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Shape Sensing Based on Longitudinal Strain
Measurements Considering Elongation, Bending

and Twisting
Vincent Modes, Tobias Ortmaier, and Jessica Burgner-Kahrs, Senior Member, IEEE

Abstract— The inherent flexibility, the small dimensions as well as
the curvilinear shape of continuum robots makes it challenging to
precisely measure their shape. Optical fibers with Bragg gratings
(FBGs) provide a powerful tool to reconstruct the centerline of
continuum robots. We present a theoretical model to determine
the shape of such a sensor array based on longitudinal strain
measurements and incorporating bending, twisting, and elongation.
To validate our approach, we conduct several simulations by cal-
culating arbitrary shapes based on the Cosserat rod theory. Our
algorithm showed a maximum mean relative shape deviation of
0.04%, although the sensor array was twisted up to 78◦. Because we
derive a closed-form solution for the strain curvature twist model,
we also give analytical sensitivity values for the model, which can
be used in the calculation of error propagation.

Index Terms— continuum robot, fiber Bragg grating sensors, multi-core optical fiber, shape sensing

I. INTRODUCTION

A. Related work

SHAPE sensing of long and (comparable to their length)
slender rods has been important in various fields of engi-

neering, such as civil engineering or mechanical engineering.
Additional attention in this topic arises with the increasing
research effort in the field of continuum robotics. As opposed
to conventional serial robots they do not consist of a finite
number of rigidly connected joints, but are made of flexible
materials [1], [2]. They show an inherent flexibility that
allows modeling their shape as a continuous spatial curve. In
combination with their small dimensions, they are well suited
for minimally invasive surgery [3] or inspection/ maintenance
tasks in confined spaces [4]. Nevertheless, these properties
make it also challenging to measure their shape precisely [5].
Commonly used measurement systems use imaging technol-
ogy to reconstruct the shape. However, these require either a
direct line of sight to the robot [6] or rely on fluoroscopy [7]
which requires elaborate and expensive equipment. Electro-
magnetic tracking coils integrated into the robot allow measur-
ing the position of distinct points along the robot’s centerline
[8]. However, the number of coils inserted inside the robot is
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limited. Guo et al. measure the magnetic field of permanent
magnets distributed along the robots centerline to reconstruct
its shape [9]. Nevertheless, all magnetic sensing systems are
not suitable for application environments with ferromagnetic
materials present (e.g. inspection tasks in aerospace engines).

A promising technology are optical fibers with inscribed
fiber Bragg gratings (FBG). Each grating can be seen as an
optical strain gauge. By inscribing several FBGs into one
single optical fiber, it is possible to measure strain at various
locations along its centerline. Arranging several fibers in a
known geometrical configuration creates a sensor array with
a high spatial sensor density and small physical dimensions.
The sensor array can either consist of several distinct optical
fibers or of a single multicore fiber with several fiber cores,
each containing various FBGs as depicted in Fig. 1a.

Often, the fibers are arranged in parallel to the centerline of
the sensor array which we denote as a longitudinal arrange-
ment. With the help of the known geometrical relations of the
array’s cross-section, the shape of the deformed array can be
reconstructed [10], [11], [12]. Various researchers apply this
approach to reconstruct the centerline of continuum robots,
e.g. [13], [14] or [15]. In contrast to models based on geomet-
ric relations, Sefati et al. [16] implement a data-driven linear
regression model which requires an extensive pre-operative
model training. Until now, all presented algorithms require an
untwisted sensor array and a twist-free sensor integration must
be assured. Furthermore, twisting torques acting on the sensor
array/ robot can not be detected without the help of additional
sensors. However, there exist a variety of continuum robots,

The final version of record is available at https://doi.org/10.1109/JSEN.2020.3043999

Copyright (c) 2020 IEEE. Personal use of this material is permitted. For any other purposes,
permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



2 IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2020

whose actuation inherently causes material twisting [17], [18].
Measuring their shape and material twist simultaneously, can
improve accuracy in model-based applications such as closed-
loop control.

To achieve this, the optical fibers can be wound helically
around the centerline of the sensing array, called a helical
arrangement. Helical sensor arrays allow simultaneous mea-
surement of the curvature and the twist angle of the array
[19], [20]. Lim and Han [21] model the sensor array as a
superhelix (i.e. also the centerline of the array follows a helical
path) and derive an analytical solution. However, their model
is not applicable, if the sensor array is completely straight.
Furthermore, manufacturing this type of sensor array requires
high precision and is more complex than creating a longitudi-
nal arrangement [22]. If shape and twisting could be calculated
with a longitudinal sensor array, simpler robot designs could be
realized by simultaneously improving the results of kinematic
calculations. Chadha and Todd [23] present a sophisticated
beam mechanics model incorporating the effects of elongation
as well as warping of the sensor array’s cross-section. It shows,
that twisting influences the strain measurements even though a
longitudinal sensor arrangement is used in the array. However,
they only propose a shape reconstruction algorithm, which
requires a helical sensor arrangement [24]. Guo et al. [25]
present a calibration procedure to compensate twist induced
in the sensor array during manufacturing. Yet, their method
can not compensate for sensor array twisting, which occurs
after the calibration. Separating bending and torsion for re-
construction of the shape has just recently been addressed by
Yi et al. [26]. They use a numerical, non-linear least squares
method to calculate twist and bending parameters from the
sensor readouts.

Hence, to the best knowledge of the authors, the state-of-
the-art lacks an analytical method to simultaneously calculate
the shape and twisting of a longitudinal sensor array.

