Quantenchemische Untersuchungen der Lithiumionendiffusion in Übergangsmetalldichalkogeniden

Von der Naturwissenschaftlichen Fakultät der Gottfried Wilhelm Leibniz Universität Hannover

zur Erlangung des Grades Doktorin der Naturwissenschaften (Dr. rer. nat.)

> genehmigte Dissertation von Vanessa Werth, M. Ed.

> > 2020

Referent: Prof. Dr. rer. nat. Paul Heitjans Korreferent: Prof. Dr. rer. net. Thomas Bredow Tag der Prüfung: 20.11.2020

Abstract

The aim of this thesis is to find an accurate theoretical description of layered transition metal dichalcogenides (MX_2) , especially TiX₂, and investigate their properties regarding the suitability as lithium intercalation material utilized in lithium-ion batteries.

The theoretical description of layered MX_2 represents a challenge for local density and generalized gradient approximation (GGA) in density functional theory (DFT), since it does not take into account long-range electron correlation effects (London dispersion) which is responsible for the inter-layer interaction. In addition, GGA DFT does not reproduce the electronic and magnetic properties of TiX₂, due to the well-known selfinteraction error. Using a higher quality hybrid functional is expected to result in a better description but would increase computational costs by one order of magnitude. Keeping the computational costs on the same level as for pure GGA DFT calculations, these challenges are approached in this thesis using a GGA functional developed by Perdew, Burke and Ernzerhof (PBE) together with dispersion and Hubbard correction terms denoted as PBE+U-D3 in the Vienna Ab initio Simulation Package (VASP).

With these corrections, the *c* lattice parameter of TiX₂ and LiTiX₂ is described within an error of $\pm 3\%$ while pure PBE leads to an error of up to 15%. The description of the TiS₂ band structure and vibrational frequency as well as the LiTiS₂ quadrupole coupling constant and chemical shift are also improved. PBE+U-D3 calculations of lithiated and delithiated TaX₂ and VX₂ result in a maximum error of $\pm 3\%$ for the *c* lattice parameter. However, applying this method to calculate the voltage vs composition curve for a lithium portion 0 < x < 1 result is problematic for tantalum and vanadium dichalcogenides. For Li_xTiS₂ and Li_xTiSe₂ the voltage vs composition curves are in good agreement with the experimental data.

The experimentally reported activation barriers for $\text{Li}_{1.0}\text{TiS}_2$, $\text{Li}_{0.7}\text{TiS}_2$ and $\text{Li}_{0.7}\text{TiS}_2$ are reproduced with the corrected PBE functional. In addition the migration pathways observed for $\text{Li}_{1.0}\text{TiS}_2$ using various nuclear magnetic resonance techniques are identified. It was also possible to predict concentration-dependent activation barriers in the region of 0 < x < 1 for Li_xTiX_2 , which was not yet achieved by other theoretical investigations.

Keywords: density functional theory, Vienna ab initio simulation package, titanium disulfide, titanium dichalcogenides, transition metal dichalcogenides, lithium-ion migration Abstract

Kurzzusammenfassung

Das Ziel dieser Arbeit ist es, eine genaue theoretische Beschreibung der Schichtstruktur von Übergangsmetalldichalkogeniden (MX_2), insbesondere von Ti X_2 , zu finden, und ihre Eignung als Interkalationsmaterial in Lithiumionenbatterien zu untersuchen.

Die theoretische Beschreibung der Schichtstruktur von MX₂ stellt eine Herausforderung für die lokale Dichte- sowie die generalisierte Gradientennäherungen (GGA) in der Dichtefunktionaltheorie (DFT) dar. Die Schichten sind nur durch schwache vander-Waals-Wechselwirkungen verbunden, resultierend aus langreichweitiger Elektronenkorrelation, die durch lokale und semilokale Dichtefunktionale nicht beschrieben wird. Zudem beschreiben GGA-Funktionale die elektronische und magnetische Struktur von TiX₂ aufgrund des bekannten Selbstwechselwirkungsfehlers nicht korrekt. Qualitativ höherwertigere Hybridfunktionale würden bessere Ergebnisse erzielen, dabei würde sich aber die Rechenzeit um eine Größenordnung erhöhen. In der vorliegenden Arbeit wird dieses Problem unter Beibehaltung der Rechenzeit durch die Verwendung des GGA-Funktionals von Perdew, Burke und Ernzerhof (PBE) in Kombination mit Dispersionsund Hubbardkorrekturen, im folgenden als PBE+U-D3 bezeichnet, im Vienna Ab initio Simulation Package (VASP) angegangen.

Bei Verwendung dieser Korrekturen liegt der Fehler des Gitterparameters c der TiX₂und LiTiX₂-Strukturen im Vergleich zu den experimentellen Daten bei $\pm 3 \%$. Mit dem reinen PBE-Funktional wird ein Fehler von bis zu 15% erhalten. Neben der strukturellen Beschreibung verbessert sich auch die Beschreibung der Bandstruktur und Infrarot-Banden von TiS₂, sowie die Quadrupolkopplungskonstante und die chemische Verschiebung von LiTiS₂. Die Beschreibung der lithiierten und delithiierten TaX₂ und VX₂-Schichtstrukturen mit PBE+U-D3 resultieren in einem maximalen Fehlern von $\pm 3 \%$ für den Gitterparameter c im Vergleich zu den experimentellen Daten. Allerdings ist die Beschreibung der Spannungskurven gegen den Lithiumanteil x im Bereich 0 < x < 1 für Li_xTaX₂ und Li_xVX₂ mit PBE+U-D3 problematisch. Für Li_xTiS₂ und Li_xTiSe₂ hingegen weisen die erhaltenen Spannungskurven eine gute Übereinstimmung mit den experimentellen Daten auf.

Zusätzlich konnten die experimentellen Aktivierungsbarrieren für Li_{1.0}TiS₂, Li_{0.7}TiS₂ und Li_{0.7}TiSe₂ mit der gewählten Methode reproduziert werden. Der Ursprung der beiden, mit verschiedenen Kernspinresonanzmethoden gemessenen Aktivierungsbarrieren für Li_{1.0}TiS₂ konnte geklärt werden. Des Weiteren war es in dieser Arbeit möglich, die konzentrationsabhängige Aktivierungsbarriere für Li_xTiX₂ mit 0 < x < 1 vorherzusagen, was keiner theoretischen Arbeit bisher gelungen ist.

Schlüsselwörter: Dichtefunktionaltheorie, Vienna Ab initio Simulation Package, Titandisulfid, Titandichalkogenide, Übergangsmetalldichalkogenide, Lithiumionenwanderung Kurzzusammenfassung

Inhaltsverzeichnis

Abstract								
Kurzzusammenfassung								
Inl	Inhaltsverzeichnis							
Abkürzungsverzeichnis 1								
1.	Einle	eitung	13					
2.	The 2.1. 2.2. 2.3. 2.4. 2.5.	DichtefunktionaltheorieNäherungen des Austausch-Korrelationsfunktionals2.2.1. Lokale Dichtenäherung (LDA)2.2.2. Lokale Spindichtenäherung (LSDA)2.2.3. Generalisierte Gradientennäherung (GGA)2.2.4. Hybridfunktionale2.2.5. KorrekturtermeDer elektronische Grundzustand2.3.1. Pseudopotentiale2.3.2. self consistent field-Verfahren2.3.3. GeometrieoptimierungModellierung von Festkörpern2.4.1. Periodische Randbedingungen2.4.2. Qualität des ebenen-Wellen-BasissatzesDas elastische Stoßbandverfahren	 17 19 23 23 23 24 25 26 28 28 29 30 31 32 33 33 					
3.	Effe	kt der Austausch- und Dispersionswechselwirkung	37					
	3.1.	Strukturbeschreibung von TiX_2 und $LiTiX_2$	38					
	3.2.	Elektronische Eigenschaften von TiS_2 und $LiTiS_2$	42					
		3.2.1. Magnetischer Grundzustand von LiTiS ₂	42					
	2 2	$3.2.2.$ Danustruktur VOII 115_2	40 48					
	ບ.ບ.	3.3.1 NMR-Parameter für Lithium	40 48					
		3.3.2. IR-Banden von TiS_2	50					
	3.4.	Zusammenfassung	51					

4.	Lithiumioneninterkalation in 1T-Übergangsmetalldichalkogenide	53
	4.1. Ubergangsmetalldichalkogenide $\dots \dots \dots$	53 53
	4.1.2. Untersuchung von $2 \times 2 \times 2$ -Li _x MX ₂ -Superzellen	56
	4.2. $\operatorname{Li}_x \operatorname{TiS}_2 \operatorname{mit} x > 1 \dots \dots$	64
	4.2.1. Strukturänderung	64
	4.2.2. Spannungskurve	66
	4.3. Zusammenfassung	67
5.	Lithiumionenwanderung in 1T-Titandichalkogeniden	71
	5.1. Wanderungspfade \ldots	71
	5.1.1. Tetraederwanderung \ldots	71
	5.1.2. Oktaederwanderung	72
	5.2. Abhangigkeit des MEP von der Wahl der Methode	74
	5.2.1. Lithiumionwanderung in Li _x 11S ₂ für $x \approx 1$	75
	5.2.2. Litinumionwanderung in $\operatorname{Li}_x \operatorname{IiS}_2$ für $x \approx 0$	70 77
	5.3. Abhangigkeit der Aktivierungsbarrieren vom wanderungsprad	77
	5.3.2 Oktaodorwandorung $5.3.2$ Oktaodorwandorung	78
	5.4 Abhängigkeit der Aktivierungsbarriere vom Lithiumgehalt	80
	5.4.1 Eigenschaften der Defektstrukturen	80
	5.4.2. Aktivierungsbarrieren	84
	5.5. Titandichalkogenide	88
	5.6. Zusammenfassung	89
6.	Fazit und Ausblick	91
Α.	Anhang zu Kapitel 3	95
B.	Anhang zu Kanitel 4	97
<u> </u>		
C.	Anhang zu Kapitel 5	99
	$\bigcup 1. \Box_{10,33} \sqcup 15_2 \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots $	99 102
	$\bigcirc 2.2. \ \mathrm{Ll}_{0,67} \mathrm{I} \mathrm{IS}_2 \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots $	105
D.	Eingabe für VASP 1	07
	D.1. POSCAR \ldots \ldots \ldots 1	107
	D.1.1. Lithiumtitandichalkogenide	107
	D.1.2. Lithiumvanadiumdichalkogenide	108
	D.1.3. Lithiumtantaldichalkogenide	109
	$D.2. \ KPOINTS \ \ldots \ $	110
	$D.3. \text{ INCAR} \dots \dots$	110
	D.3.1. Methode \dots	L1U L1 1
	D.3.2. Energieminimierung	[]]
	D.5.3. Geometrieoptimierung	111

D.3.4. NEB-Berechnungen	111	
Literaturverzeichnis		
Danksagung	125	
Lebenslauf	127	

Inhaltsverzeichnis

Abkürzungsverzeichnis

VASP	Vienna Ab initio Simulation Package
PAW	projektionserweiterte Welle
BZ	Brillouin-Zone
SCF	Selbstkonsistentes Feld (self consistent field)
\mathbf{DFT}	Dichtefunktionaltheorie
LDA	Lokale Dichtenäherung
LSDA	Lokale Spindichtenäherung
GGA	Generalisierte Gradientennäherung
PBE	GGA-Funktional von Perdew, Burke und Ernzerhof [1]
PBESOL	für Festkörper überarbeitetes PBE-Funktional von Perdew $et \ al. \ [2]$
HSE06	Hybridfunktional von Krukau <i>et al.</i> [3]
D3	Dispersionskorrektur von Grimme <i>et al.</i> [4]
D-TS	Dispersionskorrektur von Tkatchenko und Scheffler [5]
DFT+U	Dichtefunktionaltheorie mit einem Hubbard-Korrekturter m ${\cal U}$ für den Coulombenergieterm
PBE+U-D3	Kombination des PBE-Funktionals, der D3-Korrektur und der DFT+U-Methode
MEP	Minimumenergiepfad
NEB	elastisches Stoßbandverfahren $(nudged \ elastic \ band)$
CI-NEB	elastisches Stoßbandverfahren mit kletterndem Bild (<i>climbing image nudged elastic band</i>)
IR	Infrarot
NMR	Kernspinresonanz (nuclear magnetic resonance)
EFG	elektrische Feldgradienten
$\Delta\delta$	chemische Verschiebung
$C_{ m q}$	Quadrupolkopplungskonstante
IR	Infrarot

Abkürzungsverzeichnis

1. Einleitung

Der Nobelpreis für Chemie des Jahres 2019 ging an Stanley Whittingham, John B. Goodenough und Akira Yoshino für ihre Beiträge zur Entwicklung der Lithiumionenbatterie [6]. Stanley Whittingham hat in den 1970er Jahren Titandisulfid in der 1T-Struktur als Kathodenmaterial in einer Lithiumionenbatterie verwendet, wodurch er den Grundstein für eine leistungsfähige, wiederaufladbare Lithiumionenbatterien legte. Durch die reversible Einlagerung von Lithium in der Schichtstruktur von Titandisulfid ist es möglich, Lithiumionen zu speichern und dieses somit als Kathode in einer Lithiumionenbatterie zu verwenden. In Verbindung mit einer Lithiummetallanode ergibt sich eine Batterie mit einer Spannung von etwa 2V [7]. Aufgrund der hohen Reaktivität der Lithiummetallanode an Luft fand diese Batterie zunächst keine industrielle Anwendung. Zudem wurde 1981 von John B. Goodenough Cobaltdioxid als Alternative vorgestellt, welches in Verbindung mit einer Lithiummetallanode eine Spannung von etwa 4 V liefert [8]. Eine industrielle Verwendung wurde erst durch Akira Yoshino im Jahr 1985 ermöglicht. Er ersetzte die Lithiummetallanode durch ein Graphit, welches ebenso wie die Kathodenmaterialien eine Schichtstruktur besitzt und Lithiumionen interkalieren kann [6]. Trotz des Alters all dieser Errungenschaften und der Suche der Forschung nach alternativen und leistungsfähigeren Materialien sind viele Forschungsfragen im Bereich der Lithiumionenbatterie noch offen.

Die 1T-Strukturen von Titandisulfid und anderer Übergangsmetalldichalkogenide kristallisieren in der CdI₂ Struktur (Raumgruppe $P\overline{3}m1$) und bestehen aus einzelnen Schichten des Übergangsmetalldichalkogenids, die sich entlang der *ab*-Achse des Kristalls ausrichten. Diese Schichtstruktur und die schwachen Bindungen zwischen den einzelnen Schichten erlauben die Einlagerung von Lithium, aber auch anderen Atomen, auf der oktaedrischen Position (Wyckoff-Position 1*b*) und auch den tetraedischen Positionen (Wyckoff-Position 2*d*) zwischen den Schichten. Die oktaedrische Position ist dabei für die Einlagerung von Lithium energetisch bevorzugt. Die quantenchemische Beschreibungen dieser Struktur mittels Dichtefunktionaltheorie ist eine Herausforderung, da ohne Interkalat die Schichtstruktur durch Van der Waals-Bindungen zusammenge-

1. Einleitung

halten werden. Deren Stärke wird von quantenchemischen Methoden meist überschätzt wird, was zu einer schlechten Beschreibung der Struktur führt.

Die quantenchemische Untersuchung dieser Schichtstrukturen ist heutzutage besser möglich, da die quantenchemischen Modelle weiterentwickelt wurden und die Rechenkapazität gestiegen ist. Auf Grund dessen werden in dieser Arbeit mittels quantenchemischer Berechnungen die Schichtstrukturen von Übergangsmetalldichalkogeniden, insbesondere Titandisulfid, genauer betrachtet. Insbesondere wird sich der Frage gewidmet, ob sich Zusammenhänge innerhalb einer Periode oder einer Gruppe erkennen lassen. Sollte es solche Zusammenhänge geben, würden diese sich auch auf die Erforschung anderer Kathodenmaterialien übertragen lassen. Außerdem soll die Lithiumionenmigration innerhalb der Schichtstruktur auf atomarem Niveau betrachtet werden, was nur durch quantenchemische Berechnungen möglich ist. Dadurch soll die Frage nach der Aktivierungsbarriere, insbesondere in Abhängigkeit von der Stöchiometrie aber auch des verwendeten Chalkogenids, geklärt sowie die Frage nach dem bevorzugtem Wanderungspfad des Lithiumions beantwortet werden. Zusätzlich wird sich mit der Frage beschäftigt, welche Auswirkung die Verwendung anderer Übergangsmetalle, hier Tantal und Vanadium, hat und ob diese einer Systematik folgen, die sich auf die Gruppe und/oder Periode der verwendeten Übergangsmetalle zurückführen lassen.

In Lithiumtitandisulfid wurde der Lithiumionenwanderungspfad quantenchemisch bereits in zwei theoretischen Arbeiten untersucht [9, 10]. Auch gibt es experimentelle Abhandlungen zur Aktivierungsbarriere [11–15]. Die experimentellen Aktivierungsbarrieren wurden mittels auf Kernspinresonanz (NMR) beruhenden Techniken ermittelt, quantenchemische Betrachtungen mittels auf Dichtefunktionaltheorie basierende Berechnungen. Die Barrieren ließen sich jedoch bisher noch nicht von den quantenchemischen Rechnungen reproduzieren. Zu anderen Eigenschaften von Lithiumtitandisulfid und Titandisulfid gibt es eine Vielzahl an experimentellen und theoretischen Untersuchungen. Insbesondere die strukturellen Eigenschaften beider Materialien sowie die Abhängigkeit vom Lithiuminterkalationsgrad wurden zahlreich untersucht [16–19]. Ebenso gilt das für die elektronischen [20–28] und spektroskopischen Eigenschaften [11, 29–33]. Die beiden anderen hier betrachteten Titandichalkogenide, Titandiselenid und Titanditellurid sowie ihre lithiuminterkalierten Äquivalente, sind bei weitem nicht so gut analysiert. Es gibt einige Veröffentlichungen über die strukturellen Parameter [7, 34–36] sowie für die Selenverbindung Untersuchungen der elektronischen Eigenschaften [23, 27, 35, 37–39]. Die Strukturen von 1T-Tantal- und 1T-Vanadiumdichalkogenidverbindungen sind ebenfalls gut analysiert [7, 40–42]. Für Titandisulfid und -diselenid sowie Vanadiumdisulfid und -diselenid und Tantaldisulfid gibt es experimentelle Untersuchungen zur Zellspannung mit einer Lithiummetallanode [43–48].

In Kapitel 2 werden zunächst die theoretischen Grundlagen beleuchtet, auf denen die anschließenden quantenchemischen Untersuchungen beruhen. Aufgrund der geringen Anzahl an quantenchemischen Betrachtungen dieser Materialien, muss als nächstes die Frage nach der zu verwendenden Methode beantwortet werden. Dieser Frage wird sich in Kapitel 3 gewidmet. Dazu muss als erstes eine Validierung der quantenchemischen Ansätze erfolgen. Ausgehend von der Dichtefunktionaltheorie, die in dieser Arbeit als grundlegende Methode verwendet wird, wird sich in dem Kapitel der Frage nach dem geeigneten Dichtefunktional gewidmet. Um diese Frage zu beantworten, werden die Eigenschaften von Lithiumtitandisulfid und Titandisulfid betrachtet, da diese beiden Materialien am besten experimentell untersucht sind. Beginnend mit den strukturellen Eigenschaften werden die in Frage kommenden Dichtefunktionale validiert und durch verschiedene Korrekturterme erweitert. In der Folge werden elektronische und spektroskopische Eigenschaften ermittelt, bevor ein Fazit zur Wahl des Dichtefunktionals gezogen wird.

In Kapitel 4 werden die verschiedenen Übergangsmetalldichalkogenide hinsichtlich ihrer Strukturveränderung und Zellspannung bei Lithiumioneninterkalation untersucht. Zu Beginn des Kapitels wird zunächst geprüft, ob die gewählte Methode die strukturellen Eigenschaften der bisher nicht betrachteten Übergangsmetalldichalkogenide gut beschreiben kann. Anschließend werden Zellvolumina und Zellspannungen der Übergangsmetalldichalkogenide analysiert, um Gesetzmäßigkeiten zu finden. Außerdem soll die Frage beantwortet werden, welche Materialien als Kathodenmaterial am besten geeignet sind.

In Kapitel 5 werden die möglichen Lithiumionenwanderungspfade in der Schichtstruktur von Titandichalkogeniden bei verschiedenen Lithiuminterkalationsgraden betrachtet. Darüber hinaus befasst sich Kapitel 5 auch mit der systematischen Untersuchung der verschiedenen Defektkonfigurationen bei gleichem Lithiuminterkalationsgrad, da diese bei der Untersuchung der Aktivierungsbarriere eine wichtige Rolle spielen.

In Kapitel 6 werden die Ergebnisse noch einmal zusammengefasst und die eingangs gestellten Fragen beantwortet. Ebenso wird ein Ausblick gegeben, wie und bei welchen Fragestellungen die gewonnenen Erkenntnisse zur Hilfe genommen werden können und welche neuen Fragestellungen sich aus den Ergebnissen dieser Arbeit ergeben haben.

1. Einleitung

In diesem Kapitel werden die theoretischen Grundlagen der in dieser Arbeit verwendeten quantenchemischen Methoden beschrieben. Die Berechnungen wurden zum größten Teil mit dem Programmpaket Vienna Ab initio Simulation Package (VASP) durchgeführt, weswegen auf den Aufbau und die Methodik von VASP genaueres Augenmerk gelegt wird. Dabei sollen nicht hauptsächlich die mathematischen Herleitungen, sondern die Motivation, Grundidee und der Vorteil der jeweiligen Methode in den Vordergrund gestellt werden. Zunächst wird das allgemeine Prinzip hinter quantenchemischen Simulationen erläutert. Anschließend werden in diesem Kapitel die DFT-Methode und deren Besonderheiten beschrieben. Danach wird das Vorgehen bei der Energieminimierung und der Geometrieoptimierung mit VASP vorgestellt. Zum Abschluss wird auf die Besonderheiten bei der Simulation von Festkörpern eingegangen und erläutert, wie sich Aktivierungsbarrieren aus nicht-dynamischen, quantenchemischen Rechnungen erhalten lassen.

Ziel einer quantenchemischen Rechnung ist es, eine Lösung der zeitunabhängigen, nicht relativistischen Schrödingergleichung

$$\hat{H}\Psi = E\Psi \tag{2.1}$$

zu finden [49–51]. In Gleichung 2.1 ist \hat{H} der Hamiltonoperator und E die dazugehörige Energie. Durch die Lösung dieser Gleichung wird die Wellenfunktion Ψ erhalten, die alle Informationen über das betrachtete System enthält. Der Hamiltonoperator \hat{H} für ein System aus *n* Elektronen und *N* Kernen hat in atomaren Einheiten die Form

$$\hat{H} = -\sum_{i}^{n} \frac{\nabla_{i}^{2}}{2} + \sum_{i,i>j}^{n} \frac{1}{|\boldsymbol{r}_{i} - \boldsymbol{r}_{j}|} - \sum_{i,A}^{n,N} \frac{Z_{A}}{|\boldsymbol{r}_{i} - \boldsymbol{R}_{A}|} - \sum_{A}^{N} \frac{\nabla_{A}^{2}}{2M_{A}} + \sum_{A,B>A}^{N,N} \frac{Z_{A}Z_{B}}{|\boldsymbol{R}_{A} - \boldsymbol{R}_{B}|}, \quad (2.2)$$

wobei \mathbf{r}_i die Koordinaten des *i*-ten Elektrons und \mathbf{R}_A die Koordinaten des *A*-ten Atomkerns sind. Die ersten beiden Terme beschreiben die ausschließlich von den Elektronen abhängigen Energiebeiträge, die kinetische Energie und ihre repulsiven Wechselwirkun-

gen untereinander. Der dritte Term hängt sowohl von den Kern- als auch von den Elektronenpositionen ab und beschreibt die anziehende Wechselwirkung zwischen Atomkern und Elektron. Die beiden letzten Terme hängen ausschließlich von den Koordinaten der Atomkerne ab und beschreiben deren kinetische Energie und die repulsiven Wechselwirkungen zwischen den Kernen.

Zur Vereinfachung des Hamiltonoperators wird die Born-Oppenheimer-Näherung verwendet, die den Operator um die letzten beiden Terme reduziert. Im Rahmen dieser Näherung wird angenommen, dass sich die Elektronen in einem Feld stationärer Kerne bewegen. Dies lässt sich dadurch rechtfertigen, dass sich die Kerne aufgrund ihrer deutlich höheren Masse wesentlich langsamer bewegen als die Elektronen. Die kinetische Energie der Kerne ist damit vernachlässigbar. Für die repulsiven Wechselwirkungen der Kerne ergibt sich ein konstanter Wert, der keinen Einfluss auf die Wellenfunktion hat und bei der Lösung der Schrödingergleichung nicht berücksichtigt werden muss. Es ergibt sich der elektronische Hamiltonoperator

$$\hat{H}_{\rm el} = -\sum_{i}^{n} \frac{\nabla_{i}^{2}}{2} + \sum_{i,i>j}^{n,n} \frac{1}{|\boldsymbol{r}_{i} - \boldsymbol{r}_{j}|} - \sum_{i,A}^{n,N} \frac{Z_{A}}{|\boldsymbol{r}_{i} - \boldsymbol{R}_{A}|} = \hat{T} + \hat{V}_{\rm ee} + \hat{V}_{\rm ne}, \qquad (2.3)$$

wobei im Folgenden $-\sum_{A}^{M} \frac{Z_{A}}{r_{iA}}$ als das externe Potential der Kerne $\nu_{\text{ext}}(\boldsymbol{r}_{i})$, bezeichnet wird, in dem sich das *i*-te Elektron bewegt.

Die Schrödingergleichung reduziert sich bei der Verwendung der Born-Oppenheimer-Näherung zu

$$\hat{H}_{\rm el}\Psi_{\rm el} = E_{\rm el}\Psi_{\rm el}.\tag{2.4}$$

Die Gesamtenergie des Systems E ergibt sich dann aus der Summe der elektronischen Energie $E_{\rm el}$ und der konstanten Kern-Kern Abstoßungsenergie $E_{\rm nuc}$:

$$E = E_{\rm el} + E_{\rm nuc} \text{ mit } E_{\rm nuc} = \sum_{A>B}^{M} \frac{Z_A Z_B}{R_{AB}}$$
(2.5)

Nach dem Variationsprinzip kann es keine Wellenfunktion Ψ geben, die eine niedrigere elektronische Energie liefert als die Grundzustandswellenfunktion Ψ_0 . Um eine Lösung für die Schrödingergleichung zu finden, muss eine Lösung für die Gleichung

$$E_0 = \min_{\Psi} \int \Psi^*(\boldsymbol{r}) \hat{H}_{\rm el} \Psi(\boldsymbol{r}) \ d(\boldsymbol{r}_1, \boldsymbol{r}_2, \dots, \boldsymbol{r}_n)$$
(2.6)

gefunden werden. Gleichung 2.6 liefert eine Methode, um ausgehend von dem Potential

 $\nu_{\text{ext}}(\mathbf{r})$ und der Anzahl der Elektronen n die Grundzustandswellenfunktion Ψ_0 und damit die Grundzustandsenergie $E_0[n, \nu_{\text{ext}}]$ zu bestimmen. Die Energie des Systems ist ein Funktional von n und $\nu_{\text{ext}}(\mathbf{r})$, d. h. jeder Energie in Abhängigkeit von n und $\nu_{\text{ext}}(\mathbf{r})$ kann eine Wellenfunktion Ψ_{el} zugeordnet werden. Eine Möglichkeit, Gleichung 2.6 zu lösen, bietet das Hartree-Fock-Verfahren, wobei die Wellenfunktion Ψ_{el} näherungsweise als Slaterdeterminante von n Einelektronenwellenfunktionen beschrieben wird.

2.1. Dichtefunktionaltheorie

Einen weiteren Ansatz neben dem Hartree-Fock-Verfahren, um das in Gleichung 2.6 beschriebene Problem zu lösen, bietet die Dichtefunktionaltheorie. Mit ihrer Hilfe wird das Problem in eine andere Form gebracht, wodurch sich die Anzahl der zu lösenden Gleichungen im Vergleich zum Hartree-Fock-Verfahren deutlich reduziert.

Der grundlegende Ansatz ist es, die Elektronendichte und nicht die Wellenfunktion zu betrachten. Es ist

$$\rho(\boldsymbol{r}) = N \int |\Psi_{\rm el}(r_1, r_2, \dots, r_n)|^2 \ d(\boldsymbol{r}_2, \dots, \boldsymbol{r}_n).$$
(2.7)

Die Funktion $\rho(\mathbf{r})$ wird als Elektronendichte bezeichnet, da $\int \rho(\mathbf{r}) d\mathbf{r}$ der Wahrscheinlichkeit entspricht, im Volumenelemente $d\mathbf{r}$ um \mathbf{r} ein Elektron zu finden.

Hohenberg und Kohn zeigten 1964, dass das externe Potential $\nu_{\text{ext}}(\mathbf{r})$ durch die Elektronendichte $\rho(\mathbf{r})$ bis auf einen additiven Faktor bestimmt ist [52]. Es ist $\rho(\mathbf{r})$ die Wahrscheinlichkeit ein Elektron im Volumenelement $d\mathbf{r}$ zu finden, da aber Elektronen ununterscheidbar sind, entspricht $\int_{-\infty}^{\infty} \rho(\mathbf{r}) d\mathbf{r}$ der Anzahl der Elektronen. Aus diesem Grund kann $\rho(\mathbf{r})$ genutzt werden, um die Grundzustandsenergie zu bestimmen. Somit wird E zum Funktional von $\rho(\mathbf{r})$. Dadurch ergibt sich das Energiefunktional aus

$$E[\rho] = T[\rho] + V_{\rm ee}[\rho] + V_{\rm ne}[\rho] = F_{\rm HK}[\rho] + \int \rho(\boldsymbol{r})\nu_{\rm ext}(\boldsymbol{r}) \, d\boldsymbol{r}.$$
(2.8)

Hohenberg und Kohn zeigten ebenfalls, dass das Variationsprinzip zur Minimierung der Energie auch angewandt werden kann, wenn die Energie als Funktional der Elektronendichte gegeben ist. Es ist also

$$E_0 \le E[\rho] \tag{2.9}$$

für beliebige Dichten ρ , wobei die Dichtefunktion ρ an Bedingungen wie beispielsweise $\int_{-\infty}^{\infty} \rho(\mathbf{r}) d\mathbf{r} = n$ geknüpft ist.

Aus den Gleichungen 2.8 und 2.9 ergeben sich zwei Teilschritte zur Minimierung der Energie. Zunächst wird über alle Wellenfunktionen minimiert, die eine bestimmte Dichte ergeben, anschließend wird über die Dichte selbst variiert und das Minimum gesucht. Die Minimierung der Energie lässt sich demnach mathematisch in folgender Form darstellen

$$E = \min_{\rho} \left\{ \min_{\Psi \to \rho} \int \Psi^*(\boldsymbol{r}) (\hat{T} + \hat{V}_{ee}) \Psi(\boldsymbol{r}) \, d\boldsymbol{r} + \int \rho(\boldsymbol{r}) \nu_{ext}(\boldsymbol{r}) \, d\boldsymbol{r} \right\}$$

$$= \min_{\rho} \left\{ T[\rho] + V_{ee}[\rho] + \int \rho(\boldsymbol{r}) \nu_{ext}(\boldsymbol{r}) \, d\boldsymbol{r} \right\}.$$
 (2.10)

Das Problem dieser Minimierung ist, dass keine vollständige, analytische Beschreibung der Funktionale $T[\rho]$ und $V_{ee}[\rho]$ bekannt ist. Wäre eine solche Beschreibung bekannt, so wäre eine exakte Lösung möglich. So bleibt nur eine approximative Form für die Funktionale zu finden.

Den ersten Schritt in die Richtung einer quantitativen Näherung machten Kohn und Sham im Jahre 1965 [53], indem sie die Beschreibung der kinetischen Energie in zwei Funktionale aufteilten. Die kinetische Energie nicht wechselwirkender Teilchen lässt sich exakt in der Form

$$T = \sum_{i=1}^{n} o_i \langle \psi_i | -\frac{1}{2} \nabla^2 | \psi_i \rangle$$
(2.11)

schreiben, wobei ψ_i die Spinorbitale und o_i die entsprechenden Besetzungszahlen der Orbitale sind. Die Dichte ρ ergibt sich aus ψ_i über

$$\rho(\boldsymbol{r}) = \sum_{i}^{n} o_{i} |\psi_{i}(\boldsymbol{r})|^{2}. \qquad (2.12)$$

In erster Näherung wird angenommen, dass $n_i = 1$ für die ersten *n* Orbitale und $n_i = 0$ für die restlichen Orbitale gilt. Daraus ergibt sich die kinetische Kohn-Sham-Energie

$$T_{\rm S} = \sum_{i=1}^{n} \langle \psi_i | -\frac{1}{2} \nabla^2 | \psi_i \rangle \,. \tag{2.13}$$

In einem System aus n nicht interagierenden Elektronen gilt $T = T_{\rm S}$, ansonsten beschreibt $T_{\rm S}$ die kinetische Energie nicht exakt.

Für das Hohenberg-Kohn-Funktional aus Gleichung 2.8 ergibt sich dann die Form

$$F_{\rm HK}[\rho] = T[\rho] + V_{\rm ee}[\rho] = T_{\rm S}[\rho] + J[\rho] + E_{\rm XC}[\rho].$$
(2.14)

Es handelt sich bei $J[\rho]$ um den klassischen Teil der repulsiven Elektron-Elektron-

Wechselwirkung. Das Austausch-Korrelationsfunktional $E_{\rm XC}[\rho]$ beschreibt die verbleibenden Beiträge und es ist

$$E_{\rm XC}[\rho] = T[\rho] - T_{\rm S}[\rho] + V_{\rm ee}[\rho] - J[\rho].$$
(2.15)

Das Austausch-Korrelationsfunktional lässt sich weiter zerlegen in ein Austausch- und ein Korrelationsfunktional. Das Austauschfunktional ist definiert gemäß

$$E_{\mathrm{X}}[\rho] = \int \Psi^*(\boldsymbol{r}) \hat{V}_{\mathrm{ee}} \Psi(\boldsymbol{r}) \ d(\boldsymbol{r}_1, \boldsymbol{r}_2, \dots, \boldsymbol{r}_N) - J[\rho]$$
(2.16)

und das Korrelationsfunktional lässt sich darstellen als

$$E_{\rm C}[\rho] = F_{\rm HK}[\rho] - T_{\rm S}[\rho] - J[\rho] - E_{\rm X}[\rho].$$
(2.17)

Da die genaue Form beider Funktionale nicht bekannt ist, müssen Näherungen gefunden werden, entweder für $E_{\rm XC}[\rho]$ insgesamt oder getrennt für das Austausch- und das Korrelationsfunktional.

