitude drive noise and theQPS andTASS. Another reason for using Ca+ is the advantageousmass
ratio relative to Al+ , facilitating efficient sympathetic cooling in an Al+ clock [84].

The cascaded clock scheme enables short averaging timeswith lasers that are commercially available. For
state-of-the-artmulti-segment ion traps, it is conceivable to trap a large Ca+ crystal in one segment and a clock
ion in a different segment, strongly reducing experimental overhead. Furthermore, for the case of additional
experimental constraints such as a transportable setup or the lack of a cryogenic system, for instance, our scheme
could offer an advantage over state-of-the art optical resonators.

Beyond the cascaded clock scheme,many applications in fundamental physics, navigation and industry do
not require ultimate accuracy [1, 4], but rather high stability as provided by a dynamically-decoupled Coulomb
crystal clock. Through appropriate characterization of the residual line center shift away from an effective

m mS , 0 D , 0J J
2

1 2
2

5 2= « = transition, it is conceivable to not only obtain a reference with small statistical
uncertainty, but also a low systematic uncertainty. In this case, the dynamically-decoupled Coulomb crystal
clockwould provide a reasonable accurate reference with superior stability.

6. Conclusions

Wehave proposed aCDD scheme that significantly suppresses the Zeeman shift as well as the quadrupole and
tensor ac Stark frequency shifts of an optical clock transition for ion crystals.We analyzed the proposed scheme
in the case of amulti-ion crystal of 400 Ca+ ions and showed that the shift of the robust transition is f 1 Hzd 
with awidth of∼1Hz,which is close to the observed linewidthwhen probing the transition for a fewhundred
milliseconds. Our approach allows to exploit the improved stability from the higher ion number without
suffering from the line broadeningmechanisms associatedwith large ion crystals. Our scheme is applicable to
other atomic species and experimental setups, paving theway for dynamically-decoupled Coulomb crystal
clocks as references with high stability.Wewould like to note that during the preparation of thismanuscript we
became aware of a related independent work by Shaniv et al [85].
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AppendixA. The dressed states

In this sectionwe present the construction of the (ideal) dressed states. By ideal wemean that there are no noise,
uncertainties, or systematic shifts, the RWA is valid, and that the driving fields of the S2

1 2 D2
5 2( ) do not operate

on the D2
5 2 S2

1 2( ) states.

A.1. The D2
5 2 states

The drivingHamiltonian of the D2
5 2 states is given by

H g BS g g B t S g g B t

g
t S

cos cos
2

cos
2

, A1

D d B z d d B x d d B

d
x

1 1 2 1

1
2

1
2

2

m m d m d
p

d d

= + W - + W - +

´
W

+ -

⎡
⎣⎢

⎤
⎦⎥

⎡

⎣
⎢⎢
⎛
⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠
⎟⎟

⎤

⎦
⎥⎥

[( ) ] ( )

( )

where gdμBB is the Zeeman splitting due to the staticmagnetic fieldB, gd=6/5 is the gyromagnetic ratio of the

D2
5 2 states, Sz and Sx are the z and x spin-5/2matrices,Ω1,Ω2, gd1

1

8 1d = W and δ2 are the Rabi frequencies

and the detunings of the drivingfields, respectively.Moving to the IPwith respect to the first drive (Ω1)with
H g B Sd B z01 1m d= -( ) and assuming the RWA g Bd B 1 1m d- W( )we get
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H S
g

S
g g

t S
2 2

cos
2

. A2D
I

z
d

x
d d

y1
1 2 1

2

1
2

2
1 d d d= +

W
+

W W
+ -

⎡

⎣
⎢⎢
⎛
⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠
⎟⎟

⎤

⎦
⎥⎥ ( )

Wecontinue bymoving to the basis of the dressed states withU e S
1

i d y= q , where arccosd
gd

1

1
2 1

2

2
q = d

d +
W

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟( )
,

which leads to

H
g

S
g g

t S
2 2

cos
2

, A3D
I d

z
d d

y1
2 1

2
2 1

2

1
2

2
1 d d d= +

W
+

W W
+ -

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢⎢
⎛
⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠
⎟⎟

⎤

⎦
⎥⎥ ( )

and then to the second IPwith respect to H S
g

z02 2

2

1
2

2
d 1 d d= + -W⎛

⎝⎜
⎞
⎠⎟( ) . Assuming the RWA,

g

2

2

1
2

2 2
d 1 d d+ - WW 

⎛
⎝⎜

⎞
⎠⎟( ) , we obtain

H S
g

S
4

. A4D
I

z
d

y2
2

2 d= +
W

( )

The eigenstates of HD
I2 are the double-dressed D2

5 2 states. The eigenstate with the smallest positive eigenvalue

of
g1

2 2
2

4

2
d 2d + W( ) is used for the robust optical transition.

