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ABSTRACT

ABSTRACT

Soils contain the largest carbon (C) pool of the global terrestrial carbon cycle and can act as  

sources or sinks for CO2. Although, more than 50 % of the global soil organic carbon (SOC) stocks 

are stored in subsoils (> 30 cm deep) and the high mean residence time of subsoil organic carbon 

(OC) indicates that SOC in subsoils is more stable than in topsoils (< 30 cm deep), there is a lack of 

knowledge on the mechanisms controlling the turnover of SOC in subsoils. In addition, the decreas-

ing SOC content with soil depth also indicates that subsoils may have the potential to sequester addi-

tional C and therefore contribute to climate mitigation. Thus, understanding the C dynamics in sub-

soils are essential to predict the vulnerability of SOC stocks to land-use or climate change and to 

assess the C sequestration potential of the world soils. The objectives of this thesis were to quantify 

in situ CO2 production and to identify the sources for CO2 production in the subsoil, in a two-year 

field monitoring (Article 1). Further, the temperature sensitivity of organic matter decomposition in 

the subsoil and the influence of substrate limitation on SOC mineralization were investigated in a 

laboratory incubation experiment (Article 2) and the stability of additional C inputs into the subsoil  

was examined in a laboratory and a field incubation (Article 2 and 3). Lastly, the influence of differ-

ent environmental conditions along a soil profile on the organic carbon decomposition were exam-

ined during a field incubation (Article 3).

Field monitoring in a Dystric Cambisol in a Northern German beech forest showed that the 

annual CO2 production in the subsoil accounted for 10 % of total soil respiration. Further, isotopic 

data suggest that CO2 in the subsoil mainly originated from root respiration and the mineralization in 

the rhizosphere. Hence, the subsoil contains a large labile C pool,  which contributes to the annual 

soil respiration, despite the high 14C age of the bulk SOC. The laboratory incubation pointed out that 

the temperature sensitivity of SOC decomposition decreases with soil depth, which implies that SOC 

recalcitrance is not the main stabilization mechanisms in the subsoil. In addition, the decreasing tem-

perature response of soil respiration with depth indicates that losses of subsoil SOC due to climate 

change might be even lower than previously assumed. The addition of root litter into the topsoil and 

the subsoil did not enhanced the mineralization of native SOC. Moreover, root litter was more stable 

in the subsoil environment as in the topsoil environment, which can be explained by the low and the 

heterogeneous C inputs into the subsoil. The higher C stability in the subsoil underlines the large C-

sequestration potential of the subsoil and climate change mitigation research should also include the 

deeper soil horizons.
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ZUSAMMENFASSUNG

ZUSAMMENFASSUNG

Der größte Kohlenstoffvorrat des globalen terrestrischen Kohlenstoffkreislaufes ist in Böden 

gespeichert. Mehr als 50 % diese Kohlenstoffvorrates ist in Unterböden (> 30 cm Tiefe) gespeichert, 

jedoch ist  wenig über die  Mechanismen,  welche die  Kohlenstoffdynamik in Unterböden steuern, 

bekannt. Ungeachtet der enormen Mengen an gespeichertem Kohlenstoff in tieferen Bodenhorizon-

ten deutet die hohe mittlere Verweilzeit des organischen Kohlenstoffs und die geringe Konzentration 

darauf hin, dass Unterböden zusätzlichen Kohlenstoff langfristig speichern und daher relevant für 

den Klimaschutz sein können. Ein umfassendes Verständnis der Kohlenstoffdynamik in Unterböden 

ist somit essentiell, um zum einen das Risiko der Freisetzung von gespeichertem Kohlenstoff durch 

Landnutzungs- und Klimawandel abzuschätzen und zum anderen das Speicherpotential bewerten zu 

können. Im Rahmen dieser Dissertation wurde die CO2-Produktion im Unterboden quantifiziert und 

Quellen der  CO2-Produltion  identifiziert  (Artikel  1).  Des Weiteren  wurde  in  Laborversuchen die 

Temperatursensitivität und der Einfluss der Substratverfügbarkeit auf die Kohlenstoffmineralisation 

im Unterboden bestimmt (Artikel 2). Der Einfluss verschiedener Umweltbedingungen in Ober- und 

Unterböden auf die Stabilität von zusätzlichen Kohlenstoffeinträgen wurde in Labor und Feldver-

suchen untersucht (Artikel 2 und 3).

Kontinuierlichen  CO2 Messungen in  einer  podsolierten  Braunerde  in  einem norddeutschen 

Buchenwald zeigte, dass die jährliche CO2 Produktion im Unterboden 10 % der gesamten Bodenat-

mung ausmacht. Die Isotopendaten der Bodenluft deuten darauf hin, dass das CO2 im Unterboden 

hauptsächlich aus jungen Kohlenstoffquellen wie Wurzelatmung und mikrobieller  Atmung in der 

Rhizosphäre stammt. Folglich besitzen Unterböden trotz des hohen 14C-Alters einen labilen Kohlen-

stoffpool, welcher signifikant zur jährlichen  Bodenatmung beiträgt. Die Temperatursensitivität der 

Mineralisation nahm mit der Tiefe ab. Dies deutet daraufhin, dass die Änderungen der Kohlenstoff-

mineralisation  im Unterboden  aufgrund des  Klimawandels  geringer  ausfallen  könnten  als  bisher 

angenommen.  Die Erhöhung der Substratverfügbarkeit durch die Zugabe von Wurzelstreu hatte kei-

nen Einfluss auf die Mineralisation der vorhanden organischen Substanz. Die geringen und heteroge-

nen  Kohlenstoffeinträge  in  den Unterboden mit  dem Sickerwasser,  führten  zu  einem geringeren 

Abbau der eingebrachten Wurzeln im Unterboden. Die höhere Stabilität von organischer Substanz 

mit zunehmender Tiefe unterstreicht das enorme Speicherpotential von Kohlenstoff im Unterboden.
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CHAPTER 1 INTRODUCTION

CHAPTER 1 INTRODUCTION

1.1 Subsoils in the carbon cycle

In the global carbon (C) cycle, soil constitutes the largest active terrestrial C reservoir, storing 

more C than the atmosphere and the biomass combined. The C pool in the first two meters of world 

soils is estimated with up to 2400 Gt of C (Batjes, 1996, 2014). About 3-5 % of the soil organic car-

bon is highly dynamic and the C input and the C output of soils represent major fluxes in the global 

C cycle. The carbon dioxide (CO2) efflux from soils is about 10-15 larger than anthropogenic CO2 

emissions (Ciais et al., 2013; Schlesinger and Andrews, 2000). The CO2 emissions of soils originates 

from the autotrophic respiration (plant roots and mycorrhizae) and the heterotrophic respiration from 

the decomposition of soil organic carbon by soil microorganisms. Therefore, even small changes in 

the environmental conditions could markedly influence the C cycling in soils and affect atmospheric 

CO2 concentrations. Global warming will enhance the decomposition of soil organic carbon (SOC) 

by decomposers  (Bond-Lamberty and Thomson, 2010; Raich and Potter, 1995) resulting in higher 

CO2 efflux from soils and decreasing SOC stocks. Although, soils store large amounts of C, human 

activities as land-use and land-use change already caused a significant loss of global SOC stocks 

(Ciais et al., 2013; Houghton, 2003; Houghton et al., 2012). Therefore, understanding the processes 

and the mechanisms controlling C stabilization and turnover in soils is a prerequisite to predict future 

C gains or losses of soils. In the past decades, soil C dynamics were broadly investigated and the 

identified mechanisms controlling stabilization and mineralization of SOC were incorporated into 

climate change models. Many studies also have focused on the potential to increase C stocks in soils  

to counteract increasing CO2 emissions to the atmosphere.

However, the majority of studies investigating the C dynamics and the C sequestration in soils 

were restricted to the first 30 cm of the soil (the topsoil), even though more than 50 % of the global 

SOC stocks are stored in the subsoil, at depths deeper than 30 cm (Batjes, 1996, 2014; Hiederer and 

Köchy, 2012; Jobbágy and Jackson, 2000). Further, C models which simulate changes in SOC stocks 

following land-use or environmental changes only include the topsoil and ignore the subsoil. Com-

pared to the topsoil, the SOC pool in the subsoil is characterized by a higher radiocarbon age and 

longer turnover times (Mathieu et al., 2015; Rethemeyer et al., 2005; Torn et al., 1997), which may 

led to the assumption that C dynamics in subsoils play a minor role in the annual global C cycle.  

Despite of the high 14C age of the bulk soil, there is growing evidence that the C turnover in subsoils 

contributes on much shorter time scales. For example, Gaudinski et al. (2000) reported for a temper-

1



CHAPTER 1 INTRODUCTION

ate forest that about one third of total soil CO2 efflux was produced in the subsoil (below the A hori-

zon). Fierer et al. (2005) found similar results in grassland soils in California, where the CO2 produc-

tion in the subsoil contributed up to 50 % to total soil respiration. Although this indicates that the 

CO2 production in subsoils is relevant for total soil respiration, little is known about the processes 

and the mechanisms determining the CO2 production in subsoils, making it almost impossible to sim-

ulate the response of CO2 production in subsoils to environmental changes.

Furthermore, the decomposition of SOC by decomposers is affected by environmental factors, 

such  as  soil  temperature,  soil  moisture,  oxygen  concentration,  C  and  nutrient  availability.  With 

increasing soil depth these factors changes leading to the assumption that decomposition processes 

differ between the topsoil and the subsoil. In contrast, despite the large SOC stocks stored in the sub-

soil, the C content is low indicating that subsoils may have an unexploited potential to sequester 

additional C in soils  (Lorenz and Lal, 2005). In consequence, there is an urgent need for a better 

understanding of the C dynamics in subsoils to predict the vulnerability of SOC stocks in the whole 

soil to global changes and to evaluate the C sequestration potential of subsoils.

1.2 Stability of subsoil C

Although, there is a lack of data on C fluxes and C turnover in subsoils, several explanations 

were given for the high apparent 14C age and the indicated stability of soil organic matter (SOM) in 

subsoils. One is the selective preservation of lower quality organic matter during the decomposition 

process (Lomander et al., 1998; Rumpel, 2004; Sollins et al., 1996). Therefore, SOM in subsoils con-

sists mainly of recalcitrant compounds which accumulate during the decomposition of fresh C inputs 

and the transport through the soil. These compounds represent the end-products of decomposition 

which can not be used by microorganisms to maintain their energy demand. Moreover, the increasing 

stable isotope ratio δ13C and the decreasing C/N ratio of SOM in the subsoils indicate a higher contri-

bution of microbial-derived and microbial processed organic matter (OM) (Liang and Balser, 2008; 

Rumpel,  2004; Rumpel and Kögel-Knabner,  2011).  In addition,  dissolved organic matter (DOM) 

shows  the  same behavior  of  a  higher  contribution  of  microbial  derived  compounds  with  depth 

(Kaiser et al., 2002; Kaiser and Kalbitz, 2012). It was shown that long-term stabilization of OM in 

soil can not only be explained due to the recalcitrance of OM (Marschner et al., 2008; Schmidt et al., 

2011). Therefore, the stability of SOM is also controlled by abiotic and biotic soil conditions  (von 

Lützow et al., 2006; Sollins et al., 1996).

2
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One important stabilization mechanism is the formation of organo-mineral compounds, due to 

sorption or co-precipitation of OM on mineral surfaces (clay minerals, metal ions)  (Kleber et al., 

2015; von Lützow et al., 2006; Sollins et al., 1996). The association of OM with mineral surfaces 

may be more important in subsoils, due to a higher availability of unsaturated mineral surfaces as 

compared to topsoils (Kaiser and Guggenberger, 2003; Rasse et al., 2005). This is also indicated by 

an increasing contribution of OC associated with mineral surfaces on the bulk SOC with soil depth 

(Eusterhues et al., 2007; Lorenz et al., 2011). The mineral-associated OM (MAOM) is also character-

ized by slow turnover rates (Kleber et al., 2015) and therefore contribute to the long-term C storage.

The stability of SOM is also controlled by its accessibility to decomposers and the availability 

of fresh C inputs. Therefore, factors which enhance or reduce the availability and accessibility of 

SOM to soil microorganisms determine the stability of SOC (Dungait et al., 2012; Holden and Fierer, 

2005; von Lützow et al., 2006). Several studies showed that the availability of an energy source for 

soil microorganisms plays an important role for the stabilization of SOC (Fontaine et al., 2004, 2007; 

Marschner et al., 2008). Therefore, as the C inputs from roots, root exudates and DOM decrease with 

depth  (Michalzik et al., 2001; Tückmantel et al., 2017), soil microorganisms are facing more and 

more energetic constraints in deeper soil layers. Hence, soil microorganisms change to a dormant 

state, which requires less energy for metabolism and the decomposition of SOM is reduced  (Joer-

gensen and Wichern, 2018). In consequence, C turnover in subsoils is hampered and SOM remains 

stable. In turn, the input of an easily available energy source may remove energy limitations for 

microorganisms and trigger the decomposition of ancient SOM (Fontaine et al., 2004, 2007). This 

effect is known as priming and usually described as short-term changes in SOM turnover (Bingeman 

et al., 1953; Kuzyakov et al., 2000). Priming effects have been well investigated for topsoils (Blago-

datskaya and Kuzyakov, 2008; Hamer and Marschner, 2005; Kuzyakov et al., 2000), but not for sub-

soils. In fact, only a few studies assessed priming effects in subsoils with contrasting findings (Fierer 

et al., 2003; Fontaine et al., 2007; Karhu et al., 2016; Salomé et al., 2010). Thus, to evaluate the C 

sequestration potential of subsoils more research is needed to answer the questions whether addi-

tional C inputs into subsoils may stimulate the decomposition of old SOM and to which extent. It  

also remains unclear how stable are additional C inputs.

Next to the availability of fresh C inputs, stability of SOM is also linked due to a limited access 

for microorganisms. The physical protection of OM due to aggregation is well known as a stabiliza-

tion mechanisms for SOM. The occlusion of OM reduces the access for microorganisms and enzyme 

and restricts the diffusion of enzymes, soluble OM and oxygen (von Lützow et al., 2006; Sollins et 

al., 1996), which in turn limit the decomposition of occluded OM. However, due to the decreasing 
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density and activity of the soil biota and roots with depth the aggregate formation and stability of 

occluded OM might be different between topsoils and subsoils (Rumpel and Kögel-Knabner, 2011). 

Although, little is known about the role of aggregate formation for SOM stability in subsoils, it is 

assumed that the spatial separation between decomposers and OM is an important mechanism con-

trolling the stability of SOM in subsoils. Moreover, the environmental conditions in subsoils have a 

strong influence  on  the  availability  of  SOM for  microorganisms.  Decreasing  SOC contents  and 

microbial biomass with soil depth can simply reduce the likelihood for microorganisms and their 

enzymes to encounter with SOM (Don et al., 2013; Ekschmitt et al., 2005, 2008). Further, subsoils 

are characterized by a higher spatial heterogeneity of SOM distribution as compared to topsoils, due 

to a greater importance of preferential flow paths, root and bioturbation as C inputs  (Bundt et al., 

2001; von Lützow et al., 2006). These areas may represent hotspots of SOM turnover in subsoils, 

which are characterized by younger SOC with a wider C/N ratio, a higher microbial activity as com-

pared to surrounding bulk soil  (Chabbi et al.,  2009; Hagedorn and Bundt, 2002). However, with 

depth the contribution of hotspots to the whole matrix decreases and leaving a large part of the soil 

matrix sparsely populated that OM may can persist on the long-term  (Bundt et al., 2001). This is 

important beacause the transport between OM and soil microorganisms in subsoils is mainly driven 

by slow and small-scale (µm) diffusion processes (Schimel et al., 2011; Xiang et al., 2008). There-

fore, fresh substrate may not be transported outside those hotspots and in consequence decomposers 

in the surrounding soil matrix became substrate limited and even potentially degradable OM can per-

sist (Heitkötter and Marschner, 2018; Schjønning et al., 2003). The importance of spatial separation 

between decomposers and substrate as stabilization mechanism in subsoils was also indicated by 

incubation studies, which observed similar or even higher SOC mineralization rates of subsoil sam-

ples as compared to topsoil samples (Agnelli et al., 2004; Fierer et al., 2003; Salomé et al., 2010). 

Before the incubation, samples were usually sieved and mixed which may removed the spatial sepa-

ration of decomposers and substrate for the subsoil samples.

In summary, the stability and the high 14C age of subsoil OC may be explained more due to the 

spatial separation of decomposers and substrate and the small and spatial heterogeneous C inputs, 

which lead to energy and nutrient limitations in the subsoil.

However, even though SOC in the subsoils seems stable, there is also evidence that subsoils 

contain an active C pool, which contributes to the short-term C cycle in soils  (Baisden and Parfitt, 

2007; Davidson and Trumbore, 1995; Drewitt et al., 2005) and should not be neglected in C models. 

Moreover, as the SOM stabilization mechanisms may differ between topsoil and subsoil also the 

response of SOM decomposition to temperature or land-use change might be different. It is expected 
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that global warming will accelerate the decomposition of SOM leading to higher C fluxes from soils 

to the atmosphere. In C models the temperature sensitivity of SOM decomposition is based on the 

Arrhenius equation, were reactants with higher activation energies such as more recalcitrant SOM 

have higher temperature sensitivities as compared to more labile SOM. Therefore, it was assumed 

that the temperature sensitivity of SOM decomposition is higher in subsoils, due to a larger propor-

tion of recalcitrant OM as compared to topsoils. However, research so far has shown that the temper-

ature sensitivity of subsoil OM decomposition can be higher, similar or lower as compared to topsoil 

OM decomposition (Davidson and Janssens, 2006; Fierer et al., 2003; Hicks Pries et al., 2017b; von 

Lützow and Kögel-Knabner, 2009), showing that there is still a lack of consensus on the temperature 

sensitivity of SOM decomposition in deeper soil horizons. The higher temperature sensitivity in sub-

soils as in topsoils was explained due to an increase in SOM recalcitrance with depth, but as outlined 

above the high stability of OM in subsoils can not only be explained by recalcitrance. In addition, it 

was pointed out that the intrinsic temperature sensitivity of SOM may be influenced and obscured by 

environmental factors e.g. physical protection of OM within aggregates and substrate availability 

(Davidson and Janssens, 2006; Gillabel et al., 2010). Thus, the lower observed temperature sensitiv-

ity in subsoils may be due to the lower SOC content, lower C inputs or a higher degree of physical  

protection within aggregates. Therefore, if the temperature sensitivity in subsoils is influenced by e.g. 

substrate  availability,  additional  OC inputs  in  subsoils  as  part  of  C sequestration  measures  may 

increase the temperature sensitivity of subsoil OM decomposition. However, so far there is lack of 

experiments and data for such effects.

In summary, even though subsoils play an active role in the global C cycle as revealed by high 

observed  CO2 production  rates  in  subsoils  (Davidson  and  Trumbore,  1995;  Fierer  et  al.,  2005; 

Gaudinski et al., 2000), it is not clear whether CO2 in subsoils originates from the mineralization of 

ancient SOC or the mineralization of young C sources such as DOM inputs or root inputs. Moreover, 

information on the contribution of CO2 production in subsoils to total soil respiration is scare. In 

addition,  the  temperature  sensitivity  of  subsoil  OM  decomposition  remains  unclear,  due  to  the 

unknown effect of environmental constraints in subsoils. Further, some laboratory incubation studies 

were able to show that the decomposition processes in subsoils are hampered due to the unfavorable 

environment conditions in the subsoil  (Fierer et al., 2003; Salomé et al., 2010; Xiang et al., 2008), 

but there is still a lack of experimental evidence for the influences of environmental constraints on C 

turnover in the subsoil under field conditions. One aim of this thesis is to improve the knowledge of 

the C dynamics in subsoils by in situ determination of the CO2 production in different soil depth in 

combination with isotopic measurements. Further, this thesis also aims to examine the mechanisms 
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controlling the stability of SOC in subsoils e.g. substrate availability and spatial separation as well as 

environmental limitation (temperature, moisture, oxygen) in laboratory and field incubation experi-

ments.

6



CHAPTER 1 INTRODUCTION

1.3 Hypotheses

H1: The subsoil contains a labile C pool, which is a relevant part of the annual CO2 efflux 

from the soil to the atmosphere.

H2: The CO2 in the subsoils is derived from recent C sources, due to the mineralization of  

root-derived C or autotrophic respiration, while the mineralization of old C will hardly 

contribute to the CO2 production

H3: The temperature sensitivity of OC mineralization is higher in the subsoil than in the top-

soil if OM recalcitrance is the main stabilization mechanism in the subsoil. If temperature 

sensitivity in the subsoils are obscured by spatial separation and substrate availability, the 

temperature sensitivity of OC mineralization in disturbed subsoil  samples with added 

substrate should be higher than in undisturbed samples.

H4: The increasing stability of SOM with soil depth is controlled by the availability of sub-

strate for decomposers. The low C input into subsoils results in substrate limitations for 

decomposers. Further, the low SOC content in subsoils increases the spatial separation 

between decomposers and substrate, which also reduce substrate availability.
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1.4 Thesis outline

This thesis focuses on a better understanding of the mechanisms regulating C turnover in the 

subsoil. The first section (Chapter 2) is devoted to the identification of sources for C turnover in the  

subsoil as well as to the quantification of CO2 production in the subsoil. The following section inves-

tigates the mechanisms and factors controlling SOC mineralization in the subsoil  in a laboratory 

study (Chapter 3) and a field study (Chapter 4). The last section (Chapter 5) summarizes the major 

findings of this thesis and gives an outlook. 

Vertical partitioning of CO2 production in a beech forest (Chapter 2)

The first study aims to quantify and separate the CO2 production in topsoil and subsoil hori-

zons. Therefore, a two-years field monitoring of soil temperature, soil moisture and CO2 concentra-

tion up to 150 cm depth was carried out in three soil profiles in a beech forest. In addition, stable iso-

tope labeling experiment was established to trace the fate of fresh litter inputs into the soil and to  

quantify the contribution to CO2 production in different soil depths. This was supported by radiocar-

bon measurements of the soil atmosphere down to 150 cm to evaluate the contribution of old SOC to 

CO2 production in the subsoil. This study contribute to hypothesis H1 and H2

Controlling factors for the stability of subsoil carbon in a Dystric Cambisol 
(Chapter 3)

The second study addresses the influence of temperature and substrate limitation on the C min-

eralization in the topsoil and the subsoil for a sandy forest soil. Therefore, the CO2 production of soil 

samples from a topsoil horizon and two subsoil horizons were determined in a laboratory incubation 

experiment. Samples were incubated at 10 °C and 20 °C to assess the temperature effect on C miner-

alization. Further, the addition of 13C labeled roots allowed to evaluate the impact of substrate limita-

tion on SOC mineralization in the subsoil. This study contributes to H3 and H4

Environmental constraints limit C decomposition in the subsoil (Chapter 4)

The objectives of this study are to investigate the impact of changing environmental conditions 

with soil depth on OC decomposition in the field. Therefore, an in situ incubation experiment with 

topsoil  and subsoil samples was carried out.  The addition of  13C labeled litter  allowed to follow 

decomposition processes depending on environmental conditions. This study contribute to hypothesis 

H4.
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CHAPTER 2 VERTICAL PARTITIONING OF CO  ₂ PRODUCTION IN A BEECH FOREST

Abstract

Large amounts of total organic carbon are temporarily stored in soils, which makes soil respira-

tion one of the major sources of terrestrial CO2 fluxes within the global carbon cycle. More than half 

of global soil organic carbon (SOC) is stored in subsoils (below 30 cm), which represent a significant 

C pool . Although several studies and models have investigated soil respiration, little is known about 

the quantitative contribution of subsoils to total soil respiration or about the sources of CO2 produc-

tion in subsoils. In a two-year field study in a European beech forest in northern Germany, vertical 

CO2 concentration profiles were continuously measured at three locations and CO2 production was 

quantified in the topsoil and the subsoil. To determine the contribution of fresh litter-derived C to 

CO2 production in the three soil profiles, an isotopic labeling experiment using 13C-enriched leaf lit-

ter was performed. Additionally, radiocarbon measurements of CO2 in the soil atmosphere were used 

to obtain information about the age of the C source in CO2 production. At the study site, it was found 

that 90 % of total soil respiration was produced in the first 30 cm of the soil profile where 53 % of 

the SOC stock is stored. Freshly labeled litter inputs in the form of dissolved organic matter were 

only a minor source for CO2 production below a depth of 10 cm. In the first two months after litter 

application, fresh litter-derived C contributed on average 1 % at 10 cm depth and 0.1 % at 150 cm 

depth to CO2 in the soil profile. Thereafter, its contribution was less than 0.3 % and 0.05 % at 10 cm 

and 150 cm depths respectively. Furthermore CO2 in the soil profile had the same modern radiocar-

bon signature at  all  depths, indicating that CO2 in the subsoil  originated from young C sources, 

despite a radiocarbon age bulk SOC in the subsoil. This suggests that fresh C inputs in subsoils in the 

form of roots and root exudates are rapidly respired and that other subsoil SOC seems to be relatively 

stable. The field labeling experiment also revealed a downward diffusion of 13CO2 in the soil profile 

against the total CO2 gradient. This isotopic dependency should be taken into account when using 

labeled 13C and 14C isotope data as an age proxy for CO2 sources in the soil.
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2.1 Introduction

Soils are the world’s largest terrestrial organic carbon (C) pool, with an estimated global C 

stock of about 2400 Gt in first two metres of the world’s soils (Batjes, 2014). The CO2 efflux from 

soils, known as soil respiration, is the second largest flux component in the global C cycle  (Bond-

Lamberty and Thomson, 2010; Raich and Potter, 1995) and can be divided into autotrophic respira-

tion, due to roots and mycorrhizae, and heterotrophic respiration, due to the mineralization of soil 

organic carbon (SOC) by decomposers. Global warming is expected to increase soil respiration by 

boosting the microbial decomposition of SOC (Bond-Lamberty et al., 2018; Hashimoto et al., 2015) 

and by greater root respiration (Schindlbacher et al., 2009; Suseela and Dukes, 2013). Although most 

of the CO2 is produced in topsoils (< 30 cm), a significant amount of CO2 is produced in the subsoil 

(> 30 cm)  (Davidson and Trumbore,  1995; Drewitt  et  al.,  2005; Fierer et  al.,  2005; Jassal et  al., 

2005). Despite the fact that more than 50 % of global SOC stocks are stored in subsoils  (Batjes, 

2014; Jobbágy and Jackson, 2000), little is known about the amount and sources of CO2 production 

in  subsoils.  Moreover,  the mechanisms controlling CO2 production in  subsoils  are  still  not  fully 

understood. High apparent radiocarbon (14C) ages of SOC in subsoils (Rethemeyer et al., 2005; Torn 

et al., 1997) lead to an assumption of a high stability of C and a low turnover in subsoils. However, 

laboratory incubations of subsoil samples show similar mineralization rates of SOC in both subsoils 

and topsoils (Agnelli et al., 2004; Salomé et al., 2010; Wordell-Dietrich et al., 2017), suggesting that 

subsoils also contain a labile fraction that should be taken into account as a source for soil respira-

tion.