Zur Lösung der Gleichung 2.10 wird die Wellenfunktion Ψ aus den Kohn-Sham-Orbitalen ψ_i über

$$\Psi = \frac{1}{\sqrt{n}} \det[\psi_1 \psi_2 \cdots \psi_n]$$
(2.18)

bestimmt, wobei es sich bei den Kohn-Sham-Orbitalen um die n kleinsten Eigenzustände des Ein-Elektronen-Hamiltonians \hat{h} handelt.

$$\hat{h}\psi_i = \left[-\frac{1}{2}\nabla^2 + \nu_{\rm KS}(\boldsymbol{r})\right]\psi_i = \epsilon_i\psi_i$$
(2.19)

Dabei ist $\nu_{\rm KS}$ das Kohn-Sham-Potential

$$\nu_{\rm KS}(\boldsymbol{r}) = \frac{\delta V_{\rm ee}}{\delta \rho(\boldsymbol{r})} \tag{2.20}$$

die Ableitung des Funktionals $V_{\rm ee}$.

Spindichtefunktionaltheorie

Im vorherigen Abschnitt wurde der Spin der Elektronen zunächst vernachlässigt. Allerdings führt die Erweiterung der Dichtefunktionaltheorie um die Betrachtung des Spins zu mehreren Vorteilen. Unter anderem können die Eigenschaften eines Atoms oder

Moleküls unter dem Einfluss eines magnetischen Feldes betrachtet werden. Aber auch auf die Genauigkeit der Näherung des Austausch-Korrelationsfunktionals hat diese Betrachtung eine positive Auswirkung, insbesondere wenn offenschalige Systeme betrachtet werden.

Zu diesem Zweck wird nicht die Gesamtelektronendichte $\rho(\mathbf{r})$, sondern es werden die Elektronendichten der Elektronen mit α -Spin $\rho^{\alpha}(\mathbf{r})$ und die der Elektronen mit β -Spin $\rho^{\beta}(\mathbf{r})$ getrennt betrachtet. Für das Hohenberg-Kohn-Funktional ergibt sich dann

$$F_{\rm HK}[\rho^{\alpha},\rho^{\beta}] = T_{\rm S}[\rho^{\alpha},\rho^{\beta}] + J[\rho^{\alpha}+\rho^{\beta}] + E_{\rm XC}[\rho^{\alpha},\rho^{\beta}]$$
(2.21)

Für die kinetische Kohn-Scham-Energie gilt nun

$$T_{\rm S} = \sum_{i}^{n} o_i^{\alpha} \langle \psi_i^{\alpha} | -\frac{1}{2} \nabla^2 | \psi_i^{\alpha} \rangle + \sum_{i}^{n} o_i^{\beta} \langle \psi_i^{\beta} | -\frac{1}{2} \nabla^2 | \psi_i^{\beta} \rangle.$$
(2.22)

Die daraus resultierenden Kohn-Sham-Gleichungen sind

$$\hat{h}^{\alpha}\psi_{i}^{\alpha} = \left[-\frac{1}{2}\nabla^{2} + \nu_{\mathrm{KS}}^{\alpha}(\boldsymbol{r})\right]\psi_{i}^{\alpha} = \epsilon_{i}^{\alpha}\psi_{i}^{\alpha}, \qquad (2.23)$$

$$\hat{h}^{\beta}\psi_{i}^{\beta} = \left[-\frac{1}{2}\nabla^{2} + \nu_{\mathrm{KS}}^{\beta}(\boldsymbol{r})\right]\psi_{i}^{\beta} = \epsilon_{i}^{\beta}\psi_{i}^{\beta}.$$
(2.24)

Die Potentiale $\nu_{\rm KS}^{\alpha}$ und $\nu_{\rm KS}^{\beta}$ ergeben sich aus

$$\nu_{\rm KS}^{\alpha} = \nu_{\rm KS}(\boldsymbol{r}) + \int \frac{\rho(\boldsymbol{r}')}{|\boldsymbol{r} - \boldsymbol{r}'|} + \frac{\delta E_{\rm XC}[\rho^{\alpha}, \rho^{\beta}]}{\delta \rho^{\alpha}(\boldsymbol{r})}$$
(2.25)

$$\nu_{\rm KS}^{\beta} = \nu_{\rm KS}(\boldsymbol{r}) + \int \frac{\rho(\boldsymbol{r}')}{|\boldsymbol{r} - \boldsymbol{r}'|} + \frac{\delta E_{\rm XC}[\rho^{\alpha}, \rho^{\beta}]}{\delta \rho^{\beta}(\boldsymbol{r})}.$$
(2.26)

Die Elektronendichte ρ^{α} und ρ^{β} müssen die Einschränkungen mit den Einschränkungen

$$n^{\alpha} = \int \rho^{\alpha}(\boldsymbol{r}) \ d(\boldsymbol{r}) \ \text{und} \ n^{\beta} = \int \rho^{\beta}(\boldsymbol{r}) \ d(\boldsymbol{r})$$
(2.27)

erfüllen. Für n^{α} und n^{β} wiederum gilt $n^{\alpha} + n^{\beta} = n$. Für das Austausch-Korrelationsfunktional $E_{\rm XC}[\rho^{\alpha}, \rho^{\beta}]$ muss wie auch bei der Vernachlässigung des Spins eine Näherung gefunden werden, da die exakte Form des Funktionals nicht bekannt ist.

2.2. Näherungen des Austausch-Korrelationsfunktionals

Um das Austausch-Korrelationsfunktional zu nähern, werden unterschiedliche Ansätze verfolgt, wovon im folgenden vier Näherungsstufen vorgestellt werden, die in dieser Arbeit auch angewendet wurden.

2.2.1. Lokale Dichtenäherung (LDA)

Die erste lokale Dichtenäherung wurde von Kohn und Sham verwendet [53] und beruht auf dem Modell des homogenen Elektronengases. Im Rahmen dieser Näherung wird die exakte Austausch-Korrelationsenergie aus

$$E_{\rm XC}^{\rm LDA}[\rho] = \int \rho(\boldsymbol{r}) \epsilon_{\rm XC}(\rho) \, d\boldsymbol{r}$$
(2.28)

erhalten. Es ist $\epsilon_{\rm XC}(\rho)$ die Austausch-Korrelationsenergie pro Elektron in einem homogenen Elektronengas mit der Dichte ρ . Das Austausch-Korrelationspotential ergibt sich aus

$$\nu_{\rm XC}^{\rm LDA}(\boldsymbol{r}) = \frac{\delta E_{\rm XC}^{\rm LDA}}{\delta \rho(\boldsymbol{r})}.$$
(2.29)

Für die Kohn-Sham-Gleichung ergibt sich dann

$$\left(-\frac{1}{2}\nabla^2 + \nu_{\text{ext}}(\boldsymbol{r}) + \int \frac{\rho(\boldsymbol{r}')}{|\boldsymbol{r} - \boldsymbol{r}'|} d\boldsymbol{r}' + \nu_{\text{XC}}^{\text{LDA}}(\boldsymbol{r})\right)\psi_i = \epsilon_i\psi_i.$$
 (2.30)

Die Energie kann noch weiter aufgeteilt werden in den Austausch- und den Korrelationsanteil. Der Austauschanteil der Energie kann aus dem Thomas-Fermi-Modell [54,55] für das homogene Elektronengas hergeleitet werden und es ergibt sich

$$E_{\rm X}[\rho] = -\frac{3}{4} \left(\frac{3}{\pi}\right)^{1/3} \int \rho(\boldsymbol{r})^{4/3} d\boldsymbol{r}.$$
 (2.31)

Eine genaue Beschreibung von $E_{\rm C}[\rho]$ erfolgt durch Anpassung an Quanten-Monte-Carlo-Berechnungen [56, 57].

2.2.2. Lokale Spindichtenäherung (LSDA)

Eine Weiterentwicklung der lokalen Dichtenäherung stellt die lokale Spindichtenäherung (LSDA) dar. Dabei wird von einem polarisierten, homogenen Elektronengas ausgegangen. Unter Verwendung der Näherung für die Austauschenergie aus der LDA

(Gleichung 2.31) wird für den polarisierten Fall

$$E_{\rm X}[\rho^{\alpha},\rho^{\beta}] = -\frac{3}{4} \left(\frac{6}{\pi}\right)^{1/3} \int \left(\rho^{\alpha}(\boldsymbol{r})^{4/3} + \rho^{\beta}(\boldsymbol{r})^{4/3}\right) \, d\boldsymbol{r}$$
(2.32)

erhalten. Der Spinpolarisierungsparameter ζ ist definiert als

$$\zeta = \frac{\rho^{\alpha} - \rho^{\beta}}{\rho}.$$
(2.33)

 ζ ist entweder 0 im Fall eines unpolarisierten Systems oder ±1 für ein einzelnes ungepaartes Elektron. Es ergibt sich für die Spindichten $\rho^{\alpha}(\mathbf{r}) = 1/2(1+\zeta)\rho(\mathbf{r})$ und $\rho^{\beta}(\mathbf{r}) = 1/2(1-\zeta)\rho(\mathbf{r})$ und somit für das Austauschfunktional

$$E_{\rm X}[\rho^{\alpha},\rho^{\beta}] = -\frac{3}{8} \left(\frac{3}{\pi}\right)^{1/3} \int \rho(\boldsymbol{r})^{3/4} \left((1+\zeta)^{4/3} + (1-\zeta)^{4/3} \right) \, d\boldsymbol{r}.$$
(2.34)

Für die Korrelationsenergie gibt es keine solche Zerlegung und es existieren in der Literatur verschiedene Approximationen [56, 58–60].

2.2.3. Generalisierte Gradientennäherung (GGA)

Ein Nachteil der lokalen Spindichtenäherung ist die Überschätzung der Austauschenergie und die Unterschätzung der Korrelationsenergie. In den meisten Fällen tritt eine Fehlerkompensation auf, sodass minimumsoptimierte Strukturen erhalten werden, die in relativ guter Übereinstimmung mit experimentellen Daten sind. Bindungsenergien werden jedoch allgemein überschätzt und Ionisierungsenergie unterschätzt [61].

Bei der generalisierten Gradientennäherung wird zusätzlich zur Dichte noch ihr Gradient berücksichtigt, um Ungleichmäßigkeiten in der Dichte stärker zu berücksichtigen. Die allgemeine Form des Austausch-Korrelationsfunktionals ist dann

$$E_{\rm XC}^{\rm GGA} = \int \epsilon_{\rm XC}^{\rm GGA} \left(\rho^{\alpha}(\boldsymbol{r}), \rho^{\beta}(\boldsymbol{r}), \nabla \rho^{\alpha}(\boldsymbol{r}), \nabla \rho^{\beta}(\boldsymbol{r}) \right) \, d\boldsymbol{r}.$$
(2.35)

Im Unterschied zu LDA sind die bei GGA zugrunde gelegten Überlegungen zur Herleitung der Austausch- und Korrelationsfunktionale selten auf physikalische Modelle zurückzuführen und enthalten oft empirische Parameter, die angepasst wurden, sodass die Energien mit experimentellen oder berechneten Hartree-Fock-Energien übereinstimmen. Des Weiteren werden das Austausch- und das Korrelationsfunktional oft getrennt behandelt. Dies spiegelt sich auch in den Namen der Austausch-Korrelationsfunktionale wider. Ein prominentes Beispiel ist das BLYP-Funktional, bei dem eine Näherung von Becke für das Austauschfunktional [62] und eine Näherung von Lee, Yang und Parr für das Korrelationsfunktional [63] verwendet wird.

Das in dieser Arbeit verwendete Funktional ist das PBE-Funktional von Perdew, Becke und Ernzerhof [1]. Dieses lässt sich schreiben als

$$E_{\rm XC}^{\rm GGA} = \int \epsilon_{\rm XC}^{\rm LSDA}(\rho(\boldsymbol{r})) F_{\rm XC}(r_s, \zeta, s) \, d\boldsymbol{r}.$$
 (2.36)

 $F_{\rm XC}$ ist ein Verstärkungsfaktor, der von dem Seitz-Radius $r_s = (4\rho/3\pi)^{1/3}$, dem Spinpolarisierungsparameter ζ und einem dimensionslosen Gradienten

$$s = \frac{|\nabla \rho|}{2(3\pi^2)^{\frac{1}{3}}\rho^{\frac{4}{3}}} \tag{2.37}$$

abhängt.

2.2.4. Hybridfunktionale

Einen verbesserten Ansatz für das Austausch-Korrelationsfunktional bieten oftmals die Hybridfunktionale. Hierbei wird die exakte Hartree-Fock-Austauschenergie $E_{\rm X}$ mit einbezogen, was die Berechnungen genauer aber auch rechenintensiver macht. Durch die Verwendung von Hartree-Fock-Austauschenergien wird der Selbstwechselwirkungsfehler gegenüber den GGA--Funktionalen reduziert. Allgemein üblich lassen sich die Hybridfunktionale über

$$E_{\rm XC}^{\rm Hybrid} = a E_{\rm X}^{\rm HF} + (1-a) E_{\rm X}^{\rm GGA} + E_{\rm C}^{\rm GGA}$$
(2.38)

beschreiben, wobei *a* abhängig vom Funktional ist und meist zwischen 0,2 und 0,25 liegt [61]. Es gibt aber auch Hybrid-Funktionale, die umfangreichere Kombinationen von Energiefunktionalen verwenden. Dabei werden zusätzlich zu den GGA- auch noch die LDA-Austausch-Korrelationsfunktionale verwendet [64,65]. Ein Hybrid-Funktional hat dann die allgemeine Form

$$E_{\rm XC}^{\rm Hybrid} = E_{\rm XC}^{\rm LSDA} + a_0 (E_{\rm X}^{\rm HF} + E_{\rm X}^{\rm LSDA}) + a_{\rm X} (E_{\rm X}^{\rm GGA} - E_{\rm X}^{\rm LSDA}) + a_{\rm C} (E_{\rm C}^{\rm GGA} - E_{\rm C}^{\rm LSDA}).$$

$$(2.39)$$

Die Verwendung von GGA- oder LDA-Funktionalen kann sich ebenfalls im Namen widerspiegeln. Das B3LYP-Funktional ist beispielsweise eine Kombination aus der bereits erwähnten Form des Austauschfunktionals von Becke und des Korrelationsfunktionals

von Lee, Parr und Yang. Das von Becke ursprünglich vorgeschlagene B3LYP-Funktional hat die Form [64]

$$E_{\rm XC}^{\rm B3LYP} = 0.8E_{\rm X}^{\rm LSDA} + 0.2E_{\rm X}^{\rm HF} + 0.72E_{\rm X}^{\rm B88} + E_{\rm C}^{\rm LSDA} + 0.81E_{\rm C}^{\rm PW91}.$$
 (2.40)

Durch die Berücksichtigung der exakten Austauschenergie bei den Hybridfunktionalen wird der Selbstwechselwirkungsfehler von LDA- und GGA-Methoden verringert. Dieser beruht darauf, dass Coulomb- und Austauschwechselwirkungsenergien nicht auf gleichem Niveau berechnet werden, wodurch sich Einteilchenbeiträge nicht exakt kompensieren. Daraus resultiert eine Unterschätzung der Ionisierungsenergien und eine zu starke Delokalisierung ungepaarter Elektronen. Allerdings ergibt sich fast kein Unterschied bei Dispersionswechselwirkungen zwischen GGA- und Hybridfunktional [61].

2.2.5. Korrekturterme

Es ist einerseits problematisch, dass Hybrid-Funktionale so rechenintensiv sind. Andererseits lässt sich mithilfe von reinen GGA-Funktionalen entweder die Energie oder die Struktur aber nicht beides zugleich gut beschreiben [66]. Aufgrund dessen gibt es einige Korrekturen für die GGA-Funktionale, mit deren Hilfe bei gleichbleibendem Rechenaufwand bessere Ergebnisse erzielt werden als mit reinen GGA-Funktionalen.

Dispersionskorrektur

Die Dispersionskorrektur ist einer dieser Korrekturterme und verbessert vor allem die Beschreibung der langreichweitigen Wechselwirkungen, die von vielen lokalen Austausch-Korrelationsfunktionalen nicht korrekt wiedergegeben werden, da sie auf langreichweitigen Effekten beruhen [67]. Viele Funktionale wie BLYP und PBE, sind zu stark repulsiv, wodurch teilweise im Widerspruch zu den Referenzdaten nichtbindende Zustände vorhergesagt werden. Um dieses Problem zu korrigieren, gibt es mehrere Ansätze, wobei die DFT-D-Korrektur nach Grimme hier näher betrachtet werden soll, da diese auch in der folgenden Arbeit noch ihre Verwendung findet.

Bei der DFT-D-Korrektur [67] wird zur Energie des GGA-Funktionals ein weiterer Energieterm addiert

$$E^{\rm DFT-D} = E^{\rm GGA} + E_{\rm Dispersion} \tag{2.41}$$

Dieser hat die Form

$$E_{\text{Dispersion}} = \sum_{A,B} \sum_{n} s_n \frac{C_n^{AB}}{R_{AB}^n} f_{\text{Dämpfung}}(R_{AB})$$
(2.42)

und berücksichtigt die langreichweitigen Wechselwirkungen. C_n^{AB} ist der Dispersionskoeffizient *n*-ter Ordnung (n = 6, 8, 1...) für das Atompaar AB und R_{AB} ist der Abstand zwischen den Atomen A und B. s_n ist ein vom Funktional abhängiger Skalierungsfaktor, der dafür genutzt wird, die Korrektur dem Abstoßungsverhalten des Funktionals anzupassen. Um auf kurzer Distanz nicht zu starke Anziehungskräfte vorherzusagen, wird eine Dämpfungsfunktion $f_{\text{Dämpfung}}(R_{AB})$ verwendet, die vom Atomabstand abhängt. In dieser Arbeit wird die Becke-Johnson-Dämpfungsfunktion verwendet [68]

Hubbard-Korrektur

Eine weitere wichtige Korrektur der GGA- und LSDA-Funktionale ist die Hubbard-Korrektur [69–74]. Diese spielt eine wichtige Rolle bei der Beschreibung von Übergangsmetallen und den Metallen der Seltenen Erden, da hier eine gute Beschreibung der d- und f-Elektronen wichtig ist. Entwickelt wurde die Hubbard-Korrektur für LSDA-Funktionale [75, 76]. Sie kann aber auch bei GGA-Funktionalen angewandt werden [77–80].

Notwendig ist die Korrektur, da die d- und f-Elektronen stärkere lokale Austauschwechselwirkungen aufweisen, als mithilfe der Beschreibung durch das Elektronengas vorhergesagt wird. Die grundlegende Idee ist es, die d- und f- getrennt von den sund p-Elektron-Elektron-Wechselwirkungen zu beschreiben [69]. Die Elektron-Elektron-Wechselwirkung der s- und p-Elektronen wird weiterhin über das Funktional beschrieben und die Wechselwirkungen der d- und f-Elektronen werden mithilfe des Korrekturterms angepasst.

Es ergibt sich für die Energie

$$E^{\rm DFT+U} = E^{\rm DFT} + E_{\rm Hubbard}.$$
 (2.43)

 E_{Hubbard} besteht aus einem additiven und einem subtraktiven Term

$$E_{\text{Hubbard}} = \frac{U}{2} \sum_{m,m',\sigma} o_{m,\sigma} o_{m',-\sigma} + \frac{U-J}{2} \sum_{m \neq m',\sigma} o_{m,\sigma} o_{m',\sigma}.$$
 (2.44)

Es ist $o_{m,\sigma}$ die Besetzungszahl eines f- oder d-Orbitals mit Spin σ und Drehimpuls m.

Der additive Term beschreibt die Elektron-Elektron-Wechselwirkungen der d- und f-Elektronen nach dem Hubbard-Modell. Der zweite Term subtrahiert den Teil der Energie der Elektron-Elektron-Wechselwirkung, der bereits durch das eigentliche Funktional berücksichtigt wird, sodass eine Doppelzählung der Energie vermieden wird. Die Form der Terme ist abhängig von der Implementierung und zwei empirischen Parametern Uund J [75], bzw. deren Differenz $U_{\text{eff}} = U - J$ [76]. Für die hier verwendete Methode von Dudarev *et al.* [76] hat das Energiefunktional die Form

$$E^{\rm DFT+U} = E^{\rm DFT} + \frac{U-J}{2} \sum_{m,\sigma} o_{m,\sigma} - o_{m,\sigma}^2.$$
(2.45)

Die Parameter U und J müssen zunächst für das zu untersuchende Material bestimmt werden. Häufig werden die Werte ermittelt, indem die berechnete Bandlücke an die experimentell gefundene oder die mit Hybridrechnungen oder qualitativ höherwertigen Rechnungen ermittelte Bandlücke angepasst wird.

2.3. Der elektronische Grundzustand

Die Kohn-Sham-Gleichungen 2.19 müssen analog zu den Hartree-Fock-Gleichungen iterativ gelöst werden. Schematisch ist dies in Abbildung 2.1 dargestellt. Für die hier vorliegende Arbeite wird das ebene Wellen Programm VASP verwendet, weshalb in diesem Abschnitt insbesondere auf den dort implementieren Algorithmus zur Bestimmung des elektronischen Grundzustands eingegangen wird.

2.3.1. Pseudopotentiale

Um die Startdichte und die Orbitale ermitteln zu können, wird bei VASP in Ansatz gewählt, in dem die kernnahen Elektronen über Pseudopotentiale und die Valenzelektronen mithilfe von ebenen Wellen beschrieben werden [82]. Basierend auf diesem Ansatz wurden verschiedene Ideen entwickelt, wie die Pseudopotentiale und ebene Wellen beschaffen sein müssen um obige Gleichung möglichst effizient zu lösen. Eine Methode ist die der projektionsaugmentierten ebenen Wellen (PAW) von Blöchl [83], die die Methode der ultraweichen Pseudopotentiale [84, 85] in VASP weitestgehend abgelöst hat. Durch die Methode von Blöchl wird es möglich, die Allelektronenwellenfunktion zu erhalten, was mit den vorherigen Pseudopotentialansätzen nicht möglich war. Dies ist insbesondere für die Betrachtung der Elemente der ersten Periode und die

Abbildung 2.1.: Schaubild des in VASP implementierten *self consistent field*-Verfahren zur Minimierung der Energie nach [81]

Übergangsmetalle wichtig. Die grundlegende Idee der PAW-Methode ist die Aufteilung der Wellenfunktion in zwei Bereiche. Nahe des Kerns oszilliert die Wellenfunktion stark, wohingegen sie in größerer Entfernung vom Kern eher gleichmäßig ist. Die Beschreibung abseits des Kerns erfolgt mit ebenen Wellen. Bei der PAW-Methode wird innerhalb atomarer Sphären ein Projektionsoperator \mathcal{T} für jedes Orbital eingeführt, der Pseudowellenfunktionen in Allelektronenwellenfunktionen umwandelt. Damit wird der Berechnungsaufwand der stark oszillierenden kernnahen Beschreibung reduziert.

2.3.2. self consistent field-Verfahren

In der Arbeit von Kresse und Furthmüller [81] ist das *self consistent field*-Verfahren (SCF) zur Minimierung der Grundzustandsenergie, welches in Abbildung 2.1 dargestellt

ist, ausführlich erläutert. An dieser Stelle soll deswegen nur kurz darauf eingegangen werden.

Wurden die Startdichte und die Ausgangs-Kohn-Sham-Orbitale gewählt, bzw. aus dem letzten Minimierungsschritt erhalten, so werden zunächst das lokale Potential

$$\nu_{\text{lokal}} = \nu_{\text{lokal}}^{\text{Ion}} + \nu_{\text{HF}} \left[\rho\right] + \nu_{\text{XC}} \left[\rho\right] \tag{2.46}$$

und die Doppelzählungskorrektur

$$E_{\rm dz}\left[\rho\right] = \frac{1}{2} E_{\rm H}\left[\rho\right] + E_{\rm XC}\left[\rho\right] - \int \nu_{\rm xc}(\boldsymbol{r})\rho(\boldsymbol{r})\,d\boldsymbol{r}$$
(2.47)

bestimmt. Im nächsten Schritt werden die Kohn-Sham-Orbitale optimiert und daraus die Besetzungszahlen f_n sowie die freie Energie berechnet. Im Anschluss wird aus den Kohn-Sham-Orbitalen die neue Dichte ρ_{out} berechnet. Ist das Konvergenzkriterium nicht erfüllt, wird die Ausgangsdichte mit der alten Eingangsdichte vermischt, woraus eine neue Eingangsdichte erhalten wird.

2.3.3. Geometrieoptimierung

Für eine Geometrieoptimierung werden nach dem Abbruch des SCF-Verfahrens die Kräfte berechnet, die auf die einzelnen Atome wirken. Diese lassen sich auf Basis des Hellmann-Feynman-Theorems bestimmen.

Wenn der Hamiltonoperator von einem Parameter λ abhängt (hier von den Atomkoordinaten), sind auch die Eigenfunktionen und Eigenwerte abhängig von diesem Parameter. Das aus diesem Zusammenhang resultierende Hellmann-Feynman-Theorem besagt:

$$\frac{\delta E}{\delta \lambda} = \int \Psi^*(\boldsymbol{r}) \frac{\delta \hat{H}}{\delta \lambda} \Psi(\boldsymbol{r}) \, d\boldsymbol{r}.$$
(2.48)

Mithilfe dieses Theorems kann die Änderung der Energie bei Änderung des Parameters λ beschrieben werden [86, 87]. Die Ableitung der Energie nach der Raumkoordinate eines Atoms oder einer Komponente des Gittervektors entspricht der Kraft, die entlang dieser Richtung wirkt. Mithilfe der wirkenden Kräfte lassen sich die Kernpositionen in Richtung des nächstgelegenen lokalen Minimums verschieben. Anschließend wird das Energieminimierungsverfahren mit der resultierten Dichte und der neuen Geometrie als Eingabe erneut durchlaufen, sofern das Abbruchkriterium für die Geometrieoptimierung nicht erreicht ist. Die Kräfte werden im Quasi-Newton-Raphson-Verfahren

zusätzlich zur Approximation der Hesse-Matrix verwendet. VASP verwendet dazu standardmäßig ein Verfahren, das auf konjugierten Gradienten basiert.

2.4. Modellierung von Festkörpern

Ein idealer Kristall zeichnet sich durch eine unendliche Wiederholung gleicher struktureller Einheiten in alle Raumrichtungen aus [88,89]. Dies wird in den Berechnungen durch das Bloch-Theorem gewährleistet [90]. Ein Kristall lässt sich auf seine Basis, sich wiederholende Atome oder Gruppen von Atomen, und sein Gitter, die Punkte im Raum an denen sich jeweils der Ursprung der Basis befindet, reduzieren. Das Gitter lässt sich durch die Vektoren a_1 , a_2 und a_3 beschreiben. Es ist

$$r' = r + u_1 a_1 + u_2 a_2 + u_3 a_3 = r + T$$
 (2.49)

mit $u_i \in \mathbb{Z}$. \mathbf{r}' und \mathbf{r} sind zwei unterschiedliche Punkte im Raum, die die gleiche Umgebung besitzen. Der Vektor \mathbf{T} wird auch als Translationsvektor und \mathbf{a}_1 , \mathbf{a}_2 und \mathbf{a}_3 als primitive Gittervektoren bezeichnet.

Die Periodizität des Kristallgitters lässt sich in folgender Bedingung für die Schrödingergleichung ausdrücken

$$\hat{T}\hat{H}(\boldsymbol{r})\Psi(\boldsymbol{r}) = \hat{H}(\boldsymbol{r}+\boldsymbol{T})\Psi(\boldsymbol{r}+\boldsymbol{T}) = \hat{H}(\boldsymbol{r}) + \Psi(\boldsymbol{r}+\boldsymbol{T}) = \hat{H}(\boldsymbol{r})\hat{T}\Psi(\boldsymbol{r}).$$
(2.50)

Dabei ist \hat{T} der Operator, der die Translation um den Vektor T ausdrückt. Unter der Annahme eines periodischen externen Potentials mit $\nu_{\text{ext}}(r + T) = \nu_{\text{ext}}(r)$ ist der Hamiltonoperator unabhängig von der Translation um T. Somit kommutieren Hamiltonund Translationsoperator. Eigenfunktionen des Hamiltonoperators sind also zugleich auch Eigenfunktionen des Translationsoperators. Somit kann sich die Wellenfunktion bei Translation nur um einen Phasenfaktor verändern. Es ist demnach

$$\hat{T}\Psi(\boldsymbol{r}) = \Psi(\boldsymbol{r} + \boldsymbol{T}) = \exp(\mathrm{i}\boldsymbol{k} \cdot \boldsymbol{T})\Psi(\boldsymbol{r}).$$
(2.51)

wobei \boldsymbol{k} ein Punkt im reziproken Gitter ist mit $\boldsymbol{k} = v_1 \boldsymbol{b}_1 + v_2 \boldsymbol{b}_2 + v_3 \boldsymbol{b}_3$. Hierbei handelt es sich um die zentrale Aussage des Bloch-Theorems.

Die reziproken Gittervektoren b_i lassen sich aus dem Gitter a_i bestimmen über

$$\boldsymbol{b}_1 = 2\pi \frac{\boldsymbol{a}_2 \times \boldsymbol{a}_3}{\boldsymbol{a}_1 \cdot \boldsymbol{a}_2 \times \boldsymbol{a}_3}, \boldsymbol{b}_2 = 2\pi \frac{\boldsymbol{a}_3 \times \boldsymbol{a}_1}{\boldsymbol{a}_1 \cdot \boldsymbol{a}_2 \times \boldsymbol{a}_3}, \boldsymbol{b}_3 = 2\pi \frac{\boldsymbol{a}_1 \times \boldsymbol{a}_2}{\boldsymbol{a}_1 \cdot \boldsymbol{a}_2 \times \boldsymbol{a}_3}.$$
 (2.52)

Die Translation im reziproken Raum lässt sich durch den Vektor $\mathbf{K} = k_1 \mathbf{b}_1 + k_2 \mathbf{b}_2 + k_3 \mathbf{b}_3$ beschreiben. Mit $k_i \in \mathbb{Z}$ ergibt sich

$$\exp(\mathbf{i}\boldsymbol{K}\cdot\boldsymbol{T}) = \exp\left(\mathbf{i}2\pi\sum_{i=1}^{3}k_{i}u_{i}\right) = 1.$$
(2.53)

Dies hat wiederum zur Folge, dass nur Punkte der Referenzzelle im reziproken Raum $\boldsymbol{\kappa}$ betrachtet werden müssen. Diese Punkte liegen in der erste Brillouin-Zone (BZ) und für alle Punkte \boldsymbol{k}' außerhalb der ersten BZ ist $\Psi(\boldsymbol{k}') = \Psi(\boldsymbol{\kappa} + \boldsymbol{K}) = \Psi(\boldsymbol{\kappa})$.

2.4.1. Periodische Randbedingungen

Im Folgenden sind die Festkörpereigenschaften eines Kristalls von Interesse, die unbeeinflusst von der Oberfläche sind. Bei der Beschreibung eines Kristallausschnitts wird demnach angenommen, dass dieser Teil eines unendlich ausgedehnten Kristalls ist [91]. Für die Wellenfunktion gilt dann die Bedingung von Born und von Kármán

$$\Psi(\boldsymbol{r} + N_j \boldsymbol{a}_j) = \exp(\mathrm{i}N_j \boldsymbol{k} \boldsymbol{a}_j) \Psi(\boldsymbol{r}) = \exp(\mathrm{i}2\pi N_j k_j) \Psi(\boldsymbol{r}) = \Psi(\boldsymbol{r})$$
(2.54)

mit j = 1, 2, 3 und $N_j \in \mathbb{N}$ als Anzahl an Elementarzellen in Richtung a_j . Wenn $\exp(i2\pi N_j k_j) = 1$ ist, gilt

$$k_j = \frac{n_j}{N_j} \tag{2.55}$$

mit $n_j \in \mathbb{N}$. Der Vektor $\boldsymbol{\kappa}$ innerhalb der ersten BZ lässt sich somit schreiben als

$$\boldsymbol{\kappa} = \frac{n_1 \boldsymbol{b}_1}{N_1} + \frac{n_2 \boldsymbol{b}_2}{N_2} + \frac{n_3 \boldsymbol{b}_3}{N_3}.$$
(2.56)

 $\boldsymbol{\kappa}$ ist eine diskrete Größe, solange nicht $N_1 \cdot N_2 \cdot N_3 \to \infty$, und jedem Vektor $\boldsymbol{\kappa}$ kann ein Volumen $V_{\boldsymbol{\kappa}}$

$$V_{\kappa} = \frac{\boldsymbol{b}_1 \cdot (\boldsymbol{b}_2 \times \boldsymbol{b}_3)}{N} = \frac{V_{\text{BZ}}}{N}$$
(2.57)

mit $N = N_1 \cdot N_2 \cdot N_3$ als Gesamtzahl an Elementarzellen zugeordnet werden. κ kann nur dann alle Werte innerhalb der ersten BZ annehmen, wenn $N \to \infty$.

Für viele Eigenschaften ist es notwendig, über die erste BZ zu integrieren, etwa um den Energiebeitrag der Bänder zu bestimmen. Allerdings ist es rechnerisch aufwändig das Integral zu berechnen. Bei ausreichend gleichmäßigen Funktionen ist es möglich das Integral näherungsweise zu bestimmen, indem nur einzelne Punkte in der ersten BZ betrachtet werden [92]. Monkhorst und Pack haben zu diesem Zweck ein Schema entwickelt, um mit relativ kleinen Werten für N_1 , N_2 und N_3 ein äquidistantes Gitter von Punkten in der ersten BZ zu generieren [93], welches auch als k-Punkte-Gitter bezeichnet wird. Wichtig ist es, dass sich die Wellenfunktion zwischen den Punkten nicht inhomogen verändert, weshalb für jedes Material die Wahl des k-Punkte Gitters evaluiert werden sollte.

2.4.2. Qualität des ebenen-Wellen-Basissatzes

In VASP wird die Größe des Basissatzes aus ebenen Wellen durch die Abschneidenergie $(cutoff energy) E_{cut}$, festgelegt. Es werden alle ebenen Wellen berücksichtigt, deren kinetische Energie kleiner ist als E_{cut} [94]. Mathematisch wird dies durch eine Beschränkung der Entfernung der ebenen Welle vom k-Punkt realisiert:

$$\frac{\sqrt{2m \cdot E_{\rm cut}}}{\hbar} > |\boldsymbol{k} + \boldsymbol{K}|. \tag{2.58}$$

Die variationelle Qualität des Basissatzes hängt somit nur von E_{cut} ab. Je weiter die ebene Welle vom k-Punkt entfernt ist, desto kleiner werden die Beiträge zur Gesamtenergie. Je mehr ebene Wellen berücksichtigt werden, desto größer wird die Rechenzeit.

2.5. Das elastische Stoßbandverfahren

In der folgenden Arbeit werden Aktivierungsbarrieren für die Lithiumionenwanderung in Festkörpern berechnet. Die Kristallstruktur des Übergangszustands liegt auf einem (lokalen) Maximum entlang der Reaktionskoordinate und würde deshalb bei einer Geometrieoptimierung immer zu einem (lokalen) Minimum optimiert werden. Damit dies nicht passiert, wird das elastische Stoßbandverfahren (*nudged elastic band* (NEB)) verwendet, um Übergangszustände zu bestimmen [95, 96].

