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Abstract: This paper presents a voice user interface consisting of several modules for a mobile service robot, which is
used to guide people and provide information on a university campus. The recognition and processing system is based on
cloud services to convert from speech to text and vice versa and a dialogue system to allow for natural interaction. An
approach to combine these modules with a data management system for meal plan, public transit, and location information
is presented. We evaluate the system in different environments, each with their individual reverberation times, proving
the functionality under conditions typical for the intended use case. In a user study with 13 participants we show the
usability of the system, by letting the participants freely interact with the robot. In 86 % of all cases the desired output
can be achieved at least once per user and request. A questionnare shows that most users agree with a good usability of
the system.
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1. INTRODUCTION

Intuitive and natural interaction with robotic systems
has gained importance in recent years. Within the field
of social robotics, various systems have been developed
both in research and industry. These systems can be op-
erated via touch or speech input and can therefore output
targeted information and serve as an assistant or guide,
if they are mobile. For example, the SPENCER project
aimed to develop a service robot that could help and guide
passengers at an airport [1]. Stricker et al. present an
interactive mobile robot capable of speech synthesis to
guide visitors in a university building [2]. Various works
are concerned with controlling mobile robots via certain
voice commands, eg. Poncela and Gallardo-Estrella who
deal with moving a mobile robot, reading information or
writing parameters via voice input [3].

In addition to specific commands, dialogue systems
can also be integrated into service robots to enable a
more natural form of interaction. Well-known exam-
ples for this are the robots Nao and Pepper from Soft-
Bank Robotics, which have several microphones and a
speech output and, in the case of Pepper, can recognize
human emotions [4]. The robot Jibo (meanwhile discon-
tinued) has a similar purpose as home assistant systems
like Alexa or Google Home and is able to perform person-
specific interactions [5].
This paper aims to implement such a dialog system func-
tionality for a guiding and information-providing robot in
a multi-variate scenario. The robot’s objective is to guide
and interact with visitors on a university campus. The
campus consists of several buildings with multiple floors,
containing offices, hallways and foyers and also an out-
door area. Typical for such an environment, some areas
are very crowded, resulting in varying background noise
level. Users of the system should be able to ask for di-
rections to specific locations and staff’s offices, as well
as for the meal plan in the canteen and departure times

of public transport. An implementation and evaluation of
a voice recognition interface consisting of speech-to-text
(STT) and text-to-speech (TTS) modules and a natural
language processing (NLP) pipeline allowing for dialog
based interaction is shown. In contrast to other publi-
cations, we evaluate the system in detail with respect to
its purpose: in different environments with different re-
verberation times using several different speakers. In the
course of a user study with 13 participants it is checked
whether the system correctly processes formulations that
have not specifically been provided before.

The remainder of this paper is structured as follows:
Section 2 introduces the requirements for the imple-
mentation, the mobile robot and different modules of
the voice recognition and processing system. Section 3
shows the performance in three different environments
with and without ambient noise and the results of a user
study in which participants could interact linguistically
with the mobile robot. Section 4 summarizes the paper
and gives an outlook on future work.

2. MATERIALS AND METHODS

2.1 Definition of requirements
As a basis for hardware selection and software design,

we subdivide the interface requirements into three cate-
gories:
Scenario specific requirements: As the operational sce-
nario is a university campus in Germany, a focus lies on
correctly understanding proper and colloquial (german)
names of institutions, facilities and persons. Further-
more, interfacing the university’s data management and
public transit systems is necessary to provide informa-
tion about meals and public transport.
Usability specific requirements: There exist a variety
of guidelines and principles for user interface design re-
garding usability, eg. Nielsen’s usability heuristics [6].
Although already published in 1994, the heuristics such
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as visibility of system status or recognition rather than re-
call, still apply today because of their broad practicabil-
ity and are, therefore, taken into account for the interface
presented in this work.
System specific requirements: The general structure
of the system should be modular and comply with the
setup shown in Fig. 1. Modularity allows for interchange-
ability of individual components, such as the speech-to-
text (STT) and text-to-speech (TTS) engines, microphone
hardware and natural language processing (NLP) system.

