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Abstract

In this thesis we study Toeplitz operators on spaces of holomorphic and pluriharmonic
functions. The main part of the thesis is concerned with such operators on the Fock
spaces of holomorphic functions, F pt for p ∈ [1,∞].

We establish a notion of Correspondence Theory between symbols and Toeplitz
operators, based on extended notions of convolutions as developed by Reinhard Werner
[130], which gives rise to many important results on Toeplitz operators and the algebras
they generate. Here, we find new proofs for old theorems, extending them to a larger
range of values of p, and also provide entirely new results. We manage to include even
the non-reflexive cases of p = 1,∞ in our studies.

Based on the notions of band-dominated and limit operators, we establish a general
criterion for an operator in the Toeplitz algebra over F pt to be Fredholm: Such an
operator is Fredholm if and only if all of its limit operators are invertible.

As an example of a Toeplitz algebra over the Fock space, we study the Resolvent
Algebra (in the sense of Detlev Buchholz and Hendrik Grundling [42]) in its Fock space
representation.

Partially following the methods of Correspondence Theory as discussed in this
thesis, we manage to extend a classical result on the boundedness of Toeplitz operators
(the Berger-Coburn estimates) to the setting of p-Fock spaces.

Also based on results derived from the Correspondence Theory, we discuss several
new characterizations of the full Toeplitz algebra on Fock spaces, at least in the
reflexive range p ∈ (1,∞).

In the last part, we discuss several results on spectral theory and quantization
estimates for Toeplitz operators acting on Bergman and Fock spaces of pluriharmonic
functions.

Zusammenfassung

In dieser Arbeit werden Toeplitzoperatoren auf Räumen holomorpher und pluriharmo-
nischer Funktionen studiert. Der Hauptteil dieser Arbeit befasst sich mit Operatoren
auf den Fockräumen holomorpher Funktionen, F pt für p ∈ [1,∞].

Basierend auf gewissen verallgemeinerten Faltungen, wie sie von Reinhard Werner
[130] eingeführt wurden, diskutieren wir eine Korrespondenztheorie von Symbolen
und Toeplitzoperatoren. Mittels dieser Korrespondenztheorie lassen sich viele wichtige
Aussagen zu Toeplitzoperatoren und den von ihnen erzeugten Algebren herleiten.
Basierend darauf geben wir neue Beweise für bereits bekannte Sätze, deren Aussagen
wir teilweise auf weitere Werte von p ausweiten können, finden aber auch einige
komplett neue Ergebnisse. Insbesondere ist es mit diesen Methoden möglich, die
nichtreflexiven Fälle p = 1,∞ zu behandeln.

Mittels sogenannter banddominierter Operatoren und Grenzoperatoren geben wir
ein Kriterium für die Fredholmeigenschaft beliebiger Operatoren aus der Toeplitzal-
gebra über F pt : Ein solcher Operator ist Fredholm genau dann, wenn alle seine



iv

Grenzoperatoren invertierbar sind.
Weiterhin studieren wir die Resolventenalgebra (im Sinne von Detlev Buchholz

und Hendrik Grundling [42]) in ihrer Fockraum-Darstellung, welche ein Beispiel für
eine Toeplitzalgebra darstellt.

Wir erweitern die klassischen Ergebnisse von Charles Berger und Lewis Coburn zur
Beschränktheit von Toeplitzoperatoren auf dem Fockraum auf den Fall beliebiger Werte
von p ∈ [1,∞]. Dafür benutzen wir teilweise Methoden der bereits oben erwähnten
Korrespondenztheorie.

Ebenfalls basierend auf einigen der aus der Korrespondenztheorie hergeleiteten
Ergebnisse diskutieren wir neue Charakterisierungen der Toeplitzalgebra auf dem
Fockraum, zumindest für den reflexiven Bereich p ∈ (1,∞).

Zuletzt befassen wir uns mit einigen Ergebnissen aus der Spektraltheorie und
Quantisierungsabschätzungen von Toeplitzoperatoren auf Bergman- und Fockräumen
pluriharmonischer Funktionen.

Keywords: Toeplitz operators, Fock space, operator algebras
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Chapter 1

Introduction

Among the many different classes of linear operators, multiplication operators are
certainly one of the best understood. Of an entirely different nature, but also relatively
easy to understand, are orthogonal projections and restrictions. To an apprentice of
operator theory, it may come as a surprise that the combination of such harmless
objects may give rise to particularly difficult mathematical problems. Of course, we
refer to Toeplitz operators: Let (X,µ) be a measure space, A a closed subspace of
Lp(X,µ) and P ∈ L(Lp(X,µ)) a bounded projection onto A. Usually, A is chosen
to be a space of holomorphic functions, but this is not necessary. For any suitable
function f from X to C, say measurable and essentially bounded, the Toeplitz operator
Tf is defined as the compression of the operator of multiplication by f ,

Tf = PMf |A : A→ A.

These operators are now an established subject of mathematical research. They
originate from a work by Otto Toeplitz [123], where he considered operators on `2(N),
the so-called Toeplitz matrices, which are equivalent to Toeplitz operators on the Hardy
space H2(S1). Since then, many different geometric settings have been considered in
the studies of Toeplitz operators. Besides the classical situation of Hardy spaces on the
circle [36, 105], some of the more studied geometric settings are Toeplitz operators on
Kähler manifolds [8, 95] and on Bergman and Hardy spaces of (strictly) pseudoconvex
domains [92, 126] and of bounded symmetric domains [21, 124]. In particular, the
intersection of the previous two classes, the complex unit balls, have been studied
intensively [125,136].

The majority of this thesis deals with the study of Toeplitz operators on the
Segal-Bargmann-Fock spaces F pt , i.e. on spaces of holomorphic functions on Cn which
are p-integrable with respect to a Gaussian measure. For simplicity, we will only speak
of Fock spaces, without wanting to downplay the roles of I. Segal and V. Bargmann in
their initial explorations.

In principle, the study of Toeplitz operators can be distinguished into two different,
but not disjoint subjects: One can either try to understand properties of a single
Toeplitz operator or study algebras generated by a collection of these. Of course, it is

1
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most fruitful to combine the two approaches. As a motivation, let us mention a (by
now classical) result from each direction.

Upon studying individual Toeplitz operators, one usually tries to derive properties
of the operator Tf from its symbol. Here, “symbol” can refer to two different functions:
The obvious one, which is usually named symbol (or contravariant symbol in the works
of F. A. Berezin [22–26] and M. A. Šubin [27, 127]), is the function f used for defining
Tf . The other one is the so-called Berezin symbol (or covariant symbol according to
Berezin) of Tf , being denoted as B(f), is again a function on X and is constructed by
relating the symbol f to the reproducing kernel structure of the underlying Bergman,
Hardy or Fock space. A classical result (which holds true in many different geometric
situations) is the following:

Tf is compact ⇐⇒ B(f) vanishes at the boundary of X.

A (by now well-known) result in the study of algebras generated by Toeplitz operators
is the characterization of commutative Toeplitz algebras on Bergman spaces of the
unit disk [125], which closely relates geometric structures with the algebras at hand.

While both results seemingly belong to only one of the two parts, i.e. either the
study of individual operators or of entire algebras, each one benefits from the other
subject: On the one hand, the compactness characterization in terms of the Berezin
symbol carries over to every operator belonging to the full Toeplitz algebra, i.e. the
Banach algebra generated by all Toeplitz operators with bounded symbols, provided
that the underlying geometric space has plenty of symmetries [19, 82, 104, 122]. On
the other hand, the characterization of commutative Toeplitz algebras (again in the
presence of sufficiently many symmetries on the underlying geometry) hinges on a good
understanding of individual operators and their invariances (along with invariances of
their symbols) with respect to such symmetries. While some of those results could be
considered classical by now, they still have a strong influence on current research: The
works [1, 18,64–66,88,90,131,138] are just a small selection of publications from the
recent years related to those problems.

Toeplitz operators are also often studied as tools for quantization: The quantization
map f 7→ Tf , which in this setting is usually called Berezin-Toeplitz quantization, can
be considered as a model for passing from the classical world (i.e. functions/symbols)
to the quantum realm (i.e. operators on Hilbert spaces). Usually, a semiclassical
parameter is introduced, which we will denote for various reasons by t or λ instead
of the more physical ~. We then obtain a quantization scheme depending on this
parameter, say f 7→ T tf . Upon studying such quantization procedures, it is usually

imposed that the quantized objects, T tf , behave as the classical objects, the symbols
f , in the “classical limit” (which corresponds to letting t→ 0 in our notation). Here,
the important difference between quantized and classical objects is commutativity:
While functions clearly commute, fg = gf , this is in general not true for operators:
T tfT

t
g 6= T tgT

t
f . Hence, when studying the quantization properties of the map f 7→ T tf

one usually studies the behavior of the product T tfT
t
g in the limit t → 0. As it

turns out, at least for suitable underlying geometries, Berezin-Toeplitz quantization
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provides a pleasant framework for quantization, as it satisfies many of the desired
properties [2, 48, 57, 59–62]. In particular, it falls within the framework of Rieffel’s
strict quantization [114], asking that the asymptotics∥∥T tf∥∥→ ‖f‖∞,∥∥T tfT tg − T tfg∥∥→ 0,∥∥∥∥1

t
[T tf , T

t
g ]− iT t{f,g}

∥∥∥∥→ 0,

as t → 0 hold true for a suitable symbol space and a Poisson bracket {·, ·}. It has
been a focus of research in recent years to figure out the minimal assumptions on the
symbols f, g such that the above asymptotics prevail [9, 12,13,17,35,81].

Let us now discuss the contents of this thesis. Since most of this work will be
on operators on Fock spaces, we will give a thorough introduction to these spaces in
Chapter 2, which consists mostly of well-known results, but also some new aspects
appear there. Let us already mention the following important aspect of Fock space
theory here: A particular group of automorphisms of Cn plays an important role in
studying operators on Fock spaces, namely the shifts: w 7→ w − z. They induce a
group action α of Cn on the set of all (measurable, bounded) functions f : Cn → C by
defining αz(f) through

αz(f)(w) = f(w − z).

Similarly, the shifts define a group action on L(F pt ): If W t
z denotes the Weyl operators

on F pt (i.e. they are a family of weighted shift operators on F pt with weight parameter
t > 0), then define for A ∈ L(F pt )

αz(A) := W t
zAW

t
−z.

The point about the importance of these group actions is the following: If we denote
the Toeplitz operator with symbol f on F pt by T tf , then we have the relation

αz(T
t
f ) = T tαz(f).

The importance of this relation for the study of Toeplitz operators on Fock spaces
cannot be overestimated.

A similar structure of group actions exists in the setting of functions on R2n and
linear operators on L2(Rn), being realized as phase and space shifts. This structure led
R. Werner in [130] to the development of what he called Quantum Harmonic Analysis.
Implementing Quantum Harmonic Analysis in the setting of the (non-Hilbertian)
spaces F pt will be the content of the first part of this thesis. Motived by Werner’s
work, we will implement a notion of convolution between functions and operators on
the Fock space, that is: We will define convolutions f ∗ B, A ∗ g, A ∗ B for certain
functions f, g : Cn → C and bounded linear operators A,B on F pt . The study of these
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operations and their applications is the content of Chapter 3. The key features of
these convolutions are that they naturally extend the convolution of functions on Cn,
f ∗ g, and enjoy many of the natural properties of convolutions between functions.
A thorough study of these convolutions will finally lead us to the Correspondence
Theorem, which will ultimately establish a unique correspondence between closed,
α-invariant subspaces of BUC(Cn), the bounded uniformly continuous functions on
Cn, and closed, α-invariant subspaces of the full Toeplitz algebra on F pt . In particular,
we will spend some effort to establish these results even in the non-reflexive cases
p = 1,∞. Having the Correspondence Theorem at hand, we will show that many
important results on Toeplitz operators can be derived easily. Right now we only
want to mention the compactness characterization cited above: It will turn out to be
a simple consequence of the Correspondence Theorem and, which to the best of the
author’s knowledge has not been done before, will also be discussed in the non-reflexive
setting.

Chapter 4 will be dedicated to applying the Correspondence Theorem to gain
understanding of Toeplitz algebras. This can be motivated by the following surprising
theorem, due to J. Xia: He proved in [131] that the full Toeplitz algebra on F 2

t is the
same as the operator norm closure of the space of all Toeplitz operators with bounded
symbols, i.e. if we use for a subspace D0 of L∞(Cn) the notations

T 2,t
lin (D0) := {T tf ∈ L(F 2

t ); f ∈ D0},

T 2,t
∗ (D0) := C∗({T tf ∈ L(F 2

t ); f ∈ D0}),

he proved

T 2,t
∗ (L∞(Cn)) = T 2,t

lin (L∞(Cn)).

Thanks to the Correspondence Theorem, we will see that we can reduce the situation
to symbols from BUC(Cn), i.e.

T 2,t
∗ (L∞(Cn)) = T 2,t

∗ (BUC(Cn)) = T 2,t
lin (BUC(Cn)).

A similar result, which is well-known and closely related to the aforementioned com-
pactness characterization, is

T 2,t
∗ (C0(Cn)) = T 2,t

lin (C0(Cn)).

These observations motivate the theme to which Chapter 4 is dedicated: Study (closed,
α-invariant) subspaces D0 of BUC(Cn) for which T 2,t

lin (D0) is a C∗ algebra. Indeed,
we will obtain the following characterization: If D0 ⊂ BUC(Cn) is closed, α- and
U -invariant (U being the action Uf(z) = f(−z)), then the following are equivalent:

D0 is a C∗ algebra ⇐⇒ T 2,t
lin (D0) is a C∗ algebra for every t > 0.

Here, t plays the role of a quantization constant in the construction of the Fock spaces
F pt . Since the methods are partially based on the Correspondence Theorem, which is
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not restricted to the Hilbert space setting, our method of proof will work for any p.
Further, we will obtain a similar result regarding α-invariant ideals. The presentations
of Chapter 3 and 4 are based on, and partially improve, the author’s results in [72].

Having already characterized compactness of Toeplitz operators, it is obvious to
look for a characterization of the Fredholm property. If the symbol f behaves nicely
at infinity (in terms of a certain oscillatory behaviour), conditions equivalent to this
property in terms of the behavior of the Berezin symbol at infinity can be obtained.
For a general L∞ symbol or possibly an arbitrary operator from the Toeplitz algebra
however the answer is not so simple. This is where we have to consider the limit
operators of the operator we started with. Simply speaking, using the group action αz
we obtain the limit operators of A ∈ L(F pt ) as all possible limit points of αz(A) when
z goes to infinity. If we take A from the Toeplitz algebra, then the limit operators
indeed yield (spectral) information on A, i.e.

A is Fredholm ⇐⇒ every limit operator of A is invertible.

Proving this result is the content of Chapter 5. We want to emphasize that the idea
of studying limit operators for determining the Fredholm property is nothing new:
In the setting of band-dominated operators on sequence spaces, these techniques are
well-known [44,96]. The approach we use for deriving our result has previously been
established by R. Hagger [80] for achieving similar results for Toeplitz operators on
Bergman spaces over the unit balls and has been worked out, in the Fock space setting,
by the author together with R. Hagger in [73].

A classical object of study in theoretical physics is the canonical commutator
relations. By this, we mean the following: If (X,σ) is a symplectic space, we want to
study R-linear maps φ from X into the space of self-adjoint operators on a Hilbert
space H satisfying the relation

[φ(f), φ(g)] = iσ(f, g), f, g ∈ X.

In general, the elements φ(f) turn out to be unbounded operators. Since algebraic
expressions involving unbounded operators can be problematic, it is customary to pass
to bounded operators generated by the φ(f) using the functional calculus. The most
common approach is possibly passing to the unitary operators generated by the φ(f),
i.e. one studies the C∗ algebra generated by the elements exp(iφ(f)). The properties of
such algebras, which are known as CCR algebras or Weyl algebras, are well-understood
[40]. However, since there are certain drawbacks to using these algebras for physical
considerations, it was proposed in [42] to instead use the C∗ algebra generated by the
resolvents of the φ(f). If we consider the standard symplectic space on Cn, then this
algebra of resolvents can actually be represented as a Toeplitz algebra, as we shall
describe and study in Chapter 6. This chapter is based on ongoing work, which is
done jointly with W. Bauer.
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One of the most elementary properties of Toeplitz operators is that they are
bounded whenever their symbol is bounded. The converse statement is in general
wrong: There are many bounded Toeplitz operators with unbounded symbols. The
understanding of this phenomenon is far from complete, i.e. it is an open problem to
characterize boundedness of Toeplitz operators with unbounded symbol. The possibly
most important contribution in that direction, at least on Fock spaces, was given by
C. A. Berger and L. A. Coburn in [31], cf. also the recent works [50,51]. There, they
provided an upper and a lower bound for the operator norm of T tf in terms of the heat

transform of the symbol f . More precisely, if f̃ (s) denotes the heat transform at time
s/4, which is closely related to the Berezin transform in the setting of the Fock space,
they proved estimates of the form

‖f̃ (s)‖∞ . ‖T tf‖F 2
t→F 2

t
, s ∈ (t/2, 2t),

‖T tf‖F 2
t→F 2

t
. ‖f̃ (s)‖∞, s ∈ (0, t/2),

under certain technical assumptions on the symbol f . The content of Chapter 7 will
be to establish analogous estimates for the cases p 6= 2. While, for the first estimate,
this in principle boils down to a more technical version of the initial proof, the second
estimate needs to be proven entirely different. The original proof of the second
estimate depended on transforming the problem into a problem on pseudodifferential
operators on L2(Rn), using the Bargmann transform, and then applying the Calderón-
Vaillancourt Theorem. These tools are not available in the non-Hilbertian setting.
Instead, we use direct estimates for the integral kernel to establish an analogous
estimate. This Chapter is partially based on joint work with W. Bauer [15].

The very short Chapter 8 will establish a handful of new characterizations of the
full Toeplitz algebra on F pt . Building on results from Chapters 3 and 4 and on a
theorem established by R. Hagger [79], we will present a few estimates which give
further characterizations of this algebra.

Finally, let us return to the beginning of this introduction. There, we mentioned
that the closed subspace of Lp(X,µ), on which we define the Toeplitz operators is
usually defined as a space of holomorphic functions. In Chapter 9, we ignore this
convention and deal with Toeplitz operators on spaces of pluriharmonic functions.
The presentation is based on our paper [71]. Initially, our work started as a project
on pluriharmonic Fock spaces. Yet, at some point it was clear that the study of
Toeplitz operators on pluriharmonic function spaces is, to a large extent, independent
of the actual underlying geometry and can be reduced to applying results from the
holomorphic situation in combination with several algebraic tricks. In particular,
the methods work in the same way on, say, Bergman spaces of bounded symmetric
domains. Therefore, we included a very brief introduction to such Bergman spaces at
the beginning of this chapter. Afterwards, we study two different questions. First, we
investigate the essential spectrum for Toeplitz operators on pluriharmonic spaces (over
Cn or bounded symmetric domains), at least for relatively nice symbols. Secondly, we
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investigate “quantization estimates” in the pluriharmonic world. These quantization
estimates are supposed to show that the Toeplitz quantization f 7→ Tf behaves as in
the “classical world” (i.e. taking operator products is the same as taking products of
functions), at least in the limit of the quantization parameter. As was already noted
in [62], Berezin-Toeplitz quantization on pluriharmonic function spaces is not perfect,
since one of the important estimates fails. Hence, we end with applying those estimates,
which actually work, to the spectral theory of Toeplitz operators on a non-standard
Bergman space.

We end this thesis with three short appendices on topics which are relevant for the
presentation.
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Chapter 2

Fock spaces and their operators

2.1 Basic definitions and facts

On the Borel-σ-algebra of Cn we consider the family of Gaussian measures

dµt(z) =
1

(πt)n
e−
|z|2
t dV (z)

for each t > 0. Here, V denotes the Lebesgue measure on Cn ∼= R2n. To simplify
notation, we will usually write dz, dw, . . . instead of dV (z), dV (w), . . . when integrat-
ing with respect to the Lebesgue measure. It is well-known and a simple exercise in
integration that the measures µt are actually probability measures.

For each p such that 1 ≤ p <∞ and t > 0 we define the spaces Lpt as the Lebesgue
spaces

Lpt := Lp(Cn, µ2t/p),

i.e. the norm on Lpt is given by

‖f‖Lpt =

(∫
Cn
|f(w)|pdµ2t/p(w)

)1/p

.

We will always suppress n in the notion of Lpt for simplicity. It seems odd that the
variance of the Gaussian measure µ2t/p depends on p. The necessity of this will be
clear later. For the case p =∞ we set

‖f‖L∞t := ess sup
z∈Cn

|f(z)|e−
|z|2
2t

and
L∞t := {f : Cn → C; ‖f‖L∞t <∞}.

All those spaces are clearly Banach spaces, F 2
t being a Hilbert space with the inner

product

〈f, g〉t :=

∫
Cn
f(w)g(w)dµt(w), f, g ∈ L2

t .

9



10 2.1. Basic definitions and facts

The primary spaces of interest to us will not be Lpt , but the following subspaces,
called Fock spaces:

F pt := Lpt ∩Hol(Cn),

where
Hol(Cn) := {f : Cn → C; f holomorphic}.

We will usually ignore the imprecision that Lpt consists of equivalence classes of functions
and not actual functions - this will not cause any problems if not mentioned.

Lemma 2.1.1. Let K ⊂ Cn be a compact subset. For each 1 ≤ p ≤ ∞ and t > 0
there exists a constant C = C(K, t, p) such that for all f ∈ F pt the following estimate
holds true:

‖f‖∞,K := sup
z∈K
|f(z)| ≤ C‖f‖Lpt .

Proof. Let f ∈ F pt for 1 < p < ∞. Further, let q be the conjugate exponent to p,
i.e. 1/p+ 1/q = 1. By Corollary A.1.4 and Hölder’s inequality we have the following
estimate for K ⊂ Cn compact, where CK is independent of f :

sup
z∈K
|f(z)| ≤ CK

∫
Cn
|f(w) · 1|e−

|w|2
2t dw

≤ CK
(∫

Cn
|f(w)|pe−

p|w|2
2t dw

)1/p(∫
Cn
e−

q|w|2
2t dw)

)1/q

= C ′K‖f‖Lpt ,

i.e. for each compact K ⊂ Cn there is a constant C ′K such that

‖f‖∞,K := sup
z∈K
|f(z)| ≤ C ′K‖f‖Lpt

for all f ∈ F pt . The analogous statement for F 1
t follows also immediately from Corollary

A.1.4, the same statement for F∞t is immediate from the definition.

The previous lemma has the following important consequence:

Lemma 2.1.2. For each 1 ≤ p ≤ ∞ and t > 0, F pt is a closed subspace of Lpt .

Proof. Let (fn)n∈N ⊂ F pt converge to f ∈ Lpt . Possibly after passing to a subsequence,
we may assume that fn(z)→ f(z) almost everywhere. By Lemma 2.1.1 fn converges
uniformly on all compact subsets to f (or, the be precise: to a representative of f).
Therefore, f (or its particular representative) has to be holomorphic as well.

The following subspace of F∞t will also be of relevance:

f∞t := {f ∈ F∞t ; f(z)e−
|z|2
2t → 0 as |z| → ∞}.

Lemma 2.1.3. f∞t is a closed subspace of F∞t .
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Proof. Let (fn)n∈N ⊂ f∞t converge to f ∈ F∞t . In particular, fne
− |·|

2

2t ∈ C0(Cn) and

fe−
|·|2
2t ∈ Cb(Cn), where Cb(Cn) are the bounded continuous functions on Cn and

C0(Cn) is the ideal of continuous functions vanishing at infinity. Since C0(Cn) is of

course closed in Cb(Cn) with respect to the uniform topology, this yields fe−
|·|2
2t ∈

C0(Cn), i.e. f ∈ f∞t .

Remark 2.1.4. f∞t is a proper subspace of F∞t . As an example, consider f(z) =

e
z21+···+z

2
n

2t , which is contained in F∞t but not in f∞t .

We also have the following estimate, which is similar to Lemma 2.1.1, but with a
precise constant:

Lemma 2.1.5. Let 1 ≤ p ≤ ∞ and t > 0. Then, for f ∈ F pt we have

|f(z)| ≤ ‖f‖F pt e
|z|2
2t .

Proof. We refer to the proof of [137, Theorem 2.7].

In contrast to usual Lp spaces, the Fock spaces are included in each other in certain
ways:

Proposition 2.1.6. Let 1 < p < p′ <∞ and 0 < s < t. Then, the following inclusions
are well-defined and continuous:

F 1
t ↪→ F pt ↪→ F p

′

t ↪→ f∞t ↪→ F∞t ↪→ F 1
s .

Proof. Let us start with the trivial cases: The continuity of the inclusion f∞t ↪→ F∞t
follows from the definition.

Let f ∈ F∞t . Then,

‖f‖F 1
s

=

∫
Cn
|f(w)|dµ2s(w)

=
1

(2πs)n

∫
Cn
|f(w)|e−

|w|2
2s dw

=
1

(2πs)n

∫
Cn
|f(w)|e−

|w|2
2t e−

|w|2
2

( 1
s
− 1
t
) dw

≤ 1

(2πs)n
‖f‖F∞t

∫
Cn
e−
|w|2
2

( 1
s
− 1
t
) dw

= C‖f‖F∞t .

Now, let 1 ≤ p < p′ <∞ and f ∈ F pt . Then, following the computations in the proof
of [137, Theorem 2.10] and using Lemma 2.1.5,
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‖f‖p
′

F p
′

t

=

(
p′

2πt

)n ∫
Cn
|f(w)|p|f(w)|p′−pe−

p′|w|2
2t dw

≤
(
p′

2πt

)n
‖f‖p

′−p
F pt

∫
Cn
e

(p′−p)|w|2
2t |f(w)|pe−

p′|w|2
2t dw

=

(
p′

2πt

)n
‖f‖p

′−p
F pt

∫
Cn
|f(w)|pe−

p|w|2
2t dw

=

(
p′

p

)n
‖f‖p

′−p
F pt
‖f‖p

F pt
,

which gives ‖f‖
F p
′

t

≤
(
p′

p

)n/p′
‖f‖F pt . Continuity of the inclusion F p

′

t ↪→ F∞t fol-

lows immediately from Lemma 2.1.5. Finally, the inclusion F p
′

t ⊂ f∞t follows since

polynomials are dense in F p
′

t , which we prove later on (Proposition 2.1.9).

It is now the right moment to discuss certain elements and subclasses of the
Fock spaces. By P[z1, . . . , zn] ⊂ Hol(Cn) we denote the algebra of holomorphic
polynomials in z1, . . . , zn. Elementary estimates show that P[z1, . . . , zn] ⊂ F pt and
P[z1, . . . , zn] ⊂ f∞t for all 1 ≤ p ≤ ∞ and t > 0. For a multi-index α ∈ Nn0 let us
consider the monomials

etα(z) =

√
1

α!t|α|
zα, z = (z1, . . . , zn) ∈ Cn,

where we used standard multi-index notation. It is not difficult to prove that {eα; α ∈
Nn0} is an orthonormal set in F 2

t . Indeed, by the product structure of the functions
and Fubini’s Theorem it suffices to check the case n = 1. Then, for j, k ∈ N0 we have,
using polar coordinates,

〈zj , zk〉L2
t

=
1

πt

∫
C
zjzke−

|z|2
t dz

=
1

πt

∫ ∞
0

∫ 2π

0
rj+k+1e−

r2

t eiθ(j−k) dr dθ.

For j 6= k, the angular integral evaluates to 0, while for j = k we obtain

〈zj , zj〉L2
t

=
2

t

∫ ∞
0

r2j+1e−
r2

t dr

= j!tj .

Each f ∈ F 2
t can be expressed as a power series around 0:

f(z) =
∑
α∈Nn0

aαz
α =

∑
α∈Nn0

ãαe
t
α(z),
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where aα are appropriate coefficients in the power series and ãα = aα
√
α!t|α|. Since

{eα; α ∈ Nn0} is an orthonormal set, as discussed above, the power series converges not
only pointwise but also in F 2

t by some standard Hilbert space argument (e.g. Bessel’s
inequality). In particular, we obtain:

Lemma 2.1.7. {eα; α ∈ Nn0} is an orthonormal basis in F 2
t .

Moreover, the holomorphic polynomials are also dense in F pt for 1 ≤ p <∞ and in
f∞t . Before proving this, let us recall the following fact from integration theory (cf.
[115, Chapter 3, Exercise 17]:

Theorem 2.1.8 (Riesz-Radon Theorem). Let µ be a positive measure on the measur-
able space (X,A) and 1 ≤ p <∞. If fn, f ∈ Lp(X,µ) are such that fn(x)→ f(x) a.e.
and ‖fn‖Lp → ‖f‖Lp, then fn → f in Lp(X,µ).

Proposition 2.1.9. P[z1, . . . , zn] is dense in F pt for 1 ≤ p <∞ and also in f∞t for
all t > 0.

Proof. We first prove the result for the case of F pt . Our proof follows a standard
method, as it is used e.g. in [137, Proposition 2.9]. For f ∈ F pt and 0 < r < 1 set

fr(z) := f(rz).

Obviously, fr(z)→ f(z) pointwise as r → 1. Let us compute ‖fr‖Lpt :

‖fr‖pLpt =
( p

2tπ

)n ∫
Cn
|f(rw)|pe−

p|w|2
2t dw

=
( p

2tπ

)n
r−2n

∫
Cn
|f(w)|pe−

p|w|2

2tr2 dw.

The last expression converges, by the Dominated Convergence Theorem, to ‖f‖p
Lpt

as

r → 1. Therefore, by Thereom 2.1.8, fr → f in F pt .
Let now 0 < r < 1 be fixed. It suffices to prove that fr can be approximated by

polynomials. Let s ∈ (t, t
r2

). Using Lemma 2.1.5 we see that

|fr(z)| ≤ ‖f‖F pt e
− r

2|z|2
2t , (2.1)

which yields fr ∈ F 2
s . By Proposition 2.1.6 there is a constant C > 0 such that

‖fr − g‖F pt ≤ C‖fr − g‖F 2
s

for each polynomial g. In particular, approximating fr by its Taylor expansion in F 2
s ,

due to Lemma 2.1.7 we obtain an approximation by polynomials in F pt .
Let us now deal with the case f∞t . Once we can prove, with the above notation,

that fr → f in f∞t for each f ∈ f∞t , the second part of the proof, i.e. approximation
by polynomials, can be carried out identically as in F pt .
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Fix f ∈ f∞t and let 0 < r < 1. Then,

|fr(z)|e−
|z|2
2t ≤ ‖f‖f∞t e

r2|z|2
2t e−

|z|2
2t → 0 as |z| → ∞,

which yields fr ∈ f∞t . Let ε > 0. Then, there is some R > 0 such that for |z| ≥ R we

have |f(z)|e−
|z|2
2t < ε

2 . Further, since f(z)e−
|z|2
2t ∈ C0(Cn), the functions z 7→ f(z)e−

|z|2
2t

and z 7→ e−
|z|2
2t are uniformly continuous. In particular, there is δ > 0 such that

|z − w| < δ =⇒ |f(z)e−
|z|2
2t − f(w)e−

|w|2
2t |, |e−

|z|2
2t − e−

|w|2
2t | < ε.

Fix 0 < r < 1 such that r > max

{
R
R+1 , 1−

δ
R+1 ,

√
1−

(
δ

R+1

)2
}

. Then, for |z| > R+1

we have r|z| ≥ R and therefore

|f(z)− f(rz)|e−
|z|2
2t ≤ |f(z)|e−

|z|2
2t + |f(rz)|e−

|z|2
2t

≤ ε

2
+ |f(rz)|e−

|rz|2
2t e−

(1−r2)|z|2
2t

≤ ε.

For |z| ≤ R+ 1 we have |z− rz| = (1− r)|z| ≤ (1− r)(R+ 1) < δ and therefore obtain

|f(z)− f(rz)|e−
|z|2
2t ≤ |f(z)e−

|z|2
2t − f(rz)e−

|rz|2
2t |+ |f(rz)e−

|rz|2
2t − f(rz)e−

|z|2
2t |

≤ ε+ |f(rz)|e−
|rz|2
2t |1− e−

(1−r2)|z|2
2t |

≤ ε+ ‖f‖F∞t .

By assumption on r we have for z with |z| ≤ R+ 1 that |z|
√

1− r2 ≤ δ and therefore
obtain

|f(z)− f(rz)|e−
|z|2
2t ≤ (1 + ‖f‖F∞t )ε.

In particular, ‖f − fr‖F∞t ≤ (1 + ‖f‖F∞t )ε, which finishes the proof.

The previous result has the following important consequence:

Corollary 2.1.10. In each F pt , 1 ≤ p < ∞, and also in f∞t , {etm; m ∈ Nn0} is a
Schauder basis. In particular, each of those spaces has the approximation property.

By Lemma 2.1.1, the point evaluations

δz : F pt → C, f 7→ f(z)

are bounded linear functionals for each 1 ≤ p ≤ ∞, t > 0. In the Hilbert space case
p = 2, the Riesz Representation Theorem now implies that for each z ∈ Cn there is a
function Kt

z ∈ F 2
t such that

f(z) = 〈f,Kt
z〉t
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for all f ∈ F 2
t . Let us set Kt(w, z) := Kt

z(w). Observe that

Kt(w, z) = Kt
z(w) = 〈Kt

z,K
t
w〉t = 〈Kt

w,K
t
z〉t = Kt(z, w)

and
‖Kt

z‖2Lt2 = 〈Kt
z,K

t
z〉t = Kt

z(z) = Kt(z, z).

In particular, K(w, z) is holomorphic in w and anti-holomorphic in z.
The function Kt

z(w) = Kt(w, z) is called the reproducing kernel function of F 2
t .

There is a general theory of reproducing kernel Hilbert spaces of independent interest,
cf. [3, 106]. The following result holds in full generality in such spaces and is one
of the keys to compute the reproducing kernel. We repeat the standard proof for
completeness.

Lemma 2.1.11. Let {gj ; j ∈ J} an orthonormal basis for F 2
t , where J is a countable

index set. Then, the reproducing kernel Kt(w, z) can be computed as

Kt(w, z) =
∑
j∈J

gj(z)gj(w).

Proof. Since Kt
z ∈ F 2

t , we can express it in the orthonormal basis:

Kt
z =

∑
j∈J
〈Kt

z, gj〉tgj

=
∑
j∈J
〈gj ,Kt

z〉tgj

=
∑
j∈J

gj(z)gj .

Since point evaluations in F 2
t are continuous, the series does not only converge in F 2

t

but also pointwise:

Kt
z(w) =

∑
j∈J

gj(z)gj(w).

This concludes the proof.

Using the above formula, let us compute Kt(w, z). Using the Multinomial Theorem
and standard multi-index notation, we have

Kt(w, z) =
∑
α∈Nn0

etα(w)etα(z)

=

∞∑
k=0

∑
|α|=k

wα1
1 z1

α1

α1!tα1
· · · · · w

αn
n zn

αn

αn!tαn

=
∞∑
k=0

∑
|α|=k

(
k

α

)
wαzα

k!tk
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=
∞∑
k=0

(w · z)k

k!tk

= e
w·z
t .

Here and in what follows, we will always use the convention

w · z = w1z1 + · · ·+ wnzn.

By definition we have Kt
z ∈ F 2

t . Indeed, the reproducing kernel functions are contained
in every Fock space:

Lemma 2.1.12. It holds true that Kt
z ∈ F

p
t and Kt

z ∈ f∞t for all 1 ≤ p ≤ ∞, t > 0

with ‖Kt
z‖F pt = e

|z|2
2t for all such p.

Proof. Using Fubini’s Theorem it is straightforward to see that we may assume n = 1.
For 1 ≤ p <∞ we now compute the norm as follows:

‖Kt
z‖
p
F pt

=
p

2πt

∫
C

∣∣∣ew·zt ∣∣∣p e− p|w|22t dw

=
p

2πt

∫
C
e
pRe(w·z)

t e−
p|w|2
2t dw

=
p

2πt

∫
C
e
p
2t
w·ze

p
2t
z·we−

p|w|2
2t dw

= 〈K2t/p
z ,K2t/p

z 〉2t/p

= e
p|z|2
2t .

This gives ‖Kt
z‖F pt = e

|z|2
2t .

For p =∞ the identity

e−
|w|2
2t
− |z|

2

2t
+

Re(w·z)
t = e−

|w−z|2
2t ,

which is readily verified, yields

‖Kt
z‖F∞t = sup

w∈C
e

Re(w·z)
2t e−

|w|2
2t = sup

w∈C
e−
|w−z|2

2t e
|z|2
2t = e

|z|2
2t .

Finally, since Re(w · z)− |w|2 → −∞ as |w| → ∞, Kt
z ∈ f∞t follows as well.

If X is a linear space and A ⊂ X a subset, we will always denote by SpanA the
linear hull of A in X.

Lemma 2.1.13. Span{Kt
z; z ∈ Cn} is a dense subset of F pt , 1 ≤ p <∞ and f∞t for

all t > 0.
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Proof. As a first observation we note that Span{Kt
z; z ∈ Cn} is always the same set

independently of t, as the weight parameter can be incorporated into the base point z.

Consider p = 2. In this case, we can equivalently show that Span{Kt
z; z ∈ Cn} is

dense in (F 2
t )′, i.e. we will prove that

〈f, φ〉F 2
t

= 0 for all φ ∈ Span{Kt
z; z ∈ Cn} =⇒ f = 0.

But 〈f, φ〉F 2
t

= 0 for all such φ means in particular 〈f,Kt
z〉F 2

t
= f(z) = 0 for all z, i.e.

f = 0.

Let 1 ≤ p < ∞. By Lemma 2.1.6 for each s > t there exists a C > 0 such that
F 2
s ⊂ F

p
t and ‖f‖F pt ≤ C‖f‖F 2

s
for all f ∈ F 2

s . Now, if g is a holomorphic polynomial,

then g lies in the closure of {Kt
z; z ∈ Cn} with respect to the F 2

s norm by the above
discussion, and by the above norm inequality g lies also into the closure with respect
to the F pt norm. Since polynomials are dense, the same holds for arbitrary f ∈ F pt .

The same proof works for f∞t .

2.2 Duality and interpolation of Fock spaces

The following result describes the duality of the Fock spaces under the dual pairing
coming from F 2

t :

Proposition 2.2.1 ([91]). Under the dual pairing 〈·, ·〉t the following spaces are
isomorphic:

1) For 1 ≤ p <∞: (F pt )′ ∼= F qt , where 1/p+ 1/q = 1;

2) (f∞t )′ ∼= F 1
t ;

3) F 1
t is isomorphic to a subspace of (F∞t )′

In particular, we have the following equivalences of norms (where 〈·, g〉t denotes the
linear functional induced by the dual pairing for fixed g):

1) For 1 ≤ p <∞ and g ∈ F pt :

‖g‖F qt . ‖〈·, g〉t‖(F pt )′ . ‖g‖F qt .

2) For g ∈ F 1
t :

‖g‖F 1
t
. ‖〈·, g〉t‖(f∞t )′ . ‖g‖F 1

t
.

Proof. Showing that the map g 7→ 〈·, g〉t is an isomorphism in all the cases stated
above follow from standard methods, cf. [91,137]. From this, the equivalence of norms
follows automatically (i.e. by continuity of g 7→ 〈·, g〉t and its inverse).
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Remark 2.2.2. It is possible to give explicit constants for the norm estimates. For
p ∈ (1,∞) and g ∈ F qt , Hölder’s inequality yields

‖〈·, g〉t‖(F pt )′ ≤
(

2

p

)n/p(2

q

)n/q
‖g‖F qt .

Further, it was proven in [76] that we have for the first inequality

‖g‖F qt ≤ ‖〈·, g〉t‖(F pt )′ .

For the case of (f∞t )′, we obtain from Hölder’s inequality

‖〈·, g〉t‖(f∞t )′ ≤
1

2n
‖g‖F 1

t
.

Even though [76] only deals with the case p ∈ (1,∞), the same methods yield

‖g‖F 1
t
≤ ‖〈·, g〉t‖(f∞t )′ .

One can show that F 1
t is isomorphic to a strict subspace of (F∞t )′ via the dual

pairing. Therefore, we obtain the following:

Corollary 2.2.3. The spaces F pt , 1 < p < ∞, are reflexive, while F 1
t , f

∞
t and F∞t

are not.

We only cite the following important result on the interpolation behavior of Fock
spaces and their ambient Lebesgue spaces under the Complex Interpolation Method:

Theorem 2.2.4 ([91,137]). For t > 0 the following holds true for 0 ≤ θ < 1:

(L1
t , L

∞
t )[θ] = Lpθt ,

(F 1
t , F

∞
t )[θ] = F pθt .

Here, pθ = 1
1−θ .

Remark 2.2.5. In [137], K. Zhu claims that the interpolation formulas in the above
theorem are also valid for θ = 1, which seems to be a typo. At least for the Fock spaces
this is certainly not true: Part 3) of Theorem A.2.1, together with the inclusions in
Proposition 2.1.6, yield that

(F 1
t , F

∞
t )[1] = f∞t .

Therefore, Theorem A.2.1 also yields

(F 1
t , F

∞
t )[θ] = (F 1

t , f
∞
t )[θ] = F pθt

for all 0 ≤ θ < 1.
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Let us just mention that the interpolation result for the ambient Lebesgue spaces is

not particularly deep. Indeed, one can easily show that multiplication by e−
|·|2
2t gives,

up to a constant, an isometric isomorphism

M
exp
(
− |·|

2

2t

) : Lpt → Lp(Cn)

for all 1 ≤ p ≤ ∞. In particular, the spaces Lpt interpolate in the same way as the
standard Lebesgue spaces Lp(Cn). After passing to the standard Lebesgue spaces, we
can also easily identify the dual of the spaces Lpt (even isometrically, up to a constant):

Lemma 2.2.6. Let 1 ≤ p < ∞ and q ∈ (1,∞] such that 1/p + 1/q = 1. Then, the
dual of Lpt can be identified with Lqt and there is a constant ct,n,p such that

‖g‖Lqt = ct,n,p‖〈·, g〉t‖(Lpt )′ .

For completeness, we also note the following simple Fock space version of Little-
wood’s interpolation inequality with its standard proof:

Lemma 2.2.7. For f ∈ F 1
t and 1 < p <∞ we have

‖f‖F pt ≤ p
n
p ‖f‖1/p

F 1
t
‖f‖1−1/p

F∞t
.

Proof. Follows easily from Hölder’s inequality:

‖f‖p
F pt

=
( p

2πt

)n ∫
Cn
|f(w)e−

|w|2
2t |p dw

=
( p

2πt

)n ∫
Cn
|f(w)e−

|w|2
2t ||f(w)e−

|w|2
2t |p−1 dw

≤
( p

2πt

)n ∫
Cn
|f(w)|e−

|w|2
2t dw‖fe−

|·|2
2t ‖p−1
∞

= pn‖f‖F 1
t
‖f‖p−1

F∞t
.

2.3 Toeplitz and Hankel operators

Recall that the Hilbert space F 2
t is a closed subspace of L2

t . Therefore, there is an
orthogonal projection from L2

t onto F 2
t , which we denote by Pt. For a function f ∈ L2

t

we have

Ptf(z) = 〈Ptf,Kt
z〉t

= 〈f,Kt
z〉t

=

∫
Cn
f(w)e

z·w
t dµt(w),

i.e. the projection acts as the integral operator which has the reproducing kernel as
its integral kernel. It is desirable to have such a projection from Lpt to F pt for each
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p ∈ [1,∞], not only in the Hilbert space case. It turns out the integral operator given
by the same integral kernel does the job, and this is really why we made the seemingly
odd choice of Lpt = Lp(Cn, µ2t/p).

Proposition 2.3.1 ([91]). For all 1 ≤ p ≤ ∞ and t > 0 the linear operator given by

Ptf(z) =

∫
Cn
f(w)e

z·w
t dµt(w)

is a bounded linear projection on Lpt with range F pt . In particular, Pt|F pt = I.

Proof. The inequalities

‖Ptf‖L1
t
≤ 2n‖f‖L1

t

‖Ptf‖L∞t ≤ 2n‖f‖L∞t

follow immediately from Fubini’s Theorem and simple integral computations. By
Theorem 2.2.4 we therefore obtain

‖Pt‖Lpt→Lpt ≤ 2n.

We will now show that the range is contained in F pt , i.e. we need to show that Ptf
is holomorphic for f ∈ Lpt . By Morera’s Theorem, it suffices to prove that for each
triangle ∆ ⊂ C and each j = 1, . . . , n we have∫

∂∆
Ptf(z1, . . . , zn) dzj = 0.

Indeed, we have∫
∂∆

Ptf(z1, . . . , zn) dzj =
1

(πt)n

∫
∂∆

∫
Cn
f(w)e

z·w
t e−

|w|2
t dw dzj

=
1

(πt)n

∫
Cn
f(w)e−

|w|2
t

∫
∂∆

e
z·w
t dzj dw

= 0

using the holomorphicity of zj 7→ e
z·w
t . Here, for the case 1 < p < ∞ the use of

Fubini’s Theorem is indeed justified by the following estimate, where q is the exponent
conjugate to p and all but the jth entry of z = (z1, . . . , zn) are fixed:∫

Cn

∫
∂∆
|f(w)e

z·w
t |e−

|w|2
t dzj dw

≤
(

2πt

p

) 1
p

‖f‖Lpt

(∫
Cn

(∫
∂∆
|e
z·w
t | dzj

)q
e−

q|w|2
2t dw

) 1
q

≤
(

2πt

p

) 1
p

‖f‖Lpt `(∂∆)

(∫
Cn
e
√
ncq|w|
t
− q|w|

2

2t dw

) 1
q

<∞.
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We denote in these estimates by `(∂∆) the length of the boundary of the triangle and
c is such that

sup
zj∈∂∆

|z| = sup
zj∈∂∆

√
|z1|2 + · · ·+ |zn|2 ≤ c.

Fubini’s Theorem can be justified similarly in the cases p = 1 and p =∞.
Finally, we need to prove that Pt acts as the identity on F pt . Recall that this is

certainly true on F 2
t , and therefore on P [z1, . . . , zn]. By continuity of Pt and denseness

of the polynomials in F pt by Proposition 2.1.9, the statement follows for 1 ≤ p <∞.
For p =∞, observe for f ∈ F∞t and g ∈ F 1

t we have

〈g, Ptf〉t = 〈Ptg, f〉t = 〈g, f〉t,

again by a direct application of Fubini’s Theorem. Therefore, the statement follows
also for F∞t .

Remark 2.3.2. In the proof we have obtained the estimate ‖Pt‖Lpt→Lpt ≤ 2n for all p by

interpolating between L1
t and L∞t . Since Pt is a (nontrivial) orthogonal projection on

L2
t , we certainly have ‖Pt‖L2

t→L2
t

= 1. In particular, for p 6= 1,∞ the norm estimate

can be improved by interpolating between L1
t and L2

t or L2
t and L∞t .

We can now define Toeplitz and Hankel operators. For each 1 ≤ p ≤ ∞ and a
measurable function f : Cn → C we define the Toeplitz operator T tf : D(T tf ) → F pt
with domain

D(T tf ) := {g ∈ F pt ; fg ∈ Lpt }

by

T tf (g) = Pt(fg).

Further, we define the Hankel operatorHt
f : D(Ht

f )→ Lpt with domainD(Ht
f ) := D(T tf )

through

Ht
f (g) = (I − Pt)(fg).

Note that we ignore p in the notation for those operators.
When it comes to Banach space adjoints of linear operators, we will use two

different notations: If A : X → Y is a linear operator between two Banach spaces, we
will denote by A∗ its Banach space adjoint with respect to a sesquilinear dual pairing
(such as 〈·, ·〉t), while A′ will denote the dual operator with respect to a bilinear dual
pairing (such as the standard pairing between X and Y ′).

We list some properties:

Proposition 2.3.3. For f ∈ L∞(Cn) the following facts hold true:

1) The maps f 7→ T tf and f 7→ Ht
f are linear;
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2) ‖T tf‖ ≤ ‖Pt‖‖f‖∞ and ‖Ht
f‖ ≤ (1 + ‖Pt‖)‖f‖∞;

3) The restriction of T tf : F∞t → F∞t to f∞t has its range in f∞t , i.e. T tf |f∞t ∈ L(f∞t );

4) The adjoint of T tf : f∞t → f∞t is (T tf )∗ = T t
f

: F 1
t → F 1

t ;

5) For 1 ≤ p <∞ the adjoint of T tf : F pt → F pt is (T tf )∗ = T t
f

: F qt → F qt , where q is

the exponent conjugate to p;

6) For 1 ≤ p <∞ the adjoint of Ht
f : F pt → Lpt is (Ht

f )∗ = PtMf (I − Pt) : Lqt → F qt ;

7) For g ∈ L∞(Cn) the following identity holds true:

T tfT
t
g − T tfg = −(Ht

f
)∗Ht

g.

Proof. All results except for point 3) follow from immediate computations and the
duality relations in Proposition 2.2.1. 3) is a direct consequence of Remark 2.2.5.

An important consequence of 3) from the previous proposition is the following:

Proposition 2.3.4. Let t > 0, p ∈ [1,∞] and A ∈ L(F pt ). Further, assume that A
is contained in the Banach algebra generated by all Toeplitz operators with bounded
symbols, i.e. A can be approximated by sums of products of Toeplitz operators. Then,
A has a pre-adjoint.

Proof. For the reflexive case, i.e. p ∈ (1,∞), this is trivial. For p = 1 we can argue
as follows: For any Toeplitz operator T tf ∈ L(F 1

t ) we have (T tf )∗ = T t
f
∈ L(F∞t ),

(T tf )∗|f∞t = T t
f
∈ L(f∞t ) and

(
(T tf )∗|f∞t

)∗
= T tf ∈ L(F 1

t ). The same scheme works for

any operator from the Banach algebra generated by the Toeplitz operators. Analogous
reasoning yields the result for p =∞.

Recall that Kt
z denotes the reproducing kernel functions Kt

z(w) = e
w·z
t . By Lemma

2.1.12 we have ‖Kt
z‖F pt = e

|z|2
2t for all p. We set

ktz(w) =
Kt
z(w)

‖Kt
z‖F 2

t

,

which is therefore of norm 1 in F pt for all p. For a linear operator A on F pt , possibly
unbounded, such that Span{Kt

z; z ∈ Cn} ⊂ D(A), we define its Berezin transform as
a function on Cn by

B(A)(z) := Ã(z) := 〈Aktz, ktz〉t.

If A is a bounded operator, then Ã is clearly a bounded function. For f : Cn → C
such that fKt

z ∈ L
p
t for some p we can also define the Berezin transform of f by

Bt(f)(z) := f̃ (t)(z) := T̃ tf (z) = 〈Pt(fktz), ktz〉t = 〈fktz, ktz〉t.
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As we will see later and is well known, properties of a linear operator are closely related
to properties of its Berezin transform.

