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Abstract

We present a novel method for engineering an optical clock transition that is robust against external field
fluctuations and is able to overcome limits resulting from field inhomogeneities. The technique is based on
the application of continuous driving fields to form a pair of dressed states essentially free of all relevant
shifts. Specifically, the clock transition is robust to magnetic field shifts, quadrupole and other tensor shifts,
and amplitude fluctuations of the driving fields. The scheme is applicable to either a single ion or an
ensemble of ions, and is relevant for several types of ions, such as 4°Ca*, 8Sr" , 138Ba* and 17Lut . Takinga
spherically symmetric Coulomb crystal formed by 400 *°Ca’ ions as an example, we show through
numerical simulations that the inhomogeneous linewidth of tens of Hertz in such a crystal together with
linear Zeeman shifts of order 10 MHz are reduced to form a linewidth of around 1 Hz. We estimate a two-
order-of-magnitude reduction in averaging time compared to state-of-the art single ion frequency
references, assuming a probe laser fractional instability of 10~1°. Furthermore, a statistical uncertainty
reaching2.9 x 10~ '®in1 sis estimated for a cascaded clock scheme in which the dynamically decoupled
Coulomb crystal clock stabilizes the interrogation laser for an 2’Al* clock.

1. Introduction

Optical clocks based on neutral atoms trapped in optical lattices and single trapped ions have reached estimated
systematic uncertainties of a few partsin 10~ 18 1—4] or even below [5]. Taking advantage of these record
uncertainties for applications ranging from relativistic geodesy [6—9] over fundamental physics [10-12] to
frequency metrology [ 13—17] requires achieving statistical measurement uncertainties of the same level within
practical averaging times 7 (given in seconds). This has been achieved with single-ensemble optical lattice clocks
in self-comparison experiments up toalevel of 1.6 x 107'°/./7 [18] and by implementing an effectively dead-
time-free clock consisting of two independent clocks probed in an interleaved fashion [19, 20], reaching a
statistical uncertainty in the range of 5 x 10~!7//7. In contrast to neutral atom lattice clocks, which are
typically probed with hundreds to thousands of atoms, single ion clocks are currently limited in their statistical
uncertainty by quantum projection noise [21] to levels of a few parts in 10713/ /7 [3, 22, 23]. The statistical
uncertainty can be improved by probing for longer times, ultimately limited by the excited clock state lifetime or
the laser coherence time [24, 25]. Alternatively, the number of probed ions can be increased.

Recently, multi-ion clock schemes have been proposed to address this issue [26—29]. However, several
challenges have to be overcome to maintain and transfer the small and very well characterizable systematic shifts
achievable with single trapped ions to larger ion crystals. The oscillating rf field in Paul traps results in ac Stark
and second order Doppler shifts through micromotion [30-32]. Furthermore, electric field gradients from the
trapping fields and the surrounding ions couple to atomic quadrupole moments, resulting in an electric
quadrupole shift (QPS). The effects of micromotion can be avoided by trapping strings of ions in a precision-
machined linear Paul trap with negligible excess micromotion from trap imperfections [28, 33]. The QPS in such
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Figure 1. Schematic representation of the setup. (a) The ion crystal is probed while it is being manipulated by the rf dressing fields.

(b) Schematic representation of the sequence considered in this scheme. (c) Illustration of the robust clock transition. While the
unperturbed clock transition is subject to magnetic shifts, quadrupole shifts, and tensor shifts, the dressing fields substantially mitigate
these shifts and result in a robust clock transition.

chains can be avoided by choosing an ion species with negligible differential electric quadrupole moment
between the clock states, such as In" or Al , or by employing ring traps in which the QPS is the same for all ions
[29]. A high-accuracy multi-ion clock based on ion chains containing on the order of tens of ions in a linear
quadrupole trap has been proposed and is expected to achieve trap-induced fractional systematic uncertainties
atthe 107 % level [26].

An alternative approach based on large 3d Coulomb crystals of ions has been theoretically investigated [27]
for ion species for which the micromotion-induced Doppler shift and the scalar ac Stark shift, both driven by the
rf trapping field, can be made to cancel at a ‘magic’ rf drive frequency [30]. This cancellation has been employed
for single Sr* [34], single Ca" [35], and is currently being investigated for Lu" [27, 36, 37]. However, electronic
stateswith ] > 1/2 are subject to rank 2 tensor shifts, such as rf electric field-induced tensor ac Stark shift (TASS)
and QPS [30, 32]. For 3d Coulomb crystals with tens up to several hundreds of ions, this results in position-
dependent shifts, since the electric field environment of the ions differ. It has been proposed to reduce this
inhomogeneous broadening across the ion crystal by employing a spherical ion crystal to minimize the QPS and
by adding a compensating laser field for the TASS [27], or by operating at a judiciously chosen magnetic-field-
insensitive point [37] for ions with hyperfine structure.

Achieving insensitivity of atomic energy levels to external field fluctuations has been theoretically
investigated using pulsed or continuous dynamical decoupling (CDD) [38—48]. Such schemes have been
experimentally implemented in various systems ranging from NV centers and solid state spin systems [49-57] to
neutral atoms [58] and trapped ions [59-64].

CDD or dressed-state engineering in the context of clocks has been proposed for linear Zeeman shift
cancellation in neutral atom clocks through rf dressing of Zeeman substates in a regime where the drive Rabi
frequency is larger than the drive frequency [45]. However, this scheme is unable to cancel tensorial shifts, such
as the QPS or TASS. In a similar approach, magnetic field noise suppression up to second order in radio-
frequency clocks via weak rf dressing has been proposed [46] and experimentally implemented to engineer
synthetic clock states for rf spectroscopy in ultra-cold rubidium [65, 66].

Here, we show through numerical simulations that CDD using four rf frequencies significantly suppresses all
relevant homogeneous (linear Zeeman) and inhomogeneous (micromotion-induced second order Doppler, QPS,
scalar and tensor ac Stark) frequency shifts on an optical clock transition for an ion crystal containing 400 ions. We
note that the scheme in principle works for any ion number and crystal size. We demonstrate the basic principle,
which isillustrated in figure 1, on the 2S, ;, <> *Ds /, clock transition in “°Ca’, but the scheme is directly applicable
to other systems as well. It therefore allows the operation of a multi-ion clock [26] using ion species whose clock
transitions have a non-vanishing differential electric quadrupole moment. One of the many possible applications
of such a multi-ion frequency reference is the phase stabilization of a probe laser for a single ion clock to allow near-
lifetime-limited probe times and correspondingly reduced statistical uncertainties [24, 25].

