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Abstract. Positioning objects in industrial handling applications is of-
ten compromised by elasticity-induced oscillations reducing the possible
motion time and thereby the performance and profitability of the au-
tomation solution. Existing approaches for oscillation reduction mostly
focus on the elasticity of the handling system itself, i.e. the robot struc-
ture. Depending on the task, elastic parts or elastic grippers like suction
cups strongly influence the oscillation and prevent faster positioning. In
this paper, the problem is investigated exemplarily with a typical han-
dling robot and an additional end effector setup representing the elastic
load. The handling object is modeled as a base-excited spring and mass,
making the proposed approach independent from the robot structure.
A model-based feed-forward control based on differential flatness and a
machine-learning method are used to reduce oscillations solely with a
modification of the end effector trajectory of the robot. Both methods
achieve a reduction of oscillation amplitudes of 85 % for the test setup,
promising a significant increase in performance. Further investigations on
the uncertainty of the parameterization prove the applicability of the not
yet widely-used learning approach in the field of oscillation reduction.

Keywords: flatness-based control, reinforcement learning, double deep
Q-network, trajectory optimization, oscillation reduction

1 Introduction

Pick and place processes are one of the most common applications in automation
technology and robotics and their extensive use in modern production enables
significant benefits even by the smallest improvements in accuracy or speed of
motion. For this reason, various efforts are being made to increase the perfor-
mance of industrial robots and, above all, to optimize the accuracy of their end
effector positioning.

Classical methods to achieve this are e.g. model-based feedforward control
of actuator speed and torque for a given motion profile. The motion profile
can further be optimized regarding motion time and smoothness based on the
robot dynamics, as shown in [13] for high-speed pick and place applications.
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A generalization of feedforward control is given by flatness-based control which
theoretically makes it possible to design a motion profile for complete vibration
reduction [6]. The implementation for high-speed positioning is e.g. presented in
[1] for a linear flexible motion system using trapezoidal motion profiles. The con-
cept of adaptive input shaping from [14] allows a more robust parameterization
than the feedforward control by using frequency parameters instead of specific
physical parameters, which can be difficult to obtain. These approaches all share
the necessity of a correct robot model and an identification of the required model
parameters, making them partially impractical in their implementation.

The methods of machine learning on the contrary do not require system
knowledge or any kind of parameter identification, since they are purely based
on recorded data. An overview of different learning methods for the feedforward
control of a 7-DoF (degrees of freedom) serial link robot arm and an assessment
of their performance is given in [9].

The presented methods until here all have the common goal of increasing the
accuracy of the robot and its end effector. The objects to be manipulated, espe-
cially without rigid coupling, are not part of the considerations. For this reason,
only the oscillations occurring at the robot structure can be reduced. In [2] the
reduction of shear forces between a suction pad gripper and the object is shown
by adjusting the orientation of the end effector while moving. The underlying
assumption of the availability of degrees of freedom in the orientation is however
not always complied with by the robot or the application. Similiar to the pursued
approach in this paper, [3] proofs that the oscillations of a rope-coupled mass
attached to a flying drone can be reduced by methods of reinforcement learning.

To extend these results to the oscillation reduction in the positioning of
elastically coupled objects with robot manipulators, the contributions of this
paper are
1. a structure-independent flatness-based control for handling elastic objects,
2. the comparison of this method with state-of-the-art machine learning.

The remainder of this paper is organized as follows: A brief overview of the
theoretical and mathematical background of the presented methods is given in
Sec. 2 and their implementation for the specific system at hand is given in Sec. 3.
The experimental setup and results are presented in Sec. 4, demonstrating the
high potential of the proposed methods. Sec. 5 concludes the paper.

2 Background

First, a brief summary of flatness-based control, reinforcement learning in general
and Double Deep Q-Network (Double DQN), the algorithm used within this
work, is given.