Obviously, the properties of a Toeplitz operator are closely related to properties of
its symbol. We introduce several symbol classes, which we will use throughout this
work.

By Cb(Cn) we denote the C∗ algebra of bounded, continuous functions on Cn and
BUC(Cn) is its subalgebra of bounded and uniformly continuous functions. C0(Cn) is
the ideal of functions vanishing at infinity. UC(Cn) denotes the uniformly continuous
functions on Cn (not necessarily bounded). The following two symbol spaces have a
long-known importance for the theory of Toeplitz and Hankel operators, cf. [30,32,135].
By VO∂(Cn) we will denote the functions of vanishing oscillation at infinity, i.e.

VO∂(Cn) := {f ∈ Cb(Cn); sup
w: |z−w|<1

|f(z)− f(w)| → 0, |z| → ∞}.

For f ∈ L∞(Cn) we define the mean oscillation as

MOt(f)(z) := Bt(|f |2)(z)− |Bt(f)(z)|2

and denote by VMOt
∂(Cn) the space of functions with vanishing mean oscillation at

infinity :

VMOt
∂(Cn) := {f ∈ L∞(Cn); MOt(f)(z)→ 0, |z| → ∞}.

Note that we always assume VMOt
∂ functions to be bounded. It can be shown that

the space VMOt
∂(Cn) is actually indeed independent of the parameter t > 0 [84]. We

therefore define

VMO∂(Cn) := VMOt
∂(Cn).

Here is an important property:

Theorem 2.3.5 ([10, 84, 107]). Let f ∈ VMO∂(Cn). Then Ht
f is compact for any

p ∈ (1,∞).

For f ∈ L1
loc(Cn) and E ⊂ Cn bounded and measurable with V (E) > 0 we set

fE =
1

V (E)

∫
E
f(w) dw.

Recall that V is the Lebesgue measure on Cn. For z ∈ Cn and ρ > 0 we now let

A2(f, z, ρ) :=
1

V (B(z, ρ))

∫
B(z,ρ)

|f(w)− fB(z,ρ)|2 dw

and set

BMO2,ρ(Cn) := {f ∈ L1
loc(Cn); sup

z∈Cn
A2(f, z, ρ) <∞}
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VMO(Cn) := {f ∈ L1
loc(Cn); lim

ρ→0
A2(f, z, ρ) = 0 uniformly on Cn}.

Here, BMO stands for bounded mean oscillation and VMO stands for vanishing mean
oscillation (in the interior). It is well-known that BMO2,ρ(Cn) is independent of ρ > 0.
We will use the abbreviations

BMO(Cn) := BMO2,1(Cn)

VMOb(Cn) := VMO(Cn) ∩ L∞(Cn).

We want to mention the following important results:

Theorem 2.3.6 ([12,13]). For f ∈ L∞(Cn) the following holds true:

lim
t→0
‖f̃ (t)‖∞ = lim

t→0
‖T tf‖F 2

t→F 2
t

= ‖f‖∞.

Furthermore:

1) If f ∈ L∞(Cn), then f̃ (t) → f pointwise almost everywhere as t→ 0;

2) If f ∈ Cb(Cn), then f̃ (t) → f pointwise as t→ 0;

3) If f ∈ UC(Cn), then f̃ (t) → f uniformly.

Recall that Toeplitz operators with unbounded symbols in general turn out to be
unbounded operators. Hence, if we take two unbounded functions f, g : Cn → C, it
is at least questionable if the operator product T tfT

t
g is well-defined. If the symbols

are at least uniformly continuous, then the product is indeed well-behaved: It turns
out that there is a dense, self-adjoint subspace Dt of L2

t which is invariant under Pt
and Mf for each f ∈ UC(Cn) [11]. Hence, for uniformly continuous symbols we obtain
that Dt ∩F 2

t is invariant under T tf . Then, the product T tfT
t
g is well-defined on Dt ∩F 2

t

if at least one of the symbols is in UC(Cn) and the other one is either in UC(Cn) or
L∞(Cn).

Theorem 2.3.7 ([13, Theorem 3.4, Theorem 4.9]). For a symbol f ∈ UC(Cn) or
f ∈ VMOb(Cn) the following holds true:

lim
t→0
‖Ht

f‖F 2
t→L2

t
= 0.

In light of 7) in 2.3.3 it follows that

lim
t→0
‖T tfT tg − T tfg‖F 2

t→F 2
t

= 0

for each g ∈ L∞(Cn) or g ∈ UC(Cn).

Remark 2.3.8. The above two results, together with higher order results (cf. [81]
and references therein), say that the map f 7→ T tf serves as a good model for strict
quantization, i.e. in the classical limit t → 0 it resembles the “classical world”. We
will come back to this later.
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For z ∈ Cn we define the operator W t
z ∈ L(F pt ) by

W t
zf(w) = ktz(w)f(w − z).

We will occasionally refer to the W t
z as Weyl operators. An easy substitution shows

that W t
z is actually isometric on F pt for all p ∈ [1,∞]. Further, since W t

zf → W t
z0f

pointwise as z → z0, W t
z acts strongly continuously on F pt for 1 ≤ p <∞ by Theorem

2.1.8. Since the shifts
αz(f)(w) := f(w − z)

act strongly continuously on C0(Cn), it is easily seen that z 7→W t
z is strongly continuous

on f∞t . We fix this for later reference:

Lemma 2.3.9. Let p ∈ [1,∞) and t > 0. Then, z 7→W t
z is strongly continuous on F pt

and on f∞t . Further, the operators satisfy (W t
z)
−1 = W t

−z and (W t
z)
∗ = W t

−z, where
the adjoint of course acts on the space dual to F pt and f∞t , respectively.

Remark 2.3.10. Indeed, z 7→ W t
z is not strongly continuous on F∞t . As an example,

consider again the function f(z) = e
z21+···+z

2
n

2t from Remark 2.1.4. For simplicity, we
only deal with the case n = 1. The higher dimensional examples can be worked out
analogously. We have

|f(z)−W t
wf(z)|e−

|z|2
2t = |e

z2−|z|2
2t − e

z·w
t
− (z−w)2

2t
− |w|

2

2t
− |z|

2

2t |

= |e
z2−|z|2

2t − e
i Im(z·w)

t
− (z−w)2

2t
− |z−w|

2

2t |.

Letting now w = ix for x ∈ (0,∞) and z = πt
2x we get

|f(z)−W t
wf(z)|e−

|z|2
2t = |1 + e−

π2t
4x2 | → 1, x→ 0

and therefore W t
wf does not converge to f in F∞t as w → 0.

We will later be able to prove the following result, which we already state now:

Proposition 2.3.11. Let t > 0. Then, we have

f∞t = {f ∈ F∞t ; z 7→W t
zf is continuous in F∞t }.

The operators W t
z can also be considered as operators on Lpt , acting by the same

formula. They are also isometric and satisfy (W t
z)
−1 = W t

−z and (W t
z)
∗ = W t

−z (with
respect to the standard dual pairing induced by L2

t ), at least for p ∈ [1,∞).
It is important to note that the W t

z (acting on F pt ) are actually Toeplitz operators.
Letting

gtz(w) := e
|z|2
2t

+
2i Im(w·z)

t ,

one can show that W t
z = T tgtz

. Further, the map z 7→W t
z is a projective representation

of Cn on F pt , i.e. for z, w ∈ Cn we have the following identity:

W t
zW

t
w = e−

i Im(z·w)
t W t

z+w.
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In particular, if we define for z ∈ Cn and A ∈ L(F pt ) or A ∈ L(f∞t )

αz(A) := W t
zAW

t
−z,

one obtains
αz(αw(A)) = αz+w(A). (2.2)

The formally identical equality holds true obviously for functions:

αz(αw(f)) = αz+w(f).

We will also consider the operator U , which acts as

Uf(z) = f(−z).

This operator acts on all (measurable) functions. It leaves the Fock spaces invariant
and is isometric on them. We have the following relation between the Weyl operators
and U :

UW t
zU = W t

−z. (2.3)

Here are some important properties of the Berezin transform.

Lemma 2.3.12. Let p ∈ [1,∞) and t > 0. Then, the Berezin transform is a bounded
linear map

L(F pt )→ Cb(Cn).

Further, the Berezin transform is injective.
The same statements are true for the Berezin transform on L(f∞t ).

Proof. Boundedness and linearity are obvious. Let us show that Ã is continuous for
A ∈ L(F pt ). This follows from the following computations:

|Ã(z)− Ã(w)| ≤ |〈A(ktz − ktw), ktz〉t|+ |〈Aktw, ktz − ktw〉t|
≤ ‖A‖op‖ktz − ktw‖F pt ‖k

t
z‖F tq + ‖A‖op‖ktw‖F pt ‖k

t
z − ktw‖F qt

≤ ‖A‖op‖ktz − ktw‖F pt + ‖A‖op‖ktz − ktw‖F qt .

Now observe that ktz = W t
z(1), therefore ‖ktz − ktw‖F pt → 0 as z → w, since z 7→W t

z is

strongly continuous. The same holds for ‖ktz − ktw‖F qt . In the case p = 1, observe that

strong continuity of W t
z on f∞t ⊂ (F 1

t )′ suffices. Analogous arguments yield that Ã is
continuous for A ∈ L(f∞t ).

We prove the injectivity: Let A ∈ L(F pt ) such that Ã = 0. Let us consider the
function Ã(z, w) = 〈Aktz, ktw〉t. Standard arguments (e.g. using Morera’s Theorem)
show that this function is holomorphic in w and anti-holomorphic in z. Then, [69,
Proposition 1.69] and Ã(z, z) = Ã(z) ≡ 0 shows that Ã(z, w) = 0 for all z, w. Therefore,
we have

Ã(z, w) = 〈Aktz, ktw〉t = e−
|w|2
2t Aktz(w) = 0

for all z, w, i.e. Aktz = 0 for all z. Since Span{ktz; z ∈ Cn} is dense in F pt , this shows
A = 0. The same reasoning works for A ∈ L(f∞t ).
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Remark that injectivity of the Berezin transform simply does not hold true in
the case p = ∞. This is shown by the following example, which was inspired by
[96, Example 1.26(b)].

Example 2.3.13. Recall that for any f ∈ F∞t , z 7→ f(z)e−
|z|2
2t is bounded and continuous

on Cn. In particular, the function continuously extends to βCn, the Stone-Čech
compactification of Cn. Fix x ∈ βCn \ Cn and set

νx(f) = f(x)e−
|x|2
2t ,

interpreted in the sense of the continuous extension. Then,

f 7→ νx(f)

is a bounded linear functional on F∞t which vanishes on f∞t . Fix g ∈ F∞t and define
A ∈ L(F∞t ) by

A(f) = νx(f)g.

Then, A vanishes on f∞t . In particular,

Ã(z) = 〈Aktz, ktz〉t = νx(ktz)〈g, ktz〉t = 0

for any z ∈ Cn.

The following result is well-known, at least for the case 1 < p < ∞ (cf. [73,
Proposition 7] and also [10, Theorem 3.1(b)] for the case p = 2). We could not find
the result in the literature for the cases p = 1,∞, hence we provide a proof.

Proposition 2.3.14. Let f ∈ L∞(Cn) have compact support. Then, MfPt, PtMf :
Lpt → Lpt are compact for all 1 ≤ p ≤ ∞.

The proof is based on the following criterion, which in turn is a nice application of
the Riesz-Kolmogorov Theorem.

Theorem 2.3.15 ([67, Corollary 5.1]). Let h : Cn×Cn → C be a measurable function
such that h(z, ·) ∈ L1(Cn) for almost all z ∈ Cn. Assume there is a constant M > 0
such that for almost all z ∈ Cn we have∫

Cn
|h(z, w)| dw < M.

Denote by T the integral operator on L1(Cn) defined by

Tg(w) =

∫
Cn
h(z, w)g(z) dz.

Then, the following are equivalent:
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1) T is compact;

2) For every ε > 0 there exist δ > 0 and R > 0 such that for almost all z ∈ Cn and
every v ∈ Cn with |v| < δ:∫

Cn\B(0,R)
|h(z, w)| dw < ε,

∫
Cn
|h(z, w + v)− h(z, w)| dw < ε.

Proof of Proposition 2.3.14. As we have already mentioned before, the space Lpt is
isometrically equivalent to Lp(Cn) via a constant multiple of the multiplication operator
M

exp
(
− |·|

2

2t

) : Lpt → Lp(Cn).

We will use the previous theorem to prove compactness of the operators over
L1
t . Compactness over L∞t then follows by duality. The other cases will follow from

applying interpolation. Note that it is in general an open problem if the (complex)
interpolation of compact operators is again compact, cf. [52] for a recent survey on that
problem. In our case, compactness of the interpolated operators is indeed verified by a
classical theorem of Krasnosel’skĭı [94]. As already stated, for the cases 1 < p < ∞
compactness can also be directly verified estimating the dual norm of the kernel, as
was done in [73, Proposition 7].

Recall that the operator Pt is an integral operator, hence PtMf is also an integral
operator:

PtMfg(w) =

∫
Cn
f(z)g(z)e

w·z
t dµt(z).

Analogously, MfPt is given by

MfPtg(w) =

∫
Cn
f(w)g(z)e

w·z
t dµt(z).

Adjoining by the operator M
exp
(
|·|2
2t

), we obtain the following integral operators on

L1(Cn):

M
exp
(
− |·|

2

2t

)PtMfM
exp
(
|·|2
2t

)g(w) =
1

(πt)n

∫
Cn
f(z)g(z)e

w·z
t
− |w|

2

2t
− |z|

2

2t dz,

M
exp
(
− |·|

2

2t

)MfPtM
exp
(
|·|2
2t

)g(w) =
1

(πt)n

∫
Cn
f(w)g(z)e

w·z
t
− |w|

2

2t
− |z|

2

2t dz.

First, using the notation from Theorem 2.3.15 we set h(z, w) = f(z)e
z·w
t
− |w|

2

2t
− |z|

2

2t .
Hence, the operator T on L1(Cn) is

T = (πt)nM
exp
(
− |·|

2

2t

)PtMfM
exp
(
|·|2
2t

).
Observe the trivial estimate

∫
Cn |h(z, w)| dw ≤ ‖f‖∞(2πt)n, which places us within

the framework of the theorem. Let ε > 0. We choose R > 0 such that

supp(f) ⊂ B (0, R/2) , (2.4)
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‖f‖∞(4πt)ne−
R2

16t < ε, (2.5)

‖f‖∞
∫
Cn\B(0,R

2
)
e−
|w|2
2t dw <

ε

4
. (2.6)

Then, for |z| ≥ R
2 we trivially have∫

Cn\B(0,R)
h(z, w) dw = 0.

For |z| < R
2 we obtain |z − w| > R

2 for every w ∈ Cn \B(0, R) and therefore∫
Cn\B(0,R)

|h(z, w)| dw ≤ ‖f‖∞
∫
Cn\B(0,R)

e−
|z−w|2

2t dw

≤ ‖f‖∞e−
R2

16t

∫
Cn\B(0,R)

e−
|z−w|2

4t dw

≤ ‖f‖∞(4πt)ne−
R2

16t < ε.

Let us consider the second estimate. We have∫
Cn
|h(z, w + v)− h(z, w)| dw = |f(z)|

∫
Cn
|e

(w+v)·z
t
− |w+v|2

2t
− |z|

2

2t − e
w·z
t
− |w|

2

2t
− |z|

2

2t | dw.

For |z| > R
2 this trivially evaluates to 0 by (2.4). Hence, assume |z| ≤ R

2 . Let δ > 0 be
such that

B(z − v,R/2) ⊂ B(z,R), |v| < δ.

Then, by (2.6) we obtain∫
Cn\B(z,R)

|h(z, w + v)− h(z, w)| dw

≤ ‖f‖∞

(∫
Cn\B(z−v,R

2
)
e−
|w−(z−v)|2

2t dw +

∫
Cn\B(z,R

2
)
e−
|w−z|2

2t dw

)
≤ ε

2
.

On (z, w) ∈ B(0, R2 )×B(0, 2R) the function

(z, w) 7→ e
w·z
t
− |w|

2

2t
− |z|

2

2t

is uniformly continuous, hence we can choose δ small enough such that

‖f‖∞
∣∣∣∣e (w+v)·z

t
− |w+v|2

2t
− |z|

2

2t − e
w·z
t
− |w|

2

2t
− |z|

2

2t

∣∣∣∣ < ε/2

V (B(0, R))
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for |z| ≤ R
2 , w ∈ B(z,R) and |v| < δ. This gives∫

B(z,r)
|h(z, w + v)− h(z, w)| dw ≤ ε

2
.

Combining both estimates we obtain∫
Cn
|h(z, w + v)− h(z, w)| dw < ε

with the above choice of δ. This proves compactness of PtMf on L1
t . The compactness of

MfPt on L1
t follows from similar arguments. We just give a very brief sketch. The kernel

is now h(z, w) = f(w)e
w·z
t
− |w|

2

2t
− |z|

2

2t . If we fix R > 0 such that supp(f) ⊂ B(0, R),
then ∫

Cn\B(0,R)
|h(z, w)| dw = 0.

For the second estimate, since f has compact support we observe that∫
Cn
|h(z, w + v)− h(z, w)| dw

≤
∫
B(0,2R)

|f(w + v)− f(w)|e−
|w−z|

2t dw

+ ‖f‖∞
∫
B(0,2R)

|e
(w+v)·z

t
− |w+v|2

2t
− |z|

2

2t − e
w·z
t
− |w|

2

2t
− |z|

2

2t | dw.

For |v| < δ and δ small enough, the first integral is now less than ε/2 by uniform
continuity of f , the second can be estimated as in the computations for the first
operator.

2.4 Remarks

The study of the spaces F 2
t goes back to the important works by Valentine Bargmann

[5–7] and Irving Segal [117–119] in connection with their study of what is nowadays
called the Bargmann transform, due to which the spaces F pt are also often called
Segal-Bargmann spaces. The name Fock space for F pt arises from the following fact: If
we let F =

⊕∞
k=0(Cn)◦k be the symmetric (or bosonic) Fock space, where ◦k denotes

the k-fold symmetric tensor product, then this symmetric Fock space can be canonically
identified with F 2

t (over Cn) by identifying the symmetric elementary tensor

ej1 ◦ · · · ◦ ejk ,

where the ej are the standard basis elements of Cn, with the orthonormal basis element
etα, which is (up to the normalizing constant) the monomial

k∏
l=1

zjl .
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Using this identification, the Fock spaces F 2
t serve as a natural setting for studying

the annihilation and creation operators (which actually turn out to be unbounded
Toeplitz operators).

It is not entirely clear to the author where the first occurrence of the non-Hilbertian
Fock spaces F pt was. Certainly the most important work on these spaces was [91],
where many of the properties presented here were first discussed. In particular, the
study of duality and interpolation behaviour of Fock spaces was first done in that
paper.

The history of mathematical studies of Toeplitz operators is now well over 100
years old. The notion of a Toeplitz operator originates from Otto Toeplitz’ work [123]
on infinite Toeplitz matrices, or equivalently, on Toeplitz operators on the Hardy space
H2(D).

A comprehensive discussion on the history of Toeplitz operators could probably
fill a treatise on its own, therefore we defer from this. Let us only mention that the
systematic study of Toeplitz operators on Fock spaces seemingly started with the
papers of Berger and Coburn [28–30], even though certain aspect have already been
studied by Berezin [22]. Among all the follow-up works published on Toeplitz operators
on Fock spaces, let us only mention the textbook [137] by K. Zhu, which so far is
the only systematic collection of results concerning operator theory, in particular of
Toeplitz operators, on Fock spaces.

Essentially all results presented in this chapter are well-known, most can be found
in [91,137]. The possibly only new results presented here are Proposition 2.3.11 and
2.3.14. While the latter is certainly not surprising, we could not locate it anywhere in
the literature. For p ∈ (1,∞), a proof was given by Raffael Hagger and the author in
[73], the full result for p ∈ [1,∞] seems to have been written down here for the first
time. Proposition 2.3.11, the proof of which will be given in a later chapter, seems to
be entirely new and adds an interesting aspect to the studies of Fock spaces.
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Chapter 3

Correspondence Theory

In this chapter, we closely follow the presentation of the author’s own work [72]. Many
statements and proofs are taken verbatim from there. We want to emphasize that
the initial work [72] and therefore also this presentation was inspired by R. Werner’s
approach to Quantum Harmonic Analysis [130], a topic which recently inspired further
research in Harmonic Analysis [102, 103]. Observe that, in contrast to [72], we will
spend some extra effort to include the non-reflexive case f∞t into the discussion.

3.1 The convolution formalism

Until stated otherwise, the underlying space will always be F pt for p ∈ (1,∞) or f∞t .
If we do not clarify in which of these two cases we are working, it will not make any
difference. We exclude F 1

t from the discussions, since the Weyl operators W t
z in general

are not well-behaved on the dual space (F 1
t )′ ∼= F∞t (in a sense which we will specify

below). To simplify notation, we will use the following abbreviations:

N = N (F pt ) for p ∈ (1,∞) or N (f∞t ),

K = K(F pt ) for p ∈ (1,∞) or K(f∞t ),

L = L(F pt ) for p ∈ (1,∞) or L(f∞t ),

Sp0 = Sp0(F pt ) for p ∈ (1,∞) or Sp0(f∞t ).

Of course, in all occurrences of N ,K,L or Sp0 , the underlying space F pt or f∞t is
always assumed to be the same. Here, Sp0 denotes the interpolated space between N
and L, cf. Appendix A.3.

The first goal will be to understand the action of αz on certain operators and
functions. The necessary facts are summarized in the following lemma:

Lemma 3.1.1. 1) Let p0 ∈ [1,∞). Then, αz acts strongly continuously on Lp0(Cn)
and on Sp0;

2) αz acts strongly continuously on C0(Cn) and on K;

33
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3) αz acts weak∗ continuously on L∞(Cn) and on L. The latter means that for every
A ∈ L and N ∈ N we have Tr(αz(A)N)→ Tr(AN) as z → 0.

Proof. 1) Strong continuity on Lp0(Cn) follows immediately from Theorem 2.1.8. Let
A = y ⊗ x be a rank one operator, where x ∈ F pt and y ∈ (F pt )′ ∼= F qt . Then, one
easily verifies that αz(A) = (W t

zy)⊗ (W t
zx). In particular, for z → 0,

‖αz(A)−A‖N ≤ ‖(W t
zy − y)⊗ x‖N + ‖(W t

zy)⊗ (x−W t
zx)‖N

≤ ‖W t
zy − y‖(F pt )′‖x‖F pt + ‖W t

zy‖(F pt )′‖x−W t
zx‖F pt

. ‖W t
zy − y‖F qt ‖x‖F pt + ‖y‖F qt ‖x−W

t
zx‖F pt

→ 0, z → 0,

where we used the strong continuity of z 7→W t
z on F pt and F qt . This estimate now

carries over to all finite rank operators. Since ‖ · ‖Sp0 ≤ ‖ · ‖N , the estimate carries
over to Sp0 as well. Observe that

‖αz(A)‖N = ‖A‖N and ‖αz(B)‖op = ‖B‖op

for all A ∈ N (F pt ), B ∈ L(F pt ). By exactness of the Complex Interpolation Method,
we obtain

‖αz(A)‖Sp0 ≤ ‖A‖Sp0

for all A ∈ Sp0 . Using this and the fact that finite rank operators are dense in Sp0 ,
it is now standard to show that

‖αz(A)−A‖Sp0 → 0, z → 0.

Finally, by Equation (2.2) it suffices to show continuity at 0, so we are done. Note
that the same proof works over f∞t .

2) The strong continuity of the shifts on C0(Cn) is standard. On K, the same argument
as for the Schatten classes works.

3) Weak∗ continuity follows from continuity on L1(Cn) and N (F pt ). Note that L(f∞t )
is strictly contained in (N (f∞t ))′ under the trace duality ϕA(N) = Tr(AN), which
does not cause any problems. For A ∈ L and N ∈ N we have

Tr(αz(A)N) = Tr(Aα−z(N))

→ Tr(AN),

since W t
z is strongly continuous on N .

We will need to consider those subspaces of L∞(Cn) and of L on which the action
of αz is “well-behaved”. Let

C0 := {f ∈ L∞(Cn); ‖αz(f)− f‖∞ → 0, z → 0},
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C1 := {A ∈ L; ‖αz(A)−A‖op → 0, z → 0}.

C0 is clearly a C∗ algebra, and so is C1 for p = 2 (being a Banach algebra in general).
Note that the defining conditions are equivalent, respectively for C0 and C1, to

‖αz(f)− αw(f)‖∞ → 0, z → w

‖αz(A)− αw(A)‖op → 0, z → w

for all w ∈ Cn, since αz−w acts isometrically and thanks to Equation (2.2). It is a
matter of standard computations to show that

C0 = BUC(Cn). (3.1)

Recall that the convolution of f, g ∈ L1(Cn) is defined as

f ∗ g(z) =

∫
Cn
f(w)g(z − w) dw.

We will define two additional notions of convolution. For f ∈ L1(Cn) and A ∈ N , set

f ∗A :=

∫
Cn
f(z)αz(A) dz,

which is defined as a Bochner integral in N . Further, for A,B ∈ N set

A ∗B(z) := Tr(Aαz(UBU)),

which is a function from Cn to C. Those convolutions have the following properties:

Lemma 3.1.2. 1) For f, g ∈ L1(Cn) we have

f ∗ g ∈ L1(Cn),

‖f ∗ g‖L1 ≤ ‖f‖L1‖g‖L1 ,∫
Cn
f ∗ g(z) dz =

∫
Cn
f(z) dz

∫
Cn
g(z) dz.

2) For f ∈ L1(Cn) and A ∈ N we have

f ∗A ∈ N ,
‖f ∗A‖N ≤ ‖f‖L1‖A‖N ,

Tr(f ∗A) =

∫
Cn
f(z) dzTr(A).

3) For A,B ∈ N we have

A ∗B ∈ L1(Cn) ∩ Cb(Cn),

‖A ∗B‖L1 ≤ (πt)n‖A‖N ‖B‖N ,∫
Cn
A ∗B(z) dz = (πt)n Tr(A) Tr(B).
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Proof. 1) This is well-known and follows from the Dominated Convergence Theorem
and Fubini’s Theorem.

2) The membership of f ∗A in N is trivial, since the operator is defined as a Bochner
integral in that space. Further, since W t

z is isometric,

‖f ∗A‖N ≤
∫
Cn
|f(z)| ‖W t

zAW
t
−z‖N dz

=

∫
Cn
|f(z)| ‖A‖N dz,

which proves the second claim. Finally, since the trace map is continuous on the
nuclear operators, we can exchange the order of applying the trace and evaluating
the Bochner integral and obtain

Tr(f ∗A) = Tr

(∫
Cn
f(z)W t

zAW
t
−z dz

)
=

∫
Cn
f(z) Tr(W t

zAW
t
−z) dz

=

∫
Cn
f(z) Tr(A) dz.

3) The continuity of A ∗ B is immediate, since z 7→ αz(UBU) is continuous in the
ideal of nuclear operators. Further, boundedness follows from

|Tr(Aαz(UBU))| ≤ ‖A‖N ‖αz(UBU)‖op = ‖A‖N ‖B‖op.

We copy the rest of the proof almost verbatim from [72, Lemma 2.3] with only
minor changes. For simplicity, we state the remaining proof only for the case
A,B ∈ N (F pt ), the case N (f∞t ) is identical.

Assume that A and B are both rank one operators. Hence,

A = y1 ⊗ x1, B = y2 ⊗ x2

with yj ∈ (F pt )′ ∼= F qt , xj ∈ F
p
t . Then,

Aαz(UBU) = (y1 ⊗ x1)αz((Uy2)⊗ (Ux2))

= (y1 ⊗ x1)((W t
zUy2)⊗ (W t

zUx2)).

This is again a rank one operator and one readily checks

Aαz(UBU) = ((W t
zUy2)⊗ x1)〈W t

zUx2, y1〉t.

Furthermore,
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Tr(Aαz(UBU)) = 〈x1,W
t
zUy2〉t〈W t

zUx2, y1〉t

=

∫
Cn

[W t
−zx1](w)[Uy2](w)dµt(w)

∫
Cn

[W t
zUx2](v)y1(v)dµt(v)

=

∫
Cn
x1(w + z)kt−z(w)y2(−w)dµt(w)

∫
Cn
x2(z − v)ktz(v)y1(v)dµt(v).

Assume for the moment that xj and yj are polynomials (which are dense in F pt and
F qt , respectively). We can then apply Fubini’s Theorem and obtain:∫

Cn
Tr(Aαz(UBU)) dz

=

∫
Cn
y2(−w)

∫
Cn
y1(v)

∫
Cn
x1(w + z)x2(z − v)kt−z(w)ktz(v) dzdµt(w)dµt(v).

Since x1, x2 are polynomials in z1, . . . , zn, they (and their product) are in F 2
t as

well and it holds∫
Cn
x1(w + z)x2(z − v)kt−z(w)ktz(v)dz

= (πt)n
∫
Cn
x1(w + z)x2(z − v)e

(v−w)·z
t dµt(z)

= (πt)n〈x1(w + ·)x2(· − v),Kt
v−w〉t

= (πt)nx1(v)x2(−w).

We therefore get∫
Cn

Tr(Aαz(UBU))dz = (πt)n
∫
Cn
x1(v)y1(v)dµt(v)

∫
Cn
x2(−w)y2(−w)dµt(w)

= (πt)n Tr(y1 ⊗ x1) Tr(y2 ⊗ x2).

Setting x = x1 = y2, y = x2 = y1 (which is possible, since we still assume that they
are polynomials) we have∫

Cn
|〈y,W t

zUx〉t|2 dz = (πt)n|Tr(y ⊗ x)|2

and hence it holds 〈y,W t
zUx〉t ∈ L2(Cn) as a function of z with

‖〈y,W t
zUx〉t‖L2 ≤ (πt)n/2|Tr(y ⊗ x)| ≤ (πt)n/2‖y‖F qt ‖x‖F pt .

Therefore,

Tr(Aαz(UBU)) = 〈W t
zUy2, x1〉t〈y1,W

t
zUx2〉t ∈ L1(Cn)
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(understood as a function of z) and the Cauchy-Schwarz inequality yields the
estimate

‖Tr(Aαz(UBU))‖L1 ≤ (πt)n‖y1‖F qt ‖y2‖F qt ‖x1‖F pt ‖x2‖F pt .

Now, let xj ∈ F pt , yj ∈ F qt be arbitrary. Let (xmj )m, (ymj )m be sequences of
polynomials converging to xj and yj in F pt and F qt , respectively. Then,

Tr(Aαz(UBU)) = 〈W t
zUy2, x1〉t〈y1,W

t
zUx2〉t

= lim
m→∞

〈W t
zUy

m
2 , x

m
1 〉t〈ym1 ,W t

zUx
m
2 〉t.

By Fatou’s Lemma we get

‖Tr(Aαz(UBU))‖L1 ≤ (πt)n‖y1‖F qt ‖y2‖F qt ‖x1‖F pt ‖x2‖F pt .

Recall the inequality of norms from Remark 2.2.2, ‖y‖F qt ≤ ‖y‖(F pt )′ . This yields

‖Tr(Aαz(UBU))‖L1 ≤ (πt)n‖y1‖(F pt )′‖y2‖(F pt )′‖x1‖F pt ‖x2‖F pt
= (πt)n‖y1 ⊗ x1‖N ‖y2 ⊗ x2‖N ,

which proves the result for arbitrary rank one operators. Having this estimate, it is
easy to derive ∫

Cn
A ∗B(z) dz = (πt)n Tr(A) Tr(B)

for operators of finite rank. Finally, it is standard to generalize the results for
arbitrary nuclear operators.

Remark 3.1.3. Upon applying the equation
∫
Cn A ∗ C(z) dz = (πt)n Tr(A) Tr(C) to

the operator C = UBU , one obtains∫
Cn

Tr(AW t
zBW

t
−z) dz = (πt)n Tr(A) Tr(B), (3.2)

since U is formally self-adjoint (i.e. the adjoint of U under the standard dual pairing
is U∗ = U) and therefore Tr(UBU) = Tr(B).

Lemma 3.1.4. The following relations hold for f, g ∈ L1(Cn) and A,B,C ∈ N :

f ∗ (g ∗A) = (f ∗ g) ∗A,
f ∗ (A ∗B) = (f ∗A) ∗B,
(A ∗B) ∗ C = (B ∗ C) ∗A,

A ∗B = B ∗A.
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Proof. In this proof we will frequently use the following fact: Every T ∈ L induces a
bounded linear functional on N via

N 7→ Tr(NT ).

Since ktz ⊗ ktz ∈ N , we have for T1, T2 ∈ L:

Tr(NT1) = Tr(NT2) for all N ∈ N
=⇒ Tr((ktz ⊗ ktz)T1) = Tr((ktz ⊗ ktz)T2) for all z ∈ Cn.

But
Tr((ktz ⊗ ktz)T ) = Tr((ktz ⊗ (T ∗ktz)) = 〈ktz, T ∗ktz〉t = T̃ (z),

i.e. if two operators T1, T2 induce the same linear functional on N , they have to be
the same operators, since the Berezin transform is injective.

Let N ∈ N . Then:

Tr(N(f ∗ (g ∗A))) = Tr

(
N

∫
Cn
f(z)W t

z

∫
Cn
g(w)W t

wAW
t
−w dw W t

−zdz

)
=

∫
Cn

∫
Cn
f(z)g(w) Tr(NW t

z+wAW
t
−(z+w)) dw dz

=

∫
Cn

∫
Cn
f(z)g(u− z) Tr(NW t

uAW
t
−u) du dz.

Since u 7→ Tr(NW t
uAW

t
−u) is bounded we may apply Fubini’s Theorem and obtain

Tr(N(f ∗ (g ∗A))) =

∫
Cn

∫
Cn
f(z)g(u− z) dzTr(NW t

uAW
t
−u) du

= Tr(N((f ∗ g) ∗A)).

Since N ∈ N was arbitrary, this proves (f ∗ g) ∗A = f ∗ (g ∗A).
The second identity follows easily:

(f ∗A) ∗B(z) = Tr

(∫
Cn
f(w)W t

wAW
t
−w dzW t

zUBUW
t
−z

)
=

∫
Cn
f(w) Tr(W t

wAW
t
−wW

t
zUBUW

t
−z) dz

=

∫
Cn
f(w) Tr(AW t

−wW
t
zUBUW

t
−zW

t
w) dz

=

∫
Cn
f(w) Tr(AW t

z−wUBUW
t
w−z) dz.

The fourth identity follows immediately from the definition and Equation 2.3. We
reproduce the proof of the third identity from [103, Proposition 4.4], which discusses
essentially the same convolution formalism in the Hilbert space case of the Schrödinger
representation. Let N ∈ N . Then,
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Tr(N((B ∗ C) ∗A))

= Tr(N((C ∗B) ∗A)

= Tr

(
N

∫
Cn

Tr(CW t
zUBUW

t
−z)W

t
zAW

t
−z dz

)
=

∫
Cn

Tr(W t
zAW

t
−zN) Tr(CW t

zUBUW
t
−z) dz.

Applying Equation (3.2) we get

=
1

(πt)n

∫
Cn

∫
Cn

Tr(W t
zAW

t
−zNW

t
wCW

t
zUBUW

t
−zW

t
−w) dw dz

=
1

(πt)n

∫
Cn

∫
Cn

Tr(W t
zAW

t
−zNW

t
wCW

t
−wW

t
wW

t
zUBUW

t
−zW

t
−w) dw dz.

We now apply Equation (2.2):

=
1

(πt)n

∫
Cn

∫
Cn

Tr(W t
zAW

t
−zNW

t
wCW

t
−wW

t
zW

t
wUBUW

t
−wW

t
−z) dw dz

=
1

(πt)n

∫
Cn

∫
Cn

Tr(NW t
wCW

t
−wW

t
zW

t
wUBUW

t
−wW

t
−zW

t
zAW

t
−z) dw dz

=
1

(πt)n

∫
Cn

∫
Cn

Tr(NW t
wCW

t
−wW

t
zW

t
wUBUW

t
−wAW

t
−z) dw dz.

Using Lemma 3.1.2 one can show that Fubini’s Theorem applies here, which gives

=
1

(πt)n

∫
Cn

∫
Cn

Tr(NW t
wCW

t
−wW

t
zW

t
wUBUW

t
−wAW

t
−z) dz dw

=

∫
Cn

Tr(NW t
wCW

t
−w) Tr(W t

wUBUW
t
−wA) dw

= Tr(N((A ∗B) ∗ C)),

once again having used Equation (3.2).

Lemma 3.1.5. Let f, g ∈ L1(Cn) and A1, A2 ∈ N . Then, we have for all z ∈ Cn:

αz(f ∗ g) = αz(f) ∗ g = f ∗ αz(g),

αz(f ∗A1) = αz(f) ∗A1 = f ∗ αz(A1),

αz(A1 ∗A2) = αz(A1) ∗A2 = A1 ∗ αz(A2).

Proof. For the convolution of two functions the identity follows readily. For f ∈ L1(Cn)
and A1 nuclear we get
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αz(f ∗A1) = W t
z

∫
Cn
f(w)W t

wA1W
t
−w dw W t

−z

=

∫
Cn
f(w)W t

zW
t
wA1W

t
−wW

t
−z dw

=

∫
Cn
f(w)W t

wW
t
zA1W

t
−zW

t
−w dw

= f ∗ (αz(A1)).

The equality with αz(f) ∗A1 follows now by a formal substitution. This can be made
rigorous in the following way: On pairing with an arbitrary N ∈ N , we obtain

Tr(Nαz(f ∗A1)) =

∫
Cn
f(w) Tr(NW t

w+zA1W
t
−(w+z)) dw

=

∫
Cn
f(w − z) Tr(NW t

wA1W
t
−w) dw

= Tr (N(αz(f) ∗A1)) .

The identities for the convolution of two nuclear operators follow easily from properties
of the trace and the Equations (2.2) and (2.3).

Recall that the convolution between f ∈ L1(Cn) and g ∈ L∞(Cn) is also well-
defined, producing a function in L∞(Cn). Analogously, we will now generalize the
convolution to an operation between elements from N and L, L1(Cn) and L, L∞(Cn)
and N . For a unified notation, we will denote the trace duality pairing by

〈A,B〉tr = Tr(AB), A ∈ N , B ∈ L.

Analogously, we will write

〈f, g〉tr =

∫
Cn
f(z)g(z) dz,

which is well-defined for g ∈ L1(Cn) and f ∈ L1(Cn) or f ∈ L∞(Cn). Let us first note
the following important identities:

Lemma 3.1.6. Let f ∈ L1(Cn) and A1, A2 ∈ N . Then, we have

〈f ∗A1, B〉tr = 〈f,B ∗ (UA1U)〉tr, B ∈ N ,
〈f ∗A2, B〉tr = 〈A2, (Uf) ∗B〉tr, B ∈ N ,
〈A1 ∗A2, g〉tr = 〈A1, g ∗ (UA2U)〉tr, g ∈ L1(Cn).

Proof. The first identity follows immediately from the properties of the Bochner
integral and the definitions:
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〈f ∗A1, B〉tr = Tr

(∫
Cn
f(z)W t

zA1W
t
−z dzB

)
=

∫
Cn
f(z) Tr(W t

zA1W
t
−zB) dz

= 〈f,B ∗ (UA1U)〉tr.

The second identity follows, using the substitution z 7→ −z:

〈f ∗A2, B〉tr =

∫
Cn
f(z) Tr(W t

zA2W
t
−zB) dz

=

∫
Cn
f(−z) Tr(W t

−zA2W
t
zB) dz

=

∫
Cn
f(−z) Tr(A2W

t
zBW

t
−z) dz

= Tr

(
A2

∫
Cn
Uf(z)W t

zBW
t
−z dz

)
.

The third identity follows equally easily:

〈A1 ∗A2, g〉tr =

∫
Cn
g(z) Tr(A1W

t
zUA2UW

t
−z) dz

= Tr

(
A1

∫
Cn
g(z)W t

zUA2UW
t
−z dz

)
= 〈A1, g ∗ (UA2U)〉tr.

We can now set up the following definition:

Definition 3.1.7. Let f ∈ L1(Cn), g ∈ L∞(Cn), A ∈ N and B ∈ L. Then, f ∗B ∈ N ′,
A∗g ∈ N ′ and A∗B ∈ (L1(Cn))′ = L∞(Cn) are defined through the following relations:

f ∗B(N) = 〈B,Uf ∗N〉tr, N ∈ N ,
A ∗ g(N) = 〈g,N ∗ (UAU)〉tr, N ∈ N ,

〈A ∗B, h〉tr = 〈B, h ∗ (UAU)〉tr, h ∈ L1(Cn).

Note that Lemma 3.1.6 states that the convolutions are well-defined. In the reflexive
case of F pt (p ∈ (1,∞)), one can isometrically identify L(F pt ) ∼= (N (F pt ))′ and therefore
we can identify the linear functionals f ∗B and A ∗ g with elements from L(F pt ). In
the case of f∞t , which has the approximation property, we still have the isometric
identifications

N (f∞t ) ∼= (f∞t )′⊗̂πf∞t ,
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where, ⊗̂π denotes the projective tensor product (see e.g. [116] for an introduction to
tensor products of Banach spaces). Here, we identify each element

∞∑
j=1

xj ⊗ yj ∈ (f∞t )′⊗̂πf∞t

with the nuclear operator

f∞t 3 f 7→
∞∑
j=1

xj(f)yi.

Further, we can isometrically identify

((f∞t )′⊗̂πf∞t )′ ∼= L((f∞t )′)

by associating with each T ∈ L((f∞t )′) the functional

ψT : ((f∞t )′⊗̂πf∞t )→ C, ψT

 ∞∑
j=1

xj ⊗ yj

 =
∞∑
j=1

(Txj)(yj).

Each element ofN (f∞t )′ arises in this form. It is important to note that each A ∈ L(f∞t )
induces a linear functional on N (f∞t ) via

ϕA : N (f∞t )→ C, ϕA(N) = Tr(NA).

If N =
∑∞

j=1 xj ⊗ yj , then

ϕA(N) = Tr

 ∞∑
j=1

xj ⊗ (Ayj)


= Tr

 ∞∑
j=1

(A′yj)⊗ xj


=
∞∑
j=1

(A′yj)(xj)

= ψA′(N).

Since ‖A‖op = ‖A′‖L((f∞t )′) = ‖ψA′‖, we obtain:

Lemma 3.1.8. Let g ∈ L∞(Cn) and A ∈ N . If A ∗ g ∈ N ′ is induced by some B ∈ L,
i.e. A ∗ g = ϕB, then we have

‖B‖op = ‖A ∗ g‖N ′

and the following estimate holds true:

‖B‖op ≤ (πt)n‖g‖∞‖A‖N .
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Proof. The equality of the norms follows from the above discussion. Further, we have
for N ∈ N :

|A ∗ g(N)| = |〈g,N ∗ (UAU)〉|
≤ ‖g‖∞‖N ∗ (UAU)‖L1

≤ (πt)n‖g‖∞‖N‖N ‖A‖N ,

which gives the norm estimate.

We will show in the following that for the case of f∞t , at least in the cases most
interesting to us, the functionals A ∗ g on N are also induced by bounded linear
operators. In case the functionals are actually induced by operators, we will never
distinguish between the functional and the corresponding operator.

Lemma 3.1.9. Let A ∈ N , B ∈ L. Then, we have

A ∗B(z) = Tr(AW t
zUBUW

t
−z)

and the following estimate holds true:

‖A ∗B‖∞ ≤ ‖A‖N ‖B‖op.

Proof. For h ∈ L1(Cn) it is

〈Tr(AW t
(·)UBUW

t
(−·)), h〉tr =

∫
Cn
h(z) Tr(AW t

zUBUW
t
−z) dz

=

∫
Cn
h(z) Tr(BW t

zUAUW
t
−z) dz

= Tr

(
B

∫
Cn
h(z)W t

zUAUW
t
−z dz

)
= 〈B, h ∗ (UAU)〉tr,

i.e. the function satisfies the defining relation. The norm estimate is now immediate.

Lemma 3.1.10. For f ∈ L1(Cn) and A ∈ C1 we have

f ∗A =

∫
Cn
f(z)W t

zAW
t
−z dz ∈ C1

and
‖f ∗A‖op ≤ ‖f‖L1‖A‖op.

Proof. First observe that the above integral exists as a Bochner integral in C1. Now,
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〈∫
Cn
f(z)W t

zAW
t
−z dz,N

〉
tr

=

∫
Cn
f(z) Tr(AW t

−zNW
t
z) dz

=

∫
Cn
f(−z) Tr(AW t

zNW
t
−z) dz

= Tr (A(Uf ∗N))

= 〈A,Uf ∗N〉tr,

i.e. the integral satisfies the defining relation. The norm estimate follows directly from
basic properties of the Bochner integral.

Remark 3.1.11. Since z 7→ W t
z acts weak∗ continuously on L (Lemma 3.1.1), the

integral ∫
Cn
f(z)W t

zAW
t
−z dz

exists as a weak∗ integral in L and satisfies the defining relation for f ∗ A. Thus
f ∗ A ∈ L for all f ∈ L1(Cn), A ∈ L. Since we will not need this, we do not go into
the details here.

It will be a crucial point of the following discussions that g ∗ B is also a linear
operator for all g ∈ L∞(Cn), at least for one particular choice of B ∈ N . But before
showing this, let us state the following important observations:

Lemma 3.1.12. For f ∈ L1(Cn), g ∈ L∞(Cn), A ∈ N and B ∈ L we have

αz(f ∗B) = αz(f) ∗B = f ∗ αz(B),

αz(A ∗ g) = αz(A) ∗ g = A ∗ αz(g),

αz(A ∗B) = αz(A) ∗B = A ∗ αz(B).

Proof. For the cases f∗B and A∗g note the following: While the statement of the lemma
is also true in larger generality (considering the action of αz on N (f∞t )′ ∼= L((f∞t )′)
as the action on L(F 1

t ) via (f∞t )′ ∼= F 1
t ), we will discuss the relations only for the case

that the convolutions are induced by linear operators from L.
In this case, the identities follow easily from the defining relations of the convolutions,

which now read as

〈f ∗B,N〉tr = 〈B,Uf ∗N〉tr,
〈A ∗ g,N〉tr = 〈g,N ∗ (UAU)〉tr,
〈A ∗B, h〉tr = 〈B, h ∗ (UAU)〉tr,

and an application of Lemma 3.1.5. We discuss this for the identity αz(A∗g) = αz(A)∗g
as an example. Note that αz leaves L and N invariant, so αz(A ∗ g) ∈ N ′ is induced
by an operator from L if and only if A ∗ g is. Then:
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〈αz(A ∗ g), N〉tr = Tr(W t
z(A ∗ g)W t

−zN)

= Tr((A ∗ g)W t
−zNW

t
z)

= 〈A ∗ g,W t
−zNW

t
z〉tr

= 〈g, (W t
−zNW

t
z) ∗ (UAU)〉tr

=

∫
Cn
g(w) Tr(W t

−zNW
t
zW

t
wAW

t
−w) dw

=

∫
Cn
g(w) Tr(NW t

zW
t
wAW

t
−wW

t
−z) dw

=

∫
Cn
g(w) Tr(NW t

wW
t
zAW

t
−zW

t
−w) dw

= 〈g,N ∗ (Uαz(A)U)〉tr
= 〈αz(A) ∗ g,N〉tr.

Similar computations prove the other identities.

We now obtain the following important consequence:

Proposition 3.1.13. 1) Let A ∈ N , B ∈ L. Then, A ∗B ∈ BUC(Cn).

2) Let A ∈ N and g ∈ L∞(Cn) such that A ∗ g ∈ L. Then, A ∗ g ∈ C1.

3) Let f ∈ L1(Cn) and B ∈ L such that f ∗B ∈ L. Then, f ∗B ∈ C1.

Proof. 1) This follows from the previous results, since as z → 0,

‖A ∗B − αz(A ∗B)‖∞ = ‖(A− αz(A)) ∗B‖∞
≤ ‖A− αz(A)‖N ‖B‖op
→ 0, z → 0,

having used the strong continuity of αz on N .

2) The reasoning here is similar:

‖A ∗ g − αz(A ∗ g)‖op = ‖(A− αz(A)) ∗ g‖op
. ‖A− αz(A)‖N ‖g‖∞
→ 0, z → 0.

3) Follows analogously to 2).

We deduce several associativity relations from the properties of the convolutions
on N and L1(Cn). The one important to us is the following:

Lemma 3.1.14. Let A,B ∈ N and C ∈ L. Then, A ∗ (B ∗ C) = (A ∗B) ∗ C.
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Proof. It is not difficult to verify that (UAU) ∗ (UBU) = U(A ∗B). In particular, for
N ∈ N we obtain

(N ∗ (UAU)) ∗ (UBU) = N ∗ ((UAU) ∗ (UBU)) = N ∗ (U(A ∗B)).

Therefore,

(A ∗ (B ∗ C))(N) = 〈B ∗ C,N ∗ (UAU)〉tr
= 〈C, (N ∗ (UAU)) ∗ (UBU)〉tr
= 〈C,N ∗ (U(A ∗B))〉tr
= ((A ∗B) ∗ C)(N),

as required.

Let us also note the following fact, which will we use later:

Lemma 3.1.15. Let p0 ∈ [1,∞). For A ∈ N , B ∈ Sp0 the convolution A ∗ B is
well-defined and satisfies

‖A ∗B‖Lp0 ≤ C‖A‖N ‖B‖Sp0

for some constant C > 0 depending on n, t, p and p0.

Proof. This follows immediately by applying the Complex Interpolation Method to
the maps

B 7→ A ∗B, N → L1(Cn)

B 7→ A ∗B, L → L∞(Cn)

which satisfy estimates of the form

‖A ∗B‖L1 . ‖A‖N ‖B‖N
‖A ∗B‖∞ . ‖A‖N ‖B‖op.

3.2 Connections with Toeplitz operators and the Berezin
transform

Let us denote by PC the operator

PC = 1⊗ 1 ∈ N ,

i.e.

PC(f) = f(0)

and its normalized version Rt = 1
(πt)nPC.
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Proposition 3.2.1. Let A ∈ L. Then, we have

PC ∗A(z) = Ã(z).

Proof. One easily verifies

AW t
zUPCUW

t
−z = AW t

zU(1⊗ 1)UW t
−z = ktz ⊗ (Aktz)

and therefore

PC ∗A(z) = Tr(AW t
zUPCUW

t
−z) = Tr(ktz ⊗ (Aktz)) = 〈Aktz, ktz〉t = Ã(z).

Let us note the following: Since PC ∗A ∈ L1(Cn) for A ∈ N we obtain:

Lemma 3.2.2. Let A ∈ N . Then, Ã ∈ L1(Cn).

Proposition 3.2.3. For f ∈ L1(Cn) we have f ∗Rt = T tf . In particular, T tf ∈ N and

‖T tf‖N . ‖f‖L1.