A range of studies have been conducted on CO2 production in soils, but most of them have 

focused on spatial variations in temperature, water content and substrate supply (Borken et al., 2002; 

Davidson et al., 1998; Fang and Moncrieff, 2001), but ignoring the vertical partitioning of CO2 pro-

duction in the whole soil profile which is essential for understanding soil C dynamics. One reason for 

this might be the measurement methods used to quantify sources and fluxes in the soil profile. Total 

CO2 production can easily be measured at the soil surface with an open-bottom chamber, whereas 

vertical  monitoring of CO2 production needs determination of CO2 concentrations at  several soil 

depths in order to estimate CO2 production, i.e. using the gradient method first described by de Jong, 

E., Schappert (1972). Basically, the CO2 flux between two depths can be calculated using the effec-

tive gas diffusion coefficient and the CO2 gradient between the two depths. Recently, the develop-

ment of low-cost sensors for temperature, soil moisture and CO2 concentration has allowed greater 

use of the gradient method (Jassal et al., 2005; Maier and Schack-Kirchner, 2014; Pingintha et al., 
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2010; Tang et al., 2005). This method can help quantify CO2 production in the entire soil profile, 

which is essential for an improved quantitative understanding of whole soil C dynamics including the 

important contribution made by subsoil. To date there have only been a few studies that have contin-

uously determined CO2 production in the whole soil profile in situ over a longer timescale (Goffin et 

al., 2014; Moyes and Bowling, 2012).

In the present study, the vertical distribution of CO2 concentration was measured and CO2 pro-

duction rates calculated over a two-year period in a Dystric Cambisol in a temperate beech forest. 

The objectives of this study were 1) to quantify the contribution of CO2 production in subsoils to 

total soil CO2 production, and 2) to identify sources of CO2 production along the soil profile using 

sources partitioning via isotopic data (13C and 14C). It was hypothesized that the majority of CO2 in 

subsoils originates from young C sources and not from mineralization of old SOC.
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2.2 Materials and methods

2.2.1 Site description and subsoil observatories

The study site is located in a beech forest (Grinderwald) 35 km northwest of Hannover, Ger-

many (52°34´22´´N, 9°18´49´´E). The vegetation is dominated by common beech trees (Fagus syl-

vatica) that were planted in 1916 and the soil is characterized as a Dystric Cambisol (IUSS Working 

Group WRB, 2014) developed on Pleistocene fluvial  and aeolian sandy deposits  from the Saale 

glaciation. The site is located around 100 m above sea level, with a mean annual temperature and 

precipitation of 9.7 °C and 762 mm (Deutscher Wetterdienst,  Nienburg,  1981–2010) respectively. 

The soil texture of the site is mainly composed of the sand fraction with contents varying from 60 % 

(< 30 cm) to 90 % (> 120 cm), with SOC contents of 11.5 g kg-1 down to (10 cm) 0.4 g kg-1 (185 cm) 

(Heinze et al., 2018; Leinemann et al., 2016).

In July 2013, three subsoil observatories were installed using a stainless steel lysimeter vessel 

(1.6 m diameter and 2 m height) driven 2 m deep into the soil (Figure  2.1a). Once the vessel had 

been inserted, the soil inside the containment was excavated by hand and undisturbed soil  cores 

(5.7 cm inner diameter, 4.0 cm height) taken with five replicates at depths of 10, 30, 50, 90 and 

150 cm from each subsoil observatory for soil diffusivity measurements. In addition, undisturbed soil 

samples in the observatories were taken to estimate fine root density. Thus six samples were taken 

from the forest floor and six samples from each of the upper mineral soil layers (0–10 cm, 10–20 cm, 

20–40 cm) using a soil corer (3.5 cm diameter), and three samples were taken from each depth incre-

ment of the lower profile (40–200 cm depth) at 20 cm depth intervals using a steel cylinder (12.3 cm 

diameter  and  20 cm height).  In  the  laboratory,  the  samples  were  gently  washed  over  sieves  of 

0.25 mm mesh size to separate the roots from adhering soil particles. Under the stereo microscope, 

the rootlets were separated into live (biomass) and dead (necromass) roots, and subsequently into 

fine (< 2 mm in diameter) and coarse roots (> 2 mm in diameter). All live and dead root samples 

were dried at 70 °C for 48 h and weighed.
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Figure 2.1: Photographs of (a) the used lysimeter vessels to drill the hole for the subsoil observatories and (b) 
the used polyethylene shaft as subsoil observatory.

After the lysimeter vessel was removed, a polyethylene shaft (1.5 m in diameter and 2.1 m 

height) was placed in the soil (Figure  2.1b), referred to here as the subsoil observatory. The gap 

(5 cm) between the subsoil observatory and the surrounding undisturbed soil was refilled. The obser-

vatories where installed close to one other, with a maximum distance of 30 m between them.

To monitor the temperature and volumetric water content, combined temperature and moisture 

sensors (UMP-1,Umwelt-Geräte-Technik GmbH, Germany) were installed at depths of 10, 30, 50, 90 

and 150 cm with a horizontal distance of 100 cm from the wall of the subsoil observatories (Figure 

2.2a). Measurements were taken every 15 minutes and stored on a data logger inside the subsoil 

observatory. The CO2 concentration in the soil air was monitored by solid-state infrared gas sensors 

(GMP221, Vaisala Oyi, Finland) with a measuring range of 0–10 % CO2. To protect the PTFE mem-

brane of the CO2 sensor from damage while being placed in the soil, the sensor was coated with an 

additional PTFE foil (616.13 P, FIBERFLON, Turkey), to allow gaseous diffusion and prevent water 

infiltration. The CO2 concentration was measured every three hours to reduce power consumption. 

The CO2 sensors were turned on 15 minutes before the measurement itself due to their warm-up 

time. In addition, PTFE suction cups (25 mm diameter, 60 mm length) for soil air sampling with 

stainless steel tubing (2 mm inner diameter) (ecoTech Umwelt-Meßsysteme GmbH, Germany) were 

installed adjacent to the CO2 sensors. The gas samplers and CO2 sensors were installed at the same 

depths as the temperature and moisture sensors. The horizontal distance of the gas samplers and CO2 

sensors from the subsoil observatory wall increased from 40 cm to 100 cm with increasing soil depth 

(Figure 2.2a).

14



CHAPTER 2 VERTICAL PARTITIONING OF CO  ₂ PRODUCTION IN A BEECH FOREST

Figure 2.2: Schematic overview of the subsoil observatories, the installed sensors and the labeling experiment, 
(a) side view of the subsoil observatory and (b) top view of the labeled and control area

2.2.2 Gas sampling and measurements

Soil respiration

The surface CO2 efflux was measured using the closed-chamber method. Thirty PVC collars 

with a diameter of 10.4 cm and a height of 10 cm were installed 5 cm deep in the soil around the 

three subsoil observatories. The organic layer of 15 collars was removed in order to be able to distin-

guish between mineral soil respiration and total soil respiration. Soil respiration was measured with 

the EGM-3 SRC-1 soil respiration chamber (PP-Systems, USA) and the LI-6400-09 soil chamber 

(LI-COR Inc.,  USA). The measurement system was changed due to technical problems with the 

EGM-3 system, however a comparison between the two systems revealed only minor differences. 

Each collar was measured three times per sampling day from March 2014 to March 2016, with sam-

pling ranging from once a month to once a week. Annual soil respiration was derived from linear 

interpolation of measured CO2 fluxes from the collars. Furthermore, soil respiration was modeled by 

fitting an Arrhenius-type model (Eq. 2.1), introduced by Lloyd and Taylor (1994) and using soil tem-

perature data from 10 cm depth, and the measured CO2 fluxes:

F0 = a × e
(

E0

T + 273.2 − T 0

×
T − 10

283.2 − T 0
) (2.1)
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where F0 is soil respiration [μmol m-2 s-1], a, E0 and T0 are fitted model parameters, and T is the soil 

temperature at 10 cm depth [°C].

13CO2 sampling and measurement

In addition to continuous CO2 concentration monitoring, two gas samples per depth and subsoil 

observatory were taken at the end of the stainless steel tubing from the suction cups with a syringe 

and filled into 12-mL evacuated gas vials (Labco Exetainer,  Labco Limited,  UK). The sampling 

started in May 2014 with an interval of between once a month and once a week. The CO2 concentra-

tion in the soil gas samples was analyzed by gas chromatography (Agilent 7890A, Agilent Technolo-

gies, USA). The δ13C values of the CO2 samples were measured by an isotope ratio mass spectrome-

ter (Delta Plus with GP interface and GC-Box, Thermo Fisher Scientific, Germany) connected to a 

PAL autosampler (CTC Analytics, Switzerland). The 13C results are expressed in parts per thousand 

(‰) relative to the international standard Vienna Pee Dee Belemnite (VPDB).

14CO2 sampling and measurement

Soil gas samples for radiocarbon analysis were taken in October and December 2014 in subsoil 

observatories  1  and  3.  The  CO2 was  sampled  using  a  self-made  molecular  sieve  cartridge  as 

described in Wotte et al. (2017). Briefly, each stainless steel cartridge was filled with 500 mg zeolite 

type 13X (40/60 mesh, Charge 5634, IVA Analysetechnik GmbH & Co KG, Germany), which is 

used as an adsorbent for CO2. The molecular sieve cartridges were connected to the installed gas 

samplers.  The soil  atmosphere  of  the corresponding depth was then pumped with an  airflow of 

7 mL min-1 over a desiccant (Drierite, W. A.Hammond Drierite Company, USA) to the molecular 

sieve cartridge for 40 minutes to trap the CO2 on the molecular sieve. Surface samples were taken 

from a respiration chamber (30 cm diameter)  (Gaudinski et al., 2000). The atmospheric CO2 inside 

the chamber was removed prior to sampling by circulating an airflow of ≈ 1.5 L min-1 from the 

chamber through a column filled with soda lime until the equivalent of 2-3 chamber volumes had 

been passed over the soda lime. Thereafter, the airflow was run over a desiccant and the molecular 

sieve cartridge for 10 minutes to collect the CO2 sample.

In the laboratory, the adsorbed CO2 was released from the molecular sieve cartridge by heating 

the molecular sieve under vacuum (Wotte et al., 2017). The released CO2 was purified cryogenically 

and sealed in a glass tube. The radiocarbon (14C) analysis was directly performed on the CO2 with the 

gas ion source of the mini carbon dating system (MICADAS, Ionplus,Switzerland) at ETH Zurich 
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(Ruff et al., 2010). The 14C concentrations are reported as fraction modern carbon (F14C), whereby 

F14C values less than one denote that the majority of the C was fixed before the nuclear bomb tests in 

the 1960s, while values greater than one indicate C fixation after the bomb tests.

2.2.3 Labeling experiment

To trace the fate of fresh litter inputs in the soil and their contribution to the CO2 released from 

different soil horizons, a 13C labeling experiment was performed. In January 2015, the leaf litter layer 

around  the  subsoil  observatories  was  removed  and  replaced  with  a  homogeneous  mixture  of 

237 g 13C labeled  and 1575 g  non-labeled  young beech litter,  which  is  equal  to  a  litter  input  of 

250 g m-2. The labeled litter was distributed on a semi-circular area (6.6 m2) around the subsoil obser-

vatories (Figure 2.2b). The labeled litter originated from young beech trees grown in a greenhouse in 

a  13CO2 -enriched atmosphere. The mixture of labeled and non-labeled litter had an average δ13C 

value of 1241 ‰ for subsoil observatory 1 (OB1) and a δ13C value of 1880 ‰ for subsoil observato-

ries 2 (OB2) and 3 (OB3).

2.2.4 Diffusivity measurements

Gas transport along the soil profile is determined by the diffusivity of the soil. The diffusivity 

of the soil was determined at depths of 10, 30, 50, 90 and 150 cm, with five undisturbed core sample 

replicates per depth and per observatory. To account for different water contents, the undisturbed soil 

cores (5.7 cm diameter, 4.0 cm height) were adjusted in the laboratory at different matrix potentials 

(-30,  -60 and -300 hPa) to cover a wide range of soil moisture. After moisture adjustment, the soil 

cores were attached to a diffusion chamber as described in  Böttcher et  al.  (2011).  The diffusion 

chamber was flushed with nitrogen to initially establish a gas gradient between the chamber and the 

top of the sample as an atmospheric boundary condition. The increase in oxygen inside the ventilated 

chamber was measured over time with an oxygen dipping probe (DP-PSt3-L2.5-St10-YOP, PreSens-

Precision Sensing GmbH, Germany). Diffusivity and tortuosity factors (τ) were calculated with an 

inverse diffusion model (Schwen and Böttcher, 2013).
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2.2.5 Data analysis

Gradient method

This method is based on the assumption that molecular diffusion is the main gas transport in 

the soil atmosphere. Therefore gas fluxes, e.g. CO2 fluxes in a soil profile, can be calculated from the 

CO2 concentration gradient and the effective gas diffusion coefficient in the specific soil layer of 

interest. In order to account for temperature and pressure dependencies of the CO2 sensors, the CO2 

concentrations were corrected with a compensation algorithm for the GMP221 (Eq. S2.1) provided 

by the manufacturer (pers. comm. Niklas Piiroinen, Vaisala Oyi, Finland). For the flux calculation, 

CO2 volume concentrations were converted to CO2 mole concentrations (Eq. 2.2):

C =
Cv × p
R × T

(2.2)

where C is the CO2 mole concentration [μmol m-3], Cv is the CO2 volume fraction [μmol mol-1], p is 

the atmospheric pressure in [Pa], R is the universal gas constant [8.3144 J K-1 mol-1] and T is the soil 

temperature in [K] measured by temperature sensors at the corresponding soil depths. The CO2 flux 

of a soil layer was calculated using Fick’s first law (Eq. 2.3)

F = −Ds ×
dC
dz

(2.3)

where F is  the diffusive CO2 flux [μmol m-2 s-1],  D s is  the effective diffusivity in the soil 

atmosphere [m2 s-1] determined as described below, C is the CO2 concentration [μmol m-3] and z is the 

depth [m]. The equation is based on the assumption that 1) molecular diffusion is the dominating 

transport process in the soil atmosphere and other transport mechanisms - i.e. convective CO2 trans-

port due to air pressure gradients or diffusion in the soil, and convective transport with soil water are 

negligible and 2) gas transport is one-dimensional (e.g.,  de Jong, E., Schappert, 1972; Maier and 

Schack-Kirchner, 2014). The effective diffusivity Ds was calculated with Eq. (2.4):

D s = D0 × τ (2.4)

where D0 is the CO2 diffusivity in free air. The pressure and temperature effect on D0 were taken into 

account by:

D0 = Da 0 × ( p0

p )× (
T
T0

)
1.75

(2.5)
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where Da0 is a reference value of D0 at standard conditions (1.47 × 10-5 m2 s-1 at T0 293.15 K and p0 

1.013 × 105 Pa) (Jones, 1994)(Jones, 1994). The dimensionless tortuosity factor τ at each depth was 

modeled as a function of the air-filled pore space ε for each soil depth. The model was derived from 

a power function fit from laboratory diffusion experiments (see above) on the undisturbed soil cores. 

To account for the non-uniform vertical distribution of soil water content in the soil profile, Ds was 

estimated as the harmonic average between the two measurement depths  (Pingintha et al.,  2010; 

Turcu et al., 2005):

D s=
Δ z1+ Δ z2

Δ z1

D sz1

+
Δ z2

D sz2

(2.6)

where ∆z1,2 [m] is the thickness of the corresponding soil layer and Dsz1,2 is the effective diffusivity of 

the respective soil layer. Finally, assuming a constant flux between measured CO2 at depth zi and zi+1, 

the CO2 flux (Fi) was calculated by combining Eq. (2.2-2.6):

F i = (
Δ z i + Δ z i+1

Δ z i

Dszi

+
Δ zi+1

D szi+1
)× (

C i+1−Ci

z i+1− zi
) (2.7)

where Fi is the CO2 flux [μmol m-2 s-1] at the upper boundary (zi) between depth zi and zi+1 [m]. To 

calculate  soil  respiration  (F0)  at  the  surface  with  the  gradient  method,  a  CO2 concentration  of 

400 µmol mol-1 at the soil surface and a constant Ds for the first 10 cm were assumed.

CO2 production

The CO2 production (Pi) in a soil layer was calculated as the difference between the flux (Fi) 

leaving the specific soil layer at the upper boundary (zi) and the input flux (Fi+1) at the lower bound-

ary (zi+1) of the specific soil layer. Therefore, Pi had the unit of a flux [μmol m-2 s-1] (similar approach 

was done by e.g., Davidson et al., 2006; Fierer et al., 2005; Gaudinski et al., 2000; Hashimoto et al., 

2007.

Pi=F i−F i+1 (2.8)

Total soil respiration was calculated as the sum of CO2 production in all soil layers. Equation (2.8) is 

based on the assumption of steady-state diffusion. Steady-state conditions for CO2 concentration and 

volumetric water content were mostly given, except during a few heavy rain events where steady-
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state conditions were not  met due to changing water contents in  the profiles.  Most soils  exhibit 

increasing CO2 concentrations with increasing soil depth. Therefore, CO2 production is mostly posi-

tive with upward CO2 fluxes. However, if the CO2 concentration in a soil layer is greater than in the 

layers below, the calculated CO2 production in the layers below can become negative (downward 

directed). Hence in the present study no CO2 production was assumed when the calculated CO2 pro-

duction in a soil layer was negative. This approach was based on the assumption that there are no rel-

evant CO2 sinks in the soil profile. Furthermore, negative CO2 production is considered as CO2 stor-

age, which will be released if the CO2 concentration gradient or diffusion conditions change. In OB1 

negative CO2 production values were calculated in the first year at 30-50 cm depth (331 out of 365) 

and at 50-90 cm depth (359 out of 365). In the second year negative values also occurred in OB1 at 

30-50 cm depth (8 out of 308) and at 50-90 cm depth (182 out of 308)

Isotopic composition of CO2

To determine the contribution of the labeled leaf litter to CO2 in the soil atmosphere we used 

the isotopic mixing equation (Eq. 2.9):

L = 1 − (
δ CM

13
− δ CL

13

δ CB
13

− δ CL
13 ) (2.9)

where δ13CM is the isotopic signature of the gas sample, δ13CL is the isotopic signature of the labeled 

leaf litter (1241 ‰ for OB1 and 1880 ‰ for OB2 and OB3) and δ13CB is the average isotopic signa-

ture of the soil atmosphere for each observatory and depth before the labeled leaf litter was applied,  

assuming there was no change. The litter-derived CO2 flux was calculated by multiplying the amount 

of litter-derived C (L) with the CO2 flux of the respective soil layer. Afterwards, litter-derived CO2 

production was determined according to Eq. (2.8). The absolute 13CO2 concentration was calculated 

with isotopic signature of the soil atmosphere and 13CO2 fluxes were calculated using Eq. (2.2-2.7). 

To account for different effective diffusivities of  12CO2 and  13CO2 the effective diffusivity Ds for 
13CO2 was adjusted according to (Cerling et al. (1991):

D s =
12 Ds = 1.0044 ×

13 D s (2.10)

where it is assumed that Ds is equivalent to 12Ds due to the fact that about 99 % of total CO2 is 12CO2.
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2.2.6 Statistical analysis

A Monte Carlo simulation was generated to determine the influence of measurement uncertain-

ties of the sensors, which were used for calculation of CO2 fluxes and CO2 production rates. It was 

assumed that each measurement error was normally distributed. The standard deviation was equal to 

measurement accuracy, which was obtained from the corresponding manual.  The distributions of 

CO2, volumetric water content and temperature measurements were used for 1000 Monte Carlo sim-

ulations. Unless stated otherwise, the error bars in the final results represent the standard deviation of 

these simulations. All analyses were performed in R (version 3.3.2) for Linux (R Core Team, 2017).
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2.3 Results

2.3.1 Temperature, water content and CO2 concentration in the profile

Soil temperature showed a distinct seasonality down to 150 cm, with the maximum and the 

minimum temperatures delayed with increasing soil depth (Figure 2.3a). The minimum soil tempera-

ture was 0.3 °C and 4.0 °C in January 2016 at 10 cm and 150 cm depths respectively. The maximum 

temperature was measured in July in the uppermost layer (16.6 °C) and in August in the deepest layer 

(14.4 °C). The annual amplitude of soil temperature decreased from 16.3 °C at 10 cm to 10.4 °C at 

150 cm. However, mean annual values showed no significant decline with soil depth and were 8.4 °C 

and 8.3 °C at 10 cm and 150 cm respectively during the two years of observation. Variations in the 

mean soil temperatures between the three observatories were < 1 °C at all depths (Figure S3.1).

The volumetric water contents also showed seasonal variations at all depths (Figure 2.3b), with 

depletion during the summer. The minimum of volumetric water content at 10 cm was reached in 

August (10 %), whereas the minimum at 150 cm was observed two months later in October (6 %). 

The water reservoir of the soil profile was refilled during the autumn and winter, reaching maximum 

values at 10 cm (23 %) and 150 cm (22 %) in April (Figure 2.3b), which were delayed by 14 days in 

the deepest layer. In OB1 and OB3, the mean volumetric water content decreased with increasing soil 

depth. Only in OB2 did the mean water content increase at 150 cm (Figure S3.2). The water content 

showed a greater variation between the three observatories than soil temperature (Figure S3.2).

The CO2 concentration in the soil pores followed a similar seasonality as soil temperature (Fig-

ure 2.3c), with a maximum during the summer and a minimum during the winter and early spring.  

The same behavior was observed for both investigated years, while the values were higher during the 

first summer. The CO2 concentration in the uppermost layer ranged from 1,000 to 35,000 μmol mol-1 

and thus was in a similar range of results for the deepest layer with 7,500 to 35,000 μmol mol-1. 

However, values were highly variable between the observatories, with OB2 and OB3 showing an 

increasing CO2 concentration with greater soil depth, whereas OB1 yielded the highest CO2 concen-

trations at 30 to 50 cm depth.
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Figure 2.3: Soil profile measurements of temperature (a), volumetric water content (b) and CO2 concentration 
for the three observatories (OB). White bars represent periods without measurements

2.3.2 Soil respiration

The mean annual mineral (without the organic layer) soil respiration determined with chamber 

measurements for the three observatories was 776 ± 193 g C m-2 yr-1, with a small variability between 

the observatories (Table  2.1). The mineral soil respiration modeled with the Lloyd-Taylor function 
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gave similar results for the same period. In contrast, soil respiration determined with the gradient 

method showed a high variability between the observatories, but was in the range of the directly 

measured respiration, except for OB1. This variability can be explained by the higher water content 

at OB1 and consequently the lower diffusion coefficient. The average diffusion coefficient at OB1 at 

10 cm was less than half that at OB2 and OB3. The organic layer increased total respiration by 13 % 

and 25 % respectively for the Lloyd-Taylor model and chamber measurements (Table 1). For all the 

methods and in all the observatories, soil respiration correlated well with soil temperature and soil 

moisture. The highest fluxes were measured when soil temperature (10 cm) was highest and water 

content (10 cm) was low (Figure 2.3 and Figure 2.4).

Table 2.1: Total soil respiration from August 2014 to August 2015 in [g C m-2 yr-1] with and without the organic layer for 
the three observatories derived from soil surface measurements with linear interpolation (Chamber),  modeled with a  
Lloyd-Taylor function and derived from the gradient method based on CO2 measurements along the soil profile for one 
year. Means and standard deviations.

Observatory
Without organic layer With organic layer

Chamber Llyod-Taylor Gradient method Chamber Llyod-Taylor

OB1 699 (180) 778 469 (2) 923 (70) 990

OB2 804 (211) 780 847 (4) 860 (273) 816

OB3 824 (204) 916 1012 (4) 1120 (349) 980

Mean 776 (193) 825 (79) 776 (278) 967 (266) 929 (98)

Figure 2.4: Mean daily soil respiration determined with the gradient method, measured with chambers and mod-
eled with a Lloyd-Taylor function for the observatories (OB)

2.3.3 Vertical CO2 production

The mean  CO2 production rates decreased from 1.4 μmol m-2 s-1 in the uppermost layer (0–

10 cm depth) to 0.03 µmol m-2 s-1 in the deepest layer (50–90 cm depth) (Figure 2.5). The CO2 pro-

duction followed the same seasonality as soil temperature and CO2 concentration, with the highest 
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productions rates occurring during the summer and the lowest during the winter months in all soil 

layers. This seasonal variation was greatest in the top two layers of the soil (0–10, 10–30 cm) (Figure 

2.5a-d).

Figure 2.5: Daily mean CO2 production in each soil layer (a)-(d). Arrows indicate disturbance due to bioturba-
tion of voles close to the CO2 sensors in 10 cm depth (OB1 and OB3), which created macropores and changed 
diffusivity.
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Figure 2.6: Cumulative CO2 production for each soil layer, observatory (OB) and year of observation. Error bars 
represent standard deviation.

About 70 ± 17 % of total soil respiration was produced in the first 10 cm of the soil profile 

where 21 % of the SOC stock (0–1.5 m) was stored. The CO2 production at 10 to 30 cm accounted 

for 20 ± 14 % of total soil respiration during the year, and 32 % of the SOC was located in this depth 

increment. The subsoil (> 30 cm) accounted for 10 ± 9 % of total CO2 production, with 47 % of the 

SOC stock stored in the subsoil. The mean total  CO2 production showed no significant differences 

between the two years. The variation in total annual CO2 production was greater between the three 

observatories (326–1,008 g CO2-C m-2
 yr-1 ) than between the two studied years (Figure 2.6). How-

ever,  the  CO2 production  in  the  different  soil  layers  showed considerable  changes  with  time:  it 

increased by 500 % in the subsoil from 30 to 50 cm in the second year, which increased the contribu-

tion  of  subsoil  CO2 production  from  4 % to  16 % of  total  CO2 production.  This  increase  was 

observed in all three observatories. In contrast, the  CO2 production in the first 10 cm in OB1 and 

OB3 showed a decline from the first to the second year, which was probably caused by methodologi-

cal variations and does not represent a real decrease in respiration activity since bioturbation of ani-

mals (e.g. voles) might have had a strong influence on diffusivity (Figure 2.5a). Voles created macro-

pores, therefore the CO2 gradient approach was not applicable. This was also indicated by a sudden 

and rapid drop of  CO2 production between 0 and 10 cm in OB1 (October 2015) (Figure  2.5a). To 

take the different SOC contents of each soil layer into account, the cumulative CO2 production was 

normalized  to  the  SOC stock  of  the  respective  layer  (Figure  2.7).  The  specific  CO2 production 
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decreased  from 322 g CO2-C kg-1 SOC yr-1 in  the  first  10 cm to  9 g CO2-C kg-1 SOC yr-1 at  50  to 

90 cm. It should be noted that the proportion of autotrophic respiration in the total  CO2 production 

could not be quantified.

Figure 2.7: Annual specific CO2 production for the total CO2 efflux. Mean (n=3) and standard deviation.