2.1 Flatness-Based Control

Dynamic systems with the property of differential flatness are characterized by
the existence of a flat output yf which in the single input single output case
allows transformations
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(k)
f

)
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leading to a representation where the state vector x and the input u can be
expressed by means of a flat output yf and a finite number of its derivatives up
to the order of the the system’s relative degree k [6]. While no general method for
finding a flat output of a nonlinear dynamic system exists, in the case of linear
controllable systems the controllable canonical form allows determining the flat
output directly [6]. After a flat output is found, one can use (1) to calculate an
input signal u(t) that leads to the desired output trajectory y(t) for the system.

2.2 Reinforcement Learning

In the context of reinforcement learning an agent finds itself in a state St and
interacts with its environment through an action At derived by a policy π. Acting
on its environment results in a change from state St to St+1 and an observation
of a reward Rt+1, valuing the chosen action and new state. The agent’s objective
is to maximize the discounted return

Gt = Rt+1 + γRt+2 + γ2Rt+3 + ... =

∞∑

k=0

γkRt+k+1, (2)

where γ ∈ [0, 1) describes the importance of future rewards [11]. The true value
for a specific state s and action a, under a policy π then becomes

Qπ(s, a) = Eπ [Gt|St = s,At = a] = Eπ

[ ∞∑

k=0

γkRt+k+1

∣∣∣St = s,At = a

]
, (3)

where the optimal value is denoted as Q∗(s, a) = maxπ Qπ(s, a) and the optimal
policy is made up of choosing always the highest valued action in each state [12].
In case of large or continuous state spaces, it becomes inadequate to store the
Q-value for each discrete time step t separately. Instead, the objective becomes
learning a parameterized value function Q(s, a;θ), were θ denotes the parame-
terization. The function approximator can be linear in its weights θ or nonlinear
(e.g. an artificial neural network, ANN) [11]. The proposed approach uses an
algorithm from the latter class of methods.

The standard update rule for the parameterized Q-learning algorithm is

θt+1 = θt + α [Ut −Q(St, At;θt)]∇θt
Q(St, At;θt), (4)

where α is the step size and the target Ut is defined by

Ut = Rt+1 + γmax
a

Q(St+1, a;θt). (5)

In the Double DQN approach from [12], two ANNs are used for function ap-
proximation. Both networks share the same network architecture but deviate in
their weight vectors, resulting in the target

UDoubleDQN,t = Rt+1 + γQ(St+1, arg max
a

Q(St+1, a;θt);θ
−
t ). (6)
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Here, θt parameterizes the online network and θ−t the target network. Inspired
by Double Q-Learning [4] the online network is used to select the current ac-
tion, while the target network estimates its value. Similar to [8] the weights of
the target network θ−t are updated by or copied from the online network θt
every N time steps and are kept constant otherwise. To break correlations be-
tween training samples it is beneficial to use experience replay [5], where tuples
of observed transitions (St, At, St+1, Rt+1, terminal) are stored in a buffer with
size NB and sampled uniformly in order to train the network; where ‘terminal’
describes whether St+1 is a terminal state.

3 Implementation

As motivated in Sec. 1, the considered scenario is a pick and place task where the
object is not rigidly but elastically coupled to the tool center point (TCP), e.g.
by elastic grippers like suction cups. Therefore, the coupling between the robot’s
TCP and the object is modeled as a base-excited mass, illustrated in Fig. 1 (a),
where the robot structure is assumed to be rigid. To investigate the principal
relations, a 1-DoF replacement model is considered for the robot and the TCP.
Thereby y and ẏ denote the objects Cartesian position and velocity, while u

u, u̇

c

d

m

y, ẏ

(a)

u, u̇

y, ẏ

c, d

m

(b)

Fig. 1. (a) Base-excited mass and (b) testbed construction.

and u̇ are the TCP position and velocity. Furthermore, c and d denote spring
stiffness and damping, which altogether results in the differential equation

mÿ + dẏ + cy = du̇+ cu, (7)

with disappearing initial values for y and u and their derivatives. This model is
employed for both the flatness-based control and the training of the agent.

