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ZUSAMMENFASSUNG 

Der Apfel  ist eine der wichtigsten kommerziell angebauten Obstarten in Deutschland. Für 

die Apfelproduzenten gibt es jedoch einige Methoden und Investitionen, die mit großen 

Unsicherheiten behaftet sind. Die Ausdünnung wird schon seit vielen Jahren eingesetzt 

und ist eine essentielle Methode für den erfolgreichen Apfelanbau. Jedoch zeigt sie eine 

sehr hohe Variabilität zwischen Jahren als auch zu verschiedenen Zeitpunkten innerhalb 

eines Jahres und liefert dadurch häufig unerwartete Ergebnisse. Außerdem beschäftigt die 

Anbauer die Frage ob aufgrund des fortschreitenden Klimawandels eine Zusatz-

bewässerung vor allem für die Etablierung von jungen Bäumen mit noch geringem 

Wurzelvolumen in Zukunft notwendig sein wird. Um diese wichtigen Entscheidungen in 

Zukunft erleichtern zu können wurde im Rahmen dieser Arbeit ein universell einsetzbares 

Apfel-Modell zur Anwendung in Deutschland und Mitteleuropa erarbeitet. Als Basis 

diente das in den USA entwickelte Kohlenstoffbilanzmodell MaluSim. Dieses wurde 

zunächst an mitteleuropäische Bedingungen angepasst und erste Simulationsläufe zum 

Vergleich mit dem Originalmodell wurden durchgeführt. Hierbei zeigte die Simulation der 

kumulierten Gesamt-Assimilatproduktion einer Saison bei den, nur ein Drittel so großen, 

deutschen Standardbäumen halb so hohe Werte als für Standardbäume in den USA. 

 

Im Folgenden wurde das bisher nicht funktionierende MaluSim Fruchtsubmodell 

modifiziert und  dahingehend getestet, ob es in der Lage ist, den natürlichen Fruchtfall 

korrekt zu berechnen. Hierfür wurden modellierte Fruchtzahlen mit gezählten 

Fruchtzahlen unausgedünnter Varianten von Apfelanlagen aus Versuchen in Zornheim 

(D), Jork (D), Lindau (CH), Güttingen (CH) und Wädenswil (CH), verglichen. Bei diesem 

Test konnte das modifizierte Modell ‘G4-4’ besonders überzeugen. Die mittlere 

Abweichung der modellierten Werte zu den tatsächlich gezählten Fruchtanzahlen lag bei 

lediglich 3,7 %. Die Ergebnisse zeigen, dass das modifizierte Modell ‘G4-4’ den 

natürlichen Fruchtfall sehr zufriedenstellend berechnen konnte und dass das Modell das 

Potential hat auch im Bereich Ausdünnungsempfehlungen eingesetzt zu werden. 

 

Des Weiteren wurde, basierend auf veröffentlichten Daten, ein Wassersubmodell ent-

wickelt und in das Modell ‚G4-4‘ integriert. Hierbei wurde das mittägliche Stammwasser-

potential als Indikator für den Wasserstatus des Baumes herangezogen. Aus diesem 

Parameter werden Wasserdefiziteffekte für das Langtriebwachstum, die Respiration, sowie 

für die Photosynthese berechnet. Erste Simulationsläufe zeigen generell realistische, mit 

veröffentlichten Erkenntnissen vergleichbare, Ergebnisse. Das Submodell ermöglicht eine 

Simulation von unterschiedlich starken Wasserdefiziteffekten zu variablen Zeitpunkten. 
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Zusätzlich wurde zur Untersuchung der Auswirkungen von Zusatzbewässerung und 

Wassermangel auf neugepflanzte Apfelbäume ein Feldexperiment in Geisenheim, 

Deutschland durchgeführt. Jungpflanzen der Sorten ‘Fresco’ (‘Wellant®’), ‘Jugala’, und 

‘AW 106’ (‘Sapora®’) wurden im Herbst 2011 in randomisierten Blöcken gepflanzt. Ab 

2012 erfolgten drei verschiedene Bewässerungsvarianten: CT (Kontroll-Behandlung) wurde 

nicht bewässert und nur durch natürliche Regenfälle befeuchtet, NT (Normal-Behandlung) 

wurde zusätzlich mit 2 l/Baum/Tag bewässert, und ET (Evapotranspiration-Behandlung) 

wurde nach Berechnung der Wasserbilanz (Niederschlag und Verdunstung) bewässert. Die 

Auswirkungen der drei Varianten auf das Wachstum und die Physiologie der Bäume 

wurden in den Jahren 2012 und 2013 gemessen. Neben Bodenwassergehalten wurde der 

Wasserstatus der Bäume durch die Messung des frühmorgendlichen sowie des mittäglichen 

Stammwasserpotentials bestimmt.  

 

In beiden Versuchsjahren kam es zu höheren Niederschlagsmengen als im 30-jährigen 

Mittel von 1981 bis 2010, wobei 2013 nasser als 2012 war. Statistisch signifikante 

Unterschiede zwischen den Varianten konnten vor allem in der Saison 2012 gefunden 

werden. 2012 war das vegetative Wachstum der Bäume in den beiden bewässerten 

Varianten NT und ET bei allen Sorten signifikant höher als in der unbewässerten CT 

Variante. In der niederschlagsreicheren Saison 2013 zeigten sich ähnliche Tendenzen, 

jedoch konnten nur bei ‚Jugala‘ und ‘Fresco’ signifikante behandlungsbedingte 

Unterschiede des Langtriebwachstums und der Holzoberfläche nachgewiesen werden, 

während für ‘AW 106’ die Unterschiede im Langtriebwachstum nicht statistisch signifikant 

waren. Ähnliche Ergebnisse zeigten sich für die erste Ernte in 2013. Die Lichtaufnahme, 

sowie die berechnete Gesamtblattfläche, der Bäume, gemessen für ‘Fresco’, war in beiden 

Jahren statistisch signifikant deutlich niedriger in der unbewässerten CT Variante (2012: 

17,4 %; 2013: 24,9 %) als bei ET (2012: 26,3 %; 2013: 42,1 %) und NT (2012: 24,2 %; 

2013: 38,3 %). Des Weiteren konnten zu bestimmten Zeitpunkten signifikant niedrigere 

Photosyntheseraten für CT als für ET und NT durch Gaswechselmessungen der Blätter 

nachgewiesen werden. Durch eine Gruppierung der Werte in Bezug auf das zugehörige 

gemessene mittägliche Stammwasserpotential der Bäume konnte belegt werden, dass mit 

abnehmendem Wasserpotential auch die Photosyntheserate statistisch signifikant 

abnimmt. Der Beginn des Absinkens liegt im Bereich zwischen -1 und -1,5 MPa. 

 

Die Ergebnisse des Versuchs zeigen, dass, trotz der höheren Niederschlagsmengen, die 

Zusatzbewässerung einen ausgesprochen positiven Effekt auf die Etablierung der Bäume 

hatte. Dieser Effekt sollte in trockenen Jahren noch deutlich ausgeprägter ausfallen.    
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ABSTRACT 

Apple (Malus x domestica Borkh.) is the major tree fruit in Germany, but there still exist 

major uncertainties in commercial apple production. Thinning has been practiced for many 

years and is an essential part for successful apple production, but is still an unpredictable 

part with large variations from year to year and even within years. Another uncertainty for 

apple growers is the need of apple trees for adequate water supply. Due to the advancing 

climate change apple growers are uncertain whether additional irrigation will be necessary 

during the establishment phase of young apple trees.  

 

Therefore, to facilitate these decisions in future, the motivation of this study was to acquire 

a universal apple model to be used in Germany and Central-Europe. The apple carbon-

balance model MaluSim which has been developed in the USA was chosen as a basis. At 

first, the model has been parameterized for German growing conditions and first 

simulation runs were conducted. In comparison to the original model, the seasonal 

assimilate production for German standard trees was about half of the one for standard 

trees in the USA, while standard trees in Germany were only about one third of the size of 

US ones. 

 

Subsequently, the previously untested fruit growth and abscission submodel has been 

modified and tested. Simulated final fruit numbers were compared to counted fruit 

numbers of unthinned trials in Zornheim (GER), Jork (GER), Lindau (CH), Güttingen 

(CH) and Wädenswil (CH). The modification ‘G4-4’ showed good simulation results with 

very low deviations to actual fruit numbers. Average deviation to fruit numbers was only 

3.7 %. Results indicate that the model is able to very adequately calculate final fruit 

numbers of natural fruit drop of Central-European apple trees and that it could be a tool 

used for thinning advices. 

 

Based on published data, a new water submodel has been included into the MaluSim 

framework to additionally improve the model. Midday stem water potential has been used 

as an indicator for water status of the tree. A water stress effect on long shoot growth, 

respiration, and photosynthesis based on midday stem water potential was used in the 

water submodel. First simulation runs using the new water submodel indicate that general 

behavior is realistic. Modeling results generally corresponded to findings of published 

experimental results. The submodel is able to simulate variable intensities of water deficit 

effects at variable times. 
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To study the effects of additional irrigation and water deficits on young apple orchards a 

field experiment was conducted during 2012 and 2013 in Geisenheim, Germany. Trees of 

the cultivars ‘Fresco’ (‘Wellant®’), ‘Jugala’, and ‘AW 106’ (‘Sapora®’) were planted in 

autumn 2011 in a randomized plot design. In 2012, three irrigation treatments, CT (control 

treatment, only rain fed), NT (normal treatment, irrigated with 2 L/tree/day), and ET 

(evapotranspiration treatment, irrigation based on calculated water balance), were applied 

and effects on tree growth and physiology were recorded in 2012 and 2013. Besides soil 

moisture, water status of the trees has been recorded using predawn and midday stem 

water potential measurements. 

 

In both years, amounts of precipitation were higher than the 30-year average for the site, 

with 2013 being wetter than 2012. Between treatments, statistically significant differences 

developed in both seasons, but were less profound in 2013. In 2012, vegetative growth 

recorded in NT and ET was statistically significantly higher than in CT for all cultivars. In 

the wetter season 2013, similar tendencies evolved. But only in ‘Jugala’ and ‘Fresco’ long 

shoot growth and wood surface area was significantly higher, while for ‘AW 106’ 

differences in long shoot growth were not statistically significant. Similar results were 

obtained for the first harvest in 2013. 

 

Light interception and calculated leaf area, measured in ‘Fresco’, was significantly lower in 

CT trees (2012: 17.4 %; 2013: 24.9 %) compared to ET (2012: 26.3 %; 2013: 42.1 %) and 

NT (2012: 24.2 %; 2013: 38.3 %), in both years. Additionally, differences between CT and 

the two irrigated treatments were found for leaf gas exchange rates during the seasons. A 

relationship between midday stem water potential and leaf gas exchange has been 

confirmed. Grouping of photosynthesis measurements according to midday stem water 

potentials led to statistically significant differences between groups. Photosynthesis started 

to decrease between -1 and -1.5 MPa. 

 

In conclusion, the results show that although both years have even been wetter than usual, 

the additional irrigation was highly beneficial for tree growth and had a positive effect on 

orchard establishment. This effect is supposed to be considerably higher in drier years. 
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1 GENERAL INTRODUCTION 

The domesticated apple (Malus x domestica Borkh.) is one of the most important fruit crops 

in Europe. In Germany, the most important apple growing regions are the ‘Altes Land’ in 

the North, and the area surrounding Lake Constance in the South of Germany. Total 

production area is around 32000 ha, with an average total production of about 950000 tons 

per year (FAOSTAT, 2015). Consumers and the apple industry have high requirements on 

the inner and outer quality of apple fruits (NEMESKÉRI, 2007) and expect specific fruit 

sizes. 

 

In the past, apple growers in Germany were able to produce high quality apples without 

the need to use any irrigation in their orchards due to sufficient rain events and amounts 

during the season. But with the changing climate uncertainty of the growers increases 

whether additional irrigation will be an essential requirement for high quality production in 

the future (STÖCKLE et al., 2011). Although the total precipitation amount per year is not 

supposed to change much, it is expected that the distribution of rain events will change and 

longer drought periods may occur (ZEBISCH et al., 2005) during the growing season. 

Water is one of the major factors for the determination of fruit size and total yield (JONES 

et al., 1985). Longer periods with no rain and therefore arising drought affects fruit 

development and number, and reduces tree growth (LANDSBERG & JONES, 1981; 

MILLS et al., 1996).  

 

A good water supply during the first years of orchard development guarantees a good 

development of the trees and can lead to earlier and higher yields and thus an earlier return 

of investment. But the use of additional irrigation also means higher investments for the 

farmers with unclear payout (BRAVIN et al., 2008). To add sufficient water for the trees, 

but also to use as little water as possible to save water and costs, makes irrigation 

scheduling a very difficult task (NEILSEN & NEILSEN, 2002; NAOR & COHEN, 2003; 

FALLAHI et al., 2006; CASADESUS et al., 2011).  In water-limited regions around the 

world it is already essential to use as little water as possible by still producing high quality 

fruits and yields (BEHBOUDIAN et al., 2011). This shows that knowledge about the water 

relations of apple trees is a very important topic for Germany, but also for other apple 

growing regions around the world. 

 

Another main cultural practice in apple production to ensure a good and marketable fruit 

size is thinning. Usually less than 10 % of the initial flowers are needed for high quality 

yields, which makes thinning essential. Method and timing of thinning can have an 
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enormous effect on this year’s and also on next year’s apple production (LINK, 2000; 

BYERS & CARBAUGH, 2002; GREENE, 2002; SCHRÖDER & BANGERTH, 2006) by 

preventing ‘biennial bearing’ (TROMP, 2000). 

 

Several phases of natural flower or fruit drop can be observed during apple development 

(BERÜTER & DROZ, 1991), which makes the task of artificial thinning even more 

complicated. The worst case for growers is overthinning. They earn less money due to the 

lower total amount of apples and due to the oversized and thus lower quality apples. But 

also insufficient thinning is not beneficial for successful commercial apple production and 

the consequences depend on the degree of underthinning. It usually means lower potential 

fruit size and much higher hand thinning costs, but it can additionally reduce next year’s 

flower numbers thereby inducing biennial bearing. Many environmental and tree internal 

factors have an effect on natural fruit drop and on thinning efficiency. Although thinning is 

used in apples since over 50 years (WERTHEIM, 2000), and hundreds of experiments 

were conducted with diverse ways of thinning (LINK, 1978; BYERS et al., 1990a; 

WERTHEIM, 2000; GREENE, 2002; PFEIFFER & RUEß, 2002; ZIBORDI et al., 2009; 

SOLOMAKHIN & BLANKE, 2010), there are still gaps in the understanding, and large 

uncertainties for the growers remain. 

 

Models can be used to summarize knowledge and to increase the understanding of real 

world phenomena (LENTZ, 1998). They offer powerful tools to identify and understand 

the main factors influencing a cropping system. Therefore the uncertainties of today’s apple 

production, in particular thinning activities, might be reduced by using models. In 

addition, models can be used to approach future problems related to irrigation and water 

deficits in apples. This may for example help to answer whether additional irrigation is 

reasonable at a specific site or not. 
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2 LITERATURE REVIEW 

2.1 An introduction to modeling 

Biological systems are very complex and one can rarely achieve a complete mathematical 

description of their behavior (JONES, 2014a). Therefore, a model is an attempt to describe 

a certain process or system through the use of a simplified representation, which focuses on 

a few key variables that mainly control the process or system (GOLDSCHMIDT & 

LAKSO, 2005). Models can be classified in diverse ways. One for horticultural plant 

models is by their main use into one of two groups: 1. to improve our understanding 

(theoretical models) or 2. to provide management advices to growers (practical models). 

Scientifically, plant models are divided into three main classes: geometrical models, 

process-based models, and functional-structural models (DE REFFYE et al., 2008).  

 

Geometrical models (GMs), or architectural models, try to simulate the 3-D architecture of 

plants. This may include the description of entire plants in isolation or within an ecological 

context, and also models of plant parts, like individual branches of shoot or root systems 

(PRUSINKIEWICZ, 2004). They are usually made out of empirical observations of real 

plants and can be used in landscaping, agronomy, or botany to obtain accurate 

organogenesis and realistic plant architecture (DE REFFYE et al., 2008). The most 

important principle belonging to this type of models is Lindenmayer-systems or L-systems 

(PRUSINKIEWICZ, 1997; based on LINDENMAYER, 1968). It takes advantage of the 

complexity of multicellular organisms by dividing modules into types. Examples for GMs 

are the ones of the group of COSTES for apricots (COSTES et al., 1992) or apples 

(COSTES & GUÉDON, 2002; RENTON et al., 2006). GMs are used to simulate plant 

architecture but not to assess plant biomass production and plant functioning and therefore 

are not suitable for the objectives of this thesis. For a detailed description of GMs see 

PRUSINKIEWICZ (2004), and PRUSINKIEWICZ & RUNIONS (2012). 

 

The main aim of process-based models (PBMs) is to model plant functioning. Plants are 

considered only at the minimal level of organ compartments and no 3-D representation of 

the plant is produced (DE REFFYE et al., 2008). Plant organs of one category are often 

thought of as one big organ of this type, which is generally known as a ‘big-leaf’ approach. 

This greatly simplifies the modeling, but means that within-tree location of single organs 

cannot be taken into account (COSTES, 2004). Although the 3-D structure strongly affects 

processes inside a plant (e.g. carbon partitioning, light interception), the simplifications of 

PBMs can be sufficient and work well for many purposes. PBMs are mainly used to 

simulate crop production. This includes simulating dry matter production and its 
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partitioning. Examples for fruit tree PBMs are one for apple, developed by SEEM et al. 

(1986), the MaluSim model by LAKSO et al. (see 2.2), or a kiwifruit model, developed by 

BUWALDA and co-workers (BUWALDA et al., 1990; BUWALDA, 1991; BUWALDA 

& MEEKINGS, 1992). A review of PBMs and their main components can be found in 

MARCELIS et al. (1998).  

 

Functional structural models (FSMs) are very complex and try to imitate reality as closely 

as possible (DE REFFYE et al., 2008). They integrate relationships between plant 

structures and processes that underlie their growth and development (DEJONG et al., 

2011). Hence, FSMs are a combination of GMs (structure) and PBMs (functioning). Many 

FSMs exist for annual plants, while only few are available for trees due to their perenniality 

and very high complexity. An important example for a tree FSM is L-PEACH (ALLEN et 

al., 2006; LOPEZ et al., 2008a; LOPEZ et al., 2008b; DA SILVA et al., 2011). Other 

examples are SIMWAL for walnut trees (BALANDIER et al., 2000), and for apple a 

RATP (radiation absorption, transpiration, photosynthesis) FSM (SINOQUET et al., 

2001; MASSONNET et al., 2006) and MAppleT (COSTES et al., 2008; DA SILVA et al., 

2014). FSMs might be able to provide new insights into the complex interactions among 

plant architecture, leaf physiology and the environment (MASSONNET et al., 2008; VOS 

et al., 2010). But complex models may require inputs that are not easy to obtain in a field 

situation (BOOTE et al., 1996), and most FSMs are highly theoretical and far from 

providing practical applications (DE REFFYE et al., 2008).  

 

The term “carbon balance model” is often used in the literature. The use of computer 

simulation modeling has highlighted the importance of carbohydrate partitioning in 

determining crop growth and productivity (DEJONG & GROSSMAN, 1992). This type of 

model involves modeling of plant photosynthesis, respiration and the allocation of the 

assimilates to organs of interest (GOLDSCHMIDT & LAKSO, 2005) and can be either a 

PBM or a FSM.  

 

So far, FSMs are mainly used for theoretical uses while PBMs are used for both, theoretical 

and practical uses. The MaluSim model is a PBM and has been used for theoretical and 

practical applications in the past with medium to good success (LAKSO et al., 1999; 

LAKSO et al., 2006a). It is a very promising model framework and therefore has been 

chosen as the basis for this thesis. 
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2.2 MaluSim 

2.2.1 General 

MaluSim is a carbon balance model for apple trees which has been developed and adjusted 

over many years by Alan N. Lakso and co-workers (LAKSO & JOHNSON, 1990; 

LAKSO et al., 1995; LAKSO et al., 1997; LAKSO et al., 1999; LAKSO et al., 2001b; 

LAKSO & NYROP, 2002; LAKSO et al., 2006a; LAKSO et al., 2006b; LAKSO et al., 

2007; ROBINSON & LAKSO, 2011; LAKSO & ROBINSON, 2015). The original 

MaluSim model has been developed for the cultivar ‘Empire’ for Geneva, NY, USA, and 

the basic time step is one day (LAKSO & JOHNSON, 1990). It is a big-leaf model that 

also uses a ‘big-leaf’ simplification for other plant organs. For the development of MaluSim 

the auto-programming simulation software STELLA® was chosen, which makes it possible 

to use the model without the knowledge of specific computer programming skills and it 

reduces the time needed to run simulation tests (LAKSO & JOHNSON, 1990). In 

addition, it allows other fruit physiologists to easily work with and to extend the model. 

2.2.1.1 Original objectives and possible uses 

Some of the first objectives were to develop MaluSim as a model for apple so that fruit 

physiologists would be able to find general principles that control apple productivity, to 

integrate current data and to focus future research directions (LAKSO & JOHNSON, 

1990). But over the years of its development more objectives and questions evolved and 

nowadays there exist different possible uses of MaluSim.  

 

Because of the perennial nature and size of apples trees, classical growth analysis is very 

difficult and there is a need for useable models to address general questions. Thus one 

objective of the MaluSim model development was to compare effects of cultural practice 

and also to evaluate effects of environmental changes (LAKSO et al., 2006a). To be able to 

simulate growth under different environmental conditions has helped to understand why 

apple productivity varies in different climates and between years within the same climate 

(LAKSO et al., 2001b). Another main reason for the development of MaluSim was to 

determine periods in the season where carbon deficits and surpluses are likely to occur and 

how this affects orchard performance (LAKSO et al., 2006a). MaluSim indicates that the 

most likely time of carbon deficit is about two to three weeks after bloom. Another period 

of possible carbon deficit is at the end of the season, but the overall effect of late season 

limitations on the crop and tree is supposed to be much less than early deficits (LAKSO, 

2011). An additional aim was to model the impact of short time effects on apple orchards. 

This includes for example effects of foliar pests on photosynthesis and thus on carbon 
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balance. The authors simulated a European Red Mite infestation and compared model to 

experimental data with medium to good results (LAKSO & NYROP, 2002). 

 

A more recent use of MaluSim is to help understand natural fruit drop and to give thinning 

advice. MaluSim calculates carbohydrate supply and demand balances. There are likely 

indications that carbon balance may be a baseline for chemical thinner responses (tree 

sensitivity to thinners), and the model may help to explain some of the year to year 

variations in natural fruit drop and in the effect of chemical thinning (LAKSO et al., 

2006b; PARRA-QUEZADA et al., 2006). Model simulations from several years were able 

to show, that periods of particularly positive or negative carbon balance were associated 

with mild or severe chemical thinning responses, respectively (LAKSO & ROBINSON, 

2015). By using weather forecasts the model has been used to provide real-time predictions 

of tree sensitivity to chemical thinning based on carbon relations (LAKSO et al., 2007; 

LAKSO & ROBINSON, 2015). 

 

Obviously, MaluSim can not only be used for one single application. Over the years 

various questions were answered and it has been used to help understand different 

problems in diverse areas. Examples of the questions the MaluSim dynamic simulation 

model can address are: (1) what is the seasonal dry matter production and partitioning and 

integrals of carbon fluxes by photosynthesis and respiration of organs; (2) how do different 

climates or weather components (radiation, temperature) affect the growth and dry matter 

production; and (3) what are the seasonal patterns of carbon supply versus carbon 

demands, when are there likely excesses or deficits of carbon, and are these periods related 

to key performance or management issues. MaluSim has already been used to simulate and 

compare apple tree behavior at different sites (LAKSO et al., 2001b) which makes it 

appropriate for modeling of German apple trees. 

2.2.1.2 General simplifications and limitations of MaluSim 

Simplifications made in a complex system lead to the consequence that many limitations 

occur (LAKSO & JOHNSON, 1990). This includes for example processes which have not 

been modeled and assumptions or relationships that need improvement. A model is always 

a trade-off between accuracy, simplicity, usefulness especially by others, and intelligibility 

(GOLDSCHMIDT & LAKSO, 2005; ROUPSARD et al., 2008). MaluSim does not 

consider tree architecture (this includes for example leaf angle or position of fruits), which 

is a main disadvantage. But this also is one reason why it is possible to partly validate the 

model and to use it for practical purposes. 
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The plant is divided into plant organs (wood, roots, shoots, spurs, fruits), but no individual 

organ of one type is modeled. Each population of the same organ is treated as if it would 

be one big leaf (or the crop, the wooden structure, the canopy, the root system), which is 

called “big-leaf” simplification. For this it is assumed that, in matters of photosynthesis 

calculation, the total leaf area can be represented by a single layer that intercepts light 

(SPITTERS et al., 1986; DE PURY & FARQUHAR, 1997). The big-leaf approach 

assumes that the carbon flux of a single leaf has the same relative response to the 

environment as the whole canopy and that therefore scaling from the leaf to the canopy is 

linear (KULL & KRUIJT, 1999; FRIEND, 2001). Canopy photosynthesis is estimated as a 

daily canopy light response to daily intercepted radiation, which is based on incident 

radiation, fractional interception and exposed leaf photosynthesis. Gradients of light, 

photosynthesis of differing leaf populations, and varying geometry over time are ignored 

(GOLDSCHMIDT & LAKSO, 2005). Models using a big-leaf simplification are not able 

to consider or calculate canopy microclimate (RAUPACH & FINNIGAN, 1988) or effects 

of sunflecks and different leaf angles on absorbed radiation (DE PURY & FARQUHAR, 

1997). Some big-leaf models use Beer’s law to calculate the absorbed irradiance of a 

canopy, which can lead to overestimation of canopy photosynthesis (SPITTERS et al., 

1986; DE PURY & FARQUHAR, 1997; WANG & LEUNING, 1998). This problem is 

often solved by using empirical factors in the response of photosynthesis to irradiance. This 

kind of correction may not be independent of conditions and may reduce the accuracy of 

predictions at different conditions (DE PURY & FARQUHAR, 1997).  

 

The use of big-leaf models extremely reduces the complexity of canopy photosynthesis 

modeling (DE PURY & FARQUHAR, 1997). This also has a positive effect on computing 

time and data requirements (RAUPACH & FINNIGAN, 1988; FRIEND, 2001). The 

number of required inputs is usually very low for big-leaf models. Although big-leaf 

simplifications have some shortcomings and are very simple, the simulated values can be 

quite good and satisfactory for their purposes (LAKSO & JOHNSON, 1990; AMTHOR, 

1994; AMTHOR et al., 1994; LLOYD et al., 1995; DE PURY & FARQUHAR, 1997; 

GOLDSCHMIDT & LAKSO, 2005). Besides the big-leaf simplification, MaluSim uses a 

similar simplification for all plant organs (LAKSO, 2011). This simplification is then 

separated by the numbers of a particular organ, to simulate for example fruit growth and 

drop. The mean fruit weight is calculated, but not for a particular fruit and no distribution 

of fruit weights are modeled. For this reason it is not possible to model fruit quality with 

MaluSim.  
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Through the big-organ simplification some things are impossible to be modeled correctly, 

but it is sufficient for many uses (e.g. dry matter production), needs less data input, is faster 

to run, and is more comprehensible than more complex approaches. It is adequate to 

simulate an average apple tree and to get valuable tendencies of the orchard performance. 

However, all parts of MaluSim that deal with roots should be used with caution, because 

they are based on very limited data. Good studies of tree root parameters are very difficult 

and time consuming to conduct. Thus knowledge about tree roots is still very limited (see 

also chapter 2.4.4) and for the model confidence it is not useful to model relationships 

which have not been explored yet. Although modeling can be a good way to begin to 

examine such poorly known processes. 

 

Another major limitation of MaluSim is that it only calculates the growing season and no 

carry-over effects are considered. Dormancy in winter is not included as well as the carry-

over of reserves from one year to the next. One possible reason for this is that these effects 

are also not very well understood mechanistically and knowledge is still limited. Another 

reason might be that in most cases it is not very important for producers to know. 

Furthermore, apple orchards with no alternate bearing and good management usually stay 

very constant over the years and the standard tree calculation is appropriate. Additionally, 

the change of inputs like numbers of flowers is very easy and thus the model can be simply 

parameterized to some changes.  

 

Some main factors affecting fruit set and development are not included in MaluSim. This 

includes for example effects of frost during flowering, or hormonal processes. Other 

factors, like pollination, hand thinning or pest damage, can be empirically entered by the 

user, but are not calculated by the model itself. When validating and evaluating MaluSim, 

one should keep in mind that it is not an objective to model one particular tree or every 

single tree of an orchard, but to give an idea of the general reactions of a particular orchard. 

2.2.1.3 Required inputs 

Like every model, MaluSim achieves best results when it is precisely parameterized to the 

site and prevailing conditions of interest. For practical applications that reflect only 

variations due to the environment, mature orchards are simulated and then MaluSim only 

has to be parameterized once and not every year again. This use is analogous to using the 

Penman-Monteith equation with set crop parameters to estimate the weather driven 

evapotranspiration. For research uses of MaluSim it can be necessary to parameterize and 

adjust the model more than once (e.g. in newly planted and developing orchards, orchards 

where some major modifications have been made, by using it for different apple cultivars, 
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or for calculation of foliar pest effects). In most cases it is sufficient to parameterize wood 

surface area, numbers of long shoots and spurs, spacing of trees, numbers of flowers, and 

latitude. However, often the multiple specific input data or relationships needed are not 

available.  

 

After a parameterization some current weather and phenology inputs are needed to run the 

model. These general inputs include daily minimum and maximum temperatures, total 

daily radiation, and date of bud break (to initiate the model). The weather inputs were kept 

as simple as possible to extend the range of situations that would have the required data. 

2.2.2 Submodels 

The original MaluSim model mainly consists of five submodels (Figure 1), with 

interactions between them. 

 

 

Figure 1: Schematic diagram of the main five original submodels of MaluSim, including a 

simplified representation of interactions between single submodels.  

 

2.2.2.1 Leaf area development and leaf abscission submodel 

For the calculation of photosynthesis and respiration of a tree, leaf area estimation is 

essential. Therefore, a specific submodel has been developed to calculate leaf area 

development and leaf abscission. JOHNSON & LAKSO (1985) found that leaf area 

development of apples is quite consistent as a function of temperature accumulation. 

Originally, they used a degree day approach with a 4 °C base (DegDay) to calculate the 

leaf area increment (LAincr) per shoot (in m2) per day (LAKSO & JOHNSON, 1990): 
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(I) 

𝐿𝐴𝑖𝑛𝑐𝑟 = 0.00008 ∗  𝐷𝑒𝑔𝐷𝑎𝑦 

 

Average temperature in MaluSim is calculated by adding maximum and minimum daily 

temperature, and dividing the result by two, to get the average temperature. From the 

result a base temperature of 4 °C is subtracted. This base temperature is thought to be the 

minimum temperature necessary for growth (JOHNSON & LAKSO, 1985). The leaf area 

increment per shoot is then multiplied with the total number of growing shoots at that 

time. The fraction of growing shoots has been estimated as a function of accumulated 

degree days (LAKSO & JOHNSON, 1990). Daily values are accumulated over time. There 

exist cultivar differences for leaf area increment (JOHNSON & LAKSO, 1985). 

 

The original leaf area development submodel has been improved by splitting the leaf area 

development calculation into one for long and one for short shoots (spurs) (LAKSO et al., 

2001b). For each shoot type, leaf area development is calculated based on growing degree 

day accumulation, rate of leaf area expansion per degree day, total shoot number, and 

fraction of growing shoots at the particular time (LAKSO et al., 2001b). For the calculation 

the original method has been maintained. Short shoot leaf area increment was set at 

0.00004 m2 per DegDay per shoot, while the one for long shoots stayed at 0.00008 m2 per 

DegDay per shoot (LAKSO et al., 2006a). Since the understanding of shoot termination is 

limited and is not clearly related to carbon, the calculation in MaluSim was artificially 

constrained to represent average conditions (LAKSO et al., 2001b). For a default, it is 

assumed that the final active shoots terminate at about 500 DegDays for spurs and 900 

DegDays for long shoots. Leaf abscission is calculated similar to chill unit models as a 

function of cumulative daily minimum temperatures below 5 °C (LAKSO et al., 2001b). 

2.2.2.2 Photosynthesis submodel 

One major submodel for carbon balance calculation is the photosynthesis submodel, which 

gives the amount of assimilates (carbon). In MaluSim, the daily photosynthesis integral 

was calculated as a daily canopy light response according to CHARLES-EDWARDS 

(1982) from maximum photosynthetic rate, photochemical efficiency, daily integral of 

light, day length, canopy extinction coefficient and leaf area index (LAI) or fraction of 

available light intercepted (LAKSO & JOHNSON, 1990). Daily gross photosynthetic rate 

(Pdaily) per unit ground area allotted per tree (in g CO2 m
-2 day-1): 

(II) 

 

𝑃𝑑𝑎𝑖𝑙𝑦 = 𝛼 ∗ 𝑆 ∗  ℎ ∗  𝑃𝑚𝑎𝑥 ∗  [1 − exp(−𝑘 ∗ 𝐿𝐴𝐼)] / (𝛼 ∗  𝑘 ∗  𝑆 + ℎ ∗ 𝑃𝑚𝑎𝑥) 
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α  : leaf photochemical efficiency or quantum yield in µg CO2 Joule
-1

 total radiation 

S  : daily integral of total radiation on a horizontal surface in MJ m
-2

 day
-1

 

h  : day length in seconds 

Pmax  : rate of light saturated leaf photosynthesis in g m
-2

s
-1

 

k : canopy light extinction coefficient 

LAI : leaf area index  

 

Additionally, the temperature effect on photosynthesis is included as a fractional reduction 

multiplier of the leaf photosynthetic rate. The used relationship gives a maximum 

photosynthesis at about 28 °C, and zero at 0 °C and 44 °C (LAKSO & JOHNSON, 1990). 