B. Contribution
The main contribution of this paper is to present a shape

reconstruction algorithm based on measurements of strain
sensors, which are arranged longitudinally in a sensor array
with a circular cross-section. Our approach is not limited to
pure bending, but also incorporates twisting and elongation.
The longitudinal sensor setup simplifies sensor placement. De-
riving closed-form formulas for the curve parameters, we use
differential geometry to calculate a three times differentiable
curve representing the centerline of the array. Additionally, we
provide closed-form equations for sensitivities of curvature,
bending direction, and twist rate which can be used to calculate
error propagation.

II. SHAPE RECONSTRUCTION ALGORITHM

Our approach assumes a sensor array consisting of three
outer sensors with index i ∈ {1, 2, 3} and one central sensor
coaxial to the centerline γ(s) as depicted in Fig. 1a. We model
the centerline as a three-dimensional curve using differential
geometry. In the remainder of the paper, we assume, that the
sensor array is an FBG multicore fiber. To determine the curve
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Fig. 1. Multicore FBG fiber used as sensor array: (a) All three outer
sensors have the same distance r from the array’s centerline γ(s),
while the central sensors are coaxial to γ(s). The vectors t(s), n1(s)
and n2(s) form the material frame of the array. (b) Cross-section of
sensing segment at arc length s. Vectors m1,m2 and n1, n2 are part
of the untwisted and twisted material frame, respectively. Outer sensors
with index i ∈ {1, 2, 3} and central sensor are marked in purple. θi is
the angle between sensor i and vector n1. % denotes the twist angle at
the current arc length. di is the distance from sensor i to the rectifying
plane.

parameters, we present a strain curvature twist model that
evaluates strain measurements in a cross-section at a specific
point along the sensor array. By interpolating the distinct strain
measurements along the centerline, curve parameters for the
complete length of the array are derived.

A. Centerline of sensor array

Let γ(s) be a spatial curve parameterized by arc length
s which represents the sensor array’s centerline. Then t(s)
is the unit tangent vector of γ(s), which implies γ(s) =∫ s
s0
t(σ) dσ + γ(s0). At every point of γ(s), a set of three

orthonormal vectors t(s), m1(s) and m2(s) is defined, which
form a Bishop frame (also referred to as Parallel Transport
frame). Bishop showed [27], that, together with the curve’s
curvature κ(s) and bending direction θb(s), these vectors
are related to each other by a set of differential equations:
t′(s) = k1m1(s)+k2m2(s),m′1(s) = −k1t(s) andm′2(s) =
−k2t(s) with k1 = κ(s) cos(θb(s)) and k2 = κ(s) sin(θb(s)).
The superscript ′ denotes the derivation w.r.t. arc length
s. Solving these equations and integrating t(s) yields the
centerline of an unelongated and untwisted sensor array, with
t(s), m1(s) and m2(s) representing its material frame at s.
In contrast to the often used Frenet–Serret frames, a Bishop
frame is also defined if κ = 0 and consequently can be used
to model a straight centerline.

However, if the array is twisted, its material frame t(s),
n1(s), n2(s) rotates around t(s) such that m1(s) and n1(s)
enclose an angle %(s) as shown in Fig. 1b. Adapting from
[28], this can be expressed by the following set of differential
equations




γ′(s)
t′(s)
n′1(s)
n′2(s)


 =




0 1 + εa 0 0
0 0 k1 k2

0 −k1 0 %′

0 −k2 −%′ 0







γ(s)
t(s)
n1(s)
n2(s)


 (1)

with εa the longitudinal strain at the array centerline.
Choosing arbitrary start values for γ(s0), t(s0), n1(s0) and

n2(s0), (1) can be solved numerically.
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B. Fiber Bragg grating sensors
While the presented algorithm is generally applicable to

any longitudinal strain sensor, optical fibers with fiber Bragg
gratings (FBGs) are commonly used as such sensors. There-
fore, we briefly introduce the FBG sensing principle. A more
detailed explanation can be found in [29].

FBGs are special sections inscribed in optical fibers. Each
grating is characterized by a specific Bragg wavelength λB. It
reflects incoming light with exactly this wavelength. However,
if the fiber is put under longitudinal stress and/or temperature
change, the reflected light spectrum is shifted. The relationship
between the wavelength shift ∆λB and λB is given by

∆λB

λB
= (1− pe)εi + (αΛ + αn)∆T

with εi as the strain in the grating i, pe the strain optic coeffi-
cient (typically 0.22), αΛ the thermal expansion coefficient, αn

the thermo-optic coefficient, and ∆T the temperature change.
In the following, we assume that the sensor array is used in
stable temperature conditions and therefore ∆T = 0. Hence,
strain is related to wavelength shift by εi = ∆λB

(1−pe)λB
.

C. Strain curvature twist model
Let us consider a small section of an undeformed sensor

array with circular cross-section at arc length s which has the
length l0. This section is referred to as sensing segment in
the following and is shown in Fig. 1a. It covers the range
from s − l0

2 to s + l0
2 and represents a segment of the array,

in which strain can be measured. If the array is deformed,
we assume, that no deformation of the cross-section occurs.
This assumption is valid, if the radius of the sensing segment
is much smaller than its length (as it is for FBG multicore
fibers).