3.1 Flatness-Based Control

Equation (7) describes a linear system with a relative degree of one. A transfor-
mation into its corresponding state space representation leads to a state space
model in controllable canonical form (with yf 6= y)

(
ẏf
ÿf

)
=

(
0 1
− c
m − d

m

)(
yf
ẏf

)
+

(
0
1

)
u (8)

y =
(
c
m

d
m

)(yf
ẏf

)
, (9)
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where yf represents a flat output of the system (7). The dependency on time t
for states yf and ẏf , input u and output y is omitted for a better readability. For
the objective of a rest-to-rest motion two approaches are pursued:

Approach 1 (Neglection of damping): Neglecting d in (7) results to

mÿ + cy = cu, (10)

where the physical state y itself already is a flat output and the control input u
can be obtained after dividing both sides by c.

Approach 2: Instead of transforming the whole reference trajectory yref for
the physical output y into flat coordinates, only the initial and end conditions
for the output are transformed. Since the goal is to achieve a rest-to-rest motion
for the output y, only the dynamics at start and end of the motion have to be
constraint. After transforming initial and end values of the physical trajectory
into flat coordinates, a polynomial of degree 9 for the reference trajectory yf,ref
in flat coordinates is used. The constraints on derivatives up to order 4 avoid
exciting unmodeled robot dynamics. For the transformation of initial as well as
end conditions (9) is used to obtain

y(T ) = yT = c
myf(T ) + d

m ẏf(T ) and ẏ(T ) = ẏT = c
m ẏf(T ) + d

m ÿf(T ) (11)

with T denoting the end of motion. In condition (11) the second derivative of yf
appears, which then can be substituted by the last row in (8)

ẏT = c
m ẏf(T ) + d

m

(
− c
myf(T )− d

m ẏf(T ) + u(T )
)
. (12)

At the end of motion the mass has to be in rest at a specific position, which
leads to the conditions

y(T ) = yT and ẏ(T ) = 0 (13)

and, in addition, the robot’s TCP should simultaneously arrive at the same end
position as the mass, leading to

u(T ) = y(T ) = yT . (14)

Finally, the transformation for position and velocity at time T appears to be

yf(T ) = m
c yT and ẏf(T ) = 0 (15)

while initial values equal zero.

3.2 Double Deep Q-Network

For the learning algorithm a Double Deep Q-Network is used where the agent is
trained in a simulated environment using the same mathematical model of (7)
as for the flatness-based control approach. The agent’s objective is to learn a
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correction for the reference trajectory yref , which is again a polynomial of degree
9, but in physical coordinates, leading to the position profile

p(t) = yref(t) + a(s), (16)

where a(s) denotes the agent’s action in state s. The agent selects out of 101
equally spaced positions a ranging from −0.03 m to 0.03 m. For the state repre-
sentation the error in position and velocity between the mass and the reference
trajectory

e =

(
yref − y
ẏref − ẏ

)
=

(
e
ė

)
(17)

is used, since learning can be sped up if the ANNs inputs have a mean of zero
[10]. Further, the reward signal penalizes error in distance, velocity and large
changes by the agent through

r = −{e} − {ė} − 0.5{a}, (18)

where SI-units are removed with the {·} operator. The network consists of three
fully connected layers, two inputs, 48 neurons in the hidden layer and 101 neurons
in the output layer. Training in a simulated environment led to a discontinuous
position profile, which was unsuitable for highly dynamic motions. Hence, a
polynomial of degree 19 was fitted to the position profile p(t) altered by the
agent. Finally, Table 1 summarizes the most important hyper parameters.

Table 1. Hyper parameters for the Double Deep Q-Network.

Parameter Symbol Occurrence Value

Learning rate α (4) 10−3

Discount factor γ (2)(3)(5)(6) 0.99

Size of replay buffer NB - 106

Size of mini batch - - 128

Update period of target network N - 30

Exploration decay ε - 0.0036

4 Experiments

The effectiveness of both presented methodologies is studied and verified using
a 4-DoF delta robot. Following a short introduction of the experimental setup
in Section 4.1, the experimental results and the comparison of approaches are
presented in Section 4.2.