The paper is organized as follows. In section 2 we first show how robustness to QPS and TASS can be
achieved by the application of a single continuous detuned driving field. The discussion of only one driving field
gives a simple and intuitive understanding of our approach. In section 3 we extend the discussion to the full CDD
scheme employing four driving fields for the construction of a robust optical clock transition. For simplicity and
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clarity in the discussion we ignore effects of the counter-rotating terms of the driving fields by assuming the
rotating-wave-approximation (RWA), as well as the cross-driving effects (for example, the effect of the °S, /,
driving field on the Ds , states). These two effects are, however, taken into account when numerically
optimizing the driving parameters as well as in the simulations presented. In appendices C—E, we show in detail
how this is achieved by incorporating these effects in the optimization. Then, in section 4 we consider the
implementation of the scheme in the case of a multi-ion crystal clock and analyze the performance of the scheme
in terms of the expected statistical uncertainties of the robust optical clock transition. After discussing possible
applications in section 5, we end with the conclusions in section 6.

2. Robustness to tensor shifts

In the absence of hyperfine structure, tensor shifts including the QPS are proportional to Q, m=J0+1) — Sm]-z
[32], where ] is the total angular momentum and m; the magnetic quantum number. These shifts reduce the
precision of atomic clocks when not suppressed by suitable averaging schemes. Previously employed schemes to
suppress the quadrupole shift include averaging the transition frequency over all m1; states, since Z{m: 7 Qm =0
[67]. Such an average will also eliminate the linear Zeeman shift, assuming the field does not change between the
frequency measurements contributing to the average. We propose a novel dynamical decoupling scheme in which
robustness to this type of shifts is achieved by the application of a detuned driving field, mixing all s states to form
dressed states with effective Qj,,,, = 0. While the cancellation scheme is general and applies to tensor shifts of
arbitrary electronic states, we consider in the following the Hamiltonian of the Ds ,, states of e.g. Ca' ions

H = g;uBS; + g, cos[(g, 3B — 01)t1Ss, (1)

where g, 1B is the Zeeman splitting due to the static magnetic field B, g, is the gyromagnetic ratio of the *Ds /,
states, S, and S, are the zand x spin-5/2 matrices, {2, is the Rabi frequency of the driving field, and ¢, is the
detuning. Moving to the interaction picture (IP) with respect to Hy = (g;upB — 61)S,and taking the RWA
((ggpB — 61) > ), resultsin

Q
H = 68, + 547

S (@)

where His the Hamiltonian in the IP. Since the bare ?Ds /, states have tensor shifts which are proportional to
Qs/2,45/2 = —10, Q53,132 = +2,and Qs 5, +1,/2 = +8, the tensor shifts of the dressed states (the eigenstates
of Hy) are proportional to

Q = _Sq(éb Ql)’ "‘Q((Sb Ql)) +4q(6b Ql)) (3)
with

—86% + (g, 0)?

o ) = .
q (61, $h) 4512+ (ngOZ

4)

Hence, by choosing §; = + \/g (g;£0), all of the dressed states have a zero (first order) tensor shift, Q = 0

(see figure 2). Similarly, for a fixed detuning §; choosing = /86, /. g, results in a zero tensor shift. This can
also be understood in the lab frame, in which the coupling 2, drives a rotation among the bare states, averaging
their shifts in time just as in the m;averaging scheme mentioned above. However, here the averaging takes place
atarate corresponding to the Rabi frequency rather than the experiment repetition rate, allowing it to suppress
much faster field fluctuations.

The cancellation of the tensor shift to first order can also be understood as follows. The tensor and
quadrupole shift operator Q = $2 — 387 can also be writtenas Q = S2 + Sy2 — 252, Moving to a rotated basis
(dressed states basis) defined by z — cos(#)z + sin(6)x, x — cos(#)x — sin(f)z,and y — y, and neglecting
purely off-diagonal terms we obtain that 0O ~ SZ(1 — 3cos?(0) + SZ(1 — 3sin®(0)) + Sy2 . To first order
(diagonal terms) we have that Q = (S,.S_ + S-S;)(2 — 3sin?(0)) + SZ(1 — 3 cos® (0)), where S = S, £ iS,
are the spin ladder operators. Hence to first order, the tensor shift vanishes for cos (6) = %, which is analogous

to magic-angle spinning in solid-state NMR spectroscopy [68]. The detuned driving field results in dressed
states, which are the eigenstates of equation (2). The rotation to the dressed states basis is given by U = eifs

i .For 6, = \/g(gd €))) we obtain cos (f) =

where cos (0) = -
612—0— (gdill)

L
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Figure 2. The tensor shift factors Q of the dressed states (equation (3)) as function of the detuning 6;. The tensor shifts vanish for

6= i\/g(gd(ll).
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Figure 3. Robust multi-ion crystal clock. (a) Typical Zeeman, tensor and quadrupole shifts of the unperturbed clock transition.

(b) Two driving fields with a Rabi frequency of {25 () couple the Zeeman substates in the %S, /> (*Ds /2) manifold, respectively. In our
scheme, we employ multi-frequency fields for coupling, as discussed in detail in the main text. (c) The double-dressed states. A robust
optical transition with a total shift <1 Hz and inhomogeneous linewidth ~1 Hz is constructed between the | S, ) and | Dy ) states.

3. The scheme

Our scheme is based on the application of continuous driving fields for the construction of a robust optical clock
transition. We consider the sub-levels of the 2S, /, and ?Ds , states, the usual clock states in Ca" optical clocks.
Four driving fields are employed, where two driving fields operate on the 25, /, states, and two driving fields
operate on the ?Ds , states. The rf driving fields continuously drive the bare 2S; /, and ?Ds /; states, that is,
continuously couple between the Zeeman sub-levels, which results in the desired robust optical transition of the
dressed states. The first driving field of the ?Ds ,, states mitigates tensor shifts, including the QPS, as shown in the
previous section. However, the ?Ds , states, as well as the 25, /, states, are still sensitive to the linear Zeeman
shift. Moreover, the ?Ds /, states are also sensitive to amplitude fluctuations of the driving field. The purpose of
adding three more driving fields is to have enough control degrees of freedom that can be tuned such that the
suppression of both linear Zeeman shift and amplitude fluctuations of a single (dressed) 25, /, <> ?Ds ,
transition is achieved. Hence, the driving scheme results in doubly-dressed 2S; /, and 2Ds /, states where one
%S/, <> D5, transition (between the doubly-dressed states) is robust to magnetic shifts, quadrupole shifts,
tensor shifts, and driving amplitude shifts caused by amplitude fluctuations of the driving fields (see figure 3).
For the ?Ds/, (%S, /,) states, the Rabi frequencies, (%, and the detunings, 6, of the first and second driving fields
are denoted by {2, 6, } and {€2,, 6,} ({£23, 65} and {€2y, 64}), respectively. We assume that a static magnetic field
Bisapplied, which results in the Zeeman splitting of the %S, ;, and ?Ds /; states. The rf dressing is based on
magnetic dipole coupling between the Zeeman sub-levels, where the Rabi frequency of a driving field is related to
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the magnetic dipole momentby #2 = i - B¢, where 14 is the magnetic dipole moment and B¢ isthe amplitude
vector of the oscillating rf field.

