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I 

Zusammenfassung 

In bakteriellen Zellen sind effiziente Proteinqualitätskontrollsysteme von zentraler Bedeutung, da 

sie die Anpassung regulatorischer Prozesse an wechselnde Umweltbedingungen unterstützen und 

an Stressantworten beteiligt sind. So können durch Hitzestress fehlgefaltete und aggregierte 

Proteine erkannt und durch Chaperone neu gefaltet oder durch Proteasen abgebaut werden. In 

B. subtilis ist das Hsp100/AAA+ Protein ClpC Teil des Proteinqualitätskontrollsystems und kann 

durch Kopplung mit ClpP einen Proteasekomplex (ClpCP) bilden, wobei die Substraterkennung 

und -auswahl von spezialisierten Adapterproteinen für ClpC vorgenommen wird. In dieser Arbeit 

konnte gezeigt werden, dass in vitro die komplette Disaggregation und wirksame Rückfaltung von 

Hitze induzierten Proteinaggregaten durch ClpC von Adapterprotein und Proteinargininkinase 

McsB, sowie von der Phosphatase YwlE abhängt. Als wesentlich für den Rückfaltungsprozess 

wurden insbesondere die Kinaseaktivität von McsB und die Phosphataseaktivität von YwlE 

identifiziert. Zudem wurde in Gegenwart von aktivem YwlE und McsB nicht die Degradation von 

Substraten durch ClpCP, sondern die Disaggregation und Rückfaltung bevorzugt. Es konnte 

gezeigt werden, dass die Eigenschaften der ClpCP Interaktionsschleife dazu beitragen Rückfaltung 

oder Degradation von Substraten zu ermöglichen. Folglich wurde hier ein bisher einzigartiges auf 

Argininphosphorylierung und -dephosphorylierung basierendes System für effiziente 

Disaggregation und Rückfaltung durch B. subtilis ClpC charakterisiert.  

Das im Boden lebende Bakterium B. subtilis ist außerdem ein Modellorganismus für Studien der 

Regulation von Biofilmbildung und -komposition. Das Matrixprotein TasA bildet amyloid-

ähnliche Fibrillen und ist essenziell für die Biofilmstruktur. Anhand von NMR-Spektroskopie 

Studien konnte gezeigt werden, dass im nativen Biofilm hauptsächlich homogene TasA Fibrillen 

vorkommen. Die Kristall-Struktur von TasA wies auf zwei Polyprolin II (PPII) Helices in 

dynamischen Regionen des Proteins hin. Mutationen in diesen PPII Helices zeigten, dass diese 

flexiblen Bereiche zu Faltung und Export von TasA beitragen. Außerdem wurde der Einfluss von 

ClpC auf die Regulation und Struktur des Biofilms untersucht. Eine erhöhte Faltenbildung der 

Matrix wurde immer beobachtet, wenn die Substratdegradation durch ClpCP beeinträchtigt war. 

Ein vergleichbarer Phänotyp im ypbH Deletionsstamm deutete auf eine Rolle dieses 

Adapterproteins in der ClpCP abhängigen Biofilmregulation hin. 



 

II 

Abstract 

Efficient protein quality control (PQC) systems are crucial in bacterial cells since they support 

adjustments of regulatory processes under changing environmental conditions and are involved in 

stress response mechanisms. Under heat stress conditions many proteins are prone to misfold and 

aggregate, these impaired protein species are targeted by chaperones for refolding or proteases for 

degradation. In Bacillus subtilis the Hsp100/AAA+ protein ClpC is part of the PQC network and 

can interact with ClpP to form a protease complex (ClpCP), whereby substrate selection is carried 

out by specialized adaptor proteins for ClpC. During this work it was demonstrated that in vitro, 

the complete disaggregation and effective refolding of a heat aggregated substrate by ClpC depends 

on the adaptor protein and arginine kinase McsB as well as the phosphatase YwlE. The McsB 

kinase and YwlE phosphatase activities were identified to be essential for the refolding process. 

Furthermore, presence of active YwlE and McsB did not promote the degradation of substrates by 

ClpCP but disaggregation and refolding were favored. It was observed that the properties of the 

ClpCP interaction loop enable refolding or degradation of substrates. In conclusion, a unique 

arginine phosphorylation and dephosphorylation based system for effective substrate 

disaggregation and refolding by B. subtilis ClpC was characterized. 

The soil-dwelling bacterium B. subtilis is an established model organism to study the regulation of 

biofilm formation and composition. The biofilm protein TasA forms amyloid-like fibrils and is 

essential for the matrix structure. NMR spectroscopic studies observed that in native biofilms 

predominantly homogenous TasA fibrils occur. The crystal structure of TasA revealed two 

polyproline II (PPII) helices in dynamic regions of the protein. Mutations in these helices 

demonstrated that these flexible segments are involved in TasA protein folding and export. 

Moreover, the influence of ClpC on regulation and structure of the biofilm was examined. An 

enhanced biofilm wrinkle formation was observed when no substrate degradation by ClpCP was 

possible. A similar phenotype was visible in an ypbH deletion strain, indicating that this adaptor 

protein might play a role in ClpCP dependent regulation of biofilm formation in B. subtilis. 
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Abbreviations 

AAA+ ATPase associated with cellular activities 

ADEP acyldepsipeptides 

ATP adenosine triphosphate 

BGSC Bacillus Genetic Stock Center 

BSA bovine serum albumin 

CC Coomassie and Congo Red dye 

cfu colony forming units 

Cs citrate synthase 

CV column volumes 

DMSO dimethyl sulfoxide 
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DWB double walker B 

e.g.  exempli gratia, for example 

EDTA ethylenediaminetetraacetic acid 

et al. and others 

FPLC fast protein liquid chromatography 
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Hsp heat shock protein 

IPTG isopropyl β-D-1-thiogalactopyranoside 

kb kilobase 

kDa kilodalton 

LB Luria Bertani 

Mdh malate dehydrogenase 

MOPS 3-(N-morpholino)propanesulfonic acid 

NADH nicotinamide adenine dinucleotide 

NBD nucleotide binding domain 

Ni-NTA nickel nitrilotriacetic acid 

NMR nuclear magnetic resonance 

NTD amino (N)-terminal domain 

OD optical density at 600 nm 

PAGE polyacrylamide gel electrophoresis 

pArg phosphorylated arginine 

PCR polymerase chain reaction 

PIPES piperazine-N,N′-bis(2-ethanesulfonic acid) 

PMSF phenylmethylsulfonyl fluoride 
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PQC protein quality control 
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PTM post translational modification 
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1 Introduction 

They are almost everywhere. Bacteria can adapt to enormous variances in e.g. temperature, pH, 

and nutrient supply. The ability to sense and to react to the environment is crucial for cellular 

survival. Movement to reach nutrients or evade unfavorable conditions, but also communication 

with other cells in a community is essential. Environmental changes can be sensed by different 

signaling pathways, resulting in regulation of cellular development and behavior (Fabret et al., 

1999; Rodrigue et al., 2000). This machinery often depends on post-translational modifications 

(PTMs) altering regulatory proteins. Specific enzymes can attach various, often reversible 

modifications to amino acids of their substrate protein. Most common PTMs in bacteria are protein 

glycosylation, lipidation, acetylation and protein phosphorylation (Eichler and Koomey, 2017; Kim 

et al., 2013; Nakayama et al., 2012). It is usual that multiple modifications are attached to proteins, 

which change their chemical properties, such as binding characteristics, conformation, or charge 

(Macek et al., 2019; Mijakovic et al., 2016). Therefore, PTMs are an efficient way to trigger fast 

reactions and contribute to distinct processes, such as signal transduction, regulation of enzymes, 

cell division, and protein homeostasis.  

1.1 Phosphorylation as post-translational modification 

The relevance of protein phosphorylation as a PTM in bacteria, became clear with advances in 

detection and identification methods (Beltrao et al., 2013; Choudhary and Mann, 2010; Macek et 

al., 2019). In many regulatory and developmental processes specific kinases catalyze the 

phosphorylation of proteins, while dephosphorylation is carried out by according phosphatases. 

Phosphorylation of various amino acids have been reported as PTMs and most frequently observed 

were phosphorylation of histidine residues followed by phosphorylation of serine or threonine 

residues, facilitated by Hanks-type kinases (Macek et al., 2019; Stancik et al., 2018). Distinct 

chemical bonds can be formed by phosphorylation of different amino acids, which exhibit varying 

properties, such as altered stabilities or phospho-transfer potentials (Mijakovic et al., 2016). Thus, 

phosphorylation of serine, threonine and tyrosine (phosphoester bond) is considered to be more 

stable than the high-energy bonds in phosphorylated histidine or arginine (phosphoramidate bond) 

(Sickmann and Meyer, 2001). These characteristics can facilitate different functions, like the swift 

and efficient signal transduction in different regulatory networks (Mijakovic et al., 2016; Stock et 

al., 2000). 
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Two-component systems 

In the Gram-positive model organism B. subtilis many regulatory mechanisms, determining 

responses to the environment and cellular development, are well characterized. A wide range of 

signaling pathways entail so called two-component systems or more complex phosphorelays 

(Narula et al., 2016). In these networks, protein histidine kinases sense various signals, resulting in 

autophosphorylation and transfer of a phosphoryl group to the aspartate residue of response 

regulators (Fabret et al., 1999; Stock et al., 1989). This phosphorylation can cause conformational 

changes activating the regulator, which acts as a transcription factor or interaction partner adjusting 

gene expression. Since histidine kinase components are often embedded in the membrane, they can 

sense and react to environmental changes (Macek et al., 2019). Quorum sensing, for example, is a 

two-component system based process, enabling bacteria to detect and react to the cell density in 

communities (Kalamara et al., 2018; Miller and Bassler, 2001). Increasing concentrations of small 

molecules, so-called autoinducers or pheromones, which are secreted by bacteria, can be 

recognized by the sensor kinase (Figure 1 A). Subsequent phosphorylation of the response regulator 

results in coordinated initiation of cellular processes (Kumar and Singh, 2013; Wynendaele et al., 

2015). In B. subtilis two-component systems are involved in chemotaxis by the Che signaling 

system (Rosario and Ordal, 1996), reactions to phosphate starvation by Pho (Fujisawa et al., 2007), 

as phosphorelay in initiation of sporulation by Spo0 systems (Burbulys et al., 1991; Hoch, 1993) 

or initiation of competence development (Grossman, 1995), among others. 

 

Figure 1 Model of Quorum sensing and σB regulation. 

(A) In Quorum sensing, sensor kinases can detect increasing cell density through rising levels of signal 

peptide concentrations. Phosphorylation and activation of response regulators results in altered gene 

expression. (B) Under normal conditions, RsbW binds σB, acting as an anti-σ-factor and inactivates RsbV 

by phosphorylation. Upon stress, RsbU and RsbP dephosphorylate and activate RsbV that binds to RsbW, 

releasing and activating transcription factor σB. This results in upregulation of the general stress regulon.  
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Phosphorylation of key regulators in bacterial stress response 

Phosphorylation and dephosphorylation events also play a major role in cellular stress response 

pathways. One prominent example is the regulation of the general stress regulon including ~150 

genes under control of stress response transcription factor sigma B (σB) (Petersohn et al., 2001; 

Price et al., 2002). This transcription factor alters promotor binding specificity of the RNA 

polymerase by binding to the core enzyme (Haldenwang and Losick, 1980). σB regulation underlies 

a complex partner switching mechanism dependent on Rsb (regulator of sigma B) proteins (Figure 

1 B). Under normal growth conditions σB is bound and inhibited by the anti-σ-factor RsbW, which 

also possesses serine kinase activity to specifically inactivate RsbV by phosphorylation (Benson 

and Haldenwang, 1993; Dufour and Haldenwang, 1994). Dephosphorylation of the anti-anti-σ-

factor RsbV by RsbU, under environmental stress, or RsbP, under metabolic stress conditions, 

leads to inactivation of anti-σ-factor RsbW by complex formation trough protein-protein 

interaction with RsbV and release and activation of σB (Brigulla et al., 2003; Vijay et al., 2000; 

Voelker et al., 1996). Similar partner-switching mechanisms are described for RsbT activation and 

regulation of sporulation by anti-σ-factor serine kinase SpoIIAB, managing σF activity by binding 

or phosphorylation of anti-anti-σ-factor SpoIIAA (Kang et al., 1998; Min et al., 1993; Yang et al., 

1996). 

1.1.1 Protein arginine kinase McsB in B. subtilis 

The protein McsB plays a special role in protein homeostasis of B. subtilis, because of its dual 

function. On the one hand, McsB can act as adaptor protein for AAA+ chaperone ClpC. Thus, it 

regulates substrate selection, promotes ClpC activation and oligomerization as well as formation 

of the protease complex ClpC-ClpP (ClpCP) (Elsholz et al., 2012; Kirstein et al., 2007, 2005) 

(Figure 2). On the other hand, McsB specifically phosphorylates arginine residues, enabling PTM 

based influence on different regulatory pathways (Elsholz et al., 2012; Fuhrmann et al., 2009; 

Kirstein et al., 2007; Krüger et al., 2001). Recently, the structure and enzymatic mechanism for 

protein arginine phosphorylation by Geobacillus stearothermophilus McsB were described 

(Suskiewicz et al., 2019). This dimeric McsB has one catalytic domain targeting substrate proteins 

and one domain recognizing and binding already phosphorylated arginine residues, resulting in 

further enhancement of the McsB kinase activity (Suskiewicz et al., 2019).  
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B. subtilis McsB was shown to possess a low autophosphorylation activity, but full kinase 

activation and efficient substrate phosphorylation are only possible in presence of McsA (Kirstein 

et al., 2007, 2005). The specific role of the activator protein McsA, the interaction with McsB, and 

the exact mechanism of McsB activation have not been investigated in full detail so far. However, 

addition of McsA enhanced the McsB-induced ClpC ATPase activity as well as degradation of the 

adaptor protein McsB itself by the ClpCP protease complex in vitro (Kirstein et al., 2007). The 

McsB mediated ClpC activity was considered to be facilitated by phosphorylation of N-terminal 

arginine residues, whereas ClpC itself was shown to inhibit McsB kinase activity in vitro and in 

vivo (Elsholz et al., 2011a, 2012; Kirstein et al., 2005, 2007). Moreover, arginine phosphorylation 

of model substrates by McsB was demonstrated to act as targeting signal for ClpCP dependent 

degradation in absence of adaptor proteins in B. subtilis (Trentini et al., 2016). Consistently, 

binding of phosphorylated arginine by a conserved recognition site was also reported for ClpC1 

from Mycobacterium tuberculosis (Weinhäupl et al., 2018). This intricate functional overlap of 

kinase and adaptor protein activities of McsB facilitates its involvement in regulatory processes as 

well as protein homeostasis in B. subtilis.  

The arginine specific phosphatase YwlE was described to inactivate and antagonize McsB activity 

in vitro and in vivo (Elsholz et al., 2010; Fuhrmann et al., 2013a; Kirstein et al., 2005). Since YwlE 

and McsB do not form a stable complex and the impact of YwlE on McsB ATPase activity is low, 

it was predicted that the antagonism only depends the phosphatase activity (Fuhrmann et al., 2016). 

The strict control over McsB kinase activity by the activator McsA and the inhibitors ClpC and 

YwlE is important for correct cell physiology, as suggested by the severe influence of deletion 

mutants in vivo (Elsholz et al., 2011a). Examination of a ΔywlE mutant revealed global changes in 

gene expression, demonstrating the significance of arginine phosphorylation and 

dephosphorylation for functional cellular regulation systems, such as competence development, 

stress response as well as regulation of spore germination (Figure 2) (Elsholz et al., 2012; Schmidt 

et al., 2014).  

The phosphorylation of arginine modifies its charge from positive to negative and was considered 

to alter protein-protein, protein-DNA, and protein-RNA interactions (Fuhrmann et al., 2009; 

Mijakovic et al., 2016; Trentini et al., 2016). Moreover, the high energy of the phosphoramidate 

(P-N) bond might allow the transfer of the phosphate to other residues and the unstable nature of 

this bond was considered to complicate the detection (Elsholz et al., 2012; Schmidt et al., 2013; 
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Sickmann and Meyer, 2001; Teague and Dobson, 1999). Identification of protein arginine 

phosphorylation in vivo was only possible in a ΔywlE mutant or with phosphatase inhibitor 

treatment in B. subtilis (Elsholz et al., 2012; Schmidt et al., 2014). Quantitative analysis of the 

arginine phosphoproteome of B. subtilis under different environmental conditions revealed that the 

main targets of arginine kinase McsB are members of the stress response system (Schmidt et al., 

2014). Consistently, McsB expression is highly induced during heat stress in B. subtilis and ClpC 

interaction decreases, which leads to activation of McsB kinase activity, emphasizing the 

importance of McsB in heat stress response (Elsholz et al., 2011a). In Staphylococcus aureus, 

McsB is crucial for a successful stress response and accompanying virulence traits (Wozniak et al., 

2012).  

 

Figure 2 McsB is an arginine kinase and ClpC adaptor protein. 

The McsB kinase is activated by McsA and counteracted by YwlE. In its function as adaptor protein, McsB 

can facilitate the oligomerization and activation of ClpC and subsequent ClpCP complex formation. 

Substrate selection for ClpCP is carried out by McsB, whereby only phosphorylation of the substrate was 

shown to act as targeting signal (Trentini et al., 2016). The McsB activities, as arginine kinase and adaptor 

protein, enable impact on many cellular functions. 
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Sensing stress via McsA and YwlE in B. subtilis  

Notably, both the activator of McsB, McsA, and the phosphatase YwlE have redox-sensitive traits. 

McsA contains two Cys2-Cys2 zinc finger motifs, forming disulfide bonds under oxidative stress 

conditions and thereby altering protein stability and function (Krüger et al., 2001; Wouters et al., 

2010). The strong interaction between McsA and McsB is abolished during disulfide stress, 

resulting in free McsB targeting and inactivating CtsR, the repressor of class III heat shock genes 

in B. subtilis (Elsholz et al., 2011b; Krüger and Hecker, 1998). This pathway differs significantly 

from heat-stress induced CtsR regulation, where CtsR is inactivated by an intrinsic thermosensor 

and McsB facilitates subsequent ClpCP dependent degradation (see section 1.3.4) (Elsholz et al., 

2011b). However, Lactococcus lactis lacks McsA and McsB so that the AAA+ protein ClpE, which 

contains a N-terminal zinc finger domain similar to McsA, can take their place in oxidative stress 

dependent CtsR regulation (Elsholz et al., 2011b; Varmanen et al., 2003).  

The activity of B. subtilis phosphatase YwlE also depends on two cysteine residues, Cys7 and 

Cys12, that are flanking the active site pocket, as previously shown for comparable sequence motifs 

in G. stearothermophilus YwlE (Fuhrmann et al., 2013b). Under oxidative stress conditions a 

disulfide bridge is formed, inactivating YwlE reversibly and suggesting that YwlE can act as redox 

sensor in B. subtilis (Fuhrmann et al., 2016). It has been proposed that upon inactivation of YwlE 

dephosphorylation is halted and thus, McsB dependent arginine phosphorylation and induced 

expression of stress response genes could be enhanced (Fuhrmann et al., 2016).  

1.2 Chaperones involved in protein homeostasis 

One important system in a living cell, besides well-coordinated gene expression, is the control over 

protein homeostasis. Here, a rough separation between regulatory and stress induced operation 

systems can be made, whereas both are carried out by a highly conserved class of proteins, namely 

chaperones, which are often accompanied by proteases (Wickner et al., 1999). Chaperones are able 

to either hold substrate proteins and thereby prevent unintended interactions or formation of 

aggregates (“holders”) or support protein unfolding and refolding events (“folders”) (Mayer and 

Bukau, 1998). They are important in many different situations, such as assistance of protein folding 

directly after translation, by e.g. ribosome-associated trigger factor in Escherichia coli, the support 

of protein transport across membranes and recognition and refolding of incorrect folded proteins 

species (Hartl and Hayer-Hartl, 2002; Hoffmann et al., 2010; Zhou and Xu, 2005). Furthermore, 
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proteases take an essential part in protein quality control (PQC) systems, because they are required 

for removal of irreversibly damaged proteins, generation of amino acids during starvation or for 

directed degradation of e. g. transcription factors in order to adjust different regulatory pathways 

(Goldberg and St. John, 1976; Gottesman, 2003; Jenal and Hengge-Aronis, 2003; Wickner et al., 

1999).  

Under normal but especially under stress conditions, such as heat, proteins are endangered to unfold 

and misfold. Thereby, hydrophobic regions can be exposed and possibly toxic protein aggregates 

emerge (Tyedmers et al., 2010; Vabulas et al., 2010) (Figure 3). Many chaperones and associated 

proteins counteracting this aggregate formation are called “heat shock proteins” (Hsp), because of 

their high occurrence during heat stress conditions (Lee and Tsai, 2005). Nevertheless, Hsp are not 

only involved in stress dependent but also in regulatory processes. 

  

Figure 3 Schematic overview of PQC systems in aggregate removal and prevention. 

PQC systems are involved in prevention and removal of e.g. heat induced protein aggregates. Hsp systems 

like GroESL or DnaKJE mostly act on mis- or unfolded protein species, whereby the unfolding of tight 

aggregates is often supported Clp chaperones. Proteases and protease complexes can degrade those possibly 

toxic protein aggregates. 