2.3.4 Sources of CO2 production

Contribution of fresh litter

The isotopic signature of soil  CO2 (δ13CO2) in the observatories before the start of labeling 

experiment ranged from -25.4 ‰ to -21.8 ‰, with no significant differences between soil depths 

(Figure 2.8a). The labeling experiment was conducted to assess the fate of fresh litter added on top of 

the organic layer into different C fractions (e.g. SOC and DOC) including soil CO2. Six days after the 

application of the 13C-labeled leaf litter, CO2 was already enriched in litter-derived C down to 90 cm 

depth in all the observatories. The isotopic signature ranged from 70 ‰ at 10 cm depth to -19 ‰ at 

90 cm depth (Figure 2.8b). Thus, the maximum contribution of litter-derived C to total CO2 was 5 % 

at 10 cm depth six days after the litter replacement (Figure 2.8c). At 90 cm, the maximum amount of 

litter-derived CO2 was 0.6 % two weeks after the beginning of the labeling experiment (Figure 2.8c). 

In addition, minor peaks with up to 0.8 % of CO2 derived from the labeled litter were observed at all 

depths after rain events within the first six months of litter application. The average contribution of 

litter-derived CO2 decreased with time and reached a range of 2.5 % to 0.2 % at 10 cm depth from 
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January 2015 to July 2016. The total amount of labeled litter-derived C to the CO2 production below 

10 cm was 408 mg C m-2 (± 329) (Figure 2.9), which accounted for 0.18 % of total CO2 production 

below 10 cm depth.

Assuming that diffusion is the main transport process of CO2 in the soil atmosphere, the CO2 

flux between two soil layers can be calculated for each C isotope separately. As mentioned, a positive 

flux indicates release of  CO2 from mineralization or root respiration in the respective soil layer. A 

negative flux in turn represents downward diffusion of CO2 from the layer above. Due the high 13C 

enrichment of the applied litter, negative  13CO2 fluxes can indicate a downward diffusion of litter-

derived CO2 from the soil layer above (Figure 2.10). On average for the three observatories, 20 out of 

41 sampling had negative  13CO2 fluxes below 90 cm depth, indicating a downward movement of 

labeled litter-derived  CO2. Further, OB2 and OB3 had positive  13CO2 fluxes between 10 to 90 cm, 

indicating a transport of labeled litter-derived C down the soil profile as dissolved organic carbon 

(DOC) and mineralization of this DOC. While, the observed 13C enrichment in CO2 in OB1 below 

30 cm depth might also be influenced by diffusion of labeled litter-derived 13CO2 from the soil layer 

above (10 to 30 cm).
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Figure 2.8: Isotopic signature of CO2 at each depth and observatory (OB) before the addition of the labeled litter 
(a) and after labeled litter addition (b) with daily precipitation data (blue bars). The relative amount of litter-
derived CO2 on total CO2 in each depth and observatory (c). Please note the different y-axis ranges for (b) and 
(c).
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Figure 2.9: Litter-derived CO2 production in each soil layer (a)-(c). Mean (n=3) and standard error

Figure 2.10: 13CO2 fluxes for each observatory. Negative fluxes represents diffusion of 13CO2 from the soil layer 
above.
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Contribution of old C

The radiocarbon content of the bulk SOC decreased strongly with increasing soil depth from 

close  to  atmospheric  values  (F14C 0.99)  at  10 cm  to  an  apparent  age  of  about  3460  years  BP 

(F14C 0.65) at 110 cm depth (Figure  2.11, grey triangles). In contrast, the  14C concentrations of the 

CO2 in the soil atmosphere were relatively constant throughout the soil profile and for both sam-

plings, with values in the range of 1.03–1.07 F14C and thus derive mainly from the post-bomb period 

(Figure 2.11, black dots). This indicates a young source of CO2 production. Consequently “old” sub-

soil SOC was not detected as a significant source of CO2 production.

Figure 2.11: Mean 14C concentration (F14C) of bulk SOC (grey triangles; data from Angst et al. (2016) and CO2 

in the soil atmosphere (black dots). The solid black lines represents the annual average F 14C value in the atmos-
phere from 2014 measured at the Jungfraujoch alpine research station, Switzerland (Levin and Hammer, pers. 
communication).
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2.4 Discussion

2.4.1 Temperature, water content and CO2 concentration in the profile

In all  three subsoil  observatories, increasing CO2 concentrations with depth were observed. 

This has also been reported by other studies (Davidson et al., 2006; Drewitt et al., 2005; Fierer et al., 

2005; Hashimoto et al., 2007; Moyes and Bowling, 2012). However, the increase was not continuous 

down to 150 cm depth. Higher CO2 concentrations were observed between 30 cm and 50 cm depth, 

indicating a higher CO2 production at this depth increment, which can be linked to the root distribu-

tion in the subsoil observatories (Figure 2.12). About 82 % of the fine root biomass and necromass 

were found to be located between 0 and 50 cm, and 18 % at the 30 to 50 cm depth. Therefore, the 

contribution of autotrophic respiration to CO2 production and the mineralization of dead roots were 

greater at these depths than in the deep subsoil (> 50 cm). The CO2 concentration in the soil pores is 

also controlled by abiotic factors such as effective diffusivity (Ds). The average effective diffusivity 

(Ds) at 10 cm was about 40 % lower than at 30 cm. Consequently CO2 accumulated in the soil pores 

below 10 cm depth due to the lower diffusion of CO2 between the soil surface and 10 cm depth. The 

effective diffusivity was mainly controlled by soil water content, which reduced it. For example, the 

high CO2 concentration in August 2014 (up to 40,000 µmol mol-1) compared to August 2015 (up to 

20,000 µmol mol-1) (Figure 2.3c) can be explained by the higher volumetric water content in 2014 in 

all profiles. The high water content was related to more precipitation in July 2014 (120 mm) than in 

July 2015 (47 mm) and to less precipitation in August in both years (49 and 95 mm). Additionally, 

evapotranspiration was greater in August 2015 than in August 2014 due to a higher mean air temper-

ature (18 °C and 15 °C).
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Figure 2.12: Mean fine root density for biomass and necromass of the subsoil observatories. Error bars represent 
standard error.

2.4.2 Soil respiration

The annual mean total respiration determined using the gradient method corresponded well 

with the results of the closed chamber measurements, indicating that the gradient method resulted in 

realistic flux estimations (Table  2.1, Figure  2.4). This is in line with the results reported by other 

studies (Baldocchi et al., 2006; Liang et al., 2004; Tang et al., 2003). The differences in soil respira-

tion between the methods can be attributed to the different spatial resolution of the corresponding 

measurements. The chamber measurements were based on five spatial replicates for each subsoil 

observatory,  covering  a  total  measurement  area  of  1274 cm2.  Therefore  chamber  measurements 

accounted for spatial variability in water content and soil CO2 concentrations below the chamber, 

whereas the gradient method was based on one profile measurement for CO2 and water content at 

each of the three observatories. Large differences in total respiration rates of up to 200 % were found 

between the three observatories with the gradient method. Both methods have advantages and disad-

vantages for determining total soil respiration. The gradient method does not alter the soil atmos-

phere CO2 gradient and is continuous and less time-consuming than chamber measurements, but it is 

vulnerable to the spatial heterogeneity of the soil structure, moisture content around the sensors and 

to changes in diffusivity, e.g. due to bioturbation. For example, the higher soil respiration determined 

with the gradient method at OB2 and OB3 in summer (Figure 2.4) is linked to lower soil moisture 
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measured in 10 cm depth (Figure 2.3b) and to higher total soil porosity (51 % OB2, 49 % OB3 vs. 

46 % OB1). In consequence, the effective diffusivity (Eq. 2.4) is higher, resulting in higher fluxes. 

Further, the lower soil respiration of OB1 and OB3 in the second year determined with the gradient 

method was related to bioturbation of voles, which increased the diffusivity around the CO2 sensors 

and leading to a lower CO2 concentration in 10 cm depth, which in turn led to an underestimation of 

total soil respiration (Figure 2.4) by the gradient method.

Removing the organic layer in the soil collars was supposed to determine the contribution of 

CO2 production  in  the  organic  layer  to  total  soil  respiration.  Since  the  organic  layer  was  only 

removed in the soil collars and not around the soil collars, it must be noted that the contribution of  

the organic layer to total soil respiration might be underestimated with the used method. However, 

the results are in line with findings from litter manipulation experiments, which reported a contribu-

tion of 9 % to 37 % of the organic layer to total soil respiration  (Bowden et al., 1993; Kim et al., 

2005; Nadelhoffer et al., 2004; Sulzman et al., 2005).

2.4.3 Vertical CO2 production

The vertically partitioned CO2 flux revealed that more than 90 % of total CO2 efflux was pro-

duced in the topsoil (< 30 cm). These results correspond well with other studies which have found 

that more than 70 % of total CO2 efflux in temperate forests is produced in the upper 30 cm of the 

soil profile  (Davidson et al., 2006; Fierer et al., 2005; Hashimoto et al., 2007; Jassal et al., 2005; 

Moyes and Bowling, 2012). Nevertheless, only 53 % of the SOC stock is stored in the first 30 cm, 

indicating that subsoil SOC on the site of the present study may have a slower turnover than topsoil  

SOC. This is supported by the low 14C concentrations in SOC below 30 cm. However, the higher CO2 

production in the topsoil can be also related to greater fine root biomass and necromass density (Fig-

ure 2.12), which may serve as an indicator of autotrophic respiration and heterotrophic respiration in 

the rhizosphere.  Even if  the current  study is  unable to  distinguish between autotrophic and het-

erotrophic respiration, the importance of autotrophic respiration to total soil respiration was shown in 

a large scale girdling experiment by Högberg et al. (2001). They reported that autotrophic respiration 

accounted for up to 54 % on total soil respiration. In consequence, autotrophic respiration should be 

higher in the topsoil than in the subsoil, due to the decreasing root bio- and necromass with increas-

ing soil depth (Figure 2.12).

It is remarkable that the CO2 production at 30 to 50 cm increased from 23 g C m-2 yr-1 in the 

first year to 118 g C m-2 yr-1 in the second year of the study (Figure 2.6). This can be explained in part 

by more precipitation in the second year (621 mm) than in the first year (409 mm), inducing less 
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water-limiting conditions for plants and microbial activity. As a result, the mean volumetric water 

content was higher in the second year (18 % compared to 16 %) at 50 cm depth, which gave better 

conditions for the mineralization of SOC by microorganisms  (Cook et  al.,  1985; Moyano et  al., 

2012). Furthermore, the greater precipitation increased the input of DOC into the subsoil on the site 

of the present study, which is supported by the study of (Leinemann et al., 2016) who investigated 

DOC fluxes in subsoil  observatories for more than 60 weeks.  They found a positive correlation 

between DOC fluxes, precipitation and water fluxes at 10, 50 and 150 cm depths. Furthermore, they 

showed that DOC fluxes declined by 92 % between a depth of 10 cm and 50 cm, which was attrib-

uted to mineral adsorption and microbial respiration of DOC (Leinemann et al., 2016).

2.4.4 Sources of CO2 production

Young litter derived CO2

In this study, a unique labeling approach was used to estimate the contribution of aboveground 

litter to CO2 production along a soil profile by applying stable isotope-enriched leaf litter to the soil 

surface. These results showed that litter-derived C did not significantly contribute to annual CO2 pro-

duction below 10 cm depth. Leaf litter is decomposed and washed into the mineral soil as DOC. 

Within one year, only 0.12 % of total CO2 production between 10 and 90 cm originated from the 

labeled leaf litter. Therefore, mineralization of DOC originating from the organic layer was a minor 

source of CO2 production in the soil  profile below 10 cm. The average DOC flux in the subsoil 

observatories in the first year was estimated to be 20 g C m-2 yr-1 at 10 cm depth and 2 g C m-2 yr-1 at 

50 cm depth,  indicating a  DOC input  of 18 g C m-2 yr-1 into the 10 and 50 cm depth increments 

(Leinemann et al., 2016). An assumed complete mineralization of this DOC would account for 11 % 

of CO2 production at this depth increment. Overall, most of the CO2 production between a depth of 

10 cm and 90 cm must be derived from autotrophic respiration and heterotrophic respiration in the 

rhizosphere.

Old C derived CO2

The very similar radiocarbon contents of soil CO2 produced at different depths, which were 

1.06 F14C on average, revealed that ancient SOC components were not a major source of CO2 pro-

duction. The results indicate that the CO2 originated mainly from young (several decades old) C 

sources, presumably mainly from root respiration, its exudates and DOC. Other studies have found 

similar results on a grassland site in California down to 230 cm depth (Fierer et al., 2005) and in tem-
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perate forests down to 100 cm (Gaudinski et al., 2000; Hicks Pries et al., 2017b). In addition, Hicks 

Pries et al. (2017) incubated root-free soil from three depths (15, 50 and 90 cm) and compared the 

radiocarbon signature of the respired CO2 with their results from the field. They found that CO2 from 

the short-term incubations had the same modern signature as the field measurements, despite the high 
14C age of the bulk SOC at 90 cm depth (1000 yr BP) (Hicks Pries et al., 2017b). This supports the 

findings of the present experiment. Therefore, microbial respiration in temperate subsoils is mainly 

fed by relatively young C sources fixed less than 60 years ago.

Diffusion effects

A highly  13C-enriched CO2 source was introduced to the top of a soil profile. Shortly after-

wards, an enrichment of 13C was measured in CO2 along the whole soil profile (Figure 2.8b). How-

ever, this enrichment could not only be linked to transport and mineralization of litter-derived C 

along the soil profile (e.g. DOC in seepage water). The diffusion of 13CO2 down the soil profile has 

also to be taken into account. According to Fick’s first law, 13CO2 diffuses into the soil profile follow-

ing the 13CO2 gradient independently from the 12CO2 gradient. Thus even though the total CO2 con-

centration increased with soil depth, meaning an upward diffusion of 12CO2, the 13CO2 gradient could 

be the opposite due to  13C-enriched leaf litter leading to a downward diffusion of  13CO2 . Conse-

quently this could lead to a misinterpretation of the pathways of subsoil 13CO2 in tracer experiments. 

Furthermore, this effect should also be taken into consideration when interpreting 14CO2 soil profile 

measurements as an indicator of the age of the mineralized SOC, as in other field studies (Davidson 

et al., 2006; Davidson and Trumbore, 1995; Fierer et al., 2005; Gaudinski et al., 2000). Downward 

diffusion of  14CO2 might be an important factor for explaining the observed  14CO2 profiles. If this 

downward diffusion is the case, the 14CO2 gradient should not have a continuous decrease with soil 

depth since the 14CO2 gradient is the driving factor for diffusion according to Eq. (2.3). In fact, 14CO2 

concentration at 30 cm depth in subsoil OB1 was greater than at 50 cm depth (Figure 2.13), which in 

turn led to a downward diffusion of 14CO2 from a depth of 30 cm to 50 cm. This might lead to a reju-

venation of the 14CO2 soil profile and to an underestimation of the mineralization of old SOC in sub-

soils.
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Figure 2.13: Soil air 14CO2 concentration in observatory 1 from December 2014.
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2.5 Conclusion

The gradient method allowed total soil respiration to be partitioned vertically along a soil pro-

file. Most of the CO2 (90 %) was produced in the topsoil (< 30 cm). However, the subsoil (> 30 cm), 

which contained 47 % of SOC stocks,  accounted for  10 % of total  soil  respiration.  This can be 

explained by a larger amount of stable SOC in subsoils as compared to topsoils. However, the mod-

ern radiocarbon signature of CO2 throughout the soil profiles indicated that mainly young carbon 

sources were being respired from roots and root exudates and autotrophic respiration. The contribu-

tion of old SOC to subsoil CO2 production was too small to significantly alter the 14C concentrations 

in the soil atmosphere used to identify CO2 sources. Furthermore, this study showed that the mineral-

ization of fresh litter-derived C only contributed to a small part of total soil respiration, underlining 

the importance of roots and the rhizosphere for subsoil CO2 production.

38



CHAPTER 3 CONTROLLING FACTORS FOR THE STABILITY OF SUBSOIL CARBON IN A DYSTRIC CAMBISOL

CHAPTER 3 CONTROLLING FACTORS FOR THE STABILITY OF 

SUBSOIL CARBON IN A DYSTRIC CAMBISOL

Patrick Wordell-Dietrich, Axel Don, Mirjam Helfrich, 

Thünen Institute of Climate-Smart Agriculture, Bundesallee 65, 38116 Braunschweig, Germany

Submitted: 15th of December 2015

Journal: Geoderma

Citation: Wordell-Dietrich, P., Don, A. and Helfrich, M.: Controlling factors for the 
stability of subsoil carbon in a Dystric Cambisol, Geoderma, 304, 40–48, 
doi:10.1016/j.geoderma.2016.08.023, 2017.

https://www.sciencedirect.com/science/article/abs/pii/S0016706116303731?via%3Dihub

39

https://www.sciencedirect.com/science/article/abs/pii/S0016706116303731?via%3Dihub
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Abstract

Subsoils store than 50 % of the total global soil organic carbon (SOC), and low SOC content 

and high mean residence times indicate that subsoils have the potential to sequester additional C on 

the long-term. Nevertheless, the mechanisms controlling the turnover of SOC in subsoils are poorly 

understood. The aim of this study was to assess the impact of temperature and substrate limitation on 

subsoil SOC turnover and evaluate the stability of additional C inputs in subsoils. 

In a 63-day microcosm incubation experiment, CO2 production of undisturbed soil samples 

from topsoil and two subsoil depth increments was measured at two different temperatures (10 °C 

and 20 °C). Additionally, 13C labeled root litter was added to the different samples and measurements 

of the isotopic signature of the respired CO2 allowed a differentiation between SOC mineralization 

and root mineralization. The CO2 production per unit soil mass was lower in deep subsoil than in the 

topsoil, but the CO2 production per unit SOC (specific mineralization) was three times higher in the 

deepest subsoil than in topsoil. This depth gradient of specific mineralization in undisturbed samples 

indicates that deep subsoil contained relatively more labile SOC than the topsoil. The temperature 

sensitivity of SOC mineralization expressed as Q10-q , decreased from around 3 to around 1 with 

increasing soil depth. In contrast, the mineralization of the added root material was solely determined 

by the recalcitrance of the added roots as indicated by a similar Q10-q through all three soil depths.

Contrary to the SOC mineralization of undisturbed samples, significantly more added root litter 

was mineralized in the samples from the upper horizons than in the deepest subsoil samples, reveal-

ing a non-linear relationship between mineralization of added C and the SOC content. Thus, the dis-

tance between substrate units, as indicated by the SOC content, may be key factor for subsoil SOC 

dynamics. Moreover, root addition caused no positive priming effects in subsoil horizons indicating 

that enhanced C inputs to the subsoil can increase the SOC content and tap the unused C storage 

potential of subsoils.
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3.1 Introduction

With an estimated global carbon stock of 1500–2000 Pg in the first meter, soils contain the 

largest terrestrial organic carbon (C) pool. For surface soils, the mechanisms controlling soil organic 

carbon (SOC) turnover have been thoroughly investigated (Flessa et al., 2008; Sollins et al., 1996). 

Studies on subsoil C dynamics are scarce, although more than 50 % of SOC stocks are stored in 

deeper soil horizons (Batjes, 1996; Jobbágy and Jackson, 2000). In contrast to topsoils, subsoils are 

characterized by low C content and high radiocarbon ages  (Rethemeyer et al.,  2005; Torn et al., 

1997), indicating high C stability. However, little is known about the mechanisms controlling SOC 

turnover in subsoils. The transferability of results obtained for surface soils to deeper soil horizons is 

limited because SOC in deeper soil layers is exposed to different environmental conditions (e.g., 

more constant temperature and moisture regime, lower O2 availability and higher CO2 concentration), 

which may influence the turnover of SOC (Rumpel and Kögel-Knabner, 2011).

Carbon inputs in subsoils by roots and dissolved organic matter differ in quality and quantity 

from C inputs in topsoils (Kaiser and Guggenberger, 2000; Rasse et al., 2005). Thus, SOC stability in 

subsoils is highly, likely due to selective preservation of substrate with lower quality (Rumpel, 2004). 

In addition, it has been found that the stabilization of SOC in subsoils is controlled by the availability 

of fresh substrate  (Fontaine et al., 2007; Marschner et al., 2008). The input of an easily available 

energy source may trigger the decomposition of old SOC which is known as priming. Therefore, 

additional C inputs in deeper soil horizons may lead to a destabilization of native SOC instead of C 

accumulation. However, only a few studies exist on the priming effects in subsoils and their findings 

are contradictory (Fontaine et al., 2007; Salomé et al., 2010). Thus, the effect of additional C inputs 

to subsoils on the mineralization of native SOC remains unclear. However, subsoils may have the 

potential to store additional C (Lorenz and Lal, 2005; Rumpel, 2014).

Next to the quality and quantity of C inputs, environmental factors such as temperature influ-

ence the SOC decomposition (Kirschbaum, 1995). Similar or even higher response of SOC decom-

position to temperature changes were found for subsoil SOC compared to topsoil SOC (for a review, 

see  von Lützow and Kögel-Knabner,  2009).  According to  the Arrhenius equation,  reactants with 

higher activation energies (low reactive and more recalcitrant SOC) have higher temperature sensi-

tivities compared to labile and less stabilized SOC (Davidson and Janssens, 2006). Thus, it has been 

assumed that the difference in temperature sensitivity of SOC mineralization between subsoil and 

topsoil was due to the increase in recalcitrance of SOC with increasing soil depth. However, recent 

findings indicate that SOC mineralization in subsoils has a lower temperature sensitivity than SOC 
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mineralization in topsoils and that the temperature sensitivity is determined by substrate availability 

(Davidson and Janssens, 2006; Gillabel et al., 2010). Consequently, if the temperature sensitivity in 

subsoils is controlled by substrate availability, additional C inputs may increase the temperature sen-

sitivity of SOC mineralization in subsoils. However, there is a lack of experimental evidence for such 

effects.

In this study we investigated the influence of temperature and substrate limitation on the SOC 

mineralization in topsoil and subsoil samples for a sandy forest soil. Therefore, we incubated undis-

turbed samples and disturbed samples with and without additional C (13C labeled roots) at 10 °C and 

20 °C. The CO2 production of undisturbed samples will reveal the SOC stability in topsoil and sub-

soil under the influence of possible limitations due to low SOC content, spatial segregation and SOC 

protection due to aggregation or mineral-association. The addition of 13C labeled roots allows to dif-

ferentiate between CO2 production from the added roots and SOC mineralization. This in turn will 

provide on the one hand, information of the stability of additional C inputs in topsoil and subsoil. 

And on the other hand, the comparison of the SOC mineralization with the control samples will  

reveal priming effects on the native SOC mineralization in topsoil and subsoil. In addition, the two 

different incubation temperatures will show the temperature response of SOC mineralization.

We hypothesized (i) that SOC will be more stable in subsoils than in topsoils, (ii) that tempera-

ture sensitivity of SOC mineralization increases with soil depth, (iii) that additional C substrate will 

be mineralized faster in topsoils than in subsoils and (iv) that the C addition to subsoils will enhance 

the mineralization of native SOC because of priming effects.
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3.2 Materials and methods

3.2.1 Site description

Soil  samples  were  taken  in  the  Grinderwald,  35  km  north-west  of  Hanover,  Germany 

(52°34′22′′N, 9°18′49′′E). The vegetation at the site is dominated by common beech (Fagus sylvat-

ica) established in the forest in 1916, and the soil is characterized as a Dystric Cambisol  (IUSS 

Working Group WRB, 2014) developed on Pleistocene fluvial and aeolian sandy deposits from the 

Saale-glaciation. The site is located around 100 m above sea level with a mean annual temperature 

and mean annual precipitation of 9.7 °C and 762 mm (1981–2010), respectively.

3.2.2 Soil sampling and sample preparation

Undisturbed and disturbed soil samples were taken from three different soil depths, 2–12 cm 

(in the following referred to as topsoil), 30–60 cm (subsoil30) and 130–160 cm (subsoil130). The soil 

samples were collected in September 2013 with four field replicates. To account for the low SOC 

content and the heterogeneous distribution of SOC, especially in the subsoil, large soil cores were 

taken using a soil corer with cylinder inlets (height of 18 cm for topsoils and 40 cm for subsoils, 

diameter of 14.4 cm). These cores represented the undisturbed samples. The disturbed soil material 

was obtained from the same soil depth increments. Samples were stored at 6 °C until start of the 

incubation. The disturbed soil sample was sieved through 2 mm, air dried and stored until use. Table 

3.1 contains the general soil parameters of the topsoil and subsoil samples.

Table 3.1: Soil parameters of the topsoil and subsoil samples and the used root litter. Means and standard errors (n = 4).

C

[mg g-¹]

N

[mg g-¹]
C/N

δ¹³C

[‰]

pH

(CaCl2)

Sand

[%]

Silt

[%]

Clay

[%]

Roots 402.1 (3.4) 11.3 (0.1) 35.5 (0.1) 151.1 (3.6)

Topsoil 13.3 (0.9) 0.7 (0.06) 19.5 (0.7) -28.0 (0.05) 3.4 (<0.1) 70.6 (2.4) 25.4 (2.2) 4.0 (2.4)

Subsoil30 4.5 (0.7) 0.3 (0.07) 17.1 (1.7) -26.6 (0.1) 4.2 (<0.1) 70.9 (6.0) 26.1 (5.8) 3.0 (0.3)

Subsoil130 0.4 (0.09) 0.04 (0.01) 8.6 (0.8) -25.8 (0.1) 4.1 (0.1) 91.1 (5.2) 6.6 (4.2) 2.3 (1.1)
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3.2.3 Experimental design

The CO2 production of soil samples from topsoil, subsoil 30 and subsoil 130 were measured in 

a 63-day incubation study. The hypotheses were tested in a 3 × 2 × 3 factorial design, whereby three 

different depths were incubated at two temperatures (10 °C and 20 °C) with the following three treat-

ments.

i.) Undisturbed: Undisturbed soil samples

ii.) Root addition: Disturbed soil samples with addition of 13C-labeled root litter

iii.) Control: Disturbed soil without addition of 13C-labeled root litter.

For the incubation experiment the samples were filled into plastic cylinders with a diameter of 

14.4 cm and a height of 18 cm for topsoil samples and 40 cm for subsoil samples. The cylinder was 

closed with lids on the top and the bottom (in the following referred to as microcosm), top lids had 

an air inlet and outlet port. The microcosms of the root addition treatment were filled with 2.4  kg 

(topsoil)  to  7.8 kg  (subsoil)  dry  matter  homogenized  and  sieved  soil  and  mixed  with  3.8 g  of 
13C-labeled and ground ash roots (δ13C of 151 ‰) at a bulk density of 1.4 (topsoil) to 1.6 (sub-

soil) g cm-3 , corresponding to the soil samples of the undisturbed treatment. The labeled roots origi-

nated from young trees grown in a greenhouse under a 13CO2 -enriched atmosphere (δ13C 300 ‰) for 

two years and thus are homogeneously labeled. Each microcosm had a headspace volume of around 

1 L. Water was added to adjust 60 % of the water holding capacity. The control microcosms were 

prepared in the same way but without the admixture of  13C labeled roots. The soil columns of the 

undisturbed treatment were placed on a suction plate and were irrigated until saturation was reached. 

