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Abstract

ALPS II is a light-shining-through-a-wall experiment that will search for axion-like par-
ticles. These experiments seek to generate and measure axion-like particles in a labora-
tory using oscillations between photons and axions in the presence of a magnetic field.
ALPS II builds on the innovation of its predecessor, ALPS I: optical cavities to enhance
the sensitivity. ALPS II will use a production cavity (PC) to increase the number of
photons available to generate axion-like particles, and a regeneration cavity (RC) to
enhance the probability of the axion-like particles oscillating back into photons.

To resonantly enhance the light in the cavities, the input laser light needs to be well-
matched to the resonance of the cavities even in the presence of disturbances. Addition-
ally, the resonances of the two cavities must be matched such that the axion-like particles’
reconversion probability is enhanced in the RC. The requirement on the frequency noise
between the two cavities for ALPS Ilc is a root-mean-square (RMS) deviation of smaller
than 3.0 Hz. This necessitates the use of high-performance control loops.

ALPS TIIa is a smaller-scale experiment to test and characterize critical systems for
use in the full-scale ALPS Ilc. ALPS Ila has the facilities for two cavities to mirror the
PC and RC in ALPS Ilc. Control systems can be designed and tested to determine their
suitability for use in ALPS Ilc, and alternative designs can be compared based on their
performance in the short-scale experiment.

In this thesis, the baseline analog control systems in the ALPS Ila RC are charac-
terized. These include frequency actuation systems for two laser sources, and a length
actuation system. The noise of this length actuation system is projected onto the re-
quirements of the resonance overlap between the two cavities and an RMS of 1.0 Hz
should be achievable with this system.

In order to investigate the viability of digital control systems, two digital frequency
control systems are tested: one that replaces the analog servo, and one that replaces the
analog demodulation system as well. The RMS of the frequency noise of both digital
systems is within a factor of two of the fully analog system. The system with the digital
demodulation is the better-performing of the two.

A fully digital system is designed to sense phase changes between the light circulating
in the two cavities to minimize that phase difference. This system is able to actuate on
laser frequency to achieve similar performance to other frequency control systems.

Keywords: axion-like particles, optical cavities, digital control systems
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Zusammenfassung

ALPS Il ist ein Licht durch die Wand-Experiment, das nach axionartigen Teilchen sucht.
Diese Experimente zielen darauf ab axionartige Teilchen in einem Labor zu erzeugen und
zu messen, wobei in Gegenwart eines Magnetfelds die Oszillation zwischen Photonen und
axionartige Teilchen erfolgt. ALPS II baut auf die Neuerungen seines Vorgangerexperi-
ments ALPS I auf: optische Resonatoren zur Verbesserung der Empfindlichkeit. ALPS IT
wird einen Produktionsresonator (PC) verwenden, um die Anzahl der zur Erzeugung von
axionartigen Teilchen verfiigharen Photonen zu erh6hen und einen Regenerationsres-
onator (RC), um die Wahrscheinlichkeit zu erh6hen, dass axionartige Teilchen zuriick in
Photonen konvertieren.

Um das Licht in den Resonatoren resonant zu iiberhéhen, muss das auf den Resonator
einfallende Laserlicht, auch in Gegenwart von Rauschquellen, an die Resonanz des Res-
onators angepasst werden. Zuséatzlich miissen die Resonanzen der beiden Resonatoren so
aufeinander abgestimmt werden, dass die Rekonversionswahrscheinlichkeit der axionar-
tigen Teilchen im RC erhoht wird. Die Anforderung an das Frequenzrauschen zwischen
den beiden Resonatoren fiir ALPS Ilc miissen kleiner sein als eine Effektivwertabwe-
ichung (RMS) von 3.0 Hz. Dies erfordert die Verwendung von Regelkreisen mit hohen
Regelbandbreiten.

ALPS Ila ist ein kleineres Experiment zum Testen und Charakterisieren kritischer
Systeme fiir den Einsatz in ALPS IIc. ALPS Ila verfiigt iiber Rdumlichkeiten, in denen
zwei Resonatoren, dhnlich der PC und RC in ALPS Ilc, aufgebaut sind. Regelkreise
kénnen entworfen und getestet werden, um sie fiir die Eignung in ALPS Ilc zu testen
und die Leistungsfahigkeit alternativer Designs kann im kleinen Mastab evaluiert werden.

In dieser Dissertation werden die grundlegenden analogen Regelkreise der ALPS Ila
RC charakterisiert. Dazu gehdren Frequenzstabilisierungssysteme fiir zwei Laserquellen
und ein Langenstabilisierungssystem. Das Rauschen dieses Langenstabilisierungssystems
wird auf die Anforderungen der Resonanziiberlappung zwischen den beiden Resonatoren
projiziert und ein RMS Wert von 1.0 Hz sollte mit diesem System erreicht werden.

Um die Funktionsfahigkeit digitaler Regelsysteme zu untersuchen, werden zwei digitale
Frequenzstabilisierungssysteme getestet: eines, das analoge Servo ersetzt, und eines, das
zusatzlich das analoge Demodulationssystem ersetzt. Das RMS des Frequenzrauschens
beider digitaler Systeme liegt innerhalb eines Faktors von zwei des vollstdndig analogen
Systems. Das System mit der digitalen Demodulation ist das leistungsfahigere der beiden
Systeme.

Ein vollstandig digitales System ist so ausgelegt, dass es Phasendnderungen zwischen
dem in den beiden Resonatoren zirkulierenden Licht erfasst, um Phasendifferenzen zu
minimieren. Dieses System kann die Laserfrequenz beeinflussen und eine dhnliche Sta-
bilitat wie andere Frequenzstabilisierungsysteme erreichen.
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1. Introduction

The Any Light Particle Search (ALPS) is an experiment to find novel particles. These
particles, known as axion-like particles, are a type of weakly-interacting slim particles
(WISPs) that are part of a theorized extension of the standard model of particle physics.
One of the critical technologies used in ALPS is the use of optical cavities to enhance
the probability of detecting these particles. This thesis will discuss and characterize one
of the cavities of the technology demonstrator phase of the ALPS II experiment, and
investigate the potential for digital control of these cavities in comparison with both the
analog systems and the requirements for the full-scale phase of the experiment.

1.1. Axion-Like Particles

The standard model of particle physics has successfully predicted a number of particles
and has been instrumental in many other aspects of particle physics [1]. However, not
all observations can be explained by physics described in the standard model. The most
apparent discrepancy is that only ~5 % of the energy in the universe can be explained
by the standard model, with the rest of it currently known as either dark matter or dark
energy.

One particle predicted to exist beyond what has been described and identified in
the standard model is the axion, which could explain why the charge polarity is almost
perfectly symmetrical in the strong force despite no requirement for such behavior in the
standard model [2]. Additionally, astrophysical observations suggest that there could be
additional particles similar to the axions, which are known as axion-like particles. These
observations include a larger-than-expected transparency of the universe to high-energy
photons [3] and an unexplained energy loss in some stars [4]. These particles would also
constitute a significant contribution to the energy of what is currently known only as
dark matter [5].

One of the properties of these axion-like particles that is most relevant to the ALPS
experiment is that they can couple to two photons. The first of the two photons is from
a light source such as a laser, and the second of the two photons is a virtual photon
supplied by a magnetic field. The probability of this coupling is described by

1 w
Py—A = Z (gA'y'yBL)z ]F(qL)|2, (1'1)
w? —m%

where w is the photon frequency, m4 is the axion-like particle mass, ga,~ is the axion-
to-photon coupling constant, B is the magnetic field strength, L is the length of the
interaction, F'(¢L) is the form factor, and ¢ is the momentum transfer from the photon



1.1. Axion-Like Particles

to the magnetic field [6]. As a note for these calculations, h = ¢ = 1. Additionally, the
probability of photons oscillating into an axion-like particle is the same as the probability
of the conversion of an axion-like particle into a photon, py_4 = pa—, for the same
parameters.
The momentum transfer, ¢, in Equation 1.1 is given by
~wn—1)+ m—‘%‘ (1.2)
q~w(n 5 .

where n is the refractive index of the medium in which the light is propagating, and
the form factor, F'(¢L), is determined by the specifics of the magnetic field [6]. For a
uniform magnetic field [6],

2 L
Pt =| 2w (%)) (13)
making the probability of oscillation
2
w A~y B . L
DA = (g 14 ) sin? <q) : (1.4)
w? —m? q 2

Equation 1.4 shows that a larger magnetic field and a longer length of interaction
(so long as ¢L < 7) both couple into the probability. However, when ¢L/2 is large
enough that the sin? term stops increasing, the probability begins decreasing as length
increases. At the extreme when ¢L/2 = N7, where N is an integer, the net probability
of oscillation drops to 0.

Most experiments to detect axion-like particles use this oscillation of axion-like parti-
cles into photons in the presence of an external magnetic field. These experiments can
be put into three different categories: heliscopes, haloscopes, and light-shining-through-
a-wall experiments.

Helioscopes seek to detect the axion-like particles generated by the sun and focus
on oscillating them into photons. These experiments include CAST [7], the upcoming
IAXO [8], and others.

Haloscopes look for axion-like particle emissions from the galactic halos. In these
experiments, the dark matter axion-like particles from the galactic halos oscillate into
photons that would be detected by these experiments. They include ADMX [9], ORGAN
[10], HAYSTAC [11], ABRACADABRA [12], the upcoming MADMAX [13], and others.

Both helioscopes and haloscopes operate only as detectors of externally-generated
axion-like particles [14], and therefore depend strongly on models of their sources. He-
lioscopes rely on models that describe the rate at which the sun produces axions, while
haloscopes rely on models for galactic halo production of axions. The significant dis-
advantage of both of these approaches is that any flaws in models affecting the rate of
axion production will be indistinguishable from a different reconversion probability.

Light shining through a wall (LSW) experiments are independent of source models,
because they both produce and re-convert axions in the laboratory. The principle is that
there is a generation section which produces the axion-like particles by the interaction of
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photons with a magnetic field. There is then placed a wall that prevents the transmission
of photons, but allows the weakly-interacting axion-like particles to pass. On the other
side of the wall, there is a magnetic field that oscillates the axion-like particles into
photons [15].

There have been a number of LSW experiments starting with BFRT [16]. After
an anomalous result was reported by the PVLAS group in their experiment searching
for vacuum polarization effects that could be explained by axion-like particles [17], a
number of LSW experiments were attempted to demonstrate that axion-like particles
could explain this result, though the anomalous result was not able to be replicated [18].
These new LSW experiments included GammeV [19], two experiments performed by the

BMV collaboration [20, 21], OSQAR [22], CROWS [23], and ALPS I [24].

1076
LSW (OSQAR and Others) PVLAS
10-8/ . g
ABRACADABRA Helioscopes (CAST) g
% |
o100 e
g HESS'
: Fermi
$.0-12 aamimas
§ 10 | chandra
Haloscopes
1014 (ADMX and Others)
10—16

10-2 107 10-8 106 10~4 1072 10°
Axion Mass (eV)

Figure 1.1.: Exclusion plot of axion-like particle experiments [1].

A number of parameters drive the photon to axion-like particle oscillation, as well as
the reverse process. Some of these parameters, such as g4y, and my4, are inherent to
the axion-like particle, and some are determined by the experimental or environmen-
tal parameters. By combining the experimental and environmental parameters, we can
determine the axion-like particle parameters that are excluded by experiment or obser-
vation. These regions excluded by experiment are those that would have resulted in a
detection of axion-like particles. The regions excluded by observation are those where
an observation was made where axion-like particles in those parameter regions would
have yielded an anomalous measurement, but no anomaly was seen. These regions are
shown in Figure 1.1 [1]. The regions of color are regions excluded by the experiments
written on the text. For example, the green regions are regions excluded by haloscopes,
the blue regions are excluded by helioscopes, and the darker yellow region is excluded by
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LSW experiments. The gray regions are those excluded by other observations. Finally,
the lighter yellow with the two parallel lines are the regions that are predicted for the
QCD axion.

As ALPS II is an LSW experiment, it is important to understand how LSW experi-
ments are sensitive to experimental and axion-like particle parameters. The probability
of a photon oscillating into an axion-like particle, crossing the wall, and then oscillating
back into a photon is given by

pPLsw :p’y—>A(Lngga"')pA—>’y<L7’7B7‘7"')7 (15)

where Ly, By, ... and L;, B,, ... are the length, magnetic field strength, etc. of the gen-
eration and regeneration side of the experiment [25]. As such, the number of photons
detected in such an experiment, Npgw is given by

P,
Nisw = UO At -prsw -1, (1.6)

where P, is the power incident on the generation side, At is the data collection time,
and 7 is the detector efficiency [25]. Section 1.2 will focus on one of the major ways to
enhance this number.

1.2. Any Light Particle Search

ALPS II [26] is a planned successor to ALPS I that builds on the major innovation of
ALPS T over previous LSW experiments: optical cavities. Equation 1.6 includes the
power on the generation side of the experiment. As such, by increasing the number of
photons on the generation side using a production cavity (PC), it should be clear that the
number of photons oscillating into axion-like particles should increase. This concept has
been discussed for many years [27, 28, 29], and also introduces the idea that experiments
can benefit additionally from a resonator on the regeneration side in a regeneration cavity
(RC). This resonator enhances the electric field from any axion-like particles that pass
through this resonator and thus increases the axion-photon conversion. In this case,
Equation 1.6 becomes

P,
Npsw = By - EO At -prsw - Br -1, (1.7)

where 3, and 3, are the enhancement factors due to the use of optical cavities on the
generation and regeneration side, respectively [25].

ALPS Ilc plans to increase prsw by using 12 superconducting HERA magnets on
each side of the wall to generate a large magnetic field over a long length [30]. These
magnets generate a magnetic field of 5.3 T, but there are gaps in this magnetic field
where consecutive magnets are connected. This modifies the form factor, |F'(¢L)|, from
that given in Equation 1.3 to



Chapter 1. Introduction

2

F(qL)| = quin(

qL) sin (ﬂ (L +A}) s

2
2N sin(§ [w+A]) |

where N is the number of magnets (in the ALPS Ilc case, this is 12), A is the gap
between the magnets, and L is only the length of magnetic field interaction, given by
N1, where [ is the magnetic field length of each magnet [6, 26].

A simplification can be made in that both the generation and regeneration side of
the ALPS Ilc experiment will be identical. As such, py_4 = pa—, = p, meaning that
prsw = p°. Additionally, we can make the simplifications that the system will be in
vacuum, so the refractive index, n, is 1, and that the photon energy is significantly larger
than the mass of the axion-like particle, w > m 4. This reduces the momentum transfer,
q, from the expression given in Equation 1.2 to

and w/y/w? —m? to 1. |F(¢qL)| can be further simplified by assuming ¢ = m? /2w < 1,

which is true for the very small masses for which ALPS Ilc will be most sensitive. This
assumption makes sin(qL/2N) ~ ¢L/2N (N is an integer that is always > 1), and
sin(qL/2 + ¢NA/2) = qL/2 4+ gNA/2, since AN < L, leading to

2(@) X (E+4)
qL (£ +4)

2N
Thus, the probability of oscillation on both the generation and regeneration side be-
comes

|F(qL)] = ~1 (1.10)

(gAWBL)Q

4 .
When combined with Equation 1.7, we can get the full equation for the number of
photons detected after the wall as

Py =Dr = (1.11)

P, BL)*
NLSW—gg.wO.At.(gA”qﬁ).

The final piece is that the target is not necessarily a number of photons, but a desired
signal-to-noise-ratio (SNR). In this instance, the background rate must be included.
When considering the SNR that is primarily background and shot-noise limited, we
see that the SNR increases as the square root of the integration time, and inversely
proportional to the square root of the background rate, while remaining proportional to
the other signal strength parameters. The equation for SNR of an LSW experiment is

B n. (1.12)

Py (ga,,BL)! At

SNRusw = fy- ) =0 ey [ (1.13)
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This can be re-arranged to solve for the sensitivity of an LSW experiment to the
axion-like particle coupling parameter, g+,

1 w42 ny'®
A = 70 14 T BT o1/4 1/AAs/8
g/ Po/ BL /87"/ nl/AAtY/

(1.14)

In this case, a smaller ga,, is an experiment sensitive to weaker couplings. Since gay-
appears in the probability as the fourth power, most experimental parameters do not
couple in more than to the 1/4 power. The main exception to this is the magnetic
length, BL, which couples linearly. Therefore, it is strongly desirable to increase the
length and the magnetic field of the experiment as much as possible. This is the reason
that it is planned to use the 12 superconducting dipole magnets covering optical cavities
of 124.4m. A schematic of the ALPS Ilc experiment is shown in Figure 1.2 with the PC
on the left containing photons that will oscillate into axion-like particles in the magnetic
field provided by the 12 magnets and the RC on the right where the axion-like particles
oscillate back into photons in the magnetic field provided by a further 12 magnets.

P . . Light-tight . .
roduction Cavity wall Regeneration Cavity
 INENIEENENEN | gy | DEDEEEEEEEEN |

| fr=m=miipyi| H

BEEDTETEETAN  oetector
- m _—

1064 nm 1aser IEGITEATEEIN
- 125 m >

Axion Field

Figure 1.2.: Schematic diagram of the ALPS II experiment. There are two optical
cavities. One cavity is a production cavity with photons from an input laser circulating
to generate axion-like particles. The other cavity is a regeneration cavity to enhance
the oscillation the axion-like particles back into photons before being sent to a detector.
Each cavity is inside 12 superconducting HERA dipole magnets. Adapted from [31].

One final design feature in ALPS Ilc is the detection system. Two independent detec-
tion concepts will be used. The first one that will be implemented uses the interference
between a local oscillator and the photon field generated by the axion-like particles to
generate a heterodyne signal at the frequency difference between the two fields [26, 32].
The other system implemented will be one that detects re-converted photons using a
transition edge sensor (TES). The transition edge sensor works by thermally coupling
a photon absorber to a superconducting material that is maintained on the transition
edge of superconductivity, and therefore any thermal change due to photon absorption
causes a detectable change in the resistance of the material [26].

The next step is to calculate 8, and 3,. This will allow us to calculate the projected

sensitivity of the ALPS Ilc experiment. The calculation of the enhancement of the signal
due to optical cavities requires a description of how optical cavities enhance electric fields.
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1.3. Optical Cavities

The majority of this section parallels the more detailed presentation of the ideas, deriva-
tions, and equations presented in Chapter 11 of [33].

Optical beams are three dimensional. However, optical cavities can be explained
almost entirely in one dimension: the direction of propagation. In this approximation,
we can use plane waves. These plane waves are infinite and flat in « and y, propagate
along the z direction, and are polarized in the x direction, given by the equation

E(z,t) = Ege!@t=F2 g (1.15)

where Fj is the magnitude of the plane wave, w is the angular frequency of the optical
wave, T is the unit vector in the x direction, and k is the wave vector given by

- 27 2mn
k=—%2=—2, 1.16

5 " (1.16)
where 2 is the unit vector in the z direction. Since k is parallel to Z, we can treat them
both as scalars. Additionally, as the polarization is not relevant in this approximation,
we can treat the electric field as scalar. Applying these simplifications, the electric field
becomes

E(z,t) = Eye'@t=F2), (1.17)

Optical cavities are made of at least two mirrors that allow light to circulate between
them. If the light from every round trip is in-phase and constructively interferes, then the
optical power in the cavity can build up to be much larger than the input power. ALPS I1
uses linear cavities made up of only two mirrors where the light propagates entirely along
one line, such as the ALPS Ila Regeneration Cavity (RC) shown in Figure 1.3.

Laser

Cavity

Figure 1.3.: A schematic diagram of an input laser and the ALPS Ila Regeneration
Cavity. This is a linear cavity with the light circulating between two mirrors in line
with the input light from the laser.

In these linear cavities, the round-trip length of the cavities is 2L, where L is the
distance between the two mirrors. The mirrors used in these cavities are not perfectly
reflective, but instead allow some light to be transmitted through. For an electric field
propagating through vacuum and encountering an interface, the reflected field is given
by
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1—n
14+n

The mirrors used in ALPS Ila and Ilc are made by depositing many layers of dielectric
materials onto a transmissive surface to end up with a very large effective refractive index.
After these mirrors, the reflected field is given by

Eyes1 = Ey. (1.18)

Eref1 = —VREy, (1.19)
where R is the power reflectivity given by
(1 - nmirror) 2
(1 + nmirror)

As Equation 1.18 is for light propagating in vacuum and interacting with a surface with
a larger refractive index, Equation 1.19 that follows from it is only true for this situation.
For surfaces that have a lower refractive index than the propagation medium, there is no
/2 phase shift of the light on reflection. Neglecting mirror losses, this power reflectivity
is related to the power transmissivity, T" by

(1.20)

Rmirrm" = ‘

R+T=1. (1.21)

In addition to the magnitude change from reflection, there are additional losses such
that the magnitude of the light in a cavity with perfect reflectors after one round trip
would be given by

E = Eye™®, (1.22)

where « is the net loss coefficient and includes scattering losses from the mirror surfaces,
as well as losses that accrue from propagation through the cavity. All of these effects
combine to give us the equation after each round trip to be

E, = / RiRyEge “e kL, (1.23)

where R; and Rs are the power reflectivities of the first and second mirror, respectively.
The change in magnitude of one round trip can be combined into the round trip gain,
grt given by

grt = vV RiRge™ . (1.24)

The final factor to consider is the amount of light that couples into the cavity. This
is given by the transmission of the first mirror

Ecav =V TlEin (125)

In steady state operation, where the cavity length, wavelength of the light, and power
in the cavity are stable, the circulating field, E.;.. remains constant. In order to achieve
this constant field, the changes to the circulating field from one round trip are exactly
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offset by the field that is coupled into the cavity. This includes both the amplitude and
the phase. This gives us the recursive relationship

Eeire = V T By, + V R1R2eia€7i2kLEcirc7 (126)

which can be re-arranged to give us a relationship between the input field and the
circulating field

Ecirc _ VvV Tl

Bu 1= gue 280

(1.27)

In this equation FE.;.. is much larger when 2kL = 2mwq where ¢ is an integer, as when
—2ikL — 1. The circulating field at that point becomes

Emaa:_ \/ﬁ _ \/ZT (128)

Eiwm 1—g4 1—+y/RiRye®
Since the field is related to power by P o |E|?, the power build-up in the cavity becomes

this condition is met, e

Pmaa: _ ‘EmamP _ Tl
Pi ‘Ezn|2 (1 _g’rt>2

(1.29)

This power build-up happens when the cavity is resonant with the input light. That
is, when the length of the cavity is related to the wavelength by the following equation

%o
on’

or when the wavelength matches the cavity, which is often more convenient to write in
terms of frequency where f = ¢/)\¢ and c is the speed of light in a vacuum

Lpeak = (130)

qc
ol

From this equation, we can see that the resonant frequency is inversely proportional
to length. If we take the derivative of the resonant frequency with respect to length to
see what the behavior is for small changes, we see that

fpeak = (1.31)

df peak _ qc
dL 2nL2’
For small changes, AL < L, we can assume that the right side is constant, and thus
substitute in the difference in for the differential to get

(1.32)

AL qc
Afpeak - _TQTLL’ (1.33)
and then combined with the result of Equation 1.31 and get that.
A AL
focar _ AL (1.34)
fpeak: L

10
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Another important relationship is that of successive resonances. It is clear from Equa-
tion 1.31 that the the frequency difference between these resonances, also known as axial
modes, is given by

c

= —. 1.35
frsr i (1.35)
= :10 T T T T T T T T T
2 8r :
=
=
& 6 .
<
=
T 4r .
.8
~
= o2 1
5
O 0 1 t 1 ! i L | I L
-25 -2 -1.5 -1 -0.5 0 0.5 1 15 2 25

Laser Frequency %

Figure 1.4.: Axial cavity modes where T} = 0.05, T = 0.005, o = 2 x 10~* corre-
sponding to approximately 200 ppm of losses. The resulting power build-up P40/ Pin
= 64. The resonances occur periodically in frequency with a spacing given by frsgr.

This spacing is also referred to as the free spectral range (FSR). This spacing in an
example cavity can be seen in Figure 1.4. In addition to the FSR, it is important to
know the bandwidth of the resonance. One way to measure this is the frequency over
which the power is at least 1/2 of the maximum, which gives

2¢c . 4 (1—gn c 1 — g 1—grt
Jpeak g AL ( SN RGN py JFsr, (1.36)
which is also known as the full width at half maximum (FWHM).
The final cavity parameter to consider in the Finesse (F) of a cavity. Historically, it

was used to calculate the resolving power of an etalon, but is still used for calculations
and as a derived cavity parameter. It is given by the equation

T/ Grt JFsr
= . 1.37
- 9rt Afpeak ( )
Finesse is can be more useful than the FWHM because the the FWHM scales with
the FSR. The finesse is largely independent of cavity length and depends only on the

mirror properties as well as other cavity losses. In the example cavity in Figures 1.4 and
1.5, F = 110.

F=

11
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Figure 1.5.: Magnified resonance of a cavity with the same parameters as Figure 1.4.
The offset from the resonance peak is given in terms of the cavity full width at half
maximum.

1.4. Cavity Field Sensing

A discussion of how controls can be used to maintain cavity resonance, or any condition
desired, is found in Chapter 2. One of the most important part of controls is the sensing
method that would, in effect, tell the control system how the cavity and laser were away
from the resonance condition. With this information, the control system could apply
the appropriate corrections. This signal is known as the error signal, since it describes
the system’s ‘error’ away from a perfect resonance condition.

What is clear in Figure 1.5 is that the resonance is that the power changes in the same
direction as the frequency moves off of the resonance, regardless of the direction of the
frequency change. Additionally, the power contained within the cavity is dependent on
the input power. Therefore, any attempt to use the power in the cavity to generate an
error signal would not be able to determine in what direction the frequency (or cavity
resonance) was moving when very close to the resonance, and any changes to the input
power would be indistinguishable from changes in power due to changes in the resonance
condition. Thus, it is important to use a method that both gives us knowledge of the
direction of the error and largely decouples the error signal from the input power.