A.2. The S2
1 2 states

The drivingHamiltonian of the S2
1 2 states is given by

H g Bs g g B t s g g B t

g
t s

cos cos
2

cos
2

, A5

S s B z s s B x s s B

s
x

3 3 4 3

3
2

3
2

4

m m d m d
p

d d

= + W - + W - +

´
W

+ -

⎡
⎣⎢

⎤
⎦⎥

⎡

⎣
⎢⎢
⎛
⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠
⎟⎟

⎤

⎦
⎥⎥

[( ) ] ( )

( )

where gsμBB is the Zeeman splitting due to the staticmagnetic fieldB, gs=2 is the gyromagnetic ratio of the
S2

1 2 states, sz and sx are the z and x spin-1/2matrices,Ω3,Ω4, δ3 and δ4 are the Rabi frequencies and the
detunings of the driving fields, respectively.Moving to the IPwith respect to the first drive (Ω3)with
H g B ss B z01 3m d= -( ) and assuming theRWA g Bs B 3 3m d- W( )we get

H s
g

s
g g

t s
2 2

cos
2

. A6S
I

z
s

x
s s

y3
3 4 3

2

3
2

4
1 d d d= +

W
+

W W
+ -

⎡

⎣
⎢⎢
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⎝
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⎛
⎝⎜

⎞
⎠⎟

⎞
⎠
⎟⎟

⎤

⎦
⎥⎥ ( )

Wecontinue bymoving to the basis of the dressed states withU e s
1

i s y= q , where arccoss
gs

3

3
2 3

2

2
q = d

d +
W

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟( )
, which

leads to

H
g

s
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z
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and then to the second IPwith respect to H s
g

z02 3
2

2

2

4
s 3d d= + -W⎛

⎝⎜
⎞
⎠⎟( ) . Assuming the RWA,

g
3
2

2

2

4 4
s 3d d+ - WW 

⎛
⎝⎜

⎞
⎠⎟( ) , we obtain

H s
g

s
4

. A8S
I

z
s

y4
4

2 d= +
W

( )

The eigenstates of HS
I2 are the double-dressed S2

1 2 states. The eigenstate with the positive eigenvalue of
g1

2 4
2

4

2
s 4d + W( ) is used for the robust optical transition.

Appendix B.Magnetic and drive shifts

In this sectionwe showhow the expansions of themagnetic shifts, ZSi
and ZDi

, the drive shifts, OSi
and ODi

,
and the correlated shifts, ZOSi

and ZODi
are derived. In the derivationwe assumed the RWAand neglected
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cross-driving effects. In the numerical simulationswe took the counter-rotating terms of the drivingfields and
the cross-driving effect into account (see appendix C,D). The simulationswere performed using the full driving
Hamiltonianwithoutmaking any approximations (see appendix E). For simplicity wewill show the derivation
for the S2

1 2 states. The derivation for the D2
5 2 follows the same steps.

We start by adding to the drivingHamiltonian of the S2
1 2 states, equation (A5), amagnetic noise term,

which is given by g ss zBd . The drive shift is introduced by replacingΩ3 andΩ4 by 13 dW + W( ) and 14 dW + W( ),
where δΩ represents a relative shift error of the driving fields.We assume that the relative errors of the driving
fields are correlated sincewe expect that these errors aremostly due to changes in the amplifier chain and
antenna, which are common to all drives.Moving to the IPwith respect to thefirst drive as before and assuming
the RWA g Bs B 3 3m d- W( ), we nowobtain

H g s s
g

s
g g

t s
1

2

1

2
cos

2
. B1S

I
s z z

s
x

s s
yB 3

3 4 3
2
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2

4
1 d d

d d
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W +
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+ -W W
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⎛
⎝⎜

⎞
⎠⎟

⎞
⎠
⎟⎟

⎤

⎦
⎥⎥

( ) ( )
( )

Wecontinue bymoving to the basis of the dressed states, including the shifts, withU e s
1

i s y= q , where sq =

arccos
g

g 1
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s
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and then to the second IPwith respect to H s
g
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4
s 3d d= + -W⎛

⎝⎜
⎞
⎠⎟( ) . Assuming the RWA,
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Assuming now that gs=2, the positive eigenvalue thatwe consider for the robust clock transition is given by
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Following the same calculations for the D2
5 2 states and assuming that gd=6/5we obtain the lowest

positive eigenvalue of the double-dressed D2
5 2 states, which is given by

e
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Themagnetic shifts, ZSi
and ZDi

, the drive shifts, OSi
and ODi

, and the correlated shifts, ZOSi
and ZODi

, are
obtained by the power series expansion of es and ed to orders of

i
Bd and idW.

