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ABSTRACT

Industrial assembly of optical systems is still a tedious and cost-intensive task that is mostly dominated by
manual labor. Positional fine-adjustment of optical components is pivotal to ensure a desired performance of
the optical device at hand. In this paper, we use wavefront predictions to aim for fully automated assembly
procedures. Wavefront measurements along with position identification methods can be utilized to continuously
update a simulation model which in turn allows for predictions on future wavefront errors. This enables to
take according correction measures during the assembly process if a certain wavefront tolerance specification
is not met. In order to demonstrate the efficacy of the proposed approach and methods, a beam expander is
sequentially assembled. The setup consists of a laser, two bi-convex lenses, and a Shack-Hartmann wavefront
sensor and has to satisfy a certain wavefront tolerance specification after its assembly.

Keywords: Automated alignment, assembly, system identification, tolerancing, wavefronts, wavefront sensors,
adaptive optics, beam expander

1. INTRODUCTION

Alignment of optical systems has been an ongoing research topic for decades. To realize large-scale production
of optical systems, automated assembly is a key factor in increasing overall assembly speed within the manufac-
turing line and therefore lowering production costs.
To address this problem, a multitude of methods and approaches has been developed. For example, special
freeform optical components can be machined1,2 to reduce the alignment problem. Since this transfers the pro-
duction costs and time to the manufacturing of individual expensive freeform components, this cannot efficiently
scale production throughput. Therefore, so-called active alignment try to place optical components to meet
desired optical performance criteria.
Differential wavefront sensing3,4 is often used to align optical systems. For this, a quadrant photodetector is
commonly employed and the misalignment is inferred by two overlaid light sources hitting the detector. Since
this necessitates two beams, alternative methods have been developed to align optical system with only a single
beam hitting the detector. With the help of a high-dimensional decomposition of the detector image space
such as Zernike polynomials (and respective coefficients), several strategies5 for the alignment can be followed.
Early works considered sensitivity tables6,7 to approach this problem but have been shown to perform poorly
due to the nonlinear nature of Zernike polynomials and insufficiently close initial values. To account for this,
nonlinear merit function8 optimization is typically employed. However, this does not account for positioning
uncertainties and sensor noise and local minima may arise. More recent works increasingly utilize filtering such
as the Extended Kalman Filter (EKF) in order to align optical systems such as to realize LED-based optical
communication,9 wavefront reconstruction,10 or probabilistic approaches such as Bayesian exploration e.g. for
the alignment of digital micro mirror devices.11

In this paper, we show how to improve wavefront predictions on future components to be assembled by following
an EKF-based approach to improve the position identification. This can be effortlessly integrated into our previ-
ously developed predictor-corrector framework12 and results will be shown with experimental validation utilizing
a beam expander as demonstrator.
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This paper is structured as follows. Sec. 2 outlines three different approaches for the wavefront-based position
identification which is essential to accurately predict future wavefronts in the assembly of optical systems. Sec. 3
summarizes the predictor-corrector framework of our previous work and the seamless integration of various iden-
tification methods. This lays the groundwork for the experiments presented in Sec. 4 and Sec. 5 concludes the
paper.

2. WAVEFRONT-BASED POSITION IDENTIFICATION

For the predictions of future wavefronts, it is crucial to obtain an accurately identified optical model. In order
to keep costs low for the manufacturing and assembly process of optical systems, it is desired to perform the
identification with the sensors at hand and avoiding additional exteroceptive sensors to monitor the position of
optical components or additional components such as beam splitters. The underlying problem can be formulated
as such: Given an optical system with n optical components and a detector with output z, then an input light
source maps to the output detector by

z = h(X), (1)

where h is (in general) a nonlinear and surjective mapping of the set X of all optical components. Therein, each
optical component i∈{1, ..., n} is associated with a position vector xi ∈Rnd where nd are the degrees of freedom
(DOF) of the optical components. The detector output needs to be given in vectorial form and should be a
decomposition of the detector image. In this paper, we use the well-known Zernike polynomials to realize such
decomposition.
Then, the problem formulation of the wavefront-based position identification consists of inferring the optical posi-
tions solely from detector measurements z. In this section, we discuss three approaches to solve the identification
problem and compare them for the usability for sequential and automated optical assembly.

1. Linear approach

The most intuitive and computationally inexpensive approach to obtain optical component positions is to
linearize (1), i.e.

∂z

∂X
=
∂h(X)

∂X
≈ S ⇒ ∂z = S · ∂X, (2)

where S is the sensitivity matrix. This can be solved for positional displacement with the help of the
pseudoinverse of the sensitivity matrix by ∂X = S† ·∂z. As already mentioned in Sec. 1, the non-negligible
nonlinearities of z as well as unknown initial values in general lead to poor identification quality.