Proof. Recall that f ∗ Rt is defined through the Bochner integral

f ∗ Rt =

∫
Cn
f(z)W t

zRtW t
−z dz.

Let us evaluate this integral at g ∈ F pt for p ∈ (1,∞) or g ∈ f∞t :

f ∗ Rt(g) =
1

(πt)n

∫
Cn
f(z)(ktz ⊗ ktz)(g) dz

=
1

(πt)n

∫
Cn
f(z)〈g,Kt

z〉tKt
ze
− |z|

2

t dz

=
1

(πt)n

∫
Cn
f(z)g(z)Kt

ze
− |z|

2

t dz

= T tfg.

The norm estimates now follow from the corresponding estimates for the convolutions.

Proposition 3.2.4. Let f ∈ L∞(Cn). Then, we have Rt ∗ f = T tf ∈ L.

Proof. Recall that we have to prove that T tf satisfies the relation

〈T tf , N〉tr = 〈f,N ∗ (URtU)〉tr

for each N ∈ N . More specifically, since Span{ktz; z ∈ Cn} is dense in F pt and (F pt )′ ∼=
F qt (respectively, in f∞t and (f∞t )′ ∼= F 1

t ), it suffices to prove this for N = ktz ⊗ ktw,
z, w ∈ Cn. In this case, we have
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〈T tf , N〉tr = Tr((ktz ⊗ ktw)T tf )

= Tr((T tf )∗ktz)⊗ ktw)

= 〈ktw, (T tf )∗ktz〉t
= 〈T tfktw, ktz〉t
= f̃ (t)(w, z).

On the other hand, one can easily verify that

(ktz ⊗ ktw)W t
u(1⊗ 1)W t

−u = (ktz ⊗ ktw)(ktu ⊗ ktu) = 〈ktu, ktz〉t(ktu ⊗ ktw)

and therefore

〈f,N ∗ (URtU)〉tr =
1

(πt)n

∫
Cn
f(u) Tr((ktz ⊗ ktw)W t

u(1⊗ 1)W t
−u) dz

=
1

(πt)n

∫
Cn
f(u)〈ktu, ktz〉t〈ktw, ktu〉t du

=

∫
Cn
f(u)e

z·u
t
− |z|

2

2t e
u·w
t
− |w|

2

2t dµt(u)

= 〈fktw, ktz〉t
= f̃ (t)(w, z).

We have the following important consequence:

Lemma 3.2.5. Let f ∈ L∞(Cn). Then, T tf ∈ C1.

Proof. This follows from the previous proposition and Proposition 3.1.13.

So far we have obtained continuous linear maps

L1(Cn)→ N , f 7→ T tf ,

L∞(Cn)→ L, f 7→ T tf ,

N → L1(Cn), A 7→ Ã,

L → L∞(Cn), A 7→ Ã.

Applying the Complex Interpolation Method gives continuous linear maps

Lp0(Cn)→ Sp0 , f 7→ T tf ,

Sp0 7→ Lp0(Cn), A 7→ Ã.

Here, we use the notation Sp0 = Sp0(F pt ) or Sp0 = Sp0(f∞t ) for the ideal obtained
from complex interpolation between N and L for 1 ≤ p0 < ∞, cf. Appendix A.3.
In particular, this proves that there is some constant c > 0 such that the estimates
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‖T tf‖Sp0 ≤ c‖f‖Lp0 , ‖Ã‖Lp0 ≤ c‖A‖Sp0 hold true. Since the finite rank operators are
dense in Sp0 , it is not difficult to see that αz acts strongly continuous on Sp0 . In
particular, we can define for f ∈ L1(Cn) the convolution with A ∈ Sp0 as

f ∗A =

∫
Cn
f(z)αz(A) dz,

which converges as a Bochner integral (or alternatively, obtaining the same estimate,
interpolate the convolution). One of the few important (to us) facts about this
convolution is the obvious estimate

‖f ∗A‖Sp0 ≤ ‖f‖L1‖A‖Sp0 .

Further, for A ∈ N , B ∈ Sp0 we can still set

A ∗B(z) = Tr(AW t
zUBUW

t
−z).

In the following, we will denote for s > 0 by fs the Gaussian functions

fs(z) =
1

(πs)n
e−
|z|2
s .

An easy computation shows that Rt ∗ PC = ft. Using Lemma 3.1.14 and Propositions
3.2.1 and 3.2.4 we obtain the following important identity, which is well known in the
Hilbert space setting [30, Theorem 6].

Lemma 3.2.6. For A ∈ L the following holds true:

ft ∗A = T t
Ã
.

3.3 Correspondence Theory

Recall that convolution by fs is an approximate identity in BUC(Cn), i.e. for each
g ∈ BUC(Cn) we have fs ∗ g → g uniformly as s → 0. The following fact is of key
importance:

Lemma 3.3.1. Convolution by fs is an approximate identity of Sp0, 1 ≤ p0 < ∞,
and also of C1.

Proof. Recall that αz acts strongly continuously on Sp0 and on C1. Let us denote
by ‖ · ‖ the norm of either Sp0 or C1 for the moment. Then, by the reverse triangle
inequality, z 7→ ‖αz(A)−A‖ is uniformly continuous. Therefore,

‖fs ∗A−A‖ ≤
∫
Cn
fs(z)‖αz(A)−A‖ dz

= fs ∗ ‖α(−·)(A)−A‖(0)

→ ‖α(−0)(A)−A‖ = 0

as s→ 0, which is what we wanted to prove.
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Let us recall the following important result due to Norbert Wiener. Here, f̂ denotes
the Fourier transform of the function f .

Theorem 3.3.2 (Wiener’s Approximation Theorem). Let f ∈ L1(Rn). Then, the
following holds true:

f̂(ξ) 6= 0 for all ξ ∈ Rn ⇐⇒ Span{f(· − x); x ∈ Rn} is dense in L1(Rn).

A proof of this well-known theorem can be found in [70, Corollary 4.70]. Since
the Fourier transform of a Gaussian is again a Gaussian, which vanishes nowhere,
we obtain the following: For each N ∈ N there are constants MN ∈ N, cNj ∈ C and

zNj ∈ Cn (j = 1, . . . ,MN ) such that∥∥∥∥∥∥f 1
N
−

MN∑
j=1

cNj αzNj
(f1)

∥∥∥∥∥∥
L1

<
1

N
.

Let us fix these constants. It is a matter of a simple substitution to show that the
same constants satisfy ∥∥∥∥∥∥f t

N
−

MN∑
j=1

cNj α
√
tzNj

(ft)

∥∥∥∥∥∥
L1

<
1

N

for all t > 0.

Theorem 3.3.3. Let A ∈ Sp0 for 1 ≤ p0 <∞ or A ∈ C1. Then:∥∥∥∥∥∥A−
MN∑
j=1

cNj α
√
tzNj

(T t
Ã

)

∥∥∥∥∥∥→ 0, N →∞,

where ‖ · ‖ is the norm of the space from which A is taken.

Proof. Recall that T t
Ã

= ft ∗ A by Lemma 3.2.6. By Lemmas 3.1.12 and 3.3.1 we
receive∥∥∥∥∥∥A−

MN∑
j=1

cNj α
√
tzNj

(T t
Ã

)

∥∥∥∥∥∥ ≤
∥∥∥A− f t

N
∗A
∥∥∥+

∥∥∥∥∥∥f t
N
∗A−

MN∑
j=1

cNj α
√
tzNj

(T t
Ã

)

∥∥∥∥∥∥
=
∥∥∥A− f t

N
∗A
∥∥∥+

∥∥∥∥∥∥f t
N
∗A−

MN∑
j=1

cNj α
√
tzNj

(ft) ∗A

∥∥∥∥∥∥
≤
∥∥∥A− f t

N
∗A
∥∥∥+

∥∥∥∥∥∥f t
N
−

MN∑
j=1

cNj α
√
tzNj

(ft)

∥∥∥∥∥∥
L1

‖A‖

≤
∥∥∥A− f t

N
∗A
∥∥∥+

1

N
‖A‖

→ 0

as N →∞.
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Let us introduce some notation. For a subspace D0 ⊂ L∞(Cn) we denote for
1 ≤ p <∞ and t > 0:

T p,tlin (D0) := {T tf ∈ L(F pt ); f ∈ D0},

T p,t(D0) := Alg{T tf ∈ L(F pt ); f ∈ D0},
T 2,t
∗ (D0) := C∗({T tf ∈ L(F 2

t ); f ∈ D0}),

i.e. T p,tlin (D0) is the operator norm closure of the Toeplitz operators with symbol in

D0, T p,t(D0) is the Banach algebra and T 2,t
∗ (D0) the C∗ algebra generated by them.

Analogously,

T ∞,tlin (D0) := {T tf ∈ L(f∞t ); f ∈ D0},

T ∞,t(D0) := Alg{T tf ∈ L(f∞t ); f ∈ D0}.

For a lack of a better notation, we will write

T ∞+,t
lin (D0) := {T tf ∈ L(F∞t ); f ∈ D0},

T ∞+,t(D0) := Alg{T tf ∈ L(F∞t ); f ∈ D0}.

Further, we will often abbreviate T p,t = T p,t(L∞(Cn)) (1 ≤ p ≤ ∞) and T ∞+,t =
T ∞+,t(L∞(Cn)) for the full Toeplitz algebra.

Observe the following consequence of Theorem 3.3.3, parts of which are well-known
(i.e. T 2,t = T 2,t

lin (BUC(Cn)) is obtained from the Fock space version of [131, Theorem

1.5] combined with [19, Theorem 3.7] and N = {T tf ; f ∈ L1(Cn)} for p = 2 is [30,
Theorem 9]).

Corollary 3.3.4. Let 1 < p ≤ ∞ and t > 0. Then:

1) C1 = T p,t = T p,tlin (BUC(Cn));

2) Sp0 = {T tf ; f ∈ Lp0(Cn)} for each 1 ≤ p0 <∞.

In the second part of the Corollary, the closure is taken with respect to the Sp0
norm. A construction analogous to the one above works for functions. If f ∈ Lp0(Cn)
or f ∈ BUC(Cn), then we have∥∥∥∥∥∥f −

MN∑
j=1

cNj α
√
tzNj

(f̃ (t))

∥∥∥∥∥∥ ≤
∥∥∥f − f t

N
∗ f
∥∥∥+

∥∥∥∥∥∥f t
N
∗ f −

MN∑
j=1

cNj α
√
tzNj

(ft) ∗ f

∥∥∥∥∥∥
≤
∥∥∥f − f t

N
∗ f
∥∥∥+

∥∥∥∥∥∥f t
N
−

MN∑
j=1

cNj α
√
tzNj

(ft)

∥∥∥∥∥∥
L1

‖f‖

→ 0

as N →∞. We therefore obtain:
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Proposition 3.3.5. Let f ∈ Lp0(Cn) or f ∈ BUC(Cn). Then, we have∥∥∥∥∥∥f −
MN∑
j=1

cNj α
√
tzNj

(f̃ (t))

∥∥∥∥∥∥→ 0

as N →∞. Here, ‖ · ‖ is the norm coming from the space Lp0(Cn) or BUC(Cn). In
particular, we have

Lp0(Cn) = {Ã; A ∈ Sp0},

BUC(Cn) = {Ã; A ∈ C1},

for all 1 ≤ p0 <∞.

It is noteworthy that the last two equalities in the previous result are independent
of p and t.

The cases F 1
t and F∞t

We will now try to carry over the results we obtained to operators on F 1
t and F∞t . In

both cases, we can still define the space C1 analogously, i.e. as the space of operators
A from L(F 1

t ) or L(F∞t ) on which the shifts z 7→ αz(A) act strongly continuously.
Further, for A ∈ C1 and f ∈ L1(Cn), the convolution

f ∗A :=

∫
Cn
f(z)W t

zAW
t
−z dz

is still well-defined as a Bochner integral in C1 and satisfies the estimate ‖f ∗A‖op ≤
‖f‖L1‖A‖op. If one wants to imitate the preceding convolution approach, one encounters
the problem that the compact operators (and even the nuclear operators) are not

entirely contained in C1. As an example, consider the function f(z) = e
z21+···+z

2
n

2t

from Remark 2.1.4. Since z 7→ W t
z(f) is not continuous in F∞t , one can show that

z 7→ αz(f ⊗ 1) is not continuous in N (F 1
t ). Analogously, z 7→ αz(1 ⊗ f) is not

continuous in N (F∞t ). While we will not talk about the Sp0 part of the theory on
F 1
t or F∞t , the C1 part can be rescued. Proving that T tf ∈ C1 for f ∈ L∞(Cn) cannot

be done by imitating the proofs from above. Instead, this follows from duality: For
f ∈ L∞(Cn) we know that z 7→ αz(T

t
f
) is continuous in L(f∞t ). Since the Banach

space adjoint of T t
f

is T tf ∈ L(F 1
t ), and the norms of F 1

t and (f∞t )′ are equivalent, we

obtain by duality that T tf ∈ C1 over F 1
t . Using duality again, we obtain that T t

f
is in

C1 over F∞t . The equality ft ∗A = T t
Ã

for A ∈ C1 is still valid over F 1
t and F∞t : While

the proof using convolutions does not work anymore, both sides are still well-defined.
Comparing their Berezin transforms shows that they indeed define the same operator.
Using the same proof as for the cases above, we obtain:
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Theorem 3.3.6. For A ∈ C1 over F 1
t or F∞t we have for N →∞:

MN∑
j=1

cNj α
√
tzNj

(T t
Ã

)→ A.

Consequently, the equalities

C1 = T 1,t = T 1,t
lin (BUC(Cn)),

C1 = T ∞+,t = T ∞+,t
lin (BUC(Cn))

also holds true.

Note the following: Since every Toeplitz operator on F∞t leaves f∞t invariant, we
obtain that every operator in C1 over F∞t leaves f∞t invariant by the above theorem,
which is not at all obvious.

To simplify notation, we will in the following refer to the case F∞t by p = ∞+.
To clarify this, here are two examples: If a statement is supposed to hold true for
1 < p ≤ ∞, then it holds true over F pt , 1 < p <∞, and over f∞t as well. The validity
of a statement over the range 1 < p ≤ ∞+ refers to all the spaces F pt , 1 < p <∞, f∞t
and F∞t . Analogously we will encounter the range 1 ≤ p ≤ ∞+.

We can now also conclude a proof from Chapter 2:

Proof of Proposition 2.3.11. Recall that the equality which we want to prove is the
following:

f∞t = {f ∈ F∞t ; z 7→W t
zf is continuous in F∞t }.

The inclusion “⊆” was already noted in Lemma 2.3.9. Hence, let f ∈ F∞t be such
that z 7→W t

zf is continuous in F∞t -norm. Thus, for the rank one operator 1⊗ f from
L(F∞t ) we obtain

‖αz(1⊗ f)− (1⊗ f)‖N (F∞t ) = ‖(ktz ⊗W t
z(f))− (1⊗ f)‖N (F∞t )

≤ ‖(ktz − 1)⊗ f‖N (F∞t ) + ‖1⊗ (f −W t
z(f))‖N (F∞t )

. ‖ktz − 1‖F 1
t
‖f‖F∞t + ‖1‖F 1

t
‖f −W t

z(f)‖F∞t
→ 0

as z → 0. In particular, 1⊗ f ∈ C1 = T ∞+,t. Therefore, by Proposition 2.3.3.3), 1⊗ f
leaves f∞t invariant. Hence, (1⊗ f)(1) = f ∈ f∞t .

The main correspondence result

The following result is now the essential part of Werner’s Correspondence Theorem
[130]. The result holds true for all 1 ≤ p ≤ ∞+.



Chapter 3. Correspondence Theory 55

Theorem 3.3.7. 1) Let D0 ⊂ BUC(Cn) be a closed and α-invariant subspace. Then,
there is a unique closed and α-invariant subspace D1 ⊂ C1 such that the following
holds true: For each A ∈ C1 we have

A ∈ D1 ⇐⇒ Ã ∈ D0.

2) Let D1 ⊂ C1 be a closed and α-invariant subspace. Then, there is a unique closed
and α-invariant subspace D0 ⊂ BUC(Cn) such that the following holds true: For
each f ∈ BUC(Cn) we have

f ∈ D0 ⇐⇒ T tf ∈ D1.

This correspondence of spaces is symmetric, i.e. if D1 is the unique closed and
α-invariant subspace associated to D0, then D0 is the unique closed and α-invariant
subspace associated to D1 and vice versa. Finally, this correspondence, which we will
write by D0 ←→ D1, is given by

{Ã; A ∈ D1} = D0 ←→ D1 = T p,tlin (D0).

Proof. First observe that, granted the existence of such corresponding spaces, they

need to be T p,tlin (D0) and {Ã; A ∈ D1}. Indeed, let D0 be as assumed in the theorem
and D1 the space corresponding to it. Since D0 is α-invariant and closed, we obtain

ft ∗ f = f̃ (t) = T̃ tf ∈ D0 for every f ∈ D0, and therefore we receive T p,tlin (D0) ⊂ D1.

Since D1 is α-invariant and closed, it is invariant under convolutions by L1(Cn). In
particular, ft ∗A = T t

Ã
∈ D1 for A ∈ D1. Therefore, any A ∈ D1 can be approximated

by elements in T p,tlin (D0) by Theorems 3.3.3 and 3.3.6. This means that T p,tlin (D0) is

dense in D1. Since both spaces are closed, we obtain T p,tlin (D0) = D1.
On the other hand, if we start with D1 and consider its associated space D0,

analogous reasoning yields D0 = {Ã; A ∈ D1}. This settles the uniqueness part. Now,
it remains to show that these spaces actually satisfy the claimed properties.

Let us start with the first part, i.e. D0 ⊂ BUC(Cn) is given. Let A ∈ C1. Assume
A ∈ T p,tlin (D0). Then, we can approximate A in operator norm by Toeplitz operators

T tgk with gk ∈ D0. Since T̃ tgk = g̃k
(t) = ft ∗ gk ∈ D0 for all k, and T̃ tgk → Ã uniformly

as n→∞, we obtain Ã ∈ D0. On the other hand, if Ã ∈ D0, then Theorem 3.3.3 or
Theorem 3.3.6 prove that A ∈ T p,tlin (D0).

Now, assume D1 ⊂ C1 is given. Let f ∈ BUC(Cn). If we assume f ∈ {Ã; A ∈ D1},
let Ak ∈ D1 such that Ãk → f uniformly. Then, T t

Ãk
→ T tf in operator norm. But

T t
Ãk

= ft ∗Ak ∈ D1, therefore T tf ∈ D1. Conversely, if we assume that T tf ∈ D1, then

clearly f ∈ {Ã; A ∈ D1}.

In what follows, we will always denote by D0, D1 such a pair of corresponding
spaces. For later reference, let us fix the following easy observations, which follow
immediately from the Correspondence Theorem.
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Lemma 3.3.8. Let D0 ←→ D1. Then the following statements hold true:

1) D0 is U-invariant, i.e. Uf ∈ D0 for all f ∈ D0, if and only if D1 is U-invariant,
i.e. UAU ∈ D1 for all A ∈ D1;

2) 1 ∈ D0 if and only if 1 ∈ D1. Here, 1 denotes the respective unit elements in the
Banach algebras BUC(Cn) and C1;

3) If E0, E1 is another pair of corresponding spaces in the sense of Theorem 3.3.7, then

D0 ⊂ E0 ⇐⇒ D1 ⊂ E1;

4) For p = 2: D0 is self-adjoint (i.e. f∗ ∈ D0 for f ∈ D0) if and only if D1 is
self-adjoint (A∗ ∈ D1 for A ∈ D1).

We already know one example of corresponding spaces: By Corollary 3.3.4 and
Theorem 3.3.6 we obtain

BUC(Cn)←→ C1 = T p,t

for all p and t. Here is another example:

Theorem 3.3.9. For all p, t we have

C0(Cn)←→ C1 ∩ K.

Proof. Let us first consider the case 1 ≤ p ≤ ∞. If f ∈ Cc(Cn), then f ∈ L1(Cn) and
therefore T tf ∈ N . In particular, T tf ∈ K. Approximating an arbitrary f ∈ C0(Cn)

by compactly supported functions yields T tf ∈ K for f ∈ C0(Cn). Since the adjoint

of a compact operator is again compact, we obtain T tf ∈ K for all 1 ≤ p ≤ ∞+ if
f ∈ C0(Cn).

Let D0 be the space corresponding to K ∩ C1. Then, we have by the above

C0(Cn)←→ T p,tlin (C0(Cn)) ⊂ K ∩ C1 ←→ D0

and therefore by Lemma 3.3.8 C0(Cn) ⊂ D0. In the cases 1 < p ≤ ∞, the normalized
reproducing kernels ktz converge weakly to 0 as |z| → ∞ (this follows from the inclusions
in Proposition 2.1.6 and the dualities in Proposition 2.2.1). Therefore, for A ∈ K∩C1 we
obtain in these cases (since every compact operator over a Banach space is completely
continuous) that ‖Aktz‖ → 0 as |z| → ∞ and hence

|Ã(z)| = |〈Aktz, ktz〉t| . ‖Aktz‖ → 0, z →∞,

i.e. Ã ∈ C0(Cn). Over F∞t , A ∈ K∩C1 leaves f∞t invariant and therefore the restriction
A|f∞t is in K ∩ C1 over f∞t and has the same Berezin transform, hence Ã ∈ C0(Cn) in
this case. For the last case, A ∈ K∩ C1 over F 1

t , the dual A∗ is in K∩ C1 over F∞t and
for the Berezin transform of A∗ is the complex conjugate of Ã, which is contained in
C0(Cn).

This discussion shows that Ã ∈ C0(Cn) for A ∈ K∩C1 in all cases. Therefore, D0 ⊂
C0(Cn). Hence, we have proven D0 = C0(Cn), which shows the correspondence.
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The following corollary is the well-known characterization of compact operators
over the Fock spaces, cf. [19, Theorem 1.1] for the first proof in the case 1 < p <∞.
To the best of the author’s knowledge, the limit cases f∞t , F 1

t and F∞t have not been
dealt with before.

Corollary 3.3.10. 1) For 1 < p ≤ ∞ the following holds true for any A ∈ L:

A is compact ⇔ A ∈ T p,t and Ã ∈ C0(Cn).

2) For p = 1,∞+ the following holds true for A ∈ C1:

A is compact ⇔ Ã ∈ C0(Cn).

Proof. Follows immediately from the correspondence C0(Cn) ←→ K ∩ C1. Observe
that we have K ⊂ C1 by Lemma 3.1.1 for the cases 1 < p ≤ ∞.

Observe that we necessarily get a weaker statement for the cases of F 1
t and F∞t . If

we consider for n = 1 the rank one operator A = e
(·)2
2t ⊗ 1 ∈ L(F 1

t ), which is certainly
compact, then A is not contained in C1. Indeed, its adjoint, considered as an element

of L(F∞t ), is A∗ = 1 ⊗ e
(·)2
2t . Since e

(·)2
2t ∈ F∞t \ f∞t , A∗ clearly does not leave f∞t

invariant, hence cannot be in T ∞+,t.
Over F∞t it is seemingly difficult to verify whether an operator belongs to C1.

Therefore, we present a different characterization of compactness in this space:

Corollary 3.3.11. Let A ∈ L(F∞t ) be such that it leaves f∞t invariant. Then, the
following holds true:

A is compact ⇔ A ∈ T ∞+,t and Ã ∈ C0(Cn).

Proof. By identifying (f∞t )′′ with F∞t , we obtain A = (A|f∞t )∗∗. Now the result follows
easily from the compactness characterization over f∞t .

Here is another important example of correspondences:

Lemma 3.3.12. The following correspondence holds true:

VO∂(Cn)←→ esscom(C1, C1),

i.e. esscom(C1, C1) = T p,tlin (VO∂(Cn)).

Recall that VO∂(Cn) denotes the functions of vanishing oscillation at infinity. It
is not difficult to see that this is a closed and α-invariant subspace of BUC(Cn) (and
even a unital C∗ subalgebra, as will become important later). Further, esscom(C1, C1)
denotes the essential commutant of C1 in C1, i.e.

esscom(C1, C1) := {A ∈ C1; [A,B] ∈ K for all B ∈ C1}.

We will later see that this agrees with the full essential commutant esscom(C1,L), i.e.
with

esscom(C1,L) := {A ∈ L; [A,B] ∈ K for all B ∈ C1},
at least in the cases 1 < p ≤ ∞.
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Proof of Lemma 3.3.12. It is elementary to verify that VO∂(Cn) and esscom(C1, C1)
are α-invariant and closed. Since Toeplitz operators with BUC(Cn) symbols are dense
in C1, we have

A ∈ esscom(C1, C1)⇔ [A, T tg ] ∈ K for all g ∈ BUC(Cn).

Hence, we need to show that

T p,tlin (VO∂(Cn)) = {A ∈ C1; [A, T tg ] ∈ K for all g ∈ BUC(Cn)}.

We know that esscom(C1, C1) = T p,tlin (D0) for some D0 ⊂ BUC(Cn) α-invariant and
closed, i.e.

D0 = {f ∈ BUC(Cn); [T tf , T
t
g ] ∈ K for all g ∈ BUC(Cn)}.

Now observe two things: First, for f ∈ BUC(Cn) we have [T tf , T
t
g ] ∈ K for all

g ∈ BUC(Cn) if and only if ([T tf , T
t
g ])
∼ ∈ C0(Cn) for all g ∈ BUC(Cn) by Corollary

3.3.10. This condition is indeed independent of p, since the Berezin transform of the
formally p-independent integral operator [T tf , T

t
g ] (i.e. its integral expression does not

depend on p) does not depend on p. On the other hand, [13, Proposition 3.6] shows
VO∂(Cn) ⊂ D0 for p = 2, hence for all p.

Finally, if f ∈ D0, we can conclude as in [30, Proof of Theorem D]: Since the
operators W t

z are Toeplitz operators with bounded symbols, the assumption implies
that for any z ∈ Cn we have [T tf ,W

t
z ] ∈ K and therefore

W t
zT

t
fW

t
−z − T tf = αz(T

t
f )− T tf ∈ K

for all z ∈ Cn. This gives

T t
f̃ (t)
− T tf =

∫
Cn
ft(z)[αz(T

t
t )− T tf ] dz ∈ K, (3.3)

which implies by Corollary 3.3.10

(f̃ (t) − f)∼(t) ∈ C0(Cn).

Since f̃ (t) − f ∈ BUC(Cn), Proposition 3.3.5 yields f̃ (t) − f ∈ C0(Cn). Finally, this
yields f ∈ VO∂(Cn) by [30, Corollary to Theorem 5]. Therefore, D0 ⊂ VO∂(Cn).

Note that the upshot of Lemma 3.3.12 is not the correspondence itself, which is as
expected, but rather the fact that it can be deduced for any p from the well-studied
Hilbert space case. We will encounter this reasoning again later. We also have the
following consequence of Equation (3.3), which is again well-known for the Hilbert
space case:

Corollary 3.3.13. The following holds true for any 1 ≤ p ≤ ∞+:

esscom(C1, C1) = T p,tlin (VO∂(Cn)) = {T tf ; f ∈ VO∂(Cn)}+ (K ∩ C1).
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We will later see more examples of correspondences. Let us for the moment continue
with the general theory.

Note that C0(Cn) is an ideal in BUC(Cn) and similarly T p,tlin (C0(Cn)) = K∩C1 is an

ideal in T p,tlin (BUC(Cn)) = C1. We will later see that this is not just a coincidence. For
the moment, we will focus on the quotients of those spaces. Recall that for 1 < p ≤ ∞
we have even T p,tlin (C0(Cn)) = K, which is now an ideal in both T p,t and L. Therefore,
we can consider the Coburn algebra T p,t/K as a closed subalgebra of the Calkin algebra
L/K. Recall that the natural norm on the Calkin algebra is:

‖A+K‖ = ‖A‖ess := inf
K∈K
‖A+K‖op.

Further, since the group action αz leaves K invariant, it descends to a group action
in L/K: αz(A+K) = (αz(A) +K). In particular, once z 7→ αz(A+K) is continuous
for fixed A+K ∈ L/K, we can define its convolution by f ∈ L1(Cn) as the Bochner
integral

f ∗ (A+K) :=

∫
Cn
f(z)αz(A+K) dz.

Theorem 3.3.14. For 1 < p ≤ ∞ the following equalities hold true:

T p,t/K = {A+K ∈ L/K; z 7→ αz(A+K) is norm continuous}
= {A+K ∈ L/K; fs ∗ (A+K)→ (A+K) in norm as s→ 0}.

Further, for A + K ∈ T p,t/K, the same approximation scheme as in Theorem 3.3.3
works: ∥∥∥∥∥∥(A+K)−

MN∑
j=1

cNj α
√
tzNj

(T t
Ã

) +K

∥∥∥∥∥∥→ 0 (3.4)

as N →∞, where the coefficients are as earlier.

Proof. For (A + K) ∈ T p,t/K the continuity of z 7→ αz(A + K) follows immediately
from the fact that T p,t = C1 and the trivial estimate

‖A+K‖ ≤ ‖A‖op.

If z 7→ αz(A+K) is continuous, we obtain as earlier:

‖(A+K)− ft ∗ (A+K)‖ ≤
∫
Cn
ft(z)‖(A+K)− αz(A+K)‖ dz → 0, t→ 0.

If ft ∗ (A + K) → (A + K) as t → 0, we can prove the approximation scheme
in Equation (3.4) as earlier using Wiener’s Approximation Theorem, hence we get
A+K ∈ T p,t/K.

While we cannot naturally consider T p,t/(K ∩ C1) as a subalgebra of the Calkin
algebra L/K in the cases p = 1,∞+, αz still descends to a strongly continuous group
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action in the quotient T p,t/(K ∩ C1). Therefore, one can analogously prove that the
approximation from Equation (3.4) works equally well in these cases.

We just notice as a byproduct of the approximation method (3.4) that we also get
a Correspondence Theorem in the Coburn algebra, which is proven analogously to the
first Correspondence Theorem:

Corollary 3.3.15. For 1 ≤ p ≤ ∞+ there is a 1:1 correspondence between closed, α-
invariant subspaces D0/C0(Cn) of BUC(Cn)/C0(Cn) and closed, α-invariant subspaces
D1/(K ∩ C1) of T p,t/(K ∩ C1):

{Ã+ C0(Cn); A+ (K ∩ C1) ∈ D1/(K ∩ C1)} = D0/C0(Cn)

←→ D1/(K ∩ C1) = T p,tlin (D0)/(K ∩ C1).

The usual correspondence statements hold true: For f + C0(Cn) ∈ BUC(Cn)/C0(Cn)
and A+ (K ∩ C1) ∈ T p,t/(K ∩ C1) we have

f + C0(Cn) ∈ D0/C0(Cn)⇐⇒ T tf + (K ∩ C1) ∈ D1/(K ∩ C1),

A+ (K ∩ C1) ∈ D1/(K ∩ C1)⇐⇒ Ã+ C0(Cn) ∈ D0/C0(Cn).

Another corollary to Theorem 3.3.14 is the following:

Corollary 3.3.16. For 1 < p ≤ ∞ we have

esscom(C1, C1) = esscom(C1,L) = T p,t(VO∂(Cn)).

Here,

esscom(C1,L) := {A ∈ L; [A,B] ∈ K for all B ∈ C1}.

Proof. The inclusion
esscom(C1, C1) ⊂ esscom(C1,L)

is obvious. Assume A ∈ L is such that [A,B] ∈ K for all B ∈ C1. This of course
implies A − αz(A) ∈ K for all z ∈ Cn. Therefore, (A + K) − (αz(A) + K) = 0, i.e
A+K ∈ T p,t/K by Theorem 3.3.14. In particular, there are B ∈ T p,t and K ∈ K such
that A = B +K, which proves A ∈ esscom(C1, C1). Thus

esscom(C1, C1) ⊃ esscom(C1,L)

as stated.

Here is one more corollary of the theorem:

Corollary 3.3.17. For 1 < p ≤ ∞, T p,t/K is closed under inversion in L/K, i.e. if
A ∈ T p,t is such that there exists B ∈ L with

AB = I +K1, BA = I +K2

for some K1,K2 ∈ K, then B ∈ T p,t. In particular, if A ∈ T p,t is invertible, then
A−1 ∈ T p,t.
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Proof. The statement follows from the characterization

T p,t/K = {A+K ∈ L/K; ‖(A+K)− αz(A+K)‖ → 0, z → 0},

the fact that (W t
z)
−1 = W t

−z and a standard Neumann series argument, i.e. if (A+K)
is invertible in L/K, then

‖(A+K)−1 − (αz(A+K))−1‖ = ‖(A+K)−1 − αz((A+K)−1)‖

≤ ‖(A+K)−1‖ ‖(A+K)− αz(A+K)‖
1− ‖(A+K)−1‖‖(A+K)− αz(A+K)‖

for |z| sufficiently small.

The most important part of the previous corollary can be salvaged for the cases of
F 1
t and F∞t .

Corollary 3.3.18. For p = 1,∞+ we have the following: If A ∈ T p,t is invertible,
then A−1 ∈ T p,t.

Proof. This is in principle a consequence of Corollary 3.3.4. In fact, the result follows
from the same Neumann series argument as in the proof before, but now in T p,t instead
of the quotient.

Corollary 3.3.17 implies that the Fredholm property of operators from the Toeplitz
algebra depends only on invertibility in T p,t/K. Even though K is not entirely contained
in T p,t for p = 1, ∞+, this particular statement carries over:

Lemma 3.3.19. Let 1 ≤ p ≤ ∞+ and t > 0. Then, A ∈ T p,t is Fredholm if and only
if there are operators B ∈ T p,t and K1,K2 ∈ K ∩ C1 such that

AB = I +K1, BA = I +K2.

This means that A ∈ T p,t is Fredholm if and only if A + (K ∩ C1) is invertible in
T p,t/(K ∩ C1).

Proof. We only need to discuss the cases p = 1,∞+. Further, the nontrivial part of
the proof is showing that Fredholmness of A implies the existence of such operators
B,K1,K2. Recall that every operator from T 1,t is the adjoint of some operator in
T ∞,t and every operator from T ∞+,t is the adjoint of some operator from T 1,t. Let
A ∈ T 1,t be Fredholm. Then, there is some A0 ∈ T ∞,t such that (A0)∗ = A. Since an
operator is Fredholm if and only if its Banach space adjoint is Fredholm, A0 needs
to be Fredholm. By Corollary 3.3.17, there are B0 ∈ T ∞,t and K0

1 ,K
0
2 ∈ K(f∞t ) such

that
A0B0 = I +K0

1 , B0A0 = I +K0
2 .

Passing to the adjoints, we obtain B = (B0)∗, Kj = (K0
j )∗ with B ∈ T 1,t, Kj ∈

K(F 1
t ) ∩ C1 such that

AB = I +K1, BA = I +K2.

For A ∈ T ∞+,t Fredholm the corresponding operators are similarly coming from the
pre-adjoint operators.
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3.4 Remarks

As already mentioned, the core ideas of Quantum Harmonic Analysis originate from
Reinhard Werner’s paper [130], cf. also [102,103] for a more detailed exposition and
recent results on the subject. Based on this, the author established an analogous
notion of Quantum Harmonic Analysis on the reflexive Fock spaces F pt (p ∈ (1,∞))
in [72] and applied it to certain problems of Toeplitz operators and Toeplitz algebras.
This chapter, together with the next one, is based on that paper. Compared to [72],
we took several changes into account. First and foremost, we were able to include
the non-reflexive endpoint cases in the present discussion. Further, the discussion of
correspondences in the quotients with its implications was not contained in [72].



Chapter 4

Invariant C∗ algebras

In this chapter, we will investigate how the notions of Correspondence Theory interact
with algebras of Toeplitz operators. An important tool for doing this will be the
so-called limit operators. Before we can introduce and investigate these objects, we
need to return to the symbol spaces.

4.1 Invariant C∗ subalgebras of BUC(Cn) and their maxi-
mal ideal spaces

For the whole of this section, let A be a unital C∗ subalgebra of BUC(Cn) which
is invariant with respect to the actions α and U , i.e. if f ∈ A, then Uf ∈ A and
αz(f) ∈ A for all z ∈ Cn. We will denote by M(A) the maximal ideal space of A, i.e.
the space of all nontrivial multiplicative linear functionals. Since we assume A to be
unital, M(A) is a compact Hausdorff space when endowed with the weak∗ topology.
Further, we can identify each point z ∈ Cn with δz ∈M(A), the functional of point
evaluation, and the set of all these functionals is always dense in M(A). In general,
the assignment z 7→ δz is not injective. It is injective if and only if A separates the
points of Cn, i.e. if for each pair of points z, w ∈ Cn there is a function f ∈ A such that
f(z) 6= f(w). Even if this is not the case, α-invariance gives some structure among the
points which are not separated:

Lemma 4.1.1. The set

per(A) := {z ∈ Cn; f(z) = f(0) for every f ∈ A}

forms a closed subgroup of Cn.

The proof of this lemma is obvious. We also have the following equivalences.
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Lemma 4.1.2. The following are equivalent:

1) per(A) = {0};

2) A separates the points of Cn;

3) M(A) is a compactification of Cn.

The closed subgroups of Cn are readily characterized:

Proposition 4.1.3 ([38, Chapter VII]). Let G be a closed subgroup of Cn ∼= R2n.
Then, there exists a real vector space basis (aj)

2n
j=1 of Cn and integers 0 ≤ p ≤ r ≤ 2n

such that

G =


p∑
j=1

tjaj +

r∑
j=p+1

njaj ; tj ∈ R, nj ∈ Z

 .

If we now decompose per(A) as above,

per(A) = Span{aj ; j = 1, . . . , p} ⊕ lat{aj ; j = p+ 1, . . . , r}

where lat denotes the lattice with integer coefficients generated by the vectors, then
we obtain:

Lemma 4.1.4. Let f ∈ A. Then, f(x) = f(0) for all x ∈ Span{aj ; j = 1, . . . , p} and
f is periodic with respect to lat{aj ; j = p+ 1, . . . , r}.

Each function in A descends to a function in R2n/per(A), which is isomorphic to
Rn−r × Tr−p [38]. Let us denote by π the map

π : R2n → Rn−r × Tr−p.

Then, for each f ∈ A the pushforward of f under the quotient map π is a uniformly
continuous function on Rn−r × Tr−p. In particular, π induces a ∗-isomorphism ϕ from
A onto a C∗ subalgebra of BUC(Rn−r × Tr−p). It is now easy to check that ϕ(A)
separates the points of Rn−r × Tr−p. In particular:

Lemma 4.1.5. M(A) is a compactification of Rn−r × Tr−p.

While this fact is not important for the following discussions, it gives the right
picture one should have in mind when thinking about M(A): While it might fail to
give an actual compactification of Cn, as the natural map Cn →M(A) might fail to
be injective, it always gives rise to a compactification of an essentially unique quotient
of Cn by a subgroup.

More importantly, using the α- and U -invariance of A, we can continue the actions
of α and U to M(A): For each x ∈M(A) and z ∈ Cn define αz(x) and Ux by

αz(x)(f) := x(αz(f)), Ux(f) := x(Uf).
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It is readily verified that these are indeed multiplicative linear functionals. For w ∈ Cn
we have αz(δw) = δw−z and Uδw = δ−w, i.e. the actions reproduce how they should
act on Cn. Further, since Cn is invariant under these actions, it is not difficult to see
that M(A) \ Cn is also invariant under them.

For x ∈M(A) and f ∈ A let us now define the function fx : Cn → C via

fx(w) := αw(x)(Uf) = x(αw(Uf)).

In an abuse of notation, we will write for z ∈ Cn

fz = fδz .

This ambiguity does not cause any trouble. Indeed, one immediately sees that fz =
αz(f).

Let x ∈M(A) and (zγ)γ∈Γ ⊂ Cn be a net such that limγ∈Γ zγ = x inM(A). Then,
since we always consider M(A) with the weak∗ topology, we obtain

fzγ (w) = δzγ (αw(Uf))
γ∈Γ→ x(αw(Uf)) = fx(w),

i.e. fx is the pointwise limit of the net of functions fzγ . We can say even more.

Lemma 4.1.6. For each f ∈ A and x ∈M(A), fx is bounded and uniformly continu-
ous. Furthermore, the map

M(A) 3 x 7→ fx

is continuous with respect to the compact-open topology.

Proof. Boundedness of fx follows from the uniform boundedness of the functions fzγ .
For the uniform continuity, let ε > 0 and δ > 0 such that |w1 − w2| < δ implies
|f(w1)− f(w2)| < ε. Then, observe that

|fx(w1)− fx(w2)| = lim
γ∈Γ
|fzγ (w1)− fzγ (w2)|

= lim
γ∈Γ
|f(w1 − zγ)− f(w2 − zγ)| ≤ ε,

as |(w1 − zγ)− (w2 − zγ)| < δ. Now, observe that (fzγ )γ is a uniformly equicontinuous
net of bounded functions which converge pointwise to fx. The Arzelà-Ascoli Theorem
therefore implies that (fzγ )γ converges uniformly on compact subsets of Cn to fx.
Finally, since fx is independent of the precise net (zγ)γ∈Γ (as long as it converges to
x), x 7→ fx is continuous from M(A) to BUC(Cn) with respect to the compact-open
topology, cf. [37, Theorem 1, page 81] and [19, Lemma 5.2].

Let us consider some examples:

Examples 4.1.7. 1) For A = C0(Cn)⊕C1, where 1 denotes the function being constant-
ly one, M(A) is just the one point compactification αCn = Cn ∪ {∞} of Cn. For
f = g + λ ∈ A with g ∈ C0(Cn) and λ ∈ C, f∞ = λ.
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2) Let A = VO∂(Cn). Then for every f ∈ A and x ∈M(A) \ Cn, fx is constant. To
see this, it suffices to prove that fx is constant on B(z, 1) for every z ∈ Cn: Indeed,
if (zγ)γ∈Γ ⊂ Cn converges to x, then we necessarily have |zγ | → ∞. Therefore, for
any w ∈ B(z, 1):

|fx(z)− fx(w)| = lim
γ∈Γ
|fzγ (z)− fzγ (w)|

= lim
γ∈Γ
|f(z − zγ)− f(w − zγ)|

= 0,

as |z − zγ | → ∞ and |(z − zγ)− (w− zγ)| < 1. Let us note at this point that every
x ∈ M(VO∂(Cn)) can already be obtained as a limit of nets in Z2n ⊂ Cn. The
class VO∂(Cn) equals

{f ∈ Cb(Cn); sup
w: |z−w|<R

|f(z)− f(w)| → 0, |z| → ∞}

for any R > 0. In particular, let us choose R =
√

2n. Let (zγ)γ∈Γ ⊂ Cn be a net
converging to x ∈ M(A). By the choice of R, for each γ there is some z̃γ ∈ Z2n

such that |zγ − z̃γ | < R. We obtain for every f ∈ VO∂(Cn):

x(f) = lim
γ∈Γ

f(zγ) = lim
γ∈Γ

[f(z̃γ)− (f(z̃γ)− f(zγ))] = lim
γ∈Γ

f(z̃γ),

since f(z̃γ)− f(zγ)
γ∈Γ−→ 0.

3) If A = BUC(Cn), then the corresponding compactification of M(A) of Cn is
sometimes called the Samuel compactification of Cn.

4) Consider AP, the set of almost periodic functions, i.e.

AP := AP(Cn) := Span{z 7→ ei Im(z·w); w ∈ Cn}.

It is not difficult to see that this is indeed an α- and U -invariant C∗ subalgebra of
BUC(Cn) which separates the points of Cn. As is well-known,

AP = {f ∈ BUC(Cn); {fz; z ∈ Cn} is totally bounded in the uniform metric}.

The corresponding compactification M(AP) is the Bohr compactification of Cn.
Since the orbit of f ∈ AP under the group action is totally bounded, it is not difficult
to prove that fzγ → fx uniformly for zγ → x ∈M(AP). This property also uniquely
determines AP: If f ∈ BUC(Cn), then the continuity of M(BUC(Cn)) 3 x 7→ fx
with respect to the uniform topology implies f ∈ AP. For proofs of these statements
see [70, Theorem 4.79].
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Let us briefly discuss α- and U -invariant ideals in A. There is a 1:1 correspondence
between closed ideals I in A ∼= C(M(A)) and closed subsets I of M(A) via

I = {f ∈ C(M(A)); f(x) = 0 for all x ∈ I},
I = {x ∈M(A); f(x) = 0 for all f ∈ I}.

We denote II for the ideal corresponding to the closed set I ⊂M(A).

Lemma 4.1.8. If II is α-invariant and I ∩ Cn 6= ∅, then II = {0}.

Proof. Assume z ∈ I ∩Cn. Let f ∈ II . In particular, f(z) = 0. Since II is α-invariant,
αw(f) ∈ II for all w ∈ Cn, i.e. αw(f)(z) = f(z − w) = 0 for all z ∈ Cn. Therefore, f
vanishes on all of Cn, i.e. f = 0.

This result shows that nontrivial invariant ideals “live” in the corona M(A) \ Cn,
i.e. II can be a non-trivial α-invariant ideal only if I ⊂M(A) \ Cn.

Lemma 4.1.9. Let I ⊂ M(A) \ Cn. Then, II is α-invariant if and only if I is
α-invariant if and only if UI is α-invariant.

Proof. The proof follows immediately from the definitions. Assume II is α-invariant.
Then, for x ∈ I we need to show αz(x) ∈ I for every z ∈ Cn. For each f ∈ II we have

f(αz(x)) = αz(f)(x) = 0,

since αz(f) ∈ II by translation invariance. Hence, αz(x) ∈ I. On the other hand,
α-invariance of I similarly implies α-invariance of II . Finally, equivalence of I being
α-invariant to UI being α-invariance follows immediately from the formula

U(αz(x)) = α−z(U(x)), x ∈M(A)

the verification of which is again just a matter of writing down the definitions.

Recall that maximal ideals in C(M(A)) ∼= A correspond to single points in M(A).
A consequence of the previous lemma is the fact that maximal α-invariant ideals in
C(M(A)) ∼= A are those ideals II with I ⊂ M(A) \ Cn which are minimal with
the property that I is closed and α-invariant. Such ideals always exist by an easy
application of Zorn’s Lemma, but it is not always possible to explicitly describe them.

Example 4.1.10. We consider again the example of A = VO∂(Cn). From the definition
of VO∂(Cn) it is easy to see that for each x ∈M(A) \Cn and each z ∈ Cn, fx = fαz(x)

for all f ∈ A. Therefore, the α-orbits in M(A) \ Cn consist of exactly one point in
this case. Since M(VO∂(Cn)) is Hausdorff, the singletons {x} are always closed and
therefore give rise to maximal α-invariant ideals.
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4.2 Limit operators

Let us return to Toeplitz operators. As in [19], where only the case of A = BUC(Cn),
1 < p <∞ was considered, we have the following result:

Proposition 4.2.1. Let A be an α- and U-invariant C∗ subalgebra of BUC(Cn).
Then, for any f ∈ A and for any 1 ≤ p <∞ the map

M(A) 3 x 7→ T tfx

is continuous with respect to the strong operator topology on F pt and also on f∞t .

Proof. Recall that x 7→ fx is continuous with respect to the compact-open topology
by Lemma 4.1.6. Therefore, it suffices to prove the following: If (gγ)γ∈Γ is a uniformly
bounded net of uniformly continuous functions, converging to g ∈ BUC(Cn) in the
compact-open topology, then T tgγ → T tg in strong operator topology. Since the gγ
are uniformly bounded (and therefore also the corresponding Toeplitz operators), it
suffices to prove strong convergence on a dense subset. Since holomorphic polynomials
are dense in the Fock space F pt for 1 ≤ p < ∞ and in fpt , we need to prove strong
convergence only on such polynomials. Let h ∈ P[z1, . . . , zn]. For p = 1 we have

‖T tgγ−gh‖F 1
t
≤ 1

2n(πt)2n

∫
Cn

∫
Cn
|gγ(w)− g(w)||h(w)||e−

|v−w|2
2t
− |w|

2

2t dw dv.

Since h is a polynomial, we can find a constant C > 0 such that |h(w)| ≤ Ce
|w|2
4t for

all w ∈ Cn. Then, applying Fubini’s Theorem:

‖T tgγ−gh‖F 1
t
≤ C 1

2n(πt)2n

∫
Cn

∫
Cn
|gγ(w)− g(w)| e−

|v−w|2
2t
− |w|

2

4t dw dv

= C
1

(πt)n

∫
Cn
|gγ(w)− g(w)|e−

|w|2
4t dw.

One may now be tempted to derive convergence to 0 by the Dominated Convergence
Theorem. Yet, the Dominated Convergence Theorem is a purely sequential statement,
i.e. it does not hold true for nets in general. Instead, one concludes the convergence
by cutting off the area of integration to a sufficiently large compact subset of Cn and
using uniform convergence of the net there.

For p =∞, the argument works similarly:

‖T tgγ−gh‖F∞t ≤
1

(πt)n
sup
v∈Cn

∫
Cn
|gγ(w)− g(w)| |h(w)|e−

|v−w|2
2t
− |w|

2

2t dw

≤ C

(πt)n
sup
v∈Cn

∫
Cn
|gγ(w)− g(w)|e−

|v−w|2
2t
− |w|

2

4t dw

≤ C

(πt)n

∫
Cn
|gγ(w)− g(w)|e−

|w|2
4t dw.

Now, apply again uniform convergence on compact subsets. For 1 < p <∞ and h a
polynomial, the result follows from Littlewood’s inequality (Lemma 2.2.7).
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Recall that T tfz = T tαz(f) = αz(T
t
f ) for z ∈ Cn. A simple density argument shows

the following:

Corollary 4.2.2. Let 1 ≤ p ≤ ∞ and let A be a unital α- and U-invariant C∗

subalgebra of BUC(Cn). Then, for every A ∈ T p,tlin (A) and every net (zγ)γ∈Γ converging
to x ∈M(A) we have

αzγ (A) = W t
zγAW

t
−zγ

γ∈Γ−→ B (4.1)

in strong operator topology for a unique operator B ∈ T p,t. This means that the map

Cn 3 z 7→ αz(A)

extends to a continuous map from M(A) to T p,t with respect to the strong operator
topology.

Definition 4.2.3. Let 1 ≤ p ≤ ∞, A a unital α- and U -invariant C∗ subalgebra
of BUC(Cn) and A ∈ T p,tlin (A). For x ∈ M(A) we denote by Ax ∈ T p,t the unique
operator determined by Equation (4.1). If x ∈M(A) \ Cn we say that Ax is a limit
operator of A.

Observe the following simple, but very important fact:

Lemma 4.2.4. Under the assumptions of Corollary 4.2.2, we have(
Ã
)
x
(w) = (Ax)∼(w)

for every w ∈ Cn.

Proof. The statement follows immediately from the definitions:

(Ax)∼(w) = 〈 lim
zγ→x

W t
zγAW

t
−zγk

t
w, k

t
w〉t

= lim
zγ→x

〈Aktw−zγ , k
t
w−zγ 〉t

=
(
Ã
)
x
(w).

