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Abstract. In production robots are moved at maximum speed whenever possi-
ble in order to achieve the shortest overall cycle time. This can lead to individ-
ual waiting times, especially in interlinked production processes. These waiting
times offer opportunities for optimization. Due to high energy prices and politi-
cal efforts, energy efficiency has become the focus of trajectory optimization in
recent years. Robot cells with a common intermediate circuit offer the possibility
of energy exchange across individual axes or robots. By adapting the robot tra-
jectories, the total power consumption of a robotic cell on the grid side can be
significantly reduced. This paper focuses on trajectory optimization, whereby a
detailed collision detection of individual robots is included within the analysis.
It is shown that with collision detection energy optimization for cramped robot
cells becomes possible and the losses in efficiency compared to the optimization
without it are minute.

1 Introduction

Fig. 1: Investigated robot cell packing a
pallet, with several potential collisions.

Reducing CO2 emissions through higher
energy efficiency is one of the main goals
of our time. Operating costs of facto-
ries can also be reduced by lowering the
energy consumption of its components.
As automation advances, the number of
robots in production is constantly increas-
ing [22]. This has also been recognised by
the EU. An energy roadmap [7] has been
issued in 2014 with the goal of increasing
energy efficiency by 27 % until 2030. The
aim of this work is to reduce the energy
consumption of industrial robot cells by
adapting robot movements. The method
is evaluated using the robot cell shown in
Fig. 1.

The reduction of the energy consump-
tion of robots can either be hardware-
based or software-based [5]. Examples for hardware changes are e.g. extension of the
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DC link to several robots [27] or the installation of energy storage devices [13]. With
these two methods recuperated braking energy from the motors is stored or used for
other robots. This means that recuperated energy for overvoltage protection does not
have to be converted into heat [27]. However, these methods have the disadvantage that
additional adaptation costs are incurred per robot and that systems for installation have
longer downtimes.

In the case of software solutions, costs are only incurred during development, and
the transfer to several systems is negligible. Software solutions are a geometrically or
time sequence change to a robot trajectory [5]. These solutions are a part of trajectory
optimizations and usually refers to one robot. In [30] a robot trajectory was decomposed
into viapoints and the position of these were optimized. In [15] the energy absorption
of a trajectory was optimized based on maximizing the energy exchange in the DC link.
Another possibility is a different time sequence of robot trajectories for a given task. In
most cases several robots are involved. One method in this field is, instead of waiting
after fast movements, the robots movement may be slowed down. In [9] different robot
trajectories were investigated and it was found that slowing down trajectories almost
always saves energy. However, movements can also be shifted in time so that brak-
ing movements and acceleration, from different robots/axis, directly overlap over each
other. Of course this only has advantages if robots can exchange energy.

In industry this is not possible at the moment, but by implementing a DC factory, an
energy exchange at factory level becomes possible [27]. In this paper it is assumed that
the robots have such a connection. The method of sliding over each other can also be
combined with the slowing down of fast movements. In [14] such an optimization for
a multi-axis system was presented. Losses from overvoltage protection are reduced for
one cyclic trajectory per axis. A method for scheduled energy optimal trajectories was
presented in [29] and great energy savings were shown for a single robot. When con-
sidering geometric path changes or when changing the time sequence of several robot
movements, it is important that no collisions occur. [28] took collisions into account,
but only for a restricted area and [24] used simple bounding boxes. In [2] an iterative
collision detection for a robot was presented, which guarantees collision freedom for
the next pose. However, to the best knowledge of the authors, for larger linked move-
ments of several adjacent robots with a detailed collisions detection, as shown in Fig. 1,
no uniform method for trajectory optimization was published.

An automated methodology to exploit braking energy recuperation though schedul-
ing and slowing down trajectories was proposed in [12]. The proposed methodology
accomplishes this in two levels. In the first level, the sequential control optimization
(SCO), the overall discrete control of the system is optimized to maximize the times in
which the acceleration and deceleration phases of individual robots beneficially overlap.
Usually, the order of robot movements can be arranged in multiple ways, and some con-
trol strategies offer more potential for braking energy recuperation than others. Then,
in the second level, the detailed trajectory optimization (DTO), for each set of braking
and acceleration phases that an optimized control strategy brought to overlap, the tra-
jectories of the involved axes must be aligned in detail. For example, the braking phase
of one axis can be shifted, stretched, or compressed to match the energy demand for ac-
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celerating another axis. In this paper, we focus on the DTO, a method for the overlying
SCO was already published in [12].