 

The original model of 1990 dealt with canopies as continuous structures (LAKSO & 

JOHNSON, 1990; LAKSO, 1992), which lead to significant errors in wider spaced single 

row orchards. To solve this problem the approach developed by JACKSON and PALMER 

(1979) was used. The light interception of discontinuous canopies is separated into two 

components: Tf, which is the part of daily total light transmitted to the floor between the 

trees, and Tc, which is the light that is transmitted to the ground by passing through the 

canopy (LAKSO, 1992). The maximum potential light interception by the canopy is 

termed Fmax, and is equal to daily incident light input reduced by the fraction of light that 

never strikes the canopy (1-Tf). In a mature orchard a constant Fmax can be used, because a 

mature orchard has little change in the potential solid canopy interception. In young or 

very vigorous orchards the change of maximum canopy dimensions can be significant 

during the season and Fmax can be made a function of time (LAKSO, 1992).  

 

In 2006 a major modification of the photosynthesis submodel was made because of some 

problems by simulating discontinuous orchard canopies. The original light interception 

term within the canopy photosynthesis equation has been corrected according to 

JACKSON & PALMER (1979; 1980) and PALMER (1989b), by using an asymptote in 

the normal Beer’s Law light interception equation that relates interception to leaf area 

index, a canopy light extinction coefficient, and the estimated maximum light interception 

that would occur for an opaque tree (LAKSO et al., 2006a).  

(III) 

𝐿𝑖𝑔ℎ𝑡 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡𝑖𝑜𝑛 = 1 − 𝑒
(−𝑘 ∗ (

𝐿𝐴𝐼
𝐹𝑚𝑎𝑥

))
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For the ‘standard’ spindle tree an Fmax asymptote of 0.7 was used, and this value is 

supposed to be reasonable for many mature orchard systems today (LAKSO et al., 2006a). 

The extinction coefficient k varied usually from 0.4 to 0.6 depending on the relative ratio of 

spurs versus extension shoots. Spur canopies have leaf clumping due to the rosette growth 

habit and then k values as low as 0.3 can occur. k values of 0.4 to 0.45 are thought to be 

appropriate for mature spindle trees. Additionally, calculations to adjust the day length 

based on latitude have been inserted (LAKSO et al., 2006a). 

 

In the version of MaluSim used in this thesis photosynthesis is at first calculated on a unit 

ground area basis, which is then in a second step converted to total photosynthesis per tree 

(by multiplication with ‘Areapertree’). Photosynthesis per unit ground area is calculated by 

using leaf photochemical efficiency (PChemEff), daily integral of total photosynthetically 

active radiation (PAR) incident on a horizontal surface (TotPAR), daylength, rate of light 

saturated leaf photosynthesis per unit leaf area dependent on temperature (PmaxTadj), 

canopy light extinction coefficient k (CanopyK), Fmax (Fmax), and LAI (LAIndex): 

(IV) 

 
PChemEff ∗ TotPAR ∗ DayLgth ∗ PmaxTadj ∗ Fmax ∗ (1 − EXP(−CanopyK ∗ (LAIndex/Fmax)))

PChemEff ∗ CanopyK ∗ TotPAR + DayLgth ∗ PmaxTadj
 

 

There is a modification of the canopy photosynthesis model that allows direct input of 

measured light interception in place of the Beer’s Law submodel if such data is available. 

Additionally, a pest treatment effect on photosynthesis can be manually included. 

2.2.2.3 Respiration submodel 

The second important parameter for carbon balance calculation is respiration, which is 

calculated using the respiration submodel. Respiration is calculated as an exponential 

response of respiration rate (R) to temperature (LAKSO & JOHNSON, 1990): 

(V) 

𝑅 = 𝑎𝑟 ∗ e𝑘𝑟 ∗ 𝑇 

ar  : R at T = 0 °C 

kr  : temperature coefficient of R  

T  : temperature in °C 

 

Respiration is calculated for each type of organ and there exist specific coefficients for fruit, 

wood, and leaf respiration. Fruit respiration rates are based on fruit fresh weight, while leaf 

and wood respiration rates are based on their surface areas (BUTLER & LANDSBERG, 
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1981; LAKSO & JOHNSON, 1990). The coefficient kr differs between plant organs but 

stays the same during the season for wood and leaf respiration. ar always varies during the 

season and is specific for the tree organ. For fruits ar and kr vary seasonally. Total 

respiration per tree is the sum of fruit, wood, and leaf respiration (in g CO2/day). 

2.2.2.4 Carbon partitioning submodel 

Available carbon for partitioning (daily carbon balance) is calculated from canopy 

photosynthesis minus organ respiration. The partitioning of the accumulated carbon has 

been adapted from the kiwifruit model of BUWALDA and co-workers (BUWALDA et al., 

1990; BUWALDA, 1991). Demand is defined as the maximum dry matter growth rate of 

each organ, estimated from growth studies under assumed optimum conditions, and a 

temperature response is included. The quantity of the particular organ and the estimated 

maximum dry matter growth rate are used to calculate the total carbon demand for the 

particular organ type (LAKSO et al., 2001b).  

 

Carbon is partitioned equal to the demands of organs when sufficient carbon is available to 

support all the demands. This allows all organs to grow at their maximum possible rate. 

When carbon supply is lower than total demand, carbon is partitioned based on a 

prioritization according to a relative sink strength (RSS) factor. The RSS factor has been 

estimated for each organ type and the sum of all RSS factors is one (LAKSO et al., 2001b). 

The priority order is: “shoots>>fruits>roots=wood”. The relative partitioning of carbon to 

a given organ is calculated by: 

 

 (VI) 

𝑅𝑃𝑖  =  𝐷𝑒𝑚𝑎𝑛𝑑𝐼  − (𝐷𝑒𝑚𝑎𝑛𝑑𝐼 (1 − 𝑅𝑆𝑆𝑖)  ∗  (1 −  (𝐶𝑎𝑟𝑏𝑜𝑛𝑎𝑣𝑎𝑖𝑙 / 𝐷𝑒𝑚𝑎𝑛𝑑𝑡𝑜𝑡𝑎𝑙) 

 

RPi    : relative partitioning to a given organ 

RSSi    : relative sink strength of a given organ 

DemandI  : calculated carbon demand of a given organ at a given stage and temperature 

Carbonavail  : available carbon 

Demandtotal  : total demand for carbon 

 

At the beginning of the season shoots are very active and receive most carbon, but later, 

when shoots terminate their growth demand, the carbon partitioning pattern changes and 

fruits and other organs receive more carbon, even though the RSS values remain the same 

throughout the season (LAKSO et al., 2001b). Overall, the carbon amount that is 
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partitioned to each organ type depends on the individual demands, the number of actively-

growing organs of the particular type, and whether carbon supply is sufficient or limited. 

2.2.2.5 Fruit growth and abscission submodel 

MaluSim calculates fruit growth and abscission based on available carbon supply to fruits. 

Fruit abscission is supposed to occur if fruit growth rate is not maintained above a critical 

rate of 60 % of the rate of the fastest-growing fruit (LAKSO et al., 2001b). This has been 

determined in field experiments, where ‘Empire’ fruits with a growth rate of 60 % or less 

were usually abscised by the tree. The critical growth rate is expressed relative to the 

fastest-growing fruits and not to any specific absolute growth rate, because this relationship 

was more consistent (LAKSO et al., 2001b). Absolute growth rates may be low due to lack 

of support for growth, leading to abscission, or to cold temperatures which generally do not 

lead to abscission. 

 

The fruit growth and abscission submodel compares the amount of fruit growth supported 

by the carbon partitioned to fruit (3-day running average) to the maximum expected 

growth rate for that day (based on a maximum growth rate curve adjusted for temperature, 

and number of fruits). A 3-day running average of available carbon was used to simulate 

the known buffering of tree responses to short-term daily weather variations (for example, 

heavy shade for one single day has no effect on early fruit drop, but 2 days and 3 days have 

increasingly strong effects on drop).  The above described relationship is used to calculate 

“physiological fruit abscission” and the number of current fruits is adjusted for the next 

day. Carbon supported fruit growth is accumulated and total crop weight and mean fruit 

weight is calculated (LAKSO et al., 2001b). MaluSim only calculates fruit abscission based 

on carbon balance, but it is possible to add empirical pollination and hand thinning factors 

to over-ride the basic parameter values. 

 

To achieve best results it is necessary to use cultivar-specific fruit growth and demand 

curves as well as cultivar-specific abscission curves (LAKSO et al., 2006a). The fruit 

growth and abscission submodel has only been published in parts and for most simulation 

runs fruit number has been set to a fixed specific number (LAKSO, 2011; LAKSO & 

ROBINSON, 2015). It has not yet been confirmed to calculate realistic final fruit numbers. 

Therefore the fruit growth and abscission submodel has to be tested und further developed. 

Further information about the submodel can be found in chapter 2.3.4. 
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2.3 Fruit development, thinning and the fruit growth & abscission submodel 

As described in the introduction, one of the most important management decisions for 

apple growers is the one concerning thinning.  The farmer has to thoroughly think about 

when to thin, which chemical or method to use, it can be different for a particular cultivar, 

and is well known to be very variable from year to year even with the same thinning 

treatment. The MaluSim model is thought to be able to help making these decisions, and 

simple comparisons of total carbon supply to total demand, have been useful for growers in 

the US. However, since the fruit growth and abscission submodel has not been working 

properly and not been used for practical applications, at first, it has to be modified or 

further developed.  

2.3.1 Apple fruit development 

In apple, flower bud development can be divided into several stages including flower 

induction, initiation, and differentiation. It extends over two consecutive seasons 

(HÄTTASCH et al., 2008), and thus starts one season before blooming and fruit 

development. Flower bud induction is the transition of the meristem from vegetative to 

reproductive growth, and is assumed to happen about 3 to 6 weeks after bloom (BUBÁN & 

FAUST, 1982; FOSTER et al., 2003) for next year’s flowers, although tip-bearing varieties 

can set flowers later. Although the carbohydrate requirement for flower induction is 

extremely small, it happens at the same time as intense cell division in the fruits takes place 

(YURI et al., 2011) and appears to be a weak sink. A heavy crop load can delay, decrease 

or even inhibit flower induction, with the result of fewer flowers in the following year 

(BUBÁN & FAUST, 1982; PALMER, 1992) and therefore the risk of inducing alternate 

bearing.  

 

Apple flower clusters usually contain about five to seven flowers. For adequate yields, a 

sufficient proportion of flowers have to be pollinated and fertilized (WERTHEIM & 

SCHMIDT, 2005). Many apple cultivars show self-incompatibility and therefore cross 

pollination is needed. Honeybees (Apis mellifera) are the numerically most important apple 

pollinators (RAMÍREZ & DAVENPORT, 2013). Date of full bloom is primarily driven by 

spring temperatures and differs between cultivars, between years for one cultivar, and 

between growing regions. 

 

Apple fruit development consists of a phase, where mainly cell division occurs, followed by 

phase with mainly cell expansion. At three to four weeks after full bloom cell expansion 

predominates, but cell division still takes place (GOFFINET et al., 1995). Cell number 

attained at the end of the cell division phase sets the potential for final fruit size in apples 
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(SMITH, 1950; GOFFINET et al., 1995). Temperature during cell division phase has a 

large effect on final fruit size (LAKSO et al., 1995; WARRINGTON et al., 1999; 

STANLEY et al., 2000). Besides temperature, endogenous hormones, nutrients, water 

relations, and plant carbon balance are supposed to play a major role in cell division 

(CORELLI-GRAPPADELLI & LAKSO, 2004). But the current understanding on how 

cell division and expansion are regulated in apple is still limited. Diameter increase of 

apples can be represented in terms of a sigmoid pattern. When weight or volume is 

considered as a measure of fruit growth the growth pattern is expolinear: exponential 

growth during cell division phase, followed by the cell expansion phase with linear growth 

(LAKSO et al., 1995; STANLEY et al., 2000).  

2.3.2 Natural fruit drop 

During fruit development of apple there are several phases of flower or fruitlet drop. 

Shortly after bloom there is the first main drop of unfertilized flowers (HANDSCHACK, 

1997). A second, very small drop often occurs at about three to four weeks after petal-fall, 

when the endosperm in the seed becomes cellular (BERÜTER & DROZ, 1991). The third 

phase of dropping is called the ‘June drop’ (northern hemisphere) in Europe and is the 

most important one for growers. A last natural fruit drop may occur shortly before harvest 

due to a premature formation of the abscission layer (TROMP & WERTHEIM, 2005).  

 

During the ‘June drop’ phase there are waves of drop that vary from year to year. Fruitlets 

of varying sizes are shed and drop can range from heavy to nearly zero. There are not only 

large variations in the severity of the final drop between cultivars, but also between seasons 

and sites. The mechanism is not well understood but large fruitlets with a high number of 

developing seeds have a higher chance to persist on the tree than smaller fruitlets with low 

seed numbers (HANDSCHACK, 1997; TROMP & WERTHEIM, 2005). But numerous 

hormonal and assimilate based tree factors, like vegetative growth, flower quality, tree age, 

cultivar and rootstock, but also environmental factors like temperature, water supply and 

light conditions have an influence on the severity of fruit abscission (BYERS et al., 1990a; 

DENNIS, 2000; BANGERTH, 2004). Fruit abscission is supposed to be a self-regulating 

mechanism of the tree to adjust the number of fruits to a level, which can be supported 

under the prevailing environmental conditions (BANGERTH, 2000). But for commercial 

apple production this self-regulatory mechanism of the grown cultivars is insufficient to 

reduce fruit load to an adequate final crop load and fruit size (IWANAMI et al., 2012). 

 

At the beginning of a season the energy resources needed for growth and flowering are 

derived from reserves. This gradually shifts around flowering time and the main part of 
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energy needed for fruit development during the season is produced via photosynthesis 

(CORELLI-GRAPPADELLI & LAKSO, 2004). Primary spur leaves are the earliest 

carbon contributors to fruit growth (CORELLI-GRAPPADELLI & LAKSO, 2004) and a 

well exposed spur canopy is essential for early fruit carbon supply and thus total tree yield 

(WÜNSCHE et al., 1996; WÜNSCHE & LAKSO, 2000). Long shoot export of carbon 

starts later (CORELLI-GRAPPADELLI et al., 1994) and within the first 4-5 weeks after 

full bloom there is a period where carbon supply may be limiting (CORELLI-

GRAPPADELLI & LAKSO, 2004). Overall, spurs support fruit growth earlier than long 

shoots and are very important for successful apple production. After the canopy reaches its 

full photosynthetic potential and crop levels are adjusted by thinning, carbon supply 

usually exceeds the total fruit demand until shortly before harvest, where shortages may 

occur again (CORELLI-GRAPPADELLI & LAKSO, 2004). 

2.3.3 Thinning 

Fruit thinning has been practiced for many years and is an essential part of commercial 

apple production, but it remains an unpredictable part with large variations from year to 

year and within years (WERTHEIM, 2000; DENNIS, 2003; ROBINSON & LAKSO, 

2011). It is one of the most important management decisions to achieve the optimal crop of 

high quality apples (LINK, 2000) and the commercial success of growers. Insufficient 

thinning means higher costs for later hand thinning in the current season and lower flower 

numbers in the next season, with the risk of biennial bearing. Over thinning means a loss of 

possible saleable apples itself, no optional hand thinning of damaged fruits, low quality 

(bitter pit, flesh browning, short storage life) and unwanted big-sized apples. Because 

thinning of large numbers of trees by hand is neither practical nor economical 

(WERTHEIM, 2000), various thinning methods have been developed. But thinning 

methods and regulations (release and withdrawal of chemicals from the market) vary from 

one country to the other and also from one year to the next in any particular country. 

 

The possible thinning period is quite long, but there are regulations as well as some phases 

that are not very popular among growers. Thinning is possible at bloom, petal fall, and 

during fruit development. Most farmers do not like early thinning of flowers, since they do 

not want to eliminate a portion of flowers before adequate fruit set is ensured. But early 

thinning is required for cultivars with a high likeliness of alternate bearing and when 

climatic conditions are favorable for fruit set (WERTHEIM & WEBSTER, 2005). Early 

thinning (at bloom) resulted in much higher return bloom than thinning at any later stage 

(BYERS & CARBAUGH, 2002). Late thinning (after 21 DAFB) resulted in inadequate 

return bloom in the following year. 
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Often used chemical methods of flower thinning are spraying with caustic compounds (e.g. 

ammonium thiosulphate (ATS) (WERTHEIM, 2000), or lime sulfur (GUAK et al., 2004)), 

or with chemicals that enhance ethylene formation (e.g. ethephon (EBERT & 

BANGERTH, 1982)), which then causes fruit drop. For post-bloom fruit thinning, also 

growth regulators such as auxins (e.g. naphthalene acetic acid (NAA), amide of 

naphthalene acetic acid (NAAm)) or cytokinins (e.g. 6-benzyladenine (BA)) (YUAN & 

GREENE, 2000; SCHRÖDER et al., 2013), as well as metamitron, a photosynthetic 

inhibitor (BASAK, 2011), can be used. Non chemical methods of thinning are artificial 

shading (BYERS et al., 1990b; ZIBORDI et al., 2009; BASAK, 2011), mechanical 

(SOLOMAKHIN & BLANKE, 2010) (e.g. Darwin 300, string thinner (SCHUPP et al., 

2008)), and hand thinning. 

  

Factors that increase or decrease natural fruit drop are known to also influence the 

effectiveness of chemical thinning. In addition, chemical thinning efficiency is also greatly 

influenced by the efficiency of spraying (volume, coverage), spray additives (surfactants), 

timing of thinning, compatibility with other chemicals applied at the same time 

(WERTHEIM & WEBSTER, 2005). Additionally, large differences in sensitivity of 

different apple cultivars to thinning agents have been found (COSTES et al., 2006). The 

many field experiments of the past were able to identify factors that appear to relate to 

thinning response, but the underlying mechanisms are not fully understood and described. 

 

High temperatures enhance the effect of thinners, for cool weather the reverse is true 

(WERTHEIM & WEBSTER, 2005). Higher night temperatures, especially on the day of 

the application plus the next day, were found to be more highly related to chemical 

thinning than daytime temperatures or daily average temperatures (BYERS, 2002). Beside 

temperature, light conditions play an important role for thinning efficiency. While cloudy, 

low light conditions before or after thinner application increase the effect of many thinning 

agents, sunny conditions often lower the thinning effect (WERTHEIM & WEBSTER, 

2005). As already mentioned, artificial shading also can be used by itself as a thinning 

method, which additionally underlines the significance of prevailing light conditions for 

thinning responses. This sensitivity changes during the season. Complete shading of whole 

trees for 5 days during early fruit development has been found to cause a total fruit drop, 

while applied after June drop no fruit abscission occurred (BERÜTER & DROZ, 1991). 

These findings indicate that weather effects on tree carbon balance are one of the major 

players in apple thinning and that this is one of the main reasons for year-to-year variability 

of thinning responses and natural fruit drop. Therefore, large uncertainties for the growers 
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remain, which might be removed or at least reduced through the use of carbon balance 

modeling. Carbon balance modeling has already helped to explain some of the great 

variations in fruit drop (LAKSO et al., 2006b; PARRA-QUEZADA et al., 2006). 

2.3.4 MaluSim fruit growth and abscission submodel 

The fruit growth and abscission submodel of MaluSim is mainly based on general 

relationships extracted from the developers own experimental data and from other 

published data. In general, the time of greatest carbon supply-to-demand deficit occurs at 

about one to three weeks after bloom, when both shoots and fruits need high amounts of 

assimilates for their growth (LAKSO, 2011). During this time, shoots have a higher 

priority than fruits. It has been shown that extension shoots use the produced carbon of 

their leaves for their own growth until they have developed a critical level of leaf area of 

about 10 - 12 leaves per shoot (CORELLI-GRAPPADELLI et al., 1994). When carbon 

supply was limited by low light, fruit dry matter growth was reduced much more than 

shoot growth (BEPETE & LAKSO, 1998). The primary carbon source for fruit growth 

during the early period of growth are the spur leaves (LAKSO, 2011).  

 

It has been found for apple, that fruit growth during the early period strongly affects set or 

abscission. Fruits that markedly slowed down their growth rates for a few days were 

destined to abscise (LAKSO et al., 2001a). This finding is a basis of the fruit growth and 

abscission submodel of MaluSim (LAKSO et al., 2006a; LAKSO, 2011). The simplify-

cation used in the model calculates the actual amount of carbon which supports fruit 

growth. This supported fruit growth is then compared to a pre-determined seasonal 

demand, in this case to a maximum growth rate for a specific cultivar. According to the 

percent-of-maximum growth rate, the model determines how many fruit will be abscised 

(LAKSO et al., 2006a) and re-sets the fruit number for the next day (LAKSO, 2011). 

 

The maximum possible fruit growth rate has been estimated from experiments. For the 

estimation, curves of weight over time of fruit on very lightly-cropping trees, where no fruit 

carbon deficit is assumed, were used. Maximum possible fruit growth rate is temperature 

dependent, which is also included in the model. Daily dry weight increase is supposed to 

equal the amount of carbon available for fruit growth and is related back to fresh weight to 

calculate fresh weight growth (LAKSO, 2011). The calculated fresh weight growth is then 

divided by the number of current fruit to estimate mean fruit weight. For best results it is 

necessary to use cultivar-specific fruit growth and abscission curves and LAKSO et al. 

(2001b) monitored abscission patterns for the cultivars ‘Empire’, ‘Gala’ and ‘Delicious’.  
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Important for the fruit growth and abscission submodel (Figure 2) is the carbon that is 

available for fruits (CO2toFrts). This CO2toFrts is an output of the carbon partitioning 

submodel (see chapter 2.2.2.4). 

 

 

Figure 2: Image of the graphical interface of the MaluSim fruit growth and abscission submodel 

in STELLA®. 

 

To buffer short time effects the CO2toFrts is accumulated and a running 3-day average is 

calculated. Due to this the fruit abscission is responding only to longer variations in 

weather conditions. This is based on the observation that trees also have a buffer and do 

not respond to very short time effects. The calculated average CO2 which is partitioned to 

the fruits (Avg CO2) is then transformed into the daily carbon partitioned to fruit in terms 

of fruit fresh weight (grams) (Dailyfrtfw). This is conducted by using a carbon dioxide to 

dry matter converter (C:DM fruit), followed by a dry matter to fresh weight (DM:FWT 

fruit) converter. The Dailyfrtfw divided by the number of fruits (CurrentFrt) determines the 

daily available fresh weight (grams) available to each fruit (deltafrtwtperfrt). The fruit 

development submodel begins after 170 accumulated degree days, base 4˚C after bud 
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break. Before 170 accumulated degree days, flowers are estimated to grow slowly and not 

require significant amounts of carbon. An accumulation of the deltafrtwtperfrt gives the 

mean fruit weight in grams. 

 

As already stated, the maximum possible fruit growth rate and the fruit growth rate 

supported by carbon are compared and then the amount of fruit abscission is determined. 

This maximum fruit growth rate (Max FGR) has been determined empirically. It depends 

on temperature and therefore has a temperature multiplier (TmultiFG). The temperature 

adjusted maximum growth rate and the deltafrtwtperfrt are compared and the percentage 

fruit growth rate of the maximum temperature adjusted fruit growth rate (FGR % max) is 

obtained. The FGR % max is converted into the fruit abscission curve (Absc curve), which 

is based on ‘Empire’ fruit thinning and shade studies conducted over multiple years. The 

abscission curve is used until 720 accumulated growing degree days, which on average 

corresponds to 39 days after full bloom. After this period it is assumed that the tree retains 

the current fruit number.  

 

It is possible to add a hand thinning effect (HandThinHarv) that allows a specified 

reduction in fruit numbers at any particular day, either early or to simulate harvest. In 

general, the pollination factor assumes that one third of the fruit will be successfully 

pollinated, but the factor can also be changed manually to better fit to field conditions. 

Before 190 accumulated growing degree days (point of full bloom) only the pollination 

factor is used for the calculation of abscission.  After this point, fruit abscission rate is 

calculated by multiplying current fruit number by abscission factor or hand thinning factor 

depending on which is the active process. The calculated fruit abscission rate is used to 

change the current fruit number for the next day. 

2.3.5 Current method on how to use MaluSim for thinning advice in the USA 

Although the fruit growth and abscission submodel has been developed based on the 

previously presented relationships, it showed oversensitive behavior. For this reason, 

LAKSO & ROBINSON (2015) used the model to help understand variations in fruit drop 

around thinning time by using a ‘standard tree’ with fixed fruit numbers instead of using 

the fruit growth and abscission submodel (LAKSO et al., 2006b; LAKSO, 2011). This 

means for example to use ‘Empire/M.9’ slender spindle at 2000 trees/ha with a fixed fruit 

number of 300 fruit/tree, which equals a level which is at the high end of what is possible 

to carry for that kind of tree in a good year. Commercial crop level typically is 200 to 250 

fruits (LAKSO & ROBINSON, 2015). To determine if carbon balance would provide 

useful explanations of thinning variations, weather data from different years were entered 
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into the model and the calculated carbon balance (total C supply to total C demand) 

examined for periods of especially positive or negative carbon balance. These were found 

to coincide quite well with experimental thinning trial results where the same thinners were 

applied each year at about 4 day intervals after bloom (ROBINSON & LAKSO, 2011). 

Additionally, ROBINSON & LAKSO (2011) found out that balanced years with no 

particularly good or poor supply led to a traditional pattern of chemical thinning response 

with the greatest fruit drop peaking at about 10 to 12 mm fruit size (ROBINSON & 

LAKSO, 2011). At greater fruit sizes (18 to 20 mm) the effectiveness of thinning is reduced 

again. This general pattern is related to carbon deficits, which appear to give rise to the 

year to year variability (ROBINSON & LAKSO, 2011). It was also found that the 

strongest effect of poor carbon balance appeared to occur in the first 3-4 days after 

treatment. MaluSim helps growers in the USA by providing an estimate of the achieved 

thinning within four to seven days after thinner application, which would allow an 

informed decision of whether additional sprays are needed or not. With an accurate 

weather forecast, MaluSim is able to provide predictions of thinning efficacy even before 

sprays are applied (ROBINSON & LAKSO, 2004, 2011). But it only addresses carbon-

related aspects and thus does not explain variations due to other factors (LAKSO & 

ROBINSON, 2015). It has been used in several regions in the US to predict thinning 

response with good but not perfect success (LAKSO & ROBINSON, 2015). 

 

There also exists an online version of the model for the USA (NEWA CORNELL 

UNIVERSITY, 2015) and also some blogs of scientist using the model and giving general 

advices for particular regions (VIRGINIA STATE UNIVERSITY, 2014; PENN STATE 

UNIVERSITY, 2015). The online model allows the grower to select their choice of 

weather stations and enters the budbreak date.  The system gathers the requested data, runs 

the simulation with the default tree parameters, and provides the data and model outputs 

as well as recommendations for adjusting thinner concentrations. Many apple growers in 

the eastern and midwestern US used the model and reported very useful results (LAKSO, 

2019). The model is used as a general guide and according to LAKSO & ROBINSON 

(2014) the US growers have found the model to be a useful input to their thinning 

decisions. This method has been widely used because the fruit growth and abscission 

submodel was not completed and validated (LAKSO & ROBINSON, 2015). It is used to 

provide advices for the particular prevailing conditions, but not to correctly calculate final 

fruit numbers. Using a fixed number of fruits may also lead to a wrong calculation of 

carbon balance. Therefore, being able to use properly calculated fruit numbers might 

further improve the calculations of MaluSim, and hence the advices for the growers.  
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2.4 General physiology and water relations of apples 

Beside thinning issues, another main concern of today’s apple growers is whether 

additional irrigation will be necessary for future apple production because of the Changing 

Climate, or will only be an additional expense which will not pay out in the end. This issue 

applies for new apple orchards and does not only concern the possible advantage of being 

able to produce high quality apples in dry and hot years when orchards are mature. It also 

addresses the question of how beneficial is a faster establishment of newly planted apple 

orchards and will this lead to an earlier payout of planting costs? For this reason and to be 

able to model water effects it is very important to fully understand water relations of apple 

trees and know its effects on whole apple tree physiology. 

2.4.1 Light interception 

Dry matter production in apples is known to be highly related to intercepted light 

(PALMER, 1989a; LAKSO, 1994). Light interception (LI) and distribution within tree 

canopies depend on diverse inter-related factors (WILLAUME et al., 2004). Maximum 

potential yield is usually directly proportional to intercepted light (JACKSON, 2003). 

However, for commercial apple production, high LI of apple trees does not automatically 

translate into an increased yield of marketable fruit (LAKSO, 1994; WÜNSCHE et al., 

1996; WÜNSCHE & LAKSO, 2000). Understanding the basic light relationships of trees is 

essential for their effective manipulation and to maximize its production efficiency. 

 

LI of apple trees depends on number and length of long shoots and of spurs, and their 

associated total leaf area, as well as on leaf transmission and reflection, leaf angle, folding 

and total distribution, but also on the height of trees, tree architecture, and the particular 

training and planting system (JACKSON, 1980). During tree establishment the number of 

long shoots and spurs, and height of trees increases, and LI increases until reaching a 

maximum on mature trees. The individual size and area of leaves is affected by genetics in 

terms of scion and rootstock (WILLAUME et al., 2004). There exist thousands of scion 

cultivars, and apple cultivars which were classified according to their architecture into four 

different growing types: columnar, spur, spindle, and tip bearer (LESPINASSE, 1992), but 

especially the rootstock has a major effect on tree size and thus on LI of apple trees. 

Nowadays, for thin slender spindle trees in commercial apple production in Germany 

mostly M.9 type rootstocks are used. For any combination commonly used training 

systems in commercial apple production, for example slender spindle, V-trellis, Y-trellis, 

and central leader, will affect the LI. Especially within-tree shading has negative effects on 

fruit quality and is decreased through modern training procedures (WILLAUME et al., 

2004). 
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Overall, leaf area is the most important parameter for tree LI. A possible way to estimate 

tree leaf area is to use trunk cross-sectional area (JACKSON, 1980). However, for mature 

commercial trees, which are pruned regularly to maintain the tree in an allotted space, this 

method is not very reliable anymore. Trunk girth and cross-sectional area continue 

increasing while leaf area is contained through pruning (JACKSON, 2003). Widely spread 

expressions related to LI are LAI, k and Fmax. LAI is leaf area index, which is the m2 leaf 

area per m2 ground area allotted per tree. Light extinction coefficient k depends on average 

spectral properties of the leaves and their orientation in relation to the spatial distribution 

of radiation (JACKSON, 2003). In apple, k usually ranges from about 0.44 for spurs to 

0.77 for extension shoots (JACKSON, 1980). Fmax is the maximum fractional LI which 

would occur if trees were opaque (JACKSON, 2003) since in orchards some light in the 

alleyways never passes through the trees. In general, north-south hedgerows are preferable 

to east-west ones due to LI and light distribution. There exist various models and methods 

to assess LI of trees (e.g. the ones by JACKSON & PALMER (1980; 1986, 1989b), 

CHARLES-EDWARDS (1982), WÜNSCHE et al. (1995), GREEN et al. (2003), 

OYARZUN et al. (2007), SINOQUET et al. (2008) or by DA SILVA et al. (2014)). 

PEREIRA et al. (2007) found a relationship between daily canopy transpiration and daily 

net radiation multiplied by LAI for apple. AUZMENDI et al. (2011) confirmed the 

relationship and showed a potential application of intercepted PAR (combined with VPD) 

to estimate the amount of needed irrigation water. Not only total tree LI is important, but 

whether light is intercepted by spurs or by extension shoots (WÜNSCHE & LAKSO, 

2000), as stated earlier. 

 

Physiological traits influenced by light environment are for example bud differentiation, 

leaf type, and thus photosynthetic potential of leaves, and ratio of spur to long shoot leaf 

area (PALMER, 1989a). The partitioning of resources is also largely controlled by light 

(CORELLI-GRAPPADELLI, 2003). Interestingly, no effect, neither positive nor negative, 

of shading for several days 3 weeks after bloom has been detected for shoot length growth 

rates per day while fruit growth was strongly inhibited (BEPETE & LAKSO, 1998). But 

JACKSON & PALMER (1977) found a reduction in number and weight of new shoots, 

and in fresh weight per unit length of shoot, for apple tree heavily shaded over long 

periods. Photosynthesis (see Chapter 2.4.2) is one of the most important processes in plants 

and highly dependent on light. But LI also directly affects fruit quality. Shading of fruits is 

known to affect fruit size, color, soluble solids concentration, mineral elements content 

(e.g. calcium) and firmness (JACKSON & PALMER, 1977), while too much light can lead 

to ‘sunburn’ of fruits (SCHRADER et al., 2003).   
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Overall, LI of apple trees is important in many aspects. A high and favorable LI leads to 

high quality apples. LI is one of the main drivers for assimilate production and can be 

optimized for mature trees by an appropriate training system. Much is known about long 

shoot and spur LI in apples. A fast vegetative growth during the establishment phase is 

highly wanted and leads to an increased LI and to an early achievement of final tree size. 

2.4.2 Photosynthesis 

Photosynthesis is the first step in a complex series of biochemical processes. Most products 

of photosynthesis are translocated and further metabolized, degraded in respiration, or 

stored as reserves (TROMP, 2005). Apple trees are known to use the C3 photosynthetic 

pathway to fix CO2 and the major photosynthate in mature leaves is sorbitol (LOESCHER 

et al., 1982), followed by sucrose, starch, glucose and fructose (ZHOU et al., 2001; ZHOU 

& QUEBEDEAUX, 2003). Sorbitol is also the major translocated form of carbon in apples 

(LOESCHER et al., 1982). 