1.2   Introduction 

8 

In many eukaryotic and prokaryotic organisms different Hsp families were identified and often 

termed according to their estimated molecular weight, e.g. Hsp100, Hsp90, Hsp70, Hsp60 and 

small Hsp families (Gupta et al., 2010). The well-studied prokaryotic chaperonines, GroEL 

(Hsp60) and GroES (Hsp10) (GroESL), were shown to prevent heat induced protein aggregation 

and promote protein folding in E. coli (Ziemienowicz et al., 1993) (Figure 3). Here, the cylindrical 

shaped chaperone GroEL binds mis- and unfolded substrate proteins via hydrophobic residues 

(Farr et al., 2000). Subsequent attachment of the fitting lid GroES leads to encapsulation and 

folding of the substrate by ATP-dependent conformational changes of the ATPase GroEL (Chen 

et al., 2013; Clare et al., 2012). Substrate folding and GroESL activity underlie a well-coordinated 

cycle by either sequential or simultaneous action of two stacked GroEL rings (Ye and Lorimer, 

2013). ATP binding to one ring leads to release of substrate from the other GroEL (Ranson et al., 

2001). If the substrate is not completely folded, several capture, folding and release cycles can be 

performed (Hayer-Hartl et al., 2016; Saibil et al., 2013). Similarly, eukaryotic and prokaryotic 

Hsp70 proteins perform several ATP-dependent substrate binding and release cycles, partially 

unfolding substrates and thus allowing independent refolding to the native state (Hartl and Hayer-

Hartl, 2002; Mayer and Bukau, 1998). DnaK, a Hsp70 homologue from E. coli, acts together with 

co-chaperones DnaJ and GrpE. They stimulate DnaK ATPase activity, support substrate targeting 

and binding as well as subsequent refolding of substrates (Laufen et al., 1999; Liberek et al., 1991; 

Mayer and Bukau, 2005). Nevertheless, high disaggregation and refolding efficiency as well as 

destabilization of large aggregates depends on interplay with Hsp100 chaperones, like Hsp104 in 

Saccharomyces cerevisiae or ClpB in E. coli (Diamant et al., 2000; Glover and Lindquist, 1998; 

Mogk, 1999).  

In eukaryotes proteolysis is mainly performed by the proteasome. Substrate entry into the 

compartmentalized complex is strictly controlled to prevent undesired degradation of native 

proteins. Specific regulatory proteins flanking the catalytic core can allow access of 

posttranslational modified proteins, which are labeled with a specific ubiquitin tag (Fort et al., 

2015; Hershko et al., 1983). The catalytic core of the proteasome consists of stacked ring structures 

performing ATP-dependent proteolysis (Groll and Huber, 2003; Voges et al., 1999). These barrel-

shaped proteins with a conserved ATPase module belong to the superfamily of AAA+ (ATPase 

associated with cellular activities) proteins (Ogura and Wilkinson, 2001; Walker et al., 1982). 
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1.3 Clp protein family 

Different types of Hsp100/Clp (“caseinolytic proteins”) AAA+ proteins are involved in PQC 

systems of bacteria. These proteins are subdivided in two classes according to the presence of either 

two (e.g. ClpA, ClpB, ClpC) or one (e.g. ClpX, ClpY) AAA+ “nucleotide binding domain” (NBD) 

(Schirmer et al., 1996). Two NBDs are connected by a module called “spacer” or “linker” domain 

and each NBD includes Walker A and B nucleotide-binding elements. Furthermore, Hsp100/Clp 

proteins are distinguished by different “amino (N)-terminal domains” (NTDs), which are crucial 

for specific recognition and binding of substrates and adaptor proteins (Battesti and Gottesman, 

2013; Sauer and Baker, 2011). Clp proteins form barrel-like ring structures that can unfold substrate 

proteins by ATP-dependent threading through the axial pore. Substrate binding and translocation 

are carried out by axial-pore loops, as shown for E. coli ClpX (Iosefson et al., 2015; Martin et al., 

1999). ATP dependent conformational changes facilitate coordinated movement of the pore loops, 

which pull substrate down the pore (Mogk et al., 2018). 

 

Figure 4 Schematic model example of AAA+ protein structure.  

Model of barrel shaped AAA+ Clp protein (e.g. ClpA, ClpB, ClpC) in that the NTD recognizes substrate 

and adaptor proteins and the two NBD domains are connected by a linker domain. Pore-loops facilitate 

substrate translocation and P-loops of the AAA+ chaperone interact with hydrophobic clefts of according 

proteases. 

1.3.1 Clp proteases and protease complexes 

The Hsp100/Clp family also includes proteases, such as Lon and FtsH, which consist out of one 

AAA+ NBD linked to a metalloprotease-domain (FtsH) or a serineprotease-domain (Lon) (Ito and 

Akiyama, 2005; Tsilibaris et al., 2006). These AAA+ proteases form hexameric ring structures that 

recognize and unfold proteins in an ATP-dependent manner and can transfer the substrate to the 
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intrinsic protease for degradation. Besides these merged AAA+ proteases other AAA+ chaperones 

can form protease complexes by association to separate proteases such as heptameric ClpP or 

hexameric ClpQ (Singh et al., 2001). Both proteases form double ring structures, with narrow pores 

through which substrates access the active sites inside the barrel (Baker and Sauer, 2006; Sauer et 

al., 2004). NMR studies showed, that degraded substrate exits ClpP through dynamic side pores, 

emerging upon conformational changes (Sprangers et al., 2005). The AAA+ Clp proteins (e.g. 

ClpA, ClpC, ClpE and ClpX) interact with ClpP via specific and flexible hydrophilic loops at the 

C-terminus. These P-loops possess a highly conserved tripeptide [LIV]-G-[FL] and can interact 

with hydrophobic pockets on the surface of ClpP (Kim et al., 2001). Mutations in the E. coli ClpX 

P-loop resulted in impaired substrate degradation activity of ClpXP in vivo and in vitro (Kim et al., 

2001). In B. subtilis, Clp proteases and protease complexes are involved in different cellular 

processes by directed regulatory proteolysis (see section 1.3.4) (Jenal and Hengge-Aronis, 2003; 

Storz et al., 2011). However, the general degradation of impaired proteins, especially the removal 

of irreparably damaged proteins under stress conditions is also essential for the cell.  

Substrate selection and degradation of complete proteins by ClpP depends on the associated AAA+ 

chaperones (Schlothauer et al., 2003; Thompson et al., 1994; Woo et al., 1989). Notably, a new 

class of antibacterial compounds, acyldepsipeptides (ADEP), were identified bypassing this 

protease regulation (Brötz-Oesterhelt et al., 2005; Schweitzer, 2008). By targeting ClpP, ADEP 

blocks the P-loop docking sites, opens the entrance pore and hinders the interaction between e.g. 

ClpX and ClpP in E. coli and B. subtilis (Lee et al., 2010). Thereby substrate selection and protease 

activation via Clp chaperones is overcome, resulting in uncontrolled substrate proteolysis by ADEP 

activated ClpP (Brötz-Oesterhelt et al., 2005; Kirstein et al., 2009a). This unrestrained protein 

degradation is especially toxic for the cell because regulatory proteolysis is prevented, and many 

essential proteins are damaged.  

1.3.2 Clp dependent protein un- and refolding 

Besides proteolysis, the un- and refolding of impaired proteins is a fast and efficient way to 

reactivate proteins and remove protein aggregates (Mogk et al., 2018; Wallace et al., 2015). Some 

AAA+ chaperones were already shown to act in a ClpP independent manner and participate in 

different regulatory processes. ClpX for instance is involved in remodeling the Mu transposome 

by unfolding subunits and thereby destabilizing the complex (Levchenko et al., 1995). In contrast 

to this, ClpA specifically targets and disassembles the replication initiator protein RepA, resulting 
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in its activation (Pak and Wickner, 1997; Wickner et al., 1994). Apart from this regulatory 

involvement, the disaggregation and refolding activities of Clp chaperones are significant 

mechanisms in the bacterial stress response. 

The E. coli Hsp100 protein ClpB, that is also present in many other bacteria, plays a major role in 

heat shock response and rescue from heat-induced damage (Weibezahn et al., 2004). ClpB takes a 

special place in the Clp family, because it lacks the ClpP interaction loop and acts as disaggregase 

(Weibezahn et al., 2004). In cooperation with Hsp chaperones DnaK, DnaJ and GrpE 

disaggregation and refolding of denatured protein aggregates is possible in vitro and in vivo (Laufen 

et al., 1999; Zolkiewski, 1999). In this system, DnaK acts as adaptor protein promoting substrate 

recognition and disaggregation by ClpB (Seyffer et al., 2012; Winkler et al., 2012). Efficient 

refolding of the unfolded substrates in return is again dependent on DnaK, DnaJ and GrpE (Glover 

and Lindquist, 1998; Rosenzweig et al., 2013). In addition to ClpB different stand-alone Clp 

disaggregases were identified in various bacterial species. ClpG for example, possesses even higher 

unfolding power than the ClpB, DnaK, DnaJ, GrpE (ClpB/KJE) system, enabling the 

disaggregation of firm aggregates under severe heat stress (Katikaridis et al., 2019). Furthermore, 

two ClpG disaggregase homologues were identified in Pseudomonas aeruginosa, which also lack 

a ClpP interaction loop and are important for heat tolerance and support heat resistance when 

expressed in E. coli (Lee et al., 2018). The cognate AAA+ protein ClpK, present in Klebsiella 

pneumoniae and Cronobacter sakazakii promotes heat resistance and is therefore assumed to be 

involved in persistence of these pathogens (Bojer et al., 2010; Gajdosova et al., 2011). However, 

despite absence of the conserved tripeptide described for the P-loop, the ClpK mediated 

thermoresistance is still dependent on the presence of ClpP in vivo (Bojer et al., 2013). 

Furthermore, many Gram-positive bacteria including Staphylococcus spp. contain AAA+ protein 

ClpL or ClpL homologues (Park et al., 2015). In these species ClpL promotes thermotolerance 

development by folding of the heat shock repressor CtsR, prevention of protein aggregation under 

heat stress and by protein disaggregation without assistance of adaptor proteins (Frees et al., 2004; 

Kwon et al., 2003; Tao and Biswas, 2013). Comparable to ClpK, ClpL lacks the ClpP interaction 

loop but co-precipitation under heat shock conditions suggested collaboration of this chaperone 

with the protease (Park et al., 2015). 

An exclusive disaggregase acting without interplay to the protease ClpP, like ClpB or ClpG, is not 

present in the Gram-positive model organism B. subtilis. Nevertheless, other chaperone systems 
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are considered to cover this function. So far, in vitro disaggregation and refolding of heat 

inactivated substrate was only described for ClpC, activated by adaptor protein MecA or its paralog 

YpbH, in absence of ClpP (Schlothauer, 2004; Schlothauer et al., 2003).  

1.3.3 Adaptor proteins and recognition tags 

The targeting of substrates for either degradation or disaggregation and reactivation by chaperone 

systems depends on different mechanisms. For many substrates simple tag and recognition site 

systems fulfill this role and lead AAA+ chaperones and proteases to their substrate. Incomplete 

transcription or damaged mRNA can result in tagging of the emerged proteins with the so called 

SsrA-tags by cotranslational switching to a tmRNA, encoded by the ssrA gene (Keiler et al., 1996; 

Tu et al., 1995). In E. coli, ClpXP, ClpAP and FtsH recognize and degrade these tagged substrates 

(Karzai et al., 2000). A special factor, SspB, can even increase the degradation efficiency of SsrA-

tagged proteins by ClpXP (Levchenko et al., 2000). In addition to the SsrA-tag other substrate 

recognition motifs are recognized by ClpA, ClpX and Lon (Flynn et al., 2003; Gur and Sauer, 2008; 

Hoskins et al., 2002). However, many Hsp100 Clp proteins strictly require adaptor proteins to 

promote and enhance substrate specificity and recognition. These adaptor proteins therefore play a 

significant role in activation and alteration of chaperone functions and affiliated protease activities. 

In E. coli for example, degradation of general stress response factor σS by ClpXP depends on the 

adaptor protein RssB (Muffler et al., 1996; Zhou et al., 2001). Furthermore, the adaptor protein 

ClpS is responsible for recognition and subsequent ClpAP dependent degradation of N-end rule 

substrates, carrying destabilizing N-terminal residues (Erbse et al., 2006). Additionally, ClpS 

inhibits degradation of not recognized substrates and redirects ClpAP degradation activity from 

SsrA-tagged substrates to aggregated proteins (Dougan et al., 2018, 2002; Erbse et al., 2006). 

Furthermore, down regulation of protease activity by adaptors, like Lon by bacteriophage T4 

protein PinA or ClpAP degradation of SsrA-tagged substrate by SspB, was reported (Flynn et al., 

2003; Hilliard et al., 1998). 
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1.3.4 Clp proteins in B. subtilis regulatory pathways 

The function and specificity of AAA+ proteins and their adaptor proteins in B. subtilis is one 

important topic of research since they can influence many regulatory pathways. The swarming 

ability, for example, depends on flagellar synthesis. This process is under control of the master 

activator SwrA, which is targeted by the adaptor protein SmiA for degradation by LonA in liquid 

environment (Mukherjee et al., 2015) (Figure 5). ClpXP dependent degradation of anti-sigma 

factor RsiW regulates the cell envelope stress response and initiation of sporulation is facilitated 

by degradation of checkpoint protein Sda, whereas the ClpXP adaptor protein CmpA ensures 

correct spore maturation (Burkholder et al., 2001; Ruvolo et al., 2006; Tan et al., 2015; Zellmeier 

et al., 2006). A specific C-terminal LCN sequence was observed to facilitate ClpCP dependent 

degradation of anti-σF factor SpoIIAB, which is also involved in regulation of sporulation (Pan et 

al., 2001; Pan and Losick, 2003). Nevertheless, an unknown adaptor protein of ClpC is considered 

to enable the recognition of SpoIIAB with this unique LCN-tag (Hantke, 2019; Pan and Losick, 

2003). Furthermore, competence development and heat stress response are both influenced by the 

adaptor protein induced activity of Hsp100 AAA+ protein ClpC and affiliated protease complex 

ClpCP in B. subtilis.  

  

Figure 5 Involvement of selected Clp proteins in regulatory pathways. 

B. subtilis Clp protease complexes, ClpCP (red), ClpXP (green), ClpEP (blue) and protease LonA (yellow) 

are involved in regulation of different cellular pathways (grey). Corresponding adaptor proteins that are 

known to facilitate Clp functions are listed beside related arrows. A selected set of regulatory pathways and 

pivotal connections to Clp are illustrated. 
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Competence development of B. subtilis 

Cells in a competent physiological state are able to take up and internalize external DNA and 

thereby benefit of additional genetic information, like antibiotic resistances, or of a further nutrient 

source (Chen, 2005; Finkel and Kolter, 2001). B. subtilis competence development is triggered in 

5-10 % of the cell community by pheromones ComX and CSF, which accumulate at high cell 

density (Haijema et al., 2001; Magnuson et al., 1994; Storz et al., 2011). Expression of srfA operon, 

including comS, is induced via quorum sensing of these pheromones (D’Souza et al., 1994; 

Solomon et al., 1996). Under non-competent conditions the competence regulator ComK is 

targeted by adaptor protein MecA for degradation by ClpCP protease complex. Upon competence 

induction, ComS is produced and targeted by MecA, thus releasing ComK (Prepiak and Dubnau, 

2007; Turgay et al., 1998, 1997). Subsequent positive autoregulation of ComK expression results 

in fast increasing protein concentrations and accompanied transcription of competence determining 

genes (Ogura et al., 2002; Sinderen et al., 1995). Escape from competence is mediated by 

retargeting of ComK by MecA for degradation by ClpCP (Turgay et al., 1998). The regulatory key 

player Spx was shown to counteract competence development by enhancing interactions between 

ClpC, MecA and ComK (Nakano et al., 2002). In addition to the adaptor protein MecA, its paralog 

YpbH was found to interact with ClpC and to be also involved in sporulation and competence 

development in B. subtilis (Persuh et al., 2002).  

Heat shock response of B. subtilis 

Heat shock response in B. subtilis is based on a complex network of sensor proteins, signal 

transduction factors and transcriptional regulators controlling expression and functions of Hsp, e.g. 

chaperones and proteases. Heat shock proteins are classified according to their regulation model, 

whereby class I-III are well-characterized in B. subtilis (Hecker et al., 1996). Class I includes dnaK 

and grpE operons that contain inverted repeats called CIRCE elements by which GroESL-activated 

HrcA can bind and negatively regulate their transcription (Mogk et al., 1997; Schulz and 

Schumann, 1996). Upon heat stress HrcA acts as a thermosensor, undergoing conformational 

changes leading to the expression of class I heat shock genes, whereby the reactivation of HrcA as 

repressor depends on GroESL (Hitomi et al., 2003; Roncarati et al., 2014). Over 150 general stress 

genes count to heat shock class II and are induced by growth-inhibiting stress conditions via σB 

dependent promotors in B. subtilis (Hecker et al., 2007, 1996). Regulation of σB underlies a 

complex partner switching system described in detail in section 1.1. Class III heat shock genes are 



1.4   Introduction 

15 

under the control of CtsR, the first protein encoded in clpC operon (Krüger and Hecker, 1998). The 

expression of clpP, clpE and the clpC operon (ctsR-mcsA-mcsB-clpC) is repressed by binding of 

active CtsR to a specific promotor region under normal growth conditions (Derré et al., 1999; 

Krüger et al., 2001). In vitro studies showed, that CtsR can be inactivated and targeted for ClpCP 

degradation by McsA-activated McsB (Fuhrmann et al., 2009; Kirstein et al., 2005; Krüger et al., 

2001). However, in vivo a highly conserved tetraglycine loop of CtsR is responsible for 

thermosensing and de-repression of heat shock genes upon heat stress (Derré et al., 2000; Elsholz 

et al., 2010). The adaptor protein function of McsB is still important for directed degradation of 

inactive CtsR in vivo and only arginine phosphorylation of CtsR is not sufficient for degradation 

in vitro (Elsholz et al., 2010; Kirstein et al., 2007). In B. subtilis, as well as bacteria lacking the 

McsB kinase, it was shown that ClpEP is involved in CtsR degradation and aggregate clearance 

under heat stress conditions (Ingmer et al., 1999; Miethke et al., 2006). With adaption to permanent 

heat stress new synthesized active CtsR rebinds and represses class III heat shock genes, implying 

that inactivation of CtsR only occurs due to temperature upshifts (Elsholz et al., 2017, 2010; Krüger 

et al., 1994). However, many of these regulations are not only connected to heat stress, but also 

part of various intricately interwoven stress response networks as the involvement of CtsR in thiol-

specific oxidative stress response or the global stress response regulator Spx indicate (Elsholz et 

al., 2011b; Runde et al., 2014; Schäfer and Turgay, 2019). The adaptor protein YjbH can target 

Spx for degradation by ClpXP. This ClpXP activity governs upregulation of multiple genes 

concerning thiol-specific oxidative stress and heat induced stress as well as downregulation of 

energy-consuming cell functions during these conditions (Garg et al., 2009; Nakano et al., 2003; 

Runde et al., 2014; Schäfer and Turgay, 2019). 

1.4 Biofilm formation in B. subtilis 

Bacterial cells can develop different types of lifestyle depending on their environment. Movement 

is achieved by either swimming motility, in a three dimensional liquid as individual or by swarming 

motility, on a two dimensional solid surface as cell-group (Mukherjee and Kearns, 2014). The most 

abundant lifestyle is a sessile type, forming biofilms in highly diverse bacterial communities 

(Davey and O’Toole, 2000). These biofilms are classified in three groups based on their ground 

substrate being solid, an air-liquid interface (pellicle biofilm) or if they are formed by cellular 

clusters submerged in liquid (Terra et al., 2012; Vlamakis et al., 2013). In general, biofilms are 

produced by secretion of different proteins, “exopolysaccharides” (Eps) and eDNA to form an 
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extracellular matrix in which the cells are embedded in different layers, performing specific tasks 

(Sutherland, 2001). The formation of biofilm facilitates the exchange of genetic material, improves 

nutrient supply and promotes cell to cell communication for coordinated growth (Davies, 1998; 

Gilbert et al., 1997; Hausner and Wuertz, 1999; Shapiro, 1998). Moreover, a higher tolerance 

against outer influences such as antibiotics, host immune responses or antimicrobial agents is 

conferred, indicating the importance of biofilm research in the medical field (Ceri et al., 1999; 

Donlan, 2002; Mah, 2012; Olsen, 2015).  

The soil-dwelling Gram-positive bacterium B. subtilis is a model organism for studies of biofilm 

formation. In its natural habitat, B. subtilis colonizes on plant roots, whereby this biofilm formation 

can be induced by plant polysaccharides (Beauregard et al., 2013). Notably, these polysaccharides 

serve as carbon source for matrix formation and in return B. subtilis can promote plant growth and 

protect against salt stress or a huge variety of plant pathogens (Arkhipova et al., 2005; Choudhary 

and Johri, 2009; Ongena et al., 2005; S. Wang et al., 2009; Zhang et al., 2008). The bacterial 

community in a biofilm can be divided in different subpopulations which, despite similar genome, 

express a distinct set of genes. During biofilm maturation, cells differentiate depending on the 

environmental conditions, resulting in a big variety of phenotypic characteristics (López and 

Kolter, 2010; Vlamakis et al., 2013). Along with matrix-producing cell types, motile and 

sporulating cells emerge, localizing in different regions of the biofilm (Vlamakis et al., 2008). 

1.4.1 Biofilm components 

Biofilm formation is triggered by different external factors, such as already mentioned 

polysaccharides or surfactin, which is produced by a subpopulation of cells and can be detected by 

quorum sensing mechanisms leading to increased expression of matrix genes (Lopez et al., 2009). 

The main components of B. subtilis biofilms are Eps, products of the epsA-O operon (eps operon), 

but the distinct functions of many eps genes remain to be investigated. However, mutations in epsJ-

epsN can cause severe defects in pellicle formation and inactivation of some eps genes inhibits 

swarming in strain 168 (Nagorska et al., 2010). Furthermore, EpsE promotes Eps biosynthesis by 

gycosyltransferase activity, while at the same time inhibiting motility by arresting flagellar rotation 

(Blair et al., 2008; Guttenplan et al., 2010). With this bifunctionality, EpsE can support the 

transition from motile cells to sessile biofilm forming cells. Notably, osmotic pressure gradients 

generated by secretion of Eps are considered to support spreading of B. subtilis biofilm on agar 
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plates, whereas pellicle biofilms are formed by vortex-like motion of aggregates composed of Eps 

secreting cells and motile cells (Seminara et al., 2012; Steinberg et al., 2018).  