The strain sensor with index i has constant distance r from
the centerline and has the length l0 in the undeformed state.
If the sensing segment is elongated, the original longitudinal
strain sensor is now stretched by ∆la. Bending the section
adds an additional elongation ∆lb,i. Note, that the sensor is
still parallel to the centerline of the sensing segment and has
now the length llong = l0 + ∆la + ∆lb,i as shown in Fig. 2b.
Twisting the segment by angle ∆% = %

(
s+ l0

2

)
− %

(
s− l0

2

)

deforms the sensor, such that it now has the length lSens,i =
l0 + ∆li. By assuming, that the segment’s cross section
remains planar and circular after deformation and that it is still
perpendicular to the centerline, we can apply the Pythagorean
theorem as depicted in Fig. 2b which results in

(l0 + ∆la + ∆lb,i)
2

+ (r∆%)2 = (l0 + ∆li)
2. (2)

Dividing by l20 and defining strain as ε = ∆l
l0

yields

(1 + εa + εb,i)
2

+

(
r

∆%

l0

)2

= (1 + εi)
2 (3)

with ∆l the length change after deformation, εa the strain
caused by elongation, εb,i the strain in sensor i due to pure
bending and εi the actual strain measured by sensor i. We get
εa directly from the measurements of the central sensor. By
considering only small strains, we can add up εa and εb,i.

a b
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Fig. 2. Deformed sensing segment under: (a) Pure bending with
curvature radius R=κ-1. Length l0 of centerline (dashed) is unaffected
by deformation while the sensor i (purple) is stretched by ∆l. di is the
plumb distance of sensor i to the rectifying plane. (b) Bending, twisting
and elongation. Sensor i with distance r from the centerline is shown
after elongation and bending (green) as well as after twisting about angle
∆% (purple). Centerline (dashed) is only affected by elongation.

Let us now focus on the cross-section of the sensor array at
arc length s as shown in Fig. 1b. In the case of pure bending
(see Fig. 2a), the following equation can be found in literature
(e.g. [10]):

εb,i = −κr cos(θb − θi) (4)

In the remainder of this paper, we only consider θb ∈ [−π, π].
Equation (3) can be rewritten as

(Ea − κr cos(θb − θi))2
+ (r%′)2 = E2

i (5)

with

Ea := 1 + εa, Ei := 1 + εi, %′ =
d%

ds
≈ ∆%

l0

Rearranging leads to

Ea − κr cos(θb − θi) = δi

√
E2
i − (r%′)2 (6)

with δi := ±1 representing an ambiguity caused by taking the
square root. Considering only real values during calculation,
the sign of the right side of (6) is completely determined by
δi. Let us assume δi = −1. Then, the following inequality
must be fulfilled:

Ea − κr cos(θb − θi) ≤ 0 (7)

Using the definitions depicted in Fig. 2a yields

l0
R

= α =
l0 + ∆l

R+ di
⇒ ∆l

l0
=
di
R

= κdi (8)

Under pure bending, di is the plumb distance from sensor
i to the rectifying plane and varies between 0 and r. The
maximum strain occurs, if di = r (see Fig. 1b). By defining
εmax = ∆lmax

l0
= κr, (7) can be rewritten as

1 ≤ εmax cos(θb − θi)− εa. (9)

For conventional silica glass as used in optical fibers, |εmax|
should not exceed 1 %, hence (9) can never be fulfilled.
Moreover, even if unrealistic large values for εmax and εa

are considered (e.g. 40 %), no solution is found. In contrast,
performing the same analysis for δi = +1 yields

1 ≥ εmax cos(θb − θi)− εa (10)

which is true for typical strain values in silica glass. Therefore,
only δi = +1 is further considered.
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Rearranging (6) yields

κ =
−1

r cos(θb − θi)

(√
E2
i − (r%′)2 − Ea

)
. (11)

It is obvious, that (11) is only valid, if θb − θi 6= (2n + 1)π2
with n ∈ Z. Therefore, if one of the sensor cores lies in the
rectifying plane, it can not be used to calculate κ. To improve
readability we define

Ai :=
√
E2
i − (r%′)2 − Ea, sx := sin(θx), cx := cos(θx)

Using two of the three available strain measurements denoted
with the indices u and v with u 6= v, we can remove κ from
(11) by setting the two terms equal:

cos(θb − θv)Au = cos(θb − θu)Av (12)

Using trigonometric identity cos(θb − θi) = cb ci + sb si we
get

sin(θb)

cos(θb)
= tan(θb) =

Av cu−Au cv
Au sv −Av su

(13)

which allows to calculate θb with the inverse tangent function.
To calculate %′, we use all three strain measurements. Thus,

one can select two different tuples for (u, v) to insert into (13).
Without loss of generality, we choose the indices (1, 2) and
(1, 3). Setting both equations equal results in

A2 c1−A1 c2

A1 s2−A2 s1
=
A3 c1−A1 c3

A1 s3−A3 s1
(14)

Rearranging (14) and defining

sxy := sin(θx − θy) = sx cy − sy cx

yields
0 = A1 · (A1 s23 +A2 s31 +A3 s12). (15)

To calculate the solutions for %′, each factor of (15) is set
equal to zero. Beginning with the first factor, the following
equation must be solved:

A1 =
√
E2

1 − (r%′)2 − Ea = 0 (16)

which results in

|%′| = 1

r

√
E2

1 − E2
a . (17)

Because i = 1 was arbitrarily chosen, (17) must be valid for
all Ei. This is only true, if the strains in all sensors are equal,
hence the sensing segment is only affected by torsion and no
bending occurs.