 

In apple trees ‘sun’ and ‘shade’ leaves exist, depending on the light environment during leaf 

emergence and development (BÖHNING, 1948; BARDEN, 1978; FLORE & LAKSO, 

1990). Sun leaves are capable of greater maximum photosynthesis, while shade leaves are 

generally more efficient at low light levels (CAMPBELL et al., 1992; CORELLI-

GRAPPADELLI, 2003). Sun leaves have a greater specific leaf weight (MARINI & 

BARDEN, 1981) and a lower light transmittance, while reflectance of the two leaf types is 

similar (PALMER, 1977). Shade leaves typically have a reduced dark respiration rate 

compared to sun leaves (CAMPBELL et al., 1992). Reduced photosynthetic ability of 

shaded leaves does not appear to be readily reversible by re-exposure of the leaves through 

summer pruning (FLORE & LAKSO, 1990). Photosynthetic saturation in exposed apple 

leaves was found to be at about 1000 to 1200 µmol m-2 s-1 photosynthetic photon flux 

density (PPFD) (PRETORIUS, 2006). FLORE & LAKSO (1990) surveyed 51 published 

articles and calculated a mean maximum photosynthetic rate of 15.7 ± 5.6 µmol m-2 s-1 for 

apple leaves. The optimum leaf temperature for photosynthesis was found to be 25 to 30 °C 

and high temperature effects were more profound under drought conditions (PRETORIUS 

& WAND, 2003). Maximum photosynthetic rate of apple leaves has been found to occur a 

few days before full expansion of the leaves (KENNEDY & JOHNSON, 1981; FUJII & 

KENNEDY, 1985), but mature apple leaves have minimal reductions for many months. 

Besides differences between leaves grown in full sunlight or in shade, no difference has 

been found between long shoot and spur leaves concerning their photosynthetic potential 

(BARDEN, 1978). Additionally, no significant difference in photosynthetic rate of 

different apple cultivars has been found. Environment, stage of development, and fruit load 
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seem to have the greatest influence on photosynthetic rate of apple leaves (FLORE & 

LAKSO, 1990). Photosynthesis is highly affected by atmospheric CO2 concentration (PAN 

et al., 1998; CHEN et al., 2002) and high diurnal CO2 fluctuations have been measured in 

apple orchards (HAMACHER et al., 1994). Besides the described essential light quantity 

and CO2 concentration, additionally temperature, relative humidity, crop load, nutritional 

factors, and water status can have major effects on photosynthesis of apple trees. 

WÜNSCHE et al. (2000) found a linear relationship between leaf photosynthesis and 

stomatal conductance, with stomatal conductance accounting for 80 % of the variance of 

leaf photosynthesis.  

 

Environmental factors influence photosynthetic rate through stomatal and non-stomatal 

responses. Behavior of apple leaf stomates appears to be primarily regulated by light 

conditions (JONES, 1985; LAKSO, 1994). Stomatal conductance (gs) is additionally 

affected by leaf temperature, vapor pressure deficit (VPD), mineral nutrition, and by soil 

and plant water status in the short term. Over the longer-term source-sink balance of the 

tree and more precisely current sink strength of plant organs has also been found to have an 

effect on the plants photosynthetic demand for CO2 and on stomatal conductance 

(PRETORIUS & WAND, 2003). In general, apple leaves maintain a high leaf water use 

efficiency (WUE - defined as photosynthesis per unit of transpiration) throughout the 

season, depending on carbohydrate demand of the tree (PRETORIUS & WAND, 2003). 

Rapid or prolonged soil moisture deficit and VPD at fairly high levels (> 2.5 kPa) lead to 

stomatal closure in mature apple leaves.  

 

The maintenance of leaf turgor under drought can be achieved by osmotic adjustment in 

plants. This is the accumulation of proline, sucrose, soluble carbohydrates, glycinebetaine, 

and other solutes in the cytoplasm to improve water uptake from the drying soil (ANJUM 

et al., 2011). Mature apple leaves were found to be capable of osmotic adjustment 

(DAVIES & LAKSO, 1979; FANJUL & ROSHER, 1984; LAKSO et al., 1984; WANG & 

STUTTE, 1992; WANG et al., 1995), while no evidence for osmotic adjustment was found 

for leaves at the growing shoot tip (LAKSO et al., 1984).  

 

Intercellular CO2 concentration (Ci) is an indirect indicator of stomatal limitation to 

photosynthesis. It is calculated from CO2 and water vapor fluxes and allows to determine 

whether a reduction in net photosynthetic rate occurs due to stomatal closure 

(ci decreasing), or is caused by non-stomatal limitations such as reduced light use efficiency 

(ci increasing) (PRETORIUS & WAND, 2003). Stomatal closure reduces CO2 supply, 
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while nonstomatal limitation usually means damage to the photosynthetic apparatus 

(ZHANG et al., 2010). Besides stomatal conductance and biochemical capacity, mesophyll 

conductance has been found to be a third player in the process of photosynthesis (FLEXAS 

et al., 2012), but little is known about mesophyll conductance in apple trees.  

 

Apple trees show a diurnal pattern of net photosynthetic rate, with maximum values 

occurring in the morning and then tend to decline gradually during the afternoon until 

sunset under normal field conditions (LANDSBERG et al., 1975; LAKSO, 1986; CHENG 

& LUO, 1997; WÜNSCHE et al., 2000; ZHOU et al., 2001). For apple trees growing in 

Girona (Spain), daily maximum stomatal conductance occurred early in the morning 

(between 8:00 and 10:00 a.m.) and decreased near midday (DOLTRA et al., 2007). A 

decrease in the afternoon has been associated with stomatal closure (VPD and temperature 

effects) or with build-up of photoassimilates (FLORE & LAKSO, 1990) which has been 

associated with crop load, but the understanding of mechanisms responsible for the diurnal 

pattern is still incomplete. Knowledge about seasonal patterns is sparse. CHENG and 

LUO (1997) found daily maximum photosynthetic rate to be high in spring, depressed in 

midsummer, recovering in late summer, and then declining again with senescence of 

leaves. In contrast, stomatal conductance has been low in spring, peaked during 

midsummer, remained relatively high in late summer and then declined.  

 

The presence of fruit (high crop load) has been found to result in high photosynthetic rates 

(MONSELISE & LENZ, 1980; FUJII & KENNEDY, 1985; WÜNSCHE et al., 2000). 

PALMER et al. (1997) demonstrated a feedback effect of sink activity on the activity of 

source leaves. Leaf photosynthesis of non- and lightly cropping trees was reduced 

(PALMER et al., 1997). In addition, KLAGES et al. (2001) also found significantly 

reduced leaf photosynthetic rates on trees with low and no crop load during midday and 

late afternoon. However, they detected no crop load effect in the morning. This might be 

explained by accumulation of photosynthetic products in the leaf, resulting in feedback 

inhibition (KLAGES et al., 2001).  

 

Apple leaves show a typical asymptotic photosynthetic light response curve (LRC) 

(FLORE & LAKSO, 1990). This leaf LRC differs for sun and shade leaves. In addition, the 

shape of LRCs of single leaves differs from LRCs of whole trees. A single leaf LRC reaches 

its maximum at lower PPFD levels than a LRC of whole trees. This also means that the 

compensation point occurs at a higher PPFD for the whole canopy compared to a single 

leaf (CORELLI-GRAPPADELLI, 2003). Whole tree photosynthesis equals the integrated 
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sum of photosynthesis by leaves throughout the canopy volume. Thus, whole tree LRC is 

expected to vary as a function of sunlit in relation to shaded leaf area and the relative 

amount of irradiation available to the shaded leaves (LAKSO & MUSSELMAN, 1976; 

FLORE & LAKSO, 1990). It is a function of the amount of intercepted light, but it is 

influenced by the same factors like single leaf photosynthesis (BALDOCCHI & 

AMTHOR, 2001) and is highly affected by CO2 concentration. 

 

Drought negatively affects photosynthesis of apples (LAKSO, 1979; LANDSBERG & 

JONES, 1981; FLORE et al., 1985; JONES et al., 1985; FLORE & LAKSO, 1990; 

LAKSO, 2003; JIE et al., 2010). Water stress effects can be caused by soil moisture or by 

atmospheric water deficits or by both. VPD is important in fruit trees due to the very low 

hydraulic conductivity of the root systems (JONES et al., 1985). The magnitude and the 

diurnal course of photosynthetic rate of single leaves and whole trees are affected by water 

deficits. Apple trees show a single peaked CO2 exchange during one day under cool and 

humid air and adequate soil moisture. When plants suffer from soil water deficits, the 

maximum photosynthetic rate shifts to an earlier point of the day (BALDOCCHI & 

AMTHOR, 2001). Indications have been found that with gentle to moderate water stress 

mainly stomatal limitations to photosynthesis occur, while under more severe water stress 

conditions nonstomatal limitations occur (FLEXAS et al., 2004; ZHANG et al., 2010). In 

addition, leaf growth and canopy development are negatively affected by water deficits 

(FERNANDEZ et al., 1997a). This can lead to a reduction of maximum possible tree 

photosynthesis caused by a reduced interception of light by drought stressed trees. There 

exist various models for tree canopy photosynthesis, with Farquhar's photosynthesis model 

(FARQUHAR et al., 1980) being a widely used one for C3 plants. Photosynthesis is one of 

the main drivers of apple tree assimilate production and also of MaluSim carbon supply 

calculation. No evidence has been found that photosynthetic rate of apple trees changes 

during tree age. Although it is widely known that water stress leads to a reduced 

photosynthetic rate, so far, no scientifically sound relationship between photosynthetic rate 

and tree water status in apple has been described.  

2.4.3 Respiration 

Respiration is the process that provides the driving force for biosynthesis, cellular 

maintenance and active transport in plants (ATKIN & TJOELKER, 2003). This process 

oxidizes carbohydrates stepwise to water and CO2, and supplies the plant with the energy 

needed for all cell activities (TROMP, 2005). Respiration takes place in all plant organs 

and carbon losses due to respiration affect net production of plant biomass (LE ROUX et 

al., 2001). Respiration rates change between for example day and night or between 
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summer and winter. Respiration rate of apple trees is much lower at night than during the 

day, and lower in winter than in summer (WIBBE et al., 1994). Like most biological 

processes, respiration is highly affected by temperature (TROMP, 2005). The Q10 of 

respiration is often assumed to be 2 (i.e. respiration doubles per 10 °C rise in temperature) 

(ATKIN & TJOELKER, 2003). BUTLER and LANDSBERG (1981), however, reported a 

Q10 of 2.32 for apple tree respiration. 

 

BEPETE & LAKSO (1997) constructed an initial seasonal fruit respiration model to 

estimate the effects of fruit development, daily temperatures, and fruit exposures on apple 

fruit respiration. Fruit respiration rates were found to be high during cell division phase 

and fruit specific respiration was correlated to relative growth rate (BEPETE & LAKSO, 

1997). The cell expansion phase is thought to be energetically less costly than the cell 

division phase (LAKSO & DENNING, 1996). 

2.4.4 Water relations of apple trees 

Water is the greatest component of a tree by mass and almost all critical processes can be 

limited by water deficiency (JONES et al., 1985; LAKSO, 2003). Water consumption of 

apple orchards varies with tree characteristics, climate, and changes during the season. 

Transpiration is one of the main processes that affect water use of apple trees (NAOR, 

2006). Leaves are the most active transpiring surfaces and intercept the radiation that 

drives transpiration (LAKSO, 2003), which makes tree water use highly dependent on leaf 

area and radiation interception. Total evapotranspiration of apple orchards can be divided 

into tree transpiration, evaporation from the soil, and transpiration from grass between 

rows (BRAUN et al., 2000). It is calculated by the Penman-Monteith equation (GREEN & 

MCNAUGTON, 1997; JONES & TARDIEU, 1998; DRAGONI et al., 2004). 

 

Water consumption of apple trees varies with growing region and year. AUZMENDI et al. 

(2011) found canopy water requirements of around 630 mm in 2007 and 2008 for 

Mollerussa, Spain. Apple trees in a lysimeter in Palmerston North, New Zealand were 

using approximately 4 liters of water per day (BEHBOUDIAN et al., 1998). For Bonn, 

Germany, per tree water consumption was found to be between 1.8 liters on cloudy days, 

and 5 liters on sunny days, which equals 0.4 - 1 liters per day per m2 leaf area (BACKES & 

BLANKE, 2007). In mild sub-humid climates the water-use rates for sunny days are about 

1 to 1.7 liters per day per m2 leaf area (LAKSO, 2003). Water need during the growing 

season for apple trees in Germany is supposed to be around 250 to 280 mm (BRAUN, 

2008). A general advice is that apple trees in good and deep soils need about 2 liters per 

tree per day additional to rainfall to maintain sufficient water during dry periods (BRAUN, 
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2008). Water use is also dependent on crop load (CHEN & LENZ, 1997), especially later 

in the season (BUWALDA & LENZ, 1992). It is evident that some knowledge about water 

use of apple trees has been collected through field experiments, but only little information 

exists for Germany. Overall the single findings have not resulted in a comprehensive 

understanding of water relations of apple trees. 

 

Apple tree root systems have been found to use the space down to a depth of 1.6 m, with 

mature trees penetrating to at least 1 m depth (HUGHES & GANDAR, 1993), but no data 

about rooting depths of developing apple trees is available. Rooting density within the 

exploited soil volume is generally low. Roots control total tree water use and water status 

by sensing soil water status and sending a signal to the shoots when soil gets dry 

(GOWING et al., 1990). This signal was found to consist of high quantities of abscisic acid 

(ABA), which is then transported to the leaves (DAVIES & ZHANG, 1991). ABA can 

inhibit stomatal opening and thus reduce water usage of the tree. Apple rootstocks differ in 

their water conductance and in their exploited soil volume (OLIEN & LAKSO, 1986).  

 

A consequence of water deficit is stress. Water deficit has more dramatic effects on apple 

trees when it occurs in spring and early summer, than when it takes place later in the 

season (LAKSO, 2003). Water deficit during flowering in apple can lead to a reduced fruit 

set and an increased fruit abscission (POWELL, 1974). Water deficit during fruit cell 

division may reduce cell number (HSIAO, 1973) influence final fruit size and number 

(KILILI et al., 1996a). Water deficits are known to reduce radial trunk growth (IANCU, 

1985). Mid-season water deficit has been found to result in reduced trunk circumference 

growth and in reduced leaf area and shoot length (MILLS et al., 1996). Late-season water 

deficit did not reduce shoot growth or total leaf area, but did limit the radial trunk growth, 

and is thought to have a minimal influence (MILLS et al., 1996). Root growth is less 

sensitive to water deficits than shoot growth, and the root to shoot ratio of plants generally 

increases when water availability is limited (ANJUM et al., 2011). The absolute amount of 

root growth can be reduced under irrigation (LANDSBERG & JONES, 1981), and root 

distribution is highly affected by irrigation itself and by irrigation management practices 

(system, timing, and amount) (LEVIN et al., 1979; SOKALSKA et al., 2009).  

 

Intensification of apple orchards, which includes higher numbers of trees per area as well 

as the use of dwarfing rootstocks that have shallow and sparse root systems, has led to a 

higher dependence on frequent and adequate water supply. A restriction of water supply 

significantly reduced total dry weight of apple trees (BUWALDA & LENZ, 1992). 
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Reductions resulted from reduced dry weights for fruit, leaves, shoots and stems, while 

root dry weights were not affected. Under very severe water deficit ‘Royal Gala’ apple trees 

began to show typical signs of extreme water stress: in-rolling of leaves to reduce surface 

area and death of the main shoot apex (BASSETT et al., 2011). Besides knowledge about 

water use also some knowledge about effects of water deficits on apple trees is available but 

has not been used to find general principles that control apple productivity. By connecting 

and integrating the available knowledge into the MaluSim framework this might be 

possible. It can also help to identify areas where inadequate knowledge about water 

relations of apples is available and to focus future research directions. 

 

In many growing regions performance of commercial apple orchards, i.e. fruit size and 

quality, storability, and long term productivity highly depend on irrigation. But the amount 

of fresh water available for agricultural use is decreasing worldwide. For an effective 

irrigation scheduling, a precise adjustment of irrigation amounts to actual plant water 

consumption is needed to maximize the efficiency of irrigation (CASADESUS et al., 2011; 

NAOR, 2014). But making decisions on irrigation is complex because it involves many 

factors (physiological, phenological, meteorological and economical). Each of these factors 

is subject to uncertainty and the use of plant water stress indicators may enable the grower 

to precisely adjust irrigation and to compensate for effects of canopy size, application 

efficiency, and crop load (NAOR, 2006). For many crops it is not necessary to fully irrigate 

the plants to achieve high yields and several irrigation strategies have been developed. 

They aim to minimize water use, while maintaining sufficient yields, and reduce 

environmental problems such as leaching of nutrients and pesticides through the soil to 

ground water (MILLS et al., 1996). Examples are deficit irrigation (DI), regulated deficit 

irrigation (RDI) and partial rootzone drying (PRD). PRD is a strategy where water is 

withheld from one part of the rootzone while another part is well watered. The idea behind 

it is that a reduced transpiration occurs due to an ABA root-signal derived from the drying 

rootzone (O'CONNELL & GOODWIN, 2007). DI means to use irrigation at levels below 

the water use demands of a tree (LAKSO, 2003), while RDI implies the same concept, 

except for targeting of specific growth stages versus full-season deficits.  

 

Since most experiments were conducted in mature orchards only sparse knowledge about 

the effects of irrigation during the establishment phase of apple orchards exists. Many trials 

have been conducted and various irrigation methods evolved, but the underlying 

knowledge about how much water apple trees need and when, and what happens exactly 

when they have to deal with water deficits remains not fully understood.  
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3 MAIN RESEARCH OBJECTIVES OF THIS THESIS 

The major objective of this thesis is to provide a universal apple tree model for Europe, 

which on the one hand can be used for addressing problems in practical applications (e.g. 

predictions of natural fruit drop or tree thinning response to chemical thinners) and on the 

other hand can be used for a better theoretical understanding of apple tree behavior under 

Central-European growing conditions (e.g. understanding effects of additional water 

supply and water deficits). The final model is not only intended to be a basis for apple 

orchard management decisions and high quality production in the future, but also for 

exploring differences between growing regions and for future research, e.g. Climate 

Change effects on apple orchards and growing sites. For this aim, the MaluSim carbon 

balance model has been chosen as a basis. The general hypothesis is that, after a 

parameterization, the model can be used in Europe as a thinning decision support tool and 

for calculating general carbon balance of apple trees. 

 

Besides the general ability of the MaluSim model to calculate an overall carbon balance 

and then link this balance to a general thinning status of the trees, the developers also 

added a specific fruit growth and abscission submodel. This submodel has been based on 

estimated carbon supply for fruit growth and the relationship between fruit growth rate and 

abscission, but was not able to correctly calculate final fruit numbers and therefore is still 

under development. The hypothesis is that by testing and modifying the key relationships 

and, if required, integrating more available knowledge and relationships on fruit abscission, 

and, by using accurate weather data, the submodel should be able to calculate an 

appropriate simulation of natural fruit drop. 

 

There still exist major gaps in our understanding of water relations of apple trees, especially 

concerning effects of irrigation during the establishment phase and concerning water deficit 

effects on photosynthesis. One major limitation of the MaluSim model is that water status 

of the tree is not modeled, but assumed to be non-limiting. A water submodel would not 

only improve the general carbon balance calculation under a wider range of conditions, but 

would also enable the user to simulate how water deficits may affect tree and fruit 

development of apple trees. As a possible future consequence MaluSim could be able to 

support irrigation management or to decide whether it is useful to install additional 

irrigation for a particular site. To achieve a universal apple tree model for theoretical and 

practical applications in Germany and Central-Europe the major hypotheses and derived 

objectives of this thesis can be summarized as: 
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I) MaluSim can be used for simulations of carbon balance of apple trees in Germany. To 

confirm this hypothesis the objectives are: 

 Define a standard tree and parameterize MaluSim for that tree and for weather in 

Germany. This includes to consider differences in environmental conditions, apple 

cultivars, and growing systems, and to test the original relationships and 

assumptions for the prevailing conditions. 

 Run the parameterized model with actual weather data and compare simulation 

runs with the original model to check if the general behavior of the model is 

realistic and similar in pattern to original values. 

 

II) By linking carbon balance modeling to general knowledge about fruit development and 

abscission it will be possible to simulate natural fruit drop and final fruit numbers for a 

standard apple tree. Therefore, to specifically test and modifiy the fruit growth and 

abscission submodel of MaluSim, the main objectives are: 

 Examine the original fruit growth and abscission submodel  

 Compare with available literature based knowledge and, if necessary, modify the 

used relationships of the fruit growth and abscission submodel 

 Compare simulation runs of the modified models with field data on final fruit set of 

unthinned orchards at different sites in Central-Europe 

 

III) The hypothesis for the field experiment is that by applying additional irrigation under 

German conditions on a newly planted apple orchard will not only lead to a reliable, 

but also to a significantly faster and better tree development. Another main objective of 

the field experiment is to find a relationship between photosynthetic rate and some 

measure of plant water status. Therefore, the objectives for the field experiment are: 

 Measure the effects of additional irrigation under German conditions in the first 

years after planting, in comparison to a non-irrigated control treatment 

 Define a relationship between photosynthesis and tree water potential 

 

IV) The last hypothesis is that by using relationships between water status of apple trees 

and the main processes occurring in apple trees, effects of water deficits on carbon 

balance can be modeled. The objectives to integrate a water submodel into the 

MaluSim framework are: 

 Screen available literature about water relations of apple trees and extract 

relationships 

 Combine and integrate the relationships to develop a water submodel for MaluSim  
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4 PARAMETERIZATION OF MALUSIM TO GERMAN GROWING SYSTEMS 

To be able to use the chosen MaluSim model in Germany, as a first step, the model has to 

be parameterized to the prevailing conditions. In the original MaluSim model, parameter 

values are mainly based on summarized data of many apple cultivars from the literature 

and the studies of Alan N. Lakso and others. The “standard” tree of the original model is a 

mature slender spindle ‘Empire’/M.9 at approximately 2000 trees/ha (LAKSO et al., 

2001b). This means that the used input parameter are the ones found in an “average” 

‘Empire’ orchard in New York State, USA. Compared to this, the trees in Germany are 

much smaller and the planting density is higher with usually about 3000 up to 4000 

trees/ha. Another main difference is the used apple variety. In the European Union the 

main varieties are ‘Golden Delicious’, ‘Gala’, ‘Pinova’, ‘Jonagold’, ‘Braeburn’ and some 

others (STATISTA, 2011). 

 

Additionally to a general parameterization to the location it is necessary to get a 

“standard” tree for Germany, by counting and measurements of some commercially 

relevant cultivars in different commercial and research orchards. 

4.1 Materials and methods 

4.1.1 Modeling 

Modeling has been conducted using the auto-programming simulation software STELLA® 

(Version 9.1.3; isee systems, Lebanon, NH, USA) and MaluSim Version 

‘MaluSim904LTWthrSt9’, which has been supplied by the model developer Alan N. 

Lakso, Cornell University. 

4.1.2 Tree measurements 

Tree measurements were conducted in 2012 and 2013 on 5 trees each of ‘Fuji’, ‘Gala’, 

‘Braeburn’ and ‘Pinova’ on the experimental site “Fuchsberg” of Geisenheim University, 

situated at Geisenheim (49°59'05''N; 7°57'26''E). Additional tree measurements were made 

in commercial orchards on 8 trees of the cultivar ‘Gala’ and 8 trees of the cultivar 

‘Braeburn’ at the location Appenheim (49°55'29'' N; 8°02'39''E), on 8 trees of the cultivar 

‘Gala’ and 8 trees of the cultivar ‘Braeburn’ at the location Mainz-Drais (49°58'47'' N; 

8°11'56''E), and on 20 trees of the cultivar ‘Elstar’ and 20 trees of the cultivar ‘Gala’ at the 

location Zornheim (49°53'42'' N; 8°13'08''E). 

 

Counting of total number of flowers, of spurs and of long shoots has been done using a 

tally counter. For wood surface area calculation, height (in cm), trunk circumference at 
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35 cm, 80 cm, 130 cm, and 180 cm height above ground, and largest diameter and length 

of branches has been measured. Height of trees was measured using a folding rule and 

length of branches and trunk circumference was measured with a measuring tape. 

Diameter of branches has been measured using a sliding caliper. Wood surface area has 

been calculated using circumference and height data of the trees and calculating truncated 

cone or cone (for top segment) surface area (without the top and bottom) for each of the 

measured segments and adding calculated surface area of the branches. Branches surface 

area was calculated using the length of the branch and largest diameter with the cone 

surface formula (without bottom). 

4.1.3 Parameterization of MaluSim 

While in the USA for commercial apple orchards a moderate density is 2000 trees/ha, in 

Germany usually around 3000 trees/ha are planted. This makes it necessary to change the 

ground “area per tree” input. Also the height of the trees is different, with usually 2 to 

2.5 m height in Germany, compared to 3 to 4.5 m height in NY State, USA. For the 

parameterization of MaluSim the latitude is required in the model, to calculate incoming 

radiation and day length. An apple orchard in Geneva, NY, USA with a latitude of 43° has 

higher potential mid-summer incoming radiation but a shorter day length than an apple 

orchard in Geisenheim (latitude 50°) or Germany in general (latitude 48-54°). 

 

To compare simulation runs of the original model with original environmental values to 

conditions and parameterization for Germany overall six simulation runs were conducted: 

 

1. USA Wthr USA StT: For this simulation run the original model with 20-year mean 

weather data (1971 – 1990) for Geneva, USA, and the original standard tree ‘Empire’ has 

been used. Ground area per tree of 5.1 m2 has not been changed. Latitude of 43° has been 

used. 

 

2. USA Wthr GER StT: For this simulation run the original model with 20-year mean 

weather data (1971 – 1990) for Geneva, USA, and the new standard tree for Germany has 

been used. Ground area per tree of 5.1 m2 has not been changed. Latitude of 43° has been 

used. 

 

3. USA Wthr GER StT +AREA: For this simulation run the original model with 20-year 

mean weather data (1971 – 1990) for Geneva, USA, the new standard tree for Germany 

has been used. Ground area per tree has been changed to 3.5 m2. Latitude of 43° has been 

used. 
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4. GER Wthr USA StT: For this simulation run the original model with mean weather 

data of 2012 and 2013 for Geisenheim, Germany, and the original standard tree ‘Empire’ 

has been used. Ground area per tree of 5.1 m2 has not been changed. Latitude of 50° has 

been used. 

 

5. GER Wthr GER StT: For this simulation run the original model with mean weather 

data of 2012 and 2013 for Geisenheim, Germany, and the new standard tree for Germany 

has been used. Ground area per tree of 5.1 m2 has not been changed. Latitude of 50° has 

been used. 

 

6. GER Wthr GER StT + AREA: For this simulation run the original model with mean 

weather data of 2012 and 2013 for Geisenheim, Germany, and the new standard tree for 

Germany has been used. Ground area per tree has been changed to 3.5 m2. Latitude of 50° 

has been used. 

4.2 Results 

4.2.1 Parameterization of MaluSim – a standard tree for Germany 

Results of the tree measurements to achieve data for a MaluSim standard tree for 

Germany, compared to the original standard tree, are presented in Table 1. 

Table 1: Counted numbers of flowers, long shoots and spurs, and measured wood surface area 

(m2) for ‘Gala’, ‘Braeburn’, ‘Fuji’, ‘Pinova’, and ‘Elstar’ in comparison to numbers used in the 

original MaluSim model for ‘Empire’. The additional column “1/3” stands for one third of the 

original standard tree. “Overall” values are calculated by using the average values of the 

cultivars ‘Gala’, ‘Braeburn’, ‘Fuji’, ‘Pinova’, and ‘Elstar’. “Overall (–Elstar)” has been added 

because ‘Elstar’ showed very dissimilar values compared to ‘Gala’, ‘Braeburn’, ‘Fuji’, ‘Pinova’, 

who did not differ much between each other.  

 

 

There exist differences between apple cultivars in Germany, but besides ‘Elstar’, all other 

chosen cultivars did not differ very much in the current case. For this reason ‘Elstar’ values 

were excluded and “Overall (-Elstar)” values were used for the standard tree for Germany. 

Compared to the original standard ‘Empire’ tree, apple trees in Germany are much smaller 

and comparable to values of about one third of the original standard ones (see Table 1, 

column: “1/3”). 

Name Original "1/3" Gala Braeburn Fuji Pinova Elstar Overall Overall

Variety Empire Gala Braeburn Fuji Pinova Elstar (-Elstar)

# flowers 2400 800 719 834 768 773 427 704 774

# long shoots 194 65 69 83 74 60 117 81 71

# spurs 686 229 234 303 266 254 207 253 264

Wood SA 1.5 0.5 0.5 0.51 0.5 0.48 0.55 0.51 0.50 
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4.2.2 Test of parameterization - Comparison of simulation runs for USA and 

Germany 

Daily canopy photosynthesis with 20-year mean weather data (1971-1990) of Geneva, 

USA is simulated to increase after bud break, reaching its maximum values between 60 

and 130 days after bud break (DABB), followed by a decrease until 206 DABB (Figure 3). 

 

 

Figure 3: Simulated daily canopy photosynthesis of modeled ’Empire’ standard trees (USA Wthr 

USA StT- dotted line), of modeled German standard trees with an area per tree of 5.1 m2 (USA 

Wthr GER StT – dashed line), and of modeled German standard trees with an area per tree of 

3.5 m2 (USA Wthr GER StT+AREA- solid line), using long-term weather data of Geneva, USA. 

 

During most of the season, simulated daily canopy photosynthesis of modeled ‘Empire’ 

standard trees is calculated to be about twice as high as the one of modeled German 

standard trees with a ground area per tree of 3.5 m2. Values of modeled German standard 

trees with an area per tree of 5.1 m2 are about 15 % higher than the ones modeled with an 

area per tree of 3.5 m2. Seasonal cumulative canopy photosynthesis was simulated to be 

15.9, 8.9 and 7.9 kg of fixed CO2 per tree for ‘USA Wthr USA StT’, ‘USA Wthr GER StT’ 

and ‘USA Wthr GER StT+AREA’, respectively. Net cumulative CO2 fixation 

(photosynthesis minus respiratory losses) per tree per season was simulated to be 13.3, 7.9 

and 6.9 kg/tree for ‘USA Wthr USA StT’, ‘USA Wthr GER StT’ and ‘USA Wthr GER 

StT+AREA’, respectively. 

 

Results of simulation runs with two-year average weather data (2012-2013) of Geisenheim, 

Germany are shown in Figure 4. 
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Figure 4: Simulated daily canopy photosynthesis of modeled ’Empire’ standard trees (GER Wthr 

USA StT- dotted line), of modeled German standard trees with an area per tree of 5.1 m2 (GER 

Wthr GER StT – dashed line), and of modeled German standard trees with an area per tree of 

3.5 m2 (GER Wthr GER StT+AREA- solid line), using two-year mean weather data of 2012 

and 2013 from Geisenheim, Germany. 

 

Modeled daily canopy photosynthesis with German weather shows in general a similar 

course as with USA weather. It is simulated to increase after bud break reaching maximum 

values between 66 and 148 DABB and followed by a decrease until 219 DABB. Simulated 

length of season is about two weeks longer in Germany than in the USA (Figure 3; Figure 

4). Seasonal cumulative canopy photosynthesis using German weather data only differed 

by 0.1 kg from simulation runs using weather data of Geneva USA and was simulated to 

be 15.8, 8.8 and 7.8 kg of fixed CO2 per tree for ‘GER Wthr USA StT’, ‘GER Wthr GER 

StT’ and ‘GER Wthr GER StT+AREA’, respectively. Net cumulative CO2 fixation per 

tree per season was simulated to be the same as for USA (see above). 

4.3 Discussion 

When comparing simulation runs using the ‘Empire’ standard tree with Geneva and 

Geisenheim data, it becomes evident that, overall, weather data was comparable between 

sites. Although modeled season length is slightly longer for Geisenheim (10 days) than for 

Geneva, total seasonal cumulative canopy photosynthesis is similar. This result is in 

contrast to published simulation runs for New Zealand, where a longer growing season led 

to a higher amount of total seasonal cumulative canopy photosynthesis compared to 

simulation runs for Geneva, NY, USA (LAKSO et al., 2001b). But simulated season for 

New Zealand was about 60 days longer than for Geneva and also showed higher 
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photosynthesis values than for Geneva in mid-season (100 to 180 DABB), probably caused 

by higher incoming radiation in New Zealand compared to Geneva, NY. Another main 

change for parameterization was latitude. While simulation runs for New Zealand were 

based on latitude of 40°, and simulation runs for Geneva, USA on latitude of 43°, 

Geisenheim is situated at latitude of 50°. Higher latitude leads to a longer day length 

during the season, but also to a lower incoming radiation during the day. But light 

interception (LI) calculations of PALMER (1989b) indicate that maximum possible % LI is 

not very different for 51.3° and 40° from June to September. This agrees with the presented 

simulations, where no relevant differences were obtained.  

 

MaluSim appears to be a valuable tool for comparing different apple growing sites 

(ROBINSON & LAKSO, 2011) and regions (LAKSO et al., 2001b), which is additionally 

supported by the presented simulation runs. This also makes it a possible tool to identify 

valuable as well as unsuitable growing sites without the need to conduct practical trials. 

Additionally it can be used to compare orchards of different productivity and to understand 

potential differences. Overall, it was possible to parameterize MaluSim to a more typical 

tree and for German growing conditions. Parameterization-simulation runs indicate that 

MaluSim, using the original as well as the new German standard tree, is in general 

realistic. Measured input parameter for the new German standard tree were in a range of 

about 33 % of the original ‘Empire’ tree input parameter, but daily canopy photosynthesis 

has been calculated to be about 50 % of the original. The same has been found for seasonal 

cumulative canopy photosynthesis. Dense trees have a high total LI but usually high 

internal shading occurs. LI of apple trees is known to depend on the height of trees, but 

also on tree architecture, and on the particular training and planting system (JACKSON, 

1980). Especially within-tree shading can have a high effect on LI (WILLAUME et al., 

2004). For smaller trees less internal shading is likely to occur, which leads to a 

comparatively higher LI (lower total LI than for dense trees, but most leaves are supposed 

to have good light conditions) and thus a lower reduction of total canopy photosynthesis 

per m2. Through the lower active leaf area per area per tree, a lower LAI is calculated. 