For simplicity and clarity, in the following analysis we neglect the effect of the counter-rotating terms of the
driving fields by assuming the RWA, as well as the cross-driving effects. Both the counter-rotating terms and the
cross-driving fields result in small energy shifts, which are taken into account when optimizing the driving
parameters. This, however, does not change the overall physical picture, and results only in small variations of
the optimal driving parameters. In appendices C—E we show how this can be done by incorporating these effects
in the following optimization.

Similar to the derivation in section 2, by moving to the first IP with respect to the frequencies of the first
driving fields we obtain the dressed states, which are the eigenstates of

Q Q
HI = 6152 + %Sx + 6352 + g52 ’

Sxs (5

where S;and s; are the spin matrices of the ?Ds /, and %S, /, statesand g; = 6/5and g, = 2 are the gyromagnetic
ratios of the ?Ds s, and 25,/ states, respectively. We proceed by moving to the basis of the dressed states and then
to the IP with respect to the frequencies of the second driving fields and obtain the doubly-dressed states, which
are the eigenstates of

gl

Q
gd zsy + 645z: + TS)U (6)

4
where we denote by Z and Z the diagonalized basis of the dressed 2Ds , and S, /, states, respectively. A detailed
derivation is given in appendix A.

We consider the doubly-dressed 25, /, and ?Ds /, states with the smallest positive eigenvalue as the robust

Hip = 6,8: +

optical clock states. By setting 6; = \/g (g,€0) robustness to quadrupole and tensor shifts is attained. We denote
by dp = ppd Band é, a magnetic field shift and the relative driving amplitude shift respectively (please recall that
the detunings of the driving fields are denoted by &, see above). In order to achieve robustness to shifts in the
magnetic and driving fields, we first add to the Hamiltonian the magnetic shift terms g;0gS, + g:0ps,, and the
driving amplitude shift terms 6o{2 (so the driving amplitude including the shift is given by (1 4 6)€2). We use
asingle parameter g, to describe the field amplitude fluctuations, which we assume to be correlated across all
four dressing fields. This describes the experimental situation where the dominant variations in dressing-field
amplitude are due to spatial inhomogeneities or to a common rf amplifier through which all four signals pass.
The Hamiltonian of the double-dressed states Hyy (equation (6)) now includes both 6y and 6, which modify the
eigenvalues (the energies) of the double-dressed states, and hence the optical transition frequency. Our aim is to
mitigate the sensitivity of the optical transition frequency to dp and dq,. We achieve this by tuning the driving
parameters such that the leading order contributions of 6y and &, to the eigenvalues of the double-dressed 2S; ,
and ?Ds , states will be as close as possible (and ideally identical). We therefore calculate the power series
expansion of the eigenvalues to orders of 8% and 6%, (i = 1,2, ...). We denote the series expansion terms of the
magnetic shift of the 2, /, and 2D; /, states by Zs 8§ and Z,, &% respectively. Similarly, we denote the series
expansion terms of the amplitude driving shift of the 2S; /, and 2D, states by Os, 65, and O p, 6%, respectively.
The expansion terms of the correlated shifts are denoted by ZOy,6 iB(ng and ZOp, 8% 6 for the 28, s2and 2Ds ,
states respectively. We calculate the magnetic energy shifts, Zg,6 iB and Zp, iB, up to fourthorder (i = 1, ...,4),
driving energy shifts, Os, 8% and Op, 6%, up to second order (i = 1,2), and the correlated shifts, ZOs, 65 6 and
Z0p,6 iB bq (i = 1,2)as function of the driving parameters, {2 and 6. A detailed derivation is given in
appendix B. We continue by defining a goal function

i=4,j=2 A A

G= > |Zs — Zploy + |0s, — Op|b}, + 1Z0s; — ZOp |6} 60. (7)

i=1,j=1
Given distributions of the shifts, o and 6, of a specific experimental set-up, we then define an averaged goal
function

GA = <G(6]r3n) 66)>m,n) (8)

where 65 and 8¢ are chosen randomly according to the given distributions, and numerically minimize G, over
the driving parameters, €2 and ;. The numerical minimization results in optimal sets of values of the driving
fields, for which robustness to shifts in the magnetic and driving fields is obtained. We note that because it is
experimentally possible to generate very precise and stable frequencies we do not consider uncertainties in the
frequencies of the driving fields.

As already mentioned, in this derivation of the optimal driving parameters we assumed the RWA and
neglected cross-driving effects. However, these effects, which result in small energy shifts, can be integrated in
the optimization as we show in appendices C-E. Indeed, in the numerical analysis of the resulting shift
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distribution in section 4 we took the counter-rotating terms of the driving fields and the cross-driving effect into
account and integrated them in the optimization. In addition, the simulations where performed using the full
driving Hamiltonian without making any approximations.

4. Robust multi-ion crystal clock

We now consider the implementation of a robust multi-ion clock employing the proposed scheme and
realizable with current ion trap technology. We estimate the dominating field inhomogeneities (QPS and TASS)
for 4°Ca" as a widely used clock species [69—71] with convenient properties, and discuss effects of micromotion.

As a trap platform, we consider a linear Paul trap, in which axial micromotion can be made sufficiently small
[28, 33]. In large three-dimensional ion crystals, each ion will experience micromotion driven by the rf-field of
the trap with an amplitude proportional to the distance from the trap’s symmetry axis. Due to the construction
of the trap, this micromotion is oriented along the radial axis (perpendicular to the trap axis). When probing
along the radial degrees of freedom, the ions’ coupling to the probe laser is diminished by the strong Doppler
modulation of the laser in the ions’ frame. We therefore choose to probe along the trap symmetry axis zwith a
magnetic field oriented along the same direction.