Setting the second factor of (15) equal to zero, gives

A1 s23 +A2 s31 +A3 s12 = 0. (18)

Assuming only small strain values, (18) can be linearized
by performing a Taylor series expansion around εi = 0 and
stopping after the first order term. By using

Ai|εi=0 =
√

1− (r%′)2 − Ea

∂Ai
∂εi

∣∣∣∣
εi=0

=
1√

1− (r%′)2

∂Au
∂εv

= 0 for u 6= v

we can write (18) as

s23 ε1
∂A1

∂ε1

∣∣∣∣
ε1=0

+ s31 ε2
∂A2

∂ε2

∣∣∣∣
ε2=0

+ s12 ε3
∂A3

∂ε3

∣∣∣∣
ε3=0

+ s23 A1|ε1=0 + s31 A2|ε2=0 + s12 A3|ε3=0 ≈ 0 (19)

Substituting and rearranging (19) leads to

0 = (
√

1− (r%′)2)2 − Ea

√
1− (r%′)2 +Q (20)

with

Q :=
ε1 s23 +ε2 s31 +ε3 s12

s23 + s31 + s12
(21)

Solving for
√

1− (r%′)2 results in

√
1− (r%′)2 =

Ea

2
+ δG

√(
Ea

2

)2

−Q (22)

with δG = ±1. Squaring both sides and rearranging finally
leads to

|%′| = 1

r

√√√√√1−


Ea

2
+ δG

√(
Ea

2

)2

−Q




2

(23)

Inspecting (17) and (23), we realize that there is always a
positive and negative solution for %′. This is caused by the
coaxial alignment of the sensing cores with respect to the
centerline. Imagine an unbent and untwisted rod equipped
with a coaxial strain sensor. Twisting the rod clockwise or
counterclockwise will result in the same sensor measurement.
Therefore, the twisting direction can not be determined with
this sensor arrangement and must be known in advance.

Using (11), (13), (17) and (23) one can then calculate the
curve parameters for the current sensing segment at arc length
s. Parameter δG is selected so that (13) yields the same results
for all possible combinations of the indices u and v. The
strain sensors give a distinct measurement εi(sk) at the sensing
segment position sk. Interpolating εi(sk) between all cross-
sections, allows to calculate the curve parameters for all s
between the first and the last sensing segment. By solving (1),
the centerline of the sensing segment is finally calculated.

After the calculations, it may occur, that κ < 0. However,
per definition κ must be greater or equal 0. If κ is negative, it
must be multiplied with −1 and π must be added to θb. The
legitimacy of this transformation can be shown with the help
of the curvature vector κ (see Fig. 1b):

κ = κ

[
cos(θb)n1

sin(θb)n2

]
= −κ

[
cos(θb + π)n1

sin(θb + π)n2

]
(24)

Hence, the transformation does not change κ.
To investigate the error in %′ induced by linearization, we

calculate %′ before linearization numerically from (18) using
Matlab’s fsolve function and after linearization in closed-
form from (23). This yields %′num and %′cf , receptively. In these
calculations, we assume θ2− θ3 = θ3− θ1 = θ1− θ2 = 120 ◦,
r = 38µm, εa = 0 and that the strain in all outer sensors is
equal. The relative twist deviation ∆%′rel = |%′num−%′cf | ·%′−1

num

is shown in Fig. 3. For typical strain values in silica glass,
∆%′rel is below 0.01 % and for strain values ≤ 10−5 it is zero.
Hence, the induced error can be neglected.
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Fig. 3. Relative twist deviation ∆%′rel for given strain values εi and
r = 38µm. For εi ≤ 10−5, ∆%′rel is zero.
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Fig. 4. Deformed rod. The coordinate of the rod’s centerline at arc
length s is described in world frame by vector p(s). At this point,
external forces n(s) and torques m(s) act on the rod.

III. EVALUATION OF SHAPE RECONSTRUCTION

To evaluate our algorithm, we perform several simulations
by calculating simulated sensor strain values based on a
synthetic fiber centerline. In general, the centerline can be
chosen arbitrarily, as long as it is three times differentiable.

We simulate the synthetic centerline by implementing a
Cosserat rod model. The benefit of this approach is, that
twisting is modeled physically. Hence, the deformation of a
fiber, which is placed in parallel to the centerline in the cross-
section will also deform in a realistic manner. This parallel
fiber is used to calculate simulated strain values.

We then compare our strain curvature model to two other ap-
proaches commonly found in the literature. All algorithms are
implemented in Matlab 2019b. Systems of ordinary differential
equations are solved with Runge-Kutta (4,5) as implemented
in Matlab’s ode45 function. To apply the shooting method
presented in section III-A, we rely on the trust-region dogleg
optimization algorithm as implemented in Matlab’s fsolve
function.

A. Cosserat rod model

In this section we give a brief overview of the kinematics of
a simple Cosserat rod with a circular cross-section as depicted
in Fig. 4. A more detailed discussion can be found in [30]. The
rod shape is described with respect to the arc length s ∈ [0, L]
by its centerline p(s) ∈ R3 and a corresponding material frame
with the orientation R(s) = [e1, e2, e3] ∈ SO(3). The vector
e3 is coaxial to the rod centerline’s tangent vector. Further-
more, u(s) and v(s) are the angular and translational rate of
change of this frame with respect to s. The initial straight rod
is deformed by distinct forces n(s) and torques m(s) which
act on the rod at s (distributed loads are neglected). Assuming,
that no warping occurs (i.e. the cross-section remains plane)
and according to [17], the explicit model equations are given

by

p′(s) = R(s)v(s), v(s) = Kse(s)
−1
R(s)

T
n(s)

R′(s) = R(s)û(s), u(s) = Kbt(s)
−1
R(s)

T
m(s)

n′(s) = 0, m′(s) = −p′(s)× n(s) (25)

with u(s) = [u1, u2, u3]T and

û(s) =




0 −u3 u2

u3 0 −u1

−u2 u1 0




Kse(s) = diag(GA(s), GA(s), EA(s))

Kbt(s) = diag (EIxx(s), EIyy(s), G (Ixx(s) + Iyy(s)))

Here, Kse(s) and Kbt(s) are the stiffness matrices of shear
and extension as well as bending and torsion, respectively.
They are a function of the Young’s modulus E, the shear
modulus G, the rod’s cross-section A(s) and the second
moments of area Ixx(s) and Iyy(s).