Für das NEB-Verfahren werden zunächst durch Interpolation mehrere Geometrien festgelegt, die einen Wanderungspfad zwischen Start- und Endstruktur darstellen. Zwischen benachbarten Strukturen – beim NEB-Verfahren wird auch von Bildern gesprochen – werden Federkräfte tangential Wanderungspfad angelegt. Dadurch wirken entlang des Minimumenergiepfads die Kräfte zwischen den Bildern wie ein Gummiband. Zusätzlich werden nur die radialen Komponenten der Hellmann-Feynmann-Kräfte berücksichtigt. Dies bewirkt, dass keine Optimierung der Strukturen in das nächstgelegene lokale Minimum erfolgt. Die auf das i-te Bild wirkende Gesamtkraft

$$\boldsymbol{F}_{i} = \boldsymbol{F}_{i}^{\text{Feder}} - \nabla E(\boldsymbol{R}_{i,j})^{\perp}$$
(2.59)

setzt sich zusammen aus der Federkraft F_i^{Feder} und der projizierten Kraft auf die Atompositionen R_j des *i*-ten Bildes. Mithilfe des Kraftvektors F_i werden die Atompositionen optimiert, ähnlich wie bei der bereits beschriebenen Geometrieoptimierung.

Eine Erweiterung des NEB-Verfahrens ist die des kletternden Bildes (*climbing image* CI-NEB). Hierbei wird nach einigen Iterationen das Bild mit der höchsten Energie bestimmt und anschließend die Energie für dieses Bild maximiert, indem die Federkräfte auf null gesetzt werden. Dadurch kann mit weniger Optimierungsschritten ein genauerer Minimumenergiepfad erhalten werde.

Unterscheidung verschiedener Typen von Maxima

Aufgrund der angelegten Federkräfte können die Atompositionen der Strukturen nicht beliebig optimiert werden. Existiert entlang des gewählten Wanderungspfades auf der Energiehyperfläche ein flacher Sattelpunkt zweiter Ordnung, so kann dieser als Maximum im Minimumenergiepfad als Resultat der NEB-Methode erhalten werden. Dass es sich dabei um einen Sattelpunkt zweiter Ordnung handelt, ist nicht aus den Ergebnissen der NEB-Rechnung ersichtlich (siehe auch Abbildung 2.2). Um zu prüfen, dass die Struktur, die das Maximum repräsentiert, ein Sattelpunkt erster und nicht zweiter Ordnung ist, muss die Berechnung des vibratorischen Frequenzspektrums durchgeführt werden.

Bei der Frequenzrechnung wird die Änderung der Kraft auf die Atome bei Auslenkung in alle drei Raumrichtungen untersucht. Eine negative Änderung der Kraft bedeutet, dass die Energie für die Relaxation in die Auslenkungsrichtung abnimmt. Für jede negative Änderung der Kraft wird jeweils eine imaginäre Frequenz erhalten. Wird nur eine imaginäre Frequenz aus der Berechnung erhalten, so handelt es sich um einen Sattelpunkt erster Ordnung und das Maximum des Minimumenergiepfads entspricht dem Übergangszustand. Wird mehr als eine imaginäre Frequenz erhalten, so handelt es sich um einen Übergangszustand höherer Ordnung, der keine physikalische Bedeutung besitzt.

Abbildung 2.2.: Ausgehend von denselben Start- und Endbildern können unterschiedliche Wanderungspfade erzeugt werden, die durch Optimierung zu zwei verschiedenen Minimumenergiepfaden (MEP) führen können. Allerdings muss es sich bei den Maxima der MEP nicht zwangsläufig um Sattelpunkte erster Ordnung auf der Energiehyperfläche handeln. Der hier grau dargestellte Wanderungspfad weist entlang des MEP ein Maximum auf, bei der Berechnung des vibratorischen Frequenzspektrums wird allerdings klar, dass es sich um einen Sattelpunkt zweiter Ordnung handelt. Dies ist durch die gestrichelte Linie angedeutet, welche die Maxima der beiden MEP auf der Energiehyperfläche verbinden. Eine Optimierung zu dem hier schwarz dargestellten Wanderungspfad, der einen Sattelpunkt erster Ordnung besitzt, ist aber nicht aufgetreten, da der Sattelpunkt sehr flach ist.
3. Effekt der Austausch- und Dispersionswechselwirkung auf Festkörpereigenschaften von 1T-Titandichalkogeniden

In der vorliegenden Arbeit liegt der Fokus auf den Übergangsmetalldichalkogeniden, insbesondere den Titandichalkogeniden, die in der 1T-Struktur kristallisieren. Um möglichst gute Ergebnisse aus der theoretischen Beschreibung dieser Materialien zu gewinnen, wird in diesem Kapitel großer Wert auf die Wahl des Austausch-Korrelationsfunktionals gelegt. Dazu wird zunächst aus der Vielzahl an GGA-basierten Austausch-Korrelationsfunktionalen anhand der Strukturbeschreibung geschaut, welche Funktionale für die Beschreibung in Frage. Zusätzlich wird geprüft, ob durch die Verwendung von Korrekturtermen eine Verbesserung der Beschreibung erzielt werden kann. Anschließend wird die gewählte Methode durch die Berechnung verschiedener elektronischer und spektroskopischer Eigenschaften und den Vergleich dieser mit experimentellen Daten evaluiert.

Die theoretische Beschreibung erfolgt mithilfe von VASP [81,97,98]. Neben der Methode müssen das k-Punktegitter und die *Cutoffenergie* konvergiert werden. An der Elementarzelle von TiS₂ wurden diese Werte auf ein $6 \times 6 \times 3$ -Monkhorst-Pack-Gitter und eine *Cutoffenergie* von 600 eV optimiert. Eine Visualisierung des Konvergenzverhaltens bei Zunahme der k-Punkte und der *Cutoffenergie* ist in Anhang A gegeben. Im Anhang D sind die Eingaben für alle folgenden Berechnungen dargelegt. Sind Abweichungen von den angegebenen Parametern vorgenommen, ist dies an den entsprechenden Stellen im Text erwähnt.

3.1. Strukturbeschreibung von TiX_2 und $LiTiX_2$

Wie aus dem Kapitel zur theoretischen Beschreibung von Festkörpern deutlich geworden ist, wird für die folgenden Berechnungen eine Näherung für das Austausch-Korrelationsfunktional benötigt, da keine exakte Beschreibung des Funktionals bekannt ist. Für die folgenden Untersuchungen an Lithiumtitandichalkogeniden ist eine möglichst optimale Beschreibung über die gesamte Lithiumstöchiometrie $0 \le x \le 1$ notwendig. Daher ist es das Ziel dieses Abschnitts, eine Näherung zu ermitteln, die sowohl die lithiierten als auch die delithiierten Systeme am besten beschreibt.

Um eine geeignete Näherung zu bestimmen, wurden mehrere im VASP-Programmcode implementierten und auf der generalisierten Gradientennäherung (GGA) beruhenden Funktionale (AM05 [99–101], PBE [1], PBESOL [102], PW91 [59], revPBE [103] und RPBE [104]) verwendet, um die Geometrie der (Li)Ti X_2 -Systeme zu optimieren, wobei mit X im Folgenden die Menge { S, Se, Te } gemeint ist. Zusätzlich wurde auch ein Hybridfunktional (HSE06 [3]) herangezogen, das auf der Jacobs-Leiter zwei Sprossen über den GGA-Funktionalen steht und somit eine bessere Näherung für das Austausch-Korrelationsfunktional darstellt [105]. Aus den optimierten Geometrien wurden die Abweichungen zu den experimentellen Daten ermittelt [7,18,106]. Diese Abweichungen dienen als erster Anhaltspunkt der Güte der Funktionale. Das Hauptaugenmerk liegt hierbei auf dem Gitterparameter c, da dieser bei den delithiierten Systemen schwieriger zu beschreiben ist. Der Grund dafür sind die schwachen van der Waals-Wechselwirkungen, die die Ti X_2 -Schichten zusammenhalten. Für die nachfolgenden Berechnungen ist jedoch eine gute Beschreibung der Geometrie unerlässlich, da die Ionenabstände einen großen Einfluss auf die Aktivierungsbarriere der Lithiumionenwanderung haben.

Die graphische Darstellung der prozentualen Abweichung der optimierten zu den experimentellen Strukturen für den Gitterparameter c ist in Abbildung 3.1 dargestellt. Aus Abbildung 3.1 wird deutlich, dass besonders die Beschreibung der delithiierten Systeme problematisch ist. Um von einer guten Beschreibung des Systems sprechen zu können, sollten Abweichungen von $\pm 1\%$ nicht überschritten werden. Das einzige Funktional, welches diesem Kriterium nahezu gerecht wird, ist das PBESOL-Funktional. Dieses Funktional wurde so entwickelt, dass es die Vorteile der lokalen Dichtenäherung (LDA) und des PBE-Funktionals vereint [2]. Laut der Arbeit aus der Van der Ven-Gruppe zu diesem System, liefert das LDA-Funktional eine gute Beschreibung der Sulfidverbindungen [10]. Sie erhalten für den Gitterparameter c einen Fehler von -2,2%für LiTiS₂ und -3,9% für TiS₂. Eigene in VASP durchgeführte Geometrieoptimierun-

Abbildung 3.1.: Prozentuale Abweichung des Gitterparameters c für Ti X_2 (links) und LiTi X_2 (rechts) mit $X = \{$ S(blau), Se(grau), Te(schwarz) $\}$ von experimentellen Referenzwerten [7, 18, 106]. Die Geometrien wurden jeweils mit den in VASP implementierten GGA-Funktionalen und einem Hybrid-Funktional (HSE06) optimiert. Die gestrichelte Linie zeigt die gewünschte Abweichung von höchstens $\pm 1 \%$ an.

3. Effekt der Austausch- und Dispersionswechselwirkung

gen mit dem LDA-Funktional ergeben Abweichungen für den Gitterparameter c von -1.9% und -4.6% für die Strukturen von LiTiS₂ bzw. TiS₂. Das PBESOL-Funktional, welches eine Kombination des LDA-Funktionals (Unterschätzung des Gitterparameters c) und des PBE-Funktionals (Überschätzung des Gitterparameters c) ist, liefert aufgrund einer Fehlerkompensation ein gutes Ergebnis. Das Hybridfunktional HSE06 liefert im Vergleich zu den restlichen GGA-Funktionalen noch die besten Ergebnisse. Hier sind Abweichungen von etwa 5% für alle delithiierten Systeme und keine signifikanten Abweichungen für die lithiierten Systeme zu beobachten. Allerdings ist die Verwendung des HSE06-Funktionals für die Geometrieoptimierung mit einer Verzehnfachung der Rechenzeit im Vergleich zu den GGA-Funktionalen verbunden. Da die Ergebnisse für das HSE06-Funktional nicht annähernd dem vorher festgelegten Gütekriterium entsprechen, lohnt sich der zusätzliche Rechenaufwand nicht. Alle weiteren GGA-Funktionale weisen Abweichungen von mehr als 10% zu den experimentellen Werten auf. Zufriedenstellende Ergebnisse liefert somit nur das PBESOL-Funktional.

Da die schlechte Beschreibung von van der Waals-Wechselwirkungen durch GGA-Funktionale auf Grund ihrer lokalen Natur ein bekanntes Problem ist, wurden Dispersionskorrekturen entwickelt, die sich dieser Problematik annehmen. Die bekannteste und am meisten genutzte Dispersionskorrektur ist die D3-Korrektur der Arbeitsgruppe Grimme [4]. Im Programmcode von VASP ist neben der D3-Korrektur zusätzlich die Dispersionskorrektur von Tkatchenko und Scheffler [5] (D-TS) implementiert. Um die Güte der beiden in VASP implementierten Dispersionskorrekturen vergleichen zu können, wurden mit dem PBE-Funktional beide Korrekturen getestet. Weitere Funktionale wurden in Kombination mit der D3-Korrektur getestet. Da aber nicht für jedes Funktional die Dispersionskorrektur-Parameter bestimmt wurden, können nicht alle Funktionale betrachtet werden, für die die Ergebnisse ohne Korrekturen in Abbildung 3.1 dargestellt wurden.

In Abbildung 3.2 sind die Abweichungen zu den experimentellen Geometrien für die mit Dispersionkorrektur optimierten Strukturen gezeigt. Der Einfluss der Dispersionskorrektur ist bei den delithiierten Systemen größer. Aber auch auf die Geometrien der lithiierten Systeme hat die Dispersionskorrektur einen Einfluss. Aus diesem Grund ist für alle Funktionale zu beobachten, wie die Abweichung zu den experimentell ermittelten Strukturparametern für die delithiierten Systeme sinkt und für die lithiierten Systeme steigt. Für alle Funktionale sinkt damit der durchschnittliche, absolute Fehler im Vergleich zu den reinen GGA-Funktionalen außer für das PBESOL-Funktional. Des Weiteren sind die Unterschiede der prozentualen Fehler zwischen lithiiertem und

Abbildung 3.2.: Prozentuale Abweichung des Gitterparameters c für Ti X_2 (links) und LiTi X_2 (rechts) mit $X = \{$ S(blau), Se(grau), Te(schwarz) $\}$ von experimentellen Referenzwerten [7,18,106]. Die Geometrieoptimierungen wurden mit den in VASP implementierten GGA-Funktionalen mit der D3-Korrektur durchgeführt. Um beide Dispersionskorrekturen vergleichen zu können, wurden die Strukturen auch mit der PBE-D-TS-Methode optimiert. Die gestrichelte Linie zeigt die gewünschte Abweichung von höchstens $\pm 1\%$ an.

delithiiertem System deutlich geringer. Dadurch ergibt sich ein konstanter Fehler über die gesamte Lithiumstöchiometrie $0 \le x \le 1$ und die mit Dispersionskorrektur erzeugten Ergebnisse wären untereinander besser vergleichbar. Die Dispersionskorrektur von Tkatchenko und Scheffler liefert im Vergleich zur D3-Korrektur schlechtere Ergebnisse. Die durchschnittliche Abweichung für den Gitterparameter c mit dem PBE-Funktional liegt für die D3-Korrektur bei -2,2%, bei der D-TS-Korrektur hingegen bei -3,8%. Aus diesem Grund wird die D3-Korrektur in dieser Arbeit bevorzugt.

Keines der Funktionale liefert eine Abweichung von weniger als 1 % für alle Systeme. Das PBESOL-Funktional liefert für die reinen GGA-Funktionale die geringste Abweichung zu den experimentellen Daten. Unter Verwendung einer Dispersionskorrektur resultiert aus der Verwendung der PBE-D3-Methode die bestmögliche Beschreibung. Aus diesem Grund werden zunächst das PBESOL-Funktional wie auch die PBE-D3-Methode in den nächsten Abschnitten berücksichtigt. Es ist allerdings nicht ausreichend, dass die Funktionale nur die Strukturparameter gut beschreiben. Auch eine optimale Beschreibung der elektronischen Eigenschaften der Systeme ist von Interesse, denn auch diese haben einen Einfluss auf die Aktivierungsbarriere der Lithiumionenwanderung, wie im folgenden noch gezeigt wird.

3.2. Elektronische Eigenschaften von TiS₂ und LiTiS₂

Dieser Abschnitt der Arbeit beschäftigt sich mit der Evaluation der Beschreibung der elektronischen Eigenschaften der beiden Sulfide. Die Titandiselenid- und Titanditelluridverbindungen werden an dieser Stelle nicht diskutiert, da es kaum experimentelle Ergebnisse gibt, die zum Vergleich herangezogen werden können. Es ist davon auszugehen, dass eine gute Beschreibung der Sulfidverbindung mit einer guten Beschreibung der Selen- und Tellurverbindungen einhergeht. Es wird sich auf die Betrachtung der PBE-D3-Methode und das PBESOL-Funktional beschränkt, da sich die anderen Funktionale auf Grund der schlechten Strukturbeschreibung bereits als ungeeignet für die Beschreibung von lithiierten und delithiierten Übergangsmetalldichalkogeniden herausgestellt haben. Zunächst wird der magnetische Grundzustand von LiTiS₂ betrachtet. Daraus ergibt sich die Berücksichtigung der Hubbard-Korrektur neben der Dispersionskorrektur für das PBE-Funktional. Dabei wird ein neuer Ansatz verwendet, um den bei der Hubbard-Korrektur benötigten semiempirischen Parameter zu optimieren. Anschließend wird unter Verwendung dieser Korrektur die Bandstruktur von TiS₂ berechnet.

3.2.1. Magnetischer Grundzustand von LiTiS₂

 $LiTiS_2$ ist bei tiefen Temperaturen (< 100 K) ein Paramagnet [107]. Diese Eigenschaft sollte von den theoretischen Berechnungen wiedergegeben werden können. Streng genommen lässt sich der paramagnetische Zustand jedoch in den theoretischen Berechnungen nicht direkt erzeugen, weil sich nur ferro- oder antiferromagnetische Zustände simulieren lassen. Um eine Aussage machen zu können, ob es sich um einen paramagnetischen Grundzustand handelt, muss die Energie bei Beschreibung über einen ferro- und einen antiferromagnetischen Zustand näherungsweise gleich sein. Des Weiteren müssen diese energetisch günstiger als bei der Beschreibung von LiTiS₂ als Diamagnet sein.

Wird LiTiS₂ als offenschaliges System beschrieben, ergibt ausschließlich das Hybrid-Funktional HSE06 einen ferromagnetischen Grundzustand. Bei einer $2 \times 2 \times 1$ -Superzelle liefert das HSE06-Funktional nahezu dieselbe Energie für einen ferromagnetischen und antiferromagnetischen Zustand und beschreibt somit den magnetischen Grundzustand von LiTiS₂ korrekt. Die GGA-Funktionale konvergieren bei einer offenschaligen Rechnung jedoch zu einem diamagnetischen Zustand. Eine mögliche Lösung des Problems liegt in der Verwendung der DFT+U-Methode [75,76] (siehe 2.2.5).

Zunächst werden alle in VASP implementierten DFT+U-Methoden getestet, für die zunächst die zwei semiempirischen Parameter U und J bestimmt werden müssen. Für die Methode von Dudarev [76] muss nur der Parameter $U_{\text{eff}} = U - J$ optimiert werden. Bei den anderen Methoden wird üblicherweise J = 1/10 U gewählt und dieses Vorgehen wird auch in dieser Arbeit verwendet.

Typischerweise wird der Wert von U optimiert, indem die berechnete der experimentell bestimmte Bandlücke des betrachteten Materials angepasst wird. Da jedoch die magnetische Eigenschaft von LiTiS₂ von Interesse ist, wird der Wert von U bezüglich dieser Eigenschaft optimiert. Ein experimenteller Wert für die Energiedifferenz des dia- und ferromagnetischen Zustands steht dabei nicht zur Verfügung. Stattdessen wird gegen einen Wert optimiert, der aus der Beschreibung des Systems mit dem HSE06-Funktional resultiert. Mit dem HSE06-Funktional wurde der energetische Unterschied zwischen einer diamagnetischen und einer ferromagnetischen Beschreibung des Systems bestimmt. Mit der ferromagnetischen Beschreibung ist die Gesamtenergie des Systems etwa 0,2 eV niedriger.

Für die Variation des Parameters U werden sowohl das PBESOL-Funktional als auch die PBE-D3-Methode getestet, da diese die beste Übereinstimmung mit den experimentellen Geometrien liefern. Für das PBESOL-Funktional wird beobachtet, dass der ferromagnetische Spinzustand für U-Werte kleiner als 10 eV nicht energetisch günstiger ist als der diamagnetische Zustand. Der LDA-Anteil des Funktionals, der für die gute Beschreibung der Geometrie verantwortlich ist, beeinflusst an dieser Stelle wahrscheinlich das Ergebnis negativ.

In Abbildung 3.3 ist der Energieunterschied zwischen dia- und ferromagnetischem Zustand für das PBE-D3-Funktional in Abhängigkeit von U dargestellt. Mit der DFT+U-Methode von Dudarev *et al.* [76] (LDAUTYPE = 2) liegt der Schnittpunkt mit ΔE_{HSE06} bei einem U-Wert von etwa 3,5 eV. Die beiden anderen Methoden basieren auf einer Veröffentlichung von Liechtenstein *et al.* [75]. Für LDAUTYPE = 1 ergibt sich für $U \approx 3,5 \text{ eV}$ und J = 0,35 eV eine Energiedifferenz von 0,2 eV. Mit der anderen Implementierung (LDAUTYPE = 4) wird für $U \approx 5,5 \text{ eV}$ und J = 0,55 eV ein energetischer Unterschied zwischen den Spinzuständen von 0,2 eV erhalten. Da alle Methoden vergleichbare Ergebnisse für den Parameter U liefern, aber für die Methode von Dudarev

3. Effekt der Austausch- und Dispersionswechselwirkung

Abbildung 3.3.: Abhängigkeit der Energiedifferenz zwischen dem ferro- und diamagnetischen Zustand von LiTiS₂ von U für die drei in VASP implementierten DFT+U-Methoden [75, 76]. Durch das Setzen des Schlüsselwortes LDAUTYPE wird aus diesen drei Methoden ausgewählt. Für LDAU-TYPE=1 und LDAUTYPE=4 ist J = 1/10U, für LDAUTYPE=2 ist J = 0. Die horizontal durchgezogene Linie zeigt die mit dem HSE06-Funktional berechnete Energiedifferenz von 0,2 eV zwischen ferro- und diamagnetischem Spinzustand an.

et al. der Wert für J nicht noch zusätzlich optimiert werden muss, wird diese Methode im Folgenden verwendet.

Zusätzlich hat die Anderung der Beschreibung des Coulombenergie- und Austauschterms durch den U_{eff} -Parameter eine Auswirkung auf die optimierten Geometrien. In Abbildung 3.4 sind die prozentualen Abweichungen des Gitterparameters c zu den experimentellen Daten für das PBE-Funktional mit und ohne D3-Korrektur sowie mit und ohne DFT+U-Methode dargestellt. Für das lithiierte TiS₂ sind sowohl für den ferromagnetischen als auch den diamagnetischen Zustand die Abweichungen dargestellt. Die experimentellen Daten sind bei Temperaturen > 100 K aufgenommen, wo LiTiS₂ in einem diamagnetischen Zustand vorliegt. Deshalb ist bei der Struktur vor allem der Vergleich der Geometrieoptimierung mit diamagnetischem Grundzustand zum Experiment von Interesse.

Die Abweichung des Gitterparameters c zu den experimentell bestimmten Geometrien ist für die PBE+U-D3-Methode am geringsten. Der Fehler von -1,47% liegt nahe

Abbildung 3.4.: Prozentuale Abweichung der optimierten Geometrie zu der experimentell bestimmten Struktur für den Gitterparameter c für TiS₂ und LiTiS₂. Die Gitterparameter wurden mit VASP basierend auf PBE mit und ohne D3-Korrektur und DFT+U-Methode optimiert. Für LiTiS₂ wurde sowohl für den ferromagnetischen (FM) als auch für den diamagnetischen (DM) Zustand die Struktur optimiert. Die gestrichelte Linie zeigt die gewünschte Abweichung von höchstens $\pm 1\%$ an.

an der gewünschten 1%-Grenze, die für eine gute Beschreibung des Systems erreicht werden sollte. Positiv fällt auf, dass die prozentuale Abweichung für TiS_2 und LiTiS_2 ähnliche Werte aufweist und somit von einem konstanten Fehler bei der Beschreibung des Gitterparameters c von etwa -1,5% über den Bereich von 0 bis 1 des Lithiumanteils ausgegangen werden kann. Es wird demnach nicht nur der magnetische Grundzustand durch die PBE+U-D3-Methode richtig beschrieben, sondern aufgrund des Korrekturterms U auch die Struktur. Somit ist die PBE+U-D3-Methode die bevorzugte Methode für die nachfolgenden Beschreibungen der zu untersuchenden Systeme.

3.2.2. Bandstruktur von TiS₂

Die fundamentale Bandlücke von TiS_2 ist eine der am häufigsten untersuchten elektronischen Eigenschaften dieses Materials. Es finden sich zahlreiche experimentelle [20–28] und theoretische Veröffentlichungen [108–118] zu diesem Thema. TiS₂ ist ein Halbleiter mit einer kleinen indirekten Bandlücke, die je nach Veröffentlichung zwischen 0,18 eV [26] und 0,56 eV [28] liegt. In den auf theoretischen Simulationen basierenden Veröffentlichungen herrscht kein einheitliches Bild. In einigen Arbeiten resultieren die Berechnungen an TiS₂ in Halbleitereigenschaften, in anderen Veröffentlichungen hingegen ist TiS₂ ein Halbmetall mit einer schmalen Überlappung des Valenz- und Leitungsbands.

Auf Basis der experimentellen Strukturparameter wurde mit dem PBE-Funktional mit und ohne DFT+U-Methode die Bandstruktur von TiS₂ berechnet. Die Dispersionskorrektur hat auf die Berechnung der Bandstruktur keine Auswirkung und wird deswegen an dieser Stelle nicht weiter berücksichtigt. Damit sich aber bei diesem aus Theoretikersicht strittigen Thema nicht nur auf GGA-basierende Funktionale verlassen wird, wurde die Bandstruktur ebenso mit dem HSE06-Funktional bestimmt. Für das PBE-Funktional wurde die Bandstruktur entlang des k-Punktepfads $\Gamma - M - K - \Gamma - A - L - H - A$ berechnet, wie es für hexagonale Strukturen üblich ist. Für die Berechnung mit dem HSE06-Funktional wurde ein 6 × 6 × 6-Monkhorst-Pack-Gitter zu Grunde gelegt und die Wege zwischen den speziellen Punkten wurden aus dem gleichmäßigen Gitter rekonstruiert.

Die erhaltenen Bandstrukturen sind in Abbildung 3.5 dargestellt. Für die mit dem PBE-Funktional durchgeführten Berechnungen resultiert die elektronische Bandlücke aus einem indirekten Übergang zwischen dem Valenz- und dem Leitungsband. Das Maximum des Valenzbandes befindet sich am Γ -Punkt eines Schwefel-*p*-Bands und das Minimum des Leitungsbands liegt am *L*-Punkt eines Titan-*d*-Bands. An diesen beiden Punkten wird aus denselben Bändern die indirekte Bandlücke für die Berechnungen mit dem PBE-Funktional bei Verwendung der DFT+U-Methode und dem HSE06-Funktional erhalten. Dabei liegt das Ergebnis mit Verwendung der DFT+U-Methode mit einer indirekten Bandlücke von 0,19 eV an der unteren Grenze der experimentellen Werte und das Ergebnis des HSE06-Funktionals mit 0,55 eV an der oberen Grenze. Alle berechneten Bandstrukturen sind sich sehr ähnlich, abgesehen von der Lage des Leitungsbands bezüglich des Ferminiveaus. Die experimentell gemessenen Bandlücken lassen sich sehr gut mit dem PBE-Funktional bei zusätzlicher Verwendung der DFT+U-Methode und dem HSE06-Funktional reproduzieren. Mit dem unkorrigierten PBE-Funktional lässt sich das experimentelle Ergebnis jedoch nicht reproduzieren.

Häufig wird der Parameter U_{eff} so angepasst, dass die Bandlücke mit der aus experimentellen Messungen oder theoretisch hochwertigen Rechnungen (z. B. Quasi-Partikeloder Hybrid-Rechnungen) übereinstimmt. In dieser Arbeit konnte jedoch gezeigt wer-

Abbildung 3.5.: Mit verschiedenen Methoden berechnete Bandstrukturen von TiS₂ auf Grundlage der experimentellen Strukturparameter. Für das PBE-Funktional wird die indirekte Überlappung eines Schwefel-*p*-Bands am *L*-Punkt mit einem Titan-*d*-Band am Γ -Punkt beobachtet. Wird zusätzlich die DFT+U-Methode verwendet, resultiert die Berechnung in einer indirekten Bandlücke von 0,19 eV zwischen dem Γ - und dem *L*-Punkt. Gleiches gilt für die Verwendung des HSE06-Funktionals mit einer Bandlücke von 0,55 eV.

den, dass auch die Anpassung an die Energiedifferenz zwischen ferro- und diamagnetischem Zustand eine Bandstruktur liefert, die mit den experimentellen Ergebnissen eine gute Übereinstimmung aufweist.

3.3. Spektroskopische Eigenschaften

In diesem Abschnitt werden verschiedene spektroskopische Eigenschaften mit dem PBE-Funktional und der PBE+U-D3-Methode berechnet und mit experimentellen Daten verglichen. Zunächst werden die Quadrupolkopplungskonstante C_q und die chemische Verschiebung $\Delta\delta$ für ⁷Li betrachtet. Abschließend wird das Infrarot-Spektrum (IR-Spektrum) für TiS₂ betrachtet.

3.3.1. NMR-Parameter für Lithium

Mithilfe von VASP lassen sich die elektrischen Feldgradienten (EFG) fast ohne zusätzliche Rechenzeitkosten ermitteln. Aus diesen lässt sich durch einfache Umrechnung die Quadrupolkopplungskonstante C_q bestimmen. Des Weiteren lässt sich störungstheoretisch auch die chemische Verschiebung $\Delta \delta$ bestimmen.

Um eine bessere Genauigkeit zu erhalten, wurden sowohl für die Berechnung der chemischen Verschiebung als auch der Quadrupolkopplungskonstanten die *Cutoffener*gie und das k-Punktegitter verdoppelt. Dementsprechend ist eine *Cutoffenergie* von 1200 eV und ein $12 \times 12 \times 6$ -Monkhorst-Pack-Gitter verwendet worden. Alle folgenden Berechnungen wurden auf Basis der mit der jeweiligen Methode optimierten Struktur durchgeführt. Des Weiteren wurde für Lithium eine Allelektronen-PAW verwendet, wie es vom VASP-Handbuch bei der Betrachtung von NMR-Parametern empfohlen wird. Um die chemische Verschiebung mit experimentellen Werten vergleichen zu können, wird ein Referenzwert benötigt. Die Referenz für die experimentellen Werte ist eine ein molare LiCl-Lösung [11,119]. Für die theoretischen Berechnungen wird als Referenz ein LiCl-Festkörper verwendet. Der hierdurch entstehende Fehler beträgt laut experimentellen Messungen -1,1 ppm [120].

In Tabelle 3.1 sind sowohl die theoretisch berechneten als auch die experimentell bestimmten Quadrupolkopplungskonstanten C_q für verschiedene Lithiumanteile aufgeführt. Es ist auffällig, dass mit abnehmendem Lithiumgehalt für die experimentellen Werte jeweils eine Verringerung der C_q -Werte zu beobachten ist. Allerdings fällt diese unterschiedlich stark aus, abhängig davon, welche experimentellen Werte als Grundlage

Tabelle 3.1.: Berechnete und experimentelle Werte für $C_q(^7\text{Li})$ in Li_xTiS_2 . Die Quadrupolkopplungskonstanten wurden sowohl mit der PBE+U-D3-Methode als auch mit dem PBE-Funktional für den diamagnetischen (DM) und ferromagnetischen Zustand (FM) berechnet.

•	(/	
Methode	$C_{\rm q}({\rm Li}_1{ m TiS}_2)$ / kHz	$C_{\rm q}({\rm Li}_{0,7}{\rm TiS}_2)$ / kHz	$C_{\rm q}({\rm Li}_{0,3}{\rm TiS}_2)$ / kHz
PBE (DM)	47	44	37
PBE (FM)	39	39	36
PBE+U-D3 (DM)	39	30	18
PBE+U-D3 (FM)	25	14	13
Exp. [33]	31 ± 2	11 ± 2	< 5
Exp. [121]	29	13	_
Exp. [16]	29	25	11

genommen werden. Die Werte aus [33] und [121] zeigen ein sehr ähnliches Verhalten und die Werte aus [121] liegen in dem Fehler, der in der Arbeit von Bredow *et al.* [33] angegeben ist. Für die Arbeit von Silbernagel und Whittingham [16] zeigen die Werte nur für Li₁TiS₂ eine Übereinstimmung. Allerdings weicht das beobachtete Verhalten für einen niedrigeren Lithiumgehalt stark von den beiden anderen experimentellen Arbeiten ab.

Alle experimentelle C_q -Werte haben gemeinsam, dass sie mit sinkendem Lithiumanteil stark abnehmen. Im Gegensatz dazu lässt sich für das PBE-Funktional in Abhängigkeit zum Lithiumanteil kaum eine Verringerung beobachten. Für den diamagnetischen Zustand sinkt der C_q -Wert um 3 kHz bzw. um 10 kHz und für den ferromagnetischen Zustand zunächst gar nicht und dann um 3 kHz. Die beiden auf der PBE+U-D3-Methode basierenden Berechnungen weisen eine deutlich stärkere Reduzierung der Quadrupolkopplungskonstante auf. Für den diamagnetischen Zustand wird eine Reduktion von 9 kHz und 21 kHz beobachte, für den ferromagnetischen Zustand von 11 kHz und 12 kHz. Sowohl die Werten für den dia- als auch den ferromagnetischen Spinzustand weisen mit der PBE+U-D3-Methode eine besser Übereinstimmung mit den experimentellen Daten auf, als die mit dem PBE-Funktional berechneten. Im Gegensatz zu den Gitterparametern zeigt sich für die erhaltenen Ergebnisse mit der PBE+U-D3-Methode für keinen der beiden Spinzustände eine deutlich bessere Übereinstimmung mit den experimentellen Daten, die zum Teil selber ein sehr unterschiedliches Verhalten aufweisen.

Die Ergebnisse für die chemische Verschiebung $\Delta\delta(^{7}\text{Li})$ für LiTiS₂ sind in Tabel-

3. Effekt der Austausch- und Dispersionswechselwirkung

Tabelle 3.2.: Die berechnete chemische Verschiebung $\Delta\delta(^{7}\text{Li})$ für LiTiS₂ mit einem LiCl-Festkörper als Referenz sowie ein experimentell bestimmter Wert. Die Werte wurden für die PBE+U-D3-Methode und das PBE-Funktional sowie für den diamagnetischen (DM) als auch den ferromagnetischen (FM) Zustand berechnet.

Methode	$\Delta \delta(^{7}\mathrm{Li})$
	/ ppm
PBE (DM)	27,1
PBE (FM)	25,2
PBE+U-D3 (DM)	11,5
PBE+U-D3 (FM)	26,5
Exp. [11]	$2{,}5\pm 5{,}0$
Exp. [121]	-1
Exp. [16]	12 ± 3

le 3.2 aufgeführt. Erneut wurden beide Spinzustände berücksichtigt und die Ergebnisse mit dem PBE-Funktional und der PBE+U-D3-Methode bestimmt. Ebenso wie für die Quadrupolkopplungskonstante stehen Daten aus mehreren experimentellen Veröffentlichung zur Verfügung, deren Werte stark voneinander abweichen. Alle experimentellen Werte haben aber gemeinsam, dass die PBE+U-D3-Methode für den diamagnetischen Zustand am besten mit ihnen übereinstimmt. Die mit dem PBE-Funktional und die für den ferromagnetischen Zustand mittels der PBE+U-D3-Methode bestimmten Werte liegen alle etwa 15 ppm über den Werten der chemischen Verschiebung, die für den diamagnetischen Zustand mit der PBE+U-D3-Methode berechnet wurden.

Auch für die NMR-Parameter hat sich in Übereinstimmung mit den vorherigen berechneten Eigenschaften gezeigt, dass die beste Beschreibung mit dem PBE-Funktional in Kombination mit Dispersionskorrektur und Korrekturterm U gelingt. Des Weiteren konnte bei den Berechnungsergebnissen zusätzlich beobachtet werden, dass mit der PBE+U-D3-Methode für den ferromagnetischen Fall die Elektronen an einzelnen Titanionen lokalisiert werden. Dadurch entstehen Ti³⁺-Ionen und Ti⁴⁺-Ionen. Im Gegensatz dazu liefert das PBE-Funktional für den ferromagnetischen Zustand eine gleichmäßige Verteilung der Elektronendichte auf den Titanatomen.