The solution to this problem is to introduce radio frequency (RF) phase modulation
sidebands and compare the sidebands to the center band, which will be resonant or
nearly resonant in the cavity, in a heterodyne technique [34], which has also been used
in microwave oscillators [35]. This technique is known as Pound-Drever-Hall (PDH)
and is used extensively in gravitational wave detectors [36] and other laser stabilization

12
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systems [37]. An introduction to the technique can be found in [38], and the following
section will mostly follow the explanations and derivations presented in that reference.

The generation of the sidebands is accomplished by applying a voltage oscillating at a
certain frequency to an Electro-Optic Modulator (EOM). These devices use the Pockels
effect whereby a voltage applies a phase change that is linearly proportional to the
applied voltage [39]. The incident electric field is changed from that in Equation 1.17 to

Ein — Eoei(wt—kz-‘rﬂsin(Qt)). (138)

At this point, it becomes convenient to define the input to the cavity to be the origin,
such that z = 0 for the input field, and we get the simpler version

Ein — Eoei(wt+58in(ﬂt))' (139)

This can be expanded in terms of Bessel functions where

Ein = Eo[Jo(B)e™! + J1(8)e @Dt — Jy(B)e' ==, (1.40)

In this case, we have three parts of the beam: the un-modulated center band, one band
at the sum frequency, and one band at the difference frequency. There are higher-order
harmonics, but when 8 < 1, these are much smaller and can usually be ignored.

) Modulation
Modulation |o,t

E ,
[——]
EOM

Figure 1.6.: A schematic diagram of an input laser with modulation sidebands, a
beamsplitter and photodetector to sense the light reflected from the cavity, and the
optical cavity. This is a simplified version of the optical setup used for PDH.

Photodiode

Cavity

PD

The three parts of the beam each interact with the cavity separately. The reflected
beam is both the sum of the portion of the beam that is initially reflected off of the cavity
mirror as well as a portion of that which is circulating inside the cavity. Because of this
mixing of the reflected incident fields and the transmitted circulating cavity field, we are
most interested in the signal in reflection of the cavity. Because of this, the experimental
setup will look like Figure 1.6.

The cavity field exiting the input mirror is the cavity circulating field given in Equa-
tion 1.26 after propagation through the cavity excluding reflection from the input mirror.

13



Chapter 1. Introduction

Because of this, it is modified by the g+ except for the input mirror reflectivity, as it is
instead affected by the input mirror transmissivity. The reflected field for a given beam
is

mgrt

VR,
This combined with Equation 1.27 gives us the ratio between the incident field and the
combination of the promptly reflected beam and the circulating field that is transmitted
through the input mirror as

Erefl =V RIE’L’VL +

Eire. (1.41)

Erefl Ty grt
= . — VR =F(w). 1.42
B VI 1= gueerre VT (142
It is important to note that F'(w) does have a frequency (relative to cavity length) de-
pendence, and is therefore different for the three different input beams in Equation 1.40.
With these two equations, we get the full reflected field as

Erefi = Eo[F(w)Jo(B)e™" + F(w + Q)J1(B)e" @) — P(w — Q)J1(8)e"@ . (1.43)

However, we are not able to directly detect the field of the reflected signal. Instead we
detect the voltage coming from the photodetector, which is proportional to the power
incident on the photodetector. For this reason, the reflected power is measured and
given by

Pyrepi o< | Eo|* (DC terms + 2.Jo(B)J1(8) [R (F(w)F*(w + Q) — F*(w) F(w — Q)) cos(wt)
+S (F(w)F*(w+ Q) — F*(w)F(w — Q)) sin(wt)]
+2Q terms),
(1.44)
where we have both a sine and a cosine term that are oscillating at 2. This signal is first
sent through a bandpass filter to eliminate both the DC and 22 terms. Then, in order
to extract envelope of the terms oscillating at €2, we send the signal resulting from the
bandpass filter through a mixer, which multiplies the signals. Multiplying two oscillating
signals with an arbitrary phase offset give us

sin(Qt) sin(Q't + ¢) :% cos(¢) (cos ([ + Q] t) — cos ([Q — Q'] 1))

1
+3 sin(¢) (sin ([Q+ Q] ) +sin ([Q — Q'] 1)) .
If we consider that Q ~ ', then we see that we would have one term oscillating at
2€) and another at nearly DC. This DC part is the most interesting, and the 22 part
can be eliminated with a low-pass filter. When ¢ = 0, we see that only the cosine terms
remain, in which the near-DC terms are multiplied by 1. On the other hand, if ¢ = 7/2,

then we get only the sine terms remaining and the near-DC terms are multiplied by 0.

(1.45)

14
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Since it is important to maximize the near-DC part of this signal, aligning the phase is
critical. This can either be accomplished using a delay line, or by adjusting the phase
offset of the signals as they are being generated.

Demodulator

Phase
Modulation
Offset
Out
RF —>—( ; )_|
Modulation Mo U|ath|:
Y
Laser

A PD
EOM BS

Figure 1.7.: A schematic diagram building on the generation of PDH signals in Fig-
ure 1.6 with the addition of a demodulator. This demodulator extracts the desired
interference between the center and side bands.

We also see with this that the two different terms oscillating at €2 are 7/2 out of phase,
which means that we can only look at one term at a time. So we must further evaluate
which of the two is most important. When we consider an oscillation frequency that is
much larger than the FWHM of the cavity and the center band is on-resonance, we see
that the sidebands are almost entirely made up of light reflected by the first surface and
contain almost no contribution from light that has interacted with the cavity. Though
the cavity in Figure 1.4 has an input mirror transmission of 5%, they are typically
measured in the tens or hundreds of parts per million (ppm), resulting in a reflection
very close to unity. As such, F(w + Q) and F(w — Q) are both approximately -1. With
this knowledge, we see that

RE(@F(w+Q) = Frw)Fw - Q) = -R(Fw) - (@) =0
and (1.46)
S(F(Ww)F'(w+Q)— F(w)F(w—-Q)~ =S (F(w) — F*(w)) = =23 (F(w)) .

L

This means that sine term from Equation 1.44 is much larger than the cosine term, and
we should therefore align our signals in the mixer to choose that term. This leaves us
with the signal after demodulation and low-pass filtering as

15
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Figure 1.8.: An example of a Pound-Drever-Hall error signal when changing the input
laser frequency with respect to the resonance frequency of the cavity. The Finesse for
this example is 4,800 leading to a linewidth of &~ 0.02% of the axial mode spacing. The

modulation frequency is 80 times the linewidth.

S o ~2{BoPJo(B)J1(8)S (F@)F* (w+ Q) — F*w)Flw—Q)).  (L47)

When scanning over a resonance, an example of this error signal can be seen in Fig-
ure 1.8. The largest response is when the center band is close to resonance, while the
side bands give a smaller response that is opposite in direction. The error signal near
resonance of the same cavity is shown in Figure 1.9. The signal within the FWHM of the
resonance peak is very close to linear, which makes control in that region much easier.

1.5. Use of Optical Cavities in ALPS Il

The theory behind optical cavities make it possible to describe the enhancement factors,
By and B,, discussed in Section 1.2. Each is related to the build-up in electric field for
the PC and RC, as the electric field is the most important parameter, but the source of
each electric field is slightly different.

The source of the electric field in the PC is clear: laser input. As such, the electric
field and power build-up is given by Equation 1.29. This takes into account the light
from the input coupling into the cavity and then building up into a large number of
photons that can oscillate into axion-like particles. One can also consider the full factor
of 8,Py to be the power circulating in the cavity.

The enhancement factor in the RC, §,, is a little different. Because the electric field
enters the cavity as an axion-like particle, the input coupler can be considered to be
completely transmissive. Then, the electric field can build up as it oscillates between
the mirrors before being coupled out. As such, the enhancement factor starts the same

16
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Figure 1.9.: A close-up view of the Pound-Drever-Hall signal in Figure 1.8 near the
center band resonance. The signal is approximately linear within the FWHM of the

resonance peak.

as with the production cavity, but assuming the input coupler has a transmission of 1.
That makes the power build-up inside the cavity

Pmax 1
= (1.48)

]Di (1 _.97’15)27

which gives us the power build up in the cavity right after the mirror closest to the light
tight wall. In order to determine how much of this power exits the cavity to the detection
system, we need to identify how the light exits the cavity. For the case of ALPS Ilc, it
is different for each detection system. For the heterodyne detection, the mirror furthest
away from the wall is the output coupler (M2), and for the TES system, the mirror
closest to the light tight wall is the output coupler (M1). For the heterodyne system,
this means taking the built up power in Equation 1.48 and coupling it out through the
second mirror, that is

Py, T
L 2 (1.49)

-Pz' (1 - grt)2 ’
which is the enhancement of the power due to the axions generated in the PC for the
heterodyne system.

For the TES system, we can multiply the circulating power by the full round trip gain
except for the reflection of the first mirror. This entails multiplying the power-build up
by Roe 2%, which is the same as ggt /Ri. This gives us the power moving towards the
first mirror but right before it. To determine how much exits the cavity, we multiply it
by the transmission of the first mirror, T7'1, to give
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Pout _ Tlggt 7 (150)
P Ri(1 = gre)?
which is the enhancement of the power due to the axions generated in the PC for the
TES system.

These power build-up equations are all for light that is perfectly resonant with the
cavity. In real-world experiments, perfect resonance is impossible. As such, it is impor-
tant to calculate the power build-up given imperfect matching between the resonance
and the laser light. For variations in the frequency that are small compared to the free
spectral range of the cavity, this is given by

Pout _ Pout,maz 1
P Pin 14 (2£)%sin2 (ﬁ)
s

fFsr

(1.51)

where Pyt maz is the maximum power output for a cavity perfectly on resonance [40].
One can simplify this by assuming the laser is relatively close to a resonance, that is to
say

wf wof
=qr + and
frse O frse (1.52)
mof < frsr,

where Jf is the small offset between the resonance frequency of the cavity and the
frequency of the laser. This allows us to apply the small angle approximation to Equa-
tion 1.51 and get

Pout  Pout, 1 Pout, 1
0"u ~ ou 4max 5 ~ ou 'max 5 (153)
P P 1+(2J—'6f> P 1+< 25 f )

fFSR Afpeak

where FPoytmaz i the power output for ideally-resonant light. This gives us the cavity
enhancement term, 3, and 3, in terms of the maximum cavity enhancement term, 8¢ maz
and 5r,ma:r-

The use of optical cavities to resonantly enhance the conversion probability on both
sides of the wall introduces an additional parameter: the overlap of the electric fields.
When a photon oscillates into an axion-like particle and then back into a photon, the
properties of the photon remain the same over the coherence length of the axion-like
particle field, which is assumed to be much longer than the experimental setup for the
mass region in which ALPS Ilc will be sensitive. As such, in order for the electric field to
enhance the probability of reconversion, the regeneration cavity needs to be resonant for
the light that is circulating in the production cavity. This introduces another parameter,
the overlap parameter £. This parameter considers the percentage of power lost due to
the electromagnetic component of the axion-like particles generated by the PC not being
fully resonant in the RC. This considers the spatial overlap of the beams, as well as the
frequency relationship. This thesis will be primarily considering the frequency overlap,
as all systems discussed are to control the frequency of the cavities.
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The requirements for this frequency overlap between the light of the two cavities can
be divided into two separate requirements: dynamic variations of the phase between
the light in the PC and the resonance in the RC, and a near-static offset due to slow
drifts. The dynamic variations between the two cavities can be calculated using the
spectrum of the frequency noise between the two cavities as presented in [41] and will be
partially reproduced here. In this way, we treat the RC as the reference and determine
the spectrum of the PC cavity field, and thus the electromagnetic part of the axion-like
field, compared to it. The frequency component of that field, wq (%), is given by

wa(t) = we +2m Y V2AFMS\/dfy sin (27 fit + ¢), (1.54)
k

where w. is the resonance frequency of the RC, AkRM S is the spectral density of the
frequency noise at discrete frequency bin k, df;. is the size of frequency bin k, fi is the
frequency of bin k, and ¢ is the phase. This frequency is then integrated to get the
phase. The frequency noise results in a phase modulation of modulation depth (i in
frequency bin k£ given by

VAVTAS
T '

The phase term from the integration is the phase of the electric field circulating in the
PC, which is then the input to the RC and the field build-up of the PC field in the RC
is given by

Br = (1.55)

Ecirc RC’(n) Pcirc mazx . ﬁk’ ( n iwet
el AR SRy LUy By R ———cos | 27 f% + o et (1.56
Ein,rc(n) P; Zk: L4 B frsr (1.56)
2

with 8 < 1. The RC acts as a low-pass filter to an input electric field with the corner
frequency of f.qy, so that effect is included in the above equation. This corner frequency
is given by

A ea
fcav = f; k- (157)

When taking the time-averaged power in the cavity, we get

P;irc _ Pci'r;,max 1+ Z B]% e 7 (158)
" " k2 (1 + f?:v)
This gives the power output from the cavity with the frequency noise given by 8. This

is then compared to the cavity output power without this frequency noise to determine
how much of that power lost due to the noise. This is given by
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1

: 1 2
Relative power lost = 3 Z B | 1— 171013 , (1.59)
k t .
and can be simplified to
: 1 5 1
Relative power lost = —— Z dfx A ————, (1.60)
cav 1+ ka

which shows that the square of the numerically integrated RMS of the frequency spectral
density, filtered by the cavity pole contributes to the power loss as a percentage of the
cavity pole squared. This can be re-arranged to get the requirement on the RMS of the
frequency spectral density after filtering by the pole

Jeav \/ Relative power lost = Z dkaz;P.
k I+ 72
In the case of the ALPS Ilc cavities where the goal is to keep the loss due to this dynamic
frequency noise between the two cavities to less than 4%, or 0.04 relative power loss, the
linewidth of both cavities is 30 Hz, this corresponds to a goal of less than 3.0 Hz RMS of
dynamic frequency mismatch between the PC and the RC.
The goal for the loss of overlap due to a static offset, 7,ffset, is 0.1% [42]. The of
allowed for that value can be found by re-arranging Equation 1.53 to give

5]5 _ 1-— Nof fset Afpeak ‘
Tlof fset 2

This gives us a maximum allowed offset of 0.5 Hz.

(1.61)

(1.62)

Name Variable | Nominal Value | Initial Value
Effective laser power BgFo 150 kW 150 kW
RC enhancement factor By 40000 10000
Photon wavelength A 1064 nm 1064 nm
Magnetic length B-L 560T - m 560 T - m
Background noise ny, 7.7x10%Hz | 7.7 x 1075 Hz
Overlap 1] 0.9 0.9

Table 1.1.: Nominal experimental values for the ALPS Ilc experiment [26, 42, 43].

The nominal and initial ALPS Ilc parameters are found in Table 1.1. As a note,
the detector sensitivity has been generalized to a detector sensitive enough to detect a
photon rate of 2.8 x 107° Hz with a 95% confidence interval over the integration time.
The heterodyne system does not detect individual photons, and therefore the efficiency
of a detector for detecting photons is not an effective way to measure its sensitivity.
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Thus, it has been replaced by this requirement that is driven by the goals of the system
and is a more effective way of specifying both systems than the detection efficiency.

The nominal parameters give a sensitivity of ALPS Ilc gayy, = 2 x 1071 GeV L.
The sensitivity of the experiment can be calculated by comparing the experimental
parameters to their nominal parameters, and therefore calculating the ratio between the
nominal value and the actual sensitivity of the experiment, g4, s as such

C2x10° 1 [560T-m] [0.977 [150kW 40000]4 ny  480h
I = " Gev [F(qL)] { BL } [ 3 ] [ BePo  Br ] [7.7 x107°Hz 7
(1.63)

The initial science runs are not planned to reach the nominal parameters, and will
thus be a little bit less sensitive to ga,~ than the final plan. The power build-up of the
RC is planned to be 10000 instead of the nominal 40000. This results in a planned
initially sensitivity of gay,.s = 2.8 x 1071 GeV 1,

For the production cavity, the input coupler, M1 which is the furthest mirror from
the wall, is planned to have a transmission of 100 ppm. The second mirror, M2 which is
closest to the wall, is planned to have a transmission of 5 ppm. The cavity is expected to
have internal losses primarily from surface scattering of 40-60 ppm [43]. The regeneration
cavity will have two mirrors with the same parameters. The heterodyne system will have
an RC that is a mirror image of the PC, so M1 will have a transmission of 5ppm and
M2 will have a transmission of 100 ppm. The TES system will be reversed from that, so
that M1 will have a transmission of 100 ppm and M2 will have a transmission of 5 ppm.
One thing to note is that the detection systems have reversed mirror transmissions to
place the higher transmission mirror as the output coupler to the detection system. As
such, the output coupler is the 100 ppm transmission mirror in both detection systems.
With these mirror parameters, g+ ~ 1 and Ry =~ 1, so we can see that

Touer _ TiTESGH
(1 - grt)2 Rl,TES(l - grt)2

These parameters also give both cavities a finesse of 40 000. The length corresponds to
an FSR of 1.2 MHz. Both the finesse and the length give and a linedwidth of 30 Hz.

In addition to having a different detection layout, each detection scheme has a different
control method to achieve the required power build-up and overlap. More information
on control systems can be found in Chapter 2, and details about specific control systems
can be found in Chapters 3, 4, and 5.

The method for achieving power build-up for PC for both schemes is the same, where
the high-power laser (HPL) with an output of up to 70 W and a wavelength of 1064 nm
[44] will be matched to the PC cavity resonance by actuating on the frequency of the
laser. This laser is an amplifier seeded by a non-planar ring oscillator laser, which is
also used for all of the lasers in ALPS II. The power build-up in the PC can be treated
independently of the power build-up of the RC and the overlap parameter.

As far as the use of cavities goes, the primary difference between the two detection
methods is their approach to the control of the RC. For both systems, the important

~ 17000. (1.64)
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consideration for both schemes is to minimize light at exactly the same frequency as the
light in the PC in the RC. This is because the light from axion-like particles oscillating
into photons are expected to be at exactly that frequency and the light from the two
sources would be indistinguishable from each other.

The heterodyne scheme can use 1064 nm light that is slightly different from the PC
circulating field provided by a local oscillator laser (LO). This LO is matched to the RC
resonance by actuating the frequency. This method cannot be used by the TES system,
as this detector is not sufficiently sensitive to the frequency of photons to determine the
difference between photons from axion-like particle oscillations and LO field. Instead, it
is planned that the resonance of the cavity will be probed using 532 nm that is generated
by doubling the frequency of 1064 nm infrared light (IR) from a reference laser (RL).
This frequency doubling is done with second-harmonic generation using a medium that
supports non-linear optical effects [39]. The cavity properties for the green light at
532nm are somewhat different from the properties for the infrared light. M1, with its
transmission for infrared of 100 ppm, will have a transmission of 5% for green. M2, with
5 ppm transmission for infrared, will have 1% transmission for green. These parameters
result in a power build-up of 55, a finesse of 100, and combine with the length to give a
linewidth of 12kHz [43].

In both of these systems, the probe beam contains information about the power build-
up in the RC independently of the overlap parameter and of the PC power build-up.
This leaves the overlap parameter as the last important specification. This is where
matching the resonance of both cavities becomes important. For both systems, this
matching is done by actuating on the length of the PC so the resonance frequency of
that cavity is adjusted such that the light circulating in that cavity is resonant with the
RC. Each system has a slightly different method for comparing the frequency of the light
circulating in the PC with the light circulating in the RC.

For the heterodyne system, the frequency of the LO circulating in the RC is compared
to the frequency of the HPL light circulating in the PC. This is maintained to be offset
by a set frequency that ensures both the LO and HPL are resonant with the RC, and
this offset frequency is used as the frequency of the expected interference between the
LO field and the light field due to axion-like particles.

The frequency difference between the green light circulating in the RC for the TES
scheme and the infrared light circulating in the PC is too large to measure. As a
result, this scheme uses light from the RL split off before being frequency doubled as
the frequency reference of the RC. The green light from the second-harmonic generation
has a frequency that is exactly double the frequency of the split off infrared light, and
thus the relationship between the green light and the RL infrared light is a constant
one. For this reason, comparing the frequency of the HPL light circulating in the PC
with the infrared light generated by the RL provides the necessary information about
the frequency changes between the two cavities.

The ALPS Ila experiment is a smaller-scale technology development and demonstra-
tion system. It features facilities for two cavities, which are intended to simulate the
systems for the PC and RC. Since it is primarily to develop technology for the TES
measurement system, it features a high power laser (HPL) seeded by a non-planar ring
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1.5. Use of Optical Cavities in ALPS II

oscillator laser capable of outputting 35 W at an infrared wavelength of 1064 nm [45],
similar to the generation system will for ALPS Ilc, and a non-planar ring oscillator refer-
ence laser (RL) at the same wavelength that is frequency-doubled to a green wavelength
of 532 nm before being directed to the RC. For this thesis, only the RC is used and the
PC is not equipped.

The mirror parameters for the ALPS ITa RC are slightly different from the planned
parameters of the ALPS Ilc cavities. The input mirror, M1, has a transmission of 25 ppm
for infrared light and 5% for green light. The output mirror, M2, has a transmission of
3ppm for infrared and 1% for green. The cavity is 9.24m in length. The propagation
losses for the ALPS Ila cavity have been measured to be (33 £ 1) ppm [46]. This results
in a power build-up of 26 900 + 900 and a finesse of 101 300 4 500, an FSR of 16.2 MHz,
and a linewidth of (160 £ 1) Hz. For green light, the mirror parameters are the same as
expected in ALPS Ilc, so everything that depends only on the mirror parameters like the
power build-up and finesse will be the same as expected in ALPS Ilc. Additionally, the
FSR only depends on the length, so that should be the same as the FSR for the infrared
beam. Finally, the linewidth depends on both, so that is expected to be 160 kHz.

It is necessary to be able to project the performance of the cavities of ALPS Ilc given
the performance of ALPS Ila. The measurement of the changes in frequency of the laser
relative to the cavity resonance is done using the Pound-Drever-Hall technique discussed
in Section 1.4. One consideration is the relationship between length and frequency in
Equation 1.34. When considering the resonant frequency change due to a cavity length
change, the same length change in a longer cavity causes a smaller frequency change
than it would in a shorter cavity, given by

ALe Lija
= A = A 1.65
T frre o fila, (1.65)

where Ly, is the length of ALPS Ila and Ljj. is the length of ALPS Ilc. As such, any
frequency changes due to length changes will be smaller by the ratio of the lengths of
the two cavities, which in the case of ALPS Ila and ALPS Ilc is 9.24m/124.4m = 0.07.

In order to meet the power build-up and cavity overlap requirements, control systems
will need to be used. The next chapter will discuss some of the fundamentals of controls
for both analog and digital systems.
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The goal of control systems is to change the dynamics of a system in order to maintain
a specific condition or state. The systems to be controlled can cover a wide range, from
a tall building, to a lamp, to the air temperature in a room, and many others. Control
systems can be passive or active. A passive system usually seeks to minimize the effect of
anything that would change the desired state, whereas an active system seeks to correct
any of the changes. A passive system could be a tuned mass damper in the tall building
to minimize any movements of the building. Active systems can be changing the duty
cycle of a lightbulb so that the lamp produces a specific amount of light, a thermostat
and heating, ventilation, and air conditioning system maintaining the air temperature
in the room, and any number of control systems matched to the system to be controlled.

There are a number of control systems in ALPS II. This thesis will focus on those used
in the regeneration cavity (RC) of ALPS Ila. In this chapter, we will discuss the control
theory that goes into the design and characterization of those control systems. The
following chapters will describe the specific control systems that are being characterized.

2.1. Feedback Control Systems

One type of system that ALPS will use, and the type of system that is used in this
thesis, is one that takes a measurement and uses that measurement to produce some
sort of correction. This type of system is known as a feedback control system, or FCS.
An FCS has a number of different parts that are each important: the plant, sensing
system, servo, and actuation system.

The plant is the system to be controlled. The plants in the ALPS ITa RC are made
up of lasers and cavities. The desired state of these plants is usually the lasers being
resonant in the cavity. When no control is being exerted on this plant, it is said to
be ’free-running.” When this is the case, it is subject to many effects that prevent this
desired state from being maintained for any longer than a fraction of a second. These
effects are known as disturbances, which induce noise to the system, and the point of a
control system is to compensate for this noise.

The sensing system is made up of a number of components and techniques used to
sense the state of the system including how far away and in what direction it is from the
desired state. A sensing system for a control system to keep a laser close to resonant in
the cavity uses the Pound-Drever-Hall technique discussed in Section 1.4, which includes
photodetectors, demodulators, any read-in components for digital systems, and any other
electronics in the error signal path.

The servo is the device that converts the error signal input from the sensing system
into the control signal that is the input to the actuation system. The design of a servo is

24



2.1. Feedback Control Systems

very important to a control system, and the majority of this chapter describes different
forms and rules of thumb involved in defining a servo.

The final part of an FCS is the actuation system. This system takes the control
signal and uses it to make a change to the plant. This often includes the actuator itself,
the actual device that induces the physical change, and any associated electronics like
amplifiers to increase the dynamic range of the actuation beyond what the servo itself
can provide.

When all parts of the FCS are operating, any changes in the plant are sensed by the
sensing system, modified by the servo, and compensated for by the actuation system,
thus creating a closed loop. This closed loop operation nominally keeps the state of
the plant very close to the desired state and successful maintenance of this state is also
referred to as a lock as it may seem like the plant is locked to the ideal state.

Demodulator

Servo

Modulation Modulation Error Error

Out In Out In
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Figure 2.1.: An example of a feeback control system to keep a laser resonant with
an optical cavity. The state of the resonance is measured using the Pound-Drever-Hall
technique, modified by a servo, and fed back to the frequency of the laser.