Additionally, through the use of an exponential function in the photosynthesis calculation, 

a reduction to half total canopy photosynthesis is calculated.  

 

With the parameterization and the new standard tree it is possible to estimate carbon 

balances for Germany. Commercial apple orchards in Central-Europe do not differ much 

compared to German orchards. Therefore, the parameterized model can also be used to 

make simulation runs for apple orchards in Central-Europe.  
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5 THINNING AND NATURAL FRUIT DROP – TESTING AND IMPROVING 

MALUSIM FOR NATURAL FRUIT DROP SIMULATIONS 

The fruit growth and abscission submodel (see chapter 2.2.2.5 and 2.3.4) of MaluSim was 

expected to provide useful information about thinning status and natural fruit drop for trees 

in Germany after its parameterization. Following the initial parameterization, simulation 

runs using the submodel were conducted, but it has not been able to adequately simulate 

realistic tree behavior in terms of natural fruit drop and final fruit number calculation. It 

was too sensitive and with only a slight carbon deficit it simulated that all fruits will drop. 

This problem has also been confirmed for using MaluSim in the USA and is one reason 

why the submodel has not been used for grower support (LAKSO, 2012).  

 

In general, it should be possible to correctly simulate natural fruit drop and final fruit 

numbers for a standard apple tree, when the used relationships of the submodel are correct 

and include all relevant aspects concerning fruit development of abscission in apples.  

5.1 Materials and methods 

5.1.1 Modeling 

The following modifications have been conducted using the auto-programming simulation 

software STELLA® (Version 9.1.3; isee systems, Lebanon, NH, USA). All modified 

models are based on MaluSim Version ‘MaluSim904LTWthrSt9’ provided by A. Lakso, 

Cornell University. 

5.1.2 Parameterization to Zornheim and modifications of the fruit submodel 

Experimental data of the Master-Thesis of Theresa M. Pfeifer (conducted in 2012) were 

used as a test. At first, a parameterization of the model to the location Zornheim, Germany 

has been made (using weather data of Zornheim and latitude of 50°). Then the default fruit 

growth and abscission submodel was applied and simulation runs showed an oversensitive 

behavior and calculated that all fruits will drop, which did not occur in the field 

experiments. Further on, data of field measurements (see Table 2) has been integrated to 

incorporate the exact parameter of the trees. Additionally to tree data, a pollination factor 

of 0.334 was used, which has been calculated from numbers of flowers during full bloom 

and numbers of fruitlets counted after unpollinated flowers have dropped. This meant that 

33.4 % of the flowers were not pollinated.   
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Table 2: Input parameter of the original MaluSim model and changed input parameter used to 

test the fruit submodel based on a field experiment with ‘Gala’, conducted at the location 

Zornheim, Germany. Used field tree data is the average of 10 measured trees. 

 

 

Because simulation runs using the presented values also resulted in a calculated drop of all 

fruits, modifications of the submodel were conducted. Several different modified fruit 

growth and abscission submodels based on published data (CORELLI-GRAPPADELLI et 

al., 1994; STANLEY et al., 2000; LAKSO et al., 2001b; LAKSO et al., 2006a; 

DÖRFLINGER, 2010; GREENE et al., 2013) and field measurements conducted at the 

locations Geisenheim and Zornheim, were generated.  

 

Overall, the following parameter were tested according to their influence on model 

performance: pollination factor, timing of non-pollinated fruitlet drop, start of fruit 

abscission caused by carbon deficit, calculated time of full bloom, fruit abscission curve, 

initial fruit weight, and three to five day fruit CO2 accumulator.  Only the most interesting 

modifications are presented in the following. 

 

The modification (G4-4) that obtained best results in the tests is described at first. 

Additionally, some other modified submodels are displayed to show how changes of 

parameter affect submodel performance and to compare results. 

 

For model ‘G4-4’ the fruit abscission curve has been modified to ‘Gala’, a common cultivar 

in Europe, by incorporating the measured fruit abscission curve of ‘Gala’ (Figure 5), 

published by LAKSO et al. (2001b). Additionally, simulation runs using the abscission 

curve of ‘Empire’ (E4-4) and ‘Delicious’ (D4-4) were made and compared to field data. 

 

Original MaluSim Field data of ‘Gala’

Latitude 43° 50°

Weather data Geneva, NY, USA Zornheim, Germany

Bud break (DOY) 105 84

Initial number of flowers 2400 727

Number of long shoots 194 82

Number of spurs 686 229

Wood surface area (m2) 1.5 0.45

Pollination factor 0 0.334 
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Figure 5: Relationship between fruit abscission and fruit growth rate as % of the fastest growing 

fruit in a population in several NAA or shade studies. (Figure from LAKSO et al., 2001b) 

 
In the original model, fruit drop caused by carbon deficit is supposed to start at full bloom. 

This caused the calculation of an early drop of all flowers in the tests and therefore has 

been modified. Modified models, starting fruit drop by carbon deficit calculation on 200 

(G4-2), 250 (G4-3), 300 (G4-4), and 350 (G4-5) accumulated growing degree days, are 

displayed for ‘Gala’ abscission curve. For ‘Empire’ abscission curve, modified models for 

300 (E4-4), 350 (E4-5), 400 (E4-6) and 420 (E4-6b) accumulated growing degree days, and 

for ‘Delicious’ 300 (D4-4) and 350 (D4-5) accumulated growing degree days, are shown. 

 

For the timing of non-pollinated fruitlet drop best results were obtained when using a 

recommendation of the original model of 300 accumulated growing degree days. 

Additionally, the model assumes 190 accumulated growing degree days to be the day of 

full bloom, which corresponded well with conducted field observations. Changes of initial 

fruit weight did not lead to improved results and thus was kept as in the original model. To 

avoid fruit drop calculation accounted by short time changes of carbon balance a CO2 

accumulator for usually three to five days is used. Most realistic simulations of natural fruit 

drop were obtained using a 4-day CO2 accumulator.  

 

An overview of the presented modifications can be found in Table 3. Parameter used for 

modified models are: pollination factor (PollFctr), drop of unpollinated flowers 

(UnpullFlDrop), x-day average CO2 accumulator (CO2Acc), fruit abscission curve 

(FrtAbscC), and start of carbon caused fruit abscission (CarbCFrtAbscSt). 
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Table 3: Overview of parameter values used in the presented modifications of the fruit submodel. 

 

 

In the first step of testing the modified models simulated final fruit numbers were 

compared to counted fruit numbers of the location Zornheim, where final fruit numbers 

following natural fruit drop, without any additional thinning, have been recorded. 

5.1.3 External validation for the locations Jork (Germany), and Wädenswil, Lindau 

and Güttingen (Switzerland) 

Further on, the modified models were tested for the location Jork in Germany (field data of 

‘Elstar’, ‘Kanzi’, and ‘Braeburn’, from 2010 to 2012, ESTEBURG Obstbauzentrum Jork), 

and for the locations Wädenswil, Lindau and Güttingen in Switzerland (field data of 2012, 

research center Agroscope Wädenswil). The field data of unthinned control treatments has 

been supplied by Michael Clever for the location Jork, and by Michael Gölles and Simon 

Schweizer for locations in Switzerland. 

 

For tests of the models for the location Jork only latitude and weather data of Jork has 

been used, all other parameter were set as described for the location Zornheim. For tests of 

the models in Switzerland, two different simulation runs are presented, one with changed 

latitude and weather data (all other parameter of the location Zornheim), and one with 

changed latitude, weather data and number of flowers of the experimental trees (all other 

parameter of the location Zornheim).  

5.2 Comparisons of natural fruit drop simulation to actual field data 

5.2.1  Zornheim, Germany (2012) 

Initial fruit number of 727 fruits steeply declines on DABB 47 (start of carbon balance 

based fruit abscission and day of unpollinated fruit drop reduction) and 48 (Figure 6). After 

this point only a slight decline from 265 down to 237 fruits is calculated between DABB 56 

to 62. No further reduction of fruit numbers is calculated after DABB 62. All calculated 

fruit reductions correspond to a negative carbon balance of about -20 g/day or lower. 

Model name G4-2 G4-3 G4-4 G4-5 E4-4 E4-5 E4-6 E4-6b D4-4 D4-5

PollFctr 0.334 0.334 0.334 0.334 0.334 0.334 0.334 0.334 0.334 0.334

UnpollFlDrop 300 300 300 300 300 300 300 300 300 300

CO2Acc 4 4 4 4 4 4 4 4 4 4

FrtAbscC Gala Gala Gala Gala Empire Empire Empire Empire Delicious Delicious

CarbCFrtAbscSt 200 250 300 350 300 350 400 420 300 350
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Figure 6: Calculated 4-day average supply-demand balance (black dashed) and fruit numbers 

(black line) for the cultivar ‘Gala’ at the location Zornheim, 2012 using the best performing 

modification ‘G4-4’ in which the fruit are not sensitive to carbon balance until 300 accumulated 

growing degree days. Day of full bloom was recorded in the orchard on 35 DABB. 

 

Simulation runs for Zornheim using modifications ‘G4-4’, ‘E4-6’ and ‘E4-6b’ showed the 

best results of final fruit numbers with low deviations of 0, 2.1, and 1.7 %, respectively 

(Table 4). In addition, ‘E4-5’ had a slightly higher deviation of 4.2 %, which equals a 

difference of 10 fruits to the target number. Compared to this, high deviations were 

calculated for the models ‘G4-2’ and ‘D4-4’, with 100 and 72.2 %, respectively. 

Table 4: Observed (Obs.) fruit numbers for the location Zornheim (Zo), 2012 and calculated fruit 

numbers (# fruits) of the modified MaluSim models G4-2 to D4-5, including deviation in fruit 

numbers (Δ fruits) and percent (% deviation). 

 

5.2.2 Jork, Germany (2010-2012) 

For 2010, lowest deviation was obtained again by model ‘G4-4’, with a deviation of 1 fruit 

(0.5 %) (Table 5). In addition, ‘E4-6’ and ‘E-4-6b’ showed low deviations of 3 and 7 %, 

respectively. Highest deviations from target fruit numbers occurred in simulations of ‘D4-4’ 

and ‘G4-3’, with deviations of 88 (43.8 %) and 76 (37. 8%) calculated fruits. In 2011 a late 

frost occurred after bloom. Since MaluSim does not model frost it is not useful to test 

against such conditions and the data has been omitted. 

Site, year Obs. G4-2 G4-3 G4-4 G4-5 E4-4 E4-5 E4-6 E4-6b D4-4 D4-5

Zo, 2012 237 # fruits 0 162 237 293 165 227 232 241 66 155

Δ fruits -237 -75 0 56 -72 -10 -5 4 -171 -82

% deviation 100.0 31.6 0.0 23.6 30.4 4.2 2.1 1.7 72.2 34.6

FB 
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Table 5: Observed (Obs.) and calculated fruit numbers (# fruits) for the location Jork (Jo) 2010 

and 2012, with deviations in fruit numbers (Δ fruits) and percent (% deviation). 

 

In Jork 2012 the model ‘G4-3’ and ‘G4-4’ showed lowest deviations, with a deviation of 

9 (6.5 %) and 10 (7.2 %) fruits respectively, while the other models that performed well in 

Jork for 2010 and in Zornheim for 2012, ‘E4-6b’ and ‘E4-6’ had very high deviations of 200 

and 187.8 %, respectively. 

5.2.3 Güttingen, Lindau and Wädenswil, Switzerland (2012) 

In Wädenswil in 2012 also a late frost occurred, which leads to the same problems as 

described above for the simulation runs of Jork, 2011 and data has been omitted. For the 

location Güttingen, using fruit numbers of Zornheim, model ‘E4-6b’ achieved the lowest 

deviation of 0.4 % followed by ‘E4-6’ and ‘G4-4’, while model ‘G4-2’ had the highest 

deviation of 217 fruits (78.3 %) (Table 6.). When using the counted numbers of Güttingen, 

model ‘E4-6’ showed the lowest deviation of 15 fruits (5.4 %), followed by ‘G4-4’ with 9.4 

% deviation (26 fruits). Again model ‘G4-2’ had the highest deviation of 83.8 %.  

 

Table 6: Observed (Obs.) and calculated fruit numbers (# fruits) for experimental sites in 

Switzerland (Güttingen (Gü) and Lindau (Li)). Simulation runs for each site with 727 initial 

flowers (bold) and with counted initial flower numbers (# fl), including deviations in fruit 

numbers (Δ fruits) and percent (% deviation). 

 

Site, year Obs. G4-2 G4-3 G4-4 G4-5 E4-4 E4-5 E4-6 E4-6b D4-4 D4-5

Jo, 2010 201 # fruits 132 125 202 231 153 181 195 187 113 142

Δ fruits -69 -76 1 30 -48 -20 -6 -14 -88 -59

% deviation 34.3 37.8 0.5 14.9 23.9 10.0 3.0 7.0 43.8 29.4

Jo, 2012 139 # fruits 119 148 149 220 65 162 400 417 30 56

Δ fruits -20 9 10 81 -74 23 261 278 -109 -83

% deviation 14.4 6.5 7.2 58.3 53.2 16.5 187.8 200.0 78.4 59.7

Site, year Obs. G4-2 G4-3 G4-4 G4-5 E4-4 E4-5 E4-6 E4-6b D4-4 D4-5

Gü, 2012 277 # fruits 60 139 250 314 189 227 260 276 111 138

Δ fruits -217 -138 -27 37 -88 -50 -17 -1 -166 -139

% deviation 78.3 49.8 9.7 13.4 31.8 18.1 6.1 0.4 59.9 50.2

# fl 1666 277 # fruits 45 136 303 322 218 225 262 235 77 82

Δ fruits -232 -141 26 45 -59 -52 -15 -42 -200 -195

% deviation 83.8 50.9 9.4 16.2 21.3 18.8 5.4 15.2 72.2 70.4

Li, 2012 196 # fruits 6 76 186 198 123 133 161 163 43 64

Δ fruits -190 -120 -10 2 -73 -63 -35 -33 -153 -132

% deviation 96.9 61.2 5.1 1.0 37.2 32.1 17.9 16.8 78.1 67.3

# fl 1646 196 # fruits 0 79 193 211 104 136 157 90 33 50

Δ fruits -196 -117 -3 15 -92 -60 -39 -106 -163 -146

% deviation 100.0 59.7 1.5 7.7 46.9 30.6 19.9 54.1 83.2 74.5
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For the location Lindau, using fruit numbers of the location Zornheim and of the location 

Lindau, model ‘G4-2’ had the highest deviations of 96.9 and 100 %. In contrast, model 

‘G4-5’ and again ‘G4-4’ obtained the lowest deviations for simulation runs for Lindau, 

with 1.0 and 7.7 % (with Zornheim flower numbers), and with 5.1 and 1.5 % (with Lindau 

flower numbers), respectively. 

5.2.4 Overall performance of the modifications 

Overall, ‘G4-4’ showed a very low total deviation of 4.8 %, followed by ‘E4-5’ with a total 

deviation of 18.6 %. Taking out additionally simulation runs of Switzerland, where flower 

data of Zornheim and not of the locations in Switzerland has been used, overall deviation 

of ‘G4-4’ is 3.7 %, while all other modified models showed total deviations of over 15 %. 

5.3 Discussion 

The modification ‘G4-4’ of the MaluSim fruit growth and abscission submodel showed 

very good results of final fruit number calculation in comparison to observed fruit numbers 

of unthinned orchards. With this modification it was possible to correctly estimate final 

fruit numbers for several sites and different years with low variance. One problem with the 

approach of adjusting factors to find the best fit to a dataset, and not being based on a 

biological basis, is that it can make predictions in other conditions more incorrect although 

this was not the case for the data of Jork and Switzerland. But this problem is likely to 

occur when the modification is used under conditions that differ much more to the ones in 

Zornheim. Therefore, the modification should be tested against more independent data and 

the underlying biological relationships should be included as soon as they are fully 

understood.  

 

One main point that has been modified compared to the original model was the fruit 

abscission curve. Simulation runs using the abscission curves of ‘Gala’, ‘Empire’ and of 

‘Delicious’ were presented in this thesis. A modified model of ‘Gala’ showed in general the 

best agreement with field data (model ‘G4-4’) which supports the hypothesis, that ‘Gala’ is 

a good standard for European cultivars, since field data of several cultivars has been used 

for comparisons. Some modified models of ‘Empire’ also showed good results for some 

simulation runs, while modified models of ‘Delicious’ did not show satisfactory results. 

When comparing the abscission curves used for ‘Delicious’ with the ones for ‘Gala’ or 

‘Empire’ the main difference is that for ‘Delicious’ fruits are calculated to be abscised 

between 0 and 80 % of maximum fruit growth rate. This has also been confirmed by 

similar abscission patterns found for ‘Delicious’ by GREENE et al. (2013). For ‘Gala’, 

fruits are only calculated to be abscised between 0 and 50 % of maximum fruit growth rate. 
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By growth rates over 50 % of maximum fruit growth, fruits are expected to remain on the 

tree. ‘Empire’ abscission is in between but closer to ‘Gala’, with a range from 0 to 60 %. 

This main difference has led to better predictions of models using ‘Gala’ and ‘Empire’ 

abscission curves than for the ones using ‘Delicious’ abscission curves. The used abscission 

pattern for ‘Gala’ is in between the simplified model and the actual model of GREENE et 

al. (2013), while most published studies show a pattern of actual fruit drop comparable to 

the one used for ‘Delicious’ (LAKSO et al., 2001a; GREENE et al., 2005; LAKSO et al., 

2006a; GREENE et al., 2013; SCHWEIZER et al., 2014). But most studies, that relate 

abscission to maximum fruit growth rate, were conducted with chemical thinners, which 

may have altered natural fruit abscission pattern. Interestingly, SCHWEIZER et al. (2014) 

showed that in many cases fruits that were supposed to drop according to their growth rate 

compared to the maximum fruit growth rate remained on the tree, while others, that were 

supposed to stay on the tree, dropped, but overall numbers were mainly correct. This 

supposes that other factors, additional to maximum fruit growth rate, are involved in the 

fruit abscission process. Possible other influencing factors are for example pollination 

effectiveness or other stresses (frost, nutrient or water stress). 

 

Besides varying fruit abscission curves, the time interval where carbon balance induced 

fruit drop can occur has been changed in the modified models. In the original model it 

started with the day of full bloom. Tested models using this early date, showed an 

oversensitive calculation of fruit drop (see results of ‘G4-2’), even when carbon to fruit 

accumulator was set up to 5 days of buffering. Best results were obtained when start of 

carbon balance induced fruit drop was set to a point in between 300 and 350 accumulated 

growing degree days, which corresponds to about 10 to 14 days after full bloom and a fruit 

diameter of 7-9 mm. For the ‘Gala’ abscission curve, best results were obtained using 300 

accumulated growing degree days as a switching point. This implies that either, something 

in the early carbon balance calculation of the model is wrong or insufficient, or that at this 

time fruit are not sensitive to the general carbon balance for fruit drop or retention of fruit 

and other factors might have a higher influence at this time. BYERS et al. (1990b) found 

that shading from 5 to 15 DAFB led to less heavy fruit drop than later shading (up to about 

40 DAFB), which indicates that fruits are less sensitive at that time or that carbon need of 

fruits is very low at the beginning. The study of CORELLI-GRAPPADELLI et al. (1994) 

of carbon allocation after bloom showed that the carbon for fruit development immediately 

after bloom came from nearby spur leaves. It remains unclear which are the main factors 

and relationships during early flower and fruit development. In the current case a single 

switching point from zero sensitivity to being fully sensitive is used, which is not very likely 
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to represent realistic behavior. In reality, rarely a sharp change in any physiological 

parameter occurs. A better approach would be to use a mechanistic relationship which 

includes all relevant factors. But these relationships are not fully understood and described. 

For the presented simulations with only final fruit number comparison, using the simple 

approach led to very sufficient results. 

 

Most thinning studies start fruit measurements on 10 or 15 DAFB and little is known about 

very early time of fruit development. Fruitlet growth mainly is recorded starting from about 

8-9 mm diameter (LAKSO et al., 1995) when reliable measurements are possible. 

Additionally, in the traditional sensitivity pattern of chemical thinning responses it has 

been found that thinning effect at petal fall is lowest (ROBINSON & LAKSO, 2011), 

which also indicates that shortly after bloom other factors support fruit development or 

inhibit abscission. Other possible main factors during the early development of apple fruits 

are hormones  (e.g. auxin (GREENE, 2006)), pollination and fertilization (DENNIS, 

2003), and also seed development (BERÜTER & DROZ, 1991; ABRUZZESE et al., 1995) 

and number (HANDSCHACK, 1997). It is unknown how exactly and how long these 

factors influence the abscission process. 

 

Using initial flower numbers counted in Güttingen and Lindau only slightly improved 

simulation results compared to using fruit numbers of the location Zornheim. This can be 

explained by the daily adjustment of fruit numbers to a level the tree is capable to support 

as soon as the carbon balance drop calculations is switched on. The differences in initial 

flower numbers might be linked to a general differing tree size, and in general, an exact 

parameterization to conditions in Switzerland should give best simulation results. But 

simulations showed good to very good results and trees are presumably similar or only 

slightly bigger than the ones in Zornheim. 

 

All presented tests were performed for data of the past. For practical reasons an early 

season forecast of final fruit set would be very desirable. The conducted simulation runs 

using the fruit submodel of MaluSim indicate that this is not possible, because the 

prevailing conditions during the season affect fruit set and drop. Besides MaluSim, some 

other methods are under testing for their ability to become a good thinning advice tool or 

to predict natural fruit drop. An example is the one by GREENE et al. (2005; 2008; 2013), 

which is a tool based on a similar fruit abscission-to-growth rate relationship to estimate 

thinning efficiency after the thinning spray has been applied. The method by GREENE has 

also been developed in the USA and then was tested in Europe with medium to good 



 

 

 

49 
 

Thinning and natural fruit drop – testing and improving malusim for natural fruit drop 
simulations 

success (GÖLLES & WIDMER, 2012). But a detailed analysis of tests that were 

conducted at different sites in Switzerland, Italy, Austria and Germany, from 2007 until 

2013, indicated that a reliable final forecast of how many fruits will retain and how many 

will fall off the tree was not possible using the method of GREENE (SCHWEIZER et al., 

2014), since total fruit drop is not determined at a specific date. Another method, which 

has been tested for forecasting fruit drop, is near infrared spectroscopy (NIRS) 

measurement of fruitlets, but this technique was also only able to explain fruit drop 

afterwards and not beforehand (SCHWEIZER et al., 2014). These results support the 

hypothesis that an early season forecast of final fruit set is not possible, because seasonal 

weather is the main factor. This was also pointed out by simulation runs of MaluSim.  

 

Although an early season forecast is not possible, it is possible with MaluSim to calculate 

actual carbon balance, and it is also even possible to calculate future carbon balance for the 

next days by using weather forecast data. Reliability of the model for predicting carbon 

balances in the future then highly depends on the reliability of the forecasted weather data. 

Temperature forecasts are often acceptable four to five days in advance, but critical 

radiation forecasts are often poor as cloud-cover is difficult to predict and there is little 

demand for radiation forecasts beyond overcast, partly cloudy or sunny.   

 

The method used in the USA of estimating the balance between total carbon supply to total 

demand appears to be a good way to use MaluSim for helping growers making thinning 

decisions in the USA (LAKSO et al., 2006b; LAKSO, 2011). But in general, a reliably 

working fruit growth and abscission submodel should be able to improve model 

predictions. Carbon balance and available carbon to fruit depends on actual fruit numbers. 

Using a fixed fruit number during the whole season leads to an at least slightly wrong 

simulation of carbon balance and partitioning.  

 

Overall, the modified model ‘G4-4’ led to very reasonable results with very good 

calculations of final fruit numbers. No other known model is able to achieve a comparable 

quality of calculation. This makes it a very promising tool but the modified fruit growth 

and abscission submodel should still be tested against other independent data, if available 

against dynamic fruit drop data and not only with final fruit numbers. In addition it should 

also be tested for its ability to understand extraordinary thinning events of the past, as well 

as to provide real-time simulations of carbon balances for the current season.  



 

 

 

50 
 

Water relations and gas exchange of apple trees: effects of additional irrigation on a newly planted 
apple orchard 

6 WATER RELATIONS AND GAS EXCHANGE OF APPLE TREES: EFFECTS 

OF ADDITIONAL IRRIGATION ON A NEWLY PLANTED APPLE 

ORCHARD 

There still exist major gaps in the understanding of water relations of apple trees, especially 

concerning effects during the establishment phase and concerning water deficit effects on 

photosynthesis. Most previous studies concentrate on irrigation effects on mature trees and 

in warmer regions. For this reason a field experiment was conducted to describe effects of 

additional irrigation on newly planted apple trees in Germany and to explore the 

relationships between water status and photosynthesis. 

6.1 Materials and methods 

6.1.1 Experimental site and plant material 

The study was carried out during 2012 and 2013 at an experimental orchard of Geisenheim 

University, situated in Geisenheim, Germany (49°59’06’’ N; 7°56’43’’ E; 95 m a.s.l.). 

Apple trees of three different cultivars (Malus x domestica Borkh.) were planted in autumn 

of 2011. ‘Jugala’ (small fruit size), and ‘AW106’ (‘Sapora®’ referred to as ‘Sapora’; big fruit 

size), were each grafted on M.9 rootstock, while ‘Fresco’ (‘Wellant®’ referred to as 

‘Wellant’; mid-size fruits) was grafted on ‘Summerred’ as an interstock and M.9 as a 

rootstock. Planting density was 3125 trees/ha (1 x 3.2 m) without headland and trees were 

trained as thin slender spindles. The experimental plot consisted of 9 rows with 85 trees 

each (765 total trees), with blocks of 14 to 15 trees. A randomized plot design with 5 

replications per cultivar and treatment has been used. Three different irrigation treatments 

were applied from bloom to end of august (to achieve stop of long shoot growth and inhibit 

regrowth of terminated shoots) in 2012 and 2013: 

CT → Control treatment was only rain fed and no additional irrigation has been applied. 

ET →  Evapotranspiration treatment has been rain fed and additional irrigation has been 

applied according to a water balance calculation. Crop evapotranspiration (ETc) 

has been calculated using a reference evapotranspiration (ETo) multiplied with a 

crop coefficient (kc) (→ ETc = ETo * kc) (ALLEN et al., 1998). ETo has been 

provided by DWD (Deutscher Wetter Dienst - German weather service) situated in 

Geisenheim. Irrigation was calculated using ETo, daily rainfall amounts and a kc of 

0.5. This is based on that 50 % of the evapotranspiration is used by the trees, and 

50 % is used by the grass in between the rows (BRAUN, 2012). A kc of 0.5 is 

supposed to be sufficient for developing apple orchards until mid-season and 

leading to minor water deficits from mid-season to late-season (IMMIK, 2008). ET 

irrigation was applied with drip lines (dripper every 30 cm; with 1 dripper dripping 

1.61 L/h --> 5.33333 L/m/h; NETAFIM UNIRAM 20012 AS) when calculated 

water deficit was higher than 15 liters per tree. 
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NT →  Normal treatment has been rain fed and additionally irrigated with 2 L/tree/day 

(usually irrigated 2 times per week 7 liters). This irrigation has been based on a 

general advice for additional irrigation in Germany. NT has not been irrigated 

when precipitation of the previous week was higher than 25 mm. In this treatment 

single drippers were used (1 dripper per tree; 2 L per h; NETAFIM CNL junior 

dripper).  

 

Meteorological data (precipitation, global radiation, photosynthetic active radiation, and 

temperature) was obtained using a weather station situated directly beside the orchard (2 m 

distance). Canopy management practices, fertilization and pruning were carried out 

following standard commercial practices for apple orchards. 

6.1.2 Phenology and tree descriptions 

Phenological stages of tree development in 2012 and 2013 were classified according to the 

BBCH scale (MEIER, 2001). Monitored stages were BBCH 07 (beginning of bud break: 

first green leaf tips just visible), BBCH 53 (bud burst: green leaf tips enclosing flowers 

visible), BBCH 54 (mouse-ear stage), BBCH 55 (flower buds visible (still closed)), BBCH 

57 (pink bud stage), BBCH 60 (first flowers open), and BBCH 65 (full bloom).  

 

Tree measurements were performed several times during the experiment. Counting has 

been done using a tally counter. Total number of flowers per tree has been counted during 

flowering time on 24 trees per treatment in 2012, and on 48 trees per treatment in 2013. 

Number of spurs was counted on 24 trees per treatment, in May 2012 and in July 2013. 

Number of long shoots has been counted on the same 24 trees like the spur counting in 

October 2012 and at the end of July 2013. In 2012, 12 long shoots per treatment were 

tagged and length was measured weekly until shoot cessation. This has been done for 24 

long shoots per treatment in 2013. After shoot cessation in 2012 and 2013, shoot length of 

all new long shoots of 12 trees per treatment was measured. For wood surface area 

calculation, height (in cm), trunk circumference at 35 cm, 80 cm, 130 cm, and 180 cm 

height above ground, and largest diameter and length of branches was measured on 12 

trees per treatment. Height of trees was measured using a folding rule and length of 

branches and trunk circumference was measured with a measuring tape. Diameter of 

branches has been measured using a sliding caliper. Wood surface area has been calculated 

using circumference and height data of the trees and calculating truncated cone or cone (for 

top segment) surface area (without the top and bottom) for each of the measured segments 

and adding calculated surface area of the branches. Branches surface area was calculated 

using the length of the branch and largest diameter with the cone surface formula (without 

bottom). 
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6.1.3 Soil moisture measurements 

Soil water content was determined using two different measurement systems (TDR and 

FDR). Additionally, tensiometers have been installed to measure soil water tension. All 

soil moisture related measurements were only conducted in ‘Wellant’ treatments. Two 

tensiometers (M-Tensiometer, Tensio-Technik, Geisenheim, Germany) per depth were 

installed at 25 and 50 cm depth in each of the three treatments CT, NT, and ET. 

Tensiometers are able to measure soil moisture tension in a range between 0 and 

about -850 hPa. Tensiometer measurements were conducted between DOY 103 and DOY 

323 in 2012, and between DOY 95 and DOY 301 in 2013.   

 

Additionally, a TDR100 system with CS605 probes (Time domain reflectometry; Campbell 

Scientific, Inc., Logan, UT, USA) has been used. TDR probes were installed at 30, 60 and 

90 cm depth, but all sensors at 90 cm failed soon after installation. One TDR probe per 

depth, per treatment has been installed. TDR probes in 30 cm depth recorded data 

continuously starting from day of year (DOY) 133 in 2012 until DOY 301 in 2013.  

 

16 Diviner 2000 (FDR, frequency domain reflectometry; Sentek Pty Ltd, Stepney, SA, 

Australia) access tubes were installed in the field. Diviner 2000 measurements were 

conducted weekly during the growing season and once to twice per month during the rest 

of the year. Additional Diviner 2000 measurements were conducted after abundant rain 

falls. The Diviner 2000 takes measurements every 10 cm, down to the maximum depth 

(e.g. in 10 cm, 20 cm, 30 cm, ..., 160 cm depth). 

6.1.4 Leaf area and light interception 

Light interception (LI) was recorded by using 20 PAR sensors (TRANSFLO NZ LTD, 

Palmerston North, New Zealand) mounted on 4 planks (5 sensors per plank, 25 cm 

distance between planks) and one reference PAR sensor besides the orchard. Positions of 

LI measurements have been changed two times per treatment in 2012 and 2013. All LI 

measurements were conducted after shoot cessation in both years. LI has been recorded for 

several days with high radiation. Interception of 20 PAR sensors between trees was 

compared to reference sensor PAR interception and average % of LI for one day was 

calculated. Additionally tree height, number of spurs and long shoots, total length of long 

shoots and number of fruits has been measured for trees surrounding the LI measurement 

planks. 

 

Leaf area of 20 long shoots and 20 spurs per treatment and cultivar has been measured in 

2013 using a LI-3100C Area Meter (Li-COR Inc., Lincoln, NE, USA). Length of shoot, 
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number of leaves per shoot, and, for every single leaf, leaf area has been measured. Fresh 

weight and dry weight (dried for 48 h at 75 °C) for all leaves of one shoot has been 

quantified. Total leaf area of trees used for LI measurements has been calculated by using a 

relationship found between leaf area and shoot length (shown in the results) for long shoots 

with measured shoot lengths, and multiplying spur numbers with average spur leaf area of 

the particular cultivar. 

6.1.5 Tree water potential measurements 

For all predawn and midday stem water potential measurements fully expanded, healthy 

looking leaves were excised and water potential was immediately measured in the field 

using a pressure chamber (SCHOLANDER et al., 1965) of type PMS 600 (PMS 

Instruments, Albany, Oregon, USA).  Predawn water potential measurements (Ψpd) were 

conducted early in the morning and finished before dawn, at least 1 hour prior to sunrise.  

For midday stem water potential measurements (Ψstem), shaded leaves, which were situated 

in the lower part of the tree close to the trunk, have been placed in aluminum foiled bags 

for 2 hours prior to measurements. Ψstem measurements were performed around solar noon 

(+/- 1 hour).  

 

Water potential was measured using one leaf per tree, on three trees per treatment. For 

‘Wellant’ at least one measurement per week was performed during the growing season. 

Water potential and leaf gas exchange measurements were usually performed on the same 

trees per treatment and on the same day. In case, this was not possible, measurements were 

performed on the same trees on two consecutive days. 