Although, the rod’s model equations (25) are defined in the
world frame, it can be convenient to express forces and torques
acting on the rod in the orientation of the material frame. For
example, one can assure, that a force acts only perpendicular to
the centerline or that a torque acts only around the centerline’s
tangent vector. Hence, ñ(s) and m̃(s) are forces and torques
at the point p(s) expressed as a linear combination of e1,e2

and e3. They can be converted to forces and torques oriented
in world frame by n(s) = R(s)ñ(s) and m(s) = R(s)m̃(s).

In the remainder of this paper, only point forces F (s) and
torques M(s) are applied on the rod at distinct locations s =
s̃. This results in a discontinuity of n(s) and m(s) at s̃:

n(s̃−) = F (s̃) + n(s̃+)

m(s̃−) = M(s̃) +m(s̃+)

with s̃− and s̃+ being locations right before and after s̃.
The rod equations (25) are solved with a shooting method.

We define arbitrary start values for p(0) and R(0) and vary
the start values for n(0) and m(0) until the residuum between
the calculated force ncalc(send) and torque mcalc(send) at the
rod tip and the given values F (send) and M(send) fall below
a pre-defined threshold.

The position pi(s) of each a outer sensor i in the rod’s
cross-section at s is then calculated by

pi(s) = p(s) + r cos(θi)e1(s) + r sin(θi)e2(s) (26)

which allows to estimate the sensor strain at position s by

εi(s) =

s+ 1
2 l0∫

s− 1
2 l0

‖p′i(σ)‖
l0

dσ − 1 (27)

with l0 being the length of the strain sensor in undeformed
state and ‖a‖ the Euclidean norm of vector a. The strain
εa(s) in the central sensor can be calculated analogously by
replacing p′i(σ) with p′(σ) in (27).

To compare the reconstructed centerline with the ground
truth centerline of the rod model, we use the relative shape
deviation erel

erel =
‖γ(s)− p(s)‖

s− s0
(28)
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where s0 is the arc length of the rod model at which the first
sensing segment is located. Furthermore, we define the relative
arc length srel as

srel =
s− s0

send − s0
(29)

B. Reference strain curvature models
To validate our algorithm (denoted as Twist model), we

compare it with two approaches from the literature. We only
interchange the different strain curvature models, hence to
reconstruct the centerline, we always rely on the algorithm
described in section II-A.

The first model is presented by Moore and Rogge [10],
which we denote as Moore. It solves the equation system
defined by (4). Because twist is not considered in this model,
strain measured in the sensing segment is interpreted as
bending strain and henceforth εbi = εi. The main idea is
to create an apparent curvature vector κapp which lies in the
cross-section of the sensing segment spanned by n1 and n2.
To avoid dealing with trigonometric equations while deriving
the model and in contrast to [10], we transform this vector in
the complex plane with n1 and n2 being the real and complex
axis, respectively and with j as the imaginary unit:

κapp = −
3∑

i=1

εi
r

ci n1 −
3∑

i=1

εi
r

si n2 = −
3∑

i=1

εi
r
ejθi . (30)

To improve readability, we further omit the sub- and super-
script of the summation symbol. In the remainder of this
section, it always sums up from 1 to 3 over i . Starting from the
equation system defined by (4) we can rewrite the equations
as complex functions

εi = −κ
2
r
(
ej(θb−θi) + e−j(θb−θi)

)
. (31)

Rearranging results in

−r−1εie
jθi =

κ

2

(
ejθb + e−jθbej2θi

)
. (32)

Summing up over i yields an expression for κapp:

κapp = −
∑ εi

r
ejθi =

κ

2

(
3ejθb + e−jθb

∑
ej2θi

)
. (33)

The relation θi = θ1 + 2π
3 (i − 1) holds, if the outer sensors

are equally spaced in the cross-section. In this case, (33) can
be written as

κapp =
κ

2

(
3ejθb + e−jθbej(2θ1−

4π
3 )
∑

(ej
4
3π)i

)
. (34)

The remaining sum in (34) is a finite geometric series and can
be simplified to
∑

(ej
4
3π)i = ej

4
3π
(
ej

4
3π − 1

)−1 (
ej4π − 1

)
= 0. (35)

Hence, we arrive at

κapp = −
∑ εbi

r
ejθi =

3

2
κejθb (36)

and therefore

κ =
2

3
|κapp| θb = arg(κapp) (37)

This approach has the advantage, that all strain measurements
are used to calculate κ and θb which reduces the influence of
measurement noise simultaneously present in all sensors.

Another model found commonly in literature extends (4) by
adding εadd, which compensates for additional strains caused
by temperature changes or external loads. This leads to the
following equation system

−εbi − κr cos(θb − θi) = εadd. (38)

We denote this furthermore as the Classic model. Again, twist
is not considered and therefore εbi = εi. Plugging in two
arbitrary indices i = u and i = v into (38) and setting those
equations equal yields

κ =
εv − εu

2r sin (0.5 (θu − θv)) sin (θb − 0.5 (θu + θv))
. (39)

Equation (39) must yield the same result for every combination
of indices. By using two arbitrary sets for (u, v) (e.g. (1, 2)
and (1, 3)) and setting the resulting terms equal, we get

tan θb = −ε1(c2− c3) + ε2(c3− c1) + ε3(c1− c2)

ε1(s2− s3) + ε2(s3− s1) + ε3(s1− s2)
. (40)

Using the inverse tangent function yields the value for θb.
Note, that κ is only defined if 1

2 (θu − θv) 6= nπ and θb −
1
2 (θu + θv) 6= nπ with n ∈ Z. Hence, the indices u and v
must be selected appropriately.

As presented above, the models Moore and Classic are
derived from nearly the same initial system of equations. Both
models do not take material twist into account. While Moore
assumes strictly pure bending, Classic allows to compensate
noise in strain measurements, which occurs equally in all
sensors. In comparison, our model Twist explicitly accounts
for twist and elongation and considers their non-linear contri-
bution to the sensor measurements.