A simple example of an FCS used in ALPS Ila to keep a laser resonant with a cavity
is shown in Figure 2.1. The plant in this system is the laser and the cavity. The sensing
system uses the Pound-Drever-Hall technique described in Section 1.4 and consists of the
modulator, the photodetector, and the demodulator. The servo will be largely described
in this chapter. Finally, the actuator in this example is a piezo-electric element that can
put a variable amount of stress on the laser crystal which changes the frequency of the
laser output.
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Chapter 2. Controls and Digital Signal Processing

This example is one system in ALPS II. However, there are other plants, measurement
systems, servos, and actuators in the ALPS II experiment. As such, this chapter will be
a general discussion of feedback control systems that can be applied to any system. Spe-
cific systems will be discussed as they are experimentally characterized in the following
chapters.

In a perfect world, the error signal would be driven to zero during closed-loop operation
and the control signal would be exactly the opposite of all noise induced by disturbances.
However, doing so is impossible for a real control system. As such, the error signal ends
up being much smaller than the disturbance-induced noise, but there is some residual
error still present in the system. This noise left on the nominal operating point of the
system is called suppressed noise, as it is after the suppression from the FCS. The noise
induced by all disturbances is known as the unsuppressed noise, as it shows what the
noise would be without suppression by the FCS.

However, the disturbances to the plant are not the only sources of noise in a closed-
loop control system. Different parts of the control system also have noise associated
with them. The sensing system, the servo, and the actuator can all impart noise into
the system that would otherwise not be present. In a well-designed control system, the
suppressed noise after implementing a FCS is much lower than the free-running noise of
the plant, but that does not mean noise due to the FCS can be discounted.

The sensing system is not perfect and will have some noise from the electronics and
other effects that do not reflect the behavior of the plant. This noise is referred to as
sensing noise. One note is that noise added by the measurement system directly couples
in to the suppressed noise. This is because sensing noise is feeding the control system
incorrect information about the plant, which drives the system to compensate for this
false noise. As such, the measured error signal is not always the same as the suppressed
noise of the system, as the error point does does not always perfectly correspond to the
nominal operating point of the system due to sensing noise.

Similar to the measurement system, the actuation system also has some noise associ-
ated with it. This is usually due to the electronics involved in producing the actuation
rather than the actuator itself, but some actuators can introduce their own noise. For-
tunately, this control noise is suppressed by the loop and often much smaller than the
disturbances to the plant, though that can depend specifically on the exact properties
of the FCS and the actuator noise.

In addition to the sensing and control noise, the servo may have some noise associated
with it. However, it can often be convenient to assign this noise to either sensing noise
on the input side, or control noise on the output side. With this, the servo can be
treated largely as a mathematical operation. It is not always true that there is no noise
associated with the servo. However, these sources of noise are usually much smaller than
the sensing noise and control noise.

There are many different ways to classify control systems, which can be analyzed
very differently from each other. Some of the classifications of the systems used in the
ALPS Ila RC will be discussed in this chapter, as well as what that classification means.
The first simplification that we will make is based on inputs and outputs. A system
can have any number of inputs and any number of outputs. These are multi-input,
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multi-output systems and the analysis of these systems needs to take into account the
similarities and differences of each input and output. However, all of the systems used
in the ALPS Ila RC are single input, single output systems, or can be approximated as
such as the interactions between the two systems are minimal. This allows us to perform
analysis in a simpler way than would be possible in multi-input, multi-output systems.

2.2. Transfer Functions

A system can be defined as something that takes an input and produces an output. These
systems are presented in [47] and some of this work will be paraphrased in the following
derivation. This input being converted by a system to an output can be represented
mathematically with a transformation, H, defined as

y=H(u), (2.1)

where u is the input and y is the output. The input and outputs can be broken into
multiple components given by

Yy=y1+y2+ys+..
and (2.2)

U =uy1 + ug + us + ...

These components can be as small or as large as desired to describe the inputs and
outputs. For a linear, time-invariant system, H can be defined such that

(o)
y(t) = H(u) = / u(T)h(t — 1)dT, (2.3)
— o
where h(t — 7) is the impulse response function, defined as the input of the system to an
infinitely short impulse at time 7. The output is simply the sum of the output infinitely
many impulses, which is a result of the principle of superposition. Additionally, the
output is dependent only on the time between input and observation. This operator is

also known as a convolution, which is often represented as

/OO u(T)h(t — 7)dT = u(t) * h(t). (2.4)

—0o0

This convolution of the input with the impulse response in the time domain is not
always easy to work with, so it is more convenient to convert this into complex frequency
space by using the Laplace transform. The Laplace transform is defined as

(o]
F(s)=L{f(t)} = / f(t)e stdt, (2.5)
0
where s is a complex variable given by s = ¢ + iw and known as the complex frequency.

The behavior in frequency can be seen by setting ¢ = 0, or s = iw. This is very useful
because of a property of the Laplace transform of convolutions, namely
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L{f =g} = F(s)G(s). (2.6)
Therefore, when we take the Laplace transform of Equation 2.3, we get
Y(s) = H(s)U(s), (2.7)
which can be re-arranged to show that H(s) is the ratio of the output to the input, that
is
Y(s)
U(s)

= H(s). (2.8)

H(s) is referred to as the transfer function, because it determines how the signals are
transferred from the input to the output at different frequencies. It can be more con-
venient to work in the frequency domain rather than the time domain, especially for
designing control systems.

One property is that the transfer function of a system consisting of several sub-systems
connected in series can be described by simply multiplying the transfer functions of the
sub-systems together. This is apparent when considering the time domain explanation
of such a system. If we take an example of three sub-systems with an impulse response
of hi(t — 1), ho(t — 7), and hs(t — 7), where hy is the first system and hs is the last
system, we see that the output of the system in response to an input is

y(t) = h3 * ha * hy * u(r), (2.9)

and further systems would continue to add more convolutions. The Laplace transform
of this equation is

Y(s) = Hs(s)Ha(s)Hi(s)U(s), (2.10)
and therefore the transfer function is given by

Y(s)
U(s)

The combination of all transfer function in a control system, including the sensor, con-
trol electronics, actuator, and any other sub-systems is known as the open-loop transfer
function. This open-loop transfer function is important, as an open-loop transfer func-
tion with a larger magnitude allows the system to suppress more free-running noise [48].
The magnitude of a transfer function is referred to as gain. There are limits when this
gain affects the stability of a control system, which we will investigate in Sections 2.3.

The transfer function is a powerful tool for frequency-domain analysis of systems. It is
also useful for designing control systems given the knowledge that the noise suppression
of the system is largely determined by the transfer function of the full system. Though
a given system can have an arbitrary transfer function, many linear, time-invariant,
physical systems are described by the linear, constant coefficient differential equation

H(s) = = Hy(s)Ha(s)H (s). (2.11)
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m

" dk dk
e k—y () = by ——u(t). 2.12
kzzoa kdtky() kZ::O kdtku() (2.12)

That is to say, a linear combination of the output of a system and its derivatives is equal
to a linear combination of the inputs to that system and its derivatives.
When applying a Laplace transform to derivatives, we get

n

d"ft) _ n nkd* " £(0)
L—n :sF(s)—zljs kW‘ (2.13)

Though the properties of the function at t = 0 are necessary to understand the exact
behavior of the system, it is not strictly necessary to understand the behavior of the
input compared to the output and we can assume that it is 0. This property allows us
to take the Laplace transform of Equation 2.12 to get

m

> an kY (s) = bpps"U(s) (2.14)
k=0 k=0
which can be re-arranged as

Y(s)
U(s)

_ > kg bmn—ks”
ZZ:O an—ksk

in which the transfer function, H(s), is a m-order polynomial in the numerator and
an n-order polynomial in the denominator. The only restriction on the order is on the
relative degree, which is that n —m > 0 which is imposed by the realizability of the
system which we will discuss in Section 2.3. Another way to represent the transfer
function in Equation 2.15 is to factor the numerator and denominator

= H(s) (2.15)

7 by S* nos—z
H(s) = Z’Z‘O meh = KHZ—l u (2.16)

Zk:o Ap—kS Hk:1 S — Pk
where K = by/ap. The roots of the numerator are known as zeros because the transfer
function goes to zero when s = 2z and the roots of the denominator are known as

poles because the transfer function goes to infinity when s = p. Zeroes and poles are
useful building blocks when designing a control system. Low-pass filters, notch filters,
integrators, differentiators, etc can all be easily implemented in analog electronics, and
are all described by zeros and poles.

Poles and zeros can be complex numbers. That is to say z = x 4+ iy and p = = + iy,
with some complications if y # 0 that will be discussed shortly. The magnitude of the
pole or zero describe the frequency at which the effect, i.e. low pass corner frequency,
notch filter center frequency, is located. A purely real, negative pole is a low pass filter
that applies a 1/f slope at frequencies much higher than the corner frequency, and a
purely real, negative zero is a differentiator that applies an f slope at frequencies higher
than the corner frequency.
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With complex poles and zeros, a second one is always needed. The reason for this is
that H(s) must be real, so for a complex pole introduced at p = = + iy, another one
at p = x — iy ensures that the resulting product is real. A complex pole pair results in
resonant gain at the frequency determined by the magnitude, and the relative size of the
imaginary part describes the bandwidth. Similar to a complex pole, a complex zero is a
notch with the parameters being determined the same way as with a complex pole.

In addition to frequency-domain representation using transfer functions or zeroes and
poles, there are a number of time-domain representations. One such representation is
state space, which models a number of variables that keep track of the state of the
system. These variables evolve depending on the other state variables and inputs to
produce an output. A number of the control systems in this thesis are realized using a
state space system and this representation is discussed in Chapter A, but the analysis is
done using frequency-domain analysis.

Since the models are equivalent, a system that is described with a transfer function can
be equally described by a state space model. In transferring between the two systems,
it is clear that the model order of the systems is also the same. That is to say, a system
described by m poles and zeros produces a m-order transfer function, which is equivalent
to an m X m state space system.

2.3. Control Stability

In order to implement an effective control system, it needs to be stable and realizable.
This ensures that, given some input, it will not end up increasing output infinitely, require
infinite energy to generate the output, or introduce an excessive amount of noise. There
are several important criteria in order to achieve these goals.

The first is that the real part of every pole needs to be less than zero. That is, in the
complex number plane where the real part is the x-axis and the imaginary part is the
y-axis, all poles must exist in the left half of this plane. This requirement can be seen
by examining the time-domain behavior of a system with no input. That is to say, if the
u(t) in Equation 2.12 were zero we get
Zn: andy(t) _ (2.17)

dtk
k=0

We know that the solution to the homogenous version of this differential equation
involves finding the roots of the characteristic polynomial [49] given by

> an_yd* =0, (2.18)
k=0

which we already know to be the poles of the system in Equation 2.16, which is to say

n

Zn: an_d® =[] s—pr =0 (2.19)
k=0

k=1
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In the end, the solution to the differential equation has the form

n n
y(t) = Z CpePRt = Z Ccne kletrt (2.20)
k=1 k=1

and we can see that any pole with a positive real part, which is any z; > 0 will grow
exponentially with time and is therefore unstable, whereas any pole with a negative real
part will decay exponentially with time. We can also see that if the real part of the pole
is zero, then the result will neither grow nor decay with time. As such, any poles that
lie directly on the imaginary axis are called marginally stable.

The second requirement, not purely for stability but for realizability, is that the order
of the numerator cannot exceed the order of the denominator, which was already men-
tioned in Section 2.2. This is known as a proper transfer function, whereas one with a
relative degree less than zero would be known as an improper transfer function. If the
relative degree is larger than zero, then the transfer function is called strictly proper.
An improper transfer function can be written

m n k
o Zk:n+1 bm—ksm + Zk:() bn—ks

H(s) ST an ot , (2.21)
and can be factored into poles and zeroes as
18—z T s—z
H(s) = K (i r s =) (T s = 20) (2.22)

[T5=15 —pr
where all z; and pj are finite. As such, the behavior at very high frequencies, when
lim, 00 H(iw), the values of each z; and py are small compared to iw, and can be
neglected. Thus we get

lim H(iw) = K> = K™, (2.23)
w—00 sn
which is m — n pure differentiators, and pure differentiators are not realizable [50]. This
restriction is already present in the construction of the state matrices as we can see in
the result in Equation A.17 where the relative degree is always > 0.

The final stability criterion has to do with the phase of the transfer function. This can
be intuitively examined by examining the Bode plot of the open-loop transfer function
[48]. The important point to look at in the Bode plot is where |H (iwyg)| = 1, known as
the unity gain frequency. At the unity gain frequency, the amount by which the phase
lags less than 180°, given by

b = O[H (iwug)] + 180° (2.24)

where ¢,, is known as the phase margin. A system that has any phase margin larger
than 0° is technically stable, but it would not be very robust and would be prone to
oscillation. A larger phase margin is a more robust system with less oscillation. Two
significant contributors to phase lag are a steeper slope in the gain curve, which results
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in a larger phase lag, and any time delays in the system result in larger phase lags at
higher frequency. As such, the two ways of increasing the phase margin are reducing
the slope of the gain and reducing the unity gain frequency, w,y. Reducing the slope of
the gain means the gain will be smaller at frequencies under the unity gain frequency,
and reducing the unity gain frequency means reducing the overall gain of the system,
which reduces the gain at all frequencies. As such, it becomes important to balance the
robustness and oscillation with the gain of the system.

2.4. Discrete Time

The techniques used in continuous time analysis can also be applied to discrete time
systems. However, some modifications need to be made in order to accomplish that. In
order to determine what those modifications are, we should start with how to convert
signals from continuous time to discrete time. An ideal case would be taking the instan-
taneous value of a continuous time function every T period of time. An infinite series
of Dirac Delta functions separated in time would be able to extract this value. Such a
series, or impulse train, would look like

i 5(t — nT), (2.25)

n=—0oo

and would be applied to a continuous time function to result in

Z §(t —nT)f Z fult) (2.26)

n=—oo n=—oo

This results in a series of pulses, f,,(t), that are scaled such that they result in the values
of f(t) at each sample point when integrated

/ p(t:T)f dt/ Zat—nT anT an, (2.27)

- P n=—00 n=-—00 n=-—00

where f, is simply the value of f(nT) and no longer has any dependence on t.

Just as it is convenient to do analysis and design of continuous time systems in the
complex frequency domain by using the Lapalace transform, it can be convenient to do
the same things with discrete time systems. As such, we need a discrete time analog to
the Laplace transform. This is what is known as the Z transform. It can be calculated
by starting off with a continuous time system, apply our impulse train, and then take
the Laplace transform. That gives us

n=—oo

{Z(St—nT } / Zét—nT e Stdt = an—"sT (2.28)
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We can then define a variable, z = T thus giving us a Z transform of f, to be

Z{fa} =F(2) = fuz " (2.29)
n=0

If we use this substitution to move between the continuous time s-domain and the
discrete time z-domain, we can see what would happen with the poles and zeros in the
Equation 2.16. If we are applying the relationship in Equation 2.28 to s, we must also
apply it to the zeros and poles, as they are defined in relationship to s. As such, our
z-domain poles and zeros would look like

I[E, = — s
[[=y 2 —eri?

As long as we are careful about whether we are in the s-domain or z-domain, we can
merely re-define our coefficients based on the converted poles and zeros and otherwise
apply the same math. In the z-domain, we will be using a and ( instead of a and b for
the coefficients to more clearly differentiate the two. As such, we can see that a transfer
function in the z-domain would look very similar to a transfer function in the s-domain.
Multiplying the poles and zeros give us a transfer function of a similar form to that in
Equation 2.15 merely with different coefficients. Additionally, for much the same reasons
as we are able to do in Equation A.18, we can set the order of the numerator equal to
the order of the denominator with no loss of generality. This transfer function in z space
looks like

H(z) =K (2.30)

Zznzo Bm—kzk
SR D D

One important note here is that there is one change to the stability criteria discussed
in Section 2.3. The criterion that the transfer function must be proper, i.e. the relative
degree of the transfer function cannot be less than 0, remains unchanged. Additionally,
the criterion that the phase margin of the transfer function must be positive remains the
same. However, the criterion that the real part of poles must be negative changes, as the
poles are calculated differently in the z-domain. If we calculate the new criterion for the
z-domain poles from the poles in the s-domain, then we see that the pole pr = x + iyg
becomes

H(z) = (2.31)

e(l’k'i‘iyk)T — ekaeiykT’ (2.32)

and the criterion that z;, < 0 becomes e®7 < 1. Thus, the region of stability for poles

in the z-domain is the unit circle, with points on the unit circle being marginally stable.

It can be seen in Equation 2.30 that the sampling period, 7', or alternatively the
sampling frequency, fs = 1/T, plays a big part in the behavior of poles and zeros, and
thus the transfer function. If one defines the poles and zeros for the transfer function at
one sampling frequency and then changes the sampling frequency, the features will be
located at a different frequency than initially intended.
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Chapter 2. Controls and Digital Signal Processing

There is another effect from changing the sample frequency, which is that the phase
lags more. This phase lag is due to the amount of time it takes the signal to propagate
through the digital system. A digital system can only do actions every clock cycle. So
when digital data needs to pass through different parts of the code, each action costs
time. Additionally, controllers frequently require several clock cycles to complete the
calculations necessary to output a control signal.

2.5. Quantization in Digital Systems

Changing from continuous to discrete time is not the only change necessary when moving
to digital systems. The quantization of numbers is also necessary to consider. Rather
than a number being able to take any value and change by amounts that are infinitesi-
mally small, digital systems can only represent a discrete number of values. These values
are represented by the number of bits assigned to that number, which is known as the
word length. These bits combine to represent a number in base 2 rather than base 10.
As such, a number represented by n bits can take 2™ unique values. The first quanti-
zation takes place on the input of the digital system. The analog to digital converter
(ADC) measures the value of the input (usually a voltage) and converts it to a number
that represents the value of the range of the input. For example, a 16-bit ADC that has
a £ 1V input range would represent the range of 2V with 2'® = 65536 unique values.
In this representation, the smallest change able to be represented by n bits, known as
the least significant bit (LSB), is directly proportional to the range of values represented
and inversely proportional to 2. This LSB is calculated by

Npk—to_

LSB = % (2.33)
where Npjp_to—pr is the the difference between the largest and smallest value able to
be represented by our number. In our example ADC, the smallest voltage change able
to be represented is 2V /2'6 ~ 30.51V. The difference between the ideal signal and a
quantized signal is shown in Figure 2.2 where we see that instead of a smooth line, the
signal looks like a staircase. This example is created by rounding the input value. Some
quantization is done by truncating the number such that the quantized value is always
less than the input value. Though truncating is not usually desired for the quantization
of signals, it can be useful for the quantization of control coefficients.

This quantization of the signal can affect different parts of a digital servo. The first is
that there is some noise introduced by the quantization. The distribution of this noise is
considered to be uniform, with a value ranging over £LSB/2. Since the error is uniform
and centered around zero, its mean is zero. Thus, when we look at the rms variance, o,

defined as

o= \//0O (x — p)2f(x)dx, (2.34)
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Figure 2.2.: An example of the quantization of an ideal, linear signal from an ADC
with a range of + 1V and 16 bit word length. In the upper part, the blue curve is
the ideal, analog signal and the orange curve is the quantized signal. The lower part
is the error due to the quantization. The blue curve is the error between the ideal and
quantized signal and the orange curve is a reference line at 0.

where p is the mean and is zero, and f(z) is the probability density function. This f(x)
integrates to 1 over the range £L.SB/2, and is zero everywhere else, thus

) 1 LSB/2
1:/ fxdac:/ dx, 2.35
—o0 (@) LSB J_LsB/2 (2.35)
and so we see that the equation for o is
1 [LSB/2 LSB? LSB
o=\|=x x2dr = =—, (2.36)

which gives us the rms variance of the noise introduced by the quantization of the signal
[51]. The power spectral density can be obtained by integrating this variance from 0 to
the Nyquist sampling frequency (which is half the sampling frequency, f/2) with the
assumption that the noise is present only in the band of interest rather than infinitely
across all frequencies. The amplitude spectral density of this noise, A(€2) is given by the
square root of the power spectral density, which is

A(Q) = \L/E%, (2.37)

where f, is the same sampling frequency in Section 2.4.
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Another way that quantization can affect a system is by changing to coefficients deter-
mining the behavior of the servo. This quantization means that different representations
of the same system are no longer identical. It can therefore be important to identify a
way to distribute coefficients such that quantization has the least effect on the system.
An appropriately balanced realization of a state space model contains more coefficients
than the canonical forms, presented in Appendix A, and thus increases the required pro-
cessing power, but results in less quantization. Alternatively, one could break a transfer
function model into sets of second order systems to reduce the effect of quantization on
controller coefficients [52]. There are a number of methods to accomplish these tasks,
but the MATLAB (used in versions 2016b and 2017b for this work) command ’balreal’
for state space and 'tf2sos’ or ’zp2sos’ are effective at this task.

The final effect that quantization can have is that of overflow. If a number is repre-
sented by a fixed number of bits with a fixed range, then exceeding that range causes
what is known as an overflow. Take an example of a four bit number that can represent
numbers from 0 to 1. The LSB of this quantization is 1/16 = 0.0625. In this instance,
the base 2 representation 0000 is 0 and 1111 is 1. If we were looking at 0000 and added
0.0625 to it, we would get 0001, and doing so again would result in 0010. This sort
of math is the same as with any other number until we get to the largest number we
can represent: 1111, or 1. If we try to add 0.0625 to that number, the system would
try to add 1 to the next largest digit to get 10000, but such a digit does not exist and
is therefore truncated. The result is 0000, or 0. A similar problem can happen when
subtracting 1 from 0000 to get 1111.

The problems posed with overflow need to be balanced with the additional noise and
controller representation posed with having a larger LSB, as the range of numbers able to
be represented is directly proportional to the size of the LSB, as shown in Equation 2.33.
Ideally, the number of bits would be increased, but there is a practical limitation to the
word size as digital systems have a finite amount of memory, and every bit takes up
some of that memory.

With the fundamentals of LSW experiments, optical cavities, and control systems
established, the next chapter will discuss the characterization of optical cavities and the
baseline, mostly analog control systems of those optical cavities. The following chapters
will cover the digital systems and compare them to the analog systems.
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In order to provide a comparison to digital systems and understand the performance of
the baseline control systems, it is important to characterize the current control systems
in the ALPS ITa Regeneration Cavity (RC). These systems include frequency control for
an infrared beam in the cavity, frequency control for an green beam in the cavity, and
length control for the cavity to match the green beam in the cavity. The two frequency
control systems are entirely analog, and the length control system includes a digital filter
to compensate for mechanical resonances.

3.1. Calibration

Calibration is vital to understanding the behavior of the cavities. A proper calibration
allows for comparison to other, properly calibrated systems because we know the behav-
ior of them in physical units. The motion of the cavities and the changes in the lasers
can be in terms of the length of the cavity and wavelength of the laser, or in terms
of the resonance frequency of the cavity and the frequency of the laser. In this thesis,
we will be using frequency units, though Equation 1.34 shows that the two are directly
proportional with only a multiplicative factor required to convert between them.

The first task is the calibration of the control signal. Applying a linearly increasing
voltage to the frequency actuator gives us a linear change in the laser frequency over time.
We then look at the PDH signal and note that the spacing of the sidebands in Figure 1.8
is the modulation frequency. This gives us a relationship, in Hz/V, between the voltage
applied to the actuator, and the frequency change induced. Using this relationship, we
can then express any control signal voltage in terms of frequency change.

Once the control signal is calibrated, that calibration can be used to calibrate the
error signal. By looking closely at just the center band resonance, like in Figure 1.9, the
change voltage of the error signal due to the change of frequency induced by the control
signal allows us to calibrate the linear portion of the error signal. This tells us how a
given read-out voltage change corresponds to a frequency change in the cavity.

This error signal is calculated in Equation 1.47 and depends on the input power, the
mirror parameters, the cavity loss, and the strength of the modulation. Additionally,
the error signal depends on the relative alignment between the resonant cavity field and
input field in all three dimensions, which determines how the input field couples into the
cavity field. This alignment can change over time periods generally on the order of days
as it will drift. Even after correcting for the bulk of these drifts, small misalignments may
persists, which would require a new calibration of the error signal for every measurement.

Using the above calibration methods for the green beam produced by frequency dou-
bling the reference laser, we get that the calibration for the control signal (of the fre-
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Figure 3.1.: An example of a calibrated control and error signal of a green frequency
control system. The control signal is the signal sent to the laser piezo and the error
signal is the signal sent to the control electronics. The control signal calibration was
performed by applying a voltage ramp to the laser piezo and measuring the voltage
required to shift the laser frequency between the PDH side-bands at a known frequency
and the center band. The error signal calibration was performed by comparing the slope
of the PDH error signal to the control signal.

quency doubled green beam) is (5.2 £ 1.4) MHz/V. We then calibrated the error signal
also as described above to get that calibration as (370 &+ 120) kHz/V with the uncertainty
being driven primarily by the uncertainty in the control calibration, which is correlated
between the two measurements. This correlation is important, as we will see that we are
mostly interested in the ratio between the control and error signal spectra, which has a
much lower uncertainty.

A measurement of the amplitude spectral density of the control and error signal cali-
brated in this manner is found in Figure 3.1. The features in this and similar plots will
be discussed later in this chapter, as well as the details of the experimental setup used
to obtain these measurements. What is important here is the point at which the control
signal and error signal meet. At this point, the error signal and the control signal are
equal, and the suppression of the loop is 1. This means that the frequency at which
this happens is the unity gain frequency of the open-loop transfer function. If we look
at a Bode plot of this transfer function in Figure 3.2, then we see that the unity gain
frequency is the same as the crossover point of the control and error signal in Figure 3.1.

Using this behavior, we can calibrate the error signal by using the unity gain frequency
of the open-loop transfer function. As this transfer function is for the full system, all
factors that affect the size of the error signal are accounted for. We can adjust the
calibration such that the crossover point is where we expect it to be from the open-loop
transfer function to obtain the same result as a more direct calibration of the error signal.
This is much quicker than the first technique described in this section, especially as the
transfer function also provides other desirable information about the performance of the
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Figure 3.2.: An example of an open-loop transfer function for the green frequency
control system. This was measured by injecting a swept sine on the control signal and
comparing the control signal with the swept sine to the control signal right before the
swept sine was injected. The measurement was made with an averaging factor of 100
and an input of between 0.1 mV and 5mV peak-to-peak. The unity gain frequency of
this system is 30 kHz.

loop, such as the phase margin, and will therefore be taken whether or not it is used for
calibration. Additionally they are very useful for the design and optimization of control
systems as discussed in Chapter 2.