2. Nonlinear approach

The most popular approach in current literature is to formulate a cost function that penalizes wavefront
deviations caused by component misalignments. The cost function J , where additionally certain aberrations
can be prioritized by introducing a weighting matrix13,14 W , then reads as

J(X; z,W ) =
1

2
‖h(X)− z‖2W =

1

2
(h(X)− z)TW (h(X)− z) (3)

and can be minimized utilizing derivative-free or derivative-based optimization methods. If derivative-based
optimization methods are chosen, the required gradient can be computed as

∇XJ(X; z,W ) =

(
∂h(X)

∂X

)T
1

2

(
W +WT

)
(h(X)− z) = ST 1

2

(
W +WT

)
(h(X)− z)

which simplifies for symmetric weighting matrices to

∇XJ(X; z,W ) = STW (h(X)− z).

The chosen optimization procedure then yields the identified optical positions at

X∗ = arg min
X

J(X; z,W ).
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Although this approach yields significantly better results than a linear approach since it accounts for the
nonlinear nature of the mapping h, still several drawbacks persist. Close initial values to the optimal
solution are needed in order to avoid being stuck in local minima. Furthermore, optimization procedures
will try to align components in the direction of the highest sensitivity.

3. Filtering approach

By augmenting equation (1) with the dynamics of a (controlled) positioning system, we get the discrete
dynamics

xk = Axk−1 + Bxk−1,d + w (4)

zm,k = h(xk) + v, (5)

with iteration step k where w and v accounts for the positioning uncertainty and sensor noise, respectively.
The transient response is not considered here since the time constants of the placement procedure are
negligible compared to the overall assembly process. This allows to assume linear dynamics if the controller
of the positioning system is tuned appropriately. zm is the sensor measurement subject to noise and xd the
desired position commanded to the positioning system. Under the premise of being normally distributed
with zero mean and covariance matrices Q and R, i.e. w ∼ N (0, Q) and v ∼ N (0, R), an EKF15,16 can
be utilized to estimate the actual position of the optical components. Since an EKF works with local
linearization of the nonlinear equations, the sensitivity matrix of the linear approach can be utilized to
linearize equation (5) locally. The equation (4) is already in linear form and the standard Kalman filter
equations can be used without the necessity to linearize.

In conclusion, Tab. 1 shows how the three outlined approach compare to each other. In summary, for simulation
and optical design it is still advisable to utilize the nonlinear approach since a simulation environment is free of
uncertainties. However, for real-world identification where significant uncertainties of the positioning system as
well as sensor noise arise, a filtering approach is more suited to obtain accurate position identification results.

Speed Accuracy

Linear

Nonlinear

Filtering

Table 1: Comparison of the three identification approaches with respect to speed and accuracy.

3. PREDICTOR-CORRECTOR FRAMEWORK

Previously, we proposed a predictor-corrector framework12 which will be shortly summarized in this section.
We consider an optical system consisting of n (static) optical components with a serial topology. The light
source and detector are pre-aligned and therefore not considered for adjustment. We can distinguish between
virtual positions xs (provided by the optical simulation) and identified position (provided by the wavefront-
based position identification) x∗. A unified notation comprising both entities is given by a hybrid position
vector XH,i = (X∗i ,XS,i) ∈ Rnd·n, where X∗i = (x∗1, ....,x

∗
i ) ∈ Rnd·i is the vector of the first i identified

optical component positions and XS,i = (xS,i+1, ....,xS,n) ∈ Rnd·(n−i) is the complementary vector of the last
n− i virtual optical component positions. The index i represents the current assembly step and therefore the
configuration of the optical system (equaling the number of placed components).

Workflow of Predictor-Corrector Framework

1. Optical Component Placement
In this step, an optical component is placed into the real optical system at a position xi ∈XH,i−1 given by
the optical simulation. Simultaneously, this component is inserted in the simulation model.
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Figure 1: Predictor-corrector framework for the automated sequential assembly of optical systems (modified
extension from previous work12).

2. Sensor Measurement(s) and Identification
Next, sensor measurements yield the current wavefront zm at the detector. The current wavefront measure-
ment can be used to update the simulation model. This corresponds to a position identification procedure
which is described in Sec. 2. For filtering methods, multiple sensor measurements are required.

3. Model Update and Wavefront Prediction
After obtaining an updated simulation model from the identification results, the wavefront can be predicted
by computing zp =h(XH,i).