Let us note the following consequence of Corollary 3.3.10 and the previous Lemma:

Lemma 4.2.5. Let A ∈ T p,t. Then, A is compact if and only if Ax = 0 for all
x ∈M(BUC(Cn)) \ Cn.

Proof. If A is compact, then Ã ∈ C0(Cn), i.e. limzγ→x αzγ (Ã)(w) = (Ax)∼(w) = 0
for all w ∈ Cn. Since the Berezin transform is injective, this implies Ax = 0 for
all x ∈ M(BUC(Cn)) \ Cn. On the other hand, if Ax = 0 for all such x, then
x(Ã) = (UÃ)x(0) = (UAxU)∼(0) = 0, i.e. Ã(x) = 0 for all x ∈M(BUC(Cn)) \Cn, i.e.
Ã vanishes at infinity.
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4.3 Invariant Toeplitz algebras

As we have already seen earlier, we have the two equalities

T p,tlin (C0(Cn)) = T p,t(C0(Cn)),

T p,tlin (BUC(Cn)) = T p,t(BUC(Cn)).

It seems interesting to investigate the following question: Determine those α-invariant
and closed subspaces D0 of BUC(Cn) for which the following holds true:

T p,tlin (D0) = T p,t(D0).

Note the following: Given any subspace D0 ⊂ BUC(Cn), α-invariant and closed,
T p,t(D0) is always α-invariant and, by definition, closed. By Theorem 3.3.7 there
always exists D′0 ⊂ BUC(Cn) such that

T p,t(D0) = T p,tlin (D′0).

Therefore, the question is not about writing a Toeplitz algebra as the closure of some
set of Toeplitz operators, but about determining whether it is just the closure of the
set of its generators.

Observe the following: If D0 ⊂ BUC(Cn) is closed and α-invariant and so is D′0
with

T p,t(D0) = T p,tlin (D′0),

then we know that T p,tlin (D′0) is a Banach algebra. In particular, we obtain

T p,tlin (D′0) = T p,t(D′0)

in this situation and therefore

T p,t(D0) = T p,t(D′0).

While the relation

T p,tlin (D0) = T p,tlin (D′0)

would clearly imply D0 = D′0 by the Correspondence Theorem, it is not clear if

T p,t(D0) = T p,t(D′0)

implies any relations between D0 and D′0 (e.g. it could very well be that this implies
Alg(D0) = Alg(D′0)). We will later obtain a weak statement relating D0 and D′0 if
T p,t(D0) = T p,tlin (D′0).

Let us note the following simple but important observations:
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Lemma 4.3.1. Let D0 ⊂ BUC(Cn) be an α-invariant and closed subspace. Then, the
following are equivalent:

1) T p,tlin (D0) = T p,t(D0);

2) (T tf1T
t
f2
. . . T tfk)∼ ∈ D0 for all f1, . . . , fk ∈ D0.

Furthermore, if we assume 1) and I0 ⊂ D0 is a closed and α-invariant subspace, we
have the following equivalences of statements:

1l∗)⇐⇒ 2l∗), 1r∗)⇐⇒ 2r∗), 1∗)⇐⇒ 2∗)

The above statements are the following:

1l∗) T p,tlin (I0) is a left ideal in T p,tlin (D0);

2l∗) T p,tlin (I0) = T p,t(I0) and (T tfT
t
g)
∼ ∈ I0 for f ∈ D0, g ∈ I0;

1r∗) T p,tlin (I0) is a right ideal in T p,tlin (D0);

2r∗) T p,tlin (I0) = T p,t(I0) and (T tgT
t
f )∼ ∈ I0 for f ∈ D0, g ∈ I0;

1∗) T p,tlin (I0) is a two-sided ideal in T p,tlin (D0);

2∗) T p,tlin (I0) = T p,t(I0) and (T tfT
t
g)
∼, (T tgT

t
f )∼ ∈ I0 for f ∈ D0, g ∈ I0.

Proof. All the statements follow similarly from the Correspondence Theorem 3.3.7.
We prove 1)⇔ 2) as an example.

Of course, 1) is equivalent to T tf1 . . . T
t
fk
∈ T p,tlin (D0) for all f1, . . . , fk ∈ D0. By the

Correspondence Theorem 3.3.7, this is equivalent to 2).

While the condition 2), 2l∗), 2r∗) and 2∗) in the above lemma are in general
not easy to verify, they have the following important consequence: The expression
(T tf1T

t
f2
. . . T tfk)

∼, being some integral transform of f1, . . . , fk, does not depend on p,

since neither the integral operators T tf1 , . . . , T
t
fk

nor the Berezin transform depend on
p. Hence, we obtain:

Lemma 4.3.2. All the statements in Lemma 4.3.1 are independent of p, i.e. if they
hold true for one 1 ≤ p ≤ ∞+, then they hold true for all such p.

We have the following positive result about the main question of this section:

Theorem 4.3.3. Let A ⊂ BUC(Cn) be an α- and U-invariant C∗-subalgebra of
BUC(Cn). Further, let I ⊂ A be an α-invariant ideal of A. Then, the following hold
true for all 1 ≤ p ≤ ∞+ and all t > 0:

1) T p,tlin (A) = T p,t(A). In particular, T 2,t
lin (A) is a C∗ algebra;

2) T p,tlin (I) is a two-sided ideal in T p,tlin (A).
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Note that we do not need U -invariance of the ideal I in the above theorem. For
proving the result, we will use the following well-known fact:

Lemma 4.3.4. Let X be a Banach space and let S ⊂ L(X) be bounded with respect
to the uniform topology. Then, the multiplication

S × L(X)→ L(X), (A,B) 7→ AB

is continuous with respect to the strong operator topology.

Proof of Theorem 4.3.3. Step 1: Assume A is unital. Let A,B ∈ T p,tlin (A). Since Ax is
norm-bounded by ‖A‖ and Bx is norm-bounded by ‖B‖ for every x ∈M(A),
Lemma 4.3.4 implies that

z 7→ αz(AB) = αz(A)αz(B),

z 7→ αz(BA) = αz(B)αz(A),

both extend to continuous functions from M(A) to T p,t with respect to the
strong operator topology. For the Berezin transforms, this means that

U(ÃB)(z) = ÃB(−z) = 〈αz(AB)1, 1〉t,

U(B̃A)(z) = B̃A(−z) = 〈αz(BA)1, 1〉t

extend to continuous functions from M(A) to C, i.e. U(ÃB), U(B̃A) ∈ A.

Since A is U -invariant, we also get ÃB, B̃A ∈ A. The Correspondence
Theorem 3.3.7 now yields AB, BA ∈ T p,tlin (A). Hence, T p,tlin (A) is closed under

taking products, i.e. a Banach algebra. This yields T p,tlin (A) = T p,t(A).

Step 2: Let A be unital and I a nontrivial, closed and α-invariant ideal in A. Then
I = II for some I ⊂ M(A) \ Cn which is α-invariant by Lemma 4.1.9. Let
f ∈ I. It follows from the definitions that

fx(w) = x(αw(Uf)) = 0

for every x ∈ UI,w ∈ Cn. In particular, this implies Ax = 0 for every
A ∈ T p,tlin (I) and x ∈ UI. If we now fix A ∈ T p,tlin (I) and B ∈ T p,tlin (A), then we
obtain

(AB)x = AxBx = 0 = BxAx = (BA)x

for every x ∈ UI. Therefore,

U(ÃB)(x) = ÃB(Ux) = 0 = B̃A(Ux) = U(B̃A)(x)

for every x ∈ UI, hence

ÃB(y) = 0 = B̃A(y)

for every y ∈ I. This yields ÃB, B̃A ∈ II and thus, by the Correspondence
Theorem, AB,BA ∈ T p,tlin (I).
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Step 3: The general case. If A is not unital, then A is an ideal in A⊕C1 ⊂ BUC(Cn).
Hence, Step 2 implies T p,tlin (A) = T p,t(A). If further I is an α-invariant ideal in

A, then it is also an ideal in A⊕C1, hence T p,tlin (I) is an ideal in T p,tlin (A⊕C1)

and therefore also in T p,tlin (A).

The above theorem provides a sufficient condition for T p,tlin (D0) = T p,t(D0). There
is also a necessary condition:

Theorem 4.3.5. Let D0 ⊂ BUC(Cn) be closed and α-invariant. Assume that for all
t > 0 we have

T p,tlin (D0) = T p,t(D0).

Then, D0 is a Banach algebra. If I0 ⊂ D0 is closed and α-invariant such that T p,tlin (I0)

is a left or right ideal in T p,tlin (D0) for all t > 0, then I0 is an ideal in D0.

Proof. By Lemma 4.3.2 we may assume p = 2. We only prove that D0 is a Banach
algebra. The other statements follow from the same proof with the obvious changes.

Let f, g ∈ D0. By assumption, T tfT
t
g ∈ T

p,t
lin (D0) and therefore T̃ tfT

t
g ∈ D0 for all t > 0.

Recall the following facts:

1) ‖T tfT tg − T tfg‖ → 0 as t→ 0 (Theoren 2.3.7),

2) ‖f̃g
(t)
− fg‖∞ → 0 as t→ 0 (Theorem 2.3.6).

1) immediately implies ‖T̃ tfT tg − f̃g
(t)
‖∞ → 0. Hence:

‖T̃ tfT tg − fg‖∞ ≤ ‖T̃ tfT tg − T̃ tfg‖∞ + ‖f̃g
(t)
− fg‖∞ → 0 as t→ 0.

Since D0 is closed, this yields fg ∈ D0.

Combining all the above results, we obtain the following:

Theorem 4.3.6. Let D0 ⊂ BUC(Cn) be closed, α- and U -invariant and self-adjoint.
Then, the following are equivalent:

1) D0 is a C∗ algebra;

2) T p,tlin (D0) = T p,t(D0) for all 1 ≤ p ≤ ∞+ and t > 0;

3) T 2,t
lin (D0) is a C∗ algebra for every t > 0.

If we assume that D0 satisfies the above conditions and I0 ⊂ D0 is a closed and
α-invariant subspace, then the following are equivalent:

1*) I0 is an ideal in D0;

2*) T p,tlin (I0) is a left ideal in T p,tlin (D0) for every 1 ≤ p ≤ ∞+ and t > 0;



74 4.3. Invariant Toeplitz algebras

3*) T 2,t
lin (I0) is a left ideal in T 2,t

lin (D0) for every t > 0;

4*) T p,tlin (I0) is a right ideal in T p,tlin (D0) for every 1 ≤ p ≤ ∞+ and t > 0;

5*) T 2,t
lin (I0) is a right ideal in T 2,t

lin (D0) for every t > 0;

6*) T p,tlin (I0) is a two-sided ideal in T p,tlin (D0) for every 1 ≤ p ≤ ∞+ and t > 0;

7*) T 2,t
lin (I0) is a two-sided ideal in T 2,t

lin (D0) for every t > 0.

Let us mention a few additional examples of correspondences between subspaces of
BUC(Cn) and T p,t(Cn).

Examples 4.3.7. 1) As we have already discussed in Example 4.1.7 4), the almost
periodic functions

AP(Cn) = span{w 7→ ei Im(w·z); z ∈ Cn}

are characterizied by the property thatM(BUC(Cn)) 3 x 7→ fx is uniformly contin-
uous. It follows now easily by the Correspondence Theorem that the corresponding
Toeplitz algebra is

T p,tlin (AP(Cn)) = {A ∈ T p,t; M(BUC(Cn)) 3 x 7→ Ax is ‖ · ‖op-cont}.

As we have already mentioned earlier, the Weyl operator W t
z is just the Toeplitz

operator T tgtz
with symbol

gtz(w) = e
|z|2
2t

+
2i Im(w·z)

t .

In particular,

T p,tlin (AP(Cn)) = T p,t(AP(Cn)) = Alg{W t
z ; z ∈ Cn}.

The generators satisfy

W t
zW

t
w = e−

i Im(z·w)
t W t

z+w,

i.e. T 2,t
lin (AP(Cn)) is just the CCR algebra for the symplectic space (Cn, σt), where

σt(z, w) = Im(z·w)
t . This has already been studied in [28,49].

2) Let us denote by AA(Cn) the class of functions

AA(Cn) := {f ∈ BUC(Cn); ∀x ∈M(BUC(Cn)) : (fx)Ux = f}.

Here, AA stands for almost automorphism. Almost automorphisms are a well-
studied class of continuous functions on topological groups [34, Chapter 7]. While
an almost automorphism is not necessarily uniformly continuous, we consider only
those almost automorphisms from BUC(Cn). AA(Cn) strictly contains AP(Cn). In
some sense, AA(Cn) is the opposite of C0(Cn): For f ∈ C0(Cn) we have fx ≡ 0 for
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every x ∈M(BUC(Cn)), i.e. upon passing to the limit functions, all information is
lost. On the other hand, for almost automorphisms every limit function contains
all the information about the initial function (since the initial function can be
recovered by shifting backwards). Indeed, AA(Cn) is a unital α- and U -invariant
C∗ subalgebra of BUC(Cn). It is not difficult to see that the corresponding Toeplitz
algebra is

T p,tlin (AA(Cn)) = {A ∈ T p,t; ∀x ∈M(BUC(Cn)) : (Ax)Ux = A}.

In Chapter 5 we will see that (for p ∈ (1,∞)) A ∈ T p,t is Fredholm if and only
if Ax is invertible for every x ∈ M(BUC(Cn)) \ Cn. For A ∈ T p,tlin (AA(Cn)) we
therefore obtain

A is Fredholm ⇐⇒ Ax is invertible =⇒ (Ax)Ux = A is invertible.

Therefore, in T p,tlin (AA(Cn)) Fredholm operators are automatically invertible.

3) Let G ⊂ R2n be a closed subgroup of R2n ∼= Cn. Set

BUCG := {f ∈ BUC(Cn); αw(f) = f for all w ∈ G}.

Then, BUCG is an α- and U -invariant C∗ subalgebra of BUC(Cn) and therefore
we have T p,tlin (BUCG) = T p,t(BUCG). In the notation from above we have G =
per(BUCG). It is not difficult to see that

T p,tlin (BUCG) = {A ∈ T p,t; αw(A) = A for all w ∈ G}.

If z ∈ R2n ∼= Cn is such that z ⊥ G and we let

C0,G,z := {f ∈ BUCG; αw(f)(λz)→ 0 as R 3 λ→∞ for every w ∈ span(G)},

then C0,G,z is an α-invariant (but not necessarily U -invariant) ideal of BUCG, hence
T p,tlin (C0,G,z) is an ideal of T p,tlin (BUCG). In particular, one can show that

T p,tlin (C0,G,z) = {A ∈ T p,tlin (BUCG); αλz(A)→ 0 as R 3 λ→ −∞}.

If we let G be a Lagrangian subspace L of Cn, then we obtain in particular that

T p,tlin (BUCL) = {A ∈ T p,t; A is L-invariant},

generalizing a result from [66] to arbitrary p.

Let us come back to the problem that this section started with:

Proposition 4.3.8. Let D0,D′0 ⊂ BUC(Cn) be α- and U -invariant closed subspaces.

1) If we have

T 2,t
∗ (D0) = T 2,t

lin (D′0)

for some t > 0, then D0 ⊆ D′0 ⊆ C∗(D0) (where C∗(D0) is the C∗ algebra generated
by D0).
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2) If we have

T 2,t
∗ (D0) = T 2,t

lin (D′0)

for all t > 0, then D′0 = C∗(D0).

Proof. 1) The result is obtained from Lemma 3.3.8 3) and the following diagram of
inclusions, which is a consequence of Theorem 4.3.3:

T 2,t
lin (D0) ⊆ T 2,t

∗ (D0) = T 2,t
lin (D′0)

⊇

T 2,t
∗ (C∗(D0)) = T 2,t

lin (C∗(D0))

2) Since we have for any t > 0 that

T 2,t
∗ (D0) = T 2,t

lin (D′0),

we know that T 2,t
lin (D′0) is a C∗ algebra for every t > 0, i.e.

T 2,t
lin (D′0) = T 2,t

∗ (D′0)

for every t > 0. Hence, Theorem 4.3.6 shows that D′0 is itself a C∗ algebra. From
1) we know that D0 ⊆ D′0 ⊆ C∗(D0). In particular, D′0 = C∗(D0).

Note that the significant assumption in 2) of the previous theorem is that the space
corresponding to T 2,t

∗ (D0) is independent of t > 0. Working with this assumption is in
practice not easy, as one might see in the example considered in Chapter 6.

4.4 Remarks

As already mentioned, there are several remaining open questions in connection with
the results presented here. From the technical point of view, the following question is
obvious: Is the assumption on A being U -invariant and/or self-adjoint in Theorem 4.3.3
necessary? While both assumptions are natural in the setting of the proof presented,
one naively would expect the result to be true without these assumptions.

As we have noted earlier, it is an open problem to deduce a relation on D0,D′0 if
they satisfy

T p,t(D0) = T p,t(D′0)

or

T 2,t
∗ (D0) = T 2,t

∗ (D′0).

One could naively expect that this implies something as

Alg(D0) = Alg(D′0)
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and

C∗(D0) = C∗(D1),

respectively. Note that this does not follow automatically from Proposition 4.3.8, even
if the relations are satisfied for all t > 0: For each t > 0 there is certainly some D′′0
such that

T 2,t
∗ (D0) = T 2,t

∗ (D′0) = T 2,t
lin (D′′0)

but D′′0 will a priori depend on the parameter t. Hence, the proposition does not apply
here.

Since the statement of Theorem 4.3.3 is quite powerful, it could be interesting to
search for more applications of that theorem for studying operator algebras on Fock
spaces.
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4.4.

R
em

ark
s

D0 ⊂ BUC(Cn) T p,tlin (D0) Reference

α- and U -invariant C∗ subalgebra α- and U -invariant subalgebra of T p,t Theorem 4.3.3

BUC(Cn) T p,t = C1 Theorem 3.3.4

VO∂ esscomm(T p,t,L) Lemma 3.3.12

AP(Cn) {A ∈ T p,t; M(BUC(Cn)) 3 x 7→ Ax is ‖ · ‖op-cont.} Example 4.3.7 1)

AA(Cn) {A ∈ T p,t(Cn); ∀x ∈M(BUC(Cn)) : (Ax)Ux = A} Example 4.3.7 2)

BUCG {A ∈ T p,t; αw(A) = A, w ∈ G} Example 4.1.7 3)

BUCL, L Lagrangian subspace L-invariant operators of T p,t Example 4.1.7 3)

α-invariant ideal in A α-invariant ideal in T p,tlin (A) Theorem 4.3.3

C0(Cn) K Theorem 3.3.9

C0,G,z A ∈ T p,tlin (BUCG) vanishing in direction of z Example 4.1.7 3)

Table 4.1: Some corresponding spaces for 1 < p ≤ ∞



Chapter 5

Fredholm theory of Toeplitz
operators on Fock spaces

The results presented in this chapter are taken from the joint paper with R. Hagger
[73], which we also closely follow. The goal is the following: In Corollary 3.3.10,
we deduced the well-known compactness characterization for linear operators on the
Fock spaces, which characterizes the compactness in terms of the behaviour of the
Berezin transform at infinity and membership in the Toeplitz algebra. Analogously
one may ask whether one can characterize the Fredholm property for operators in the
Toeplitz algebra in terms of some quantities at infinity. Such results are well-known
for band-dominated operators on sequence spaces (cf. [96]) and have already been
established in the case of Bergman spaces over unit balls by R. Hagger [80]. In general,
the methods presented here are similar to those used in Hagger’s paper on the unit
ball case. In contrast to the paper [73], we will also try to obtain information on the
Fredholm property for p = 1,∞,∞+ from the methods we present. Further, we will
try to distinguish between left- and right-invertibility modulo compact operators. We
will need the following definitions:

Definition 5.0.1. Let X be a Banach space and A ∈ L(X). We say that

1) A is upper semi-Fredholm if dim(ker(A)) <∞ and ran(A) is closed;

2) A is lower semi-Fredholm if codim(ran(A)) <∞;

3) A is left Atkinson if there exist B ∈ L(X), K ∈ K(X) such that BA = I +K;

4) A is right Atkinson if there exist B ∈ L(X), K ∈ K(X) such that AB = I +K.

We will denote the set of upper semi-Fredholm, lower semi-Fredholm, left Atkinson
and right Atkinson operators on X by Φ−(X), Φ+(X), Φl(X) and Φr(X), respectively.
Further, we will denote the class of Fredholm operators by Φ(X) = Φ−(X) ∩ Φ+(X).
Here are some important properties:
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Proposition 5.0.2. Let X be a Banach space and A ∈ L(X).

1) Φ(X) = Φl(X) ∩ Φr(X);

2) A ∈ Φ(X) if and only if A′ ∈ Φ(X ′);

3) A ∈ Φl(X) if and only if A ∈ Φ+(X) and ker(A) is complemented in X;

4) A ∈ Φr(X) if and only if A ∈ Φ−(X) and ran(A) is complemented in X;

5) A ∈ Φl(X) implies A′ ∈ Φr(X
′);

6) A ∈ Φr(X) implies A′ ∈ Φl(X
′);

7) If X is reflexive: A ∈ Φr(X)⇔ A′ ∈ Φl(X
′) and A ∈ Φl(X)⇔ A′ ∈ Φr(X

′).

Proof. 1) is the well-known Atkinson Theorem. 2) is a consequence of Banach’s closed
range theorem [134, Theorem VII.5]. 3) and 4) are Theorems 4.3.2 and 4.3.3 in [43].
5) and 6) follow immediately from the definitions. If X is reflexive, then 7) follows
from 5) and 6), since A ∼= (A′)′.

Let us also state the following elementary fact, which follows from simple estimates
or, alternatively, is an immediate consequence of Jensen’s inequality:

Lemma 5.0.3. Let p ∈ [1,∞) and x1, . . . , xk ≥ 0. Then, k∑
j=1

xj

p

≤ kp
k∑
j=1

xpj .

Here is an important fact, which we will frequently use:

Proposition 5.0.4. Assume 1 ≤ p < ∞. Let (Uj)j∈N be a sequence of measurable
subsets of Cn such that every z ∈ Cn belongs to at most N of the sets Uj for some
N ∈ N independent of z. Further, let (fj)j∈N be a sequence of measurable functions
fj : Cn → C such that supp(fj) ⊆ Uj and |fj(z)| ≤ 1 for all z ∈ Cn. Then, for every
g ∈ Lpt we have

∞∑
j=1

∫
Cn
|fj(z)g(z)|pdµ2t/p(z) ≤ N‖g‖

p
Lpt
,

i.e.
∞∑
j=1

‖Mfjg‖
p
Lpt
≤ N‖g‖p

Lpt
.

Proof. The estimate is derived as follows:

∞∑
j=1

∫
Cn
|fj(z)g(z)|pdµ2t/p(z) ≤

∞∑
j=1

∫
Uj

|g(z)|pdµ2t/p(z)
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= lim
M→∞

∫
Cn

M∑
j=1

χUj (z)|g(z)|p dµ2t/p(z)

≤ N
∫
Cn
|g(z)|p dµ2t/p(z)

= N‖g‖p
Lpt
,

as required.

Here is another fact in the same spirit. Note that the analogous result on sequence
spaces is originally due to I. B. Simonenko [121].

Lemma 5.0.5. Let 1 ≤ p <∞. For every j ∈ N let aj , bj : Cn → [0, 1] be measurable
functions and assume that each z ∈ Cn belongs to at most N of the sets supp(aj) and
at most M of the sets supp(bj). If (Aj)j∈N ⊂ L(Lpt ) such that there is a constant
C > 0 with ‖Aj‖ ≤ C for all j ∈ N, then the series

∞∑
j=1

MajAjMbj

converges in the strong operator topology and ‖
∑∞

j=1MajAjMbj‖ ≤ NMC.

Proof. Let f ∈ Lpt . Then,∥∥∥∥∥∥
∞∑
j=m

MajAjMbjf

∥∥∥∥∥∥
p

Lpt

=

∫
Cn

∣∣∣∣∣∣
∞∑
j=m

(MajAjMbjf)(z)

∣∣∣∣∣∣
p

dµ2t/p(z)

≤
∫
Cn

 ∞∑
j=m

|(MajAjMbjf)(z)|

p

dµ2t/p(z).

By assumption, the sum in the integral is pointwise a finite sum with at most N terms.
Using Lemma 5.0.3 and the Monotone Convergence Theorem, we conclude

≤
∫
Cn
Np

∞∑
j=m

|(MajAjMbjf(z)|p dµ2t/p(z)

= Np
∞∑
j=m

∫
Cn
|(MajAjMbjf)(z)|p dµ2t/p(z)

= Np
∞∑
j=m

‖MajAjMbjf‖
p
Lpt

≤ NpCp
∞∑
j=m

‖Mbjf‖
p
Lpt
,
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where we used ‖a‖∞ ≤ 1 in the last step. By Proposition 5.0.4 we obtain

∞∑
j=m

‖Mbjf‖
p
Lpt
→ 0, m→∞.

This shows convergence of the sum in the strong operator topology. The norm estimate
follows from the same estimates as above (for m = 1) and a final application of
Proposition 5.0.4.

5.1 Band-dominated operators

Definition 5.1.1. 1) A ∈ L(Lpt ) is called a band operator if there is some ω > 0 such
that for any pair of functions f, g ∈ L∞(Cn), dist(supp(f), supp(g)) > ω implies
MfAMg = 0. We will denote the infimum of all such ω by ω(A) and call it the
band-width (or propagation) of A.

2) A ∈ L(Lpt ) is said to be band-dominated if it can be approximated by band operators
in operator norm. The set of all band-dominated operators on Lpt will be denoted
by BDOp

t .

The first goal will be to derive certain characterizations of band-dominated operators.
Let us denote by |z|∞ the supremum norm of z ∈ Cn ∼= R2n, i.e.

|z|∞ = max{|Re(zj)|, | Im(zj)|; j = 1, . . . , n}.

For a subset B ⊆ Cn and z ∈ Cn we let

d∞(z,B) := inf{|z − w|∞; w ∈ B}.

Let us consider the following collection of subsets of Cn:

ζ := {[−3, 3)2n + σ ⊂ R2n; σ ∈ 6Z2n}.

Since ζ is clearly a countable set, we can fix an enumeration ζ = {Bj}∞j=1 such that
0 ∈ B1. Further, we will consider the sets

Ωk(Bj) := {z ∈ Cn; dist∞(z,Bj) ≤ k}

for k = 1, 2, 3 and all j ∈ N.

Lemma 5.1.2 ([19, Lemma 3.1]). The sets Bj satisfy the following properties:

1) Bj ∩Bk = ∅ for j 6= k;

2) Every z ∈ Cn belongs to at most 22n of the sets Ω1(Bj) and to at most 42n of the
sets Ω3(Bj);
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1

0
-4 -2 0 2 4

Figure 5.1: The function φ

3) diam(Bj) = 6
√

2n, where diam denotes the Euclidean diameter of the set.

Let us denote by φ : R→ [0, 1] the function from Figure 5.1, i.e.

φ(x) =



0, x ≤ −4
1
2x+ 2; −4 < x ≤ −2

1, −2 < x ≤ 2

−1
2x+ 2; 2 < x ≤ 4

0, x > 4

Further, define the function ϕ : Cn ∼= R2n → [0, 1] by

ϕ(x1, . . . , x2n) = φ(x1) · · · · · φ(x2n).

Let (σj)j∈N be the enumeration of 6Z2n coinciding with the enumeration of ζ, i.e.
σj ∈ Bj for all j ∈ N. Then, we consider the functions ϕj : Cn ∼= R2n → [0, 1] given by

ϕj(x) = ϕ(x− σj).

Since {φ(· − 6k)}k∈Z is a partition of unity of R, where each element is Lipschitz with
Lipschitz constant 1/2 we obtain by induction:

1) supp(ϕj) = Ω1(Bj) for every j ∈ N,

2)
∑∞

j=1 ϕj(z) = 1 for every z ∈ Cn,

3) ϕj is Lipschitz continuous with Lipschitz constant 1
2 · 2n for every j ∈ N. In

particular, the sequence (ϕj)j∈N is uniformly equicontinuous.

Imitating the above construction, it is not a problem to find a uniformly equicontinuous
sequence of functions (ψj)j∈N such that the functions ψj : Cn → [0, 1] satisfy

1) ψj(z) = 1 for every z ∈ Ω2(Bj);

2) supp(ψj) = Ω3(Bj).

Given s > 0 and j ∈ N we define ϕj,s(z) = ϕj(sz) and ψj,s(z) = ψj(sz). Here is the
announced characterization of band-dominated operators:
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Proposition 5.1.3. Let p ∈ [1,∞), t > 0 and A ∈ L(Lpt ). Then, the following are
equivalent:

1) A is band-dominated,

2) lim
s→0

sup
‖f‖=1

∞∑
j=1

‖Mϕj,sAM1−ψj,sf‖
p
Lpt

= 0,

3) lim
s→0

∥∥∥∥∥∥
∞∑
j=1

Mϕj,sAM1−ψj,s

∥∥∥∥∥∥ = 0, where the sum converges in strong operator topology.

Proof. 1) ⇒ 2): Let ε > 0 and B ∈ L(Lpt ) a band operator such that ‖A − B‖ < ε.
Observe that

supp(ϕj,s) =

[
−4

s
,
4

s

]2n

− σj
s
, supp(1− ψj,s) = Cn \

([
−5

s
,
5

s

]2n

− σj
s

)
. (5.1)

In particular,

dist(supp(ϕj,s), supp(1− ψj,s)) = dist(supp(ϕ1,s), supp(1− ψ1,s))

≥ 1

s
→∞, s→ 0.

Therefore, we may fix s > 0 small enough such that

dist(supp(ϕj,s), supp(1− ψj,s)) > ω(A)

for all j ∈ N. Hence, Mϕj,sBM1−ψj,s = 0 for all j. We therefore obtain for f ∈ Lpt

∞∑
j=1

‖Mϕj,sAM1−ψj,sf‖
p
Lpt

=
∞∑
j=1

‖Mϕj,s(A−B)M1−ψj,sf‖
p
Lpt

≤ 2p
∞∑
j=1

(‖Mϕj,s(A−B)f‖p
Lpt

+ ‖Mϕj,s(A−B)Mψj,sf‖
p
Lpt

)

≤ 2p22n(‖(A−B)f‖p
Lpt

+ ‖(A−B)Mψj,sf‖
p
Lpt

),

where we first applied Lemma 5.0.3 for the case k = 2 and afterwards Proposition
5.0.4. This yields

∞∑
j=1

‖Mϕj,sAM1−ψj,sf‖
p
Lpt
≤ 2p+122nεp‖f‖p

Lpt
.
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Since ε > 0 was arbitrary, we therefore have shown

lim sup
s→0

sup
‖f‖

L
p
t

=1

∞∑
j=1

‖Mϕj,sAM1−ψj,sf‖
p
Lpt

= 0.

2) ⇒ 3): Note that the series in 3) converges in the strong operator topology by
Lemma 5.0.5. Using Lemma 5.0.3, Lemma 5.1.2 and the Monotone Convergence
Theorem, we obtain for f ∈ Lpt :∥∥∥∥∥∥

∞∑
j=1

Mϕj,tAM1−ψj,tf

∥∥∥∥∥∥
p

Lpt

=

∫
Cn

∣∣∣∣∣∣
∞∑
j=1

(Mϕj,tAM1−ψj,tf)(z)

∣∣∣∣∣∣
p

dµ2t/p(z)

≤ (22n)p
∫
Cn

∞∑
j=1

|(Mϕj,tAM1−ψj,tf)(z)|p dµ2t/p(z)

= (22n)p
∞∑
j=1

‖Mϕj,tAM1−ψj,tf‖
p
Lpt
.

Taking now the supremum over all f ∈ Lpt with ‖f‖Lpt = 1 yields 3).
3) ⇒ 1): For m ∈ N we have

supp(ϕj, 1
m

) = [−4m, 4m]2n −mσj ,

supp(ψj, 1
m

) = [−5m, 5m]2n −mσj .

Let f, g ∈ L∞(Cn) such that

dist(supp(f), supp(g)) > diam(supp(ψj, 1
m

)).

Then, only one of supp(f), supp(g) can have nontrivial intersection with the supports
of ϕj, 1

m
and ψj, 1

m
, i.e.

MfMϕ
j, 1m

AMψ
j, 1m

Mg = 0.

Since this holds independently of j, we obtain that Am :=
∑∞

j=1Mϕ
j, 1m

AMψ
j, 1m

is a

band operator. Recall that (ϕj,t)j∈N is a partition of unity, i.e.
∑∞

j=1 ϕj,t ≡ 1 for all
t > 0. Hence,

‖A−Am‖ =

∥∥∥∥∥∥
∞∑
j=1

Mϕ
j, 1m

A−
∞∑
j=1

Mϕ
j, 1m

AMψ
j, 1m

∥∥∥∥∥∥
=

∥∥∥∥∥∥
∞∑
j=1

Mϕ
j, 1m

AM1−ψ
j, 1m

∥∥∥∥∥∥
→ 0

as m→∞.

There is another important characterization of band-dominated operators:
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Proposition 5.1.4. Let 1 ≤ p < ∞ and A ∈ L(Lpt ). Then, the following two
statements are equivalent:

1) A ∈ BDOp
t ;

2) lim
s→0

sup
‖f‖=1

∞∑
j=1

‖[A,Mϕj,s ]f‖
p
Lpt

= 0.

In this case, lim sups→0 ‖[A,Mϕj,s ]‖ = 0.

The proof of this proposition will be divided in two steps. Note that we did not
prove this statement in [73], as its proof is essentially identical to the unit ball case.
For completeness, we give the proof here, which follows the discussion in [80] closely.
The following lemma is analogous to [80, Lemma 12], from where we also took our
proof almost literally.

Lemma 5.1.5. Let ω > 0 and for every j ∈ N, s ∈ (0,∞) let aj,s : Cn → [0, 1] be
measurable. If

lim
s→0

inf
j∈N

dist(a−1
j,s (U), a−1

j,s (V )) =∞

for all sets U, V ⊂ [0, 1] with dist(U, V ) > 0, then for every ε > 0 there exists some
s0 > 0 such that for all s ∈ (0, s0) and all band operators A of band-width at most ω
the estimate

sup
j∈N
‖[A,Maj,s ]‖ ≤ 3‖A‖ε

holds true.

Proof. Let A ∈ L(Lpt ) be a band operator such that ω(A) < ω. Let ε > 0 and set
m = d1

εe. For every k = 1, . . . ,m we set

U jk,s := a−1
j,s ([kε, 1]) and V j

k,s := a−1
j,s

([(
k − 1

2

)
ε, 1

])
.

Moreover, define

aUj,s := ε
m∑
k=1

χ
Ujk,s

and aVj,s := ε
m∑
k=1

χ
V jk,s

.

Obviously, for every z ∈ Cn and s > 0 we have either aj,s(z) < ε or aj,s(z) ∈
[lε, (l + 1)ε) for some l ∈ N. Hence, |aj,s(z) − aUj,s(z)| < ε for every z ∈ Cn, i.e.

supj∈N ‖aj,s− aUj,s‖∞ ≤ ε. In the same way one sees that supj∈N ‖aj,s− aVj,s‖∞ ≤ ε. In
particular,

sup
j∈N
‖Maj,s −MaUj,s

‖ ≤ ε and sup
j∈N
‖Maj,s −MaVj,s

‖ ≤ ε.
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Therefore,

sup
j∈N
‖AMaj,s −Maj,sA‖

≤ sup
j∈N

(
‖A(Maj,s −MaVj,s

)‖+ ‖AMaVj,s
−MaUj,s

A‖+ ‖(MaUj,s
−Maj,s)A‖

)
≤ 2‖A‖ε+ sup

j∈N
‖AMaVj,s

−MaUj,s
A‖

= 2‖A‖ε+ ε sup
j∈N

∥∥∥∥∥
m∑
k=1

(AMχ
V
j
k,s

−Mχ
U
j
k,s

A)

∥∥∥∥∥
≤ 2‖A‖ε+ ε sup

j∈N

∥∥∥∥∥
m∑
k=1

Mχ
(U
j
k,s

)c
AMχ

V
j
k,s

∥∥∥∥∥+ ε sup
j∈N

∥∥∥∥∥
m∑
k=1

Mχ
U
j
k,s

AMχ
(V
j
k,s

)c

∥∥∥∥∥ .
Recall that U jk,s = a−1

j,s ([kε, 1]) and (V j
k,s)

c = a−1
j,s

([
0,
(
k − 1

2

)
ε
))

. Hence, by assump-
tion we have for every k:

inf
j∈N

dist(U jk,s, (V
j
k,s)

c)→∞, s→ 0.

We may choose s0 > 0 such that for every s ∈ (0, s0) and every k = 1, . . . ,m we have
infj∈N dist(U jk,s, (V

j
k,s)

c) > ω. Recalling that ω was assumed to be larger than the band
width of A, we obtain Mχ

U
j
k,s

AMχ
(V
j
k,s

)c
= 0 for all k. In particular, for such s we

obtain the estimate

sup
j∈N
‖AMaj,s −Maj,sA‖ ≤ 2‖A‖ε+ ε sup

j∈N

∥∥∥∥∥
m∑
k=1

Mχ
(U
j
k,s

)c
AMχ

V
j
k,s

∥∥∥∥∥ .
Let us set U j0,s := Cn and V j

m+1,s := ∅. Then, by a similar argument as above and
possibly making s0 even smaller, we obtain

sup
j∈N

∥∥∥∥∥
m∑
k=1

Mχ
(U
j
k,s

)c
AMχ

V
j
k,s

∥∥∥∥∥
≤ sup

j∈N

∥∥∥∥∥
m∑
k=1

Mχ
(U
j
k,s

)c
AMχ

V
j
k+1,s

∥∥∥∥∥
+ sup

j∈N

∥∥∥∥∥
m∑
k=1

Mχ
(U
j
k−1,s

)c
AMχ

V
j
k,s
\V j
k+1,s

∥∥∥∥∥
+ sup

j∈N

∥∥∥∥∥
m∑
k=1

Mχ
U
j
k−1,s

\Uj
k,s

AMχ
V
j
k,s
\V j
k+1,s

∥∥∥∥∥
≤ sup

j∈N

∥∥∥∥∥
m∑
k=1

Mχ
U
j
k−1,s

\Uj
k,s

AMχ
V
j
k,s
\V j
k+1,s

∥∥∥∥∥ .
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Using the fact that the sets U jk−1,s \ U
j
k,s are pairwise disjoint, we can compute for

every f ∈ Lpt and j ∈ N arbitrary:∥∥∥∥∥
m∑
k=1

Mχ
U
j
k−1,s

\Uj
k,s

AMχ
V
j
k,s
\V j
k+1,s

f

∥∥∥∥∥
p

Lpt

=

m∑
k=1

∥∥∥∥Mχ
U
j
k−1,s

\Uj
k,s

AMχ
V
j
k,s
\V j
k+1,s

f

∥∥∥∥p
Lpt

≤ ‖A‖p
m∑
k=1

∥∥∥∥Mχ
V
j
k,s
\V j
k+1,s

f

∥∥∥∥p
Lpt

= ‖A‖p
∥∥∥∥Mχ

V
j
1,s

f

∥∥∥∥p
Lpt

≤ ‖A‖p‖f‖p
Lpt
.

This establishes the desired estimate

sup
j∈N
‖(AMaj,s −Maj,sA)‖ ≤ 3‖A‖ε

for s ∈ (0, s0).

We now present the proof of the characterization of band-dominated operators
in Proposition 5.1.4. Again, we did not present this proof in [73], since it can be
concluded identically to the case of Bergman spaces over the unit ball. We reproduce
the proof from [80, Proposition 11].

Proof of Proposition 5.1.4. Let A ∈ BDOp
t and ε > 0. Then, we can pick a band

operator Am such that ‖A−Am‖ < ε.
We claim that the functions ϕj,s satisfy the assumptions of Lemma 5.1.5: Recall

that the functions ϕj are by construction Lipschitz with Lipschitz constant n. For
U, V ⊂ [0, 1] satisfying dist(U, V ) > 0, let wj,s ∈ ϕ−1

j,s (U), zj,s ∈ ϕ−1
j,s (V ). Then,

n|wj,s − zj,s| ≥
1

s
|ϕj,s(wj,s)− ϕj,s(zj,s)| ≥

1

s
dist(U, V )→∞, s→ 0

independently of the choice of the points wj,s and zj,s. Therefore

lim
s→0

inf
j∈N

dist(ϕ−1
j,s (U), ϕ−1

j,s (V )) =∞.

By Lemma 5.1.5 there exists s0 > 0 such that for all s ∈ (0, s0):

sup
j∈N
‖[A,Mϕj,s ]‖ ≤ sup

j∈N
‖[Am,Mϕj,s ]‖+ sup

j∈N
‖[A−Am,Mϕj,s ]‖

≤ 3‖Am‖ε+ 2ε

≤ 3(‖A‖+ ε)ε+ 2ε.

This of course implies

lim
s→0

sup
j∈N
‖[A,Mϕj,s ]‖ = 0.

Using Lemma 5.0.3 and the properties of the functions ϕj,s and ψj,s we estimate



Chapter 5. Fredholm theory of Toeplitz operators on Fock spaces 89

sup
‖f‖=1

∞∑
j=1

‖[A,Mϕj,s ]f‖
p
Lpt

≤ 2p sup
‖f‖=1

∞∑
j=1

(‖[A,Mϕj,s ]Mψj,sf‖
p
Lpt

+ ‖[A,Mϕj,s ]M1−ψj,sf‖
p
Lpt

)

≤ 2p sup
‖f‖=1

∞∑
j=1

(‖[A,Mϕj,s ]‖p‖Mψj,sf‖
p
Lpt

+ ‖Mϕj,sAM1−ψj,sf‖
p
Lpt

)

≤ 2p42n sup
j∈N
‖[A,Mϕj,s ]‖p + 2p sup

‖f‖=1

∞∑
j=1

‖Mϕj,sAM1−ψj,sf‖
p
Lpt
.

Now, Proposition 5.1.3 yields

lim
s→0

sup
‖f‖=1

∞∑
j=1

‖[A,Mϕj,s ]f‖
p
Lpt

= 0.

Conversely, assume sup‖f‖=1

∑∞
j=1 ‖[A,Mϕj,s ]f‖

p
Lpt
→ 0 as s→ 0. Since

sup
j∈N
‖[A,Mϕj,s ]‖p ≤ sup

j∈N
sup
‖f‖=1

‖[A,Mϕj,s ]f‖
p
Lpt
≤ sup
‖f‖=1

∞∑
j=1

‖[A,Mϕj,s ]f‖
p
Lpt
,

this clearly implies supj∈N ‖[A,Mϕj,s ]‖ → 0 as s→ 0. Therefore, by similar estimates
as we had in the other direction of the proof,

sup
‖f‖=1

∞∑
j=1

‖Mϕj,sAM1−ψj,sf‖
p
Lpt

≤ 2p sup
‖f‖=1

∞∑
j=1

(‖[Mϕj,s , A]f‖p
Lpt

+ ‖[Mϕj,s , A]Mψj,sf‖
p
Lpt

)

≤ 2p sup
‖f‖=1

∞∑
j=1

(‖[Mϕj,s , A]f‖p
Lpt

+ ‖[Mϕj,s , A]‖p‖Mψj,sf‖
p
Lpt

)

≤ 2p sup
‖f‖=1

∞∑
j=1

‖[Mϕj,s , A]f‖p
Lpt

+ 2p42n sup
j∈N
‖[Mϕj,s , A]‖p,

which converges to 0 as s→ 0 by assumption. A ∈ BDOp
t follows now by Proposition

5.1.3.

Here are some properties of BDOp
t :
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Proposition 5.1.6. Let 1 ≤ p <∞ and t > 0. Then,

1) Mf ∈ BDOp
t for all f ∈ L∞(Cn);

2) BDOp
t is a closed subalgebra of L(Lpt );

3) If A ∈ BDOp
t is Fredholm and B a Fredholm regularizer of A, then B ∈ BDOp

t , and
in particular, BDOp

t is inverse closed;

4) K(Lpt ) is a closed and two-sided ideal in BDOp
t ;

5) If A ∈ BDOp
t then A∗ ∈ BDOq

t , where 1
p + 1

q = 1. In particular, BDO2
t is a C∗

algebra.

Proof. 1) Clearly, multiplication operators are band operators.

2) Let A,B be band operators and f, g ∈ L∞(Cn) such that

dist(supp(f), supp(g)) ≥ 4(ω(A) + ω(B)).

Define

S := {z ∈ Cn; dist(z, supp(f)) ≤ 2(ω(A) + ω(B))}.

Then,

dist(supp(f), Sc) > ω(A),

dist(supp(g), S) > ω(B),

and therefore

MfABMg = MfA(M1−χS +MχS )BMg

= MfAM1−χSB +MfAMχSBMg

= 0,

i.e. the band operators form an algebra. Therefore, also their closure is an algebra.

3) and 4): Since those facts will not be needed in this work, we refer to the identical
proofs in [80, Proposition 13].

5) Follows immediately, since the adjoint of a band operator is again a band operator.

Proposition 5.1.7. Let 1 ≤ p ≤ ∞ and t > 0. Then, Pt ∈ BDOp
t .

By including the limit cases p = 1,∞, we can actually give a proof which is
somewhat simpler compared to the proof we gave in [73].
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Proof. We will prove the statement using characterization 3) of Proposition 5.1.3. Let
us first deal with the case p = 1. Recall that we obtain by Equation (5.1) that

dist(supp(ϕj,s), supp(1− ψj,s)) ≥
1

s

for every j ∈ N, s > 0. Let f ∈ L1
t . Then, since ϕj,s(z) ∈ [0, 1] and 1− ψj,s(w) ∈ [0, 1]

for all z, w ∈ Cn, we obtain∥∥∥∥∥∥
∞∑
j=1

Mϕj,sPtM1−ψj,sf

∥∥∥∥∥∥
L1
t

≤ 1

2n

(
1

πt

)2n ∫
Cn

∣∣∣∣∣∣
∞∑
j=1

ϕj,s(z)

∫
Cn

(1− ψj,s)(w)f(w)e
z·w
t
− |w|

2

t dw

∣∣∣∣∣∣ e− |z|
2

2t dz

≤ 1

2n

(
1

πt

)2n ∞∑
j=1

∫
supp(ϕj,s)

ϕj,s(z)

∫
supp(1−ψj,s)

|f(w)|e−
|z−w|2

2t e−
|w|2
2t dw dz

≤ 1

2n

(
1

πt

)2n

e−
1

4ts2

∞∑
j=1

∫
supp(ϕj,s)

ϕj,s(z)

∫
supp(1−ψj,s)

|f(w)|e−
|w|2
2t e−

|z−w|2
4t dw dz

≤ 1

2n

(
1

πt

)2n

e−
1

4ts2

∞∑
j=1

∫
Cn
|f(w)|e−

|w|2
2t

∫
Cn
ϕj,s(z)e

− |z−w|
2

4t dz dw

=
1

2n

(
1

πt

)2n

e−
1

4ts2

∫
Cn
|f(w)|e−

|w|2
2t

∫
Cn
e−
|z−w|2

4t dz dw

= 4ne−
1

4ts2 ‖f‖L1
t
.

Therefore, ∥∥∥∥∥∥
∞∑
j=1

Mϕj,sPtM1−ψj,t

∥∥∥∥∥∥
L1
t→L1

t

≤ 4ne−
1

4ts2 → 0, s→ 0,

i.e. Pt ∈ BDO1
t . Since the adjoint of Pt ∈ L(L1

t ) is Pt ∈ L(L∞t ), we obtain Pt ∈ BDO∞t
from Proposition 5.1.6. Finally, using 1− ψj,s(w) ∈ [0, 1] for all w ∈ Cn, we note that
for f ∈ L∞t∣∣∣∣∣∣

∞∑
j=1

ϕj,s(z)Pt((1− ψj,s)f)(z)

∣∣∣∣∣∣ e− |z|
2

2t

≤
(

1

πt

)n ∞∑
j=1

ϕj,s(z)

∫
Cn

(1− ψj,s(w))|f(w)| |e
z·w
t |e−

|w|2
2t dw e−

|z|2
2t

≤
(

1

πt

)n ∞∑
j=1

ϕj,s(z)‖f‖L∞t

∫
Cn
e−
|z−w|2

2t dw



92 5.1. Band-dominated operators

= 2n‖f‖L∞t
∞∑
j=1

ϕj,s(z)

= 2n‖f‖L∞t

and therefore, for every s > 0,∥∥∥∥∥∥
∞∑
j=1

Mϕj,sPtM1−ψj,s

∥∥∥∥∥∥
L∞t →L∞t

≤ 2n.

Interpolating between the limit cases p = 1 and p =∞, we get∥∥∥∥∥∥
∞∑
j=1

Mϕj,sPtM1−ψj,s

∥∥∥∥∥∥
Lpt→L

p
t

→ 0, s→ 0

for every p ∈ (1,∞). Hence, Pt ∈ BDOp
t for every p ∈ [1,∞].

Given an operator A ∈ L(F pt ), we will denote by Â ∈ L(Lpt ) the operator

Â = PtAPt + (I − Pt). (5.2)

We will occasionally abbreviate Qt := I − Pt. In the following corollary, we explicitly
exclude the case of f∞t , since Â ∈ L(L∞t ) does not make any sense for A ∈ L(f∞t ).

Corollary 5.1.8. Let t > 0. If 1 ≤ p < ∞ and A ∈ T p,t, then Â ∈ BDOp
t . If

A ∈ T ∞+,t, then Â ∈ BDO∞t .

Proof. Since Mf ∈ BDOp
t and Pt ∈ BDOp

t , we obtain T̂ tf ∈ BDOp
t for every f ∈

L∞(Cn). Then take limits.

Here is the reason why we are dealing with band-dominated operators:

Proposition 5.1.9. a) Let 1 ≤ p <∞ and A ∈ BDOp
t such that [A,Pt] = 0. Assume

there is a positive constant M > 0 satisfying the following:

For every s > 0 there is an integer j0(s) > 0 such that for all j ≥ j0(s) there are
operators Cj,s ∈ L(Lpt ) with

‖Cj,s‖ ≤M

and

Cj,sAMψj,s = Mψj,s .

Then, there is an operator C ∈ L(F pt ) with ‖C +K(F pt )‖ ≤ 26n+1‖Pt‖M such that
C +K(F pt ) is a left-inverse of A|F pt +K(F pt ) in L(F pt )/K(F pt ), i.e. A|F pt ∈ Φl(F

p
t ).



Chapter 5. Fredholm theory of Toeplitz operators on Fock spaces 93

b) Let 1 < p < ∞ and A ∈ BDOp
t such that [A,Pt] = 0. Assume there is a positive

constant M > 0 satisfying the following:

For every s > 0 there is an integer j0(s) > 0 such that for all j ≥ j0(s) there are
operators Dj,s ∈ L(Lpt ) with

‖Dj,s‖ ≤M

and
Mψj,sADj,s = Mψj,s .