Since the open-loop transfer function already needs to be taken and can provide a
good calibration of the error signal without having to measure it directly, this thesis will
use that method to calibrate all error signals in relationship to the control signals.

3.2. Infrared Frequency Control

With the intention that the high power laser (HPL) will have the frequency driven to
match the cavity resonance frequency, i.e. frequency locked to the cavity, we must inves-
tigate the performance of the ALPS ITa HPL under frequency control. The schematic
of this system is shown in Figure 3.3 with frequency of modulation to be 2.5 MHz. This
phase modulation is applied to the laser beam incident on the cavity, generating side-
bands that are reflected when the center band is resonant in the cavity. The promptly
reflected sidebands are mixed with the light coming out of the cavity as well as the
promptly reflected center band on a photodetector, encoding any changes of the laser
relative to the cavity resonance on the interference between the center band and the side
bands. This signal is demodulated with the original modulation frequency to generate
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Figure 3.3.: Feedback control system to match infrared high power laser to the
ALPS IIa regeneration cavity and measure the performance of this control. The mod-
ulation frequency is 2.5 MHz. This modulation is applied to the EOM and used to
demodulate the signal from the error photodetector. That signal is then sent through
a servo to produce a control signal that is sent to the laser frequency as well as a tem-
perature servo to provide additional actuation range at low frequencies. The control
and error signal are also measured by a Stanford Research Systems SR785 network
analyzer.

the PDH error signal. This error signal is then fed through a servo to generate the
control signal which is both applied to the piezo that controls the laser frequency and
fed through a servo that generates a slow control signal which is applied to the laser
temperature control. The error signal before the servo and the control signal before the
piezo are split off to be measured by the Stanford Research Systems SR785 network
analyzer.

We can also use the network analyzer to inject a swept sine wave to the control signal
and compare the control signal before injecting the swept sine to the same signal after
the swept sine to measure the response of the system to disturbances at specific frequen-
cies and generate an open-loop transfer function. This open-loop transfer function is
presented in Figure 3.4 and shows that the unity gain frequency is 40 kHz with a phase
margin of 23°.
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Figure 3.4.: Open-loop transfer function for the high power laser frequency control
system. The unity gain frequency is 40kHz with a phase margin of 23°. This transfer
function was measured by injecting a swept sine on the control signal and comparing
the control signal with the swept sine to the control signal right before the swept sine
was injected. The measurement was made with an averaging factor of 100 and an input
of between 0.1 mV and 5mV peak-to-peak.

As discussed in Section 2.3, changing the proportional gain of the system also changes
the unity gain frequency of the system, and thus the phase margin, as it does with
all systems investigated in this thesis. The choice of where to set the proportional
gain can be arbitrary beyond the criterion that the system remain stable over at least
a long enough period to take a measurement. The two competing effects are that a
lower porportional gain reduces the overall noise suppression of the system, while a
higher proportional gain results in less phase margin, which induces more oscillation
given the same disturbance close to the unity gain frequency. This oscillation is due
to the reduction of the phase margin in the control loop, and thus adds noise to the
system, which may result in a system with more total noise than a system with a lower
proportional gain. It is referred to as a servo bump, as it appears as a bump in the noise
spectra of both the error signal and the control signal.

The light circulating in the cavity is affected by the cavity pole discussed in Section 1.5
[53]. This means that the promptly reflected light and the light coming out of the cavity
do not just differ in accumulated phase, but also by this filtering. As such, the measured
error spectrum is not exactly the same as the spectrum of light in the cavity. This
difference between the two spectra is given by
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1
Af,measured<Q) = Af(Q) y (31)

2
20
1 + (Afpeak>
where A¢(Q) is the amplitude spectral density of the offset between the laser frequency
and the cavity resonance frequency as a function of the Fourier frequency, Q (in Hz),
which is measured in units of Hz/vVHz. Af pmeqsurea(§2) is the amplitude spectral density

of the measured PDH signal. This relationship can be re-arranged to see how to convert
the measured spectrum to the spectrum in the cavity

20 2
Af(Q) = Af,measured(Q) 1+ . (32)
Afpeak

We can see that the cavity pole must be taken into account when analyzing the error
signal for a cavity where the pole is within the frequency range under consideration.

,_

=]
=
|

=S
T

Circulating Power (normalized)

| | | | |
-0.05 0 0.05 0.1 0.15 0.2
Time (ms)

Figure 3.5.: IR ring-down measurement of ALPS ITa RC. The displayed plots are of
the transmitted power. The control system was deactivated and the rate at which the
power decreased is fit to determine the cavity storage time. The storage time of the
cavity is (0.18 £ 0.02) ms. Six measurements are shown on this plot.

Based on the linewidth calculated in Section 1.5 from previously measured data, the
cavity pole of the ALPS Ila RC for infrared light is 90 Hz. However, a more current
measurement would yield better information about the current state of the internal
losses. As these internal losses can have a large effect on the cavity pole, it must be
measured. One method for determining the cavity parameters is using the storage time
of the cavity, which is the time that it takes for the cavity field to decay by a factor of
1/e, given by [54]

2nLF  F

me " nfren’ (3.3)

Tstorage =
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The relationship between the storage time and the cavity pole, which is half of the cavity
linewidth, is given by

Af, peak 1

2 27TTstorage

fo=

(3.4)

This storage time was measured by shutting off the control system, which suddenly
changes the laser frequency away from the cavity resonant frequency, then fitting an
exponential decay function to the data, and determining the 1/e? time from that fitted
function [54]. The results of six of these ringdown measurements are shown in Fig-
ure 3.5, and show a storage time of (0.18 £ 0.02) ms. This corresponds to a linewidth of
(1.8 £0.2) kHz and a cavity pole of (900 & 100) Hz, additional losses of (700 4 100) ppm,
and a finesse of 9000 & 1000. The additional losses are significantly larger than the
(33 £+ 1) ppm of losses and the cavity finesse is significantly smaller than the 101 300 + 500
measured from a storage time of (1.99 4 0.01) ms [46]. This increase of propagation losses
is likely due to mirror contamination, as the mirrors are not kept in a fully clean-room
environment when the vacuum tanks are open or when the mirrors need to be handled.

Once the appropriate proportional gain and cavity pole are determined and the open-
loop transfer function is taken, we can take and calibrate a control and error spectrum.
This tells us the spectral density of the noise at different frequencies. The calibration of
the control signal for the high power laser is (1.4 £ 0.2) MHz/V. Setting the calibration
of the error signal as described in Section 3.1 gives us a calibration of (31 £ 4) kHz/V for
the error signal. The uncertainty is only from the uncertainty in the calibration of the
control signal, as the signals used for this calibration were averaged many more times
than the measurements used to calibrate the control signal, and the uncertainty for the
number of averages, N, decreases as 1/ \ﬂN ), the uncertainty of those values is much
smaller.

The control and error spectra are taken using the SR785 as shown in Figure 3.3 and the
calibrated results are shown in Figure 3.6. Also shown are the internal noise spectra for
the SR785, which represent the measurement limits of the SR785. These were generated
by terminating the inputs and taking the spectra to show the contribution from the
internal electronics. For each measurement, the internal gain of the instrument is set to
maximize the signal without exceeding the measurement limits. Since each measurement
has potentially different voltage levels present in the measured signals, this gain will be
different. Therefore, the contribution from the measurement noise can be different from
measurement to measurement. For this and most measurements, measurement noise is
significantly contributing to the control signal at very high frequencies, and measurement
noise is contributing to the error signal at very low frequencies. At all other frequencies,
the measurement noise is orders of magnitude smaller than the measured signal and can
therefore be ignored.

These spectra can be examined to determine the disturbances on the cavity, as well
as by how much those disturbances are suppressed. These disturbances are suppressed
by applying the control signal to the actuator, and result in the error signal that is
left over after the disturbances are suppressed. Nominally, the total disturbances to
the cavity are the control spectrum for the disturbances for which the control system
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Figure 3.6.: Control and error signal amplitude spectral density for frequency control
of the high power laser to match the ALPS ITa RC. The calibration of the control signal
is (1.4 +0.2) MHz/V and the calibration for the error signal is (1.3 +0.2) MHz/V. The
control signal is the signal sent to the laser piezo and the error signal is the signal sent
to the control electronics. The noise seen at lower frequencies in the control signal is
primarily caused by movements of the cavity mirrors, whereas the higher frequency
noise is caused by laser frequency noise. The unity gain frequency is where the signals
cross. The rise near that frequency is known as a servo bump and is due to oscillations
in the control loop. The internal noise of the SR785 measurement system is also shown
and limits the measurement of the control signal at high frequencies and error signal
at low frequencies.

is compensating, and the error spectrum for the disturbances not compensated by the
control system. However, some approximations can be made for certain frequency ranges.
At frequencies well below the unity gain frequency, the error signal is much smaller than
the control signal due to the high noise suppression in the loop. Thus, the disturbances
of the cavity can be approximated as only the control signal. Close to the unity gain
frequency, the control signal and the error signal are of similar sizes, and the combination
of these signals shows the disturbances. Finally, at frequencies much higher than the
unity gain frequency, the control signal is much smaller than the error signal as the
control loop does not imprint the disturbances on the control signal, and as such the
disturbances of the cavity can be approximated as just the error signal. In the spectra
in Figure 3.6, the frequencies much higher than the unity gain frequency are omitted,
and the measurement of the control signal is limited by the measurement noise of the
SR785 in frequencies just higher.

The disturbances in the cavity can be separated into three categories: those due to
mechanical vibrations, those due to laser frequency noise, and those due to the control
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loop. The disturbances caused by the control loop include the so-called servo bump,
which can be seen centered around 50 kHz, sensing noise, and control noise. The sensing
noise is very small compared to the other noise sources, as we will see shortly. The
control noise in the region of interest is generally neglected as it is quite small, and
suppressed by the loop gain. The laser frequency noise of an NPRO laser is mostly
smooth with a roughly 10kHz/v/Hz- (1 Hz/ f) behavior [55], which can be seen generally
at frequencies above 250 Hz except for the contribution from the control noise. Finally,
the mechanical noise includes the seismic motion of the ground and any mechanical
resonances in the optical table, opto-mechanical components, thermal expansion and
contraction, and other ways that couple physical motion into the optical system. Since
this includes a collection of resonances, it is characterized by a collection of different
resonance peaks. These peaks can be seen at frequencies from approximately 10 Hz
to 250 Hz. At frequencies lower than that, individual peaks are not seen, but rather
a longer-term seismic and thermal drift. These regions are seen similarly in previous
measurements with additional measurement of seismic noise confirming the primary
source of the motion in the lower frequency region [56].
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Figure 3.7.: Sensing noise of different components of the HPL sensing system. The
blue curve represents noise only due to the demodulation electronics. This was mea-
sured by terminating the photodetector input of the demodulator and taking a spectrum
of the output. The orange curve is taken with the photodetector plugged into the de-
modulator, but no light in the system. This represents the full electronic noise of the
system. Finally, the yellow curve is taken with the laser on, but the cavity significantly
misaligned so that no light is resonant in the cavity. This shows the noise on the light
reflected from the cavity, which includes optical sources of noise as well as the same
electronic sources measured in the previous curves. This is the full sensing noise of the
system. This noise has been converted into frequency spectral density by applying the
calibration and the cavity pole of the cavity.

As discussed in Chapter 2, sensing noise is the noise that the sensing system sees that
is not present in the optical cavity. This includes noise that is purely electronic in origin,
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as well as optical sources of noise, which will be examined in more detail in the following
section. Noise detected with different sensing system components connected are shown
in Figure 3.7. The blue curve represents noise only due to the demodulation electronics.
This was measured by terminating the photodetector input of the demodulator and
taking a spectrum of the output. The orange curve is taken with the photodetector
plugged into the demodulator, but no light in the system. This represents the full
electronic noise of the system. Finally, the yellow curve is taken with the laser on, but
the cavity significantly misaligned so that no light is resonant in the cavity. This shows
the noise on the light reflected from the cavity, which includes optical sources of noise
as well as the same electronic sources measured in the previous curves. This is the
full sensing noise of the system. This noise has been converted into frequency spectral
density by applying the calibration and the cavity pole of the cavity.
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Figure 3.8.: Error compared to sensing noise amplitude spectral density for frequency
control of the high power laser to match the ALPS Ila RC. The error spectrum is the
same as shown in Figure 3.6 and the sensing noise is the same as shown in Figure 3.7.
The regions where the error signal is below the sensing noise are regions where the
control loop is suppressing noise that is present only in the sensing system, and thus
imprinting that noise on the cavity.

The sensing noise compared to the error signal ASD is shown in Figure 3.8. The sensing
noise exceeds the error signal spectrum only at a few points between 10 Hz and 100 Hz,
then at all frequencies below 10 Hz. At higher frequencies, other than the harmonics of
50 Hz, the sensing noise is lower than the error signal, though never becoming negligible.
This indicates that some of the noise being suppressed is noise present only in the sensing
system. This noise is not actually present in the cavity and is thus being imprinted on
the difference between the laser frequency and the resonant frequency of the cavity. In
this way, the sensing noise represents a limit on the noise suppression of the cavity, and
also a limit of using the in-loop error signal to sense the mis-match between the laser
frequency and the cavity resonant frequency. A more detailed discussion of the source
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and effects of this noise is present in the following section.

3.3. Green Frequency Control
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Figure 3.9.: Feedback control system to match frequency doubled reference laser to
the ALPS Ila regeneration cavity and measure the performance of this control. This
system is similar to the system in Figure 3.3. The first difference is that the modulation
frequency is 3.5 MHz. The second difference is the inclusion of a frequency doubling
sub-system to convert the IR light into green light. The final difference is the inclusion
of a secondary error sensing path.

As discussed in Section 1.5, since no infrared light can be used for sensing the cavity
resonant frequency in the TES detection scheme, a scheme to generate green light by
frequency doubling an infrared laser and then probe the cavity length with that laser
is necessary. After the frequency doubling of the laser beam, the method for control is
identical to the control system for the HPL as shown in Figure 3.3 with the addition of
another error signal path for measurement purposes. The total schematic is shown in
Figure 3.9.

In this system, the reflected light carrying the interference between the light resonating
in the cavity and the sidebands is split between two photodetectors: the primary that
senses the signal sent to the control loop, and the secondary that is only used to measure
the light interacting with the cavity. Either the primary or the secondary sensing path
can be measured using the SR785. The reason for having two measurement signals is that
the primary and secondary error signal paths do not experience noise from exactly the
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same sources, so a lot of the noise measured by the sensing paths will be uncorrelated.
Since at least the electronic noise is different between the two, mostly independent,
sensing paths, any sensing noise that is imprinted on the cavity by the control loop
should appear clearly on the secondary sensing path. This is not a true out-of-loop
sensing method, as there may be sources of noise that affect the PDH error signal such
that this signal does not accurately describe the behavior of the light in the cavity and its
relationship with the resonance of the cavity. However, even having a secondary sensing
path that is not electronically in the same loop will give us a better idea as to the true
behavior of the light and cavity than the in-loop signal. This is especially important
when measuring systems in Chapters 4 and 5, where in-loop signals are not available,
and we will see that there are a number of difference between the in-loop primary sensing
path to the secondary sensing path.
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Figure 3.10.: Open-loop transfer function for the frequency-doubled reference laser
frequency control system compared to the high power laser frequency control system.
The unity gain frequency of the reference laser system is 28 kHz with a phase margin
of 17° and the system parameters for the high power laser system are in Figure 3.4.
Both transfer functions were measured by injecting a swept sine on the control signal
and comparing the control signal with the swept sine to the control signal right before
the swept sine was injected. The measurements were made with an averaging factor of
100 and an input of between 0.1 mV and 5mV peak-to-peak.

Figure 3.10 shows the open-loop transfer function of the frequency-doubled RL fre-
quency control system compared to the HPL frequency control system. There is more
phase loss in the RL control system, and as such we were unable to set the proportional
gain as high as the HPL system. This phase loss could be due to an additional time delay
in the RL control system or an additional control feature such as a low-pass or notch in
the RL system that is not immediately apparent in the magnitude of the transfer func-
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tion at these frequencies. As these and other analog control systems were already in-use
and optimized independently of this work, they are mostly treated as black boxes for
the purposes of this thesis. The unity gain frequency for the RL system is 28 kHz with
a phase margin of 17° compared to the HPL system which has a unity gain frequency of
40kHz and a phase margin of 23°.

10°F

Control Signal

Primary Path Error Signal
Secondary Path Error Signal
Control Measurement Noise
Error Measurement Noise

ASD (Hz/+/ Hz)

Fourier Frequency €2 (Hz)

Figure 3.11.: Control and error spectra for green frequency control. The control signal
is the signal sent to the laser piezo. One of the error signals is the signal sent to the
control electronics and the other one is processed in the same way but measured by a
separate photodetector as shown in Figure 3.9. The noise seen at lower frequencies in
the control signal is primarily caused by movements of the cavity mirrors, whereas the
higher frequency noise is caused by laser frequency noise. The unity gain frequency is
where the signals cross. The rise near that frequency is known as a servo bump and is
due to oscillations in the control loop. The internal noise of the SR785 measurement
system is also shown and limits the measurement of the control signal at high frequencies
and the primary path error signal at low frequencies.

The control and error signal are similar to those presented for the HPL frequency
control in Figure 3.6. They can be seen in Figure 3.11. Just as with the HPL, the
control spectrum is shown in blue, with the measurement limits of the SR785 shown
in yellow. The primary PD measurement is shown in orange, with the measurement
limits in purple. The measurement of the control spectrum is limited by the noise of the
SR785 above the unity gain frequency, and the error spectrum through the primary PD
is limited at low frequencies by the measurement noise in that channel. The significant
addition to this plot is the inclusion of the secondary PD error spectrum, which is not
part of the control loop. The secondary detection path shows more noise than the
primary path at almost all frequencies. The cavity pole is not included for the analysis
of any green measurements as the corner frequency is close to the maximum frequency
measured and has a minimal effect on the spectrum.
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Figure 3.12.: Primary and secondary sensing path error compared to sensing noise
amplitude spectral density for frequency control of the reference laser. The primary
and secondary path error signal are the same as shown in Figure 3.11. The sensing
noise will be discussed more thoroughly in Figures 3.13 and 3.14.

This difference between the primary and secondary sensing paths is particularly in-
teresting. These signals are shown in Figure 3.12 compared with the sensing noise. The
primary sensing path spectrum is lower than the sensing noise spectrum in that path.
As with the HPL frequency control in Figure 3.8, this is because the sensing noise is
suppressed just as if it were a disturbance of the cavity, leading to extra noise in the
cavity. As previously discussed, the noise in the secondary sensing path is mostly un-
correlated with the noise in the primary sensing path, and so it can more accurately
show the noise present on the light in the cavity than the primary sensing path. The
secondary sensing path also has sensing noise that is added to the noise measured by
that path, so the sensing noise in that path must also be considered for its contribution
to the measurement.

For the most part, the error spectrum from the secondary path is not exactly what
would be expected from the combination of the primary sensing path spectrum, the
primary sensing noise spectrum being imprinted on the cavity, and the secondary sensing
path noise. At high frequencies when the suppressed noise is much larger than the sensing
noises, the primary and secondary have very similar spectra as the sensing noise does
not have a significant effect on these frequencies. Going lower in frequency, however,
the error spectra from the primary and secondary spectra diverge in a way that is more
than what would be the result from the sensing noise shown, except for peaks where
the suppressed noise is significantly larger than the sensing noise. At lower frequencies,
the spectra start to diverge in the opposite direction. At frequencies below 10 Hz, the
sensing noise is of each sensing channel is larger than the error spectrum in the secondary
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sensing channel. In order to understand these regions, we must look at the source of the
sensing noise.
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Figure 3.13.: Sensing noise of different components of the primary RL sensing system.
The blue curve represents noise only due to the demodulation electronics. This was
measured by terminating the photodetector input of the demodulator and taking a
spectrum of the output. The orange curve is taken with the photodetector plugged
into the demodulator, but no light in the system. This represents the full electronic
noise of the system. Finally, the yellow curve is taken with the laser on, but the cavity
significantly misaligned so that no light is resonant in the cavity. This shows the noise
on the light reflected from the cavity, which includes optical sources of noise as well as
the same electronic sources measured in the previous curves. This is the full sensing
noise of the system. This noise has been converted into frequency spectral density by
applying the calibration of of the error signal.

Figure 3.13 shows the sensing noise of the primary detection path as the configuration
gets closer to the full detection system. The blue curve is the noise output of the
demodulator with the input terminated. This is relatively flat except at low frequencies
where it does show a smooth rise at frequencies lower than approximately 10 Hz. The
orange curve is with the photodetector plugged into the demodulator, but there is no
laser light incident on the cavity or on the photodetector. This shows a slightly higher
flat behavior at frequencies larger than 10 Hz, but lower than that the demodulator noise
dominates. This represents the electronic noise of the system. The final, yellow curve
is with the photodetector plugged into the demodulator with the laser on. In order to
not have any signals due to light briefly resonating in the cavity as the laser and cavity
drift, the second mirror of the cavity was significantly misaligned so as not to allow a
closed beam path between the two mirrors. This curve shows a significant amount of
additional noise at frequencies under 50 Hz. Between 10 and 50 Hz, there are some peaks
and below 10 Hz, there is a significant rise. This rise in noise is entirely optical in nature
as the only difference between the red and yellow curves is the laser light.

The behavior is very similar with the secondary detection path in Figure 3.14. The
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Figure 3.14.: Sensing noise produced at different parts of the secondary detection
path. The blue curve represents noise only due to the demodulation electronics. This
was measured by terminating the photodetector input of the demodulator and taking
a spectrum of the output. The orange curve is taken with the photodetector plugged
into the demodulator, but no light in the system. This represents the full electronic
noise of the system. Finally, the yellow curve is taken with the laser on, but the cavity
significantly misaligned so that no light is resonant in the cavity. This shows the noise
on the light reflected from the cavity, which includes optical sources of noise as well as
the same electronic sources measured in the previous curves. This is the full sensing
noise of the system. This noise has been converted into frequency spectral density by
applying the calibration of of the error signal.

primary difference is that the photodetector has a higher level of gain. As such, the
electronic signal from the photodetector for the same measured frequency noise is much
larger. This changes the calibration of the error signal such that the contribution to
the sensing noise due to the demodulator is smaller, even though the electronic noise
from the demodulator is the same for both sensing paths. However, the behavior at low
frequencies is the same for both sensing paths as this noise is from an optical source.
The sensing noise from the detection electronics is not the only source of electronic
noise. In addition to the electronics used for detection and demodulation of the error
signal, there is an additional device used to ensure that the error input to the servo is
centered around the ideal operating point. Though the ideal error signal always is at
zero when the cavity is a perfect resonance, different effects can cause changes to this
and the easiest way to cancel out these effects is to change the offset voltage of the signal
going into the servo with a device known as an offset box. However, the use of additional
electronics can introduce the possibility of extra noise from interference loops from power
sources, or a number of other effects. The noise seen from the demodulator compared
with the demodulator directly plugged into the servo and the demodulator signal running
through the offset box is shown in Figure 3.15. Since this noise is electronic in nature, it
depends on the exact electronic setup and these measurements were not done at either

52



3.3. Green Frequency Control

1O4§ T T T T T
F Demodulator Output
Demodulator Connected to Servo
Demodulator, Offset Box, and Servo
10° ]

ASD (Hz/+/ Hz)

10° 10
Fourier Frequency 2 (Hz)

Figure 3.15.: Electronic noise from electronics to control the offset of the error sig-
nal. These devices are known as offset boxes. All measurements were made with the
input of the demodulator terminated. The blue curve is measuring the output of the
demodulator only, and the orange curve is measuring the input of the servo with the
terminated demodulator connected to it. The yellow curve is measured by plugging the
output of the terminated demodulator into the input of the offset box, and the output
of that offset box to the input of the servo. This shows that the offset box can add a
significant amount of electronic noise when used in a setup similar to the one used for
controlling the optical cavities. This noise has been converted into frequency spectral
density by applying the calibration of of the error signal.

the same time or with the setup used to make the other measurements in this section.
As such, the noise measured here cannot be directly compared with the noise measured
in Figure 3.12. The noise shape is similar in many ways to the additional noise, though
it does not exactly match, and the magnitude of the noise is much larger than would
produce the measured frequency noise. The additional noise in that figure could be due
to this offset box, but it is not definitive.

As a note, the power at the photodetector for all measurements of green light was
between 30 tW and 50 pW, corresponding to a shot noise level <0.01 Hz/ vHz, which is
well below the other sources of noise.

One potential optical cause of sensing noise is residual amplitude modulation (RAM)
from the EOM applying the phase modulation sidebands for the PDH sensing system.
The EOM should have no effect on the amplitude of the beam. However, a number of
effects can cause an amplitude modulation at the same frequency as phase modulation
[57]. This causes changes on the signal present on the photodetector for a perfect PDH
scheme shown in Equation 1.44. The most important change for frequency measurements
is that the terms that are DC in that equation actually have some amplitude modulation
at the modulation frequency applied to the EOM. When the demodulation is applied,
these oscillating terms that are not part of the perfect PDH signal still remain. By this
mechanism, any modulation on the incident power can couple into the error signal. This
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Figure 3.16.: Experimental setup to investigate RAM as an optical source of sensing
noise. This setup compares the optical sensing noise with the photodetector in the
nominal PDH position with the light directly after the EOM. Any RAM should be
present at all points after the EOM.

can be investigated by comparing the sensing noise of the system to the demodulated
input of the optical system. In the case of RAM being the source of the sensing noise,
we would expect this noise to be present at all points after the EOM. An experimental
setup to investigate this is shown in Figure 3.16. A photodetector is placed before the
optical fiber that couples the light into the optical system and compared to the result
when the photodetector is placed in the normal position for PDH sensing.

