

#### GRACE-FO processing at IfE/LUH

Igor Koch, Mathias Duwe, Jakob Flury and Akbar Shabanloui Insitut für Erdmessung, Leibniz Universität Hannover/Germany

COST-G Team Meeting 2021 January 11-15, 2021 Online





### Gravity field recovery at IfE

- GRACE-SIGMA: software package for gravity field recovery from GRACE and GRACE-FO sensor data
- Generalized dynamic orbit determination (variational equations approach)
- Initially all-MATLAB software [Naeimi et al., 2018]
- Several parts of the software converted to C/C++
- Mostly vectorized and parallelized
- Computation time one solution: app. 3.5 h (18 cores, 128 GB)



Overview





### Force modeling

| Effect                 | Model                                                   | Reference                     |
|------------------------|---------------------------------------------------------|-------------------------------|
| Gravity field          | GOCO06s (d/o: 300)                                      | Kvas et al., 2020             |
| Third bodies           | Moon, Sun, Planets, Ephemerides: DE431                  | Folkner et al., 2014          |
| Solid Earth tides      | IERS Conventions 2010                                   | Petit a. Luzum, 2010          |
| Ocean tides            | FES2014b                                                | Carrere et al., 2015          |
| Solid Earth pole tides | IERS Conventions 2010                                   | Petit a. Luzum, 2010          |
| Ocean pole tides       | IERS Conventions 2010                                   | Petit a. Luzum, 2010          |
| Relativistic           | IERS Conventions 2010                                   | Petit a. Luzum, 2010          |
| Non-tidal              | AOD1B RL06                                              | Dobslaw et al., 2017          |
| Atmospheric tides      | AOD1B RL06                                              | Dobslaw et al., 2017          |
| Non-gravitational      | ACT1B (GRACE C)<br>TU Graz accelerometer data (GRACE D) | JPL, 2018<br>Behzadpour, 2020 |



### Observations

- K-band range rates (5 s)
- LRI range rates in following releases
- Kinematic AIUB orbits as pseudo-observations (30 s)





### Orbit screening

- Kinematic positions are compared to GNV1B orbit
- Epochs with 3D-difference >8 cm not considered in estimation





# Weights

• KBRR:

 $\sigma_{\rm KBRR}=$  2E-07 m/s (fixed)

• Kinematic positions:

 $\sigma_{\rm Orbit}$  = diagonal elements of the orbit covariance matrix (down-weighted by a factor 5)





### GPS down-weighting





#### Parameters

- Per 3h-arc:
  - Initial state
  - Accelerometer biases
  - Empirical parameters [Kim, 2000]
- Per monthly solution:
  - Full scale matrix [Klinger a. Mayer-Gürr, 2016]
  - Gravity potential (d/o: 96)



### Empiricals

$$\dot{\rho_o} - \dot{\rho_c} = A + Bt + (E + Ft)\cos u + (G + Ht)\sin u$$

- Bias A: 90 min
- Bias rate B: 90 min
- Periodic bias E,F: 3 h
- Periodic bias rate G,H: 3 h







### Screening / Outlier detection



O-C range rates

Post fit range rate residuals



# Screening





Arcs will not be considered in main adjustment

Leibniz Universität Hannover





### Screening / Outlier detection



O-C range rates

Post fit range rate residuals



1 1 Leibniz 102 Universität 1004 Hannover



- Remove suspicious epochs
- Recompute solution





### Screening





- Remove suspicious epochs
- Recompute solution



## Evaluation

- Spectral noise
- Spatial noise
- Signal content
- Coefficients C20 C30





#### Spectral noise



- w.r.t. mean solution of all centers
- C20 zero tide
- 2018/06 2020/08





#### Noise over the oceans



- 2018/06 2020/08
- EWH w.r.t. mean solution of all centers
- C20 and C30 replaced with SLR
- Gaussian filter (400 km)
- Climatology model subtracted
- (bias, trend, annual, semi-annual signal)





### **River basin amplitudes**



- 2018/06 2020/08
- EWH w.r.t. mean solution of all centers
- C20 and C30 replaced with SLR
- Gaussian filter (400 km)
- Fit of climatology model
- (bias, trend, annual, semi-annual signal)





#### Greenland mass trends

NW NW NE CW CW SE

-15 CSR GFZ -20 JPL ITSG AIUB trend [Gt/yr] دی 52 LUH -30 🕽 -35 Į • -40 -45 ⊾ NW CW SW SE NE NO drainage basin

- 2018/06 2020/08
- EWH w.r.t. mean solution of all centers
- C20 and C30 replaced with SLR
- Gaussian filter (400 km)
- Fit of climatology model
- (bias, trend, annual, semi-annual signal)
- GIA, degree 1, .. not considered





#### Coefficients C20, C30









### LUH-GRACE-FO-2020 solutions

- Solutions are computed operationally
- Available a few days after all needed GRACE-FO products are online (L1B, kinematic orbits, alt. acc)
- Solutions can be found on ICGEM and LUH data repo:
- http://icgem.gfz-potsdam.de/series/03\_GRACE\_other/LUH/LUH-GRACE-FO-2020
- https://data.uni-hannover.de/dataset/luh-grace-fo-2020



### References

- Behzadpour et al. (2020): GRACE-FO accelerometer data recovery within ITSG-Grace2018 data processing, EGU General Assembly 2020.
- Carrere et al. (2015): FES 2014, a new tidal model on the global ocean with enhanced accuracy in shallow seas and in the Arctic region, EGU General Assembly 2015.
- **Dobslaw et al. (2017):** A new high-resolution model of non-tidal atmosphere and ocean mass variability for de-aliasing of satellite gravity observations: AOD1B RL06, Geophysical Journal International, Volume 211, Issue 1, Pages 263—269.
- Folkner et al. (2014): The Planetary and Lunar Ephemerides DE430 and DE431, IPN Progress Report 42-196.
- Kim (2000): Simulation Study of A Low-Low Satellite-to-Satellite Tracking Mission, Dissertation, University of Texas at Austin, 2000.
- Klinger and Mayer-Gürr (2016): The role of accelerometer data calibration within GRACE gravity field recovery: Results from ITSG-Grace2016, Advances in Space Research, 58, 1597.
- Kvas et al. (2020): GOCO06s A satellite-only global gravity field model, Earth System Science Data Discussions.
- Naeimi et al. (2018): If Emonthly gravity field solutions using the variational equations, EGU General Assembly 2018, Vienna.
- **Naeimi (2018):** A modified Gauss-Jackson method for the numerical integration of the variational equations, EGU General Assembly 2018, Vienna.
- *Petit and Luzum* (2010): IERS Conventions (2010), IERS technical note 36, Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt am Main.