C. Simulation parameters
To evaluate our method, we simulate a slender rod with

constant circular cross-section (radius: 1 mm, length: 320 mm,
Young’s modulus: 70 GPa, Shear modulus: 30 GPa). The rod
model is solely used to calculate a realistic centerline. It is
not intended to model the sensor array (e.g. as optical fiber).
Hence, the rod’s material properties are arbitrarily chosen.

We distribute 32 sensing segments along the rod’s center-
line, each containing three outer strain sensors equally dis-
tributed in the sensor array’s cross-section at a radial distance
of r = 38µm from the centerline with θi = [30◦, 150◦, 270◦]
and a central sensor. All sensors have a length of l0 = 5 mm.
Furthermore, all sensing segments of the sensor array are
equally spaced along the centerline with a spacing of 10 mm.
Hence, the middle points of the first and last sensing segment
are located at s0 = 5 mm and send = 315 mm, respectively.
The chosen values are based on material dimensions of com-
mercially available FBG multicore fibers.

D. Case I: Pure bending
To create different shaped centerlines, simulated forces act

on the rod at different p(s). We denote a combination of such
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Fig. 5. Simulation result for 115 force sets in case of pure bending.
Depicted are the mean (blue line), as well as the area between ± one
standard deviation (green area) of the relative shape deviation.

forces as a force set. Each set consists of at least one and
at most three forces ñ(s), where m is the number of forces.
One force is always placed at the rod tip. To assure, that these
forces always act perpendicular on the centerline, they are
expressed in the rod’s material frame:

ñ(s) = F (cos(α)e1(s) + sin(α)e2(s)) (41)

with F being the force magnitude and α the force direction
in the e1-e2 plane. To vary the resulting shapes, each force
set is created with the help of uniform random distributions.
For each set, four parameters are varied: the number of forces
m, their magnitude F , their direction α in the cross-section
and the arc length s, at which they act on the rod. The force
magnitude F varies between 0.1 and 3 N and α is drawn
from the interval [0, 2π]. To assure, that two forces do not
act on the same rod position, the arc length is divided in m
segments and in each segment, only a single force is allowed.
For 115 simulated force sets, the mean of the relative shape
deviation as well as its standard deviation are calculated and
depicted in Fig. 5. All three models show a comparable, small
shape deviation. The maximum mean error of the models
Classic and Moore is 0.040 %, while for our model Twist it
is 0.039 %. The numerical calculation of the simulated strain
values induces small deviations from the ideal strain values.
These inaccuracies accumulate along the rod length which
results in an increasing shape deviation. However, under pure
bending, all algorithms perform equal. In this special case the
three models solve the same system of equations, just in a
different manner. Under pure bending, no twist or elongation
acts on the sensor array (%′ = 0, εa = 0) and no additional
strain except of bending strain occurs (εadd = 0, εbi = εi).
Plugging in these constraints into the initial equations of
models Twist (5) and Classic (38) yields exactly the same
initial formulas as for model Moore (4).

E. Case II: Bending and twisting
To validate the influence of twisting on the reconstruction

algorithm, we extend the simulations of section III-D by
applying different torques at the rod tip. Hence, each of
the 115 force sets is extended by a torque m̃(send) =
[0, 0,M ]T, which is located at the rod end p(send) and
which acts around the rods tangent vector. This variation
is performed several times with different torque magnitudes
M = [0.01, 0.03, 0.05, 0.1, 0.15, 0.2]Nm. These torques cause
a twisting between the material frame at the rod tip and base

of approximately 4◦, 12◦, 19◦, 39◦, 58◦ and 78◦, respectively.
The mean of the relative shape deviation of the various
simulations is shown in Fig. 6.

It is apparent, that the maximum mean shape deviation of
models Moore and Classic grew with increasing applied tip
torque. For a tip torque of 0.01 Nm (corresponds to a twist rate
of about %′ = 12.5

◦
/m) the maximum mean shape deviation

is about 1.7 % and already increases to 5.0 % for a tip torque
of 0.03 Nm (%′ = 37.5

◦
/m). In comparison, the mean shape

deviation of model Twist does never exceed 0.04 %, even for
a large tip torque of 0.20 Nm (%′ = 243.75

◦
/m). Hence, our

approach gives more precise results, which are consistent for
various simulation runs.

F. Case III: Bending, twisting and elongation
Furthermore, we evaluate the influence of elongation on

the shape reconstruction. To elongate the simulated rods, we
extend each of the 115 force sets by an additional force
ñ(send) = [0, 0, 5]TN at the rod tip which acts along the
tangent vector of the centerline. To twist the sensor array,
we apply a tip torque of m̃(send) = [0, 0, 0.20]TNm. This
results in strain in the central sensor of up to 2.28·10−5.
The outcome of these simulations are shown in Fig. 7. In
comparison to the simulations with the same force sets and a
tip torque of 0.20 Nm from section III-E (see Fig. 6f), the mean
of the relative shape deviation increases for all models. While
the value at the tip for models Moore and Classic increases
from 32.7 % to 36.4 %, the mean of the relative tip error for
Twist increases from 0.03 % to 0.06 %. Hence, the influence
of elongation reduces the accuracy of for all shape sensing
algorithms. But for the model Twist the overall accuracy is
several orders of magnitude better than for the other two
models.

IV. SENSITIVITY OF CURVATURE MODELS

In this section, the sensitivity of the strain curvature models
with respect to various disturbances is investigated. In particu-
lar, we perform a locale sensitivity analysis of a single sensing
segment.