Figure 3.17 shows the results of the full system sensing noise compared to the de-
modulated noise measured before the optical fiber. The blue curve is the sensing noise
of the full system with the photodector in the nominal position for PDH sensing. The
orange curve is measured with the photodetector before the fiber input to the system
with similar power on the photodector for a direct comparison. The yellow curve is the
same as the orange curve, but with significantly more power on the photodetector. As
the optical signal is proportional to the power on the beam, we expect a higher power
to produce a larger signal for all effects, including RAM, which would help any effects of
RAM to exceed the electronic noise of the system that is independent of optical power.
The purple curve is the electronic noise of the photodetector and demodulator with no
light in the system for comparison.

This measurement shows that, though there is some RAM present in the beam from
the EOM, it is significantly smaller than the noise seen in the system. Another possible
noise source is stray light producing interference on the photodetector at very low levels
compared to the interference from the light in the RC. As the surfaces from which this
stray light is reflecting move, the optical path length changes, which leads to phase
changes between the stray light and the light interacting with the cavity. These phase
changes show up as the frequency noise seen in these measurements. This stray light



3.4. Green Length Control

1025 T L e e s e | T L S, B |

- 5 Sensing Noise Complete System
E Sensing Noise Before Fiber
~ .1 Sensing Noise Before Fiber with High Power
S 10 Ps— Electronic Sensing Noise E
]
c
=
(0]
S
|

10—1 | . . ......|1 ,

10° 10 10

Fourier Frequency €2 (Hz)

Figure 3.17.: Optical sensing noise before and after sensing system. The sensing noise
of the complete system is measured with the photodetector in the standard position
for PDH sensing but the cavity misaligned so light cannot be resonant with the cavity.
The two curves of the noise before the fiber are measured with the light directly on the
photodetector before the fiber to look for RAM from the EOM. The orange curve is
the same amount of power on the photodetector as when it is in the nominal position
for PDH sensing and the yellow curve is with 3-4 times that amount of power incident
on the photodetector so that any optical effects are larger while the electronic noise
stays the same. The electronic sensing noise is with all of the electronic elements in
the setup, but no light in the system.

is reflecting off of many surfaces, and therefore not all of the noise due to this light
is be correlated between the two detectors. All noise present in the primary sensing
path is suppressed, including this stray light noise, which will be imprinted on the light
incident on the cavity. Any of that suppressed noise that is correlated with the noise on
the secondary path will also be suppressed on both paths. Though it is present on the
cavity, the secondary sensing path will not detect it. For noise on the primary sensing
path that is not correlated with the noise on the secondary path, the imprinted noise will
be detected by the secondary path. Finally, noise that is present on the secondary sensing
path that is not correlated with noise on the primary sensing path will be detected by
the secondary sensing path, though it is not present on the light incident on the cavity.
It is possible this light that is correlated between the two paths that causes the noise
detected by the secondary path to be smaller than the noise in either sensing path.

3.4. Green Length Control

The frequency control of the HPL to match the PC allows light to build up to enhance
the probability of axion-like particle generation, and the frequency control of the RL
to match the RC enables sensing of the resonant frequency of the RC. To match the
resonant frequency of the two cavities requires actuating on the length of at least one
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Figure 3.18.: A schematic drawing of the components of the mirror actuator. It
includes from left to right, the mirror mount, three small piezos, a large ring piezo, the
cavity end mirror, a wave washer to provide restoring force, and the retaining ring to
compress the wave washer.

cavity. To this end, it is important to be able to control the length of the cavity, and
optimize that control scheme.

The biggest challenge for length actuation is that the end mirror needs to be relatively
large to accommodate the large beams in the cavities of ALPS Ilc. Moving this mirror
requires imparting more inertia than applying a stress to the laser crystal, and therefore
responds much more slowly than similar changes for the NPRO laser frequency. The
mirror being used for ALPS Ila is similar to the one that will be used in ALPS Ilc and
is 50.8 mm in diameter with a mass of 43 g [46]. The system used to mount the mirror
with a large piezo electric actuator is shown in Figure 3.18 and was custom designed for
use in ALPS ITa and ALPS Ilc. The mount is designed to hold three small piezos that
were intended to actuate on the pitch and yaw of the mirror. Next in the stack is the
ring piezo element for length actuation. Directly next to the piezo is the mirror which
is held against the piezo with a wave washer providing restoring force to the mirror so
that the mirror is constantly pressed against the piezo element both when it expands
and when it contracts. Finally, all of the elements are held in place with a retaining
ring that is screwed into place to provide an initial compression of the wave washer to
increase the restoring force. These elements provide actuation of the cavity mirror for
use in the length control system. Further discussions of the design of this actuator and
an iteration on this design can be found in Section 3.5.

Since it is larger and more massive, thus making it much slower, it is likely that
this actuator will limit the performance of the system much more than the frequency
actuator did. Understanding how much it will limit the performance requires measuring
its transfer function in the relevant environment. In order to achieve this, we used
the frequency control system as a probe for the cavity length. The control signal of this
system below the unity gain frequency reflects the majority of the cavity disturbances. So
by inducing a length disturbance at different frequencies by driving the mirror actuator
at those frequencies and comparing the control signal to the signal driving the mirror,
we are able to know what the motion of the mirror actuator induced by the input signal
is.

56



3.4. Green Length Control

Liquid
Instruments

Y

Primary

D
Modulation Modulation
3.5 MHz out In

Demodulator

Modulation In

PDH In  Error

V Primary out V
Pound Drever Hall Signal ‘
Frequgncy uSecondary >
Laser Doubling 0] Cavity Secondary
Crystal o PD U 9.2m ['j <
BS Mirror .
Laser oM Actuator High Voltage
Temperaturg] = Amplifier V
Temperature
Control Error
Out Temperature lSnervo D [
Servo SR785

Figure 3.19.: Schematic of length control with digital filtering. This is similar to
the schematic shown in Figure 3.9 with a few differences. The first difference is the
inclusion of the Liquid Instruments Moku Lab between the demodulator output and
the servo input. This filters the error signal to reduce the effect of cavity resonances.
The second major difference is that the control signal is being sent through a high
voltage amplifier to the mirror actuator rather than being sent to the laser frequency
actuator.

The results of this measurement are shown in the blue curve in Figure 3.20. The first
resonance in this transfer function is located at 4.88 kHz with a larger one at 5.3 kHz.
These resonances significantly limit the proportional gain of the system. Using a servo
with a 1/f gain slope near the unity gain frequency, the best unity gain frequency
achieved with these resonances is 900 Hz. However, there is a significant phase margin.
This phase margin remains at much higher frequencies, which allows additional filtering
to allow us to increase the proportional gain and achieve a higher unity gain frequency. In
this instance, the significantly higher granularity and precision available in digital filters
over analog electronics makes a digital system the preferred option for this application.

For this control system, we defined the filter in a Moku Lab FPGA-based system
produced by Liquid Instruments which filtered the error signal before being fed to the
length servo which provided the additional filtering necessary to generate the control
signal. The schematic of this control scheme is shown in Figure 3.19. After generating
the control signal, it is split and sent to the temperature frequency-actuator of the
laser control as with the frequency control schemes in Figures 3.3 and 3.9, which should
increase the dynamic range but will not be possible in the length control system in
ALPS Ilc which must actuate entirely on length. A system for high dynamic range
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length actuation was not installed in ALPS Ila at the time of these experiments, so
the temperature was used instead. The control signal path that is not sent to the
temperature control system is sent through a high voltage amplifier in order to generate
the voltages required to generate motion of the end mirror.
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Figure 3.20.: The transfer function of the mirror actuator resonance compensation.
The uncompensated transfer function has the first resonance located at 4.88 kHz with a
larger one at 5.3 kHz. The filter was uploaded to the Liquid Instruments Moku Lab and
applied to the error signal before being sent to the length control servo, and results in
the orange transfer function. The resonances are much smaller and there is some phase
loss from the compensation. Both transfer functions were measured by engaging the
control loop discussed in Section 3.3 and comparing a swept sine sent to the high voltage
amplifier connected to the mirror actuator to the control signal of the frequency control
loop at those frequencies. The measurements were made with an averaging factor of
100 and an input of between 0.1 mV and 50 mV peak-to-peak.

Zeros

Poles

—4850 Hz(0.010 — 1.0007)

—5000 Hz(0.021 — 1.0317)

—5250 Hz(0.008 — 1.0007)

—5750 Hz(0.038 — 1.0957)

—6150 Hz(0.018 — 1.0007)

—6500 Hz(0.084 — 1.0541)

—17700 Hz(0.100 — 0.9957)

—17700 Hz(0.981 — 0.1967)

Table 3.1.: Zeros and poles for mirror actuator resonance compensation. The complex
conjugates are omitted.

The filtering provided by the Moku should reduce the gain at resonances to counteract
the increased response at those frequencies, and use any parts where there is lower
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Figure 3.21.: Comparison of length control open-loop transfer function with and
without compensation. The uncompensated system was able to achieve a unity gain
frequency of 900 Hz and the compensated system was able to achieve a unity gain
frequency of 3.9 kHz. Both transfer functions were measured by injecting a swept sine
on the control signal before the high voltage amplifier and comparing the control signal
with the swept sine to the control signal right before the swept sine was injected. The
measurements were made with an averaging factor of 100 and an input of between
0.1mV and 5mV peak-to-peak.

response to introduce an additional resonance to limit the phase lag. The poles and
zeros used to define this filter are shown in 3.1 with the complex conjugates omitted.
They were determined by tuning the frequency and the size of the real part of the
coefficients in order to achieve the maximum suppression of the resonances while still
maintaining enough phase margin at the unity gain frequency. When the driving signal
to the piezo is fed through this filter, we end up with a much flatter transfer function
compared to the original. Both transfer functions are shown in Figure 3.20. There is
some phase loss from the compensation, but there is still enough phase for a 1/f slope
at the unity gain frequency. Using this compensation, we are able to achieve a unity
gain frequency of 3.9 kHz with a phase margin of 32°. The open-loop transfer functions
of the uncompensated and compensated control systems are shown in Figure 3.21. The
compensation of the resonances is not completely perfect, so though the size of them is
greatly reduced, they are not completely eliminated. This means that the proportional
gain cannot be turned up past the point where these resonances end up above unity
gain in the transfer function without introducing a significant amount of noise due to
uncontrolled oscillations at these resonance frequencies. As such, the proportional gain
cannot be turned up to the point where the phase margin available at the unity gain
frequency results in a noticeable servo bump. For this reason, the phase margin is larger
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than it would otherwise need to be in order to prevent the oscillations around the unity
gain frequency because we are limited instead by the resonances of the mirror actuator
that are not perfectly compensated by the Moku filtering.
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Figure 3.22.: Control and error spectra for length control without compensating for
actuator resonances. The control signal is the signal sent to the high voltage amplifier
that is then sent to the mirror actuator. One of the error signals is the signal sent to the
control electronics and the other one is processed in the same way but measured by a
separate photodetector as shown in Figure 3.19. The noise seen at lower frequencies in
the control signal is primarily caused by movements of the cavity mirrors, whereas the
higher frequency noise is caused by laser frequency noise. The unity gain frequency is
where the signals cross. The uncompensated mirror actuator resonances in Figure 3.20
can be seen in both the control and error signal. The internal noise of the SR785
measurement system is also shown and limits the measurement of the control signal at
high frequencies and the primary path error signal at low frequencies.

The control and error spectra for the uncompensated system are shown in Figure 3.22.
Just as in Figure 3.11, the blue curve shows the control spectrum, and the orange and
green curves show the primary and secondary PD error spectra, respectively. Finally,
the measurement limits of the SR785 for the control spectrum are shown in yellow and
the error spectrum are shown in purple. Since there is not as much gain as with the
frequency control system in Section 3.3, the sensing noise does not limit the suppression
seen in the secondary sensing path except at frequencies below 20 Hz.

The Moku adds noise to the system both from its ADC and digital to analog converter
(DAC). Unlike the DAC noise for a completely digital control system, this DAC noise
is on the error point of the servo and is therefore not suppressed by the control system
but is instead imprinted on the plant. It is important to understand the noise of a
system using the Moku as a filter compared to the analog system noise as well as any
extra noise that it introduces. The noise from each source is shown in Figure 3.23.
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Figure 3.23.: Sensing noise produced by the analog and digital parts of the error path.
The blue curve is the full analog sensing noise measured by taking the output of the
demodulator with the laser on, but the cavity significantly misaligned so that no light is
resonant in the cavity. This shows the noise on the light reflected from the cavity, and
all electronic sources of noise. The orange curve is the noise of the Moku including the
ADC, DAC, and any internal noise sources. This was taken by terminating the input to
the Moku and measuring the output. Finally, the yellow curve is the combination of all
noise sources. This was taken by connecting the full sensing primary path, including
the Moku, and measuring the output with the laser on, but the cavity significantly
misaligned so that no light is resonant in the cavity. This should include all optical
and electronic sources of noise. This noise has been converted into frequency spectral
density by applying the calibration of of the error signal.

These noise measurements are for the noise on the input of the control servo, after any
Moku filtering. For this reason, the analog sensing noise has the filtering and some
gain applied to it to simulate what the sensing noise would look like for an analog filter
implementation. The full noise of the system, however, exceeds the noise of the Moku
combined with the analog sensing noise at frequencies above approximately 10 Hz. This
is likely due to the same offset box discussed in the previous section.

The control and error spectra for the compensated system are shown in Figure 3.24.
The curves shown are very similar as those in Figure 3.22, but with more gain provided
by the higher proportional gain available with the reduction of the resonances. Just as
with the uncompensated system, the secondary path spectrum only diverges from the
primary path spectrum at frequencies below 20 Hz. For all other frequencies, the system
is limited by gain more than it is limited by the sensing noise of the system. This can be
more clearly seen in Figure 3.25, comparing the error spectra from the different detection
paths with the sensing noise of those paths. We can see that both error spectra are much
larger than the sensing noise for all frequencies above 20 Hz.

The higher proportional gain achieved with digital filtering more than counteracts the
increased noise by using the Moku, as the noise added by the Moku does not significantly
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Figure 3.24.: Control and error spectra for length control after compensating for
actuator resonances. The control signal is the signal sent to the high voltage amplifier
that is then sent to the mirror actuator. One of the error signals is the signal sent to
the control electronics and the other one is processed in the same way but measured by
a separate photodetector as shown in Figure 3.19. The noise seen at lower frequencies
in the control signal is primarily caused by movements of the cavity mirrors, whereas
the higher frequency noise is caused by laser frequency noise. The unity gain frequency
is where the signals cross. The differences above the unity gain frequency between the
primary and secondary error signals is due to the compensation being applied only to
the primary path signal. The internal noise of the SR785 measurement system is also
shown and limits the measurement of the control signal at high frequencies and the
primary path error signal at low frequencies.

contribute to the error spectrum measured with the compensated system. The error
spectra from the secondary detector for the systems with and without digital filtering
along with the RMS calculated from these spectra are shown in Figure 3.26. This RMS
is calculated from the spectral density by numerically integrating the spectrum with
respect to the frequency. This integration can be done to only include frequencies from
oo down to the Fourier frequency, €2, giving the RMS as a function of frequency. The
physical significance of this frequency is that it is the RMS over a duration of 1/.
Additionally, this method can provide information on what features in the amplitude
spectral density contribute the most to the RMS. The RMS of the spectrum for the
system without any filtering for compensation is 5.1 kHz. When filtering is applied using
the Moku, the RMS of the spectrum is 1.1kHz. This represents a reduction of more
than a factor of four by introducing digital compensation. Both systems are primarily
limited by the amount of gain that they are able to provide except at frequencies below
20 Hz.

Though these measurements were conducted using the ALPS IIa RC, the ALPS Ilc
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Figure 3.25.: Sensing noise compared to primary and secondary error spectra for
compensated length control system. The error spectra are the same as shown in Fig-
ure 3.24 and are measured the same way. The primary sensing path noise is the same as
shown in Figure 3.23 and is measured the same way. The secondary path sensing noise
is the full noise measured by the secondary sensing path with the cavity significantly
misaligned so that no light is resonant in the cavity. This should include all optical
and electronic sources of noise. This noise has been converted into frequency spectral
density by applying the calibration of of the error signal.

scheme intends to actuate on the length of the PC. In order to determine whether either
of these systems are able to provide sufficient suppression for use in the ALPS IIc PC, we
need to project the performance onto that system. The motion of the ALPS Ilc site is
similar to that of the ALPS Ila site [58], so the disturbances of the ALPS Ilc cavities will
be similar to those in ALPS ITa. Therefore, the noise of control systems in ALPS Ila can
be projected onto the cavities of ALPS Ilc. The first step is to apply the adjustment of
the frequency noise of the ALPS Ila cavity to the ALPS Ilc cavity in Equation 1.65. This
shows the differential frequency noise expected between the ALPS Ilc PC and RC if this
were the system suppressing that differential noise in the PC. As the light circulating
in the cavity is green light as a result of frequency doubling the IR light, any frequency
noise for this light has an additional factor of two compared to the IR light that must
be removed by dividng the spectrum by that factor of two.

Once the frequency noise of the frequency doubled RL circulating in ALPS Ila RC is
projected onto the HPL light circulating in the ALPS Ilc PC, we can then determine
the power loss in the frequency overlap parameter due to the dynamic frequency noise
measured. This is done by using Equation 1.61 where A is the spectrum of the frequency
noise projected to be present in the ALPS Ilc PC. Applying this equation is the same
as calculating the RMS of the frequency noise filtered by the low-pass behavior of the
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Figure 3.26.: Comparison of error spectra between compensated and uncompensated
length control. The uncompensated spectrum is the secondary sensing path spectrum
in Figure 3.22. The compensated spectrum is the secondary sensing path spectrum
in Figure 3.24. The dashed lines are the cumulative RMS calculated for each spec-
trum. This RMS totals 5.1 kHz for the uncompensated system and 1.1kHz for the
compensated system.

cavity, so this RMS can be calculated in the same way as in Figure 3.26 by numerically
integrating from oo to €2 to show the impact of various features in the spectrum on the
RMS.

The corner frequency of a cavity is Afpeqr/2, and Afpeqr for the ALPS Ilc RC is
calculated in Section 1.5 to be 30 Hz, making the corner frequency 15 Hz. In addition to
applying the low-pass effects of the cavity pole, the frequency conversion from ALPS Ila
to ALPS Ilc is done, and the spectrum is divided by a further factor of 2 to give us the
noise of the infrared light. The results are shown in Figure 3.27. As with Figure 3.26,
the blue solid curve is the frequency noise of the uncompensated system and the blue
dashed curve is the integrated RMS of that system. The orange curve is the frequency
noise of the compensated system, and the orange dashed curve is the integrated RMS of
that system.

The solid black line shows the ALPS Ilc requirement of 3.0 Hz, as discussed in Sec-
tion 1.5. The integrated RMS of the uncompensated system is 9.8 Hz, which is several
times larger the requirement. The integrated RMS of the compensated system is 1.0 Hz,
which exceeds the requirement by more than a factor of 2.

It is clear that the primary driver of the RMS of both systems is the peak at 180 Hz.
This could be further improved by the implementation of resonant gain, at the cost
of phase lag near the resonance. Since the unity gain frequency of the compensated
system is more than an order of magnitude larger, this phase lag due to the resonance
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Figure 3.27.: Projection of compensated and uncompensated length control onto the
coupling between the two cavities of ALPS Ilc. The spectra projected are the two
shown in Figure 3.26. The spectra are converted into the expected spectra for IR light
by dividng by a factor of two, and then projecting the ALPS ITa RC noise onto the
ALPS Ilc PC by dividing by the ratio of the two cavity lengths. Finally, Equation 1.61
is applied where A is the spectrum of the frequency noise projected to be present in the
ALPS Ilc PC which is the same as calculating the RMS of the frequency noise filtered
by the low-pass behavior of the cavity. As such, this cumulative RMS is displayed by
the dashed lines. Additionally, shown in black is the ALPS Ilc requirement of 3.0 Hz.
The RMS for the uncompensated length control is 9.8 Hz which does not meet the
requirement, but the RMS for the compensated length control is 1.0 Hz which does
meet the requirement.

should not contribute significantly to the phase margin of the system. Additionally, this
resonant gain is unnecessary for the compensated system as it exceeds the requirements
without it, whereas the uncompensated system would not meet the requirements even
with additional gain at 180 Hz.

3.5. Mirror Actuator Design

The requirements of the end mirror actuator for ALPS Ilc include a large clear aperture
on both sides of the mirror while maintaining a high bandwidth of actuation. There
were no commercial mirror actuators that provided these requirements, so a custom one
was required. As discussed in Section 3.4, the mirror used for the ALPS Ila system has
a diameter of 50.8 mm and a mass of 43 g [46], with similar physical dimensions expected
for the mirrors in ALPS Ilc. The force for the actuation is provided by a custom ring
piezo from PI with an outer diameter of 56 mm, an inner diameter of 38 mm, and a
thickness of 7mm. This ring piezo allows a laser to couple light into the cavity through
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the center portion of the mirror.

For the first iteration of the mirror, it was planned to additionally have 3 rectangular
piezos around the edge of the ring to actuate on the angle while the ring piezo actuates
on the position. The concept of the actuator was that the smaller piezos would sit in
pockets machined into the mount. The ring piezo would then be placed against those
piezos and the mirror would be stacked directly against the ring piezo. The restoring
force was provided by a wave washer that would be compressed by a retaining ring. The
ring piezo is larger than the mirror, meaning the mount needed to be wide enough to
accept the ring piezo. To ensure that the mirror was centered in the mount, the retaining
ring also had a pocket machined into the inside that was just big enough for the mirror
to fit into it.

The schematic drawing of this stack, as well as the results from using this actuator
are found in Section 3.4 and will be referred to as the 3-axis actuator, as it was intended
for motion in three axes. Unfortunately, the small piezos included to actuate on the
angle did not have sufficient actuation range to produce useful angular actuation, so
that functionality was not continued in the second actuator design.

Figure 3.28.: A schematic drawing of the components of the mirror actuator with a
mirror holder. It includes from left to right, the mirror mount, a large ring piezo, the
mirror holder assembly, a wave washer to provide restoring force, and the retaining ring
to compress the wave washer.

A second actuator was designed to test whether force being exerted directly onto the
mirror was causing deformations or other effects and generally to minimize the amount
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3.5. Mirror Actuator Design

Figure 3.29.: A schematic drawing of the components of the mirror holder assembly.
It includes from left to right, the mirror holder, the cavity end mirror, a wave washer
to avoid wavefront distortion in the mirror, and the retaining ring to hold the assembly
in place.

of force directly on the mirror in order to protect it from damage. For this mount, it
was important that the mirror was insulated from the actuation force. The actuator is
shown in Figure 3.28, which includes a mirror holder assembly shown in Figure 3.29.
The piezo element in this case now rests directly against the mount, and pushes on
the mirror holder assembly. A retaining ring still provides restoring force, but against
the mirror holder rather than the mirror itself. Finally, a retaining ring provides the
initial compression. The mirror holder assembly features a cup for the mirror, the cavity
mirror itself, a wave washer, and a retaining ring. The key feature is the mirror holder
that insulates the mirror itself from the direct pressure of the piezo and the restoring
wave washer. There is another wave washer in the mirror holder assembly, but rather
than providing the restoring force, it transfers the force of the mirror holder retaining
in a more controlled and gentle manner than if this retaining ring were pressing directly
against the mirror to prevent distortions of the mirror surface. Additionally, as the
mirror is insulated from the direct forces of the piezo and the restoring wave washer, the
force applied to the mirror is a constant one and does not depend on the position of the
actuator. This actuator will be referred to as the mirror holder actuator.

As the mirror holder is heavier than just a mirror, the system will not be able to
achieve the same level of performance. The mass of the mirror holder assembly is 74.8 g,
compared to the 43 g of the mirror itself. Figure 3.30 shows the first resonances of each
actuator. We see that the first resonance of the 3-Axis actuator was 4.88 kHz, while the
first resonance of the mirror holder actuator is 3.0 kHz. The expectation of a simplified
mass on a spring is given by
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Figure 3.30.: Transfer function of 3-mxis and mirror holder actuators. The first
resonance of the 3-axis actuator is 4.88 kHz, while the first resonance of the mirror
holder actuator is 3 kHz. Both transfer functions were measured by engaging the control
loop discussed in Section 3.3 and comparing a swept sine sent to the high voltage
amplifier connected to the mirror actuator to the control signal of the frequency control
loop at those frequencies. The measurements were made with an averaging factor of
100 and an input of between 0.1 mV and 50 mV peak-to-peak.

w= X, (3.5)

m

where k is the spring constant, and m is the mass. From this model, one would expect
a change of only the square root of the mass ratio, which would lead to a first resonance
of the mirror holder of ~3.7kHz. The second resonance change is much closer to the
expectation, with the second resonance of the 3-Axis mount being located at 5.3 kHz and
the second resonance of the mirror holder mount located closer to the expected ~4.0 kHz
at 4.2kHz, which is slightly higher. Since the first resonance has shifted much more than
the second, it is unlikely that both of these shifts were solely due to the extra mass.

As we examined in Section 3.4 with the 3-Axis actuator, this resonance limits the
unity gain frequency of length control. The unity gain frequency of the 3-Axis actuator
with the resonance at 4.88 kHz was 3.9kHz. We should expect a similar relationship
between the achievable unity gain frequency and the location of the first resonance with
the mirror holder actuator. This unity gain frequency change can be accomplished with
new filtering coefficients for the actuator resonances and a reduction of proportional
gain. A factor of 2 decrease in proportional gain should lead to a factor of 2 increase in
the suppressed noise of the system. The projected RMS noise of the compensated length
control system in the previous section is 1.0 Hz, so the mirror holder actuator should
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be able to achieve 2.0 Hz RMS projected noise. More investigation using this mirror
actuator in a length control system would provide more concrete results. The benefit of
this actuator is that the mirror will not experience any differences in pressure due to the
actuation, which will limit any deformation of the surface and any other effects due to
the forces involved, as well as limiting the potential for any damage to the mirror from
these large forces.