External 
Applications

Response 
generation

Speech 
synthesis

(TTS)

Speech 
recognition

(STT) 
Microphone

Language 
processing

Dialogue 
Manager

Speaker

User NLP PipelineConversionHardware

Fig. 1 Structure of the voice recognition interface and
dialogue system. The software part is roughly di-
vided between Conversion (STT and TTS) and the
NLP pipeline, including the dialogue manager.

2.2 Mobile guide robot
The experiments are conducted on a mobile robot,

equipped with sensors and differential drive to allow for
indoor as well as outdoor localization and navigation (see
Fig. 2). Localization is achieved by a combination of
Visual SLAM and iterative closest point (ICP) with the
RGBD-Cameras and 3D-Lidar based on the RTAB-Map
method [7]. As a microphone, a four microphone ar-
ray (ReSpeaker Mic Array v2.0) is used, allowing for
on board signal processing techniques such as beamforn-
ing, direction-of-arrival or noise reduction. The array is
mounted above the tablet and speaker at a height of 1.1 m
parallel to the robot’s footprint. All sensors are connected
to an embedded control computer, running the robot op-
erating system (ROS) under Ubuntu Linux 16.04.

3D Lidar
RGBD-Camera (front)RGBD-Camera (back)
Mic Array
Tablet
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2D Lidar (Safety)

Differential 
drive base

Fig. 2 Main components of the voice controlled mobile
robot.

2.3 STT and TTS conversion
As of today, there exist several different solutions

for STT-conversion, with deep learning techniques rep-
resenting the state-of-the-art approach. Only recently,
datasets of sufficient size have been made publicly avail-

able as part of the Common Voice project [8]. Since this
was not yet available during the implementation of this
work, especially in german, we have instead looked at
various commercial systems. Of the considered systems
Amazon Transcribe, Google speech API, Microsoft Bing
Voice, IBM Watson Speech-to-Text, Nuance and Wit.ai
only Google Speech API supports the german language
as well as the possibility to provide additional proper
names and a free contingent. Hence, the Google Speech
API is used for STT and TTS, each accessed through pre-
emptable action servers within the ROS framework.

2.4 NLP pipeline
To extract the semantic information from the converted

speech, computational techniques which understand and
learn from human language must be applied. There exist
several cloud-based NLP platforms for this task, which
usually are based on machine learning algorithms, eg.
Google’s DialogFlow, Facebook’s wit.ai or IBM Watson.
The basis of these NLP platforms are intents and enti-
ties. Intents map the user input to responses, based on
a given example set of inputs. An entity is used to ex-
tract necessary data from the input. For instance, the in-
put ”What is the vegetarian dish in the canteen today?”
could be mapped to an intent meal plan with the entities
date (today) and meal type (vegetarian dish). Based on
the findings of Canonico & De Russis [9], we decided
to use DialogFlow as a platform due to the accessibility
from several programming languages and large number
of pre-build intents and entities. The pre-build intents can
for example be used for smalltalk. We extend the system
with the intents and entities shown in Table 1.
Table 1 Selection of the most important intents with ex-
amples, entities underlined.

Intent Entities Example
meal plan meal type, date ”What’s the dessert tommorow?”
public
transport

transport type ”When’s the next bus leaving?”

where is location ”Where is room B12?”
go to location, time ”Stand in front of the canteen at

noon!”
bring me location ”Bring me to the dean’s office!”

DialogFlow receives the text input from a dialogue
management system (Fig. 3) which then receives back
the detected intent, proposed text output and parameters
such as entities and whether the conversation is finished.
Text outputs which require no further system specific data
(eg. small talk answers) are then directly forwarded to the
TTS engine.

