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ABSTRACT  

The exploitation of nonlinear effects in multi-layer thin films allows for optics with novel functions, such as all- optical 
switching and frequency conversion. In this contribution, an improved interferometric setup for the measurement of the 
nonlinear refractive index in dielectric substrates and deposited single layers is presented. The setup is based on the wave 
front deformation caused by the self-focusing in the measured samples. Additionally, measurement results for a highly 
nonlinear material, indium-tin-oxide (ITO) are presented with respect to the materials power handling capabilities and 
compared to values from other materials. 
Keywords: Kerr-effect, material science, self-focusing, thin films, nonlinear optics  
 

1. INTRODUCTION  
The development of optical thin films has reached a high technical level. Optical thin film systems can handle complex 
demands regarding spectral characteristics, power handling capability and phase modification. Nevertheless, the 
requirements on optical components are also growing very fast, and the necessary development in the thin film 
manufacturing is presenting itself to be increasingly difficult [1, 2]. Especially ultra-short-pulsed laser applications 
require a detailed understanding of the material properties, linear as well as non-linear, of coating and substrate 
materials. The destructive processes are usually investigated with particular attention, but the non-destructive processes 
below the laser induced damage threshold also influence the properties of dielectric films significantly [3]. This opens up 
possibilities to create optical components with new functionalities by exploiting nonlinear effects below the damage 
threshold. However, to achieve this, materials with suitable nonlinear properties and a precise knowledge of these 
properties are necessary. As the optical properties of thin films can differ significantly from those of corresponding bulk 
material [4], it is necessary to achieve direct knowledge of the layer materials used for each application. Special attention 
has to be payed to the power handling capabilities in relation to the nonlinear refractive index of the material, as a strong 
nonlinear response below the damage threshold of the material is desirable.  

To characterize these material properties, a special measurement procedure was previously developed and qualified to 
measure the nonlinear refractive index (n2) for bulk substrates as well as deposited thin films [5]. The procedure is based 
on a combination of the established z-scan method [6], and a Mach-Zehnder-interferometer [7]. In the classical z-scan 
method, the sample is moved along a focused beam, and the self-focusing in the sample is translated into an intensity 
variation on a detector. The combination with a Mach-Zehnder-interferometer allows, by providing an undisturbed 
reference beam, the monitoring of the wave front deformation caused by the self-focusing in the material, potentially 
improving the sensitivity of the instrument. The gained data of the wave front curvature variation is fitted applying a 
beam propagation model based on the optical matrix formalism with modifications to account for the optical Kerr-effect.   

For the characterization of the thin film material, a single layer of ten micrometer is manufactured using an Ion-Beam-
Sputtering process. Appling the introduced measurement setup, the manufactured sample is characterized regarding the 
nonlinear refractive index as well as the power handling capabilities of the material. The determined material properties 
are evaluated and compared to other optical materials as well as values from literature. 
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2. THE KERR-EFFECT IN OPTICAL MEDIA  
 
One of the effects caused by the third order nonlinear polarization is the optical Kerr-effect. Similar to the classical 
electrooptical Kerr-effect, where an external electric field is applied to an optical medium for changing the refractive 
index and inducing birefringence, the optical Kerr-effect changes the refractive index of the optical medium. Instead of 
requiring an external field though, in the case of the optical Kerr-effect, the electromagnetic radiation incident on the 
optical medium is itself responsible for the refractive index change [8]. The classical refractive index n of the optical 
medium then splits up into two parts, a constant ‘linear’ index n0 and a varying, nonlinear index nNL. The so induced 
change in the refractive index is proportional to the square of the electric field of the incident radiation, and consequently 
to its intensity. The factor that relates the refractive index change with the applied radiation intensity is called the 
nonlinear refractive index and is typically denoted as n2:  ݊ = ݊଴ + ݊୒୐ = ݊଴ + ݊ଶ ∗  (2.1)    ܫ

When a laser beam of the necessary intensity propagates through an optical medium, this leads to a refractive index 
change in the medium which is proportional to the beam’s spatial intensity distribution. The typical laser beam one 
would expect in the laboratory however does not have a spatially homogenous intensity profile, but rather a circular 
symmetrically shape with a maximum at the beams center, e.g. a Gaussian TEM00-mode. This leads to a refractive index 
profile with the undisturbed refractive index n0 at the beams edges, where the intensity is low, and typically a maximum 
(n2>0 for typical optical media), at the beam’s center. This type of refractive index profile causes a phase shift similar to 
that of a thin lens, which in turn causes a focusing of the optical beam in the medium, the so called Kerr-self-focusing. 
For a medium which is thin in comparison with the Rayleigh-length of the laser beam, the focal length fKerr of the so 
called Kerr-lens induced by the laser beam is given by: 

୏݂ୣ୰୰ = ௔గ௪ర	ସ௡మௗ௉      (2.2) 

Hereby, is P the power of the incident beam, d the geometric length of the beam’s path through the medium and w the 
beam radius of the beam at the position of the optical medium. a is a correction factor (usually ܽ > 1) which is 
necessary to compensate the difference between the actual, in this case Gaussian beam shape, and a parabolic beam 
profile [9]. 

The self-focusing of an optical beam can be a cause of laser induced damage [10] and is often used as a way to measure 
the nonlinear refractive index of optical materials, as presented in the next section. 

 

3. INTERFEROMETRIC SETUP FOR MEASUREMENTS OF THE NONLINEAR 
REFRACTIVE INDEX 

3.1 Classical z-scan 

An established method for determination of the nonlinear refractive index is the so-called z-scan [11]. In this method, the 
sample is moved along the path of a focused beam to vary the intensity on the sample. This causes focusing at different 
positions of the sample and changes the beam’s diameter in the far-field. This change in diameter is monitored by 
measuring the power transmitted through an aperture, which varies according to the beams size before the aperture. 
Figure 1 shows a schematic setup of a z-scan measurement and figure 2 the typical shape of the resulting signal. 
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