The QPS of an ion in a multi-ion crystal is caused by electrical field gradients originating from the space
charge of all other ions, and the electrical field gradients of the trap itself. The overall scale of the QPS is
determined by the quadrupole moment expressed as a reduced matrix element, which for *°Cat was measured
tobe ©(3d, 5/2) = 1.83(1)ead [72]. The QPS depends on the angle between the quantization axis and the
electric field gradient as well as the state of the ion. The angle dependence is given by [27, 32, 72]

0
fla, B, v) = a@iz i(3 cos(B)? — 1) + %sin(Zﬁ)(a;; cosa + a—zysin a)
OE
+ isinzﬁl(% - a—yy) cos(2a) + 266% sin(2a)] 9)

with the Euler angles { o, 3, v} defined as in [32]. The state dependence can be described by

JJ+ 1) = 3mf

10
J@I -1 (10

g(]) m/)

with a total QPS of AfQPS = % x f(a, B, 7v) x g, my).

The Paul trap features two types of electrical field gradients: the rf-field employed for radial confinement and
the static field gradient for axial confinement. The rf-field is averaged out and therefore does notlead to a
quadrupole shift of the transition. The static gradient for axial trapping is constant and the same for all ions,
causing no line broadening but a constant shift for each individual ion of the crystal. Provided the axial trap
voltages are well controlled, this constant shift does not pose a limit on clock stability. Furthermore, this
constant shift is canceled by the dynamical decoupling scheme, see below.

The shift originating from the space charge will in general lead to inhomogeneous line broadening. The
space charge-induced quadrupole shift falls off cubicly with distance and is therefore dominated by the ion’s
local environment. In alinear chain of ions, for instance, the quadrupole shift caused by the space charge results
in a significant shift depending on the position of the ion, since contributions from the individual ions add up.
For example, a chain of 30 “°Ca* ions exhibits an inhomogeneous shift of about 80 Hz across the chain (radial
trap frequency w, = 27 x 1 MHz and axial trap frequency w, = w,/12). In aspherically symmetric crystal
configuration, in contrast, the symmetry suppresses the quadrupole shift due to space charge to a large extent. In
the limit of a crystal of infinite size a body-centered-cubic lattice forms and the quadrupole shift vanishes [27].

For this reason, we consider a spherical trap configuration in which it is straightforward to obtain near
isotropic trap frequencies w,,, & w;,, & w, ~ 27 X 1 MHz. A slight deviation from complete symmetry is
desirable to pin the orientation of the crystal and allow efficient Doppler cooling. For our scheme, we assume
ions cooled to the ground state, as for instance shown experimentally for large crystals in [73]. It is advantageous
to work with as many ions as possible in order to improve the signal-to-noise ratio and hence the stability of the
clock. On the other hand, cooling and trapping large crystals can be challenging and the size of the crystal needs
to be reasonable so that the probe, cooling, and control lasers can address all the ions. Also, the probability of a
background gas collision during clock interrogation grows with the number of ions. For our purpose, we
consider a realistic implementation employing 400 “°Ca’ ions, resulting in an isotropic crystal with
approximately 30 pm radius for our proposed trap parameters.

For this configuration, we estimate the QPS by first finding the equilibrium positions of the ions in the crystal
by minimizing the pseudo-potential energy in the linear Paul trap. We next calculate the effective electric field
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Figure 4. Quadrupole shift for the m; = i% states for 400 ions in alinear Paul trap (spherical, isotropic crystal configuration). The
distribution shows a standard deviation of 0.74 Hz and a static shift due to trap endcap voltage employed for axial confinement of
about 10 Hz.
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Figure 5. Tensor shift for 400 ions for the m; = i% states in a linear Paul trap (spherical, isotropic crystal configuration). The shift

distribution is calculated for a spherical, isotropic crystal configuration (for details see text). The tensor shift is approximately
uniformly distributed with a width of ~25 Hz (see appendix F).

tensor a—f’ and the resulting quadrupole shift. In figure 4 we show the resulting distribution of the QPS. The
distributijon shows a mean shift of about 10 Hz due to the static axial field gradient of the trap and a standard
deviation of 0.74 Hz.

In a spherical ion crystal, most of the ions are trapped away from the symmetry axis and the resulting rf-field
atthe individual ions’ position causes a scalar and TASS. While for “°Ca" the scalar shift can be canceled by
operating the trap at the ‘magic’ drive frequency [35], the TASS will result in shifted transition frequencies for
each individual ion depending on its position. We estimate the TASS in our system by first calculating the
amplitude of the rf-field due to the trap drive at each ion’s position, employing a numerical simulation. The
resulting TASS is then estimated by evaluating the time average (...) over one cycle of the squared electrical field

E[27]:

QZM%<

f 4 hy ), (1D

with the dc tensor polarizability ag4. from [74]. Figure 5 shows the result for our configuration, exhibiting an
approximately uniform distribution with about 25 Hz width (see appendix F).

With the distributions as described above, we now turn to the implementation and optimization of the CDD
sequence.

For the numerical optimization of the goal function equation (7), we consider a static magnetic field such
that the Zeeman splitting of the 25, /, states is equal to 10 MHz, where the uncertainty of the Zeeman splitting
g:0p is normally distributed with a zero mean and a width of 1 kHz. There is also a small contribution due to the
second order Zeeman effect. For the assumed magnetic field noise, this shifts amounts to an additional
broadening of about 0.5 mHz (averaged over all relevant levels) and can therefore be neglected. In a real
experiment, the rf driving fields used for dressing the states will be imperfect and show some fluctuations. We
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Figure 6. Simulation results. Total shift distribution of the robust optical transition in the multi-ion spherical crystal configuration.
4927 simulation trials were realized assuming the following distributions: (i) magnetic field uncertainty—the uncertainty of the %S, /,
Zeeman splitting is normally distributed with a zero mean and a width of 1 kHz, (ii) driving fields uncertainty—the relative drive
amplitude uncertainty is normally distributed with a zero mean and a width of 4 x 10™*, (iii) quadrupole shift—the quadrupole shift
ofthe m; = i% states is normally distributed with a mean of —10 Hzand a width of 1 Hz, and (iv) tensor shift—the tensor shift of the

mj = i% states is uniformly distributed between —30 and 0 Hz.

estimate the corresponding relative amplitude shifts of the driving fields ¢, to be normally distributed with a
zero mean and a width of 4 x 10™*,

In order to test the performance of the scheme in the multi-ion spherical crystal configuration, we have
realized the averaged goal function G4, which is given by equation (8), with an average over 100 pairs of {0g, 6}
chosen randomly according to the above distributions, and then numerically minimized G, to obtain optimal
driving parameters (all in units of kHz): 2, = 27 x 225.3,6; = 2w X 95.6,), = 27w X 13.6,6, = 2w X 5,
Q3 =27 X 93.6,0; = 27 x 27.2,and )y = 27 X 14.8,0, = 27 X 25.6. We then integrated the effect of the
counter-rotating terms of the driving fields and the cross driving fields (the effect of the 25, /, (*Ds ;) drive on
the D5, (%S, ,) states) and adjusted the optimal driving parameters accordingly. We simulated 4927 trials of
the robust clock-transition with these optimal driving parameters and the above distributions of the Zeeman,
quadrupole, tensor and driving amplitude shifts. In the simulations we used the full driving Hamiltonian
without making any approximations. For more details see appendices C—E. The simulation results, shown in
figure 6, indicate that the shift distribution of the robust transition has a narrow width of ~1 Hz.