Then, there is an operator D ∈ L(F pt ) with ‖D +K(F pt )‖ ≤ 26n+1‖Pt‖M such that
D+K(F pt ) is a right-inverse of A|F pt +K(F pt ) in L(F pt )/K(F pt ), i.e. A|F pt ∈ Φr(F

p
t ).

Proof. a) For s > 0 we define the operator

Cs :=
∞∑

j=j0(s)

Mψj,sCj,sMϕj,s .

Imitating the proof of Lemma 5.0.5, we see that this series converges in the strong
operator topology and we obtain ‖Cs‖ ≤ 26nM . Since ψj,s ≡ 1 on supp(ϕj,s) we get
the following identity:

CsA =

∞∑
j=j0(s)

Mψj,sCj,sAMϕj,sMψj,s +

∞∑
j=j0(s)

Mψj,sCj,s[Mϕj,s , A].

Using Proposition 5.1.4 we deduce that
∑∞

j=j0(s)Mψj,sCj,s[Mϕj,s , A] converges to 0 in
operator norm as s→ 0. For the first term we obtain

∞∑
j=j0(s)

Mψj,sCj,sAMϕj,sMψj,s =

∞∑
j=j0(s)

Mψj,sCj,sAMψj,sMϕj,s

=
∞∑

j=j0(s)

Mψj,sMψj,sMϕj,s

=
∞∑

j=j0(s)

Mϕj,s .

In particular,

lim
s→0

∥∥∥∥∥∥CsA−
∞∑

j=j0(s)

Mϕj,s

∥∥∥∥∥∥ = 0.

Since
∑∞

j=1Mϕj,s = I for every s > 0 by construction, we obtain

∞∑
j=1

PtMϕj,s |F pt = Pt

∞∑
j=1

Mϕj,s |F pt = I ∈ L(F pt ).
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Further,

j0(s)−1∑
j=1

PtMϕj,s |F pt ∈ K(F pt )

by Proposition 2.3.14. Hence,

∞∑
j=j0(s)

PtMϕj,s |F pt ∈ I +K(F pt )

for every s > 0. We therefore get, using∥∥∥∥∥∥PtCsA|F pt −
∞∑

j=j0(s)

PtMϕj,s |F pt

∥∥∥∥∥∥ ≤ ‖Pt‖
∥∥∥∥∥∥CsA|F pt −

∞∑
j=j0(s)

Mϕj,s |F pt

∥∥∥∥∥∥→ 0, s→ 0,

that PtCsA|F pt +K(F pt )→ I +K(F pt ) in the Calkin algebra L(F pt )/K(F pt ). Let s small
enough such that we have

‖(I +K(F pt ))− (PtCsA|F pt +K(F pt ))‖ < 1

2
.

Then

PtCsA|F pt +K(F pt ) = (I +K(F pt ))− ((I +K(F pt )− (PtCsA|F pt +K(F pt ))

is invertible with inverse

∞∑
k=0

((I +K(F pt ))− (PtCsA|F pt +K(F pt ))k.

Note that, by assumption on A, the range of A|F pt is contained in F pt . Hence,
PtCsA|F pt = PtCs|F pt A|F pt , i.e.

PtCsA|F pt +K(F pt ) = (PtCs +K(F pt ))(A|F pt +K(F pt )).

Combining these facts, we get

I +K(F pt )

=

[ ∞∑
k=0

((I +K(F pt ))− (PtCsA|F pt +K(F pt ))k

]
(PtCsA|F pt +K(F pt ))

=

[ ∞∑
k=0

((I +K(F pt ))− (PtCsA|F pt +K(F pt ))k

]
(PtCs|F pt +K(F pt ))(A|F pt +K(F pt )).
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Letting

C :=

[ ∞∑
k=0

((I +K(F pt ))− (PtCsA|F pt +K(F pt ))k

]
(PtCs|F pt +K(F pt )),

we obtain CA|F pt +K(F pt ) = I +K(F pt ) and

‖C +K(F pt )‖ ≤ 2‖Pt‖‖Cs‖ ≤ 26n+1‖Pt‖M.

b) We set

Ds =
∞∑

j=j0(s)

Mϕj,sDj,sMψj,s .

Since A∗ ∈ BDOq
t (where 1/p+ 1/q = 1) satisfies the characterization in Proposition

5.1.4 2), we can proceed as in part a) to show that

lim
s→0

∥∥∥∥∥∥D∗sA∗ −
∞∑

j=j0(s)

Mϕj,s

∥∥∥∥∥∥ = 0,

which of course yields

lim
s→0

∥∥∥∥∥∥ADs −
∞∑

j=j0(s)

Mϕj,s

∥∥∥∥∥∥ = 0.

Using [A,Pt] = 0, we therefore obtain

lim
s→0

∥∥∥∥∥∥APtDs|F pt −
∞∑

j=j0(s)

PtMϕj,s |F pt

∥∥∥∥∥∥ = 0

and conclude as in a).

5.2 The Fredholm property for elements in T p,t

For the rest of this chapter, we will abbreviate M :=M(BUC(Cn)).

Proposition 5.2.1. Let (zγ) be a net converging to x ∈M\Cn and let t > 0. Further,
let f ∈ L∞(Cn) have compact support.

1) Assume p ∈ [1,∞). Let A ∈ T p,t be such that Ax is left-invertible with left inverse
B. Then, there is γ0 such that for all γ ≥ γ0 there are operators Cγ ∈ L(Lpt )
satisfying

‖Cγ‖ ≤ 2(‖B‖‖Pt‖+ ‖Qt‖)

and

CγÂMα−zγ (f) = Mα−zγ (f).
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2) Let p ∈ (1,∞) and assume A ∈ T p,t is such that Ax is right-invertible with right
inverse B. Then, there is a γ0 such that for every γ ≥ γ0 there are operators
Dγ ∈ L(F pt ) with

‖Dγ‖ ≤ 2(‖B‖‖Pt‖+ ‖Qt‖)

and

Mα−zγ (f)ÂDγ = Mα−zγ (f).

To prove this proposition, we need the following well-known fact. For completeness,
we give the simple proof.

Lemma 5.2.2. Let X be a Banach space, K ∈ K(X) and (Aγ)γ∈Γ ⊂ L(X) a uniformly
bounded net of operators converging to A ∈ L(X) in strong operator topology. Then,
AγK → AK in operator norm topology. If further A′γ → A′ ∈ L(X ′) in strong operator
topology, then we also have KAγ → KA in operator norm topology.

Proof. We have

‖(Aγ −A)K‖ = sup
x∈B
‖(Aγ −A)Kx‖ = sup

y∈K(B)
‖(Aγ −A)y‖ ≤ sup

y∈K(B)

‖(Aγ −A)y‖,

where B denotes the closed unit ball in X. Since K is compact, K(B) is relatively
compact, i.e. K(B) is a compact subset of X. Hence, for ε > 0 there are finitely
many points y1, . . . , yn such that the open balls B(yj , ε) cover K(B). Choose γ0 such
that for γ ≥ γ0 we have ‖Aγyj − Ayj‖ < ε for every j = 1, . . . , n. Then, for every
y ∈ B(yj , ε) and γ ≥ γ0:

‖Aγy −Ay‖ ≤ (sup
γ
‖Aγ‖+ ‖A‖)ε+ ‖Aγyj −Ayj‖ ≤

(
sup
γ
‖Aγ‖+ 1

)
ε.

It follows that

‖(Aγ −A)K‖ ≤
(

sup
γ
‖Aγ‖+ 1

)
ε.

The second statement follows immediately from the first statement, since

‖K(Aγ −A)‖ = ‖(A′γ −A′)K ′‖

and K ′ is compact.

Proof of Proposition 5.2.1. 1) Assume Ax is left-invertible with left inverse B. Let
R > 0 such that supp(f) ⊂ B(0, R). Recall that the operators W t

z are also defined on
the space Lpt and have F pt as an invariant subspace. In particular, they commute with
Qt, hence W t

zQtW
t
−z = Qt for every z ∈ Cn. We obtain
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∥∥∥(W t
zγ (APt +Qt)W

t
−zγ − (AxPt +Qt)

)
MχB(0,R)

∥∥∥
=
∥∥∥(W t

zγAPtW
t
−zγ −AxPt

)
MχB(0,R)

∥∥∥
=
∥∥∥(W t

zγAW
t
−zγ −Ax)PtMχB(0,R)

∥∥∥
→ 0

as zγ → x by the previous lemma, since PtMχB(0,R)
is compact by Proposition 2.3.14.

Hence, there exists some γ0 such that

Rγ : = (BPt +Qt)
(

(W t
zγ (APt +Qt)W

t
−zγ − (AxPt +Qt)

)
MχB(0,R)

= (BPt +Qt)W
t
zγ (APt +Qt)W

t
−zγMχB(0,R)

−MχB(0,R)

satisfies ‖Rγ‖ < 1
2 for γ ≥ γ0. This in turn implies that I +Rγ ∈ L(Lpt ) is invertible

for every γ ≥ γ0. We obtain

(BPt +Qt)W
t
zγ (APt +Qt)W

t
−zγMf = (I +Rγ)Mf

and therefore

Mf = (I +Rγ)−1(BPt +Qt)W
t
zγ (APt +Qt)W

t
−zγMf .

Using the equality W t
zMfW

t
−z = Mαz(f), which holds for any z ∈ Cn, yields

W t
−zγ (I +Rγ)−1(BPt +Qt)W

t
zγ (APt +Qt)Mα−zγ (f) = Mα−zγ (f).

We now set Cγ := W t
−zγ (I +Rγ)−1(BPt +Qt)W

t
zγ .

2) Let Ax be right-invertible with right inverse B. Similarly to above, we obtain∥∥∥MχB(0,R)

(
W t
zγ (APt +Qt)W

t
−zγ − (BPt +Qt)

)∥∥∥
=
∥∥∥MχB(0,R)

Pt(W
t
zγAW

t
−zγ −B)Pt

∥∥∥
→ 0, zγ → x,

again by the previous lemma, since MχB(0,R)
Pt is compact by Proposition 2.3.14 and

(W t
zγAW

t
−zγ )∗ → A∗x in the strong operator topology (here, p 6= 1 is important). Then,

we set for γ sufficiently large

Sγ := MχB(0,R)

(
W t
zγ (APt +Qt)W

t
−zγ − (AxPt +Qt)

)
(BPt +Qt)

and
Dγ := W t

−zγ (BPt +Qt)(I + Sγ)−1W t
zγ ,

which yields
Mα−zγ (f)(APt +Qt)Dγ = Mα−zγ (f)

.
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In the following theorem, the operators Bx should not be understood as the limit
operators of some B ∈ L(F pt ). Instead, Bx simply denotes the left-/right-inverse to
each Ax.

Theorem 5.2.3. Let t > 0.

1) Let p ∈ [1,∞). If A ∈ T p,t is such that Ax is left-invertible for every x ∈M \ Cn
with left inverse Bx and further

sup
x∈M\Cn

‖Bx‖ <∞,

then A is left-Atkinson.

2) Let p ∈ (1,∞). If A ∈ T p,t is such that Ax is right-invertible for every x ∈M\Cn
with right inverse Bx and further

sup
x∈M\Cn

‖Bx‖ <∞,

then A is right-Atkinson.

Proof. 1) Assume A is not left-Atkinson. A simple computation verifies [Â, Pt] = 0.
Hence, by Proposition 5.1.9, part a), there exists a strictly increasing sequence (jm)m∈N
and some s > 0 such that

CÂMψjm,s
6= Mψjm,s

(5.3)

for every m ∈ N and every C ∈ L(Lpt ) with

‖C‖ ≤ 2( sup
x∈M\Cn

‖Bx‖‖Pt‖+ ‖Qt‖).

By the definition of the ψj,s and Lemma 5.1.2, we have diam(supp(ψj,s)) ≤ 12
√

2n
s =: R

for every j ∈ N. Therefore, there exists a sequence (wjm)m∈N ⊂ Cn with |wjm | → ∞
such that supp(ψjm,s) ⊆ B(wjm , R). Since M is compact, there exists a subnet (wγ)
of (wjm) such that (−wγ) converges to some y ∈ M \ Cn. Part 1) of Proposition
5.2.1 now implies that there is some γ0 such that for each γ ≥ γ0 there is an operator
Cγ ∈ L(Lpt ) satisfying

‖Cγ‖ ≤ 2(‖By‖‖Pt‖+ ‖Qt‖)

and
CγÂMχB(wγ ),R)

= MχB(wγ,R)
,

which contradicts Equation (5.3).
2) Follows analogously to 1).

In the following proposition, for the case p =∞+ the limit operators of A ∈ T ∞+,t

are defined through their pre-adjoints, i.e. for x ∈M \ Cn we set Ax := ((A|f∞t )x)∗∗.



Chapter 5. Fredholm theory of Toeplitz operators on Fock spaces 99

Proposition 5.2.4. Let t > 0.

1) Let p ∈ [1,∞+] and assume A ∈ T p,t is left-Atkinson such that there is B ∈ T p,t
with BA = I+K and K ∈ K∩T p,t. Then, Ax is left-invertible for every x ∈M\Cn
with left-inverse Bx, which satisfies ‖Bx‖ ≤ ‖B +K ∩ T p,t‖.

2) Let p ∈ [1,∞+] and assume A ∈ T p,t is right-Atkinson such that there is B ∈ T p,t
with AB = I + K with K ∈ K ∩ T p,t. Then, Ax is right-invertible for every
x ∈M \ Cn with right-inverse Bx, which satisfies ‖Bx‖ ≤ ‖B +K ∩ T p,t‖.

3) Let p ∈ [1,∞+] and assume A ∈ T p,t is Fredholm. Then, Ax is invertible for any
x ∈ M \ Cn. If B ∈ T p,t is a Fredholm regularizer of A, then A−1

x = Bx for any
x ∈M \ Cn and ‖A−1

x ‖ ≤ ‖(A+K ∩ T p,t)−1‖.

Proof. Let us assume p ∈ [1,∞]. For p =∞+, the result follows by considering the
pre-adjoints.

1) Since we assume B ∈ T p,t and BA− I ∈ K ∩ T p,t, all the limit operators exist. By
Lemma 4.2.5 we have

(BA)x = BxAx = I,

i.e. Bx is the left-inverse of Ax. On the norm estimate: Observe that ‖Bx‖ ≤ ‖B‖,
as Bx is the limit in strong operator topology of αzγ (B) with (zγ) an appropriate net

and ‖αzγ (B)‖ = ‖B‖. Further, for any K ∈ K∩T p,t we also have (B+K)A = I+K̃,

some K̃ ∈ K ∩ T p,t, and the limit operators are the same, i.e. Bx = (B +K)x. In
particular, ‖Bx‖ ≤ ‖B +K ∩ T p,t‖.

2) Follows analogously to 1).

3) This is now a consequence of 1) and 2). Recall that the property of A being
Fredholm is equivalent to the existence of a Fredholm regularizer in T p,t by Corollary
3.3.19.

We now summarize the results we obtained for the reflexive cases p ∈ (1,∞).

Theorem 5.2.5. Let t > 0, p ∈ (1,∞) and A ∈ T p,t.

1) (i) If A is such that Ax is left-invertible with left-inverse Bx for every x ∈M\Cn
and

sup
x∈M\Cn

‖Bx‖ <∞,

then A is left-Atkinson.

(ii) If A is left-invertible in T p,t modulo K, then Ax is left-invertible for every
x ∈M \ Cn and the left-inverses Bx can be chosen such that

sup
x∈M\Cn

‖Bx‖ <∞.
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2) (i) If A is such that Ax is right-invertible with right-inverse Bx for every x ∈
M \ Cn and

sup
x∈M\Cn

‖Bx‖ <∞,

then A is right-Atkinson.

(ii) If A is right-invertible in T p,t modulo K, then Ax is right-invertible for every
x ∈M \ Cn and the right-inverses Bx can be chosen such that

sup
x∈M\Cn

‖Bx‖ <∞.

3) A is Fredholm if and only if Ax is invertible for every x ∈M\Cn and the inverses
satisfy

sup
x∈M\Cn

‖A−1
x ‖ <∞.

Proof. Everything follows from the statements presented before in this chapter. Note
that A ∈ T p,t is Fredholm if and only if it is invertible in T p,t modulo K by Corollary
3.3.17.

For the characterization of the one-sided invertibility modulo compact operators,
there is still a small gap: Is A ∈ T p,t left-/right-Atkinson if and only if is left-/right-
invertible in T p,t modulo K? Since C∗ algebras are closed under one-sided invertibility
(see e.g. [54, Lemma 1.1]), the statement is true at least for p = 2. As the Toeplitz
algebras T p,t in general behave very much like C∗ algebras, we would not be surprised
if this would turn out to be true in general. Further, note that in the case of p = 2,
the notions of an operator being left Atkinson and lower semi-Fredholm (respectively
right Atkinson and upper semi-Fredholm) agree: the property of ker(A) (respectively
ran(A)) being complemented in Proposition 5.0.2, part 3) (part 4) respectively) is
trivially satisfied in a Hilbert space. Therefore, we arrive at the following:

Proposition 5.2.6. Let A ∈ T 2,t.

1) A is left Atkinson if and only if A is lower semi-Fredholm if and only if Ax is
left-invertible for every x ∈M \ Cn.

2) A is right Atkinson if and only if A is upper semi-Fredholm if and only if Ax is
right-invertible for every x ∈M \ Cn.

As we have already mentioned at the beginning of this chapter, our work in [73]
was closely inspired by R. Hagger’s paper [80], which in turn took its motivation from
techniques which are well-established in the study of band-dominated operators on
sequence spaces (see e.g. [44] for an introduction). Fredholm characterizations for
such operators (similar to the results we have presented above) are well-known. For
a long time, it has been an open problem if it is necessary to assume that the limit
operators are uniformly invertible (i.e. if their inverses are uniformly bounded) or if
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this automatically follows if every limit operator is invertible. This problem has been
resolved in [97], where one can also find a good historical overview on that issue. In the
remaining part of this section, we will prove that the condition supx∈M\Cn ‖A−1

x ‖ <∞
is actually redundant in the characterization of A ∈ T p,t being Fredholm (and similarly
in the sufficient and necessary criteria for A being left- or right-Atkinson). We will of
course do this by following our presentation in [73], which in turn follows [80] closely
(and borrows some details from there, which were omitted in [73]). Both presentations
in [73, 80] have in common that they are closely inspired by Lindner’s and Seidel’s
proof from [97], which we want to emphasize.

For A ∈ L(X), where X is any Banach space, we define the lower bound of A by

ν(A) := inf
x∈X; ‖x‖=1

‖Ax‖

and say that A is bounded below if ν(A) > 0. As is well-known [96, Lemma 2.32], A is
bounded below if and only if it is injective with closed range.

Lemma 5.2.7. Let X be a Banach space and A ∈ L(X) left-invertible. Then, the left
inverse B of A satisfies ‖B‖ = 1

ν(A) .

Proof. As in the proof of [96, Lemma 2.33] one sees that A is left-invertible if and only
if it is bounded below and ran(A) is complemented. Further, a subspace complementing
the range is given by ker(B): X = ran(A)⊕ ker(B). Thus,

‖B‖ = sup
x∈X; ‖x‖=1

‖Bx‖

= sup
y+z∈ran(A)⊕ker(B)

‖y+z‖=1

‖B(y + z)‖

= sup
y+z∈ran(A)⊕ker(B)

‖y+z‖=1

‖B(y)‖

= sup
y∈ran(A)
‖y‖≤1

‖By‖

= ‖B|ran(A)‖.

Since A is injective, A : X → ran(A) is bijective, hence invertible. Further, B|ran(A) is
a left-inverse, hence an inverse of A ∈ L(X, ran(A)). Now, one proves ‖B|ran(A)‖ =
ν(A)−1 as in [96, Lemma 2.35].

We assume for the moment the following fact. The proof will be given in the
following subsection.

Lemma 5.2.8. Let t > 0 and p ∈ [1,∞). Then, for each A ∈ T p,t there exists
y ∈M \ Cn such that

ν(Ây) = inf{ν(Âx); x ∈M \ Cn}.
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Theorem 5.2.9. Let t > 0, p ∈ (1,∞) and A ∈ T p,t.

1) (i) If A is such that Ax is left-invertible for every x ∈ M \ Cn, then A is
left-Atkinson.

(ii) If A is left-invertible in T p,t modulo K, then Ax is left-invertible for every
x ∈M \ Cn.

2) (i) If A is such that Ax is right-invertible for every x ∈ M \ Cn, then A is
right-Atkinson.

(ii) If A is right-invertible in T p,t modulo K, then Ax is right-invertible for every
x ∈M \ Cn.

3) A is Fredholm if and only if Ax is invertible for every x ∈M \ Cn.

Proof. 1) (i) Let Ax be left-invertible for every x ∈M\Cn with left-inverse Bx. Then,

Âx is also left-invertible for every x with left-inverse B̂x = PtBxPt + (I − Pt). By
Lemmas 5.2.7 and 5.2.8,

sup
x∈M\Cn

‖B̂x‖ = sup
x∈M\Cn

1

ν(Âx)
=

1

infx∈M\Cn ν(Âx)
=

1

ν(Ây)
<∞.

Since B̂x|F pt = Bx, we obtain ‖Bx‖ ≤ ‖B̂x‖ and therefore also

sup
x∈M\Cn

‖Bx‖ <∞,

i.e. the assumptions of Theorem 5.2.5 1)(i) are satisfied.

1) (ii) This follows from 5.2.5 1)(ii).

2) follows from 1) after considering the adjoint operator.

3) is an immediate consequence of 1) and 2).

Corollary 5.2.10. Let t > 0, p ∈ (1,∞) and A ∈ T p,t. Then,

σess(A) =
⋃

x∈M\Cn
σ(Ax).

Proof. This follows immediately from the previous theorem: A− λ is Fredholm if and
only if Ax − λ is invertible for every x ∈ M \ Cn if and only if λ is in none of the
spectra of the Ax.

Proof of Lemma 5.2.8

We start by introducing the following notation: We will denote

rs := diam(supp(ϕj,s)) =
8
√

2n

s
.
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For F ⊆ Cn and A ∈ L(Lpt ) set

ν(A|F ) := inf{‖Af‖Lpt ; f ∈ L
p
t , ‖f‖Lpt = 1, supp(f) ⊆ F}

and
νs(A|F ) := inf

w∈Cn
ν(A|F∩B(w,rs)).

Note that ν(A) = ν(A|Cn). We will also write νs(A) := νs(A|Cn).

Lemma 5.2.11. Let A,B ∈ L(Lpt ) and F ⊆ Cn. Then:

1) |ν(A|F )− ν(B|F )| ≤ ‖(A−B)MχF ‖ ≤ ‖A−B‖;

2) |νs(A|F )− νs(B|F )| ≤ ‖A−B‖.

Proof. 1) Let ε > 0 and pick f ∈ Lpt such that ‖f‖ = 1, supp(f) ⊆ F and ‖Bf‖ ≤
ν(B|F ) + ε. Then, using the obvious estimate ν(A|F ) ≤ ‖Af‖:

ν(A|F )− ν(B|F )− ε ≤ ν(A|F )− ‖Bf‖ ≤ ‖Af‖ − ‖Bf‖
≤ ‖(A−B)f‖ ≤ ‖(A−B)MχF ‖
≤ ‖A−B‖.

Since ε > 0 is arbitrary, this gives ν(A|F )− ν(B|F ) ≤ ‖(A−B)MχF ‖. The other
estimate ν(B|F )− ν(A|F ) ≤ ‖(B −A)MχF ‖ follows by symmetry.

2) Let again ε > 0 and w ∈ Cn such that ν(B|F∩B(w,rs)) ≤ νs(B|F ) + ε. Then, also
using part 1) of the lemma:

νs(A|F )− νs(B|F )− ε ≤ νs(A|F )− ν(B|F∩B(w,rs))

≤ ν(A|F∩B(w,rs))− ν(B|F∩B(w,rs))

≤ ‖A−B‖.

Again, the other estimate follows by symmetry.

Lemma 5.2.12. Let t > 0, p ∈ [1,∞) and A ∈ T p,t. For every ε > 0 there is some

s > 0 such that for every F ⊆ Cn and every B ∈ {Â} ∪ {Âx; x ∈M \ Cn} we have

ν(B|F ) ≤ νs(B|F ) ≤ ν(B|F ) + ε.

Proof. The first inequality is immediate from the definition, we only need to prove the
second. By Corollary 5.1.8 we can choose a sequence of band operators Am ∈ L(Lpt )
converging to Â as m→∞. Fix ε > 0 and let m ∈ N such that ‖Â−Am‖ < ε

4 . Further,
let x ∈M \ Cn and consider a net (zγ) ⊂ Cn converging to x. Then, (W t

zγAmW
t
−zγ )γ

is a uniformly bounded net of operators in L(Lpt ), therefore it has a weakly convergent
subnet, which we will also denote by (W t

zγAmW
t
−zγ )γ , and we will denote its limit by

(Am)x. Recall that αzγ (A) converges strongly to Ax, and hence W t
zγ ÂW

t
−zγ converges
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strongly to Âx. In particular, W t
zγ (Â − Am)W t

−zγ converges weakly to Âx − (Am)x.
This implies

‖Âx − (Am)x‖ ≤ sup
γ
‖W t

zγ (Â−Am)W t
−zγ‖ = ‖Â−Am‖ ≤

ε

4
.

Let f, g ∈ L∞(Cn) be such that dist(supp(f), supp(g)) > ω(Am). The identity

dist(supp(f), supp(g)) = dist(supp(α−zγ (f)), supp(α−zγ (g)))

implies

MfW
t
zγAmW

t
−zγMg = W t

zγMα−zγ (f)AmMα−zγ (g)W
t
−zγ = 0.

Using this, we obtain

ω(W t
zγAmW

t
−zγ ) ≤ ω(Am)

and therefore, by separate continuity of the weak operator topology,

Mf (Am)xMg = 0.

After passing to the limit we receive

ω((Am)x) ≤ ω(Am).

Assume for the moment that there is some s ∈ (0, 1) such that for all F ⊆ Cn and
every B ∈ {Am} ∪ {(Am)x; x ∈M \ Cn} we have

νs(B|F ) ≤ ν(B|F ) +
ε

2
.

Then, by the previous lemma,

|ν(Â|F )− ν(Am|F )| ≤ ‖Â−Am‖ <
ε

4
,

|ν(Âx|F )− ν((Am)x|F )| ≤ ‖Ax − (Am)x‖ <
ε

4
,

|νs(Âx|F )− νs((Am)x|F )| ≤ ‖Ax − (Am)x‖ <
ε

4
,

|νs(Â|F )− νs(Am|F )| ≤ ‖Â−Am‖ <
ε

4
.

Combining all these estimates we obtain

νs(B|F ) ≤ ν(B|F ) + ε

for every B ∈ {Â} ∪ {Âx; x ∈M \ Cn}.
It remains to prove the existence of the above mentioned s. This will be done as in

the proof of [80, Proposition 23].
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Recall that by Equation (5.1) we have

dist(supp(ϕj,s), supp(1− ψj,s)) ≥
1

s
.

Choose s ∈ (0, 1) such that 1
s > ω. Then, for any f ∈ Lpt satisfying ‖f‖ = 1 and

supp(f) ⊆ F we can estimate ∞∑
j=1

∥∥∥∥BMϕ
1/p
j,s

f

∥∥∥∥p
Lpt

1/p

=

 ∞∑
j=1

∥∥∥∥BMϕ
1/p
j,s

Mψj,sf

∥∥∥∥p
Lpt

1/p

≤

 ∞∑
j=1

∥∥∥∥Mϕ
1/p
j,s

Bf

∥∥∥∥p
Lpt

1/p

+

 ∞∑
j=1

∥∥∥∥Mϕ
1/p
j,s

BM1−ψj,sf

∥∥∥∥p
Lpt

1/p

+

+

 ∞∑
j=1

∥∥∥∥[B,M
ϕ
1/p
j,s

]Mψj,sf

∥∥∥∥p
Lpt

1/p

=

 ∞∑
j=1

∥∥∥∥Mϕ
1/p
j,s

Bf

∥∥∥∥p
Lpt

1/p

+

 ∞∑
j=1

∥∥∥∥[B,M
ϕ
1/p
j,s

]Mψj,sf

∥∥∥∥p
Lpt

1/p

,

where we used that B is a band operator with band-width ≤ ω. Since
∑∞

j=1 |ϕj,s(z)| = 1
for every z ∈ Cn and s > 0, the first sum equals ‖Bf‖. For the second sum, observe
that  ∞∑

j=1

∥∥∥∥[B,M
ϕ
1/p
j,s

]Mψj,sf

∥∥∥∥p
Lpt

1/p

≤ sup
j∈N
‖[B,M

ϕ
1/p
j,s

]‖

 ∞∑
j=1

‖Mψj,sf‖
p
Lpt

1/p

≤ (42n)1/p sup
j∈N
‖[B,M

ϕ
1/p
j,s

]‖.

Similarly to the proof of Proposition 5.1.4, the functions ϕ
1/p
j,s satisfy the assumptions of

Lemma 5.1.5. Therefore, given δ > 0, by that lemma we can choose s small enough and
independently of B (depending only on ω) such that supj∈N ‖[B,Mϕ

1/p
j,s

]‖ ≤ δ
(42n)1/p

‖B‖.
This yields  ∞∑

j=1

∥∥∥∥[B,M
ϕ
1/p
j,s

]Mψj,sf

∥∥∥∥p
Lpt

1/p

≤ δ‖B‖.

Since ‖B‖ ≤ ‖Â‖+ ε
4 for any B ∈ {Am} ∪ {(Am)x; x ∈M \ Cn}, choose δ such that

δ‖B‖ ≤ ε
4 for all such B. Choosing now f such that ‖f‖Lpt = 1, supp(f) ⊆ F and

‖Bf‖Lpt ≤ ν(B|F ) + ε
4 , we can set the pieces together and obtain ∞∑

j=1

∥∥∥∥BMϕ
1/p
j,s

f

∥∥∥∥p
Lpt

1/p

≤ ‖Bf‖Lpt +
ε

4
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≤ ν(B|F ) +
ε

2

=
(
ν(B|F ) +

ε

2

) ∞∑
j=1

∥∥∥∥Mϕ
1/p
j,s

f

∥∥∥∥p
Lpt

1/p

.

Hence, for all s > 0 small enough there is some j ∈ N satisfying∥∥∥∥BMϕ
1/p
j,s

f

∥∥∥∥
Lpt

≤
(
ν(B|F ) +

ε

2

)∥∥∥∥Mϕ
1/p
j,s

f

∥∥∥∥
Lpt

.

Now, having supp(M
ϕ
1/p
j,s

f) ⊆ supp(ϕj,s) ⊆ B(w, rs) for w ∈ Cn appropriately, we get

νs(B|F ) ≤ ν(B|F ) +
ε

2

for all B ∈ {Am} ∪ {(Am)x; x ∈M\Cn}. Since s was chosen independently of F and
B (it depends only on the band width of Am), the statement follows.

Lemma 5.2.13. For t > 0 and p ∈ (1,∞) let A ∈ T p,t, w ∈ Cn and r > 0. For any
f ∈ Lpt satisfying supp(f) ⊆ B(w, r) and any x ∈ M \ Cn there exist g ∈ Lpt and
y ∈ M \ Cn such that ‖g‖ = ‖f‖, supp(g) ⊆ B(0, r) and ‖Âxf‖ = ‖Âyg‖. Further,

they satisfy ν(Ây|B(0,r+|w|) ≤ ν(Âx|B(0,r)).

Proof. As already mentioned earlier, the α-invariance of BUC(Cn) induces a natural
action of Cn onM, which leavesM\Cn invariant (and on Cn is simply αw(z) = z−w).
For this action, it is easily verified that

Aαw(x) = αw(Ax).

Hence, let y = α−w(x), i.e. if zγ is a net in Cn converging to x, then (possibly after
passing to a subnet) zγ + w converges to y. Since the Weyl operators also commute

with the projection, one immediately obtains that W t
−wÂxW

t
w = Ây. Consider now

f ∈ Lpt such that supp(f) ⊆ B(w, r). Let g = W t
−wf . Then, we have supp(g) ⊆ B(0, r)

and, since the Weyl operators are isometric,

‖Âyg‖Lpt = ‖W t
−wÂxW

t
wg‖Lpt = ‖W t

−wÂxf‖Lpt = ‖Âxf‖Lpt ,

which proves the first claim. Let h ∈ Lpt such that supp(h) ⊆ B(0, r). Then,

supp(W t
−wh) ⊆ B(−w, r) ⊆ B(0, r + |w|)

and, as above, ‖Âxh‖Lpt = ‖ÂyW t
−wh‖Lpt .

Proof of Lemma 5.2.8. By Lemma 5.2.12 there is a sequence (sk)k∈N ∈ (0,∞) converg-
ing to 0 such that

νsk(B|F ) ≤ ν(B|F ) +
1

2k+1
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for any k ∈ N, F ⊆ Cn and B ∈ {Â} ∪ {Âx; x ∈ M \ Cn}. Recall that rs = 8
√

2n
s =

diam(supp(ϕj,s)) as defined earlier. Possibly after passing to a subsequence, we might
further assume that rsk+1

> 2rsk for any k ∈ N.

Let further (xj)j∈N ⊂M\ Cn be a sequence such that

ν(Âxj )→ inf{ν(Âx); x ∈M \ Cn}, j →∞.

We claim that there exists a sequence (yj)j∈N ⊂M \ Cn such that for any l ∈ N we
have

ν
(
Âyj |B(0,4rsl )

)
≤ ν(Âxj ) +

1

2l−1

whenever j is sufficiently large. Let us defer the construction of this sequence for
a moment and finish the proof under the assumption that it exists. Since x 7→ Ax,
M → T p,t is continuous in the strong operator topology and M\ Cn is a compact
subset of M, {Ax; x ∈ M \ Cn} is compact with respect to the strong operator
topology. Hence, there exists a subnet (Ayjγ )γ of (Ayj )j which strongly converges to
Ay for some y ∈M \ Cn. Then, for any k ∈ N we have∥∥∥(Âyjγ − Ây)MχB(0,4rsl

)

∥∥∥ =
∥∥∥(Ayjγ −Ay)PtMχB(0,4rsl

)

∥∥∥→ 0, yjγ → y

by Lemma 5.2.2, since PtMχB(0,4rsl
)

is compact by Proposition 2.3.14. This in turn

implies

ν
(
Âyjγ |B(0,4rsl )

)
→ ν

(
Ây|B(0,4rsl )

)
by Lemma 5.2.11. Thus,

ν(Ây) ≤ ν
(
Ây|B(0,4rsl )

)
= lim

γ
ν
(
Âyjγ |B(0,4rsl )

)
≤ lim

γ
ν(Âxjγ ) +

1

2l−1

= lim
j→∞

ν(Âxj ) +
1

2l−1

= inf{ν(Âx); x ∈M \ Cn}+
1

2l−1
.

Passing to the limit l→∞ proves the statement.

We now show the existence of the sequence (yj). For the moment fix j. By the
definition of νs, there is some f0

j ∈ L
p
t with ‖f0

j ‖ = 1 such that supp(f0
j ) ⊆ B(w0

j , rsj )

for some w0
j ∈ Cn and

‖Âxjf0
j ‖Lpt ≤ νsj (Âxj ) +

1

2j+1
≤ ν(Âxj ) +

1

2j
.
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Applying Lemma 5.2.13, there exist y0
j ∈ M \ Cn and g0

j ∈ L
p
t with ‖g0

j ‖ = 1 and

supp(g0
j ) ⊆ B(0, rsj ) such that∥∥∥Ây0j g0

j

∥∥∥
Lpt

=
∥∥∥Âxjf0

j

∥∥∥
Lpt
≤ ν(Âxj ) +

1

2j
.

For k = 1, . . . , j we will now inductively define elements ykj ∈M\Cn and fkj , g
k
j ∈ L

p
t

satisfying the following: Given yk−1
j , there exists some f ∈ Lpt , ‖f‖Lpt = 1 with

supp(f) ⊆ B(wkj , rsj−k) ∩B(0, rsj−k+1
) for some wkj ∈ Cn such that

‖Âyk−1
j

fkj ‖Lpt ≤ νsn−k
(
Âyk−1

j
|B(0,rsn−k+1)

)
+

1

2n−k+1
.

Note that we necessarily have |wkj | ≤ rsj−k + rsj−k+1
, since otherwise we would have

B(w, rsj−k) ∩ B(0, rsj−k+1
) = ∅. Applying Lemma 5.2.13 yields ykj ∈ M \ Cn and

gkj ∈ L
p
t , ‖gkj ‖ = 1 with supp(g) ⊆ B(0, rsj−k) satisfying∥∥∥Âykj gkj ∥∥∥Lpt =

∥∥∥Âyk−1
j

fkj

∥∥∥
Lpt

≤ ν
(
Âyk−1

j
|B(0,rsj−k+1

)

)
+

1

2j−k
.

From this, we obtain

ν
(
Âykj
|B(0,rsj−k)

)
≤
∥∥∥Âykj gkj ∥∥∥Lpt

≤ ν(Âyk−1
j
|B(0,rsj−k+1

)) +
1

2j−k

≤
∥∥∥Âyk−1

j
gk−1
j

∥∥∥
Lpt

+
1

2j−k

≤ . . .

≤
∥∥∥Ây0j g0

j

∥∥∥
Lpt

+
1

2j−k
+ · · ·+ 1

2j−1

≤ ν(Âxj ) +
1

2j−k
+ · · ·+ 1

2j

≤ ν(Âxj ) +
1

2j−k−1
.

Fix now l ∈ N and let j > l. Note that the assumption rsl+1
> 2rsl for all l ∈ N0 easily

yields
rs0 + 2rs1 + · · ·+ 2rsl < 4rsl

for any l ∈ N. In particular, we obtain

ν(Â
yjj
|B(0,4rsl )

) ≤ ν(Â
yjj
|B(0,rs0+2rs1+···+2rsl )

).

Further, using the second statement from Lemma 5.2.13 inductively, we have

ν(Â
yj−lj
|B(0,rsl)

) ≥ ν(Â
yj−l+1
j

|
B(0,rsl+|w

j−l+1
j |))
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≥ ν(Â
yj−l+1
j

|B(0,2rsl+rsl−1
))

≥ ν(Â
yj−l+2
j

|B(0,2rsl+2rsl−1
+rsl−2

))

≥ . . .

≥ ν(Â
yjj
|B(0,2rsl+2rsl−1

+···+2rs1+rs0 ))

≥ ν(Â
yjj
|B(0,4rsl )

).

Letting now yj := yjj and combining the above estimates we obtain for any j ≥ l:

ν(Âyj |B(0,4rsl )
) ≤ ν(Âxj ) +

1

2l−1
.

5.3 Essential norm estimates

Methods similar to those presented above allow us to derive certain estimates for the
essential norm. The result will be the following:

Theorem 5.3.1. Let t > 0, p ∈ (1,∞) and A ∈ T p,t. Then, the following holds true:

1

‖Pt‖
‖A+K(F pt )‖ ≤ sup

x∈M\Cn
‖Ax‖ ≤ ‖A+K(F pt )‖.

For p = 2 the above supremum is attained by some limit operator and we have

‖A+K(F 2
t )‖ = max

x∈M\Cn
‖Ax‖.

For A ∈ L(F pt ) and s > 0, F ⊆ Cn we will denote

‖APt|F ‖ := sup{‖APtf‖Lpt ; f ∈ L
p
t , ‖f‖Lpt = 1, supp(f) ⊆ F},

‖APt|F ‖s := sup
w∈Cn

‖APt|F∩B(w,rs)‖.

Observe that

‖APt|F ‖ = ‖APtMχF ‖.

Lemma 5.3.2. Let t > 0 and p ∈ (1,∞). For any A ∈ T p,t and every ε > 0 there
exists some s > 0 such that for all F ⊆ Cn and every B ∈ {A} ∪ {Ax : x ∈M \ Cn}
we have

‖BPt|F ‖ ≥ ‖BPt|F ‖s ≥ ‖BPt|F ‖ − ε.

Proof. The proof is very similar to the proof of Lemma 5.2.12. The first estimate follows
from the definition. On the second estimate: Let Am ∈ L(Lpt ) be a band operator
such that ‖APt −Am‖ < ε

4 . Following the lines of the proof of 5.2.12, exchanging the
triangle inequality in `p(N) by the reverse triangle inequality, one shows that there
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exists s > 0 such that for all F ⊆ Cn and every B ∈ {Am} ∪ {(Am)x; x ∈ M \ Cn}
we have

‖BPt|F ‖ ≤ ‖BPt|F ‖s + ε.

Here, (Am)x denotes the limit operators of Am, which exist as limits in the weak
operator topology as discussed in the proof of Lemma 5.2.12. Finally, passing from
the estimates for the approximating band operator Am to those of A works again as
in the proof of Lemma 5.2.12, since the norms ‖BPt|F ‖ and ‖BPt|F ‖s obey similar
continuity properties as ν(B|F ) and νs(B|F ).

Proof of Theorem 5.3.1. The second estimate is readily established: Let (zγ)γ ⊂ Cn
be a net converging to x ∈ M \ Cn and K ∈ K(F pt ). Since αzγ (K) → 0, a simple
application of the Banach-Steinhaus principle shows

‖Ax‖ = ‖ lim
γ
W t
zγ (A+K)W t

−zγ‖ ≤ lim sup
γ
‖W t

zγ (A+K)W t
−zγ‖ = ‖A+K‖.

Since K ∈ K(F pt ) was arbitrary, this shows ‖Ax‖ ≤ ‖A+K(F pt )‖ for any x ∈M \ Cn.
Let K ∈ K(Lpt , F

p
t ). Remarking the following estimate

‖APt +K‖ = sup
f∈Lpt , ‖f‖=1

‖(APt +K)f‖ ≥ sup
f∈F pt , ‖f‖=1

‖(APt +K)f‖

= ‖A+K|F pt ‖,

we therefore obtain

‖A+K(F pt )‖ ≤ inf
K∈K(Lpt ,F

p
t )
‖APt +K‖.

Therefore, it suffices to prove

inf
K∈K(Lpt ,F

p
t )
‖APt +K‖ ≤ sup

x∈M\Cn
‖AxPt‖.

We will show by contradiction that this statement holds true: Assume that

inf
K∈K(Lpt ,F

p
t )
‖APt +K‖ > sup

x∈M\Cn
‖AxPt‖+ ε.

We clearly have for any r > 0:

‖APt|Cn\B(0,r)‖ = ‖APtM1−χB(0,r)
‖ = ‖APt −APtMχB(0,r)

‖.

Since PtMχB(0,r)
is compact by Proposition 2.3.14, we necessarily have

‖APt|Cn\B(0,r)‖ > sup
x∈M\Cn

‖AxPt‖+ ε.

By the previous lemma, there exists some s > 0 such that

‖APt|Cn\B(0,r)‖s ≥ ‖APt|Cn\B(0,r)‖ −
ε

2
> sup

x∈M\Cn
‖AxPt‖+

ε

2
.
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Hence, for each r > 0 there necessarily is some wr ∈ Cn such that

‖W t
−wrAW

t
wrPtMχB(0,rs)

‖ = ‖APtMB(wr,rs)‖
≥ ‖APtMχB(wr,rs)\B(0,r)

‖

> sup
x∈M\Cn

‖AxPt‖+
ε

2
.

If wr would remain bounded as r →∞, then B(wr, rs) \B(0, r) would be empty for
r sufficiently large, violating the above estimates. Hence, possibly after passing to a
subnet, we may assume that −wr converges to some y ∈M \ Cn. Since PtMχB(0,rs)

is
compact, this implies

W t
−wrAW

t
wrPtMχB(0,rs)

→ AyPtMχB(0,rs)

in operator norm. But this in turn yields

‖AyPtMχB(0,rs)
‖ > sup

x∈M\Cn
‖AxPt‖+

ε

2
,

which is a contradiction.

Regarding the statement for p = 2: Using the fact that ‖AxPt‖ = ‖Ax‖ in the
Hilbert space case and imitating the proof of Lemma 5.2.8 with ν(A|F ) and νs(A|F )
replaced by ‖APt|F ‖ and ‖APt|F ‖s, one can show that there exists some y ∈M \ Cn
such that

‖Ay‖ = ‖AyPt‖ = sup
x∈M\Cn

‖AxPt‖ = sup
x∈M\Cn

‖Ax‖,

which shows that the supremum is actually a maximum in this case. Further, since the
projection Pt is orthogonal in the Hilbert space case, i.e. ‖Pt‖ = 1, we obtain equality
from the norm estimates derived above.

5.4 Essential spectra of Toeplitz operators with symbols
of vanishing oscillation and vanishing mean oscilla-
tion

Let f ∈ VO∂(Cn). As we have seen in Example 4.1.7.2), fx is a constant function for
any x ∈M(VO∂(Cn)) \ Cn. This in turn yields that (T tf )x = T tfx is simply a multiple
of the identity. Patching things together, we obtain:

Proposition 5.4.1. Let t > 0, p ∈ (1,∞) and f ∈ VO∂. Then, we have

σess(T
t
f ) = f(∂Cn),

where f(∂Cn) denotes the set of limit points of f(z) as |z| → ∞.
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Proof. As one easily sees (e.g. from the estimates in Example 4.1.7), f(∂Cn) coincides
with the values that the constant functions fx can attain for x ∈ M \ Cn. Hence,
every limit operator (T tf )x is of the form λI for some λ ∈ f(∂Cn). The result is now
imminent from Corollary 5.2.10.

Corollary 5.4.2. Let t > 0, p ∈ (1,∞) and f ∈ VMO∂(Cn). Then,

σess(T
t
f ) = f̃ (t)(∂Cn).

Proof. For f ∈ VMO∂(Cn) we have f̃ (t) ∈ VO∂(Cn) and (f̃ (t) − f)∼(t) ∈ C0(Cn)
[137, Chapter 3.5]. By Corollary 3.3.10, T t

f̃ (t)−f
is therefore compact, i.e. σess(T

t
f ) =

σess(T
t
f̃ (t)

). Now, the result follows from the previous proposition.

5.5 Remarks

As already mentioned earlier, the contents of this chapter originate from the author’s
joint paper with R. Hagger [73]. In contrast to that paper, we tried to extend certain
results to the case p = 1. Since the methods do not give rise to a full Fredholm
characterization in that case, we essentially do this to see where the method breaks
down in the non-reflexive case. Another difference with the original paper [73] is that
we emphasize how the Fredholm criterion can be turned into a criterion for left- and
right-invertibility modulo compact operators, which eventually leads to the following
open problem: Is A ∈ T p,t left-invertible modulo K if and only if it is left-invertible in
T p,t modulo K?

The paper [73] was closely inspired by R. Hagger’s earlier work on the Fredholm
property of operators on Bergman spaces over complex unit balls [80]. The idea of
using limit operators for studying compactness and Fredholm properties initially goes
back to the study of operators on sequence spaces [44, 96, 111]. The first occurrence of
limit operator techniques on Bergman or Fock spaces was in the works [104,122] on
Bergman spaces and subsequently in [19] on Fock spaces, serving as a tool for the first
proof of the compactness characterization, cf. Corollary 3.3.10 above. In particular,
in [19] results in the spirit of the estimates in Section 5.3 were established, which we
could slightly improve with the methods presented above. We also want to emphasize
that the very recent paper [83] has proven that limit operator techniques are applicable
in a very general geometric settings.

Results on the essential spectrum of Toeplitz operators with symbols of vanishing
oscillation were already presented in [30]. Yet, it seems that those results were so
far only discussed in the Hilbert space setting. Hence, our results in Section 5.4
contributed to extend the theory in the non-Hilbertian setting. Note that analogous
results were proven independently in [1] with different methods, see also [89].



Chapter 6

The Resolvent Algebra

A cornerstone for quantum mechanics are the canonical commutation relations: Let
(X,σ) be a symplectic space, H a Hilbert space and a φ real linear map from (X,σ)
into the (unbounded) self-adjoint operators on H such that all φ(f) have a common
core D on which they are essentially self-adjoint. Then, the canonical commutator
relations are

[φ(f), φ(g)] = iσ(f, g), f, g ∈ X. (CCR)

Since dealing with algebraic expressions (such as (CCR)) can be quite cumbersome
when dealing with unbounded operators (compare e.g. [113, Chapters VIII.5 and
VIII.6]), one usually passes to a related C∗-algebra of bounded operators, which
preserves the relations (CCR). Going back to Weyl, the most common approach is
to consider the CCR-algebra generated by the unitary operators exp(iφ(f)), f ∈ X.
Then, one obtains the modified CCR-relations

exp(iφ(f)) exp(iφ(g)) = e−iσ(f,g) exp(iφ(f + g))

and, replacing the self-adjointness,

exp(iφ(f))∗ = exp(−iφ(f)).

Given a symplectic space (X,σ), one is hence interested in the C∗ algebra CCR(X,σ)
generated by the abstract relations

W (f)W (g) = e−iσ(f,g)W (f + g),

W (f)∗ = W (−f).

Such C∗-algebras are usually called Weyl algebras (or CCR algebras).

Upon choosing for t > 0 the symplectic space (Cn, σt) with σt(w, z) = Im(w·z)
t , one

obtains a representation of the Weyl algebra as operators acting on the Fock space
F 2
t . Indeed, the unbounded operators realizing the relation (CCR) are obtained by

the self-adjoint and unbounded Toeplitz operators

φ(z) = T t2σt(·,z),

113
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or, more precisely, as the closure of T t2σt(·,z)|P[z1,...,zn], cf. Lemma 6.1.1 below. For

keeping the notation simple, we will notationally not distinguish between T t2σt(·,z) and

the closure of T t2σt(·,z)|P[z1,...,zn] in this chapter.

One can show (we will use such an argument below) that the corresponding Weyl
algebra is generated by the unitary Weyl operators W t

z , i.e. iT t2σt(·,z) is the generator

of the unitary operator group s 7→W t
sz. Hence, one obtains that

CCR(Cn, σt) ∼= C∗({W t
z ; z ∈ Cn}). (6.1)

The algebra CCR(Cn) := CCR(Cn, σ2) is a very classical object and various of its
properties in a more general framework can be found in [40].

As already mentioned earlier, the representation of CCR(Cn) on F 2
2 has already

been studied by L. Coburn:

Theorem 6.0.1 ([49]). It holds true that

CCR(Cn) ∼= T 2,2
lin (TP),

where

TP := Span{w 7→ exp(i Im(〈w, z〉)); z ∈ Cn} ⊂ L∞(Cn).

As explained in Example 4.3.7, the CCR algebra is a prime example of a space
that can be studied using Quantum Harmonic Analysis. In particular, it is easy to
prove CCR(Cn, σt) ∼= T 2,t

lin (AP) for any t > 0.
Unfortunately, there are certain drawbacks of using such CCR algebras for modeling

quantum mechanics. The most significant problem is the fact that, when considering
Hamiltonians in the standard Schrödinger representation (i.e. −∆ + V on L2(Rn)),
time evolutions of such Hamiltonians do not give rise to ∗-automorphisms of CCR(Cn)
unless the potential V is trivial (cf. [68]).