4.1 Experimental Setup

Exemplarily for a typical industrial pick and place robot for highly dynamic ap-
plications, the delta robot Codian D4-1100 controlled by a standard industrial
PLC and servo inverters is selected for an evaluation of the proposed methods
for oscillation reduction. Fig. 2 (a) shows the experimental setup including the
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delta robot

SBC robot path

(a)

TCP

flat spring
mass

acceleration 
sensor I (u)

(b)

acceleration 
sensor II (y)

Fig. 2. (a) Delta robot with attached test construction, (b) measurement setup detail.

whole robot structure. A detailed view of the TCP-mounted test construction
is shown in Fig. 2 (b). To evaluate both methods without further unknown and
unmodeled effects, a test construction following the mathematical model was
created. It consists of a flat spring with an exchangeable additional mass, de-
signed to be mountable to the TCP of the robot, as shown in Figure 1 (b). To
identify the mechanical parameters of the construction, free oscillations test were
performed, where the spring stiffness was identified as c = 702 N

m and the damp-

ing as d = 0.135 Ns
m with a measured mass of m = 0.281 kg. Two acceleration

sensors were used: one rigidly connected to the TCP (sensor I) and the other
one attached to the mass (sensor II), see Fig. 2 (b).
The influence of different speeds and different masses was investigated. The agent
learned its correction a(s) for one motion time T and was also tested for slower
reference trajectories. Though the agent was trained with the identified mechan-
ical parameters, it was also tested with varying masses by changing the mass
attached to the flat spring. In Summary, 10 movements per time and weight case
were recorded. All following results are also transferable to other structures as
the approaches are not restricted to a specific hardware or robot type.

4.2 Experimental Results and Comparison of Approaches

The variations of motion time T and mass m were performed using four different
methods for calculating the TCP trajectory u(t):
– using flatness-based control with all parameters of (9) (“FBC damping”),
– without damping by using (10) (“FBC”),
– using the Double DQN approach from Sec 3.2 (“Double DQN”),
– for comparison purposes, neglecting stiffness and damping (“solid”).

Fig. 3 shows exemplary acceleration signals for all three methods each compared
to the solid model for an attached mass of m = 0.281 kg. The highlighted area I
indicates the time of motion for the TCP and the area II the time after arriving at
the goal position with remaining mass oscillations. The evaluation concentrates
on the remaining accelerations after arriving the goal position. Fig. 4 shows
the results for the time variation tests as box plots. The agent was trained for a
motion time of 0.4 s, mass of 281 g and a linear movement of 0.55 m. The ordinate
shows the maximal remaining acceleration after the TCP arrives its end position
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and the abscissa corresponds to the motion time. Note that the axes scales of
Fig. 4 and Fig. 5 are different, since using the solid model (directly using the
reference trajectory) leads to higher oscillations. The highest improvement in
relation to the solid model of around 85% can be seen for the shortest motion time
in Fig. 4. After investigating different motion times, the influence of incorrectly
identified masses is examined, for a motion time of 0.4 s in Fig. 5. As opposed to
Fig. 4, different masses attached to the bending beam are given on the ordinate.
All methods were able to achieve a vibration reduction except for a mass of 98 g,
for which the solid model performed better. One possible explanation for such
a behavior is that a small mass tends to vibrate rather than a large one. At the
same time, the flatness-based control reacts sensitive to deviations of identified
parameters with respect to the real parameters [14].

The experiments indicate that both methods lead to a vibration reduction.
For the present case, the effect of the spring stiffness is much greater than the
damping, the flatness-based control approach with consideration of damping was
just slightly superior to the one without it.