Deviations of the curve parameters (κ, θb and %′) can
be caused by errors in strain measurements εi and by an
imperfect calibrated distance r between the centerline of the
sensor array and the specific sensor [31]. Sensitivity of a
quantity is defined as its partial derivative with respect to the
source of deviation. Together with the systematic errors of
the measurement system, it is used during calculation of error
propagation [32].

We calculate six sensitivity values, namely the partial
derivatives of the curve parameters with respect to r and ε1:

∂εθb :=
∂θb

∂ε1
, ∂εκ :=

∂κ

∂ε1
, ∂ε |%′| :=

∂|%′|
∂ε1

∂rθb :=
∂θb

∂r
, ∂rκ :=

∂κ

∂r
, ∂r|%′| :=

∂|%′|
∂r

The equations for all investigated models are given in ap-
pendix I. For the sake of brevity, we only provide the sen-
sitivities with respect to the strain ε1. The effect of the other
strain measurements can be found analogously.
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Fig. 6. Relative shape deviation in case of different tip torques. Depicted are the mean (blue line) and the area between± one standard deviation
(green area) of the relative shape deviation for 115 simulations each. Note, that the scaling of the ordinate differs between model Twist and the
other two models.
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Fig. 7. Simulation result for 115 force sets in case of bending, twisting
and elongation. Depicted are the mean (blue line), as well as the area
between ± one standard deviation (green area) of the relative shape
deviation.

The calculated sensitivities are only valid at a specific
operational point, which is defined by a given set of strain
values εi. These values are calculated after rearranging (5):

εi =

√
(Ea − κr cos(θb − θi))2

+ (r%′)2 − 1 (42)

In the remainder of this section we set Ea = 1, r = 38µm
and θi = [0◦, 120◦, 240◦]. However, θb, κ and %′ are varied
to simulate different operational points. The sensitivity values
∂ε |%′| and ∂r|%′| are not defined for the models Moore and
Classic.

In a first set of simulations we calculate the sensitivity
values at various operational points in the range of κ ∈
[2 m−1, 20 m−1] and θb ∈ [0◦, 180◦] with %′ = 0.1

◦
/m. Be-

cause untwisted or only slightly twisted sensor arrays represent
a common use case in shape reconstruction applications, we

want to show the behavior of our model in the bent but (nearly)
untwisted state. However, sensitivity ∂ε |%′| is not well defined
at %′ = 0, hence we use an operational point close to zero
instead, which results in a very slightly twisted sensor array.
In Fig. 8 the sensitivities of the different models are shown.

The values for models Moore and Classic are the same,
hence Fig. 8a is representative for both models. In Fig. 8b one
can see, that the model Twist yields the same values for ∂εθb,
∂εκ, ∂rθb and ∂rκ as the other two approaches. Furthermore,
∂rθb is always zero. While this is obvious for Moore and
Classic (θb does not relate on r), this is not easily seen in the
equations for model Twist. However, this result relies on the
assumption, that all sensors have the same distance r from the
centerline resulting in a uniform ”scaling” of the cross-section
of the sensor array if r varies. While ∂εκ is zero at θb = 90◦,
the magnitude of ∂εθb is maximal at this bending angle. More
precisely, the position of those characteristic sensitivity values
depends on the difference between of θb and θi. Because we
chose θ1 = 0, they coincide with θb. Another value for θ1 (e.g.
θ1 = 30) would shift them along the θb-axis accordingly. It
can also been seen, that ∂εθb decreases with bigger values
of κ and therefore with smaller bending radius. Furthermore,
∂εκ is constant in κ, while ∂rκ is constant in θb.

For model Twist, sensitivities ∂ε |%′| and ∂r|%′| are mostly
constant but also show several spikes. As we will discuss
in the next paragraph, theses sensitivities are quite high at
operational points with small values of |%′| as chosen for these
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Fig. 8. Sensitivity values for models Moore, Classic and Twist with %′ = 0.1 ◦/m and varying κ and θb. κ is given in m−1 and θb in ◦.
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Fig. 9. Sensitivity values for models Moore, Classic and Twist with θb=45◦ and varying κ and %′. κ is given in m−1 and %′ in ◦/m.

simulations. Therefore, even small numerical imprecisions
during the calculation results in spiking results. Furthermore,
the value of ∂ε |%′| is quite high. Interrogators for FBGs have
a wavelength accuracy of approximately 1 pm. Assuming a
Bragg wavelength of 1500 nm, this results in a systematic
strain error ∆ε of about 1·10−6 and therefore a value for %′ of
about 7.54 ·106 ◦/m. Accumulated over the length of a sensing
segment of 5 mm, this could result in an additional twisting
error of about 37.7·103◦. Hence, for a nearly untwisted sensor
array, the twisting angle calculation in model Twist is quite
sensitive to disturbances of strain measurements.

To evaluate the influence of %′ on the sensitivity values,
we vary %′ ∈ [1

◦
/m, 90

◦
/m] and κ ∈ [2 m−1, 20 m−1] while

fixing θb at 45◦. The results of this second set of simulations
are shown in Fig. 9. Again, the sensitivities for models Moore
and Classic are the same and are depicted in a single plots
(see Fig. 9a). Also ∂εθb, ∂rθb and ∂rκ are similar between
the three models as seen by comparing Fig. 9a and Fig. 9b.