6.1.6 Gas exchange measurements 

For leaf gas exchange measurements a LI-6400XT portable photosynthesis system with a 

6400-02B LED light source has been used (Li-COR, Lincoln, NE, USA). All single point 

gas exchange measurements were conducted with the following settings: CO2: 

380 µmol mol-1; flow: 300 µmol s-1; light intensity: 1750 µmol m-2 s-1; relative humidity: 

38 - 50 %; temperature: 25 ± 5 °C. This type of measurement at the fixed saturating light 

intensity of 1750 µmol m-2 s-1 is called PN1750 in the following. PN1750 measurements 

were logged every 10 seconds for three minutes after all settings were set and gas exchange 

rates were stable. They were performed between 9:00 a.m. and 4:30 p.m., and time of 

measurement has also been logged. Net photosynthetic rate (Pn; in µmol CO2 m-2 s-1), 

stomatal conductance (gs; in mol H2O m-2 s-1), intercellular CO2 concentration 

(Ci; µmol CO2 mol-1), and transpiration (E; in mmol H2O m-2 s-1) data were already 

calculated by the LI-6400 system. 
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On DOY 221 in 2012, and on DOY 157 in 2013, whole day PN1750 measurements, 

during the light period from dawn until dusk, have been conducted. For these short time 

photosynthesis measurements, the same settings were used as described above, instead of 

using outside light conditions, to achieve stable and comparable values between 

treatments. Measurements per leaf were logged every ten seconds for three minutes. Three 

leaves per treatment were marked and always the same three leaves were measured 

repeatedly during the whole day. 

 

Light response curve (LRC) measurements were conducted with the same settings as 

PN1750 measurements except for light intensity. A minimum waiting time of 120 seconds 

and a maximum waiting time of 240 seconds per light setting were used. Light settings 

applied were 2000, 2000, 2000, 2000, 2000, 1750, 1500, 1000, 700, 500, 300, 100, 50, 0, 0, 

0 µmol m-2 s-1. For statistical analysis light response curves were fitted according to 

equation 6 of LOBO et al. (2013). 

6.1.7 Harvest 

In 2012, all fruitlets were removed immediately after bloom to allow all trees a good 

development during their first growing season after planting. First harvest of trees was 

conducted in 2013. Harvest date has been determined using the Streif-Index (STREIF, 

1989) (firmness divided by soluble solids content and starch degradation class) of boundary 

trees. During harvest, total yield per tree and fruit number per tree has been measured for 

all trees in the field except for boundary trees. Fruits of 12 trees per treatment were sorted 

according to diameter classes. 52 healthy and ordinary looking fruits per treatment were 

taken to a laboratory for further measurements. In the laboratory fresh weight (g), soluble 

solids content (% Brix), flesh firmness (kg cm-2), and starch degradation (class 1 to 10) has 

been determined for every single fruit. Malic acid (g L-1) was measured by taking together 

juice of 3 fruits. 

6.1.8 Statistics 

Data of the experiments were statistically analyzed by using SPSS 21.0 (IBM SPSS 

Statistics, 2012). All data has been tested for normal distribution and homogeneity of 

variance. Analysis of Variance (ANOVA) has been used to explore statistically significant 

differences between treatments (in the following referred to as ‘significant’). In case, the test 

for normal distribution was negative, the Kruskal-Wallis test was used to test for 

differences. Tukey’s HSD test has been used as a post-hoc test for more than two groups 

and when homogeneity of variance was positive. Otherwise the Games-Howell post-hoc 

test was chosen. All tests were performed at a significance level of p ≤ 0.05. Groups with a 

different letter in the results section are significantly different at p ≤ 0.05.  
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6.2 Results 

6.2.1 Phenological observations and tree descriptions 

Bud break in 2012 has been observed for all three cultivars on DOY 80. Full bloom was 

recorded on DOY 122 for ‘Sapora’, on DOY 125 for ‘Wellant’, and for ‘Jugala’ on 

DOY 128. In 2013, bud break of ‘Sapora’ was observed on DOY 89, and on DOY 90 for 

‘Jugala’ and ‘Wellant’. Full bloom occurred on DOY 126 for ‘Sapora’ and ‘Wellant’, and 

on DOY 128 for ‘Jugala’.  

 

Overall in 2012, except for number of long shoots in ‘Jugala’ and number of spurs in 

‘Wellant’, a significant difference was found for CT compared to NT trees (Table 7). 

Interestingly for ‘Jugala’ and ‘Sapora’, CT had the lowest total length of new long shoots 

and the smallest wood surface area, but the highest numbers of spurs and flowers, 

compared to NT and ET. ‘Wellant’ showed a similar result for total length of new shoots 

and wood surface area, but number of flowers for CT was lower than for NT. Although 

total length of new long shoots of ‘Jugala’ in 2012 was significantly lower in CT compared 

to NT and ET, no significant difference in number of long shoots per tree was found 

between treatments. For ‘Sapora’ and ‘Wellant’, CT had significantly lower numbers of 

new long shoots and a shorter total length of new long shoots compared to NT and ET. 

 

Table 7: Tree counting and measurements in 2012 for ‘Jugala’, ’ Sapora’, and ‘Wellant’, 

including number of new long shoots (LS) on DOY 282, total length of new long shoots (LLS; in 

cm) on DOY 282, number of spurs (SS) on DOY 128, number of flowers (FL) on DOY 123, and 

calculated wood surface area (WSA; in m2) on DOY 285. Data is presented for CT, NT, ET, and 

additionally total average (Total) is shown. Mean values (n=12) followed by a different letter in 

each column are significantly different at p ≤ 0.05. 

 

Jugala LS LLS SS FL WSA

CT 17.4 ± 3.53 a 140.6 ± 64.63 a 45.1 ± 8.14 a 101.5 ± 33.94 a 0.11 ± 0.02 a

NT 18.7 ± 4.12 a 368.2 ± 80.83 b 28.7 ± 12.73 b 61.2 ± 45.00 b 0.18 ± 0.02 b

ET 19.6 ± 2.47 a 353.7 ± 132.07 b 28.9 ± 8.97 b 87.6 ± 33.55 ab 0.17 ± 0.04 b

Total 18.6 ± 3.46 287.5 ± 141.35 34.2 ± 12.56 83.4 ± 40.50 0.15 ± 0.04 

Sapora LS LLS SS FL WSA

CT 10.5 ± 2.58 a 84.4 ± 23.81 a 38.1 ± 7.80 a 124.4 ± 23.68 a 0.10 ± 0.01 a

NT 14.3 ± 3.79 b 247.2 ± 49.90 b 28.8 ± 6.44 b 97.5 ± 39.10 ab 0.15 ± 0.02 b

ET 14.3 ± 2.96 b 217.0 ± 76.19 b 30.1 ± 9.00 b 91.9 ± 31.78 b 0.15 ± 0.03 b

Total 13.0 ± 3.55 182.9 ± 89.02 32.3 ± 8.65 104.6 ± 34.37 0.13 ± 0.03 

Wellant LS LLS SS FL WSA

CT 13.3 ± 1.91 a 101.3 ± 30.91 a 34.6 ± 7.12 ab 141.2 ± 41.20 a 0.11 ± 0.01 a

NT 21.7 ± 3.08 b 273.4 ± 78.93 b 39.2 ± 6.93 a 190.4 ± 26.58 b 0.17 ± 0.03 b

ET 20.6 ± 2.64 b 317.5 ± 69.12 b 31.2 ± 6.45 b 166.2 ± 41.24 ab 0.18 ± 0.02 b

Total 18.5 ± 4.55 230.7 ± 112.76 35.0 ± 7.42 165.9 ± 41.30 0.15 ± 0.04 
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In 2013, the cultivars showed an inconsistent result (Table 8). For ‘Wellant’, CT had 

significantly lower values in all measured parameters than NT. Number of new long shoots 

did not differ between treatments in ‘Sapora’, while for ‘Jugala’ only between CT and ET 

differences were found. For ‘Wellant’, NT had significantly higher numbers of new long 

shoots than CT and ET. Total length of new long shoots was lowest for CT in ‘Jugala’ and 

‘Wellant’, but for ‘Sapora’ no statistically significant difference between treatments was 

found. Number of spurs of ‘Wellant’ was significantly lower in CT than in NT and ET. For 

‘Sapora’ the number of spurs was significantly higher in NT, than in ET and CT. For 

‘Jugala’, only the two irrigated treatments NT and ET had statistically significant different 

numbers of spurs in 2013. Number of flowers per tree was highest in NT for all three 

cultivars in 2013. For all investigated cultivars in 2013, wood surface area was lowest in 

CT, while NT showed the highest wood surface area. 

 

Table 8: Tree counting and measurements in 2013 for ‘Jugala’, ’ Sapora’, and ‘Wellant’, 

including number of new long shoots (LS) on DOY 147, total length of new long shoots (LLS; in 

cm) on DOY 214, number of spurs (SS) on DOY 147, number of flowers (FL) on DOY 100, and 

calculated wood surface area (WSA; in m2) on DOY 213. Data is presented for CT, NT, ET, and 

additionally total average (Total) is shown. Mean values (n=12) followed by a different letter in 

each column are significantly different at p ≤ 0.05. 

 

 

Shoot growth stopped in 2012 for ‘Jugala’ on DOY 186 in CT, on DOY 212 in ET, and on 

DOY 205 for NT; for ‘Wellant’ on DOY 179 in CT, and on DOY 186 in ET and NT; and 

for ‘Sapora’ on DOY 186 in CT and ET, and on DOY 193 in NT. In 2013, end of shoot 

growth of ‘Sapora’ and ‘Jugala’ did not differ between treatments (recorded on DOY 178). 

For ‘Wellant’ shoot growth stopped on DOY 178 in CT, and on DOY 192 in ET and NT. 

Jugala LS LLS SS FL WSA

CT 27.0 ± 4.55 a 573.8 ± 168.28 a 73.8 ± 19.06 ab 241.7 ± 42.66 a 0.19 ± 0.04 a

NT 23.3 ± 4.31 ab 758.3 ± 126.69 b 92.7 ± 24.55 a 374.6 ± 69.30 b 0.26 ± 0.03 b

ET 20.9 ± 4.70 b 692.6 ± 155.03 ab 70.2 ± 15.31 b 290.0 ± 75.17 a 0.24 ± 0.04 b

Total 23.8 ± 5.07 674.9 ± 165.82 78.9 ± 21.85 302.1 ± 83.43 0.23 ± 0.04 

Sapora LS LLS SS FL WSA

CT 20.8 ± 3.71 a 629.6 ± 89.54 a 47.3 ± 7.58 a 179.2 ± 34.76 b 0.21 ± 0.02 a

NT 21.7 ± 5.43 a 712.3 ± 140.69 a 70.3 ± 18.28 b 400.8 ± 132.04 a 0.25 ± 0.03 b

ET 22.3 ± 5.50 a 676.7 ± 91.43 a 55.6 ± 13.89 a 212.9 ± 56.63 b 0.24 ± 0.02 b

Total 21.6 ± 4.84 671.6 ± 111.37 57.8 ± 16.64 264.3 ± 129.03 0.23 ± 0.03 

Wellant LS LLS SS FL WSA

CT 22.9 ± 3.26 a 587.8 ± 146.76 a 44.3 ± 7.89 a 133.8 ± 37.42 a 0.20 ± 0.03 a

NT 40.2 ± 7.84 b 1120.1 ± 306.72 b 76.0 ± 11.79 b 312.9 ± 72.19 c 0.34 ± 0.07 c

ET 29.2 ± 7.47 a 906.6 ± 212.94 b 62.8 ± 22.82 b 235.0 ± 66.02 b 0.28 ± 0.07 b

Total 30.8 ± 9.62 863.1 ± 315.67 61.0 ± 20.03 227.2 ± 94.77 0.27 ± 0.08 
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6.2.2 Soil moisture measurements 

6.2.2.1 Tensiometers 

Soil moisture tension started off on DOY 103 with similar values (Figure 7 A), but during 

the season ET showed a different course in 25 cm depth compared to CT and NT. For ET, 

all irrigation and higher precipitation events clearly correspond to increases of soil moisture 

tension. CT tensiometer values varied between -440 hPa and -148 hPa from DOY 103 until 

DOY 180. After this day CT values decreased stepwise and showed very low values until 

DOY 290. Increases of CT values in 25 cm depth correspond with precipitation (Figure 

7 D). NT showed a first low value around DOY 122 of -631 hPa, which did not correspond 

to irrigation and also is lower than the values of CT, but then increased again for the period 

between DOY 137 and DOY 174 with values higher than -200 hPa. After this point values 

of NT decreased stepwise down to -865 hPa. Except for the values from the beginning of 

the season until DOY 135 increases in tensiometer values in NT correspond to irrigation 

events and to higher rainfall events in 25 cm depth. Interestingly, NT shows a more similar 

course to CT than to ET in 25 cm depth, while in 50 cm depth (Figure 7 B) NT and ET 

display a more similar course than compared to CT. The soil moisture tension of CT in 

50 cm depth is continuously decreasing through the season, with precipitation events 

leading mainly to a less steep decrease or to stable values for a few days. In 50 cm depth 

tensiometer values of NT and ET stayed above -367 hPa during the whole irrigation period 

and irrigation events are clearly visible (Figure 7 C) with a slight delay compared to values 

in 25cm depth. 

 

In 2013 the courses of soil moisture tension in 25 cm depth (Figure 8 A) of the three 

treatments are interwoven compared to 2012. Between DOY 200 and 255 CT showed the 

lowest values compared to ET and NT, with values at the lowermost measurement range 

of the tensiometers. The course of ET showed a high variability during the season, 

changing between values of under -700 hPa and -60 hPa. NT displayed an in between CT 

and ET behavior, with lower fluctuations than ET. Soil moisture tension of CT in 50 cm 

depth showed the lowest values throughout most of 2013 (Figure 8 B). Seasonal courses of 

CT mainly match between 25 and 50 cm depth and changes partly correspond to previous 

rain events (Figure 8 D). ET and NT stayed above -605 hPa until DOY 265 for ET and 

DOY 268 for NT. In ET and NT, irrigation events are clearly visible in 25 and 50 cm 

depth. Overall, tensiometer and TDR measurements (see Appendix) indicate similar results 

and confirm each other in the general course of the treatments. Both measurements show 

highest moisture in ET during most of both seasons and in all depths, while for CT mainly 

the lowest values were recorded.  
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Figure 7: Soil moisture tension of CT (dotted line), ET (solid line), and NT (dashed line) 

treatment in 25 cm (A) and 50 cm (B) depth in 2012, measured with tensiometers in ‘Wellant’. 

Additionally, recorded precipitation (D) from DOY 103 to DOY 305 and irrigation (C) applied 

in 2012 (from bloom to end of August to prevent regrowth of terminated shoots) for NT (red) and 

ET (black) is displayed. 
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Figure 8: Soil moisture tension of CT (dotted line), ET (solid line), and NT (dashed line) 

treatment in 25 cm (A) and 50 cm (B) depth in 2013, measured with tensiometers in ‘Wellant’. 

Additionally, recorded precipitation (D) from DOY 96 to DOY 301 and irrigation (C) applied in 

2013 (from bloom to beginning of September (to prevent regrowth of terminated shoots)) for NT 

(red) and ET (black) is presented. 
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6.2.2.2 Diviner 2000 measurements (soil water content) 

SWC measurements from 10 cm to 80 cm soil depth show in general a similar behavior, 

while from 90 to 160 cm depth no relevant changes during the measurement period from 

2012 to 2013 have been visible (see Figure 9 and Appendix). SWC of NT was highest, in 

most depths during most of 2012 and 2013, while CT was lowest and ET in between both. 

 

In 2012, NT and ET showed clearly higher SWC in 20 and 30 cm depth compared to CT 

during the irrigation period. SWC of CT continually decreased in these soil layers until 

mid-October 2012. In 2013 growing season, SWC of ET in 20 and 30 cm depth was clearly 

higher than in CT. A decrease of SWC in NT and ET is visible in both years after irrigation 

was stopped. Interestingly, SWC of CT below 50 cm depth did not vary much until July 

2013, where a clear drop of SWC was visible in 50 to 80 cm depth. For NT, SWC 

noticeably decreased already during August 2012 in 50 to 80 cm depth, while at the same 

time for ET a clear decrease was only visible in 50 cm depth. In 2013, no clear changes 

occurred for NT and ET below 40 cm depth. 

 

 

Figure 9: Diviner 2000 soil water content (SWC) measurements in 10 cm (A), 20 cm (B), 

30 cm (C), 80 cm (H), and 160 cm (I) depth for CT (dotted line), ET (dashed line) and NT(solid 

line), 2012-2013. 
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6.2.3 Light interception (LI) 

Measured LI of CT trees was significantly lower in 2012 and 2013 compared to NT and 

ET (Table 9). While trees of CT intercepted an average of 17.4 % of available PAR in 

2012, NT and ET trees intercepted 24.2 % and 26.3 %, respectively. In 2013, PAR 

interception was 24.9 % for CT, 38.3 % for NT and 42.1 % for ET. 

Table 9: Mean intercepted PAR in % for ‘Wellant’ in 2012 and 2013 for CT, NT, and ET. 

Mean values (n=34) and standard deviations followed by a different letter in each column are 

significantly different at p ≤ 0.05. 

 

 

Measurements on trees that were used for the LI measurements did not show statistically 

significant differences between treatments for total length of long shoots, tree height and 

numbers of fruits (Table 10). But on a 10 % significance level, long shoot length of CT was 

significantly lower than the one of NT and ET. Number of spurs in NT was significantly 

higher than in CT, while ET was in between. Treatment CT showed the lowest number of 

spurs with an average of only 36. 

Table 10: Measurements of total length of long shoots (TLLS) in cm, tree height (Height) in cm, 

number of spurs (# Spurs) and number of fruits (# fruits) of trees where LI was measured in 

2013. Average values (n=6) and standard deviations followed by a different letter in each column 

are significantly different at p ≤ 0.05. 

 

 

Additionally, leaf area (LA) measurements were conducted for ‘Wellant’ trees. No 

statistically significant differences were found between treatments for spur LA. Average 

LA of spurs was 81.8 cm2. LA of long shoots was not significantly different between 

treatments for shoots of the same length. A relationship between LA and length of long 

shoots (> 5 cm) has been found (see Appendix). This relationship and the average 

measured LA of spurs have therefore been used for total LA calculation (Table 11) of trees, 

where LI was measured (Table 10). Leaf numbers for total LA calculation were counted on 

the same trees. Calculated total LA was significantly lower in CT trees compared to NT 

and ET trees (Table 11). Between NT and ET trees, no statistically significant difference 

has been found in calculated total leaf area. 

% PAR Intercepted 2012 % PAR Intercepted 2013

CT 17.4 ± 4.7 a 24.9 ± 7.7 a

ET 26.3 ± 6.1 b 42.1 ± 14.2 b

NT 24.2 ± 5.6 b 38.3 ± 6.0 b

TLLS (cm) Height (cm) # Spurs # Fruits

CT 507.5 ± 160.3 a 223.3 ± 11.2 a 36.0 ± 7.2 a 29.3 ± 6.0 a

ET 847.2 ± 77.2 a 231.7 ± 14.8 a 50.3 ± 4.0 ab 20.3 ± 9.2 a

NT 899.5 ± 265.5 a 225.3 ± 16.0 a 66.3 ± 5.5 b 35.3 ± 22.2 a
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Table 11: Calculated total leaf area (Calc LA) for CT, ET, and NT of ‘Wellant’ trees (2013), 

where LI was measured. Average values (n=6) and standard deviations followed by a different 

letter in each column are significantly different at p ≤ 0.05. 

 

 

By using the calculated total leaf area, LAI (leaf area index) has been calculated. LAI for 

CT was 0.33, for ET was 0.54, and for NT was 0.59 in 2013. 

6.2.4 Tree water potential measurements 

In 2012, CT showed the lowest predawn water potential (Ψpd) values of the three 

treatments on every measurement day (Figure 10). Lowest average Ψpd value of CT 

was -0.56 MPa, of ET was -0.34 MPa, and of NT was -0.43 MPa. All lowest values were 

measured on DOY 255 when additional irrigation has been stopped already in all 

treatments (ET on DOY 233; NT on DOY 242). Except for this day, NT and ET never 

showed values below -0.25 MPa. For CT, Ψpd values were found to be below -0.25 MPa on 

DOY 171 and on all measurements conducted after DOY 221. 
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Figure 10: Average predawn leaf water potential (n=3) for ‘Wellant’ CT, NT, and ET in 2012, 

bars indicate standard deviations. For exact values and statistic results see Appendix Table 22. 

 

CT was significantly different from NT for all measurement dates except for DOY 178 and 

DOY 193. ET differed significantly from CT on 10 out of the 13 measurement dates (see 

Appendix Table 22). The two irrigated treatments NT and ET had significantly different 

values on DOY 171, 206, and 228. Total seasonal average of Ψpd during 2012 

Calc LA (m2)

CT 1.07 ± 0.22 a

ET 1.72 ± 0.14 b

NT 1.89 ± 0.36 b
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was -0.25 ± 0.14 MPa for CT, -0.13 ± 0.10 MPa for NT, and -0.13 ± 0.08 MPa for ET. In 

general, treatments had high values until about DOY 220. After this day Ψpd became more 

negative in all three treatments until DOY 262. This generally corresponds to soil moisture 

measurements. Major visible drops on DOY 228 and 255 correspond to low soil moisture 

contents in combination with high night temperatures of 15.7 °C and 14 °C, respectively.  

 

In 2013, Ψpd was not statistically significantly different between all three treatments until 

DOY 197. After this point, CT showed the lowest values compared to NT and ET except 

for DOY 240 and 260. On these two days values of all three treatments showed similar 

values. Lowest Ψpd in 2013 was -0.45 MPa for CT on DOY 217, -0.25 MPa for NT on 

DOY 234, and -0.19 MPa for ET on DOY 247. On DOY 197, Ψpd of CT was significantly 

lower than of NT, while ET was in between. On DOY 213 and 217 Ψpd of CT was 

significantly different from ET and NT, while it was significantly different from ET but not 

from NT on DOY 234. In 2013, overall mean Ψpd value of CT was -0.17 ± 0.12 MPa, of 

NT was -0.12 ± 0.05 MPa, and of ET was -0.11 ± 0.05 MPa.  
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Figure 11: Average predawn leaf water potential (n=3) of CT, NT, and ET for ‘Wellant’ in 

2013, error bars indicate standard deviations. 

 

In general, Ψpd values did not differ much between treatments in 2013. Only late in the 

season, between DOY 210 and 250, minor differences were visible. This shows that 2013 

was a wetter year than 2012 and also corresponds with TDR and tensiometer results. 

Overall, mean Ψpd value of CT was lower in 2012 than in 2013, while overall values of NT 

and ET were similar between years. 
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Midday stem water potential (Ψstem) of ‘Wellant’ in 2012 (Figure 12) showed a higher 

variability compared to Ψpd. Except for the first measurement day, Ψstem of CT showed the 

lowest values throughout the whole season 2012. On DOY 166, measured soil moisture 

content and tension were very similar between treatments (see Appendix Figure 28 on page 

134; see Figure 7 on page 58).  
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Figure 12: Average midday stem water potential (n=3) of CT, NT, and ET of ‘Wellant’ in 2012, 

error bars indicate standard deviations. 

 

Ψstem of CT was significantly different from Ψstem of NT on 16, and significantly different 

from Ψstem of ET on 12 out of 20 measurement days (see Appendix Table 23). No 

statistically significant differences between all three treatments were found on DOY 180, 

due to a high variability, and after DOY 250, where treatments have not been irrigated 

anymore and measured soil moisture tension was low in all treatments. Clearly visible 

drops in all three treatments correspond to days with high maximum VPD values of 3 kPa 

and higher (e.g. 4.8 kPa on DOY 208, and 3.6 kPa on DOY 254). Ψstem of ET and NT were 

above -1,5 MPa during most of the season 2012. Seasonal mean values in 2012 

were -1.5 ± 0.34 MPa for CT, -1.1 ± 0.31 MPa for ET, and -1.0 ± 0.26 MPa for NT.  

 

In 2013, Ψstem values were very similar for all three treatments (Figure 13). Only on DOY 

169 and 217, statistically significant differences were found. On DOY 169 Ψstem of CT was 

significantly different from Ψstem of NT and ET, which corresponds to much lower 

tensiometer values. In addition, a very high VPD of 4.1 kPa has been measured on this 

day. On DOY 217, the two irrigated treatments NT and ET showed statistically significant 

differences between each other, but not to CT, although soil moisture tension of CT was 
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much lower than in NT and ET. NT has been irrigated on DOY 217 and a very high VPD 

of 4.0 kPa has been measured. The major visible peak on DOY 177 corresponds to a low 

VPD of 1.2 kPa and similar soil moisture contents. Mean seasonal value of Ψstem (2013), 

was -1.32 ± 0.34 MPa for CT, -1.22 ± 0.3 MPa for NT, and -1.26 ± 0.31 MPa for ET. 
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Figure 13: Average midday stem water potential (n=3) of CT, NT, and ET for ‘Wellant’ in 

2013, error bars indicate standard deviations. 

 

6.2.5 Gas exchange measurements 

Similar to Ψpd and Ψstem, net photosynthetic rate (PN1750; at a light intensity of 

1750 µmol m-2 s-1) of CT showed the lowest values during most of season 2012, starting 

from DOY 180 (Figure 14). Major drops of values for all treatments can be seen on DOY 

180, 206 and 254. These days had a high maximum day temperature of 32 °C and higher 

maximum VPD levels compared to other measurement days, of 3.1, 3.2, and 3.6 kPa, 

respectively. Lowest mean value of CT was 5.5 µmol m-2 s-1, and of NT and ET was 7.8 

and 7 µmol m-2 s-1, on DOY 180 (see Appendix Table 24). Highest average PN1750 for CT 

was recorded on DOY 170, with 18.4 µmol m-2 s-1. For NT, highest mean PN1750 was 

19.1 µmol m 2 s-1, on DOY 193, while ET showed a highest average PN1750 of 

16.1 µmol m-2 s-1 on DOY 170. 

 

Photosynthetic rate of NT has been significantly higher than of CT on DOY 171, 178, 

between DOY 193 and 221, and on DOY 250 (see Appendix Table 24). Except for DOY 

178 and 250, this corresponds to Ψstem results. For DOY 250 no statistically significant 

difference has been found for Ψstem, but average value of CT was -1.5 MPa, while NT had 

an average value of -1.1 MPa. On DOY 178, CT surprisingly shows a significantly higher 
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PN1750 rate than NT, although Ψstem of CT was lower with -1.6 MPa than Ψstem of NT 

with -0.8 MPa. Apart from this exception, NT rates were higher than CT rates during the 

rest of the season in 2012. The greatest difference between CT and NT on the same day 

was measured on DOY 208, with an average photosynthetic rate of 6 µmol m-2 s-1 in CT, 

and of 12 µmol m-2 s-1 in NT. 
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Figure 14: Average leaf photosynthetic rate at saturating light intensity (PN1750) in 2012 for 

CT, NT, and ET of ‘Wellant’ (9 a.m. to 4.30 p.m.), error bars indicate standard deviations 

(n=3-12, depending on weather conditions on the specific measurement day; n is similar for all 

treatments for one specific measurement day and measurements were performed at a similar time 

of day). 

 

In 2013, measured photosynthetic rates were very similar and no statistically significant 

difference between treatments was found until DOY 212 (Figure 15). On DOY 212, 218, 

and 241, CT values were statistically significantly lower than PN1750 values of ET, while 

NT was intermediate. This corresponds to soil moisture tension in 25 and 50 cm depth. 

 

Highest mean value of CT with 17.9 ± 2.48 µmol m-2 s-1 occurred on DOY 177. On 

DOY 182 highest mean value of 20.4 ± 1.44 µmol m-2 s-1 for ET has been measured. NT 

showed the highest mean value of 18.2 ± 1.41 µmol m-2 s-1 on DOY 234. Lowest average 

photosynthetic rates in 2013 were 8.4 ± 5.22 µmol m-2 s-1 on DOY 218 for CT, 

13.2 ± 0.63 µmol m-2 s-1 on DOY 200 for ET, and 12.4 ± 2.12 µmol m-2 s-1 on DOY 198 for 

NT. 
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Figure 15: Seasonal course of leaf photosynthetic rate at light saturation (PN1750) in 2013 for 

CT, NT, and ET, error bars indicate standard deviations (n=3-9, depending on weather 

conditions on the specific measurement day; n is similar for all treatments for one specific 

measurement day and measurements were performed at a similar time of day). 

 

On the 8th of August 2012 (DOY 221) a full day PN1750 measurement has been conducted 

for treatments NT and CT (see Appendix Figure 34). Predawn water potential of CT 

was -0.2 MPa and statistically significantly lower as Ψpd of NT (-0.11 MPa). The same was 

found for Ψstem, with -1.25 MPa for CT and -0.84 MPa for NT. Both treatments showed in 

general a similar daily course of PN1750, but much lower values for CT compared to NT. 

Highest PN1750 of DOY 221 occurred around 12 p.m. for both treatments, with a 

recorded maximum of 12.2 µmol m-2 s-1 for CT, and 16.6 µmol m-2 s-1 for NT. A visible 

drop of PN1750 occurred between 5:30 and 6:00 p.m. in both treatments, but was more 

profound in treatment NT. VPD and temperature were highest at 5:30 p.m. reaching 

1.9 kPa and 25.8 °C, respectively. Photosynthetic active radiation had a maximum at 

11:20 a.m., reaching 1443.6 µmol m-2 s-1, and showed a variable daily course with sharp 

declines at 12:00 pm, 1:50 p.m. and 4:20 p.m.. 

 

In 2013, daily course of PN1750 has been recorded on DOY 157 for CT and NT in 

‘Wellant’ (see Appendix Figure 35). Tree water potentials were not significantly different 

for NT and CT on this day (Ψpd: -0.11 MPa for NT and -0.1 MPa for CT; Ψstem: -1.2 MPa 

for NT and -1.3 MPa for CT).  PN 1750 courses of CT and NT were quite similar for DOY 

157, with clearly visible differences only between 4:00 and 7:00 p.m.. Highest mean 

photosynthetic rate of 19.2 µmol m-2 s-1 for NT was measured in the morning at 8:05 a.m., 

while highest rate for CT was 16.4 µmol m-2 s-1, recorded at 9:15 a.m.. After reaching the 
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maximum, PN1750 values gradually declined. Interestingly, in the late afternoon, NT 

showed lower PN1750 values than CT, while outer conditions remained similar. A 

maximum VPD of 2.6 kPa occurred at 3:40 p.m. and 4:50 p.m., while at the latter 

maximum temperature reached its daily maximum of 27.5 °C. Air temperature stayed 

above 20 °C from 8:40 a.m. until 7:50 p.m.. PAR consistently increased until the daily 

maximum value of 1838 µmol m-2 s-1 was reached at 12:40 p.m.. After this point PAR 

decreased and showed a large variability with changes of up to 1000 µmol m-2 s-1 difference 

in between 20 minutes (e.g. 2:30 p.m. to 2:50 p.m.) due to clouds. 

 

Analyses of curve fitting parameter of all light response curves conducted in CT, NT and, 

ET in 2013 (on DOY 148, 156, 158, 162, 176, 189, 192, 196, 213, 234, and 241) were not 

able to detect statistically significant differences between treatments. Light response curves 

of 2012 were grouped according to their midday stem water potential (see Figure 16).  
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Figure 16: Light response curves of ‘Wellant’ leaves measured in 2012 grouped according to their 

midday stem water potential values (G1 (n=13): Ψstem > -1 MPa; 

G2 (n=18): -1 MPa > Ψstem > -1.5 MPa; G3 (n=9): Ψstem < -1.5MPa), error bars indicate 

standard deviations. 

 

Statistically significant differences were found for calculated curve fitting parameter. Fitted 

maximum net photosynthetic rate, light compensation point, dark respiration and light 

saturation point were significantly higher in groups G1 and G2, compared to G3.  
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PN1750 measurements of 2012 and 2013, from 12 to 5 p.m., were grouped into seven 

groups (see Table 12) according to measured Ψstem, to allow statistical analysis.  

 

Table 12: Average values and standard deviations of PN1750 measurements classified into seven 

groups according to their Ψstem values. Mean values (n=6-75) followed by a different letter in each 

column are significantly different at p ≤ 0.05. 

 

   

Between groups 1 to 3 (Ψstem: -0.5 to -1.25) no statistically significant difference was found. 

Group 4 was significantly different to group 1, 6 and 7, but not to group 2, 3 and 5. 

Group 5 was significantly different to all groups except 4 and 6, while group 6 was 

significantly different to all groups except 5 and 7. PN1750 measurements of plants with 

Ψstem under -2.0 MPa (group 7) was significantly different to all groups except group 6 

(Ψstem from -1.75 to -2.0 MPa).  

 

Photosynthetic rate between 12 and 4:30 p.m. decreases with lower Ψstem (Figure 17). An 

exact threshold could not be determined but at a Ψstem between -1 and -1.5 MPa net 

photosynthesis starts to decrease significantly. Average Ψstem values of the groups do not 

equal the middle of the range of the selected groups. A relationship between Ψstem and 

PN1750 is clearly visible, with lower Ψstem values leading to a reduced photosynthetic rate. 

A sigmoidal function (y= 16.704/(1+exp(-(x-(-1.714))/0.4267)) was found by using the 

regression wizard of Sigma Plot with an R2 of 0.9876. 