The SCO calculates the acceleration and deceleration phase of robots that should
overlap to maximize the energy efficiency gain. These time points and related robot
paths are given to the DTO. Here the robot trajectories are improved in an model-based
offline optimization. The two internal robot control variables (start delay and compres-
sion factor) are used as optimization parameters. This guarantees an intuitive trans-
ferability to industrial plants. The entire process is model-based and offline, therefore
only the newly calculated parameters must be changed in the controller. In addition, a
collision detection is presented, which can be used as a nonlinear constraint within the
optimization. The collision detection method was only applied to DTO, because colli-
sion in robot cells, as the one sketched in Fig. 1, are a matter of trajectory timing. This
collision detection routine is a two-layered process [4] to guarantee a fast and accurate
detection. The method will be tested in the simulated robot cell shown in Fig. 1.

In Sect. 2 the energy model used to simulate the overall energy consumption of a
production process is described. Sect. 3 builds on the model of Sect. 2 to optimize the
overall energy consumption. The optimization approach and the applied constrains are
outlined in Sect. 3. To prevent collisions, which can occur during optimization from
Sect. 3, an collision detection is described in Sect. 4. Results are evaluated in Sect. 5
and the paper concludes in Sect. 6.

2 Modeling of Industrial Robots

In this section the robot model used in optimization will be presented. Since the model
is often invoked within the optimization, one of the main requirements, besides the
accuracy, is a short computing time. The complete model was already presented in [12]
but it will be described roughly for the sake of completeness. The general structure of
the energy flow is shown in Fig. 2.

Fig. 2: Detailed energy flow in the investigated
robots.

The power flows from the main
grid Pgrid to the constant con-
sumers Pl,grid. These are normal
losses caused by fans and con-
trollers. Besides that, the main part
of Pgrid flows thought the recti-
fier TDC,1 into the DC interme-
diate circuit. The DC intermedi-
ate circuit mainly supplies the in-
verters TAC1−n

, which in turn sup-
ply the motors M1−n, whereby n
represents the numbers of invert-
ers/motors of each robot. Consid-
ering the gear, the motors gener-
ate a joint torque τ and a joint
speed ϕ̇. This drives the segments
of the robot to follow a given path
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q(t), q̇(t), q̈(t) with an additional
weight f ext. When the robot slows
down, the motors turn into generators and recuperate energy. This energy is converted
to DC and can supply other robots via the DC link. If too much power flows into the DC
bus, the DC bus voltage increases. As overvoltage protection, a braking resistor Rchp

converts the excess energy into heat. The complete energy model of the robot can be
written as:

E =

∫ tend

0

Pgrid(t)dt = fm(q(t), q̇(t), q̈(t),f ext). (1)

For a known robot, a robot path q,q̇,q̈ and an extra weight fext can be used to calculate
the required energy. The model is nonlinear and therefore no gradient based methods
can be used for optimization.

The energy consumption model is validated for multiple different KUKA indus-
trial robots [17] and has a remaining model deviation of approx. 5 % over the whole
spectrum of operating temperatures [8].

3 Optimization Strategy

Common industry robots have six joints, but the axes movements are all synchronized
to the slowest joint. The output of a production, therefore, depends on the slowest axis
movement. An unnecessarily strong acceleration of the other axes has no advantage
with regard to the quantity produced. The synchronization can, therefore, lead to en-
ergy savings, but there is no recuperation from decelerating, because all the joints are
slowing down at the same time. The main goal of the optimization is to make all robot
movements equally fast/slow and prevent unnecessarily strong acceleration. The opti-
mization problem thus consists of optimization variables for compression of the trajec-
tory δov,j and a start delay τs,j for a robot j to synchronize accelerating and decelerating
from different robots. The effect of these variables on a single joint robot axis can be
seen in Fig. 3.

Fig. 3: Visualisation of the used optimization variables.