Based upon this, it was suggested in [41, 42] to consider instead the C∗ algebra
generated by the resolvents of φ(f), which they named the Resolvent Algebra. This
effectively provides a framework where the dynamics of the system can be explicitly
studied as elements of a C∗ algebra. Abstractly, the Resolvent Algebras are defined as
follows:

Definition 6.0.2. For a symplectic space (X,σ), R0(X,σ) is defined as the universal
unital ∗-algebra generated by the set {R(λ, f); λ ∈ R \ {0}, f ∈ X} and the relations

R(λ, 0) = − i
λ

1 (6.2)

R(λ, f)∗ = R(−λ, f) (6.3)

νR(νλ, νf) = R(λ, f) (6.4)

R(λ, f)−R(µ, f) = i(µ− λ)R(λ, f)R(µ, f) (6.5)

[R(λ, f), R(µ, g)] = iσ(f, g)R(λ, f)R(µ, g)2R(λ, f) (6.6)
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R(λ, f)R(µ, g) =R(λ+ µ, f + g) ·
· [R(λ, f) +R(µ, g) + iσ(f, g)R(λ, f)2R(µ, g)] (6.7)

for λ, µ, ν ∈ R \ {0} and f, g ∈ X.

Then, the Resolvent Algebra R(X,σ) is defined to be the closure of R0 with respect
to a certain seminorm related to the GNS construction (cf. [42] for details).

Remark 6.0.3. 1) Equation (6.2) comes from φ(0) = 1. Equation (6.3) encodes the
self-adjointness of φ(f). Equations (6.4) and (6.7) are the R-linearity of φ. Equation
(6.5) is just the usual resolvent identity. Finally, (6.6) is the substitute for the
(CCR) relations.

2) When one considers a representation of R0 as a concrete ∗-algebra generated by
resolvents of self-adjoint operators on a Hilbert space, then passing from R0 to R
is the same as taking the closure with respect to the operator norm.

We are interested in the Fock space representation of the Resolvent Algebra over
the symplectic space (Cn, σt). Since the generators of the resolvents are just the
Toeplitz operators T t2σt(·,z) as described above, this is just the C∗-algebra generated by
the resolvents of these operators:

R(Cn, σt) ∼= C∗
({

(iλ− T t2σt(·,z))
−1; λ ∈ R \ {0}, z ∈ Cn

})
. (6.8)

We begin here with our analysis.

6.1 The Resolvent Algebra in the Bargmann representa-
tion

For readability, we will notationally not distinguish between the Resolvent Algebra
R(Cn, σt) and its representation on F 2

t . The key to studying R(Cn, σt) consists of the
following integral representations:

Lemma 6.1.1. For z ∈ Cn, s 7→W t
sz defines a strongly continuous unitary operator

group. The set of holomorphic polynomials, P[z1, . . . , zn], is a core for the generator
of the operator group and the generator is given by the closure of iT2σt(·,z)|P[z1,...,zn],
which we abbreviate for simplicity by iT2σt(·,z). In particular, for λ > 0 the following
integral representations for the resolvents hold true, where the integrals are understood
to converge in strong operator topology:

(T t2σt(·,z) + iλ)−1 = (T t2σt(·,z)+iλ)−1 = −i
∫ ∞

0
e−λsW t

sz ds,

(T t2σt(·,z) − iλ)−1 = (T t2σt(·,z)−iλ)−1 = i

∫ ∞
0

e−λsW t
−sz ds.
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Proof. As we have used sufficiently often by now, s 7→W t
sz is continuous with respect

to the strong operator topology. Since each W t
sz is unitary, this is indeed a strongly

continuous unitary group. By the general theory on such groups (cf. [56]), there exists
some self-adjoint (in general unbounded) operator A on F 2

t which generates this group:
W t
sz = eisA. The fact that the polynomials form a core for the generator and the

precise form of the generator is not important for the following discussions. This can
be discussed as in [85, Chapter 14.4].

Since each W t
sz is unitary, we of course have

‖W t
sz‖ = 1 ≤ es·0,

i.e. the group has growth bound ω0 = 0. For any λ > 0, this implies, by the general
theory on operator (semi-)groups (cf. [56, Theorem I.1.10]), that

(λ− iT t2σt(·,z))
−1 =

∫ ∞
0

e−λsW t
sz ds,

where the integral converges in strong operator topology. Hence

(T t2σt(·,z) + iλ)−1 = −i
∫ ∞

0
e−λsW t

sz ds,

and since (W t
sz)
∗ = W t

−sz,

(T t2σt(·,z) − iλ)−1 =
(

(T t2σt(·,z) + iλ)−1
)∗

= i

∫ ∞
0

e−λsW t
−sz ds,

proving the claim.

In what follows, we will denote the resolvents by

R(λ, z) := (T t2σt(·,z) − iλ)−1, λ ∈ C \ iR, z ∈ Cn.

Hence, for λ > 0 the previous lemma states

R(λ, z) = i

∫ ∞
0

e−λsW t
−sz ds,

R(−λ, z) = −i
∫ ∞

0
e−λsW t

sz ds.

Let us recall the following standard result on resolvents [129, Theorem 5.14].

Lemma 6.1.2. Let λ, λ0 ∈ C \ iR such that |λ0 − λ| < |Re(λ0)|. Then, we have

R(λ, z) =

∞∑
k=0

(λ0 − λ)kikR(λ0, z)
k+1,

where the series converges in operator norm. In particular, we have

R(λ0, z)
k =

ik−1

(k − 1)!

dk−1

dλk−1
R(λ, z)|λ=λ0 .
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It will be useful to consider resolvents R(λ, z) for the larger class λ ∈ C \ iR. An
immediate consequence of the previous lemma is that the resulting C∗ algebra remains
the same.

Lemma 6.1.3. The following holds true:

R(Cn, σt) = C∗({R(λ, z); z ∈ Cn, λ ∈ C \ iR}).

It is important to note that the same integral formulas for R(λ, z) derived in
Lemma 6.1.1 hold for any λ ∈ C \ iR:

Lemma 6.1.4. Let z ∈ Cn and λ ∈ C \ iR. Then,

R(λ, z) = i

∫ ∞
0

e−λsW t
−sz ds, Re(λ) > 0,

R(λ, z) = −i
∫ ∞

0
eλsW t

sz ds, Re(λ) < 0.

Proof. The proof is identical to the case λ ∈ R \ {0}.

Let us consider the following class of bounded functions on Cn:

FR := {(λ− 2iσt(·, z))−(2k+1); z ∈ Cn, λ ∈ R \ {0}, k ∈ N0}.

Obviously, the class FR is independent of t > 0.

Proposition 6.1.5. We have

R(Cn, σt) ⊆ T 2,t
∗ (FR).

Proof. We need to prove that the generators of R(Cn, σt) are contained in T 2,t
∗ (FR),

i.e. that R(λ, z) ∈ T 2,t
∗ (FR) for any z ∈ Cn, λ ∈ R \ {0}. For λ > 0 we have

iR(−λ, z) =

∫ ∞
0

e−λsW t
sz ds

=

∫ ∞
0

e−λse
s2

2t
|z|2T t

e2isσt(·,z)
ds

=

∫ ∞
0

e−λs
∞∑
k=0

1

k!

(
s2|z|2

2t

)k
T t
e2isσt(·,z)

ds.

Since the Weyl operators have norm one, we conclude

‖T t
e2iσt(·,z)

‖ = e−
|z|2
2t ‖T tgtz‖ = e−

|z|2
2t ‖W t

z‖ = e−
|z|2
2t .

Therefore, we obtain∥∥∥∥∥iR(−λ, z)−
m∑
k=0

|z|2k

k!tk2k

∫ ∞
0

s2ke−λsT t
e2isσt(·,z)

ds

∥∥∥∥∥
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≤
∫ ∞

0
e−λs

(
e
s2

2t
|z|2 −

m∑
k=0

s2k

k!tk2k
|z|2k

)
e−

s2

2t
|z|2 ds

→ 0, m→∞

by the Dominated Convergence Theorem. Thus,

iR(−λ, z) =

∞∑
k=0

1

k!

|z|2k

2ktk

∫ ∞
0

T t
e−λss2ke2siσt(·,z)

ds,

where the infinite series converges in operator norm. Let N > 0 be fixed. Note that
the integral

∫ N
0 T t

e−λss2ke2siσt(·,z)
ds converges in the strong operator topology, which is

a simple consequence of the continuity of s 7→W t
sz. Hence, upon applying the Berezin

transform to this operator integral, we obtain(∫ N

0
T t
e−λss2ke2siσt(·,z)

ds

)∼
(u) =

〈∫ N

0
e−λss2ke2siσt(·,z)ktu ds, k

t
u

〉
t

=

〈∫ N

0
e−λss2ke2siσt(·,z) ds ktu, k

t
u

〉
t

.

Therefore, injectivity of the Berezin transform gives∫ N

0
T t
e−λss2ke2siσt(·,z)

ds = T t∫N
0 e−λss2ke2siσt(·,z) ds

.

Since ∫ N

0
e−λss2ke2siσt(·,z) ds

N→∞−→
∫ ∞

0
e−λss2ke2siσt(·,z) ds

uniformly on Cn as a function of w, we obtain

iR(−λ, z) =
∞∑
k=0

1

k!

|z|2k

2ktk
T t∫∞

0 e−λss2ke2siσt(·,z) ds
.

The symbol of the Toeplitz operator in the series expansion can be computed explicitly,
using properties of the Laplace transform:∫ ∞

0
e−λss2ke2siσt(w,z) ds =

d2k

dµ2k

[∫ ∞
0

e−µse2siσt(w,z) ds

]
|µ=λ

= (λ− 2iσt(w, z))
−(2k+1).

Thus,

iR(−λ, z) =

∞∑
k=0

1

k!

|z|2k

2ktk
T t

(λ−2iσt(·,z))−(2k+1) .

Since the sum converges in operator norm, as already mentioned above, we therefore
obtain R(−λ, z) ∈ T 2,t

∗ (FR). Furthermore, using the identity R(−λ, z) = −R(λ,−z),
we obtain the same statement for those resolvents.
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Let us compute the shifts of a resolvent: For w ∈ Cn and λ > 0 we have, using the
standard relations for products of Weyl operators,

W t
wR(−λ, z)W t

−w = −i
∫ ∞

0
e−λsW t

wW
t
szW

t
−w ds

= −i
∫ ∞

0
e−λse−2isσt(w,z)W t

sz ds

= R(λ+ 2iσt(w, z), z).

Since, by Lemma 6.1.3, the C∗ algebra generated by those R(λ, z) with λ ∈ R \ {0} is
the same as the C∗ algebra generated by all R(λ, z) with λ ∈ C \ iR we deduce:

Proposition 6.1.6. R(Cn, σt) is an α-invariant C∗ subalgebra of T 2,t.

Hence, applying Correspondence Theory to R(Cn, σt), we know that for each t > 0
there is some α-invariant and closed subspace Dt0 of BUC(Cn) such that

R(Cn, σt) = T 2,t
lin (Dt0).

Lemma 6.1.7. Let λ ∈ C \ iR with Re(λ) > 0 and z, w ∈ Cn. For each k ∈ N the
Berezin transform of R(λ, z)k is given by

(R(λ, z)k)∼(w) =
(−1)k−1ik

(k − 1)!

∫ ∞
0

sk−1e−λs+2isσt(z,w)− s
2

2t
|z|2 ds.

A similar formula holds for Re(λ) < 0 by applying the relation

R(λ, z)k = (−1)kR(−λ,−z)k.

Proof. Recall that we have, according to Lemma 6.1.2:

(R(λ, z)k)∼(w) =
ik−1

(k − 1)!

〈
dk−1

dµk−1
R(µ, z)ktw, k

t
w

〉
t

|µ=λ

=
ik−1

(k − 1)!

dk−1

dµk−1

〈
W t
−wR(µ, z)W t

w1, 1
〉
t
|µ=λ.

Applying the integral representation for R(µ, z) from the case Re(µ) > 0 we obtain

(R(λ, z)k)∼(w) =
ik

(k − 1)!

dk−1

dµk−1

∫ ∞
0

e−µs〈W t
−wW

t
−szW

t
w1, 1〉t ds|µ=λ

=
ik

(k − 1)!

dk−1

dµk−1

∫ ∞
0

e−µs+2isσt(z,w)〈W t
−sz1, 1〉t ds|µ=λ.

Since 〈W t
−sz1, 1〉t = ktsz(0) = e−

s2|z|2
2t we obtain

(R(λ, z)k)∼(w) =
ik

(k − 1)!

dk−1

dµk−1

∫ ∞
0

e−µs+2isσt(z,w)− s
2|z|2
2t ds|µ=λ.

Exchanging derivation and integration we obtain the claim.
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Proposition 6.1.8. For any t > 0 we have R(Cn, σt) = T 2,t
∗ (FR).

Proof. Let λ > 0, k ∈ N, z ∈ Cn and set

g(w) = (λ− 2i Imσt(w, z))
−(2k+1) =

∫ ∞
0

s2ke−λs+2siσt(w,z) ds ∈ FR .

Imitating the arguments from the proof of Proposition 6.1.5, we can express the
Toeplitz operator T tg as an operator-valued integral:

T tg =

∫ ∞
0

T t
s2ke−λs+2isσt(·,z) ds

=

∫ ∞
0

e
s2|z|2

2t T t
s2ke−λs+2isσt(·,z)− s

2
2t |z|

2
ds

=
∞∑
l=0

|z|2l

2ltll!
T t∫∞

0 s2l+2ke−λs+2isσt(·,z)− s
2
2t |z|

2
ds
.

Note that this series converges again with respect to the operator norm. By the
previous lemma, we have

T t∫∞
0 s2l+2ke−λs+2isσt(·,z)− s

2
2t |z|

2
ds

= i2k+2l+1(2k + 2l)!T t(R(λ,z)k)∼ .

Since

T t(R(λ,z)k)∼ = ft ∗R(λ, z)k,

where ft denotes as usual the Gaussian ft(z) = 1
(πt)n e

− |z|
2

t , and R(Cn, σt) is an

α-invariant closed subalgebra of T 2,t, we obtain

T t∫∞
0 s2l+2ke−λs+2isσt(·,z)− s

2
2t |z|

2
ds
∈ R(Cn, σt).

The standard estimate∥∥∥∥∥T tg −
N∑
l=0

|z|2l

2ltll!
T t∫∞

0 s2l+2ke−λs+2isσt(·,z)− s
2
2t |z|

2
ds

∥∥∥∥∥
≤
∫ ∞

0

(
e
s2|z|2

2t −
N∑
l=0

|z|2ls2l

2ltll!

)
s2ke−λs−

s2|z|2
2t ds→ 0, N →∞

therefore yields T tg ∈ R(Cn, σt). Since g was a generic function from FR, we obtain

T 2,t
∗ (FR) ⊆ R(Cn, σt). Combining this with Proposition 6.1.5 proves the claim.

Since R(Cn, σt) is α-invariant, we also obtain

R(Cn, σt) = T 2,t
∗ (Span(α(FR))),
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where

α(FR) = {αz(f); f ∈ FR, z ∈ Cn}.

On the level of symbols one might suspect that the “Classical Resolvent Algebra”,

R := C∗({(λ− iσt(·, z))−1; λ ∈ R \ {0}, z ∈ Cn})

agrees with Dt0 (the function space corresponding to R(Cn, σt)). Indeed, it is not
difficult to verify that R is an α- and U -invariant C∗ subalgebra of BUC(Cn), which
is also independent of the choice of t > 0. Hence, T 2,t

lin (R) is indeed a C∗ algebra by

Theorem 4.3.3 and therefore satisfies T 2,t
∗ (R) = T 2,t

lin (R) for any t > 0. Moreover, it is
relatively simple to verify that

R = C∗(FR).

An application of Proposition 4.3.8 yields

Span(α(FR)) ⊆ Dt0 ⊆ R

for any t > 0. So far we do not know if Dt0 agrees with either Span(α(FR)) or R or
if possibly even both inclusions above are equalities. We will now work towards a
description of Dt0, which will nevertheless not settle this question.

Lemma 6.1.9. Let z1, . . . , zm ∈ Cn, k1, . . . , km ∈ N, λ1, . . . , λm ∈ C \ iR such that
Re(λj) > 0 for every j. Then, we have

(k1 − 1)! . . . (km − 1)!

ik1+···+km (−1)k1+···+km−m(R(λ1, z1)k1 . . . R(λk, zk)
km)∼(w)

=

∫
(0,∞)m

sk−1e−(Λ·s)−2iσt(w,s·z)−i(
∑
j<` sjs`σt(zj ,z`))−

1
2t
|s·z|2 ds.

Here, we used the abbreviations s = (s1, . . . , sm), k = (k1, . . . , km), 1 = (1, . . . , 1),
s · z = s1z1 + · · ·+ smzm.

As before, the Berezin transform for the general case (i.e. arbitrary λj ∈ C \ iR)
can by deduced from this using the relation R(−λ, z) = −R(λ,−z).

Proof. By Lemma 6.1.2, we have

(R(λ1, z1)k1 . . . R(λk, zk)
km)∼(w)

=
ik1+···+km−m

(k1 − 1)! . . . (km − 1)!
×

×
〈 ∂k1−1

∂µk1−1
1

. . .
∂km−1

∂µkm−1
m

|µ1=λ1,...,µm=λmR(µ1, z1) . . . R(µm, zm)ktw, k
t
w

〉
t
.
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In the following lines, we will use the abbreviation

∂k−1

∂µk−1
|µ=Λ =

∂k1−1

∂µk1−1
1

. . .
∂km−1

∂µkm−1
m

|µ1=λ1,...,µm=λm .

Since the resolvent maps µj 7→ R(µj , zj) are analytic in L(F 2
t ), the difference quotients

converge in operator norm. Therefore, differentiation can be exchanged with the inner
product. This gives

(k1 − 1)! . . . (km − 1)!

ik1+···+km−m (R(λ1, z1)k1 . . . R(λk, zk)
km)∼(w)

=
∂k−1

∂µk−1
|µ=Λ〈R(µ1, z1) . . . R(µm, zm)ktw, k

t
w〉t

=
∂k−1

∂µk−1
|µ=Λ〈W t

−wR(µ1, z1)W t
w . . .W

t
−wR(µm, zm)W t

w1, 1〉t

= im
∂k−1

∂µk−1
|µ=Λ

∫
(0,∞)m

e−(µ1s1+···+µmsm)〈W t
−wW

t
s1z1W

t
w . . .W

t
−wW

t
smzmW

t
w1, 1〉t ds

= im
∂k−1

∂µk−1
|µ=Λ

∫
(0,∞)m

e−(µ1s1+···+µmsm)−2i
∑
j sjσt(w,zj)〈W t

s1z1 . . .W
t
smzm1, 1〉t ds

= im
∂k−1

∂µk−1
|µ=Λ

∫
(0,∞)m

e−(µ1s1+···+µmsm)−2i(
∑
j sjσt(w,zj))×

× e−i(
∑
j<` sjs`σt(zj ,z`))〈W t

s1z1+···+smzm1, 1〉t ds

= im
∂k−1

∂µk−1
|µ=Λ

∫
(0,∞)m

e−(µ1s1+···+µmsm)−2i(
∑
j sjσt(w,zj))×

× e−i(
∑
j<` sjs`σt(zj ,z`))e−

1
2t
|
∑
j sjzj |2 ds

= im(−1)k1+···+km−m
∫

(0,∞)m
sk1−1

1 . . . skm−1
m e−(λ1s1+···+λmsm)−2i(

∑
j sjσt(w,zj))×

× e−i(
∑
j<` sjs`σt(zj ,z`))e−

1
2t
|
∑
j sjzj |2 ds,

which proves the statement.

The following result is already known [42]. Yet, we give a proof which works
directly in our Fock space setting.

Lemma 6.1.10. For any t > 0 we have K(F 2
t ) ⊂ R(Cn, σt).

Proof. Since R(Cn, σt) is irreducible [42], it suffices by some well-known C∗ algebraic
argument to prove that there is one compact operator contained in R(Cn, σt). We
claim that for any λ > 0, the operator

R(λ, (1 + i, 0, . . . , 0))R(λ, (1− i, 0, . . . , 0)) ◦
R(λ, (0, 1 + i, . . . , 0)) . . . R(λ, (0, . . . , 0, 1− i))
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is compact. We prove this only for n = 1, the general case being proved identically
(up to a messier notation). We will do this by proving that the Berezin transform of
R(λ, 1)R(λ, i) vanishes at infinity, which will then imply the result by Corollary 3.3.10.
By the previous lemma, the Berezin transform of R(λ, 1 + i)R(λ, 1− i) at w ∈ C is
given, up to some constant, by∫

(0,∞)2
e−λ(s1+s2)−2i(s1σt(w,1+i)+s2σt(w,1−i))−is1s2σt(1+i,1−i)− 1

2t
|s1(1+i)+s2(1−i)|2 ds

=

∫
(0,∞)2

e−λ(s1+s2)− 2i
t

(s1(Im(w)+Re(w))+s2(Im(w)−Re(w)))− 2i
t
s1s2− 1

t
(s21+s22) ds.

Fix w ∈ C such that |w| = 1 and let α > 0. Then, the Berezin transform at αw is
given by

Iα,w :=

∫
(0,∞)2

e−λ(s1+s2)− 2i
t
α(s1(Im(w)+Re(w))+s2(Im(w)−Re(w)))− 2i

t
s1s2− 1

t
(s21+s22) ds.

We claim that Iα,w → 0 as α→∞. To see this, let

g(s1, s2) := e−λ(s1+s2)− 2i
t
s1s2− 1

t
(s21+s22)

such that

Iα,w =

∫
(0,∞)2

g(s1, s2)e−
2i
t
α(s1(Im(w)+Re(w))+s2(Im(w)−Re(w))) ds.

For ε > 0 let χε ∈ C∞(R2) such that 0 ≤ χε(s) ≤ 1 everywhere, χε|(0,∞)2 ≡ 1 and
χε|R2\(−ε,∞)2 ≡ 0. Since

|g(s1, s2)| . e−
1
2t
s21

on (−1,∞)× (−1, 1) and

|g(s1, s2)| . e−
1
2t
s22

on (−1, 1)× (−1,∞), it is not difficult to verify that∫
R2

χε(s1, s2)g(s1, s2)e−
2i
t
α(s1(Im(w)+Re(w))+s2(Im(w)−Re(w))) ds = Iα,w +O(ε)

as ε→ 0. Note that χε(s1, s2)g(s1, s2) is exponentially decaying at infinity and since
w 6= 0, (s1, s2) 7→ s1(Im(w) + Re(w)) + s2(Im(w)−Re(w)) has no stationary points in
R2. Therefore, the method of stationary phase yields∫

R2

χε(s1, s2)g(s1, s2)e−
2i
t
α(s1(Im(w)+Re(w))+s2(Im(w)−Re(w))) ds→ 0, α→∞.

Putting the pieces together, we obtain

(R(λ, 1 + i)R(λ, 1− i))∼(αw)→ 0, α→∞

for any w 6= 0, which proves the result.
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Let us come back to the description of Dt0. Since products of the resolvents R(λ, z)
span a dense subspace of R(Cn, σt), Theorem 3.3.7 tells us that

Span{Bt(R(λ1, z1)k1 . . . R(λm, zm)km); kj ∈ N0, λj ∈ C \ iR, zj ∈ Cn}

is dense in Dt0. We have already identified these Berezin transforms in Lemma 6.1.9
(up to a constant) as

restΛ,z,k(w) :=

∫
(0,∞)m

sk−1e−(Λ̃·s)−2iσt(w,s·z)−i(
∑
j<` sjs`σt(zj ,z`)−

1
2t
|s·z|2 ds,

where Λ̃ = (sgn(Re(λ1))λ1, . . . , sgn(Re(λm))λm), k = (k1, . . . , km), s = (s1, . . . , sm),
1 = (1, . . . , 1) and s · z = s1z1 . . . smzm. Hence,

Dt0 = Span{restΛ,z,k; m ∈ N, λ1, . . . , λm ∈ C \ iR, k1, . . . , km ∈ N, z1, . . . , zm ∈ Cn}.

As we have already stated, we have Span(α(FR)) ⊆ Dt0 ⊆ R for any t > 0 but so far
cannot say anything else about Dt0. We have the following weak result:

Proposition 6.1.11. The following holds true:⋃
t>0

Dt0 = R.

Proof. As we have seen earlier, for any λ ∈ C \ iR, z ∈ Cn we have

T(λ−2iσt(·,z))−1 ∈ R(Cn, σt)

and therefore, by re-scaling z

T(λ−2iσ1(·,z))−1 ∈ R(Cn, σt).

Since R(Cn, σt) is a C∗ algebra,

T t(λ1−2iσ1(·,z1))−1T
t
(λ2−2iσ1(·,z2))−1 . . . T

t
(λm−2iσ1(·,zm))−1 ∈ R(Cn, σt) = T 2,t

lin (Dt0)

for any λj ∈ C \ iR and zj ∈ Cn. As in the proof of Theorem 4.3.5, one obtains now

Bt(T t(λ1−2iσ1(·,z1))−1T
t
(λ2−2iσ1(·,z2))−1 . . . T

t
(λm−2iσ1(·,zm))−1)

→ (λ1 − 2iσ1(·, z1))−1 . . . (λm − 2iσ1(·, zm))−1

uniformly as t → 0. Since Bt(T t(λ1−2iσ1(·,z1))−1 · · · · · T t(λm−2iσ1(·,zm))−1) ∈ Dt0 for any
t > 0, the result follows.
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6.2 Remarks

As we have mentioned, this chapter is in principle only a report on work-in-progress.
Nevertheless, it already fits in here quite nicely, as the Resolvent Algebra serves as an
example of a Toeplitz algebra with non-trivial Correspondence Theory. Besides the
obvious task, i.e. completing our understanding of the correspondence (is Dt0 = R or a
strict subset ofR for fixed t?), we are planning to investigate the Toeplitz representation
of the Resolvent Algebra on infinite-dimensional symplectic spaces. Further, even
though many properties of the Resolvent Algebras R(Cn, σt) are already known due to
the works [41,42], it seems tempting to study the structure of the Resolvent Algebra,
e.g. the structure of its ideals, in the setting of its Bargmann representation. In
particular, it seems interesting to see if the methods of Correspondence Theory are of
any use here.



126 6.2. Remarks



Chapter 7

The Berger-Coburn Theorem

The trivial estimate ‖T tf‖ . ‖f‖∞, which holds for any t > 0 and 1 ≤ p ≤ ∞, shows
that a Toeplitz operator with bounded symbol is bounded. The converse statement is
false: Indeed, there are many bounded Toeplitz operators with unbounded symbols. It
is one of the most important open problems on Toeplitz operators over Fock spaces
(and also over other spaces) to characterize their boundedness in terms of properties
of the symbol. In the setting of Fock spaces, the best-known result in that direction is
the following theorem due to C. A. Berger and L. A. Coburn:

Theorem 7.0.1 ([31]). Let f : Cn → C be measurable such that fKt
z ∈ L2

t for any
z ∈ Cn. Then, the following norm estimates hold true for the densely defined operator
T tf on F 2

t :

C(s)‖T tf‖ ≥ ‖f̃ (s)‖∞, 2t > s > t/2,

c(s)‖f̃ (s)‖∞ ≥ ‖T tf‖, t/2 > s > 0.

Here, C(s), c(s) > 0 are universal constants depending only on s, t and n.

We also want to mention the recent results in [50, 51], which head in a similar
direction. Note that Berger and Coburn provided the proof for the above theorem
only for t = 2, but it carries over to any t > 0. It is the aim of this chapter to derive
analogous estimates for any p ∈ [1,∞]. Further, we will derive similar estimates for
the Schatten class norm of T tf in terms of the Lp0 norms of the Berezin transforms of f .
Finally, we show a connection between results related to the Berger-Coburn estimates
and the Correspondence Theory we have established earlier.

7.1 The first estimate

Let us first add a remark on the assumption that f : Cn → C satisfies fKt
z ∈ L2

t for
any z ∈ Cn. Elementary computations show that this implies that f̃ (s)(z) exists for
any s < 2t. We will use this fact without mentioning it.

127
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Berger and Coburn proved the first estimate ‖f̃ (s)‖∞ . ‖T tf‖ by constructing a

trace class operator T
(s)
0 such that

Tr(T tfT
(s)
0 ) = f̃ (s)(0)

and afterwards shifted the operators and used standard trace estimates. In principle,

we will do the same thing and the operator T
(s)
0 will even turn out to be the same

operator as in the Hilbert space case. Yet, some additional care must be spent for
getting all the techniques working in the setting of p 6= 2.

Recall that {etα; α ∈ Nn0} denotes the standard Schauder basis of F pt (being
orthonormal for p = 2). Then, denote for k ∈ N0 by Pk the finite rank operator

Pk :=
∑
|α|=k

etα ⊗ etα.

For s > t/2 we define

T
(s)
0 :=

∞∑
k=0

(
1− t

s

)k
Pk.

In particular, observe that by our choice of s we have |1− t/s| < 1. The key fact for
establishing the estimate will be the following:

Lemma 7.1.1. Let s > t/2. Then, the infinite series defining T
(s)
0 converges in

nuclear norm. In particular, T
(s)
0 ∈ N (F pt ) for any p ∈ [1,∞) and also T

(s)
0 ∈ N (f∞t ).

For proving this, we will need the following:

Lemma 7.1.2. Let p ∈ [1,∞] and t > 0. If q ∈ [1,∞] denotes the exponent conjugate
to p, i.e. 1

p + 1
q = 1, then

sup
α∈Nn

0

‖etα‖F pt ‖e
t
α‖F qt <∞.

Proof. Using the product structure of the basis, it is easy to see that we only need to
consider the case n = 1. For p =∞ and k ∈ N0 we compute

‖etk‖F∞t = sup
z∈C

1√
k!tk
|z|ke−

|z|2
2t

=
1√
k!tk

sup
r≥0

rke−
r2

2t .

It is a matter of elementary calculus to find this supremum in r as

‖etk‖F∞t =
1√
k!
kk/2e−

k
2 .

On the other hand, for p = 1 we compute

‖etk‖F 1
t

=
1

2πt

∫
C

|z|k√
k!tk

e−
|z|2
2t dz
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=
1

t
√
k!tk

∫ ∞
0

rk+1e−
r2

2t dr

=
1√
k!tk

(2t)k/2Γ

(
k

2
+ 1

)
=

2k/2√
k!

Γ

(
k

2
+ 1

)
,

and putting everything together we obtain

‖etk‖F 1
t
‖etk‖F∞t =

(2k)k/2

k!
Γ

(
k

2
+ 1

)
e−

k
2 . (7.1)

Recall now Stirling’s approximation

Γ(x) =

√
2π

x

(x
e

)x(
1 +O

(
1

x

))
as x→∞.

Applying this to Equation (7.1) yields

‖etk‖F 1
t
‖etk‖F∞t =

(2k)k/2√
2π
k+1

(
k+1
e

)k+1
(

1 +O
(

1
k+1

))e− k2
×
√

2π
k
2 + 1

(
k
2 + 1

e

) k
2

+1(
1 +O

(
1

k
2 + 1

))

=
(k(k + 2))

k
2

(
k
2 + 1

)1/2
(k + 1)k+ 1

2

·
1 +O

(
1

k
2

+1

)
1 +O

(
1

k+1

)
−→ 1√

2
, k →∞,

proving the claim for p = 1,∞. For p ∈ (1,∞) this follows now immediately from
Littlewood’s inequality (Lemma 2.2.7):

‖etk‖F pt ‖e
t
k‖F qt ≤ p

n
p q

n
q ‖etk‖

1
p

F 1
t
‖etk‖

1− 1
q

F∞t
‖etk‖

1
q

F 1
t
‖etk‖

1− 1
p

F∞t

= p
n
p q

n
q ‖etk‖F 1

t
‖etk‖F∞t .

Proof of Lemma 7.1.1. Let p ∈ [1,∞) and C a suitable constant for the norm equiva-
lence of F qt and (F pt )′. Then, we obtain

∞∑
k=0

∣∣∣∣1− t

s

∣∣∣∣k ‖Pk‖N ≤ ∞∑
k=0

∣∣∣∣1− t

s

∣∣∣∣k ∑
|α|=k

‖etα‖F pt ‖e
t
α‖(F pt )′

≤ C
∞∑
k=0

∣∣∣∣1− t

s

∣∣∣∣k ∑
|α|=k

‖etα‖F pt ‖e
t
α‖F qt .
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Let us denote by Cp,t the supremum obtained in the previous lemma. Then, we have
just shown

∞∑
k=0

∣∣∣∣1− t

s

∣∣∣∣k ‖Pk‖N ≤ CCp,t ∞∑
k=0

∣∣∣∣1− t

s

∣∣∣∣k · (#{α ∈ Nn0 ; |α| = k}),

where # denotes the cardinality of the set. It is basic combinatorics to show that

#{α ∈ Nn0 ; |α| = k} =

(
k − 1 + n

k

)
.

Therefore, we arrive at

∞∑
k=0

∣∣∣∣1− t

s

∣∣∣∣k ‖Pk‖N ≤ CCp,t ∞∑
k=0

∣∣∣∣1− t

s

∣∣∣∣k (k − 1 + n

k

)
.

The quotient test now yields that the right-hand side converges. Since N (F pt ) is
complete, we therefore obtain that the series

∞∑
k=0

(
1− t

s

)k
Pk

converges in N (F pt ) and hence T
(s)
0 ∈ N (F pt ).

The same arguments work over f∞t .

At this point, Berger and Coburn applied what they called the Berezin model to

compare f̃ (s)(z) with the trace Tr(T
(s)
0 W t

−zT
t
fW

t
z). This can be done more directly:

Lemma 7.1.3. Let s ∈ ( t2 , t], p ∈ [1,∞) and z ∈ Cn such that fKt
z ∈ L2

t . Further,
assume that α−z(T

t
f ) is bounded on either F pt or f∞t . Then, there is a constant C

depending only on s, t and n such that

f̃ (s)(z) = C Tr(T
(s)
0 W t

−zT
t
fW

t
z).

Proof. Without loss of generality, we may assume z = 0. Since F pt for p ∈ [1,∞)
and also f∞t has a Schauder basis, the spaces have the approximation property. In
particular, the nuclear trace is well-defined. Since the nuclear operators form an ideal,

we have T
(s)
0 T tf ∈ N (F pt ) or ∈ N (f∞t ). Then,

Tr(T
(s)
0 T tf ) =

∞∑
k=0

(
1− t

s

)k ∑
|α|=k

Tr(PkT
t
f )

=

∞∑
k=0

(
1− t

s

)k ∑
|α|=k

〈T tfetα, etα〉F 2
t
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=
∞∑
k=0

(
1− t

s

)k ∑
|α|=k

〈fetα, etα〉F 2
t

=
1

(πt)n

∑
α∈Nn0

∫
Cn
f(z)
|z1|2α1 . . . |zn|2αn

α!

(
1

t
− 1

s

)|α|
e−
|z|2
t dz.

For s = t we obtain T
(s)
0 = PC and therefore

Tr(T
(s)
0 T tf ) = Tr(PCT

t
f ) = PC ∗ T tf (0) = T̃ tf (0) = f̃ (t)(0).

Note that f ∈ L2
t implies f ∈ L1

s for s ∈ (t/2, t). Hence, by the Dominated Convergence
Theorem, we obtain for this case

Tr(T
(s)
0 T tf ) =

1

(πt)n

∫
Cn
f(z)

∑
α∈Nn0

|z1|2α1 . . . |zn|2αn
α!

(
1

t
− 1

s

)|α|
e−
|z|2
t dz

=
(s
t

)n 1

(πs)n

∫
Cn
f(z)e−

|z|2
s dz

=
(s
t

)n
f̃ (s)(0).

Theorem 7.1.4. Let s ∈
(
t
2 , 2t

)
, p ∈ [1,∞) and f such that fKt

z ∈ L2
t for every

z ∈ Cn. Then,

‖f̃ (s)‖∞ ≤ Cs,t,p,n‖T tf‖F pt →F pt

and

‖f̃ (s)‖∞ ≤ Cs,t,∞,n‖T tf‖f∞t →f∞t .

Proof. Without loss of generality we may assume that T tf is bounded. Since the Weyl

operators are isometric, this implies that α−z(T
t
f ) is bounded for any z. For s ∈

(
t
2 , t
]

the result follows from the previous lemma: We have, by standard estimates for the
trace,

|f̃ (s)(z)| = C|Tr(T
(s)
0 α−z(T

t
f ))| ≤ C‖T (s)

0 ‖N ‖T
t
f‖.

If s ∈ (t, 2t), then the semigroup property of the heat transform easily yields

‖f̃ (s)‖∞ ≤ ‖f̃ (t)‖∞,

cf. also Equation (7.2) below.
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7.2 The second estimate

This section is based on joint work with Wolfram Bauer [15]. The standing assumption
in this part is again that f : Cn → C is measurable with fKt

z ∈ L2
t for any z ∈ Cn. In

particular, f̃ (t)(z) = 〈fktz, ktz〉L2
t

exists for any z ∈ Cn. Let us first study the Berezin

transform of f . Indeed, under above assumptions, for any s ∈ (0, t) we have fKs
z ∈ L2

s

as a simple computation shows. Hence, f̃ (s)(z) exists for any such s. Since f̃ (t) is
simply the heat transform of f (at time t/4), it enjoys the same semigroup property:
For any s ∈ (0, t) we have

〈fktz, ktz〉t = f̃ (t)(z) =
˜̃
f (s)

(t−s)
(z) = 〈f̃ (s)kt−sz , kt−sz 〉t−s. (7.2)

Getting rid of the normalizing factors, this is the same as

〈fKt
z,K

t
z〉t = e

− s
t(t−s) |z|

2

〈f̃ (s)Kt−s
z ,Kt−s

z 〉t−s. (7.3)

Recall that the bivariate Berezin transform is defined by

f̃ (t)(z, w) := 〈fktz, ktw〉t.

Under our assumptions on f , this exists for any z, w ∈ Cn. Equation (7.2) now extends
to the off-diagonal values of f̃ (t) in the following way:

Lemma 7.2.1. For z, w ∈ Cn and 0 < s < t the following holds true:

f̃ (t)(z, w) = e
s

2t(t−s) |z−w|
2− is

t(t−s) Im(w·z)〈f̃ (s)kt−sz , kt−sw 〉t−s.

Proof. One readily verifies that 〈fKt
z,K

t
w〉t is anti-holomorphic in z and holomorphic

in w. The same holds true for

e
− s
t(t−s)w·z〈f̃ (s)Kt−s

z ,Kt−s
w 〉t−s.

Both functions agree on the diagonal z = w by Equation (7.3). Hence, a well-known
theorem [69, Proposition 1.69] shows that the functions agree everywhere, i.e.

〈fKt
z,K

t
w〉t = e

− s
t(t−s)w·z〈f̃ (s)Kt−s

z ,Kt−s
w 〉t−s

for any z, w ∈ Cn. Up to the normalizing factors, this is just the equation we wanted
to prove.

Lemma 7.2.2. Let t > 0 and g ∈ L∞(Cn). Then, for any z, w ∈ Cn the following
holds true: ∣∣〈gktz, ktw〉t∣∣ ≤ ‖g‖∞e− 1

4t
|w−z|2 .
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Proof. We obtain the estimates directly from the following calculations:

|〈gktz, ktw〉t| =
1√

Kt(z, z)Kt(w,w)

∣∣∣∣∫
Cn
g(u)e

1
t
(u·w+z·u) dµt(u)

∣∣∣∣
≤ e−

1
2t

(|z|2+|w|2)‖g‖∞
∫
Cn
e

1
t

Re(u·w+z·u) dµt(u)

= e−
1
2t

(|z|2+|w|2)‖g‖∞
∫
Cn
e

1
2t
u·(w+z)+ 1

2t
u·(w+z) dµt(u)

= e−
1
2t

(|z|2+|w|2)‖g‖∞〈Kt
(w+z)/2,K

t
(w+z)/2〉t

= e−
1
2t

(|z|2+|w|2)‖g‖∞Kt((w + z)/2, (w + z)/2)

= e−
1
2t

(|z|2+|w|2)+ 1
4t
|w+z|2‖g‖∞

= e−
1
4t
|z−w|2‖g‖∞.

Let us go back to Toeplitz operators. Recall that we assumed fKt
z ∈ L2

t for any
z ∈ Cn. For p = 2, this means Kt

z ∈ D(T tf ) for any z. Since the reproducing kernels

span a dense subspace of F 2
t , the Toeplitz operator T tf is of course densely defined and

we can consider its adjoint (T tf )∗. Recall the following characterization for the domain
of the adjoint:

h ∈ D((T tf )∗)⇔ ∃C > 0 : |〈T tfg, h〉t| ≤ C‖g‖F 2
t

for every g ∈ F 2
t .

Clearly, we have for any g ∈ D(T tf ) ⊂ F 2
t and any z ∈ Cn:

|〈T tfg,Kt
z〉t| = |〈g, fKt

z〉t| ≤ ‖g‖F 2
t
‖fKt

z‖F 2
t
,

hence Kt
z ∈ D((T tf )∗) for any z ∈ Cn, which in particular means that the adjoint of T tf

is also densely defined. From this, we obtain

((T tf )∗Kt
z)(w) = 〈(T tf )∗Kt

z,K
t
w〉t

= 〈T tfKt
w,K

t
z〉t

= 〈fKt
w,K

t
z〉t

=
√
Kt(w,w)Kt(z, z)〈fktw, ktz〉t

= e
1
2t

(|z|2+|w|2)f̃ (t)(w, z)

= e
1
2t
|z−w|2+ 1

t
Re(z·w)f̃ (t)(w, z).

This identity can be used to obtain the following integral representation for T tf : For

any g ∈ D(T tf ) we have
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T tfg(z) = 〈T tfg,Kt
z〉t

= 〈g, (T tf )∗Kt
z〉t

=

∫
Cn
g(w)((T tf )∗Kt

z)(w) dµt(w)

=

∫
Cn
e

1
2t
|z−w|2+ 1

t
Re(z·w)f̃ (t)(w, z)g(w) dµt(w).

Recall that for p 6= 2 the Toeplitz operator T tf is by definition the same integral
operator as for p = 2. It is not a priori clear that the operator is densely defined
for p < 2, as it may not map Span{Kt

t ; z ∈ Cn} into F pt . If we assume that f̃ (s) is
bounded for some s ∈ (0, t/2), which is the assumption of the second estimate of the
Berger-Coburn Theorem, this will follow from the next lemma. Here, we will always
denote by Itfg the integral operator

Itfg(z) :=

∫
Cn
e

1
2t
|z−w|2+ 1

t
Re(z·w)f̃ (t)(w, z)g(w) dµt(w),

which we formally define on all g such that the above integral exists. Further, we will
denote by γs,t the constant

γs,t :=
1

4(t− s)
− s

2t(t− s)
.

We need to assume s < t/2 in the following because γs,t > 0 if and only if s < t/2.

Lemma 7.2.3. Let t > 0 and f : Cn → C measurable such that fKt
z ∈ L2

t for any
z ∈ Cn and f̃ (s) ∈ L∞(Cn) for some s ∈ (0, t/2). Then, for any g ∈ L1

t we have

‖Itfg‖L1
t
≤
(

1

γs,tt

)n
‖f̃ (s)‖∞‖g‖L1

t
,

i.e. the integral operator Itf is bounded on L1
t with ‖Itf‖L1

t→L1
t
≤
(

1
γs,tt

)n
‖f̃ (s)‖∞.

Proof. Using the simple identity e
1
2t
|z−w|2 = e

1
2t

(|z|2+|w|2−2 Re(z·w)), we derive the esti-
mate as follows:

‖Itfg‖L1
t

=

∫
Cn
|Itfg(z)| dµ2t(z)

=

(
1

2t2π2

)n ∫
Cn

∣∣∣∣∫
Cn
e

1
2t
|z−w|2+ 1

t
Re(z·w)− 1

t
|w|2− 1

2t
|z|2 f̃ (t)(w, z)g(w) dw

∣∣∣∣ dz
≤
(

1

2t2π2

)n ∫
Cn

∫
Cn
|g(w)||f̃ (t)(w, z)|e−

1
2t
|w|2 dw dz.
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Combining Lemmas 7.2.1 and 7.2.2 we obtain the estimate

|f̃ (t)(w, z)| ≤ ‖f̃ (s)‖∞e−γs,t|z−w|
2

(7.4)

and therefore

‖Itfg‖L1
t
≤
(

1

2t2π2

)n
‖f̃ (s)‖∞

∫
Cn

∫
Cn
e−γs,t|w−z|

2
e−

1
2t
|w|2 |g(w)| dw dz

= ‖f̃ (s)‖∞‖g‖L1
t

(
1

πt

)n ∫
Cn
e−γs,t|z|

2
dz

=

(
1

γs,tt

)n
‖f̃ (s)‖∞‖g‖L1

t
.

Note that Itf actually maps L1
t to F 1

t : It is still the same integral expression as for

T tf , hence a standard application of Morera’s Theorem yields that functions in the
image are always holomorphic.

By the above estimate, we know that under the assumptions of above lemma, T tf
actually maps Span{Kt

z; z ∈ Cn} into F 1
t . We obtain that for any p ∈ [1,∞], T tf is a

densely defined operator on F pt .

Theorem 7.2.4. Under the assumptions of Lemma 7.2.3, Itf is a bounded operator

on Lpt for any p ∈ [1,∞] with norm

‖Itf‖Lpt→Lpt ≤ ‖f̃
(s)‖∞

(
1

γs,tt

)n
.

Proof. We have already seen that the statement is true for p = 1. Let us show the
norm estimate for p =∞. For g ∈ L∞t we have, using again Estimate (7.4),

‖Itfg‖L∞t

= sup
z∈Cn

|Itfg(z)|e−
|z|2
2t

=

(
1

πt

)n
sup
z∈Cn

∣∣∣∣∫
Cn
e

1
2t
|z−w|2+ 1

t
Re(z·w)− 1

t
|w|2− 1

2t
|z|2 f̃ (t)(w, z)g(w) dw

∣∣∣∣
≤
(

1

πt

)n
‖f̃ (s)‖∞ sup

z∈Cn
‖f̃ (s)‖∞

∫
Cn
e( 1

2t
−γs,t)|z−w|2+ 1

t
Re(z·w)− 1

t
|w|2− 1

2t
|z|2 |g(w)| dw

≤
(

1

πt

)n
‖f̃ (s)‖∞‖g‖L∞t sup

z∈Cn

∫
Cn
e−γs,t|z−w|

2
dw

=‖f̃ (s)‖∞‖g‖L∞t

(
1

γs,tt

)n
.

Thus, we also have the estimate

‖Itf‖L∞t →L∞t ≤ ‖f̃
(s)‖∞

(
1

γs,tt

)n
.
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Combining this with the L1
t -estimate from the previous lemma and applying the

Complex Interpolation Method, we obtain

‖Itf‖Lpt→Lpt ≤ ‖f̃
(s)‖∞

(
1

γs,tt

)n
for any p ∈ [1,∞].

Corollary 7.2.5. Under the assumptions of Lemma 7.2.3, T tf is bounded on F pt for
any p ∈ [1,∞] and on f∞t with

‖T tf‖ ≤ ‖f̃ (s)‖∞
(

1

γs,tt

)n
on any of these spaces.

Proof. As for the case p = 1, one easily sees that the image of Itf is holomorphic for

any p. Further, T tf is simply the restriction of Itf to F pt , hence by the theorem we have

‖T tf‖F pt →F pt ≤ ‖f̃
(s)‖∞

(
1

γs,tt

)n
for any p ∈ [1,∞]. Using the Complex Interpolation Method we have (F 1

t , F
∞
t )[1] = f∞t

as already mentioned earlier, hence T tf ∈ L(f∞t ) with the same norm estimate.

7.3 Lp0 − Sp0 versions of the estimates

In [14], estimates related to the Berger-Coburn estimates were obtained. In particular,
the following results were shown:

Theorem 7.3.1 ([14]). Let f : Cn → C measurable be such that fKt
z ∈ L2

t for any
z ∈ Cn. Then, considering T tf as an operator on F 2

t , we have:

1) If s ∈ (0, t2) and f̃ (s) ∈ C0(Cn), then T tf is compact.

2) If s ∈ ( t2 , 2t) and T tf is compact, then f̃ (s) ∈ C0(Cn).

3) If s ∈ (0, t2) and p0 ∈ [1,∞), then there is a constant C = C(s, t,N, p0) > 0 such

that ‖T tf‖Sp0 (F 2
t ) ≤ C‖f̃ (s)‖Lp0 1.

The authors of [14] also conjectured an estimate of the form

‖f̃ (s)‖Lp0 ≤ C‖T tf‖Sp0 , s ∈ (t/2, 2t),

but could not prove it (cf. “Question 1” in the paper). We can now fill this gap.

1Actually, the authors of [14] only showed that f̃ (s) ∈ Lp0 implies T tf ∈ Sp0(F 2
t ). An estimate of

this form can be obtained by combining their reasoning with the results in e.g. [4]
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Since the convolutions discussed in Chapter 3 are only well-behaved on F pt for
p ∈ (1,∞) and on f∞t , we formulate the following proposition only for those cases.
Nevertheless, it should be possible to include the case of F 1

t , since the operators

involved are “nice” also in this case (i.e. z 7→ αz(T
(s)
0 ) is N -continuous even in this

case).

Proposition 7.3.2. Let s ∈ ( t2 , 2t) and f : Cn → C measurable such that fKt
z ∈ L2

t

for any z ∈ Cn. Further, let p0 ∈ [1,∞). Then, for every p ∈ (1,∞) there is are
constant Cn,s,t,p,p0 > 0 such that we have

‖f̃ (s)‖Lp0 ≤ Cn,s,t,p,p0‖T tf‖Sp0 (F pt ).

Further, there is a constant Cn,s,t,∞,p0 > 0 such that

‖f̃ (s)‖Lp0 ≤ Cn,s,t,∞,p0‖T tf‖Sp0 (f∞t ).

Proof. Assume that s ∈ ( t2 , t]. Further, assume that ‖T tf‖Sp0 is finite, otherwise the

statement is trivial. The operator T
(s)
0 introduced in Section 7.1 is easily seen to be

U -invariant, i.e. T
(s)
0 = UT

(s)
0 U . Further, we have seen in Lemma 7.1.3 that

f̃ (s)(z) = C Tr(T
(s)
0 W t

−zT
t
fW

t
z).

By U -invariance of T
(s)
0 we now obtain

Tr(T
(s)
0 W t

−zT
t
fW

t
z) = TrUT

(s)
0 UW−zT

t
fW

t
z = Tr(T

(s)
0 W t

zUT
t
fUW

t
−z) = T

(s)
0 ∗ T tf (z).