2.4.1 Data management interface
If the intents meal plan and public transport are de-

tected, the answer is augmented with the requested infor-
mation via a data management interface based on Repre-
sentational State Transfer (REST) APIs.

Additionally to providing up-to-the-minute data for
public transit and meals, the data management interface
accesses the university’s room and building management
system as part of the where is, bring me and go to in-
tents. The essential entity for this intent is the location
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Fig. 3 The dialogue management system in detail. Di-
alogFlow and the REST accessed data services run
cloud based, whereas the other components run lo-
cally on the robot.

name (room number), which is checked for existence by
the data management interface. To ensure unambiguity
of location names before existence checking, a set of syn-
onyms is defined for each location name, mapping to the
data management compliant format (eg. ”Office of Pro-
fessor Smith” could map to ”Room 3403.003.A328”).

2.4.2 Location interface
Every existing location has a name, therefore a set of

n location names {kL}k=1..n can be defined, which de-
scribes all possible locations. The subset

{kA}k=1..p ⊂ {kL}k=1..n, p < n (1)

contains all reachable locations, that can be approached
by the robot in an autonomous fashion.

The basis to navigate to a specific location, is a topo-
logical map m as a 2-tuple consisting of a set of nodes
{kN}k=1..o and edges {ab∆}:

m =
〈
{kN}k=1..o, {ab∆}a=1..o

b=1..o

〉
. (2)

A database s then implements an injective function

s : {kA}k=1..p 7−→ {kN}k=1..o, o ≥ p (3)

to link the available location names to the map. When the
bring me intent is detected, the location interface checks
whether the location is reachable and asks for confirma-
tion to bring the user to the location (see the detailed pro-
cedure in Fig. 4).
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      given?
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query              "Should I 
bring you to      ?"

goal
output "Follow me!"

output              "      is here, but 
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navigation stack

Say outputSay query End

yes

no

yes

yesno

no
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Fig. 4 Program flow of the location interface, in case of
the bring me intent.

For non-reachable locations, or if the user only asks
where a location is (where is intent), the system will then
only show the location on the campus map and floor plan.

3. RESULTS
3.1 NLP

To evaluate the STT and general NLP pipeline, we use
the following five different utterances1:

U1 What’s tomorrow’s one-plate dish at the canteen?
U2 How can you help me?
U3 When’s the next bus leaving?
U4 Can you take me to building B4?
U5 Where’s Professor Mueller’s office?

These utterances are typical for the use case of the robot.
None of the proper person or building names were specif-
ically used for training. All utterances are spoken into a
vocal microphone by eight different speakers of mixed
gender and recorded without disturbing noises. The
recordings are then played back in three different envi-
ronments by a speaker in front of the robot with a sound
pressure of averagely 60 dB measured at the center of the
robot’s microphone array. The environments are an office
of 34 m2 size (carpeting), the outdoor area of the campus
(asphalt floor, between different buildings with glass and
concrete surfaces) and a hall of 75 m2 size (PVC floor,
concrete walls).

The three environments differ greatly in terms of
acoustics, which is also reflected in the reverberation
times shown in Fig. 5. Especially the hall environment
with T20 ≈ 1.5 s for frequencies ≤ 1000 Hz is sub-
optimal in terms of speech intelligibility. The German
standard for audibility in rooms [10] recommends a re-
verberation time of 0.7 s for a room of this size.

250 1.000 2.000 3.000 4.000 5.000
0

0,5
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1,5
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T
2
0
/
s

Office Campus outdoor Hall

Fig. 5 T20 reverberation times for three different envi-
ronments for the typical frequency range of speech.
Determined using the ITA-Toolbox [11].

Each recording is played three times, totalling in 120
utterance play backs per environment. In the office and
hall environment there was no interference noise during
the test, whereas in the outdoor area typical interference
noise such as passing cars occurred. The microphone
gain is set to the same fixed value for every environment.
Additionally, noise suppression and adaptive beam form-
ing is activated.