The start delay τs,j for a robot j shifts the trajectory n - time steps into the future.
The lower limit is zero and the upper limit is the travel time for that trajectory of the
slowest robot τtr,krit subtracted by the travel time τtr,j of the robot j. By optimiz-
ing multiple robots with only one trajectory each, the travel time of the slowest robot
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τtr,krit equals the total travel time τtot, otherwise it is the sum of the the slowest trajec-
tory τtrl,krit of the respective l multi-robot movement. The compression variable δov,j
reduces the maximal velocity q̇j and acceleration q̈j of the trajectory:

q̇new,j = δov,j · q̇org,j ∧ q̈new,j = δov,j · q̈org,j. (2)

The travel time of the robot j changes to τtr,j
δov,j

. The lower limit is 0 and the upper
limit is 1. The optimization problem finally can be described by:

min
τs,δov∈R

Egrid(τ s, δov) s.t. 0 ≤ δov,j ≤ 1 (3)

0 ≤ τs,j ≤ τtr,krit − τtr,j (4)
t(τ s, δov) ≤ τtot (5)
c(τ s, δov) < 1, (6)

where two new nonlinear constraints t(·) and c(·) are introduced. The first constraint
makes sure that the total travel is at least not slower than before the optimization. c(·)
is a nonlinear function that returns one if a collision is detected. The collision detection
will be described in the following section and is skipped here. With this the optimization
problem for multiple robots and multiple trajectories is fully defined.

The non-linear optimization problem and especially the nonlinear constraints result
in gaps in the solution area. For that reason a particle swarm optimizer (PSO [26]) was
chosen. The PSO does not guarantee that the global minimum will be found, but returns
an acceptable solution in reasonable time. A more detailed view on constraints handling
and the gaps in the solution area will follow in the next section.

For runtime reasons it makes sense to split the optimization into several sub-problems
and solve them individually. Sub-problems are single trajectories of each of the partic-
ipating robots, so τtr,krit equals τtot. The described optimization is only the secondary
level, so the SCO matches the trajectories with the most energy saving potential. Since
it is already known from the SCO which trajectories of the different robots have to be
superimposed, there is no need to optimize ntr trajectories of m robots. It is sufficient
if only one trajectory per robot, selected by SCO, is optimized in one sub problem.

The drawback of this method is that the success of the underlying optimization
depends on the SCO. By dividing the optimization problem, a satisfactory solution in a
satisfactory time is obtained, but if the SCO does not find the best matches, the solution
is not the best possible. However, without dividing an exemplary test case with 3 robots
and 10 trajectories each can no longer be solved on a PC in a satisfactory time.

The fact that only one trajectory per robot is considered simplifies the constraints
of optimization. The lower limit for the compression factor δov,j of robot j is now
limited by the travel time of the slowest robot in the considered subproblem. Before
there were multiple trajectories of the same robot in a row, so there was no defined end
of a single trajectory, because trajectories could overlap. The start and end time of the
critical robots are known by the SCO and therefore the trajectories can be separated. The
upper limit for the start delay now also depends on the compression factor. In contrast
to the standard problem, again without overlap, the formulation of the constraints is
easier. This simplifies the constraints to:
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τtr,j
τtr,krit

≤ δov,j ≤ 1, (7)

0 ≤ τs,j ≤ τtr,krit − (τtr,i · δov,j), (8)
c(τ s, δov) < 1. (9)

So there is no need for a nonlinear time constraint, because only through linear con-
straints it can be ensured that the total travel time τtot remains the same. The collision
detection c(·) stays the same and will be described in the next section.

4 Collision Detection

Using the model from Sec. 2 the optimization strategy from Sec. 3 works well if the
robots do not share a common workspace. However, if two or more robots share a
workspace there is the possibility that optimized trajectories may lead to collisions even
if non-optimized trajectories do not collide. For example, there are two robots (A and
B) standing across each other. Robot A is moving vertically and robot B is moving hor-
izontally, so there is a possibility that these two are colliding in the middle. Assuming
that robot B is the critical/ slowest robot, then there are two optimization parameters:
The compression factor (override) and trajectory start delay of robot A. The collision
detection leads now to a divided solution space as shown in Fig. 4. This (red) barrier
depends on the compression factor and the start delay and marks a collision. Because
of this every generated trajectory of the optimization needs to be checked for collision
to only consider valid solutions.
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Fig. 4: Solution space divided by collisions of a two robot cell optimization problem

The collision model uses CAD data of the robots as well as other objects in the cell
and imports it as a polygon mesh model. For every sample time step the positions of
the objects are recalculated from the robot joint angles of the current trajectory. If no
collision is found for all sample time steps, the current parameter vector is valid and
can be used in optimization.