The distribution shown in the figure is slightly asymmetric and shifted away from zero. The asymmetry is not
aproblem when using Ramsey interrogation with short broadband 7/2 pulses which address all the ions at once,
yielding a symmetric (cosine) central resonance. However, the overall shift and the asymmetry lead to a probe-
time dependent fractional bias in the clock frequency of around 0.12 Hz for a probe time of 150 ms, which
would have to be evaluated and corrected in absolute frequency measurements.

This shift from the non-perturbed virtual (dressed) %S, /2, m; = 0 < D5 », m; = Q) my = 0 transition
depends on the initial distribution of inhomogeneously shifted line centers and the shift suppression achievable
with the selected dynamical decoupling parameters. A qualitative understanding of the influence of different
parameters on this shift can be developed from simulation results for the scaling of the shift of the robust
transition as a function of the magnitude of the individual shifts, namely, the Zeeman shift uncertainty,
quadrupole and tensor shifts, and driving amplitude shift. The simulations shown in figure 7 were performed
with the driving parameters used in the simulations of figure 6. For each individual shift, several simulations
were conducted with different values of that individual shift while all other shift contributions were set to zero.
When varying the magnetic field uncertainty, we see some higher-order (quadratic and cubic) contributions but
no linear dependence, showing that the decoupling fields have greatly suppressed the first-order Zeeman shift.
This can be understood as an avoided crossing of the dressed levels with respect to the magnetic shift uncertainty
6g. The shift of the robust transition as function of the quadrupole and tensor shifts scales linearly. For a perfect
drive of the ?Ds /, states (assuming the RWA and no effect of the %S, /, drive) we expect a quadratic scaling.
However, the 25, /, drive and the counter-rotating terms of the ?Ds /, drive result in an amplitude mixing
between the ideal dressed Ds , states, which reintroduces a first order contribution to the quadrupole and
tensor shifts. The shift of the robust transition as a function of the drive amplitude error scales linearly as the
robust transition frequency depends linearly on the drive amplitude. In an experiment the described scaling
behavior could be exploited to verify the correct parameter set for the dynamical decoupling scheme by
measuring the expected scaling and identifying the correct operating point. Note that the simulations were
performed with fixed driving parameters, optimized as described above for a particular distribution of field
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Figure 7. Scaling of the robust transition shift. The shift of the robust transition as function of (i) the Zeeman shift of the | S; /5 5+ % )

state (left), (ii) the quadrupole and tensor shifts of the the | 2Ds 53 i% ) states (middle), and (iii) the relative amplitude error of the
driving fields.

Table 1. Estimated statistical uncertainties. The flicker-floor limited performance of the clock laser is denoted by o,
which is assumed to be independent of the averaging time. The Allan deviations and optimum probe times for
different configurations k are denoted by oy and T}, respectively. The investigated systems are 400 Ca' ions using the
described CDD scheme (k = Ca), asingle A" ion (k = Al), and a cascaded scheme in which a single Al* ionis
probed by alaser pre-stabilized through a cloud 0of 400 Ca' ions (k = CaAl). The reduction in averaging time to
achieve a certain statistical measurement uncertainty is given by G.

oy Tca(s) o (T)caNT/5 Tai(s) o (TANT/s Tcan () o (T)caalNT/S G
10" 0.015 5.8 x 107'° 0.003 5 3.6 x 107" 0.25 5.1 x 107'° 50
1071° 0.15 1.8 x 1071 0.035 1.1 x 107" 0.78 29 x 107'° 14

shifts and drive amplitudes. For different assumptions on the distribution of field and amplitude fluctuations,
different driving parameters could be derived that improve the scheme’s performance case-by-case. Moreover,
as in other CDD schemes, the performance of the scheme could, in principle, be improved by adding more
driving fields.

In our analysis we assumed that all driving fields suffer from driving fluctuations. Generating the second
driving fields (€2, and 2,) by a phase modulation, as proposed in [41], should result in stable driving fields with
negligible amplitude fluctuations. In this case we expect a further improvement in the performance of the
scheme.

The coupling strength between the dressed 25, /, states and the dressed ?Ds /; states is achieved via the laser
coupling between the bare states that have a non-vanishing amplitude in the desired dressed states. Hence, the
effective laser coupling strength is modified by the overlap between the bare states and the single or double
dressed states. In our case the laser coupling of the bare 25, ,, m; = —&-% — sy, my = +§ transition is

reduced by a factor of 0.51 (0.3) for the transition between a single (double) dressed 2S; /, state and a single
(double) dressed *Ds /, state. Note that the effective laser coupling strength should in any case be smaller than the
energy gap of the double dressed states, which in our case is ~6 kHz.

Using the results of [25], we estimate the achievable statistical uncertainty of a 400 ion Ca" clock when
probed with a flicker floor-limited probe laser at 10~ (107 *) tobe 5.8 x 10716/ /7/s (1.8 x 10716/ [7/s).
This represents an order of magnitude improvement in instability over current single ion clocks [3, 22, 23],
corresponding to areduction in averaging time by a factor of 100.

5. Applications

One of the many potential applications of the proposed scheme is a cascaded clock [75—77] in which a clock laser
is first stabilized to an ensemble of Ca" ions to improve its phase coherence time and thus allow extended
probing times [24, 25] in a high-accuracy single-ion clock (e.g. Al™ or Yb" ). To bridge the difference in clock
transition frequencies, a transfer scheme using a frequency comb would be employed [77-79]. Table 1 shows the
achievable instabilities of an Al™ clock for different initial clock laser instabilities. We have used the results from
[25] to determine the optimum probe times assuming flicker-floor limited laser instability and neglecting
spontaneous emission from the excited clock state. Note that after stabilization to the Ca' ion crystal the laser
exhibits a white frequency noise spectrum. As expected, the reduction in required averaging time is largest when
the initial laser instability is large. As the laser improves, it approaches the quantum projection noise limit of the
400 Ca' ions and the gain is reduced. Even higher gain can be obtained from larger crystals or reference atoms
with narrower linewidth than Cat , such as 17°Lu’ [27, 36], 88S¢t [80, 81], or 13¥Ba" [82, 83]. Our scheme works in
the same way for other atomic species, however, the contribution of the different broadening mechanisms
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depend on the employed species and specific properties of the experimental setup. We note that in our case a
narrower atomic linewidth (as for example provided by a different atomic species such as 88Sr™ ) would not
necessarily lead to a narrower linewidth of the robust transition, due to the remnant effects of the magnetic
noise, the amplitude drive noise and the QPS and TASS. Another reason for using Ca" is the advantageous mass
ratio relative to Al™, facilitating efficient sympathetic cooling in an Al* clock [84].

