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Abstract. In this contribution, we revisit adjoint formulations for stationary and nonstationary space-
time fluid-structure interaction. The adjoints serve for two purposes: goal-oriented a posteriori error
estimation with the dual-weighted residual method and gradient-based numerical optimization. Our de-
velopments are substantiated with comments on numerical simulations in some other published studies.

1 Introduction

Fluid-structure interaction (FSI) has been an important topic for at least two decades with numerical
applications in applied mathematics, computational science, and engineering [11, 20, 22, 10, 3, 9, 39,
21, 45]. Along to developments for purely solving forward fluid-structure interaction problems, efforts
in a posteriori error estimation and numerical optimization have been made. These include goal-oriented
techniques employing the dual-weighted residual method [6] with specific findings in fluid-structure
interaction, e.g., in [50, 38, 26, 13, 14, 39, 18]. In numerical optimization such as optimal control,
optimal design and parameter estimation, we list [37, 27, 31, 16, 15, 30, 40, 48, 17]. For gradient-based
techniques, the usual approach is via the formal Lagrange formalism resulting in an optimality system
to compute stationary points [32, 1, 28, 44]. We specifically follow the concepts and notation from
[5, 36, 41, 33, 8] for space-time modeling of numerical optimization and goal-oriented error estimation.
For space-time modeling of fluid-structure interaction, we also refer to [43, 42].

The objective of this contribution is two-fold. First, we derive a space-time fluid-structure interaction
model based on arbitrary Lagrangian-Eulerian (ALE) coordinates [12, 29, 19]. A Galerkin space-time
discretization is left for future work as it goes beyond the scope of these conference proceedings. The
second purpose is on the derivation of the adjoint equation for stationary and nonstationary fluid-structure
interaction. This includes both a summary of our previous works and our presentation of space-time ALE
fluid-structure interaction.

The outline of this paper is as follows: In Section 2 the notation, abstract problem statements and some
simple examples are presented. Next, in Section 3 the ALE concept and fluid-structure interaction are
introduced. In Section 4, the adjoint equations are derived. Afterward, in Section 5 short descriptions

1



Thomas Wick

of some published numerical simulations are provided. A summary and future directions are outlined in
Section 6.

2 Abstract problem statements and first examples

Let Ω⊂R2 be a bounded domain with sufficiently smooth boundary ∂Ω. Let I :=(0,T ) be a time interval
with end time value T > 0. We adopt the usual Sobolev and Bochner spaces [49]. For u,v ∈ L2(Ω) we
define

(u,v) := (u,v)Ω :=
∫

Ω

u · vdx.

For time-dependent functions u,v ∈ L2(I,L2(Ω)), we define

((u,v)) :=
∫

I
(u,v)Ω :=

∫
I

∫
Ω

u · vdx.

Of course, these definitions can be extended to other Hilbert spaces.

2.1 Cost and error functionals, PDEs, and the Lagrange formalism

Let X be a function space, e.g., X := L2(I,L2(Ω)). We are interested in optimization problems with cost
or error functionals J : X → R of the abstract form

J(u) =
∫

I
J1(u)dt + J2(u(T )), (1)

where J1 is a distributed functional over the entire time interval and J2 is a functional that evaluates the
solution at the end time T . In numerical optimization with an additional control variable q ∈ Q (with Q
being the space of controls) the cost functional is defined as J : Q×X → R of the abstract form

J(q,u) =
∫

I
J1(u)dt + J2(u(T ))+

α

2
‖q−qd‖2

Q,

with a typical regularization term involving α≥ 0 and some reference control qd ∈Q. The state equation
is given by: Find u ∈ X such that

A(u)(ψ) = F(ψ) ∀ψ ∈ X ,

respectively including q ∈ Q
A(q,u)(ψ) = F(ψ) ∀ψ ∈ X .

The corresponding optimization problems read

min
u∈X

J(u) s.t. A(u)(ψ) = F(ψ),

respectively including q ∈ Q

min
(q,u)∈Q×X

J(q,u) s.t. A(q,u)(ψ) = F(ψ).