AppendixC.Modified energy gaps from cross-driving

Adrive of the S2
1 2 D2

5 2( ) states also drives the D2
5 2 S2

1 2( ) states off-resonantly and results in a Stark shift of
the initial sub-levels energy gap. For simplicity wewill show the derivation for the S2

1 2 states. The derivation for
the D2

5 2 follows the same steps. Consider the off-resonant drive of the S2
1 2 states

H s g t scos , C1s
s

z s
s

x0 0w w= + W - D[( ) ] ( )

where g Bs
s B0w m= is the Zeeman splitting andΔ is the detuning of the drive.Wefirstmove to the IP of the

counter-rotating terms of the drivewith respect to H ss
z01 0w= - - D( ) . This results in

H s
g

s2
2

1

2
e e . C2s

I s
z

s
x

t t
0

i 2 i 2s s
1 0 0w s s= - D +

W
+ +w w-D

+
- -D

-
⎡
⎣⎢

⎤
⎦⎥( ) ( ) ( )( ) ( )

Wecontinue bymoving to the diagonalized basis of the time-independent part of Hs
I1 withU e s

1
i s y= q , where

arccoss
2

2

s

s gs

0

0
2

2

2
q = w

w

-D

-D +
W

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟( )

( )

( )
, and then to a second IP of the rotating terms of the drive with respect to
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H s2 s
z02 0w= - D( ) . The time-independent part of Hs

I2 is given by

H
g

s
g

s2 2
2 4

1
2

2

, C3s
I s s s

z
s

s

s g
x0 0

2
2

0

0
2

2

2
s

2 w w
w

w
» D - + D - +

W
+

W
+

- D

- D +
W

⎛
⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠
⎟⎟

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟( )
( ) ( )

( )
( )

and hence, the eigenvalues are equal to

2 1s s g g
0 0

2
2

2
2

8

2

2

2

s s
s

s gs

0

0
2

2

2

1
2

w w D - + D - + + + w

w

W W -D

-D +
W

⎡

⎣
⎢⎢⎢
⎛
⎝⎜

⎞
⎠⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎤

⎦
⎥⎥⎥( ) ( )

( ) ( )
( )

, which gives themodified

energy gap. Plugging in the parameters of the first D2
5 2 drive, ( 1W andΔ= ω0

s − ω1, where g Bd B1 1w m d= -
and gs=2, we obtained themodified energy gap of the S2

1 2 states, which is given by

E
1

4
1 2 . C4S

s

s

s
1 1

2 0 1

0 1
2

1
2

2

0 1
2

1
2

1
2w

w w

w w
w w w= + W

+

+ + W
+ + + + W -

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟( )

( ( ) ) ( )

For the D2
5 2 states themodified energy gap is given by

E
1

5
9

5

2 25 9

1

2
25 9 10 , C5D

d

d

d
3 3

2 0 3

0 3
2

3
2

2

0 3
2

3
2

3
2w

w w

w w
w w w= - W

+

+ + W
+ + + + W -

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

( )

( )
( ( ) ) ( )

where here g Bd
d B0w m= and gd=6/5. Expanding themodified energy gaps in a power series ofΩ1 andΩ3

results in ES
s
0

s

s

0 1
2

0
2

1
2

w» + w

w w

W

-
and ED

d
0

9

25

d

d

0 3
2

3
2

0
2w» - w

w w

W

-( )
. Note that the second order correction could also be

calculated by an effectiveHamiltonian approach.

AppendixD. Correction of the Bloch–Siegert shift

In this sectionwe give a detailed derivation of the correction of the Bloch–Siegert shift arising from the counter-
rotating terms of the driving fields.Without the correction, we first consider the dressed states due to the
rotating-terms of a driving field and then consider the effect of the off-resonance counter-rotating terms on the
dressed states. These result in an energy shift of the dressed states and (a time-dependent) amplitude-mixing
between the dressed states, which is detrimental to the scheme, because itmodifies the shifts of the dressed states
considered for the robust transition. To correct this effect, wefirst consider the effect of the counter-rotating
terms on the bare states, and thenfix the frequency of the drive accordingly, such that the rotating-termswill
drive themodified bare states. Consider, for example, the on-resonance drivingHamiltonian

H t
2 2

cos . D1d z x
1 2

2s w s=
W

+
W ( ) ( )