Now, Lemma 3.1.15 implies∫
Cn
|f̃ (s)(z)|p0 dz = C‖T (s)

0 ∗ T tf‖
p0
Lp0 . ‖T (s)

0 ‖N ‖T
t
f‖Sp0 .

For s ∈ (t, 2t) the result follows from simply from the estimates

‖f̃ (s)‖Lp0 . ‖f̃ (t)‖Lp0 ,

which is either a consequence of the contractivity of the heat semigroup or follows
immediately from properties of the convolutions, using f̃ (s) = f̃ (t) ∗ fs−t, where fs−t is
as usual the appropriate Gaussian.

7.4 Berger-Coburn type results and their connection to
Correspondence Theory

Recalling Theorem 7.3.1, there is a necessary and sufficient criterion for the membership
of a Toeplitz operator with unbounded symbol in the class of compact operators. Indeed,
a generalization of these results can easily be obtained using Correspondence Theory,
as we shall outline now. While we are confident that these result do not hinge on the
restriction p ∈ (1,∞), we shall only formulate the results for this case. The reason for
this is that certain key facts on sufficiently localized operators, that we will introduce
in Chapter 8, are so far only available for the reflexive case.
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Proposition 7.4.1. Assume p ∈ (1,∞) and t > 0. Let D0 ⊆ BUC(Cn) be an α-
invariant and closed subspace. If f : Cn → C is such that fKt

z ∈ L2
t for any z ∈ Cn

and further f̃ (s) ∈ D0 for some s ∈ (0, t/2), then T tf ∈ T
p,t
lin (D0).

Proof. We already know that T tf is a bounded operator in these cases. From Remark

8.0.7 we will see that we even have T tf ∈ T p,t. We defer this argument for a moment,
as it will be based on arguments using sufficiently localized operators that we will only

introduce later. Now, assuming f̃ (s) ∈ D0, we of course obtain T̃ tf = f̃ (t) = f̃ (s) ∗ft−s ∈
D0, where ft−s is the appropriate Gaussian. The Correspondence Theorem 3.3.7
therefore yields T tf ∈ T

p,t
lin (D0).

Proposition 7.4.2. Assume p ∈ (1,∞) and t > 0. Let D0 ⊆ BUC(Cn) be an α-
invariant and closed subspace. If f : Cn → C is such that fKt

z ∈ L2
t for any z ∈ Cn

and further T tf ∈ T
p,t
lin (D0), then f̃ (s) ∈ D0 for any s ∈ (t/2, 2t).

Proof. Assuming T tf is bounded, we have seen that f̃ (s) = T
(s)
0 ∗ T tf . We claim that

T
(s)
0 ∗A ∈ D0 for any A ∈ T p,tlin (D0). Indeed, it actually holds true that N ∗A ∈ D0 for

any A ∈ T p,tlin (D0) and N ∈ N (F pt ). Once we have proven this, the result follows since

T
(s)
0 is nuclear.

The Correspondence Theorem 3.3.7 in particular states that Ã = PC ∗A ∈ D0 for
any A ∈ T p,tlin (D0). Since D0 is α-invariant, we also obtain αz(PC) ∗A = αz(Ã) ∈ D0.
Recall that, under trace duality, N (F pt )′ ∼= L(F pt ). If we have B ∈ L(F pt ) such that

Tr(αz(PC)B) = PC ∗B(z) = B̃(z) = 0

for every z ∈ Cn, then this implies by the injectivity of the Berezin transform that
B = 0. In particular, we obtain

〈N,B〉tr = 0 for every N ∈ Span{αz(PC); z ∈ Cn} =⇒ B = 0

for every B ∈ L(F pt ) ∼= N (F pt )′. By the Hahn-Banach Theorem, this immediately
implies that Span{αz(PC); z ∈ Cn} is dense inN (F pt ). By continuity of the convolution,
this gives N ∗A ∈ D0 for every N ∈ N (F pt ) and A ∈ T p,tlin (D0).

Letting D0 = C0(Cn) and p = 2, we of course obtain the statements 1) and 2) in
Theorem 7.3.1.

7.5 Remarks

The possibly most important task concerning the topic is of course achieving a proof
or finding a counterexample to the Berger-Coburn conjecture, which states that T tf is

bounded if and only if f̃ (t/2) is bounded. There are several hints that this might indeed
be true and the conjecture has been proven in several particular cases (e.g. f ≥ 0
or f ∈ BMO(Cn), cf. our discussion in [15]). Recently, there have been advances on
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the problem for a particular class of symbols by applying methods of Fourier Integral
Operators on Cn, cf. [50, 51]. Nevertheless, a proof of the full conjecture seems to be
out of reach as of now.

Since we have seen that the original Berger-Coburn estimates are not related to
the Hilbert space structure, we expect that the statement of Theorem 7.3.1, part 3)
also do not depend on p = 2. The proof of part 3) of that theorem, as given by the
authors of [14], depends on rather strong results on Schatten class properties of Weyl
Pseudodifferential Operators, which is used after adjoining the Bargmann transform.
It could be interesting to search for a proof which works directly in the Fock space
setting and is independent of the Hilbert space structure.

There are of course also other interesting questions in the same spirit. For example,
it is an open problem to give a criterion for the boundedness of a product of two
Toeplitz operators. There are some results for very particular symbols [45], but the
general case seems to be wide open.
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Chapter 8

Characterizations of the Toeplitz
algebra

During this section, we will restrict ourselves to the reflexive cases: p ∈ (1,∞). We
want to discuss ways to check if a bounded operator belongs to the Toeplitz algebra
T p,t over F pt , i.e. we are looking for different characterizations of T p,t. We have already
given several results in that direction, cf. Corollary 3.3.4:

T p,t = T p,tlin (BUC(Cn)) = C1.

Since convolution by the Gaussians

fs(z) =
1

(πs)n
e−
|z|2
s

was shown to be an approximate identity of C1 in Lemma 3.3.1 and any convolution
(by fs) is contained in C1 by Proposition 3.1.13, we also know that

T p,t = {A ∈ L(F pt ); fs ∗A→ A in operator norm as s→ 0}.

Finally, an application of the Cohen-Hewitt Factorization Theorem (see [55]) yields

T p,t = {g ∗B; g ∈ L1(Cn), B ∈ L(F pt )}.

In this short chapter, we will discuss a few additional characterizations of T p,t.
In [132], the notion of sufficiently localized operators on Fock spaces was introduced.

Let A ∈ L(F pt ). We say that A is sufficiently localized if

|〈Aktz, ktw〉t| ≤
C

(1 + |z − w|)β

for some constants C > 0, β > 2n. We denote the set of sufficiently localized operators
on F pt by Ap,tsl . In [90], the notion was further generalized: A ∈ L(F pt ) is said to be
weakly localized if, for B ∈ {A,A∗} we have

sup
z∈Cn

∫
Cn
|〈Bktz, ktw〉t| dw <∞
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as well as

lim
R→∞

sup
z∈Cn

∫
Cn\B(z,R)

|〈Bktz, ktw〉t| dw = 0.

Here, A∗ is of course understood as an operator on F qt with 1
p + 1

q = 1. The set of

weakly localized operators is denoted by Ap,twl . It has been known for a while that

T p,t ⊆ Ap,tsl ⊆ A
p,t
wl , where closures are taken in operator norm [90]. In [131], J. Xia

surprisingly managed to prove that

T 2,t = T 2,t
lin (L∞(Cn)) = A2,t

sl = A2,t
wl .

Our results from Corollary 3.3.4 are therefore extending parts of Xia’s result to the
case p 6= 2. The full extension of Xia’s result to the case p 6= 2 was recently proven,
based on our characterization T p,t = C1, by R. Hagger, who also added two further
characterizations:

Theorem 8.0.1 ([79]). For any p ∈ (1,∞) and t > 0 the following holds true:

T p,t = Asl

= Awl

= Pt BDOp
t Pt

= {A ∈ L(F pt ); [A, T tf ] ∈ K(F pt ) for all f ∈ VO∂(Cn)}.

Here, we used the (somewhat imprecise) notation

Pt BDOp
t Pt := {A ∈ L(F pt ); APt ∈ BDOp

t }.

To all the characterizations mentioned so far, we will add a few more. Recall that

Lpt = {f : Cn → C;

∫
Cn
|f(z)|pe−

p|z|2
2t dz <∞}

= {f : Cn → C; fe−
|·|2
2t ∈ Lp(Cn)}.

Consider the inductively defined sequence

ct0 = 0, ctk+1 =
1

4t(1− ctkt)
.

Then, for all k we have 0 ≤ ctk <
1
2t and ctk is strictly increasing towards 1

2t . Define

Dkt := {f : Cn → C; ‖f‖Dkt := ess sup
z∈Cn

|f(z)e−c
t
k|z|

2 | <∞}.

Dkt is easily seen to be a Banach space (in principle, Dkt = L∞
1/(2ctk)

). Further, Dkt ⊂ L
p
t .

Set

Dt :=
⋃
k∈N0

Dkt .
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Then, we obtain the following scale of Banach spaces in Lpt :

L∞(Cn) = D0
t ⊂ D1

t ⊂ · · · ⊂ Dkt ⊂ · · · ⊂ Dt ⊂ L
p
t .

This scale of Banach spaces was seemingly first considered (in the Hilbert space case)
in [16]. Since we are mainly interested in operators acting on spaces of holomorphic
functions, we also introduce

Hkt := Dkt ∩Hol(Cn), Ht =
⋃
k∈N0

Hkt = Dt ∩Hol(Cn).

Then, we obtain again a scale of Banach spaces:

C ∼= H0
t ⊂ H1

t ⊂ · · · ⊂ Hkt ⊂ · · · ⊂ Ht ⊂ F
p
t . (8.1)

Here is an important fact regarding this scale of Banach spaces and Toeplitz operators:

Proposition 8.0.2 ([16]). Let g ∈ L∞(Ω). Then, for any f ∈ Hkt we have

‖T tgf‖Hk+1
t
≤
‖g‖∞‖f‖Hkt
(1− ctkt)n

.

Since the computations in [16] are pretty straightforward and explain the concept
quite well, we decided to include them here for completeness:

Proof. For any z ∈ Cn we have

|T tgf(z)| ≤ 1

(πt)n

∫
Cn
|f(w)||g(w)|e

Re(z·w)
t
− |w|

2

t dw

≤ 1

(πt)n
‖g‖∞‖f‖Hkt

∫
Cn
e

Re(z·w)
t
−( 1

t
−ctk)|w|

2
dw

=
1

(πt)n
1

(1− ctkt)n
‖g‖∞‖f‖Hkt

∫
Cn
e

2
Re(z·w)

2t
√

1−ct
k
t
− 1
t
|w|2

dw

=
‖g‖∞‖f‖Hkt
(1− ctkt)n

〈
Kt

z

2
√

1−ct
k
t

,Kt
z

2
√

1−ct
k
t

〉
t

=
‖g‖∞‖f‖Hkt
(1− ctkt)n

e
|z|2

4t(1−ct
k
t)

=
‖g‖∞‖f‖Hkt
(1− ctkt)n

ec
t
k+1|z|

2

.

Hence, for any z ∈ Cn:

|T tgf(z)|e−c
t
k+1|z|

2

≤
‖g‖∞‖f‖Hkt
(1− ctkt)n

,

which is exactly the statement we wanted to prove.
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In particular, this implies that any Toeplitz operator with bounded symbol leaves
Ht invariant. Since the Weyl operators W t

z are themselves Toeplitz operators with
bounded symbols, we obtain the following: Whenever A ∈ L(F pt ) is such that it leaves
Ht invariant, then αz(A) leaves Ht invariant for any z ∈ Cn. This justifies the following
definition taken from [16]:

Definition 8.0.3. A linear operator A ∈ L(F pt ) satisfying A(Ht) ⊆ Ht is said to act
uniformly continuously on the scale (8.1) if for any k1 ∈ N0 there exist k2 ≥ k1, d > 0
such that for all z ∈ Cn, f ∈ Hk1t :

‖αz(A)f‖Hk2t ≤ d‖f‖Hk1t .

We will denote by Ap,tuc the set of all bounded operators on F pt which act uniformly
continuously on (8.1). Since the product of two uniformly continuously acting operators
is easily seen to act uniformly continuously again, this is indeed an algebra.

Proposition 8.0.2 yields that the sum of products of Toeplitz operators with bounded
symbols is contained in Ap,tuc . Thus, we clearly have

T p,t ⊆ Ap,tuc ,

where the closure is taken with respect to the operator norm. In [15], W. Bauer and
the author presented the following result for the case p = 2, t = 1. The proof carries
over to arbitrary p and t.

Proposition 8.0.4. Let t > 0 and p ∈ (1,∞). Then, we have the equality

T p,t = Ap,tuc .

Proof. Having Theorem 8.0.1 at hand, it suffices to prove that any A ∈ Ap,tuc is
sufficiently localized. This can be seen as follows:

〈Aktz, ktw〉t = 〈AW t
z1,W

t
zW

t
−zW

t
w1〉t

= 〈α−z(A)1,W t
−zW

t
w1〉t

= 〈α−z(A)1,W t
w−z1〉te−

i Im(z·w)
t

= 〈α−z(A)1, ktw−z〉te−
i Im(z·w)

t .

This gives us, for an appropriate choice of k ∈ N and d > 0 such that ‖αz(A)1‖Hkt ≤
d‖1‖H0

t
= d:

|〈Aktz, ktw〉t| ≤
1

(πt)n

∫
Cn
|[α−z(A)1](u)ktw−z(u)|e−

|u|2
t du

≤ 1

(πt)n

∫
Cn
‖α−z(A)1‖Hkt e

Re((w−z)·u)
t

− |w−z|
2

2t
−( 1

t
−ctk)|u|

2
du

≤ d

(πt)n
e−
|z−w|2

2t

∫
Cn
e

Re((w−z)·u)
t

−( 1
t
−ctk)|u|

2
du
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= de−
|z−w|2

2t
1

(1− ctkt)n
e
|z−w|2

4t(1−ct
k
t)

=
d

(1− ctkt)n
e−( 1

2t
−ctk+1)|z−w|

2

.

Since ctk+1 <
1
2t , A is clearly sufficiently localized.

Let us recall the following result:

Theorem 8.0.5 ([14, Theorem 6]). Let f ∈ BMO(Cn). Then, f̃ (t) is bounded for one
t > 0 if and only if it is bounded for all t > 0.

As in [15, Lemma 4.11] we obtain the following:

Lemma 8.0.6. Let f ∈ BMO(Cn) such that T tf is bounded on F pt . Then, we have

T tf ∈ Asl.

Proof. From Lemma 7.2.1 we get

〈T tfktz, ktw〉t = 〈fktz, ktw〉t = e
s

2t(t−s) |z−w|
2− is

t(t−s) Im(w·z)〈f̃ (s)kt−sz , kt−sw 〉t−s.

Boundedness of T tf clearly implies that f̃ (t) is bounded. Letting s < t
2 we obtain from

the above theorem that f̃ (s) is also bounded. Lemma 7.2.2 now gives

|〈f̃ (s)kt−sz , kt−sw 〉t−s| ≤ ‖f̃ (s)‖∞e
1

4(t−s) |z−w|
2

and therefore

|〈fktz, ktw〉t| ≤ ‖f̃ (s)‖∞e
1

2(t−s)(
s
t
− 1

2)|z−w|2

with s
t −

1
2 < 0. Hence, T tf is sufficiently localized.

Remark 8.0.7. Let us assume that f : Cn → C is measurable with fKt
z ∈ F 2

t for every
z ∈ Cn such that f̃ (s) is bounded for some s ∈ (0, t/2). Corollary 7.2.5 proves that T tf
is bounded under these assumptions. All the estimates from the proof of the previous
lemma can be carried out in the same way, proving that under the assumptions of
Corollary 7.2.5 (and p ∈ (1,∞)) we even obtain T tf ∈ T p,t.

Proposition 8.0.8. For any p ∈ (1,∞), t > 0 we have

T p,t = {T tf ; f ∈ BMO(Cn) such that T tf ∈ L(F pt )}.

Proof. Follows from the previous lemma and the inclusion L∞(Cn) ⊂ BMO(Cn).

Summarizing the results, we now have the following characterizations of the Toeplitz
algebra at hand:
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Theorem 8.0.9. For any p ∈ (1,∞) and t > 0 we have

T p,t = T p,tlin (BUC(Cn)) = C1

= {A ∈ L(F pt ); fs ∗A→ A as s→ 0}
= {g ∗B; g ∈ L1(Cn), B ∈ L(F pt )}

= Asl = Awl = Ap,tuc
= Pt BDOp

t Pt

= {A ∈ L(F pt ); [A, T tf ] ∈ K(F pt ) for all f ∈ VO∂(Cn)}.

8.1 Remarks

Those characterizations of T p,t which are consequences of Quantum Harmonic Analysis
hold, as we have discussed in previous chapters, also in the non-reflexive cases. The
characterizations presented in [79], together with their proofs, should not depend on
reflexivity and carry over to the cases p = 1, ∞. Hence, in principle we expect that
all the characterizations mentioned in this chapter work for all p ∈ [1,∞]. Since this is
not the right place to digress on the p-(in)dependence of the arguments presented in
[79], we preferred to place our discussion only in the reflexive setting.

Let us alter the definition of band operators in the following way: We say that
A ∈ L(Lpt ) is an essentially band operator, A ∈ BOess, if

∃ω > 0 : ∀f, g ∈ L∞(Cn) with dist(supp(f), supp(g)) > ω : MfAMg ∈ K(Lpt ).

Further, let us define the essentially band-dominated operators as

BDOp
ess,t := BOess.

N. Vasilevski asked if Pt BDOp
t Pt and Pt BDOp

ess,t Pt, are the same algebra, i.e. if

T p,t = Pt BDOp
ess,t Pt

holds true. Clearly, we have the inclusion T p,t ⊆ Pt BDOp
ess,t Pt. Since K(Lpt ) is

contained in BDOp
t , one might expect that BDOp

t = BDOp
ess,t. This seems to be an

interesting problem for future work.



Chapter 9

Toeplitz operators on
pluriharmonic Fock and
Bergman spaces

9.1 Bergman spaces on bounded symmetric domains and
their operators

Let Ω ⊂ Cn be a bounded symmetric domain in its Harish-Chandra realization, cf.
[21, 58,86,101,124]. Since we will not need much of the theory of such domains, we do
not give a detailed introduction and mention only several facts. Further information
can easily be found in the literature.

Let us denote by g the genus of Ω and by (r, a, b) its type, all of which are certain
numerical invariants. Note that the genus is usually denoted by p, which we will not
do, as we will reserve the use of p for Lp-spaces in consistency with the rest of this
work. h : Cn × Cn → C will denote the Jordan triple determinant of Ω, which is a
certain polynomial function being holomorphic in the first and anti-holomorphic in
the second variable. For any λ > −1, it is well-known that the measure νλ on Ω,

dνλ(z) = cλh(z, z)λdz,

is finite. We choose the constant cλ such that νλ is a probability measure. We will
also consider ν−g, i.e.

dν−g(z) = h(z, z)−gdz,

which is well-known to be invariant under holomorphic automorphisms of Ω. In
particular, ν−g is invariant under every ϕz, the geodesic symmetry of Ω exchanging z
and 0. With respect to the automorphisms ϕz, the Jordan triple determinant satisfies
the following important identity:

h(ϕz(w), ϕz(w)) =
h(z, z)h(w,w)

|h(z, w)|2
.

147
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Since

h(z, w) = h(w, z),

this yields

h(ϕz(w), ϕz(w)) = h(ϕw(z), ϕw(z)).

For any p ∈ (1,∞) we define the standard weighted Bergman spaces Apλ(Ω) as

Apλ(Ω) := Lp(Ω, νλ) ∩Hol(Ω).

Similarly to the case of the Fock space, one sees that this is always a closed subspace
of the enveloping Lebesgue space Lp(Ω, νλ). Of course, for p = 2 we are in the Hilbert
space setting. A2

λ(Ω) turns again out to be a reproducing kernel Hilbert space, the
kernel functions being given by

Kλ
z (w) = Kλ(w, z) = h(w, z)−λ−g.

Since we assume Ω to be in its Harish-Chandra realization, we always have 0 ∈ Ω and
Ω is circular around the origin. This can be seen to imply Kλ(w, 0) = 1 for each w ∈ Ω,
which we will occasionally use later. As in the case of the Fock space, the A2

λ inner
product induces the standard duality between Apλ(Ω) and Aqλ(Ω), where 1

p + 1
q = 1.

We will denote by d(z, w) := β(z, w) the Bergman distance function on Ω, which is
the distance associated with the Hermitian metric with tensor

gjk(z) =
∂2

∂zj∂zk
logK0(z, z).

By Pλ we will denote the orthogonal projection from L2(Ω, νλ) onto A2
λ(Ω). The

projection is given by the integral operator

Pλf(z) =

∫
Ω
f(w)Kλ(z, w)dνλ(w) =

∫
Ω
f(w)h(z, w)−λ−gdνλ(w). (9.1)

As in the case of the Fock space, we would like to consider the same integral operator
as a projection from Lp(Ω, νλ) to Apλ(Ω). Unfortunately, the projection is in general
unbounded for p 6= 2. We always assume in the following that p and λ are such that
Pλ defines a bounded projection from Lp(Ω, νλ) to Apλ(Ω). A sufficient condition for
this is given by the following result in terms of the numerical invariants of Ω.

Proposition 9.1.1 ([58, Lemma 9]). Let λ > g − 1 and

1 +
(r − 1)a

(r − 1)a+ 2(λ− g + 1)
< p < 1 +

(r − 1)a+ 2(λ− g + 1)

(r − 1)a
.

Then, the integral operator Pλ from Equation (9.1) defines a bounded projection from
Lp(Ω, νλ) onto Apλ(Ω).



Chapter 9. Toeplitz operators on pluriharmonic Fock and Bergman spaces 149

Using the projection Pλ, we can define Toeplitz operators on Apλ(Ω): For any
f ∈ L∞(Ω) we let

T λf : Apλ(Ω)→ Apλ(Ω), T λf (g) = Pλ(fg).

For a suitable symbol f : Ω→ C, the Hankel operator Hλ
f is defined as

Hλ
f = (I − Pλ)Mf : Apλ → Lp(Ω, νλ).

The Banach space adjoint of Hλ
f can always be identified, under the standard dual

pairing, with

(Hλ
f )∗ = PλMf (I − Pλ) : Lq(Ω, νλ)→ Aqλ.

In particular, we always have the following well-known relation between Toeplitz and
Hankel operators for suitable symbols:

T λf T
λ
g − T λfg = −(Hλ

f
)∗Hλ

g .

We define the Berezin transform of f ∈ L∞(Ω) for λ > −1 as

Bλ(f)(z) :=

〈
f

Kλ
z

‖Kλ
z ‖A2

λ

,
Kλ
z

‖Kλ
z ‖A2

λ

〉
A2
λ

= h(z, z)λ+g

∫
Ω
f(w)

1

|h(w, z)|2(λ+g)
dνλ(w).

Let us mention some important results:

Proposition 9.1.2 ([58,82]). Assume either p = 2 or

1 +
(r − 1)a

2(λ+ 1)
< p < 1 +

2(λ+ 1)

(r − 1)a
.

For f ∈ L∞(Ω) we have

T λf is compact ⇐⇒ Bλ(f) ∈ C0(Ω).

A bounded function f : Ω→ C is said to be of vanishing mean oscillation, we write
f ∈ L∞(Ω) ∩VMOλ

∂(Ω), if

MOλ(f)(z) := Bλ(|f |2)(z)− |Bλ(f)(z)|2(z)→ 0, β(0, z)→∞.

As in the Fock space setting, one can see that for bounded functions the membership
in VMOλ

∂(Ω) is indeed independent of λ [84]. Therefore, we will write

VMO∂(Ω) := L∞(Ω) ∩VMOλ
∂(Ω).
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Proposition 9.1.3 ([21,82,84]). Assume either p = 2 or

1 +
(r − 1)a

2(λ+ 1)
< p < 1 +

2(λ+ 1)

(r − 1)a
.

If f ∈ VMO∂(Ω), then Hλ
f is compact. Furthermore,

σess(T
λ
f ) =

⋂
R>0

Bλ(f)(Ω \ E(0, R)).

Here, E(0, R) denotes the metric balls around 0 with respect to the Bergman metric.

The map f 7→ T λf also serves as a model for strict quantization on the bounded
symmetric domain, i.e. for a suitable class of symbols the following asymptotics hold
true:

lim
λ→∞

‖T λf ‖ = ‖f‖∞, (9.2)

lim
λ→∞

‖T λf T λg − T λfg‖ = 0, (9.3)

lim
λ→∞

∥∥∥∥λi [T λf , T
λ
g ]− T λ{f,g}

∥∥∥∥ = 0. (9.4)

We will now present some results on these asymptotics, all of which are in the Hilbert
space setting p = 2.

The following result is well-known for certain classes of functions (see e.g. [12,
Proposition 4.4] for functions which are uniformly continuous with respect to the
Bergman metric). The general case was proven by the author in [71]. We will later
provide a proof different from the one shown there.

Proposition 9.1.4. Let f ∈ L∞(Ω). Then, we have

lim
λ→∞

‖Bλ(f)‖∞ = lim
λ→∞

‖T λf ‖ = ‖f‖∞.

By UC(Ω) we denote those functions from Ω to C which are uniformly continuous
(not necessarily bounded) with respect to the Bergman metric β. When considering
Toeplitz operators with such symbols, they are in general unbounded. Yet, compositions
of such Toeplitz operators are well-defined: For each λ there is a dense subspace Dλ of
L2(Ω, νλ) (the construction of which is similar to the space Dt from Chapter 8) which
is self-adjoint and an invariant subspace of both Pλ and Mf for f ∈ UC(Ω), cf. [17]
for details. Hence, Dλ ∩ A2

λ(Ω) is a dense subspace of A2
λ(Ω) being invariant under

T λf for f uniformly continuous. In particular, we may form compositions of Toeplitz
operators with such symbols on this dense subspace.

While unbounded symbols in general give rise to unbounded Hankel operators,
they are bounded if the symbol is uniformly continuous, at least for p = 2. We have
the following even stronger result, which relates Hankel operators to the quantization
estimates:
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Proposition 9.1.5 ([17]). For p = 2 and f ∈ UC(Ω) we have

‖Hλ
f ‖ → 0, λ→∞.

In particular, for any g ∈ UC(Ω) or g ∈ L∞(Ω) the following holds true:

‖T λf T λg − T λfg‖ → 0, λ→∞.

If Ω = Bn, the unit ball of Cn, the following result can be shown to hold true.

Proposition 9.1.6 ([17]). For f ∈ VMOb(Bn) we have

‖Hλ
f ‖ → 0, λ→∞.

In particular, for any g ∈ L∞(Bn) we obtain

‖T λf T λg − T λfg‖ → 0, λ→∞.

Here, VMOb(Bn) denotes the class of all f ∈ L∞(Bn) for which

lim
ρ→0

A2(f, z, ρ) = 0 uniformly on Bn.

In this, we used the notations

A2(f, z, ρ) :=
1

|E(z, ρ)|

∫
E(z,ρ)

|f(w)− fE(z,ρ)|2 dV (w)

and

fE(z,ρ) =
1

|E(z, ρ)|

∫
E(z,ρ)

f(w) dV (w)

and E(z, ρ) is the metric ball of radius ρ around z with respect to the metric β.
As we will not need any results on the quantization estimate (9.4), we do not

discuss any advances in that direction and only refer to the literature [35, 61], cf. also
[81] for related results in the Fock space setting.

Let us end this section by providing a proof of Proposition 9.1.4. We already gave
a proof of that statement in [71]. Here, we will present a different proof, which is more
in the spirit of the duality arguments used earlier in this thesis. The following fact is
probably well-known, yet we could not locate it in the literature.

Lemma 9.1.7. Let f ∈ L1(Ω, ν−g). Then, Bλ(f) ∈ L1(Ω, ν−g) for λ > −1 and
Bλ(f)→ f in L1(Ω, ν−g) as λ→∞.

Proof. A key fact in the following computations will be that h(z, z) ≤ 1 and hence
h(z, z)−g ≥ 1 for all z ∈ Ω. We first prove that Bλ(f) ∈ L1(Ω, v−g):∫

Ω
|Bλ(f)(z)| dν−g(z) ≤ cλ

∫
Ω

∫
Ω
|f(w)|h(z, z)λ+gh(w,w)λ+g

|h(z, w)|2(λ+g)
dν−g(w) dν−g(z)
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=

∫
Ω
|f(w)|h(w,w)λ+gcλ

∫
Ω

h(z, z)λ+g

|h(z, w)|2(λ+g)
dν−g(z) dν−g(w)

=

∫
Ω
|f(w)|h(w,w)λ+g〈Kλ

w,K
λ
w〉λ dν−g(w)

=

∫
Ω
|f(w)| dν−g(w)

= ‖f‖L1(Ω,ν−g).

Recall that the Bergman length metric β is invariant under holomorphic automorphisms
of Ω. In particular, β(ϕz(u), ϕz(v)) = β(u, v) for any z, u, v ∈ Ω. Hence, if K1,K2 ⊂ Ω
are compact, then we have for z ∈ K1, w ∈ K2:

β(0, ϕz(w)) = β(ϕz(0), w) = β(z, w) ≤ β(z, 0) + β(0, w),

which is uniformly bounded in z and w by compactness of K1 and K2. Therefore,⋃
z∈K1

ϕz(K2)

is relatively compact in Ω. Now, let g ∈ Cc(Ω) and K := supp(g). For some δ > 0 let

K̃ :=
⋃
w∈K

ϕw(E(0, δ)),

which is compact with ϕw(K̃) ⊇ E(0, δ) for any w ∈ K, where E(0, δ) denotes the ball
with respect to the Bergman metric β. Then:∫

Ω\K̃
|Bλ(g)(z)|dν−g(z) ≤

∫
K
|g(w)|cλ

∫
Ω\K̃

h(z, z)λ+gh(w,w)λ+g

|h(z, w)|2(λ+g)
dν−g(z)dν−g(w)

=

∫
K
|g(w)|cλ

∫
Ω\K̃

h(ϕw(z), ϕw(z))λ+gdν−g(z)dν−g(w)

=

∫
K
|g(w)|cλ

∫
ϕw(Ω\K̃)

h(z, z)λ+gdν−g(z)dν−g(w)

=

∫
K
|g(w)|cλ

∫
Ω\ϕw(K̃)

h(z, z)λ+gdν−g(z)dν−g(w)

≤
∫
K
|g(w)|cλ

∫
Ω\E(0,δ)

h(z, z)λ+gdν−g(z)dν−g(w)

≤ ‖g‖L1(Ω,ν−g)νλ(Ω \B(0, δ)).

As is well known, νλ(Ω \ E(0, δ))→ 0 as λ→∞ (since h(z, z) is strictly less than 1
outside of E(0, δ)).

For g ∈ Cc(Ω) and ε > 0 arbitrary we can therefore find K ⊂ Ω compact such that
for all λ large enough we have

‖g − Bλ(g)‖L1(Ω,ν−g) < ε+ ‖g − Bλ(g)‖L1(K,ν−g). (9.5)
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Furthermore, as is well-known (see e.g. [12, Theorem 4.10]), ‖g − Bλ(g)‖∞ → 0 as
λ→∞ for any g ∈ Cc(Ω). Now, we can put the pieces together: Let f ∈ L1(Ω, ν−g)
and ε > 0 arbitrary. Then, we can find g ∈ Cc(Ω) with ‖f − g‖L1(Ω,ν−g) < ε. This
gives

‖f − Bλ(f)‖L1(Ω,ν−g)

≤ ‖f − g‖L1(Ω,ν−g) + ‖g − Bλ(g)‖L1(Ω,ν−g) + ‖Bλ(g)− Bλ(f)‖L1(Ω,ν−g).

By assumption, the first term is less that ε. Moreover, by linearity and the L1(Ω, ν−g)
estimate for the Berezin transform, the third term is also less than ε. For the second
term, let us pick K ⊂ Ω compact according to Equation (9.5). Furthermore, let us
choose λ large enough such that ‖g − Bλ(g)‖∞ < ε

ν−g(K) . Then,

‖g − Bλ(g)‖L1(Ω,ν−g) ≤ ε+ ‖g − Bλ(g)‖L1(K,ν−g) ≤ 2ε,

which finishes the proof.

Proof of Proposition 9.1.4. We want to emphasize that the very simple idea of using
the duality (L1)′ = L∞ in this proof was kindly communicated to us by Raffael Hagger
(private communications), who in turn received this hint from Christian Seifert.

Since L1(Ω, ν−g)
′ = L∞(Ω) isometrically under the L2(Ω, ν−g) dual pairing, we

know that for any f ∈ L∞(Ω):

‖f‖∞ = sup
g∈L1(Ω,ν−g), ‖g‖L1=1

|〈f, g〉L2(Ω,ν−g)|.

An easy application of Fubini’s Theorem shows that for any f ∈ L∞(Ω) and g ∈
L1(Ω, ν−g):

〈Bλ(f), g〉L2(Ω,ν−g) = 〈f,Bλ(g)〉L2(Ω,ν−g).

By the previous lemma, we obtain for any such f, g:

〈Bλ(f), g〉L2(Ω,ν−g) → 〈f, g〉L2(Ω,ν−g), λ→∞.

Thus, for ‖g‖L1 = 1:

‖Bλ(f)‖∞ ≥ |〈Bλ(f), g〉L2(Ω,ν−g)| → |〈f, g〉L2(Ω,ν−g)|

and hence

lim inf
λ→∞

‖Bλ(f)‖∞ ≥ ‖f‖∞.

On the other hand,

‖Bλ(f)‖∞ ≤ ‖T λf ‖op ≤ ‖f‖∞,

which proves the result.
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9.2 Bergman and Fock spaces of pluriharmonic functions

For the rest of this chapter, we will try to notationally not distinguish between Fock
and Bergman spaces. We will always make the following assumptions on p and λ:

Assumption 1. If Ω = Cn, we assume p ∈ (1,∞) and λ > 0. If Ω is a bounded
symmetric domain, we assume either p = 2 and λ > −1 arbitrary or p ∈ (1,∞) and
λ > −1 such that

1 +
(r − 1)a

2(λ+ 1)
< p < 1 +

2(λ+ 1)

(r − 1)a
.

We want to emphasize that this assumption is satisfied for p, λ if and only if it is
satisfied for q, λ with 1 = 1/p+ 1/q.

In this and the following sections we will try to use a unified notation for both
the Fock space and Bergman spaces on bounded symmetric domain. This necessarily
causes some inconveniences related to one of the parameters t or λ. This can be best
seen when dealing with the limits of strict quantization: In the Fock space setting this
corresponds to letting t→ 0, whereas on bounded symmetric domains the limit one
takes is λ→∞. That is, t ≈ ~ but λ ≈ 1/~. To resolve this, one has to pass to the
reciprocal of one of the parameters t or λ. Which of the two possibilities is chosen
is probably a matter of personal taste. Since the literature on bounded symmetric
domains always consideres the parameter λ, but it is not entirely uncommon to consider
1/t on the Fock space (for example K. Zhu uses α = 1/t in [137]), we decided to stick
with the usual conventions on bounded symmetric domains and break with our earlier
conventions on Fock spaces. This has also the advantage that we will use the “right”
convention in Section 9.5, where we solely deal with statements on Bergman spaces
over the unit ball.

For Ω a bounded symmetric domain in its Harish-Chandra realization (we refer
again to e.g. [58] for an explanation of that term) we set

Lpλ(Ω) := Lp(Ω, νλ)

and further

Lpλ(Cn) := Lp(Cn, µ2/(λp))

for those values of λ, p which satisfy Assumption 1. In comparison with the standard
notation of spaces on Cn introduced in Chapter 2, we have

Lpλ(Cn) = Lp1/λ.

For Ω a bounded symmetric domain or Ω = Cn we let

Apλ(Ω) := Lpλ(Ω) ∩Hol(Ω).

In particular,
Apλ(Cn) = F p1/λ.
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We might occasionally write νλ instead of µ1/λ for the Gaussian measure on Cn. Finally,

we will use the notation T λf for the Toeplitz operators acting on Apλ(Ω). In the Fock
space setting, this is not in accordance with our earlier conventions (the Toeplitz

operators on Apλ(Cn) would have been denoted T
1/λ
f ). For the rest of this chapter, we

prefer to “forget” about this particular Fock space convention used in earlier chapters
to have a unified and more compact notation for all occurring cases. This is a price we
are willing the pay for the sake of simpler notation.

We will denote by d(z, w) the appropriate distance between z, w ∈ Ω, i.e. for
Ω = Cn this will denote the Euclidean distance and for Ω a bounded symmetric domain
this means the distance considered with respect to the Bergman length metric. Further,
by E(z, ρ) we will denote the open ball of radius ρ > 0 around z ∈ Ω with respect to
the metric d.

Recall that anti-holomorphic functions are, simply speaking, complex conjugates of
holomorphic functions (or equivalently functions f ∈ C1(Ω) satisfying ∂f

∂zj
= 0 on Ω for

all j = 1, . . . , n) and pluriharmonic functions are those f ∈ C2(Ω) such that ∂2f
∂zj∂zk

= 0

for all j, k = 1, . . . , n, cf. also Appendix A.1. In analogy to the spaces of holomorphic
functions, we define the spaces of anti-holomorphic and pluriharmonic functions as

Apλ,ah(Ω) := {f ∈ Lpλ(Ω); f is anti-holomorphic},
Apλ,ph(Ω) := {f ∈ Lpλ(Ω); f is pluriharmonic}.

The map C : f 7→ f is an anti-linear isometric bijection from Apλ(Ω) to Apλ,ah(Ω). Since

the holomorphic polynomials are dense in Apλ(Ω), the anti-holomorphic polynomials
are dense in Apλ,ah(Ω). Denote by Pλ the orthogonal projection from L2

λ(Ω) to A2
λ(Ω).

Our Assumption 1 implies that Pλ extends to a bounded projection from Lpλ(Ω) to
Apλ(Ω) [80].

Recall that Pλ is the integral operator

Pλ(f)(z) =

∫
Ω
f(w)Kλ(z, w) dνλ(w),

where Kλ(z, w) is the reproducing kernel function from A2
λ(Ω). In particular, reminding

ourselves of the changed conventions, we have on the Fock space:

Kλ(z, w) = eλw·z, z, w ∈ Cn.

The projection with the complex conjugate integral kernel,

Pλ,ah(f)(z) :=

∫
Ω
f(w)Kλ(w, z) dνλ(w)

defines the orthogonal projection from L2
λ(Ω) to A2

λ,ah(Ω). Since they are related

by Pλ = CPλ,ahC, Pλ extends boundedly from Lpλ(Ω) to Apλ(Ω) if and only if Pλ,ah

extends boundedly from Lpλ(Ω) to Apλ,ah(Ω).
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We will also need

Apλ,ah	C(Ω) := {f ∈ Apλ,ah(Ω); f(0) = 0}.

One readily verifies that Pλ,ah − Pλ,ahPλ is a bounded projection onto Apλ,ah	C(Ω), in

particular it is also a closed subspace of L2
λ(Ω).

Recall that by Lemma A.1.5, every pluriharmonic function f : Ω → C can be
written as

f = g + h,

where g : Ω → C is holomorphic and h : Ω → C is anti-holomorphic with h(0) = 0.
Since both g and h can be approximated uniformly on compact subsets of Ω by their
power series expansion around the origin, the sum of holomorphic and anti-holomorphic
polynomials can be seen to be dense in Apλ,ph(Ω) (the argument is analogous to the

density of holomorphic polynomials in Apλ(Ω)).
Let p1 be a holomorphic polynomial on Ω, i.e. a polynomial in z = (z1, . . . , zn),

and p2 an anti-holomorphic polynomial, i.e. in z = (z1, . . . , zn), such that p2(0) = 0.
Then, using the notation

p∗2(z) := p2(z),

which is a holomorphic polynomial, we have

〈p1, p2〉L2
λ(Ω) = 〈p1p

∗
2, 1〉L2

λ(Ω)

= 〈p1p
∗
2,K

λ
0 〉L2

λ(Ω)

= p1(0)p∗2(0)

= 0.

Using density of these polynomials, this implies that we have the orthogonal decompo-
sition

A2
λ,ph(Ω) = A2

λ(Ω)⊕A2
λ,ah	C(Ω).

For p 6= 2, this still holds true as a direct sum decomposition: The only nontrivial fact
about this is that for

Apλ,ph(Ω) 3 f = g + h

with g holomorphic and h anti-holomorphic with h(0) = 0, g and h satisfy the
integrability conditions. If we assume f to be a pluriharmonic polynomial, then of
course both g and h are polynomials, hence

Pλf = g, (Pλ,ah − Pλ,ahPλ)f = h

by what we have seen above. Using the density of polynomials, we obtain

Pλf = g, (Pλ,ah − Pλ,ahPλ)f = h
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for arbitrary f ∈ Apλ,ph(Ω) and therefore in particular g ∈ Apλ(Ω), h ∈ Apλ,ah	C(Ω)
by the boundedness of the projections. This proves that we can always decompose
Apλ,ph(Ω) into the direct sum

Apλ,ph(Ω) = Apλ(Ω)⊕Apλ,ah	C(Ω).

For future notation, we also introduce the projection

Pλ,C := Pλ,ahPλ = PλPλ,ah,

which has the range

ran(Pλ,C) = Apλ(Ω) ∩ Apλ,ah(Ω).

Therefore, the projection onto Apλ,ah	C(Ω) is given by Pλ,ah − Pλ,C. We define a
collection of new Toeplitz operators:

T λ,ah
f : Apλ,ah(Ω) →Apλ,ah(Ω), T λ,ah

f = Pλ,ahMf

T λ,ph
f : Apλ,ph(Ω) →Apλ,ph(Ω), T λ,ph

f = Pλ,phMf

T λ,ah	C
f : Apλ,ah	C(Ω)→Apλ,ah	C(Ω), T λ,ah	C

f = (Pλ,ah − Pλ,C)Mf .

The properties of the operators T λ,ah
f are closely related to those of the usual Toeplitz

operators T λf , since they are connected through

CT λf C = T λ,ah

f
.

We will also encounter the following variation of the usual Hankel operator:

Hλ,ah
f = (I − Pλ,ah)Mf : Apλ,ah(Ω)→ Lpλ(Ω).

Note that CHλ
fC = Hλ,ah

f
, hence

‖Hλ,ah
f ‖ → 0, λ→∞ ⇐⇒ ‖Hλ

f
‖ → 0, λ→∞

and

Hλ,ah
f is compact ⇐⇒ Hλ

f
is compact.

Our goal is to study the operators T λ,ph
f . Toeplitz operators on pluriharmonic function

spaces have been a subject of constant interest in the past years, cf. [16, 46,47, 63, 78,
98–100,128]. Surprisingly, it seems that the approach we are following for studying
these operators has been widely ignored in most works on the matter. We could only
locate it in [16]. To be precise, we will study the properties of these operators through
the following matrix decomposition, which we fix for later reference as a lemma:
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Lemma 9.2.1. Let f ∈ L∞(Ω). Then, with respect to the direct sum decomposition

Apλ,ph(Ω) = Apλ(Ω)⊕Apλ,ah	C(Ω),

we can represent T λ,phf as the operator matrix

T λ,phf =

(
T λf Aλf
Bλ
f T λ,ah	Cf

)
,

where

Aλf = PλMf : Apλ,ah	C(Ω)→ Apλ(Ω)

Bλ
f = (Pλ,ah − Pλ,C)Mf : Apλ(Ω)→ Apλ,ah	C(Ω).

Since we have the two complementary projections (Pλ,ah − Pλ,C) and Pλ,C on
Apλ,ah(Ω), we obtain the direct sum decomposition

Apλ,ah(Ω) = Apλ,ah	C(Ω)⊕Apλ,C(Ω), (9.6)

where
Apλ,C(Ω) = ran(Pλ,C) = {f ∈ Apλ,ah(Ω); f ≡ const.}.

It will also turn out useful to write T λ,ah
f with respect to this decomposition.

Lemma 9.2.2. For f ∈ L∞(Ω) we have with respect to the decomposition (9.6):

T λ,ahf =

(
T λ,ah	Cf Eλf
Gλf Pλ,CMf : Apλ,C(Ω)→ Apλ,C(Ω)

)
.

Here,

Eλf := (Pλ,ah − Pλ,C)Mf : Apλ,C(Ω)→ Apλ,ah	C(Ω),

Gλf := Pλ,CMf : Apλ,ah	C(Ω)→ Apλ,C(Ω).

9.3 Spectral theory for VMO∂ symbols

The essential spectrum of Toeplitz operators on holomorphic function spaces with
symbols of vanishing mean oscillation is well understood, cf. Corollary 5.4.2 or
Proposition 9.1.3. We want to derive the same result for Toeplitz operators on
Apλ,ph(Ω):

Proposition 9.3.1. Let p, λ satisfy Assumption 1 and f ∈ VMO∂(Ω). Then, we have

σess(T
λ,ph
f ) =

⋂
R>0

(Bλ(f)(Ω \ E(0, R))).

Here, E(0, R) denotes the Euclidean ball for Ω = Cn or the metric ball with respect to
β for Ω a bounded symmetric domain and Bλ(f) denotes the “usual” Berezin transform
of f , i.e. the Berezin transform arising from the holomorphic Bergman/Fock space
A2
λ(Ω).
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Proof. Note that

Bλ
f = (Pλ,ah − Pλ,C)Hλ

f

and

Aλf = (Bλ
f
)∗,

where we consider Bλ
f

as an operator from Aqλ(Ω) to Aqλ,ah	C(Ω). By Proposition 9.1.3

and Theorem 2.3.5, both Aλf and Bλ
f are compact. By Lemma 9.2.1, T λ,ph

f is Fredholm
if and only if (

T λf 0

0 T λ,ah	C
f

)
is Fredholm. By simply considering the definition of what it means to be Fredholm,
this clearly is equivalent to both T λf and T λ,ah	C

f being Fredholm.

Let us check when T λ,ah	C
f is Fredholm using Lemma 9.2.2. For the operator Eλf

we get

Eλf = (Pλ,ah − Pλ,C)(I − Pλ)Mf = (Pλ,ah − Pλ,C)Hλ
f |Apλ,ah	C(Ω).

Hence, Eλf is also compact for f ∈ VMO∂(Ω). Furthermore,

Gλf = (Eλ
f

)∗

in the same sense as Aλf = (Bλ
f
)∗, yielding compactness of Gλf . By Lemma 9.2.2 we

obtain that T λ,ah
f is Fredholm precisely if T λ,ah	C

f and Pλ,CMf : Apλ,C(Ω)→ Apλ,C(Ω)
are both Fredholm. But the latter operator is always Fredholm, as it acts on a
one-dimensional space. Hence, we have obtained

T λ,ph
f is Fredholm ⇐⇒ T λf , T

λ,ah
f are both Fredholm,

i.e.

σess(T
λ,ph
f ) = σess(T

λ
f ) ∪ σess(T λ,ah

f ).

Recall that

T λ,ah
f = CT λ

f
C.

Since C is isometric and anti-linear, this yields

σess(T
λ,ah
f ) = σess(T λf ) = σess(T

λ
f ).

Together with Proposition 9.1.3 and Corollary 5.4.2 this completes the proof.
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Proposition 9.3.2. Let p, λ satisfy Assumption 1 and f ∈ VMO∂(Ω). Then, T λ,phf

is compact if and only if

Bλ(f)(z)→ 0, d(0, z)→∞,

where Bλ(f) is again the usual Berezin transform coming from the reproducing kernels
of A2

λ(Ω).

Proof. The proof follows arguments completely analogous to those of the previous
proof, using the compactness characterization of T λf in terms of the Berezin transform,
Proposition 9.1.2 and Corollary 3.3.10.

Remark 9.3.3. A more general compactness criterion for T λf acting on A2
λ,ph(Cn), where

f ∈ L∞(Cn), has been obtained in [16]: T λf is compact if and only if the pluriharmonic
Berezin transform (i.e. the Berezin transform induced from the reproducing kernels of
A2
λ,ph(Cn), see also the next section) vanishes at infinity.

We want to end this short section by a brief discussion of the Fredholm index of
Toeplitz operators on pluriharmonic function spaces, without going too much into
technical details. As is well-known, an interesting Fredholm theory needs matrix-valued
symbols. As results on the Fredholm index on the holomorphic function spaces are
mainly available in the Hilbert space setting, we restrict ourselves also to the case
p = 2. For f ∈ L∞(Ω,Mn(C)), the Toeplitz operator T λ,nF is defined as

T λ,nF g = Pλ(Fg),

where

g =

g1
...
gn

 ∈ A2
λ(Ω)n,

and the projection Pλ acts componentwise as the projection. The anti-holomorphic and
pluriharmonic Toeplitz operators T λ,ah,n

F and T λ,ph,n
F are defined analogously. When

the matrix symbol is in VMO∂(Ω) componentwise, one can show, very similarly to the
proof of Proposition 9.3.1, that we have

T λ,ph,n
F

∼=

(
T λ,nF 0

0 T λ,ah,n
f

)
+K

for some K compact, hence

ind(T λ,ph,n
F ) = ind(T λ,nF ) + ind(T λ,ah,n

F ).

Further, by adjoining the operator C (considered as acting on L2
λ(Ω)n in the obvious

way), we have

T λ,ah,n
F = CT λ,N

F
C,
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and therefore, since C is an (anti-linear) isomorphism,

ind(T λ,ah,n
F ) = ind(T λ,n

F
),

where F is the matrix symbol obtained from F by entrywise complex conjugation.
Hence,

ind(T λ,ph,n
F ) = ind(T λ,nF ) + ind(T λ,n

F
).

If we consider the particular case of the unit ball

Ω = Bn := {z ∈ Cn; |z| < 1},

then we can say even more. Here, we have (at least for the case λ = 0, most likely
even for every λ) the Venugopalkrishna Index Theorem [126] and its extension to

VMO∂-symbols [133], expressing the Fredholm index of T λ,nF in terms of the topological
mapping degree of the first column of F . Since passing from the first column of F to
the first column of F geometrically corresponds to applying n reflections with respect
to (real) hyperplanes, we obtain from standard facts on the topological degree that

ind(T 0,n

F
) = (−1)n ind(T 0,n

F ),

yielding

ind(T 0,ph,n
F ) =

{
2 ind(T 0,n

F ), n even

0, n odd

for this particular case. We expect the same formula to be valid for Ω = Cn and any λ.

9.4 Quantization estimates

In this section, we will investigate the quantization asymptotics (9.2)-(9.4) in the
setting of pluriharmonic Toeplitz operators. Since the quantization estimates for the
holomorphic cases have so far only been studied in the Hilbert space setting p = 2, we
will impose the same restriction throughout this section. The first estimate can be
easily derived from the holomorphic case:

Proposition 9.4.1. For any f ∈ L∞(Ω) we have

‖T λ,phf ‖ → ‖f‖∞, λ→∞.