 

 

Group Ψstem (MPa) PN1750

1 -0.5 to -0.75 15.84 ± 2.3 a

2 -0.75 to -1.0 13.78 ± 2.4 ab

3 -1.0 to -1.25 13.81 ± 2.9 ab

4 -1.25 to -1.5 11.95 ± 3.2 bc

5 -1.5 to -1.75 9.18 ± 4.2 cd

6 -1.75 to -2.0 7.05 ± 2.5 de

7 under -2.0 5.49 ± 2.3 e
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Figure 17: Single PN1750 measurements of 2012 and 2013 (12 to 4:30 p.m.) to corresponding 

Ψstem values (grey dots), used for statistical comparisons in groups. Additionally, average values 

(PN1750 and Ψstem) of used groups (black dots) (PN1750 measurements were grouped according 

to Ψstem values, with group 1: -0.5 to -0.75 MPa (n=16); group 2: -0.75 to -1.0 MPa (n=27); 

group 3: -1.0 to -1.25 MPa (n=62); group 4: -1.25 to -1.5 MPa (n=75); group 5: -1.5 to -1.75 

MPa (n=47); group 6: -1.75 to -2.0 MPa (n=10); group 7: under -2.0 MPa (n=6)) with standard 

deviations (error bars) are presented. Average Ψstem values of groups are -0.61 MPa 

(group 1), -0.90 MPa (group 2), -1.12 MPa (group 3), -1.36 MPa (group 4), -1.59 MPa 

(group 5), -1.85 MPa (group 6), and -2.02 MPa (group 7). The sigmoidal function 

(y= 16.704/(1+exp(-(x-(-1.714))/0.4267)) (red solid line) with an R2 of 0.9876 and the 95 % 

confidence band (red dashed line). 

6.2.6 Harvest data 

Harvest data are shown for all three cultivars and only for 2013, the first year with yield. In 

2012, all fruits were taken of the trees directly after flowering. 

6.2.6.1 ‘Jugala’ 

‘Jugala’ has been harvested on the 10th of September 2013 (DOY 253). Total fresh weight 

harvested per tree was significantly lower for CT, than for NT and ET (Table 13), while 

number of fruits per tree was similar between all three treatments. 

Table 13: Harvest data of treatments CT, NT, and ET of ‘Jugala’ in 2013. Fresh weight per tree 

in kg (FW tree (kg)), number of fruits per tree (# Fruits/tree), and average fruit fresh weight 

(AvgFW/fruit (g)) calculated by number of fruits per tree and fresh weight per tree, were 

measured in the field. Mean values (n=12) followed by a different letter in each column are 

significantly different at p ≤ 0.05. 
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Field FW tree (kg) #Fruits/tree AvgFW/fruit (g)

CT 5.1 ± 0.56 a 30.8 ± 2.26 a 165 ± 15 a

NT 6.2 ± 0.65 b 32.6 ± 3.34 a 190 ± 7 b

ET 5.8 ± 0.60 b 29.9 ± 3.75 a 194 ± 13 b

Total 5.7 ± 0.75 31.1 ± 3.29 183 ± 18 
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Fresh weight of fruits measured in the laboratory was significantly different between all 

three treatments (Table 14). Additionally, a significant difference in starch rating for CT 

compared to NT and ET has been found. Firmness of ET, with the highest fruit fresh 

weight, was significantly lower than firmness of CT and NT. No difference between 

treatments has been found in soluble solids content for ‘Jugala’. Malic acid content was 

similar between CT and ET, but was significantly higher in NT. 

 

Table 14: Harvest data of treatments CT, NT, and ET of ‘Jugala’ in 2013, fresh weight per fruit 

(FW Fruit (g)), starch rating (1 - 10), firmness (kg cm-2), soluble solids content (SSC(%)) and 

malic acid (g L-1) were measured in the laboratory (60 fruit per treatment). Mean values (n=10) 

followed by a different letter in each column are significantly different at p ≤ 0.05. 

 

 

6.2.6.2  ‘Wellant’ 

Harvest of ‘Wellant’ was conducted on the 17th of September 2013 (DOY 260). CT had as 

for ‘Jugala’ significantly lower fruit fresh weight per tree. In contrast to ‘Jugala’, ‘Wellant’ 

had a significantly lower number of fruits per tree in CT than in NT and ET, while 

calculated average fruit fresh weight per tree was not different between treatments (Table 

15).  

 

Table 15: Harvest data of treatments CT, NT, and ET of ‘Wellant’ in 2013. Fresh weight per 

tree in kg (FW tree (kg)), number of fruits per tree (# Fruits/tree), and average fruit fresh weight 

(AvgFW/fruit (g)) calculated by number of fruits per tree and fresh weight per tree, were 

measured in the field. Mean values (n=12) followed by a different letter in each column are 

significantly different at p ≤ 0.05. 

 

 

Fruits analyzed in the laboratory had significantly higher fresh weight in NT and ET than 

in CT (Table 16). No difference could be determined between treatments for starch rating 

and malic acid content. Firmness was significantly higher and soluble solids content 

significantly lower in CT compared to ET and NT. 

Laboratory FW Fruit (g) Starch rating (1-10) Firmness (kg cm-2) SSC (%) Malic acid (g L-1)

CT 172.4 ± 17.50 a 3.8 ± 1.06 a 9.6 ± 0.53 a 14.3 ± 0.77 a 4.4 ± 0.19 a

NT 189.6 ± 21.26 b 4.6 ± 1.67 b 9.7 ± 0.71 a 14.5 ± 0.86 a 4.7 ± 0.15 b

ET 203.0 ± 23.34 c 5.0 ± 1.34 b 9.4 ± 0.62 b 14.3 ± 0.77 a 4.4 ± 0.11 a

Total 188.4 ± 24.23 4.5 ± 1.47 9.5 ± 0.63 14.4 ± 0.80 4.5 ± 0.19 

Field FW tree (kg) #Fruits/tree AvgFW/fruit (g)

CT 2.97 ± 0.88 a 14.7 ± 4.48 a 203 ± 12 a

NT 5.80 ± 1.06 b 27.1 ± 5.17 b 215 ± 15 a

ET 4.96 ± 1.48 b 23.1 ± 8.25 b 204 ± 20 a

Total 4.52 ± 1.66 21.4 ± 7.96 207 ± 16 
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Table 16: Harvest data of treatments CT, NT, and ET of ‘Wellant’ in 2013, fresh weight per 

fruit (FW Fruit (g)), starch rating (1 - 10), firmness (kg cm-2), soluble solids content (SSC(%)) 

and malic acid (g L-1) were measured in the laboratory (60 fruit per treatment). Mean values 

(n=10) followed by a different letter in each column are significantly different at p ≤ 0.05. 

 

 

6.2.6.3  ‘Sapora’ 

‘Sapora’ has been harvested on the 15th of October 2013 (DOY 288) and showed differing 

results to ‘Jugala’ and to ‘Wellant’. Fresh weight harvested per tree significantly differed 

between the two irrigated treatments NT and ET, while CT showed intermediate behavior 

(Table 17). A significantly higher fruit number per tree was found for NT compared to ET 

and CT. Calculated average fruit fresh weight per tree was significantly lower in ET than in 

CT, while NT was intermediate. Fruit fresh weight of fruits analyzed in the laboratory was 

significantly lower for ET than for NT and CT (Table 18). Firmness, SSC and malic acid 

values showed no differences between treatments. For CT significantly lower starch rating 

has been measured than in ET and NT. 

Table 17: Harvest data of treatments CT, NT, and ET of ‘Sapora’ in 2013. Fresh weight per tree 

in kg (FW tree (kg)), number of fruits per tree (# Fruits/tree), and average fruit fresh weight 

(AvgFW/fruit (g)) calculated by number of fruits per tree and fresh weight per tree, were 

measured in the field. Mean values (n=12) followed by a different letter in each column are 

significantly different at p ≤ 0.05. 

 

 

Table 18: Harvest data of treatments CT, NT, and ET of ‘Wellant’ in 2013, fresh weight per 

fruit (FW Fruit (g)), starch rating (1 - 10), firmness (kg cm-2), soluble solids content (SSC(%)) 

and malic acid (g L-1) were measured in the laboratory (60 fruit per treatment). Mean values 

(n=10) followed by a different letter in each column are significantly different at p ≤ 0.05. 

 

Laboratory FW Fruit (g) Starch rating (1-10) Firmness (kg cm-2) SSC (%) Malic acid (g L-1)

CT 208.9 ± 22.98 a 5.1 ± 1.15 a 8.0 ± 0.57 b 16.3 ± 1.16 a 8.5 ± 0.63 a

NT 240.1 ± 29.14 b 5.2 ± 1.13 a 7.6 ± 0.54 a 16.7 ± 0.88 b 8.5 ± 0.58 a

ET 231.8 ± 39.50 b 5.6 ± 1.31 a 7.4 ± 0.41 a 16.8 ± 0.89 b 8.3 ± 0.98 a

Total 226.3 ± 33.45 5.3 ± 1.20 7.7 ± 0.58 16.6 ± 1.02 8.5 ± 0.72 

Field FW tree (kg) #Fruits/tree AvgFW/fruit (g)

CT 6.33 ± 0.95 ab 26.9 ± 5.25 b 234 ± 14 b

NT 7.14 ± 0.60 b 31.8 ± 2.41 a 224 ± 13 ab

ET 5.93 ± 1.07 a 27.4 ± 4.76 b 212 ± 11 a

Total 6.48 ± 1.00 28.7 ± 4.75 223 ± 15 

Laboratory FW Fruit (g) Starch rating (1-10) Firmness (kg cm-2) SSC (%) Malic acid (g L-1)

CT 258.6 ± 27.88 b 5.3 ± 0.67 a 7.2 ± 0.63 a 17.0 ± 0.90 a 6.3 ± 0.45 a

NT 253.1 ± 28.45 b 5.9 ± 1.18 b 7.4 ± 0.49 a 17.0 ± 0.89 a 6.4 ± 0.51 a

ET 239.8 ± 28.22 a 6.1 ± 0.94 b 7.4 ± 0.65 a 17.1 ± 0.71 a 6.3 ± 0.48 a

Total 250.5 ± 29.12 5.8 ± 1.00 7.3 ± 0.59 17.0 ± 0.83 6.3 ± 0.47 
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6.3 Discussion of experimental results 

6.3.1 Effects on tree development and phenology 

The objective of the study was to investigate the effects of drip irrigation under German 

climate during the establishment phase of an orchard. Although the overall precipitation 

sums from April to October of both experimental years were higher than the 30-year 

average from 1981 to 2010 (DWD, 2011), the applied irrigation had an enormous 

measurable effect on tree development compared to the non-irrigated CT. 

 

Higher total long shoot length was not primarily caused through a higher total number of 

long shoots, but through a longer total growth of single shoots. One reason for this was an 

extension of the growth period through irrigation and a later cessation of growth, especially 

in 2012. The result is in contrast to results of O’CONNELL et al. (2008), who observed no 

effect of irrigation treatments on seasonal shoot growth rate for mature trees and no 

prolonged growth period. Highest rates were measured at 26 DAFB and declined to near 

zero by 61 DAFB (O'CONNELL et al., 2008). Besides differences in weather conditions 

and differing behavior of cultivars, one reason for the discrepancy could be that shoots of 

young trees are thought to grow later in the season than shoots of mature trees (FORSHEY 

& ELFVING, 1989). PALMER (1988) also observed an earlier development of maximum 

leaf area as the trees aged.  

 

A difference in the length of the growing period of the three cultivars could be one reason 

for the partly differing treatment results between cultivars. Differences in shoot growth of 

cultivars has been observed before (LAURI & KELNER, 2001). Another reason could be a 

general difference in water use and effects of water deficits. Differences in the ability of a 

given genotype to cease growth more or less rapidly under drought (LAURI et al., 2016) 

and the vulnerability to drought-induced embolism differed significantly between cultivars 

(BEIKIRCHER et al., 2013). Results of ‘Sapora’ 2013 additionally indicate that there exists 

a maximum possible vegetative growth, and above this point irrigation will not result in a 

higher vegetative growth. As a practical implication using irrigation much longer during a 

season may results in even longer shoot growth, but is not recommended because it could 

lead to problems with final bud formation. Cessation of shoot growth is important for bud 

organogenesis and therefore for the next season growth of the trees (LAURI et al., 2008). 

 

Wood surface area was highly affected by additional irrigation compared to CT for all 

cultivars. This is in common with previous findings where water deficits were found to 

reduce radial trunk growth (IANCU, 1985; MILLS et al., 1996). Even late-season water 
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deficits did limit the radial trunk growth in ‘Braeburn’ (MILLS et al., 1996), which also 

shows that radial trunk growth takes place until late in the season. Wood surface area is the 

result of vegetative growth of all previous years and thus part of the difference in 2013 

might be explained by the carry-over of the first year differences. Besides the direct effect of 

the much higher long shoot length on wood surface area, presumably the higher leaf area 

in 2012 caused a higher overall assimilate production and a better start in 2013.  

 

Compared to long shoot growth and wood surface area, number of spurs was less affected 

by irrigation. Spur development takes place very early in the season (FORSHEY & 

ELFVING, 1989), where usually no or only minor water deficits occur and therefore spurs 

were expected to be less influenced by irrigation. One reason for inconsistent effects 

between cultivars can be that number of spurs and of flowers is mainly influenced by the 

genetics of the scion (DENNIS, 2000), and cultivars might react differently to water 

supply. Since flowering also takes places early in the season and is mainly supported by 

reserves, no direct effect of irrigation was expected.  However, this may change if there are 

multiple years of water deficits. Higher total flower numbers in NT than in CT in 2013 are 

likely to be caused by the significantly bigger tree size and a higher assimilation of reserves 

of the irrigated trees in 2012. Enhanced (IANCU et al., 2011) and reduced (KILILI et al., 

1996a; BEHBOUDIAN et al., 1998) flower numbers in the season following a deficit 

irrigation have been reported for apple trees. One possible explanation for the contradictory 

results may be a difference in the intensity and timing of water deficits. Early deficits were 

found to significantly reduce return bloom (KILILI et al., 1996a). Water deficits in 2012 

might have affected flower induction of CT in 2012, but since all fruits have been removed 

early in 2012, competition for carbon and therefore resulting carbon deficit for flower 

induction is expected to be negligible.  

 

Overall, results indicate a high effect of additional irrigation and water deficits on 

vegetative growth during the early years of apple orchard establishment for German 

conditions. In addition, results imply that water deficit effects on spur and flower 

development are related to indirect effects of carbon supply and partitioning. Varying 

results between cultivars also indicate differences in water use of apple cultivars, which 

might also partly explain contradictory results in the literature. Weather conditions highly 

affect the effects of irrigation on apple tree development and with a high amount of 

precipitation, irrigation effects become less significant. At a specific point more water does 

not necessarily lead to a higher growth.  But the results also indicate that a fast growth in 

the first year caused by a good water supply in ET and NT compared to a lower water 
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supply in CT can still be visible and relevant in the following years and thus lays the basis 

for a faster establishment of young orchards. In terms of the original objective, results are 

even more important, since the two experimental years were even wetter than the average. 

Monthly average temperatures were similar between 2012 and 2013 and also comparable 

to 30-year monthly average temperatures for Geisenheim (DWD, 2011), exceptions from 

this are May and August 2012 and July 2013. Both measurement years showed hotter 

periods (higher maximum temperatures, higher monthly average temperatures, and more 

summer days) than the 30-year temperatures from 1981 to 2010 (DWD, 2011), which is 

one reason for the high effects in spite of the higher than usual precipitation. Due to the 

Changing Climate it is expected that during the growing period less overall precipitation 

and longer periods without rain will occur (STÖCKLE et al., 2011). These conditions will 

highly enhance positive effects of additional irrigation on the vegetative growth of apple 

orchards. On a physiological point of view, additional irrigation is very beneficial under 

German conditions and can be highly recommended for new orchards. 

6.3.2 Light interception 

The high effect of additional irrigation on tree growth was also visible in light interception 

measurements of trees. The % LI value of CT in 2013 has already been reached in 2012 by 

the two irrigated treatments. In 2013, midday LI of CT was about 17 %, while NT and ET 

showed values around 24 % in their third year. Results are comparable to trials conducted 

in Spain (GIRONA et al., 2011) and in general appropriate for young trees. Effects of 

irrigation and water deficits on vegetative growth and LI of apple trees are well known 

(JACKSON, 1980; FORSHEY & ELFVING, 1989; EBEL et al., 1995; FERNANDEZ et 

al., 1997b; O'CONNELL & GOODWIN, 2007). LI is related to vegetative growth of apple 

trees and thus related to available water in young trees, but water use of apple trees is also 

related to total LI (JACKSON, 1980; AUZMENDI et al., 2011). 

 

In the current case, differences between ET and NT in timing, used irrigation system, and 

even total irrigation amount had no clearly measurable effect on LI. But although not 

statistically significant, NT, which had a higher total irrigation amount than ET, had in 

average a slightly higher LI and differences might be more profound under dryer 

conditions. Compared to values for mature trees (PALMER, 1989b; CASADESUS et al., 

2011) trees of ET and NT already reached two thirds of the LI in their third year, while 

non-irrigated CT trees did not even reach half. This indicates the importance of 

maintaining good water supply in the early years when vegetative development is critical 

compared to mature trees where reproductive performance is needed.  
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For the calculation of long shoot leaf area per tree, a relationship between shoot length and 

leaf area has been used. JOHNSON and LAKSO (1985) found very good linear 

relationships (R2 > 0.88) between leaf area and shoot length. They also found differences in 

this relationship between cultivars. In the current case, differences between ‘Jugala’, 

‘Sapora’ and ‘Wellant’ were visible but not very profound. The used linear relationship for 

‘Wellant’ only had an R2 of 0.74 and therefore extrapolation of total leaf area is afflicted 

with some uncertainty. In addition, no linear relationship between leaf area and spur 

length has been found, which corresponds to previous findings (ROM & BARRITT, 1990). 

Although long shoot length was only statistically significantly different on a 10 % level 

between irrigated and non-irrigated treatments, and number of short shoots was not 

statistically significantly different between CT and ET, overall calculated leaf area was 

significantly different between CT and the two irrigated treatments. LI of spurs and long 

shoots is known to differ between cultivars and training systems, and total LI is the result 

of intercepted radiation of spurs and long shoots (and of wood structures) (JACKSON & 

PALMER, 1980; WÜNSCHE & LAKSO, 2000; CORELLI-GRAPPADELLI, 2003). 

Although not statistically significant, CT trees had the lowest total long shoot length in 

addition to the lowest number of spurs in 2013. Total leaf area calculation combines the 

single length of all long shoots and the number of spurs per tree. Overall, calculated total 

leaf area corresponded well with measurements of LI. Total leaf area calculation has been 

used to calculate leaf area index (LAI). LAI of NT was nearly twice the size of CT, which 

additionally shows the advantage of NT trees compared to CT. For mature apple trees, a 

LAI between 1.8 and 3.6 has been reported (JACKSON, 1980; WÜNSCHE et al., 1996; 

WÜNSCHE & LAKSO, 2000), depending on rootstock, planting and training system. 

Compared to this, calculated LAI values are very low. But the trees were still in the 

establishment phase and thus LAI values cannot be easily compared to values of mature 

orchards of differing growing systems. 

 

Overall, even in relatively wet years, the measured LI and the calculated total leaf area 

show that vegetative development of the experimental apple trees was much higher for 

irrigated than for non-irrigated trees. A higher LI gives the irrigated apple trees the 

advantage of being able to assimilate more carbon (irrespective of effects on photosynthesis 

itself). Thus they accumulate more assimilates for growth, which additionally can lead to a 

faster development and establishment of the trees.  

6.3.3 Water potential 

The Ψpd values are similar to values reported by others (MILLS et al., 1997; DOLTRA et 

al., 2007; LEBESE et al., 2008) and generally in a common range. Some differences 
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between NT and ET might be explained by differences in irrigation timing and amount. 

But no clearly detectable unique effect of one of the two different irrigation systems on the 

seasonal course of Ψpd in the conducted experiment was seen. Termination of irrigation in 

both treatments led to a similar curve progression of Ψpd in both years. This indicates that 

water availability to the tree roots in the soil was similar. Ψpd results generally 

corresponded to soil based measurements. 

 

Similar to the current results, Ψpd and Ψstem measurements of DOLTRA et al. (2007) 

showed dissimilar seasonal courses. But current measurements of photosynthesis did not 

correspond with Ψpd measurements (see Appendix Figure 37). Although Ψpd has been 

proposed as a primary water stress indicator in trees (SIRCELJ et al., 2007), results 

indicate that Ψpd only corresponds to water availability to the tree from the soil during the 

night, but is not a reliable indicator for daytime water status and for processes that take 

place in the light period like photosynthesis. Experimental trees were planted in 2011 and 

root density and distribution were supposed to be still low.  The Ψpd value of -0.25 MPa of 

NT and ET could be used as a reference line for irrigation, but this is not recommended 

due to the problems connected to using Ψpd as a water status indicator in heterogeneously 

wetted soils. For many annual crops and for young fruit trees grown in containers, Ѱpd was 

assumed to represent the mean soil water potential next to the roots (AMÉGLIO et al., 

1999). Differing experimental results for Ψpd have led to discussions about whether it 

represents the wettest, the average, or the driest zone of the soil (VALANCOGNE et al., 

1997; AMÉGLIO et al., 1999). AMÈGLIO et al. (1999) concluded, that in heterogeneous 

soils, plants tend to equilibrate its Ѱpd nearer to the wettest zone of the soil than to the 

driest (AMÉGLIO et al., 1999), while under homogenous soil water conditions Ѱpd can be 

taken as a measure for soil water potential (COHEN & NAOR, 2002). A small volume of 

wet soil can re-hydrate the tree at night when there is little or no waterloss, thus giving a 

high Ѱpd. However in mid-day with high transpiration, a small wet soil volume will not be 

able to maintain tree water supply. While Ψpd has been found to be in correlation with soil 

water content, Ψstem was found to be a sensitive measure of plant water status throughout 

the entire day in apple (NAOR et al., 1995). NAOR and COHEN (2003) regarded Ψstem to 

be an indicator of the maximum daily plant water stress. The current results support the 

hypothesis of AMÉGLIO et al. (1999) for heterogeneously wetted soils.  

 

Similarly, in an experiment by ZHAO et al. (2006) with a non-stressed control (CK), a half 

root stress (HRS), and a whole root stress (WRS) treatment, no significant difference 

between CK and HRS has been found for Ψpd, while Ψpd was significantly lower in WRS. 
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Interestingly, diurnal leaf water potential of HRS was lower than CK and higher than 

WRS during most of the daytime. Additionally, photosynthetic rate of HRS was lower 

than that of CK (ZHAO et al., 2006). This also shows that for apple photosynthesis, 

daytime water status measurements might be a better indicator. In addition, results indicate 

that although trees might be able to collect enough water during the night, water uptake 

limits may occur during the daytime and photosynthesis might be affected. One possible 

explanation for this is the use of dwarfing rootstocks in modern apple production, which 

were found to have a low hydraulic conductivity (ATKINSON et al., 2003).  

 

Seasonal courses of Ψstem measurements showed a higher variability than Ψpd 

measurements. Additional influencing factors are temperature and humidity during the 

day. Ψstem results display that irrigation has led to effects in the experimental trees and it is 

visible that general water supply was different between 2012 and 2013, with 2013 being a 

wetter year.  

 

A visual comparison between water potential measurements and gas exchange 

measurements shows that Ψstem seasonal curve corresponds better to seasonal curve of Pn 

values than Ψpd does (also see Appendix Figure 37 and Figure 38). In contrast to DOLTRA 

et al. (2007), no relationship between Ψpd and photosynthesis measurements has been 

found in the current data. Mean measured Ψstem values during 2012 and 2013 were in a 

range between -0.5 and -2.0 MPa. Ψstem is known to be a suitable indicator for apple tree 

water status and has been used by several authors (BEHBOUDIAN et al., 1994; EBEL et 

al., 1995; EBEL et al., 2001; COHEN & NAOR, 2002; NAOR & COHEN, 2003; REYES 

et al., 2006; DOLTRA et al., 2007; O'CONNELL & GOODWIN, 2007; DE SWAEF et 

al., 2009; GIRONA et al., 2010; AUZMENDI et al., 2011; BEHBOUDIAN et al., 2011; 

GARCÍA PETILLO et al., 2011; GONZÁLEZ-TALICE et al., 2012). AUZMENDI et al. 

(2011) measured Ψstem values down to about -1.0 MPa for fully irrigated apple trees and 

values down to -1.4 MPa during drought cycles. They also found a linear relationship 

between transpiration and Ψstem, and calculated zero transpiration to occur at a Ψstem 

of -2.6 MPa. CASADESUS et al. (2011) reported similar values of Ψstem in the range 

between -0.6 MPa and -1.3 MPa. Slightly lower values have been reached in experiments 

conducted by NAOR and COHEN (2003) (range from -0.8 to -1.5 MPa), and by 

DOLTRA et al. (2007) (range from -0.6 to -1.73 MPa). The Ψstem values measured in the 

presented experiment in Geisenheim are in the same range and thus plausible. Severe water 

stress is supposed to occur at values below -2.0 MPa (NAOR, 2006). In a semi-arid region 

in Israel, measured Ψstem varied from -0.9 down to -2.8 MPa (NAOR et al., 2008). Lower 
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values for apple trees have only been reported for potted apples (range between -0.5 

and -4.5 MPa)(DE SWAEF et al., 2009). These authors presented a Ψstem threshold 

of -1.1 MPa for reduction of maximum photosynthetic rate. They also found a better 

relationship of maximum photosynthetic rate with Ψstem than with maximum daily trunk 

shrinkage. NAOR and COHEN (2003) reported higher standard deviations, and thus a 

higher variance, in the stressed than in the non-stressed treatment, which has also been 

seen in the current experiment. 

 

Although Ψstem is thought to be one of the best indicators for plant water stress, it also is 

affected by different factors, e.g. temperature and humidity. Lower Ψstem values are 

expected at high crop loads (BERMAN & DEJONG, 1997; NAOR et al., 1997; NAOR et 

al., 2008). But also on the contrary, fruit size and quality is affected by low Ψstem (NAOR et 

al., 1995; MILLS et al., 1996; MPELASOKA et al., 2000b). O’CONNELL and 

GOODWIN (2007) found a good linear relationship between Ψstem and VPD. Water status 

and plant transpiration in apple orchards can be more influenced by atmospheric 

conditions than by soil moisture due to its relatively small root biomass and relatively high 

hydraulic resistance (LANDSBERG & JONES, 1981; LAKSO, 1994). This has also been 

visible in the current study. Ψstem has been found a good plant water stress indicator for 

irrigation scheduling in fruit trees (NAOR, 2000). This also implies that plant based 

measurements are possibly more important than soil moisture measurements to control 

tree water status (DOLTRA et al., 2007). Plant based water status indicators have the 

advantage to integrate climatic and soil conditions. Plant based sensing allows a faster 

detection of suboptimal watering conditions and is less influenced by other factors (DE 

SWAEF et al., 2009). But direct plant sensing can be very sensitive. A disadvantage of 

plant based water status indicators is, that they do not tell the grower how much water has 

to be applied as it is a measure of water status, not water use (JONES, 2004). Therefore, 

plant based indicators require the definition of threshold values. For many cases it is 

helpful to identify a general reference point of water stress (BRADFORD & HSIAO, 

1982), e.g. the level of water stress that induces a significant change of the monitored 

process. A Ψstem of about -1.5 MPa is thought to be an indicator of moderate water stress in 

fruit trees (MARSAL et al., 2004; AUZMENDI et al., 2011). But plant based water status 

indicators show a high day-to-day variability due to their response to environmental 

conditions and a fixed threshold may lead to errors in irrigation. Additionally a high tree-

to-tree variability has been reported (NAOR & COHEN, 2003), which would make a 

thoughtful selection of reference trees in the orchard extremely important. These are some 

of the reasons why plant based sensing techniques are mostly used in research and are 
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mainly still under development. Ψstem is a direct water status indicator and thus more easily 

transferable, e.g. across the growing season, or between sites (DE SWAEF et al., 2009), but 

it is very time consuming, labor intensive, destructive and non-automatable. The 

development of a non-destructive and automatable plant water status sensor would highly 

improve this kind of plant measurements and the whole problem of irrigation scheduling. 

6.3.4 Photosynthesis 

6.3.4.1 PN1750 

Mean PN1750 rates were comparable to the ones found by KILILI et al. (1996b) for the 

cultivar ‘Braeburn’. They found a significant linear relationship between Pn and stomatal 

conductance, but also reported that other factors (assimilate accumulation or decreased 

activity of photosynthetic enzymes) must have contributed to reductions of Pn in the water-

stressed trees (KILILI et al., 1996b). A linear relationship between Pn and stomatal 

conductance has also been found by LAKSO (1994), WÜNSCHE et al. (2005) and 

LAKSO (2014). Presented experimental photosynthetic rates are in a normal range for 

healthy apple leaves (FLORE & LAKSO, 1990; KILILI et al., 1996b; MIEROWSKA et 

al., 2002; LOMBARDINI et al., 2004; MASSONNET et al., 2007; SIRCELJ et al., 2007; 

LEBESE et al., 2008; DE SWAEF et al., 2009). Literature data also imply that 

photosynthetic rates do not differ much between cultivars. This also corresponds to 

findings of this study, where no difference in photosynthetic rate between cultivars grown 

in Geisenheim has been found. Special emphasis is given to the direct comparison between 

‘Sapora’, which is a triploid apple cultivar, and ‘Wellant’, a diploid cultivar. PN1750 of 

non-stressed trees of both cultivars, measured on the same days in 2013, did not differ 

significantly. There is no indication that photosynthetic rate differs between cultivars. 

 

Water status and especially water deficit is known to affect photosynthetic rate of apples, as 

also has been seen in the experiment. Apple leaf photosynthesis declines with developing 

water stress (LANDSBERG & JONES, 1981). But mature apple leaves have been found to 

be able to adjust osmotically (LAKSO et al., 1984) by the accumulation of 

monosaccharides, especially sorbitol (WANG & STUTTE, 1992). Osmotic adjustment 

allows turgor maintenance and thus helps to maintain gas exchange longer during water 

deficit conditions. The presented seasonal photosynthetic rates do not indicate that osmotic 

adjustment took place during the season, but no analysis of leaf contents has been 

conducted. SRITHARAN and LENZ (1989) and LOMBARDINI et al. (2004) also found 

that irrigation led to significantly higher leaf photosynthetic rates on some measurement 

days in fully irrigated treatments for fruiting apple trees. This also indicates that water 
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deficits reduce maximum possible photosynthetic rates. The effect of developing drought 

stress on photosynthesis has been found to be a result of stomatal closure as well as non-

stomatal limitations (metabolic impairment) (FLORE & LAKSO, 1990; LAWLOR, 2002; 

MEDRANO et al., 2002). Stomatal closure is one of the first reactions during the 

development of water stress and metabolic impairment occurs during longer drought 

periods and during higher levels of water stress (JONES et al., 1990). Additionally, it is 

known that both, soil and also atmospheric water deficits do have an effect on 

photosynthetic rate in apple. NAOR (2000) found Ψstem to be correlated with stomatal 

conductance in apple (R2 of 0.85), in the range from -0.7 MPa to -1.6 MPa (gs from 0.3 to 

0.1 mol m-2 s-1). Internal CO2 (Ci) is a useful indicator of whether stomatal or non-stomatal 

factors affect photosynthetic rate (FLORE & LAKSO, 1990). Typically, Ci is about 70% of 

the ambient concentration in C3 leaves at high light conditions (TIMLIN et al., 2008). For 

the obtained data of ‘Wellant’, Ci decreased continuously with decreasing stem water 

potential down to -1.8 MPa, but visibly increased for stem water potentials below -2 MPa 

(data not shown). The first decrease in Ci indicates that photosynthetic rate was mainly 

affected through stomatal effects, and the range agrees with the above mentioned results of 

NAOR (2000). The increase of Ci at water potentials below -2 MPa indicates that at this 

point also non-stomatal factors start to affect photosynthesis of apple leaves. KILILI et al. 

(1996b) reported that a reduction in photosynthetic rate in a non-irrigated treatment was 

not solely caused through stomatal but also through non-stomatal mechanisms. SIRCELI 

et al. (2007) also reported stomatal limitations of photosynthesis under moderate drought, 

and in addition non-stomatal ones under a severe drought. In contrast, MILLS et al. (1996) 

suggested a stomatal regulation of Pn under water stress conditions, because Ci values were 

not affected. Possibly, stress was not severe enough to induce non-stomatal limitations.  

 

Overall, photosynthetic rate of mature apple leaves is thought to stay similar during the 

season (FLORE & LAKSO, 1990). In the presented results of 2012 and 2013 some major 

drops in PN1750 were visible, but are not thought to be caused by a general seasonal Pn 

pattern. Over the season 2012 three days (DOY 180, 207, and 254) showed noticeable low 

PN1750 values in all three treatments. These drops can also be seen in Ψstem values of the 

same days, but except for DOY 254 not in Ψpd values. Besides water status of the tree 

which is supposed to have the main effect, some additional factors are supposed to be 

involved in these drops. Maximum temperature exceeded 30 °C and maximum VPD also 

showed high values (DOY 180: 3.1 kPa; DOY 207: 4.1 kPa; DOY 254: 3.6 kPa). These 

high temperature and high VPD values probably led to reduced PN1750 rates compared to 

other measurement days. The used gas exchange measurement system is only able to 
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change outer conditions in a specific range. Optimum temperature for apple leaf 

photosynthesis has been found to be between 25 and 35 °C (WATSON et al., 1978; 

GINDABA & WAND, 2007; FAN et al., 2010), dependent on temperature conditions 

during development (FAN et al., 2010).  Besides temperature also VPD can have an effect 

on photosynthetic rates of apple leaves. Stomatal conductance is known to be affected by 

VPD, but a simple linear relation has been questioned (JONES, 1985). At low VPD levels, 

stomatal opening of apple leaves is thought to be mainly affected by photosynthetic rate 

(dependent on radiation and temperature), while, at higher VPD levels (> 2,5 kPa (JONES 

et al., 1985)), stomatal response to VPD is thought to become the limiting factor 

(DRAGONI et al., 2004). When comparing full day measurements of PN1750 of 2012 and 

2013 of NT it can be seen that the higher VPD values in 2013 led to a lower PN1750 

during the afternoon, while radiation and temperature conditions were similar between the 

two days. This also indicates a high influence of VPD on apple photosynthesis. 