3.3.2. IR-Banden von TiS₂

Eine weitere zu untersuchende spektroskopische Eigenschaft ist das IR-Spektrum von 1T-TiS₂. Dieser Abschnitt befasst sich mit dem IR-Spektrum des delithiierten Systems.

Dieses wurde bereits in einigen experimentellen Arbeiten bestimmt [29–32] und stellt somit eine gute Grundlage für einen weiteren Vergleich mit experimentellen Daten dar.

Es ist notwendig, die Berechnung des Frequenzspektrums auf Basis der mit der jeweiligen Methode optimierten Geometrie durchzuführen, da das berechnete Spektrum abhängig von der Lage der Struktur auf der Energiehyperfläche ist. Ist die Struktur nicht ein lokales Minimum, so werden die Ergebnisse verfälscht. Für das reine PBE-Funktional ist demnach eine größere Abweichung zum Experiment zu erwarten, da sich der größere Fehler in den Gitterparametern (s. Abschnitt 3.1) indirekt auch auf die Frequenzen auswirkt.

Tabelle 3.3.: Experimentelle und berechnete IR-Moden von 1T-TiS₂. Die IR-Moden wurden sowohl mit der PBE+U-D3-Methode als auch mit dem PBE-Funktional berechnet.

Symmetrie	Exp. / cm^{-1}	PBE+U-D3 / cm ⁻¹	$\rm PBE \ / \ cm^{-1}$
A_{1g} E_{σ}	$335^a, 336^b, 332^c, 343^d$ $232^a, 232^b, 236^c, 240^d$	$336 \\ 245$	302 228
^a [29], ^b [30], ^c [31], ^d [32]			

In Tabelle 3.3 sind die experimentellen und die theoretisch bestimmten IR-Moden aufgeführt. 1T-TiS₂ besitzt eine D_{3d} -Punktsymmetrie. Daraus ergeben sich insgesamt vier Moden. Es sind jedoch nur zwei dieser Moden IR-aktiv. Aus diesem Grund beschränkt sich der Vergleich mit den theoretischen Werten auf die A_{1g} - und E_{g} -Moden. Bezüglich der A_{1g} - und E_{g} -Moden weist die PBE+U-D3-Methode einen durchschnittlichen Fehler von 2,6 % auf. Im Vergleich dazu liegt der Fehler mit dem PBE-Funktional bei 6,6 %. Die mit der PBE+U-D3-Methode erzielten Ergebnisse stimmen erneut besser mit den experimentellen Daten überein als die Ergebnisse, die aus der Beschreibung mit dem PBE-Funktional resultieren.

3.4. Zusammenfassung

In diesem Kapitel wurde sich mit der Bestimmung einer geeigneten Methode zur Beschreibung von lithiierten und delithiierten Titandichalkogeniden in VASP befasst und diese anschließend getestet. Die beste Beschreibung liefert das PBE-Funktional in Kombination mit der D3-Dispersionskorrektur und der DFT+U-Methode mit $U_{\rm eff} = 3,5 \,\mathrm{eV}$ für das Titan *d*-Orbital. Die Notwendigkeit einer Dispersionskorrektur wurde bei dem Vergleich der optimierten Struktur für delithiierte Titandichalkogenide deutlich, da fast

3. Effekt der Austausch- und Dispersionswechselwirkung

Tabelle 3.4.: Prozentuale Abweichung des mit der PBE+U-D3-Methode bestimmten Gitterparameters c für Ti X_2 und LiTi X_2 mit $X = \{$ S, Se, Te $\}$ von experimentellen Referenzwerten [7, 18, 106].

		$\Delta c \ / \ \%$	
x	$\mathrm{Li}_x\mathrm{TiS}_2$	$\mathrm{Li}_x\mathrm{TiSe}_2$	$\mathrm{Li}_x\mathrm{TiTe}_2$
0	-1,5	-0,6	-1,6
1	-2,0	-2,3	-2,8

alle unkorrigierten Funktionale eine schlechte Beschreibung lieferten. Unter Verwendung der D3-Korrektur zeigten alle Funktionale eine verbesserte Beschreibung dieser Systeme. Der Korrekturterm U ist notwendig, da die auf GGA basierenden Funktionale den magnetischen Grundzustand von LiTiS₂ nicht richtig wiedergaben. Der verwendete Wert für U_{eff} wurde so optimiert, dass mit der PBE-D3-Methode der ferromagnetische Zustand energetisch bevorzugt wird. Der Parameter U_{eff} wurde basierend auf den Ergebnissen von Hybrid-Rechnungen mit dem HSE06-Funktional optimiert.

Anschließend wurden das PBE-Funktional und die PBE+U-D3-Methode für weitere Eigenschaften dem Experiment gegenübergestellt. Es wurden der Gitterparameter c, die Bandstruktur von TiS₂, die Quadrupolkopplungskonstante C_q und die chemische Verschiebung $\Delta \delta$ von Lithium sowie das IR-Spektrum von TiS₂ betrachtet. Dabei konnte für die PBE+U-D3-Methode für jede dieser Größen bzw. Spektren eine bessere Übereinstimmung mit den experimentellen Daten beobachtet werden als mit dem reinen PBE-Funktional. Wurden die dia- und ferromagnetischen Zustände betrachtet, dann lieferte der diamagnetische Zustand eine bessere Übereinstimmung mit den experimentellen Daten. Dies klingt zunächst nach einem Widerspruch, da der magnetische Grundzustand paramagnetisch ist. Der paramagnetische Zustand tritt aber nur bei niedrigen Temperaturen auf. Die experimentellen Ergebnisse wurden im Allgemeinen bei Temperaturen bestimmt, bei denen LiTiS₂ in einem diamagnetischen Zustand vorliegt.

Es lässt sich feststellen, dass mit der Kombination von PBE-Funktional, D3-Dispersionskorrektur und DFT+U-Methode eine geeignete Beschreibung für $\text{Li}_x \text{TiS}_2$ im Bereich von $0 \leq x \leq 1$ gefunden wurde. Auch für die Diselenid- und Ditelluridverbindungen sollte die PBE+U-D3-Methode eine gute Beschreibung liefern, auch wenn sich die Beschreibung nur für die Gitterparameter testen ließ. Die Abweichung des Gitterparameters c von den experimentellen Werten für die PBE+U-D3-Methode sind in Tabelle 3.4 für alle Lithiumtitandichalkogenide dargestellt.

4. Lithiumioneninterkalation in 1T-Übergangsmetalldichalkogenide

Im Anschluss an die Methodenevaluation soll die PBE+U-D3-Methode nun genutzt werden, um verschiedene Übergangsmetalldichalkogenide hinsichtlich ihrer Eignung als Lithiumioneninterkalat zu untersuchen. Hierfür werden Eigenschaften auf makroskopischer Ebene, die Veränderung der Gitterparameter und die Spannung bei veränderlichem Lithiumgehalt, genutzt. Zusätzlich zu den Titandichalkogeniden, die bei der Methodenevaluation betrachtet wurden, werden hier auch Vanadium- und Tantaldichalkogenide betrachtet. Zum einen soll die Frage beantwortet werden, ob welches der Übergangsdichalkogenide als Kathodenmaterial am besten geeignet ist und zum anderen wird untersucht, ob sich ein Trend der Eigenschaften mit Änderung der Gruppe oder auch der Periode beobachten lässt. Alle Übergangsmetalldichalkogenide, die im folgenden betrachtet werden, kristallisieren in derselben Struktur, weswegen gut die Abhängigkeit der Eigenschaften vom Übergangsmetall und Chalkogenid untersucht werden kann.

4.1. Übergangsmetalldichalkogenide

Für die Simulation der Vanadium- und Tantalverbindungen wird zunächst, analog zu den Titanverbindungen, der U_{eff} -Parameter für die jeweilige Sulfidverbindung bestimmt. Mit dieser soll eine möglichst gute Beschreibung des Systems erzielt werden. Anschließend werden $2 \times 2 \times 2$ -Superzellen aller Materialien bezüglich der Veränderung des Gitterparameters und der Spannungskurve bei veränderlichem Lithiumanteil betrachtet.

4.1.1. $U_{\rm eff}$ -Parameter für Vanadium und Tantal

Wie aus der U_{eff} -Parameter-Bestimmung für Titan deutlich geworden ist, ist es ausreichend, die Energiedifferenz des ferro- und diamagnetischen Zustand der lithiierten

4. Lithiumioneninterkalation in 1T-Übergangsmetalldichalkogenide

Übergangsmetalldisulfidverbindung bezüglich des Wertes der HSE06-Rechnung zu optimieren. Diese Erkenntnis wurde im Folgenden auf Tantal und Vanadium übertragen. Mithilfe des HSE06-Funktionals wurde die Energiedifferenz zwischen dem ferro- und diamagnetischen Zustand berechnet. Bezüglich dieser Energiedifferenz wurde dann der U_{eff} -Parameter ausgewählt.

Abbildung 4.1.: Energiedifferenz des ferro- und diamagnetischen Zustand für LiTaS₂ (links) und LiVS₂ (rechts) für verschiedene U_{eff} -Werte. Die schwarze waagerechte Linie kennzeichnet die Energiedifferenz, die aus HSE06-Rechnungen resultiert. Es ergibt sich ein U_{eff} -Wert von 2,25 eV für Tantal und 3,1 eV für Vanadium.

In Abbildung 4.1 ist die Energiedifferenz zwischen ferro- und diamagnetischem Zustand in Abhängigkeit des U_{eff} -Wertes dargestellt und zusätzlich die mit dem HSE06-Funktional bestimmte Differenz. Aus dem Schnittpunkt dieser beiden Kurven lässt sich der U_{eff} -Parameter für Tantal und Vanadium ablesen. Es ergibt sich $U_{\text{eff}}(V) = 3,1 \text{ eV}$ und $U_{\text{eff}}(Ta) = 2,25 \text{ eV}$. Diese Werte sind in guter Übereinstimmung mit früheren theoretischen Arbeiten, die GGA+U-Methoden auf diese Übergangsmetalle anwenden. In der Veröffentlichung von Jiang und Falk [122] wird für Vanadium ein GGA-Funktional und ein optimierter U_{eff} -Wert von $\approx 3,0 \text{ eV}$ für die Beschreibung von Li_{1+x}V₃O₈ verwendet. In der Arbeit von Darancet *et al.* [123] wird für die Beschreibung von TaS₂ ein optimierter U_{eff} -Wert von 2,27 eV für Tantal verwendet. Für Tantal ist der diamagnetische Zustand stabiler, wohingegen bei Vanadium der ferromagnetische Zustand eine niedrigere Energie aufweist.

Tabelle 4.1.: Vergleich des experimentellen Gitterparameters c mit dem aus der Geometrieoptimierung resultierendem Gitterparameter für die PBE+U-D3-Methode mit den zuvor bestimmten U_{eff} -Werten von $U_{\text{eff}}(\text{Ta}) = 2,25 \text{ eV}$ und $U_{\text{eff}}(\text{V}) = 3,1 \text{ eV}$.

	$c_{\rm exp}$ / Å	$c_{\rm theo}$ / Å	Δc / %
TaS_2	$6,04^a, 5,862^b$	5,769	-4,5, -1,59
$LiTaS_2$	$6,475^{a}$	$6,\!33$	-2,24
$TaSe_2$	$6,348^a, 6,241^b$	$6,\!123$	-3,54, -1,89
$LiTaSe_2$	$6,817^{a}$	$6,\!637$	$-2,\!64$
$TaTe_2$	$6,694^{c}$	6,728	0,50
$LiTaTe_2$	$7,175^{c}$	7,004	-2,39
VS_2	$5,755^{d}$	$5,\!652$	-1,78
$LiVS_2$	$6,139^{d}$	6,037	$-1,\!67$
VSe_2	$6,10^{a}$	6,035	-1,06
LiVSe_2	$6,356^{a}$	6,307	-0,77
VTe_2	$6,445^{c}$	6,466	0,33
${\rm LiVTe}_2$	$6,786^{c}$	6,702	$-1,\!24$
a [7], b [41], c [42], d [40]			

Zur Validierung der bestimmten U_{eff} -Parameter wurden die Gitterparameter für die Tantal- und Vanadiumdichalkogenide mit und ohne interkaliertem Lithium bestimmt und mit experimentellen Werten verglichen. Die experimentellen Werte und die prozentuale Abweichung der hier bestimmten Gitterparameter zu diesen sind in den Tabellen 4.1 und 4.2 aufgeführt. Die Abweichungen bewegen sich im Bereich von -3 bis 1,5%. Ausnahmen sind hierbei der Gitterparameter a von LiVTe₂, der die höchste bisher beobachtete Abweichung von 7.57% für diese Methode hat. Die Veröffentlichung von Guzman et al. [42] lässt keine Schlüsse zu, dass diese hohe Abweichung durch die experimentellen Werte zustande kommt. Es konnten allerdings auch keine weiteren experimentellen Gitterparameter für LiVTe₂ gefunden und zum Vergleich herangezogen werden. Weitere hohe Abweichungen der experimentellen und theoretisch berechneten Gitterparameter konnten für den Gitterparameter c von TaS₂ und TaSe₂ mit jeweils -4,5% und -3,54% zu den Ergebnissen von Whittingham *et al.* [7] beobachtet werden. Für TaS_2 und $TaSe_2$ sind die Werte in der Literatur allerdings nicht eindeutig. Für Tantaldisulfid finden sich Gitterparameter in einer weiteren experimentellen Arbeit. In der Arbeit von Suzuki et al. [41] wurde für TaS_2 ein Gitterparameter c von

	a / Å	a., / Å	$\Delta a / \%$
	uexp / II	atheo / 11	$\Delta a / 70$
TaS_2	$3,340^{a, b}$	3,364	0,73
$LiTaS_2$	$3,340^{a}$	$3,\!344$	$0,\!11$
TaSe_2	$3,436^{a, b}$	$3,\!481$	$1,\!32$
$LiTaSe_2$	$3,477^{a}$	3,503	0,76
$TaTe_2$	$3,624^{c}$	$3,\!653$	0,81
$LiTaTe_2$	$3,752^{c}$	3,808	$1,\!49$
VS_2	$3,218^{d}$	$3,\!179$	-1,20
$LiVS_2$	$3,381^{d}$	3,293	-2,60
VSe_2	$3,35^{a}$	3,325	-0,76
$LiVSe_2$	$3,584^{a}$	3,49	-2,63
VTe_2	$3,598^{c}$	3,583	-0,42
$\rm LiVTe_2$	$3,\!606^c$	$3,\!879$	7,57
	a [7], b [41], c	[42], d [40]	

Tabelle 4.2.: Vergleich des experimentellen Gitterparameters *a* mit dem aus der Geometrieoptimierung resultierendem Gitterparameter für die PBE+U-D3-Methode mit den zuvor bestimmten U_{eff} -Werten von $U_{\text{eff}}(\text{Ta}) = 2,25 \text{ eV}$ und $U_{\text{eff}}(\text{V}) = 3,1 \text{ eV}$.

5,862 Å gemessen, von dem der hier bestimmte Gitterparameter nur um -1,59% abweicht. Weitere Veröffentlichungen berichten ebenfalls von Werten zwischen 5,85 und 5,9 Å für den Gitterparameter c für TaS₂ [124–127]. Eine sehr ähnliche Situation liegt für Tantaldiselenid vor. Auch hier wurden experimentelle Werte von Suzuki *et al.* [41] veröffentlicht, die zu den hier berechneten in deutlich weniger Abweichung resultieren. Für den Gitterparameter c von TaSe₂ wurde ein Wert von 6,241 Å gemessen, von dem der hier bestimmte Gitterparameter nur um -1,89% abweicht. Ein sehr ähnlicher Wert (6,272 Å) findet sich auch in der Veröffentlichung von Bjerkelund und Kjekshus [128]. Es lässt sich feststellen, dass mit der gewählten Methode und den bestimmten U_{eff} -Werten die Struktur der Tantal- und Vanadiumdichalkogenide sowohl für die lithiumhaltigen als auch die lithiumarmen Verbindungen ähnlich gut beschrieben werden wie bei den Titandichalkogeniden.

4.1.2. Untersuchung von $2 \times 2 \times 2$ -Li_xMX₂-Superzellen

Im folgenden Abschnitt werden die verschiedenen Übergangsmetalldichalkogenide anhand ihrer Volumenänderung und ihrer Zellspannung bei der Interkalation von Lithium auf ihre Eignung als Batteriematerial untersucht. Von Interesse ist hierbei eine möglichst hohe und gleichbleibende Zellspannung sowie ein möglichst unverändertes Volumen in Abhängigkeit vom Lithiumgehalt. Zu diesem Zweck wurde zunächst mithilfe des in CRYSTAL14 enthaltenen Tools CONFRAND für die zu untersuchenden $2 \times 2 \times 2$ -1T-Superzelle alle nicht symmetrieäquivalenten Lithiumkonfiguration für $0 \le x \le 1$ bestimmt. Diese wurden anschließend in VASP für alle Kombinationen aus Übergangsmetall und Chalkogenide optimiert. Dabei ergeben sich für jedes Übergangsmetalldichalkogenid insgesamt 22 symmetrieinäquivalente Strukturen. Die Auswertung erfolgt unter der Annahme von boltzmannverteilten Größen, sodass bei der Berechnung der Spannung und des Volumens die Energie des Systems und die Multiplizität miteinbezogen wird.

Zellvolumen

Abbildung 4.2.: Abhängigkeit des Zellvolumens vom Lithiumgehalt x in verschiedenen Übergangsmetalldichalkogeniden.

In Abbildung 4.2 ist die Änderung des Zellvolumens in Abhängigkeit vom Lithiumgehalt für die verschiedenen Lithiumübergangsmetalldichalkogenide dargestellt. Allen drei Übergangsmetallverbindungen ist gemein, dass die Volumenänderung für die Schwefelund Selenverbindung einen ähnlichen Kurvenverlauf hat, wobei die absolute Volumenzunahme für die Vanadiumverbindung gegenüber den Tantal- und Titanverbindungen leicht erhöht ist. Für alle drei Übergangsmetallverbindungen ist ebenfalls die durchschnittliche Volumendifferenz zwischen den Schwefel- und Selenverbindungen ähnlich. Die durchschnittliche Volumendifferenz für die Tellurverbindungen ist für Vanadium und Tantal gleich und geringer als für Titan. Der größte Unterschied zwischen den

Übergangsmetall- dichalkogenid	Volumenzunahme bei Lithiuminterkalation in $\%$
TiS_2	$6,\!85$
TiSe_2	8,67
$TiTe_2$	12,82
VS_2	14,58
VSe_2	$15,\!14$
VTe_2	15,7
TaS_2	$9,\!67$
$TaSe_2$	10,77
$TaTe_2$	13,08

Tabelle 4.3.: Prozentuale maximale Volumenzunahme bei der Lithiuminterkalation in Übergangsmetalldichalkogenide

Übergangsmetallverbindungen zeigt sich in den absoluten Werten für das Zellvolumen. Die Vanadiumverbindungen haben ein um 3 Å^3 bis 8 Å^3 geringeres Zellvolumen als die Tantal- und Titanverbindungen. Die Tantal- und Titanverbindungen hingegen weisen nahezu identische Werte auf, wobei das Volumen der Titanverbindungen meist etwas größer ist.

Auf Basis der Volumenänderung der Elementarzelle wären alle Selen- und Schwefelverbindungen geeignet für eine Batterie, denn es ist keine starke Ausdehnung bei der Lithiuminterkalation zu beobachten. Wird von der prozentualen maximalen Ausdehnung ausgegangen, wäre TiS₂ mit einer Ausdehnung von 7,3 % am besten als Interkalationsmaterial geeignet. Bei Tantaldisulfid wird eine Volumenzunahme von 9,7 % beobachtet, Vanadiumdisulfid hingegen weist bei der Interkalation von Lithium sogar einen doppelt so großen Zuwachs von 14,6 % auf. Die Selenverbindungen weisen einen leicht erhöhten Volumenzuwachs von 9,6 % (TiSe₂), 10,8 % (TaSe₂) und 15,1 % (VSe₂) im Vergleich zu ihren Schwefeläquivalenten auf. Nicht berücksichtigt wurde an dieser Stelle der Unterschied des Gesamtvolumens zwischen den verschiedenen Übergangsmetallen. Dies ist ebenfalls von Interesse, kann aber erst im Zusammenspiel mit der Zellspannung bewertet werden.

Zellspannung

Aus den Geometrieoptimierungen lässt sich zunächst die Ruhespannung (U_{OC}) bestimmen. Die Ruhespannung entspricht der Spannung, die im Grenzfall wird, wenn beim Schließen des Stromkreises der innere Widerstand des Interkalationsmaterials gleich

4.1. Übergangsmetalldichalkogenide

null ist. Die Leerlaufspannung wird auch als elektromotorische Kraft bezeichnet und berechnet sich bei den vorliegenden Ergebnissen für die $2 \times 2 \times 2$ -Superzelle über die Gleichung

$$U_{\rm OC} = -\frac{E({\rm Li}_x {\rm M}_8 {\rm X}_{16}) - E({\rm M}_8 {\rm X}_{16}) - x \cdot E({\rm Li}_{\rm bcc})}{x \cdot z},$$
(4.1)

wobei z die Ladungszahl ist, die im Fall der Lithiumionenbatterie den Wert 1 annimmt.

Abbildung 4.3.: Abhängigkeit der elektrischen Ruhespannung U_{OC} in Abhängigkeit vom Lithiumgehalt x in verschiedenen Übergangsmetalldichalkogeniden.

In Abbildung 4.3 ist die Veränderung der Ruhespannung mit dem Lithiumgehalt gezeigt. Für die Titandichalkogenide wird ein leichter, gleichmäßiger Abfall der Spannung mit zunehmendem Lithiumanteil beobachtet. Bei den Tantal- und Vanadiumdisulfiden und -diseleniden steigt die Spannung mit zunehmendem Lithiumgehalt bis zu x = 0.5an. Anschließend sinkt die Spannung wieder ab, wobei die Ruhespannung für $x \approx 0$ und $x \approx 1$ in etwa den gleichen Wert annimmt. Für die Telluride von Tantal und Vanadium ist das Verhalten deutlich anders. Zunächst wird ein starker Anstieg der Spannung beobachtet, bis der Lithiumgehalt den Wert 0,25 erreicht, und anschließend sinkt die Spannung mit zunehmendem Lithiumgehalt wieder auf ihren ursprünglichen Wert ab. Dabei liegt die Spannungspitze bei x = 0.25 teilweise über der Spannung der anderen Dichalkogenidverbindungen. Bis auf diese Ausnahme ist die Spannung für alle Telluride niedriger als für die Selenide, die wiederum niedriger liegt als die der Schwefelverbindungen.

Abbildung 4.4.: Leerlaufspannungskurven in Abhängigkeit des Lithiumgehalts x für verschiedene Übergangsmetalldichalkogenide aus dieser Arbeit und anderen veröffentlichten experimentellen Ergebnissen [43, 47, 48].

Zu erwarten wäre für die Tantal- und Vanadiumdichalkogenide ein Verlauf ähnlich dem der Titandichalkogenide, denn die Spannung müsste kontinuierlich abnehmen. Dies lässt sich auch mit Ergebnissen aus der Literatur belegen. Hier finden sich einige experimentell bestimmte Ruhespannungen für Titandisulfid, -diselenid, Vanadiumdisulfid, -diselenid sowie Tantaldisulfid [43, 47, 48]. In Abbildung 4.4 sind die experimentellen Werte zusammen mit denen in dieser Arbeit bestimmten Werte aufgetragen. Die experimentellen Leerlaufspannungen weisen alle einen mit zunehmendem Lithiuminterkalationsgrad abfallenden oder zumindest gleichbleibenden Verlauf auf.

Für die Titandichalkogenide wird eine gute Übereinstimmung mit den experimentellen Daten beobachtet. Zwar sind die in dieser Arbeit berechneten Leerlaufspannungen weniger vom Lithiumanteil abhängig als im Experiment beobachtet, die Zahlenwerte liegen aber im Bereich der experimentellen Daten. Für Tantaldisulfid und die Vanadiumdichalkogenide wird im Vergleich mit den experimentellen Daten ein entgegengesetztes Verhalten für einen Lithiumanteil kleiner als 0,5 beobachtet. Für Vanadiumdiselenid ist die Abweichung besonders groß. Experimentell wurde für dieses Interkalationsmaterial ein vom Lithiumgehalt unabhängiges Verhalten beobachtet [47,48]. Werden für Tantalund Vanadiumdisulfid nur die Leerlaufspannungen für x > 0.5 mit den Werten aus der Arbeit von Whittingham [47] verglichen, ist der Verlauf der berechneten $U_{\rm OC}$ ähnlich. Für fast alle Materialien ist zu beobachten, dass die Übereinstimmung mit den experimentellen Daten mit steigendem Lithiumgehalt zu nimmt. Ausgehend davon scheint die Beschreibung der Energie der lithiierten Vanadium- und Tantaldichalkogenide mit der gewählten Methode besser zu sein als für die delithiierten Systeme.

Aus den vorliegenden Ergebnissen der Geometrieoptimierungen können ebenfalls die Klemmspannung (U_{SOC}) bestimmt werden. Die Klemmspannung ist die tatsächlich erzeugte Spannung. Für den Entladevorgang ergibt sie sich über die Gleichung

T 7

$$U_{\rm SOC} = -\frac{D({\rm H}_x{\rm W}_8{\rm X}_{16}) - D({\rm H}_{x-1}{\rm W}_8{\rm X}_{16}) - D({\rm H}_{\rm bcc})}{z}.$$
 (4.2)

 $E(\text{Li}_{x}\text{M}_{8}\text{X}_{16}) - E(\text{Li}_{x-1}\text{M}_{8}\text{X}_{16}) - E(\text{Li}_{bcc})$

Abbildung 4.5.: Abhängigkeit der Klemmspannung U_{SOC} in Abhängigkeit vom Lithiumgehalt x in verschiedenen Übergangsmetalldichalkogeniden. Die gestrichelte Linie zeigt die Leerlaufspannung $U_{\rm OC}$, die theoretisch das obere Limit der Klemmspannung anzeigt.

In Abbildung 4.5 sind die berechneten Klemmspannungen für die Übergangsmetalldichalkogenide in Abhängigkeit vom Lithiumgehalt aufgetragen. Zusätzlich ist durch eine gestrichelte Linie jeweils die Leerlaufspannung angedeutet, da diese prinzipiell die obere Grenze der Klemmspannung darstellt. Allerdings ist dies nur für die Titandichal-

4. Lithiumioneninterkalation in 1T-Übergangsmetalldichalkogenide

kogenide der Fall. Für die Tantal- und Vanadiumdichalkogenide ist insbesondere im Bereich $x \leq 0.5$ die Klemmspannung höher als die Leerlaufspannung. Da für die Berechnung der Klemmspannung jeweils die Energie des geringer lithiierten Systems als Referenz für jeden Punkt verwendet wird, verstärkt sich der bereits in Abbildung 4.3 beobachtete Fehler für x < 0.5. Für x > 0.5 gilt die Bedingung $U_{\rm OC} \geq U_{\rm SOC}$. Interessant sind die negativen Spannungen für vollständig lithiiertes TaSe₂ und TaTe₂ sowie VTe₂. Ein Lithiumgehalt von x > 0.875 scheint mittels einer elektrochemischen Lithiierung nicht erreichbar zu sein.

Fraglich ist die Ursache des Fehlers bei den Tantal- und Vanadiumdichalkogeniden. Die Wahl des k-Punkte-Gitters ist für alle Übergangsmetalldichalkogenide gleich und für die Titandichalkogenide ergeben sich mit diesem gute Ergebnisse. Da die Gitterparameter aller Übergangsmetalldichalkogenide sehr ähnlich sind, sollte das gewählte k-Punktegitter für alle Materialien ausreichend sein. Dasselbe gilt für die gewählte *Cutoffenergie*. Die angegebenen Minimums- und Maximumswerte für die *Cutoffenergie* sind für alle Übergangsmetalle ähnlich und die verwendete *Cutoffenergie* ist bereits mehr als doppelt so groß wie der angegebene Maximumswert für alle Übergansgmetalle. Auch die Wahl der Superzelle steht als Ursache nicht in Verdacht, da gute Ergebnisse für die Titandichalkogenide erzeugt werden und es keine Notwendigkeit gibt, diese bei Veränderung des Übergangsmetalls zu vergrößern.

In Frage für den Fehler kommt eigentlich nur die gewählte Methode. Für Li TiS_2 und TiS₂ wurde die Methode ausführlich evaluiert, auch in Hinblick auf elektronische Eigenschaften des Materials. Für die Tantal- und Vanadiumdichalkogenide wurde angenommen, dass die Methode ebenfalls eine gute Wahl sei, aber die elektronischen Eigenschaften wurden nicht weiter untersucht. Auch haben Vanadium und Tantal ein d-Valenzelektron mehr als Titan, weshalb es sein kann, dass für die delithiierten Systeme ein offenschaliger Spinzustand hätte berücksichtigt werden müssen, denn zumindest für LiVS₂ ist der ferromagnetische Spinzustand energetisch günstiger als der diamagnetische. Eine stichprobenartige Rechnung für TaTe₂, dem problematischsten der hier beschriebenen Übergangsmetalldichalkogenide, resultiert für alle Konfigurationen in keiner Veränderung mit einem offenschaligen Spinzustand. Die erhaltenen Energien waren die selben wie zuvor auch. Die Berechnungen weisen für keine der Konfigurationen eine Differenz zwischen α und β -Spin auf. Weitere stichprobenhafte Rechnungen für TaS₂, deren Rechenzeit günstiger ist als TaTe₂, mit festgelegter Differenz zwischen α und β -Spin liegen zwischen 0,1 eV und 0,9 eV höher in der Energie. Es wurde angenommen, dass bei voller Lithiuminterkalation keine Differenz zwischen α und β -Spin existiert. Auch der umgekehrte Fall wurde zur Überprüfung betrachtet, wobei die Energien zwischen 1 eV und 2 eV höher waren.

Abbildung 4.6.: Klemmspannungskurven in Abhängigkeit des Lithiumgehalts für verschiedene Übergangsmetalldichalkogenide aus dieser Arbeit und anderen veröffentlichten experimentellen Ergebnissen [45, 46, 129].

Auch für die Klemmspannung finden sich in der Literatur für Lithiumtitandisulfid, -vanadiumdisulfid und -vanadiumdiselenid experimentell bestimmte Entladekurven [44– 46]. Diese sind zusammen mit den Klemmspannungen in der hier bestimmten Arbeit in Abbildung 4.6 aufgetragen.

Für die Klemmspannung wird nur für Titandisulfid eine gute Übereinstimmung mit den Ergebnissen der Veröffentlichung von Onuki *et al.* [46] beobachtet. Die Werte aus der Veröffentlichung von Murphy [45] liegen aber deutlich niedriger und der Verlauf

4. Lithiumioneninterkalation in 1T-Übergangsmetalldichalkogenide

der Kurven ist unterschiedlich. Für Vanadiumdisulfid stehen nur Werte aus dieser Veröffentlichung zur Verfügung und es wird keine Übereinstimmung der hier berechneten Klemmspannung beobachtet. Bei Vanadiumdiselenid liefern alle Veröffentlichungen ähnliche Werte, die mit den hier berechneten Werten in guter Übereinstimmung stehen. Leider ist das Verhalten in Abhängigkeit des Lithiumgehalts für alle experimentellen Daten unterschiedlich und auch keines der experimentellen Ergebnisse stimmt mit dem hier beobachteten Verhalten überein.

4.2. $\text{Li}_x \text{TiS}_2$ mit x > 1

In diesem Abschnitt wird die Lithiumioneninterkalation in TiS_2 mit einem Lithiumgehalt von bis zu 3 Lithiumionen pro Elementarzelle untersucht. Mit diesem Thema hat sich bereits eine experimentelle Arbeit von Suslov *et al.* [19] befasst. Dabei stufen sie TiS_2 bei der Interkalation von mehr als einem Lithiumion pro Elementarzelle als vielversprechendes Batteriematerial ein. Die Ergebnisse dieser experimentellen Arbeit sollen im Folgenden mit Hilfe von theoretischen Simulationen in VASP nachvollzogen werden.

Analog zu den vorherigen Abschnitten, wird der Einfluss der Lithiuminterkalation auf die Struktur und die Zellspannung untersucht. Zu diesem Zweck wird erneut das CRYSTAL14-Tool CONFRAND verwendet, um aus einer $2 \times 2 \times 1$ -Superzelle die verschiedenen Defektstrukturen zu erhalten. Die betrachtete Superzelle ist etwas kleiner in dem vorherigen Abschnitt, da sich durch die zusätzlich zu berücksichtigenden Tetraederpositionen deutlich mehr Konfigurationen ergeben. Bei der untersuchten $2 \times 2 \times 1$ -Superzelle sind es bereits 192 unterschiedliche Defektstrukturen, die zu untersuchen sind.

4.2.1. Strukturänderung

Aus der Optimierung der Defektstrukturen lässt sich die Änderung der Gitterparameter bestimmen. Hier können experimentelle Daten aus der Arbeit von Suslov *et al.* für den Bereich $0 \le x \le 3$ zum Vergleich herangezogen werden. Diese wurden bei einer Temperatur von 25 °C bestimmt. Bei den Gitterparametern wird von einer boltzmannverteilten Größe ausgegangen, was in Verbindung mit der Temperatur T und der Multiplizität der jeweiligen Struktur M_i in den Gitterparameter einfließt. Ein Gitterparameter d bei einem Lithiumanteil x ergibt sich über

Abbildung 4.7.: Die in dieser Arbeit optimierten Gitterparameter *a* (blaue, durchgezogene Linie) und *c* (rote, durchgezogene Linie) und die von Suslov *et al.* bestimmten Gitterparameter (gestrichelte Linie) in Abhängigkeit vom Lithiumgehalt.

$$d_{\text{boltz}}(\text{Li}_{x}\text{TiS}_{2}) = \frac{\sum_{i=1}^{N} M_{i} \sqrt{\frac{E_{i}}{E_{\max}}} \exp\left(\frac{E_{\max}-E_{i}}{kT}\right) \cdot d_{i}}{\sum_{i=1}^{N} M_{i} \sqrt{\frac{E_{i}}{E_{\max}}} \exp\left(\frac{E_{\max}-E_{i}}{kT}\right)}.$$
(4.3)

Dabei ist E_{\max} die höchste Energie für den jeweiligen Lithiumanteil und k steht für die Boltzmannkonstante.

In Abbildung 4.7 sind die boltzmannverteilten Gitterparameter a und c in Abhängigkeit vom Lithiumanteil dargestellt. Ebenso sind die Ergebnisse aus der Veröffentlichung von Suslov *et al.* [19] wiedergegeben. Zusätzlich sind in Anhang B auch die Kurven für minimalen Gitterparameter und durchschnittlichen Gitterparameter dargestellt. Bei der Beschreibung des Gitterparameters c wird ein deutlich anderes Verhalten beobachtet als im Experiment, denn es sind zwei Plateaus zu erkennen, innerhalb derer sich der Gitterparameter kaum verändert. Die experimentellen Daten lassen nur ein solches Plateau erkennen. Des Weiteren wird ein deutlich anderes Verhalten für den Gitterparameter a beobachtet, denn dieser steigt bei den optimierten Defektstrukturen mit zunehmendem Lithiumanteil kontinuierlich an, wohingegen bei den experimentellen Daten nur ein sehr geringer Anstieg beobachtet werden kann.