Moreover, the formation of a robust biofilm matrix depends on expression of all genes of the tapA-

sipW-tasA operon (Branda et al., 2006; Chu et al., 2006). TasA (“translocation-dependent 

antimicrobial spore component”) is a major component of B. subtilis biofilms and responsible for 

stabilization of the extracellular matrix in colony and pellicle biofilms (Branda et al., 2006; Romero 

et al., 2010). Recently, influences on membrane dynamics by TasA were observed to be important 

for cell viability (Cámara-Almirón et al., 2020). Moreover, TasA has high structural similarity with 

camelysins, which are metalloproteases involved in pathogenicity of Bacillus cereus, but no 

protease activity could be detected for B. subtilis TasA so far (Diehl et al., 2018; Fricke et al., 2001; 

Grass et al., 2004). In vivo, TasA was observed to form amyloid-like fibrils, which are highly stable 

and display structural changes under different pH or surface conditions in vitro (Chai et al., 2013; 

Romero et al., 2010). Addition of recombinantly produced and purified TasA to a tasA deletion 

strain with impaired biofilm formation results in reconstitution of the matrix (Romero et al., 2010). 

NMR analysis of TasA from those reconstructed biofilms recently showed that TasA is present in 

a homogenous, β-sheet-rich fibril form in vivo. The crystal structure of monomeric TasA revealed 

two polyproline II (PPII) helices, which were considered to be relevant in amyloid-like fibril 

formation and thus, biofilm maturation (Diehl et al., 2018).  

In B. subtilis biofilms TapA (“TasA anchoring/assembly protein”) is present in lower levels than 

TasA (Chu et al., 2006). Nevertheless, TapA is essential for robust matrix formation and localizes 

on the cell surface and anchors TasA fibrils to the cell (Romero et al., 2011). Moreover, the 

polymerization of TasA fibrils in the matrix structure is supported by TapA, but only a short N-

terminal sequence of TapA is required for these functions (Earl et al., 2019; Romero et al., 2014). 

In addition to TasA and TapA, the type I “signal peptidase W” (SipW) is encoded in the tapA-

sipW-tasA operon (Tjalsma et al., 1998). SipW is crucial for biofilm formation in B. subtilis, 

because it processes both TasA and TapA (Chu et al., 2006). With recognition and cleavage of N-

terminal signal sequences by SipW, the proteins are secreted and can support matrix formation and 

biofilm maturation (Romero et al., 2011; Stöver and Driks, 1999a, 1999a). Additionally, SipW has 

a regulatory function in activation of eps gene expression and is therefore required for submerged, 

surface adhered biofilm formation (Terra et al., 2012).  
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Furthermore, the surface layer protein BslA and the extracellular polymer “γ-poly-DL-glutamic 

acid” (PGA) are necessary for the biofilm structure of B. subtilis. BslA can form a hydrophobic 

layer on pellicle biofilms and contributes to complex colony development (Kobayashi and Iwano, 

2012; Kovács and Kuipers, 2011; Verhamme et al., 2009). PGA is only involved in formation of 

submerged and surface-adhered biofilms by enhancing cell-surface interactions (Branda et al., 

2006; Kobayashi, 2007a; Morikawa et al., 2006; Stanley and Lazazzera, 2005).  

1.4.2 Regulation of biofilm formation 

The regulation of biofilm formation is a sophisticated network under control of different master 

regulators (Molle et al., 2003) (Figure 6). The activity of master controller Spo0A is regulated by 

a phosphorelay, which is a complex two-component system. Here, five histidine kinases, KinA, 

KinB, KinC, KinD and KinE can phosphorylate and thereby activate Spo0A over a relay by 

transmitting the phosphoryl group over Spo0F and Spo0B to Spo0A (Jiang et al., 2000). KinA and 

KinB are involved in sporulation initiation, whereas KinC and KinD are required for production of 

the extracellular biofilm matrix (LeDeaux et al., 1995; Perego et al., 1989). The influence of 

phosphorylated Spo0A (Spo0A-P) on cellular development depends on its concentration (Fujita et 

al., 2005). Low levels of Spo0A-P repress e.g. matrix gene repressor AbrB and subsequently eps 

and tapA-sipW-tasA operons are expressed (Strauch et al., 1990). Besides AbrB, the activity of 

SinR, a second repressor of eps and tapA-sipW-tasA operons, is under the control of Spo0A-P. 

Increasing levels of Spo0A-P lead to expression of sinI, the anti-repressor of sinR (Shafikhani et 

al., 2002). By complex formation of SinI-SinR the repressing impact on matrix genes is relieved 

and biofilm formation is initiated (Bai et al., 1993; Kearns et al., 2005). With rising levels of 

Spo0A-P, sporulation is induced and matrix expression is halted by repression of sinI by high 

Spo0A-P levels (Chai et al., 2011; Vlamakis et al., 2013). Moreover, the transcriptional activity of 

Spo0A-P is under control of MecA, an adaptor protein for ClpC. By direct binding of Spo0A-P and 

inhibition of the transcription factor, without leading it to ClpCP for degradation, MecA and ClpC 

are involved in downregulation of eps genes (Prepiak et al., 2011).  
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Figure 6 Regulation model of biofilm matrix production under control of Spo0A-P and DegU-P. 

Phosphorylation of both Spo0A and DegU is performed by their specific kinases. The respective levels of 

phosphorylated regulators alter their influence on various cellular developmental processes, e.g. motility, 

matrix production or sporulation.  

Furthermore, the expression of regulator SlrR is under the control of AbrB and SinR (Chu et al., 

2008). Complex formation of SlrR and SinR, similar to SinI and SinR, results in derepression of 

SinR controlled eps and tapA-sipW-tasA operons and higher expression of SlrR (Chai et al., 2009; 

Kobayashi, 2008). While high concentrations of SlrR promote matrix formation, the SinR-SlrR 

complex does additionally repress cell separation and motility genes (Chai et al., 2010b). This leads 

to a chain forming phenotype, essential in the early stages of biofilm formation. Notably, it was 

proposed, that this SlrR switch can be reversed by autocleavage of unstable SlrR as well as by 

ClpCP dependent degradation of SlrR in B. subtilis (Chai et al., 2010a). 

In addition to these regulation mechanisms, further influences of AbrB homologue Abh on 

expression of matrix genes must be considered. Expression of abh is dependent on different sigma 

factors, like σx, which are stimulated by environmental signals (Eiamphungporn and Helmann, 

2008; Huang et al., 1998; Murray et al., 2009b). Through positive control of slrR expression, Abh 

has indirect influence on expression of eps and tapA-sipW-tasA operons (Murray et al., 2009b). 

Furthermore, AbrB directly represses abh expression that is thereby indirectly under the control of 

Spo0A-P (Strauch et al., 2007).  

Additional to control over eps and tapA-sipW-tasA operons, the expression of bslA and PGA 

synthesis are highly regulated. Both bslA and PGA production are under the control of two-

component system DegS-DegU. DegS is a histidine kinase that, once stimulated by DegQ, 

phosphorylates response regulator DegU in vitro (Kobayashi, 2007b). Comparable to Spo0A-P, 

different concentrations of phosphorylated DegU (DegU-P) control various developmental 
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processes. Very low levels of DegU-P, produced independently of DegS, promote swarming 

motility in presence of SwrA (Mordini et al., 2013). Complex colony development and BslA 

expression are induced by low levels of Deg-P under control of DegS and accumulation of high 

concentrations DegU-P inhibit previous regulations and enhance exoprotease production 

(Kobayashi, 2007b; Murray et al., 2009a; Verhamme et al., 2007). Notably, the ClpCP protease 

complex can degrade DegU-P in vivo and in vitro and thus affects flagellar gene expression 

(Molière et al., 2016; Ogura and Tsukahara, 2010).  

Differences in biofilm formation of B. subtilis strain DK 1042 and strain 168 

B. subtilis is a model organism to examine various cellular processes and during laboratory 

cultivation different domesticated strains evolved, with more and less severe defects in submerged, 

surface-adhered and pellicle biofilm phenotypes (McLoon et al., 2011; Nye et al., 2017). Compared 

to its wild ancestor, strain NCIB 3610, the DK 1042 strain comprises a comIQ12L point mutation on 

the pBS32 plasmid, impairing the competence inhibitor and facilitating genetic studies (Konkol et 

al., 2013; Miras and Dubnau, 2016; Nye et al., 2017). In the laboratory strain 168 several mutations 

and loss of the plasmid pBS32 lead to swarming motility defects, deficient production of surfactant 

and antimicrobials as well as a disturbed biofilm formation (Butcher et al., 2007; Kearns et al., 

2004; Kinsinger et al., 2003). Due to mutations in the coding region of swrA, the strain 168 is no 

longer able to produce PGA, affecting submerged and surface-adhered biofilm formation (Branda 

et al., 2006; Kobayashi, 2007a; Morikawa et al., 2006; Stanley and Lazazzera, 2005). Furthermore, 

mutations in the promotor region of degQ disturb the regulation of phosphate transfer in two-

component system DegU-DegS (Kobayashi, 2007b). The biofilm formation of strain 168 is 

impaired by mutations in epsC and sfp genes (McLoon et al., 2011). EpsC was suggested to be 

membrane associated and possesses epimerase or dehydrogenase activity, while sfp is necessary 

for surfactin production (Lopez et al., 2009; McLoon et al., 2011; Nakano et al., 1992). 

Nevertheless, the strain 168 produces pellicle biofilms, albeit less robust than strain DK 1042. 

Introduction of rapP, a response regulator aspartate phosphatase from plasmid pBS32, and wild 

type degQ, swrA, epsC and sfp resulted in restored pellicle robustness of strain 168 (McLoon et al., 

2011).  
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1.5 Aim of this work 

The control over protein homeostasis is crucial under stress conditions, such as heat exposure, 

which can cause the formation of subcellular protein aggregates. The main objective of this work 

was to provide further insight into aggregate removal mechanisms by the AAA+ chaperone ClpC 

in B. subtilis. By characterization of ClpC activities in vitro, it was intended to investigate whether 

the adaptor protein McsB can facilitate efficient disaggregation and refolding of heat inactivated 

substrates. Since McsB has a second function as protein arginine kinase, an additional focus lay on 

the arginine phosphatase YwlE. Furthermore, ClpC forms a protease complex with ClpP and with 

mutations in the interaction loop it was intended to examine the dual role of ClpC in protein 

refolding and in protein degradation. 

The biofilm component TasA forms amyloid-like fibrils and is essential for pellicle formation in 

B. subtilis. The crystal structure of TasA was observed to comprise two flexible polyproline II 

helices. Therefore, the second aim of this work was to study the function of these dynamic segments 

as well as the possible role of the chaperone ClpC in TasA fibril folding and biofilm maturation.  
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2 Materials and Methods 

2.1 Devices and reagents 

Table 1: List of devices 

Device Manufacturer 

Äkta protein purification system FPLC  GE Healthcare 

Autoclave VX150 Systec  

Centrifuge Sorvall RC 6+ Sorvall/Thermo Scientific 

ChemiDoc XRS+ Imager Biorad 

Corio CD-200F  Julabo 

Fastblot B44 Biometra 

FastPrep-24TM 5G MP Biomedicals 

French Press  Heinemann 

Gel Stick UV and scanner INTAS 

Heraeus Centrifuge Thermo Scientific 

Heratherm Incubator Thermo Scientific 

Incubator MaxQ7000 Thermo Scientific 

Lynx 40000 Centrifuge Sorvall 

Micro centrifuge Peqlab 

Minigel-Twin Biometra 

Monolith NT.115 Nanotemper 

Nanodrop 2000 Thermo Scientific 

Photometer Eppendorf 

Safe2020 Clean Bench Thermo Scientific 

Scanner Epson 

Sonication needle and instrument Bandelin 

SpectraMax M3 Molecular Devices 

Spectrofluorometer FP-6500/FP-8500 Jasco 

SpeedVac  Eppendorf 

Standard Power Pack P25 Biometry 

Synergy H1 microplate reader BioTek 

T Gradient Thermocycler Biometra 

Thermo shaker Eppendorf 

Trans-Blot Turbo Biorad 
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Table 2: List of chemicals and reagents 

Chemicals and reagents Manufacturer 

Basic chemicals Carl Roth, Sigma Aldrich 

MasterPure DNA purification Kit (Gram-positive) Epicentre 

NucleoSpin PCR clean-up Kit Macherey & Nagel 

PCR/Cloning buffers/Restriction enzymes/Ligase New England Biolabs 

peqGOLD plasmid miniprep Kit Peqlab 

Phusion Polymerase New England Biolabs 

Primary antibodies Pineda 

Primers Biomers 

Protino Ni-NTA Macherey & Nagel 

Roti-Nanoquant Roth 

2.2 Primers, plasmids and strains  

Table 3: List of primers 

Primer  Fragment description Sequence 

1 NcoI-clpC for catgccatggggtttggaagatttacaga 

2 XhoI-clpC rev ccgctcgagattcgttttagcagtcgtt 

3 NcoI-mecA for catgccatggaaattgaaagaattaacgagc 

4 NM356 XhoI-mecA rev ccccctcgagtgatgcaaagtgtttttttatcg 

5 BsaI-ywlE for ggtctcccatggatattatttttgtctg 

6 XhoI-ywlE rev ccgctcgagtctacggtcttttttcagctg 

7 NM351 BsaI-mcsB for ccagtgggtctcaggtggtatgtcgctaaagcattttattcag 

8 NM352 XhoI-mcsB rev ccccctcgagtcatatcgattcatcctcctg 

9 BsaI-ywlE C7S for ggtctcccatggatattatttttgtcagcactggaaatacgtgc 

10 NcoI-clpP for catgccatgggt ttaatacctacagtcattgaac 

11 XhoI-clpP rev ccgctcgagctttttgtcttctgtgtga 

12 clpC VGF::IGF for ggagcaagtgagctaaaacgcaataaatatattggctttaacgttcaggat 

13 clpC VGF::IGF rev gtctttatgattttgagtttcatcctgaacgttaaagccaatatatttattgcg 

14 NcoI-clpC R9A for catgccatgg ggtttggaagatttacagaagcagctcaa 

15 clpC R83A for cgattcattatactcctgcagctaaaaaagtcattgag 

16 clpC R83A rev gctcaatgacttttttagctgcaggagtataatg 

17 HS290 tapA operon for accattcgacatcattctcg 

18 HS290 tapA operon rev ctgtttcccagcagtggttc 

19 NM391 tapA for ccagtgcgtctcaggtggtatgtttcgattgtttcacaatc 

20 XhoI-tasA rev ccgctcgagttaatttttatcctcgcta 

21 BamHI-tasA for cgcggatccgcagcagctgattcagcgcctg 

22 NcoI-tasA rev catgccatgggctactcactatcagaactagc 

23 tasA T38A for cattaaatcaaaggatgctgcatttgcatcaggtacgc 
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24 tasA T38A rev caagcgtacctgatgcaaatgcagcatcctttgatttaatg 

25 tasA F39A for ttaaatcaaaggatgctactgcagcatcaggtacgcttg 

26 tasA F39A rev gataaatcaagcgtacctgatgctgcagtagcatcctttga 

27 tasA ΔA40, S41 for tcaaaggatgctacttttggtacgcttgatt 

28 tasA ΔA40, S41 rev tagcagataaatcaagcgtaccaaaagtagcatcct 

29 tasA S41A for atcgaagtcagttggtgcttttggaacaccatcata 

30 tasA S41A rev caaaggatgctacttttgcagcaggtacgcttga 

31 tasA T187A rev gttccaaaagcaccaactgacttcgatcaggttc 

32 tasA T187A for atcgaagtcagttggtgcttttggaacaccatcata 

33 tasA P188A for gttccaaaaacagcaactgacttcgatcaggttc 

34 tasA P188A rev aacctgatcgatgccagttggtgtttttggaacac 

35 tasA T189A for ggtgttccaaaaacaccagcagacttcgatca 

36 tasA T189A rev gaacctgatcgaagtctgcttgaacctgatcgaagtc 

37 tasA D190A for gtgttccaaaaacaccaactgcattcgatcaggttc 

38 tasA D190A rev catttgaacctgatcgaatgcagttggtgtttttgga 

39 tasA F191A for gttccaaaaacaccaactgacgcagatcaggttca 

40 tasA F191A rev gatttccatttgaacctgatctgcgtcagttggtgt 

41 tasA D192A for caccaactgacttcgcacaggttcaaatggaaatc 

42 tasA D192A rev ccatttgaacctgtgcgaagtcagttggtgtttttgga 

43 NM318 BamHI-clpC for ccccggatccatgatgtttggaagatttacag 

44 NM319 NcoI-clpC rev ccccccatggttaattcgttttagcagtcg 

45 NM523 clpC ΔY670-T679 

(Δloop) for 

ttcatgtctttatgattttgtttattgcgttttagctcacttg 

46 NM522 clpC ΔY670-T679 

(Δloop) rev 

caaaatcataaagacatgaaagataaagtg 

 

Table 4: List of plasmids 

Nr Plasmid Primer Description Reference 

1 pDS56 clpB, 

placIq 

  Production of ClpB in E. coli XL1-

Blue, ampR 

Provided by Axel 

Mogk; (Deville et al., 

2019) 

2 pSUMO dnaK   Production of DnaK in E. coli BL21 

(DE3) pLysS, kanR 

Provided by Axel 

Mogk; (Deville et al., 

2019) 

3 pSUMO dnaJ   Production of DnaJ in E. coli BL21 

(DE3) pLysS, kanR 

Provided by Axel 

Mogk; (Deville et al., 

2019) 

4 pSUMO grpE   Production of GrpE in E. coli BL21 

(DE3) pLysS, kanR 

Provided by Axel 

Mogk; (Deville et al., 

2019) 
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5 pET28a clpC 1, 2 Production of ClpC in E. coli BL21 

(DE3) pLysS, kanR 

This work 

6 pET28a mecA 3, 4 Production of MecA in E. coli BL21 

(DE3) pLysS, kanR 

This work 

7 pCA528 mcsB   Production of McsB in E. coli BL21 

(DE3) pLysS, kanR 

Provided by Noel 

Molière, unpublished 

8 pQE32 mcsA   Production of McsA in E. coli 

FI1202 

(Kirstein et al., 2005) 

9 pET28a ywlE 5, 6 Production of YwlE in E. coli BL21 

(DE3) pLysS, kanR 

This work 

10 pCA526 mcsB 

C167S 

7, 8 Production of McsB C167S in E. coli 

BL21 (DE3) pLysS, kanR 

This work 

11 pET28a ywlE 

C7S 

9, 6 Production of YwlE C7S in E. coli 

BL21 (DE3) pLysS, kanR 

This work 

12 pET28a clpC 

E280A E618A 

(DWB) 

1, 2 Production of ClpC DWB in E. coli 

BL21 (DE3) pLysS, kanR 

This work 

13 pET28a clpP 10, 11 Production of ClpP in E. coli BL21 

(DE3) pLysS, kanR 

This work 

14 pQE32 ctsR   Production of CtsR in E. coli FI1202, 

ampR 

Provided by Janine 

Kirstein, unpublished 

15 pET28a clpC 

VGF::GGR 

1, 2 Production of ClpC VGF::GGR in E. 

coli BL21 (DE3) pLysS, kanR 

This work 

16 pET28a clpC 

VGF::IGF 

1, 2, 

12, 13 

Production of ClpC VGF::IGF in E. 

coli BL21 (DE3) pLysS, kanR 

This work 

17 pET28a clpC 

R9A 

14, 2 Production of ClpC R9A in E. coli 

BL21 (DE3) pLysS, kanR 

This work 

18 pET28a clpC 

R83A 

1, 2, 

15, 16 

Production of ClpC R83A in E. coli 

BL21 (DE3) pLysS, kanR 

This work 

19 pET28a clpC 

R9A R83A 

14, 2, 

15, 16 

Production of ClpC R9A R83A in E. 

coli BL21 (DE3) pLysS, kanR 

This work 

20 pCA528 tasA + 

sigseq 

  Production of TasA + signal 

sequence in E. coli BL21 (DE3) 

pLysS, kanR 

Provided by 

Stephanie Runde, 

unpublished 

21 pCA528 tasA - 

sigseq 

  Production of TasA - signal sequence 

in E. coli BL21 (DE3) pLysS, kanR 

Provided by 

Stephanie Runde, 

unpublished 

22 pMAD tasA 

T38A 

21, 22, 

23, 24 

B. subtilis markerless point mutation 

tasA T38A in cis, eryR 

This work 

23 pMAD tasA 

F39A 

21, 22, 

25, 26 

B. subtilis markerless point mutation 

tasA F39A in cis, eryR 

This work 

24 pMAD tasA 

ΔA40, S41 

21, 22, 

27, 28 

B. subtilis markerless point mutation 

tasA ΔA40, S41 in cis, eryR 

This work 

25 pMAD tasA 

S41A 

21, 22, 

29, 30 

B. subtilis markerless point mutation 

tasA S41A in cis, eryR 

This work 

26 pMAD tasA 

T187A 

21, 22, 

31, 32 

B. subtilis markerless point mutation 

tasA T187A in cis, eryR 

This work 
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27 pMAD tasA 

P188A 

21, 22, 

33, 34 

B. subtilis markerless point mutation 

tasA P188A in cis, eryR 

This work 

28 pMAD tasA 

T189A 

21, 22, 

35, 36 

B. subtilis markerless point mutation 

tasA T189A in cis, eryR 

This work 

29 pMAD tasA 

D190A 

21, 22, 

37, 38 

B. subtilis markerless point mutation 

tasA D190A in cis, eryR 

This work 

30 pMAD tasA 

F191A 

21, 22, 

39, 40 

B. subtilis markerless point mutation 

tasA F191A in cis, eryR 

This work 

31 pMAD tasA 

D192A 

21, 22, 

41, 42 

B. subtilis markerless point mutation 

tasA D192A in cis, eryR 

This work 

32 pMAD clpC 

E280A E618A 

(DWB) 