The cascaded clock scheme enables short averaging times with lasers that are commercially available. For
state-of-the-art multi-segment ion traps, it is conceivable to trap a large Ca" crystal in one segment and a clock
ion in a different segment, strongly reducing experimental overhead. Furthermore, for the case of additional
experimental constraints such as a transportable setup or the lack of a cryogenic system, for instance, our scheme
could offer an advantage over state-of-the art optical resonators.

Beyond the cascaded clock scheme, many applications in fundamental physics, navigation and industry do
not require ultimate accuracy [1, 4], but rather high stability as provided by a dynamically-decoupled Coulomb
crystal clock. Through appropriate characterization of the residual line center shift away from an effective
%S, s My =0« Ds /2> my = 0 transition, it is conceivable to not only obtain a reference with small statistical
uncertainty, but also a low systematic uncertainty. In this case, the dynamically-decoupled Coulomb crystal
clock would provide a reasonable accurate reference with superior stability.

6. Conclusions

We have proposed a CDD scheme that significantly suppresses the Zeeman shift as well as the quadrupole and
tensor ac Stark frequency shifts of an optical clock transition for ion crystals. We analyzed the proposed scheme
in the case of a multi-ion crystal of 400 Cd" ions and showed that the shift of the robust transition is 6f < 1 Hz
with a width of ~1 Hz, which is close to the observed linewidth when probing the transition for a few hundred
milliseconds. Our approach allows to exploit the improved stability from the higher ion number without
suffering from the line broadening mechanisms associated with large ion crystals. Our scheme is applicable to
other atomic species and experimental setups, paving the way for dynamically-decoupled Coulomb crystal
clocks as references with high stability. We would like to note that during the preparation of this manuscript we
became aware of a related independent work by Shaniv et al [85].
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Appendix A. The dressed states
In this section we present the construction of the (ideal) dressed states. By ideal we mean that there are no noise,

uncertainties, or systematic shifts, the RWA is valid, and that the driving fields of the %S, /, (°Ds/,) do not operate
onthe 2Ds; (°S; /) states.

A.1.The *D;, states
The driving Hamiltonian of the “Ds /, states is given by

Hp = g, 113BS; + g, 0 cos (g, 1B — 01)t1Sx + g, 0 cos[(gduBB — o)t + g]

Q 2
X COS [ (gdz 1) + 6 — 52]1‘ Se (A1)

where g, ppB s the Zeeman splitting due to the static magnetic field B, g¢; = 6/5 is the gyromagnetic ratio of the
?Ds /, states, S,and S, are the zand x spin-5/2 matrices, 2, 5, 6; = \/g g,;€) and 6, are the Rabi frequencies

and the detunings of the driving fields, respectively. Moving to the IP with respect to the first drive (£2,) with
Hy, = (g;113B — 61)S; and assuming the RWA (g, 113 B — 6, > (1)) we get

10



10P Publishing

New J. Phys. 21 (2019) 083040 N Aharon et al

HE =68,

Q o)
gdz 2 cos [ (gdz 1) + 62 — (‘52]1‘ S,. (A2)

We continue by moving to the basis of the dressed states with U, = e'%5, where §; = arccos —a |

2
it ()

Y 9) o)
Hi = 612+(gd21) . gdzzcos[ (gdzl) 4 & —52]1‘ S, (A3)

which leads to

and then to the second IP with respect to Hy, = ( (gd Ql) + 6 — & ) S,. Assuming the RWA,

( (g"Ql) + & — (‘52) > (),, we obtain

12_62 gQ

, (A4)

The eigenstates of H}} are the double-dressed 2D, states. The eigenstate with the smallest positive eigenvalue

AT . .
of % 55+ (gd4 Z) is used for the robust optical transition.

A.2.The %S, , states
The driving Hamiltonian of the 2S, , states is given by

Hg = g pupBs, + g3 cos [(g,pB — 03)t]sx + gSQ4cos[(gS,uBB — O3t + g]

Q 2
X cos [ (gsz 3) + 65 — 54]t Sxs (A5)

where ;5B is the Zeeman splitting due to the static magnetic field B, g, = 2 is the gyromagnetic ratio of the
2§, /, states, s, and s, are the zand x spin-1/2 matrices, €23, {4, 85 and 6, are the Rabi frequencies and the
detunings of the driving fields, respectively. Moving to the IP with respect to the first drive (€25) with

Hy, = (g,ugB — 63)s, and assuming the RWA (g, pz B — 65 > (23) we get

Q Q )\
HSI1 = 035, + & 3sx + &1 cos [ (&) S 64]t Sy (A6)
2 2 2
We continue by moving to the basis of the dressed states with U; = el where 6, = arccos Lz , which
) |8+ (&9‘)
leads to
Q Q
6+ (gsz 3) gs 4. [ (gsz + 52 _ 64]1‘ Sy (A7)

and then to the second IP with respect to Hy, = ( 55 + ( g‘293 — 64)sz Assuming the RWA,

2
( &+ (gs—Qs) — 54) > (), we obtain

2

Q
HSIZ = 6452 + 8>

5 (A8)

The eigenstates of Hy: are the double-dressed 2S; /, states. The eigenstate with the positive eigenvalue of

P
~ |8+ ( " ) is used for the robust optical transition.

Appendix B. Magnetic and drive shifts

In this section we show how the expansions of the magnetic shifts, Zs, and Zp, the drive shifts, Og,and Op,
and the correlated shifts, ZOg, and ZO, are derived. In the derivation we assumed the RWA and neglected
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cross-driving effects. In the numerical simulations we took the counter-rotating terms of the driving fields and
the cross-driving effect into account (see appendix C, D). The simulations were performed using the full driving
Hamiltonian without making any approximations (see appendix E). For simplicity we will show the derivation
for the 23, /, states. The derivation for the *Ds /, follows the same steps.