4.2.2. Spannungskurve

Über eine Anpassung der Gleichungen 4.1 und 4.2 auf die kleinere Superzelle lassen sich erneut Leerlauf- und Klemmspannung in Abhängigkeit des Lithiumgehalts bestimmen. Für den hier vorliegenden Fall einer $2 \times 2 \times 1$ -Superzelle ergibt sich eine Differenz zwischen dem Lithiumanteil x von minimal 0,25.

Abbildung 4.8.: Die in dieser Arbeit theoretisch bestimmte Leerlaufspannung $V_{\rm OC}$ (rote, gestrichelte Linie) und Klemmspannung $V_{\rm SOC}$ (rote, durchgezogene Linie) und die experimentellen Daten für die Leerlaufspannung aus der Arbeit von Suslov *et al.* [19] (blaue, gestrichelte Linie) und die Klemmspannung aus der Veröffentlichung von Dahn und Hearing [17] (blaue, durchgezogene Linie), aufgetragen gegen den Lithiumanteil x.

Wie im vorherigen Abschnitt diskutiert, können aus den vorliegenden Ergebnissen der Superzellenstrukturrechnungen die Leerlaufspannung und die Klemmspannung berechnet werden. Insbesondere für die Klemmspannung wird eine gute Übereinstimmung mit den experimentellen Daten von Dahn und Hearing [17] beobachtet. Die Leerlaufspannung hingegen sinkt deutlich stärker ab, als es bei Suslov *et al.* der Fall ist. Im Gegensatz dazu wurde im vorherigen Abschnitt für $\text{Li}_x \text{TiS}_2$ mit $0 \le x \le 1$ im Vergleich mit den experimentellen Daten beobachtet, dass die hier bestimmten Werte weniger stark abfallen als die experimentellen (siehe Abbildung 4.4). Da auch die Übereinstimmung der Klemmspannung mit den experimentellen Daten gut ist, kann davon ausgegangen werden, dass die Leerlaufspannung einen stärkeren Abfall zeigt, als es Suslov *et al.* in ihrer Arbeit beobachtet haben.

Auffällig ist das Verhalten bei der Beschreibung von Li₃TiS₂, wo sowohl die Gitterparameter (vgl. Abb. 4.7) als auch die Zellspannung (vgl. Abb. 4.8) stark absinken. Für Li_xTiS₂ für $0 \le x \le 1$ wurde eine bessere Übereinstimmung der Gitterparameter für den diamagnetischen Spinzustand beobachtet, weswegen auch für den Lithiumanteil x > 1 ein diamagnetischer Spinzustand zugrunde gelegt wurde. Dieses Vorgehen müsste bei den vorliegenden Ergebnissen, insbesondere für Li₃TiS₂, aber auch für die Leerlaufspannung hinterfragt werden.

4.3. Zusammenfassung

Dieses Kapitel befasste sich mit der Untersuchung verschiedener Übergangsmetalldichalkogenide auf ihre Eignung als Batteriematerial. Die Titan- und Tantaldichalkogenide verhalten sich sehr ähnlich hinsichtlich der Strukturveränderung und der Zellspannung bei Lithiuminterkalation. Des Weiteren nimmt von Schwefel über Selen zu Tellur die Zellspannung ab und die Stärke der Strukturveränderung zu. Von den untersuchten Materialien sind Titandisulfid und Vanadiumdisulfid aufgrund der hier untersuchten Eigenschaften und Ergebnisse am besten als Batteriematerial geeignet.

Obwohl die genutzte Methode die experimentellen Strukturdaten der Chalkogenide hinreichend genau beschreibt und bei der Beschreibung der relativen Stabilität der verschiedenen Spinzustände von LiMS₂ auf die Hybridmethode angepasst wurde, war es nur teilweise möglich, die experimentellen Spannungskurven in Abhängigkeit vom Lithiumgehalt zu reproduzieren. Die für die Titandichalkogenide bestimmten Spannungsverläufe zeigen die beste Übereinstimmung mit den experimentellen Daten. Bei Vanadium und Tantal war insbesondere die Beschreibung der Spannungsverläufe für $x \leq 0.5$ problematisch. Die Ursache dafür könnte darin begründet liegen, dass die U_{eff} -Wert für die lithiumhaltigen Übergangsmetalldisulfide angepassten wurden. Ändern sich die elektronischen Eigenschaften zu stark, so könnte es sein, dass hier die GGA+U-Methode

4. Lithiumioneninterkalation in 1T-Übergangsmetalldichalkogenide

mit einem U_{eff} -Wert für alle Chalkogenide und über alle Lithiumanteile versagt. Die einzige Abhilfe könnte die Verwendung einer Hybrid-Methode schaffen, die aber mit einem deutlich höheren Rechenaufwand verbunden wäre. Auch die Berücksichtigung des offenschaligen Spinzustands könnte die Ergebnisse verbessern, obwohl erste stichprobenartige Berechnungen für Li_xTaTe₂ mit der PBE+U-D3-Methode keine Änderungen in den Energien und der Differenz der Spins mit sich brachten.

Der Bereich von x > 0,5 sowie die Schwefel- und Selenverbindungen werden durch die gewählte Methode für alle drei Übergangsmetalle gut beschrieben. Die Zunahme des Volumens ist für alle Verbindungen ähnlich und für die Vanadiumverbindungen am stärksten. Die Vanadiumverbindungen besitzen das kleinste Volumen und haben somit bei etwa gleicher Leerlaufspannung eine höhere Energiedichte. Die Übergangsmetalldiselenidverbindungen weisen hingegen ein höheres Volumen und eine kleinere Leerlaufspannung gegenüber den Sulfidverbindungen auf. Daher sind sie als Batteriematerial weniger gut geeignet als ihre Schwefelhomologe.

Abbildung 4.9.: Berechnete Energiedichte in Abhängigkeit vom Lithiumgehalt für Titan-, Vanadium- und Tantaldisulfid. Die Werte für x < 0.5 sind auf Grund der schlechten experimentellen Übereinstimmung der berechneten Daten nur als gepunktete Linie dargestellt.

Für die Übergangsmetalldisulfidverbindung ist in Abbildung 4.9 die Energiedichte aus der Klemmspannung in Abhängigkeit vom Lithiumanteil aufgetragen. Die Energiedichte wird erhalten, indem Gleichung 4.2 mit z multipliziert wird. Die typische Energiedichte von Lithiumionenbatterien liegt bei etwa 300 W h l^{-1} [130]. Durch die Unterschätzung der Gitterparameter wird in den Berechnungen auch das Volumen der Zelle unterschätzt, was wiederum in einer deutlich höheren Energiedichte resultiert. Daher dienen die Werte in Abbildung 4.9 zum Vergleich der Materialien. Durch das kleinere Volumen, aber eine ähnliche Klemmspannung, eignet sich Vanadiumdisulfid hinsichtlich der Energiedichte geringfügig besser als Titandisulfid. Der Nachteil an Vanadiumdisulfid ist aber die deutlich erhöhte prozentuale Volumenzunahme bei Interkalation und die mit zunehmendem Lithiumgehalt stärker abnehmende Klemmspannung.

Im zweiten Abschnitt wurde untersucht, inwiefern TiS_2 als Interkalationsmaterial profitieren würde, wenn mehr als ein Lithiumion pro Elementarzelle interkaliert wird. Aus den vorliegenden Ergebnissen, wäre eine Interkalation von bis zu zwei Lithiumionen pro Elementarzelle vorstellbar. Allerdings sinkt die Klemmspannung bereits für einen Lithiumanteil x > 1 von etwa 2 V auf 0,5 V ab.

Abbildung 4.10.: Berechnete Leerlaufspannung verschiedener Übergangsmetalldichalkogenide $\text{Li}_x \text{MX}_2$ für $0 < x \leq 3$.

Auch für die anderen Übergangsmetalldichalkogenide lässt sich approximativ die Leerlaufspannung unter Verwendung der Elementarzelle abbilden. Diese sind in Abbildung 4.10 dargestellt. Aus der Approximation ergibt sich kein detaillierter Verlauf der Leerlaufspannung. Allerdings lässt sich einschätzen, wie stark die Klemmspannung für die Interkalation für x > 1 absinkt. LiVS₂ weist über den gesamten Bereich eine leicht höhere Leerlaufspannung auf als LiTiS₂. Für Tantaldisulfid ist bereits die In-

4. Lithiumioneninterkalation in 1T-Übergangsmetalldichalkogenide

terkalation für x > 1 mit einer negativen Leerlaufspannung verbunden, dass heißt es wird sich kein Li₂TaS₂ bilden. Für fast alle untersuchten Verbindungen ist die Bildung von Li₃MX₂ mit einer negativen Leerlaufspannung verbunden. Titanditellurid weist als einziges über den gesamten Interkalationsbereich eine positive Spannung auf. Dennoch würde sich keines dieser Materialien gut eignen, um mehr als ein Lithiumion pro Elementarzelle zu interkalieren, da die Spannungsschwankungen zu stark sind.

5. Lithiumionenwanderung in 1T-Titandichalkogeniden

Im vorherigen Kapitel hat sich herausgestellt, dass Titandisulfid mit am besten als Interkalationsmaterial geeignet ist und durch die PBE+U-D3-Methode besser beschrieben wird als die Tantal- und Vanadiumäquivalente. Im folgenden Kapitel wird deshalb die Lithiumionenwanderung in verschiedenen Titandichalkogeniden, insbesondere in Titandisulfid, untersucht. Zu diesem Zweck werden zuerst die möglichen Wanderungspfade in $\text{Li}_x \text{TiS}_2$ betrachtet. Im Anschluss wird hinsichtlich der Aktivierungsbarriere noch einmal die zugrunde gelegte Methode evaluiert. Anschließend wird der Einfluss des Lithiumgehalts auf die Wanderung eines Lithiumions in LiTiS₂ untersucht. Abschließend wird das Chalkogenid variiert und der Einfluss dessen auf die Aktivierungsbarriere sowie der Zusammenhang zwischen Aktivierungsbarriere und Lithiumgehalt bei verschiedenen Chalkogeniden betrachtet.

5.1. Wanderungspfade

Die allgemeine Betrachtung der Wanderungspfade wird in zwei Abschnitte unterteilt, die sich jeweils mit der Oktaeder- und der Tetraederwanderung befassen. Die beiden Wanderungspfade unterscheiden sich signifikant in ihren Energiebarrieren und dem Verlauf des Minimumenergiepfads (MEP). Diese Wanderungspfade können noch weiter unterteilt werden, indem der Einfluss durch die Besetzung der benachbarten Lithiumionenpositionen betrachtet wird.

5.1.1. Tetraederwanderung

In Abbildung 5.1 ist eine $3 \times 3 \times 1$ -Superzelle von LiTiS₂ dargestellt. Es wurden drei Schwefeloktaeder kenntlich gemacht, die jeweils ein Lithiumion koordinieren. Diese Schwefeloktaeder bilden gemeinsam mit einem vierten Schwefeloktaeder, der ein Titanion koordiniert, eine Tetraederlücke. In Abbildung 5.1 ist diese Tetraederlücke durch

5. Lithiumionenwanderung in 1T-Titandichalkogeniden

Abbildung 5.1.: Blick in Richtung der xy-Ebene (links) und entlang der z-Richtung (rechts) einer $3 \times 3 \times 1$ -Superzelle von LiTiS₂ (S: gelb, Ti: blau, Li: orange). Die schwarzen Linien verbinden die Schwefelionen zu drei kantenverknüpften Oktaedern. Die oktaedrisch koordinierten Lithiumionen zeigen die Wyckoffposition 1b an. Das grüne Quadrat kennzeichnet die Tetraederlücke. Auf dieser Position hat Lithium in der experimentellen Struktur einen Abstand von etwa 2,3 Å zu den drei direkt benachbarten Oktaederpositionen (orange Linien).

ein grünes Quadrat gekennzeichnet. Diese Position stellt ein lokales Minimum während einer Wanderung von einer Oktaederlücke zu einer unbesetzten, direkt benachbarten Oktaederlücke dar. Experimentell wie auch theoretisch wurde dieser Wanderungsmechanismus schon beobachtet bzw. postuliert [9, 10, 13–15]. Eine Wanderung über eine solche Tetraederposition (Wyckoffposition 2d) wird im Folgenden als Tetraederwanderung bezeichnet.

Es ist zu erkennen, dass ein Lithiumion auf der Tetraederposition drei Oktaederlücken als direkte Nachbarn hat. Bei der Wanderung eines Lithiumions ist eine der Oktaederlücken unbesetzt, da von dieser das migrierende Lithiumion auf die Tetraederposition gewandert ist. Damit es sich um eine Wanderung handelt, muss eine der beiden verbleibenden Oktaederlücken ebenfalls unbesetzt sein. Dieser Fall wird im Folgenden als Einzelvakanzwanderung bezeichnet, analog zu der englischen Nomenklatur in der Veröffentlichung von van der Ven *et al.* [10]. Es können auch beide Oktaederlücken unbesetzt sein. In diesem Fall wird von einer Doppelvakanzwanderung gesprochen.

5.1.2. Oktaederwanderung

In 1T-LiTiS_2 koordinieren die Schwefelionen Titan und Lithium oktaedrisch. Diese Oktaeder sind kantenverknüpft und eine Wanderung des Lithiumions durch den Mittelpunkt dieser Kante ist denkbar und wurde schon theoretisch betrachtet [9]. Dieser Wanderungsmechanismus wird im Folgenden als Oktaederwanderung bezeichnet. Zwei

Abbildung 5.2.: Blick in Richtung der xy-Ebene (links) und entlang der z-Richtung (rechts) einer $3 \times 3 \times 1$ -Superzelle von LiTiS₂ (S: gelb, Ti: blau, Li: orange). Die schwarzen Linien verbinden die Schwefelionen zu zwei kantenverknüpften Oktaedern. Die zwei Lithiumionen in der Mitte der Oktaeder zeigen die oktaedrisch koordinierte 1b-Position an. Das grüne Quadrat zeigt den Übergangszustand einer Oktaederwanderung an. Auf dieser Position hat Lithium in der experimentellen Struktur einen Abstand von 1,75 Å zu den zwei direkt benachbarten Oktaederpositionen (orange Linie) und etwa 3 Å Abstand zu den zwei nächsten benachbarten Oktaederpositionen des Lithiumions (graue Linie).

dieser Schwefeloktaeder sind in der Abbildung 5.2 in eine $3 \times 3 \times 1$ -Superzelle von 1T-LiTiS₂ eingezeichnet. Das grüne Quadrat kennzeichnet den Mittelpunkt der Oktaederwanderung. An dieser Position hat das Lithiumion während der Wanderung den kürzesten Abstand zu den nächsten Nachbarn (2Å zu Schwefel in der experimentellen Struktur). Dadurch ergibt sich aus dieser Struktur das Maximum des MEP.

Aus den Untersuchungen der Tetraederwanderung durch van der Ven *et al.* ist bekannt, dass die Besetzung der benachbarten Oktaederlücke einen Einfluss auf die Aktivierungsbarriere dieses Wanderungsmechanismus hat [10]. Für die Wanderung entlang der Oktaederkante ist dies auch denkbar. Im Übergangszustand der Oktaederwanderung hat das migrierende Lithiumion zwei Lithiumionen als nächste Nachbarn. Die direkt benachbarten Oktaederpositionen hingegen sind unbesetzt, da sonst keine Wanderung möglich wäre. Es können drei verschiedene Besetzungsvarianten unterschieden werden. Sind beide Oktaederpositionen besetzt, so wird dies im Folgenden als Oktaederwanderung der Ordnung 0 bezeichnet. Analog dazu hat eine Oktaederwanderung mit einer besetzten Oktaederposition die Ordnung 1. Sind beide benachbarten Oktaederpositionen unbesetzt, so wird dies als Oktaederwanderung der Ordnung 2 bezeichnet.

5.2. Abhängigkeit des MEP von der Wahl der Methode

Mit diesem Abschnitt soll die Evaluation der Methode abgeschlossen werden und gleichzeitig ein Einblick in die Thematik der folgenden Abschnitte gegeben werden. Zunächst wird nur die Tetraederwanderung eines Lithiumions in $\text{Li}_x \text{TiS}_2$ für $x \approx 1$ betrachtet. Zum Abschluss dieses Abschnitts wird der gleiche Wanderungsprozess für $\text{Li}_x \text{TiS}_2$ für $x \approx 0$ betrachtet.

5.2.1. Lithiumionwanderung in $Li_x TiS_2$ für $x \approx 1$

Sowohl für das PBE-Funktional als auch die PBE+U-D3-Methode soll an dieser Stelle der MEP für die Wanderung eines Lithiumions für die experimentelle und die optimierte Geometrie bestimmt werden. Diese Geometrien unterscheiden sich insbesondere für das PBE-Funktional für TiS₂ stark (vgl. Kapitel 3). Zu diesem Zweck wird eine $3 \times 3 \times 2$ -Superzelle konstruiert und ein Lithiumion aus dieser entfernt. Dadurch ergibt sich die Summenformel Li_{0,94}TiS₂. Der MEP wurde mithilfe der NEB-Methode bestimmt und es wurden für jede Berechnung sieben Bilder zwischen den beiden Oktaederpositionen verwendet. Dadurch wird ein gut aufgelöster MEP erhalten, aus dem die Aktivierungsenergie für die Wanderung abgelesen werden kann.

Abbildung 5.3.: MEP für die Wanderung eines Lithiumions über die Tetraederlücke in $Li_{0,94}TiS_2$.

In Abbildung 5.3 sind die erhaltenen MEP visualisiert. Das Lithiumion bewegt sich von der Oktaederposition 1b durch den Mittelpunkt einer Schwefeloktaederfläche zur

Tetraederposition 2*d* und von dort auf dem gleichen Weg auf die leerstehende benachbarte Oktaederposition 1*d'*. Das Maximum des MEP ergibt sich aus der Situation, in der sich das Lithiumion auf dem Mittelpunkt der Oktaederfläche befindet, die von drei Schwefelionen aufgespannt wird. In dieser Position des Lithiumions hat es die kürzesten Abstände zu den nächsten Nachbarn. Dadurch erreichen die repulsiven Wechselwirkungen ihr Maximum. Die Tetraederposition, in der die Abstände zu den Schwefelionen wieder leicht erhöht sind, stellt deshalb ein lokales, wenn teilweise auch sehr flaches, Minimum dar.

Die in Abbildung 5.3 dargestellten MEP variieren nur geringfügig in ihrer Aktivierungsbarriere. Bei dem Vergleich von experimenteller und optimierter Geometrie lassen sich zwei interessante Sachverhalte beobachten. Zum einen kann für die optimierte Geometrie festgestellt werden, dass die Tetraederposition ein (flaches) Minimum darstellt, wohingegen es sich in der experimentellen Geometrie um das Maximum des MEP handelt. Zum anderen ist zu erkennen, dass die Differenz zwischen den Energiemaxima des PBE-Funktionals und der PBE+U-D3-Methode für die optimierte und die experimentelle Struktur gleich ist. In beiden Fällen liegt das Energiemaximum für die mit der PBE+U-D3-Methode durchgeführten Optimierungen circa 0,06 eV niedriger. Der Fehler bei der Strukturbeschreibung für $x \approx 1$ im Vergleich zur experimentell bestimmten Struktur ist für beide Methoden ungefähr gleich. Aus diesem Grund haben auch die Aktivierungsbarrieren für die experimentelle aber auch für die optimierte Struktur die gleiche Differenz. Trotz gleicher struktureller Beschreibung, resultiert die unterschiedliche elektronische Beschreibung in einem Energieunterschied von 0,06 eV, wenn das wandernde Lithiumion die Tetraederlücke besetzt.

5.2.2. Lithiumionwanderung in $Li_x TiS_2$ für $x \approx 0$

In diesem Abschnitt wird erneut eine $3 \times 3 \times 2$ -Superzelle von LiTiS₂ betrachtet, aus der alle bis auf ein Lithiumion entfernt wurden. Dies entspricht der Summenformel Li_{0,06}TiS₂. Analog zum vorherigen Abschnitt wird der MEP für das PBE-Funktional und die PBE+U-D3-Methode verglichen.

In Abbildung 5.4 sind die MEP für die Wanderung in $\text{Li}_x \text{TiS}_2$ für $x \approx 0$ dargestellt. Zur Berechnung des MEP wurde zum einen die optimierte, zum anderen die experimentelle Geometrie für TiS₂ verwendet. Mit der PBE+U-D3-Methode ist eine noch bessere Übereinstimmung für den MEP von experimenteller und optimierter Struktur als bei $\text{Li}_{0,94}\text{TiS}_2$ zu beobachten, da die Übereinstimmung der Geometrie größer ist. Zusätzlich lässt sich beobachten, dass bei gleicher Struktur die unterschiedliche elektronische

5. Lithiumionenwanderung in 1T-Titandichalkogeniden

Abbildung 5.4.: MEP für die Wanderung eines Lithiumions über die Tetraederlücke in ${\rm Li}_{0,06}{\rm TiS}_2$

Beschreibung durch die verschiedenen Methoden erneut einen Einfluss auf die Aktivierungsbarriere hat. Das Maximum des MEP der experimentell bestimmten Struktur für das PBE-Funktional liegt hier jedoch niedriger im Vergleich zur PBE+U-D3-Methode im Gegensatz zu Li_{0,94}TiS₂. Die unterschiedliche elektronische Beschreibung der PBE+U-D3-Methode sorgt bei Li_xTiS₂ mit $x \approx 0$ für eine höhere Aktivierungsbarriere, während es bei $x \approx 1$ zu einer Verringerung der Aktivierungsenergie gegenüber dem PBE-Funktional kommt.

Der Einfluss des Gitterparameters c auf den MEP zeigt sich bei diesen Berechnungen deutlich. Für die mit dem PBE-Funktional optimierte Geometrie wird eine Aktivierungsenergie erhalten, die etwa 0,4 eV niedriger liegt als die Barriere, die aus der Berechnung auf Basis der experimentell bestimmten Struktur erhalten wird. Dies liegt vor allem daran, dass der Gitterparameter c bei der Geometrieoptimierung stark überschätzt wird. Die repulsiven Wechselwirkungen mit den benachbarten Ionen sind aufgrund des erhöhten Gitterparameters viel geringer, da die Abstände zwischen den Ionen zunehmen. Zusätzlich lässt sich beobachten, dass das lokale Minimum bei der optimierten Geometrie im Vergleich zur experimentellen sehr viel flacher ist. Auch dies lässt sich auf die geringeren repulsiven Wechselwirkungen zurückführen. Damit ist der Energiegewinn durch die größere Entfernung zu den Schwefelionen auf der Tetraederposition nur minimal. Im Verhältnis zur Höhe der Aktivierungsbarriere bleibt der Energiegewinn im lokalen Minimum allerdings ungefähr konstant. In der experimentellen Struktur beträgt der Energiegewinn zum lokalen Minimum für das PBE-Funktional etwa 0,09 eV und für die optimierte Struktur etwa 0,05 eV bei einer etwa halb so hohen Aktivierungsbarriere. Trotz der stark unterschiedlich hohen Aktivierungsbarrieren und lokalen Minima bleibt der Verlauf des MEP trotzdem verhältnismäßig gleich.

5.3. Abhängigkeit der Aktivierungsbarrieren vom Wanderungspfad

Die am Anfang des Kapitels erwähnten Wanderungspfade werden nun an einer $3 \times 3 \times 2$ -Superzelle von LiTiS₂ mit möglichst wenig Lithiumleerstellen untersucht. Alle NEB-Rechnungen wurden mit den optimierten Gitterparametern für LiTiS₂ durchgeführt. Somit gibt es keine zusätzlichen indirekten Einflüsse durch unterschiedliche Gitterparameter aufgrund der unterschiedlichen Defektverteilung. Es werden nur die Effekte berücksichtigt, die die Leerstellen in der direkten Nachbarschaft auf das wandernde Lithiumion haben.

5.3.1. Tetraederwanderung

In diesem Abschnitt werden die beiden bereits in Abschnitt 5.1 vorgestellten Tetraederwanderungspfade einander gegenübergestellt. Für die Doppelvakanzwanderung wurden zwei Leerstellen in der $3 \times 3 \times 2$ -Superzelle von LiTiS₂ eingeführt. Damit ergibt sich die Summenformel Li_{0,88}TiS₂. Auch für die Einzelvakanzwanderung wurden zwei Leerstellen mit einem größtmöglichen Abstand voneinander eingeführt, damit die Anzahl der Lithiumleerstellen keinen Einfluss auf das Ergebnis hat.

Der MEP für die beiden Wanderungspfade ist in Abbildung 5.5 dargestellt. Die beiden unterschiedlichen Verläufe kommen durch die unterschiedliche Besetzung der benachbarten Lithiumionenplätze zustande. Liegt die Aktivierungsbarriere bei einer besetzten, benachbarten Oktaederlücke bei circa 0.55 eV, so sinkt diese auf rund 0.33 eV, wenn alle dem Übergangszustand benachbarten Oktaederlücken unbesetzt sind. Neben der Aktivierungsbarriere verändert sich auch der Verlauf des MEP stark. Für die Einzelvakanzwanderung ist kein lokales Minimum zu beobachten, wie es bei Li_{0.94}TiS₂ mit den für den Lithiumanteil optimierten Gitterparametern der Fall war. Die Hauptursache für das Fehlen des lokalen Minimums sind die Gitterparameter, die hier nahezu den experimentellen Werten entsprechen. Hier wurden die optimierten Gitterparameter von

5. Lithiumionenwanderung in 1T-Titandichalkogeniden

Abbildung 5.5.: MEP für die Wanderung eines Lithiumions in Li_{0,88}TiS₂ über einen Einzel- (rot) und einen Doppelvakanzwanderungspfad (cyan). Die Gitterparameter entsprechen hier den für LiTiS₂ optimierten Gitterparametern, um Einflüsse auf den Gitterparameter durch die Leerstellenverteilung zu vermeiden.

LiTiS₂ verwendet, damit die Gitterparameter für den Vergleich von Einzel- und Doppelvakanzwanderung gleich sind und nicht durch die Leerstellenverteilung beeinflusst werden. Für die Doppelvakanz hingegen ist das lokale Minimum stark ausgeprägt und zeigt eine Energiedifferenz von 0,11 eV zum Maximum des MEP. Dies entspricht einem Energiegewinn von 33 % gegenüber der für die Aktivierung benötigten Energie.

Der Unterschied in der Aktivierungsenergie zwischen den beiden Wanderungspfaden ist auf den Li-Li-Abstand zurückzuführen. Dieser beträgt 2,64 Å im Maximum des Einzelvakanzwanderungspfad, aber nur 3,57 Å im Maximum des Doppelvakanzwanderungspfad.

5.3.2. Oktaederwanderung

Für alle drei Ordnungen der Oktaederwanderung wurde jeweils eine NEB-Rechnung mit drei Bildern durchgeführt. Aus vorherigen Testrechnungen war bekannt, dass drei Bilder ausreichend sind, um den MEP der Oktaederwanderung abzubilden. In Abbildung 5.6 sind die MEP der drei verschiedenen Oktaederwanderungen gezeigt. Für die

Abbildung 5.6.: MEP für die Wanderung eines Lithiumions in $\text{Li}_x \text{TiS}_2$ mit $x \approx 1$ über einen Oktaederwanderungspfad mit keiner Leerstelle (Ordnung 0; orange), einer Leerstelle (Ordnung 1; grün) und zwei Leerstellen (Ordnung 2; lila) der nächsten benachbarten Lithiumpositionen im Übergangszustand.

Berechnung des Wanderungspfades wurden die Gitterparameter konstant gehalten, sodass die unterschiedliche Anzahl an Defekten keinen Einfluss auf den Gitterparameter und dadurch indirekt auf den MEP hat. Es kann beobachtet werden, dass es kaum einen Unterschied zwischen den Strukturen gibt, bei denen eine oder zwei der benachbarten Lithiumionenpositionen unbesetzt sind. Sind hingegen beide Oktaederpositionen besetzt, so erhöht sich die Aktivierungsenergie um etwa 0,25 eV.

Die Wanderung über die Oktaederkante wird im Folgenden nicht weiter berücksichtigt. Grund dafür sind zwei imaginären Frequenzen, die bei der Frequenzrechnung des Übergangszustands für alle Maxima beobachtet werden. Da es zwei imaginäre Frequenzen sind, handelt es sich bei dem Maximum des MEP um einen Sattelpunkt zweiter Ordnung und somit nicht um einen Übergangszustand (vgl. Abschnitt 2.5).

Für die folgende Arbeit heißt dies wiederum, dass nur die Wanderung über die Tetraederlücken berücksichtigt wird. Denn für diesen Wanderungspfad weist die Struktur am Maximum des MEP nur eine imaginäre Frequenz auf. Auch für einen niedrigeren Lithiumanteil wird der Oktaederwanderungspfad nicht berücksichtigt und ebenso nicht für andere Chalkogenide. Der Grund hierfür ist, dass davon ausgegangen wird, dass die Änderung des Lithiumgehalts oder des Anions keinen Einfluss auf die Lage des Oktaederwanderungspfads im Vergleich zum Tetraederwanderungspfad auf der Energiehyperfläche hat.

5.4. Abhängigkeit der Aktivierungsbarriere vom Lithiumgehalt

Um die Aktivierungsbarriere für verschiedene Lithiumanteile untersuchen zu können, müssen zunächst die zugehörigen Defektstrukturen untersucht werden. Im Folgenden wird sich intensiver mit $\text{Li}_x \text{TiS}_2$ für x = 0.33 und x = 0.67 auseinandergesetzt. Zu diesem Zweck werden mit dem CONFRAND-Tool des CRYSTAL14-Programms [131,132] verschiedene Defektstrukturen generiert, die alle denselben Lithiumgehalt aufweisen, aber aufgrund der Symmetrie energetisch nicht gleichwertig sind. Für eine $3 \times 3 \times 2$ -Superzelle sind dies für die beide Lithiumanteile jeweils 134 verschiedene Strukturen.

5.4.1. Eigenschaften der Defektstrukturen

Es wurden für x = 0,67 und x = 0,33 jeweils 134 verschiedene Lithiumkonfigurationen einer $3 \times 3 \times 2$ -Superzelle optimiert und die Ergebnisse ausgewertet. Für x = 0,67 liegt die Energiedifferenz zwischen der energetisch günstigsten und der energetisch ungünstigsten Struktur bei 0,5 eV. Für x = 0,33 beträgt diese Differenz nur noch 0,28 eV. Bei den Gitterparametern ist ein umgekehrtes Verhalten zu beobachten. Hier ist bei einem Lithiumgehalt von x = 0,67 die maximale Abweichung zwischen den verschiedenen Defektstrukturen für den *a*-Gitterparameter 0,019 Å und 0,11 Å für den Gitterparameter *c*. Bei Li_{0,33}TiS₂ ist die Abweichung für den Gitterparameter *a* höher und beträgt 0,036 Å. Die maximale Differenz des Gitterparameters *c* ist in etwa die gleiche wie bei x = 0,67 und beträgt 0,10 Å. Wird von einer Boltzmannverteilung der Gitterparameter bei Raumtemperatur ausgegangen, so ergibt sich für Li_{0,67}TiS₂ ein durchschnittlicher Gitterparameter *a* von 3,458 Å und für den Gitterparameter *c* ein Wert von 5,984 Å. Für Li_{0,33}TiS₂ ergibt sich mit der gleichen Annahme ein Wert für den Gitterparameter *a* von 3,469 Å und für den Gitterparameter *c* von 5,864 Å.

Beispielhaft sind in den Abbildungen 5.7 und 5.8 die drei energetisch günstigsten Strukturen für die beiden Lithiumanteile schematisch dargestellt. Es lässt sich erkennen, dass jeweils eine Struktur durch Doppelvakanzwanderung in eine der anderen Strukturen überführt werden kann. Werden alle optimierten Strukturen des jeweiligen

Abbildung 5.7.: Die drei energetisch günstigsten Strukturen für x = 0,67 aufsteigend von links nach rechts nach ihrer Energie sortiert. Die Parallelogramme stellen jeweils eine Lithiumschicht in TiS₂ dar. Dabei kennzeichnen die ausgefüllten Kreise die besetzten Lithiumpositionen, die leeren Quadrate die unbesetzten Lithiumpositionen. Die Nummerierung der Strukturen ergibt sich aus der Generierung der Geometrien aus der CRYSTAL14-Ausgabe.

Lithiumgehalts nach ihrer Energie sortiert, können die wichtigsten Einflussfaktoren auf die Positionierung der Struktur in dieser sortierten Liste identifiziert werden. Eine Tabelle mit allen Strukturen, ihrer Leerstellenbesetzung sowie den Gitterparametern und der absoluten Energie befindet sich im Anhang C.

Zunächst ist eine gleichmäßige Verteilung der 6 beziehungsweise 12 verbleibenden Lithiumionen auf die xy-Ebenen energetisch begünstigt. Diese wird im Folgenden als Asymmetriefaktor s bezeichnet, der zwischen 0 und 3 liegen kann. Ebenso spielt die Anordnung der Lithiumionen in den beiden xy-Ebenen eine wichtige Rolle, die im Folgenden als Überlappungsfaktor o bezeichnet wird. Es ist energetisch günstiger, wenn auf den verschiedenen Ebenen nur eine der (x,y)-Positionen besetzt ist. Dies kann bei mehr als der Hälfte an besetzten Lithiumpositionen nicht gewährleistet werden, hier ist es energetisch bevorzugt, dass sich so wenige Lithiumionen wie möglich in benachbarten Schichten auf der gleichen (x,y)-Position befinden. Eine untergeordnete Rolle spielt der durchschnittliche Abstand aller Lithiumionen voneinander d_{xyz} , der einen kleinen Einfluss auf die energetische Verteilung der Strukturen hat. Ebenso ist der durchschnittliche Abstand der Lithiumionen auf der xy-Ebene d_{xy} ein weiterer Einflussfaktor. Allerdings war es nicht möglich, eine einfache Gewichtung dieser Einflussfaktoren zu finden, mit der die Reihenfolge exakt vorhergesagt werden kann.

5. Lithiumionenwanderung in 1T-Titandichalkogeniden

Abbildung 5.8.: Die drei energetisch günstigsten Strukturen für x = 0.33 aufsteigend von links nach rechts nach ihrer Energie sortiert. Die Parallelogramme stellen jeweils eine Lithiumschicht in TiS₂ dar. Dabei kennzeichnen die ausgefüllten Kreise die besetzten Lithiumpositionen, die leeren Quadrate die unbesetzten Lithiumpositionen. Die Nummerierung der Strukturen ergibt sich aus der Generierung der Geometrien aus der CRYSTAL14-Ausgabe.