In order to evaluate the influence of background
noise, the same number of measurements are addition-
ally performed in each environment with an additional
loudspeaker that plays a background noise and faces
away from the robot. The noise, which was recorded
in a restaurant and contains indistinct conversation, is

1Translated from German
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restarted for each measurement. The sound level is set
to a sound pressure of 60 dB for the hall and office envi-
ronment. For the outdoor environment the same settings
as in the hall are used. Table 2 contains the results, sepa-
rated by environment and background noise. As a perfor-
mance metric for the STT module, we use the word error
rate (WER) based on LEVENSHTEIN distance. Addition-
ally the mean response time r with standard deviation σ
gives information about how much time is needed to have
the corresponding text available after the end of an utter-
ance. The latency of the NLP pipeline and the TTS en-
gine is in the range of 1 s, which must be added to get the
response time of the complete system. The NLP pipeline
is evaluated based on the mean of successful intent detec-
tions sint and successful total detections stot (intent and
all entities correct).
Table 2 Results from the evaluation in an office (Off.),
campus outdoor (Cam.) and hall environment with 120
utterances per run, resulting in 720 requests in total.

Speech recognition NLP Pipeline
Environment WER r σ sint stot
Off. 5.8% 1.23 s 0.39 s 90.0% 83.3%
Off. + noise 21.9% 1.99 s 0.81 s 82.5% 61.7%

Cam. 8.5% 1.40 s 0.72 s 84.2% 80.0%
Cam. + noise 8.2% 1.43 s 0.60 s 93.3% 78.3%

Hall 8.5% 1.40 s 0.72 s 84.2% 80.0%
Hall + noise 52.0% 3.31 s 1.99 s 55.8% 34.2%

As it was to be expected, the system works best in en-
vironments without ambient noise and low reverberation
time with a WER as low as 5.8 % and NLP detection rate
up to stot = 83.3 %. Ambient noise can greatly impair
the result, especially in environments with long reverber-
ation times. Although it must be noted that the sound
pressure of the speech output was not increased during
the experiments with background noise. People tend to
speak louder, when ambient noise is present, therefore
the detection rate would presumably be higher in real ap-
plication. Table 3 shows the detection rate differentiated
by utterance. Here it becomes clear that especially U2
and U3 are very well detected and the untrained names
of the buildings (U4) and persons (U5) can worsen the
result.
Table 3 Successful detections differentiated by utterance.

U1 U2 U3 U4 U5
sint 68.6% 87.1% 96.4% 96.4% 77.9%
stot 57.1% 87.1% 96.4% 53.6% 66.4%

3.2 User study
3.2.1 Design

In order to evaluate how well the system is suitable
for the intended use with the intended users, an adequacy
evaluation [12] is carried out in the form of a user study.
The study consists of three parts: free interaction with
the robot for two minutes, interaction under specifications
and a questionnaire survey. The free interaction serves to
familiarize the participant with the system. In addition,
possible linguistic interactions with the robot are to be
demonstrated in order to improve conversation. The only

preliminary information given to the participant for this
part is how speech recognition is activated via the tablet.

The interaction under specifications serves primarily
to evaluate the speech interface with regard to the imple-
mented functionalities. In addition, further training data
can be generated to improve the NLP pipeline. The in-
structions for this part are shown in Table 4 The study
was conducted in the hall environment and in German
language, all answers and specifications were translated
accordingly.

Table 4 Instructions for the second part of the user study,
divided into three categories (canteen, location, public
transit).

ID Task
A1 Request the menu of the canteen.
A2 Specify the menu of the canteen on the dish.
A3 Specify the menu of the canteen on the day.
A4 Specify the menu of the canteen on the day and the dish.

B1 Ask where an arbitrary location on campus is.
B2 Ask where the ”imes”2is.
B3 Ask to be guided to one of these places: canteen, porter, room A328

C1 Ask to leave the campus by bus or tram.
C2 Ask to leave the campus at a specific time.