3.6. Conclusions

In this chapter, the existing, analog systems in the ALPS Ila RC are characterized.
These systems all maintain resonance between the cavity and the input laser, either
by actuating on the laser frequency, or the length of the cavity. The frequency control
systems are for the IR light from the HPL, and for the green light from the frequency-
doubled RL. The length control system uses a custom designed actuator to ensure that
the green light from the RL is resonant in the cavity.

Direct comparison between the frequency control systems and the ALPS Ilc require-
ments is not possible as the control architecture will feature higher bandwidth loops
using additional actuators for further suppression [43]. Loops using electro-optic mod-
ulators have demonstrated significant additional suppression compared to those using
only the piezo-driven frequency control systems [59]. The understanding of these loops
is most important in understanding their limitations and the noise present. The per-
formance of these loops can be an excellent point of comparison with digital frequency
control systems.

In addition to the frequency control loops, the length control loop is important for the
frequency overlap between the two cavities in the ALPS Ilc experiment. In this case, the
actuator and control system implemented in ALPS Ila is very similar to the actuator
and control system that will be used for ALPS Ilc and the noise suppression possible
with this system can be projected onto the ALPS Ilc system. This length control system
should meet the requirements discussed in Section 1.5, with either of the two presented
actuator concepts.

With a baseline established, the next chapter will discuss the use of digital systems
for frequency control of the RL to match the resonance of the cavity and will compare
those results with those presented in Section 3.3.
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With the cavities and current control systems of ALPS Ila characterized for the mostly
analog control systems, the difference in performance of the cavities with a digital control
system can also be investigated. In this chapter, we will discuss the digital architecture
used for the control systems, as well as a digital system replacing the servo and a digital
system replacing most of the sensing system as well as the servo.

4.1. Digital Architecture

Implementation of a digital system requires hardware, firmware, and software. The
hardware is necessary to digitize signals, execute any calculations necessary to implement
the desired servo, and generate a signal afterwards. Firmware instructs the hardware
what actions to take, including any algorithms so that the hardware can complete the
calculations as quickly as possible. Finally, the software allows the user to interface with
the system to define certain parameters in the firmware to change the behavior of the
hardware.

The requirements for the hardware include analog to digital converters to read-in data,
high input and output rates, and a digital to analog converter to output data. These
requirements are all fulfilled by a field programmable gate array (FPGA), which are
very well suited to digital signal processing. The Moku Lab mentioned in Section 3.4
is a commercial FPGA with a number of user-friendly filtering options. However, with
commercial devices, it is often difficult to address any problems that are unique to the
ALPS experiment and it can often be difficult to determine exactly what the device is
doing without collaboration with the developers. As such, all digital control systems
used in this thesis are implemented on an FPGA system with software and firmware
developed by Deutsches Elektronen-Synchrotron (DESY) personnel.

Standalone FPGAs are available commercially, and often excellent for some applica-
tions. However, with the possibility of needing several FPGAs to implement full control
of the ALPS II experiment that each would need to communicate with each other in
real time at high speed, a solution easily providing this communication was needed.
Several FPGA-based control systems at DESY use the MicroTCA (mTCA) standard,
which features a number of communication options between cards in the same crate as
well as cards in other crates [60]. This standard and the FPGA systems available for
it is well-understood by the firmware development group at DESY. As a modular, open
system architecture, it allows for many different customization and future replacement
options without the need for expensive, custom hardware development. As such, this
architecture was chosen for digital control systems.
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The primary functional component of the mTCA architecture is the advanced mezza-
nine card (AMC), with the other components providing housing, communication, power,
control, etc. of the AMCs. The AMC selected for this control system is the Struck
SIS8300 digitizer, which has high speed ADCs and DACs, and an optional FPGA. In
addition to the FPGA, ADC, and DACs in the AMC, the MTCA .4 version of the stan-
dard allows for each AMC to have a rear transition module (RTM) that interfaces only
with it [61]. The function of these RTMs is to provide enhanced functionality to the
AMC s, such as signal conditioning, analog demodulation, and high voltage supply for
driving piezos. For this system, we use the Struck SIS8900 RTM to provide a physical
interface for LEMO cables carrying the signals to the FPGA.

The firmware for the controllers using this FPGA largely re-uses modules developed
for other FPGA-based control systems at DESY. These modules are combined in ways
that are unique to the ALPS II experiment. Despite the many advantages of this re-use,
not all functions required were provided by existing modules, and as such there are some
new modules developed specifically for use with ALPS II. Any development necessary to
combine existing modules as well as programming new ones for the firmware used was
done by Lukasz Butkowski of the Maschine Strahlkontrollen department at DESY.

This firmware allows for the change of some register values to change the behavior of
the controller. For example, the input gain and controller parameters can be changed
by writing new values to the relevant registers. The controller architecture is almost
exclusively a 6x6 state space model. Both continuous and discrete time state space
models are discussed in Appendix A. As mentioned in Chapter 2 and Appendix A, this
corresponds to a maximum of 6 poles and zeros or a sixth-order transfer function to set
the frequency-dependent behavior.

The software for interfacing with the firmware in order to turn the control on or off,
adjust the proportional gain, upload new coefficients to the system, or any other actions
that a user might wish to do was done in MATLAB App Designer. This allows interaction
simply by changing the values in user-editable fields, clicking on digital switches, and
loading external files containing controller parameters. This also allows input and output
data to be read from the FPGA and displayed on the screen, giving the user some insight
as to the current behavior of the control system. This software was run on a computer
on an AMC that was housed in the same mTCA system as the FPGA.

4.2. Frequency Control with a Digital Servo

The first test of a digital control system is simply replacing the analog servo with a
digital system. A schematic for this system is shown in Figure 4.1. The only difference
between this and the green frequency control system in Figure 3.9 is that the servo is
now an FPGA in a mTCA system. Not pictured in this schematic is an analog amplifier
necessary to expand the dynamic range of the control signal. The DAC can only output
41V, which is not sufficient to drive the laser frequency piezo enough to compensate for
the cavity disturbances. The amplifier used is a SR560 low noise voltage amplifier which
can provide +5V output. Therefore, the control signal was amplified by a factor of 5
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Figure 4.1.: Schematic of a feedback control system with a digital servo. This setup
is otherwise identical to the feedback control system in Figure 3.9.

to generate sufficient output to control the cavity. This amplifier is used for all systems
where a digital system is generating the control signal. Additionally, though the control
signal is generated by a digital servo, the temperature control signal is still generated by
an analog temperature control servo.

The open-loop transfer function of this system compared to the open-loop transfer
function of the analog green frequency control system is shown in Figure 4.2. The slope
of the transfer function for the digital servo is slightly shallower than the slope of the
analog servo, netting less phase lag. However, these differences are not very large and
demonstrate a very similar performance of both systems. The additional phase lag from
the processing time of the digital servo does not cause a large loss of performance at the
frequencies used for this control system.

The control and both error spectra, as well as measurement limits are shown in Fig-
ure 4.3. The blue control spectrum is very similar to that of the analog frequency control
system shown in Figure 3.11, as the plant in both control systems is the same. In this
case, though, both the primary and secondary error sensing paths are well above the
measurement limits shown in purple, which does not contribute much to the measure-
ment of the error spectra. Both sensing paths are very similar, which is due in large
part to the source of the sensing noise for this system.

The sensing noise at different points in the system from different sources is shown in
Figure 4.4. We see the electronic noise from the demodulator and photodetector exceeds
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Figure 4.2.: Open-loop transfer function of green frequency control with analog and
digital servos. The unity gain frequency of the analog frequency control system is
28 kHz with a phase margin of 17° compared to the digital servo system that has a
unity gain frequency of 27 kHz and a phae margin of 29°. Both transfer functions were
measured by injecting a swept sine on the control signal and comparing the control
signal with the swept sine to the control signal right before the swept sine was injected.
The measurements were made with an averaging factor of 100 and an input of between
0.1mV and 5mV peak-to-peak.

the noise from the FPGA ADC at frequencies over 100 Hz, with the ADC having an
approximately 2Hz/vHz - (1vHz/\/f) slope across the whole frequency range. This
indicates that the ADC will only contribute significant noise at lower frequencies, since
at 1kHz, the noise contribution from the ADC is an order of magnitude lower than the
noise contribution from the analog sensing electronics. However, we see that the full
system electronic noise is much larger than the demodulator noise and the ADC noise.
This excess is seen across the full frequency spectrum recorded except extremely low
frequencies (< 1Hz) and very high frequencies (> 20kHz) and is possibly due to the
offset box discussed in Section 3.3 that was also a part of this setup. This electronic
noise is the dominant contributor to the sensing noise of the system, as the purple curve
showing the full sensing noise including optical sources is identical to the electronic noise
at all frequencies except a small difference at frequencies below 5 Hz.

This electronic noise is added after the error spectrum in the primary sensing path is
measured. This measurement was made immediately after the demodulator and before
other electronics as their contribution to sensing noise was not considered until much
later. As such, that error point noise is not present on the measured spectrum. So when
the loop suppresses the electronic noise, imprinting it onto the cavity, this imprinted
noise is measured despite it being the in-loop sensing path. If the digital error spectrum
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Figure 4.3.: Control and error signal with FPGA as digital servo. The control signal
is the signal sent to the laser piezo. One of the error signals is the signal sent to the
control electronics and the other one is processed in the same way but measured by a
separate photodetector as shown in Figure 4.1. The noise seen at lower frequencies in
the control signal is primarily caused by movements of the cavity mirrors, whereas the
higher frequency noise is caused by laser frequency noise. The unity gain frequency is
where the signals cross. The rise near that frequency is known as a servo bump and is
due to oscillations in the control loop. The internal noise of the SR785 measurement
system is also shown and limits the measurement of the control signal at high frequencies
but does not limit the measurement of the error signal.

were measured, it would be much lower as all of the electronic noise would be suppressed
by the gain of the control system. Unfortunately, the FPGA is not able to store long data
strings and continuous read-out of the digital data is a significant technical challenge.

One final source of error is the quantization error discussed in Section 2.5. Calculated
according to Equation 2.37, using an input range of 1V, a 16-bit ADC, and an effective
sample rate of 3.5 MHz, the quantization noise should be at a level of 6.7nV/ VHz across
the full spectrum. When the conversion between voltage and frequency for this setup is
applied, the frequency noise is 3.7 mHz/ vHz, which is well below all of the other noise
sources.

Figure 4.5 shows a comparison between the error spectra for the primary and secondary
path, as well as the sensing noise for each path. The secondary path is entirely analog and
has no offset box between the demodulator and the measurement system, and therefore
does not have any extra noise from either the offset box or the FPGA system. The
main contributor to both the primary and secondary error spectrum for the majority of
frequencies is the sensing noise in the primary sensing path. Some noise peaks are above
the primary path sensing noise, but the majority of the spectra are nearly identical.

The main region where the spectra are larger than the sensing noise is close to and
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Figure 4.4.: Sensing noise of primary error signal path with FPGA as digital servo.
The blue curve is the same electronic noise measured in Figure 3.13 with the photode-
tector and demodulator. The orange curve is measured by terminating the input to
the FPGA system and measuring the output with a large amount of gain in the digital
system. This is so that the amplified FPGA noise of the ADC is much larger than the
DAC noise so that both are not measured. The yellow curve is with the system con-
nected but no light in the system. The FPGA gain is again large to minimize the effects
of the DAC. The purple curve is the same electronic setup as the yellow curve, but with
light in the system and the cavity significantly misaligned so there is no resonance. Just
as with the yellow and orange curves the FPGA gain is again large to minimize the
effects of the DAC. The purple curve represents the full electronic and optical sensing
noise of the system. This noise has been converted into frequency spectral density by
applying the calibration of of the error signal.

above the unity gain frequency. Above 10kHz, the primary path sensing noise falls off
dramatically, and the error spectra are both suppressed by a much smaller amount than
at lower frequencies as this is where the transfer function gain is close to 1. Additionally,
the servo bump adds additional noise in the error spectra that drives it well above the
sensing noise. At low frequencies, the secondary path error spectrum is not exactly as
expected if all of the noise sources were perfectly uncorrelated. This is the likely same
effect as is found in the green analog frequency control in Section 3.3.

Figure 4.6 shows these error spectra of the two systems through the secondary sensing
path as well as the RMS of this error signal starting at 10kHz. The most notable
differences are the higher noise floor and peaks due to the sensing noise of the digital
servo system, indicating that the offset box is adding significantly more noise at the
input of the digital servo compared to the analog servo. Both the noise floor and the
peaks are approximately a factor of five larger between 100 Hz and 10000 Hz. Though
the offset box is believed to be the cause of this noise for both systems, it contributes
much more to this digital servo. One potential cause of this is the sensitivity of the noise
on the electrical connections of the system, and they are significantly different when

75



Chapter 4. Digital Frequency Control

T T T T T TTT T T T T 7T T T T T T T T T V7T
3 Primary Path Error Signal |
10°F Secondary Path Error Signal | E
F Primary Path Sensing Noise
— Secondary Path Sensing Noise ’ " |
E 102 g_ . | I | 3
~ | | | \\I‘Ill
N B "
z . | | “ | "'rw
) 10° N | ﬂ M‘\‘\‘ | !
2 | L J ’L 'Wﬁ sk,
WA
100 E
| .
10—1 | raal | 1l |
10° 10t 10% 10° 10* 10°

Fourier Frequency €2 (Hz)

Figure 4.5.: Primary and secondary error spectra compared with sensing noise. The
primary and secondary error spectra are the same as shown in Figure 4.3 and the
primary sensing path noise is the same as shown in Figure 4.4. The secondary sensing
path is the noise measured by the secondary sensing path with light in the system
but the cavity misaligned such that light cannot be resonant with the cavity. This
should represent the full electrical and optical sensing noise for the secondary sensing
path. This noise has been converted into frequency spectral density by applying the
calibration of of the error signal.

using a digital servo compared to an analog servo. The shape of the servo bumps are
also significantly different. The RMS of the error signal with the fully analog system is
1100 Hz of suppressed frequency noise with the primary driver of this being the servo
bump. The RMS of the error signal with the digital servo is 1900 Hz. The vast majority
of the contribution to the RMS of the analog system is from the servo bump, while
the digital servo system has much more contribution from the noise, despite attempts
to keep the servo bump a consistent size between measurements. This result indicates
that there is improvement to be made in optimizing the proportional gain level for
each system. For this reason, the RMS shown is only calculated starting at 10kHz to
reduce the effect of the servo bump. The RMS for the analog system starting at this
frequency is 310Hz, which further underscores that the servo bump is the dominant
contributor. The main contributors to the RMS other than the servo bump are the
noise peaks at 50 Hz and its harmonics. The RMS for the digital servo without the servo
bump is 1500 Hz, which shows that the total RMS is mostly driven by noise sources
below 10kHz. Just as with the analog system, these are mostly 50 Hz noise peaks and
harmonics, and the approximate factor of five difference between the two spectra shows
up in this RMS calculation. Reducing the sensing noise would provide a performance
increase and contribute to closing the performance gap between the two systems. Even
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Figure 4.6.: Error spectra of secondary sensing path comparing analog servo to digital
servo performance. The digital servo spectrum is the secondary sensing path spectrum
shown in Figure 4.3 and the analog servo spectrum is the secondary sensing path
spectrum shown in Figure 3.11. Additionally shown are the calculated RMS of each
curve without including the servo bump, which is very sensitive to the exact phase
margin of the system. The RMS of the system with a digital servo is 1500 Hz, which is
primarily driven by large peaks at 50 Hz and harmonics. The RMS of the system with
a analog servo is 310 Hz, also driven mostly by the noise peak at 50 Hz.

without that improvement, the two systems have similar performance.

4.3. Fully Digital Frequency Control System

It is also possible to have most of the sensing system be digital. Given the electronic
sensing noise seen with the hybrid system using analog demodulation and digital servo,
doing this may provide a significant performance increase. In this case, the modulation
generation, demodulation, and servo can all be provided by a digital system. A schematic
of this setup is shown in Figure 4.7. In this setup, the modulation is output to both
the EOM and to an analog demodulation system to be the secondary sensing path. The
digital system then reads in the raw photodetector signal and performs the demodulation
digitally, comparing it to the digital modulation to generate the demodulated error
signal. This digitally-demodulated signal then goes into the digital servo to generate the
control signal. As with the analog/digital hybrid system, extracting the in-loop signal
being used by the digital system is a technical challenge that was beyond the scope of
the work presented here. It could potentially be converted into an analog signal and
measured by the SR785 the same way that the other signals are, but the FPGA only has
two DACs, so another output card would be necessary to record the in-loop error signal.
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Figure 4.7.: Schematic of a fully digital feedback control system. In this system,
modulation generation, demodulation, and the servo are all digital in the same FPGA.
There is a separate, analog demodulation system for the secondary error signal path.
The temperature servo is analog.

Similarly, the temperature servo must be analog because there is no additional DAC to
generate the temperature signal digitally. Finally, just as with the system in Figure 4.1,
an SR560 amplifier was used to generate the dynamic range necessary to compensate
for cavity disturbances.

Figure 4.8 shows the open-loop transfer functions of the analog control and the digital
control systems. The gain slopes of both systems are similar, yet the digital system has
less phase lag at higher frequencies than the analog system. The changes are not signif-
icant enough to result in a large difference in performance. The unity gain frequency,
which was determined based on the size of the servo bump at different proportional gain
settings, of both systems is very similar with the fully digital system having a unity gain
frequency of 30kHz compared to the analog system’s unity gain frequency of 28 kHz.
This is despite the digital system having a phase margin of 28° versus 17° for the analog
system.

Figure 4.9 shows the control and error spectra for the secondary sensing path, as well
as the measurement limits for the control spectrum. The error spectrum measurement
limits are well below the error spectrum, as they are similar to the previously-shown
measurement limits, and do not contribute to the measured spectrum. Therefore, they
have been omitted from this plot. Additionally, as discussed previously, the primary
sensing path is entirely contained within the digital system and there is no ability to
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Figure 4.8.: Open-loop transfer function of green frequency control with fully digital
control compared to fully analog control. The unity gain frequency of the fully analog
frequency control system is 28 kHz with a phase margin of 17° compared to the fully
digital system that has a unity gain frequency of 30kHz and a phae margin of 28°.
Both transfer functions were measured by injecting a swept sine on the control signal
and comparing the control signal with the swept sine to the control signal right before
the swept sine was injected. The measurements were made with an averaging factor of
100 and an input of between 0.1 mV and 5mV peak-to-peak.

perform an analog measurement of that path. Just as with the hybrid system measure-
ments in Figure 4.3, the control spectrum is very similar to the analog frequency control
measurements in Figure 3.11, because the plant for all three systems is the same.

Figure 4.10 shows the noise of the primary sensing system from different sources.
The blue curve is the sensing noise of the FPGA ADC. Unlike in Figure 4.4 with the
2Hz/vHz - (1vHz/+/f) slope in the ADC noise, the ADC noise for this system is flat
across the spectrum. This is because this curve is the ADC noise around the demodu-
lation frequency of 3.5 MHz rather than starting at DC with the hybrid system. This
1/f shape does not continue indefinitely and eventually reaches a constant noise across
the rest of the spectrum. There is additional noise when the photodetector is plugged
in that is flat across the spectrum. This spectrum is also seen at a lower level for the
analog demodulators in Section 3.3. The final part is the low-frequency noise from the
scattered light which was also seen in the analog system. This yellow curve shows the
full sensing noise for the primary sensing path.

The error spectrum detected by the secondary sensing path compared with the sensing
noise seen in those paths is shown in Figure 4.11. The electronic noise floor in the primary
sensing path is apparent as a limit of the secondary path error spectrum, though not all
of the noise of the cavity is suppressed to below the noise level. However, as with the
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Figure 4.9.: Control and error signal with FPGA as full control system. The control
signal is the signal sent to the laser piezo. The error signal used by the control loop
is not pictured and only the error signal measured by the analog, secondary sensing
path shown in Figure 4.7 is shown. The noise seen at lower frequencies in the control
signal is primarily caused by movements of the cavity mirrors, whereas the higher
frequency noise is caused by laser frequency noise. The unity gain frequency is where
the signals cross. The rise near that frequency is known as a servo bump and is due to
oscillations in the control loop. The internal noise of the SR785 measurement system
for the control signal is also shown and limits the measurement of the control signal at
high frequencies.

systems before, the low-frequency noise is lower than what would be expected from the
sensing noise measurements if the sensing noise were uncorrelated.

Figure 4.12 shows the error signal spectra and RMS starting at 10kHz from the
secondary sensing path for the fully analog and fully digital system. The electronic
noise floor is approximately a factor of two higher for the fully digital system as seen
in the lowest measured noise between 10 Hz and 1kHz. The servo bumps of the two
systems are different as well, with the analog system being narrower and higher and
the digital system being wider but lower. Finally, the fully digital system does not
have large peaks at 50 Hz and its harmonics. Though the two systems are both using
the same mains input, the error signal of the digital system is demodulated after it
is digitized and is therefore never subject to this noise as it is not being transported
through the control system as a voltage. Though there is some contribution through
the DAC and the amplifier, these are much smaller as they are suppressed by the loop
gain. The overall noise floor and lack of significant sensing noise peaks from the 50 Hz
harmonics represent significant improvements over the hybrid system. The net RMS of
the fully analog system is the same as before at 1100 Hz while the fully digital system
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Figure 4.10.: Sensing noise of primary error signal path with FPGA as full control
system. The FPGA ADC noise is measured by terminating the input to the FPGA
system and measuring the output with a large amount of gain in the digital system.
This is so that the amplified FPGA noise of the ADC is much larger than the DAC
noise so that both are not measured. The photodetector and FPGA noise is measured
by plugging the photodetector into the input of the FPGA and measuring the output
again with a large amount of gain. This should represent the full electronic noise of
the system. Finally, the full system sensing noise is measured with the same setup as
the orange curve, but with the laser on and the cavity significantly misaligned so that
light cannot be resonant in the cavity. This noise has been converted into frequency
spectral density by applying the calibration of of the error signal.

is lower than the hybrid system at 1400 Hz with this RMS being almost entirely driven
servo bump for both systems. As with the measurements with the hybrid system, the
RMS is shown for frequencies below 10 kHz to minimize the contribution from the servo
bump and understand other significant contributors to the noise of the system. The
fully analog system measurements are identical to those in the previous section with this
RMS being 310 Hz, but we can see here that the lack of 50 Hz and harmonics in the fully
digital spectrum produces a lower RMS of 210 Hz. This is despite the higher noise floor,
as the RMS is driven more by the peaks than the noise floor. The effects of the servo
bumps cannot be discounted, but even with their contribution, the performance of the
two systems is very similar.

4.4. Conclusions

In this chapter, digital systems were used to implement frequency control for the ALPS Ila
RC. The systems presented used an FPGA on an AMC in mTCA architecture. The
firmware was developed internally at DESY, and the software to interface with the
firmware was created with MATLAB App Designer.

A digital control servo with analog demodulation electronics was able to suppress the
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Figure 4.11.: Secondary error spectrum compared with sensing noise. The secondary
error spectrum is the same secondary error spectrum from Figure 4.9 and the primary
path sensing noise is the same full system primary path sensing noise from Figure 4.10.
The secondary path sensing noise is the sensing noise measured with the same electronic
setup as used in the measurement of the secondary error spectrum, and the laser on but
the cavity misaligned such that the light could not be resonant with the cavity. This
noise has been converted into frequency spectral density by applying the calibration of
of the error signal.

frequency noise of the cavity to closer than a factor of two away from the analog system in
Section 3.3. The additional noise is from the sensing noise of the digital system combined
with the analog components. In order to limit the effect of some of those components,
digital control with digital demodulation was also implemented with results that were
much closer to those of the analog system and the noise performance in some regions
was better than that of the analog system.

In both cases, the performance of the digital system compared to the analog system in
the same task of the frequency control of the frequency-doubled RL shows the viability
of digital systems. This demonstration is important when using the digital system to
implement new control schemes to which there is no direct analog comparison. In the
next chapter, we will discuss a fully digital system intended to compare the resonance
of the two cavities in ALPS Ilc.
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Figure 4.12.: Error spectra of secondary sensing path comparing fully analog system
to fully digital system performance. The fully digital spectrum is the error spectrum
shown in Figure 4.9 and the analog servo spectrum is the secondary sensing path
spectrum shown in Figure 3.11. Additionally shown are the calculated RMS of each
curve without including the servo bump, which is very sensitive to the exact phase
margin of the system. The RMS of with the fully analog system is 310 Hz with a
significant contribution from noise at 50 Hz and the RMS of the fully digital system is
210 Hz with no significant noise peak at 50 Hz or its harmonics.
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5. Digital Phase-Locked Loop

In addition to keeping the lasers resonant with the optical cavities, the control systems for
ALPS Ilc must keep the light in the PC resonant with the RC. This involves measuring
the frequency relation between the light fields resonating in both cavities, and then
adjusting the length of one cavity in order to maintain a relationship between that those
fields that indicates this dual resonance condition. Rather than the PDH control systems
used in the previous chapters, this system will use a phase-locked loop. This chapter
will discuss the design of a digital system to perform this task and the testing performed
in ALPS Ila to demonstrate the potential performance of this system in ALPS Ilc.