Gut vorhersagen lässt sich allerdings, welche Strukturen als energetisch günstigste in Frage kommen. Hierfür müssen die eben beschriebenen Einflussfaktoren explizit berechnet werden, ins Verhältnis gesetzt werden und zu dem Gewicht w aufsummiert werden. Die zur Vorhersage benötigten Werte berechnen sich konkret wie folgt:

$$s = \sum_{k=1}^{|Z|} \sum_{m>k}^{|Z|} \left| \sum_{i=1}^{N_{\rm Li}} \delta_{Z_k z_i} - \sum_{j=1}^{N_{\rm Li}} \delta_{Z_m z_j} \right|$$
(5.1)

$$o = \sum_{i=1}^{N_{\mathrm{Li}}} \sum_{j>i}^{N_{\mathrm{Li}}} \delta_{x_i x_j} \cdot \delta_{y_i y_j} \tag{5.2}$$

$$d_{xy} = \frac{1}{\sum_{i=1}^{N_{\text{Li}}} \sum_{j>i}^{N_{\text{Li}}} \delta_{z_i z_j}} \sum_{i}^{N_{\text{Li}}} \sum_{j>i}^{N_{\text{Li}}} \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2} \cdot \delta_{z_i z_j}$$
(5.3)

$$d_{xyz} = \frac{2}{(N_{\rm Li} - 1)^2 + N_{\rm Li} - 1} \sum_{i}^{N_{\rm Li}} \sum_{j>i}^{N_{\rm Li}} \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2 + (z_i - z_j)^2}$$
(5.4)

$$w = \frac{s - \min_{S}\{s\}}{\max_{S}\{s\} - \min_{S}\{s\}} + \frac{o - \min_{S}\{o\}}{\max_{S}\{o\} - \min_{S}\{o\}} + \frac{\max_{S}\{d_{xy}\} - d_{xy}}{\max_{S}\{d_{xyz}\} - \min_{S}\{d_{xyz}\}} + \frac{\max_{S}\{d_{xyz}\} - d_{xyz}}{\max_{S}\{d_{xyz}\} - \min_{S}\{d_{xyz}\}}$$
(5.5)

Tabelle 5.1.: Die zehn energetisch günstigsten Strukturen bzw. die zehn Strukturen mit dem geringsten Gewicht w für die Defektstrukturen mit einem Lithiumgehalt von x = 0.67 sortiert nach Energie (links) und nach Gewicht (rechts). Die drei energetisch günstigsten Strukturen (133, 107 und 124) sind bei der Sortierung nach Gewicht in der Tabelle enthalten.

Nummer	$E\ /\ {\rm eV}$	w	Nummer	$E\ /\ {\rm eV}$	w
133	-383.257	1.9860	133	-383.257	1.9860
107	-383.243	2.2178	125	-383.208	2.1685
124	-383.232	2.3431	108	-383.219	2.2055
106	-383.223	2.2944	107	-383.243	2.2178
108	-383.219	2.2055	127	-383.213	2.2705
131	-383.214	2.9344	119	-383.197	2.2817
078	-383.214	2.9472	106	-383.223	2.2944
127	-383.213	2.2705	128	-383.202	2.2954
079	-383.212	2.6849	124	-383.232	2.3431
059	-383.209	3.1351	134	-383.150	2.4182

Es bezeichnen dabei S die Menge aller Strukturen (hier 134), die mithilfe von CONF-RAND identifiziert wurden, N die Anzahl der Atome und |Z| die Mächtigkeit der Menge der verschiedenen Ebenen in z-Richtung (hier 2). x_i , y_i und z_i bezeichnen die Koordinaten des *i*-ten Lithiumions in der jeweiligen Struktur und Z_i die z-Koordinate der *i*-ten Ebene in z-Richtung. δ_{ij} ist die Dirac-Funktion und nimmt den Wert 1 an, wenn i = j und ansonsten den Wert 0. Das endgültige Gewicht einer Struktur w berechnet sich aus der Summe der normierten Einflussfaktoren. Für die Asymmetrie und die Überlappung wird das Minimum der Werte als Bezugspunkt gewählt, da niedrigere Werte eine energetisch günstigere Struktur identifizieren. Bei den Abständen der Lithiumionen voneinander ist es umgekehrt, hier sind möglichst hohe Werte energetisch begünstigt.

Werden die Gleichungen auf die vorliegenden Defektstrukturen vor der Geometrieoptimierung angewandt und anschließend nach ihrem Gewicht sortiert, so sind die drei energetisch günstigsten Strukturen unter den ersten zehn Strukturen mit dem geringsten Gewicht. In Tabelle 5.1 und 5.2 ist dies für x = 0.67 bzw. x = 0.33 dargestellt. Für größere Superzellen als der getesteten müssen wahrscheinlich für o, d_{xy} und d_{xyz} nur benachbarte Schichten bzw. Lithiumionen betrachtet werden. Mit benachbart sind dabei für d_{xy} die 6 nächsten Lithiumionen in der Schicht und bei d_{xyz} die 6 nächsten Lithiumionen in der Schicht sowie die Lithiumionen mit denselben xy-Koordinaten in der Schicht darüber und darunter und deren 6 nächste Lithiumionen gemeint. Außer-

5. Lithiumionenwanderung in 1T-Titandichalkogeniden

Tabelle 5.2.: Die zehn energetisch günstigsten Strukturen bzw. die zehn Strukturen mit dem geringsten Gewicht w für die Defektstrukturen mit einem Lithiumgehalt von x = 0,33 sortiert nach Energie (links) und nach Gewicht (rechts). Die drei energetisch günstigsten Strukturen (49, 123 und 84) sind bei der Sortierung nach Gewicht in der Tabelle enthalten.

Nummer	E / eV	w	Nummer	E / eV	w
049	-357.873991	3.0222	084	-357.859181	2.9725
123	-357.862470	2.9889	123	-357.862470	2.9889
084	-357.859181	2.9725	049	-357.873991	3.0222
095	-357.842037	3.2962	133	-357.827340	3.1089
106	-357.841862	3.8094	112	-357.803051	3.1222
053	-357.839693	3.3494	127	-357.824823	3.1942
107	-357.837632	3.3099	130	-357.717295	3.2143
126	-357.830089	4.5583	095	-357.842037	3.2962
083	-357.828689	3.7500	107	-357.837632	3.3099
122	-357.827958	3.8387	125	-357.802602	3.3284

dem müsste für größere Systeme wahrscheinlich der gleiche prozentuale Anteil optimiert werden, wie es für das getestete System der Fall war (10/134).

5.4.2. Aktivierungsbarrieren

Auf Basis der vorangegangenen Ergebnisse kann nun die Aktivierungsbarriere in Abhängigkeit vom Lithiumgehalt bestimmt werden. Dazu wird zunächst der MEP für die Einzelvakanz und Doppelvakanzwanderung in $\text{Li}_{0,33}\text{TiS}_2$ und $\text{Li}_{0,67}\text{TiS}_2$ bestimmt. Dafür wurde jeweils eine energetisch günstige Defektstruktur ausgewählt, in der beide möglichen Tetraederwanderungspfade mit derselben Start- und Endstruktur simuliert werden können. Der verwendete Gitterparameter entspricht dabei immer dem optimierten Gitterparameter der Startstruktur, da eine Optimierung dieser im NEB-Algorithmus nicht möglich. Die NEB-Rechnungen wurden mit 5 Bildern durchgeführt.

Die aus den NEB-Rechnungen erhaltenen MEP sind in Abbildung 5.9 visualisiert. Es fällt auf, dass die Wanderungspfade nicht symmetrisch sind. Das liegt daran, dass Start und Endstruktur über die Symmetrieoperationen der Raumgruppe nicht ineinander überführt werden können und somit energetisch verschieden sind. Als Aktivierungsbarriere wird das Maximum des MEP bei der Einzelvakanzwanderung und bei der Doppelvakanz die Aktivierungsbarriere verwendet, die zur Startstruktur gehört. Die erhaltenen Werte sind in Tabelle 5.3 aufgeführt.

Abbildung 5.9.: Wanderungsbarrieren der Lithiumionenwanderung in $Li_{0,33}TiS_2$ und $Li_{0,67}TiS_2$ für den Einzel- und Doppelvakanzwanderungspfad.

Tabelle 5.3.: Aktivierungsbarriere für die Einzel- und Doppelvakanzwanderung für verschiedene Lithiumanteile x.

	x = 0,88	$x = 0,\!67$	x = 0,33	x = 0,06
Einzelvakanz	$0,\!55\mathrm{eV}$	$0,\!69\mathrm{eV}$	$0,71\mathrm{eV}$	
Doppelvakanz	$0{,}33\mathrm{eV}$	$0{,}43\mathrm{eV}$	$0{,}50\mathrm{eV}$	$0{,}61\mathrm{eV}$

Die Doppelvakanzwanderung ist immer energetisch günstiger als die Einzelvakanz, da weniger repulsive Wechselwirkungen im Übergangszustand auftreten. Durch die freie Lithiumposition in der direkten Nachbarschaft ist der Abstand zum nächsten Lithiumion für die Doppelvakanz deutlich verringert. Somit verringern sich auch die repulsiven Wechselwirkungen. Für beide Wanderungspfade wird ein Anstieg der Aktivierungsbarriere mit sinkendem Lithiumanteil beobachtet. Hauptursache für den Anstieg der Aktivierungsbarriere ist der verringerte Gitterparameter c und der damit einhergehende verringerte Abstand der Lithiumionen zueinander. Bereits für die Doppelvakanzwanderung bei einem Lithiumgehalt von 0,33 ist der Abstand zwischen Titanion und Lithiumion aber kleiner, als der Li-Li-Abstand. Bei der Einzelvakanzwanderung hingegen

5. Lithiumionenwanderung in 1T-Titandichalkogeniden

ist der Li-Li-Abstand geringer. Für x = 0,06 ist nur noch ein einziges Lithiumion in der betrachteten Superzelle enthalten und trotzdem ist die Aktivierungsbarriere gegenüber x = 0,33 weiter deutlich erhöht. Dies liegt daran, dass die Ti-Li-Abstände weiter verringert sind und diese die repulsiven Wechselwirkungen bereits für x = 0,33 dominiert haben.

Für die vorliegenden Aktivierungsbarrieren können zwei veröffentlichte Arbeiten zum Vergleich herangezogen werden: die theoretische Arbeit von van der Ven *et al.* [10], die mit VASP unter Verwendung des LDA-Funktionals die Aktivierungsbarriere für verschiedene Lithiumanteile von Li_xTiS₂ bestimmt haben, sowie die experimentellen Arbeiten von Wilkening *et al.* und Bensch *et al.*, die die Aktivierungsbarriere in Li_{1,0}TiS₂, Li_{0,7}TiS₂ und Li_{0,7}TiSe₂ untersucht haben [12–15]. Die experimentellen Aktivierungsbarrieren von Wilkening *et al.*, die aus den Maxima der T_1^{-1} - und der $T_{1\rho}^{-1}$ -Messungen bestimmt wurden, liegen bei 0,48 eV für Li_{1,0}TiS₂ und 0,41 eV für Li_{0,7}TiS₂. Die Ergebnisse aus den τ_{SAE} -Messungen resultieren in einer Aktivierungsbarriere von 0,26 eV im niedrigen Temperaturbereich.

Für $Li_{1,0}TiS_2$ kann davon ausgegangen werden, dass es sich bei der Aktivierungsbarriere von 0,48 eV im hohen Temperaturbereich um eine Einzelvakanzwanderung handelt, und die in dieser Arbeit erhaltene Aktivierungsbarriere für $Li_{0.88}$ TiS₂ von 0,55 eV kommt dem experimentellen Wert sehr nahe. Die Aktivierungsbarriere aus den τ_{SAE} -Messungen im niedrigen Temperaturbereich wird der Barriere für die Doppelvakanz entsprechen, für die in dieser Arbeit eine Barriere von $0,33 \,\mathrm{eV}$ in $\mathrm{Li}_{0.88}\mathrm{TiS}_2$ berechnet wurde. Beide experimentellen Aktivierungsbarrieren stimmen gut mit den theoretischen Werten überein. Wilkening kommentierte damals die zwei unterschiedlichen Aktivierungsbarrieren in seiner Doktorarbeit mit: "Es zeigt sich, dass im Gegensatz zu $Li_{0.7}TiS_2$ die Diffusion nicht nur durch einen einzigen Mechanismus beschrieben wird." Die Vermutung liegt nahe, dass es sich bei den beiden Mechanismen um die Einzelvakanz und die Doppelvakanz handelt und in Li_{0.7}TiS₂ aufgrund der zahlreichen Leerstellen nur noch die Doppelvakanzwanderung beobachtet wird. Auch für Li_{0,7}TiS₂ passen die Zahlenwerte gut zusammen, denn für die Doppelvakanzwanderung wurde in dieser Arbeit eine Aktivierungsbarriere von 0,43 eV für Li_{0.67}TiS₂ erhalten. Eine Abweichung zu den experimentellen Aktivierungsbarrieren in $Li_{1,0}TiS_2$ von 0,07 eV wird sowohl für die Einzelals auch die Doppelvakanzwanderung beobachtet. Für Li_{0.7}TiS₂ ist die Abweichung zu den hier bestimmten Barrieren niedriger und beträgt 0,02 eV. Dies kann daran liegen, dass für x = 0.88 die Abweichung für den c Gitterparameter zu x = 1 größer ist als für x = 0.7 und x = 0.67.

Abbildung 5.10.: Aktivierungsbarrieren der Doppelvakanzwanderung in Abhängigkeit vom Lithiumanteil in $\text{Li}_x \text{TiS}_2$ aus der Veröffentlichung von van der Ven *et al.* [10] (rot) und der in dieser Arbeit berechneten Werte (cyan).

Für die Doppelvakanzwanderung wurden die Ergebnisse aus der Veröffentlichung von van der Ven *et al.* [10] und die Ergebnisse aus dieser Arbeit Abbildung 5.10 zusammengefasst dargestellt. Wird für die Doppelvakanzwanderung von einem linearen Zusammenhang zwischen Aktivierungsenergie und Lithiumgehalt ausgegangen, so ergibt sich die folgende Regressionsgerade

$$E_{\rm A} = -0.32 \,\text{eV} \cdot x_{\rm Li} + 0.62 \,\text{eV}. \tag{5.6}$$

Für x = 1,0 ergibt sich aus Gleichung 5.6 eine Barriere von 0,3 eV und für x = 0,7 ist $E_{\rm A} = 0,4 \text{ eV}$. Im Vergleich mit den experimentellen Aktivierungsbarrieren von Wilkening von 0,26 eV und 0,41 eV ist so eine noch bessere Übereinstimmung festzustellen. Die Ergebnisse von van der Ven *et al.* liegen im Schnitt 0,1 eV über den in dieser Arbeit bestimmten Aktivierungsbarrieren. Zum einen wird die Ursache dafür in der aus dem LDA-Funktional resultierenden elektronischen Beschreibung liegen. Das LDA-Funktional tendiert dazu, Bindungsenergien zu überschätzen, und dadurch kommt eine

höhere repulsive Kraft zwischen migrierendem Lithiumion und den drei im Energiemaximum koordinierten Schwefelionen zustande. Des Weiteren unterschätzt das LDA-Funktional den Gitterparameter c stärker und es wurde bereits am Beispiel der Aktivierungsbarriere von TiS₂ gezeigt, dass ein niedrigerer Gitterparameter c mit einer höheren Aktivierungsbarriere korreliert.

5.5. Titandichalkogenide

Zusätzlich zu der Betrachtung von Lithiumtitandisulfid wurden auch die äquivalenten Selen- und Tellurverbindungen untersucht. Analog zu dem Vorgehen bei Lithiumtitandisulfid wurden die Aktivierungsbarrieren für verschiedene Lithiuminterkalationsgrade berechnet. Die Berechnungen erfolgen dabei mit den jeweils optimierten Gitterparametern. Die Anordnungen der besetzten und unbesetzten Oktaederlücken sind hingegen unverändert zu den Berechnungen im vorherigen Abschnitt.

In Abbildung 5.11 sind die Aktivierungsbarrieren und die jeweiligen Regressionsgeraden für die Einzel- und Doppelvakanzwanderung in den verschiedenen Lithiumtitandichalkogeniden visualisiert. Die Aktivierungsenergie in Abhängigkeit vom Lithiumanteil weist für die Schwefel- und die Selenverbindungen ein sehr ähnliches Verhalten auf. Die Barriere für die Selenverbindungen ist aber sowohl für die Einzel- als auch die Doppelvakanzwanderung gegenüber den Schwefelverbindungen erhöht. Die Aktivierungsbarriere der Doppelvakanzwanderung in TiSe₂ ist im Schnitt um 0,08 eV höher als bei TiS₂. Für TiTe₂ sind es etwa 0,3 eV im Vergleich zu TiS₂. Für Li_xTiS₂ und Li_xTiSe₂ liegt die Aktivierungsbarriere für die Einzelvakanzwanderung deutlich höher als die der Doppelvakanzwanderung. Bei Li_xTiTe₂ sind die Aktivierungsbarrieren der Einzel- und Doppelvakanzwanderung sehr ähnlich.

Für $\text{Li}_{0,7}\text{TiSe}_2$ ist in der Arbeit von Bensch *et al.* eine mittels NMR ermittelte Aktivierungsbarriere von 0,45(2) eV für $\text{Li}_{0,7}\text{TiSe}_2$ beobachtet worden. Diese stimmt mit der hier beobachteten Aktivierungsbarriere für die Doppelvakanzwanderung in $\text{Li}_{0,67}\text{TiSe}_2$ von 0,43 eV sehr gut überein.

Dass die Aktivierungsbarriere mit zunehmender Ionengröße aber auch zunehmenden Gitterparametern ansteigt, liegt an der sinkenden Differenz von Zellvolumen und dem Volumen, welches die Ionen einnehmen. Das heißt, dass die Gitterparameter nicht im gleichen Maße ansteigen, wie der Ionenradius des Chalkogenids. Rechnerisch lässt sich das von den Ionen eingenommene Volumen in der verwendeten $3 \times 3 \times 2$ -Superzelle

Abbildung 5.11.: Abhängigkeit der Aktivierungsbarrieren in $\text{Li}_x \text{TiS}_2$ (blau), $\text{Li}_x \text{TiSe}_2$ (grau) und $\text{Li}_x \text{TiTe}_2$ (schwarz) vom Interkalationsgrad x sowie die ermittelten Regressionsgeraden für die Einzelvakanzwanderung (gestrichelte Linie und kreuzförmige Punkte) sowie die Doppelvakanzwanderung (durchgezogene Linie und kreisförmige Punkte).

über

$$V_{\rm Ion} = \frac{4\pi}{3} \cdot \left((18 - N_{\rm Li}) \cdot r_{\rm Ti^{4+}}^3 + N_{\rm Li} \cdot r_{\rm Ti^{3+}}^3 + N_{\rm Li} \cdot r_{\rm Li^+}^3 + 36 \cdot r_{\rm X^{2-}}^3 \right) \tag{5.7}$$

bestimmen. Wird das Ionenvolumen vom Zellvolumen abgezogen, so sinkt das verbleibende Restvolumen mit abnehmendem Lithiumgehalt, aber auch mit zunehmendem Ionenradius. Aus diesem Grund steigt die Aktivierungsbarriere mit abnehmender Lithiumanteil und mit zunehmendem Ionenradius.

5.6. Zusammenfassung

In diesem Kapitel wurde die Wanderung eines Lithiumions in Titandichalkogeniden untersucht. Zunächst wurden die verschiedenen denkbaren Wanderungspfade und ihre

5. Lithiumionenwanderung in 1T-Titandichalkogeniden

Varianten vorgestellt. Es ist sowohl eine Wanderung über die Oktaederkante als auch die Tetraederlücke denkbar. Durch die Besetzung benachbarter Lithiumpositionen des Übergangszustands entstehen zusätzliche Varianten dieser Wanderungspfade.

Im Vergleich zu früheren theoretischen Arbeiten wurde hier explizit der Einfluss der Dispersion- und Hubbard-Korrektur auf die berechneten Aktivierungsbarrieren betrachtet. Dabei wurde für die Wanderung in lithiumarmen und -reichen TiS₂ der MEP für die Tetraederwanderung mit optimierten und experimentellen Gitterparametern für das PBE-Funktional und die PBE+U-D3-Methode bestimmt. Im Vergleich zu experimentellen Ergebnissen lieferte die PBE+U-D3-Methode erneut die besten Ergebnisse. Des Weiteren konnte beobachtet werden, wie die starke Fehleinschätzung des Gitterparameters c für TiS₂ des PBE-Funktionals die Aktivierungsbarriere verfälscht.

Bei der Auseinandersetzung mit dem Tetraeder- und Oktaederwanderungspfad für verschiedene Lithiumkonfigurationen ließ sich feststellen, dass die Wanderung über die Oktaederkante keinen Übergangszustand darstellt, da die Frequenzrechnung des Übergangszustands zwei imaginäre Frequenzen ergab. Für einen Übergangszustand dürfte nur eine imaginäre Frequenz zu beobachten sein, wie es bei der Tetraederwanderung der Fall ist. Bei der Tetraederwanderung lassen sich die Einzel- und die Doppelvakanzwanderung unterscheiden, wobei zweitere eine deutlich geringere Aktivierungsbarriere besitzt.

Abschließend wurden die Tetraederwanderungspfade für verschiedene Lithiumanteile untersucht. Dafür wurde zunächst die Optimierung aller symmetrieinäquivalenten Defektstrukturen vorgenommen, die die Lithiumanteile x = 0.67 und x = 0.33 darstellen. Aus den Daten der Optimierung konnte eine Methode auf Basis der Eingangsstrukturen vorgeschlagen werden, mit der die energetisch günstigsten Strukturen vorhergesagt werden können.

Eine der energetisch günstigen Strukturen wurde anschließend als Ausgangspunkt der NEB-Rechnung verwendet. So wurde sichergestellt, dass die Ergebnisse mit den experimentellen Daten möglichst gut vergleichbar sind. Auf Basis dieser optimierten Geometrien wurden die verschiedenen Varianten des Tetraederwanderungspfads für $\text{Li}_x \text{TiS}_2$ untersucht. Im Vergleich zu den Experimenten zeigte sich eine sehr gute Übereinstimmung der hier bestimmten Aktivierungsbarrieren.

Abschließend wurden die Aktivierungsbarrieren für verschiedene Titandichalkogenide bestimmt. Dabei wurde festgestellt, dass die Aktivierungsbarriere mit zunehmendem Ionenradius der Chalkogenide steigt und die Aktivierungsbarriere der Einzel- und Doppelvakanzwanderung bei Li_xTiTe₂ fast identisch ist.

6. Fazit und Ausblick

Die vorliegende Arbeit hat sich mit der quantenchemischen Beschreibung von Titandisulfid und weiteren Übergangsmetalldichalkogeniden sowie der Lithiumioneninterkalation in diesen befasst. Dabei wurde deutlich, dass reine GGA-Funktionale nicht geeignet sind, um lithiiertes und delithiiertes Titandisulfid gleichermaßen gut zu beschreiben. Hybridfunktionale wären zur Beantwortung der eingangs gestellten Fragen zu rechenintensiv gewesen, insbesondere im Hinblick auf die Aktivierungsbarriere, welche in ausreichend großen Superzellen berechnet werden muss. Es konnte gezeigt werden, dass das PBE-Funktional unter Einbeziehung von Dispersions- und Hubbardkorrekturtermen gute Ergebnisse bei gleicher Rechenzeit im Vergleich zu GGA-Funktionalen liefert.

Die Eignung als Kathodenmaterial der Übergangsmetalldichalkogenide wurde mit zunehmender Periode des Chalkogenids schlechter. Das Volumen steigt an, die Spannung nimmt ab, wodurch die Energiedichte stark sinkt. Von Titan zu Vanadium, also mit steigender Gruppe, wurde das Volumen kleiner und die Spannung stieg leicht an. Innerhalb der Gruppe, von Vanadium zu Tantal, nahm das Volumen zu und die Spannung sank, ebenso wie es bei den Dichalkogeniden mit zunehmender Periode beobachtet wurde. Leider war es nicht möglich, die Spannungskurven der Tantal- und Vanadiumdichalkogenide für den Lithiuminterkalationsgrad von $x \leq 0.5$ gut zu beschreiben. Entweder lässt sich die gewählte Methode auf die schwach lithiierten Systeme nicht anwenden oder die Beschreibung des Spinzustands hätte anders gewählt werden müssen.

Die Frage nach dem Wanderungspfad in Lithiumtitandichalkogeniden konnte in dieser Arbeit beantwortet werden. Es wurde gezeigt, dass die Wanderung ausschließlich über die Tetraederlücke stattfindet, wobei zwischen einer Doppel- und einer Einzelvakanzwanderung unterschieden werden kann. Die Einzelvakanzwanderung tritt aufgrund der hohen Barriere nur in stark lithiierten Systemen auf, wo die Doppelvakanzwanderung weniger wahrscheinlich ist. Aus diesem Grund wurden auch experimentell für LiTiS₂ zwei verschiedene Aktivierungsbarrieren beobachtet [15] bzw. können aus [12] abgeleitet werden (siehe [133]). Die experimentellen Aktivierungsbarrieren konnten mit der gewählten Methode gut reproduziert werden.

6. Fazit und Ausblick

Für alle Dichalkogenide wird eine lineare Zunahme der Aktivierungsbarriere mit abnehmendem Lithiumgehalt beobachtet. Zwar wird die Wanderung in stärker delithiierten Systemen wahrscheinlicher, aber der *c*-Gitterparameter sinkt, die Titandichalkogenidschichten liegen enger beieinander und die repulsiven Li-Li- und Li-Ti-Wechselwirkungen während der Migration nehmen zu. Ebenso nimmt mit zunehmender Periode des Chalkogenids die Aktivierungsbarriere zu. Dies liegt daran, dass das von den Ionen eingenommene Volumen stärker ansteigt, als das Volumen der Elementarzelle und dadurch ebenfalls die repulsiven Wechselwirkungen während der Migration des Lithiumions zunehmen. Interessant ist ebenfalls zu beobachten, dass sich die Aktivierungsbarrieren von Einzel- und Doppelvakanzmigration mit zunehmender Periode des Chalkogenids annähern. Es ist davon auszugehen, dass die zunehmend stärker werdenden repulsiven Wechselwirkungen durch die zusätzliche Lithiumvakanz nicht mehr verringert werden können.

Darüber hinaus wurde in dieser Arbeit ein empirisches Modell vorgestellt, das die systematische Suche nach den energetisch günstigsten Defektstrukturen erleichtern könnte. Es konnte gezeigt werden, dass für das vorliegende System nur ein Bruchteil aller Defektstrukturen optimiert werden muss, um die drei energetisch günstigsten Strukturen zu ermitteln.

Zusätzlich wurde sich der Untersuchung der Eigenschaften von TiS₂ bei Lithiuminterkalationsgraden von x > 1 gewidmet. Diese wurden in einer Veröffentlichung von 2015 experimentell untersucht und als vielversprechend erachtet [19]. Allerdings ist die Klemmspannung für x > 1 viel zu niedrig, um eine Interkalation von Lithium für x > 1anzustreben. Auch die anderen Übergangsmetalldisulfide und Titandichalkogenide weisen für x > 1 keine sonderlich hohen Spannungen auf, weshalb von einer weiteren Untersuchung dieser Materialien abgesehen wurde.

Interessant wäre es gewesen, die Vorhersage der energetischen Reihenfolge der Defektstrukturen weiter zu evaluieren und zu verfeinern, denn die Optimierung ist zeitund ressourcenaufwändig. Auch müsste geprüft werden, ob die Erkenntnisse auf andere Übergangsmetalldichalkogenide übertragen werden können. Des Weiteren wurde die Abhängigkeit der Eigenschaften vom Interkalat nicht untersucht. Es wäre durchaus interessant gewesen, die Eigenschaften bei Natrium- und Magnesiuminterkalation zu untersuchen. Die Erkenntnis, dass für eine niedrige Aktivierungsbarriere das Verhältnis von Ionen- zu Elementarzellvolumen möglichst klein sein muss, hätte weiter genutzt werden können, um ein gut geeignetes Interkalationsmaterial zu finden. Zu diesem Zweck hätten auch Mischungen aus verschiedenen Übergangsmetallen, Dichalkogeniden oder Interkalaten betrachtet werden können, mit dem Ziel das Volumen der Elementarzelle zu vergrößern, aber die repulsiven Wechselwirkungen bei der Migration so gering wie möglich zu halten. Zu diesem Thema gibt es bereits einige experimentelle Untersuchungen, deren Aktivierungsbarrieren zur Evaluation theoretischer Berechnungen heranzuziehen. Als ein Beispiel sei die Arbeit von Bensch *et al.* angeführt, die die Lithiumionenwanderung in $\text{TiS}_{2-z}\text{Se}_z$ mittels NMR untersucht haben [134]. Die dort erhaltenen experimentellen Aktivierungsbarrieren weisen ein deutliches Minimum bei z = 1 von weniger als 0,20 eV auf. Sowohl zu schauen, ob sich dieses Ergebnis mit der hier evaluierten Methode reproduzieren lässt, als auch zu untersuchen ob durch Beimischung von Tellur die Barriere noch weiter gesenkt werden könnte, wäre ein sehr spannendes Projekt.

Insgesamt stellt diese Arbeit eine ausführliche quantenchemische Untersuchung der Eigenschaften von Titandisulfid bei Lithiumioneninterkalation dar, die darüber hinaus noch die Abhängigkeiten der Eigenschaften vom eingesetzten Übergangsmetall und Chalkogenid betrachtet, sowie die Frage nach der Lithiumionenmigration auf atomaren Ebene beantwortet. 6. Fazit und Ausblick

Abbildung A.1.: Änderung der Energie bei Erhöhung des k-Punktegitters (links) und der damit verbundenen Änderung der CPU-Zeit (rechts) für TiX₂ und LiTiX₂. Als Referenzwert wurde die Energie für ein k-Punktegitter von $12 \times 12 \times 6$ verwendet.

Abbildung A.2.: Änderung der Energie bei Erhöhung der *Cutoffenergie* (links) und der damit verbundenen Änderung der CPU-Zeit (rechts) für TiX₂ und LiTiX₂. Als Referenzwert wurde die Energie für eine *Cutoffenergie* von 1000 eV verwendet.

Abbildung B.1.: Abhängigkeit der Gitterparameter a (cyan) und c (rot) in Abhängigkeit der Lithiumstöchiometrie, bestimmt aus dem minimalen Wert (gepunktete Linie), aus dem Durchschnitt (gestrichelte Linie) bzw. unter der Annahme einer boltzmannverteilten Größe aus Gleichung 4.3 (durchgezogene Linie).

Abbildung C.1.: Nummerierung der Lithiumionenpositionen in der betrachteten $3\times3\times2\text{-}Superzelle}$

C.1. $Li_{0,33}TiS_2$

English and a control and the second					
Nummer	Gewichtung	Energie	Besetzte Positionen		
084	2,9725	$-357,\!859181$	3, 5, 6, 16, 17, 18		
123	2,9889	$-357,\!862470$	3, 4, 6, 16, 17, 18		
049	3,0222	$-357,\!873991$	4, 5, 6, 16, 17, 18		
133	$3,\!1089$	$-357,\!827340$	2, 3, 4, 14, 16, 18		
112	3,1222	$-357,\!803051$	3, 7, 9, 14, 15, 17		
127	$3,\!1942$	$-357,\!824823$	3, 4, 6, 14, 17, 18		
130	3,2143	$-357,\!717295$	2, 3, 4, 5, 7, 18		
095	$3,\!2962$	$-357,\!842037$	3, 5, 8, 15, 16, 18		
107	3,3099	$-357,\!837632$	3, 6, 7, 14, 17, 18		

Tabelle C.1.: Ergebnisse der Berechnungen der verschiedenen Defektstrukturen für Li_{0,33} TiS_2 sortiert nach der Gewichtung.