With the help of the Lagrange formalism, we introduce the Lagrangian L : Q×X×X →R involving the
adjoint variable z ∈ X :

L(q,u,z) = J(q,u)−A(q,u)(z)+F(z).
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The Lagrangian L(u,z) without control q is defined respectively. By taking the directional derivatives of
the respective solution variables, the optimality systems read

L′q(q,u,z)(δq) = J′q(q,u)(δq)−A′q(q,u)(δq,z) = 0 ∀δq ∈ Q (Gradient equation)

L′u(q,u,z)(δu) = J′u(q,u)(δu)−A′u(q,u)(δu,z) = 0 ∀δu ∈ X (Adjoint equation)

L′z(q,u,z)(δz) =−A′z(q,u)(δz)+F(δz) = 0 ∀δz ∈ X (State equation)

respectively

L′u(u,z)(δu) = J′u(u)(δu)−A′u(u)(δu,z) = 0 ∀δu ∈ X (Adjoint equation)

L′z(u,z)(δz) =−A′z(u)(δz)+F(δz) = 0 ∀δz ∈ X (State equation)

2.2 Linear heat equation and a nonlinear PDE

As a simple example for demonstration purposes, we consider the heat equation: Find u : Ω× I → R
such that

∂tu−∆u = f in Ω× I

u = 0 on ∂Ω× I

u(0) = u0 in ∂Ω×{0}.

Employing the function space

X = {u| u ∈ L2(I,H1
0 (Ω)), ∂tu ∈ L2(I,H−1(Ω))}

we formulate a space-time weak formulation: Find u ∈ X such that

A(u)(ψ) = F(ψ) ∀ψ ∈ X

with

A(u)(ψ) = ((∂tu,ψ))+((∇u,∇ψ))+(u(0),ψ(0)),

F(ψ) = (( f ,ψ))+(u0,ψ(0)).

As goal functional let us consider the spatial evaluation of our solution u ∈ X at the end time:

J(u) =
∫

Ω

u(T )dx.

Having at hand the minimization objective and the PDE constraint, the Lagrangian is then given by

L(u,z) =
∫

Ω

u(T )dx−
∫

I
(∂tu,z)dt−

∫
I
(∇u,∇z)dt +

∫
I
( f ,z)dt− (u(0)−u0,z(0)).

Then, the optimality system reads: Find (u,z) ∈ X×X , for all (ϕ,ψ) ∈ X×X , such that

L′u(u,z)(ϕ) =
∫

Ω

ϕ(T )dx−
∫

I
(∂tϕ,z)dt−

∫
I
(∇ϕ,∇z)dt− (ϕ(0),z(0)) = 0,

L′z(u,z)(ψ) =−
∫

I
(∂tu,ψ)dt−

∫
I
(∇u,∇ψ)dt +

∫
I
( f ,ψ)dt− (u(0)−u0,ψ(0)) = 0.
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In the adjoint equation, the time derivative acts on the test function ϕ and we perform integration by parts
in time:

−
∫

I
(∂tϕ,z)dt =−[(ϕ(t),z(t))]t=T

t=0 +
∫

I
(ϕ,∂tz)dt.

With this operation, we obtain as adjoint equation

L′u(u,z)(ϕ) =
∫

Ω

ϕ(T )dx+
∫

I
(ϕ,∂tz)dt− [(ϕ(t),z(t))]t=T

t=0 −
∫

I
(∇ϕ,∇z)dt− (ϕ(0),z(0))

=
∫

Ω

ϕ(T )dx+
∫

I
(ϕ,∂tz)dt−

∫
I
(∇ϕ,∇z)dt− (ϕ(T ),z(T )).

Re-arranging the adjoint equation yields

−
∫

I
(ϕ,∂tz)dt +

∫
I
(∇ϕ,∇z)dt +(ϕ(T ),z(T )) =

∫
Ω

ϕ(T )dx

with the PDE parts on the left hand side and the functional on the right hand side. Due to the integration
by parts, the adjoint problem is running backward in time as we observe that we have initial values for
the adjoint at the end time T and due to the minus sign in front of the first term. Moreover, even for
nonlinear state equations and nonlinear goal functionals, the adjoint equation is always linear. Let us
illustrate this fact by simply extending the state equation to

∂tu−∆u+u2 = f in Ω× I

and the goal functional involving the square of the state solution

J(u) =
∫

I

∫
Ω

u2 dxdt.