  B. subtilis markerless point mutation 

clpC E280A E618A (DWB) in cis, 

eryR 

(Kirstein et al., 2006) 

33 pMAD clpC 

ΔY670-T679 

(Δloop) 

43, 44, 

45, 46 

B. subtilis markerless mutation clpC 

ΔY670-T679 (Δloop) in cis, eryR 

This work 

34 pMAD clpC 

VGF::IGF 

12, 13, 

43, 44 

B. subtilis markerless point mutation 

clpC VGF::IGF in cis, eryR 

This work 

 

Table 5: List of strains 

Strain  Genotype Reference 

Escherichia coli 

DH5α F-
 Φ80lacZΔM15 Δ(lacZYA-argF) 

U169 recA1 endA1 hsdR17(rk-, 

mk+) phoA supE44 thi-

1 gyrA96 relA1 λ- 

InvitrogenTM 

BL21 (DE3) pLysS F- ompT hsdSB (rB-mB-) gal dcm 

(DE3) pLysS (CamR) 

(Studier et al., 1990) 

XL1-Blue recA1 endA1 gyrA96 thi-1 hsdR17 

supE44 relA1 lac [F´ proAB lacIq 

Z∆M15 Tn10 (Tetr )] 

Agilent 

FI1202 lacI q lacL8 gln5::Tn5 l202 (Fiedler and Weiss, 1995) 

Bacillus subtilis 

168 trpC2 wild type (Anagnostopoulos and Spizizen, 

1961) 

DK 1042 comI Q12L [3610], wild type (Konkol et al., 2013) 

BRK1 DK 1042 ΔtapAsipWtasA::spec This work; 17, 18 PCR product 

from NM235 

BRK2 trpC2 ΔtapAsipWtasA::spec This work; 17, 18 PCR product 

from NM235 

BRK3 DK 1042 ΔtasA::kan This work; 17, 18 PCR product 

from TB116 (Akos Kovacs) 

BRK4 trpC2 ΔtasA::kan This work; 17, 18 PCR product 

from TB116 (Akos Kovacs) 
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BRK5 DK 1042 ΔsipW::ery This work; 19, 20 PCR product 

from TB116 (Akos Kovacs) 

BRK6 trpC2 ΔsipW::ery This work; 19, 20 PCR product 

from TB116 (Akos Kovacs) 

BRK7 DK 1042 tasA T38A This work; Plasmid 22  

BRK8 DK 1042 tasA F39A This work; Plasmid 23 

BRK9 DK 1042 tasA ΔA40, S41 This work; Plasmid 24 

BRK10 DK 1042 tasA S41A This work; Plasmid 25 

BRK11 DK 1042 tasA T187A This work; Plasmid 26 

BRK12 DK 1042 tasA P188A This work; Plasmid 27 

BRK13 DK 1042 tasA T189A This work; Plasmid 28 

BRK14 DK 1042 tasA D190A This work; Plasmid 29 

BRK15 DK 1042 tasA F191A This work; Plasmid 30 

BRK16 DK 1042 tasA D192A This work; Plasmid 31 

BRK17 trpC2 ΔclpC::tet (Molière et al., 2016) 

BRK18 DK 1042 ΔclpC::tet Heinrich Schäfer, unpublished 

BRK19 trpC2 clpC E280A E618A (DWB) (Kirstein et al., 2006) 

BRK20 DK 1042 clpC E280A E618A (DWB) This work; Plasmid 32 

BRK21 trpC2 clpC VGF::GGR (Moliere, 2012) 

BRK22 trpC2 clpC ΔY670-T679 (Δloop) This work; Plasmid 33 

BRK23 trpC2 clpC VGF::IGF This work; Plasmid 34 

BRK24 trpC2 ΔmecA::tet Noel Molière, unpublished 

BRK25 trpC2 lys-3 ΔmcsB::kan (Krüger et al., 2001) 

BRK26 trpC2 ΔypbH::ery (Koo et al., 2017), BGSC 
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2.3 Common media and solutions 

Luria Bertani (LB) medium  

5 g/L Yeast extract 

10 g/L Tryptone 

10 g/L NaCl 

 

LB agar  
5 g/L Yeast extract 

10 g/L Tryptone 

10 g/L NaCl 

15 g/L Agar 

 

TE buffer 
  

10 mM Tris-HCl pH 8.0 

1 mM EDTA 
 

 

Table 6: Antibiotics 

Antibiotic Stock Final concentration 

Ampicillin 100 mg/mL 100 µg/mL 

Chloramphenicol 25 mg/mL 10 µg/mL 

Erythromycin 1 mg/mL 1 µg/mL 

Lincomycin 20 mg/mL 20 µg/mL 

Kanamycin 50 mg/mL 50 µg/mL (E. coli); 10 µg/mL (B. subtilis) 

Spectinomycin 100 mg/mL 150 µg/mL 

Tetracycline 10 mg/mL 10 µg/mL 

 

2.4 Cloning 

Overnight cultures were derived by inoculation of 5 mL LB-medium and agitated incubation at 

37 °C. Single colony selection was performed by streaking or plating the culture on agar plates 

supplemented with antibiotics (Table 6). Plasmid isolation was carried out with the peqGOLD 

plasmid Miniprep Kit (Peqlab). 
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Polymerase Chain Reaction (PCR) 

To obtain DNA fragments for cloning and transformation, a polymerase chain reaction (PCR) was 

performed. The primers were obtained from Biomers and the Phusion polymerase with appropriate 

buffers from New England Biolabs. Denaturation was carried out at 98 °C for 30 sec, annealing at 

primer-specific temperatures for 30 sec and elongation according to fragment length (~1 kb per 

min). For E. coli colony PCR, to verify successful cloning, the initial denaturation time was set to 

3 min. 

Restriction enzyme digestion and ligation 

For insertion of DNA fragments in plasmids both partners were digested with restrictions enzymes 

providing specific intersections at which T4 DNA Ligase assembled the desired product. Utilized 

restriction enzymes are listed with according primers in Table 3. 

2.5 B. subtilis genomic DNA preparation 

The MasterPure Gram positive DNA purification kit was used to isolate genomic DNA from 

B. subtilis. A pellet derived by centrifugation from 1 mL overnight culture was resuspended in 

150 µL TE buffer and supplemented with 1 µL Ready-Lyse Lysozyme. After incubation at 37 °C 

for 30 min 150 µL Proteinase K/Gram Positive Lysis Solution were added and the sample was 

incubated at 65 °C for 15 min, briefly mixing every 5 min. Cooling down to 37 °C was followed 

by 5 min on ice. 175 µL MPC Protein Precipitation Reagent were added and mixed with the 

sample. The supernatant obtained by centrifugation at 4 °C for 10 min at 10000 x g was transferred 

to a clean tube and 1 µL RNase A was added. After incubation at 37 °C for 30 min 500 µL 

isopropanol were added and mixed by inverting. The DNA was pelleted by centrifugation, the 

supernatant was removed, and the pellet was washed with 70 % v/v ethanol. The pellet was 

resuspended in 35 µL dH2O and DNA concentration was determined using the Nanodrop. 

2.6 Transformation of E. coli and B. subtilis 

E. coli competent cells 

To obtain competent E. coli cells, able to take up external DNA, 100 mL SOB medium were 

inoculated to an optical density at 600 nm (OD600) of 0.05 with an overnight culture. After agitated 

incubation at 37 °C until OD600 0.4 was reached, the cells were chilled on ice for 10 min. The pellet, 

obtained by centrifugation for 10 min at 5000 xg and 4 °C was resuspended in 32 mL TB buffer 
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and incubated on ice for 10 min. Anew pelleted cells were resuspended in 8 mL TB buffer with 

dimethyl sulfoxide (DMSO) (final concentration 7 % v/v) and incubated on ice for 10 min. The 

competent cells were stored in 100 µL aliquots at –80 °C. 

SOB medium 

2 % w/v Tryptone 

0,5 % w/v Yeast extract 

10 mM NaCl 

2,5 mM MnCl2 

10 mM MgCl2 

10 mM MgSO4 

 

TB buffer   

10 mM PIPES pH 6.7 

15 mM CaCl2*2H2O 

250 mM KCl  

55 mM MnCl2  
 

E. coli transformation 

E. coli DH5α was the basic strain used for plasmid generation and E. coli BL21 DE3 was utilized 

for protein overexpression and subsequent purification. For transformation, 100 ng plasmid DNA 

or 10 µl ligation reaction were added to one aliquot of competent cells. After incubation on ice for 

30 min a 45 sec heat shock at 42 °C was performed. Furthermore, 5 min incubation on ice and 

subsequent addition of 800 µL LB medium were followed by agitated incubation at 37 °C for 

45 min. The cell pellet obtained by centrifugation for 1 min at 5000 xg was resuspended in 100 µl 

remaining supernatant and plated on LB agar plates with appropriate antibiotics. 

B. subtilis transformation 

To obtain competent B. subtilis cells of strains trp(C2) 168 or DK 1042, 5 mL of competence 

medium were inoculated with 500 µL from an overnight culture. After agitated incubation at 37 °C 

for 3 h, 5 mL starvation medium were added and further incubated for 2 h. 800 µL of competent 

cells were supplied with ~1 µg DNA (genomic, PCR fragment, plasmid) and shaken at 37 °C for 

45 min. The cell pellet obtained by centrifugation for 1 min at 5000 xg was resuspended in 100 µL 

of the remaining supernatant and plated on LB agar plates with appropriate antibiotics. 
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2.7 Thermotolerance experiments 

20 mL of LB medium were inoculated with an overnight culture to an OD600 of 0.05 and grown in 

a water bath at 37 °C shaking at 200 rpm. When OD600 0.4 was reached the culture was split and 

one half was conferred to 48 °C for 15 min for a mild pre-shock and the other half was left at 37 °C. 

At t0 both cultures were shifted to 53 °C. Samples were taken at t0, t30, t60 and t120, diluted and 

plated on LB agar plates for subsequent counting of colony forming units (cfu). By evaluation of 

cfu over time, the thermoresistance (no pre-shock) and thermotolerance (with pre-shock) of 

different strains were evaluated. 

2.8 Biofilm cultivation 

1.4 mL medium (MOLP or Msgg) were inoculated with overnight culture (at a dilution of 1:100) 

of the corresponding strains in 24-well plates and incubated without agitation at 30 °C. To monitor 

phenotypical differences in more detail 28 µL Coomassie and Congo Red (CC) dye were added to 

1.4 mL medium prior to inoculation (Romero et al., 2010). Pictures of the biofilms were taken 

every day for two or three days depending on the B. subtilis strain and experimental setup.  

 

MOLP medium 

30 g/L Peptone 

20 g/L Saccharose 

7 g/L Yeast extract 

1.9 g/L KH2PO4 

0.0001 mg/L CuSO4 

0.005 mg/L FeCl3*6H2O  

0.004 mg/L Na2MoO4 

0,002 mg/L KI 

3.6 mg/L MnSO4*H2O  

0.45 g/L MgSO4 

0.14 mg/L ZnSO4*7H2O  

0.01 mg/L H3BO3 

10 mg/L C6H8O7 

adjust to pH 7.0 
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Msgg medium 
 

5 mM KH2PO4 pH 7.0 

100 mM MOPS pH 7.0 

2 mM MgCl2 
 

700 µM CaCl2 
 

50 µM MnCl2 
 

50 µM FeCl3 
 

1 µM ZnCl2 
 

2 µM Thiamine 
 

0.5 % v/v Glycerol 
 

0.5 % w/v Potassium glutamate 

50 µg/µL L-Tryptophan 

50 µg/µL L-Phenylalanine 

 

Coomassie and Congo Red dye (CC) 

2 % w/v Congo Red 

1 % w/v Coomassie Brilliant Blue G250 

70% Ethanol 

2.8.1 Biofilm reconstitution experiments 

Experiments were performed for reconstitution of biofilm formation in the tasA deletion mutant by 

addition of purified TasA, according to previous studies (Romero et al., 2010). 60-300 µg of 

recombinantly produced TasA were added to the cultures 2 hours after inoculation. The cultures 

were incubated at 30 °C without agitation. 

The form of TasA fibrils in native biofilms was assessed in cooperation with Dr. Anne Diehl, Prof. 

Dr. Hartmut Oschkinat (Leibniz-Forschungsinstitut für Molekulare Pharmakologie), Dr. Yvette 

Roske (Max-Delbrück-Centrum für Molekulare Medizin) et al. (Diehl et al., 2018). Therefore, 

recombinantly produced 2H,13C,15N-TasA261 (provided by Anne Diehl et al.) was added to 

reconstitute the biofilm. Matrix harvest for NMR analysis was carried out by circumspect 

detachment of the pellicle biofilm from the supernatant. 
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2.8.2 Biofilm sample fractionation and TasA protein level determination 

The biofilm samples were fractionated for determination of TasA localization. Therefore, the whole 

culture including matrix and supernatant was harvested after cultivation for 2 days and centrifuged 

at 4500 rpm for 20 min. The supernatant was filter sterilized and stored at 4 °C (supernatant 

fraction). 3.5 mL TE buffer were added to the pellet and treated with mild sonication to disrupt the 

biofilm structure (2.5 output control, 20 % power, ~25 one-second pulses). Centrifugation was 

performed for 20 min at 4500 rpm, the supernatant was filter sterilized and stored at 4 °C (matrix 

fraction). 1 mL TE-buffer and 5 µL Lysozyme were added to the pellet and incubated at 37 °C for 

30 min (cell fraction). All collected samples were treated with trichloroacetic acid (TCA) to a final 

concentration of ~10 % and incubated on ice for 30 min. Centrifugation at 14000 rpm for 15 min 

and two washing steps with 1 mL cold acetone followed. The precipitated protein pellets were dried 

under vacuum in a Speed Vac for 30 min and solubilized in 100 µL 1x SDS sample buffer. In each 

case 10 µL sample were resolved on a 12.5 % polyacrylamide gel and blotted on nitrocellulose 

membranes. Immunoblotting was performed with α-TasA antibody (1:5000), α -ClpC antibody 

(1:5000) and α -rabbit horseradish peroxidase conjugate (1:5000). The chemiluminescent signal 

was visualized with according imagers (INTAS, BioRad).  

For TasA protein level determination pellet and supernatant fractions were separated by 

centrifugation for 10 min at 15000 rpm. The supernatant was transferred to a new tube and 500 µL 

TE-buffer were added to the pellet. The biofilm was disrupted, and the cells lysed by harsh 

sonication (2.5 output control, 30 % power, 3x ~25 one-second pulses) or homogenization in 

FastPrep-24TM 5G (~20 µL 0.1mm glass beads, 3x 30 sec 6 m/sec). The protein concentrations of 

the samples were determined using a Bradford assay and 5 µg protein were applied on a 12.5 % 

SDS gel. For evaluation of protein concentration, 0.4 µg TasA were applied on every gel. The band 

intensity in western blots was determined with ImageJ software and TasA levels in the samples 

were calculated according to the standard curve obtained with purified TasA (Figure 7) (Schneider 

et al., 2012). 
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Figure 7 Standard curve for calculation of TasA protein concentration in western blots. 

Standard curve for determination of TasA protein level by means of quantitative western blotting. 0 µg – 

1.5 µg purified TasA were applied on SDS-PAGE and a western blot with TasA antibody was performed. 

ImageJ software was used to calculate the band intensities displayed in this plot.  

2.9 Protein purification 

Recombinant protein production was carried out in E. coli BL21 DE3 using different expression 

vectors (pCA528, pET28a, pRsetA). 1.5 L of LB medium, supplied with corresponding antibiotics, 

were inoculated 1:100 with an overnight culture and incubated at 37 °C and 170 rpm until OD600 

0.4 was reached. After the induction of protein overexpression with 0.1-1 mM IPTG, the cultures 

were incubated for 1 h at 37 °C and 170 rpm and overnight at 16 °C and 170 rpm. The cell harvest 

was carried out by centrifugation for 15 min at 7000 rpm and 4 °C. The pellet was stored at -20 °C. 

For proper protein purification all following steps were performed at 4 °C. The pellet was 

resuspended in lysis buffer containing DNase and PMSF (for ClpP purification only Dnase). Cell 

lysis was performed by french pressing 3x at 1200 psi and the cell debris was removed by 

centrifugation at 17000 rpm and 4 °C for 20 min. Before application on the FPLC Äkta system, the 

lysate was sterile filtered (applied for ClpC).  

Protein structure models were created with UCSF Chimera, developed by the Resource for 

Biocomputing, Visualization, and Informatics at the University of California, San Francisco, with 

support from NIH P41-GM103311 (Pettersen et al., 2004). 
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2.9.1 His-tagged proteins 

Affinity chromatography for His-tagged proteins was carried out with Ni-NTA agarose columns. 

After equilibration of the column with 3 column volumes (CV) of Lysis buffer, the cell lysate was 

applied. Washing was performed with at least 3 CV of wash buffer until no more unbound protein 

was detected in the flow through, checked with a Bradford assay. The protein elution fractions 

were collected after addition of 3 CV of elution buffer. Protein concentrations were determined 

with a Bradford assay or Nanodrop analysis and the protein purity was checked with SDS-PAGE. 

Lysis Buffer 
 

50 mM  Tris-HCl  pH 7.5 

150 mM NaCl 
 

5 mM MgCl2 
 

10 mM Imidazole 
 

5 µg/mL Dnase 
 

1 mM PMSF 
 

 

Wash Buffer 
 

50 mM  Tris-HCl  pH 7.5 

150 mM NaCl 
 

5 mM MgCl2 
 

20 mM Imidazole 
 

 

Elution Buffer 
 

50 mM  Tris-HCl  pH 7.5 

150 mM NaCl 
 

5 mM MgCl2 
 

250 mM Imidazole 
 

To receive protein in high purity, anion exchange chromatography using a Resource Q 1 mL 

column (GE Healthcare) was performed (ClpC). After equilibration with 3 CV Aex 1 buffer, 1 mL 

of protein sample was diluted in 25 mL of Aex 1 buffer and applied on the column. To avoid protein 

precipitation at extreme low salt concentrations the Aex 1 buffer contained 50 mM KCl. After 

washing with 3 CV Aex 1 buffer, a gradient with increasing amounts of Aex 2 buffer utilized to 

elute the target protein according to the isoelectric point. The protein concentration in elution 
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fractions was determined using a Bradford assay or Nanodrop analysis and SDS-PAGE was 

performed to control protein purity. 

Aex 1 
  

20 mM  Bicin pH 8.0 

50 mM  KCl 
 

5 mM MgCl2 
 

 

Aex 2 
  

20 mM  Bicin pH 8.0 

1 mM  KCl 
 

5 mM MgCl2 
 

2.9.2 SUMO-His-tagged proteins 

For McsB and TasA overexpression the vector pCA528 was utilized to produce the protein with a 

cleavable SUMO-His-tag. Cleavage of SUMO-His is only possible, when the protein is properly 

folded and the Ulp-protease can detect its target sequence, resulting in purification of correctly 

folded protein species without attached His-tag. 

For production of SUMO-His-tagged proteins, the according strain was inoculated 1:100 in 2x LB 

and grown at 37 °C and 170 rpm until OD600 0.4 was reached. After induction with 0.1 mM IPTG 

the temperature was set to 16 °C for overnight incubation. Cell harvest and lysis were carried out 

according to section 2.9.  

After equilibration of the Ni-NTA agarose column with 3 CV of Lysis buffer, the cell lysate was 

applied. Washing was performed in different steps to achieve a denaturation and subsequent 

refolding gradient. First, 2 CV of SUMO-Wash 1 buffer were applied, followed by 2 CV of 

SUMO-Wash 2 buffer and at least 2 CV Wash buffer (without Urea), until all unbound protein was 

washed away. Elution and desalting were performed as described before. 

Furthermore, 1 mL protein sample was incubated in a 1.5 mL reaction tube with 10 % Glycerol, 

1 mM DTT and 50 µg/mL Ulp protease slowly rotating over night at 4 °C for cleavage of the 

SUMO-His-tag. For separation of the His-tagged Ulp protease and the truncated SUMO-His-tag 

from the target protein, the sample was applied on a Ni-NTA column equilibrated with basic buffer 

and the flow through, containing the target protein was collected. If necessary, proteins were 

concentrated using Amicon (Merck) or Vivaspin (GE Healthcare) spin columns. Protein 
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concentrations were determined with a Bradford assay or Nanodrop analysis and the protein purity 

was checked with SDS-PAGE. 

SUMO-Wash 1 
 

50 mM  Tris-HCl  pH 7.5 

150 mM NaCl 
 

5 mM MgCl2 
 

20 mM Imidazole 
 

8 M Urea 
 

 

SUMO-Wash 2 
 

50 mM  Tris-HCl  pH 7.5 

150 mM NaCl 
 

5 mM MgCl2 
 

20 mM Imidazole 
 

4 M Urea 
 

2.9.3 Desalting purified protein 

Desalting of protein fractions was performed with a 5 mL Hi-Trap Desalting Column (GE 

Healthcare). Therefore, the column was equilibrated with target buffer (basic buffer). 1.5 mL of 

protein sample were applied, the flow through was cast away and the desalted protein eluted in the 

next 2 mL. For further desalting steps the column was equilibrated anew. If necessary, proteins 

were concentrated using Amicon (Merck) or Vivaspin (GE Healthcare) spin columns. Purified 

protein samples were supplemented with 5 % Glycerol and stored in aliquots at -80 °C. The protein 

concentrations were determined with a Bradford assay or Nanodrop analysis and protein purity was 

checked with SDS-PAGE.  