4. Conformance Testing and Correction Calculation
The predicted wavefront can analyzed w.r.t. certain criteria that the assembled optical system should
comply with. Typically, a desired wavefront zd is sought to be achieved after the assembly is completed.
If the wavefront error deviates from a user-defined tolerance, according corrective measures need to be
scrutinized and taken if possible. After having obtained an identified position vector XH,i, it is possible
to predict the future wavefront zp =h(XH,i) with the help of an optical simulation. This enables the
verification of the predicted wavefront w.r.t. a user-defined tolerance threshold TOL. In this paper, the
chosen metric is the weighted root-mean-square (RMS) error∗ such that the condition reads

‖zd − zp‖W ≤ TOL. (6)

If (6) is violated, appropriate corrective measures need to be taken. First, it needs to be analyzed if a
correction of future components can rectify this by computing the correction

X̂S,i = arg min
XS,i⊂XH,i

J(XH,i, zd,W ) (7)

and inserting it into
‖zd − h(XH,i, X̂S,i)‖W ≤ TOL. (8)

If (8) holds, we can proceed to the next assembly step. If not, the possibility of changing the position of
the current optical component needs to be evaluated. The position correction can be computed in analogy
to (7) and (8) by

x̂i = arg min
xi∈XH,i

J(XH,i, zd,W ) (9)

∗This is different to the cost function (3) in the nonlinear approach where it leads to a simpler gradient for optimization
purposes. The form chosen here is the more common RMS definition in literature to measure the wavefront error.
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and evaluate the corresponding predicted cost by

‖zd − h(X∗i−1, x̂i,XS,i)‖W ≤ TOL. (10)

Again, if (10) holds, the next assembly step is executed. If not, one has to go one step back in the assembly
process and reiterate the process for i← i− 1.

4. EXPERIMENTS

x

y

z

Lenses Tip/Tilt Gimbals Wavefront
Sensor

5-DOF
Laser Mount

3-DOF Stages

Figure 2: Experimental setup with two bi-convex lenses which are mounted inside 2-DOF gimbals fixated on
3-DOF translational stages that are placed between a laser light source and a wavefront sensor.

Fig. 2 depicts the experimental setup which consists of a 532 nm laser light source, two bi-convex lenses (with
50 mm and 100 mm focal length, respectively), and a Shack-Hartmann wavefront sensor. The sensor provides the
Zernike coefficients and in the experiments, we utilize the first ten Zernike coefficients according to the ZEMAX
indexing scheme17 due to the usage of ZEMAX OpticStudio as simulation tool in this paper. The two lenses
are placed inside gimbals that are able to adjust 2-DOF rotations and are each mounted on 3-DOF translational
stages. The angular displacement can be realized in a ±15◦ range with a fine-adjustment of 1◦ per revolution
(and a resolution of 50 ticks). For the translational stages, a maximum travel of ±2 mm can be made with a
fine-adjustment of 50 µm per revolution. To realize more displacement along the z-axis, the lenses are moved
manually which in turn increases positioning uncertainty in this direction. This is done because sensitivity in
this axis is low and therefore more displacement is necessary to improve identification accuracy. Based the
aforementioned specifications, the covariance matrix for the combined positioning stages can be heuristically
estimated as

Q = diag{0.025 mm, 0.025 mm, 1 mm, 0.01◦, 0.01◦}.

Of course, this assumes that the coupling effects are negligible. For sensor noise identification, repeated mea-
surements of the Zernike coefficients were obtained and a normal distribution can be fitted into the data. This
results in the covariance matrix

R = diag{0.0543, 0.0276, 0.0380, 0.0145, 0.0098, 0.0150, 0.0085, 0.0096, 0.0070, 0.0086}2

in wave units.
In this paper, we choose the RMS as wavefront criterion and the maximum tolerable wavefront error as λ/5.
Tab. 2 summarizes the experimental results for the two experiments that are carried out in this paper.

1. In the first experiment the system to be assembled should have a desired planar wavefront which cor-
responds to z = (0, ..., 0)T . Therefore, the lenses are at their nominal positions (w.r.t. the respective
lens coordinate system) in the simulation model (see column for XH,0). After inserting the first optical
component, the position identification can be carried out which shows significant displacement from the
nominal position and results therefore in a predicted cost that violates the given specification. However, by
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Table 2: Iterative assembly process for the beam expander in first and second experiment. Values for lens
positions provided by initial design/simulation are shown in blue while values provided by identification/optical
system are shown in red. Below is the corresponding predicted cost shown in green if tolerance requirement is
met (J/λ = 0.2) and in red if violated.