The questionnaire includes 18 questions to obtain gen-
eral information about the participants and the subjective
quality of the language interface. The language interface
is evaluated using a five-level Likert scale (Strongly agree
to strongly disagree).

3.2.2 Evaluation
In the first part of the study, an average of 5.2 inter-

actions with the system were carried out by each user.
Through the free interaction further potential tasks of the
robot could be captured. In each case, at least two test
persons asked about the weather, where certain lectures
take place, which events are planned and what the cur-
rent location is. In Fig. 6 the percentage distribution of
the success of the requests in the second part of the study
is shown.

A1 A2 A3 A4 B1 B2 B3 C1 C2
0%

20%

40%

60%

80%

100%

Completely fulfilled
Fulfilled at least once

Not fulfilled
Skipped

Fig. 6 Results from the second part of the user study.
The labels correspond to the IDs in Table 4.

Canteen related requests (A1-A3) could be fulfilled at
least once3for each participant in over 90 % of the cases.
The greatest potential for error lies in the specification by
meal type and time (A2, A4), if the word canteen is not
used or untrained terms (e.g. food stand) are used. The

2Colloquial term for our institute
3Partially fulfilled, at least once in the case of more than one trial.
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query (B1) for a self-selected location was successfully
carried out by all participants in at least one case. In all
cases, the correct intention was recognized, although STT
could not always provide the correct location name. Ev-
ery participant who did not skip question B3 could be led
successfully to one of the given locations in at least one
attempt. For evaluation purposes, the specified locations
were defined as points within the same room.

All participants also filled out the questionnaire sur-
vey. 12 of the 13 participants (avg. age 28.15 years)
have already interacted with digital assistants before. For
the following statements, the median of all responses was
used.

The first six questions considered the quality of the
spoken language. In the median, the clarity, intelligibil-
ity, naturalness and speed of the speech output were rated
as ”strongly agree”. Another four questions considered
the adequacy of the information output. The ”agree” rat-
ing was given for the information output to be correct,
relevant, complete and in the right quantity. Also with
”agree” was evaluated that the system confirms to have
understood the entered information correctly and which
information is currently being processed. The logical,
task-oriented and expected structuring of the dialogues
was rated with ”agree” as well.

4. CONCLUSION AND OUTLOOK

We presented a voice recognition and processing in-
terface for a mobile tour guide robot to be used in a uni-
versity environment. A modular structure was presented
using cloud-based services for converting speech to text
(and vice versa) and the dialogue system DialogFlow as
part of an NLP pipeline. The dialogue system was ex-
tended by various intents and entities for the given use
case of information output and guiding functionality.

The evaluation of a total of 720 requests in three dif-
ferent environments with and without interference noise
shows a direct correlation between the environment (and
noise) and the quality of the voice recognition. A WER
between 5.8 % − 8.5 % and total detection rate of cor-
rect intents and entities of over 80 % can be achieved
without ambient noise. The greatest negative influence
on the recognition rate, especially in the case of ambi-
ent noise, is the use of less common words that are not
used for training. Automatically incorporating all build-
ing and room names into the TTS as well as NLP-system
could therefore further increase the detection rate. This
is also reflected in the user study carried out with 13 par-
ticipants as a proof-of-concept of the system. Inquiries,
which use pre-trained terms (eg. A1, A3, B2, B3) could
be detected with a recognition rate of up to 100 %, which
is much more robust than requests that give the user more
freedom in wording (eg. A2, A4). The parameters of
the microphone array, such as gain, noise suppression or
adaptive beam forming were kept constant in the course
of the experiments. A possible extension of the system
would be to adaptively modify these settings depending
on the current location, ie. the type of the environment.

The corresponding information can already be provided
by the SLAM method and an approach like this promises
a further increase in robustness.
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