Interestingly, full day measurement in 2012 showed that the general daily PN1750 pattern 

of CT and NT was also similar, but values of CT were lower by about 5 µmol m-2 s-1 during 

the whole day. In 2012, Ψpd and Ψstem were significantly lower in CT than in NT. The 

difference of PN1750 between NT and CT stayed similar during the day, instead of 

showing a similar increase in the morning, followed by an early decrease in CT than in 

NT, which we first expected. The results indicate that photosynthesis of water stressed 

trees do not start similar to non-stressed ones and then decrease their photosynthetic rate at 

some point during the day. Instead whole day photosynthesis seems to follows a similar 

pattern but is reduced by a specific portion, at least for soil based water deficits. 

6.3.4.2 Light response curves (LRCs) 

Like for PN1750 measurements, light response curve measurements were not able to detect 

differences between apple cultivars. But for LRCs of ‘Wellant’, grouped by Ψstem, 

significant differences were found between groups. LRCs measured by MIEROWSKA et 

al. (2002) for spur leaves of summer pruned ‘Golden Delicious’ trees are very similar to the 

LRCs of group 1 and 2 measured in ‘Wellant’, while curves of ‘Granny Smith’ showed 

slightly lower maximum Pn values. Presented LRCs are also very similar to LRCs 

measured in ‘Braestar’/M25 at 25 °C by PRETORIUS & WAND (2003). They also 

reported differences of LRCs measured pre- and postharvest at different temperatures, but 

did not measure water status of the trees. Optimum temperature for photosynthesis was 

25 °C pre- and postharvest, with pre-harvest optimum range being 25 to 30 °C, and post-

harvest optimum range being 20 to 25 °C (PRETORIUS & WAND, 2003). JONES & 

FANJUL (1983) measured LRCs in water stress (S1 & S2) and an irrigated control (C) 

treatments. They found maximum photosynthetic rate to be decreased in the stress 
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treatments, while CO2 compensation point tended to decrease with medium stress (S1) and 

increase with greater water stress (S2). Midday leaf water potentials were -1.1 MPa for 

C, -1.7 MPa for S1 and -2.7 MPa for S2 treatment (JONES & FANJUL, 1983). In the 

presented LRCs for ‘Wellant’ a decrease of compensation point for plants under water 

stress has been found, like in S1. But no increase, like in S2 of JONES & FANJUL (1983), 

was visible. A reason for this might be a higher water stress level in S2 (JONES & 

FANJUL, 1983) than in the current experiment, but midday leaf water potentials and 

midday stem water potentials cannot easily be compared. 

6.3.4.3 Relationship between stem water potential and photosynthetic rate 

Experimental results of PN1750 and LRC measurements showed that photosynthetic rate 

declined with declining Ψstem. The results agree with data obtained by DE SWAEF et al. 

(2009) and STEPPE et al. (2008) where measurements were conducted in only one potted 

apple tree per treatment. Such data are, however, difficult to interpret since potted trees 

have been found to react differently than field grown ones and one tree per treatment is not 

sufficient. The response of photosynthetic rate to Ψstem was described by a sigmoidal 

function (R2 of 0.973) for the non-irrigated tree (STEPPE et al., 2008). The function itself 

has not been published and therefore cannot be directly compared to the found sigmoidal 

function (R2 of 0.9876) for PN1750 of field growing apple trees of the cultivar ‘Wellant’, 

but showed a similar course with a slightly stronger sigmoidal shape. Reference values for 

a threshold were found to be between -1 MPa (STEPPE et al., 2008) and -1.16 MPa (DE 

SWAEF et al., 2009). This approach is similar to a critical reference value determination 

often used for fruit tree irrigation, by taking measured values of fully irrigated trees 

(JONES, 2004). Reference values determined for irrigation of apple trees range between -1 

MPa (NAOR & COHEN, 2003) and -1.5 MPa (DOLTRA et al., 2007). Additionally 

thresholds are determined empirically and transferability to other orchard situations is 

unclear, but are suggested to be transferable among orchards on a within-region basis 

(NAOR et al., 2008). Water potential reference values for photosynthesis of irrigated trees 

might also vary between potted and orchard grown apple trees. In the presented data for 

‘Wellant’ a possible threshold value based on the grouping of PN1750 measurements 

appears to be slightly lower than the ones reported by STEPPE (2008) and DE SWAEF 

(2009). When taking only the upper limit of data (see Appendix Figure 36), since it is not 

reasonable to assume that the low PN1750 values are caused by the water potential, an 

even lower threshold of -1.6 MPa is visible. But measurements were conducted during the 

whole season and osmotic adjustment might have occurred, which is thought to lead to a 

shift of the threshold to a more negative value. Therefore, for now, the grouped data 

threshold appears to be more reasonable. 
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Overall, experimental results support some hypotheses of earlier experiments, e.g. a strong 

influence of water status on photosynthetic rate of apple trees has been found. Besides soil 

water deficits also VPD influenced photosynthesis. Midday stem water potential appeared 

to be a good water status indicator for apple trees and in particular for water deficit effects 

on photosynthesis. Results also confirm the advantage of using plant based water status 

indicators instead of only measuring soil moisture. Although experimental results were 

able to approve some previous assumptions it is evident that there still exist some major 

gaps in the understanding of apple photosynthesis itself, and of the exact impacts water 

deficits on photosynthesis. This demonstrates the need for future research in respect of 

achieving a comprehensive understanding of apple photosynthesis, including establishing 

trees, soil and air water deficits, stomatal and non-stomatal limitations, osmotic 

adjustment, build-up of leaf starch, and during the whole day and season. 

6.3.5 Harvest 

Harvest data of the three cultivars showed a diverse picture and cannot be easily 

generalized. Possible reasons for the inconsistent results among the three cultivars might be 

due to their varying ripening times and thus varying harvest dates (including different 

weather conditions during ripening), due to their inherent fruit size differences, due to 

unbalanced thinning or caused by other unknown factors. In 2013, flower number might 

have been affected by water deficits and establishment of trees in 2012. Additionally, the 

trees were still very small during the measurements and it was the first harvest. All three 

cultivars came from different nurseries and pretreatment of trees before planting in the 

orchard, although not very likely, might also have had an influence.  

 

In ‘Jugala’, irrigation treatments led to the expected significantly higher fruit fresh weights 

and also to an earlier ripening than in CT. The earlier ripening of NT and ET fruits was 

also visible for ‘Sapora’. For unknown reasons, fruits of ET of the latest ripening cultivar 

‘Sapora’ were significantly lighter than the ones of NT and CT. Harvest data of ‘Wellant’ 

showed significantly lower values in CT than in NT and ET for total fresh weight per tree 

and number of fruits per tree. Trees were hand thinned to 30 fruits per tree after flowering, 

but for unknown reasons CT trees only had an average of 14.7 fruits per tree at harvest. 

Possible reasons could be the reduction of fruits during June drop, or a biased 

handthinning. The average fruit fresh weight did not differ between treatments, probably 

due to the reduced number of fruits per tree in CT. But randomly selected fruits of CT 

analyzed in the laboratory were significantly lighter than fruits of ET or NT. While starch 

index and acidity did not differ between irrigation treatments, CT fruits showed 

significantly lower soluble solids content and higher firmness compared to NT and ET. 



 

 

 

85 
 

Water relations and gas exchange of apple trees: effects of additional irrigation on a newly planted 
apple orchard 

Firmness depends on fruit size, which also was significantly lower in CT, and might not be 

caused by water deficits itself but by smaller fruits in the sample. SSC of CT was 0.4 % 

lower than in NT and showed a high standard deviation. Mid to late season water deficits 

in CT might have led to reduced SSC caused by decreased photosynthetic rates. Smaller 

tree sizes and thus smaller leaf area for CT might also be involved.  

 

Numerous literature reports on the effect of reduced irrigation on yield and fruit quality of 

apple exist, but also often present contradictory results as seen in the current study. Water 

stress occurring early in a season can lead to a reduced return bloom in the next season 

(KILILI et al., 1996b). Water stress effects on fruit yield and quality are known to depend 

on crop load of trees (MPELASOKA et al., 2001; NAOR et al., 2008). In general, fruit size 

in apple is thought to decrease with application of deficit irrigation, especially if more 

severe water stress develops (BEHBOUDIAN et al., 2011). Various deficit irrigation 

treatments reduced average fruit weight compared to fully irrigated treatments (GIRONA 

et al., 2010), which in the current case was only clearly seen for ‘Jugala’. 

 

Fruit firmness is influenced by fruit size, with smaller fruits generally being firmer than 

larger fruits (EBEL et al., 1993). Some contradictory results about how DI, RDI and PRD 

compared to full irrigation affects apple fruit firmness have been reported. Fruit firmness 

results should be treated with caution. As already mentioned fruit size influences fruit 

firmness, but also ripening stage of the fruit has an effect on firmness of fruits. Increased 

maturity leads to softer fruits. Some studies considered these points and divided harvested 

fruits in groups according to their size. Fruit firmness of deficit irrigation treatments was 

found to be higher than in fully irrigated treatments for ‘Fuji’/unknown rootstock (LEIB et 

al., 2006) and for ‘Braeburn’/MM.106 (MPELASOKA et al., 2000a; MPELASOKA & 

BEHBOUDIAN, 2002). For ‘Pink Lady’, on MM.106 and on M.9, no effect of deficit 

irrigation treatments on fruit firmness has been detected (O'CONNELL & GOODWIN, 

2007; TALLUTO et al., 2008). ZEGBE & SERNA-PÉREZ (2011) used commercial 

irrigation and PRD for ‘Golden Delicious’ on M7 in a semi-arid region and found no 

differences in flesh firmness and total soluble solids concentration. Only in dry matter 

concentration differences were detected. 

 

Like for fruit firmness also for total soluble solids, experimental results vary between 

studies. Significantly higher Brix values for fruits of deficit irrigated  than of fully irrigated 

treatments were measured in ‘Fuji’ (LEIB et al., 2006) and in ‘Braeburn’ (MPELASOKA 

& BEHBOUDIAN, 2002). For ‘Pink Lady’ no statistically significant difference between 
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treatments was found for total soluble solids (O'CONNELL & GOODWIN, 2007; 

TALLUTO et al., 2008). BEHBOUDIAN (1998) reported enhanced total soluble solids for 

deficit irrigated treatments (14.7 ° Brix) compared to fully irrigated treatments (13.7 ° Brix) 

for 5-year old ‘Braeburn’/MM.106 growing in lysimeters. Also for titratable acidity, 

experimental results are very dissimilar. MPELASOKA & BEHBOUDIAN (2002) 

reported higher starch pattern index values for a fully irrigated treatment than for a deficit 

irrigated treatment in ‘Braeburn’, which indicates a faster ripening under stress conditions. 

Experimental differences between fully and deficit irrigated treatments show high 

variability between seasons (LEIB et al., 2006). LEIB et al. (2006) found differences in 

soluble solids content for varying irrigation treatments only in two out of three years. 

 

Possible explanations for inconsistencies among studies might be differences between 

cultivars, differences in timing of deficit irrigation or in water stress intensity during 

experiments. Overall, results are difficult to compare due to too many influencing effects 

and thus possible differences between experiments in respect to amounts of rainfall, 

irrigation, weather conditions and soil water reserves. All examined studies were 

conducted in mature apple trees. The results of this study were collected in newly planted 

apple trees and first harvest results should not be over-interpreted. Overall, no extreme 

differences between CT, NT, and ET fruits were found, but the year was wetter than the 

average and therefore effects are expected to be clearer during average and especially for 

drier years. In 2013 irrigation only led to higher yields analyzed as total fresh weight per 

tree, but fruit numbers per tree were much lower in CT than in NT. It partly remains 

unclear if differences of treatments were caused through irrigation treatments in 2013 or 

partly already through pre-conditioning in 2012, or through other unknown factors.  

6.3.6 Soil moisture measurement 

The use of different dripper systems has led to some issues concerning soil moisture 

measurement positions. Especially in NT with only one single dripper per tree the distance 

from the soil moisture measurement system to the dripper plays a major role for reliable 

measurements. This circumstance also makes it very difficult to achieve reliable results of 

soil moisture with only a few soil moisture, because selecting a sensor position that is 

representative of the root-zone is difficult (JONES, 2004). If sensors are placed directly 

beside the dripper, they will most of the time record very high moisture levels although the 

tree might not necessarily be able to reach most of the moisture. In case they are placed too 

far from the drippers, soil moisture sensors are likely to record very dry conditions 

although the tree might still have access to sufficient water. LEVIN et al. (1979) measured 

soil moisture content in several distances from single drippers and showed that soil wetting 
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and drying, and also soil water content, varies with distance. This is especially true for the 

uppermost soil layers and should be kept in mind when soil moisture data is analyzed. The 

use of three different soil moisture sensors has the advantage that the systems themselves 

can be compared, and also that problems of one measurement technique may not be 

present in the others. But in the current case it also had the disadvantage of having only a 

small number of sensors per measurement system in each treatment. 

 

Results of 2012 show that precipitation events have been clearly visible in tensiometer 

measurements of 25 cm depth in CT. Recorded higher amounts of precipitation led to an 

increase of values, while lower precipitation amounts led to stable values. In 50 cm depth, 

also higher precipitation amounts only led to a less steep decline of tensiometer values in 

CT. Rain events in 2012 were not able to provide enough water in 25 and 50 cm to 

preserve a certain level of soil moisture. The soil dried out in both layers during the season, 

which indicates that the tree roots were able to extract water from both depths. Besides 

precipitation, irrigation events of ET and NT were visible in 25 and 50 cm depth. This 

shows that irrigation was able to refill soil water down to over 50 cm depth. After irrigation 

treatments have been stopped for the season, a dry out has been visible in the tensiometer 

values measured in both depths.  

 

It is unclear why the first very negative values of NT (between DOY 120 and 128) have 

developed, because irrigation in NT started on DOY 116 in 2012 and the measured 

tensiometer values were much more negative than the ones in the non-irrigated treatment 

CT. This could have been caused by a measurement error or by a very unfortunate 

positioning of the tensiometers in 25 cm depth in NT. Values between single tensiometers 

also varied extremely in NT. Furthermore, NT values in 50 cm depth provide evidence for 

one of the mentioned explanations. In 50 cm depth both irrigated treatments NT and ET 

showed soil moisture tensions between -90 and -250 hPa during the whole irrigation period 

in 2012, which is in a recommended range for growers (IMMIK, 2008), and no major 

water deficits should occur. Additionally, a clear increase of values was visible in the 

course of both treatments after irrigation has been started.  

 

In 2013, higher correlation coefficients were found between 25 and 50 cm depth than in 

2012, which is probably caused by the more periodic and higher amounts of rain. Efficient 

rainfalls soak the soil more equally than the dripper irrigation systems. Even in the non-

irrigated CT soil moisture stayed on a high level from DOY 95 until about DOY 175 in 50 

cm depth. The values in 25 cm depth were very variable in 2013, but irrigated treatments 
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showed higher soil moisture levels through most of the season. Tensiometer measurements 

also showed that the non-irrigated soil of CT dried out more slowly in 2012, while in 2013 

a much faster drying was visible for the tensiometer measurement positions, which 

corresponds to measured weather conditions. Additionally, tensiometer values indicate 

that, in early season of 2013 in 50 cm depth soil was wetter than in early season of 2012, 

which also corresponds to the finding that weather in early 2012 was hotter and drier.  

 

Like for tensiometer measurements of 2012 also TDR values of CT showed the lowest soil 

moisture content in 0 to 30 cm depth throughout most of the season. But TDR probe 

results partly differed from tensiometers for NT and ET. One reason for this 

inhomogeneity could be the above mentioned problem of using drip irrigation systems and 

the positioning of the single sensors. In addition, tensiometers measured soil moisture 

tension in 25 cm depth, while TDR probes measured soil moisture content from 0 to 30 cm 

depth. For 30 to 60 cm depth, results correspond well to tensiometer values in 50 cm depth. 

Overall, although some differences between TDR and tensiometer results were visible, the 

main overall picture is similar, especially in the deeper soil layers. Inconsistencies might be 

explained by differences in measurement positions, in depths and in spatial distribution, 

and through the use of drippers and thus inhomogeneous soil wetting patterns. Like for 

tensiometer measurements, precipitation and irrigation events have been detectable in 

TDR measurements. TDR probe measurements are supposed to continuously function, but 

many of the installed sensors failed. Thus the system seems to be not very suitable to the 

prevailing conditions of the orchard. TDR sensors have not been widely accepted due to 

installation and soil disturbance difficulties (EVETT et al., 2012). The TDR measurement 

technique is mainly used in sandy soils, and possibly it is more suitable for sandy soils and 

not for the heavy soil of this experimental orchard.  

 

Diviner 2000 measurements have a higher soil depth resolution than the other used 

sensors, and some interesting results were obtained. No significant change in soil moisture 

below 90 cm depth has been recorded during the whole measurement time. Trees were 

planted in autumn of 2011 and the main part of the roots is supposed to be well above 

90 cm. Overall, a similar main course for each treatment in several depths down to 80 cm 

is visible. Highest changes occurred in the uppermost 30 cm, with changes of up to 22 %, 

18 %, and 15 % Vol. soil water content in 10 cm, 20 cm, and 30 cm depth, respectively. A 

clear effect of irrigation has been visible from 20 to 60 cm depth in 2012 and in 2013, which 

generally corresponds to findings of tensiometer and TDR measurements. In general, 

changes were less, the deeper the measurement. Diviner 2000 measurements are 



 

 

 

89 
 

Water relations and gas exchange of apple trees: effects of additional irrigation on a newly planted 
apple orchard 

moderately sensitive to temperature changes and accuracy changes with soil moisture. 

Additionally, only small volumes of soil near the access tube are measured, which makes 

measurements sensitive to small scale variations in soil water content close to the access 

tube (EVETT et al., 2006), but air pockets beside the access tube can lead to errors. 

 

Overall, all used soil moisture measurement systems showed advantages as well as 

disadvantages. By comparing the different systems, a medium to good agreement in 

between the results was obtained. Some discrepancies may have been caused by the above 

described different measurement positions and by dissimilar measurement techniques and 

depths and shows that the positioning in the orchard is very important for the growers. A 

disadvantage of the systems is that only the available soil water at the particular 

measurement position is measured and not necessarily how much water is available to the 

plant. Therefore, a direct measurement of plant water status should be advantageous to any 

soil moisture measurements. All used soil moisture measurement systems were easy to use, 

and, except for the failure of the TDR probes, reliable. TDR and tensiometer sensors were 

not very labor intensive while Diviner 2000 measurements are labor intensive and do not 

provide continuous measurements. Rain events as well as irrigation events were detectable 

with all three measurement techniques, although the time-resolution of the continuous 

TDR and tensiometer measurements was much better than of the only weekly performed 

Diviner 2000 measurements. This also led to lower visibility of single rain and irrigation 

events of the Diviner 2000 measurement system. On the point of practical implication 

continuously recording soil moisture measurements with low labor needs, e.g. 

tensiometers, are clearly recommended. 

6.3.7 Use of additional irrigation in Germany 

Obtained experimental results indicated that the use of irrigation in newly planted apple 

orchards in Germany can be very beneficial. Although results of first yield in 2013 did not 

imply much higher first yields in irrigated compared to non-irrigated apple trees, tree size 

and establishment has been improved by irrigation. 2013 was a wet year and thus no huge 

effect of additional irrigation was expected and visible, but beneficial effects of 2012 were 

still detectable and significant between treatments in 2013. The presented results of the field 

experiments have shown that additional irrigation can lead to faster growth and 

establishment of young apple trees. Excessive vegetative growth in mature apple orchards 

is undesirable, because it leads to higher pruning costs and shaded fruits, but for the first 

years it is very helpful for a fast tree development. Furthermore, additional irrigation may 

ensure tree survival in hot and dry years like for example 2011 in Germany. In the current 

study a clearly improved growth in 2012 was achieved through irrigation which still was 
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statistically significant in 2013, although 2013 was a wetter year than 2012 and both years 

were wetter than the average. But results also indicate that for German growers it remains 

a very difficult decision, because economic benefit and usefulness highly depend on 

weather conditions during the particular years and soil water resources. But since effects 

were already very beneficial even under the wetter than usual conditions in respect to the 

projections for the future climate in Germany irrigation is clearly recommended for new 

orchards. 

 

For a final decision also economic considerations have to be taken into account. In 

addition, it is also not only the question whether additional irrigation shall be used or not, 

but also which irrigation system is the best to use. In the presented case ET used less water 

than NT in both years, with similar positive effects. Using an ET based irrigation can help 

to safe water, but it also needs more data and calculations and therefore might not be used 

by growers. The major advantage of drip irrigation systems is that they use less water than 

sprinkler systems while maintaining fruit yield and quality (FALLAHI et al., 2010; 

FALLAHI et al., 2013). Overhead sprinkler systems have the advantage that they can be 

additionally used for frost protection. In common with the presented results TOJNKO & 

CMELIK (2004) also found positive effects of irrigation on tree performance of apple 

orchards in Slovenia. In many apple growing regions around the world it is already 

standard to use irrigation systems. Especially in modern high density orchards rapid 

vegetative growth is needed during the first years after planting in order to build up the tree 

size and thereby prepare the tree for early production (TOJNKO & CMELIK, 2004). In 

addition, also for mature orchards an installed irrigation system ensures high production 

during very dry years. 
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7 DEVELOPMENT OF A WATER SUBMODEL FOR MALUSIM 

7.1 Introduction 

One of the disadvantages of MaluSim is that it does not consider any water status of apple 

trees and this surely is one of the future main topics in worldwide apple production. In the 

past, many different experiments concerning irrigation and water deficit effects in apple 

orchards have been conducted, but the previously acquired knowledge has not been widely 

connected. Therefore the attempt has been made to integrate a water submodel in 

MaluSim, which is based on findings of published literature. The idea behind the submodel 

is on the one hand to improve the original model and on the other hand to expand its 

possible areas of use, since effects of additional irrigation and water deficits become more 

and more important with the worldwide Climate Change (STÖCKLE et al., 2011). 

7.2 Water submodel development 

In the following the development process of the water submodel is described, including a 

description of the main principles it is based on. All introduced relationships were based on 

findings in the literature. Parts of the water submodel have been developed in cooperation 

with Alan Lakso, the developer of the original MaluSim model. At the beginning, it had to 

be checked which parts of the model are supposed to be affected by tree water status. After 

analyzing MaluSim, four main parts were found: long shoot and spur growth, 

photosynthesis, respiration rates, and fruit growth. For these parts, the available 

information in published literature has been collected and the software STELLA® has been 

used to include new parts into the MaluSim model. In general, new effects were added at 

first by including the found relationship (equation) and then connecting the new parameter 

to existing parameter (existing parameter then are affected by the new ones). 

 

A comprehensive model would model the water stress in the tree as well as the effect of the 

water stress on the growth and gas exchange. However, such a comprehensive model is 

beyond the scope of this thesis. Also, measurement of soil water status was not found in 

this study to be a good predictor of tree water stress. Therefore, the research and modeling 

work focused on the effects of water stress on tree growth and gas exchange. 

7.2.1 General water submodel input 

At first, a plant water status indicator had to be selected to be able to link water deficit 

effects to the existing relationships and parameter of the model. Midday stem water 

potential was chosen as the plant water status indicator because it is supposed to be a better 

stress indicator for processes, like photosynthesis, which also occur at daytime, than for 
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example predawn water potential. Midday stem water potential has been reported to be a 

reliable water status indicator in apple and other fruit tree crops (NAOR et al., 1995; 

SHACKEL et al., 2000; DOLTRA et al., 2007; VAN LEEUWEN et al., 2009; RUIZ-

SÁNCHEZ et al., 2010). Midday stem water potential (WatPot MD) has been included 

into the MaluSim framework as a function of days, and it is an input parameter inserted by 

the user. This water status indicator then has been connected to the parts of the model, 

which are supposed to be affected by a change in tree water status. 

7.2.2 Long shoots and spurs 

MaluSim calculates the fraction of growing shoots and spurs, which is a function of 

accumulated degree days. This fraction of growing shoots and spurs is then used to 

calculate leaf area. Therefore, a change in fraction of growing shoots or fraction of growing 

spurs also leads to a change in total leaf area. The hypothesis for long shoots and spurs, 

and thus leaf area development, was, that under water deficit, shoot growth is reduced and 

stops earlier. An effect of additional irrigation or water deficit on shoot growth has been 

reported by several authors (MAGGS, 1961; POWELL, 1976; DAVIES & LAKSO, 1979; 

LANDSBERG & JONES, 1981; LAKSO, 1985; FORSHEY & ELFVING, 1989; 

BUWALDA & LENZ, 1992; EBEL et al., 1995; AL-HAZMI, 1996; KILILI et al., 1996b; 

MILLS et al., 1996; O'CONNELL & GOODWIN, 2007; TALLUTO et al., 2008; LO 

BIANCO et al., 2012). E.g., BUWALDA and LENZ (1992) found that a reduction of 

water supply to 50 and 25 % reduced total dry weight of the trees to 58 and 33 %, 

respectively. Additionally, leaf area has been reduced from 6.2 m2, to 2.8, and 1.4 m2, 

while the reduction in shoot dry weight was from 2162 g/tree, to 1210 g, and 626 g, 

respectively. 

 

In general, soil moisture stress is known to reduce shoot growth, while irrigation is thought 

to increase it (MAGGS, 1961; FORSHEY & ELFVING, 1989). Only very few data is 

available on the relationship between Ψstem and shoot growth. Differences between reported 

values in the literature might be due to differences in weather conditions (temperature, 

VPD), measurement technique, or possibly caused by an osmotic adjustment of trees. The 

relationship used in the water submodel (Figure 18) is mainly based on data of EBEL et al. 

(1995), AL-HAZMI (1996), O’CONNELL and GOODWIN (2007), and on unpublished 

data of Alan Lakso.  

 

If water stress occurs, the fraction of growing shoots is reduced and the amount of growth 

is less. For this reason a water stress effect on shoot and spur growth (WtrStrEffShGr) 

based on midday stem water potential (WatPot MD), according to Figure 18, has been 
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added to the MaluSim model. This leads to a reduction of growing shoots and spurs if 

water potential is equal or lower than -1.1 MPa. Above this value no reduction occurs. A 

water potential of -1.5 MPa leads to a reduction down to 75 %. If midday water potential 

reaches values of -2.6 MPa and lower, no shoot and spur growth is supposed to occur. 

 

 

Figure 18: Relationship between midday stem water potential and number of growing shoots or 

spurs used in the water submodel. 

 

Due to the small database the set threshold and the used relationship might change during 

the further development of the water submodel. In the current case the effect starts at a 

similar point as the effect on photosynthesis, but not at the exact same point. This 

difference allows to detect the water deficit effects on the single submodels in the 

simulation runs, and also to be able to check that all described effects are properly included 

in the model framework. 

7.2.3 Photosynthesis 

It is widely known that water deficit affects photosynthesis of plants (see Chapter 2.4.2). 

NAOR (1998) found a relationship between stem water potential and stomatal 

conductance for apple trees. In addition, a relationship between leaf photosynthesis and 

stomatal conductance was found by WÜNSCHE et al. (2000). The daily gross 

photosynthesis (g CO2 day-1) per tree calculation in MaluSim is based on the integral model 

described by CHARLES-EDWARDS (1982). Main photosynthetic parameter used for 

calculation are maximum light saturated photosynthetic rate (Pmax) and photochemical 

efficiency (PChemEff). The only available published data about a relationship between 
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midday stem water potential and maximum net photosynthetic rate has been measured in a 

single potted apple tree (STEPPE et al., 2008; DE SWAEF et al., 2009). No data about 

changes in photochemical efficiency under water deficits was available in the literature. 

The results of light response curves in Figure 16 indicate little or no difference in the initial 

slope of the light response curves for different water status. For this reason no effect of 

water status on photochemical efficiency has been included into MaluSim, at this point. 

 

The relationship between midday stem water potential and Pmax  (Figure 19) is based on 

the published data of STEPPE et al. (2008) and DE SWAEF et al. (2009) for potted apples. 

The relationship has been included into MaluSim by using a water stress effect on Pmax 

(WtrStrEffPmax), which is based on midday stem water potential (WatPot MD). Pmax is 

supposed to be not affected when midday stem water potential is between 0 

and -0.99 MPa. Starting from -1 MPa Pmax is reduced, with values below -2.9 MPa leading 

to a total stop of photosynthesis. 

 

 

Figure 19: Relationship between midday stem water potential and Pmax used in the water 

submodel, based on published data of STEPPE et al. (2008) and DE SWAEF et al. (2009) for 

potted apples. ( y= -0.0107+1.0190/(1+exp(-(x-1.9018)/-0.2537))). 

 

Osmotic adjustment has been found to be significant in apple (GOODE & HIGGS, 1973; 

LAKSO, 1979; LAKSO et al., 1984). Osmotic adjustment is not included in the water 

submodel, but would result in a shift of the curve into a more negative section, while the 

general shape of the response is likely similar. A possible way, to include osmotic 

adjustment, would be to use a function of cumulative midday stem water potential 
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however, such data is rare. Osmotic adjustment in apple trees is still not fully understood 

and too few data are available to be able to include it into the model at the moment. 

7.2.4 Respiration rates 

Data about water deficit effects on respiration rates is very rare and partly contradictory. 

PSARRAS and MERWIN (2000) found that root respiration rates increased with soil 

moisture stress. HSIAO (1973) also reported various results for effects of water stress on 

respiration, but overall concluded that respiration rates are generally suppressed by 

moderate to severe stress. Differences in experimental results are likely to be caused by 

differences in stress development and severity. Often a very short increase in respiration 

rates after water stress induction has been found, followed by a clear decrease. For apple, 

respiration rates of whole plants (WIBBE & BLANKE, 1997), leaves (JONES & 

FANJUL, 1983), and root systems (LOMBARDINI et al., 2001) have been found to 

decrease under medium to severe stress. 

 

 

Figure 20: Relationship between midday stem water potential and respiration rates of plant 

organs used in the water submodel. 

 

According to the available literature for apple, a relationship for respiration rates of fruits, 

wood and leaves has been included into the water submodel (Figure 20). For this a water 

stress effect on respiration (WtrStrEffResp) has been used. Respiration rate is regulated to 

be unaffected by midday stem water potentials of 0 to -1.5 MPa. Below -1.5 MPa a linear 

decrease of respiration rate is expected to occur with a 50% reduction at -3 MPa. 
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7.2.5 Fruit growth and other current limitations 

Although effects of water deficits on fruit growth have been reported in the literature 

(NAOR et al., 1997; ATKINSON et al., 1998; EBEL et al., 2001; NAOR et al., 2008; 

NASCHITZ et al., 2010; GARCÍA PETILLO et al., 2011), no direct effect of water deficit 

on fruit growth has been included into the submodel for now, to avoid a double effect. 

Fruit growth rate is already decreased through decreases in photosynthesis and active leaf 

area and thus by the decreased assimilates which are available for fruit growth. In case this 

should not be sufficient an additional effect has to be included. For this reason the 

submodel has to be tested and compared with experimental data without using a fruit 

growth reduction component, at first. After some tests it should become clear if an 

additional direct effect on maximum fruit growth has to be included and how strong the 

effect has to be. Besides direct fruit growth effects also trunk and root growth effects have 

not been considered for the same reasons. Additionally, it is unclear if water status of the 

tree also changes the carbon allocation pattern itself, or only changes the amount of 

carbon, which is available for partitioning. The study of BUWALDA and LENZ (1992) 

indicate that mild water stress does not affect the carbon partitioning pattern much, while 

severe stress changes the allocation pattern of the tree.  

7.2.6 Schematic view of the new water submodel 

An overview of the connections of the new water submodel to the already existing original 

submodels is shown in Figure 21. 

 

 

Figure 21: Schematic diagram of the interactions of the new water submodel (blue) with the five 

original submodels of MaluSim (green), with dark blue bold arrows showing direct effects and the 

light blue dotted arrow an indirect effect. 
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The fruit growth and abscission submodel is only indirectly affected by the water submodel 

through effects on leaf area development and on respiration and photosynthesis. 

7.3 Simulation runs 

7.3.1 Description of simulation runs  

Although no experimental field data of established orchards was available for comparisons, 

test simulation runs of the new water submodel were conducted for the location Zornheim. 

The modified model ‘G4-4’ (fruit submodel modification) that obtained best results (see 

Chapter 5) was used as a basis and parameter were set as described in 5.1.2. Tests using 

whole season fixed midday stem water potentials were conducted for -0 MPa 

(G4-4 WatPot0), -1 MPa (G4-4 WatPot1), -1.5 MPa (G4-4 WatPot1.5), -2 MPa 

(G4-4 WatPot2), -2.5 MPa (G4-4 WatPot2.5), and -3 MPa (G4-4 WatPot3), and using 

input data for the location Zornheim. In addition, simulation runs with an early (from 

budbreak to two weeks after full bloom) medium water deficit and a late (from fruit 30 mm 

stage (mid-season) to end of simulation) medium water deficit, as well as with an early 

severe water deficit and a late severe water deficit were conducted (see Table 19). 

Table 19: Test simulation runs with early and late water deficits, with early occurring deficits of 

-1.5 MPa (G4-4 ED1.5 Day0-50) and of -2 MPa (G4-4 ED2 Day0-50) from DABB 0 to 50, and 

with late occurring deficits of -1.5 MPa (G4-4 LD1.5 Day71-98) and of -2 MPa 

(G4-4 LD2 Day71-98) from DABB 71 to 98. 