∂εθb, ∂εκ and ∂rκ are always constant in %′. There is a slight
difference in ∂εκ between the model Twist and the other two
approaches. While for Moore and Classic this sensitivity is
constant in κ, it is proportional to κ for Twist (as indicated
by the color gradient). However, compared to the average
magnitude of ∂εκ, this slope is quite small (0.333 m−1

/m−1)
and therefore, ∂εκ can be seen as constant. Hence, %′ does
not influence ∂εθb, ∂εκ, ∂rθb and ∂rκ. Furthermore, the
sensitivity value ∂r|%′| shows a linear relationship with %′.
The value for ∂ε |%′| is high for small %′, but decreases rapidly
with increasing twist rate. This is coherent with the findings
of the previous set of simulations. Therefore, especially for
small twist rates %′, it is important, that noise in the strain
measurements is minimized. Otherwise, a significant error
in the calculation of the twist rate of the sensor array’s
body frame occurs which reduces the accuracy of the shape
reconstruction algorithm.
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V. CONCLUSION

In this paper, we derived an analytic model to calculate
curve parameters based on longitudinal strain measurements of
a bent, elongated, and twisted sensor array. Using differential
geometry, we are able to reconstruct the centerline of the array.
We developed our model in parallel but independently of Yi
et al. [26]. In contrast to their work, we provide a closed-form
solution for the curve parameters and also consider elongation.
In contrast to other approaches found in the literature, utilizing
a longitudinal sensor arrangement simplifies the production of
the sensor system. Comparing our approach with two state-of-
the-art models shows equivalent reconstruction accuracy in the
untwisted case. However, our reconstruction algorithm shows
significantly better accuracy if the sensor array is subject to
twist. As a consequence of the coaxial alignment of the sensor
array, the twist direction of the sensor array must be known
in advance. In many cases, this information can be reasoned
from knowledge about the environment. For example, in terms
of continuum robotics, the twist direction of the robot can be
estimated from its actuation values.

Because the curve parameters are calculated in closed-
form, we are able to provide analytic equations for the model
sensitivity which can be used in error propagation calculations.
In the case of pure bending, sensitivities are similar to those of
other state-of-the-art models. Nevertheless, if the sensor array
is only slightly twisted, the twist rate calculated by our model
shows a high sensitivity with respect to disturbances in strain
measurements, which may lead to imprecise values. However,
this sensitivity decreases rapidly with increasing twist rate.

Because our current model assumes constant temperature
conditions, a further analysis will investigate the influence of
temperature changes on the model and how these effects can
be compensated. In addition, real-world experiments will be
conducted to further validate our reconstruction algorithm. By
applying it to measure the shape of twisted continuum robots,
it promises an increased reconstruction accuracy which will be
beneficial for whole-body closed-loop control. Furthermore,
the proposed method can be applied easily to other applica-
tions outside the field of robotics, e.g. to reconstruct the shape
of undersea cables or pipelines.

APPENDIX I
SENSITIVITY VALUES

Additionally to si, ci and sxy , we define sb := sin(θb),
cb := cos(θb), cxy := cos(θx − θy) and cxb := cos(θx − θb)
Note, that u, v ∈ {1, 2, 3}, u 6= v denote indices of the sensors
in the sensing segment.

A. Model Classic

∂θb

∂ε1
=

B1(H2 +H3)−H3(B2 −B3)

ε2
1(H2

1 +B2
1) + 2ε1K + (H2 +H3)2 + (B2 +B3)2

∂θb

∂r
= 0

∂κ

∂ε1
=

∂θb
∂ε1

D1 (D3 sb−D2 cb) + ∂D1

∂ε1
(D2 sb−D3 cb)

(D2 sb +D3 cb)
2

∂κ

∂r
=

1

r2

εu − εv
sb(su− sv) + cb(cu− cv)

with

H1 := c2− c3; H2 := ε2(c3− c1); H3 := ε3(c1− c2)

B1 := s2− s3; B2 := ε2(s3− s1); B3 := ε3(s1− s2)

D1 :=
εv − εu

r
; D2 := su− sv; D3 := cu− cv

and

K := H1(H2 +H3) +B1(B2 +B3)

∂D1

∂ε1
=





−r−1 if u = 1

r−1 if v = 1

0 otherwise

Sensitivity values ∂%′

∂εi
and ∂%′

∂r are not defined.

B. Model Moore

∂θb

∂ε1
=

s1(ε2 c2 +ε3 c3)− c1(ε2 s2 +ε3 s3)

G
∂θb

∂r
= 0

∂κ

∂ε1
=

2

3r

c1(ε2 c2 +ε3 c3) + s1(ε2 s2 +ε3 s3) + ε1√
G

∂κ

∂r
= − 2

3r2

√
G

with G :=
(∑3

i=1 εi ci

)2

+
(∑3

i=1 εi si

)2

. Sensitivity values
∂%′

∂εi
and ∂%′

∂r are not defined.

C. Model Twist

∂θb

∂ε1
=

suv

(
Av

∂Au
∂ε1
−Au ∂Av∂ε1

)

A2
u +A2

v − 2AuAv cuv

∂θb

∂r
=

suv
(
Av

∂Au
∂r −Au ∂Av∂r

)

A2
u +A2

v − 2AuAv cuv

∂κ

∂ε1
=

∂θb
∂ε1

tan(θi − θb)(Ui − Ea)

r cib
−
Ei

∂Ei
∂ε1
− r2%′ ∂%

′

∂ε1

r cib Ui

∂κ

∂r
=

∂θb
∂r tan(θi − θb)

r cib
+
Ui − Ea

r2 cib
+
r%′ ∂%

′

∂r + %′2

Ui cib

∂|%′|
∂ε1

=
δGW

∂Q
∂ε1

2r
√

1−W 2

√(
Ea

2

)2 −Q
∂|%′|
∂r

= − 1

r2

√
1−W 2

with

W =
Ea

2
+ δG

√(
Ea

2

)2

−Q

∂Ai
∂ε1

= − 1

Ui

(
r2%′

∂%′

∂ε1
+ Ei

∂Ei
∂ε1

)

∂Ai
∂r

= −r%
′

Ui

(
r
∂%′

∂r
+ %′

)
; Ui =

√
E2
i − (r%′)2
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