5.1. Phase-Locked Loops

The general concept of a phase-locked loop (PLL) is that the system reads in an os-
cillating signal, compares it to a reference, and actuates on the plant generating the
oscillating signal to match that signal to the reference. This oscillating signal, Viignai, is
given by

‘/signal = Asignal sin (¢signal) ) (51)

where Agignq is the amplitude, and ¢gignq is the phase of the signal. For a constant
frequency, wsigna this phase is given by

¢signal (t) = wsignalt + ¢signal(0)a (52)

but more generally for a frequency that is dependent on time, the phase is given by

t
¢signal(t) = /0 wsignal(t/)dt/ + Qbsz'gnal(o) (53)

which simplifies to Equation 5.2 when the frequency is constant in time. Additionally,
this can be calculated in comparison to a constant frequency by integrating the difference
between instantaneous frequency and the constant frequency, wg, by

t
¢signal(t) = / Awsignal(t)dt + wot + ¢signal (0>7 (54)
0

where Awgignal(t) = Wsignai(t) — wo. When wgp = 0, this simplifies to Equation 5.3.
This signal is then mixed with the reference signal, V,.cy = A,efsin(wyest) to give

A’/’efAsignal

5 [cos (Wreft — Gsignat) — €08 (Wreft + Psignat)] - (5.5)

Vinizer = V'ref‘/signal =
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If we consider wy = wyef and Awgignai(t) < wyes, we can apply a low-pass filter to remove
the cos (Wreft + Gsignal) = €os (2wrert) term, which leaves us with

ArefAszgnal

Vmizer —

</ Awszgnal )dt + ¢szgnal( ))
Are Asz nal .
Lref ~signal s <7T - / Awszgnal - ¢signal(0)> ,

and we can consider the initial phase offset to be ¢pizer(0) = 7/2 — Ggignar(0). So we
have

(5.6)

Are Asi na t
Vmixer — % sin <¢mixer(0) - / Awsignal(t)dt> . (57)
0

If we consider that this is our error signal and the control system is driving this signal
to be very close to zero, we can assume that the initial phase, ¢mizer(0) is quickly driven
to 2mm, and can use the approximation that sin(2mm + ) = x when x < 1 to get

Are Asi na t
Vmixer ~ f29[/0 Awsignal(t)dt- (58)

The input for our system is generated by interfering two lasers together to produce
an oscillation, or a beat note, determined by the relative change in phase between the
two beams

Vaignat < |E1(t) + Ea(t)[* = |E1,0€i(f°t Awy(t)ditwrot—kiz) 4 Ez,oei(fot Awa ()di+enot—k222) |2

t
= E1270 + E22’0 + 2E170E270 cos </ [Aw1 (t) — AWQ(t)] dt + [Wl,O — UJ270] t— [k:lzl — k222]>
0

(5.9)
When the DC terms are filtered out, the phase is aligned, and the nominal frequency
difference between the two lasers, wi g — wa,, is kept close to the reference frequency,
the error signal is

Viniwer & Amiser ( /O " (Bws (1) — Aws ()] dt) . (5.10)

This error signal is the input to the PLL. This system actuates on the length of the
PC. Because the frequency control loop of each laser is actuating on the frequency of
the laser to match the resonance of the cavity, this results in a frequency change of the
laser resonant in the PC. This ensures that fg Awpe(t)dt tracks f(f Awprce(t)dt, which
is tracking the resonance of the RC, wrc. This is how light that is resonant in the PC
will be kept resonant in the RC.

The way that the reference frequency, wpo — wgre, is set is different for the two
detection methods. As mentioned in Section 1.5, the heterodyne system uses infrared
light circulating in the RC both to sense the changes of the resonance of that cavity,
and as the local oscillator for the heterodyne detection. As such, the offset frequency
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for that laser would have to be an integer multiple of the RC FSR. so that both the light
field in the PC and the LO field are simultaneously resonant with the RC. For the TES
system, the light is supplied by the RL and frequency doubled before being incident on
the cavity. Because the properties of the mirrors are different for green light compared
to infrared light, the resonance of the cavity for green light is not exactly double the
resonance for infrared light. Therefore, it is necessary to empirically determined the
offset between the light field circulating in the PC and the infrared RL light that will be
frequency doubled and incident on the RC so that this green light and the infrared PC
light are simultaneously resonant with the RC.

A simple schematic of the control concept for this PLL is shown in Figure 5.1 for the
TES system. The heterodyne system uses a slightly different concept with infrared light.

Reference

Control Laser
System Beat
High
Power

Production Cavity Regeneration Cavity

S

Mirror
Actuator

Figure 5.1.: Schematic of concept to ensure dual resonance between the PC and RC
with the TES detector. The RL is kept resonant with the PC to track the resonance
frequency of that cavity. The light before frequency doubling is compared with the light
circulating in the PC provided by the HPL. This comparison allows the control system
to adjust the length of the PC to keep the light circulating in that cavity resonant with
the RC.

There are also some additional considerations for the control system for a PLL. With
the frequency control systems, the input to the servo was proportional to frequency, and
the output was proportional to frequency. In this control system, the input is phase
and the output is length, which couples linearly to frequency. As such, the equation
describing the PLL measurement and control system of is

AWPC(t) = Vmixer(t) * hcontrol(t) = </Ot [AWPC(t) - AWRC(t)} dt) * hcontrol(t)a (511)

and when the Lapalace transform of this system is taken, this becomes

L{Awpe(t)} = % (£ {Awpc(t)} — L {Awre ()] Heontrol(5)- (5.12)
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To find the transfer function of this system the output is divided by the input to get

E{AWPC(t)} _ Hcontrol(s) (5 13)

E{Ach(t)}—ﬁ{Ach(t)} S ’
which shows that there is an extra pole at s = 0 added by sensing the phase rather
than the frequency. This must be considered in the design of any control system for a

phase-locked loop.

The final consideration has to do with one of the approximations made above, namely
that the phase difference measured is always <« 1. When the phase difference gets
larger, the approximation breaks down and the input to the control system is smaller
than the phase difference, meaning the system has less gain. When the phase difference
gets larger than 7/2, the input decreases with increasing phase, and when the phase
difference is larger than m, the sign of the input is inverted, driving the system in
the wrong direction. If this only happens occasionally, the system may stay generally
controlled, but occasionally change the phase offset by 27. Unfortunately, this can
disrupt the measurement coherence for the heterodyne system [32], and even occasional
disturbances of this nature can jeopardize the robustness of this system.

Overflow
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Control Out
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Phase Error (£ m) Frequency
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Generation

Controller
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Figure 5.2.: Schematic of a phase-locked loop controller design with a numerically-
controlled oscillator for high-speed phase tracking. The phase difference between the
modulator and the input signal is fed back to the modulator, thus ensuring that the
phase difference between the two is always small. This phase difference from the nomi-
nal phase is then tracked through the phase +7 and the number of waves and combined
to give the total phase difference between the beat note and the original modulator
phase. This net phase difference is the input to the frequency controller, which outputs
the signal to control the frequency of the light in the PC.

With this in mind, a more robust system would be able to follow the phase changes
with a much greater speed and accuracy than the relatively slow length control system
discussed in Section 3.4 is capable of. A system with this capability includes a PLL that
instead of actuating directly on the cavity length, actuates instead on a numerically-
controlled oscillator (NCO) in an FPGA. This NCO is able to respond significantly
faster than the cavity mirror, and is thus able to keep the phase difference between it
and the input signal much smaller than would be possible actuating the cavity alone.
This system tracks the net phase changes applied to that oscillator, which represents
the net phase change away from the nominal phase over many waves and can be used
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as the input signal for the frequency control that is linear, does not invert the sign of
the input, and is much more robust against losing track of the initial phase position. A
simple schematic of the FPGA system for the implementation of this system is shown
in Figure 5.2. The control signal for the NCO has a range of +7. As sine waves have a
period of 27, sin(m + 0) = sin(—7 + ). This requires the additional complication of a
counter that keeps track of how many times this control signal has changed by ~ +2m,
and thus how many waves the phase is away from the nominal phase. The net phase,
Ag, is therefore given by

A¢p =27N + 09, (5.14)
where ¢ is the phase difference over the range +7, and N is the net overflows counted.
Length Control -
A SR785
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Frequency
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Figure 5.3.: Schematic of a one-cavity test of phase-locked loop length control. The
HPL tracks the resonance of the cavity using a frequency control system. The length
control system then compares the HPL with RL and actuates on the length of the cavity
so that the HPL phase matches the RL phase. The PDH detection system senses the
frequency mismatch between the RL and the cavity, which should be indirectly matched
to each other.

Though the ALPS Ilc control scheme is intended to be used with two cavities, with
lasers tracking each resonance and the PLL actuating on the length of one cavity to
ensure a constant frequency and phase relationship between the two, demonstrations of
the PLL system can be done with only one cavity. A setup for this is shown in Figure 5.3.
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The HPL tracks the cavity resonance and then the mirror actuates based on the beat
note between the two lasers such that the cavity resonance is indirectly matched to the
frequency doubled light of the RL. The frequency noise of the RL compared to the cavity
can be tested using the Pound-Drever-Hall technique. This method is more convenient
than attempting the full system with both cavities, as the beat signal is always present
even when neither laser is resonant with the cavity, and only one frequency control
system is necessary.

There are a some technical challenges for both the dual cavity and single cavity phase-
locked loop-based length control system that have made length control with this system
not yet possible. The largest and most difficult challenge to overcome is that of lock
acquisition. When one laser is tracking the cavity resonance, there are large and rapid
changes in the beat note frequency. Though the NCO is able to track ~ 4+ 800kHz
changes in frequency, the beat note frequency often changes by more than that. Even
when the phase-lock loop is engaged when the beat note is within the bandwidth that
the NCO can track, the system cannot be engaged all at once. This is largely due to the
word length of the NCO control, overflow counter, and frequency controller input. The
NCO control signal is 18 bits covering the fractional range +7, the overflow counter is 32
bits covering 27 IV, making the full net phase 18+ 32 = 50 bits. The frequency controller
input is 18 bits. As such, some truncation of both the overflow counter and the NCO
control signal is necessary. If all 18 bits of the input were used for the overflow counter,
we could keep track of phase changes of up to 2'® = 262144 waves, but then the minimum
resolution would be £1 wave. This would introduce a significant amount of quantization
noise, as the noise level calculated in Equation 2.37 is directly proportional to the LSB.
Alternatively, if all 18 bits were used for the NCO control signal, the controller could
only cover 7. Even if all 32 bits were able to be used, at a frequency difference between
the nominal and actual beat note of 800 kHz, the maximum number of waves counted
would exceed the capability of the input and overflow in 0.33s. The number of waves
able to be counted, and also the amount of time necessary to exceed that at a given
frequency offset, is reduced by 2™, where M is how many bits of the fractional wave
phase resolution are introduced.

The solution that has been attempted is, when the beat note is close to the nominal
offset frequency, turn up the gain slowly so that the system can start reducing the number
of waves before truncating non-zero bits. While turning on the gain, the controller
transfer function would need to be flat, producing a net 1/f slope. This is because
turning on the proportional gain slowly means that the unity gain frequency slowly
increases to the nominal unity gain frequency. The increased slope that is necessary
to achieve higher gain at low frequencies means that there would be negative phase
margin as the unity gain frequency went through these regions, resulting in an unstable
control loop. Unfortunately, this also means that there is less gain at low frequencies
than is necessary to prevent the beat signal from going beyond the range of the NCO or
exceeding the number of waves able to be counted. If this process were to work, the low-
frequency gain could be increased after the desired unity gain frequency was achieved
with the proportional gain. Unfortunately, even automating this process to increase the
speed of each steps has not produced the desired result.
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The net result of these challenges is that lock acquisition is not a yet smooth process
and results in large and sudden changes of the control signal as the limits of the system
are reached, which the frequency control system would not be able to compensate for.
Work is ongoing on developing methods for this, but these difficulties will not be as
pronounced in the ALPS Ilc system, as the frequency changes due to length changes
are smaller by more than a factor of 10. There is also the possibility of gaining some
understanding of the system by actuating on the frequency rather than the length.

5.2. Phase-Locked Loop for Frequency Actuation

RL Control
SR785
Detection
Frequency
) Doubling Cavity

Crystal

High
Power Reference
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A A
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Figure 5.4.: Schematic of a phase-locked loop controller and sensing system for the
ALPS ITa RC. Rather than actuating on the length of the cavity to match the HPL
phase to the RL phase, this system actuates on the RL phase to match it to the
HPL phase. As the HPL is tracking the cavity resonance, the RL should be indirectly
matched to the cavity resonance. The frequency mismatch between the RL and the
cavity can be measured with the PDH sensing system.

A schematic showing the experimental setup to control the frequency of the RL such
that it is resonant with the ALPS Ila RC using a PLL, and measure the performance
of this system is shown in Figure 5.4. For this system, the HPL is frequency controlled
with the system discussed in Section 3.2. Then, to produce the error signal for the
PLL control, the HPL and RL are interfered before the RL light is frequency doubled
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5.2. Phase-Locked Loop for Frequency Actuation

to green light. This is compared to an offset frequency that is set such that the RL is
maximally resonant in the cavity. Finally, the Pound-Drever-Hall technique is used to
determine how much frequency noise is present on the green light. Unlike in previous
chapters, this is a fully out-of-loop measurement, as the measurement systems for the
control loop and the frequency sensing are entirely separate. This is similar to the length
control system shown in Figure 5.3 except that the PLL-based controller is actuating
on the RL frequency to match it to the cavity resonance based on the offset frequency
rather than actuating on the cavity length to match the resonance to the laser frequency.
As the length of the cavity is not changing, there can be large changes of the control
signal being sent to the RL frequency that do not affect the control of the HPL and
thus a smooth lock acquisition is not necessary. This should give us information on how
well this system is able to maintain the resonance condition compared to systems that
directly measure this resonance condition.
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Figure 5.5.: Open-loop transfer function of the phase-locked loop compared to the
analog frequency control. The unity gain frequency of the analog frequency control
system is 28 kHz with a phase margin of 17° compared to the phase-locked loop system
that has a unity gain frequency of 15kHz and a phase margin of 28°. Both transfer
functions were measured by injecting a swept sine on the control signal and comparing
the control signal with the swept sine to the control signal right before the swept sine
was injected. The measurements were made with an averaging factor of 100 and an
input of between 0.1 mV and 5mV peak-to-peak.

The open-loop transfer function of this PLL-based system compared to the analog
frequency control from Section 3.3 is shown in Figure 5.5. Like the system with digital
demodulation, the PLL has more phase available than the analog frequency control. The
limit of this system is resonances present at ~300 kHz, which cause significant oscillations
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Chapter 5. Digital Phase-Locked Loop

at proportional gain settings well below the point at which the phase margin result in
a significant servo bump. Though they are outside of the range of the transfer function
shown, they were seen by the frequency those oscillations at higher proportional gain
settings. The 6x6 state space controller does not have enough coefficients available to
effectively notch out these resonances as was done with the length actuator in Section 3.4.
As a result, the unity gain frequency of the PLL is 15kHz with a phase margin of 25°.
The PLL system has less phase margin at lower frequencies than the analog system. This
is because poles were placed as close as possible to the unity gain frequency in order to
achieve the most aggressive gain slope possible, to make up for the lower proportional
gain of this system.

Calibrating the PDH signal for this system was not done using this unity gain fre-
quency, as the control is not applied directly based on this PDH signal, but rather the
PLL error signal. Instead, the RL was locked to the cavity using the analog frequency
control system, an open-loop transfer function as well as a control and error spectrum
of that system was taken, and that was used to calibrate the PDH signal.

Control Signal
Error Signal
Control Measurement Noise

ASD (Hz/+/ Hz)

(=3
OO

10° 10 10 10 10* 10°
Fourier Frequency €2 (Hz)

Figure 5.6.: Control and PDH spectra for the phase-locked loop. The control signal
is the signal sent to the laser piezo. The error signal used by the control loop is not
pictured and only the frequency noise signal measured by the PDH sensing path shown
in Figure 5.4 is shown. The noise seen at lower frequencies in the control signal is
primarily caused by movements of the cavity mirrors, whereas the higher frequency
noise is caused by laser frequency noise. The unity gain frequency is where the signals
cross. The rise near that frequency is known as a servo bump and is due to oscillations
in the control loop. The internal noise of the SR785 measurement system for the
control signal is also shown and limits the measurement of the control signal at high
frequencies.

The control and PDH signal spectra are shown in Figure 5.6, along with the measure-
ment limits of the SR785 for the control signal spectrum. The PDH signal spectrum
is large enough compared to the measurement limits for that spectrum that they have
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5.2. Phase-Locked Loop for Frequency Actuation

been omitted. The control signal spectrum is very similar to the control signal spectrum
of the previous frequency control systems, which is expected as the RL is tracking the
frequency of the HPL, which is locked to the cavity. We also see that the point where
the control and PDH signal are equal is very close to the unity gain frequency, despite
the control system not measuring this frequency but rather phase changes between the
RL and the HPL.
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Figure 5.7.: Phase-locked loop PDH spectrum compared to noise sources. The RL
error signal is the same as shown in Figure 5.6. As the PLL tracks the HPL, any
noise present on at laser within the control bandwidth will also be present on the RL.
Therefore, the noise spectrum of the frequency control of the HPL and the sensing
system noise are shown in orange and yellow, respectively. These are measured the
same way as the measurements of the HPL frequency control system in Section 3.2.
The RL sensing noise is the noise of the PDH sensing system. This was measured
using the same setup as the measurement of the error spectrum with the laser on but
the cavity significantly misaligned such that the laser could not be resonant with the
cavity. This should include all electronic and optical sources of noise. All error and
sensing noise spectra have been converted into the equivalent RL frequency noise by
applying the error signal calibration and a factor of 2 as necessary to account for the
frequency doubling of the RL.

Figure 5.7 shows the PDH spectrum of the PLL frequency control compared with
different sources of noise that contribute to this spectrum. The blue curve is the spectrum
of the measured PDH signal, which is the same spectrum as shown in Figure 5.6. The
first source of noise is the HPL error spectrum, which is the orange curve. As the PLL
is trying to minimize any difference between the HPL and the RL, any residual error in
the HPL frequency control will directly couple into the frequency noise of the RL. The
ALPS Ila cavity pole has been applied to the measured error spectrum to accurately
depict the frequency noise spectrum of the HPL, and it has additionally been multiplied
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by 2 to compare it with the RL frequency noise spectrum because of the frequency
doubling before the RL light is incident on the cavity. The yellow curve is the sensing
noise of the HPL frequency control, also with the cavity pole and factor of 2 applied. As
discussed previously, the sensing noise is combined with the measured error spectrum
as the control system imprints the sensing noise on the light in the cavity. There is
not a strong contribution from this sensing noise except at frequencies less than 10 Hz,
when this sensing noise begins to contribute significantly to the RL PDH spectrum. One
thing to note is that, above the unity gain frequency, the RL is not tracking the HPL
and therefore this part of the HPL error and sensing spectra do not contribute to the
RL PDH spectrum. The final limit is the sensing noise of the RL PDH system, which
is the purple curve. This does not limit the performance of the system, but rather the
ability to measure the performance of the system. It is clear that there is a noise floor
from the electronic portion of this sensing noise, in addition to a contribution from the
low-frequency sensing noise.
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Figure 5.8.: Phase-locked loop PDH spectrum compared to analog frequency control
error spectrum. The phase-locked loop error spectrum is the same as that in Figure 5.6.
The analog frequency control is the secondary error spectrum in Figure 3.11. The digital
frequency control spectrum is the error spectrum in Figure 4.9. The three spectra
demonstrate that each loop achieves similar noise suppression and has a similar noise
floor. The primary difference between the three is the different servo bumps near the
unity gain frequency of each.

Figure 5.8 shows the PDH spectrum of the PLL compared to the analog frequency
control in Section 3.3 and the digital frequency control in Section 4.3. The lower unity
gain frequency for the PLL is seen in the servo bump at a lower frequency. The servo
bump is also wider for the PLL than for the analog frequency control, though similar
to the digital frequency control. Otherwise, the three spectra are quite similar to each
other. The PLL system has a similar noise floor to the analog system, but the peaks
for the 50 Hz noise are much closer to those for the digital frequency control system.
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Though not shown, the RMS for the PLL is 1800 Hz compared to the RMS of 1100 Hz of
the analog frequency control, and the RMS of 1400 Hz for the digital frequency control
in Section 4.3. The primary driving factor of the RMS for each of these systems is the
servo bump. If we consider only the noise below 5kHz to avoid the contribution of the
servo bump, the PLL system spectrum has the lowest RMS at 120 Hz, compared to the
digital system with an RMS of 130 Hz and the analog system with an RMS of 290 Hz.
A greater reduction of the effect of the resonances at higher frequencies provided by a
control system with more coefficients would allow more proportional gain and a higher
unity gain frequency. This could reduce the RMS of the PLL system even further, and
allow for a reduction of the servo bump as higher frequencies have less phase lag with
the current control setup.

5.3. Simulated Length Actuation

Though length control has not been achieved yet, it is possible to determine the possible
performance of length control once it is achieved. This can be done by controlling the
frequency of the laser, but with a control loop transfer function that matches one used
for length control. Using the frequency actuator in this way should demonstrate what
would be possible for length control using the same system. This is done in the same
way as the frequency control in Section 5.2 using the system shown in the schematic
in Figure 5.4, but using a transfer function similar to that of the compensated length
control system in Section 3.4.

The length control has a unity gain frequency approximately an order of magnitude
lower than that of the frequency control. Therefore, this simulated length control will
need a unity gain frequency similar to achievable length control unity gain frequencies.
The open-loop transfer function of this simulated length control is shown in comparison
to the compensated length control transfer function in Figure 5.9. The transfer function
of these systems is very similar below the unity gain frequency. Because the phase-locked
loop is not using the length actuator, it does not interact with the actuator resonances,
the compensation for these resonances, or the phase loss due to both of these elements.
However, the phase loss at the unity gain frequency is not the limiting factor for the
length control but rather those mechanical resonances. Therefore, we do not expect this
phase difference to contribute to a large difference between the two systems. The unity
gain frequency of the phase-locked loop simulation is 3.7 kHz compared to 3.9 kHz for
the compensated length control.

The control and PDH spectra, as well as the measurement limits for the control
spectrum are shown in Figure 5.10. As with the phase-locked loop data in Section 5.2,
the measurement limits of the PDH spectrum are well below the PDH spectrum and are
therefore omitted. Also similar to Section 5.2, the control and PDH spectra meet just
at the unity gain frequency.

In addition to the measured open-loop transfer function in Figure 5.9, the servo gain
can be calculated by dividing the control signal by the PDH signal. This should give
the suppression of the control system. This was done for both the PLL length control
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Figure 5.9.: Open-loop transfer function of the phase-locked loop length control sim-
ulation compared to the compensated length control. The unity gain frequency of
the compensated length control system is 3.9 kHz compared to the phase-locked loop
length control simulation that has a unity gain frequency of 3.7kHz. The resonances
from the mirror actuator are not present in the transfer function for the phase-locked
loop length control simulation. Both transfer functions were measured by injecting a
swept sine on the control signal and comparing the control signal with the swept sine
to the control signal right before the swept sine was injected. The control signal of the
length control system was measured and modified before the high voltage amplifier.
The measurements were made with an averaging factor of 100 and an input of between
0.1mV and 5mV peak-to-peak.

simulation as well as the compensated length control and shown in Figure 5.11. For the
length control, the spectra for the secondary PDH sensing path was used. The out-of-
loop PDH sensing path was used for the PLL. The servo gain for the two systems is very
similar, which was intended by the design of the servo of the PLL. The major difference
is the compensation for the resonances seen above the unity gain frequency of the length
control system that are not present in the PLL system.

The sources of noise for this PLL are identical to the noise sources for the PLL in
Section 5.2 shown in Figure 5.7. They are shown in comparison with the measured
error spectrum for this length control simulation in Figure 5.12. With these control
parameters in comparison to the previous control system, there is less suppression and
thus the electronic noise floor is never reached. However, just as with the previous
measurement, the low-frequency sensing noise from both the HPL frequency control and
the PDH sensing path contribute significantly below 10 Hz. Additionally, as with the
previous system, there the control system is not exerting control above the unity gain
frequency, and therefore the HPL frequency and sensing noise can exceed the RL error
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Figure 5.10.: Control and PDH spectra for the phase-locked loop with a transfer
function to simulate the performance of the phase-locked loop actuating on length.
The control signal is the signal sent to the laser piezo. The error signal used by the
control loop is not pictured and only the frequency noise signal measured by the PDH
sensing path shown in Figure 5.4 is shown. The noise seen at lower frequencies in
the control signal is primarily caused by movements of the cavity mirrors, whereas the
higher frequency noise is caused by laser frequency noise. The unity gain frequency is
where the signals cross. The internal noise of the SR785 measurement system for the
control signal is also shown and limits the measurement of the control signal at high
frequencies.

spectrum.

As the suppression of each system is similar, and the sensing noise does not contribute
significantly, one would expect the spectra to be similar. Figure 5.13 shows that this
is the case. The opto-mechanical setup of the cavity is not exactly the same between
measurements, so there are some differences in the peaks that are seen, but the majority
of features are nearly identical. As with the servo gain, the mechanical resonances of the
mirror actuator are visible in the error spectrum for the length control but not in the
PDH spectrum for the PLL as the actuator for that system is the laser frequency, which
does not have resonances in that frequency range. These are visible both just above the
unity gain frequency and in the ~10kHz region for the compensated length control.

The final comparison between the two systems is to project the performance of each
onto the ALPS Ilc cavity. This projection is performed as described in Section 1.5
and in the same way as performed in Section 3.4. The results, along with the RMS,
are shown in Figure 5.14. The RMS of the compensated length control was calculated
to be 1.0Hz and the RMS of the simulated length control is 2.5 Hz. Just as with the
compensated length control, the resonance at 180 Hz is a significant contributor to the
simulated length control RMS, to a larger degree than the length control system. There
is an additional contribution from a resonance at 120 Hz that is not present in the length
control system. Either of these could be reduced by the use of resonant gain, but the
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Figure 5.11.: Calculated servo gain of the phase-locked loop length control simula-
tion compared to the compensated length control. This gain was calculated by dividing
the control spectrum by the error spectrum. The control and error spectra used for
the calculation of the compensated length control suppression are the control and sec-
ondary path error signals shown in Figure 3.24. The control and error spectra used for
the calculation of the phase-locked loop length control simulation are the control and
frequency noise signals shown in Figure 5.10.
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Figure 5.12.: Phase-locked loop length control simulation PDH spectrum compared
to noise sources. The PDH spectrum is the same as shown in Figure 5.6 and the noise
sources are the same as shown in Figure 5.7.
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5.4. Measuring Cavity Free Spectral Range and Linewidth Using a Phase-Lock Loop
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Figure 5.13.: Phase-locked loop length control simulation PDH spectrum compared to
compensated length control error spectrum. The compensated length control spectrum
is the secondary sensing path error spectrum in Figure 3.24 and the PLL spectrum is
the frequency noise spectrum in Figure 5.6.

system meets the ALPS Ilc requirement of 3.0 Hz as it is.