Fig. 3. Exemplary acceleration signals in comparison to solid model for (a) Flatness-
based control with damping, (b) FBC without damping and (c) Double DQN.
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Fig. 4. Variation of the motion time with a constant mass; (a) FBC damping, (b) FBC,
(c) Double DQN and (d) solid model. 10 test motions per box with a mass of 281 g.
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Fig. 5. Variation of the mass with a constant motion time; (a) FBC with damping, (b)
FBC, (c) Double DQN and (d) solid model. 10 test motions per box.

The tests with respect to incorrectly identified masses showed similar results,
however, with deterioration for the lightest mass. Overall, both methods led to
similar performances in vibration reduction.

5 Conclusion and Future Work

This paper illustrates two methods for reducing the vibrations of not rigidly
coupled objects during highly dynamic robot movements. Especially the object
vibrations at the end of the movement are observed and can be reduced with
both methods by up to 85 %. This results in a significant increase in placement
accuracy and a time saving during object manipulation. It can thus be shown
that both flatness-based control and reinforcement learning with the Double
DQN are methodically suitable for the aim of vibration reduction of elastically
coupled handling objects. This clear improvement was also shown with inaccu-
rately identified object parameters. Both methods are therefore (to a certain
extent) robust against parameter uncertainties. It is important to mention that
both methods are completely independent of the considered robot structure,
since they are based purely on the TCP position and therefore no consideration
of the robot dynamics has to be carried out.

Due to the simple underlying linear model of the base-excited mass, there
are clear advantages for flatness-based control in terms of implementation effort.
For this reason we consider the flatness-based control approach to be superior
to the Double DQN, since programming the reinforcement learning algorithm,
including the time for tuning hyper parameters and training, took much more
time than designing and implementing the control u(t). However, it should be
noted that these described advantages decrease with increasing complexity of
the model. In addition, it is not guaranteed that a flat output can be defined for
more complex models. In this case, flatness-based control is no longer applicable
so that the Double DQN approach would be advantageous. In addition, reinforce-
ment learning offers the possibility to be used in combination with convolutional
neural networks, enabling it to learn from raw image data [7].
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Future work will focus on the comparison of the methods for more complex
(non-linear) systems regarding the achievable vibration reduction and the im-
plementation effort. Furthermore, the investigation of adapting the approaches
to three-dimensional space curves is still an open question. In this paper a value-
based algorithm of reinforcement learning was used, which is limited to a discrete
action space. An actor-critic algorithm with a continuous action space promises
further improvements.
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6. Lévine, J. Analysis and Control of Nonlinear Systems. Springer Berlin Heidelberg,
2009.

7. Mattner, J., Lange, S., and Riedmiller, M. Learn to swing up and balance a
real pole based on raw visual input data. In Neural Information Processing (2012),
T. Huang, Z. Zeng, C. Li, and C. S. Leung, Eds., Springer Berlin Heidelberg,
pp. 126–133.

8. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Belle-
mare, M. G., Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski,
G., Petersen, S., Beattie, C., Sadik, A., Antonoglou, I., King, H., Ku-
maran, D., Wierstra, D., Legg, S., and Hassabis, D. Human-level control
through deep reinforcement learning. Nature 518, 7540 (feb 2015), 529–533.

9. Nguyen-Tuong, D., Peters, J., Seeger, M., and Schölkopf, B. Learning
inverse dynamics: A comparison, in proceedings of the european symposium on
artificial neural networks. In European Symposium on Artificial Neural Networks
(2008), IEEE.

10. Orr, G. B., and Müller, K.-R., Eds. Neural Networks: Tricks of the Trade.
Springer, 1999.

11. Sutton, R. S., and Barto, A. G. Reinforcement Learning: An Introduction
(Adaptive Computation and Machine Learning series). A Bradford Book, 2018.

12. Van Hasselt, H., Guez, A., and Silver, D. Deep reinforcement learning with
double q-learning. In Thirtieth AAAI conference on artificial intelligence (2016).

13. Zhang, Y., Huang, R., Lou, Y., and Li, Z. Dynamics based time-optimal
smooth motion planning for the delta robot. In International Conference on
Robotics and Biomimetics (2012), IEEE.
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