Instead ofmoving to the IP of the rotating frame, wefirstmove to the IP of the counter-rotating framewith
respect to H x0 2

1s= -W and obtain

H
2 4 4

e . D2z z
t

e
t

I
1 2 2 2 2i 2i2 2

w
s s s s=

W +
+

W
+

W
+w w

+
- +( ) ( )

Wecontinue bymoving to the diagonal basis of the time-independent part ofHI,

H
1

4
4

2
e . D3z

t
e

t
I 1 2

2
2
2 2 2i 2i2 2w s s s» W + + W +

W
+w w

+
- +( )

˜
( ) ( )

If we choose 2 42
1

2 1 2
2

2
2w w= W + + W( ) the rotating terms are on-resonancewith the energy gap of the

modified bare states. The on-resonance condition is given by

1

6
2 16 3 . D42 1 1

2
2
2w = W + W + W( ) ( )

In addition, due to the basis change from the basis of the bare states to the basis of themodified bare states, the
Rabi frequency of the drive is slightlymodified, 2 2W  W̃ , where

1

2
1

2

4 16
. D52 2

2 1

2 1
2

2
2

2
2
3

2 1
2

w

w w
W = W +

+ W

+ W + W
» W -

W
+ W

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟˜ ( )

( ) ( )
( )

Because 2W̃ corresponds to an optimal driving parameter, wemust take that into account and set the initial Rabi
frequency,Ω2, accordingly.
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Appendix E.Numerical analysis

In this sectionwe provide amore detailed description of the numerical analysis of the scheme in the case of a
robustmulti-ion crystal clock that is presented in section 4 of themain text.

E.1.Optimized driving parameters
For the optimization of the goal function (see section 3 inmain text and appendix B)

G Z Z O O ZO ZO , E1
i j

i j

S D
i

S D
j

S D
j

1, 1

4, 2

B Bi i j j j jå d d d d= - + - + -
= =

= =

W W∣ ∣ ∣ ∣ ∣ ∣ ( )

we assume that themagnetic shift uncertainty δB is normally distributedwith a zeromean and awidth of 0.5kHz
(so thewidth of the S2

1 2 Zeeman splitting is 1 kHz), 0, 0.5B d ~ ( ) kHz, and that the relative drive shift δΩ is
normally distributedwith a zeromean and awidth of 4×10−4, 0, 4 10 4d ~ ´W

-( ). Given these
distributions of δB and δΩ, we defined an averaged goal function, G G ,A

m n
m n
m n

B 1, 1
100, 100d d= á ñW = =

= =( ) over 100
realizations of δB and δΩ, which are chosen randomly according to the above distributions.We then numerically
minimizedGA over the driving parameters,Ωk and δk. The numericalminimization resulted in the following
driving parameters (all in units of kHz): 2 225.31

 pW = ´ , 2 95.61
d p= ´ , 2 13.62

 pW = ´ , 2 52
d p= ´ ,

2 93.63
 pW = ´ , 2 27.23

d p= ´ , and 2 14.84
 pW = ´ , 2 25.64

d p= ´ .

E.2. Fixing the driving parameters
Whenfixing thedriving parameterswemust take into account the effect of the S2

1 2 ( D2
5 2)drive on the D2

5 2

( S2
1 2) states (appendixC), aswell as the effect of the counter-rotating termsof adrive (appendixD) simultaneously.

We start by parametrically solving theBloch–Siegert correction equation, x2 i i i i i
1

2 0
2 2w w w= + + W - W( ) ˜ , for

a general detuneddrive,where xiwould correspond to the ratio between anoptimal drive detuning andRabi

frequency, that is xi
i

i



= d
W
.Wedenote theparametric solutionofωibyωsol. Then, in order tofix thedriving

parameters of thefirst drivingfields,ω1,Ω1,ω3, andΩ3,wenumerically solve the following four equations:

E , , , , , E2D1 sol 3 3 1 1 1
 w w w d= W W W( ( ) ) ( )

E , , , , , E3S3 sol 1 1 3 3 3
 w w w d= W W W( ( ) ) ( )

E, , , , , , E4D1 1 1 3 3 1 1 1
  w w dW = W W W W˜ ( ( ) ) ( )

E, , , , , . E5S3 3 3 1 1 2 3 3
  w w dW = W W W W˜ ( ( ) ) ( )

For the case ofμBB= 2p ́5MHz (so gsμBB= 2p ́10MHz), this results inω1= 2p ́5.904 881MHz,ω3=
2p ́9.980 794MHz,Ω1= 2p ́225.3107 kHz, andΩ3= 2p ́93.6311 kHz. The ideal driving parameters,
without the above corrections are given byω1= 2p ́5.904 411MHz,ω3= 2p ́9.972 789MHz,Ω1=
2p ́225.3035 kHz, andΩ3= 2p ́93.6306 kHz. For the second driving fields we neglect the cross-driving
effect (modification of the energy gap) and take into account only the Bloch–Siegert corrections.We obtain that
ω2= 2p ́160.5892 kHz,ω4= 2p ́72.0503 kHz,Ω2= 2p ́13.6373 kHz, andΩ4= 2p ́14.8157 kHz.