Then, the adjoint equation reads: Given u ∈ X , find z ∈ X such that

−
∫

I
(ϕ,∂tz)dt +

∫
I
(∇ϕ,∇z)dt +2

∫
I
(uϕ,z)dt +(ϕ(T ),z(T )) =

∫
I

∫
Ω

uϕdxdt.

We observe that the adjoint variable appears in a linear fashion and moreover, the state variable u ∈ X
enters into the adjoint equation. For time-dependent problems this means that at each time point tn the
state solution must be available; we refer the reader to some further discussions to [5, 8]. In the related
work [48] to these conference proceedings, we stored all state solutions on the hard disc. As an example,
for the FSI-3 benchmark computed in [48], we had to store 6000 state solutions.

3 Fluid-structure interaction modeling

3.1 Notation

In extension to before, we now introduce additional notation. We denote by Ω := Ω(t) ⊂ Rd , d = 2,
the domain of the FSI problem. The domain consists of two time-dependent subdomains Ω f (t) and
Ωs(t). The FSI-interface between Ω f (t) and Ωs(t) is denoted by Γi(t) = ∂Ω f (t)∩∂Ωs(t). The initial (or

later reference) domains are denoted by Ω̂,Ω̂ f and Ω̂s, respectively, with the interface Γ̂i = ∂Ω̂ f ∩ ∂Ω̂s.
Furthermore, we denote the outer boundary by ∂Ω̂ = Γ̂ = Γ̂in∪ Γ̂D∪ Γ̂out where Γ̂D and Γ̂in are Dirichlet
boundaries (for the velocities and displacements) and Γ̂out denotes a fluid outflow Neumann boundary,
respectively. The displacements are set to zero on Γ̂out.
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3.2 Spaces

For the function spaces in the (fixed) reference domains Ω̂,Ω̂ f ,Ω̂s, we define spaces for spatial dis-
cretization first. First we define

V̂ := H1(Ω̂)d .

Next, in the fluid domain, we define further:

L̂ f := L2(Ω̂ f ),

L̂0
f := L2(Ω̂ f )/R,

V̂ 0
f := {v̂ f ∈ H1(Ω̂ f )

d : v̂ f = 0 on Γ̂in∪ Γ̂D},

V̂ 0
f ,û := {û f ∈ H1(Ω̂ f )

d : û f = ûs on Γ̂i, û f = 0 on Γ̂in∪ Γ̂D∪ Γ̂out},

V̂ 0
f ,û,Γ̂i

:= {ψ̂ f ∈ H1(Ω̂ f )
d : ψ̂ f = 0 on Γ̂i∪ Γ̂in∪ Γ̂D∪ Γ̂out}.

In the solid domain, we use

L̂s := L2(Ω̂s)
d ,

V̂ 0
s := {ûs ∈ H1(Ω̂s)

d : ûs = 0 on Γ̂D}.

As trial and test spaces for a space-time model, we define

X̂ = {U = (v̂, û f , ûs, ŵ, p̂ f )| v̂ ∈ L2(I,{v̂D +V̂ 0}),∂t v̂ ∈ L2(I,H−1(Ω̂)d), û f ∈ L2(I,{ûD
f +V̂ 0

f ,û}),

∂t û f ∈ L2(I,H−1(Ω̂ f )
d), ûs ∈ L2(I,{ûD

s +V̂ 0
s }),∂t ûs ∈ L2(I,H−1(Ω̂s)

d), ŵ ∈ L2(I,V̂ ), p̂ f ∈ L2(I, L̂0
f )}

and

X̂0 = {U = (v̂, û f , ûs, ŵ, p̂ f )| v̂ ∈ L2(I,V̂ 0),∂t v̂ ∈ L2(I,H−1(Ω̂)d), û f ∈ L2(I,V̂ 0
f ,û,Γ̂i

),

∂t û f ∈ L2(I,H−1(Ω̂ f )
d), ûs ∈ L2(I,V̂ 0

s ),∂t ûs ∈ L2(I,H−1(Ω̂s)
d), ŵ ∈ L2(I,V̂ ), p̂ f ∈ L2(I, L̂0

f )}

3.3 A space-time fluid-structure interaction model

Extending Formulation 3 from [48] to a space-time formulation, we obtain:
Proposition 3.1 (Variational-monolithic space-time ALE FSI in Ω̂). Find a global vector-valued ve-
locity, vector-valued displacements, additional displacements (due to the splitting of the biharmonic
mesh motion model into two second-order equations) and a scalar-valued fluid pressure, i.e., Û :=
(v̂, û f , ûs, ŵ, p̂ f ) ∈ X̂ such that