We start by adding to the driving Hamiltonian of the 25, /, states, equation (A5), a magnetic noise term,
which is given by g 6gs,. The drive shift is introduced by replacing €23 and 2, by {23(1 + 6q) and Q4(1 + bg),
where 8, represents a relative shift error of the driving fields. We assume that the relative errors of the driving
fields are correlated since we expect that these errors are mostly due to changes in the amplifier chain and
antenna, which are common to all drives. Moving to the IP with respect to the first drive as before and assuming
the RWA (g, 1z B — 65 > ()3), we now obtain

0+ 6 Q1 + 6 )
HS{I :gs‘SBSz + 035, + & A 2+ Q)S" + £ e «° [ (gsz 3) T 6§ o 64]t : (B1)

2

We continue by moving to the basis of the dressed states, including the shifts, with U, = eisy where 6, =

5+g.6 )
arccos 3T 8b = |, whichleads to

Jestasr + (20 +0)

QO 2 01 + 6 0, )
Hb — \/(53 +gbe) + (%(1 + 59)) 5+ wcos [ (%) b8 54]r s, (B)

2
and then to the second IP with respect to Hy, = [ 55 + (&293) — 54)52. Assuming the RWA,

2

Q 2 ) Q1 +6
Hy = {64 + \/(63 + g.68)” + (%(1 + 69)) - \/cﬁ + (%) ]sz + w@. (B3)

2
( &+ (g593> — 54] > (), we obtain

Assuming now that g, = 2, the positive eigenvalue that we consider for the robust clock transition is given by

1
a:jwﬁw%+nmau&+mW—QWQwﬁ+@

— 882+ QD ((Ba + DX + (& + 265))
+ 4(80(8q + 2) + 2)Q3 + (60 + 1)203 + 8(83 + 26505 + 263)]:. (B4)

Following the same calculations for the ?Ds /, states and assuming that g; = 6/5 we obtain the lowest
positive eigenvalue of the double-dressed ?Ds /, states, which is given by

eq = —\/ﬁo\/z(zéé + 480 + 3) + 1665 + 8265 + 106, — 3/60)% + %(69 + 1)2Q3. (B5)

The magnetic shifts, Zs and Zp,, the drive shifts, Og, and Op,, and the correlated shifts, ZOg, and ZOp, are
obtained by the power series expansion of e;and e, to orders of &% and 6?,.

Appendix C. Modified energy gaps from cross-driving

Adrive of the 25, /, (*Ds ) states also drives the ?Ds /, (S, /,) states off-resonantly and results in a Stark shift of
the initial sub-levels energy gap. For simplicity we will show the derivation for the S, /, states. The derivation for
the 2Ds/, follows the same steps. Consider the off-resonant drive of the %S, /, states

H; = wys, + g8 cos [(wy — A)t]sy, (C1
where wy = g, 1B is the Zeeman splitting and A is the detuning of the drive. We first move to the IP of the
counter-rotating terms of the drive with respect to Hy; = —(w — A)s,. This results in

Q : s s S
HI = Quj — A)s, + g52 [sx + %(el(ZWO‘A)t@ + emi@u—D)tg ] (C2)

We continue by moving to the diagonalized basis of the time-independent part of H}' with U, = ei%%, where

Quy—A)

. 2 &9 2
Qui— AP + (T)

6, = arccos ,and then to a second IP of the rotating terms of the drive with respect to
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Hy, = 2(w) — A)s,. The time-independent part of H? is given by

% 0 -
HE ~ [Z(A W) \/(A W+ (gsz ) ]sz n gl 1+ 2wp — A )
\/(wa) — A)? + (&ng)

et

2
2 s
+ ((A —wpy) + \/(A — 2w))? + (%) ) + % 1+ Lz , which gives the modified
Quiy— AP + (%)

and hence, the eigenvalues are equal to

energy gap. Plugging in the parameters of the first 2D; , drive, ((; and A = wy — wy, where wy = g, 11,B — 6
and g, = 2, we obtained the modified energy gap of the %S, /; states, which is given by

1 wy+ w
Eszu)1+ —le 0 !

4 VWi + w)? +

For the Ds /, states the modified energy gap is given by

+ 1| + Wi+ w)? + QF — 2w))2. (C4)

2

S(wg + ws) "

Ep=w; — + o023 1
225wl + wa)? + 92 2

+ (25wl + ws)? + 9% — 10ws)?,  (C5)

wherehere wi = ¢ ,MgBandg; = 6/5. Expanding the modified energy gaps in a power series of 2, and €23

. wi 9w .
resultsin Eg &~ wj + “;“‘7‘2 and Ep ~ wi — % Note that the second order correction could also be
b —w 25(w3 — wf )

calculated by an effective Hamiltonian approach.

Appendix D. Correction of the Bloch—Siegert shift

In this section we give a detailed derivation of the correction of the Bloch—Siegert shift arising from the counter-
rotating terms of the driving fields. Without the correction, we first consider the dressed states due to the
rotating-terms of a driving field and then consider the effect of the off-resonance counter-rotating terms on the
dressed states. These result in an energy shift of the dressed states and (a time-dependent) amplitude-mixing
between the dressed states, which is detrimental to the scheme, because it modifies the shifts of the dressed states
considered for the robust transition. To correct this effect, we first consider the effect of the counter-rotating
terms on the bare states, and then fix the frequency of the drive accordingly, such that the rotating-terms will
drive the modified bare states. Consider, for example, the on-resonance driving Hamiltonian

Q Q
H; = 7102 + fcos (wyt)oy. (D1)
Instead of moving to the IP of the rotating frame, we first move to the IP of the counter-rotating frame with
respectto Hy = —%ax and obtain
H=-——" —; 226+ TZUZ + Tz(@e’z““zt + gty (D2)

We continue by moving to the diagonal basis of the time-independent part of Hy,

1 9] . .
H; ~ Z\/4(Ql +w)? + Do, + 72(0+e_2‘°’2t + g A, (D3)

If we choose 2w, = %\/ 4( + wy)? + Q3 therotating terms are on-resonance with the energy gap of the
modified bare states. The on-resonance condition is given by

wy = é(zﬂ1 + 1697 + 303). (D4)

In addition, due to the basis change from the basis of the bare states to the basis of the modified bare states, the
Rabi frequency of the drive is slightly modified, €2, — €2,, where

~ 1 2(ws + ) ~ 0 o

O =—M|1+ - ——. (D5)
2 Ja(ws + )2 + Q3 16(ws + )

Because ), corresponds to an optimal driving parameter, we must take that into account and set the initial Rabi
frequency, {2,, accordingly.
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Appendix E. Numerical analysis

In this section we provide a more detailed description of the numerical analysis of the scheme in the case of a
robust multi-ion crystal clock that is presented in section 4 of the main text.