Basic Buffer 

50 mM  Tris-HCl  pH 7.5 

150 mM NaCl 
 

5 mM MgCl2 
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2.10 SDS-PAGE & Western blotting 

SDS-PAGE was performed to determine the purity of recombinantly produced proteins, evaluate 

degradation assays and pellet-supernatant fractionations. Western blot analysis was utilized for 

detection of phosphorylated arginine, detection of TasA in different fractions and determination of 

TasA protein levels. 

SDS – gel electrophoresis 

12.5 % or 15 % acrylamide SDS-gels were casted according to Table 7. The protein samples were 

mixed with 2x SDS loading dye, denatured at 95 °C for 10 min and PageRuler™ Plus Prestained 

Protein Ladder was used to estimate protein sizes. The gels were run in SDS running buffer at 90 V 

until the sample completely entered the gel and at 120 V until the proteins were separated 

sufficiently. For staining of proteins, the gel was incubated for 60 min in fixing solution and 

subsequently in colloidal Coomassie staining solution for at least 60 min. 

Table 7: SDS-Gels 

1 SDS-gel (5 mL) 12.5 % 15%   stacking gel 

40 % v/v acryl amide 1.5 mL 1.85 mL 40 % v/v acryl amide 0.45 mL 

1 M Tris-HCl pH 8.8 2.1 mL 1 M Tris-HCl pH 6.8 0.39 mL 

H2O  1.35 mL 0.975 mL H2O  2.13 mL 

10 % SDS 50 µL 10 % SDS 30 µL 

10 % APS 50 µL 10 % APS 31 µL 

TEMED 3 µL TEMED 1.8 µL 
 

2x SDS loading dye 

200 mM Tris-HCl pH 6.8 

10 % w/v SDS  

50 % w/v Glycerol  

13 % v/v DTT  

2.5 mg/L Bromphenol blue 

 

SDS running buffer 

25 mM Tris base  

192 mM Glycine  

0.1 % w/v  SDS  
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Fixing solution 

40% v/v Methanol 

10% v/v Acetic acid 

 

Coomassie staining solution 

2 % w/v Orthophosphoric acid 

10% w/v (NH4)2SO4 

5 % w/v Coomassie brilliant blue G250 

 

Western blotting 

Western blotting was performed semi-dry, to transfer proteins on nitrocellulose membranes for 

subsequent detection with antibodies. Therefore, the SDS-gel was stacked on a nitrocellulose 

membrane between Whatman filter paper drenched in Towbin buffer. Blotting was performed in 

the Fastblot B44 system (Biometra) or according to standard protocols in the Trans-Blot Turbo 

system (Biorad). After blotting, blocking was performed with 5 % w/v skim milk powder in 

1x TBS buffer for 60 min swiveling. Primary antibodies were applied according to Table 8 in 

1x TBS buffer after washing thoroughly with 1x TBS buffer. Repeated washing was followed by 

incubation with the secondary α-rabbit antibody bound to horse radish peroxidase for electro 

chemical luminescence (ECL) detection with an Intas imager or a Chemidox XRS Imager (Biorad).  

Samples for α-pArg blotting were stored on ice and directly applied on SDS-gels without 

denaturation. SDS-gel electrophoresis and western blotting were performed at 4 °C to avoid 

undesired dephosphorylation. 

Table 8: Antibodies 

Antibody Dilution 

α-ClpC 1:5000 

α-TasA 1:5000 

α-pArg 1:3000 

 

Towbin buffer 

20 mM  Tris 

150 mM Glycine 

20 % v/v Methanol 
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TBS buffer   

50 mM Tris-HCl pH 7.5 

150 mM NaCl  

2.11 In vitro assays 

For characterization of various properties and activities of the purified proteins and protein systems, 

different in vitro assays were performed.  

2.11.1 Bradford assay 

To determine the concentration of protein samples, 5 µL sample were mixed with 250 µL 1x Roti 

Nanoquant Bradford solution in a 96-well plate. The absorption at 595 nm was measured and the 

protein concentration was calculated according to a standard curve in duplicates. 

2.11.2 Malachite Green assay 

The Malachite Green assay was performed to determine the ATPase activity of purified proteins. 

Upon ATP hydrolysis freed phosphate binds to molybdate, which itself forms a complex with 

malachite green, detectable at A640. By using a potassium phosphate standard between 0 µM and 

1000 µM, the release of phosphate by ATP hydrolysis in the samples was determined over time.  

The staining solution was prepared and stirred for 1 h in the dark prior to use. If not mentioned 

otherwise, 1 µM of each protein was utilized, according to experimental setups, in a total of 50 µL 

with 1x In vitro Assay buffer and 4 mM ATP. The assay was started by addition of ATP and 

transfer to 37 °C. 10 µl sample were taken after 0 min, 5 min, 10 min, 15 min and mixed with 

160 µL staining solution, previously prepared in 96-well plates. Subsequent addition of 20 µL 

sodium citrate (34 % (w/v)) stopped the reaction. The absorption was measured at 640 nm with a 

Spectramax microplate reader. The ATPase activity was calculated by means of the performed 

standard curve. 

In vitro Assay buffer (5x) 

250 mM Tris-HCl pH 7.8 

750 mM  KCl 
 

100 mM MgCl2 
 

10 mM DTT 
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Staining solution  

30 mL Malachite green hydrochloride (45 mg/L) 

10 mL Ammonium molybdate (4.2 % in 4 M HCl) 

40 µL Triton X 100 

2.11.3 Degradation assay 

The degradation activity of purified proteins was determined with β-casein as model substrate. 

1 µM of each protein was used (except for 0.05 µM YwlE/YwlE C7S), according to the 

experimental setups, in a total of 100 µL with 1x In vitro Assay buffer and 4 mM ATP. The reaction 

was started by addition of ATP and transfer to 37 °C. Samples were taken after 0 min, 30 min, 

60 min and 90 min or 120 min, according to the experimental setup. 15 µL sample were transferred 

to a new tube and mixed with 2x SDS loading dye to stop the reaction. Denaturation prior to SDS-

PAGE was performed for 5 min at 95 °C. The degradation efficiency was calculated using ImageJ 

software to determine substrate and adaptor protein band intensity over time (Schneider et al., 

2012). 

2.11.4 Light scattering assay 

The in vitro disaggregation activity of chaperone systems was determined using light scattering 

experiments. Therefore, 2 µM of model substrates malate dehydrogenase (Mdh) (Roche) or citrate 

synthase (Cs) (Sigma-Aldrich) were aggregated and inactivated by incubation at 47 °C for 30 min 

in In vitro assay buffer. The light scattering was monitored at 360 nm excitation and emission 

wavelength in Jasco FP 6500/FP8500 spectrofluorometers with low sensitivity at 30 °C for 

120 min. The E. coli chaperone system ClpB, DnaK, DnaJ, GrpE (ClpB/KJE) (1.5 µM/ 1 µM/ 

0.2 µM/ 0.1 µM) was utilized as positive control and recombinantly produced B. subtilis proteins 

were applied in concentrations according to Table 9, if not mentioned otherwise.  
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Table 9: Final protein concentrations applied in the light scattering assay 

Protein Final concentration 

ClpC 1.5 µM 

ClpC DWB 0.25 µM 

ClpC VGF::GGR 1.5 µM 

ClpC VGF::IGF 1.5 µM 

MecA 1 µM 

McsB 1 µM 

McsB C167S 1 µM 

McsA 1 µM 

YwlE 0.05 µM 

YwlE C7S 0.05 µM 

ClpP 1.5 µM 

Mdh 1 µM 

Cs 1 µM 

2.11.5 Malate dehydrogenase activity assay 

Refolding of Mdh during disaggregation experiments was determined by Mdh activity 

measurements. The enzyme activity was assessed before and after inactivation as well as after 

15 min, 30 min, 60 min, 90 min and 120 min during light scattering assays. Therefore, 125 µL Mdh 

assay buffer were added to 2.5 µL sample containing 1 µM Mdh. The time dependent NADH 

oxidation by Mdh was monitored at 340 nm and 30 °C in a Spectra Max MP3 microplate reader 

(Molecular Devices) or a Synergy H1 microplate reader (BioTek).  

Mdh activity buffer (5 mL) 

750 µL Potassium phosphate buffer (1 M, pH 7.6) 

0.931 mg NADH 

0.33 mg Oxalacetic acid 

ad 5 mL dH2O 
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2.11.6 Citrate synthase activity assay 

Refolding of Cs during disaggregation experiments was determined by Cs activity measurements. 

Cs catalyzes the reaction between oxaloacetic acid and acetyl coenzyme A forming CoA-SH and 

citric acid. CoA-SH reacts with DTNB and the time dependent formation of TNB, measurable at 

412 nm, is proportional to Cs activity. For this experiment, the Cs activity was determined before 

and after inactivation as well as after 15 min, 30 min, 60 min, 90 min and 120 min during light 

scattering experiments. Therefore 125 µL Cs assay buffer were added to 2,5 µl sample containing 

1 µM Cs. The enzymatic reaction was followed at 25 °C in a Synergy H1 microplate reader 

(BioTek).  

Cs activity buffer  

200 mM Tris-HCl pH 8.1 

0.1 mM DTNB  
0.047 mM  Acetyl Coenzyme A 

0.23 mM Oxalacetic acid 
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3 Results 

3.1 In vitro characterization of the ClpC disaggregation activity 

The example of the disaggregase ClpB in E. coli shows that a successful heat stress response and 

thermotolerance development can depend on the removal of heat induced aggregates, by 

disaggregation and refolding of those impaired proteins (Weibezahn et al., 2004). However, the 

Gram-positive model organism B. subtilis lacks an exclusive unfoldase comparable to ClpB, but 

other chaperone systems are assumed to cover its function. The AAA+/Hsp100 protein ClpC from 

B. subtilis, was shown to dissolve and refold heat aggregated substrate in absence of protease ClpP 

in vitro (Schlothauer et al., 2003). Aided by adaptor proteins MecA or YpbH, ClpC was able to 

restore up to 20 % of the initial luciferase activity. Nevertheless, no thermosensitive phenotype was 

observed in strains lacking mecA and ypbH (Schlothauer, 2004). Subsequent in vivo studies 

proposed that McsB is the main ClpC adaptor protein for removal of heat induced subcellular 

protein aggregates in B. subtilis (Hantke, 2019). McsB has a dual function, as adaptor protein for 

ClpC and as protein arginine kinase, which can be activated by McsA (McsB/McsA). But the 

impact of these McsB activities on ClpC disaggregation activity has not been studied in vitro yet. 

Therefore, the first part of this work focused mainly on McsB/McsA mediated ClpC activities and 

the influence of the McsB kinase activity as well as the phosphatase YwlE, on disaggregation and 

refolding or degradation activities of the protease complex ClpCP.  

To examine the activity of various chaperone systems in disaggregation and refolding of heat 

aggregated substrate, different assays with purified proteins were performed in vitro. Heat 

inactivated and aggregated malate dehydrogenase (Mdh) and citrate synthase (Cs) served as model 

substrates. The disaggregation of these aggregates by chaperone systems was followed in light 

scattering experiments and the substrates enzyme activity was measured to monitor protein 

refolding over time. Furthermore, samples were taken and divided in pellet- and supernatant 

fractions to display the shift of aggregated protein in the pellet fraction to solubilized or refolded 

protein in the supernatant fraction by SDS-PAGE. With these combined assays a rough 

differentiation between only disaggregated and refolded substrate could be determined. The 

established disaggregation and refolding system ClpB, DnaK, DnaJ, GrpE (ClpB/KJE) from E. coli 

served as positive control (Glover and Lindquist, 1998; Goloubinoff et al., 1999; Zolkiewski, 

1999). This control system dissolved 100 % of Mdh aggregates after 100 min and 30 % of the 

substrates enzyme activity could be restored (Figure 8). 
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The influence of the adaptor proteins MecA and McsB/McsA on the ClpC disaggregation and 

refolding activity was compared (Figure 8). MecA-activated ClpC dissolved 47 % of the 

aggregates, while only 14 % of Mdh activity was recovered (Figure 8 A, B). The SDS-PAGE 

analysis of pellet and supernatant fractions revealed no considerable Mdh shift, indicating that not 

much protein was solubilized (Figure 8 C).  

ClpC activated by McsB/McsA dissolved 63 % of the aggregates, while only 6 % of Mdh was 

successfully refolded (Figure 8 A, B). The pellet-supernatant samples were similar to experiments 

with MecA (Figure 8 C). Compared to MecA, the light scattering curve of ClpC with McsB/McsA 

displayed a biphasic kinetic starting with a noticeable peak at t15, suggesting that complex 

formation might occurred. Consistent with this, a complex of ClpC with ClpP, McsB, McsA and 

substrate CtsR was observed in vivo (Kirstein et al., 2007). Overall, the ClpC disaggregation 

activity induced by McsB/McsA was more efficient, while the adaptor protein MecA facilitated 

improved substrate refolding. Unlike MecA, McsB can phosphorylate proteins and these 

observations were the first hints suggesting that arginine phosphorylation might interfere with 

successful substrate refolding.  
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Figure 8 McsB/McsA facilitates moderate ClpC dependent Mdh disaggregation. 

(A) Disaggregation of heat aggregated Mdh was monitored with light scattering experiments performed at 

30°C for 120 min. ClpB, DnaK, DnaJ, GrpE ( ) served as positive control, ClpC, MecA ( ) and ClpC, 

McsB, McsA ( ) were compared. (B) The refolding of Mdh was examined by measuring the enzymatic 

activity at different time points. Error bars display standard deviations of three replicates. (C) SDS-PAGE 

of Mdh in pellet (P) and supernatant (S) fractions at indicated time points. 

The observed ClpC dependent disaggregation and refolding activities were low compared to the 

control system ClpB/KJE, suggesting that factors enhancing this protein rescue machinery of 

B. subtilis were possibly missing in this first in vitro experiment. 
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3.1.1 YwlE enhances the McsB-induced ClpC disaggregation and refolding activity 

In vivo and in vitro, the protein arginine phosphorylation by McsB is counteracted by the 

phosphatase YwlE (Elsholz et al., 2017; Kirstein et al., 2007). To investigate the influence of YwlE 

on the McsB-induced ClpC activity, ATPase assays were performed in vitro. Remarkably, 

equimolar concentrations of McsB (1 µM) and YwlE (1 µM) in the reaction led to a strong 

inhibition of ClpC ATPase activity, consistent with previous studies (Kirstein et al., 2007). 

Lowering the concentrations of YwlE down to 0.05 µM and 0.01 µM resulted in a recovery of 

~80 % of ClpC ATPase activity (Figure 9 D). Based on preliminary disaggregation and refolding 

experiments that observed low impact of 0.01 µM YwlE, following experiments were carried out 

with 0.05 µM YwlE (data not shown). This concentration corresponds to physiological YwlE levels 

(Hantke, 2019; Muntel et al., 2014)  

To assess the impact of the phosphatase on the ClpC disaggregation activity. light scattering 

experiments were performed with low concentrations of YwlE, that no longer inhibited ClpC 

ATPase activity. With YwlE present, the initial peak of the light scattering curve at t15 was smaller 

than in experiments without YwlE, and 100 % of the heat induced Mdh aggregates were dissolved 

after 110 min (Figure 9 A). Notably, 50 % of the initial Mdh activity could be recovered with 

YwlE, which is an even higher refolding efficiency than the control chaperone system ClpB/KJE 

achieved. The pellet-supernatant experiment was consistent with the light scattering curves, since 

a removal of aggregates corresponded to Mdh migration from the pellet to the supernatant fraction 

(Figure 9 C).  
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Figure 9 Catalytic amounts of YwlE enhance disaggregation and refolding. 

(A) Disaggregation of heat aggregated Mdh was monitored with light scattering experiments performed at 

30°C for 120 min. ClpB, DnaK, DnaJ, GrpE ( ) served as positive control, ClpC, McsB, McsA, YwlE ( ) 

and ClpC, McsB, McsA ( ) were compared. (B) The refolding of Mdh was examined by measuring the 

enzymatic activity at different time points. (C) SDS-PAGE of Mdh in pellet (P) and supernatant (S) fractions 

at indicated time points. (D) McsB/McsA-induced ClpC ATPase activity in presence of different YwlE 

concentrations determined in Malachite Green assay. Error bars display standard deviations of three 

replicates. 

The phosphatase YwlE was observed to have potent influence on McsB/McsA induced ClpC 

disaggregation and refolding activity. Therefore, the interplay of protein arginine phosphorylation 

and dephosphorylation by McsB and YwlE, respectively, were examined in more detail. With 

specifically engineered anti-phospho-arginine antibodies (α-pArg) supplied by Fuhrmann et al., 

the detection of arginine phosphorylated proteins was possible (Fuhrmann et al., 2015b). Samples 

were taken from disaggregation assays and fractionated for SDS-PAGE and α-pArg western 

blotting. Since preliminary tests with McsB/McsA-activated ClpC showed that most detectable 

phosphorylation took place between 0 min and 30 min, samples were taken after 0 min, 15 min, 



3.1   Results 

49 

30 min and 60 min. Autophosphorylated McsB or McsA-activated McsB served as positive 

controls to monitor successful blotting and detection. 

Similar to previous data, a shift of Mdh from the pellet to supernatant fraction was only observable 

with additional YwlE in the Coomassie stained gel (Figure 9/Figure 10 A, B). The α-pArg blotting 

revealed phosphorylation of McsB, McsA, Mdh and ClpC in the supernatant and pellet fraction at 

t0 without YwlE (Figure 10 A). The phosphorylation signal increased in the supernatant after 

15 min of incubation. Here, phosphorylation was detected on all proteins, whereby the McsB signal 

was especially intense. For ClpC different bands were visible, possibly due to missing denaturation 

prior to gel application, different charges, conformational states, or high sensitivity of the pArg 

antibody. The detected protein phosphorylation decreased after 30 min and 60 min in both 

fractions. Notably, phosphorylation of the substrate Mdh was only detectable in the supernatant 

fraction, indicating that soluble Mdh is still phosphorylated after disaggregation by ClpC. 

The α-pArg blot of McsB/McsA-activated ClpC with YwlE displayed, compared to the McsB 

control band, only a slight phosphorylation signal for McsB at t0 (Figure 10 B). The prior observed 

strong protein phosphorylation was not detected upon incubation with YwlE, indicating a high 

activity and efficiency of the phosphatase. Even though the YwlE concentration was 20 times lower 

than the concentration of arginine kinase McsB, no phosphorylation was detected over time. It is 

known that the McsB kinase activity is inhibited by both ClpC and YwlE in vivo (Elsholz et al., 

2011a). The in vitro experiments with low concentrations of YwlE, resembling physiological 

levels, suggested that albeit no strong protein arginine phosphorylation by McsB could be detected, 

ClpC ATPase activity was induced and substrate disaggregation and high refolding efficiencies 

were achieved (Figure 9, Figure 10). 
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Figure 10 Protein phosphorylation by McsB is counteracted by phosphatase YwlE. 

Representative SDS-PAGE and western blots of samples from disaggregation experiment taken at indicated 

time points and divided in pellet (P) and supernatant (S) fractions. On the left, Coomassie staining and on 

the right western blots with α-pArg antibody (Fuhrman et al) are displayed. ClpC, McsB, McsA (A) and 

ClpC, McsB, McsA, YwlE (B) were compared with autophosphorylated McsB or McsB/McsA as positive 

control for pArg western blots. 
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3.1.2 McsB kinase and YwlE phosphatase activities are essential for efficient refolding 

To investigate the impact of arginine phosphorylation and dephosphorylation events as well as 

possible protein-protein interactions on ClpC activities, a kinase inactive McsB C167S mutant and 

a phosphatase inactive YwlE C7S mutant were analyzed (Fuhrmann et al., 2013a; Kirstein et al., 

2005).  

Previous studies observed, that no degradation of the McsB C167S mutant occurs in presence of 

ClpCP, but the kinase inactive mutant could still inhibit DNA-binding of CtsR (Kirstein et al., 

2007, 2005). An ATPase assay was performed to examine whether the McsB C167S mutant can 

still act as adaptor protein for ClpC. The ClpC ATPase activity induced by the inactive mutant was 

55 % lower than with active McsB (Figure 11 D). The addition of active YwlE decreased the ClpC 

ATPase activity independent of McsB kinase activity. Moreover, the impact of the McsB C167S 

mutant on disaggregation and refolding of heat aggregated substrate by ClpC was examined. 

Although the disaggregation rate was lower than with kinase active McsB, 20 % of the initial Mdh 

activity could be recovered by McsB C167S/McsA-activated ClpC (Figure 11 A, B). Upon addition 

of YwlE to the reaction with kinase inactive McsB C167S, a peak was observed at t15, suggesting 

that complex formation occurred, comparable to experiments without YwlE. However, 

disaggregation or refolding of Mdh was not possible and the pellet-supernatant fractions were 

consistent with the observed disaggregation curves (Figure 11 A, C).  

These observations suggest that McsB could act as an adaptor protein for ClpC independent of the 

kinase activity and that the arginine phosphorylation by active McsB might interfere with 

successful refolding. In presence of phosphatase YwlE, kinase active McsB was necessary to 

facilitate the ClpC dependent disaggregation and refolding activity. 
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Figure 11 The refolding efficiency increases with kinase inactive McsB C167S/McsA. 

(A) Disaggregation of heat aggregated Mdh was monitored with light scattering experiments performed at 

30 °C for 120 min. ClpB, DnaK, DnaJ, GrpE ( ) served as positive control, ClpC, McsB, McsA ( ), ClpC, 

McsB C167S, McsA ( ), ClpC, McsB, McsA, YwlE ( ) and ClpC, McsB C167S, McsA, YwlE ( ) were 

compared. (B) The refolding of Mdh was examined by measuring the enzymatic activity at different time 

points. (C) SDS-PAGE of Mdh in pellet (P) and supernatant (S) fractions at indicated time points. (D) 

McsB/McsA- and McsB C167S/McsA-induced ClpC ATPase activity in absence (blue) and presence (red) 

of YwlE determined with Malachite Green assays. Error bars display standard deviations of three replicates. 