 

 

7.3.2 Results of water submodel test simulation runs 

Simulation runs using the new water submodel with fixed seasonal midday stem water 

potentials showed calculated final fruit numbers between 0 and 237 (Table 20). A water 

potential of -0 MPa led to the maximum number of final fruits of 237, which equals to the 

simulated fruit number of the model ‘G4-4’ in chapter 5. Compared to this, the calculated 

final fruit number was slightly reduced for a simulation run with a seasonal midday stem 

water potential of -1 MPa. Using a water potential of -1.5 MPa showed a reduction of final 

fruit number to only half of the one using -1 MPa. Water potentials of -2 MPa and lower 

led to a calculated drop of all fruits. 

G4-4 ED1.5 Day0-50 G4-4 LD1.5 Day71-98 G4-4 ED2 Day0-50 G4-4 LD2 Day71-98

Water potential 

of -0 MPa
from day 51 to 98 from day 0 to 70 from day 51 to 98 from day 0 to 70

Water potential 

of -1.5 MPa
from day 0 to 50 from day 71 to 98 - -

Water potential 

of -2 MPa
- - from day 0 to 50 from day 71 to 98

Input of Zornheim Zornheim Zornheim Zornheim
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Table 20: Final fruit numbers calculated by MaluSim for fixed seasonal midday stem water 

potentials of -0 MPa (WatPot0), -1 MPa (WatPot1), -1.5 MPa (WatPot1.5), -2 MPa (WatPot2), 

-2.5 MPa (WatPot2.5), and -3 MPa (WatPot3) using model ‘G4-4’. 

  

 

Simulation runs with medium and severe early water deficits (‘ED1.5 Day0-50’ and ‘ED2 

Day0-50’) led to reduced final fruit numbers of 130 and 0 fruits, respectively. While for a 

late deficit fruit numbers were not affected for medium (‘LD1.5 Day71-98’) and slightly 

reduced for severe water deficit (‘LD2 Day71-98’) (see Table 21). 

Table 21: Final fruit numbers calculated by MaluSim (‘G4-4’) for test simulation runs with 

early and late water deficits, with early occurring deficits of -1.5 MPa (ED1.5 Day0-50) and of -

2 MPa (ED2 Day0-50) from DABB 0 to 50, and with late occurring deficits of -1.5 MPa (LD1.5 

Day71-98) and of -2 MPa (LD2 Day71-98) from DABB 71 to 98.  

 

 

Besides final fruit number, additionally daily canopy photosynthesis differed for water 

submodel simulation runs (Figure 22). Highest daily canopy photosynthesis has been 

calculated for ‘WatPot0’ and ‘WatPot1’. Lowest values, close to zero during the whole 

season, were simulated for water potentials below -2.5 MPa (‘WatPot2.5’ and ‘WatPot3’). 

‘WatPot1.5’ and ‘WatPot2’ show an intermediate course of daily canopy photosynthesis. 

 

Figure 22: Calculated daily canopy photosynthesis of test simulation runs with fixed seasonal 

midday stem water potentials of -0 MPa (WatPot0), -1 MPa (WatPot1, highly similar to 

WatPot0)), -1.5 MPa (WatPot1.5), -2 MPa (WatPot2), and -2.5 MPa (WatPot2.5). The fixed 

seasonal midday stem water potential of -3 MPa led to a calculated seasonal canopy 

photosynthesis of zero. 

 

WatPot0 WatPot1 WatPot1.5 WatPot2 WatPot2.5 WatPot3

# fruits 237 234 112 0 0 0

ED1.5 Day0-50 LD1.5 Day71-98 ED2 Day0-50 LD2 Day71-98

# fruits 130 237 0 223
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Compared to ‘WatPot0’ calculated canopy photosynthesis on DABB 98 was reduced to 

99.5 % for ‘WatPot1’, to 78.5 % for ‘WatPot1.5’, to 29.3 % for ‘WatPot2’, to 0.9 % for 

‘WatPot2,5’, and to 0 % for ‘WatPot3’. 

 

For simulation runs of late seasonal water deficits no differences compared to ‘WatPot0’ 

can be seen during the early season, and only slight reductions are calculated in the late 

season (Figure 23). Compared to this, early deficits, in particular for ‘ED2 Day0-50’, led to 

clearly visible lower daily canopy photosynthesis in the early season. Compared to 

‘WatPot0’, daily canopy photosynthesis on DABB 50 was reduced to 76.2 % for an early 

deficit of -1.5 MPa (‘ED1.5 Day 0-50’), and to 26.2 % for an early deficit of -2 MPa 

(‘ED2 Day 0-50’), while the late deficit simulations had 100 % (‘LD1.5 Day71-98’ and 

‘LD2 Day 71-98’). On DABB 98, daily canopy photosynthesis was still reduced to 92.0 % 

for ‘ED1.5 Day 0-50’, and to 89.0 % for ‘ED2 Day 0-50’. When comparing the late deficit 

simulations to ‘WatPot0’ daily canopy photosynthesis on DABB 98 was reduced to 89.3 % 

for ‘LD1.5 Day71-98’ and to 56.3 % for ‘LD2 Day 71-98’. 

 

 

Figure 23: Calculated daily canopy photosynthesis of test simulation runs with early and late 

water deficits, with early occurring deficits of -1.5 MPa (ED1.5 Day0-50) and of -2 MPa (ED2 

Day0-50) from DABB 0 to 50, and with late occurring deficits of -1.5 MPa (LD1.5 Day71-98) 

and of -2 MPa (LD2 Day71-98) from DABB 71 to 98. 

 

Calculated active leaf area of ‘WatPot0’ and ‘WatPot1’ is equal during the whole season 

(Figure 24). While ‘WatPot1.5’ and ‘WatPot2’ show intermediate behavior, ‘WatPot2.5’ 

and ‘WatPot3’ have the lowest values of below 0.5 m2 from DABB 0 to 98 (calculated 

active leaf area for ‘WatPot3’ is 0). Final active leaf area on day 98 is 5.5 m2 for ‘WatPot0’ 

and ‘WatPot1’, which equals a LAI of 1.6. 
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Figure 24: Calculated active leaf area per tree (m2) development of test simulation runs with fixed 

seasonal midday stem water potentials of -0 MPa (WatPot0), -1 MPa (WatPot1; equals exactly 

to course of WatPot0), -1.5 MPa (WatPot1.5), -2 MPa (WatPot2), -2.5 MPa (WatPot2.5), 

and -3 MPa (WatPot3; equals 0 during the whole simulation period). 

For simulation runs of late season deficits, active leaf area of both late deficit tests reach an 

active leaf area of over 5 m2 (Figure 25). Early deficit simulations lead to lower values of 

maximum active leaf area, of 4.8 and 3.5 m2, for ‘ED1.5 Day0-50’ and ‘ED2 Day0-50’, 

respectively. 

 

Figure 25: Calculated active leaf area (m2) development of test simulation runs with early and 

late water deficits, with early occurring deficits of -1.5 MPa (ED1.5 Day0-50) and of -2 MPa 

(ED2 Day0-50) from DABB 0 to 50, and with late occurring deficits of -1.5 MPa (LD1.5 Day71-

98) and of -2 MPa (LD2 Day71-98) from DABB 71 to 98. 

In general, seasonal active leaf area shows similar reductions with lower water potentials as 

daily canopy photosynthesis, but for daily canopy photosynthesis reductions are more 

profound, caused by the combination of the active leaf area effect and the Pmax effect. 
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7.4 Discussion 

In the scope of this thesis it was possible to include a water submodel into MaluSim by 

using published data and relationships. The submodel is based on water deficit effects, 

included by midday stem water potentials, on calculated physiological processes of the 

model. First simulation runs of the model indicate a realistic behavior and simulated 

various effects of different water deficit levels and periods on number of fruits, on daily 

canopy photosynthesis, and on active leaf area development.  

 

Overall, water relations of apple trees are extremely complex and dynamic. Many different 

factors (temporal, atmospheric, structural, physiological, and cultural ones) may have an 

effect on the response of apple trees to a particular water status. JONES and TARDIEU 

(1998) summed up some of the most important theoretical points about water relations 

modeling. They concluded that models work best in homogeneous systems (JONES & 

TARDIEU, 1998), but apple canopies and apple root systems are very heterogeneous. 

Non-uniform root distribution and heterogeneity of soil can make soil water measurements 

useless for field tree water models. Low root density and the clumping of apple roots 

(LAKSO, 2003) additionally complicates the modeling of soil water status, which itself is 

already known to be difficult (JONES & TARDIEU, 1998). Apple orchard water use 

varies with tree characteristics, training systems and climate. This constrains an easy and 

exact development of models. The heterogeneity of apple orchards adds some complexity 

to the modeling approach and increases the attainable modeling error. A further difficulty 

in apple tree water relations modeling is that rainfall interception by canopies may be an 

important component of orchard water balance, but little knowledge about this is available 

(CALHEIROS DE MIRANDA & BUTLER, 1986). 

 

One of the main points of the water submodel is the use of midday stem water potential as 

a water status indicator. Plant based measurements are very promising for detecting 

drought stress, but strongly depend on microclimate. They have the advantage of 

measuring the plant’s response to the prevailing environmental conditions, but often 

finding usable thresholds is difficult. Ψstem is a reliable and robust direct indicator of plant 

water status (SHACKEL et al., 2000; NAOR, 2008). A limitation of Ψstem is that it is labor 

intensive and a destructive measurement. Ψstem has been proposed and used by some 

researchers as a reliable tool for irrigation scheduling (BEGG & TURNER, 1970; 

MCCUTCHAN & SHACKEL, 1992; SHACKEL et al., 1997; NAOR & COHEN, 2003; 

INTRIGLIOLO & CASTEL, 2004; DOLTRA et al., 2007), but such a measurement is 

usually not conducted by growers and cannot be automated. For this reason a further 
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improvement of the water submodel would be the calculation of Ψstem from other easier 

available inputs, like for example soil moisture measurements, which is an often measured 

parameter in commercial orchards. In some apple field experiments, Ψstem has been 

measured but often relationships to other parameter like for example soil water content 

have not been considered (e.g. NAOR, 2000; LOMBARDINI et al., 2004; GIRONA et al., 

2010; GARCÍA PETILLO et al., 2011; GONZÁLEZ-TALICE et al., 2012). EBEL et al. 

(2001) found a nonlinear relationship between plant water potential and total available soil 

water for their experimental data. No easy single relationship between soil moisture 

measurements and stem water potential has been found in the conducted field experiment 

in Geisenheim (see Appendix Figure 41 to Figure 44). Possibly obtained stem water 

potentials and soil drying did not reach sufficient levels. Soil moisture related measurement 

techniques also have the disadvantage that root systems and by roots exploited soil 

volumes differ significantly between cultivars, soil types, and used irrigation systems. 

Therefore, although Ψstem measurement also does have many disadvantages, it is still the 

best available method for water status determination at the moment. 

 

Although many field experiments concerning water stress of apple trees have been 

conducted in the last years, it is very difficult to get all needed data to test the water 

submodel by using data of other researchers. Therefore, an external validation of the new 

submodel has not been possible. For this aim, it is necessary in future to measure all 

relevant parameter in the same field experiment. Furthermore the development of the 

above indicated ‘soil part’ is also very desirable. An alternative to the inclusion of a ‘soil 

part’ is the development of new sensors for water status detection in trees. Some promising 

ideas for this possibility emerged in the last years (e.g. PAGAY et al., 2014), but are not yet 

available at the moment. For the further development and validation of the MaluSim water 

submodel, further research is necessary but first test simulation runs are promising and 

indicate a general realistically behavior.  

 

Some models have been developed to model water uptake of apple trees (GREEN & 

CLOTHIER, 1999; GONG et al., 2006), but do not model stem water potential of apple 

trees and therefore are not very comparable. For a review about water uptake and water 

use models the reader is referred to GREEN et al. (2006) or JONES (2014b). Water status 

has also been included in models for other fruit tree crops. DA SILVA et al. (2011) even 

calculated stem water potentials for peach trees. But although they reported reasonable 

results, values have not been directly validated; only checked for plausibility. MARSAL 

and STÖCKLE (2012) used the model ‘CropSyst’ to simulate Ψstem of apple, pear, and 
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peach trees. They compared the simulated values with data obtained in the field with 

medium to good success (MARSAL & STÖCKLE, 2012; MARSAL et al., 2014), but 

water potential values were mainly above -1.2 MPa and thus in a non-water stress 

condition. Simulations of ‘CropSyst’ are thought to be used to support regulated deficit 

irrigation scheduling. Also, the model is not able to calculate carbon balance of trees or 

fruit abscission. ZWEIFEL et al. (2001) and STEPPE et al. (2006) modeled the dynamics 

of stem water potentials based on continuously measured variables on the plant itself or in 

its microenvironment. STEPPE et al. (2008) extended this approach to calculate irrigation 

needs of trees. By measuring sap flow they were able to calculate stem water potentials of 

unstressed trees, but the model failed under stress conditions. Anyway, it might be possible 

to use sap flow measurements as a model input to correctly calculate stem water potentials 

or general water status of apple trees even under stress conditions and this should be 

further investigated. But sap flow measurements also have some disadvantages and at the 

current state it seems not very likely that they will be highly used by growers. For now, the 

modeling of tree water consumption is not practical due to our inability to supply the 

proper inputs for the models (NAOR, 2008). 

 

Overall, more particular research regarding the relationship between Ψstem and its 

influencing parameter is needed before this parameter can be calculated by MaluSim. 

Another idea, instead of using soil moisture measurements, is to use a water balance 

concept, where soil water status is calculated. Problems associated with this approach are 

differences in soil, unclearness in terms of effective rainfall events, uncertainties in 

calculation of soil water content and evapotranspiration, and little knowledge about root 

distribution and rooting depth. Although drafts of the soil water part exist in the water 

submodel, at first the plant part of the water submodel has to be validated. Including too 

many new data into MaluSim should be avoided to still be able to test every new inclusion 

for necessity and reliability. For now, Ψstem appears to be the most suitable water stress 

indicator for the water submodel approach, but the development of new plant water status 

sensors might also lead to other useful inputs. After the validation is completed, a next step 

to further improve the water submodel can be to add a soil water uptake component or 

another component to calculate water deficits. 

 

Test simulation runs of MaluSim using the water submodel showed that without including 

a direct water stress effect on fruit development, the model already calculated some strong 

effects of water stress on fruit abscission. This indicates that the indirect effect might be 

sufficient but a validation is needed. The included water submodel generally shows a 
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realistic behavior in the first tests. No evidence for a wrong integration of the relationships 

is visible in the simulation run using a water potential of 0 MPa, which shows the same 

outputs as ‘G4-4’ without a water submodel. 

 

Simulated daily canopy photosynthesis showed a higher reduction at the same water 

potential value than the simulated reduction of active leaf area. This effect is caused by the 

included direct effect of water potential on photosynthesis in combination with the indirect 

effect of a reduction of active leaf area, due to reduced shoot growth. When having a closer 

look at the simulation runs that use a water potential of -1 MPa it becomes clear that the 

MaluSim model calculated that photosynthesis is already slightly affected, while the 

threshold for active leaf area reduction is -1.1 MPa and thus it is not reduced. This shows 

that the described on literature data based functions (thresholds) were properly included 

into the MaluSim model framework. The thresholds (and functions) might still change 

through the further development and testing of the water submodel.  

 

It is known that shoot growth is one of the first processes affected by water deficits 

(LAKSO, 2003), which is probably caused through the fact that shoot growth mainly takes 

place during the afternoon (POWELL, 1976). In the current water submodel, 

photosynthesis is thought to be the first process that is affected by water deficits. This is 

based on the published data of STEPPE et al. (2008) and DE SWAEF et al. (2009) for 

potted apples. In addition, it is not helpful to add two different effects (the one on 

photosynthesis and the one on shoot growth) at the exact same threshold. In this case it is 

not possible to understand and differentiate the simulation results. But the experimental 

results of this thesis and the found relationship between Ψstem and photosynthesis indicate 

that a lower threshold should be used in the water submodel.  

 

While mature apple leaves are thought to be able to adjust osmotically, this has not been 

found for shoot tips and shoot growth (LAKSO et al., 1984). It is thought that when apple 

leaves osmotically adjust, the found relationship between photosynthesis and midday stem 

water potential generally stays similar, but shifts to more negative midday stem water 

potentials. But osmotic adjustment has not been included into the MaluSim water 

submodel yet. Osmotic adjustment is also suggested to occur in fruit and roots (WANG et 

al., 1995). Shoot growth is thought to be more sensitive to water deficit than fruit growth 

(FORSHEY & ELFVING, 1989; EBEL et al., 1995; FALLAHI et al., 2010). Fruit growth 

rate was found to start decreasing with midday stem water potentials lower than -1.3 MPa 

(NAOR et al., 1997). 
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Test simulation runs using an early and a late water deficit additionally indicate that an 

early deficit in any case strongly affects tree development and numbers of fruits, while a 

later water deficit after fruit set and much shoot growth usually is less severe on fruit 

numbers and leaf area. This has also been found in experimental results using early and 

late deficit treatments (POWELL, 1974; KILILI et al., 1996a; MILLS et al., 1996). The 

simulation run also indicates that for late water deficits, leaf area development is nearly 

completed and therefore only slight reductions of active leaf area occur. Leaf area of a late 

deficit treatment has not been significantly different to a fully irrigated control treatment in 

‘Braeburn’ (MILLS et al., 1996). 

 

Overall, although the MaluSim water submodel should be externally validated in future, 

test simulation runs appear to give realistic outputs. Additionally, through the work on the 

water submodel, it was possible to identify the most important factors that have to be 

considered for apple tree water relations modeling in respect to carbon balance. Although 

the water submodel cannot be used for irrigation purposes at the moment, it can already be 

used for theoretical simulation runs concerning water deficit effects.  
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8 GENERAL DISCUSSION AND CONCLUDING REMARKS 

This study showed that modelling can be a very useful tool to enhance the comprehensive 

understanding of complex biological systems like apple trees, its physiological processes 

and its influencing parameters. In the scope of this thesis it was possible to adapt a current 

model for apple trees, which can be used in Germany and Central-Europe to address the 

major problems of commercial apple production. Beside the parameterization it was 

possible to successfully modify the fruit submodel to compare calculated to measured final 

fruit numbers, and to integrate a theoretical water submodel. In the past, no comparable 

model existed for Central-Europe. 

 

This work provides some potentially useful additions to the MaluSim model itself and its 

possible area of usage has been extended. Not only to Germany or Central-Europe, but 

also to problems related to fruit abscission and water status. Comparisons of real to 

calculated final fruit numbers show promise that it can become possible to model fruit 

abscission and use the fruit submodel, although the fruit growth and abscission itself still 

has to be validated against detailed field monitoring. The general relationships of MaluSim 

seem to be correct and it showed a realistic behavior for several different sites and regions. 

As already described, there exist some other models concerning apple trees, but MaluSim 

is probably the most comprehensive one. Although it is a process based model and only 

suitable for defined conditions and underlies some limitations, it has many possible uses 

and it can be easily parameterized for other growing regions.  

 

The more complex model MAppleT (COSTES et al., 2008; DA SILVA et al., 2014) might 

be capable to address more difficult and complex questions, but is far from being validated 

and from providing practical applications. No other known model tries to solve the same 

problems as MaluSim does. Some approaches consider only single problems and try to 

solve them, like for example focusing only on thinning or irrigation scheduling. On the one 

hand to focus on one topic and fully understand it seems reasonable. But on the other 

hand, this study also showed that all main influencing parameters have to be considered. It 

is evident that only a comprehensive understanding of apple tree physiology is able to solve 

the main problems of today’s apple production. 

 

Although this work also revealed some areas, where further research is highly needed and 

our understanding is still incomplete, it also showed that for some applications the main 

influencing factors are considered in MaluSim. But the model also has some limitations 

and cannot be used for all current fields of apple production research. Through the use of 
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the big-fruit simplification in MaluSim it will not easily be possible to address questions 

like localized effects on fruit size development or internal fruit quality in future. However, 

it is also the question whether modelling is the appropriate approach for this or other 

methods like near infrared spectroscopy and other fruit quality sensors are more suitable. 

 

The field trial provided new insights into water effects on establishing trees under 

temperate climate conditions. But this work also showed that our understanding of water 

status and water deficit effects is incomplete. The development of new plant based sensors 

and measurement techniques might enhance this knowledge in future. The water submodel 

is still on a theoretical basis, but was able to identify some areas where further research is 

needed. It can also already be used for theoretical studies of water deficit effects. In 

addition, the theoretical comparison of growing regions is able to enhance our 

understanding of apple productivity and influencing parameters. One interesting 

application for the future is the simulation of climate change effects on apple growing areas 

around the world. This includes finding out which regions might become suitable for 

commercial apple production and which ones might not be suitable anymore, or only when 

irrigation or frost protection is installed.  

 

One advantage of the MaluSim model is that it can be used for theoretical and practical 

applications. Although future research should focus on a better understanding of fruit 

growth and abscission processes and its influencing factors the fruit submodel shows great 

promise to be integrated into practical uses. And since early season forecast of fruit 

abscission is impossible, theoretical modelling research can help to define a reference level 

of fruits which trees are capable of in most years for a particular site.  

 

The big aim for future research is to get a comprehensive understanding of apple 

physiology. This will give the ability to react to and better understand changes, like climate 

change, new growing systems, new varieties, or new pests. One area, where research is 

strongly needed, involves processes, growth and other physiological mechanisms of apple 

roots. In addition, progress in gene expression patterns might help to solve some of the 

remaining uncertainties. Furthermore, the ability to collect big amounts of data with new 

measurement techniques is able to improve our understanding, but it also shows that 

modelling is likely to become even more important for future research. 
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Figure 26: Mean temperature (A) and global radiation (B) for 2012 (solid black line) and 2013 

(dashed black line) from DOY 80 to 305. 
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Figure 27: Accumulated precipitation (C) and maximum VPD (D) for 2012 (solid black line) 

and 2013 (dashed black line/grey), from DOY 80 to 305. 
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Figure 28: Soil moisture content from 0 to 30 cm depth measured with TDR probes in 2012 for 

CT (dotted line), NT (dashed line), and ET (solid line). 

 

Figure 29: Soil moisture content from 30 to 60 cm depth measured with TDR probes in 2012 for 

CT (dotted line), NT (dashed line), and ET (solid line). 

 

Figure 30: Soil moisture content from 0 to 30 cm depth measured with TDR sensors in 2013 for 

CT (dotted line), NT (dashed line), and ET (solid line). 
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Figure 31: Diviner 2000 soil water content (SWC) measurements in 10 cm (A), 20 cm (B), 

30 cm (C), 40 cm (D), 50 cm (E), 60 cm (F), 70 cm (G), 80 cm (H), and 160 cm (I) depth for CT 

(dotted line), ET (dashed line) and NT(solid line), 2012-2013. 
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Figure 32: Relationship between overall long shoot length and leaf area obtained for ‘Wellant’. 

 

Table 22: Mean predawn water potential values and standard deviations (n=3) of CT, NT, and 

ET of ‘Wellant’ for all measurement days in 2012. Mean values followed by a different letter in 

each column are significantly different at p ≤ 0.05, tested by one-way ANOVA with post-hoc 

Tukey's HSD test. On DOY 200 homogeneity of variances between groups was negative and 

therefore Games Howell post-hoc test has been used. 
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Long shoot length (cm) 

DOY 171 178 185 193 200 206 214

Var.\Date 06/19/2012 06/26/2012 07/03/2012 07/11/2012 07/18/2012 07/24/2012 08/01/2012

CT -0.26 ± 0.04 a -0.13 ± 0.03 a -0.12 ± 0.03 a -0.12 ± 0.03 a -0.09 ± 0.01 a' -0.20 ± 0.02 a -0.17 ± 0.01 a

NT -0.08 ± 0.02 b -0.08 ± 0.06 a -0.05 ± 0.01 b -0.08 ± 0.01 ab -0.05 ± 0.00 b' -0.08 ± 0.01 b -0.09 ± 0.01 b

ET -0.17 ± 0.04 c -0.08 ± 0.03 a -0.03 ± 0.01 b -0.07 ± 0.02 b -0.06 ± 0.02 ab' -0.14 ± 0.04 a -0.10 ± 0.01 b

DOY 221 228 235 249 255 262

Var.\Date 08/08/2012 08/15/2012 08/22/2012 09/05/2012 09/11/2012 09/18/2012

CT -0.20 ± 0.03 a -0.36 ± 0.01 a -0.40 ± 0.02 a -0.35 ± 0.08 a -0.56 ± 0.06 a -0.28 ± 0.02 a

NT -0.11 ± 0.01 b -0.24 ± 0.01 b -0.12 ± 0.02 b -0.14 ± 0.02 b -0.43 ± 0.05 b -0.15 ± 0.01 b

ET -0.09 ± 0.01 b -0.20 ± 0.02 c -0.15 ± 0.01 b -0.19 ± 0.06 b -0.34 ± 0.04 b -0.11 ± 0.03 b
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Table 23: Mean midday stem water potential values and standard deviations (n=3) of CT, NT, 

and ET of ‘Wellant’ for all measurement days in 2012. Mean values followed by a different letter 

in each column are significantly different at p ≤ 0.05, tested by one-way ANOVA with post-hoc 

Tukey's HSD test. 

 

 

Table 24: Average values of leaf photosynthetic rate with standard deviation for every 

measurement date for CT, NT, and ET in 2012. Mean values (n=3-12, depending on weather 

conditions on the specific measurement day; n is similar for all treatments for one specific 

measurement day and measurements were performed at a similar time of day) followed by a 

different letter in each column are significantly different at p ≤ 0.05. 

 

 

 

DOY 166 170 171 178 180 185 193

Var.\Date 06/14/2012 06/18/2012 06/19/2012 06/26/2012 06/28/2012 07/03/2012 07/11/2012

CT -0.77 ± 0.06 a -1.7 ± 0.02 a -1.69 ± 0.19 a -1.64 ± 0.12 a -2.02 ± 0.35 a -1.86 ± 0.06 a -1.28 ± 0.02 a

NT -0.88 ± 0.03 b -1.18 ± 0.09 b -1.04 ± 0.03 b -0.8 ± 0.06 b -1.6 ± 0.22 a -1.39 ± 0.11 b -0.88 ± 0.01 b

ET -0.82 ± 0.02 ab -1.6 ± 0.03 a -1.52 ± 0.24 a -1.35 ± 0.09 c -1.28 ± 0.04 a -1.51 ± 0.17 b -1.06 ± 0.10 c

DOY 200 205 206 208 213 215 221

Var.\Date 07/18/2012 07/23/2012 07/24/2012 07/26/2012 07/31/2012 08/02/2012 08/08/2012

CT -1.3 ± 0.07 a -1.5 ± 0.05 a -1.68 ± 0.17 a -1.59 ± 0.06 a -0.97 ± 0.06 a -1.21 ± 0.12 a -1.25 ± 0.17 a

NT -0.91 ± 0.05 b -0.83 ± 0.04 c -1.06 ± 0.04 c -1.18 ± 0.12 b -0.54 ± 0.04 b -0.72 ± 0.05 b -0.84 ± 0.18 b

ET -1.19 ± 0.09 a -1.09 ± 0.13 b -1.32 ± 0.03 b -1.28 ± 0.03 b -0.53 ± 0.03 b -0.91 ± 0.01 c -0.68 ± 0.03 b

DOY 227 228 235 250 254 261

Var.\Date 08/14/2012 08/15/2012 08/22/2012 09/06/2012 09/10/2012 09/17/2012

CT -1.62 ± 0.30 a -1.64 ± 0.17 a -1.85 ± 0.32 a -1.48 ± 0.32 a -1.74 ± 0.14 a -1.26 ± 0.17 a

NT -1.03 ± 0.10 b -1.17 ± 0.07 b -0.97 ± 0.05 b -1.1 ± 0.17 a -1.43 ± 0.16 a -1.16 ± 0.01 a

ET -0.75 ± 0.06 b -0.85 ± 0.03 c -0.85 ± 0.05 b -1.12 ± 0.07 a -1.45 ± 0.11 a -1.13 ± 0.13 a

DOY 170 171 178 180 185 193 200

Var.\Date 06/18/2012 06/19/2012 06/26/2012 06/28/2012 07/03/2012 07/11/2012 07/18/2012

CT 18.4 ± 2.15 a 14.2 ± 2.11 a 14.5 ± 3.33 a 5.5 ± 2.27 a 10 ± 5.15 a 15.6 ± 0.88 a 11.3 ± 2.08 a

NT 16.9 ± 1.97 a 18.4 ± 2.29 b 11 ± 2.38 b 7.8 ± 2.38 a 12.7 ± 4.94 a 19.1 ± 1.22 b 14.6 ± 1.48 b

ET 16.1 ± 2.97 a 13.4 ± 2.34 a 14.3 ± 4.70 ab 7 ± 2.06 a 13.1 ± 5.10 a 12.8 ± 2.54 ab

DOY 205 206 208 213 221 222 227

Var.\Date 07/23/2012 07/24/2012 07/26/2012 07/31/2012 08/08/2012 08/09/2012 08/14/2012

CT 7.8 ± 1.55 a 5.8 ± 2.97 a 6 ± 2.25 a 13.4 ± 2.44 a 10.7 ± 1.23 a 10.5 ± 0.41 a 8.6 ± 2.52 a

NT 13.6 ± 3.49 b 11.7 ± 2.01 b 12 ± 2.39 b 17.6 ± 1.61 b 15.3 ± 1.94 b 14.7 ± 2.49 a 11.5 ± 2.90 a

ET 12.9 ± 1.65 b 10.2 ± 2.91 b 12.2 ± 1.39 b 16 ± 3.58 ab 14.6 ± 3.88 a 12.1 ± 2.53 a

DOY 236 250 254 261

Var.\Date 08/23/2012 09/06/2012 09/10/2012 09/17/2012

CT 6.4 ± 1.46 a 10.4 ± 1.63 a 8.1 ± 1.18 a 12.8 ± 3.09 a

NT 9.9 ± 3.72 a 14.7 ± 3.04 b 10 ± 3.39 a 14.6 ± 5.28 a

ET 13.6 ± 3.76 a 15.5 ± 1.78 b 10.3 ± 3.02 a 12.9 ± 2.63 a
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Figure 33: PN1750 measured between 11 a.m. and 3 p.m. in 2012 for CT, NT, and ET of 

‘Wellant’, error bars indicate standard deviations (n=3-9, depending on weather conditions on 

the specific measurement day; n is similar for all treatments for one specific measurement day 

and measurements were performed at a similar time of day). 

 

 

 

Table 25: Average values of leaf photosynthetic rate with standard deviation for every 

measurement date for CT, NT, and ET of ‘Wellant’ in 2013. Mean values (n=3-9, depending on 

weather conditions on the specific measurement day; n is similar for all treatments for one 

specific measurement day and measurements were performed at a similar time of day) followed 

by a different letter in each column are significantly different at p ≤ 0.05. 

 

 

DOY 148 156 168 177 198

Var.\Date 05/28/13 06/05/13 06/17/13 06/26/13 07/17/13

CT -13.8 ± 1.50 a -14.2 ± 1.53 a -17.8 ± 2.48 a -17.9 ± 0.86 a -14.5 ± 1.70 a

ET -14.3 ± 2.71 a -15.2 ± 1.75 a -18.4 ± 2.48 a -17.8 ± 0.87 a -15.9 ± 0.62 a

NT -13.1 ± 1.23 a -13.9 ± 1.55 a -16.1 ± 3.05 a -17.3 ± 1.06 a -12.4 ± 2.12 a

DOY 200 212 218 225 241

Var.\Date 07/19/13 07/31/13 08/06/13 08/13/13 08/29/13

CT -12.6 ± 3.66 a -9.6 ± 4.71 a -8.4 ± 5.22 a -10.3 ± 4.35 a -14.4 ± 2.42 a

ET -13.2 ± 0.63 a -17.5 ± 0.62 a -17.1 ± 1.03 b -19 ± 0.67 b -19.3 ± 0.85 b

NT -14.5 ± 3.26 a -16.1 ± 1.69 a -13.6 ± 1.84 ab -15.6 ± 4.82 ab -17.7 ± 0.85 ab
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Figure 34: Daily course of PN1750 of CT and NT (A), error bars indicate standard deviations 

(n=3), vapor pressure deficit (B), temperature (dashed black line) and photosynthetic active 

radiation (solid black line) (C) on DOY 221 in 2012. 

 

  

0,0

1,0

2,0

3,0

V
P

D
 (

kP
a)

 

B 

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0

5

10

15

20

25

30

P
A

R
 (µ

m
o

l m
-2 s

-1) Te
m

p
e

ra
tu

re
 (

°C
) 

C 

A 



 

 

 

140 
 

Appendix 

P
N

1
7

5
0

 (
µ

m
o

l 
m

-2
 s

-1
)

0

5

10

15

20

25

CT

NT

 

 

 

 

 

 

 

 

Figure 35: Daily course of PN1750 of CT and NT (A), error bars indicate standard deviations 

(n=3), vapor pressure deficit (B), temperature (dashed black line) and photosynthetic active 

radiation (solid black line) (C) on DOY 157 in 2013. 
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Figure 36: Selected high values of PN1750 measurements of 2012 and 2013 (12 to 4:30 p.m.) of 

Figure 17. 

 

Figure 37: Average daily PN1750 and corresponding average daily Ψpd measurements (2012). 

 

Figure 38: Average daily PN1750 and corresponding average daily Ψmd measurements (2012). 
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Figure 39: Average daily PN1750 and corresponding tensiometer measurements in 25 cm (2012). 

 

Figure 40: Average daily PN1750 and corresponding tensiometer measurements in 50 cm (2012). 

 

Figure 41: Average daily Ψpd and corresponding tensiometer measurements in 25 cm depth 

(2012). 
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Figure 42: Average daily Ψpd and corresponding tensiometer measurements in 50 cm (2012). 

 

Figure 43: Average daily Ψmd and corresponding tensiometer measurements in 25 cm (2012). 

 

Figure 44: Average daily Ψmd and corresponding tensiometer measurements in 50 cm depth 

(2012). 
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