E.1. Optimized driving parameters
For the optimization of the goal function (see section 3 in main text and appendix B)
i=4,j=2 . _ _
G= Y. |Zs— Zp|by + |05, — Op|l6}, + 1205, — ZOp |6} 60, (ED)

i=1,j=1

we assume that the magnetic shift uncertainty g is normally distributed with a zero mean and a width of 0.5 kHz
(so the width of the %S, /, Zeeman splitting is 1 kHz), 55 ~ N(0, 0.5) kHz, and that the relative drive shift &, is
normally distributed with a zero mean and awidth of 4 x 10™%, 6, ~ N(0, 4 x 107%). Given these
distributions of 65 and &g, we defined an averaged goal function, Gy = (G (6%, 68))n=1%""1"% over 100
realizations of 6g and dq, which are chosen randomly according to the above distributions. We then numerically
minimized G, over the driving parameters, £, and 6;. The numerical minimization resulted in the following
driving parameters (all in units of kHz): 2 = 27 x 225.3, 67 = 27 X 95.6,€)5 = 2w X 13.6,85 = 2w X 5,
QF =27 x 93.6,03 = 27w x 27.2,and Q) = 27 x 14.8,8; = 27 x 25.6.

E.2. Fixing the driving parameters

When fixing the driving parameters we must take into account the effect of the 25, /, (*Ds /,) drive on the ?Ds ,

(%S, /») states (appendix C), as well as the effect of the counter-rotating terms of a drive (appendix D) simultaneously.
We start by parametrically solving the Bloch—Siegert correction equation, 2w; = %\ [(wi + wp)? + 0 — x; Q;, for
ageneral detuned drive, where x; would correspond to the ratio between an optimal drive detuning and Rabi
frequency, thatis x; = % We denote the parametric solution of w; by wy,. Then, in order to fix the driving

parameters of the first drfving fields, wy, €21, ws, and €23, we numerically solve the following four equations:

Wy = wiol (Ep(ws, 3), O, 67, (), (E2)
w3 = wsol (Es(wr, ), €3, 63, ), (E3)
QF = Qu(w, Ep(ws, D), O, 67, ), (E4)
% = Qs(ws, Es(wy, ), 93, 63, ). (E5)

For the case of ipB = 2w x 5 MHz (so gyuupB = 2w x 10 MHz), thisresultsinw; = 27x 5.904 881 MHz, w; =
27wx 9.980 794 MHz, Q); = 2mx 225.3107 kHz, and €23 = 27 93.6311 kHz. The ideal driving parameters,
without the above corrections are given by w; = 2w x 5.904 411 MHz, w3 = 27x 9.972 789 MHz, ), =

27 225.3035 kHz, and €23 = 27 x 93.6306 kHz. For the second driving fields we neglect the cross-driving
effect (modification of the energy gap) and take into account only the Bloch—Siegert corrections. We obtain that
w, = 2wx 160.5892 kHz, w, = 27w x 72.0503 kHz, ), = 27 x 13.6373 kHz,and 2, = 27w x 14.8157 kHz.

E.3. Simulations
We simulated the full driving Hamiltonian of the system with

H = g pugBs; + gbps; + (1 + 6q) cos [wst]s, + g.Qu(1 + dg) cos [(w3t) + g] cos [wat] sy
+ (1 + 6q) cos [wit]sy + g (1 + dg) cos [(wl t) + g] cos [wyt]sy
+ g, 15BS; + g,08S; + g,80(1 + 6q) cos [wit]Sy + g,80(1 + dq) cos [(wlt) + g] cos [wt] Sy
+ g,(1 4 6q) cos [w3t]Sx + g,(1 + 60) COS[(W3t) + %] cos [wyt] Sy

222
+[ssz 12(2+1)]<Q+QT>,

(E6)
where Q and Qrrepresent the quadrupole and tensor shifts respectively. First, we simulated the system with
bp = 0,00 = 0,and Q = Qr = 0 for atime duration of 0.5 s, where we initialized the system in the equal
superposition of %(| S1) + | Dy )),where| S; Yand| D; ) are the double dressed %S, /, and *Ds , states with
the smallest positive eigenvalue, respectively. This gave us a reference for the non-shifted transition frequency,
vs_p . We then simulated 4927 realizations with 6 ~ N(0, 0.5) kHz, 6o ~ N(0, 4 x 107%),Q ~ M(—1, 1)
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Hz,and Q7 ~ U(—3, 0) Hz. Each simulation resulted in a frequency shift Av with respect to v5_ p. The
histogram of Av is shown in figure 6 in the main text.

Appendix F. Distributions of QPS and TASS

In this section we give some details for the distribution of QPS and TASS.
In the Paul trap we consider for our scheme, the mean rf electrical field at the position of each ion increases
linearly in dependence of the radial distance from the Paul trap symmetry axis. The TASS depends quadratically on

2

the mean electrical field amplitude (% o (E?) o r?,seeequation (11)in the main text ), so that overall we geta

quadratic scaling with distance from the symmetry axis . We plot the TASS in dependence on the radial distance
from the Paul trap symmetry axis in figure F1, showing the expected quadratic behavior. The resulting distribution is
shown in figure 5 of the main text (see also figure 3 in [27]). Note that while the electric field is linear in the radius, the
frequency shifts, being quadratic in the field strength, vary slowly near the center of the crystal and more rapidly as one
moves away from the line of symmetry. Thus, the width of an annulus corresponding to a given frequency interval
decreases with increasing radius, roughly compensating for the increasing radial density of ions and leading to an
approximately uniform density in frequency space as shown in figure 5 in the main text. For the purpose of
implementation of the numerical simulation, we approximately describe the data with a uniform distribution.

In the numerical simulation of the CDD we neglect possible correlations between TASS and QPS by modeling
our system with random samples from corresponding independent distributions. In figure F2 we plot the QPS
versus the TASS for each individual ion of our ion crystal. It is evident that the shifts are only weakly correlated.
Furthermore, we note that the continuous decoupling drive renders any such correlations insignificant because the
remnant effect of the QPS and TASS is a second order effect, and particulary in our case, this effect is much smaller
than the effect of the shifts in the amplitudes of the drive, which are the dominant factor that determined the
resulting total shift distribution of the robust optical transition (figure 6 of the main text).
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Figure F1. TASS and QPS versus radial distance, i.e. radial distance from the trap’s symmertry axis. For each individual ion, we plot the
corresponding TASS and QPS.
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Figure F2. QPS versus TASS for each individual ion showing only weak correlation.
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