Fluid/solid momentum


∫

I

(
(Ĵρ̂ f ∂t v̂, ψ̂v)

Ω̂ f
+(ρ̂ f Ĵ(F̂−1(v̂− ŵ) · ∇̂)v̂), ψ̂v)

Ω̂ f
+(Ĵσ̂ f F̂−T , ∇̂ψ̂v)

Ω̂ f

+〈ρ̂ f ν f Ĵ(F̂−T ∇̂v̂T n̂ f )F̂−T , ψ̂v〉
Γ̂out

+(ρ̂s∂t v̂, ψ̂v)
Ω̂s

+(F̂Σ̂, ∇̂ψ̂v)
Ω̂s

)
dt

+(Ĵ(v̂(0)− v̂0), ψ̂
v(0))

Ω̂ f
+(v̂(0)− v̂0, ψ̂

v(0))
Ω̂s

= 0

Fluid mesh motion (biharmonic/split)


∫

I

(
(α̂∇̂ŵ|

Ω̂ f
, ∇̂ψ̂u)

Ω̂ f

)
dt = 0∫

I

(
(α̂ŵ, ψ̂w)

Ω̂
− (α̂∇̂û f ,s, ∇̂ψ̂w)

Ω̂

)
dt = 0

Solid momentum, 2nd eq.
{∫

I

(
ρ̂s(∂t ûs− v̂|

Ω̂s
, ψ̂u

s )Ω̂s

)
dt +(ûs(0)− ûs,0, ψ̂

u
s (0)) = 0

Fluid mass conservation
{∫

I

(
(d̂iv(ĴF̂−1v̂), ψ̂p

f )Ω̂ f

)
dt = 0
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for all Ψ̂ = (ψ̂v, ψ̂u
f , ψ̂

u
s , ψ̂

w, ψ̂p
f ) ∈ X̂0. In compact form, the above problem reads: Find Û ∈ X̂ such that

Â(Û)(Ψ̂) = 0 ∀Ψ̂ ∈ X̂0

where the FSI equations are combined in the semi-linear form Â(Û)(Ψ̂).

4 Adjoint equations

Employing our preliminary considerations from Section 2 for Proposition 3.1, we obtain conveniently
the adjoint equation for some given goal/cost functional. Formally, we arrive at

L̂′U(Û , Ẑ)(δÛ) = Ĵ′U(Û)(δÛ)− Â′U(Û)(δÛ , Ẑ) = 0

where (v̂, û f , ûs, ŵ, p̂ f ) ∈ X̂ and (ẑv, ẑu
f , ẑ

u
s , ẑ

w, ẑp
f ) ∈ X̂0 and (δv̂,δû f ,δûs,δŵ,δp̂ f ) ∈ X̂0. Despite being

formally simple, technically, the directional derivatives δÛ of the nonlinear variable Û must be computed.
This procedure is similar to the tangent problem, required for the nonlinear solution with Newton’s
method. Details can be found in [46]. By switching test and trial functions in the tangent problem, we
obtain immediately the adjoint.

4.1 Time derivatives and their partial integration in time

Let us consider the time derivative terms in more detail. We start with the solid 2nd momentum equation∫
I
ρ̂s(∂t ûs− v̂|

Ω̂s
, ψ̂u

s )Ω̂s
dt +(ûs(0)− ûs,0, ψ̂

u
s (0))Ω̂s

.

The adjoint is obtained by linearizing in ûs and v̂, switching trial and test functions, and employing (1):∫
I
ρ̂s(∂tψ̂

u
s − ψ̂

v
s , ẑ

u
s )Ω̂s

dt +(ψ̂u
s (0), ẑ

u
s (0))Ω̂s

= Ĵ′U(Û)(Ψ̂).

Remark 4.1. By this procedure, we obtain immediately the adjoint as in [48], Formulation 8, Eq. (16).