E.3. Simulations
We simulated the full drivingHamiltonian of the systemwith

H g Bs g s g t s g t t s

g t s g t t s

g BS g S g t S g t t S

g t S g t t S

S Q Q

1 cos 1 cos
2

cos

1 cos 1 cos
2

cos

1 cos 1 cos
2

cos

1 cos 1 cos
2
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3 I
5

2

5

2
1 ,

E6

s B z s z s x s x

s x s x

d B z d z d x d x

d x d x

z T

B 3 3 4 3 4

1 1 2 1 2

B 1 1 2 1 2

3 3 4 3 4

2

m d d w d w
p

w

d w d w
p

w

m d d w d w
p

w

d w d w
p

w

= + + W + + W + +

+ W + + W + +

+ + + W + + W + +

+ W + + W + +

+ - + +

W W

W W

W W

W W

⎜ ⎟

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

( ) [ ] ( ) ( ) [ ]

( ) [ ] ( ) ( ) [ ]

( ) [ ] ( ) ( ) [ ]

( ) [ ] ( ) ( ) [ ]

( )

( )
whereQ andQT represent the quadrupole and tensor shifts respectively. First, we simulated the systemwith
δB=0, δΩ=0, andQ=QT=0 for a time duration of 0.5 s, wherewe initialized the system in the equal
superposition of S D1

2 1 1ñ + ñ(∣ ∣ ), where S1 ñ∣ and D1 ñ∣ are the double dressed S2
1 2 and D2

5 2 states with

the smallest positive eigenvalue, respectively. This gave us a reference for the non-shifted transition frequency,

S Dn - .We then simulated 4927 realizationswith 0, 0.5B d ~ ( ) kHz, 0, 4 10 4d ~ ´W
-( ), Q 1, 1~ -( )
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Hz, and Q 3, 0T ~ -( )Hz. Each simulation resulted in a frequency shiftΔνwith respect to S Dn - . The
histogramofΔν is shown infigure 6 in themain text.

Appendix F.Distributions ofQPS andTASS

In this sectionwe give some details for the distribution ofQPS andTASS.
In thePaul trapwe consider for our scheme, themean rf electricalfield at the positionof each ion increases

linearly independenceof the radial distance from thePaul trap symmetry axis. TheTASSdependsquadratically on

themean electricalfield amplitude E r
f

f
2 2µ á ñ µd( , see equation (11) in themain text ), so that overallwe get a

quadratic scalingwithdistance from the symmetry axis r.Weplot theTASS independenceon the radial distance
from thePaul trap symmetry axis infigure F1, showing the expectedquadratic behavior.The resultingdistribution is
shown infigure 5of themain text (see alsofigure 3 in [27]).Note thatwhile the electricfield is linear in the radius, the
frequency shifts, beingquadratic in thefield strength, vary slowlynear the center of the crystal andmore rapidly as one
moves away from the line of symmetry.Thus, thewidthof an annulus corresponding to a given frequency interval
decreaseswith increasing radius, roughly compensating for the increasing radial density of ions and leading to an
approximately uniformdensity in frequency space as shown infigure 5 in themain text. For thepurpose of
implementationof thenumerical simulation,we approximately describe thedatawith auniformdistribution.

In thenumerical simulationof theCDDweneglect possible correlations betweenTASS andQPSbymodeling
our systemwith randomsamples fromcorresponding independent distributions. Infigure F2weplot theQPS
versus theTASS for each individual ion of our ion crystal. It is evident that the shifts are onlyweakly correlated.
Furthermore,wenote that the continuous decoupling drive renders any such correlations insignificant because the
remnant effect of theQPS andTASS is a secondorder effect, andparticulary inour case, this effect ismuch smaller
than the effect of the shifts in the amplitudes of thedrive,which are thedominant factor that determined the
resulting total shift distributionof the robust optical transition (figure 6 of themain text).

Figure F1.TASS andQPS versus radial distance, i.e. radial distance from the trap’s symmertry axis. For each individual ion, we plot the
corresponding TASS andQPS.

Figure F2.QPS versus TASS for each individual ion showing onlyweak correlation.
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