The activator protein McsA is important for full activation of McsB and subsequent substrate 

phosphorylation, as well as effective induction of ClpC ATPase or ClpCP degradation activities 

(Kirstein et al., 2007, 2005). After demonstrating that both, the arginine kinase, and adaptor protein 

function of McsB are associated to ClpC disaggregation activity, the role of McsA for McsB 

activation was investigated. Disaggregation and refolding as well as pellet-supernatant experiments 

revealed that the disaggregation efficiency was highest in the reaction with McsB/McsA-activated 

ClpC but only 10 % lower without McsA (Figure 12 A, C). Likewise, presence of McsA barely 
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altered the disaggregation efficiency of McsB C167S-activated ClpC (Figure 12 A). However, the 

previously observed refolding activity of McsB C167S/McsA-activated ClpC was decreased in the 

absence of McsA, presumably due to the reduced induction of ClpC ATPase activity without McsA 

(Figure 12 B, D). These experiments indicated that McsA enhanced the McsB-induced ClpC 

activities, independent of the kinase activity and thus, suggested that besides kinase activation, 

protein-protein interaction between McsB and McsA might be important for an efficient activation 

of ClpC.  

 

Figure 12 McsA enhances McsB dependent ClpC activities. 

(A) Disaggregation of heat aggregated Mdh was monitored with light scattering experiments performed at 

30°C for 120 min. ClpB, DnaK, DnaJ, GrpE ( ) served as positive control, ClpC, McsB, McsA ( ), ClpC, 

McsB ( ), ClpC, McsB C167S, McsA ( ) and ClpC, McsB C167S ( ) were compared. (B) The refolding 

of Mdh was examined by measuring the enzymatic activity at different time points. (C) SDS-PAGE of Mdh 

in pellet (P) and supernatant (S) fractions at indicated time points. (D) McsB- and McsB C167S-induced 

ClpC ATPase activity in absence and presence of McsA determined in Malachite Green assay. Error bars 

display standard deviations of three replicates. 
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After examination of McsB functions, the influence of phosphatase YwlE on ClpC activities was 

investigated. ClpC ATPase assays revealed that low concentrations of inactive YwlE C7S did not 

considerably decrease the ClpC activity, compared to active YwlE (Figure 13 D). Addition of the 

YwlE C7S mutant to McsB/McsA-activated ClpC in the disaggregation assay resulted in a high 

initial peak, suggesting strong protein complex formation at t15 (Figure 13 A). After 120 min 36 % 

of the Mdh aggregates were dissolved and only 3 % of Mdh were refolded (Figure 13 A, B). 

Consistently, a notable Mdh shift from pellet to supernatant was only detected in reactions with 

high disaggregation and refolding efficiencies (Figure 13 C). Since active YwlE was observed to 

facilitate high refolding activity, these results suggest that the YwlE phosphatase activity is 

necessary for successful disaggregation and refolding. Additionally, protein-protein interactions 

might affect the initial complex formation and ClpC dependent disaggregation.  

Combination of both inactive mutants McsB C167S and YwlE C7S resulted in a delayed peak in 

light scattering. After 120 min 44 % of aggregated Mdh was unfolded and 18 % of the initial Mdh 

activity were recovered (Figure 13 A, B). These observations correspond to prior experiments, 

suggesting that the kinase activity of McsB interferes with successful substrate refolding and 

demonstrate that the YwlE phosphatase activity is probably required for efficient disaggregation 

and refolding, especially in presence of active McsB.  
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Figure 13 YwlE phosphatase activity is important in presence of active McsB. 

(A) Disaggregation of heat aggregated Mdh was monitored with light scattering experiments performed at 

30°C for 120 min. ClpB, DnaK, DnaJ, GrpE ( ) served as positive control, ClpC, McsB, McsA ( ), ClpC, 

McsB, McsA, YwlE ( ), ClpC, McsB, McsA, YwlE C7S ( ) and ClpC, McsB C167S, McsA, YwlE C7S   

( ) were compared. (B) The refolding of Mdh was examined by measuring the enzymatic activity at 

different time points. (C) SDS-PAGE of Mdh in pellet (P) and supernatant (S) fractions at indicated time 

points. (D) McsB/McsA-induced ClpC ATPase activity with and without YwlE/YwlE C7S determined in 

Malachite Green assay. Error bars display standard deviations of three replicates. 
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Protein arginine phosphorylation in the experiments with kinase inactive McsB C167S and 

phosphatase inactive YwlE C7S was monitored with α-pArg blots (Fuhrmann et al., 2013a; 

Kirstein et al., 2005). As expected, no phosphorylation was detected in samples with McsB C167S, 

neither of McsB C167S itself nor of other proteins present in this reaction (Figure 14 A). In contrast 

to this, strong phosphorylation signals of ClpC, McsB, Mdh and McsA were detected at several 

time points with YwlE C7S (Figure 14 B). The decrease of detected phosphorylation with 

incubation time was comparable to the α-pArg blot without YwlE, suggesting that the YwlE C7S 

mutant did not actively dephosphorylate the substrate, as expected (Figure 10 A). 

 

Figure 14 Inactive McsB cannot phosphorylate and inactive YwlE cannot dephosphorylate proteins. 

Representative SDS-PAGE and western blots of samples from disaggregation experiment taken at indicated 

time points and divided in pellet (P) and supernatant (S) fractions. On the left, Coomassie staining and on 

the right western blots with α-pArg antibody (Fuhrman et al) are displayed. ClpC, McsB C167S, McsA (A) 

and ClpC, McsB, McsA, YwlE C7S (B) were compared with autophosphorylated McsB as positive control 

for pArg western blots. 
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3.1.3 Disaggregation and refolding are triggered by McsA activation of McsB kinase 

Previous experiments observed that both, the arginine kinase activity of McsB and the phosphatase 

activity of YwlE are important for successful ClpC dependent disaggregation and refolding of heat 

induced aggregates. To examine the role of McsB activator McsA in more detail, order-of-addition 

experiments were performed. Without McsA, only slight disaggregation (12 %) and refolding 

activity (3 %) was observed in the reaction with ClpC, McsB and YwlE. Subsequently, McsA was 

added 15 min, 30 min and 60 min after assay start (Figure 15). 15 min after each McsA addition a 

corresponding peak occurred, suggesting initial protein complex formation (Figure 15 A). The 

recovery of Mdh activity started approximately 15 min after McsA addition and the refolding 

kinetics of experiments with McsA addition at different time points were comparable (Figure 15 

B). Pre-incubation of ClpC, McsB and YwlE with subsequent addition of McsA was observed to 

cause steeper disaggregation slopes and facilitated an accelerated start of Mdh recovery. Pellet-

supernatant fractionations of these samples were consistent with the light scattering experiments, 

suggesting that with addition of McsA, the ClpC dependent disaggregation was triggered and Mdh 

was solubilized (Figure 15 C). This data implies that the ClpC disaggregation and refolding activity 

is highly dependent on McsA activating the McsB kinase and that addition of McsA can trigger the 

McsB and YwlE dependent ClpC disaggregation and refolding activity at any time.  
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Figure 15 Addition of McsA triggers McsB mediated ClpC disaggregation activity. 

Order-of-addition disaggregation and refolding experiment with McsA. (A) Disaggregation of heat 

aggregated Mdh was monitored with light scattering experiments performed at 30°C for 120 min. ClpC, 

McsB, YwlE reaction without McsA ( ) or with addition of McsA after 0 min ( ), 15 min ( ), 30 min ( ), 

60 min ( ). (B) The refolding of Mdh was examined by measuring the enzymatic activity at different time 

points. Error bars display standard deviations of three replicates. (C) SDS-PAGE of Mdh in pellet (P) and 

supernatant (S) fractions at indicated time points. 
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To examine the arginine phosphorylation status in the McsA order-of-addition experiment, α-pArg 

blots were performed. Since YwlE was already demonstrated to be a potent phosphatase, samples 

were taken before and 5 min after addition of McsA (Figure 10/Figure 16). In all experiments no 

phosphorylation signal was observed before addition of McsA, suggesting that in presence of YwlE 

the autophosphorylation activity of McsB was not sufficient to obtain detection of phosphorylation 

(Figure 16 A, B, C). Upon addition of McsA at t15, the McsB kinase was activated and after 5 min 

ClpC, McsB and McsA were phosphorylated, but after 60 min no phosphorylation signal was 

visible anymore (Figure 16 A). A similar pattern was observed upon addition of McsA at t30 and 

t60, since phosphorylation of ClpC, McsB and McsA was detected after 5 min (Figure 16 B, C). 

However, YwlE did not dephosphorylate all protein as rapidly as observed in previous experiments 

and with McsA addition at t30 the phosphorylation signal was still visible after 60 min of incubation 

(Figure 10). It is possible that due to long incubation without McsA activating McsB, the YwlE 

phosphatase activity was hindered and weak oligomerizations leading to inactivation took place, 

as already described for YwlE and other cognate phosphatases (Blobel et al., 2009). In contrast to 

previous experiments without YwlE, phosphorylation of the substrate Mdh could not be observed 

in any reaction (Figure 10/Figure 14). This might be an indication that the earlier detected McsB 

dependent phosphorylation of soluble Mdh is quickly dephosphorylated in presence of YwlE 

phosphatase and may enable the observed refolding activity.  
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Figure 16 McsA addition activates McsB kinase at various time points. 

Representative SDS-PAGE and western blots of samples from McsA order-of-addition experiment taken at 

indicated time points and divided in pellet (P) and supernatant (S) fractions. On the left, Coomassie staining 

and on the right western blots with α-pArg antibody are displayed (Fuhrman et al). ClpC, McsB, YwlE with 

McsA addition after 15 min (A), 30 min (B) and 60 min (C). Autophosphorylated McsB served as positive 

control for pArg western blots. 
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3.1.4 The influence of YwlE depends on protein dephosphorylation 

Knowing, that addition of McsA could trigger the ClpC disaggregation and refolding activity at 

any point of time, comparable order-of-addition experiments were performed with YwlE. 

Consistent with previous observations, a high peak occurred after 15 min, indicating possible 

protein accumulation  in absence of YwlE (Figure 9/Figure 17 A). Notably, full aggregate removal 

was only possible in the reaction with YwlE initially present. Delayed addition of YwlE at t15, t30 

or t60 led to a decrease in disaggregation efficiency from 76 % to 46 % or 44 %, respectively (Figure 

17 A). The refolding efficiency was observed to be related to the disaggregation activity and highest 

Mdh recovery occurred in the reaction with YwlE present from the beginning (Figure 17 B). With 

decreasing disaggregation activity upon late addition of YwlE, the Mdh recovery was reduced. The 

pellet-supernatant fractionation was consistent with these observations, since absence or late 

addition of YwlE did not result in a shift of aggregated Mdh from the pellet to the supernatant 

fraction (Figure 17 C). Thus, compared to experiments with McsA, addition of the phosphatase 

YwlE did not trigger full ClpC dependent disaggregation and refolding activity at any point of time 

(Figure 16). On the contrary, initial presence of YwlE in the reaction was observed to be necessary 

for efficient aggregate removal and substrate recovery. 
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Figure 17 Early presence of YwlE is important for ClpC mediated disaggregation and refolding. 

Order-of-addition disaggregation and refolding experiment with YwlE. (A) Disaggregation of heat 

aggregated Mdh was monitored with light scattering experiments performed at 30°C for 120 min. ClpC, 

McsB, McsA reaction without YwlE ( ) or with addition of YwlE after 0 min ( ), 15 min ( ), 30 min ( ), 

60 min ( ). (B) The refolding of Mdh was examined by measuring the enzymatic activity at different time 

points. Error bars display standard deviations of three replicates. (C) SDS-PAGE of Mdh in pellet (P) and 

supernatant (S) fractions at indicated time points. 
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To examine, whether the observed effects are connected to arginine phosphorylation and 

subsequent dephosphorylation events, α-pArg blots of the order-of-addition experiments were 

performed. Similar to previous experiments, phosphorylation signals of ClpC, McsB, Mdh and 

McsA were detected after 0 min and 15 min for all samples, whereas signals after 15 min were 

notably stronger in the supernatant fractions (Figure 10/Figure 18 A, B, C). As expected, addition 

of YwlE at t15 resulted in vanishing of every signal except for a slight ClpC phosphorylation band 

in the pellet fraction after 20 min (Figure 18 A). Phosphorylation of McsB and ClpC was observed 

30 min after assay start, but with addition of YwlE no more bands were detectable (Figure 18 B). 

The initial signal of ClpC and McsB phosphorylation after 60 min was lower than after 30 min and 

disappeared completely after YwlE addition (Figure 18 C).  

These experiments suggest that YwlE is a potent phosphatase, since even low concentrations could 

dephosphorylate nearly every detectable phosphorylation in 5 min. Comparison of the 

disaggregation and refolding experiments with the α-pArg blots revealed a possible connection 

between the efficiency of refolding upon YwlE addition and the level of initial arginine 

phosphorylation in the sample (Figure 17, Figure 18). These observations imply that a successful 

disaggregation and refolding might be directly related to the dephosphorylation of proteins by 

YwlE. 
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Figure 18 Addition of YwlE dephosphorylates proteins at various time points. 

Representative SDS-PAGE and western blots of samples from YwlE order-of-addition experiment taken at 

indicated time points and divided in pellet (P) and supernatant (S) fractions. On the left, Coomassie staining 

and on the right western blots with α-pArg antibody are displayed (Fuhrman et al). ClpC, McsB, McsA with 

YwlE addition after 15 min (A), 30 min (B) and 60 min (C). Autophosphorylated McsB served as positive 

control for pArg western blots. 
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3.1.5 The phosphatase YwlE assists protein refolding 

Disaggregation and refolding of heat induced aggregates by chaperones is often achieved by 

several binding, pulling and release cycles, only partially unfolding the substrate, as described for 

the E. coli ClpB/KJE system (Haslberger et al., 2008; Li et al., 2015). However, characterization 

of the ClpC based system indicated a unique operation principle, dependent on McsB kinase and 

YwlE phosphatase activities. It was assumed that McsB phosphorylates and targets substrate for 

ClpC dependent disaggregation and consistent with this, the highest substrate phosphorylation was 

observed after disaggregation (Figure 10). Since the reaction without YwlE led to poor refolding 

activities and application of a kinase inactive McsB mutant could trigger moderate refolding, it was 

hypothesized that arginine phosphorylation might prevent successful refolding of the disaggregated 

substrate. In the proposed model YwlE serves as refolding assistant, possibly facilitating refolding 

events by controlled dephosphorylation of unfolded substrate.  

To test this hypothesis, a special disaggregation and refolding experiment was set up. The idea was 

to first allow phosphorylation and targeting of Mdh by McsB/McsA for ClpC dependent 

disaggregation. It was presumed that after 15 min ample amounts of substrate protein were 

unfolded and phosphorylated. Then, the ClpC DWB trap mutant, with impaired ATPase activity, 

was added to halt ClpC disaggregation by formation of inactive, mixed oligomers, comparably 

described for a ClpB mutant in E. coli (Kirstein et al., 2006; Mogk et al., 2003c; Weibezahn et al., 

2003). Subsequent addition of YwlE was assumed to trigger refolding by dephosphorylation of the 

previously disaggregated, phosphorylated substrate. 

To ensure that the concentration of added ClpC DWB was high enough to prevent further 

disaggregation, the ClpC ATPase activity was measured without YwlE, with YwlE and with 

inactive YwlE C7S. ClpC DWB was added in concentrations from 1.5 µM to 0.1 µM to the reaction 

(Figure 19). Notably, even the addition of 1.5 µM ClpC DWB resulted in 28 % of remaining 

activity and no complete inhibition of the ClpC ATPase activity was achieved. The presence of 

both ClpC DWB and YwlE strongly restricted the ClpC ATPase activity, dependent on the YwlE 

phosphatase activity.  
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Figure 19 Addition of ClpC DWB decreases the ATPase activity. 

ClpC (1.5 µM) ATPase activity with McsB (1 µM), McsA (1 µM) without YwlE (black), with 0.05 µM 

YwlE (red) and 0.05 µM YwlE C7S (blue) determined with Malachite Green assay. The ClpC DWB trap 

mutant was added in indicated concentrations. Error bars display standard deviations of three replicates. 

The addition of 0.25 µM ClpC DWB to the light scattering and refolding experiment at t15 resulted 

in an extended initial peak, suggesting only slowly dispersing complex formation with mixed ClpC 

oligomers (Figure 20 A). The curve stayed stable after 55 min with 22 % of aggregates dissolved. 

Furthermore, no refolding of Mdh occurred, comparably observed in the reaction with 

simultaneous addition of ClpC DWB and inactive YwlE C7S (Figure 20 A, B). Addition of 

ClpC DWB and active YwlE at t15 or t20 led to a quick disruption of the initial protein accumulation, 

implying that active YwlE might disturb the stable complex formation of the substrate and 

McsB/McsA-activated ClpC. Remarkably, addition of active YwlE at t15 led to a rescue of 15 % 

Mdh activity. The decreased Mdh recovery upon late YwlE addition at t20 might be due to the 

decreasing phosphorylation levels with extended incubation time and thus, possibly less substrate 

for YwlE to act on. The pellet-supernatant fractionations displayed no evident Mdh shift from pellet 

to supernatant, consistent with the observed low disaggregation and refolding activity (Figure 20 

C). Hence, this data supports the suggested model in that controlled YwlE dependent 

dephosphorylation might facilitate refolding of previously phosphorylated and unfolded substrate 

proteins. 
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Figure 20 Addition of ClpC DWB stops disaggregation and YwlE assists substrate refolding. 

(A) Disaggregation of heat aggregated Mdh was monitored with light scattering experiments performed at 

30°C for 120 min. ClpC, McsB, McsA reactions with addition of ClpC DWB after 15 min ( ) and YwlE 

after 15 min ( ), after 20 min ( ) or YwlE C7S after 15 min ( ) were compared to positive control ClpC, 

McsB, McsA, YwlE ( ). (B) The refolding of Mdh was examined by measuring the enzymatic activity at 

different time points. Error bars display standard deviations of three replicates. (C) SDS-PAGE of Mdh in 

pellet (P) and supernatant (S) fractions at indicated time points. 

3.2 Protein refolding or degradation with the protease complex ClpCP  

B. subtilis ClpC can form a protease complex with ClpP (ClpCP) and unfolded substrate proteins 

are transferred to the associated protease for degradation. Therefore, ClpC can contribute to both, 

substrate rescue and degradation. Experiments including the protease ClpP were performed to 

assess how these at first glance opposing activities are compatible with each other. 

Upon addition of ClpP to McsB/McsA-activated ClpC, the expected ClpCP protease complex 

formed and the substrate Mdh was disaggregated and mostly degraded (Figure 21). The SDS-



3.2   Results 

68 

PAGE analysis of the pellet-supernatant fractions supported this, because only a slight Mdh band 

remained in the supernatant fraction after 120 min (Figure 21 C). Notably, not all disaggregated 

substrate was degraded but 13 % of Mdh activity were recovered (Figure 21 B). Hence, while 

disaggregation took place, a fraction of substrate protein escaped the transfer to ClpP for 

degradation and was refolded instead. This might be facilitated by specific properties of the ClpCP 

interaction and the observed increased disaggregation rate allowing full aggregate removal in 

presence of ClpP. 

 

Figure 21 ClpP improves the refolding efficiency of McsB/McsA-activated ClpC. 

(A) Disaggregation of heat aggregated Mdh was monitored with light scattering experiments performed at 

30°C for 120 min. ClpB, DnaK, DnaJ, GrpE ( ) served as positive control, ClpC, McsB, McsA ( ) and 

ClpC, McsB, McsA, ClpP ( ) were compared. (B) The refolding of Mdh was examined by measuring the 

enzymatic activity at different time points. Error bars display standard deviations of three replicates. (C) 

SDS-PAGE of Mdh in pellet (P) and supernatant (S) fractions at indicated time points.  

3.2.1 Active YwlE enables substrate refolding rather than degradation by ClpCP 

To study the impact of YwlE on ClpCP degradation activity, experiments with addition of the 

phosphatase were performed. The disaggregation kinetics of McsB/McsA-activated ClpCP without 

and with YwlE were similar, but a high Mdh refolding activity was observed with YwlE present. 
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Here, 44 % of the initial Mdh activity were recovered, which was comparable to the efficiency of 

the experiment without ClpP (Figure 22 A, B). The pellet-supernatant fractionation displayed a 

Mdh shift from pellet to supernatant, consistent with the disaggregation curves. Notably, with 

YwlE and ClpP present, substrate disaggregation and refolding were favored instead of substrate 

degradation (Figure 22 B, C). These experiments suggest that the phosphatase YwlE facilitated 

refolding even in presence of ClpP and the ClpCP degradation activity appeared to be impaired. 

 

Figure 22 YwlE facilitates refolding despite presence of protease ClpP. 

(A) Disaggregation of heat aggregated Mdh was monitored with light scattering experiments performed at 

30°C for 120 min. ClpB, DnaK, DnaJ, GrpE ( ) served as positive control, ClpC, McsB, McsA ( ), ClpC, 

McsB, McsA, ClpP ( ), ClpC, McsB, McsA, YwlE ( ) and ClpC, McsB, McsA, YwlE, ClpP ( ) were 

compared. (B) The refolding of Mdh was examined by measuring the enzymatic activity at different time 

points. Error bars display standard deviations of three replicates. (C) SDS-PAGE of Mdh in pellet (P) and 

supernatant (S) fractions at indicated time points.  