5.4. Measuring Cavity Free Spectral Range and Linewidth
Using a Phase-Lock Loop

It is also possible to use the PLL frequency control system in Section 5.2 to probe the
cavity’s response to frequencies that are a constant offset away from the cavity resonance.
The frequency offset does not have to be set such that the RL is resonant with the cavity,
and can be slowly adjusted to measure how much power is built up at different offset
frequencies. This can be used to scan across a full free spectral range to obtain the
linewidth of the cavity for green, as well as the length of the cavity. When expanding
beyond the 1-dimensional optical cavity, this can also be used to determine the coupling
between the input laser beam and different higher-order spatial modes, as well as some
information about the cavity geometry that couples into the resonance frequency of those
higher-order spatial modes through the Gouy phase. This section will focus on using
this system to measure the linewidth and the length of the cavity.

The transmitted power is directly proportional to the circulating power. Measuring
that with a photodetector can show changes to the circulating power. Determining the
exact magnitude of this power is less important than determining the shape and its
relationship to the offset frequency in this experiment. Figures 5.15a and 5.15b each
show three measurements of resonances, with the resonance for each figure separated by
a free spectral range.

In order to determine the center frequency and FWHM, we start with Equation 1.53.
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Figure 5.14.: Phase-locked loop length control simulation PDH spectrum compared
to compensated length control error spectrum with both projected onto the ALPS Ilc
cavities. The compensated length control spectrum projected is the secondary spectrum
shown in Figure 3.24, which is also projected onto the frequency onto the ALPS Ilc
cavities in Figure 3.27. The PLL frequency noise spectrum projected is the frequency
noise spectrum in Figure 5.10. The spectra are converted into the expected spectra
for IR light by dividng by a factor of two, and then projecting the ALPS IIa RC
noise onto the ALPS Ilc PC by dividing by the ratio of the two cavity lengths. Finally,
Equation 1.61 is applied where A is the spectrum of the frequency noise projected to be
present in the ALPS TIc PC which is the same as calculating the RMS of the frequency
noise filtered by the low-pass behavior of the cavity. As such, this cumulative RMS is
displayed by the dashed lines. Additionally, shown in black is the ALPS Ilc requirement
of 3.0Hz. The RMS for the compensated length control is 1.0 Hz which meets the
requirement. The RMS for the PLL is 2.5 Hz which also meets the requirement.

As the signal measured is a voltage that is proportional to the power circulating in the
cavity with an offset caused by electronics and ambient light, this equation is modified
to become

1
V(f) = ‘/peak P + ‘/offset- (515)
1 2[f_fpeak]
+ Afpeak

This equation was then fit to the data with the parameters Viear, fpeaks Afpeak, and
Voffset- The data in Figure 5.15 is shown with Vi rses removed, and Veqr normalized
to 1. The fpear and Afpeqr give us the center frequency and FWHM of the resonance,
respectively, for each measurement.

For the lower offset frequency resonance, the measured center frequency was 2.003 MHz
4+ 200 Hz. The measured center frequency for the higher offset frequency resonance is
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Figure 5.15.: Measurement of the transmitted power versus the RL offset frequency
for two cavity resonances separated by a free spectral range. This was performed by
matching the HPL to the cavity and matching the RL to the HPL. The offset frequency
of the two lasers is then changed so that the frequency doubled RL moves from not
resonant, to resonant, back to not resonant. How resonant the RL is with the cavity is
measured with the cavity transmitted power. This was then fit to Equation5.15. The
center frequency of the lower resonance was found to be 2.003 MHz + 200 Hz and the
higher resonance was found to be 10.116 MHz + 400 Hz.

10.116 MHz + 400 Hz. One thing to note is that since these measurements are made
with the offset frequency of the RL before it is frequency doubled, the light circulating
in the cavity had double the offset frequency. With this in mind, the FSR for the light in
the cavity is 16.226 MHz 4+ 700 Hz. This corresponds to a length of (9.2444 + 0.0004) m.

The FWHM caclulation is done much the same way, except each cavity resonance can
be used to calculate the FWHM independently. As such, we have six measurements of
the FWHM, which are all shown overlaid around their center frequency in Figure 5.16.
Just as above, the measurement of the frequency offset needs to be doubled to calculate
the frequency changes to the green beam. This gives us a FWHM of (148 + 2) kHz. As
a note, this is smaller than the expected FWHM calculated in Section 1.5, which was
160 kHz. This can be explained by having a slightly lower transmission on either mirror.
Keeping the transmission of the other mirror as specified, a transmission of 4.6% for the
first mirror or a transmission of 0.6% for the second mirror would completely explain
this slightly narrower linewidth.

5.5. Conclusions

A PLL is an important technique in maintaining a constant phase and frequency rela-
tionship. This is an important task for ALPS Ilc to maintain a phase and frequency
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Figure 5.16.: All cavity resonance measurements overlaid. The resonances measured
in Figure 5.15 had their fitted center frequency subtracted to show the width of the
resonances and their deviations from each other.

relationship between the light circulating in the two optical cavities. This phase-locked
loop can be implemented using the length of the ALPS Ilc PC as the actuator, and it
can be made more robust by maintaining an NCO and using the control of that system
as the input to the length control servo.

Additionally, the performance of this system can be tested using only a single cavity
with the ALPS ITa RC. Though the length control system is not yet able to be imple-
mented, the performance of this system actuating on the laser frequency compared to
dedicated frequency control systems is within a factor of two.

Using this frequency actuation system, the performance of a length control system
can be simulated by implementing the same transfer function that was used for a length
control system. This simulation indicates that such a control system would have similar
performance to the primarily analog length control system and also meets the ALPS Ilc
requirements on phase noise.

Work is ongoing to overcome the difficulties with lock acquisition that limit the use
of this system to frequency control rather than length control.
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6. Conclusions

The Any Light Particle Search IT (ALPS II) intends to search for a class of novel particles
known as axion-like particles. The existence of these axion-like particles is suggested
both by theoretical extensions of the standard model and by astophysical observations.
A number of experiments searching for these particles have been conducted with different
sources of the axion-like particles. ALPS II is a light-shining-through-a-wall experiment,
which intends to produce axion-like particles using the interaction between photons and
a magnetic field. These axion-like particles will then pass through a wall to block the
photons used to generate them. Finally, the axion-like particles will oscillate back into
photons behind the wall using the interaction between the axion-like particles and a
magnetic field. The detection of regenerated photons would indicate the existence of
axion-like particles and would not depend on a model of any external source of axion-
like particles.

The use of optical cavities is vital to the success of the ALPS II experiment. These
cavities will both enhance the rate of generated axion-like particles on one side of the wall
as well as the probability of them oscillating back into photons. In order to effectively
use these cavities, control systems are necessary to maintain a match between the input
laser light and the resonance condition of the cavity. These control systems can either
actuate on the frequency of the input laser light or on the length of the cavities. ALPS II
is conducted in two phases: ALPS Ila for technology maturation and demonstration,
and the full-scale experiment ALPS Ilc. ALPS Ilc will require systems to ensure a
high power build-up factor in each of the 124.4m long cavities as well as a good match
between the resonances of the two cavities such that light in the production cavity (PC)
would be resonant with the regeneration cavity (RC). In order to achieve the desired
sensitivity of ga,, = 2 X 10~ GeV~!, the requirements on the cavities and the match
between the cavities are very demanding. The requirement that is most relevant for
projection from the measurements in this thesis is the dynamic phase noise between the
two cavities. The goal for that dynamic noise is a maximum 3.0 Hz of RMS frequency
noise in ALPS Ilc.

ALPS IIa is an important step to the full-scale ALPS Ilc experiment. ALPS Ila has the
facilities for two cavities to mirror the PC and RC in ALPS Ilc. Control systems can be
designed and tested to determine their suitability for use in ALPS Ilc, and alternative
designs can be compared based on their performance in the short-scale experiment.
Additionally, these systems can be used to investigate phenomenology that is important
for ALPS Ilc. For the measurements made in this thesis, only the RC was in place in
ALPS Tla, and all measurements were made on that cavity.

The performance of systems in ALPS Ila as well as drivers of this performance are
important to characterize. This is both to explore their suitability for use in ALPS Ilc
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and to compare to digital systems to see what the limitations of different implementations
of the same system are. The two main performance drivers are the transfer function of
the servo, and the sensing system noise. As such, these must be investigated for all of
the systems currently in use in ALPS Ila as well as any digital alternatives in order to
understand any differences in performance between the two systems.

The analog control systems used in the RC of ALPS ITa have been characterized. These
include frequency control of both the infrared light from a high-power laser (HPL) and
the green light from frequency-doubling a reference laser (RL). These frequency control
systems only constitute part of the frequency control system intended for the ALPS Ilc
cavities, and as such projecting their performance onto ALPS Ilc is not relevant. How-
ever, there is also a length control system using a custom-designed actuator both with
and without digital compensation for the actuator’s mechanical resonances. This length
control system is similar to the system that will be used to match the resonances be-
tween the two cavities in ALPS Ilc. The length noise of this system can be projected to
the expected performance for the same system in ALPS Ilc. The projected RMS of the
length noise projected onto the frequency noise of ALPS Ilc without compensating for
the mechanical resonances is 9.8 Hz, which does not meet the requirements. The length
control system with compensation is able to suppress the projected frequncy noise of
ALPS Ilc to an expected RMS of 1.0 Hz, which exceeds the requirements.

A number of digital control systems for both frequency control and controlling the
relationship between the two optical cavities were developed and tested. The digital
systems used in this thesis have several advantages over both analog systems and off-
the-shelf digital systems. Advantages over analog systems include more flexibility for
rapid re-configuration, the ability to define the control systems with more granularity,
and additional automation options. Advantages over off-the-shelf digital systems include
the use of an open computing standard for the hardware for increased flexibility, and the
development of the firmware by the Maschine Strahlkontrollen department at DESY to
ensure ease of collaboration.

Two different digital systems are compared to the analog system controlling the fre-
quency of the RL. The first is using the analog electronics to demodulate and adjust
the offset of the error signal used in Pound-Drever-Hall frequency sensing, and replacing
the analog servo with a digital system using a field-programmable gate array to produce
the control signal sent to the frequency actuator. This system includes all noise sources
present in the analog system—though some of those noise sources seem to produce more
noise in this hybrid digital setup than in the analog system—as well as additional ones,
and thus results in more frequency noise. A digital system taking the input directly
from the photodetector and performing all demodulation on-board was able to reduce
the sensing noise significantly over the analog/digital hybrid system. As such, the per-
formance was significantly better and very similar to the analog system. This indicates
that digital systems are capable of very good performance in control over the cavities in
ALPS Ilc.

The most important role for digital systems is not the frequency control that can be
implemented easily with analog systems, but rather the control of the resonance overlap
between the two cavities. This system benefits significantly from faster actuation of
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the phase between the two cavities than the length actuator is able to provide. This
additional speed can be provided by a phase-locked loop (PLL) that can follow phase
changes very fast as well as keep track of the net phase change to use as the input to the
length control system. This is easily implemented as a digital system using an NCO to
maintain the PLL and using accumulators to track the exact phase of the NCO. Though
this system is intended to be used to keep two cavities in phase, there are ways to test
the performance using a single cavity and two lasers.

The performance of this system was compared to the other frequency control systems
in this thesis, even though those control systems directly measured the frequency of the
cavity resonance compared to the input field. The performance of the digital PLL-based
control system is better than the analog/digital hybrid, and is similar to both the fully
analog system and the fully digital system.

As discussed earlier, one of the primary performance drivers of a system is the transfer
function. The length control system is not able to suppress noise as well as frequency
control systems because the magnitude of the transfer function is limited by the smaller
actuator bandwidth. As such, actuating on the frequency but using a transfer function
similar to that of the length control system should have similar performance to a length
actuation system. This system was tested and the noise suppression was projected onto
ALPS TIlc to result in an RMS frequency noise of 2.5 Hz, which is larger than the length
control system with resonance compensation, but does meet the requirements.

Work is ongoing on implementing length control with the digital system, as well as
attempts to implement improvements with the current frequency control. As it stands,
the digital control in ALPS Ila shows great promise for use in ALPS Ilc and is worth
pursuing. The frequency control system with digital demodulation is nearly at parity
with the fully analog frequency control system in ALPS Ila. For ALPS Ilc, an additional
fast phase actuator will be used, so more improvements are needed for that system. The
digital phase-locked loop system meets the ALPS Ilc requirements with the frequency
control simulation. Improvements to that system are required for use in a length actua-
tion system, but some changes can also be made to further improve the performance in
a way that would be difficult for an analog system.
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A. State Space Models

Frequency-domain analysis and design of control systems is valuable in many situations.
However, some systems are more easily represented in state space. Additionally, some-
times the implementation of control systems is done in state space, which is the case for
many of the digital systems in this thesis. This appendix will discuss the formalism of
state space as well as how to convert between state space and transfer function models.

A.1. State Space Representation

The majority of this and the following two sections are similar to the presentation and
derivations found in [62]. They are presented here for reference. Similar to the descrip-
tion of the outputs in terms of linear, constant coefficient differential equations, we can
describe the states of a system in a series of linear, first order differential equations

m
x'l = Z 1Tk + blu,
k=1

T = Z aok Tk, + bau,
=1 (A1)

m
Ty = Z Ak Tk + by,
k=1

where the collection of m number of x variables describe the state of the system,
describes the input to the system, the a variables describe how certain state variables
interact with each other, and the b variables descirbe how the input couples to the state
of the system. We will be suppressing the explicit t-dependence of all variables, since it
adds no clarity, but all lower-case x, y, and u variables are assumed to be dependent on
t.

Given potentially large numbers of variables, it becomes convenient to collect the state
variables into a vector
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I

i (A.2)

8
Il

Tm

and then convert the a and b variables into matrices to re-write Equation A.1 into the
much simpler form

I = Ai + Bu, (A.3)

where A is in this case an m X m square matrix, and B is a m x 1 vector. A separate
equation is needed to show the output of the system, in this case the output, y. In a
linear, time-invariant system, y can be given by a linear combination of the state of the
system and the inputs of the system,

y = CZ + Du, (A4)

where C is a 1 x m matrix and D is a scalar. The full single input, single output system
is described in Equations A.3 and A.4.

A.2. Converting a State-Space Model to a Transfer Function
Model

Both the transfer function and state space models are different ways of looking at physical
systems, therefore it is possible that there may be need to convert between the two. In
this section, the process of converting a state space model to a transfer function will be
shown and in the next section, the reverse process is presented.

Since we will be converting the time-domain state space model to a complex frequency-
domain transfer function, the first step is to take the Laplace transform of Equation A.3

sX(s) — £(0) = AX(s) + BU(s), (A.5)

where #(0) is the state of the system at ¢ = 0. Just as in Section 2.2, this initial state
is important for determining the exact state of a system at a given time, it is not vital
for input vs. output analysis and can be assumed to be zero. Once that is done, the
previous equation can be re-arranged to solve for X (s) and results in

X(s) = (sI— A)"'BU(s), (A.6)

where I is the identity matrix. Similarly to this Laplace transform, the Laplace transform
of Equation A.4 is

Y(s) = CX(s) + DU(s). (A7)
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If we substitute Equation A.6 into Equation A.7, we get

Y(s) = C(sI — A)"'BU(s) + DU(s). (A.8)

This can be easily re-arranged to give us the transfer function in terms of our state
matrices

Y (s)
U(s)

One could stop at this step and calculate the frequency response, H(iw), but it is
possible to continue and calculate each individual coefficient, a; and b from Equa-
tion 2.15. This involves calculating the (sI — A)~! by its relationship to the adjugate
and determinant given which is

= H(s) =C(sI— A)"'B+D. (A.9)

1
det(G)

With this, we can re-write Equation A.9 as

G'=

adj(G). (A.10)

Y(s) _ adj(sI—A)CB+ D
U(s) H(s) = det(sI — A)

At this point, possible calculate the coefficients of the denominator, as we can set
the denominator of the standard transfer function equal to the denominator of Equa-
tion A.11. The form of the determinant will be a polynomial of maximum order m. This
is because with sI each diagonal element has a factor of s. All terms with like powers of
s can then be collected into that polynomial, which take the form

(A.11)

det(sI — A) = Z Am—S”, (A.12)
k=0

where all of the a terms are determined by the calculation of the determinant. As one
note, the order of the numerator and denominator of the transfer function have been set
equal to each other, that is m = n. Though this is generally not the case, it can be done
in this instance as the coefficients a; and by can be zero for factors of s that are larger
than the order of the numerator or denominator.

The calculation of each element of adj(sI — A) can also be done by combining orders
of s. Since the magnitude of each element, 7 and j, of adj(G) is given by the determinant
of a sub-matrix of G with row ¢ and column j removed, we know that we will have a
polynomial of order s™!, since every determinant will have one factor of s removed.
This means adj(sI — A) will take the form

adj(sT — A) =) Eps™ ", (A.13)
k=1

This can be calculated from the adjugate directly, but it is useful to look at another
way to calculate this by re-arranging Equation A.10 to get
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Gadj(G) = det(G)I, (A.14)

and we can then substitute sI — A in for G as well as the solutions for the various parts
in Equation A.12 and A.13 This gives us the relationship

m m
> amps"T= (sT— A) ) Egs™ ). (A.15)
k=0 k=1

Here we can set powers of s equal to get the following recursive relationship for Ej

E =1
Eo = a1+ AEq
(A.16)

E, =an 11+ AE;
0=a,I+ AE,,

Though it is often easier to simply calculate the adjugate, this derivation tells us that
the first term, Eq, is simply the identity matrix. Additionally, this method can provide
a useful check that the adjugate is being calculated correctly.

Once (sI — A)~! is calculated, we can substitute the results of Equations A.12 and
A.13 into A.11 to get

CBs™ ! +C (XL, Exs™ ") B

H(s) = det(sI — A)

+D. (A.17)

This equation shows that the order of s in the numerator will always be less than
the denominator unless D # 0. Additionally, we can see that the order of the transfer
function is m, which is the same as the order of the state space system. When describing
the complexity of a system, an m-order transfer function is equivalently complex as an
m X m state space system.

A.3. Converting a Transfer Function Model to a State-Space
Model

Similar to Section A.2, it may be useful to convert from an existing transfer function
model to a state-space model. This section presents how that conversion can be done.

In doing this, we will make a few modifications to the transfer function in Equa-
tion 2.15. The first is that we will set the orders of the numerator and the denominator
as equal to each other, that is m = n just as we did in the previous section. The second
is that we will divide ag, the coefficient for s, from the denominator. In Section 2.3 we
showed that the relative degree cannot be less than zero, n —m > 0. Using this fact, we
know that ag cannot be zero. This gives us
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m k
H(s) = —2tiz0 b=k (A.18)

m—1 ’
ST+ > Ak S*

where aj and b; are not the same as in Equation 2.15 but are re-defined as the original
ax/ap and by /ap.

We can consider the case where the transfer function has no zeros, that is by through
bm—1 are zero. This transfer function looks like

b
H(s) = m . A.19
#)= + 30 am—g sk (4.19)

In this case, we can re-arrange our inputs and outputs to obtain the equation

m—1
(sm + Z am_ksk> Y(s) =bnU(s), (A.20)
k=0

which is just a specific version of the more general form seen in Equation 2.14. Using
the inverse Laplace transform, we can get back to the differential equation that would
give us the transfer function in Equation A.19

dm " ap_pdry
2 2 = b, A.21
dtmy + Z dtk u ( )
k=0
which can be re-arranged to get
Dy 3ty (A.22)
T~ T mt '

If we then identify a series of variables, 1 through x,, where

dm—l
Tl = dim Yy
dm72
T2 = ———5Y
dtm72
(A.23)
oo d
m—1 — dty
Tm =Y,

we can see that there is a recursive relationship between the variables such that
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d
—T9 =X
2 1
d (A.24)
axmfl = Tm-2
4. _
dtxm = Tm-1,
and if we take the derivative of x1 with respect to time, we see that
d dam " an_pdFy

If we combine these equations, we can get a full equation for the state of the system

" i dFy
. n—k
Tr1 — — Z T + bmu
k=0
2= (A.26)
Tim—1 = Tm—2
T = Tm—1,
which can be represented in the same way as other state equations, where the coeflicients

preceding the x variables are the appropriate elements of the A matrix, and B is given
by

1 = bpu
zo =10
(A.27)
Tm—1 =0
Tm = 0,

which is the same form as is in Equation A.3. Furthermore, since z,, = y, the only
output, C is given by

The ordering of which x variables map to each other is arbitrary and not unique. It
is, however, easier when the relationship between the x variables is recursive between
adjacent rows.

With a more general transfer function of the form found in Equation A.18 we can
multiply by Z(s)/Z(s), where Z(s) will be calculated shortly. This yields

Y(s) Z(s) R by is"
Z(s)U(s)  sm 4+ S Lay, pst’ (A.29)
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thus giving us two equations that can be arranged to give us U(s) and Y (s) in terms of
Z(s)

Y(s) = <Z bm_ksk> Z(s)
k=0
m—1
U(s) = <sm + Z am_ksk> Z(s).
k=0

Once the equations are in this form, it makes sense to take the inverse Laplace transform
as before, to get

(A.30)

k=0
SR (A.31)
_ e m—k
=gt kzzo ik

Similar to the case above where we have no zeros, we then identify a series of variables,
x1 through x,, where

dm—l
r1 = WZ
dmf2
T9 = —F5=2
dtm—Q
(A.32)
_4d
ITm—1 = dtz
Tm = Z.

We can see that there is the same recursive relationship between the variables as in
Equation A.24. As such, the A and B matrices are calculated in much the same way as
the previous case, as seen when we solve for the highest-order derivative

dm , =
i == ; apTL + u, (A.33)

where we have reversed the sum indexing for clarity. Which gives us the equation for the
first state variable in the form as found in Equation A.3. The rest of the state variables
are the same as in Equation A.26, which gives us the state matrices A and B.

Solving for the C matrix as well as D requires using the state variables defined in in
Equation A.32 to substitute in state variables. Additionally, since d™z/dt? is not a state
variable, we must use in the results from Equation A.33. Combining those results with
the equation for y in Equation A.31, we get an equation for the output
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y=>_ (b — boax) z), + bou, (A.34)
k=1

which is the same form as Equation A.4, and so we can determine the values of C and
D from this equation.

A.4. Discrete State Space

Just as with the transfer function, in discrete time, the state equations are slightly
different from the continuous time variant. For the determination of the state variables
of the system, we start with the assumption that the state of the next sample depends
on current input and current state. A way to write this for a single input, single out
system in a matrix format similar to Section A.1 would be

Z([n +1)T) = AZ(nT) + Bu(nT). (A.35)

If we then look at the output, we make the assumption that the output at the current
sample depends on the current state, as well as the current input. Writing this in the
same way that we wrote Equation A.35, we get

y(nT) = CZ(nT) + Du(nT). (A.36)

As with the transfer function, the formalism of state space in discrete time remains
very similar to the formalism in continuous time. Since the formalism is the same, the
conversion between transfer functions and state space models is very similar.

A.5. Converting a Transfer Function Model to a State-Space
Model in Discrete Time

With this formalism in place, we can again look at converting transfer functions into
state space matrices just like in Section A.3. We will see that the calculation of the state
space matrices from the transfer function is done in a way that is essentially identical
to the way it is done in continuous time [63]. One of the important properties of the Z
transform that we will use for this is that of time-delay, where we get

Z{fnr}=2""F(2). (A.37)
We start off by taking Equation 2.31 and multiplying by 2" /2™, giving us
ﬁ _ Z?:o Bm—kzk zm _ Z?:O ﬂkz_k .
2 A D Yy L DY R

Just as we did with continuous time in Equation A.29, we can break this into two
functions multiplied with each-other

H(z) (A.38)
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Y PE) STt
P(z)U(z) 14, agzF

(A.39)

and then split that into two equations that can be arranged to solve for Y (z) and U(z)
Y(z) = (Z Bkz—’f> P(z)
k=0
U(z) = (1 + Zakz_k> P(z).
k=1

If we use the time shifting property in Equation A.37, we can get two equations in the
time-domain

(A.40)

m
Yn = Z 5kpnfk
k=0

. (A.41)
Up = Pn + Z AkPn—k-
k=1
We can re-arrange the equation for u, to get
m
Pn= = OkPnk + Un. (A.42)

k=1

Now, we can begin to define our state variables similar to the way we did in Equa-
tion A.32 to get

T1 = Pn-1
T2 = Pn—2
(A.43)
Tm—1 = Pn—m—1
Im = Pm,

which turns into the recursive relationship similar to Equation A.24, which is more easily
shown by re-introducing the functional notation of f(nT') = f,

£1(nT) = p(ln — 1]7)

zo(nT) = x1([n — 1]T)

(A.44)

Tm—1(NT) = xpm—o([n — 1|T)
T (nT) = xp—1([n — 1T).

When we advance z1 in time by one sample, we get
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A.5. Converting a Transfer Function Model to a State-Space Model in Discrete Time

wi([n+1UT) == arpn_i + tn, (A.45)
k=1

and combining this equation with our recursive relationship, we can see that

v1([n+1T) = = arpn—i + un
k=1

$2([n+1]T) =T (A.46)
xm_l([n + 1]T) = Tm—2
Tm([n+ 1T) = zp1.

These equations can then tell us how to build our A and B matrices as given in

Equation A.35. And similarly, we can substitute Equation A.45 in for p, in the equation
for y,, in Equation A.41 and collect like terms to get

Z Br — Boak) Pn—k + Botin, (A.47)
k=1

which can be combined with the state vector in Equation A.44 to get the state matrix
C, and D in Equation A.36. This calculation is exactly the same as the one done in
Section A.3, and just as that is the same, the conversion from state space to transfer
function is identical and will not be included for discrete time.
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