125	3,3284	-357,802602	3, 4, 7, 15, 17, 18
053	3,3494	$-357,\!839693$	4, 5, 8, 15, 16, 18
052	3,3810	-357,787557	4, 5, 7, 15, 17, 18
131	3,4149	$-357,\!819052$	2, 3, 4, 5, 16, 18
134	3,4782	$-357,\!592882$	2, 4, 9, 12, 14, 16
091	3,4884	-357,726497	3, 5, 7, 15, 17, 18
096	3,5039	-357,805959	3, 5, 9, 15, 16, 17
111	3,5202	-357,774457	3, 6, 7, 14, 16, 17
076	3,5774	-357,720684	3, 5, 6, 7, 8, 18
121	3,5924	-357,754322	3, 4, 6, 8, 9, 16
119	3,6062	-357,756399	3, 4, 6, 7, 8, 18
104	3,6242	-357,755726	3, 6, 7, 8, 9, 14
077	3,6267	-357,740856	3, 5, 6, 7, 9, 17
081	3,6339	-357,766574	3, 5, 6, 8, 9, 16
115	3,6449	-357,766860	3, 7, 8, 14, 15, 16
083	3,7500	$-357,\!828689$	3, 5, 6, 9, 16, 17
088	3,7728	$-357,\!689262$	3, 5, 6, 7, 8, 16
082	3,7812	$-357,\!809372$	3, 5, 6, 8, 16, 18
106	3,8094	$-357,\!841862$	3, 6, 7, 9, 14, 17
047	3,8272	-357,746083	4, 5, 6, 7, 8, 18
122	3,8387	$-357,\!827958$	3, 4, 6, 8, 16, 18
120	3,8418	-357,798310	3, 4, 6, 7, 17, 18
078	3,8421	-357,769731	3, 5, 6, 7, 17, 18
100	$3,\!8467$	$-357,\!690302$	3, 5, 7, 15, 16, 17
099	3,8480	-357,718103	3, 5, 7, 15, 16, 18
109	3,8604	-357,762370	3, 6, 7, 14, 16, 18
098	3,8619	-357,751258	3, 5, 8, 15, 16, 17
074	3,8648	-357,717946	3, 5, 7, 16, 17, 18
040	$3,\!8739$	-357,770106	5, 6, 8, 15, 16, 18
060	$3,\!8757$	$-357,\!773823$	3, 6, 8, 16, 17, 18
070	$3,\!8849$	-357,771128	3, 5, 9, 16, 17, 18
019	3,9197	$-357,\!786503$	5, 6, 8, 16, 17, 18
017	3,9260	$-357,\!797626$	5, 6, 9, 16, 17, 18
058	$3,\!9316$	$-357,\!798616$	3, 6, 9, 16, 17, 18
079	3,9631	$-357,\!657901$	3, 5, 6, 7, 8, 17
086	3,9656	$-357,\!696546$	3, 5, 6, 7, 9, 16
048	3,9678	$-357,\!822597$	4, 5, 6, 7, 17, 18
050	3,9822	$-357,\!822390$	4, 5, 7, 8, 15, 18
089	4,0342	$-357,\!732857$	3, 5, 6, 7, 16, 17
065	4,0503	$-357,\!764993$	3, 8, 9, 15, 16, 17
093	4,0584	$-357,\!780158$	3, 5, 9, 15, 16, 18
103	4,0657	$-357,\!751616$	3, 7, 8, 14, 16, 18
063	4,0707	-357,733188	3, 7, 8, 15, 17, 18
036	4,0787	$-357,\!738776$	5, 6, 7, 15, 17, 18

025	4,0796	$-357,\!742199$	5, 7, 8, 15, 17, 18
026	4,0887	$-357,\!804250$	5, 8, 9, 15, 16, 18
041	4,1060	$-357,\!765817$	5, 6, 9, 15, 16, 17
072	4,1684	$-357,\!682985$	3, 5, 7, 8, 9, 16
085	4,1780	$-357,\!751128$	3, 5, 6, 8, 16, 17
117	4,2115	$-357,\!676865$	3, 5, 7, 14, 16, 18
087	4,2158	$-357,\!735909$	3, 5, 6, 7, 16, 18
132	4,2225	$-357,\!714034$	2, 3, 4, 9, 14, 16
064	4,2470	$-357,\!785448$	3, 8, 9, 15, 16, 18
061	4,2537	$-357,\!725496$	3, 7, 9, 15, 17, 18
023	4,2729	$-357,\!729804$	5, 7, 9, 15, 17, 18
027	$4,\!3076$	$-357,\!771455$	5, 8, 9, 15, 16, 17
067	4,3243	$-357,\!673660$	3, 5, 7, 8, 9, 18
033	$4,\!3368$	-357,700878	5, 6, 7, 8, 9, 15
056	$4,\!3971$	$-357,\!693472$	3,6,7,8,9,17
073	$4,\!3991$	$-357,\!729637$	3, 5, 7, 8, 16, 18
101	$4,\!4395$	$-357,\!680221$	3, 7, 9, 14, 16, 18
045	4,4585	$-357,\!671582$	5, 6, 7, 15, 16, 17
043	4,4588	$-357,\!689895$	5, 6, 8, 15, 16, 17
097	4,5037	$-357,\!790394$	3, 5, 15, 16, 17, 18
059	4,5076	$-357,\!766250$	3,6,8,9,16,17
080	4,5078	$-357,\!766597$	3, 5, 6, 9, 16, 18
069	4,5278	$-357,\!767555$	3, 5, 8, 9, 16, 18
113	4,5354	$-357,\!777057$	3, 7, 14, 15, 17, 18
042	4,5383	$-357,\!771442$	5, 6, 15, 16, 17, 18
013	4,5427	$-357,\!691351$	5, 6, 7, 8, 9, 18
094	4,5539	$-357,\!824566$	3, 5, 8, 9, 15, 16
124	4,5556	$-357,\!738129$	3, 4, 7, 9, 15, 17
126	4,5583	$-357,\!830089$	3, 4, 8, 9, 15, 16
034	4,5626	$-357,\!732571$	5, 6, 7, 8, 15, 18
128	4,5646	$-357,\!605579$	3, 5, 7, 12, 14, 16
015	4,5707	$-357,\!693094$	5,6,7,8,9,17
068	4,5764	$-357,\!706593$	3, 5, 7, 9, 17, 18
057	$4,\!5944$	$-357,\!729726$	3,6,7,8,17,18
105	4,5982	$-357,\!812136$	3, 6, 7, 8, 14, 18
090	4,6040	$-357,\!719504$	3, 5, 7, 9, 15, 17
038	$4,\!6238$	$-357,\!716802$	5, 6, 9, 15, 16, 18
031	$4,\!6318$	$-357,\!692286$	5, 6, 8, 15, 17, 18
010	$4,\!6476$	$-357,\!694804$	6, 7, 8, 15, 17, 18
029	$4,\!6501$	$-357,\!679170$	5, 7, 8, 15, 16, 17
022	$4,\!6935$	$-357,\!748218$	5, 7, 8, 9, 15, 18
028	4,7206	$-357,\!756950$	5, 8, 15, 16, 17, 18
014	4,7402	$-357,\!751636$	5, 6, 7, 9, 17, 18
018	4,7447	$-357,\!756432$	5, 6, 8, 9, 16, 17

016	4,7520	$-357,\!750306$	5, 6, 7, 8, 17, 18
054	4,7581	$-357,\!670263$	3, 6, 7, 8, 9, 18
051	4,7789	$-357,\!755176$	4, 5, 7, 9, 15, 17
110	4,7875	-357,707170	3, 6, 7, 8, 14, 16
021	4,8289	$-357,\!698413$	5, 8, 9, 15, 17, 18
008	4,8451	$-357,\!697370$	6, 7, 9, 15, 17, 18
003	4,8742	$-357,\!700052$	6, 8, 9, 16, 17, 18
005	4,8827	$-357,\!719488$	6, 7, 9, 16, 17, 18
108	4,8931	$-357,\!727250$	3, 6, 7, 9, 14, 16
055	4,9234	$-357,\!765288$	3, 6, 7, 9, 17, 18
114	4,9350	$-357,\!727843$	3, 7, 14, 15, 16, 18
092	4,9603	$-357,\!647138$	3, 5, 7, 8, 15, 17
071	4,9662	$-357,\!664877$	3, 5, 7, 9, 16, 18
102	5,0922	$-357,\!735212$	3, 7, 8, 9, 14, 16
116	$5,\!1423$	$-357,\!667999$	3, 5, 7, 9, 14, 16
020	$5,\!1552$	$-357,\!679098$	5, 6, 7, 8, 16, 17
062	$5,\!2596$	$-357,\!717640$	3, 7, 8, 9, 15, 17
066	$5,\!2767$	$-357,\!752820$	3, 8, 15, 16, 17, 18
032	$5,\!2948$	$-357,\!655577$	5, 6, 7, 9, 15, 18
039	5,3135	$-357,\!760935$	5, 6, 8, 9, 15, 16
035	5,3186	$-357,\!707517$	5, 6, 7, 9, 15, 17
011	$5,\!3855$	$-357,\!611549$	6, 7, 9, 15, 16, 18
006	5,4093	$-357,\!616779$	6, 8, 9, 15, 17, 18
012	$5,\!4571$	$-357,\!694185$	5, 6, 8, 9, 17, 18
024	5,4687	$-357,\!708516$	5, 7, 8, 9, 15, 17
007	$5,\!4727$	$-357,\!682743$	6, 7, 8, 9, 15, 18
044	5,5072	$-357,\!681046$	5, 6, 7, 8, 15, 16
004	$5,\!6656$	$-357,\!676614$	6, 7, 8, 9, 16, 18
002	$5,\!6786$	$-357,\!685660$	6, 7, 8, 9, 17, 18
037	$5,\!6811$	$-357,\!643854$	5, 6, 7, 8, 15, 17
009	$5,\!8413$	$-357,\!661013$	6, 7, 8, 9, 15, 17
001	5,8575	$-357,\!638740$	7, 8, 9, 16, 17, 18
030	6,0269	$-357,\!665658$	5, 6, 8, 9, 15, 17
129	$6,\!1524$	$-357,\!667915$	2, 3, 4, 5, 7, 9
075	$6,\!6044$	$-357,\!668622$	3, 5, 6, 7, 8, 9
118	$6,\!6126$	$-357,\!665838$	3, 4, 6, 7, 8, 9
046	6,8184	$-357,\!684521$	4,5,6,7,8,9

C.2. $Li_{0,67}TiS_2$

Nummer	Gewichtung	Energie	Unbesetzte Positionen
133	1,9860	$-383,\!257267$	6, 8, 9, 10, 11, 13
125	2,1685	-383,221390	3, 8, 9, 10, 11, 13
108	2,2055	$-383,\!232226$	4, 5, 8, 10, 11, 12
107	2,2178	$-383,\!243472$	4, 5, 7, 10, 11, 12
127	$2,\!2705$	$-383,\!226497$	3, 4, 9, 10, 11, 14
119	$2,\!2817$	$-383,\!209996$	3, 5, 9, 10, 11, 13
106	$2,\!2944$	$-383,\!223162$	4, 5, 6, 10, 11, 12
128	2,2954	$-383,\!201864$	3, 4, 6, 10, 11, 16
124	$2,\!3431$	$-383,\!231928$	3, 7, 9, 10, 11, 13
134	2,4182	$-383,\!150016$	2, 4, 9, 10, 15, 17
117	$2,\!4485$	$-383,\!175711$	3, 5, 8, 10, 11, 13
126	2,5022	$-383,\!211819$	3, 4, 6, 10, 11, 14
114	$2,\!5391$	$-383,\!196425$	3, 5, 6, 10, 11, 13
115	$2,\!5708$	$-383,\!152406$	3, 5, 7, 10, 11, 13
079	$2,\!6849$	$-383,\!211602$	1, 4, 6, 10, 11, 17
071	2,7983	$-383,\!201730$	1,6,9,10,11,13
112	$2,\!8956$	$-383,\!208760$	3, 9, 10, 11, 13, 14
084	2,9237	$-383,\!169074$	1,6,8,10,11,14
103	2,9254	$-383,\!206041$	5, 9, 10, 11, 12, 13
069	2,9286	$-383,\!181381$	1,6,8,10,11,13
131	2,9344	$-383,\!226867$	8, 9, 10, 11, 13, 15
087	2,9420	$-383,\!194295$	1, 5, 8, 10, 11, 15
078	2,9472	$-383,\!226701$	1, 4, 8, 10, 11, 15
040	2,9756	$-383,\!166593$	1,6,8,10,11,12
054	3,0142	$-383,\!159187$	1, 3, 4, 10, 11, 17
036	$3,\!0355$	$-383,\!147584$	1,4,9,10,11,12
101	3,0452	$-383,\!191784$	5, 8, 10, 11, 12, 13
035	3,0516	$-383,\!159478$	1, 4, 8, 10, 11, 12
104	$3,\!0548$	$-383,\!185689$	7, 8, 10, 11, 12, 13
073	$3,\!0557$	$-383,\!145338$	1,4,6,10,11,14
105	$3,\!0597$	$-383,\!213727$	7, 9, 10, 11, 12, 13
049	3,0700	$-383,\!173689$	1, 3, 9, 10, 11, 13
032	3,0942	$-383,\!151180$	1, 4, 6, 10, 11, 12
122	$3,\!1073$	$-383,\!189053$	3, 6, 10, 11, 13, 17
111	$3,\!1097$	$-383,\!164853$	3, 8, 10, 11, 13, 14
099	3,1219	$-383,\!208061$	5, 7, 10, 11, 12, 13
030	$3,\!1333$	$-383,\!134917$	1, 4, 5, 10, 11, 12

Tabelle C.2.: Ergebnisse der Berechnungen der verschiedenen Defektstrukturen für $Li_{0,67}TiS_2$ sortiert nach der Gewichtung.

$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
110 $3,1438$ $-383,193276$ $3,7,10,11,13,14$ 033 $3,1606$ $-383,156184$ $1,4,7,10,11,12$ 063 $3,1734$ $-383,141927$ $1,5,6,10,11,13$ 121 $3,1882$ $-383,170741$ $1,3,8,10,11,13,15$ 047 $3,1937$ $-383,1370741$ $1,3,8,10,11,13,15$ 047 $3,2057$ $-383,1708266$ $6,8,10,11,13,182$ 075 $3,2267$ $-383,1428771$ $1,3,4,10,11,141$ 132 $3,2163$ $-383,1428771$ $1,3,4,10,11,141$ 044 $3,2391$ $-383,1488431$ $1,3,6,10,11,131$ 109 $3,2479$ $-383,1488431$ $1,3,6,10,11,131$ 109 $3,2479$ $-383,109111$ $5,6,10,11,13,147$ 042 $3,3507$ $-383,1045531$ $1,3,5,10,11,131$ 116 $3,3560$ $-383,1045531,3,5,10,11,13,17$ 051 $3,3799$ $-383,1086743,5,10,11,13,182$ 053 $3,4045$ $-383,1370461,3,4,10,11,165$ 118 $3,3964$ $-383,1370461,3,4,10,11,165$ 045 $3,4557$ $-383,1097571,3,7,10,11,13,182$ 053 $3,4607$ $-383,117391,5,6,10,11,13,182$ 054 $3,6407$ $-383,1292463,6,10,11,13,182$ 055 $3,6607$ $-383,172029,1,2,9,10,11,13,182$ 056 $3,5746$ $-383,172029,1,2,9,10,11,13,182$ 057 $3,6994$ $-383,01941,1,3,6,10,11,15,172$ 076 $3,5298$ $-383,193765,1,8,10,11,13,182$ 057 $3,6994$ $-383,128404,1,2,6,10,11,13,182$ 058 $3,7427$ $-383,114684,1,2,2,6,10,11,13,1$	059	$3,\!1351$	$-383,\!208806$	1, 3, 8, 10, 11, 15
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	110	$3,\!1438$	$-383,\!193276$	3, 7, 10, 11, 13, 14
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	033	3,1606	$-383,\!156184$	1, 4, 7, 10, 11, 12
121 $3,1882$ $-383,179271$ $3, 8, 10, 11, 13, 15$ 047 $3,1937$ $-383,137074$ $1, 3, 8, 10, 11, 13$ 075 $3,2057$ $-383,176587$ $1, 4, 8, 10, 11, 14$ 132 $3,2163$ $-383,170826$ $6, 8, 10, 11, 13, 18$ 089 $3,2224$ $-383,184744$ $1, 6, 8, 10, 11, 14$ 044 $3,2300$ $-383,142877$ $1, 3, 4, 10, 11, 14$ 044 $3,2391$ $-383,142877$ $1, 3, 4, 10, 11, 13$ 109 $3,2479$ $-383,169111$ $5, 6, 10, 11, 12, 13$ 042 $3,3507$ $-383,104553$ $1, 3, 5, 10, 11, 13$ 116 $3,3560$ $-383,104553$ $1, 3, 4, 10, 11, 13, 15$ 051 $3,3799$ $-383,108772$ $1, 3, 4, 10, 11, 13, 15$ 053 $3,4045$ $-383,109757$ $1, 3, 4, 10, 11, 13, 18$ 053 $3,4045$ $-383,109757$ $1, 3, 7, 10, 11, 13$ 085 $3,4607$ $-383,117391$ $1, 6, 10, 11, 14, 17$ 123 $3,4852$ $-383,191370$ $1, 6, 10, 11, 14, 17$ 123 $3,4899$ $-383,129246$ $3, 6, 10, 11, 13, 18$ 090 $3,5226$ $-383,191291$ $1, 6, 8, 10, 15, 17$ 076 $3,5298$ $-383,174723$ $1, 8, 10, 11, 12, 15$ 016 $3,5746$ $-383,193765$ $1, 8, 10, 11, 13, 15$ 017 $3,6924$ $-383,193765$ $1, 8, 10, 11, 13, 15$ 018 $3,7427$ $-383,193765$ $1, 8, 10, 11, 13, 15$ 024 $3,7611$ $-383,124841$ $1, 9, 10, 11, 13, 15$ 034 $3,7611$ <	063	$3,\!1734$	$-383,\!141927$	1, 5, 6, 10, 11, 13
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	121	$3,\!1882$	$-383,\!179271$	3, 8, 10, 11, 13, 15
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	047	$3,\!1937$	$-383,\!137074$	1, 3, 8, 10, 11, 13
132 $3,2163$ $-383,170826$ $6, 8, 10, 11, 13, 18$ 089 $3,2224$ $-383,184744$ $1, 6, 8, 10, 11, 15$ 050 $3,2360$ $-383,142877$ $1, 3, 4, 10, 11, 14$ 044 $3,2391$ $-383,148843$ $1, 3, 6, 10, 11, 13, 14$ 097 $3,2514$ $-383,169111$ $5, 6, 10, 11, 12, 15$ 042 $3,3507$ $-383,104553$ $1, 3, 5, 10, 11, 13, 17$ 051 $3,3709$ $-383,162772$ $1, 3, 4, 10, 11, 15$ 118 $3,3064$ $-383,108674$ $3, 5, 10, 11, 13, 18$ 053 $3,4045$ $-383,109757$ $1, 3, 4, 10, 11, 16$ 045 $3,4557$ $-383,109757$ $1, 3, 7, 10, 11, 13$ 085 $3,4607$ $-383,11739$ $1, 5, 6, 10, 11, 14, 17$ 123 $3,4899$ $-383,129246$ $3, 6, 10, 11, 13, 18$ 090 $3,5226$ $-383,191370$ $1, 6, 10, 11, 13, 18$ 090 $3,5226$ $-383,141514$ $1, 4, 6, 10, 11, 13, 18$ 090 $3,5226$ $-383,129246$ $3, 6, 10, 11, 13, 18$ 091 $3,5414$ $-383,141514$ $1, 4, 6, 10, 11, 13, 18$ 092 $3,5226$ $-383,198129$ $1, 6, 8, 10, 15, 17$ 076 $3,5298$ $-383,174723$ $1, 8, 10, 11, 12, 15$ 016 $3,7492$ $-383,170634$ $1, 2, 6, 10, 11, 13$ 039 $3,6899$ $-383,12965$ $1, 8, 10, 11, 13, 15$ 041 $3,7611$ $-383,12840$ $1, 4, 10, 11, 12, 15$ 052 $3,7427$ $-383,146288$ $1, 4, 10, 11, 13, 14$	075	$3,\!2057$	$-383,\!176587$	1, 4, 8, 10, 11, 14
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	132	3,2163	$-383,\!170826$	6, 8, 10, 11, 13, 18
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	089	3,2224	$-383,\!184744$	1,6,8,10,11,15
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	050	$3,\!2360$	$-383,\!142877$	1, 3, 4, 10, 11, 14
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	044	$3,\!2391$	$-383,\!148843$	1, 3, 6, 10, 11, 13
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109	$3,\!2479$	$-383,\!183972$	3, 6, 10, 11, 13, 14
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	097	$3,\!2514$	$-383,\!169111$	5, 6, 10, 11, 12, 13
116 $3,3560$ $-383,142391$ $3, 5, 10, 11, 13, 17$ 051 $3,3799$ $-383,162772$ $1, 3, 4, 10, 11, 15$ 118 $3,3964$ $-383,108674$ $3, 5, 10, 11, 13, 18$ 053 $3,4045$ $-383,137046$ $1, 3, 4, 10, 11, 16$ 045 $3,4557$ $-383,109757$ $1, 3, 7, 10, 11, 13$ 085 $3,4607$ $-383,111739$ $1, 5, 6, 10, 11, 14, 17$ 123 $3,4899$ $-383,129246$ $3, 6, 10, 11, 13, 18$ 090 $3,5226$ $-383,198129$ $1, 6, 8, 10, 15, 17$ 076 $3,5298$ $-383,141514$ $1, 4, 6, 10, 11, 13, 15$ 016 $3,5746$ $-383,172029$ $1, 2, 9, 10, 11, 13, 15$ 016 $3,5746$ $-383,174723$ $1, 8, 10, 11, 12, 15$ 057 $3,6924$ $-383,140684$ $1, 2, 6, 10, 11, 13, 15$ 010 $3,7187$ $-383,140684$ $1, 2, 6, 10, 11, 13, 15$ 082 $3,7427$ $-383,110684$ $1, 9, 10, 11, 14, 15$ 034 $3,7611$ $-383,121840$ $1, 4, 10, 11, 14, 15$ 041 $3,8099$ $-383,124920$ $1, 2, 8, 10, 11, 13, 14$ 051 $3,8369$ $-383,13073$ $1, 6, 10, 11, 13, 14$	042	$3,\!3507$	$-383,\!104553$	1, 3, 5, 10, 11, 13
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	116	$3,\!3560$	$-383,\!142391$	3, 5, 10, 11, 13, 17
118 $3,3964$ $-383,108674$ $3, 5, 10, 11, 13, 18$ 053 $3,4045$ $-383,137046$ $1, 3, 4, 10, 11, 16$ 045 $3,4557$ $-383,109757$ $1, 3, 7, 10, 11, 13$ 085 $3,4607$ $-383,111739$ $1, 5, 6, 10, 11, 14, 17$ 123 $3,4899$ $-383,129246$ $3, 6, 10, 11, 14, 17$ 123 $3,4899$ $-383,129246$ $3, 6, 10, 11, 13, 18$ 090 $3,5226$ $-383,198129$ $1, 6, 8, 10, 15, 17$ 076 $3,5298$ $-383,141514$ $1, 4, 6, 10, 11, 13, 18$ 016 $3,5746$ $-383,172029$ $1, 2, 9, 10, 11, 13, 18$ 016 $3,5746$ $-383,174723$ $1, 8, 10, 11, 12, 18$ 057 $3,6924$ $-383,091041$ $1, 3, 6, 10, 11, 13, 18$ 057 $3,6924$ $-383,110684$ $1, 2, 6, 10, 11, 13, 18$ 082 $3,7427$ $-383,114684$ $1, 2, 6, 10, 11, 13, 18$ 084 $3,7611$ $-383,121840$ $1, 4, 10, 11, 14, 15$ 074 $3,7833$ $-383,146288$ $1, 4, 10, 11, 14, 17$ 074 $3,7833$ $-383,129510$ $1, 8, 10, 11, 12, 13$ 061 $3,8369$ $-383,150078$ $1, 4, 10, 11, 12, 13$ 077 $3,8699$ $-383,150078$ $1, 4, 10, 11, 13, 14$ 029 $3,8552$ $-383,11073$ $1, 6, 10, 11, 13, 14$ 052 $3,9333$ $-383,110755$ $1, 3, 10, 11, 13, 14$ 054 $3,9465$ $-383,110755$ $1, 3, 10, 11, 13, 14$	051	$3,\!3799$	$-383,\!162772$	1, 3, 4, 10, 11, 15
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	118	$3,\!3964$	$-383,\!108674$	3, 5, 10, 11, 13, 18
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	053	$3,\!4045$	$-383,\!137046$	1, 3, 4, 10, 11, 16
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	045	$3,\!4557$	$-383,\!109757$	1, 3, 7, 10, 11, 13
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	085	$3,\!4607$	$-383,\!111739$	1, 5, 6, 10, 11, 15
123 $3,4899$ $-383,129246$ $3,6,10,11,13,18$ 090 $3,5226$ $-383,198129$ $1,6,8,10,15,17$ 076 $3,5298$ $-383,141514$ $1,4,6,10,11,15,17$ 113 $3,5414$ $-383,141514$ $1,4,6,10,11,13,18$ 016 $3,5746$ $-383,172029$ $1,2,9,10,11,13,18$ 016 $3,5746$ $-383,174723$ $1,8,10,11,12,18$ 057 $3,6924$ $-383,091041$ $1,3,6,10,11,15,17$ 010 $3,7187$ $-383,140684$ $1,2,6,10,11,13,18$ 066 $3,7383$ $-383,193765$ $1,8,10,11,14,15,18$ 082 $3,7427$ $-383,110634$ $1,9,10,11,13,18$ 034 $3,7611$ $-383,121840$ $1,4,10,11,12,17$ 074 $3,7833$ $-383,146288$ $1,4,10,11,14,17$ 019 $3,8060$ $-383,079934$ $1,2,7,10,11,14$ 014 $3,8099$ $-383,129510$ $1,8,10,11,12,13$ 027 $3,8323$ $-383,130173$ $1,9,10,11,13,144$ 029 $3,8552$ $-383,130173$ $1,9,10,11,12,13$ 070 $3,9253$ $-383,1106723$ $1,6,10,11,13,184$ 052 $3,9333$ $-383,119962$ $1,3,4,6,10,11$ 086 $3,9465$ $-383,110755$ $1,3,10,11,13,144$	083	$3,\!4852$	$-383,\!191370$	1, 6, 10, 11, 14, 17
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	123	$3,\!4899$	$-383,\!129246$	3, 6, 10, 11, 13, 18
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	090	3,5226	$-383,\!198129$	1,6,8,10,15,17
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	076	3,5298	$-383,\!141514$	1, 4, 6, 10, 11, 15
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	113	$3,\!5414$	$-383,\!144174$	3, 5, 10, 11, 13, 15
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	016	$3,\!5746$	$-383,\!172029$	1, 2, 9, 10, 11, 13
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	039	$3,\!6899$	$-383,\!174723$	1, 8, 10, 11, 12, 15
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	057	$3,\!6924$	$-383,\!091041$	1, 3, 6, 10, 11, 15
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	010	3,7187	$-383,\!140684$	1, 2, 6, 10, 11, 13
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	066	3,7383	$-383,\!193765$	1, 8, 10, 11, 13, 15
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	082	3,7427	$-383,\!181204$	1, 8, 10, 11, 14, 15
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	068	3,7492	$-383,\!170634$	1, 9, 10, 11, 13, 15
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	034	3,7611	$-383,\!121840$	1, 4, 10, 11, 12, 17
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	074	3,7833	$-383,\!146288$	1, 4, 10, 11, 14, 17
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	019	$3,\!8060$	-383,079934	1, 2, 7, 10, 11, 14
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	014	3,8099	$-383,\!124920$	1, 2, 8, 10, 11, 13
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	027	3,8323	$-383,\!129510$	1, 8, 10, 11, 12, 13
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	061	3,8369	$-383,\!148073$	1, 6, 10, 11, 13, 14
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	029	3,8552	$-383,\!130173$	1, 9, 10, 11, 12, 13
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	077	3,8699	$-383,\!150078$	1, 4, 10, 11, 15, 17
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	070	3,9253	$-383,\!106723$	1, 6, 10, 11, 13, 18
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	052	3,9333	$-383,\!119962$	1, 3, 4, 6, 10, 11
041 3,9806 -383,110755 1, 3, 10, 11, 13, 14	086	3,9465	$-383,\!118952$	1, 5, 10, 11, 15, 17
, , , , , , , , , , , , , , , , , , , ,	041	$3,\!9806$	$-383,\!110755$	1, 3, 10, 11, 13, 14

031	$3,\!9906$	$-383,\!137111$	1, 4, 10, 11, 12, 15
012	$3,\!9945$	$-383,\!087642$	1, 2, 7, 10, 11, 13
056	$3,\!9967$	$-383,\!153883$	1, 3, 4, 9, 10, 11
023	4,0025	$-383,\!091253$	1, 6, 10, 11, 12, 13
046	4,0090	$-383,\!109024$	1, 3, 10, 11, 13, 17
008	4,0146	$-383,\!085136$	1, 2, 5, 10, 11, 13
021	4,0275	$-383,\!099861$	1, 5, 10, 11, 12, 13
005	4,0330	$-383,\!064082$	1, 2, 5, 10, 11, 12
058	4,0373	$-383,\!107709$	1, 3, 10, 11, 15, 17
072	4,0378	$-383,\!132998$	1, 4, 10, 11, 14, 15
003	4,0430	$-383,\!077347$	1, 2, 4, 10, 11, 12
062	4,1077	$-383,\!102796$	1, 5, 10, 11, 13, 15
088	4,1162	$-383,\!146467$	1,6,10,11,15,17
025	4,1243	$-383,\!101672$	$1,\ 7,\ 10,\ 11,\ 12,\ 13$
043	4,2253	$-383,\!127501$	1, 3, 10, 11, 13, 15
048	4,2472	$-383,\!053401$	1, 3, 10, 11, 13, 18
080	4,2481	$-383,\!073071$	1, 6, 10, 11, 14, 15
055	4,2495	$-383,\!156615$	1, 3, 4, 8, 10, 11
037	$4,\!3777$	$-383,\!095746$	1, 6, 10, 11, 12, 15
064	4,4166	$-383,\!106475$	1,6,10,11,13,15
006	4,5265	$-383,\!061680$	1, 2, 4, 10, 11, 13
017	4,5596	$-382,\!983201$	1, 2, 5, 10, 11, 14
009	4,5769	$-383,\!092171$	1, 2, 10, 11, 13, 15
015	$4,\!6155$	$-383,\!084432$	1, 2, 10, 11, 13, 18
011	$4,\!6896$	$-383,\!064364$	1, 2, 10, 11, 13, 16
007	4,7303	$-383,\!074999$	1, 2, 10, 11, 13, 14
018	4,7363	$-383,\!041269$	1, 2, 10, 11, 14, 16
013	4,7863	$-383,\!102409$	1,2,10,11,13,17
094	4,7932	$-383,\!133611$	7, 10, 11, 12, 13, 14
096	4,7944	$-383,\!110241$	8, 10, 11, 12, 13, 14
098	$4,\!8055$	$-383,\!094589$	5, 10, 11, 12, 13, 16
004	4,8578	$-383,\!015105$	1, 2, 10, 11, 12, 14
002	4,9075	$-383,\!041789$	1, 2, 10, 11, 12, 13
092	4,9672	$-383,\!094762$	6, 10, 11, 12, 13, 14
001	5,0268	$-382,\!970514$	1, 2, 3, 10, 11, 12
102	5,0611	$-383,\!052793$	5, 10, 11, 12, 13, 18
100	$5,\!2811$	$-383,\!081240$	5, 10, 11, 12, 13, 17
130	$5,\!3278$	$-383,\!073138$	9, 10, 11, 13, 15, 17
120	5,5148	$-383,\!027173$	3, 10, 11, 13, 15, 17
060	$5,\!5435$	$-383,\!068683$	1,10,11,13,14,15
081	$5,\!6072$	$-383,\!032520$	1, 10, 11, 14, 15, 17
020	$5,\!6843$	$-383,\!037659$	1, 10, 11, 12, 13, 14
022	$5,\!6984$	$-383,\!045535$	1, 10, 11, 12, 13, 15
038	5,7883	$-383,\!025219$	1,10,11,12,15,17

024	5,8314	$-382,\!954280$	1, 10, 11, 12, 13, 16
028	$5,\!9509$	$-382,\!977381$	1, 10, 11, 12, 13, 18
026	$5,\!9817$	$-383,\!030370$	1,10,11,12,13,17
065	6,0759	$-383,\!045779$	1,10,11,13,15,17
067	6,0869	$-383,\!003387$	1,10,11,13,15,18
091	6,9220	$-383,\!008536$	10, 11, 12, 13, 14, 15
093	7,7098	$-382,\!888843$	10, 11, 12, 13, 14, 16
095	7,7275	$-382,\!908349$	10,11,12,13,14,17
129	9,4978	-382,768355	10, 11, 13, 15, 17, 18

D. Eingabe für VASP

D.1. POSCAR

D.1.1. Lithiumtitandichalkogenide

TiS2				LiTiS2						
1.0				1.0						
3.407	0.000	0.000		3.460	0.0	00 (0.00	00		
-1.704	2.951	0.000		-1.730	2.9	96 (0.00	00		
0.000	0.000	5.696		0.000	0.0	00 (6.20	00		
Ti S				Ti S Li						
1 2				1 2 1						
Selective I)ynamics			Selectiv	e Dyna	mics				
Direct	•			Direct	v					
0.000 0.0	00 0.000	ТТТ		0.000	0.000	0.000	Т	Т	Т	
0.333 0.6	67 0.250	ТТТ		0.333	0.667	0.220	Т	Т	Т	
0.667 0.3	33 0.750	ТТТ		0.668	0.333	0.780	Т	Т	Т	
				0.000	0.000	0.500	Т	Т	Т	
TiSe2				LiTiSe	2					
1.0				1.0						
3.535	0.000	0.000		3.64	44 (0.000		Ο.	00	0
-1.768	3.061	0.000		-1.8	22	3.156		Ο.	00	0
0.000	0.000	6.004		0.00	00	0.000		6.	48	0
Ti Se				Ti Se 1	Li					
1 2				1 2	1					
Selective	Dynamic	S		Select	ive Dyn	namics				
Direct	5			Direct	5					
0.667 0.	333 0.7	50 T T	Т	0.000	0.000	0.00	0	Т	Т	Т
0.333 0.	667 0.2	50 T T	Т	0.667	0.333	0.78	0	Т	Т	Т
0.000 0.	000 0.5	00 Т Т	Т	0.333	0.667	0.22	20	Т	Т	Т
				0.000	0.000	0.50	0	Т	Т	Т

TiTe2					LiT	iTe2	2					
1.0					1.0							
3.76	so o.c	000	0.00	0	3	3.82	20	0.0	00	0.0	000)
-1.88	30 3.2	256	0.00	0	- :	1.91	LO	3.3	08	0.0	000)
0.00	0.0	000	6.55	0	(0.00	00	0.0	00	6.9	925	5
Ti Te					Ti 🗅	Ге I	Li					
1 2					1 2	2 1	L					
Selecti	lve Dyna	amics			Sele	ecti	ive D	yna	mics			
Direct					Dire	ect						
0.000	0.000	0.000	ΤТ	Т	0.00	00	0.00	0	0.000	Т	Т	Т
0.667	0.333	0.750	ΤТ	Т	0.66	57	0.33	3	0.780	Т	Т	Т
0.333	0.667	0.250	ΤТ	Т	0.33	33	0.66	7	0.220	Т	Т	Т
					0.00	00	0.00	0	0.500	Т	Т	Т

LiVS2

V S Li

1

1 2

3.381 0.000 0.000

0.000

6.139

-1.691 2.928

0.000 0.000

Selective Dynamics

1.0

D.1.2. Lithiumvanadiumdichalkogenide

VS2 1.0 3.218 0.000 0.000 -1.609 2.787 0.000 0.000 0.000 5.755 V S 1 2 Selective Dynamics Direct 0.000 0.000 0.000 0.333 0.667 0.250 0.667 0.333 0.750

rect		Direct										
0.000 0.000 0.000	ТТТ	0.000 0.000	0.000	ГТТ								
0.333 0.667 0.250	ТТТ	0.333 0.667	7 0.220	ГТТ								
0.667 0.333 0.750	ТТТ	0.668 0.333	3 0.780	ГТТ								
		0.000 0.000	0.500	ГТТ								
VSe2		LiVSe2										
1.0		1.0										
3.350 0.000	0.000	3.584	0.000	0.000								
-1.675 2.901	0.000	-1.792	3.104	0.000								
0.000 0.000	6.100	0.000	0.000	6.356								
V Se		V Se Li										
1 2		1 2 1										
Selective Dynamics		Selective D)ynamics									
Direct		Direct										
0.667 0.333 0.750	ОТТТ (0.000 0.00	0.000	ТТТ								
0.333 0.667 0.250	ОТТТ (0.667 0.33	0.780	ТТТ								
0.000 0.000 0.500	ОТТТ (0.333 0.66	0.220	ТТТ								
		0.000 0.00	0 0.500	ТТТ								
VTe2					:	LiVTe	2					
---------	---------	-------	------	---	---	-------	--------	-------	-------	-----	-----	---
1.0						1.0						
3.59	98 0.0	000	0.00	0		З.	606	0.00	0	0.0	000)
-1.79	9 3.1	16	0.00	0		-1.	803	3.12	23	0.0	000)
0.00	0.0	000	6.44	5		Ο.	000	0.00	0	6.7	786	3
V Te					1	V Te	Li					
1 2						1 2	1					
Selecti	ve Dyna	amics				Selec	tive]	Dynam	nics			
Direct]	Direc	t					
0.000	0.000	0.000	ТТ	Т		0.000	0.00	00 0	0.000	Т	Т	Т
0.667	0.333	0.750	ТТ	Т		0.667	0.33	33 ().780	Т	Т	Т
0.333	0.667	0.250	ТТ	Т		0.333	0.60	67 ().220	Т	Т	Т
						0.000	0.00	00 00).500	Т	Т	Т

D.1.3. Lithiumtantaldichalkogenide

TaS2 1.0 3.340 0.000 0.000 -1.670 2.893 0.000 0.000 0.000 5.862 Ta S 1 2 Selective Dynamics Direct 0.000 0.000 0.000 T T T 0.333 0.667 0.250 T T T 0.667 0.333 0.750 T T T

TaSe	2								
1.0									
3	.436	5	0.0	000		Ο.	00	0	
-1	.718	3	2.9	976		0.	00	0	
0	.000)	0.0	000		6.	27	2	
Ta S	е								
1 2									
Sele	ctiv	<i>r</i> e	Dyna	ami	cs				
Dire	ct								
0.66	7 ().3	33	0.	750		Т	Т	Т
0.33	3 ().6	67	0.	250		Т	Т	Т
0.00	0 0	0.0	00	Ο.	500		Т	Т	Т

LiTaS2					
1.0					
3.340	0.0	000	0.00	00	
-1.670	2.8	393	0.00	00	
0.000	0.0	000	6.47	75	
Ta S Li					
1 2 1					
Selectiv	e Dyna	amics			
Direct					
0.000	0.000	0.000	Т	Т	Т
0.333	0.667	0.220	Т	Т	Т
0.668	0.333	0.780	Т	Т	Т
0.000	0.000	0.500	Т	Т	Т

LiTaSe2	2				
1.0					
3.4	77	0.000	0	. 00	0
-1.73	39	3.011	0	. 00	0
0.00	00	0.000	6	. 81	Ι7
Ta Se 1	Li				
1 2 3	1				
Select	ive Dy	namics			
Direct					
0.000	0.000	0.000	Т	Т	Т
0.667	0.333	0.780	Т	Т	Т
0.333	0.667	0.220	Т	Т	Т
0.000	0.000	0.500	Т	Т	Т

TaTe2 LiTaTe2 1.0 1.0 3.624 3.752 0.000 0.000 0.000 0.000 -1.812 3.138 0.000 -1.876 3.250 0.000 0.000 0.000 0.000 0.000 7.175 6.694 Ta Te Ta Te Li 1 2 1 2 1 Selective Dynamics Selective Dynamics Direct Direct 0.000 0.000 0.000 T T T 0.000 T T T 0.000 0.000 0.667 0.333 0.750 T T T 0.667 0.333 0.780 T T T 0.333 0.667 0.250 T T T 0.333 0.667 0.220 T T T 0.000 0.000 0.500 T T T

D.2. KPOINTS

Für die Elementarzelle der lithiierten und delithiierten Übergangsmetalldichalkogenide wurde folgende KPOINTS-Datei verwendet, soweit in der Arbeit nicht anders angegeben.

```
Automatic mesh
0
Gamma
6.0 6.0 3.0
0. 0. 0.
```

Für die Berechnungen an den Superzellen wurde die Werte entsprechend reduziert.