We now perform partial integration in time similar to Section 2.2, yielding

−
∫

I
ρ̂s(ψ̂

u
s ,∂t ẑu

s )Ω̂s
dt−

∫
I
ρ̂s(ψ̂

v
s , ẑ

u
s )Ω̂s

dt +(ψ̂u
s (T ), ẑ

u
s (T ))Ω̂s

= Ĵ′U(Û)(Ψ̂).

For the discretization, we can either apply a space-time Galerkin discretization of the form cG(s)dG(r)
or cG(s)cG(r), or (as done in [48]) finite differences in time and Galerkin finite elements in space. For
instance, we have used the shifted Crank-Nicolson scheme in [48]. This scheme works in practice, but
is not a consistent adjoint-time-stepping scheme; see [5][Remark 3.2] and [23]. As second example, we
consider the time derivatives and initial values in the first equation of Proposition 3.1:∫

I
(Ĵρ̂ f ∂t v̂, ψ̂v)

Ω̂ f
dt +(Ĵ(v̂(0)− v̂0), ψ̂

v(0))
Ω̂ f
.

Due to the transformation of the Navier-Stokes equations from the deforming domain Ω(t) to the refer-
ence domain Ω̂ (for details see [46]) we deal with the transformation determinant Ĵ. Thus, we transform
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first back to Ω(t), then build the adjoint, afterward integrate by parts, and finally transform back to Ω̂.
This yields ∫

I
(Ĵρ̂ f ∂t v̂, ψ̂v)

Ω̂ f
dt +(Ĵ(v̂(0)− v̂0), ψ̂

v(0))
Ω̂ f

⇔ Transformation to Ω:
∫

I
(ρ f ∂tv,ψv)Ω f dt +(v(0)− v0,ψ

v(0))Ω f

⇒ Tangent:
∫

I
(ρ f ∂tδv,ψv)Ω f dt +(δv(0),ψv(0))Ω f

⇒ Adjoint:
∫

I
(ρ f ∂tψ

v,zv)Ω f dt +(ψv(0),zv(0))Ω f = J′U(U)(Ψ)dt

⇔ Integration by parts: −
∫

I
(ρ f ψ

v,∂tzv)Ω f dt +(ψv(T ),zv(T ))Ω f = J′U(U)(Ψ)dt

⇔ Transformation to Ω̂: −
∫

I
(Ĵρ̂ f ψ̂

v,∂t ẑv)
Ω̂ f

dt +(Ĵψ̂
v(T ), ẑv(T ))

Ω̂ f
= Ĵ′U(Û)(Ψ̂).

Again, this is a linear equation in the adjoint variable ẑv and running backward in time. As before, we
can discretize in time by (non-consistant) finite differences or a full space-time Galerkin method.

4.2 Example from [48] with One-Step-θ time stepping

In [48], including an optimal control q, we deal with the problem: Given Û0 ∈ X̂ , find Û = (Ûn
h )

N
n=1 ∈ X̂N

h
such that

N

∑
n=1

(
ÂT,k(Ûn

h ,Û
n−1
h )(Ψ̂n

h)+θkÂE(Ûn
h )(Ψ̂

n
h)

+ kÂP(Ûn
h )(Ψ̂

n
h)+ kÂI(Ûn

h )(Ψ̂
n
h)+(1−θ)kÂE(Ûn−1

h )(Ψ̂n
h)

)
= 0 ∀(Ψ̂n

h)
N
n=1 ∈ X̂N

h .

(2)

Based on this form, we obtain the adjoint by linearizing in Ûn
h and Ûn−1

h : Find Ẑ ∈ X̂N
h such that

N

∑
n=1

(
∂ÛnÂT,k(Ûn

h ,Û
n−1
h )(Ψ̂n

h, Ẑ
n
h)+∂Ûn−1ÂT,k(Ûn

h ,Û
n−1
h )(Ψ̂n−1

h , Ẑn
h)

+θk ∂ÛnÂE(q,Ûn
h )(Ψ̂

n
h, Ẑ

n
h)+ k ∂ÛnÂP(Ûn

h )(Ψ̂
n
h, Ẑ

n
h)+ k ∂ÛnÂI(Ûn

h )(Ψ̂
n
h, Ẑ

n
h)

+(1−θ)k∂Ûn−1ÂE(q,Ûn−1
h )(Ψ̂n−1

h , Ẑn
h)

)
= Ĵ′(q,Û)(Ψ̂) ∀(Ψ̂n

h)
N
n=1 ∈ X̂N

h .