Thereafter, water was removed through the suction plate until 60 % of water holding capacity was 

reached. A leak test was performed for each microcosm by slightly increasing the air pressure in the 

microcosms.  During  the  incubation  all  microcosms  were  flushed  with  CO2 free  synthetic  air 

(20 % O2 and 80 % N2) using a constant flow rate of 10 mL min-1. The C mineralization was deter-

mined by measuring the CO2 production in the microcosm headspace on 14 sampling days (1,2, 3, 4, 

5, 7, 9, 11, 14, 17, 20, 25, 30, 63). At each sampling day, the gas flow to the microcosms was stopped 

and the headspace was sampled twice according to the closed chamber principle. It was not possible 

to determine CO2 production in flow through mode due to the extremely low C content of the subsoil 

samples. The gas samples were taken with a syringe at the top lid of the microcosm and filled into  

evacuated vials (20 mL). Sampling was performed twice per sampling day in order to determine the 

CO2 production via the CO2 accumulation in the headspace. For the control and root addition treat-
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ment, an additional gas sample was taken during the second sampling for stable isotope analysis and 

filled into evacuated 12 mL gas vials (Labco Exetainer, Labco Limited, Lampeter, UK). The gas flow 

through the microcosms was restored after the sampling.

3.2.4 Gas and soil analysis

The  CO2 concentration  was analyzed by gas  chromatography (Shimadzu GC-2014,  Kyoto, 

Japan) modified according to Loftfield et al. (1997) and Agilent 7890A (GC, Agilent Technologies, 

Santa Clara, USA). The CO2-production [mg CO2-C d-1] was calculated with Eq. (3.1):

CO2 -production=(
CO2 × M ×T n × V 0 × d

V m× (T n+T ) ) (3.1)

where CO2 is the CO2 concentration change [ppm h-1] between the two samplings at each sampling 

day, M is the molar weight of C [g mol-1], Tn is the norm temperature [273.15 K], T is the incubation 

temperature [°C], V0 is the volume of the microcosm headspace [m3], d is the time of one day [24 h] 

and Vm is the molar volume of an ideal gas [22.4136 L mol-1]. The δ13C values of the headspace CO2 

were measured by isotope ratio mass spectrometer (Thermo Fisher Scientific MAT 253, Bremen, 

Germany) connected to a Gasbench II (Thermo Fisher Scientific MAT 253, Bremen, Germany) and a 

PAL autosampler (CTC Analytics AG,Zwingen, Switzerland). In the root addition treatment, native 

SOC mineralization [mg CO2-C d-1] CO2-SOC was calculated using Eq. (3.2):

CO2-SOC=CO2-production ×(
δ 13CO2 − δ13C root

δ13CO2 control − δ 13C root
) (3.2)

where CO2-production is the amount of the total respired C, δ13CO2 is the isotopic signature of the 

respired CO2, δ13C roots is the isotopic signature of the added ash roots and δ13CO2control is the average 

isotopic signature of the respired CO2 of the control samples without root addition. By using the iso-

topic signature of the respired CO2 for the native SOC we account for fractionation effects of the 

mineralization. The mineralization of added root material CO2-root [mg CO2-C d-1] was obtained 

with Eq. (3.3).

CO2 -root=CO2-production − CO2 -SOC (3.3)

In order to account for the different SOC contents in topsoil and subsoil, specific respiration rates 

were obtained by dividing CO2 -production through the initial SOC content [g] or added root C [g]. 

The C and N contents of the soil and the ash roots (Table  3.1) were measured by dry-combustion 
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with an elemental analyzer (LECO TruMac, LECO, St. Joseph, USA). The stable isotope ratios of 

the initial soil and the added roots (Table 3.1) were determined using an isotope ratio mass spectrom-

eter (Delta Plus, Thermo Fisher Scientific, Bremen, Germany) coupled to an elemental analyzer (CE 

Instruments FLASH EA 1112, Thermo Fisher Scientific, Bremen, Germany).

3.2.5 Temperature sensitivity and priming

Temperature sensitivity of SOC and root mineralization was expressed with the Q10-q parameter. 

The common Q10 calculation, as the ratio of C respired at the higher temperature to C respired at the 

lower temperature after a fixed time, ignores the fact that the labile SOC pool is mineralized faster at 

higher  temperatures  than  at  lower  temperatures.  In  consequence,  the  temperature  sensitivity 

expressed as Q10 over a fixed time is confounded due to changes in the source of mineralization 

(Reichstein et al., 2000). Therefore, we used the Q10-q method described in Conant et al. (2008). The 

advantage of this method is that it allows to compare Q10-q values of different SOC pools with differ-

ent stability against mineralization (Conant et al., 2008). Due to the incubation time of 63 days in this 

study, it can be assumed the determined Q10-q reflects mainly the labile SOC pool that has been min-

eralized during the incubation. On average 0.2–0.8 % of the SOC was mineralized during the incuba-

tion. The Q10-q values for the SOC and root mineralization were determined with Eq. (3.4)

Q10 −q=
t C

tW

(
10

TW −T C
)

(3.4)

where tC is the time required to respire 0.1 % of SOC (1.5 % of added root C) at 10 °C (TC) over tW 

the time needed to respire 0.1 % of SOC (1.5 % of added root C) at 20 °C (TW). The priming effect 

induced due to root addition was estimated by comparing the specific cumulative SOC mineraliza-

tion of the control samples with the root addition samples at the end of the incubation. To determine 

priming effects over time, a dimensionless priming factor P, was calculated with Eq. (3.5)

P=
CO2root

CO2 control

− 1 (3.5)

where CO2root is the daily amount of native SOC respired in the root addition treatment, and CO2control 

the daily amount of SOC respired from the control sample. A priming factor smaller than zero indi-

cates a lower mineralization of native SOC in the root addition treatment than in the control treat-

ment (negative priming), whereas a priming factor larger than zero indicates the enhanced decompo-

sition of native SOC due to substrate addition and was called positive priming.
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3.2.6 Statistical analysis

The normal distribution of the residuals was tested with the Shapiro-Wilk test and the homo-

geneity of variance was tested with Levenes test. A generalized least square linear model was used 

for the undisturbed treatment to account for different variances in the different sampling depths. The 

differences of the cumulative SOC mineralization among different soil depths were verified by a 

two-way ANOVA of the model with depth and temperature as fixed factors. The differences in tem-

perature sensitivity for each treatment were tested with a one-way ANOVA and depth as fixed factor. 

To evaluate differences among depths of the specific cumulative root-derived C mineralization, a 

two-way ANOVA with depth and temperature as fixed factors was used. To test the root addition 

effect on the cumulative SOC mineralization, a two-way ANOVA was also performed with depth and 

treatment as fixed factors. As post-hoc test, a pairwise t-test was performed at the significance level 

of 0.05, p-values were adjusted with Holm correction (Holm, 1979). All statistical analyses were per-

formed with R version 3.2.2 (Fire Safety) for Linux (R Core Team, 2015).
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3.3 Results

3.3.1 SOC stability in topsoil and subsoil

Significantly more CO2 per mass of soil was respired in the topsoil samples than in the subsoil 

samples.  The  total  C  mineralized  at  10 °C  incubation  temperature  decreased  from  33  ±  8  mg 

CO2-C kg-1 soil in the topsoil to 10 ± 1 mg CO2-C kg-1 soil in subsoil30 to 2 ± 1 mg CO2-C kg-1 soil in 

subsoil130 (Figure 3.1a). The same pattern was also observed at 20 °C but with around 200 % higher 

CO2 production in the topsoil and 50 % higher CO2 production in the subsoil130. However, contrary to 

our hypothesis that SOC is more stable in subsoil than in topsoil, the C mineralization normalized to 

the SOC content showed that SOC was more stable in topsoil and subsoil30 than in subsoil130 (Fig-

ure 3.1b). In the following the CO2 production normalized to the SOC content are called specific 

CO2 production. Subsoil130 respired three times more C per SOC than topsoil and subsoil30 samples 

within 63 days of incubation at 10 °C. There were no significant differences between topsoil and sub-

soil30 samples.

Figure 3.1: Cumulative CO2 production of SOC in the undisturbed treatment for 10 °C (dashed lines) and 20 °C 
(solid lines). Values are expressed as (a) mg CO2-C kg-1 dry soil equivalent, (b) mg CO2-C g-1 SOC. Different let-
ters indicate significant differences between the depths at 10 °C. Different capital letters indicates significant dif-
ferences at the 20 °C. Means and standard errors (n = 4)

The highest daily specific respiration rates were observed in subsoil130 (Figure 3.2) and also the 

highest decrease over the incubation time. In subsoil130 , the major part of the C mineralization took 

place early in the experiment. Two thirds of the total respired C in subsoil130 was lost within the first 
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three weeks of incubation, topsoil and subsoil30 only lost one third of their total respired C during this 

time. This trend was found for both temperature treatments. After day 30, the daily specific respira-

tion rate of subsoil130 was equal to topsoil and subsoil30.

Figure  3.2: Specific  daily  respiration of  SOC in the undisturbed treatment  at  10 °C and 20 °C.  Values  are 
expressed as mg CO2-C g-1 SOC d-1. Means and standard errors (n= 4).

3.3.2 Temperature sensitivity of SOC and root mineralization

The temperature sensitivity of SOC mineralization decreased significantly from topsoil to sub-

soil130, which contradicts our hypothesis of increasing temperature sensitivity with increasing soil 

depth. The temperature sensitivity was quantified by Q10-q values of the SOC, which decreased with 

increasing soil depth from 3 ± 0.5 in topsoil samples to 1 ± 0.3 in subsoil130 samples (Figure 3.3). The 

decrease of Q10-q for SOC mineralization was observed for undisturbed samples, as well as for the 

control and native SOC of the root addition treatment. We also found no impact of a decreased sub-

strate limitation on temperature sensitivity, since the temperature sensitivity of the native SOC min-

eralization in the root addition treatment was similar to the temperature sensitivity in the control 

treatment. The Q10-q was similar for the SOC with and without root addition (Figure 3.3), whereas the 

added root litter showed no significant differences in temperature sensitivity between the different 

soil depths.
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Figure 3.3: Temperature sensitivity (Q10-q) for the topsoil and subsoil samples of the different treatments. Undis-
turbed, control and native SOC root addition treatment, represent the temperature sensitivity of SOC mineraliza-
tion. Root represents the temperature sensitivity of the mineralization of the added root litter. Different letters  
indicate significant differences within each treatment. Means and standard errors (n = 4).

3.3.3 Mineralization of added root carbon in topsoil and subsoil

Significantly  more  of  the  added  root  C  was  respired  in  topsoil  (7 ± 0.6 %)  and  subsoil30 

(6 ± 0.9 %) than in the subsoil130 (3 ± 0.6 %) during the two months of the incubation experiment 

(Figure 3.4). At 20 °C around 30 % more root C was respired compared to the respective 10 °C incu-

bation. However, this temperature effect was not significant.

Figure 3.4: Cumulative CO2 production of the added root litter for 10 °C (dashed lines) and 20 ° C (soil lines). 
Values are expressed as mg CO2-C g-1 Croot. Different letters indicate significant differences between the depths at 
10 °C. Different capital letters indicates significant differences at the 20 °C. Means and standard errors (n = 4).
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The topsoil samples showed a fast response to root addition in respiration rates. The highest 

daily respiration rates of the added roots (Figure 3.5) were observed two days after the start of the 

incubation. In subsoil30, the highest daily respiration rates of the added roots were reached at day 4, 

while there was a lag time of four days until the mineralization of root-derived C started in the deep-

est samples (subsoil130) with maximum respiration rates being reached at day 5. Similar results were 

found for the 20 °C treatment, but with a two-day shorter lag time in subsoil30 and subsoil130. We 

found a non-linear relationship between total mineralized roots and the SOC content of the soil sam-

ples. Accordingly, decreasing amounts of roots were mineralized with decreasing SOC content of the 

surrounding soil, regardless of different microbial communities (Figure 3.6). The added roots were 

more stable in subsoil130 than in topsoil or subsoil30.

Figure  3.5: Daily  respiration  of  the  added  root  litter  at  10 °C  and  20 °C.  Values  are  expressed  as 
mg CO2-C g-1 Croot d-1. Means and standard errors (n = 4).
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Figure  3.6: Michaelis-Menten function fitted through specific root litter mineralization and SOC content for  
10 °C (open symbols and dashed line) and for 20 °C (filled symbols and solid line)

3.3.4 Priming effects in topsoil and subsoil

The addition of ground roots as an additional source of energy for microorganisms had no posi-

tive priming effect on the mineralization of the native SOC during the incubation experiment. In con-

trast, even more SOC was respired in the control samples at the end of the incubation than in the root 

addition samples for all soil depths, indicating on average a negative priming effect (Figure 3.7). The 

root addition reduced the native SOC mineralization by 15 ± 5 % in the topsoil and by 20 ± 13 % and 

14 ± 20 % in the subsoil30 and subsoil130, respectively, for the total incubation period. However, the 

decrease of SOC mineralization after root addition was not significant. Nevertheless, priming effect 

expressed as ratio between the daily respiration rates of the control and root addition treatment sam-

ples changed over the time course of the incubation. During the first few days of the incubation even 

positive priming was observed (Figure 3.7) which occurred simultaneously to the highest mineraliza-

tion rates of the added roots (Figure  3.5). Priming was investigated only for the 10 °C treatment, 

which represents the mean annual temperature of the site.
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Figure 3.7: Total specific SOC derived CO2 production (a) for the control and the root addition treatment. Values 
are expressed as mg CO2-C g-1 SOC. (b) Priming effects expressed as dimensionless priming factor P. Means and 
standard errors (n = 4).
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3.4 Discussion

3.4.1 SOC stability in topsoil and subsoil

Respiration rates decreased with increasing soil depth following the strong depth gradient in 

SOC. However, per unit SOC higher CO2 production was observed in subsoil130 than in topsoil. This 

is surprising due to the fact that the mean 14C age of the SOC increases with increasing soil depth, 

indicating a slow turnover and high stability of subsoil SOC (Rethemeyer et al., 2005; Trumbore, 

2000). Due to the incubation time of 63 days, our results only show the dynamic of the labile and 

fast-cycling C pool.  Therefore,  these results  indicate  that  the subsoils  at  our  site  contain a  fast-

cycling labile C pool, which comprises a relatively large fraction of the total subsoil SOC as com-

pared to the topsoil. This pool is fed by root litter (roots were visible during the sampling in all  

depths) and by DOC, which are the main inputs of C to deeper soil horizons (Rumpel and Kögel-

Knabner, 2011). Also, other studies found higher CO2 production per SOC in subsoils than in topsoils 

(Agnelli et al., 2004; Jörgensen et al., 2002; Lavahun et al., 1996; Salomé et al., 2010). During the 

incubation experiment, 0.7 % of the SOC in subsoil130 was respired, whereas in topsoil and subsoil30 

only 0.2 % of the total C was respired. Hence, the relative proportion of labile C to total C in each 

depth at  our site was higher in subsoil130 than in the topsoil.  A similar pattern was observed by 

Salomé et al. (2010) in an Eutric Cambisol under agriculture use. In their 51-day incubation they 

found a higher or equal proportion of respired C per SOC in subsoil samples (80–100 cm) as com-

pared to topsoil samples (5–10 cm).

Another explanation for the higher specific respiration in subsoil130 might be the lower carbon 

use efficiency of microorganisms in subsoils. Several studies observed an increasing metabolic quo-

tient  (CO2 production  per  microbial  biomass)  with  increasing  soil  depth,  whereas  the  microbial 

biomass was decreasing with soil depth (Agnelli et al., 2004; Jörgensen et al., 2002; Lavahun et al., 

1996). Lavahun et al. (1996) assumed that the substrate in the subsoil is more recalcitrant and micro-

organisms incorporate less substrate into their biomass, but to meet their energy demands for growth 

and maintenance, they had to utilize more of the substrate. Therefore, microorganisms mineralize 

more SOC in subsoil than in topsoil. Also, microbial recycling (Basler et al., 2015) and an increasing 

degree of transformation of dissolved organic carbon with depth  (Kaiser and Kalbitz, 2012) may 

decrease the carbon use efficiency. Further, the spatial isolation of microorganism and substrate in 

subsoils my foster anabolism instead of catabolism, thus increase the relative C loss compared to top-

soils. In addition, differences in soil texture between topsoil, subsoil30 and subsoil130 may influence 
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the size of the stabilized SOC fraction  (Flessa et al., 2008; von Lützow et al., 2006). Due to the 

higher silt content in topsoil and subsoil30 as compared to the subsoil130 (Table 3.1) more SOC might 

be physically protected leading to lower specific mineralization rates. However, comparing the four 

plots at the site with slightly different texture revealed no consistent impact of different clay and silt 

content on the specific mineralization rates. Thus, the lower carbon use efficiency and the larger pro-

portion of labile SOC may explain the depth gradients of specific SOC mineralization.

3.4.2 Temperature sensitivity

The discussion on the temperature sensitivity based on Q10 values of SOC in different soil 

depths has been controversial (Conant et al., 2008; Fang et al., 2005; Fierer et al., 2003; Karhu et al.,  

2010; Vanhala et al., 2007; Winkler et al., 1996). A mechanistic explanation for different temperature 

sensitivities for labile and stabilized SOC is provided by the Arrhenius equation. According to this 

equation,  higher  temperature  sensitivities  were  explained by a  lower  quality  (increasing  recalci-

trance)  of  the  SOC due  to  a  lower  reactivity  due  to  higher  activation  energies  (Davidson  and 

Janssens, 2006; von Lützow and Kögel-Knabner, 2009). However, although it is assumed that recal-

citrance of SOC increases with increasing soil depth (Rumpel, 2004) we found no increase in Q10-q 

values with soil depth, suggesting that quality of SOC does not decrease with soil depth. Our results 

are in line with results from Gillabel et al. (2010) who also found no higher Q10-q values in the subsoil 

compared to the topsoil. Such an increase would be expected if SOC quality alone determined Q10 in 

the subsoil (Bosatta and Ågren, 1999).

Gillabel et al. (2010) concluded that temperature sensitivity of SOC decomposition was deter-

mined  by  both,  SOC recalcitrance  and  physical  stabilization  of  SOC,  and  that  the  relationship 

between Q10-q and SOC stability depended on which of those stabilization factors was the dominant 

mechanism leading to greater SOC stability. For the soil investigated in our study, this would mean 

that substrate recalcitrance is not the dominant factor controlling the SOC temperature sensitivity in 

subsoils.

In addition, Davidson and Janssens (2006) pointed out that the temperature sensitivity of SOC 

mineralization, according to Arrhenius kinetics, can be influenced by the substrate availability. They 

assume that the enzymes for decomposition are separated from SOC, which is more likely to be the 

case in subsoils than in topsoils. In consequence, an observed temperature sensitivity under substrate 

limitation can be lower than under conditions without substrate limitations (Davidson and Janssens, 

2006). The separation of decomposers and SOC can be altered by the environmental conditions such 

as physical protection within soil aggregates, chemical protection like adsorption onto the mineral 
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surface or abiotic conditions like drought, flooding and freezing  (Davidson and Janssens,  2006). 

However, physical protection within aggregates plays no role in the investigated soil. Also chemical 

protection on clay minerals cannot explain the lower temperature sensitivity in our subsoils, as the 

clay content in subsoil130 was even lower than in the topsoil (Table 3.1). In addition, the abiotic fac-

tors in our experiment temperature and soil moisture were not varied during the incubation. Thus, the 

temperature sensitivity of SOC mineralization in subsoils might be attenuated by other SOC stabi-

lization mechanisms. These mechanisms could be differences in the microbial community between 

topsoils and subsoils or nutrient limitation for microorganisms  (Fierer et al., 2003). However, the 

mineralization of the added root material showed a similar response to temperature changes in top-

soil and subsoil, suggesting that differences in the microbial community nor nutrient limitation had 

an influence on the temperature sensitivity. The temperature sensitivity of the mineralization of the 

added root seems to be mainly controlled by their recalcitrance and therefore was similar in all soil 

depths.

3.4.3 Stability of added root C and priming effects

The soil environment seems to be the major controlling factor for C turnover (Schmidt et al., 

2011). We found that the same root litter was decomposed much more slowly when mixed into sub-

soil material as compared to when mixed into topsoil material. Soil abiotic conditions such as tem-

perature and water content (60 % WHC) cannot explain this finding since they were standardized in 

our experiment. In addition, the daily respiration rate of the added root litter (Figure 3.5) showed a 

delay in root mineralization with increasing soil depth with mineralization starting after 4 days in 

subsoil130 as compared to 1 day/h in the topsoil. This indicates that the decomposers and substrate  

were not in equilibrium in the beginning of the experiment for the subsoil samples. On the one hand, 

the microbial community in subsoil had to adapt to the new substrate of the added roots. On the other 

hand, the lower SOC content and the homogeneous distribution of SOC by sieving in the subsoil may 

lead to spatial segregation of substrate and decomposers. The combination of SOC distribution and 

low SOC content in subsoil decrease the likelihood of exoenzymes to clip a molecule or a micro-

organism to encounter with substrate and thus to make it assimilable for microorganism (Ekschmitt 

et  al.,  2005).  Therefore,  the SOC content  and the SOC distribution as indicator  for the distance 

between substrate units might be a major factor for SOC turnover in subsoils. Similar results were 

shown in a study by Don et al. (2013) where compost was incubated with soil at different degrees of 

mixing and dilution with mineral soil. They found that C mineralization was highest in samples if the 

compost was not mixed with the mineral soil and lowest if the compost was diluted with mineral soil. 
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Moreover, the separation between decomposer and substrate has been discussed as a stabilization 

mechanism process for SOC  (Dungait et al.,  2012; Kemmitt et al.,  2008).  Kemmitt et al.  (2008) 

found that the mineralization of C is not controlled by the microbial biomass size and community. 

Further, the separation between microorganisms and SOC is determined by diffusion, soil pore size 

and soil pore connectivity (Kuka et al., 2007; Xiang et al., 2008). Subsoil130 had a lower silt content 

and a higher sand content as compared to the other horizons, which reduced the field capacity and 

therefore also reduced the mobility and the connectivity of microorganisms and exoenzymes. In con-

sequence, subsoil130 in this study, with its low SOC content, provided the best conditions to store 

additional C since added C is turned over with the lowest rates. These results seem to be a contradic -

tion to our findings in the undisturbed samples, where subsoil130 showed the highest specific mineral-

ization. This highest mineralization rate points to the fact that the subsoil130 comprised a relatively 

large proportion of labile SOC as compared to the topsoil. However, we added the same amount of 

root litter to each soil depth, therefore the proportion of labile root C was similar in all depths. In 

addition, as discussed above, the SOC distribution was changed due to sieving and mixing process 

which may increase the spatial segregation between decomposers and substrate as compared to the 

undisturbed samples, despite the increase of SOC content due to root addition.

Additionally, it is interesting that there were no significant differences in root mineralization in 

topsoil and subsoil30 (Figure 3.4), despite the differences in SOC content. This matches the findings 

of Sanaullah et al. (2011), who found no difference in the mineralization of additional C (added as 

root litter) in three different depths (30, 60 and 90 cm) after three years of field incubation in a loamy 

soil on grassland. Beside the different incubation time, the differences in SOC content between our 

study and those of Sanaullah et al. (2011) may explain the different observed mineralization pattern. 

The SOC content in the study of Sanaullah et al. (2011) were between 9 and 3 mg g-1, which is simi-

lar to our topsoil and subsoil30. While, the SOC content in subsoil130 in our study was much lower 

with 0.4 mg g-1. Therefore, we hypothesize that the lower root mineralization in subsoil130 can be 

explained by the non-linear relation (Figure 3.6) between SOC turnover and SOC content (Don et al., 

2013) and not as an effect of the short incubation time.

The addition of labile C to our subsoils did not enhance the turnover of the native SOC. This 

finding is in line with the results from Salomé et al. (2010), who also could not find an enhanced 

mineralization  of  native  SOC after  the  addition  of  glucose  to  subsoils.  Our  results  support  the 

hypothesis that stability of SOC in subsoils is not controlled by substrate limitations. In contrast,  

Fontaine et al. (2007) observed a priming effect on subsoil SOC after the addition of labeled cellu-

lose. They concluded that the stability of SOC in subsoils is controlled by the supply of fresh C. 
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However, on the one hand priming effects are determined by soil properties, especially the pH, with 

higher  priming effects  occurring in  neutral  soil  with a  pH between 6 and 8  (Blagodatskaya and 

Kuzyakov, 2008). The addition of an easily available substrate stimulates the microbial activity and 

enzyme synthesis, whereby the stimulation of microorganisms is higher in neutral soils than in acidic 

soils (Blagodatskaya and Anderson, 1998). Our subsoil had a pH of 4, while Fontaine et al. (2007) 

had a pH of 7 in the subsoil. On the other hand, differences in C inputs due to different land use and 

the related adaption of the microbial communities might also influence priming effects. In our study 

we used an acidic forest soil which may have received higher C inputs due to deep rooting and DOC 

transport and the microbial communities were better adapted to the added root material than the agri-

cultural soils and the added cellulose as used by Fontaine et al. (2007). The remarkable consequence 

of our findings is that the addition of C to forest subsoils did not lead to destabilization of the native 

SOC during the two month of incubation. Also, additional C from root litter was more stable in the 

deep subsoil than in topsoil horizons. The main questions that arise from these results are how much 

C can be added to subsoils until more SOC will be mineralized than stored? Are forest soils more 

suitable to store additional C in their subsoils than agricultural soils?
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3.5 Conclusion

Regardless of the high 14C ages of subsoil SOC, we showed that subsoil contained a larger rela-

tive fraction of labile SOC than the topsoil, as revealed by higher specific mineralization at least for 

the deep subsoil of our site. This indicates on the one hand a more extreme mixture of SOC pools in 

subsoils, consisting of a labile SOC pool, likely derived by root litter, and a passive C pool with high 
14C ages. And on the other hand, the higher specific mineralization of undisturbed samples supports 

the hypothesis of a lower carbon use efficiency in subsoils.

Temperature sensitivity of SOC mineralization decreased with soil depth. This is an important 

finding, because it implicates that the SOC mineralization in subsoils will be less affected by temper-

ature changes due to climate change than SOC mineralization in topsoils. It also supports our hypoth-

esis of a larger relative proportion of labile SOC in subsoils, since the mineralization of labile SOC is 

assumed to be less temperature sensitive.