The inactive mutant YwlE C7S was utilized to examine, whether the observed refolding activity in 

presence of ClpP is connected to the YwlE phosphatase activity. Consistent with previous 

experiments, an increased initial complex formation was observed in presence of YwlE C7S, with 
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and without ClpP (Figure 13 A/Figure 23 A). Although the ClpP addition slightly increased the 

disaggregation efficiency, no complete aggregate removal was possible in presence of the 

phosphatase inactive YwlE C7S mutant. The refolding activity of McsB/McsA-activated ClpCP 

was not affected by addition of YwlE C7S, suggesting that the phosphatase inactive mutant only 

affected the disaggregation activity (Figure 23 B). As anticipated, the only partial Mdh degradation 

and a slight shift to the supernatant occurred (Figure 23 C).  

 

Figure 23 YwlE C7S affects substrate disaggregation. 

(A) Disaggregation of heat aggregated Mdh was monitored with light scattering experiments performed at 

30°C for 120 min. ClpC, McsB, McsA, ClpP ( ), ClpC, McsB, McsA, YwlE ( ), ClpC, McsB, McsA, 

YwlE, ClpP ( ), ClpC, McsB, McsA, YwlE C7S ( ) and ClpC, McsB, McsA, YwlE C7S, ClpP ( ) were 

compared. (B) The refolding of Mdh was examined by measuring the enzymatic activity at different time 

points. Error bars display standard deviations of three replicates. (C) SDS-PAGE of Mdh in pellet (P) and 

supernatant (S) fractions at indicated time points.  

It is known that high ATPase rates and fast substrate translocation can promote an efficient 

substrate degradation by AAA+ proteases, like ClpXP from E. coli (Martin et al., 2008). Therefore, 

the impact of ClpP on the ClpC ATPase activity was determined and degradation assays were 
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performed to monitor the exact influence of YwlE on ClpCP degradation activity. α-pArg blots 

with YwlE and inactive YwlE C7S monitored the protein arginine phosphorylation during the 

degradation reactions.  

The presence of ClpP increased the ATPase activity of McsB/McsA-activated ClpC, with and 

without YwlE, as indicated by previous studies (Figure 24 A) (Turgay et al., 1998). This enhanced 

activity might be linked to the observed improved disaggregation and refolding activity (Figure 

22). Furthermore, the degradation of β-casein by ClpCP was examined with different adaptor 

proteins and with addition of YwlE or phosphatase inactive YwlE C7S (Figure 24 B). The MecA-

induced ClpCP degradation efficiency was not affected by presence of active or inactive YwlE. 

However, with adaptor protein McsB/McsA a total of 82.3 % β-casein were degraded by ClpCP. 

In presence of active YwlE, the ClpCP activity was strongly decreased and only 42.7 % β-casein 

were degraded. This constraining impact was relieved with phosphatase inactive YwlE C7S and 

71.5 % β-casein were degraded, suggesting that the influence of YwlE on McsB/McsA-induced 

ClpCP degradation activity mainly depends on the phosphatase activity. Consistent with this, 

previous studies demonstrated that high concentrations of active YwlE exceedingly impair 

McsB/McsA-induced ClpC ATPase activity and stabilize McsB in a degradation assay (Kirstein et 

al., 2007). The data obtained in this work indicates that low concentrations of YwlE relieve most 

of the inhibitory impact on McsB/McsA-induced ClpC ATPase activity but still interfere with 

degradation of substrates by ClpCP (Figure 9/Figure 24). These observations suggest that YwlE 

might play a role in the decision between substrate refolding or degradation by McsB/McsA-

activated ClpCP.  

As expected, no phosphorylation signal was detected in presence of active YwlE in the α-pArg 

blots (Figure 24 C). With the phosphatase inactive mutant YwlE C7S a phosphorylation signal was 

detected at every sampled time point, comparable to the experiment without YwlE (Figure 10). At 

t0 all proteins in the reaction, except for YwlE C7S, were phosphorylated. The signal intensity 

increased after incubation for 15 min, whereat the strongest phosphorylation signals were observed 

for ClpC and McsB. The phosphorylation signals in the supernatant fractions of all samples were 

stronger than in the pellet fractions, consistent with previous results (Figure 10). Notably, the 

phosphorylation signal of Mdh was again more abundant in the t0 and t15 supernatant fractions, 

indicating that even in presence of ClpP most of the detectable phosphorylation occurred on 

disaggregated, soluble substrate (Figure 10/Figure 14/Figure 24).  
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Figure 24 ClpP stimulates ATPase activity and YwlE impairs ClpCP degradation activity. 

(A) McsB/McsA-induced ClpC ATPase activity was determined in Malachite Green assay, ± YwlE and ± 

ClpP. Error bars display standard deviations of three replicates. (B) SDS-PAGE analysis of β-casein 

degradation over 90 min by ClpC, McsB, McsA, ClpP ± YwlE/YwlE C7S and ClpC, MecA, ClpP ± 

YwlE/YwlE C7S. (C,D) Representative SDS-PAGE and western blots of samples from disaggregation 

assay with ClpC, McsB, McsA, ClpP, YwlE (C)/YwlE C7S (D) taken at indicated time points and divided 

in pellet (P) and supernatant (S) fractions. On the left, Coomassie staining and on the right western blots 

with α-pArg antibody are displayed (Fuhrman et al). Autophosphorylated McsB served as positive control 

for pArg western blots. 
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The phosphorylation of disaggregated model substrate Mdh was observed repeatedly, with 

McsB/McsA-activated ClpC (Figure 10) and ClpCP (Figure 24). To monitor the protein 

phosphorylation in presence of different substrates, degradation assays and α-pArg blots with β-

casein and CtsR as substrates were performed. Both substrates are already known to be 

phosphorylated by McsB/McsA and targeted for ClpCP degradation (Elsholz et al., 2010; Kirstein 

et al., 2007, 2005; Trentini et al., 2016). At t0, several phosphorylation signals were detected in the 

degradation reaction with β-casein, including ClpC, McsB and ClpP/McsA (Figure 25 A). The 

substrate only displayed phosphorylation at t15, indicating that β-casein was phosphorylated prior 

to degradation. As expected, the McsB substrate CtsR was also phosphorylated before ClpCP 

dependent degradation, consistent with previous studies (Figure 25 B) (Kirstein et al., 2007, 2005). 

Most of the phosphorylation signal was visible at early time points in both α-pArg blots. This 

indicates, consistent with previous studies, that the kinase activity of McsB might play a role in 

substrate targeting for ClpCP degradation (Kirstein et al., 2007; Trentini et al., 2016).  

 

Figure 25 McsB phosphorylates ClpCP substrates β-casein and CtsR prior to degradation. 

Representative SDS-PAGE and western blots of samples from degradation assay with ClpC, McsB, McsA, 

ClpP and substrates β-casein (A) or CtsR (B)taken at indicated time points. On the left, Coomassie stained 

SDS-gels and on the right western blots with α-pArg antibody are displayed (Fuhrman et al) are displayed.  
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3.2.2 McsB C167S can act as adaptor protein for ClpCP 

ClpC was observed to specifically recognize phosphorylated arginine residues, enabling 

degradation of phosphorylated substrates by ClpCP in absence of adaptor proteins (Trentini et al., 

2016). To analyze the impact of McsB in its function as adaptor protein or as arginine kinase on 

ClpCP, different assays were performed with the kinase inactive mutant McsB C167S. Previous 

experiments demonstrated that the kinase inactive McsB C167S mutant facilitated a lowered ClpC 

ATPase activity and disaggregation by ClpC, by acting as adaptor protein (Figure 12). Addition of 

ClpP to McsB C167S/McsA-activated ClpC resulted in removal of nearly 100 % of Mdh 

aggregates after 120 min and 12 % of Mdh activity were recovered (Figure 26 A, B). The pellet-

supernatant fractionation displayed that besides a slight Mdh shift to the supernatant, degradation 

of the substrate occurred (Figure 26 C). This indicates that substrate degradation, facilitated by 

kinase inactive McsB C167S, could still be possible. It was demonstrated previously that a low 

refolding activity can be triggered by presence of ClpP in reactions without YwlE (Figure 21). 

Here, addition of ClpP reduced the Mdh recovery with kinase inactive McsB C167S, probably due 

to degradation of the unfolded substrate (Figure 26 B).These observations indicate that the adaptor 

protein McsB can facilitate substrate degradation, independent of the kinase activity. However, 

efficient ClpC ATPase induction and associated ClpCP dependent substrate degradation depends 

on both McsB functions, as adaptor protein and arginine kinase. 
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Figure 26 Kinase inactive McsB C167S/McsA still enables ClpCP degradation activity. 

(A) Disaggregation of heat aggregated Mdh was monitored with light scattering experiments performed at 

30°C for 120 min., ClpC, McsB, McsA, YwlE ( ), ClpC, McsB, McsA ( ), ClpC, McsB, McsA, ClpP ( ) 

ClpC, McsB C167S, McsA ( ) and ClpC, McsB C167S, McsA, ClpP ( ) were compared. (B) The refolding 

of Mdh was examined by measuring the enzymatic activity at different time points. Error bars display 

standard deviations of three replicates. (C) SDS-PAGE of Mdh in pellet (P) and supernatant (S) fractions at 

indicated time points. 
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YwlE was observed to promote the disaggregation and refolding of substrates instead of 

degradation in presence of ClpP (Figure 22). To elucidate whether the influence of active YwlE on 

degradation by ClpCP is related to McsB dependent protein phosphorylation, experiments with 

kinase inactive McsB C167S were performed. The addition of ClpP to McsB C167S/McsA-

activated ClpC with YwlE only led to a slightly steeper disaggregation curve, while no refolding 

activity was detectable (Figure 27 A, B). This result was expected, because previous experiments 

without ClpP already indicated that kinase active McsB is necessary for the YwlE impact on the 

disaggregation system (Figure 11/Figure 18).The pellet-supernatant fractionation validated that no 

notable disaggregation occurred (Figure 27 C). Furthermore, degradation assays were performed 

to monitor the exact ClpCP degradation activity, induced by kinase inactive McsB C167S, with 

and without YwlE (Figure 27 D). Consistent with earlier experiments, the substrate degradation 

was decreased but still possible with McsB C167S/McsA-activated ClpCP (Figure 26). Addition 

of YwlE decreased the ClpCP degradation activity independent of McsB kinase activity, 

presumably due to lowered ClpC ATPase rates or possible protein-protein interactions (Figure 9 

D/Figure 11 D). Although McsB can function as adaptor protein for ClpC and ClpCP independent 

of its kinase activity, the phosphorylation of proteins was observed to be necessary for the 

regulatory interplay with YwlE and efficient disaggregation and refolding. 
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Figure 27 The McsB C167S function as ClpCP adaptor protein is still affected by YwlE. 

(A) Disaggregation of heat aggregated Mdh was monitored with light scattering experiments performed at 

30°C for 120 min., ClpB, DnaK, DnaJ, GrpE ( ) served as positive control. ClpC, McsB, McsA, YwlE          

( ), ClpC, McsB, McsA YwlE, ClpP ( ), ClpC, McsB C167S, McsA, YwlE ( ) and ClpC, McsB C167S, 

McsA, YwlE, ClpP ( ) were compared. (B) The refolding of Mdh was examined by measuring the 

enzymatic activity at different time points. Error bars display standard deviations of three replicates. (C) 

SDS-PAGE of Mdh in pellet (P) and supernatant (S) fractions at indicated time points. (D) SDS-PAGE 

analysis of β-casein degradation over 90 min by ClpC, McsB/McsB C167S, McsA, ClpP ± YwlE. 
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3.2.3 ClpC P-loop mutations affect the ClpCP degradation activity 

Mutations in the ClpC-ClpP interaction loop (P-loop) were utilized to examine the influence of 

altered ClpP interactions with ClpC on several chaperone activities in vitro. One substitution 

mutation in the conserved tripeptide of the ClpC P-loop, VGF::GGR, was introduced to abolish the 

association, as previously demonstrated for ClpXP (Martin et al., 2007; Moliere, 2012).  

ClpC ATPase and degradation assays were performed to monitor the influence of the 

ClpC VGF::GGR loop mutation on ClpC activities in vitro. The MecA- or McsB/McsA-induced 

ATPase activity of the ClpC VGF::GGR mutant was only slightly decreased compared to wild type 

ClpC (Figure 28 A). Degradation of model substrate β-casein was not observed with the ClpC 

VGF::GGR P-loop mutant (Figure 28 B). However, the ClpC VGF::GGR mutant was suggested to 

recognize and translocate substrate, while only the interaction with ClpP and the protein 

degradation is prevented (Moliere, 2012). 

 

Figure 28 ClpC VGF::GGR mutant displays no degradation activity with ClpP. 

(A) ClpC and ClpC VGF::GGR mutant ATPase activity with adaptor proteins MecA (black) and 

McsB/McsA (red) was determined using Malachite Green assay. Error bars display standard deviations of 

three replicates. (B) SDS-PAGE analysis of β-casein degradation over 90 min by ClpC/ClpC VGF::GGR, 

McsB, McsA, ClpP. 

Light scattering and refolding experiments were performed to examine, whether the ClpC P-loop 

plays a role in disaggregation and refolding activities and if the ability to degrade substrates is 

linked to disaggregation. Only a slight decrease in the disaggregation and refolding efficiencies of 

the McsB/McsA-activated ClpC VGF::GGR mutant was observed, when compared to wild type 

ClpC (Figure 29 A, B). As expected, the mutant was able to dissolve 100 % of protein aggregates 

with YwlE and the refolding activity was comparable to the control ClpB/KJE (Figure 29 A, B). 

Consistent with these observations, the Mdh shift from pellet to supernatant was slower in the 

reaction with McsB/McsA-activated ClpC VGF::GGR and YwlE (Figure 29 C). The slight 
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reduction in disaggregation and refolding activities of the ClpC VGF::GGR mutant was probably 

caused by the lowered ATPase activity (Figure 28 A). 

 

Figure 29 ClpC VGF::GGR mutant still disaggregates and refolds substrate. 

(A) Disaggregation of heat aggregated Mdh was monitored with light scattering experiments performed at 

30°C for 120 min., ClpB, DnaK, DnaJ, GrpE ( ) served as positive control. ClpC, McsB, McsA ( ) ClpC 

VGF::GGR, McsB, McsA ( ), ClpC, McsB, McsA, YwlE ( ) and ClpC VGF::GGR, McsB, McsA YwlE 

( ) were compared. (B) The refolding of Mdh was examined by measuring the enzymatic activity at 

different time points. Error bars display standard deviations of three replicates. (C) SDS-PAGE of Mdh in 

pellet (P) and supernatant (S) fractions at indicated time points.  

The YwlE phosphatase activity was proposed to affect the decision between degradation and 

refolding. This raised the question, whether a comparable impact could still be observed with the 

ClpC mutant, which was no longer able to transfer substrate to ClpP for degradation. Notably, 

McsB/McsA-activated ClpC VGF::GGR with ClpP was able to disaggregate 59 % of aggregates, 

slightly more than without ClpP (55 %), but no complete aggregate removal was possible without 

YwlE (Figure 29 A, Figure 30 A). Compared to wild type ClpC, addition of ClpP did not improve 

the substrate refolding with ClpC VGF::GGR in absence of YwlE (Figure 30 B). However, addition 
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of ClpP and YwlE to ClpC VGF::GGR affected the substrate disaggregation and decreased the 

refolding activity, even though pellet-supernatant fractionations suggested that no degradation took 

place (Figure 30 C).  

 

Figure 30 ClpP has no positive influence on ClpC VGF::GGR refolding activity. 

(A) Disaggregation of heat aggregated Mdh was monitored with light scattering experiments performed at 

30°C for 120 min., ClpC, McsB, McsA, YwlE ( ), ClpC VGF::GGR, McsB, McsA YwlE ( ), ClpC, McsB, 

McsA, ClpP ( ) ClpC VGF::GGR, McsB, McsA, ClpP ( ) ClpC, McsB, McsA, YwlE, ClpP ( ) and ClpC 

VGF::GGR, McsB, McsA, YwlE, ClpP ( ) were compared. (B) The refolding of Mdh was examined by 

measuring the enzymatic activity at different time points. Error bars display standard deviations of three 

replicates. (C) SDS-PAGE of Mdh in pellet (P) and supernatant (S) fractions at indicated time points. 

Many AAA+ Clp proteins, like B. subtilis ClpX, possess an IGF tripeptide in the ClpP interaction 

loop (Kim et al., 2001). Therefore, the impact of a mutation, substituting the ClpC VGF tripeptide 

with IGF, was examined. ClpC ATPase and degradation assays were performed to characterize 

basic ClpC functions. The ATPase activity of ClpC VGF::IGF was slightly decreased with adaptor 

proteins MecA and McsB/McsA (Figure 31 A). It was expected that this mutant was still able to 

form the protease complex with ClpP and degrade substrate, because other Clp proteins containing 



3.2   Results 

81 

this loop, e.g. ClpX, also interact with the same protease. Notably, the ClpC VGF::IGF mutant 

displayed accelerated degradation activity with ClpP, compared to wild type ClpCP (Figure 31 B). 

Addition of YwlE only slightly affected the substrate degradation by ClpC VGF::IGF-ClpP, 

compared to the strong inhibition of substrate degradation by wild type ClpCP. Thus, the inhibitory 

impact of YwlE on the degradation activity of wild type ClpCP was observed to be relieved with 

the ClpC VGF::IGF mutant. 

 

Figure 31 ClpC VGF::IGF-ClpP displays increased degradation activity despite presence of YwlE. 

(A) ClpC and ClpC VGF::IGF mutant ATPase activity with adaptor proteins MecA (black) and McsB/McsA 

(red) was determined using Malachite Green assay. Error bars display standard deviations of three replicates. 

(B) SDS-PAGE analysis of β-casein degradation over 90 min by ClpC/ClpC VGF::IGF, McsB, McsA, ClpP 

± YwlE. 

Knowing, that the ClpC VGF::IGF mutation could increase the degradation activity with ClpP, 

disaggregation and refolding experiments were performed. Besides an high initial peak at t15, 

suggesting increased complex formation, the ClpC VGF::IGF mutant displayed the same 

disaggregation and refolding activities as McsB/McsA-activated wild type ClpC (Figure 32 A, B). 

Consistent with the pellet-supernatant fractionation experiments, no increase in disaggregation 

efficiency was observed (Figure 32 C). Addition of YwlE led to a notably higher refolding activity 

with ClpC VGF::IGF (74 %) compared to wild type ClpC (50 %). Thus, the ClpC VGF::IGF 

mutation improved the refolding efficiency, despite lowered ATPase activity and comparable 

disaggregation activity in presence of YwlE. 
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Figure 32 The refolding efficiency is increased with the ClpC VGF::IGF mutant. 

(A) Disaggregation of heat aggregated Mdh was monitored with light scattering experiments performed at 

30°C for 120 min., ClpB, DnaK, DnaJ, GrpE ( ) served as positive control. ClpC, McsB, McsA ( ) ClpC 

VGF::IGF, McsB, McsA ( ), ClpC, McsB, McsA, YwlE ( ) and ClpC VGF::IGF, McsB, McsA YwlE         

( ),were compared. (B) The refolding of Mdh was examined by measuring the enzymatic activity at 

different time points. Error bars display standard deviations of three replicates. (C) SDS-PAGE of Mdh in 

pellet (P) and supernatant (S) fractions at indicated time points. 

ClpP was added to the disaggregation and refolding experiments to monitor the influence of the 

protease on ClpC VGF::IGF activity. Consistent with previously observed enhanced degradation 

activity of the ClpC VGF:IGF mutant, addition of ClpP resulted in a steep disaggregation curve 

and 100 % of aggregates were dissolved after 70 min, while nearly no Mdh activity could be 

recovered (Figure 31 B/Figure 33 A, B). Addition of YwlE further increased the disaggregation 

rate and as expected, no considerable refolding took place, because the substrate was degraded. 

The pellet-supernatant fractionation experiment was consistent with these observations and 

illustrated the improved degradation activity of this ClpC VGF::IGF mutant (Figure 33 C). To sum 

up, the mutation altering the ClpC P-loop VGF tripeptide to IGF resulted in an enhanced 
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degradation activity, even circumventing the inhibitory influence of active YwlE on the 

degradation activity of wild type ClpCP.  

 

Figure 33 ClpC VGF::IGF overcomes the inhibitory effect of YwlE on degradation. 

(A) Disaggregation of heat aggregated Mdh was monitored with light scattering experiments performed at 

30°C for 120 min., ClpC, McsB, McsA, YwlE ( ), ClpC VGF::IGF, McsB, McsA YwlE ( ), ClpC, McsB, 

McsA, ClpP ( ) ClpC VGF::IGF, McsB, McsA, ClpP ( ) ClpC, McsB, McsA, YwlE, ClpP ( ) and 

ClpC VGF::IGF, McsB, McsA, YwlE, ClpP ( ) were compared. (B) The refolding of Mdh was examined 

by measuring the enzymatic activity at different time points. Error bars display standard deviations of three 

replicates. (C) SDS-PAGE of Mdh in pellet (P) and supernatant (S) fractions at indicated time points. 

 

 

 

 



3.2   Results 

84 

ClpC VGF::IGF does not interfere with thermotolerance development in vivo 

The deletion of clpC has severe influence on thermotolerance development in B. subtilis (Krüger 

et al., 2000, 1994). This impact relies mainly on its disaggregase function, since thermotolerance 

is restored in a ClpC VGF::GGR mutant (Moliere, 2012). In order to examine, whether the in vitro 

enhanced degradation activity of ClpC VGF::IGF could influence the heat stress response in vivo, 

experiments with respective mutant strains were performed. Thermotolerance experiments analyze 

both, the thermoresistance of a strain, while counting formed colonies after a severe, lethal heat 

shock (53 °C) and the thermotolerance, describing the ability of a strain to adapt to heat with a mild 

pre-shock at 48 °C for 15 min allowing survival at 53 °C. 