(3)

Here ∂ÛnÂ denotes the directional derivative of the form Â with respect to its Ûn argument, and the first
argument of the second parentheses denotes the respective direction. As before, we integrate by parts
in time, but now using a finite difference quotient and switching the meaning of θ to keep the property
(implicit/explicit) of the time-stepping scheme. An example is provided in the next subsection.

4.3 Example with the help of the heat equation

The One-Step-θ time discretization of the heat equation from Section 2.2 for the weak form∫
I
(∂tu,ψ)dt +

∫
I
(∇u,∇ψ)dt = 0

7



Thomas Wick

reads

⇒(un−un−1,ψ)

k
+θ(∇un,∇ψ)+(1−θ)(∇un−1,∇ψ)

⇒ Tangent:
(δun,ψ)

k
− (δun−1,ψ)

k
+θ(∇δun,∇ψ)+(1−θ)(∇δun−1,∇ψ)

⇒ Adjoint:
(ψn,z)

k
− (ψn−1,z)

k
+θ(∇ψ

n,∇zn)+(1−θ)(∇ψ
n−1,∇zn) = J′(un,un−1)(ψ)

⇒ Integration by parts: − (ψn,zn− zn−1)

k
+(1−θ)(∇ψ

n,∇zn)+θ(∇ψ
n,∇zn−1) = J′(un,un−1)(ψ)

⇒ Re-arranging terms:
(ψn,zn−1− zn)

k
+θ(∇ψ

n,∇zn−1)+(1−θ)(∇ψ
n,∇zn) = J′(un,un−1)(ψ).

for n = N,N−1, . . . ,1,0. By the (discrete) integration by parts in time, we switch also θ to maintain an
implicit time-stepping scheme θ ∈ [0.5,1].

4.4 Adjoint of stationary optimization with fluid-structure interaction

We finally recall from [46][Chapter 4] the adjoint to stationary optimization with fluid-structure interac-
tion. Find (q̂,Û , Ẑ) ∈ Q̂× X̂× X̂ with the primal solution Û = {v̂ f , v̂s, û f , ûs, p̂ f } and the adjoint solution
Û = {ẑv

f , ẑ
v
s , ẑ

u
f , ẑ

u
s , ẑ

p
f }, such that

State equation

Â(q̂,Û)(Ψ̂) = (ρ̂ f Ĵ(F̂−1v̂ f · ∇̂)v̂ f ), ψ̂
v
f )Ω̂ f

+(Ĵσ̂ f F̂−T , ∇̂ψ̂
v
f )Ω̂ f

+(F̂Σ̂, ∇̂ψ̂
v
s)Ω̂s

−〈ĝ f , ψ̂
v
f 〉Γ̂N
− (v̂s, ψ̂

u
s )Ω̂s

+(αu∇̂û f , ∇̂ψ̂
u
f )Ω̂ f

+(d̂iv(ĴF̂−1v̂ f ), ψ̂
p
f )Ω̂ f
−〈q̂, n̂ f · ψ̂v

f 〉Γ̂Q

= 0 ∀Ψ̂ ∈ X̂ ,

with Ψ̂ ∈ X̂ as previously defined.