The SOC stability in subsoils is often related to a lack of an easily available energy source for 

the microbial community, however increasing the SOC content up to 80 % in our deepest samples 

did not lead to positive priming of the native SOC mineralization. Furthermore, we found that addi-

tional C inputs of roots were more stable in deep subsoil horizon with a low SOC content than in top-

soil. Also, the stability of the added C varied between the investigated subsoil horizons, revealing 

differences within the subsoil, which could be attributed to different SOC contents. Decreasing SOC 

content in the subsoil cause a larger spatial segregation between decomposers and substrate. Thus, C 

inputs into subsoil horizons with a low SOC content may be more effective in increasing SOC stocks 

than topsoil SOC amendments.
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Abstract

With increasing soil depth, C stability increases as indicated by a high radiocarbon age, while 

the soil organic carbon content decreases. This indicates that the subsoil, may have the potential to 

sequester additional C on the long-term. Even though, the mechanisms determining the decomposi-

tion processes in subsoils are poorly understood, even though more than half of global SOC is stored 

in subsoils. It is assumed that SOC decomposition in subsoils is limited due to unfavorable environ-

mental conditions for microorganisms. In laboratory studies different factors on the SOC decomposi-

tion in subsoils have been investigated such as temperature increase, oxygen limitation or substrate 

availability. However, there is a lack of experimental evidence for the influence of environmental 

conditions and their interaction on the C decomposition in the subsoil under field conditions. Here 

we carried out a reciprocal soil transfer experiment of a well characterized Dystric Cambisol under 

beech forest in order to asses the impact of environmental conditions in the topsoil and the subsoil on 

decomposition processes. Soil material form the subsoil and the topsoil were placed into microcosms 

and exposed to a topsoil (5 cm) and two subsoil environments (45 cm and 110 cm) for one year in the 

field. Further, 13C labeled root litter was added to evaluate the influence of macro and micro environ-

mental conditions on the decomposition. The amount recovered root-derived C in the mineral-associ-

ated organic matter fraction after 3 and 12 months was used as an indicator for differences in the  

decomposition.

After 12 months of field exposure in the deepest subsoil  environment the amount of root-

derived C in the mineral-associated organic matter was 19 % lower for the topsoil material and 37 % 

lower for the subsoil material as compared to samples exposed to the topsoil environment. This indi-

cates, that environmental conditions in the subsoil hampered OC decomposition. Despite small dif-

ferences in soil temperature and oxygen concentration between the topsoil and the subsoil, decompo-

sition in the subsoil environment was mainly substrate limited. The lower C input with seepage water 

into the subsoil led to slower decomposition of the added root litter as compared to the topsoil hori-

zon. Furthermore, the sandy soil texture in the subsoil resulted in a lower water content and a more 

heterogeneous  distribution  of  water  fluxes,  both  may  increased  the  spatial  separation  between 

decomposers and substrate and could enhanced the prevailing substrate limitation in the subsoil. In 

addition, after 3 months more root-derived C was recovered in the mineral-associated organic matter 

if roots were embedded in topsoil material. The higher SOC content in the topsoil material compen-

sated the substrate limiting conditions in the subsoil macro environment on the short-term. However, 
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without regular supply of fresh substrate via DOC or roots, the easily available substrate in the top-

soil material will be consumed and the micro environmental advantage of higher C availability will  

vanish. 

The exposure of subsoil material  to the topsoil  environment increased the SOC content by 

18 % within on year, underlining the large C sequestration potential of subsoils. Therefore, measures 

to increase soil organic carbon stock should also incorporate the subsoil.
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4.1 Introduction

Soil organic carbon (SOC) plays a major role in the global carbon (C) cycle as soils contain the 

largest active terrestrial carbon reservoir. Thus soils play an important role for climate change, due to 

the fact that soils can be sources or sinks for atmospheric CO2. Increasing C content in soils can con-

tribute to a reduction of anthropogenic greenhouse gas emissions (Fuss et al., 2018; Lal, 2016; Paus-

tian et al., 2016). Hence, a lot of studies investigated the effect of different management to increase 

the SOC stocks  (Minasny et al., 2017). These management practices mostly focus on the topsoil, 

which is usually the first 30 cm of the soil profile. However, it should not be neglected that more 

than 50 % of the global soil organic carbon (SOC) stocks resides in the subsoil (> 30 cm) (Batjes, 

2014; Jobbágy and Jackson, 2000). It is assumed that the low C input and the low C content in sub-

soils results in unsaturated mineral surfaces with C and therefore having the potential to sequester 

additional C (Kaiser and Guggenberger, 2003; Rasse et al., 2005; Rumpel and Kögel-Knabner, 2011; 

Stewart et al., 2008). In addition, the increasing apparent radiocarbon age of OC with soil depth 

(Rethemeyer et al., 2005; Torn et al., 1997), indicate a higher C stability in subsoils than in topsoils. 

Therefore, the C sequestration potential of soils might be larger when the whole soil profile is taken 

into account. However, increasing the OC inputs may result in higher OC stocks, but the fate of OC 

inputs depends on soil environmental conditions and may differ between topsoils and subsoils. In 

previous studies, it has been shown that mineralization of OC differs between topsoils and subsoils 

(Fierer et al., 2003; Heinze et al., 2018; Salomé et al., 2010; Wordell-Dietrich et al., 2017) due to dif-

ferent environmental conditions. However, it still remains unclear how the environmental conditions 

determine the C stability in the subsoil. 

The mineralization of OC by microorganism strongly depends on environmental factors such 

as temperature, soil moisture and C input. Within a soil profile those factors changes with depth, e.g. 

the temperature and moisture regime in subsoils are more constant over the year than in topsoils. But, 

due to the non-linear response of OC mineralization to temperature (Curtin et al., 2012; Lloyd and 

Taylor, 1994) the annual OC mineralization may be lower in the subsoil than in the topsoil. In addi-

tion, the C inputs in form of dissolved organic matter and belowground C inputs (roots and root exu-

dates) decline with depth (Heinze et al., 2018; Michalzik et al., 2001; Tückmantel et al., 2017). The 

decline is accompanied by a change in quality, leading in subsoils to an accumulation of microbial 

residues and aged plant-derived compounds with a lower biodegradability (Kaiser and Kalbitz, 2012; 

Rumpel, 2004; Rumpel et al., 2002). Therefore, stability of subsoil OC is also often linked to a lack 

of fresh C inputs, as easily available energy source which may trigger microbial decomposition in 
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subsoils (Fontaine et al., 2007; Marschner et al., 2008). So far, only a few studies assessed the impact 

of substrate addition (e.g. sugars, cellulose or root litter) on microbial decomposition in subsoils, but 

with varying results. Some studies found an enhancement of SOC mineralization in subsoils after 

substrate  addition  (Fontaine  et  al.,  2007;  Karhu  et  al.,  2016;  Zhang  et  al.,  2015),  while  others 

reported no change in SOC mineralization after substrate addition  (Salomé et al.,  2010; Wordell-

Dietrich et al., 2017). This indicates, that SOC mineralization in subsoils might not only energy lim-

ited due to lower C inputs. Furthermore, also the spatial separation between decomposers and sub-

strate may hamper SOC mineralization in subsoils.  On the one hand,  the accessibility of OC to 

microorganisms can be limited due to aggregation  (Flessa et  al.,  2008; von Lützow et al.,  2006; 

Sollins et al., 1996). On the other hand it was pointed out that low SOC contents can result in ener-

getic constraints for microorganisms, due to a reduced chance to encounter with the substrate (Don et 

al., 2013; Ekschmitt et al., 2008). The mechanisms controlling SOC turnover in subsoils are usually 

investigated in time limited (hours to several weeks) laboratory incubations under controlled condi-

tions with few varying factor, e.g. temperature, moisture or substrate availability. Only a few in situ 

studies showed that OC decomposition slows with soil depth (Baumann et al., 2013; Gill and Burke, 

2002; Hicks Pries et al., 2017a),  but the question as to whether and to which extent environmental 

conditions  (e.g.  temperature,  soil  moisture,  substrate  supply)  and their  interaction determine OC 

decomposition in subsoils remains.

In a recent field study,  Preusser et  al.,  (2019) could show that the abundance of microbial 

biomass decreases with decreasing C inputs along a soil profile. But, they also found that microbial 

communities responded different to C availability and environmental conditions a long the soil pro-

file. While the abundance of fungi was mostly controlled by C availability, the bacterial biomass 

seemed also controlled by soil moisture. Therefore, if environmental conditions in the subsoil limits 

the microbial community, this should also be reflected in the decomposition of OM in the subsoil. To 

disentangle the effect of macro and micro environmental conditions in different soil depth on OC 

decomposition we carried out a reciprocal soil transfer experiment. In this experiment soil material 

from a topsoil horizon and a subsoil horizon were  in situ exposed to different soil depths for one 

year, reflecting different macro and micro environmental conditions. The exposure of the soil mate-

rial to different soil depths, changed environmental conditions at the macro scale of centimeters to 

decimeters. Macro environment refers to abiotic factors such as temperature, soil moisture, root den-

sity and C-input. Further, using soil material from a topsoil and a subsoil horizons was supposed to 

reflect different micro environmental conditions, which were determined by soil properties such as 
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SOC content, pH or soil texture. The embedding of 13C labeled root litter into different soil materials 

and the exposure of this material to different soil depths, allowed us to follow the decomposition of 

root OM depending on macro and micro environmental conditions.

We hypothesized that if the macro environmental conditions in the subsoil limit OC decompo-

sition, the added root litter should decompose slower and the amount of root-derived C found in the 

mineral-associated organic matter (MAOM) fraction will be lower in samples exposed to a subsoil 

environment than in samples exposed to a topsoil environment. If micro environmental conditions 

such as a low SOC content hamper OC decomposition, the amount of root-derived C found in the 

MAOM will be lower if roots are embedded in subsoil material than if embedded in topsoil material  

in the same macro environment. Lastly, the exposure of subsoil material to a topsoil environment 

should reveal the C sequestration potential of the subsoil, due to the formation of MAOM caused by 

higher C inputs.
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4.2 Materials and methods

4.2.1 Site description

The study site is located in a beech forest (Grinderwald), 35 km north-west of Hannover, Ger-

many (52°34′22″N, 9°18′49″E). The vegetation at the site is dominated by common beech (Fagus 

sylvatica) established in 1916, and the soil is characterized as a Dystric Cambisol  (IUSS Working 

Group WRB, 2014) developed on Pleistocene fluvial  and aeolian sandy deposits  from the Saale 

glaciation. The site is located around 100 m above sea level with a mean annual temperature and pre-

cipitation of 9.7°C and 762 mm (1981-2010), respectively (Data from DWD station in Nienburg, 

Germany).  Soil  texture is  characterized by high sand fraction with varying contents  of 60 % (< 

30 cm) to 85 % (> 85 cm), with SOC content of 11.5 g kg ¹ in the topsoil (10⁻  cm) and 0.4 g kg ¹ in⁻  

the subsoil (185 cm) (Heinze et al., 2018; Leinemann et al., 2016). The basic soil characteristics are 

summarized in Table  4.1. Further, the soil temperature and the volumetric water content in several 

depths were monitored in three subsoil observatories at the study site (Figure  4.1 and Table  4.2, 

Wordell-Dietrich et al., 2020).

Table 4.1: Soil characteristic of the study site. Mean values from (Heinze et al., 2018) (n = 24 for each depth). Initial OC 
content of the added root litter, TOP5 and SUB110 samples.

Depth

[cm]

pH

(CaCl2)

OC

[%]

Sand

[%]

Silt

[%]

Clay

[%]

10 3.5 1.15 65.0 31.0 3.0

35 4.2 0.52 61.5 34.5 4.0

60 4.2 0.12 72.1 25.1 2.8

85 4.0 0.04 86.6 11.6 1.7

110 3.9 0.05 84.9 13.1 2.0

135 4.0 0.07 75.5 21.6 3.0

Roots 48.7
TOP5 2.84 72.0 28.0

SUB110 0.11 87.0 13.0
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Figure 4.1: Mean daily soil temperature (°C) and volumetric water content (%) in different soil depths at the  
study site. (n = 3)

Table  4.2: Minimum, maximum and range of soil temperature and volumetric water content in different soil 
depth of the study site during the exposure of TOP5 and SUB110 samples.

June 2014 - September 2014 September 2014 - June 2015

Depth [cm] Min Max Range Min Max Range

Temperature

[°C]

10 10.1 16.1 6.1 0.9 14.3 13.3

50 9.9 15.1 5.1 2.4 13.6 11.2

90 9.8 14.4 4.6 2.8 13.3 10.4

150 9.0 13.1 4.1 4.0 12.3 8.3

Volumetric water content

[%]

10 16.8 23.4 6.6 12.1 22.6 10.5

50 14.3 20.9 6.7 10.7 21.0 10.3

90 12.5 18.8 6.2 10.7 18.6 7.9

150 10.5 16.4 5.9 9.6 18.1 8.5

Precipitation

[mm]
231.0 277.0

4.2.2 Experimental design

In a reciprocal soil transfer experiment, we examined the influence of macro and micro environmen-

tal on the decomposition of OM along a soil profile. In June 2014, twelve soil pits were excavated 

using a digger around three mature beech trees (four pits per tree) in a distance of 2.5 m. The soil 

material from 5 to 10 cm depth from each pit were mixed and sieved (< 2 mm) to one composite 

sample (in the following referred as TOP5). The same procedure was used for the subsoil material 

from 110 to 115 cm depth (SUB110). The two different soil materials represented different micro envi-
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ronmental conditions. The samples were filled into microcosms with a diameter of 10.5 cm and a 

height of 2 cm. To ensure a water percolation into the microcosms, but also adequate separation from 

the surrounding soil, the microcosms were covered with a 500 µm polyamide mesh on the top and 

the bottom  (Preusser et al.,  2019). Microcosms, were exposed in different soil depths (5, 45 and 

110 cm), reflecting different macro environmental conditions in the soil profile. To follow decompo-

sition of OM, 13C labeled root litter was added to the microcosms, resulting in two treatments.

i.) Control: Soil material without addition of 13C labeled roots

ii.) Root addition: Soil material with addition of 13C labeled roots

The microcosms were filled with 242.3 g of TOP5 material  (bulk density of 1.4 g cm-3)  and with 

277.0 g of SUB110 material (bulk density 1.6 g cm-3). For the root addition treatment 13C labeled Euro-

pean beech root litter (δ13C 8283 ‰) with different diameter (0.5 to 2 mm) was cut into 1-2 cm seg-

ments and homogenized. Thereafter, root litter was added with a root density of 10 g L-1 and 2 g L-1 

to TOP5 (1.73 g) and SUB110 samples (0.35 g), respectively. The added amount of roots should reflect 

natural  root  biomass  in  the respective soil  depth.  The labeled roots  originated from young trees 

grown in a greenhouse under  13CO2 enriched atmosphere (9.38 atom %  13C; IsoLife Wageningen, 

Netherlands).  The addition increased the SOC content  in  the TOP5 samples  by 12 % and in the 

SUB110 samples by 55 %.

The prepared microcosms were placed into the tree facing profile walls of the excavated soil pits in 

the three different depths (5, 45 and 110 cm). In each depth, a TOP5 and SUB110 sample with and 

without added roots were randomly incorporated into the soil profile wall. The microcosms in each 

soil depth had a horizontal offset from the microcosms in other soil depths above or below, to avoid 

vertical influences (Figure 4.2). The soil pits were refilled by the same soil material of the respective 

depth. The microcosms were sampled at intervals of three month, in total four samplings. At each 

sampling date, three soil profiles (one per tree) were selected and all microcosms were removed. 

However, we used only samples from the first (September 2014) and last sampling (June 2015) in 

this study. For a more detailed description of the experimental design see Preusser et al., (2019). Soil 

samples were stored at 0 °C for transport. In the lab, an aliquot of 22 g was removed for size and 

density fractionation. The aliquots were sieved (< 2 mm), air-dried and stored until use. In total 72 

microcosms (2 treatments x 2 soil materials x 3 soil depths x 3 replicates x 2 sampling dates) were 

analyzed.
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Figure 4.2: Setup of the soil translocation experiment.

4.2.3 Sample analysis

In order to analyze the decomposition and transformation of the labeled root litter, samples 

were fractionated. A combined size and density fractionation of SOM was performed according to 

(Cerli et al., 2012; Golchin et al., 1994), where the bulk soil was separated into two light fractions 

and two heavy fractions. Briefly, first the free particulate organic matter (fPOM) fraction was iso-

lated by suspending 10 g of bulk soil in 40 mL sodium polytungstate (SPT) solution (1.6 g cm-3) (TC 

Tungsten Compounds, Grub am Forst, Germany) in a centrifuge bottle. The bottle was gently shaken 

by hand for 2 minutes and then centrifuged for 20 min at 4000 rpm. Thereafter, the supernatant with 

floating particles was vacuum filtrated through a 0.45 µm cellulose nitrate filter (Sartorius GmbH, 

Göttingen) and washed with de-ionised water until the electrical conductivity was below 10 µS (usu-

ally after 1.5 L). The separated fraction was dried at 50°C. Second, the remaining soil was re-sus-

pended in SPT and dispersed by ultrasound (Branson Digital Sonifier, Model 450-D, Danbury, CT, 

USA) with an energy input of 60 J mL-1 to obtain the occluded particulate organic matter (oPOM) 

fraction. During ultra sonication the samples were cooled in an ice bath. Subsequently, the samples 

was centrifuged, vacuum aspirated and dried as for the free particulate organic matter. The remaining 

heavy fraction was rinsed with de-ionised water and separated into two particle size fractions: sand 

(> 63 µm) and silt and clay (< 63 µm) by wet sieving and dried at 50 °C. The particles smaller than 

63 µm represented the mineral-associated organic matter (MAOM).

Dried (50°C) subsamples of bulk soil and all four fractions were ground and analyzed for C 

and N content  by dry-combustion  with  an elemental  analyzer  (LECO,  TruMac,  St.  Joseph,  MI, 

USA). The carbon isotope content of the bulk soil and all fractions were determined using an isotope 

ratio mass spectrometer (Delta Plus, Thermo Fisher Scientific, Bremen, Germany) coupled to an ele-

mental analyzer (CE Instruments FLASH EA 1112, Thermo Fisher Scienctific, Bremen, Germany) at 

the lab of the Thünen Institute of Climate-Smart Agriculture. 
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The average C recovery was 98 % for  all samples. However, the C recoveries differed between 

TOP5 and  SUB110 samples.  The  mean  C  recovery  for  TOP5 samples  was  81 % (± 16 %)  and 

116 % (± 39 %) for SUB110 samples. The C recoveries of more than 100 % in the SUB110 samples can 

be attributed to a large variability of fPOM and oPOM in the SUB110 samples. This variability and the 

rather large root pieces used (1-2 cm) resulted in a very large variability of recovered 13C in fPOM 

and oPOM. Therefore, we did not calculated a complete mass balance of the added roots and used 

only the MAOM as indicator for root decomposition.

4.2.4 Calculations and statistics

The root-derived C (R) in the MAOM fraction was calculated using the isotopic mixing equa-

tion (Eq 4.1):

R=1 − (
δ C A

13
− δ Croot

13

δ C control
13

− δ Croot
13 ) (4.1)

where δ13CA is the isotopic signature of the MAOM in the root addition treatment, δ13Croots is the iso-

topic signature of the added roots, δ13Ccontrol is the isotopic signature of the MAOM in the control 

treatment. The effect of different macro and micro environmental conditions on the C content in the 

bulk soil and the MAOM fraction was evaluated with linear models. In order to do so, a linear model 

was fitted by restricted maximum likelihood using the generalized least squares function of the nlme 

package in R (Pinheiro et al., 2019). To identify factors influencing the C content a step wise model 

reduction was performed as described in (Zuur et al., 2009). In brief, all factors (soil depth and sam-

pling date) and their interactions was used as an initial model, which was compared to a simplified 

model (omit one factor) using an ANOVA. If models were significant different, the omitted factor 

had a significant effect on the C content. Further, the effect of different micro environmental condi-

tions (TOP5 vs. SUB110 soil material) on the decomposition of the added roots was tested with same 

linear model as described before with soil material, soil depth and sampling date and their interac-

tions as fixed factor. A TukeyHSD post-hoc test was performed at the significance level of 0.05 for 

the final model. Normal distribution of the residuals was tested with a the Shapiro-Wilks test and the 

homogeneity of variances with Levenes test. All statistical analyses were carried out in R (version 

3.6.0) for Linux (R Core Team, 2019).
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4.3 Results

4.3.1 Topsoil samples - TOP5

After 12 months of field exposure in different soil environments all TOP5 samples lost in aver-

age 13.3 % (± 1.7  %) of the initial SOC regardless of soil depth (Figure 4.3). Further, the differences 

in the SOC content between TOP5 samples translocated to a subsoil environment and non-translo-

cated TOP5 samples were small and not significant after 12 months, this was found in both treatments 

(Table S4.1). However, the C quality in TOP5 samples changed differently during the field exposure 

depending on soil depth, as revealed by size and density fractionation of the control samples (Fig-

ure 4.4 and Table 4.3). In general, the fPOM fraction decreased, while the oPOM and MAOM frac-

tion increased. The largest changes between both sampling dates were found in the non-translocated 

TOP5 samples,  where the contribution of fPOM to total  SOC decreased from 30 % (± 13 %) to 

10 (± 2 %),  while  the  contribution  of  MAOM  to  total  SOC  increased  from  53 %  (±  7 %)  to 

68 % (± 15 %).  In contrast,  TOP5 samples exposed to  the deepest  subsoil  environment  (110 cm) 

showed a lower decrease in the fPOM fraction from 23 % (± 11 %) to 18 % (± 3 %) and also a lower 

increase in the MAOM fraction (4 %) (Figure 4.4 and Table 4.3).

Figure  4.3: Soil  organic carbon content of  TOP5 samples 
exposed to different soil environments for the control and 
the root addition treatment after 3 and 12 months. The dot-
ted red line represents the initial SOC content. Means and 
standard error (n = 3).

Figure  4.4: Soil  organic  carbon  distribution  of 
TOP5 samples  (control  treatment)  after  3  and  12 
months of field exposure in different soil environ-
ments separated into the mineral-associated organic 
matter  (MAOM),  the  occluded particulate  organic 
matter (oPOM) and the free particulate organic mat-
ter  (fPOM)  fraction.  Mean  and  standard  error 
(n= 3).
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Table 4.3: Absolute C distribution and change over time in TOP5 samples of the control treatment in free and occluded 
organic matter (fPOM, oPOM) and mineral-associated organic matter (MAOM) expressed as mg C g-1 dry soil. Mean and 
standard error (n = 3). Asterisks denote a significant differences between sampling time.

Depth Time fPOM oPOM MAOM

[cm] [months] [mg C g-1 soil]

5
3 5.6 (± 1.3) 3.3 (± 1.2) 10.0 (± 1.2)

12 1.6 (± 0.3) 4.0 (± 1.8) 11.4 (± 0.4)

Change -3.9* 0.7 1.4

45
3 3.1 (± 0.4) 3.5 (± 0.8) 11.3 (± 0.5)

12 1.6 (± 0.3) 6.0 (± 0.8) 12.2 (± 0.1)

Change -1.5 2.5 1.0

110
3 4.2 (± 1.1) 3.6 (± 0.7) 10.3 (± 0.9)

12 3.2 (± 0.5) 4.1 (± 0.4) 10.6 (± 0.8)

Change -1.0 0.5 0.4

4.3.2 Subsoil samples - SUB110

The exposure of SUB110 samples to a topsoil environment significantly increased the SOC con-

tent as compared to SUB110 samples in a subsoil environment in both treatments  (Figure  4.5 and 

Table S4.2). Compared to the initial values, the SOC content of SUB110 samples (control) in a topsoil 

environment increased from 1.1 to 1.3 mg C g-1 with in one year for the control treatment. This repre-

sents a C sequestration rate of 6.2 g C m-2 yr-1 in a SUB110 layer of 2 cm height exposed to a topsoil 

environment. In contrast, in the root addition treatment the SOC content of SUB110 samples in the 

topsoil environment decreased from initially 1.7 to 1.1 mg C g-1  within one year. However, in both 

treatments the C content in the MAOM fraction was on average 43 % higher in samples exposed to a 

topsoil environment as compared to samples in a subsoil environment (Figure 4.6). While the bulk 

and the MAOM C content was different between topsoil and subsoil environment, there was no sig-

nificant difference between the two subsoil environments (45 and 110 cm soil depth).
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Figure 4.5: Soil organic carbon content of SUB110 samples exposed to different soil environments for the control 
and the root addition treatment after 3 and 12 months. The dotted red line represents the initial SOC content. Dif -
ferent letters denote significant differences between exposure depths. Means and standard error (n = 3).

Figure 4.6: Organic carbon content of the mineral-associated organic matter (MAOM) fraction of SUB110 sam-
ples for the the control and the root addition treatment exposed to different soil environments after 3 and 12 
months.  Different  letters  denote  significant  differences between exposure  depths.  Means  and  standard  error 
(n = 3).

4.3.3 Root decomposition

The amount of recovered root-derived C in the MAOM fraction in TOP5 and SUB110 exposed to 

different soil depth revealed that the decomposition of the added root litter was influenced by the 

macro environmental conditions in the soil as well as by micro environmental conditions in the sam-
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ples. After one year of field exposure 5.6 % (± 0.7 %) of the initial added root litter C was recovered 

in the MAOM fraction of TOP5 samples exposed to the topsoil environment. In contrast, in TOP5 

samples exposed to the subsoil environment (110 cm) contained only 4.6 % (± 0.9 %) of the initial 

root litter C in the MAOM fraction. However, TOP5 samples in 45 cm had the highest amounts of 

recovered root-derived C in the MAOM fraction with 6.3 %, but also the highest standard error (± 

2.0 %) (Figure 4.7). A similar trend was observed for SUB110 samples, more of the added root C was 

recovered in the MAOM fraction in SUB110 samples exposed to the topsoil environment (4.6 ± 0.9 

%) than in SUB110 samples exposed to the subsoil environment in 45 cm (2.7 ± 0.7 %) and 110 cm 

depth (3.7 ± 0.8 %) (Figure 4.7). Therefore, after 12 months of field exposure in the deepest subsoil 

environment (110 cm) the amount of root-derived C in the MAOM fraction were 19 % in TOP5 and 

in 37 % SUB110 samples lower as compared to their counterparts in the topsoil environment (Figure 

4.8). Even though, this differences was not significant it still suggest that the macro environmental 

conditions in the subsoil limited the decomposition of the added root litter. Moreover, the decomposi-

tion was also affected by micro environmental conditions in the samples, as revealed by the lower 

amounts of recovered root-derived C in the MAOM fraction in SUB110 samples than in TOP5 samples 

exposed to the same depth. After 12 months SUB110 samples contained 57 % (45 cm) and 19 % 

(110 cm) less of the initial root C in the MAOM fraction than TOP5 samples in the same subsoil envi-

ronment depth (Figure 4.9). In contrast, in the topsoil environment the difference between TOP5 and 

SUB110 samples was only 3 % after 12 months. Results from the linear mixed effect model showed 

that the amount of recovered root-derived C in the MAOM was slightly more influenced by macro 

environmental conditions in the soil profile as by the micro environmental conditions in the samples 

(Table S4.3). However, the difference was not significant.
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Figure 4.7: Amount of recovered root-derived C in the MAOM fraction of TOP5 and SUB110 samples exposed to 
different soil environments after 3 and 12 months. Means and standard error (n = 3).

Figure 4.8: Relative difference [%] between topsoil and subsoil 
environment of recovered root-derived C in the MAOM fraction 
in TOP5 and SUB110. Values smaller zero indicate macro envi-
ronmental limitations on root decomposition in the subsoil envi-
ronment. Means and standard error (n = 3).