D.3. INCAR

D.3.1. Methode

Um das PBE-Funktional [1] in Kombination mit der D3-Korrektur von Grimme [68] und dem Hubbardkorrekturterm von Dudarev [76] bei Lithiumtitandichalkogeniden zu verwenden, müssen in der INCAR-Datei die Parameter wir folgt gesetzt werden:

GGA	=	Ρł	Ξ		
IVDW	=	12	2		
LDAU	=	• -	ΓRΙ	JE	
LDAUL	=	2	- :	1	-1
LDAUJ	=	0	0	0	
LDAUU	=	3	. 5	0	0

Für die Übergangsmetalle Tantal und Vanadium muss der erste LDAUU-Wert angepasst werden, auf 2,25 bzw. 3,1. Für die Übergangsmetalldichalkogenide ohne interkaliertes Lithium muss jeweils bei LDAUL, LDAUJ und LDAUU der letzte Wert entfernt werden. Es ist zu beachten, dass sowohl die Geometrien, als auch die Methode davon abhängig sind, dass die angegebene Reihenfolge der Elemente (Übergangsmetall, Dichalkogenid, Lithium) mit der in den POTCAR-Dateien übereinstimmt.

D.3.2. Energieminimierung

Die Parameter, die die Energieminimierung beeinflussen und von den Standardwerten in VASP abweichen, wurden wie folgt eingestellt:

```
\begin{array}{rcl} ALGO & = & FAST \\ EDIFF & = & -1E-06 \\ NELMIN & = & 8 \\ ENCUT & = & 600 \\ ISMEAR & = & 0 \\ SIGMA & = & 0.1 \end{array}
```

Bei Bedarf wurden die Parameter NBANDS und NELM erhöht und der Wert für PREC auf Accurate gesetzt. Der Wert für die *Cutoffenergie* (ENCUT) wurde bei einigen Berechnungen ebenfalls erhöht. Wann und auf welche Werte ist in den entsprechenden Abschnittene erwähnt.

D.3.3. Geometrieoptimierung

Bei den Geometrieoptimierungen wurden folgende Einstellungen vorgenommen:

```
NSW = 100
ISIF = 3
IBRION = 2
EDIFFG = -0.001
```

Wenn nur noch die Atompositionen und nicht die Gitterparameter optimiert wurden, wurde ISIF auf den Wert 2 gesetzt. Sollte die Geometrieoptimierung mehrfach fehlgeschlagen sein, wurde die Geometrieoptimierung auch mit IBRION = 1 und POTIM = 0.2 durchgeführt.

D.3.4. NEB-Berechnungen

Zur Durchführung einer NEB-Berechnung mit 7 Bildern wurden die folgenden Werte in der INCAR-Datei genutzt:

ISIF = 2 IBRION = 1 POTIM = 0.2 EDIFFG = -0.01 IMAGES = 7 SPRING = -5.0LCLIMB = .TRUE.

D. Eingabe für VASP

Im Gegensatz zur Geomtrieoptimierung, wird hier von Anfang an IBRION = 1 und ein niedrigerer POTIM-Wert verwendet. Das Abbruchskriterium für die Optimierung wurde etwas aufgeweicht (EDIFFG = -0.01), da die meisten Rechnungen auch nach mehreren hundert Stunden sonst nicht konvergiert sind.

Literaturverzeichnis

- J. P. Perdew, K. Burke und M. Ernzerhof. Generalized gradient approximation made simple. *Physical Review Letters*, 77(18):3865–3868, 1996.
- [2] J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, L. A. Constantin, X. Zhou und K. Burke. Restoring the density-gradient expansion for exchange in solids and surfaces. *ArXiv e-prints*, 2007.
- [3] A. V. Krukau, O. A. Vydrov, A. F. Izmaylov und G. E. Scuseria. Influence of the exchange screening parameter on the performance of screened hybrid functionals. *The Journal of Chemical Physics*, 125(22):224106, 2006.
- [4] S. Grimme. Density functional theory with london dispersion corrections. Wiley Interdisciplinary Reviews: Computational Molecular Science, 1(2):211–228, 2011.
- [5] A. Tkatchenko und M. Scheffler. Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data. *Physical Review Letters*, 102(7):073005, 2009.
- [6] Press release: The Nobel Prize in Chemistry 2019. https://www.nobelprize.org/prizes/chemistry/2019/press-release/. Zugriff: 01.05.2020.
- [7] M. S. Whittingham und F. R. Gamble. The lithium intercalates of the transition metal dichalcogenides. *Materials Research Bulletin*, 10(5):363–371, 1975.
- [8] J. B. Goodenough und K. Mizuchima. Electrochemical cell with new fast ion conductors. US Patent Nr. US4302518A, 1981.
- M. M. Islam und T. Bredow. Theoretical investigation of migration pathways for Li diffusion in h-LiTiS₂. Zeitschrift für Physikalische Chemie, 226(5-6):449–459, 2012.
- [10] A. Van der Ven, J. C. Thomas, Q. Xu, B. Swoboda und D. Morgan. Nondilute diffusion from first principles: Li diffusion in $\text{Li}_x \text{TiS}_2$. *Physical Review B*, 78(10):104306, 2008.
- [11] W. Küchler. Kernspinresonanz-Untersuchungen zur Diffusion von Li in der schichtstrukturierten und der kubischen Interkalationsverbindung Li_x TiS₂. PhD thesis, Leibniz Universität Hannover, 1992.

- [12] M. Wilkening und P. Heitjans. Ultraslow diffusion in polycrystalline h-LiTiS₂ studied by ⁷Li spin-alignment echo NMR spectroscopy. Defect and Diffusion Forum, 237-240:1182–1187, 2005.
- [13] M. Wilkening, W. Küchler und P. Heitjans. From ultraslow to fast lithium diffusion in the 2d ion conductor $\text{Li}_{0,7}\text{TiS}_2$ probed directly by stimulated-echo NMR and nuclear magnetic relaxation. *Physical Review Letters*, 97(6):065901, 2006.
- [14] M. Wilkening und P. Heitjans. Li jump process in h-Li_{0,7}TiS₂ studied by two-time ⁷Li spin-alignment echo NMR and comparison with results on two-dimensional diffusion from nuclear magnetic relaxation. *Physical Review B*, 77(2):024311, 2008.
- [15] M. Wilkening. Ultralangsame Ionenbewegung in Festkörpern. PhD thesis, Leibniz Universität Hannover, 2005.
- [16] B. G. Silbernagel und M. S. Whittingham. An NMR study of the alkali metal intercalation phase $\text{Li}_x \text{TiS}_2$: Relation to structure, thermodynamics, and ionicity. *The Journal of Chemical Physics*, 64(9):3670–3673, 1976.
- [17] J. Dahn und R. R. Haering. Lithium intercalation in TiS_2 . Materials Research Bulletin, 14(10):1259–1262, 1979.
- [18] A. H. Thompson und C. R. Symon. Structural studies on Li_xTiS_2 . Solid State Ionics, 3:175–179, 1981.
- [19] E. A. Suslov, O. V. Bushkova, E. A. Sherstobitova, O. G. Reznitskikh und A. N. Titov. Lithium intercalation into TiS₂ cathode material: phase equilibria in a Li–TiS₂ system. *Ionics*, 22(4):503–514, 2015.
- [20] D. L. Greenaway und R. Nitsche. Preparation and optical properties of group IV– VI₂ chalcogenides having the CdI₂ structure. *Journal of Physics and Chemistry* of Solids, 26(9):1445–1458, 1965.
- [21] A. R. Beal, J. C. Knights und W. Y. Liang. Transmission spectra of some transition metal dichalcogenides. I. group IVA: Octahedral coordination. *Journal of Physics C: Solid State Physics*, 5(24):3531–3539, 1972.
- [22] F. R. Shepherd und P. M. Williams. Photoemission studies of the band structures of transition metal dichalcogenides. I. Groups IVA and IVB. *Journal of Physics C: Solid State Physics*, 7(23):4416, 1974.
- [23] C. H. Chen, W. Fabian, F. C. Brown, K. C. Woo, B. Davies, B. DeLong und A. H. Thompson. Angle-resolved photoemission studies of the band structure of TiSe₂ and TiS₂. *Physical Review B*, 21(2):615–624, 1980.

- [24] C. A. Kukkonen, W. J. Kaiser, E. M. Logothetis, B. J. Blumenstock, P. A. Schroeder, S. P. Faile, R. Colella und J. Gambold. Transport and optical properties of Ti_{1+x}S₂. *Physical Review B*, 24(4):1691–1709, 1981.
- [25] J. J. Barry, H. P. Hughes, P. C. Klipstein und R. H. Friend. Stoichiometry effects in angle-resolved photoemission and transport studies of $Ti_{1+x}S_2$. Journal of Physics C: Solid State Physics, 16(2):393–403, 1983.
- [26] P. C. Klipstein und R. H. Friend. Semiconductor to semimetal transition in TiS₂ at 40 kbar. Journal of Physics C: Solid State Physics, 17(15):2713–2734, 1984.
- [27] W. Drube, I. Schafer und M. Skibowski. The experimental band-structure of occupied and unoccupied states of titanium dichalcogenides. *Journal of Physics C-Solid State Physics*, 20(26):4201–4212, 1987.
- [28] C. Wang, L. Dotson, M. McKelvy und W. Glaunsinger. Scanning tunneling spectroscopy investigation of charge-transfer in model intercalation compounds $Ti_{1+x}S_2$. Journal of Physical Chemistry, 99(20):8216–8221, 1995.
- [29] J. E. Smith, M. I. Nathan, M. W. Shafer und J. B. Torrance. Long wavelength optical phonons in layer structured group IVb transition metal dichalcogenides. In Proceedings of the XIth Inter. Conf. Phys. Semicond., Polish Scientific Ed., Warsaw, pages 1306–1311, 1972.
- [30] W. K. Unger, J. M. Reyes, O. Singh, A. E. Curzon, J. C. Irwin und R. F. Frindt. Raman scattering in Ag-intercalated TiS₂. Solid State Communications, 28(1):109–112, 1978.
- [31] P. C. Klipstein, C. M. Pereira und R. H. Friend. Transport and Raman studies of the group IV layered compounds and their lithium intercalates: Li_xTiS₂, Li_xTiSe₂, Li_xZrS₂, Li_xZrSe₂, Li_xHfS₂ and Li_xHfSe₂. *Philosophical Magazine Part* B, 56(5):531–559, 1987.
- [32] M. Plischke, K. K. Bardhan, R. Leonelli und J. C. Irwin. Intercalate order-disorder transition in stage-2 Ag_xTiS₂. *Canadian Journal of Physics*, 61(3):397-404, 1983.
- [33] T. Bredow, P. Heitjans und M. Wilkening. Electric field gradient calculations for $\text{Li}_x \text{TiS}_2$ and comparison with ⁷Li NMR results. *Physical Review B*, 70(11):115111, 2004.
- [34] C. Riekel. Structure refinement of TiSe₂ by neutron diffraction. Journal of Solid State Chemistry, 17(4):389–392, 1976.
- [35] F. Levy und Y. Froidevaux. Structural and electrical properties of layered transition metal selenides $V_x Ti_{1-x}Se_2$ and $Ta_x Ti_{1-x}Se_2$. Journal of Physics C: Solid State Physics, 12(3):473–487, 1979.

- [36] S. Kikkawa, H. Ohkura und M. Koizumi. $Ti(S_{1-x}Se_x)_2$ as lithium battery cathode. Materials Research Bulletin, 22(10):1337 – 1340, 1987.
- [37] W. Drube, I. Schäfer, G. Karschnick und M. Skibowski. Inverse photoemission study of the conduction bands in tise₂. *Phys. Rev. B*, 30:6248–6250, 1984.
- [38] N. G. Stoffel, S. D. Kevan und N. V. Smith. Experimental band structure of 1T-TiSe₂ in the normal and charge-density-wave phases. *Phys. Rev. B*, 31:8049–8055, 1985.
- [39] J. C. E. Rasch, T. Stemmler, B. Mueller, L. Dudy und R. Manzke. 1T-TiSe₂: Semimetal or Semiconductor? *Physical Review Letters*, 101(23):237602, 2008.
- [40] D. W. Murphy, C. Cros, F. J. Di Salvo und J. V. Waszczak. Preparation and properties of $\text{Li}_x \text{VS}_2$ ($0 \le x \le 1$). *Inorganic Chemistry*, 16(12):3027–3031, 1977.
- [41] A. Suzuki, T. Yamashita, K. Matsui und M. Doyama. Thermal and structural measurements of the mixed crystal 1T-TaS_{2-x}Se_x. Journal of the Physical Society of Japan, 57(5):1707–1716, 1988.
- [42] R. Guzman, J. Morales und J. L. Tirado. Structural, thermodynamic, and kinetic properties of alkali-metal intercalation into group 5 metal ditellurides. *Chemistry* of Materials, 7(6):1171–1177, 1995.
- [43] D. W. Murphy, J. N. Carides, F. J. Di Salvo, C. Cros und J. V. Waszczak. Cathodes for nonaqueous lithium batteries based on VS₂. *Materials Research Bulletin*, 12(8):825–830, 1977.
- [44] M. S. Whittingham. The electrochemical characteristics of VSe₂ in lithium cells. Materials Research Bulletin, 13(9):959–965, 1978.
- [45] D. W. Murphy. Low voltage behavior of lithium/metal dichalcogenide topochemical cells. Journal of The Electrochemical Society, 126(3):349–351, 1979.
- [46] Y. Onuki, R. Inada, S. Tanuma, S. Yamanaka und H. Kamimura. Electrochemical characteristics of TiS₂, ZrSe₂ and VSe₂ in secondary lithium battery. *Japanese Journal of Applied Physics*, 20(8):1583–1588, 1981.
- [47] M. S. Whittingham. Lithium incorporation in crystalline and amorphous chalcogenides: Thermodynamics, mechanism and structure. *Journal of Electroanalytical Chemistry and Interfacial Electrochemistry*, 18:229–239, 1981.
- [48] W. B. Johnson und W. L. Worrell. Lithium and sodium intercalated dichalcogenides: Properties and electrode applications. *Synthetic Metals*, 4(3):225–248, 1982.
- [49] A. Szabo und N. S. Ostlund. Modern quantum chemistry: Introduction to advanced electronic structure theory. Dover Publications, Mineola, N.Y, 1996.

- [50] W. Koch und M. C. Holthausen. A Chemist's Guide to Density Functional Theory. Wiley-VCH, Weinheim, 2001.
- [51] R. G. Parr und W. Yang. Density-functional theory of atoms and molecules. Oxford University Press [u.a.], Oxford, 1989.
- [52] P. Hohenberg und W. Kohn. Inhomogeneous electron gas. *Physical Review*, 136(3B):B864–B871, 1964.
- [53] W. Kohn und L. J. Sham. Self-consistent equations including exchange and correlation effects. *Physical Review*, 140(4A):A1133–A1138, 1965.
- [54] L. H. Thomas. The calculation of atomic fields. Mathematical Proceedings of the Cambridge Philosophical Society, 23(5):542–548, 1927.
- [55] E. Fermi. Eine statistische Methode zur Bestimmung einiger Eigenschaften des Atoms und ihre Anwendung auf die Theorie des periodischen Systems der Elemente. Zeitschrift für Physik, 48(1):73–79, 1928.
- [56] D. M. Ceperley und B. J. Alder. Ground state of the electron gas by a stochastic method. *Physical Review Letter*, 45:566–569, 1980.
- [57] J. P. Perdew und A. Zunger. Self-interaction correction to density-functional approximations for many-electron systems. *Physical Review B*, 23:5048–5079, 1981.
- [58] S. H. Vosko, L. Wilk und M. Nusair. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: A critical analysis. *Canadian Journal of Physics*, 58(8):1200–1211, 1980.
- [59] J. P. Perdew und Y. Wang. Accurate and simple analytic representation of the electron-gas correlation energy. *Physical Review B*, 45:13244–13249, 1992.
- [60] L. Hedin und B. I. Lundqvist. Explicit local exchange-correlation potentials. Journal of Physics C: Solid State Physics, 4(14):2064–2083, 1971.
- [61] N. Mardirossian und M. Head-Gordon. Thirty years of density functional theory in computational chemistry: an overview and extensive assessment of 200 density functionals. *Molecular Physics*, 115(19):2315–2372, 2017.
- [62] A. D. Becke. Density-functional exchange-energy approximation with correct asymptotic behavior. *Physical Review A*, 38:3098–3100, 1988.
- [63] C. Lee, W. Yang und R. G. Parr. Development of the Colle-Salvetti correlationenergy formula into a functional of the electron density. *Physical Review B*, 37:785–789, 1988.
- [64] A. D. Becke. Density-functional thermochemistry. III. the role of exact exchange. The Journal of Chemical Physics, 98(7):5648–5652, 1993.

- [65] A. D. Becke. A new mixing of hartreefunctional theories. The Journal of Chemical Physics, 98(2):1372–1377, 1993.
- [66] J. P. Perdew, K. Burke und M. Ernzerhof. Perdew, Burke, and Ernzerhof reply: *Physical Review Letter*, 80:891–891, 1998.
- [67] S. Grimme. Density functional theory with london dispersion corrections. Wiley Interdisciplinary Reviews: Computational Molecular Science, 1(2):211–228, 2011.
- [68] S. Grimme, S. Ehrlich und L. Goerigk. Effect of the damping function in dispersion corrected density functional theory. *Journal of Computational Chemistry*, 32(7):1456–1465, 2011.
- [69] J. Hubbard und B. H. Flowers. Electron correlations in narrow energy bands. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 276(1365):238-257, 1963.
- [70] J. Hubbard und B. H. Flowers. Electron correlations in narrow energy bands. II. The degenerate band case. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 277(1369):237–259, 1964.
- [71] J. Hubbard und B. H. Flowers. Electron correlations in narrow energy bands III. An improved solution. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 281(1386):401–419, 1964.
- [72] J. Hubbard und B. H. Flowers. Electron correlations in narrow energy bands IV. The atomic representation. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 285(1403):542–560, 1965.
- [73] J. Hubbard und B. H. Flowers. Electron correlations in narrow energy bands V. A perturbation expansion about the atomic limit. *Proceedings of the Royal Society* of London. Series A. Mathematical and Physical Sciences, 296(1444):82–99, 1967.
- [74] J. Hubbard und B. H. Flowers. Electron correlations in narrow energy bands VI. The connexion with many-body perturbation theory. *Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences*, 296(1444):100–112, 1967.
- [75] A. I. Liechtenstein, V. I. Anisimov und J. Zaanen. Density-functional theory and strong interactions: Orbital ordering in Mott-Hubbard insulators. *Physical Review B*, 52:R5467–R5470, 1995.
- [76] S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys und A. P. Sutton. Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study. *Physical Review B*, 57(3):1505–1509, 1998.

- [77] R. Grau-Crespo, F. Corà, A. A. Sokol, N. H. de Leeuw und C. R. A. Catlow. Electronic structure and magnetic coupling in FeSbO₄: A DFT study using hybrid functionals and GGA + U methods. *Physical Review B*, 73:035116, 2006.
- [78] S. Bo und Z. Ping. First-principles local density approximation (LDA)+U and generalized gradient approximation (GGA)+U studies of plutonium oxides. *Chi*nese Physics B, 17(4):1364–1370, 2008.
- [79] S. Bhattacharjee, B. Brena, R. Banerjee, H. Wende, O. Eriksson und B. Sanyal. Electronic structure of Co-phthalocyanine calculated by GGA+U and hybrid functional methods. *Chemical Physics*, 377(1):96–99, 2010.
- [80] G.-Y. Huang, C.-Y. Wang und J.-T. Wang. Detailed check of the LDA+U and GGA+U corrected method for defect calculations in wurtzite ZnO. Computer Physics Communications, 183(8):1749–1752, 2012.
- [81] G. Kresse und J. Furthmüller. Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set. *Computational Materials Science*, 6(1):15–50, 1996.
- [82] W. E. Pickett. Pseudopotential methods in condensed matter applications. Computer Physics Reports, 9(3):115–197, 1989.
- [83] P. E. Blöchl. Projector augmented-wave method. *Physical Review B*, 50(24):17953–17979, 1994.
- [84] D. Vanderbilt. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. *Physical Review B*, 41:7892–7895, 1990.
- [85] K. Laasonen, R. Car, C. Lee und D. Vanderbilt. Implementation of ultrasoft pseudopotentials in ab initio molecular dynamics. *Physical Review B*, 43:6796– 6799, 1991.
- [86] D. Fitts. Principles of quantum mechanics as applied to chemistry and chemical physics, pages 96–97. Cambridge University Press, New York, 1999.
- [87] L. Piela. Ideas of quantum chemistry, pages 722–724. Elsevier, 2014.
- [88] C. Kittel. Wave Diffraction and the Reciprocal Lattice, pages 25–47. Wiley, 2018.
- [89] D. Viterbo. Crystal Lattices and Crystal Symmetry, pages 1–29. Springer Berlin Heidelberg, 1996.
- [90] F. Bloch. Über die Quantenmechanik der Elektronen in Kristallgittern. Zeitschrift für Physik, 52(7):555–600, 1929.
- [91] R. Dovesi. The Language of Band Theory, pages 31–46. Springer Berlin Heidelberg, 1996.

- [92] A. Dal Corso. Reciprocal Space Integration and Special-Point Techniques, pages 77–89. Springer Berlin Heidelberg, 1996.
- [93] H. J. Monkhorst und J. D. Pack. Special points for Brillouin-zone integrations. *Physical Review B*, 13(12):5188–5192, 1976.
- [94] Vasp manual. https://cms.mpi.univie.ac.at/wiki/index.php/ENCUT. Zugriff: 28.10.2019.
- [95] G. Henkelman, B. P. Uberuaga und H. Jónsson. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. *The Journal* of Chemical Physics, 113(22):9901–9904, 2000.
- [96] G. Henkelman und H. Jónsson. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. *The Journal* of Chemical Physics, 113(22):9978–9985, 2000.
- [97] G. Kresse und J. Hafner. Ab initio molecular dynamics for liquid metals. *Physical Review B*, 47(1):558–561, 1993.
- [98] G. Kresse und J. Furthmüller. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. *Physical Review B*, 54(16):11169–11186, 1996.
- [99] R. Armiento und A. E. Mattsson. Functional designed to include surface effects in self-consistent density functional theory. *Physical Review B*, 72:085108, 2005.
- [100] A. E. Mattsson, R. Armiento, J. Paier, G. Kresse, J. M. Wills und T. R. Mattsson. The am05 density functional applied to solids. *The Journal of Chemical Physics*, 128(8):084714, 2008.
- [101] A. E. Mattsson und R. Armiento. Implementing and testing the am05 spin density functional. *Physical Review B*, 79:155101, 2009.
- [102] G. I. Csonka, J. P. Perdew, A. Ruzsinszky, P. H. T. Philipsen, S. Lebègue, J. Paier, O. A. Vydrov und J. G. Ángyán. Assessing the performance of recent density functionals for bulk solids. *Physical Review B*, 79:155107, 2009.
- [103] Y. Zhang und W. Yang. Comment on "generalized gradient approximation made simple". *Physical Review Letter*, 80:890–890, 1998.
- [104] B. Hammer, L. B. Hansen und J. K. Nørskov. Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals. *Physical Review B*, 59:7413–7421, 1999.
- [105] J. P. Perdew und K. Schmidt. Jacob's ladder of density functional approximations for the exchange-correlation energy. AIP Conference Proceedings, 577(1):1–20, 2001.

- [106] S. N. Patel und A. A. Balchin. Structural studies of lithium intercalated titanium di-telluride. *Journal of materials science letters*, 4(4):382–384, 1985.
- [107] R. H. Friend und A. D. Yoffe. Electronic properties of intercalation complexes of the transition metal dichalcogenides. *Advances in Physics*, 36(1):1–94, 1987.
- [108] A. Zunger und A. J. Freeman. Self-consistent numerical-basis-set linearcombination-of-atomic-orbitals investigation of the electronic structure and properties of TiS₂. *Physical Review B*, 16(2):906–924, 1977.
- [109] C. Umrigar, D. E. Ellis, D.-S. Wang, H. Krakauer und M. Posternak. Band structure, intercalation, and interlayer interactions of transition-metal dichalcogenides: TiS₂ and LiTiS₂. *Physical Review B*, 26(9):4935–4950, 1982.
- [110] G. A. Benesh, A. M. Woolley und C. Umrigar. The pressure dependences of TiS₂ and TiSe₂ band structures. *Journal of Physics C: Solid State Physics*, 18(8):1595– 1603, 1985.
- [111] Z. Y. Wu, F. Lemoigno, P. Gressier, G. Ouvrard, P. Moreau, J. Rouxel und C. R. Natoli. Experimental and theoretical studies of the electronic structure of TiS₂. *Physical Review B*, 54(16):R11009–R11013, 1996.
- [112] D. G. Clerc, R. D. Poshusta und A. C. Hess. Periodic Hartree-Fock study of TiS₂. Journal of Physical Chemistry, 100(39):15735–15747, 1996.
- [113] C. M. Fang, R. A. de Groot und C. Haas. Bulk and surface electronic structure of 1T-TiS₂ and 1T-TiSe₂. *Physical Review B*, 56(8):4455–4463, 1997.
- [114] D. R. Allan, A. A. Kelsey, S. J. Clark, R. J. Angel und G. J. Ackland. High-pressure semiconductor-semimetal transition in TiS₂. *Physical Review B*, 57(9):5106–5110, 1998.
- [115] S. Sharma, T. Nautiyal, G. S. Singh, S. Auluck, P. Blaha und C. Ambrosch-Draxl. Electronic structure of 1T-TiS₂. *Physical Review B*, 59(23):14833–14836, 1999.
- [116] Y.-B. Qiao, G.-H. Zhong, D. Li, J.-L. Wang, X.-Y. Qin und Z. Zeng. Strongly correlated effect in TiS₂. *Chinese Physics Letters*, 24(4):1050–1053, 2007.
- [117] K. Sanchez, P. Palacios und P. Wahnon. Electronic structure of bulk- and Naintercalated TiS_2 determined from a GGA+u study with the Hubbard terms obtained *ab initio*. *Physical Review B*, 78(23):235121, 2008.
- [118] B. Liu, J. Yang, Y. Han, T. Hu, W. Ren, C. Liu, Y. Ma und C. Gao. Electronic structure of TiS₂ and its electric transport properties under high pressure. *Journal* of Applied Physics, 109(5):053717, 2011.
- [119] W. Küchler, P. Heitjans, A. Payer und R. Schöllhorn. ⁷Li NMR relaxation by diffusion in hexagonal and cubic $\text{Li}_x \text{TiS}_2$. Solid State Ionics, 70:434–438, 1994.

- [120] B. M. Meyer, N. Leifer, S. Sakamoto, S. G. Greenbaum und C. P. Grey. High field multinuclear NMR investigation of the SEI layer in lithium rechargeable batteries. *Electrochemical and Solid-State Letters*, 8(3):A145–A148, 2005.
- [121] C. Prigge, W. Müller-Warmuth und R. Schöllhorn. NMR studies of lithium intercalated in the host compounds 1T-TiS₂, c-TiS₂ and VSe₂. Zeitschrift für Physikalische Chemie, 189(2):153–168, 1995.
- [122] T. Jiang und M. L. Falk. Calculations of the thermodynamic and kinetic properties of $\text{Li}_{1+x}\text{V}_3\text{O}_8$. *Physical Review B*, 85(24):245111, 2012.
- [123] P. Darancet, A. J. Millis und C. A. Marianetti. Three-dimensional metallic and two-dimensional insulating behavior in octahedral tantalum dichalcogenides. *Physical Review B*, 90(4):045134, 2014.
- [124] F. Jellinek. The system tantalum-sulfur. Journal of the Less Common Metals, 4(1):9–15, 1962.
- [125] L. E. Conroy und K. R. Pisharody. The preparation and properties of single crystals of the 1s and 2s polymorphs of tantalum disulfide. *Journal of Solid State Chemistry*, 4(3):345–350, 1972.
- [126] H. Mutka und P. Molinie. Lattice contraction in electron irradiated 1T-TaS₂. Solid State Communications, 33(10):1083–1086, 1980.
- [127] K. Hayashi, A. Kawamura und H. Nishihara. Absence of CDW transition $(T_d=200k)$ in dehydrogenized 1T-TaS₂. Solid State Communications, 58(11):781–782, 1986.
- [128] E. Bjerkelund und A. Kjekshus. On the structural properties of the tase₂ phase. Acta Chem. Scand, 21(2), 1967.
- [129] M. S. Whittingham. Chemistry of intercalation compounds: Metal guests in chalcogenide hosts. Progress in Solid State Chemistry, 12(1):41–99, 1978.
- [130] A.-I. Stan, M. Swierczyński, D.-I. Stroe, R. Teodorescu und S. J. Andreasen. Lithium ion battery chemistries from renewable energy storage to automotive and back-up power applications – An overview. In 2014 International Conference on Optimization of Electrical and Electronic Equipment (OPTIM), pages 713– 720, 2014.
- [131] R. Dovesi, R. Orlando, A. Erba, C. M. Zicovich-Wilson, B. Civalleri, S. Casassa, L. Maschio, M. Ferrabone, M. De La Pierre, P. D'Arco, Y. Noël, M. Causà, M. Rérat und B. Kirtman. Crystal14: A program for the ab initio investigation of crystalline solids. *International Journal of Quantum Chemistry*, 114(19):1287– 1317, 2014.

- [132] R. Dovesi, V. R. Saunders, C. Roetti, R. Orlando, C. M. Zicovich-Wilson, F. Pascale, B. Civalleri, K. Doll, N. M. Harrison, I. J. Bush, P. D'Arco, M. Llunell, M. Causà und Y. Noël. *CRYSTAL14 User's Manual*. University of Torino, Torino, 2014.
- [133] V. Werth, K. Volgmann, M. M. Islam, P. Heitjans und T. Bredow. Density functional theory evaluated for structural and electronic properties of $1\text{T-Li}_x\text{TiS}_2$ and lithium ion migration in $1\text{T-Li}_{0.94}\text{TiS}_2$. Zeitschrift für Physikalische Chemie, 231(7-8):1263-1278, 2017.
- [134] W. Bensch, T. Bredow, H. Ebert, P. Heitjans, S. Indris, S. Mankovsky und M. Wilkening. Li intercalation and anion/cation substitution of transition metal chalcogenides: Effects on crystal structure, microstructure, magnetic properties and Li⁺ ion mobility. *Progress in Solid State Chemistry*, 37(2):206–225, 2009.

Literatur verzeichnis

Danksagung

Ich möchte an dieser Stelle zunächst allen danken, die mich während dieser Arbeit begleitet und unterstützt haben sowie denen die es erst ermöglicht haben, dass ich diese Weg gehen konnten.

Ich danke

- Herrn Prof. Dr. P. Heitjans; für die Ermöglichung dieser Promotion und den spannenden inhaltlichen Rahmen dieser Arbeit.
- Herrn Prof. Dr. T. Bredow; für die intensive Betreuung dieser Arbeit, dass er sich so viel Zeit genommen hat mit mir über die Ergebnisse zu spekulieren und diskutieren und dass er mir immer mit Rat zur Seite stand.
- Herrn Prof. Dr. J. A. Becker; ohne sein Engagement meine wissenschaftliche Neugierde zu stillen, hätte ich diesen Weg nie eingeschlagen.
- Hern Dr. D. Bremm; für die Hilfestellungen die zu meinem Verständnis der quantenchemischen Grundlagen beigetragen haben und die schöne Zeit bei der gemeinsamen Praktika Betreuung.
- Tobi Alznauer, Verena Becker, Lukas Alphei, Tim Gebensleben, Jens Grabow, Dominik Bremm, Michaela Jahn, Dennis Wachsmuth, Kai Volgmann, Nicki Bösebeck, Vinod Chandrasekharan, Elena Witt, Andre Düvel, Anh-Thu Duong, Martin Hesse, Tim Smolinsky, Mathias Homann, Bernhard von Böhn, Kevin Lengsfeld, Henning Kuper, Simon Tsikas, Rebecca Graf, Hedda Oschinski, Florian Matz, Nils Denda; ohne sie wäre die Zeit in Hannover nie so schön gewesen.
- Marie Runkel, Daniel Oliveira, Rana Islam, Kim Hintze, Alexander Schneider, Tobit Esch, Sascha Thinius, Katharina Bauerfeind, Anna Ulpe, Manuel Hochheim, Rebecca Sure, Sebastian Dohm, Eike Caldeweyher; ohne sie wäre die Zeit in Bonn nie so schön gewesen.

Danksagung

- allen Beteiligten des FOR1277 molife; für den interessanten und inspirierenden Austausch.
- Kerstin Battermann, Yvonne Gabbey, Claudia Kronz; die bei organisatorischen Problemen und Fragen immer eine Antwort parat und auch sonst immer ein offenes Ohr für mich hatten
- Tobi; für das Espresson und Erdingern und die ganze Unterstützung.
- meinen Arbeitskollegen bei Johnson Controls Advanced Powered Solutions GmbH und der HaCon Ingenieurgesellschaft mbH; für das Verständnis und den Freiraum, der mir gegeben wurde die Promotion neben dem Beruf zu beenden.
- Dominik, Tobi, Bernhard, Irene und Tim; für die zahlreichen Korrekturlesungen.

Lebenslauf

Persönliche Daten

Name:	Vanessa Werth
Geburtsdatum:	29.12.1989
Geburtsort:	Schwerin
Staatsangehörigkeit:	Deutsch
Familienstand:	Verheiratet

Bildung

06/2014 - heute	Promotion Chemie, Leibniz Universität Hannover
10/2014 - 20/2018	Bachelor Informatik, Rheinische Friedrich-Wilhelms-Universi-
	tät Bonn und Leibniz Universität Hannover
10/2012 - 04/2014	Master Lehramt an Gymnasien Chemie und Mathematik, Leib-
	niz Universität Hannover
10/2009 - 07/2012	Fächerübergreifender Bachelor Chemie und Mathematik, Leib-
	niz Universität Hannover
06/2009	Abitur an der Wilhelm-Raabe-Schule Hannover