First Experiment
XH,0= XH,1 = XH,1 = XH,2 = XH,2 = XH,2 = XH,2 = XH,2 =

(xS,1,xS,2) (x∗
1,xS,2) (x∗

1, x̂S,2) (x∗
1,x

∗
2) (x∗

1, x̂2) (x∗
1,x

∗
2) (x∗

1, x̂2) (x∗
1,x

∗
2)

Configuration 0 1 2

Lens 1

x/mm 0 -0.8668 - - - - - -
y/mm 0 -0.4237 - - - - - -
z/mm 0 -8.2240 - - - - - -
θx/◦ 0 -3.8063 - - - - - -
θy/◦ 0 6.0565 - - - - - -

Lens 2

x/mm 0 0 -0.4910 -0.6171 -0.5451 -0.6375 -0.4929 -0.4891
y/mm 0 0 -0.1891 -0.0793 -0.1130 -0.2346 -0.1895 -0.1831
z/mm 0 0 -8.7163 -15.8612 -9.2058 -8.8106 -8.8116 -9.1806
θx/◦ 0 0 -0.0640 1.8495 3.6507 -0.0753 -0.0763 -0.0651
θy/◦ 0 0 0.1714 -0.5336 2.7236 0.2396 -0.2426 -0.1904

Pred. Cost J/λ 0.0013 7.3299 0.0267 1.8299 0.0045 6.735 0.0278 0.1218

Second Experiment
XH,0= XH,1 = XH,1 = XH,2 = XH,2 = XH,2 = XH,2 = XH,2 =

(xS,1,xS,2) (x∗
1,xS,2) (x∗

1, x̂S,2) (x∗
1,x

∗
2) (x∗

1, x̂2) (x∗
1,x

∗
2) (x∗

1, x̂2) (x∗
1,x

∗
2)

Configuration 0 1 2

Lens 1

x/mm 0 -0.8990 - - - - - -
y/mm 0 -0.2935 - - - - - -
z/mm 0 -6.8386 - - - - - -
θx/◦ 0 0.0480 - - - - - -
θy/◦ 0 -0.14134 - - - - - -

Lens 2

x/mm 0 0 -0.9434 -0.6171 -0.9473 -0.9210 -0.9518 -0.9496
y/mm 0 0 -0.3081 -0.1644 -0.3092 -0.3414 -0.3112 -0.3102
z/mm -5 0 -11.9108 -10.4847 -11.9030 -12.3483 -11.8963 -12.1051
θx/◦ 0 0 -0.0214 -0.0645 -0.0776 -0.1755 -0.0763 -0.1709
θy/◦ 0 0 0.0655 0.2280 0.2668 0.4975 -0.2426 0.5038

Pred. Cost J/λ 0 13.4221 0.0025 5.7785 0.0028 0.6175 0.0018 0.0649

correcting the second lens in the simulation, it can be shown that this leads to maintaining the tolerance
specification. Next, the second lens is placed in the optical train according to the new desired position x̂S,2.
After two correction and identification steps, the desired tolerance of the optical system is maintained. A
misalignment in z-direction of the first lens is compensated by shifting the second lens along the z-axis as
well and the tip/tilt misalignment are compensated by translational corrections in x- and y-axis. This can
be attributed to the nonlinear approach for the computation of the correction terms.

2. In the second experiment, the desired wavefront to be achieved should have a convex shape (i.e. all Zernike
coefficients are zero except for the defocus term which is about -0.3143). This corresponds to the same
positions in the nominal design as in the first experiment expect for the second lens which is shifted 5 mm
along the negative z-axis to achieve the desired wavefront. Similarly, an offset of the first lens of about
6 mm in z-direction can be seen after placing the first lens (see column for XH,0) and the predictor-corrector
framework tries to keep the 5 mm distance of the two lenses by correcting the position of the second lens
by about 12 mm in negative z-direction (see column for XH,1 = (x∗1, x̂S,2)). Again, after two consecutive
identification and current correction steps after the placement of the second lens, the specified tolerance
requirement on the wavefront error is met.
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5. CONCLUSION

In this paper, we presented an approach to sequentially assemble and simultaneously align optical systems.
During the assembly, wavefront predictions allow to forecast the tolerable error on the wavefront of the system to
be assembled and therefore take according measures. For this, it is crucial to obtain the current positional state of
the optical system. In order to avoid additional costs by external sensors, we aim at inferring the optical positions
by solely the primary system sensor. To realize this, we outlined three approaches for the wavefront-based
position identification problem: A computationally fast but inaccurate linear approach, a nonlinear approach
yielding more accurate results but also involving higher computational costs, and a filtering approach taking
uncertainties of the positioning system as well as the optical system into account. The last approach needs careful
selection of trajectories as well as multiple sensor measurements but can lead to more accurate identification
results. Experimental verification shows how to integrate the position identification methods into our previously
developed predictor-corrector framework by assembling a two-lens system.
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