Figure  4.9: Relative  difference  [%]  between 
TOP5 and SUB110 of recovered root-derived C in 
the MAOM fraction. Values smaller zero indi-
cate  micro  environmental  limitations  in  the 
SUB110 samples on root decomposition. Means 
and standard error (n = 3).
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4.4 Discussion

4.4.1 Macro environment limitations

The exposure of TOP5 and SUB110 samples to different soil depths was conducted to reveal the 

effect  of  macro  environmental  conditions  in  the  topsoil  and  subsoil  on  the  OC decomposition. 

Although, the total SOC content of TOP5 samples were not significantly affected by soil depth, the 

lower amounts of recovered root-derived C in the MAOM fraction in TOP5 and SUB110 samples 

exposed to a subsoil environment (Figure 4.7) supports the perception of less favorable environmen-

tal conditions for microbial decomposition in the subsoil than in the topsoil. Further, the lower loss of 

fPOM in TOP5 control samples in the subsoil environment supports the hypothesis of environmental 

limitations in the subsoil for OC decomposition (Table 4.3). This is in line with findings reported by 

Hicks Pries et al. (2018), which exposed 13C labeled root litter in three different soil depths (15, 55 

and 95 cm) in a coniferous forest. After three years, they recovered more particulate root C in 95 cm 

depth than in 15 cm. In addition,  Gill and Burke (2002) also observed a lower decomposition of 

buried root litter in 1 m depth than in 10 cm after three years of field exposure. However, the ques-

tion remains which environmental constraints limit OC decomposition in the subsoil.

At our study site, the macro environment represented by soil temperature, soil moisture, root 

density and C input differed between topsoil and subsoil. The soil temperature showed differences 

with depth as the subsoil environment was characterized by a lower temperature amplitude during 

the experiment (Figure 4.1 and Table 4.2). This may led to a lower OC decomposition in the subsoil 

environment, due to the non-linear response of temperature on C decomposition (Curtin et al., 2012; 

Lloyd and Taylor, 1994). However, soil temperature difference between topsoil and subsoil environ-

ment (2 °C) was small therefore the differences in decomposition might be also small. Oxygen limi-

tation can be excluded because it was above 18 % in all depths (data not shown). Instead, larger dif -

ferences were found in the water content between topsoil and subsoil (Figure  4.1 and Table 4.2) 

which is attributed to the higher sand content in the subsoil (Table 4.1). Water is a major factor for 

the OC decomposition in the soil. Since it is a transport medium of soluble OC and decomposers and 

contributes to the translocation of nutrients from the topsoil to the subsoil. In fact, for the study site it  

was shown that the dissolved organic carbon (DOC) fluxes decline with increasing soil depth from 

20 g C m-2 yr-1 at 10 cm depth to 2 and 1.2 g C m-2 yr-1 at 50 and 150 cm depth  (Leinemann et al., 

2016). Furthermore, the root biomass (Heinze et al., 2018; Wordell-Dietrich et al., 2020) and the root 

exudations (Tückmantel et al., 2017) decreases with increasing soil depth, underlining substrate limi-
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tation for microbial decomposers in the subsoil environment at the study site. The microbial biomass 

of TOP5 samples exposed to the subsoil environment was 20 % lower as compared to samples in the 

topsoil environment as reported in the study from Preusser et al. (2019). Similar effects of substrate 

limitation for the OC decomposition in subsoils were reported in laboratory incubation experiments 

(Fontaine et al., 2007; Heitkötter and Marschner, 2018).

In addition,  Heitkötter and Marschner (2018) showed that SOC mineralization in the subsoil 

from the study site is limited to some hotspots such as preferential flow paths or rooting channels, 

but they also found that SOC outside of those hotspots was mineralized after substrate addition (glu-

cose). This indicates, if there are regions with SOC in the subsoil which are disrupted from regular 

water fluxes, this may also lead to a substrate limitation for decomposers. For the study site it was 

shown that the spatial heterogeneity of water fluxes were higher in the subsoil than in topsoil (Leine-

mann et al., 2016), suggesting that the C input into the subsoil environment were not evenly distrib-

uted. In consequence, microbial decomposers in the subsoil environment at the study site are sub-

strate limited due to the low amounts of C input via seepage water and the spatial separation due to  

the sandy soil texture.

4.4.2 Micro environment limitations

Next to the macro environmental conditions in the subsoil, the OC decomposition was also 

affect by micro environmental conditions inside the used samples, as revealed by the higher amounts 

of recovered root-derived C in TOP5 samples than in SUB110 samples exposed to the same subsoil 

environment (Figure 4.7 and Figure 4.9). Soil microorganism might be less substrate limited in TOP5 

samples than in SUB110 samples, due to the higher SOC content of TOP5 samples (Table 4.1). This is 

in line with Preusser et al. (2019) who found also higher response of the microbial biomass to root 

addition in SUB110 samples than in TOP5 samples exposed to the same subsoil environment, support-

ing the hypothesis  of substrate limitation in SUB110 samples.  However,  this  micro environmental 

advantage of higher substrate availability for decomposers in TOP5 samples may have only a short-

term effect. If the easily degradable OC in TOP5 samples are consumed, decomposers will be sub-

strate limited again because of the low C inputs via seepage water in the subsoil. This is in line with 

results from incubation studies which found a higher mineralization of an added substrate in topsoil 

samples as compared to subsoil samples (Salomé et al., 2010; Wordell-Dietrich et al., 2017). How-

ever, with increasing incubation time the mineralization rates of the added substrate decreases, indi-

cating substrate limitation.
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In addition, results from laboratory incubation studies also indicated that OC decomposition 

might be also controlled the by spatial separation of decomposers and substrate  (Don et al., 2013; 

Salomé et al., 2010; Wordell-Dietrich et al., 2017). Therefore, the lower SOC content in SUB110 sam-

ples may reduced the probability for microorganisms and exoenzyms to encounter with the added 

roots  or  substrate  as compared to  C rich TOP5 samples  (Ekschmitt  et  al.,  2008).  This may also 

explain  the  observed  loss  of  SOC in  SUB110 samples  exposed  to  the  subsoil  environment  after 

3 months (Figure 4.5), as the sample preparation (sieving and mixing) led to better contact between 

substrate and decomposers. However, this disturbance effect was only short term, as indicated by the 

small differences of SOC content between 3 and 12 months of SUB110 samples exposed to the subsoil 

environment (Figure 4.5). 

Moreover, the diffusion of soluble C is the main transport mechanisms between substrate and 

decomposers in the subsoil environment (Schimel et al., 2011; Xiang et al., 2008). Hence, if the dif-

fusion pathways are missing or disrupted, e.g. due to a lower water content, the OC decomposition 

should also be reduced due to lower substrate supply (Schjønning et al., 2003). In consequence, the 

higher sand and lower water content in SUB110 samples (Table S4.4) may also limited root decompo-

sition as compared to TOP5 samples exposed to the same subsoil environment.

Overall, the micro environmental limitations for root decomposition were more pronounced in 

the substrate limited subsoil environment. While the high C input and the more homogeneous water 

flux in the topsoil environment may compensate these micro environmental effects, indicated by only 

minor differences in the amount of recovered root-derived C in the MAOM fraction in TOP5 and 

SUB110 samples exposed to the topsoil environment (Figure  4.7 and Figure  4.9). Even though, the 

higher SOC content in TOP5 samples influenced root litter decomposition in the subsoil environment, 

the macro environmental conditions (low C input and spatial separation) in the subsoil environment 

will limit decomposition processes on the long-term at the study site.

4.4.3 Implications for soil C sequestration in the whole soil profile

The translocation of the C poor SUB110 samples to the topsoil environment also revealed the C 

sequestration potential of the subsoil. In fact, the higher C input in the topsoil environment lead to 

the formation of MAOM in SUB110 (Figure 4.6) as compared to SUB110 samples exposed to the sub-

soil environment, supporting the hypothesis that additional C can be stored on unsaturated mineral 

surface  in  the  subsoil.  The  observed  C  sequestration  rate  of  6.2 g C m-2 yr-1 would  represent  an 

increase of total SOC stocks (0-185 cm) by 0.13 %. However, it must be kept in mind that a subsoil  

layer of 2 cm thickness only was exposed to the topsoil environment. A 20 cm thick subsoil layer 
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with a bulk density of 1.6 g cm-3 could theoretically sequester 0.6 Mg C ha-1 yr-1 at our study site. 

Even if our experiments lasted only one year, it can be assumed that C sequestration in the translo-

cated subsoil material would last longer, as similar C sequestration rates were observed in other stud-

ies. For example Alcántara et al. (2016) investigated deep ploughed agricultural soil in northwestern 

Germany. By deep ploughing, C poor subsoil from 55 to 90 cm depth where translocated to the soil  

surface. They reported an average C sequestration rate of 0.4 Mg C ha-1 yr-1 in the first 30 cm of the 

deep ploughed soil profile. A similar study by Schiedung et al. (2019) investigated changes in SOC 

stocks after deep soil flipping of pastureland in New Zealand. They reported a mean SOC sequestra-

tion rate of 1.2 Mg C ha-1 yr-1 for flipped soils in the first 15 cm of the soil, 20 years after soil flip-

ping. Underlining, the enormous potential of C storage in soils.

Therefore, C storage actions such as afforestation (Bastin et al., 2019) should also include con-

siderations to increase the SOC in the subsoil. However, methods to translocate C into subsoils as 

deep ploughing or deep soil flipping are not appropriate for all sites. In the light of the enormous C 

storage potential in subsoils, there is an urgent need for more research and method development to 

increase the C content in subsoils. For example, a modified method as used by (Kalks et al., 2020) 

were a C solution can be directly injected into the subsoils. In dry periods additional C (e.g. slurry or 

manure) may be directly injected via small tubes (5-10 mm in diameter) to a depth of 1m. However, 

that would require long term monitoring approaches in the field to measure C dynamics, particularly 

recording DOC and nitrogen exports to the waterbodies. The usage of a 13C label would allow a bet-

ter source identification of C in DOC, CO2 and SOC.
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4.5 Conclusion

The in situ exposure of topsoil and subsoil material to different soil depths in combination with 

stable isotope labeling revealed that the macro environmental conditions in the subsoil are less favor-

able for microbial decomposition leading to a slower decomposition of root litter and particulate 

organic matter. The OC decomposition in the subsoil at our study site was mainly controlled by the 

availability of substrate as an energy source for decomposers. The low C input with seepage water 

into the subsoil horizons and the heterogeneous distribution of water fluxes due to the sandy soil tex-

ture leading to substrate limiting conditions in the subsoil environment. Further, the exposure of top-

soil material with a high SOC content to the subsoil environment could not compensate for the sub-

strate limiting conditions on the long-term. In contrast, the exposure of C poor subsoil material in the 

topsoil environment revealed the large C sequestration potential in the subsoil. Therefore, measures 

to increase C stocks in soils should also include subsoils, even though there is currently a lack of 

methods to increase SOC stocks in subsoils.
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CHAPTER 5 SYNTHESIS & CONCLUSION 

5.1 Summary of main results

Table 5.1: Overview of the objectives and the main results for each chapter. 

Chapter Objectives Results

Vertical partitioning of CO  pro₂ -
duction in a beech forest
(Field monitoring of CO2 concen-
tration in the soil profile and field 
labeling with 13C enriched litter)

1. Quantification  of  CO2 production  in 
the subsoil

2. Identification of sources for CO2 pro-
duction along the soil profile

1. 10 % of the annual CO2 production was pro-
duced in the subsoil (> 30 cm).

2. Neither dissolved fresh leaf litter nor old SOC 
contributed significantly to  the CO2 produc-
tion in subsoils

CO2 in  subsoils  originates  from  young  C 
sources  such  as  autotrohpic  respiration  and 
heterotrpohic respiration in the rhizosphere 

Controlling factors for the stabil-
ity of subsoil carbon in a Dystric
Cambisol
(Laboratory  incubation  experi-
ment)

1. Assessing  the  impact  of  temperature 
and substrate availability on SOC min-
eralization in the subsoil

2. Determining the stability of additional 
C inputs in the subsoil.

1. Temperature  sensitivity  of  SOC  mineraliza-
tion  decreases  with  soil  depth.  Higher  sub-
strate availability did not increase native SOC 
mineralization in the subsoil.

2. Lower mineralization of added dead roots in 
the subsoil than in the topsoil

SOC mineralization in subsoils might be less 
vulnerable  to  climate  change.  Additional  C 
inputs  in  subsoils  may  not  destabilize  old 
SOC.

Environmental  constraints  limit
carbon decomposition in the sub-
soil
(Reciprocal  soil  transfer  experi-
ment)

1. Examining  the  influence  of  environ-
mental conditions in a soil profile on 
the OC mineralization

2. Estimating the C sequestration poten-
tial in subsoils due to the formation of 
MAOM

1. Long-term stability of OC in the subsoil was 
controlled  by  the  low and  spatial  heteroge-
neous  C  inputs.  Higher  SOC  content 
increased  OC  decomposition  in  the  subsoil 
environment only on a short-term basis

2. Higher C inputs in the subsoil, increased the 
SOC content by 18 % mainly due to the for-
mation of MAOM. 

The unfavorable environmental conditions in 
the  subsoil  as  the  low and  heterogeneous  C 
inputs limit the mineralization of OC. There-
fore,  subsoils  provide  a  great  potential  for 
long-term C sequestration.
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5.2 CO2 production in the subsoil

Although the 14C age of bulk SOC increases with soil depth, indicating mean residence times of 

several thousand years (Angst et al., 2016), the subsoil also comprises a C pool with much shorter 

turnover rates. The results of the two year field monitoring of CO2 concentrations in five depths 

down to 150 cm in the three subsoil observatories at the Grinderwald study site (Chapter 2) showed 

that a significant amount of total soil respiration originated from CO2 production in the subsoils (Fig-

ure 2.6). The subsoil (> 30 cm) accounted for 10 % of the annual soil respiration, which is less than 

the reported 20-50 % found in the few other studies on CO2 production in subsoils. (Davidson et al., 

2006;  Davidson and Trumbore,  1995;  Fierer  et  al.,  2005;  Jassal  et  al.,  2005).  The lower values 

reported in this study might be partly explained due to the depth specific measurements and not soil 

horizon specific measurements.  The subsoil  horizons (B) at  the study site  starts  at  10 cm depth 

(Leinemann et al., 2016, Supplement 1), therefore the average proportion of CO2 production in the 

subsoil to total CO2 production at the study site was 26 %. In addition, the differences in climate 

(temperate, tropical, Mediterranean) and vegetation cover (grassland, forest) may also explain the 

wide range of the observed CO2 production in subsoils. 

Furthermore, the laboratory incubation (Chapter 3, Figure 3.1), showed that the SOC mineral-

ization per unit SOC was similar or even higher in the subsoil samples than in the topsoil samples. 

Thus, subsoils contain a labile C pool that contributes to the annual CO2 efflux from soils, confirm-

ing hypothesis H1. 

Moreover,  the 14CO2 data revealed that CO2 in the subsoil originated  mainly from recent C 

sources (Figure 2.11).  This is  similar to the few other studies (Fierer et al., 2005; Gaudinski et al., 

2000), which measured  14CO2 in the subsoil. In addition, the  13C labeling experiment showed that 

annual litter-derived C inputs were only a minor source for CO2 production below 10 cm. Further, C 

inputs via DOC below 10 cm depth at the study site were estimated with 18 g m -2 yr-1 (Leinemann et 

al.,  2016),  while  the  annual  CO2 production  below  10  cm  depth  is  about  ten  time  larger 

(200 gC m-2 yr-1,  Figure  2.6).  Thus,  CO2 in  subsoil  must  originate  from other  C sources  such as 

autotrophic respiration and heterotrophic respiration in the rhizosphere, as root-derived C seems to 

be the major C source in the subsoil at the study site, which confirms hypothesis H2.
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5.3 Temperature sensitivity of the subsoil

The laboratory incubation experiment with undisturbed topsoil and subsoil samples (Chapter 3) 

showed a decreasing temperature sensitivity of SOC mineralization with soil  depth (Figure  3.3). 

Thus the hypothesis H3 of a higher temperature sensitivity of SOC mineralization in subsoils due to 

a higher recalcitrance of subsoil OM than of topsoil OM cannot be confirmed. As pointed out by 

Davidson and Janssens, (2006) the intrinsic temperature sensitivity of SOM may be attenuated due to 

environmental constraints such as limited access to fresh substrate for decomposers, low SOC con-

tent or aggregation. Therefore, the low SOC content and the low C inputs in the subsoil may obscure 

the temperature sensitivity of SOC mineralization in the subsoil. However, neither the addition of 

root material, nor the disturbance due to sieving, affected the temperature sensitivity of SOC miner-

alization in the subsoil. Therefore, the attenuating effect of substrate limitation or physical protection 

on the  temperature sensitivity in the subsoils could not be confirmed. Further, the lower temperature 

sensitivity in the subsoil may also supports the hypothesis H1 of a labile C pool in the subsoil, as the 

mineralization of labile SOC is assumed to be less temperature sensitive.

Nevertheless, as the temperature sensitivity of subsoils are usually investigated in laboratory 

incubations under controlled environmental conditions with varying results (Conen et al., 2008; Fang 

et al., 2005; Fierer et al., 2003; Karhu et al., 2010; Winkler et al., 1996), the question of how climate 

change will affect SOC mineralization in subsoils remains open. In a unique two year field warming 

experiment where the whole soil was warmed down to 100 cm depth,  Hicks Pries et al.  (2017b) 

found that the temperature sensitivity of CO2 production was similar in topsoil and subsoil horizons. 

This  indicates,  that  SOC mineralization in  subsoils  and topsoils  may respond similar  to  climate 

change in temperate and warm climates. In contrast, in higher latitudes where temperature is the lim-

iting factor for decomposition e.g. permafrost regions, the temperature response of soils and subsoils 

will be higher (Carey et al., 2016; Tang et al., 2019). However, field and laboratory data on the tem-

perature response of SOC mineralization in subsoils is rare, which make it hard to incorporate C 

dynamics in subsoils in global C models. 

In conclusion, SOC mineralization in the subsoil showed no higher temperature sensitivity than 

in the topsoil. Further, temperature sensitivity in the studied subsoil was not obscured by other stabi-

lization mechanisms such as substrate limitation or aggregation. This implicates, that SOC mineral-

ization in the subsoil might be less affected by climate change as previously assumed.
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5.4 Carbon stability in subsoils is controlled by substrate availability

The high stability of subsoil OC and the high 14C ages were also explained due the lack of an 

easily available energy source for soil microorganisms (Fontaine et al., 2004, 2007; Marschner et al., 

2008). The lower C inputs into the subsoil due to DOM, roots and roots exudates results in substrate 

limitations for decomposers to meet their energy demand  (Joergensen and Wichern, 2018). Hence, 

the addition of OC to subsoils may stimulate the decomposition of native SOC, which is known as 

priming. However, research so far on priming in subsoils are limited and findings are inconsistent 

(Fierer et al., 2003; Fontaine et al., 2007; Karhu et al., 2016; Salomé et al., 2010). 

The incubation experiment of Chapter 3, revealed that the addition of root litter to topsoil and 

subsoil horizons did not enhance the native SOC mineralization (Figure 3.7), which fits to findings of 

Salomé et al. (2010). In contrast, others reported positive priming effects in subsoils after glucose 

addition (Fontaine et al., 2007; Karhu et al., 2016). The different results of priming observed in the 

incubation studies, might be explained due to the differences in soil properties, for example higher 

positive priming effects  were observed in soils  with a pH between 6 and 8  (Blagodatskaya and 

Kuzyakov, 2008). The soil used in this thesis had a pH of 4, while the other studies reported a pH 

of 7 (Fontaine et al., 2007; Salomé et al., 2010). In addition, the subsoil used in this thesis is charac-

terized by a much lower SOC content (0.4 mg C g-1, Table 3.1) as compared to Fontaine et al. (2007) 

(23.3 mg C g-1), which may limited the probability for microorganisms or exoenzymes to encounter 

with SOC (Don et al., 2013; Ekschmitt et al., 2008), due to a larger spatial separation. This is also 

indicated by the lower mineralization of the added roots in the C poor subsoil as compared to the top-

soil (Figure 3.4). A similar pattern was found in the reciprocal soil transfer experiment of Chapter 4, 

where topsoil and subsoil material with and without 13C labeled root litter were exposed to different 

depths, reflecting different soil environmental conditions. In the topsoil samples exposed to the sub-

soil environment a higher amount of root-derived C was recovered in the MAOM fraction as in sub-

soil samples exposed to the same soil environment (Figure 4.7). This implies that more of the added 

root C was mineralized in the topsoil samples than in the subsoil samples, which is in line with the 

results from the laboratory incubation. One explanation might be that decomposers are less limited 

on labile substrate in the topsoil samples as in the subsoil samples, due to a higher SOC content.  

Another explanation might be that diffusion of soluble C is the main transport process for substrate 

in the subsoil environment and during the laboratory incubation Therefore, the lower sand content 

(70 %) in the topsoil and the first subsoil horizon (Table 3.1) provided a better connectivity between 
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decomposers and substrate, which caused a lower spatial separation than in the deep subsoil samples 

with a higher sand content (90 %). This partly supports the hypothesis of a higher spatial separation 

in the subsoil than in the topsoil (H4)

However, the laboratory incubation also showed that with increasing incubation time the min-

eralization rates of the added roots decreased in all samples (Figure 3.5), indicating substrate limiting 

conditions despite the higher SOC content and lower sand content in the topsoil samples. Therefore, 

the benefit of better micro environmental conditions on OC mineralization might by only a short-

term effect and without supply of C inputs OC mineralization is reduced. This assumption is sup-

ported by results of the reciprocal soil transfer experiment. Samples with high and low SOC content 

exposed to the subsoil environment (110 cm depth) contained less root-derived C in the MAOM frac-

tions as their counterparts exposed to the topsoil environment (Figure  4.7), underlining the impor-

tance regular substrate supply for SOC decomposition in the subsoil environment. In addition, the 

comparison of the topsoil samples exposed to 5 cm and 110 cm depth showed a lower loss in 110 cm 

in the fPOM fraction (Figure 4.4, Table 4.3), which is seen as the most labile and easily degradable 

OC fraction in soils (von Lützow et al., 2007). So far, only a few studies investigated the decomposi-

tion of OM in subsoils under field conditions. However, the results presented in this thesis are in line 

with findings from Hicks Pries et al. (2018) and Gill and Burke (2002) who exposed root litter to top-

soil and subsoil horizons and after three years they recovered more root C in the subsoil horizon as in 

the topsoil horizon.

For the study site it was shown that the C inputs via DOC strongly decline with soil depth and 

are  more  heterogeneous (Leinemann  et  al.,  2016).  Also,  the  root  biomass  (Heinze  et  al.,  2018; 

Wordell-Dietrich et  al.,  2020) and the root  exudations (Tückmantel  et  al.,  2017) decreased with 

increasing depth. This supports the hypothesis H4 that decomposition in the subsoil is substrate lim-

ited due to lower C inputs. In conclusion, the laboratory incubation revealed that micro environmen-

tal differences in SOC content and soil texture controlled OC decomposition on short-term, while 

macro environmental conditions such as C input via DOC or root distribution in the soil profile con-

trol the long-term stability of subsoil SOC. In consequence, the high stability of subsoil OC is con-

trolled by the amount and distribution of regular C inputs. Therefore, subsoils may have the greatest 

potential for long-term C sequestration due to the low C inputs.
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5.5 Implications

Based on current estimates about 60 Gt of C was emitted from soils to the atmosphere between 

1959 to 2010 due to the land conversion and agricultural use (Lal, 2016). This implicates that soils 

have a C deficit and can store additional C. Thus, soil C sequestration is a good and cost effective 

measure for climate change mitigation (Fuss et al., 2018). Research so far mainly focused on increas-

ing C stocks in topsoils (<30 cm) (Minasny et al., 2017) but ignoring the large volume of the subsoil 

(> 30 cm) for C sequestration. However, a few studies already showed that natural or anthropogenic 

C burial due to land slides, erosion or deep ploughing can significantly sequester large amount of C 

in the long-term (Alcántara et al., 2016, 2017; Berhe et al., 2007; Quinton et al., 2010; Schiedung et  

al., 2019). Therefore, C sequestration measures and research should also include the subsoils.

The advantages of C sequestration in subsoils versus C sequestration in topsoils are first the 

slower mineralization of OC in the subsoil, which may results in long-term storage. Secondly, as C 

sequestration mainly focus on degraded or agricultural soil, the soil volume for soil C sequestration 

is limited. However, if the subsoils are included the volume is much larger. Further, also other soils 

might be taken into consideration e.g. forest soils. Lastly, the C saturation concept proposed by Stew-

art et al. (2007, 2008) assumed that, the further a soil is from its carbon saturation level, the higher is 

the efficiency of C sequestration. This is also supported by findings from the reciprocal soil transfer 

experiment  (Chapter  4),  the  translocation  of  C  poor  subsoil  material  to  a  topsoil  environment 

increased the SOC content of the subsoil material by 18 % within one year. In consequence, the C 

sequestration efficiency should be much higher in subsoil due to the low SOC content as compared 

to topsoils.

Unfortunately, the number of methods to increases SOC in deeper soil horizons is limited and 

methods which disturb the whole soil such as deep ploughing will not work in established forest. In 

turn, deep ploughing might be used as site preparation for afforestation. Therefore, future soil C 

research should also focus on method development to increases SOC stocks in subsoils with lower 

disturbance of the soil.

As found in this thesis, the stability of OC in the studied forest subsoil is determined by the low 

C inputs. However, further research must show if the results found on this specific study site are 

transferable to other soil type and climatic regions. Further, if the stability of SOC in subsoils is con-

trolled by C inputs, the risk of SOC losses due to changes in the C inputs should also be assessed.
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5.6 Conclusion

Although subsoils store more than 50 % of global SOC stocks, the knowledge on the mecha-

nisms controlling the turnover of such a large C pool is limited. Thus, predicting changes in subsoil 

OC stocks following global change is almost impossible without understanding the C dynamics in 

deeper soil horizons. This is even more complicated, as the contribution of subsoils to total soil respi-

ration is unclear. In spite of the increasing mean residence times of SOC with depth, it was shown 

that the subsoil accounted for 10 % of the annual CO2 production. Moreover, the modern radio car-

bon signature of CO2 in the subsoil (Chapter  2) and the higher specific mineralization rates in the 

deep subsoil  observed in  the  laboratory  incubation  experiment  (Chapter  3)  revealed that  mainly 

recent C sources were being respired, likely root-derived C.

In addition, the temperature sensitivity decreased with soil depth, even under elevated substrate 

availability. This implicates, that SOC mineralization in the subsoil might be less affected by climate 

change as previously assumed. Further, the lower temperature sensitivity in the subsoil also supports 

the  hypothesis  that  subsoils  contain  a  labile  C  pool,  since  the  mineralization  of  labile  SOC is 

assumed to be less temperature sensitive.