The repeating collision detection routine is, as shown in [4, 18, 6], divided into a
broad phase that approximates the objects with bounding boxes and a narrow phase
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which determines exactly if two objects collide. The broad phase calculates candidates
that may collide and need further investigation in the narrow phase. In the past lots of
algorithms and solutions for use in broad phase [20, 6, 11, 19, 16] and narrow phase [21,
23, 10, 3, 1, 25] with advantages and disadvantages depending on the number of objects,
complexity of the meshes or compactness of the objects have been developed.

Therefore for the collision detection routine within the trajectory optimization three
different methods for the broad phase (axis-aligned bounding box pair test (AABB)
[6], the Sweep and Prune algorithm (S&P) [6] and an oriented bounding box pair test
(OBB)[11]) and two for the narrow phase (V-Clip [23] and the Gilbert–Johnson–Keerthi
separating-axis algorithm (GJK) [1]) were implemented and evaluated. The selection
was made on the basis of speed, implementation effort and availability of literature.

To compare the selected algorithms three runtime tests were performed. This and
all other test were conducted in MATLAB on an i5-6400 desktop computer. In order to
guarantee comparability with the robot cell application, three tests with one trajectory
each time were performed for the set-up of the test cell (Fig. 1) . Table 1 shows the
average calculation times in ms for the collision check for each case. Each test was
repeated 200 times and the average value was obtained. Due to the small number of
tests, the deviation is very high (up to 10%), but a generalized statements can still be
derived: Sweep-and-Prune shows its advantages in this application-related test, because
the system is made up of many objects that move only partially, which is the strong
point of this algorithm. Further detailed tests have shown that GJK is faster than V-Clip
for the narrow phase, therefore GJK and S&P were chosen as the best solutions.

To speed up the optimization it is also possible to only examine those objects that
can collide. With the proposed optimization strategy the robots change their trajectory
but not their path. Two objects can only collide if the spatial paths, for a given optimiza-
tion parameter set, cross. The collision detection approach is therefore expanded by an
extra precomputation phase. There, in advance the objects that have the potential to col-
lide will be determined. The precomputation phase is not exact but an approximation,
because the reconstruction of a polygonal mesh from multiple meshes is too complex
for a preexamination. This generates from any parameter set a point cloud for each ob-
ject consisting of all vertices from all collision sample time steps. These point clouds
represent the paths with all time dependencies eliminated. If two points from different

Table 1: Speed comparison for 3 different test cases in ms. Two times 100 runs are
averaged in each case. Case 1. is test cell (Fig. 1) with 16 objects, one trajectories per
robot and no collision, 2. are 24 objects with collision and 3. 24 objects and no collision.

collision detection routine test case

broad phase narrow phase 1. 2. 3.

V-Clip 1629 242 963
S&P

GJK 1582 237 1359

V-Clip 3469 520 2082
OBB

GJK 3405 499 1975

V-Clip 3121 486 1858
AABB

GJK 3125 513 1923
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Fig. 5: Power demand and relative robot speeds for the same trajectory

point clouds are within a detection radius r they are marked as possibly colliding and
relevant for the collision detection routine. All other objects in this robot cell e. g. robot
bases, fences, conveyor or similar are irrelevant, as they don’t change their position and
can never collide with the robots.

To integrate the collision detection into the PSO three types for restraining the non-
linear constraints are available: absorbing walls, reflecting walls and invisible walls
[26]. Fig. 4 shows that a divided solution space can result from the layout of the cell.
Since the particles of the chosen PSO algorithm must be able to diverge through these
boundaries, only the invisible walls [26] are suitable for constraints handling.