Adjoint equation

Â′Û(q̂,Û)(Ψ̂, Ẑ) = ρ̂ f

(
∇̂ψ̂

vĴF̂−1v̂ f + ∇̂v̂ f ĴF̂−1
ψ̂

v, ẑv
f

)
Ω̂ f

+ ρ̂ f

(
∇̂v̂ f [ĴF̂−1]′(ψ̂u)v̂ f , ẑv

f

)
Ω̂ f

+
(

ρ̂ f ν f (∇̂ψ̂
vF̂−1 + F̂−T (∇̂ψ̂

v)T )ĴF̂−T , ∇̂ẑv
f

)
Ω̂ f

+
(

ρ̂ f ν f (∇̂v̂ f [F̂−1]′(ψ̂u)+ [F̂−T ]′(ψ̂u)∇̂v̂T
f )ĴF̂−T , ∇̂ẑv

f

)
Ω̂ f

+
(

ρ̂ f ν f (∇̂v̂ f F̂−1 + F̂−T
∇̂v̂T

f )[ĴF̂−T ]′(ψ̂u), ∇̂ẑv
f

)
Ω̂ f
−
(

p̂ f [ĴF̂−T ]′(ψ̂u), ∇̂ẑv
f

)
Ω̂ f
−
(

ψ̂
pĴF̂−T , ∇̂ẑv

f

)
Ω̂ f

+
(

λs(trÊ ′(ψ̂u)F̂ + trÊF̂ ′(ψ̂u))+2µs(F̂ ′(ψ̂u)Ê + F̂Ê ′(ψ̂u)), ∇̂ẑv
s

)
Ω̂s

− (ψ̂v, ẑu
s )Ω̂s

+(αu∇̂ψ̂
u, ∇̂ẑu

f )Ω̂ f
+
(

∂̂1ψ̂
v1 + ∂̂2ψ̂

v2 , ẑp
f

)
Ω̂ f

+
(

∂̂2ψ̂
u1 ∂̂1v̂ f ,1− ∂̂2ψ̂

u2 ∂̂1v̂ f ,2− ∂̂1ψ̂
u2 ∂̂2v̂ f ,1 + ∂̂1ψ̂

u1 ∂̂ f ,2v̂2, ẑ
p
f

)
Ω̂ f

= J′Û(q̂,Û)(Ψ̂) ∀Ψ̂ ∈ X̂ ,

with Ψ̂ ∈ X̂ as previously defined. The gradient equation is omitted here.
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5 Numerical examples from some other published studies

The algorithmic developments of the previous sections were realized in different collaborations and
programming codes. These are revisited in the following.

5.1 Optimal control and optimal design for stationary fluid-structure interaction

In [40] stationary fluid-structure interaction was considered by us for optimal control and optimal design
problems. Therein a specific emphasis was on monolithic formulations and the influence of the adjoint
equation (Section 4.4) within the optimization loop. Parts of these developments go further back to the
author’s PhD thesis [46]. The numerical examples were computed with the help of DOpElib [24] (based
on deal.II [2]).

5.2 Differentiability of solution operator for stationary fluid-structure interaction

In [47] well-posedness results (existence results first established in [25]) on the existence of stationary
fluid-structure interaction were extended to uniqueness under small problem data assumptions and to
differentiability of the solution map. The latter result is useful for numerical optimization in which often
sufficient regularity of the state solution is assumed, but not proven.

5.3 Temporal error estimation and adaptivity of nonstationary fluid-structure interaction

In [18], a monolithic space-time formulation of nonstationary fluid-structure interaction was considered.
Within [4] (see also the PhD thesis [15]) adjoint-based goal-oriented error control and temporal adaptivity
was developed. For several benchmark problems, excellent error reduction and effectivity indices could
be measured. Similar to Section 4, the adjoint equation was derived from a space-time formulation and
discretized with the help of a Galerkin representation of the Fractional-Step-θ scheme [34, 35].

5.4 Optimal control and optimal design for nonstationary fluid-structure interaction

In [48] using again DOpElib [24], numerical optimization for nonstationary fluid-structure interaction
was considered. This numerical example formed the basis of the WCCM oral presentation. Therein,
the adjoint equation was formally derived with the Lagrange formalism, but temporal discretization was
carried out with One-Step-θ schemes; see Section 4.2. The numerical optimization approach was based
on a reduced approach while eliminating the state variable. As final solution algorithm, we employed
gradient descent and a (inverse) BFGS (Broyden-Fletcher-Goldfarb-Shanno) algorithm.

6 Conclusions

In this work, we considered the adjoint equation for fluid-structure interaction. Specific emphasis was
on space-time modeling and the partial integration in time yielding the backward-in-time running prob-
lem. By realizing the space-time discretization in terms of cG(s)dG(r) or cG(s)cG(r) discretizations,
formally, we can proceed further as shown in [8, 7]. Apart from such consistent time-stepping schemes
derived by rigorous arguments, a computational alternative are classical One-Step-θ time discretizations
in which locally at each time point the adjoint is derived. The latter approach was employed in [48],
which forms the basis of the corresponding WCCM oral presentation. The full space-time Galerkin
approach is however appealing and will be further addressed in upcoming studies.
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