The lack of fresh substrate as an available energy source for decomposers is given as an expla-

nation for the high stability of subsoil OC. However, in the laboratory incubation the addition of root 

litter to the subsoil as an available energy source did not enhance the mineralization of native subsoil 

OC. This is an important finding, because it implicates that additional C inputs to subsoils as part of 

C sequestration measures may not affect the mineralization of stable and ancient subsoil OC. Fur-

thermore, during the laboratory incubation added roots were more stable if mixed in subsoil material 

with a low SOC and a high sand content than if mixed into C rich topsoil material. This suggests that 

decomposers are facing a greater spatial separation from the substrate in the subsoil than in the top-

soil. However, the in situ exposure of topsoil and subsoil samples with added root litter to a topsoil 

and a subsoil environment indicated that long-term C stability in the subsoil environment was con-

trolled by the distribution and the quantity of C inputs and less due to micro environmental differ-

ences such as the SOC content. 

In consequence, heterogeneous and low C inputs into the subsoil, result in substrate limiting 

conditions for decomposers, which explains the high stability of OC in subsoils.

87



REFERENCES

REFERENCES

Agnelli, A., Ascher, J., Corti, G., Ceccherini, M. T., Nannipieri, P. and Pietramellara, G.: Distribution 
of microbial communities in a forest soil profile investigated by microbial biomass, soil respiration 
and DGGE of total and extracellular DNA, Soil Biol. Biochem., 36(5), 859–868, doi:10.1016/j.soil-
bio.2004.02.004, 2004.

Alcántara, V., Don, A., Well, R. and Nieder, R.: Deep ploughing increases agricultural soil organic 
matter stocks, Glob. Chang. Biol., 22(8), 2939–2956, doi:10.1111/gcb.13289, 2016.

Alcántara, V., Don, A., Vesterdal, L., Well, R. and Nieder, R.: Stability of buried carbon in deep-
ploughed forest and cropland soils - implications for carbon stocks, Sci. Rep., 7(1), 5511, 
doi:10.1038/s41598-017-05501-y, 2017.

Angst, G., John, S., Mueller, C. W., Kögel-Knabner, I. and Rethemeyer, J.: Tracing the sources and 
spatial distribution of organic carbon in subsoils using a multi-biomarker approach, Sci. Rep., 6(1), 
29478, doi:10.1038/srep29478, 2016.

Baisden, W. T. and Parfitt, R. L.: Bomb 14C enrichment indicates decadal C pool in deep soil?, Bio-
geochemistry, 85(1), 59–68, doi:10.1007/s10533-007-9101-7, 2007.

Baldocchi, D., Tang, J. and Xu, L.: How switches and lags in biophysical regulators affect spatial-
temporal variation of soil respiration in an oak-grass savanna, J. Geophys. Res. Biogeosciences, 
111(G2), n/a-n/a, doi:10.1029/2005JG000063, 2006.

Basler, A., Dippold, M., Helfrich, M. and Dyckmans, J.: Microbial carbon recycling - An underesti-
mated process controlling soil carbon dynamics - Part 1: A long-term laboratory incubation experi-
ment, Biogeosciences, 12(20), 5929–5940, doi:10.5194/bg-12-5929-2015, 2015.

Bastin, J.-F., Finegold, Y., Garcia, C., Mollicone, D., Rezende, M., Routh, D., Zohner, C. M. and 
Crowther, T. W.: The global tree restoration potential, Science (80-. )., 365(6448), 76–79, 
doi:10.1126/science.aax0848, 2019.

Batjes, N. H.: Total carbon and nitrogen in the soils of the world, Eur. J. Soil Sci., 47(2), 151–164 
[online] Available from: http://library.wur.nl/isric/fulltext/isricu_t47d6414d_001.pdf (Accessed 21 
September 2011), 1996.

Batjes, N. H. H.: Total carbon and nitrogen in the soils of the world, Eur. J. Soil Sci., 65(1), 10–21, 
doi:10.1111/ejss.12114_2, 2014.

Baumann, K., Sanaullah, M., Chabbi, A., Dignac, M.-F., Bardoux, G., Steffens, M., Kögel-Knabner, 
I. and Rumpel, C.: Changes in litter chemistry and soil lignin signature during decomposition and 
stabilisation of 13C labelled wheat roots in three subsoil horizons, Soil Biol. Biochem., 67, 55–61, 
doi:10.1016/j.soilbio.2013.07.012, 2013.

Berhe, A. A., Harte, J., Harden, J. W. and Torn, M. S.: The Significance of the Erosion-induced Ter-
restrial Carbon Sink, Bioscience, 57(4), 337–346, doi:10.1641/b570408, 2007.

88



REFERENCES

Bingeman, C. W., Varner, J. E. and Martin, W. P.: The Effect of the Addition of Organic Materials on 
the Decomposition of an Organic Soil, Soil Sci. Soc. Am. J., 17(1), 34–38, doi:10.2136/
sssaj1953.03615995001700010008x, 1953.

Blagodatskaya, E. V. and Anderson, T.-H.: Interactive effects of pH and substrate quality on the fun-
gal-to-bacterial ratio and qCO2 of microbial communities in forest soils, Soil Biol. Biochem., 30(10–
11), 1269–1274, doi:10.1016/S0038-0717(98)00050-9, 1998.

Blagodatskaya, Е. and Kuzyakov, Y.: Mechanisms of real and apparent priming effects and their 
dependence on soil microbial biomass and community structure: critical review, Biol. Fertil. Soils, 
45(2), 115–131, doi:10.1007/s00374-008-0334-y, 2008.

Bond-Lamberty, B. and Thomson, A.: Temperature-associated increases in the global soil respiration 
record, Nature, 464(7288), 579–582, doi:10.1038/nature08930, 2010.

Bond-Lamberty, B., Bailey, V. L., Chen, M., Gough, C. M. and Vargas, R.: Globally rising soil het-
erotrophic respiration over recent decades, Nature, 560(7716), 80–83, doi:10.1038/s41586-018-0358-
x, 2018.

Borken, W., Xu, Y.-J., Davidson, E. A. and Beese, F.: Site and temporal variation of soil respiration 
in European beech, Norway spruce, and Scots pine forests, Glob. Chang. Biol., 8(12), 1205–1216, 
doi:10.1046/j.1365-2486.2002.00547.x, 2002.

Bosatta, E. and Ågren, G. I.: Soil organic matter quality interpreted thermodynamically, Soil Biol. 
Biochem., 31(13), 1889–1891, doi:10.1016/S0038-0717(99)00105-4, 1999.

Böttcher, J., Weymann, D., Well, R., Von Der Heide, C., Schwen, A., Flessa, H. and Duijnisveld, W. 
H. M.: Emission of groundwater-derived nitrous oxide into the atmosphere: Model simulations based 
on a 15N field experiment, Eur. J. Soil Sci., 62(2), 216–225, doi:10.1111/j.1365-2389.2010.01311.x, 
2011.

Bowden, R. D., Nadelhoffer, K. J., Boone, R. D., Melillo, J. M. and Garrison, J. B.: Contributions of 
aboveground litter, belowground litter, and root respiration to total soil respiration in a temperate 
mixed hardwood forest, Can. J. For. Res., 23(7), 1402–1407, doi:10.1139/x93-177, 1993.

Bundt, M., Widmer, F., Pesaro, M., Zeyer, J. and Blaser, P.: Preferential flow paths: Biological “hot 
spots” in soils, Soil Biol. Biochem., 33(6), 729–738, doi:10.1016/S0038-0717(00)00218-2, 2001.

Carey, J. C., Tang, J., Templer, P. H., Kroeger, K. D., Crowther, T. W., Burton, A. J., Dukes, J. S., 
Emmett, B., Frey, S. D., Heskel, M. A., Jiang, L., Machmuller, M. B., Mohan, J., Panetta, A. M., 
Reich, P. B., Reinschj, S., Wang, X., Allison, S. D., Bamminger, C., Bridgham, S., Collins, S. L., De 
Dato, G., Eddy, W. C., Enquist, B. J., Estiarte, M., Harte, J., Henderson, A., Johnson, B. R., Larsen, 
K. S., Luo, Y., Marhan, S., Melillo, J. M., Peñuelas, J., Pfeifer-Meister, L., Poll, C., Rastetter, E., 
Reinmann, A. B., Reynolds, L. L., Schmidt, I. K., Shaver, G. R., Strong, A. L., Suseela, V. and 
Tietema, A.: Temperature response of soil respiration largely unaltered with experimental warming, 
Proc. Natl. Acad. Sci. U. S. A., 113(48), 13797–13802, doi:10.1073/pnas.1605365113, 2016.

89



REFERENCES

Cerli, C., Celi, L., Kalbitz, K., Guggenberger, G. and Kaiser, K.: Separation of light and heavy 
organic matter fractions in soil — Testing for proper density cut-off and dispersion level, Geoderma, 
170, 403–416, doi:10.1016/j.geoderma.2011.10.009, 2012.

Cerling, T. E., Solomon, D. K., Quade, J. and Bowman, J. R.: On the isotopic composition of carbon 
in soil carbon dioxide, Geochim. Cosmochim. Acta, 55(11), 3403–3405, doi:10.1016/0016-
7037(91)90498-T, 1991.

Chabbi, A., Kögel-Knabner, I. and Rumpel, C.: Stabilised carbon in subsoil horizons is located in 
spatially distinct parts of the soil profile, Soil Biol. Biochem., 41(2), 256–261, doi:10.1016/
j.soilbio.2008.10.033, 2009.

Ciais, P., Sabine, C., Bala, G., Bopp, L., Brovkin, V., Canadell, J., Chhabra, A., DeFries, R., Gal-
loway, J., Heimann, M., Jones, C., Quéré, C. Le, Myneni, R. B., Piao, S. and Thornton, P.: Carbon 
and Other Biogeochemical Cycles, in Climate Change 2013: The Physical Science Basis. Contribu-
tion of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate 
Change, edited by T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. 
Nauels, Y. Xia, V. Bex, and P. M. Midgley, Cambridge University Press, Cambridge., 2013.

Conant, R. T., Drijber, R. A., Haddix, M. L., Parton, W. J., Paul, E. A., Plante, A. F., Six, J. and Stein-
weg, M. J.: Sensitivity of organic matter decomposition to warming varies with its quality, Glob. 
Chang. Biol., 14(4), 868–877, doi:10.1111/j.1365-2486.2008.01541.x, 2008.

Conen, F., Karhu, K., Leifeld, J., Seth, B., Vanhala, P., Liski, J. and Alewell, C.: Temperature sensi-
tivity of young and old soil carbon – Same soil, slight differences in 13C natural abundance method, 
inconsistent results, Soil Biol. Biochem., 40(10), 2703–2705, doi:10.1016/j.soilbio.2008.07.004, 
2008.

Cook, F. J., Orchard, V. A. and Corderoy, D. M.: Effects of lime and water content on soil respiration, 
New Zeal. J. Agric. Res., 28(4), 517–523, doi:10.1080/00288233.1985.10417997, 1985.

Curtin, D., Beare, M. H. and Hernandez-Ramirez, G.: Temperature and Moisture Effects on Micro-
bial Biomass and Soil Organic Matter Mineralization, Soil Sci. Soc. Am. J., 76(6), 2055–2067, 
doi:10.2136/sssaj2012.0011, 2012.

Davidson, E. A. and Janssens, I. A.: Temperature sensitivity of soil carbon decomposition and feed-
backs to climate change., Nature, 440(7081), 165–73, doi:10.1038/nature04514, 2006.

Davidson, E. A., Belk, E. and Boone, R. D.: Soil water content and temperature as independent or 
confounded factors controlling soil respiration in a temperate mixed hardwood forest, Glob. Chang. 
Biol., 4(2), 217–227, doi:10.1046/j.1365-2486.1998.00128.x, 1998.

Davidson, E. A. A., Savage, K. E. E., Trumbore, S. E. E. and Borken, W.: Vertical partitioning of CO2 

production within a temperate forest soil, Glob. Chang. Biol., 12(6), 944–956, doi:10.1111/j.1365-
2486.2006.01142.x, 2006.

Davidson, E. a and Trumbore, S. E.: Gas diffusivity and production of CO2 in deep soils of the east-
ern Amazon, Tellus B, 47(5), 550–565, doi:10.3402/tellusb.v47i5.16071, 1995.

90



REFERENCES

Don, A., Rödenbeck, C. and Gleixner, G.: Unexpected control of soil carbon turnover by soil carbon 
concentration, Environ. Chem. Lett., 11(4), 407–413, doi:10.1007/s10311-013-0433-3, 2013.

Drewitt, G. B., Black, T. A. and Jassal, R. S.: Using measurements of soil CO2 efflux and concentra-
tions to infer the depth distribution of CO2 production in a forest soil, Can. J. Soil Sci., 85(2), 213–
221, doi:10.4141/S04-041, 2005.

Dungait, J. a. J., Hopkins, D. W., Gregory, A. S. and Whitmore, A. P.: Soil organic matter turnover is 
governed by accessibility not recalcitrance, Glob. Chang. Biol., 18(6), 1781–1796, doi:10.1111/
j.1365-2486.2012.02665.x, 2012.

Ekschmitt, K., Liu, M., Vetter, S., Fox, O. and Wolters, V.: Strategies used by soil biota to overcome 
soil organic matter stability — why is dead organic matter left over in the soil?, Geoderma, 128(1–2), 
167–176, doi:10.1016/j.geoderma.2004.12.024, 2005.

Ekschmitt, K., Kandeler, E., Poll, C., Brune, A., Buscot, F., Friedrich, M., Gleixner, G., Hartmann, 
A., Kästner, M., Marhan, S., Miltner, A., Scheu, S. and Wolters, V.: Soil-carbon preservation through 
habitat constraints and biological limitations on decomposer activity, J. Plant Nutr. Soil Sci., 171(1), 
27–35, doi:10.1002/jpln.200700051, 2008.

Eusterhues, K., Rumpel, C. and Kögel-Knabner, I.: Composition and radiocarbon age of HF-resistant 
soil organic matter in a Podzol and a Cambisol, Org. Geochem., 38(8), 1356–1372, doi:10.1016/
j.orggeochem.2007.04.001, 2007.

Fang, C. and Moncrieff, J. . B.: The dependence of soil CO2 efflux on temperature, Soil Biol. 
Biochem., 33(2), 155–165, doi:10.1016/S0038-0717(00)00125-5, 2001.

Fang, C., Smith, P., Moncrieff, J. B. and Smith, J. U.: Similar response of labile and resistant soil 
organic matter pools to changes in temperature., Nature, 433(7021), 57–9, doi:10.1038/nature03138, 
2005.

Fierer, N., Allen, A. S., Schimel, J. P. and Holden, P. A.: Controls on microbial CO2 production: a 
comparison of surface and subsurface soil horizons, Glob. Chang. Biol., 9(9), 1322–1332, 
doi:10.1046/j.1365-2486.2003.00663.x, 2003.

Fierer, N., Chadwick, O. A. and Trumbore, S. E.: Production of CO2 in soil profiles of a California 
annual grassland, Ecosystems, 8(4), 412–429, doi:10.1007/s10021-003-0151-y, 2005.

Flessa, H., Amelung, W., Helfrich, M., Wiesenberg, G. L. B., Gleixner, G., Brodowski, S., Rethe-
meyer, J., Kramer, C. and Grootes, P. M.: Storage and stability of organic matter and fossil carbon in 
a Luvisol and Phaeozem with continuous maize cropping: A synthesis, J. Plant Nutr. Soil Sci., 
171(1), 36–51, doi:10.1002/jpln.200700050, 2008.

Fontaine, S., Bardoux, G., Abbadie, L. and Mariotti, A.: Carbon input to soil may decrease soil car-
bon content, Ecol. Lett., 7(4), 314–320, doi:10.1111/j.1461-0248.2004.00579.x, 2004.

Fontaine, S., Barot, S., Barré, P., Bdioui, N., Mary, B. and Rumpel, C.: Stability of organic carbon in 
deep soil layers controlled by fresh carbon supply, Nature, 450(7167), 277–280, doi:10.1038/
nature06275, 2007.

91



REFERENCES

Fuss, S., Lamb, W. F., Callaghan, M. W., Hilaire, J., Creutzig, F., Amann, T., Beringer, T., De 
Oliveira Garcia, W., Hartmann, J., Khanna, T., Luderer, G., Nemet, G. F., Rogelj, J., Smith, P., 
Vicente, J. V., Wilcox, J., Del Mar Zamora Dominguez, M. and Minx, J. C.: Negative emissions - 
Part 2: Costs, potentials and side effects, Environ. Res. Lett., 13(6), doi:10.1088/1748-9326/aabf9f, 
2018.

Gaudinski, J. B. B., Trumbore, S. E. E., Davidson, E. A. A. and Zheng, S.: Soil carbon cycling in a 
temperate forest: radiocarbon-based estimates of residence times, sequestration rates and partitioning 
of fluxes, Biogeochemistry, 51(1), 33–69, doi:doi.org/10.1023/A:1006301010014, 2000.

Gill, R. A. and Burke, I. C.: Influence of soil depth on the decomposition of Bouteloua gracilis roots 
in the shortgrass steppe, Plant Soil, 241(2), 233–242, doi:10.1023/A:1016146805542, 2002.

Gillabel, J., Cebrian-Lopez, B., Six, J. and Merckx, R.: Experimental evidence for the attenuating 
effect of SOM protection on temperature sensitivity of SOM decomposition, Glob. Chang. Biol., 
16(10), 2789–2798, doi:10.1111/j.1365-2486.2009.02132.x, 2010.

Goffin, S., Aubinet, M., Maier, M., Plain, C., Schack-Kirchner, H. and Longdoz, B.: Characterization 
of the soil CO2 production and its carbon isotope composition in forest soil layers using the flux-gra-
dient approach, Agric. For. Meteorol., 188, 45–57, doi:10.1016/j.agrformet.2013.11.005, 2014.

Golchin, A., Oades, J., Skjemstad, J. and Clarke, P.: Study of free and occluded particulate organic 
matter in soils by solid state 13C Cp/MAS NMR spectroscopy and scanning electron microscopy, Soil 
Res., 32(2), 285, doi:10.1071/SR9940285, 1994.

Hagedorn, F. and Bundt, M.: The age of preferential flow paths, Geoderma, 108(1–2), 119–132, 
doi:10.1016/S0016-7061(02)00129-5, 2002.

Hamer, U. and Marschner, B.: Priming effects in different soil types induced by fructose, alanine, 
oxalic acid and catechol additions, Soil Biol. Biochem., 37(3), 445–454, doi:10.1016/
j.soilbio.2004.07.037, 2005.

Hashimoto, S., Tanaka, N., Kume, T., Yoshifuji, N., Hotta, N., Tanaka, K. and Suzuki, M.: Seasonal-
ity of vertically partitioned soil CO2 production in temperate and tropical forest, J. For. Res., 12(3), 
209–221, doi:10.1007/s10310-007-0009-9, 2007.

Hashimoto, S., Carvalhais, N., Ito, A., Migliavacca, M., Nishina, K. and Reichstein, M.: Global spa-
tiotemporal distribution of soil respiration modeled using a global database, Biogeosciences, 12(13), 
4121–4132, doi:10.5194/bg-12-4121-2015, 2015.

Heinze, S., Ludwig, B., Piepho, H., Mikutta, R., Don, A., Wordell-Dietrich, P., Helfrich, M., Hertel, 
D., Leuschner, C., Kirfel, K., Kandeler, E., Preusser, S., Guggenberger, G., Leinemann, T. and 
Marschner, B.: Factors controlling the variability of organic matter in the top- and subsoil of a sandy 
Dystric Cambisol under beech forest, Geoderma, 311(September 2017), 37–44, doi:10.1016/j.geo-
derma.2017.09.028, 2018.

92



REFERENCES

Heitkötter, J. and Marschner, B.: Is There Anybody Out There? Substrate Availability Controls 
Microbial Activity outside of Hotspots in Subsoils, Soil Syst., 2(2), 35, doi:10.3390/soilsys-
tems2020035, 2018.

Hicks Pries, C. E., Bird, J. A., Castanha, C., Hatton, P. J. and Torn, M. S.: Long term decomposition: 
the influence of litter type and soil horizon on retention of plant carbon and nitrogen in soils, Biogeo-
chemistry, 134(1–2), 5–16, doi:10.1007/s10533-017-0345-6, 2017a.

Hicks Pries, C. E., Castanha, C., Porras, R. C. and Torn, M. S.: The whole-soil carbon flux in 
response to warming, Science (80-. )., 355(6332), 1420–1423, doi:10.1126/science.aal1319, 2017b.

Hicks Pries, C. E., Sulman, B. N., West, C., O’Neill, C., Poppleton, E., Porras, R. C., Castanha, C., 
Zhu, B., Wiedemeier, D. B. and Torn, M. S.: Root litter decomposition slows with soil depth, Soil 
Biol. Biochem., 125, 103–114, doi:10.1016/j.soilbio.2018.07.002, 2018.

Hiederer, R. and Köchy, M.: Global soil organic carbon estimates and the harmonized world soil 
database, Publications Office of the European Union., 2012.

Högberg, P., Nordgren, A., Buchmann, N., Taylor, A. F. S., Ekblad, A., Högberg, M. N., Nyberg, G., 
Ottosson-Löfvenius, M. and Read, D. J.: Large-scale forest girdling shows that current photosynthe-
sis drives soil respiration, Nature, 411(6839), 789–792, doi:10.1038/35081058, 2001.

Holden, P. A. and Fierer, N.: Microbial Processes in the Vadose Zone, Vadose Zo. J., 4(1), 1–21, 
doi:10.2136/vzj2005.0001, 2005.

Holm, S.: A Simple Sequentially Rejective Multiple Test Procedure, Scand. J. Stat., 6(2), 65–70, 
doi:10.2307/4615733, 1979.

Houghton, R. A.: Revised estimates of the annual net flux of carbon to the atmosphere from changes 
in land use and land management 1850-2000, Tellus, Ser. B Chem. Phys. Meteorol., 55(2), 378–390, 
doi:10.1034/j.1600-0889.2003.01450.x, 2003.

Houghton, R. A., House, J. I., Pongratz, J., Van Der Werf, G. R., Defries, R. S., Hansen, M. C., Le 
Quéré, C. and Ramankutty, N.: Carbon emissions from land use and land-cover change, Biogeo-
sciences, 9(12), 5125–5142, doi:10.5194/bg-9-5125-2012, 2012.

IUSS Working Group WRB: World reference base for soil resources 2014. International soil classifi-
cation system for naming soils and creating legends for soil maps., 2014.

Jassal, R., Black, A., Novak, M., Morgenstern, K., Nesic, Z. and Gaumont-Guay, D.: Relationship 
between soil CO2 concentrations and forest-floor CO2 effluxes, Agric. For. Meteorol., 130(3–4), 176–
192, doi:10.1016/j.agrformet.2005.03.005, 2005.

Jobbágy, E. G. G. and Jackson, R. B. B.: The vertical distribution of soil organic carbon and its rela-
tion to climate and vegetation, Ecol. Appl., 10(2), 423–436, doi:10.1890/1051-
0761(2000)010[0423:TVDOSO]2.0.CO;2, 2000.

Joergensen, R. G. and Wichern, F.: Alive and kicking: Why dormant soil microorganisms matter, Soil 
Biol. Biochem., 116(June 2017), 419–430, doi:10.1016/j.soilbio.2017.10.022, 2018.

93



REFERENCES

Jones, H. G.: Plants and microclimate :a quantitative approach to environmental plant physiology, 2. 
ed., re., Cambridge Univ. Pr., Cambridge : [online] Available from: http://slubdd.de/katalog?
TN_libero_mab2669667, 1994.

de Jong, E., Schappert, H. J. . J. V: Calculation of soil respiration and activity from CO2 profiles in 
the soil, Soil Sci., 113(5), 328–333 [online] Available from: http://journals.lww.com/soilsci/Fulltext/
1972/05000/CALCULATION_OF_SOIL_RESPIRATION_AND_ACTIVITY_FROM.6.aspx, 1972.

Jörgensen, R. G., Raubuch, M. and Brandt, M.: Soil microbial properties down the profile of a black 
earth burie by colluvium, J. Plant Nutr. Soil Sci., 165(3), 274–280, doi:10.1002/1522-
2624(200206)165:3<274::AID-JPLN274>3.0.CO;2-2, 2002.

Kaiser, K. and Guggenberger, G.: The role of DOM sorption to mineral surfaces in the preservation 
of organic matter in soils, Org. Geochem., 31(7–8), 711–725, doi:10.1016/S0146-6380(00)00046-2, 
2000.

Kaiser, K. and Guggenberger, G.: Mineral surfaces and soil organic matter, Eur. J. Soil Sci., 54(2), 
219–236 [online] Available from: http://onlinelibrary.wiley.com/doi/10.1046/j.1365-
2389.2003.00544.x/full (Accessed 4 May 2011), 2003.

Kaiser, K. and Kalbitz, K.: Cycling downwards – dissolved organic matter in soils, Soil Biol. 
Biochem., 52, 29–32, doi:10.1016/j.soilbio.2012.04.002, 2012.

Kaiser, K., Guggenberger, G., Haumaier, L. and Zech, W.: The composition of dissolved organic 
matter in forest soil solutions: Changes induced by seasons and passage through the mineral soil, 
Org. Geochem., 33(3), 307–318, doi:10.1016/S0146-6380(01)00162-0, 2002.

Kalks, F., Liebmann, P., Wordell-Dietrich, P., Guggenberger, G., Kalbitz, K., Mikutta, R., Helfrich, 
M. and Don, A.: Fate and stability of dissolved organic carbon in topsoils and subsoils under beech 
forests, Biogeochemistry, 148(2), 111–128, doi:10.1007/s10533-020-00649-8, 2020.

Karhu, K., Fritze, H., Hämäläinen, K., Vanhala, P., Jungner, H., Oinonen, M., Sonninen, E., Tuomi, 
M., Spetz, P., Kitunen, V. and Liski, J.: Temperature sensitivity of soil carbon fractions in boreal for-
est soil, Ecology, 91(2), 370–376, doi:10.1890/09-0478.1, 2010.

Karhu, K., Hilasvuori, E., Fritze, H., Biasi, C., Nykänen, H., Liski, J., Vanhala, P., Heinonsalo, J. and 
Pumpanen, J.: Priming effect increases with depth in a boreal forest soil, Soil Biol. Biochem., 99, 
104–107, doi:10.1016/j.soilbio.2016.05.001, 2016.

Kemmitt, S. J., Lanyon, C. V., Waite, I. S., Wen, Q., Addiscott, T. M., Bird, N. R. A., O’Donnell, A. 
G. and Brookes, P. C.: Mineralization of native soil organic matter is not regulated by the size, activ-
ity or composition of the soil microbial biomass—a new perspective, Soil Biol. Biochem., 40(1), 61–
73, doi:10.1016/j.soilbio.2007.06.021, 2008.

Kim, H., Hirano, T., Koike, T. and Urano, S.: Contribution of litter CO2 production to total soil respi-
ration in two different deciduous forests, Phyt. - Ann. Rei Bot., 45(4), 385–388, 2005.

94



REFERENCES

Kirschbaum, M. U. F.: The temperature dependence of soil organic matter decomposition, and the 
effect of global warming on soil organic C storage, Soil Biol. Biochem., 27(6), 753–760, 
doi:10.1016/0038-0717(94)00242-S, 1995.

Kleber, M., Eusterhues, K., Keiluweit, M., Mikutta, C., Mikutta, R. and Nico, P. S.: Mineral-Organic 
Associations: Formation, Properties, and Relevance in Soil Environments, Elsevier Ltd., 2015.