5 Results

Fig. 5 shows the simulation results of an example system consisting of three robots as
displayed in Fig. 1. In Fig 5 the overall grid power demand and the DC bus power flow
between each individual robot and the DC bus in comparison to the relative robot speed
Vref is shown. The relative robot speed is defined as the absolute sum of all robot joint
velocities standardised to the maximum value of the slowest axis of the slowest robot.
The travel time of robot 2 is the longest. Therefore, robot 2 is the critical robot of this
example system. Its trajectory parameters are not optimized and the movement does not
change between the portrayed optimization types. Fig. 5(a) shows the non-optimized

Fig. 6: Comparison of the energy demand with different optimization strategies
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case. Each robot moves from its start point to its endpoint as fast as possible. This results
in wait times for robots 1 and 3 and high grid power demands while acceleration.

Fig. 5(b) shows the case of optimization without considering collisions. The op-
timization leads to slower movements of robots 1 and 3 in such a way that all robot
trajectories are synchronized. However these trajectories lead between 1.68 s and 1.78 s
to a collision between robot 1 and 2 and are therefore not feasible. The time of the col-
lision is marked in red. Using the nonlinear collision detection constraint as shown in
Fig. 5(c) this problem is solved because robot 1 moves faster and avoids the collision.

Fig. 6(a) shows a comparison between the energy demands of the different optimiza-
tion strategies. Without any kind of optimization the example system consumes 4563 J.
An optimization without collision detection leads to an energy demand of 3983 J which
is a saving of approximate 12.7 %. Changes to the energy demand of the example sys-
tem through collision detection are minimal and lead to 3984 J. The optimisation results
in Fig. 5(b) and (c) indicate that it is not as efficient to match acceleration and decelera-
tion as it is to just compress the trajectories, because there the trajectories were simply
stretched. This has two possible causes: First, the DC link capacity consists of three
times the amount of a single robot. This means that more energy can be stored for a
short time. Since this capacity is not used as an energy storage but mainly as a smooth-
ing capacity, it will probably be smaller for industrial applications, because smaller
means less investment costs. The second reason is, that by slowing down the trajectory
the acceleration and deceleration was also reduced and thus also less braking energy is
recuperated. These observations can be confirmed for a larger system consisting of 3
robots with 39 trajectories each, as shown in Fig. 6(b). By the sub problem optimization
the overall energy saving is approximately 9 % compared to trajectories in which each
robots moves as fast as possible and needs to wait for the critical robot. The overall
results can be seen in Table 2.

Table 2: Simulation results for different types of trajectory optimisation for the test cell
in Fig. 1 consisting of 3 robots with 39 trajectories each.

required power of the DC link process time collision

case in J in % in s

no optimization 60018 100 45.585 no

optimization without
collision detection

54461 90.74 45.585 yes

optimization with
collision detection

54538 90.87 45.585 no
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6 Conclusion

In this paper the second part of a novel engineering methodology for the development
of energy-efficient production system controllers is presented. The functional principle
and results of the first optimization level (SCO) have already been published in [12].
This publication presents the underlying optimization strategy (DTO) together with a
collisions detection. The complete optimization problem was set up, with two optimiza-
tion parameters i. e. start delay and compression factor. Based on the already presented
SCO the optimization problem could be divided into multiple independent sub prob-
lems. Simplification for the optimization constraints were also be derived from this di-
vision, so that no non-linear constraints are required except for collision detection. Only
by these simplifications it is possible to solve systems with more than 10 consecutive
trajectories.

The disadvantage of this division is, however, that the success of this procedure
depends heavily on the SCO. If the SCO does not find a good solution, the result of the
DTO is also not optimal. For small cells with few trajectories (< 10) it may make sense
to solve the general optimization problem.

The implemented two-step collision detection was presented, as well as a short run-
time comparison of the different methods. In addition, a method was presented which
will remove robots from the collision detection if they can never collide with other
robots. All methods presented were tested on a virtual test cell ( Fig. 1). The DTO re-
duced the energy consumption when loading the pallet by 9 %. Especially due to the
large DC-link capacity, the optimization did not match acceleration and deceleration
phases, but slowed down the trajectories as much as possible. The collision detection
has only marginally reduced the energy saving. With this method it is possible to opti-
mize DC-powered robots even though the space in the cell is limited.
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