Proof. Lemma 9.2.1 immediately yields the estimate

‖T λ,ph
f ‖ ≥ ‖T λf ‖.

Combining this with the trivial estimate ‖T λ,ph
f ‖ ≤ ‖f‖∞ and the quantization results

of Proposition 9.1.4 and Theorem 2.3.6 proves the result.
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Remark 9.4.2. The proof of the previous proposition only hinges on the fact that A2
λ(Ω)

is a subspace of A2
λ,ph(Ω). Hence, if Aλ is any closed subspace of L2

λ(Ω) containing

A2
λ(Ω) and PAλ is the orthogonal projection onto Aλ, then

‖T λ,Aλf ‖ → ‖f‖∞, λ→∞

for any f ∈ L∞(Ω), where

T λ,Aλf = PAλMf : Aλ → Aλ.

Indeed, there is more we can say on the first order of the pluriharmonic quantization
than just the previous proposition. For example, one can consider the convergence of
the pluriharmonic Berezin transform, which we are going to define now.
A2
λ,ph(Ω), being the orthogonal sum of the two reproducing kernel Hilbert spaces

A2
λ(Ω) and A2

λ,ah	C(Ω), is itself a reproducing kernel Hilbert space, the reproducing

kernel being the sum of the two kernels of A2
λ(Ω) and A2

λ,ah	C(Ω). As C maps A2
λ(Ω)

bijectively and isometrically to A2
λ,ah(Ω), the reproducing kernel of A2

λ,ah(Ω), being
anti-holomorphic in the first and holomorphic in the second variable, is given by

Kλ,ah(w, z) = Kλ(w, z) = Kλ(z, w).

Since the reproducing kernel of A2
λ,ah(Ω) at z = 0 is constantly 1, the reproducing

kernel of A2
λ,ah	C(Ω) is

Kλ,ah	C(w, z) = Kλ,ah(w, z)− 1 = Kλ(w, z)− 1.

In total, the reproducing kernel of A2
λ,ph(Ω) is given by

Kλ,ph(w, z) = Kλ(w, z) +Kλ,ah(w, z)− 1 = Kλ(w, z) +Kλ(w, z)− 1.

We denote the normalized kernels by

kλ(w, z) :=
Kλ(w, z)

‖Kλ(·, z)‖L2
λ(Ω)

,

kλ,ah(w, z) :=
Kλ,ah(w, z)

‖Kλ,ah(·, z)‖L2
λ(Ω)

,

kλ,ph(w, z) :=
Kλ,ph(w, z)

‖Kλ,ph(·, z)‖L2
λ(Ω)

.

Then, the antiholomorphic and the pluriharmonic Berezin transforms of f ∈ L∞(Ω)
are defined by

Bah
λ (f)(z) := 〈fkλ,ah(·, z), kλ,ah(·, z)〉L2

λ(Ω),

Bph
λ (f)(z) := 〈fkλ,ph(·, z), kλ,ph(·, z)〉L2

λ(Ω).
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Since kλ,ah is simply the complex conjugate of kλ, we have

|kλ,ah(w, z)|2 = |kλ(w, z)|2

and therefore evidently

Bλ(f)(z) = Bah
λ (f)(z).

Lemma 9.4.3. Let f ∈ L∞(Ω) be such that ‖Hλ
f ‖, ‖H

λ,ah
f ‖ → 0 as λ→∞. Further,

assume z ∈ Ω is such that

Bλ(f)(z)→ c, λ→∞

for some c ∈ C. Then,

Bphλ (f)(z)→ c, λ→∞.

Proof. Observe that we have

kλ,ph(·, 0) = 1 = kλ(·, 0)

and therefore

Bph
λ (f)(0) = Bλ(f)(0)

for all λ. We may thus assume z 6= 0. Then,

‖Kλ(·, z)‖ → ∞, λ→∞.

By orthogonality, we have

‖Kλ(·, z) +Kλ,ah(·, z)− 1‖2 = ‖Kλ(·, z)‖2 + ‖Kλ,ah(·, z)− 1‖2

= ‖Kλ(·, z)‖2 ·
(

1 +
‖Kλ,ah(·, z)− 1‖2

‖Kλ(·, z)‖2

)
.

Since

〈Kλ,ah(·, z), 1〉λ = 〈Kλ,ah(·, z),Kλ,ah(·, 0)〉λ
= Kλ,ah(0, z)

= 1,

we obtain

‖Kλ,ah(·, z)− 1‖2 = ‖Kλ,ah(·, z)‖2 − 1

= ‖Kλ(·, z)‖2 − 1.

Hence,

1 +
‖Kλ,ah(·, z)− 1‖2

‖Kλ(·, z)‖2
→ 2, λ→∞.
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Combining these computations, we have shown that

‖Kλ(·, z) +Kλ,ah(·, z)− 1‖2

‖Kλ(·, z)‖2
→ 2, λ→∞.

In particular, if one of the two limits below exists, we have the equality

lim
λ→∞

〈f(Kλ(·, z) +Kλ,ah(·, z)− 1),Kλ(·, z) +Kλ,ah(·, z)− 1〉λ
‖Kλ(·, z) +Kλ,ah(·, z)− 1‖2

= lim
λ→∞

〈f(Kλ(·, z) +Kλ,ah(·, z)− 1),Kλ(·, z) +Kλ,ah(·, z)− 1〉λ
2‖Kλ,ah(·, z)− 1‖2

,

where the left-hand side of that equation is simply the limit of Bph
λ (f)(z). Using

sesquilinearity, we will split the right-hand side of that equation into simpler terms, the
limits of which we can compute. Let us first deal with those terms which contribute to
the limit:

〈fKλ(·, z),Kλ(·, z)〉λ
2‖Kλ(·, z)‖2

=
1

2
Bλ(f)(z)→ 1

2
c, λ→∞

〈fKλ,ah(·, z),Kλ,ah(·, z)〉λ
2‖Kλ(·, z)‖2

=
1

2
Bah
λ (f)(z) =

1

2
Bλ(f)(z)→ 1

2
c, λ→∞.

Since the measure νλ was normalized to one we have ‖f‖L2
λ
≤ ‖f‖∞, hence

1

‖Kλ(·, z)‖2
|〈f, 1〉λ| ≤

‖f‖∞
‖Kλ(·, z)‖2

→ 0, λ→∞.

Further,

|〈fKλ(·, z),Kλ,ah(·, z)− 1〉λ|
‖Kλ(·, z)‖2

=
|〈(I − Pλ)(fKλ(·, z)),Kλ,ah − 1〉λ|

‖Kλ(·, z)‖2

=
|〈Hλ

f (Kλ(·, z)),Kλ,ah(·, z)− 1〉λ|
‖Kλ(·, z)‖2

≤ ‖Hλ
f ‖
‖Kλ,ah(·, z)− 1‖
‖Kλ(·, z)‖

.

As we have noted earlier, ‖K
λ,ah(·,z)−1‖
‖Kλ(·,z)‖ → 1 as λ→∞. Since we assumed ‖Hλ

f ‖ → 0

when λ→∞, the initial expression converges to 0. The same reasoning shows that

〈fKλ,ah(·, z),Kλ(·, z)− 1〉λ
‖Kλ(·, z)‖2

→ 0, λ→∞.

Finally,

|〈f,Kλ(·, z)〉λ|
‖Kλ(·, z)‖2

≤ ‖f‖∞
‖Kλ(·, z)‖

→ 0, λ→∞
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and the same holds true for

〈f,Kλ,ah(·, z)〉λ
‖Kλ(·, z)‖2

.

Combining all the pieces, we obtain

Bph
λ (f)(z)→ c

as λ→∞.

Proposition 9.4.4. For f ∈ Cb(Ω) we have

Bphλ (f)(z)→ f(z), λ→∞

for all z ∈ Ω.

Proof. Fix z ∈ Ω and let ε > 0 arbitrary. Let δ > 0 be such that w ∈ E(z, δ) implies
|f(z)− f(w)| < ε. Then,

|Bph
λ (f)(z)− f(z)| ≤

∫
Ω
|f(w)− f(z)| |K

λ,ph(z, w)|2

Kλ,ph(z, z)
dνλ(w)

≤ ε+ 2‖f‖∞
∫

Ω\E(z,δ)

|Kλ,ph(z, w)|2

Kλ,ph(z, z)
dνλ(w).

Pick χ ∈ C(Ω) such that χ|Ω\E(z,δ) ≡ 1, 0 ≤ χ ≤ 1 and χ(z) = 0. Such a function
is clearly uniformly continuous. Hence, by Proposition 9.1.5 and Theorem 2.3.7, χ
satisfies the assumptions of Lemma 9.4.3. Thus,∫

Ω\E(z,δ)

|Kλ,ph(z, w)|2

Kλ,ph(z, z)
dνλ(w) =

∫
Ω\E(z,δ)

[χ(w)− χ(z)]
|Kλ,ph(z, w)|2

Kλ,ph(z, z)
dνλ(w)

≤
∫

Ω
[χ(w)− χ(z)]

|Kλ,ph(z, w)|2

Kλ,ph(z, z)
dνλ(w)

= Bph
λ (χ)(z)− χ(z)→ 0, λ→∞.

Therefore,

lim sup
λ→∞

|Bph
λ (f)(z)− f(z)| ≤ ε.

Since ε > 0 was arbitrary, the result follows.

Let us come to the second quantization result for pluriharmonic Toeplitz operators,
i.e.

‖T λ,ph
f T λ,ph

g − T λ,ph
fg ‖ → 0, λ→∞.
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As mentioned earlier, there is a dense, self-adjoint subspace Dλ of L2
λ(Ω) which is

invariant under Pλ and Mf for f ∈ UC(Ω). Then, it is also invariant under Pλ,ah, since

Pλ,ah(f) = Pλ(f).

In particular, we obtain that Dλ ∩ A2
λ,ph(Ω) is invariant under T λ,ph

f for f ∈ UC(Ω).

Hence, we can form the product of T λ,ph
f with T λ,ph

g for either g ∈ L∞(Ω) or g ∈ UC(Ω).

Proposition 9.4.5. Let f ∈ UC(Ω). Then, for any g ∈ L∞(Ω) or g ∈ UC(Ω) we
have

‖T λ,phf T λ,phg − T λ,phfg ‖ → 0, λ→∞.

Proof. Applying Lemma 9.2.1, it is immediate to see that, with respect to the orthog-
onal decomposition

A2
λ,ph(Ω) = A2

λ(Ω)⊕A2
λ,ah	C(Ω)

we obtain the matrix representation

T λ,ph
f T λ,ph

g − T λ,ph
fg =

(
(1, 1) (1, 2)

(2, 1) (2, 2)

)
,

where

(1, 1) = T λf T
λ
g − T λfg +AλfB

λ
f ,

(1, 2) = T λf A
λ
g +AλfT

λ,ah	C
g −Aλfg,

(2, 1) = Bλ
f T

λ
g + T λ,ah	C

f Bλ
g −Bλ

fg,

(2, 2) = Bλ
fA

λ
g + T λ,ah	C

f T λ,ah	C
g − T λ,ah	C

fg .

We need to show that the operator norm of all four components of that matrix converge
to zero as λ→∞.

Recalling that

Aλf = (Bλ
f
)∗

and

Bλ
f = (Pλ,ah − Pλ,C)Hλ

f ,

we immediately obtain that ‖(1, 1)‖ → 0 as λ → ∞ by a simple application of
Proposition 9.1.5 or Theorem 2.3.7.

In regard to ‖(1, 2)‖ → 0 and ‖(2, 1)‖ → 0, observe that both blocks factorize as

(1, 2) = −D1,λ
f C2,λ

g , (2, 1) = −D2,λ
f C1,λ

g ,
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where

C1,λ
g = (I − Pλ,ph)Mf : A2

λ(Ω)→ A2
λ,ph(Ω)⊥,

C2,λ
g = (I − Pλ,ph)Mf : A2

λ,ah	C(Ω)→ A2
λ,ph(Ω)⊥,

D1,λ
f = PλMf : A2

λ,ph(Ω)⊥ → A2
λ(Ω),

D2,λ
f = (Pλ,ah − Pλ,C)Mf : A2

λ,ph(Ω)⊥ → A2
λ,ah	C(Ω).

Now, observe that

C1,λ
g = (I − Pλ,ph)Hλ

g ,

C2,λ
g = (I − Pλ,ph)Hλ,ah

f |A2
λ,ah	C(Ω)

and

D1,λ
f = (C1,λ

f
)∗, D2,λ

f = (C2,λ

f
)∗.

Thus, we obtain ‖(1, 2)‖ → 0 and ‖(2, 1)‖ → 0 by another application of Proposition
9.1.5 or Theorem 2.3.7.

Finally, since we already know that ‖Bλ
fA

λ
g‖ → 0 as λ→∞, we obtain ‖(2, 2)‖ → 0

if we can show that

‖T λ,ah	C
f T λ,ah	C

g − T λ,ah	C
fg ‖ → 0.

Since

T λ,ah
f T λ,ah

g − T λ,ah
fg = C[T λ

f
T λg − T λfg]C

and C is isometric, we know that

‖T λ,ah
f T λ,ah

g − T λ,ah
fg ‖ → 0, λ→∞.

Applying Lemma 9.2.2, we obtain that the upper left entry of T λ,ah
f T λ,ah

g − T λ,ah
fg with

respect to the decomposition (9.6) is given by

T λ,ah	C
f T λ,ah	C

g − T λ,ah	C
fg + EλfG

λ
f .

Recalling that

Eλf = (Pλ,ah − Pλ,C)Hλ
f |A2

λ,ah	C(Ω), Gλg = (Eλg )∗,

we deduce that ‖EλfGλg‖ → 0. Since the norm of the full operator matrix representing

T λ,ah
f T λ,ah

g − T λ,ah
fg converges to zero, also the norm of the upper left entry has to

converge to zero. Thus, we get

‖T λ,ah	C
f T λ,ah	C

g − T λ,ah	C
fg ‖ → 0, λ→∞.

This now yields ‖(2, 2)‖ → 0 as λ→∞.
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For Ω = Cn or Ω = Bn, the same proof yields a VMOb(Ω)-version of the result,
using Proposition 9.1.6 or the VMOb part of Theorem 2.3.7:

Proposition 9.4.6. Let Ω = Cn or Ω = Bn and f ∈ VMOb(Ω). Then, for any
g ∈ L∞(Ω) we have

‖T λ,phf T λ,phg − T λ,phfg ‖ → 0, λ→∞.

We want to end this section by explaining why (9.4) fails on pluriharmonic function
spaces. This has already been noted by M. Englǐs in [62]. We reproduce the argument
presented there, but arrive at a slightly more detailed result.

Note that Pλ,ph is an integral operator with real-valued integral kernel, hence

Pλ,phh = Pλ,phh

for any h ∈ L2
λ(Ω). This implies

T λ,ph
f h = T λ,ph

f
h

for any h ∈ A2
λ,ph(Ω). Therefore, for f, g ∈ L∞(Ω) and h ∈ A2

λ,ph(Ω) we obtain

[T λ,ph
f , T λ,ph

g ]∗(h) = [T λ,ph
g , T λ,ph

f
](h)

= [T λ,ph
g , T λ,ph

f ](h)

= −[T λ,ph
f , T λ,ph

g ](h).

The pluriharmonic Berezin transform of an operator acting on A2
λ,ph(Ω) is of course

defined as

Bph
λ (A)(z) = 〈Akλ,ph(z, ·), kλ,ph(z, ·)〉.

On the level of Toeplitz operators, this of course agrees with the Berezin transform of
the symbol:

Bph
λ (T λ,ph

f ) = Bph
λ (f).

Since the pluriharmonic reproducing kernel is real-valued, this implies

Bph
λ ([T λ,ph

f , T λ,ph
g ])(z) =

〈[T λ,ph
f , T λ,ph

g ]Kλ,ph(z, ·),Kλ,ph(z, ·)〉
Kλ,ph(z, z)

=
〈[T λ,ph

f , T λ,ph
g ]∗Kλ,ph(z, ·),Kλ,ph(z, ·)〉

Kλ,ph(z, z)

= −
〈[T λ,ph

f , T λ,ph
g ]Kλ,ph(z, ·),Kλ,ph(z, ·)〉

Kλ,ph(z, z)
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= −Bph
λ ([T λ,ph

f , T λ,ph
g ])(z)

and hence Bph
λ ([T λ,ph

f , T λ,ph
g ])(z) = 0 for all z ∈ Ω. If we now let f, g ∈ L∞(Ω) and

h ∈ Cb(Ω), then ∥∥∥∥λi [T λ,ph
f , T λ,ph

g ]− T λ,ph
h

∥∥∥∥→ 0, λ→∞

and ∥∥∥∥λi [T λ,ph
f , T λ,ph

g ]− T λ,ph
h

∥∥∥∥ ≥ ∥∥∥∥Bph
λ

(
λ

i
[T λ,ph
f , T λ,ph

g ]− T λ,ph
h

)∥∥∥∥
∞

= ‖Bph
λ (T λ,ph

h )‖∞ = ‖Bph
λ (h)‖∞ ≥ 0

together imply that ‖Bph
λ (h)‖∞ → 0. By Proposition 9.4.4 this yields h = 0. Hence,

we obtain:

Proposition 9.4.7. Let f, g ∈ L∞(Ω) and h ∈ Cb(Ω). Then,∥∥∥∥λi [T λ,phf , T λ,phg ]− T λ,phh

∥∥∥∥→ 0, λ→∞

holds if and only if h ≡ 0 and

‖[T λ,phf , T λ,phg ]‖ ∈ o(1/λ) as λ→∞.

In particular, there cannot be any Poisson structure {·, ·} on Ω such that∥∥∥∥λi [T λ,phf , T λ,phg ]− T λ,ph{f,g}

∥∥∥∥→ 0, λ→∞

holds for all f, g ∈ C∞c (Ω).

9.5 Applying quantization estimates in spectral theory

As we have just seen, Toeplitz quantization on pluriharmonic function spaces is not a
“good” quantization in the sense that the property (9.4) fails entirely. Yet, it is not
pointless to study the remaining properties (9.2), (9.3) in the pluriharmonic setting,
as suitable understanding of these quantization estimates has applications in spectral
theory. We will show one of such possible applications, which was strongly motivated by
the work done in [18,20]. Those two papers dealt with the representation and spectral
theory of Toeplitz algebras on A2

λ(Bn) for symbols with certain product structures. Let
us introduce a similar setting. Note that we will only deal with the lowest dimensional
case (that of B2) in which these methods work. Generalizations to Bn for n > 2 can
be concluded very analogously to [18].



170 9.5. Applying quantization estimates in spectral theory

Recall that the measure νλ on B1 := {z ∈ C; |z| < 1} is given by

dνλ(z) =
Γ(2 + λ)

πΓ(λ+ 1)
(1− |z|2)λdV (z).

The standard orthonormal basis of A2
λ(B1) is

eλa(z) =

√
Γ(a+ λ+ 2)

a!Γ(λ+ 2)
za, z ∈ B1, a ∈ N0.

Hence, we obtain the “standard” orthonormal basis of A2
λ,ph(B1) by adding the

orthonormal family

eλb (z) =

√
Γ(b+ λ+ 2)

b!Γ(λ+ 2)
zb, z ∈ B1, b ∈ N,

i.e.

A2
λ,ph(B1) = Span{eλa ; a ∈ N0} ⊕ Span{eλb ; b ∈ N}.

On B2 := {(z1, z2) ∈ C2; |z1|2 + |z2|2 < 1} the measure νλ (which we will in our
notation, somewhat imprecisely, not distinguish from the measure νλ on B1) is defined
as

dνλ(z1, z2) =
Γ(3 + λ)

π2Γ(λ+ 1)
(1− |z1|2 − |z2|2)λdV (z1, z2).

We now introduce for λ > −1 the Bergman spaces A2
λ,ph-h(B2) as the closed subspace

of L2
λ(B2) = L2(B2, νλ) specified by the following orthonormal basis:

A2
λ,ph-h(B2) := Span{eλ,+(a1,a2), e

λ,−
(b1,b2); (a1, a2) ∈ N2

0, (b1, b2) ∈ N× N0}.

Here, we define the basis functions as

eλ,+(a1,a2)(z1, z2) =

√
Γ(a1 + a2 + λ+ 3)

a1!a2!Γ(λ+ 3)
za11 za22 , (a1, a2) ∈ N2

0,

eλ,−(b1,b2)(z1, z2) =

√
Γ(b1 + b2 + λ+ 3)

b1!b2!Γ(λ+ 3)
z1
b1zb22 , (b1, b2) ∈ N× N0.

Hence, A2
λ,ph-h(B2) consists of all C2 functions f on B2 satisfying

∂2f

∂z1∂z1
= 0,

∂f

∂z2
= 0,

which also satisfy the integrability condition of L2
λ(B2). In particular, this means that

A2
λ,ph-h(B2) consists of those functions from L2

λ(B2) which are (pluri-)harmonic in z1
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and holomorphic in z2. In particular, every such function can be written as a power
series on B2:

f(z1, z2) =
∞∑
j=0

( ∞∑
k=0

cj,kz
k
1z

j
2 +

∞∑
l=1

dj,lz1
lz2
j

)

=
∞∑
j=0

( ∞∑
k=0

c′j,ke
λ,+
(k,j)(z1, z2) +

∞∑
l=1

d′j,le
λ,−
(l,j)(z1, z2)

)
.

An obvious factorization yields

eλ,+(a1,a2)(z1, z2) = ea2+λ+1
a1 (z1)eλ+1

a2 (z2),

eλ,−(b1,b2)(z1, z2) = eb2+λ+1
b1

(z1)eλ+1
b2

(z2).

Setting for every a2 ∈ N0

Ha2 := Span{eλ,+(a1,a2), e
λ,−
(b1,a2); a1 ∈ N0, b1 ∈ N}

gives the following orthogonal decomposition:

A2
λ,ph-h(B2) =

⊕
a2∈N0

Ha2 . (9.7)

A simple calculation shows that every f ∈ Ha2 can be written as

f(z1, z2) = fa2(z1)eλ+1
a2 (z2)

for some unique fa2 ∈ A2
a2+λ+1,ph(B1). In particular, every f ∈ A2

λ,ph-h(B2) can be
expanded into a series

f(z1, z2) =
∑
a2∈N0

fa2(z1)eλ+1
a2 (z2)

satisfying

‖f‖2A2
λ,ph-h(B2) =

∑
a2∈N0

‖fa2‖2A2
a2+λ+1(B1).

We denote by ua2 : Ha2 → A2
a2+λ+1,ph(B2) the operator

ua2(f) = fa2 .

Then, we obtain an isometric isomorphism

U =
⊕
a2∈N0

ua2 : A2
λ,ph-h(B2) =

⊕
a2∈N0

Ha2 →
⊕
a2∈N0

A2
a2+λ+1,ph(B1). (9.8)
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By Pλ,ph-h we will denote the orthogonal projection from L2
λ(B2) onto A2

λ,ph-h(B2). For

f ∈ L∞(B2) we denote by T λ,ph-h
f the Toeplitz operator

T λ,ph-h
f = Pλ,ph-hMf : A2

λ,ph-h(B2)→ A2
λ,ph-h(B2).

Our goal will be to understand the essential spectrum of T λ,ph-h
f whenever the symbol

f has a particularly nice structure. In principle, one could allow the same product
structure as for symbols of Toeplitz operators on A2

λ(B2) studied in [20], i.e. for
g ∈ L∞(B1 × (0, 1)) consider

f(z1, z2) := g

(
z1,

r1√
1− r2

2

)
∈ L∞(B2),

where

z1 = r1e
iθ1 , z2 = r2e

iθ2

are the coordinatewise polar coordinates. Then, one could, up to some obvious changes,
imitate the approach taken in [20] by studying the representation theory of algebras
generated by such Toeplitz operators. Upon assuming certain continuity assumptions on
the symbol, one could then obtain a description of the essential spectrum. Nevertheless,
we prefer to take a simpler symbol structure: For g ∈ L∞(B1) we consider

g̃(z1, z2) := g(z1) ∈ L∞(B2).

Considering this simpler symbol structure has the advantage that we can give a
significantly shorter proof for the characterization of the essential spectrum of T λ,ph-h

g̃
which does not simply follow the lines of [20]. That is, we will prove the following
result:

Proposition 9.5.1. Let g ∈ VO∂(B1). Then, T λ,ph-hg̃ is Fredholm if and only if there
is some c > 0 such that |g(z1)| ≥ c for all z1 ∈ B1. In particular,

σess(T
λ,ph-h
g̃ ) = g(B1).

Here is the key fact that relates the action of T λ,ph-h
g̃ with the decomposition (9.7).

Lemma 9.5.2. T λ,ph-hg̃ acts as follows:

〈T λ,ph-hg̃ eλ,+(a1,a2), e
λ,+
(ã1,ã2)〉 =

{
0, a2 6= ã2

〈T a2+λ+1,ph
g ea2+λ+1

a1 , ea2+λ+1
ã1

〉, a2 = ã2

,

〈T λ,ph-hg̃ eλ,+(a1,a2), e
λ,−
(b1,b2)〉 =

{
0, a2 6= b2

〈T a2+λ+1,ph
g ea2+λ+1

a1 , ea2+λ+1
b1

〉, a2 = b2
,
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〈T λ,ph-hg̃ eλ,−(b1,b2), e
λ,+
(a1,a2)〉 =

{
0, b2 6= a2

〈T a2+λ+1,ph
g ea2+λ+1

b1
, ea2+λ+1
a1 〉, b2 = a2

,

〈T λ,ph-hg̃ eλ,−(b1,b2), e
λ,−
(b̃1,b̃2)

〉 =

{
0, b2 6= b̃2

〈T b2+λ+1,ph
g eb2+λ+1

b1
, eb2+λ+1

b̃1
〉, b2 = b̃2

.

In particular, T λ,ph-hg̃ leaves the decomposition (9.7) invariant.

Proof. The computations are identical to those in the proof of [20, Lemma 2.2]. We
repeat them here to prove the first identity, the remaining cases can be worked out
entirely analogously.

Let (a1, a2), (ã1, ã2) ∈ N2
0. Then,

〈T λ,ph-h
g̃ eλ,+(a1,a2), e

λ,+
(ã1,ã2)〉

=

√
Γ(a1 + a2 + λ+ 3)

a1!a2!Γ(λ+ 3)

Γ(ã1 + ã2 + λ+ 3)

ã1!ã2!Γ(λ+ 3)

Γ(λ+ 3)

π2Γ(λ+ 1)

×
∫
B2

g(z1)za11 za22 z1
ã1z2

ã2(1− (|z1|2 + |z2|2))λdV (z1, z2).

Introducing polar coordinates z1 = r1e
iθ1 , z2 = r2e

iθ2 , we obtain

=

√
Γ(a1 + a2 + λ+ 3)Γ(ã1 + ã2 + λ+ 3)

a1!a2!ã1!ã2!

1

π2Γ(λ+ 1)

∫ 2π

0
eiθ2(a2−ã2)dθ2

×
∫
{r1,r2>0;r21+r22<1}

∫ 2π

0
g(r1e

iθ1)ra1+ã1+1
1 ra2+ã2+1

2 eiθ1(a1−ã1)

× (1− r2
1 − r2

2)λdθ1dr2dr1.

Of course, the first integral in this expression equals 0 for a2 6= ã2 and 2π for a2 = ã2.
For the latter case, we get

=

√
Γ(a1 + a2 + λ+ 3)Γ(ã1 + a2 + λ+ 3)

a1!(a2!)2ã1!

2

πΓ(λ+ 1)

×
∫
{r1,r2>0;r21+r22<1}

∫ 2π

0
g(r1e

iθ1)ra1+ã1+1
1 r2a2+1

2 eiθ1(a1−ã1)

× (1− r2
1 − r2

2)λdθ1dr2dr1.

Using the substitution s = r2√
1−r21

in the r2 integral we get

=

√
Γ(a1 + a2 + λ+ 3)Γ(ã1 + a2 + λ+ 3)

a1!(a2!)2ã1!

2

πΓ(λ+ 1)
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×
∫ 2π

0

∫ 1

0
g(r1e

iθ1)ra1+ã1+1
1 eiθ1(a1−ã1)(1− r2

1)a2+λ+1dθ1dr1

×
∫ 1

0
s2a2+1(1− s2)λds

=

√
Γ(a1 + a2 + λ+ 3)Γ(ã1 + a2 + λ+ 3)

a1!(a2!)2ã1!

1

πΓ(λ+ 1)

×
∫
B1

g(z1)za11 zã11 (1− |z1|2)a2+λ+1dv(z)

∫ 1

0
sa2(1− s)λds.

Using the beta function B(x, y) =
∫ 1

0 s
x−1(1 − s)y−1ds and the well-known identity

B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
we obtain

=
Γ(a2 + λ+ 2)

a2!Γ(λ+ 1)
B(a2 + 1, λ+ 1)

×
∫
B
g(z1)ea2+λ+1

a1 (z1)ea2+λ+1
ã1

(z1)
Γ(a2 + λ+ 3)

πΓ(a2 + λ+ 2)
(1− |z1|2)a2+λ+1dz1

= 〈T a2+λ+1
g ea2+λ+1

a1 , ea2+λ+1
ã1

〉a2+λ+1.

Since

〈T a2+λ+1
g ea2+λ+1

a1 , ea2+λ+1
ã1

〉a2+λ+1 = 〈T a2+λ+1,ph
g ea2+λ+1

a1 , ea2+λ+1
ã1

〉a2+λ+1,

this finishes the proof.

Recalling the operator U from (9.8), we have proven:

Corollary 9.5.3. When adjoining by the operator U , we obtain the unitary equivalence

T λ,ph-hg̃ : A2
λ,ph-h(B2)→ A2

λ,ph-h(B2)

∼=
⊕
a2∈N0

T a2+λ+1,ph
g :

⊕
a2∈N0

A2
a2+λ+1,ph(B1)→

⊕
a2∈N0

A2
a2+λ+1,ph(B1).

Before presenting the proof of Proposition 9.5.1, we need one more purely functional
analytic fact:

Lemma 9.5.4. Let Hk, k ∈ N0 be a family of Hilbert spaces and let
⊕

kHk be their
direct orthogonal sum. For a family Ak ∈ L(Hk) let A :=

⊕
k Ak act diagonally on H.

Then, A is Fredholm if and only if each Ak is Fredholm and there are B1
k, B

2
k ∈ L(Hk)

with

AkB
1
k − I ∈ K(Hk), B2

kAk − I ∈ K(Hk)

such that

‖AkB1
k − I‖ → 0, k →∞,

‖B2
kAk − I‖ → 0, k →∞.
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While the lemma is certainly well-known, we provide a proof for completeness.

Proof. Let K = (Kk)k with Kk ∈ L(Hk) act diagonally on H. We claim that K is
compact if and only if each Kk is compact and

‖Kk‖ → 0, k →∞. (9.9)

That every Kk has to be compact for K to be compact is of course necessary. Let us
assume that K does not satisfy (9.9). Pick a sequence (mn)m∈N ⊂ (N0) such that

‖Kmn‖ → lim sup
k→∞

‖Kk‖, n→∞.

For every n ∈ N0 let en ∈ Hmn be such that ‖en‖Hmn = 1 and

‖Kmnen‖Hmn ≥ ‖Kmn‖L(Hmn ) −
1

n
.

Then, the sequence

fn := (δk,mnen)k∈N0 ∈
∞⊕
k=0

Hk

is clearly of norm one and converges weakly to 0. Further,

‖Kfn‖ = ‖Kmnen‖ → lim sup
k→∞

‖Kk‖ > 0, n→∞

hence Kfn does not converge strongly and K cannot be compact.
On the other hand, assume that (9.9) holds true. Let ε > 0 be arbitrary and fix

N ∈ N such that ‖Kk‖ < ε for k > N . For k = 1, . . . , N let Sk be finite rank such
that ‖Kk − Sk‖L(Hk) < ε and let

S = S1 ⊕ S2 ⊕ · · · ⊕ SN ⊕ 0⊕ 0⊕ · · · ∈ L

( ∞⊕
k=1

Hk

)
.

Then,

‖K − S‖H ≤ ε.

Hence, K can be approximated arbitrarily well by finite rank operators and is therefore
compact.

From this, the characterization of Fredholm operators on L(H) is now immediate
by Atkinson’s Theorem.

Proof of Proposition 9.5.1. Assume that |g(z1)| ≥ c > 0 for all z ∈ B1. Since

Ba2+λ+1(g)− g ∈ C0(B1)
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for g ∈ VO∂(B1), it follows by Proposition 9.3.1 that T a2+λ+1,ph
g ∈ L(A2

a2+λ+1,ph(B1))
is Fredholm for every a2 ∈ N0. Furthermore, since VO∂(B1) is contained in UC(B1),
we know from Proposition 9.4.5 that

‖T a2+λ+1,ph
g T a2+λ+1,ph

1/g − I‖ → 0, a2 →∞.

Hence, combining Corollary 9.5.3 with the previous lemma we obtain that T λ,ph-h
g is

Fredholm.

Now, assume that infz1∈B1 |g(z1)| = 0. There are two possible cases:

1. There is a sequence (zj1)j ∈ B1 with zj1 → ∂B1 such that g(zj1)→ 0.

2. There is some z1 ∈ B1 with g(z1) = 0.

In the first case, none of the operators T a2+λ+1,ph
g on A2

a2+λ+1(B1) can be Fredholm
(recall again that Ba2+λ+1(g) − g ∈ C0(B1) for g ∈ VO∂(B1)) by Proposition 9.3.1,

hence T λ,ph-h
g is not Fredholm by the previous Lemma.

In the second case, one can do the following: Consider the sequence (fj)j∈N ⊆
A2
λ,ph-h(B2) defined using the decomposition (9.7) as

fj = (δa2,jk
a2+λ+1(·, z1))a2∈N0 ∈

⊕
a2∈N0

A2
a2+λ+1,ph(B1),

where

ka2+λ+1(·, z1) = ka2+λ+1
z1

is the normalized reproducing kernel of A2
a1+λ+1(B1) (which is of course also contained

in A2
a2+λ+1,ph(B1)). Since each fj has norm one and the fj are pairwise orthogonal,

we of course have fj → 0 weakly as j →∞. Now,

‖T λ,ph-h
g̃ fj‖2 ≤ 〈gkj+λ+1

z1 , gkj+λ+1
z1 〉A2

j+λ+1(B1)

= 〈|g|2kj+λ+1
z1 , kj+λ+1

z1 〉A2
j+λ+1(B1)

= Bj+λ+1(|g|2)(z1),

which is simply the Berezin transform of |g|2 at z1. Since g ∈ VO∂(B1), we in particular
have g ∈ Cb(B1) and hence |g|2 ∈ Cb(B1). Thus,

Bj+λ+1(|g|2)(z1)→ |g|2(z1) = 0, j →∞.

This yields that (T λ,ph-h
g̃ fj)j∈N converges strongly to zero. Therefore, the operator

cannot be Fredholm, as no Fredholm operator can map sequence, weakly but not
strongly convergent to 0, to a sequence strongly convergent to 0.
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9.6 Remarks

In principle, the methods presented in this chapter, which boil down to applying the
matrix representation of T tf with respect to the decomposition into holomorphic and
anti-holomorphic part, do not hinge on Ω being Cn or a bounded symmetric domain.
All that is needed is a good understanding of the holomorphic situation (and Ω should
be at least simply connected). In particular, the method should also be applicable to
obtain results if, say, Ω is a strictly pseudoconvex domain. Nevertheless, we restricted
ourselves to the cases discussed here, since the properties we had in mind are best
understood in these settings.
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Appendices

A.1 Holomorphic and pluriharmonic functions of several
complex variables

The theory of holomorphic functions of several complex variables is certainly a field
of deep and interesting studies. We refer to the well-known textbooks [87, 93] for
introductions to this topic. For our purpose, it suffices to know the following simple
facts. For Ω ⊂ Cn open, we say that f : Ω→ C is holomorphic if it is holomorphic in
every variable separately. Every holomorphic function can be locally expanded into a
power series in z1, . . . , zn. We will denote by

D(z, r) := {w ∈ C; |z − w| < r}

the disc around z ∈ C with radius r > 0 and, more generally, for z = (z1, . . . , zn) ∈ Cn,
r > 0 by P (z, r) the polydisc

P (z, r) : = {w = (w1, . . . , wn) ∈ Cn; |zj − wj | < r for every j = 1, . . . , n}

=

n∏
j=1

D(zj , r).

Let us cite the following fact:

Proposition A.1.1 ([87, Theorem 2.2.6]). Assume Ω ⊂ Cn is open and f : Ω→ Cn
is holomorphic. If P (z, r) ⊂ Ω, then f can be uniformly approximated by its power
series on P (z, r).

Lemma A.1.2. Let Ω ⊂ C be open. Further, let f : Ω→ C be a holomorphic function.
Then, for each z ∈ Ω and r > 0 with D(z, r) ⊂ Ω the following holds true:

f(z) =
1

πr2

∫
D(z,r)

f(w) dw. (A.10)

Proof. By Proposition A.1.1 it suffices to verify the identity for monomials in w − z.
Using polar coordinates, one easily sees that

179
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∫
D(z,r)

(w − z)k dw =

∫
D(0,r)

wk dw

=

∫ r

0
sk+1ds

∫ 2π

0
eiθkdθ

=

{
πr2, k = 0

0, k ≥ 1.

The following is the corresponding version of the previous lemma for several
variables:

Corollary A.1.3. Let Ω ⊂ Cn be open and f : Ω → C holomorphic. For each
z = (z1, . . . , zn) ∈ Ω and r > 0 such that P (z, r) ⊂ Ω we have

f(z) =
1

(πr2)n

∫
P (z,r)

f(w) dw.

Proof. Follows from an iterated use of Lemma A.1.2 for each variable.

Corollary A.1.4. Let Ω ⊂ Cn be open and ω : Ω→ (0,∞) continuous. If K ⊂ Ω is
compact, there is K ′ ⊂ Ω compact such that K ⊆ K ′ and a constant CK > 0 such that
for all holomorphic f : Ω→ C the following holds true:

sup
z∈K
|f(z)| ≤ CK

∫
K′
|f(w)|ω(w) dw.

Proof. Let ε = min
{

dist(K,∂Ω)
2 , 1

}
, where dist is the usual distance between compact

and closed sets in Cn ∼= R2n. Let K ′ = {w ∈ Cn; dist(w,K) ≤ ε}. It is standard to
prove that the Euclidean ball

B(z, r) := {w ∈ Cn;

( n∑
j=1

|zj − wj |2
)1/2

< r}

contains certain polycylinders:

P (z, r/
√
n) ⊂ B(z, r).

In particular, for each z ∈ K we have P (z, ε/
√
n) ⊂ K ′. This yields, using Corollary

A.1.3:

|f(z)| ≤
( n

πε2

)n ∫
P (z,ε/

√
n)
|f(w)| dw

≤
( n

πε2

)n ∫
K′
|f(w)| dw.
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Since ω is continuous, there is some c > 0 such that ω(z) ≥ c for all z ∈ K ′. Then, for
all z ∈ K:

|f(z)| ≤ 1

c

( n

πε2

)n ∫
K′
|f(w)|c dw

≤ 1

c

( n

πε2

)n ∫
K′
|f(w)|ω(w) dw.

Let Ω ⊆ Cn be open and connected. We say that f : Ω→ C is pluriharmonic if f
is twice continuously differentiable and

∂2f

∂zj∂zk
= 0 (A.11)

for all j, k = 1, . . . , n. The following fact about pluriharmonic functions will be of
crucial importance to us:

Lemma A.1.5. Let Ω ⊆ Cn be open and simply connected and x0 ∈ Ω a fixed point.
Then, a C2-function f : Ω→ C is pluriharmonic if and only if there are holomorphic
functions g, h : Ω→ C such that

f = g + h.

If we further assume that h(x0) = 0, then g and h are uniquely determined.

Proof. If g and h are assumed to exist, then it is obvious that f satisfies Equation
(A.11) and thus f is pluriharmonic.

Hence, let us assume that f is pluriharmonic. Since we assume f to be C2, the
order of differentiation in Equation (A.11) does not matter. Furthermore, it is easy to
check by the definitions of the Wirtinger derivatives ∂

∂zj
and ∂

∂zk
that we have

∂f

∂zj
=

(
∂f

∂zj

)
,

∂f

∂zk
=

(
∂f

∂zk

)
.

Combining these statements, we obtain

∂2f

∂zj∂zk
=

∂2f

∂zk∂zj
=

(
∂2f

∂zk∂zj

)
= 0.

In particular, f is pluriharmonic if and only if f is. Since the differential expression
defining pluriharmonicity is linear, this implies that Re(f) and Im(f) are pluriharmonic.
It is well-known that every real-valued pluriharmonic function on a simply-connected
domain is the real part of a holomorphic function [77, Theorem K.3]. Hence, there are
unique holomorphic functions g0, h0 such that

g0 = Re(f) + i Im(g0), h0 = Im(f) + i Im(h0).

Solving these for Re(f) and Im(f) gives

Re(f) =
1

2
(g0 + g0), Im(f) =

1

2
(h0 + h0),
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hence

f = Re(f) + i Im(f) =
1

2
(g0 + ih0) +

1

2
(g0 − ih0)

Letting g = g0 + ih0 and h = g0 − ih0 yields the representation for f .
Regarding the uniqueness, expanding g and h in a power series in z and z, respec-

tively, around x0 shows that the only ambivalence of the representation comes from
the constant part of those power series expansions, which can be made unique by
letting h(x0) = 0.

A.2 The Complex Interpolation Method

Interpolation theory is a mathematical field of outstanding importance in functional
analysis. Among the many interpolation methods, the Complex Interpolation Method
is among the best studied. A section in an appendix like this certainly doesn’t offer
enough space to treat interpolation as a whole, so we restrict ourselves to introducing
notation and mentioning the most important results. For a comprehensive treatment
of the topic, we refer to the classical monograph [33], whose presentation and notation
we also follow here.

Let X0, X1 be Banach spaces (endowed with the norms ‖ · ‖X0 , ‖ · ‖X1). We say
that they are compatible if there exists a Hausdorff topological vector space X such
that both X0 and X1 are subspaces of X. In X we can consider the subspaces

X0 ∩X1 = {f ∈ X; f ∈ X0 and f ∈ X1},
X0 +X1 = {f ∈ X; ∃f0 ∈ X0, f1 ∈ X1 : f = f0 + f1}.

On X0 ∩X1 and X0 +X1 we have the following natural norms:

‖f‖X0∩X1 = max{‖f‖X0 , ‖f‖X1},
‖f‖X0+X1 = inf{‖f0‖X0 + ‖f1‖X1 ; f0 ∈ X0, f1 ∈ X1 s.th. f = f0 + f1}.

With these norms, X0 ∩ X1 and X0 + X1 can be seen to be complete [33, Lemma
2.3.1]. We will occasionally write such compatible couples of Banach spaces as pairs
X = (X0, X1). If (X0, X1) and (Y0, Y1) are compatible couples of Banach spaces, the
“well behaved operators” T : (X0, X1)→ (Y0, Y1) (i.e. the morphisms of the category
of compatible couples of Banach spaces) are bounded linear operators

T : X0 +X1 → Y0 + Y1

such that

T |X0 : X0 → Y0, T |X1 : X1 → Y1

continuously. Here, T |A denotes the restriction to the subspace A. It is easy to see
that such an operator satisfies

‖Tf‖Y0+Y1 ≤ ‖T‖X0→Y0‖‖f0‖X0 + ‖T‖X1→Y1‖f1‖X1
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for all f = f0 + f1 ∈ X0 +X1, which yields

‖T‖X0+X1→Y0+Y1 ≤ max{‖T‖X0→Y0 , ‖T‖X1→Y1}.

For a couple X = (X0, X1) we will also write

∆(X) = X0 ∩X1,

Σ(X) = X0 +X1.

Another Banach space B will be said to be an intermediate space between X0 and X1

if

∆(X) ⊂ B ⊂ Σ(X)

and the inclusions are continuous. Such an intermediate space B is further called an
interpolation space if

T : X → X

implies

T : B → B.

More generally, if X = (X0, X1) and Y = (Y0, Y1) are two compatible couples, then
two Banach spaces B, C are said to be interpolation spaces for the couples X, Y if
they are intermediate spaces with respect to X, Y and

T : X → Y

implies

T : B → C.

Examples of such interpolation spaces are ∆(X), ∆(Y ) and Σ(X), Σ(Y ). For 0 ≤ θ ≤ 1
we say that the interpolation spaces B,C for the couples X,Y are exact of exponent θ
if

T : X → Y

implies

‖T‖B→C ≤ ‖T‖1−θX0→Y0‖T‖
θ
X1→Y1 .

We now define the Complex Interpolation Method. Let S ⊂ C be the strip 0 ≤ Re(z) ≤
1 and S0 its interior 0 < Re(z) < 1. Given a compatible couple X set F(X) to be the
set of all functions f : S → Σ(X) satisfying the following properties:

• f is continuous;
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• f |S0 is analytic;

• t 7→ f(it) is a continuous function from R to X0 vanishing at infinity;

• t 7→ f(1 + it) is a continuous function from R to X1 vanishing at infinity.

Endowed with the norm

‖f‖F = max{sup
t∈R
‖f(it)‖X0 , sup

t∈R
‖f(1 + it)‖X1},

F(X) can be seen to be a Banach space [33, Lemma 4.1.1]. For 0 ≤ θ ≤ 1 we let

X [θ] := {x ∈ Σ(X); x = f(θ) for some f ∈ F(X)},

endowed with the norm

‖x‖[θ] := inf{‖f‖F ; f ∈ F(X) with f(θ) = x}.

(X [θ], ‖ · ‖[θ]) turns out to be an interpolation space for the couple X. Moreover,

this interpolation method is functorial, i.e. if X and Y are compatible couples, then
Xθ and Y θ are interpolation spaces with respect to those couples which are exact of
exponent θ [33, Theorem 4.1.2]. We list further important properties:

Theorem A.2.1 ([33, Theorem 4.2.1, Theorem 4.2.2]). Let X = (X0, X1) be a couple
of compatible Banach spaces. Then, the following hold true:

1) (X0, X1)[θ] = (X1, X0)[1−θ] for 0 ≤ θ ≤ 1;

2) X0 ⊂ X1 ⇒ (X0, X1)[θ1] ⊂ (X0, X1)[θ2] for θ1 ≤ θ2;

3) ∆(X) is dense in (X0, X1)[θ] for 0 ≤ θ ≤ 1;

4) Let X◦j denote the closure of ∆(X) in Xj (j = 0, 1). Then, we have for all
0 ≤ θ ≤ 1:

(X0, X1)[θ] = (X◦0 , X1)[θ] = (X0, X
◦
1 )[θ] = (X◦0 , X

◦
1 )[θ].

A.3 Nuclear operators and operator ideals

We want to add some details on certain operator ideals. We closely follow the author’s
presentation of that topic in [72, Section 2.1] and copy certain passages from there
verbatim.

Let X be a complex Banach space. Recall that an operator A ∈ L(X) is nuclear,
if there are sequences (xj) ⊂ X, (yj) ⊂ X ′ with

∑∞
j=1 ‖yj‖X′‖xj‖X <∞ such that

A =

∞∑
j=1

yj ⊗ xj . (A.12)
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For such an operator we define

‖A‖N := inf
∞∑
j=1

‖yj‖X′‖xj‖X ,

where the infimum is taken over all possible representations (A.12). For rank one
operators

A = y ⊗ x

one can indeed show that
‖A‖N = ‖y‖X′‖x‖X .

We denote by N (X) the set of all nuclear operators on X. Together with the norm
‖ · ‖N , this is well-known to be a Banach ideal in L(X). If the underlying Banach
space X has the approximation property, which we always assume in the following, we
can define the nuclear trace for A ∈ N (X) as

Tr(A) =

∞∑
j=1

yj(xj),

where the trace is independent of the choice of representation (A.12), cf. [75, Theorem
V.1.2]. If X is even reflexive, one can show that the duality relations

(K(X))′ = N (X), (N (X))′ = L(X)

hold true isometrically, where the duality is induced by the trace map:

〈A,B〉 = Tr(AB).

If X is not reflexive, we can still identify L(X) isometrically with a subspace of (N (X))′

via the trace duality pairing. For details on the general theory of operator ideals, we
refer to the books [53,75,108].

We now want to interpolate between the spaces N (X) and L(X). Since N (X) ⊂
L(X), we can use the Complex Interpolation Method to obtain new ideals between
N (X) and L(X). Using L(X) as the ambient Hausdorff topological vector space, in
which we embed the compatible couple A := (L(X),N (X)), we get

∆(A) := N (X) ∩ L(X) = N (X) and Σ(A) := N (X) + L(X) = L(X),

where equalities are understood as normed vector spaces. Using the Complex Interpo-
lation Method, we obtain a family of subspaces of L(X):

(N (X),L(X))[θ], 0 ≤ θ ≤ 1.

Since N (X) ⊂ L(X), the family of interpolation spaces is increasing by Theorem A.2.1,
part 2):

θ1 ≤ θ2 : (N (X),L(X))[θ1] ⊂ (N (X),L(X))[θ2].
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Further, since ∆(A) = N (X) is dense in (N (X),L(X))[1] by Theorem A.2.1 3), we
obtain by the approximation property:

(N (X),L(X))[1] = K(X).

We also have
(N (X),L(X))[0] = N (X).

With Theorem A.2.1 4) we obtain

(N (X),L(X))[θ] = (N (X),K(X))[θ],

i.e. each interpolation space consists of compact operators. Further, since L(X) and
N (X) are ideals, for each A ∈ L(X) we obtain maps (which we denote by the same
symbol):

LA : N (X)→ N (X), B 7→ AB,

LA : L(X)→ L(X), B 7→ AB.

Interpolating this map, we obtain

LA : (N (X),L(X))[θ] → (N (X),L(X))[θ], B 7→ AB,

i.e. the interpolated spaces are left ideals of L(X). Analogously, they are right ideals.
For 1 ≤ p0 <∞, we define the ideals of compact operators Sp0(X) by

Sp0(X) := (N (X),L(X))[1−1/p0].

In particular,
S1(X) = N (X).

One can show the norm inequalities

‖A‖op ≤ ‖A‖Sp0 ≤ ‖A‖Sq0

for p0 ≥ q0, where ‖ · ‖op denotes the operator norm on L(X). If X is a Hilbert space,
these interpolated ideals are just the usual Schatten-von Neumann ideals [110, 120].
Surprisingly, it seems that no concrete description of the ideals Sp0(X) is available if
X is not a Hilbert space [109, Section 6.6.6.1]. Finally, let us note the following duality
result:

Theorem A.3.1 ([112]). Let X be a reflexive complex Banach space with the appro-
ximation property and p0 ∈ (1,∞). Then, the dual of Sp0(X) can be isometrically
identified with Sq0(X ′) via the trace duality

〈A,B〉 = Tr(AB′).

Here, q0 is the conjugate exponent to p0: 1 = 1/p0 + 1/q0.
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