Kuka, K., Franko, U. and Rühlmann, J.: Modelling the impact of pore space distribution on carbon 
turnover, Ecol. Modell., 208(2–4), 295–306, doi:10.1016/j.ecolmodel.2007.06.002, 2007.

Kuzyakov, Y., Friedel, J. . and Stahr, K.: Review of mechanisms and quantification of priming 
effects, Soil Biol. Biochem., 32(11–12), 1485–1498, doi:10.1016/S0038-0717(00)00084-5, 2000.

Lal, R.: Beyond COP 21: Potential and challenges of the “4 per Thousand” initiative, J. Soil Water 
Conserv., 71(1), 20A-25A, doi:10.2489/jswc.71.1.20A, 2016.

Lavahun, M. F. E., Joergensen, R. G. and Meyer, B.: Activity and biomass of soil microorganisms at 
different depths, Biol. Fertil. Soils, 23(1), 38–42, doi:10.1007/BF00335816, 1996.

Leinemann, T., Mikutta, R., Kalbitz, K., Schaarschmidt, F. and Guggenberger, G.: Small scale vari-
ability of vertical water and dissolved organic matter fluxes in sandy Cambisol subsoils as revealed 
by segmented suction plates, Biogeochemistry, 1–15, doi:10.1007/s10533-016-0259-8, 2016.

Liang, C. and Balser, T. C.: Preferential sequestration of microbial carbon in subsoils of a glacial-
landscape toposequence, Dane County, WI, USA, Geoderma, 148(1), 113–119, doi:10.1016/j.geo-
derma.2008.09.012, 2008.

Liang, N., Nakadai, T., Hirano, T., Qu, L., Koike, T., Fujinuma, Y. and Inoue, G.: In situ comparison 
of four approaches to estimating soil CO2 efflux in a northern larch (Larix kaempferi Sarg.) forest, 
Agric. For. Meteorol., 123(1–2), 97–117, doi:10.1016/j.agrformet.2003.10.002, 2004.

Lloyd, J. and Taylor, J. A.: On the Temperature Dependence of Soil Respiration, Funct. Ecol., 8(3), 
315, doi:10.2307/2389824, 1994.

Lomander, A., Kätterer, T. and Andrén, O.: Carbon dioxide evolution from top- and subsoil as 
affected by moisture and constant and fluctuating temperature, Soil Biol. Biochem., 30(14), 2017–
2022 [online] Available from: http://www.sciencedirect.com/science/article/pii/S0038071798000765 
(Accessed 8 January 2014), 1998.

Lorenz, K. and Lal, R.: The Depth Distribution of Soil Organic Carbon in Relation to Land Use and 
Management and the Potential of Carbon Sequestration in Subsoil Horizons, in Advances in Agron-
omy, Vol 88, vol. 88, pp. 35–66., 2005.

Lorenz, K., Lal, R. and Shipitalo, M. J.: Stabilized Soil Organic Carbon Pools in Subsoils under For-
est Are Potential Sinks for Atmospheric CO 2, For. Sci., 57(1), 19–25, 2011.

von Lützow, M. and Kögel-Knabner, I.: Temperature sensitivity of soil organic matter decomposition
—what do we know?, Biol. Fertil. Soils, 46(1), 1–15, doi:10.1007/s00374-009-0413-8, 2009.

95



REFERENCES

von Lützow, M., Kogel-Knabner, I., Ekschmitt, K., Matzner, E., Guggenberger, G., Marschner, B. 
and Flessa, H.: Stabilization of organic matter in temperate soils: mechanisms and their relevance 
under different soil conditions - a review, Eur. J. Soil Sci., 57(4), 426–445, doi:10.1111/j.1365-
2389.2006.00809.x, 2006.

von Lützow, M., Kögel-Knabner, I., Ekschmitt, K., Flessa, H., Guggenberger, G., Matzner, E. and 
Marschner, B.: SOM fractionation methods: Relevance to functional pools and to stabilization mech-
anisms, Soil Biol. Biochem., 39(9), 2183–2207, doi:10.1016/j.soilbio.2007.03.007, 2007.

Maier, M. and Schack-Kirchner, H.: Using the gradient method to determine soil gas flux: A review, 
Agric. For. Meteorol., 192–193, 78–95, doi:10.1016/j.agrformet.2014.03.006, 2014.

Marschner, B., Brodowski, S., Dreves, A., Gleixner, G., Gude, A., Grootes, P. M., Hamer, U., Heim, 
A., Jandl, G., Ji, R., Kaiser, K., Kalbitz, K., Kramer, C., Leinweber, P., Rethemeyer, J., Schäffer, A., 
Schmidt, M. W. I., Schwark, L. and Wiesenberg, G. L. B.: How relevant is recalcitrance for the sta-
bilisation of organic matter in soils?, J. Plant Nutr. Soil Sci., 171(1), 91–110, doi:10.1002/
jpln.200700049, 2008.

Mathieu, J. A., Hatté, C., Balesdent, J. and Parent, É.: Deep soil carbon dynamics are driven more by 
soil type than by climate: a worldwide meta-analysis of radiocarbon profiles., Glob. Chang. Biol., 
21(11), 4278–92, doi:10.1111/gcb.13012, 2015.

Michalzik, B., Kalbitz, K., Park, J. H., Solinger, S. and Matzner, E.: Fluxes and concentrations of dis-
solved organic carbon and nitrogen - A synthesis for temperate forests, Biogeochemistry, 52(2), 173–
205, doi:10.1023/A:1006441620810, 2001.

Minasny, B., Malone, B. P., McBratney, A. B., Angers, D. A., Arrouays, D., Chambers, A., Chaplot, 
V., Chen, Z.-S. S., Cheng, K., Das, B. S., Field, D. J., Gimona, A., Hedley, C. B., Hong, S. Y., Man-
dal, B., Marchant, B. P., Martin, M., McConkey, B. G., Mulder, V. L., O’Rourke, S., Richer-de-
Forges, A. C., Odeh, I., Padarian, J., Paustian, K., Pan, G., Poggio, L., Savin, I., Stolbovoy, V., Stock-
mann, U., Sulaeman, Y., Tsui, C.-C. C., Vågen, T.-G. G., van Wesemael, B. and Winowiecki, L.: Soil 
carbon 4 per mille, Geoderma, 292, 59–86, doi:10.1016/j.geoderma.2017.01.002, 2017.

Moyano, F. E., Vasilyeva, N., Bouckaert, L., Cook, F., Craine, J., Curiel Yuste, J., Don, A., Epron, D., 
Formanek, P., Franzluebbers, A., Ilstedt, U., Kätterer, T., Orchard, V., Reichstein, M., Rey, A., 
Ruamps, L., Subke, J. A., Thomsen, I. K. and Chenu, C.: The moisture response of soil heterotrophic 
respiration: Interaction with soil properties, Biogeosciences, 9(3), 1173–1182, doi:10.5194/bg-9-
1173-2012, 2012.

Moyes, A. B. and Bowling, D. R.: Interannual variation in seasonal drivers of soil respiration in a 
semi-arid Rocky Mountain meadow, Biogeochemistry, 113(1–3), 683–697, doi:10.1007/s10533-012-
9797-x, 2012.

96



REFERENCES

Nadelhoffer, K. J., Boone, R. D., Bowden, R. D., Canary, J. D., Kaye, J., Micks, P., Ricca, A., 
Aitkenhead, J. A., Lajtha, K. and McDowell, W. H.: The DIRT Experiment: Litter and Root Influ-
ences on Forest Soil Organic Matter Stocks and Function, in Forests in time: the environmental con-
sequences of 1000 years of change in New England, edited by D. R. FOSTER and J. D. Aber, pp. 
300–315, Yale University Press, New Haven, Conneticut., 2004.

Paustian, K., Lehmann, J., Ogle, S., Reay, D., Robertson, G. P. and Smith, P.: Climate-smart soils, 
Nature, 532(7597), 49–57, doi:10.1038/nature17174, 2016.

Pingintha, N., Leclerc, M. Y., BEASLEY Jr., J. P., Zhang, G. and Senthong, C.: Assessment of the 
soil CO 2 gradient method for soil CO 2 efflux measurements: comparison of six models in the cal-
culation of the relative gas diffusion coefficient, Tellus B, 62(1), 47–58, doi:10.1111/j.1600-
0889.2009.00445.x, 2010.

Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. and R Core Team: {nlme}: Linear and Nonlinear 
Mixed Effects Models, [online] Available from: https://cran.r-project.org/package=nlme, 2019.

Preusser, S., Poll, C., Marhan, S., Angst, G., Mueller, C. W., Bachmann, J. and Kandeler, E.: Fungi 
and bacteria respond differently to changing environmental conditions within a soil profile, Soil Biol. 
Biochem., 137(November 2018), 107543, doi:10.1016/j.soilbio.2019.107543, 2019.

Quinton, J. N., Govers, G., Van Oost, K. and Bardgett, R. D.: The impact of agricultural soil erosion 
on biogeochemical cycling, Nat. Geosci., 3(5), 311–314, doi:10.1038/ngeo838, 2010.

R Core Team: R: Language and Environment for Statistical Computing, [online] Available from: 
https://www.r-project.org, 2015.

R Core Team: R: A Language and Environment for Statistical Computing, [online] Available from: 
https://www.r-project.org/, 2017.

R Core Team: R: A Language and Environment for Statistical Computing, [online] Available from: 
https://www.r-project.org/, 2019.

Raich, J. W. and Potter, C. S.: Global patterns of carbon dioxide emissions from soils, Global Bio-
geochem. Cycles, 9(1), 23–36, doi:10.1029/94GB02723, 1995.

Rasse, D. P., Rumpel, C. and Dignac, M.-F.: Is soil carbon mostly root carbon? Mechanisms for a 
specific stabilisation, Plant Soil, 269(1–2), 341–356, doi:10.1007/s11104-004-0907-y, 2005.

Reichstein, M., Bednorz, F., Broll, G. and Kätterer, T.: Temperature dependence of carbon minerali-
sation: conclusions from a long-term incubation of subalpine soil samples, Soil Biol. Biochem., 
32(7), 947–958, doi:10.1016/S0038-0717(00)00002-X, 2000.

Rethemeyer, J., Kramer, C., Gleixner, G., John, B., Yamashita, T., Flessa, H., Andersen, N., Nadeau, 
M. J. and Grootes, P. M.: Transformation of organic matter in agricultural soils: Radiocarbon concen-
tration versus soil depth, Geoderma, 128(1–2), 94–105, doi:10.1016/j.geoderma.2004.12.017, 2005.

97



REFERENCES

Ruff, M., Szidat, S., Gäggeler, H. W. W., Suter, M., Synal, H.-A. and Wacker, L.: Gaseous radiocar-
bon measurements of small samples, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. 
with Mater. Atoms, 268(7–8), 790–794, doi:10.1016/j.nimb.2009.10.032, 2010.

Rumpel, C.: Location and chemical composition of stabilized organic carbon in topsoil and subsoil 
horizons of two acid forest soils, Soil Biol. Biochem., 36(1), 177–190, doi:10.1016/
j.soilbio.2003.09.005, 2004.

Rumpel, C.: Opportunities and threats of deep soil organic matter storage, Carbon Manag., 5(2), 
115–117, doi:10.1080/17583004.2014.912826, 2014.

Rumpel, C. and Kögel-Knabner, I.: Deep soil organic matter—a key but poorly understood compo-
nent of terrestrial C cycle, Plant Soil, 338(1–2), 143–158, doi:10.1007/s11104-010-0391-5, 2011.

Rumpel, C., Kögel-Knabner, I. and Bruhn, F.: Vertical distribution, age, and chemical composition of 
organic carbon in two forest soils of different pedogenesis, Org. Geochem., 33(10), 1131–1142, 
doi:10.1016/S0146-6380(02)00088-8, 2002.

Salomé, C., Nunan, N., Pouteau, V., Lerch, T. Z. and Chenu, C.: Carbon dynamics in topsoil and in 
subsoil may be controlled by different regulatory mechanisms, Glob. Chang. Biol., 16(1), 416–426, 
doi:10.1111/j.1365-2486.2009.01884.x, 2010.

Sanaullah, M., Chabbi, A., Leifeld, J., Bardoux, G., Billou, D. and Rumpel, C.: Decomposition and 
stabilization of root litter in top- and subsoil horizons: what is the difference?, Plant Soil, 338(1–2), 
127–141, doi:10.1007/s11104-010-0554-4, 2011.

Schiedung, M., Tregurtha, C. S., Beare, M. H., Thomas, S. M. and Don, A.: Deep soil flipping 
increases carbon stocks of New Zealand grasslands, Glob. Chang. Biol., (February), 1–14, 
doi:10.1111/gcb.14588, 2019.

Schimel, J. P., Wetterstedt, J. Å. M., Holden, P. A. and Trumbore, S. E.: Drying/rewetting cycles 
mobilize old C from deep soils from a California annual grassland, Soil Biol. Biochem., 43(5), 1101–
1103, doi:10.1016/j.soilbio.2011.01.008, 2011.

Schindlbacher, A., Zechmeister-Boltenstern, S. and Jandl, R.: Carbon losses due to soil warming: Do 
autotrophic and heterotrophic soil respiration respond equally?, Glob. Chang. Biol., 15(4), 901–913, 
doi:10.1111/j.1365-2486.2008.01757.x, 2009.

Schjønning, P., Thomsen, I. K., Moldrup, P. and Christensen, B. T.: Linking Soil Microbial Activity 
to Water- and Air-Phase Contents and Diffusivities, Soil Sci. Soc. Am. J., 67(1), 156–165, 
doi:10.2136/sssaj2003.1560, 2003.

Schlesinger, W. H. and Andrews, J. A.: Soil respiration and the global carbon cycle, Biogeochem-
istry, 48(1), 7–20 [online] Available from: http://www.springerlink.com/index/
H91377P45L414070.pdf (Accessed 22 September 2011), 2000.

98



REFERENCES

Schmidt, M. W. I., Torn, M. S., Abiven, S., Dittmar, T., Guggenberger, G., Janssens, I. A., Kleber, M., 
Kögel-Knabner, I., Lehmann, J., Manning, D. A. C., Nannipieri, P., Rasse, D. P., Weiner, S. and 
Trumbore, S. E.: Persistence of soil organic matter as an ecosystem property, Nature, 478(7367), 49–
56, doi:10.1038/nature10386, 2011.

Schwen, A. and Böttcher, J.: A Simple Tool for the Inverse Estimation of Soil Gas Diffusion Coeffi-
cients, Soil Sci. Soc. Am. J., 77(3), 759, doi:10.2136/sssaj2012.0347n, 2013.

Sollins, P., Homann, P. and Caldwell, B. A.: Stabilization and destabilisation of soil organic matter: 
mechanisms and controls, Geoderma, 74(1–2), 65–105, doi:10.1016/S0016-7061(96)00036-5, 1996.

Stewart, C. E., Paustian, K., Conant, R. T., Plante, A. F. and Six, J.: Soil carbon saturation: Concept, 
evidence and evaluation, Biogeochemistry, 86(1), 19–31, doi:10.1007/s10533-007-9140-0, 2007.

Stewart, C. E., Paustian, K., Conant, R. T., Plante, A. F. and Six, J.: Soil carbon saturation: Evalua-
tion and corroboration by long-term incubations, Soil Biol. Biochem., 40(7), 1741–1750, 
doi:10.1016/j.soilbio.2008.02.014, 2008.

Sulzman, E. W., Brant, J. B., Bowden, R. D. and Lajtha, K.: Contribution of aboveground litter, 
belowground litter, and rhizosphere respiration to total soil CO2 efflux in an old growth coniferous 
forest, Biogeochemistry, 73(1), 231–256, doi:10.1007/s10533-004-7314-6, 2005.

Suseela, V. and Dukes, J. S.: The responses of soil and rhizosphere respiration to simulated climatic 
changes vary by season, Ecology, 94(2), 403–413, doi:10.1890/12-0150.1, 2013.

Tang, J., Baldocchi, D. D., Qi, Y. and Xu, L.: Assessing soil CO2 efflux using continuous measure-
ments of CO2 profiles in soils with small solid-state sensors, Agric. For. Meteorol., 118(3–4), 207–
220, doi:10.1016/S0168-1923(03)00112-6, 2003.

Tang, J., Misson, L., Gershenson, A., Cheng, W. and Goldstein, A. H.: Continuous measurements of 
soil respiration with and without roots in a ponderosa pine plantation in the Sierra Nevada Moun-
tains, Agric. For. Meteorol., 132(3–4), 212–227, doi:10.1016/j.agrformet.2005.07.011, 2005.

Tang, J., Bradford, M. A., Carey, J., Crowther, T. W., Machmuller, M. B., Mohan, J. E. and Todd-
Brown, K.: Temperature sensitivity of soil carbon, in Ecosystem Consequences of Soil Warming, pp. 
175–208, Elsevier., 2019.

Torn, M. S., Trumbore, S. E., Chadwick, O. A., Vitousek, P. M. and Hendricks, D. M.: Mineral con-
trol ofsoil organic carbon storage and turnover, Nature, 389(6647), 170–173, doi:10.1038/38260, 
1997.

Trumbore, S. E.: Age of soil organic matter and soil respiration: radiocarbon constraints on below-
ground C dynamics, Ecol. Appl., 10(2), 399–411 [online] Available from: http://www.esajournal-
s.org/doi/abs/10.1890/1051-0761(2000)010[0399:AOSOMA]2.0.CO;2 (Accessed 16 May 2012), 
2000.

Tückmantel, T., Leuschner, C., Preusser, S., Kandeler, E., Angst, G., Mueller, C. W. and Meier, I. C.: 
Root exudation patterns in a beech forest: Dependence on soil depth, root morphology, and environ-
ment, Soil Biol. Biochem., 107, 188–197, doi:10.1016/j.soilbio.2017.01.006, 2017.

99



REFERENCES

Turcu, V. E., Jones, S. B. and Or, D.: Continuous soil carbon dioxide and oxygen measurements and 
estimation of gradient-based gaseous flux, Vadose Zo. J., 4(4), 1161–1169, doi:10.2136/
vzj2004.0164, 2005.

Vanhala, P., Karhu, K., Tuomi, M., Sonninen, E., Jungner, H., Fritze, H. and Liski, J.: Old soil carbon 
is more temperature sensitive than the young in an agricultural field, Soil Biol. Biochem., 39(11), 
2967–2970, doi:10.1016/j.soilbio.2007.05.022, 2007.

Winkler, J. P., Cherry, R. S. and Schlesinger, W. H.: The Q10 relationship of microbial respiration in a 
temperate forest soil, Soil Biol. Biochem., 28(8), 1067–1072, doi:10.1016/0038-0717(96)00076-4, 
1996.

Wordell-Dietrich, P., Don, A. and Helfrich, M.: Controlling factors for the stability of subsoil carbon 
in a Dystric Cambisol, Geoderma, 304, 40–48, doi:10.1016/j.geoderma.2016.08.023, 2017.

Wordell-Dietrich, P., Wotte, A., Rethemeyer, J., Bachmann, J., Helfrich, M., Kirfel, K., Leuschner, 
C., & Don, A. (2020). Vertical partitioning of CO2 production in a forest soil. Biogeosciences, 
17(24), 6341–6356. https://doi.org/10.5194/bg-17-6341-2020

Wotte, A., Wordell-Dietrich, P., Wacker, L., Don, A. and Rethemeyer, J.: 14CO2 processing using an 
improved and robust molecular sieve cartridge, Nucl. Instruments Methods Phys. Res. Sect. B Beam 
Interact. with Mater. Atoms, 400, 65–73, doi:10.1016/j.nimb.2017.04.019, 2017.

Xiang, S.-R., Doyle, A., Holden, P. A. and Schimel, J. P.: Drying and rewetting effects on C and N 
mineralization and microbial activity in surface and subsurface California grassland soils, Soil Biol. 
Biochem., 40(9), 2281–2289, doi:10.1016/j.soilbio.2008.05.004, 2008.

Zhang, Y., Yao, S., Mao, J., Olk, D. C., Cao, X. and Zhang, B.: Chemical composition of organic 
matter in a deep soil changed with a positive priming effect due to glucose addition as investigated 
by 13C NMR spectroscopy, Soil Biol. Biochem., 85, 137–144, doi:10.1016/j.soilbio.2015.03.013, 
2015.

Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A., Smith, G. M., Ieno, E. N., Walker, N. J., 
Saveliev, A. A. and Smith, G. M.: Mixed effects models and extensions in ecology with R, Springer 
New York, New York, NY., 2009.

 

100



SUPPLEMENT CHAPTER 2 
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Compensation algorithm of dependence of pressure and temperature for GMP221 sensors (Eq. S2.1): 

c [i+1] = c1 − k p 1[ci] × ( p−1013
1013 )

2

− k p 2 [ci ] × ( p−1013
1013 ) × p

− k t 1[ci ] × (T−25
25 )

3

− kt 2[ci] × (T−25
25 )

2

− 16320 × (−(k t 3[ci])
2
+ k t 3[ci ]) × (T−25

25 )
(Eq. S2.1)

where i  {1,2,3,4}, c∈ (i+1) [ppm] is the compensated CO2 reading in the iteration process, c1 is the 

uncompensated reading in [ppm], p is the pressure in [hPa], T is the temperature in [°], and k p1, kp2, 

kt1, kt2 and kt3 are empirical derived functions.

k p1 [ci ] = A p1 × c i
4
+ B p1 × c i

3
+ C p 1 × ci

2
+ D p1 × c i (Eq. S2.2)

k p2 [ ci ]=A p2× c i
3
+Bp 2×c i

2
+C p 2×c i (Eq. S2.3)

kt 1 [c i] = A t 1 × ci
3
+ Bt 1 × c i

2
+ C t1 × ci + D t1 (Eq. S2.4)

kt 2 [ ci ]=A t 2 × ci
2
+Bt 2× ci (Eq. S2.5)

kt 3 [c i] = A t 3 × ci
3
+ B t3 × ci

2
+ C t 3 × c i (Eq. S2.6)

where ci is the CO2 concentration in [%] and A, B, C, D are empirical derived constants (Table S2.1).

Table S2.1: Empirical derived constants for temperature and pressure compensation.

Ap1 = 0.97501 Ap2 = -9.3269E-3 At1 = 0.046481 At2 = -3.0166 At3 = 8.3600E-5

Bp1 = -54.1519 Bp2 = 0.14345 Bt1 = -1.02280 Bt2 = -8.8421 Bt3 = -2.4199E-3

Cp1 = 479.778 Cp2 = 15.7164 Ct1 = -37.4433 Ct3 = 0.066814

Dp1 = -11362.8 Dt1 = -49.000

The compensated reading was calculated in an iterative process. In the first iteration loop (i=1), c2 

was calculated from Eq. S2.1 by using c1 for Eq. S2.2-Eq. S2.6. The obtained c2 was then used in the 

following loop and so on. The iteration stops at the last c5, which was the temperature and pressure 

corrected reading.
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Figure S2.1: Box-whisker-plot  of  soil  temperature for  each soil  depth and observatory (OB).  Medians and 
means are shown as black and grey lines respectively.

Figure S2.2: Box-whisker-plot of volumetric water content for each soil depth and observatory (OB). Medians 
and means are shown as black and grey lines respectively.
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Table S4.1: Model outputs for the assessment of the effect of soil depth and sampling time on the C content in the bulk  
soil and the MAOM fraction for the TOP5 samples for both treatments.

TOP5 - Bulk OC

[mg C g-1 soil]

Control Root addition

Model: OC ~ Depth + Time Model: OC ~ Depth + Time

Value Std.Error t-value P-value Value Std.Error t-value P-value

Intercept

(5 cm | 3 months)
24.29 1.33 18.23 < 0.01

Intercept

(5 cm | 3 months)
25.10 1.88 13.37 < 0.01

45 cm -1.96 1.63 -1.20 0.25 45 cm 1.27 2.30 0.55 0.59

110 cm -2.50 1.63 -1.53 0.15 110 cm -2.61 2.30 -1.13 0.28

12 months 1.84 1.33 1.38 0.19 12 months 2.87 1.88 1.53 0.15

TOP5 - MAOM OC

[mg C g-1 soil]

Control Root addition

Model: OC ~ Time Model: OC ~ Depth + Time

Value Std.Error t-value P-value Value Std.Error t-value P-value

Intercept

(3 months)
41.18 1.39 29.53 < 0.01

Intercept

(5 cm | 3 months)
40.18 1.69 23.77 < 0.01

12 months 3.16 1.97 1.60 0.13 45 cm 2.08 2.07 1.01 0.33

110 cm -0.49 2.07 -0.24 0.81

12 months 4.26 1.69 2.52 0.02

Table S4.2: Model outputs for the assessment of the effect of soil depth and root addition on the C content in the bulk  
samples and the MAOM fraction for the SUB110 samples.

SUB110 - Bulk OC

[mg C g-1 soil]

Control Root addition

Model: OC ~ Depth Model: OC ~ Depth

Value Std.Error t-value p-value Value Std.Error t-value p-value

Intercept (5 cm) 1.21 0.07 16.45 < 0.01 Intercept (5 cm) 1.24 0.06 19.71 < 0.01

45 cm -0.43 0.10 -4.18 < 0.01 45 cm -0.40 0.07 -5.78 < 0.01

110 cm -0.46 0.10 -4.18 < 0.01 110 cm -0.16 0.12 -0.97 0.35

SUB110 - MAOM OC

[mg C g-1 soil]

Control Root addition

Model: OC ~ Depth Model: OC ~ Depth

Value Std.Error t-value p-value Value Std.Error t-value p-value

Intercept (5 cm) 3.72 0.19 19.60 < 0.01 Intercept (5 cm) 4.06 0.24 16.55 < 0.01

45 cm -1.04 0.27 -3.86 < 0.01 45 cm -1.24 0.25 -5.01 < 0.01

110 cm -1.14 0.27 -4.24 < 0.01 110 cm -1.42 0.25 -5.64 < 0.01
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Table S4.3: Model outputs for the assessment of the effect of soil depth, soil material (TOP5 and SUB110) and sampling 
time on the amount of recovered root-derived C in the MAOM fraction.

Recovered root-derived C in MAOM

Model: Root ~ Depth + Origin + Time

Value Std.Error t-value p-value

Intercept

(5 cm | SUB110 | 3 months)
3.79 0.67 5.68 <0.01

45 -1.36 0.70 -1.95 0.06

110 -1.30 0.70 -1.86 0.07

TOP5 1.04 0.56 1.83 0.08

12 months 1.35 0.56 2.40 0.02

Table S4.4: Water content (%) of TOP5 and SUB110 samples after sampling (3 and 12 months). Means and standard error 
(n = 6).

Water content (%)

Depth TOP5 SUB110

[cm] 3 months 12 months 3 months 12 months

5 14.0 (± 1.2) 9.7 (± 0.5) 3.6 (± 0.1) 2.4 (± 0.1)

45 11.5 (± 1.1) 11.0 (± 0.7) 2.7 (± 0.2) 2.4 (± 0.2)

110 17.8 (± 0.8) 16.7 (± 0.4) 4.4 (± 0.1) 4.3 (± 0.1)
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