The ΔclpC strain was less thermoresistant upon severe heat exposure and was not able to develop 

thermotolerance, confirming previous studies (Figure 34 A) (Krüger et al., 2000, 1994). In contrast 

to this, the clpC VGF::GGR mutant, lacking the ClpCP dependent degradation activity, displayed 

comparable thermoresistance and thermotolerance to the wild type, as described before (Figure 34 

B) (Moliere, 2012). When examining the clpC VGF::IGF mutant only marginal improvement of 

both, thermoresistance and thermotolerance were observed (Figure 34 C). Nevertheless, future 

studies need to evaluate, whether this mutant leads to enhanced degradation activity in vivo. 
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Figure 34 ClpC P-loop mutations do not impair thermotolerance. 

In vivo thermotolerance experiments comparing wt strain 168 ( ) with (A) ΔclpC (  BRK17), (B) clpC 

VGF::GGR (  BRK21) and (C) clpC VGF::IGF (  BRK23). The strains were either treated with a mild 

preshock for 15 min at 48 °C (solid line) or directly shifted from 37 °C to 53 °C (dotted line) and survival 

was determined by counting of cfu over time. 

3.2.4 Native Mdh is not significantly affected by the chaperone system components  

In order to verify, whether the in vitro described chaperone system or single proteins have impact 

on the activity and stability of native Mdh, control experiments were performed. Active Mdh was 

incubated with indicated proteins under assay conditions and the Mdh activity was monitored over 

time. Neither McsB/McsA nor ClpC did significantly affect the Mdh activity (Figure 35). Only 

incubation with ClpC, McsB/McsA and protease ClpP resulted in slight loss of Mdh activity after 

120 min, while no degradation occurred (Figure 35 B). Notably, the α-pArg blotting displayed a 



3.2   Results 

86 

strong phosphorylation signal for McsB, while nearly no phosphorylation of active Mdh was 

detectable (Figure 35 C). This is consistent with the assumption that McsB only recognizes specific 

substrates, like CtsR, or misfolded and unfolded as well as aggregated proteins.  

 

Figure 35 Chaperone system components with active Mdh. 

(A) Active Mdh was incubated in presence of different proteins at 30°C for 120 min and the Mdh activity 

was measured at different time points. Mdh ( ) was compared with McsB, McsA, Mdh ( ), McsB, McsA, 

YwlE, Mdh ( ), ClpC McsB, McsA, Mdh ( ), ClpC McsB, McsA, YwlE, Mdh ( ), ClpC McsB, McsA, 

ClpP, Mdh ( , dotted line) and ClpC McsB, McsA, ClpP, YwlE, Mdh ( , dotted line). (B) SDS-gel analysis 

of a degradation assay with active Mdh as substrate was performed, with samples taken at indicated time 

points. (C) A representative Coomassie stained SDS-gel (left hand side) and a western blot with α-pArg 

antibody (right hand side) of the McsB, McsA, Mdh sample at t0 and t15 are displayed.  

3.2.5 Disaggregation and refolding of the model substrate citrate synthase 

Disaggregation and refolding experiments with the model substrate Citrate synthase (Cs) were 

performed to assess, whether the characterized chaperone system, comprising ClpC, McsB, McsA 

and YwlE, is also active with another in vitro model substrate. In contrast to model substrate Mdh 

no complete removal of heat induced Cs aggregates was possible, even for the control system 

ClpB/KJE (Figure 36). A high peak in light scattering was observed for McsB/McsA-activated 

ClpC with Cs at t15, suggesting that complex formation occurred. Since this high peak was absent 

in the reaction with kinase inactive McsB C167S/McsA, it was considered that the complex 

formation might be connected to the phosphorylation of proteins by active McsB. The ClpC 

dependent disaggregation efficiency with both, McsB/McsA and McsB C167S/McsA, was 

observed to be slightly higher than disaggregation facilitated by ClpC/MecA or ClpB/KJE. 

However, ClpC/MecA and ClpC/McsB/McsA were able to induce refolding of up to 32 % of the 
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initial Cs activity, comparable to control system ClpB/KJE. The previously observed positive 

impact of kinase inactive McsB C167S on refolding of Mdh could be confirmed with Cs here, 

suggesting that protein phosphorylation by McsB could also affect refolding of Cs (Figure 11, 

Figure 36 B). 

 

Figure 36 The refolding efficiency of Cs is increased with McsB C167S. 

(A) Disaggregation of heat aggregated Cs was monitored with light scattering experiments performed at 

30°C for 120 min. ClpB, DnaK, DnaJ, GrpE ( ) served as positive control, ClpC, MecA ( ), ClpC, McsB, 

McsA ( ) and ClpC, McsB C167S, McsA, ( ) were compared. (B) The refolding of Cs was examined by 

measuring the enzymatic activity at different time points. Error bars display standard deviations of three 

replicates.  

Addition of the phosphatase YwlE resulted in small changes of the disaggregation curve (Figure 

37 A). A lower protein accumulation peak in the beginning and a second small peak after 30 min 

incubation time were observed. This illustrates the biphasic disaggregation kinetic of ClpC, McsB, 

McsA, YwlE, which was less visible with model substrate Mdh (Figure 8). Consistent with the 

observed positive effect of YwlE on refolding of Mdh, an increased refolding of Cs was detected 

(Figure 37 B). Addition of ClpP to McsB/McsA-activated ClpC resulted in slightly enhanced 

disaggregation of Cs. The positive impact of ClpP, improving refolding of substrate Mdh, could be 

confirmed for Cs and addition of YwlE significantly increased the refolding activity (Figure 

21/Figure 37 B). ATPase assays revealed that in presence of Cs, the inhibitory effect of YwlE on 

ClpC ATPase activity was enhanced, with and without ClpP (Figure 37 C). Furthermore, heat 

aggregated Cs did not serve as substrate for degradation by McsB/McsA-activated ClpCP and the 

adaptor protein McsB was observed to be stabilized (Figure 37 D). 
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Figure 37 Cs is no substrate for degradation by ClpCP but YwlE increases the refolding efficiency. 

(A) Disaggregation of heat aggregated Cs was monitored with light scattering experiments performed at 

30°C for 120 min. ClpB, DnaK, DnaJ, GrpE ( ) served as positive control, ClpC, McsB, McsA ( ), ClpC, 

McsB, McsA, ClpP ( ), ClpC, McsB, McsA, YwlE ( ) and ClpC, McsB, McsA, YwlE, ClpP ( ) were 

compared. (B The refolding of Cs was examined by measuring the enzymatic activity at different time 

points. Error bars display standard deviations of three replicates. (C) McsB/McsA-induced ClpC ATPase 

activity in presence of Cs was determined with Malachite Green assay, ± YwlE and ± ClpP. Error bars 

display standard deviations of three replicates. (D) SDS-gel analysis of a degradation assay with Cs as 

substrate was performed, with samples taken at indicated time points. 

The experiments with model substrate Cs indicate that the chaperone system based on ClpC, McsB, 

McsA and YwlE could facilitate disaggregation and refolding of different substrate proteins. Since 

addition of YwlE improved the refolding efficiency, it is likely that the refolding mechanism based 

on substrate phosphorylation by McsB and dephosphorylation by YwlE was applicable on model 

substrate Cs. Even though Cs appeared to be no substrate for degradation by ClpCP, McsB targeted 

the aggregated protein for ClpC dependent disaggregation and refolding. This observation suggests 
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that this chaperone system might detect and refold various unfolded, misfolded, and aggregated 

proteins in vivo. 

3.3 ClpC activation by adaptor proteins MecA and McsB 

Activation of ClpC in B. subtilis is facilitated by interaction with the known adaptor proteins 

MecA, YpbH and McsB (Kirstein et al., 2006). These interactions take place at the N-terminal 

domain and the linker domain of ClpC leading to oligomerization and formation of the active 

hexameric barrel structure (Kirstein et al., 2006). So far, different ClpC mutations were described, 

allowing either activation via MecA (ClpC R5A, ClpC R254A), activation via McsB or prevent 

recognition of phosphorylated substrates (ClpC F436A, ClpC E32A/E106A) (Carroni et al., 2017; 

Elsholz et al., 2012; Hantke, 2019). This indicates that not only the substrate selection by adaptor 

proteins, but also distinct ClpC activation mechanisms could be relevant for ClpC functions in 

B. subtilis. 

3.3.1 N-terminal ClpC mutations affect adaptor protein mediated activities 

Mutations in the ClpC N-terminal region were introduced, to gain more insight into possible 

adaptor protein dependent activation mechanisms. The crystal structure of MecA bound to ClpC 

depicts two arginines, R9 and R83, on the interaction sites (Figure 38 A) (Liu et al., 2013). Albeit 

they were not annotated as phosphorylation sites for McsB so far, it was assumed that they could 

take part in adaptor protein dependent activation of ClpC (Elsholz et al., 2012; Schmidt et al., 2014; 

Trentini et al., 2014). Substituting these arginines with alanines separately and in a double 

substitution mutant resulted in changes of the ATPase and the degradation activity of ClpC in vitro 

(Figure 38 B, C). The ClpC R9A mutant did not impair MecA-dependent activation but decreased 

McsB/McsA-induced ClpC ATPase and ClpCP degradation activity. Replacing the arginine on the 

other side of the binding pocket, R83A, affected the ClpC ATPase and the ClpCP degradation 

activity, independent of the utilized adaptor protein. Notably, a double mutation of R9A and R83A 

completely impaired ClpC activities. These different activation patterns of ClpC R9A and R83A 

mutants, suggested that variations in ClpC activation by several adaptor proteins could facilitate 

specific ClpC substrate recognition and translocation activities as well as influences on ClpCP 

dependent degradation activity. 
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Figure 38 ATPase and degradation activities are affected by N-terminal ClpC mutations. 

(A) Chimera model of ClpC N-terminal bound MecA (PDB ID 3J3S) with highlighted R9 (orange) and R83 

(red). (B) Malachite Green assay was performed to determine ATPase activity of ClpC, ClpC R9A, ClpC 

R83A and ClpC R9A R83A with adaptor proteins MecA (black) and McsB/McsA (red). Error bars display 

standard deviations of three replicates. (C) SDS-PAGE analysis of β-casein degradation over 120 min by 

indicated ClpC mutants with ClpP and adaptor proteins MecA and McsB/McsA. 

3.3.2 MecA and McsB facilitate distinct ClpCP activation 

To analyze the differences in degradation kinetics of the MecA- and the McsB/McsA-activated 

ClpCP protease complexes, in vitro degradation assays were performed with β-casein as model 

substrate. Furthermore, the P-loop mutant ClpC VGF::IGF was characterized in more detail. 

Therefore, the amount of degraded β-casein or respective adaptor protein was determined in 

presence of different concentrations of the protease ClpP after 60 min (Figure 39). The proportion 
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of degraded protein was assessed with SDS-PAGE analysis and subsequent calculation of band 

intensities using ImageJ software. 

Complete degradation of β-casein by MecA-activated ClpCP was only observed with a 2:1 ratio of 

ClpP to ClpC. In a ClpCP protease complex, two hexameric ClpC barrels are flanking two stacked 

heptameric ClpP rings and it might be possible that higher ClpP concentrations facilitated the 

formation of this protease complex (Frees et al., 2007; Kirstein et al., 2009b; Lee et al., 2011; Wang 

et al., 1997). While comparing degradation patterns, it is noteworthy that degradation of the adaptor 

protein MecA only started, when approximately 80 % of the substrate were already degraded, as 

observed before (Figure 39 A) (Schlothauer et al., 2003; Turgay et al., 1998). In contrast to this, 

ClpCP activated by McsB/McsA degraded the substrate and adaptor protein at the same time 

(Figure 32 B). This leads to the assumption, that MecA might release the substrate and can re-target 

new substrate, whereas McsB may possibly bind stronger to the substrate and is transmitted through 

the ClpC pore and also transferred to ClpP for degradation. Nevertheless, in vivo different 

substrates are targeted specifically by adaptor proteins to ClpCP, such as ComK targeting by MecA 

or CtsR targeting by McsB (Kirstein et al., 2005; Turgay et al., 1998). It was already observed that 

MecA is stabilized in presence of substrates, such as ComK or β-casein, but especially the 

phosphorylation of proteins by adaptor protein McsB might lead to different ClpCP degradation 

activities than observed for β-casein (Schlothauer et al., 2003; Turgay et al., 1998).  

However, comparing these substrate and adaptor protein degradation patterns with the experiments 

utilizing ClpC VGF::IGF, a similar impact was visible. The degradation of MecA started only, 

when the majority of β-casein was already degraded and the degradation of McsB and β-casein 

were nearly simultaneous until 70 % of the substrate were removed (Figure 39 C, D). Furthermore, 

ClpC VGF:IGF-ClpP displayed enhanced degradation activity regardless of the utilized adaptor 

protein, since 100 % of the substrate were already degraded with 1 µM ClpP compared to 2 µM 

ClpP for MecA-activated ClpC (Figure 39 C). The same impact was observed for McsB/McsA-

activated ClpCP, only degrading 75 % of β-casein with 5 µM ClpP present and ClpC VGF::IGF-

ClpP degrading all substrate with only 2 µM ClpP present (Figure 39 D). Overall, the adaptor 

protein MecA facilitated an accelerated ClpCP degradation activity when compared to 

McsB/McsA.  
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Figure 39 ClpCP degradation activity is altered with adaptor proteins MecA or McsB/McsA. 

Degradation of β-casein or adaptor proteins 1 µM MecA (A, C) and 1 µM McsB (B, D) after 60 min was 

calculated by determining SDS-PAGE band intensity using ImageJ software. 1 µM ClpC (A, B) and 1 µM 

ClpC VGF::IGF (C, D) degradation patterns were compared in presence of different concentrations of ClpP. 

Error bars display standard deviations of three replicates. 

The results obtained by these experiments suggest that although both adaptor proteins seem to share 

some interaction sides on ClpC, distinct modes of activation might take place. While MecA and 

McsB are known to target different substrates specifically, they could possibly facilitate distinct 

ClpC activities, e.g. degradation, disaggregation, and refolding, in varying levels. Moreover, the 

ClpC VGF::IGF mutant displayed an enhanced degradation activity and the experiments with 

increasing concentrations of ClpP suggested that the ClpC-ClpP interaction might be more stable 

with an IGF tripeptide in the interaction loop. Consistent with this, a mutation in E. coli ClpX, 

substituting the IGF with a VGF, was observed to decrease the degradation activity (Amor et al., 
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2019). Moreover, the regulatory effect of active YwlE, assisting refolding while preventing 

degradation, was not observed with ClpC VGF::IGF. This indicates that wild type ClpC with the 

VGF tripeptide might be well equipped for protein refolding with McsB/McsA and YwlE as well 

as protein degradation in association with ClpP, under different conditions. 

 

During the first part of this work in vitro experiments were performed to characterize a system for 

disaggregation and refolding of heat aggregated substrates in B. subtilis. While disaggregation was 

performed by the AAA+ protein ClpC, the refolding mechanism was observed to depend on 

substrate phosphorylation by adaptor protein and arginine kinase McsB as well as 

dephosphorylation by catalytic amounts of phosphatase YwlE (Figure 9/Figure 20). Experiments 

with the protease ClpP indicated that active YwlE could prevent substrate degradation, while 

supporting the rescue of substrates (Figure 22). Mutations in the ClpC P-loop, for interaction with 

ClpP, suggested that the VGF tripeptide might be well-suited to enable both, substrate rescue and 

removal mechanisms (Figure 29/Figure 33). These ClpC functions could be additionally influenced 

by distinct activation modes by adaptor proteins MecA and McsB (Figure 38/Figure 39).  

3.4 The role of ClpC and TasA in biofilm formation 

Bacterial biofilm formation can promote a higher tolerance against external influences, such as 

host immune responses or antibiotics and occurs under various conditions (Donlan, 2002; Hunter, 

2008; Mah, 2012; Olsen, 2015). Understanding the mechanisms of biofilm regulation and matrix 

formation is relevant for research in medicine or agriculture (Davies, 2003; Ramakrishna et al., 

2019). The soil-dwelling bacterium B. subtilis is a well-established model organism for studies of 

the biofilm matrix composition and the regulation of biofilm formation (Hashem et al., 2019; 

Vlamakis et al., 2013). One essential component of the biofilm is the protein TasA, which forms 

amyloid-like fibrils, stabilizing the matrix (Branda et al., 2006; Romero et al., 2010). Since 

functional amyloid fibrils were also observed to be involved in reproduction and virulence of 

bacteria, protein folding and secretion mechanisms are of special interest (Chapman, 2002; 

Claessen, 2003; Dueholm et al., 2010; Oh et al., 2007). However, in vitro the form of TasA fibrils 

changes under different pH and surface conditions and in many bacteria the folding of functional 

amyloids is assisted by various proteins or chaperones (Cámara-Almirón et al., 2018; Chai et al., 

2013; Nenninger et al., 2009; Romero et al., 2010; Shu et al., 2016). Therefore, different 
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experiments were performed to examine the TasA fibril form in vivo as well as influences of 

structural characteristics of TasA and the chaperone ClpC on successful pellicle biofilm formation.  

For evaluation of pellicle biofilm formation, pictures of cultures showing representative, replicable 

phenotypes were taken over time. To begin with, two commonly in biofilm research utilized media, 

MOLP and Msgg, were compared. The B. subtilis DK 1042 wild type strain and a ΔtapA-sipW-

tasA mutant were grown in both media to evaluate differences in the pellicle phenotypes. TapA, 

sipW and tasA are required for robust biofilm formation in B. subtilis, since TapA supports TasA 

fibril formation and anchors those fibrils to the cell wall and SipW is the signal peptidase necessary 

for processing and thus, secretion of TapA and TasA (Branda et al., 2006; Chu et al., 2006; Romero 

et al., 2014; Stöver and Driks, 1999a; Terra et al., 2012; Tjalsma et al., 1998). The wild type strain 

developed a wrinkly biofilm in MOLP medium, while the mutant was not able to build matrix, 

consistent with previous studies (Figure 40) (Stöver and Driks, 1999b). In Msgg medium only a 

flat, slightly fluffy biofilm was formed by the wild type on day one and two, whereas the mutant 

probe stayed coating free. Hence, further experiments were carried out in MOLP medium because 

differences in pellicle phenotypes were better visible.  

 

Figure 40 Distinct pellicle morphologies are better visible in MOLP than in Msgg medium. 

Pellicle biofilm formation of B. subtilis DK 1042 wt and ΔtapA-sipW-tasA (BRK1) in MOLP and Msgg 

media over 3 days. 
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Furthermore, mutants of two B. subtilis strains, DK 1042 and the more domesticated 168, were 

compared in order to elucidate which strain depicted more distinct phenotypes for further analysis. 

In general, the observed phenotypes of B. subtilis in MOLP medium could be classified in three 

different categories (Figure 41). The first category, including the wild type of both strains, 

developed strong wrinkly bulges on the biofilm surface. The second class, including the DK 1042 

ΔtasA and ΔsipW mutants, displayed a flat biofilm without wrinkle formation. Moreover, no, or 

only submerged biofilm formation was categorized as third phenotype and was observed in the 

mutant strains ΔtasA (168), ΔsipW (168) and ΔtapA-sipW-tasA (168/DK1042). The domesticated 

strain 168 comprises different mutations, altering the biofilm formation less robust, and therefore, 

it was expected that matrix growth and wrinkle formation were affected (see section 1.4.2). 

Consistent with this, wrinkle formation started earlier in strain DK 1042 (day one), compared to 

strain 168 (day two), while on day three DK 1042 had most probably surpassed stationary phase 

and the matrix began to decompose. (Figure 41). Additionally, pellicle biofilms were grown in 

media supplemented with Coomassie and Congo Red dye (CC) to stain the matrix and visualize 

further characteristics. With this dye amyloid curli fibers were detected in E. coli biofilms and 

binding of Congo Red to amyloid-like TasA fibrils was reported (Chapman, 2002; Romero et al., 

2010). As expected, the biofilm of the DK 1042 wild type stained red with CC dye present, but the 

cultures stayed blue when no TasA was expressed (ΔtapA-sipW-tasA, ΔtasA) or exported (ΔsipW) 

(Figure 41). The cultures of strains 168 wild type and ΔtasA stayed blue, while the ΔsipW and 

ΔtapA-sipW-tasA cultures turned brown, most probably due to low TasA levels in the wild type 

and unspecific interactions in the mutant cultures. 

Further experiments examining different tasA mutants were carried out using the DK 1042 strain, 

because it displayed more distinct biofilm characteristics, produces a robust biofilm matrix, and 

does not comprise mutations that alter biofilm formation.  
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Figure 41 Strains 168 and DK 1042 display different biofilm phenotypes. 

Pellicle biofilm formation of B. subtilis wt 168 and wt DK 1042 as well as mutant strains ΔtasA (BRK4), 

ΔsipW (BRK6), ΔtapA-sipW-tasA (BRK1) in strain 168 and mutant strains ΔtasA (BRK3), ΔsipW (BRK5) 

and ΔtapA-sipW-tasA (BRK2) in strain DK 1042 in MOLP media were compared over 3 days and pellicle 

biofilms of these strains in MOLP with CC dye after 3 days are displayed. 
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Additional experiments were conducted to monitor the TasA protein levels in the samples and to 

determine TasA localization. For examination of TasA protein levels, the whole culture was 

separated in supernatant and pellet fraction by centrifugation. Therefore, the pellet fraction 

contained bacterial cells as well as the biofilm matrix (biofilm & cell fraction) and the supernatant 

fraction contained the culture medium and soluble, secreted proteins (supernatant fraction). The 

TasA protein levels in both fractions were analyzed using quantitative western blotting (see section 

2.8.2).  

In the biofilm and cell fraction of the wild type nearly 4 % of the protein was TasA, whereas the 

supernatant contained 2.5 % TasA (Figure 42). The mutants ΔtasA and ΔtapA-sipW-tasA did not 

contain TasA, as expected. However, the ΔsipW strain displayed low amounts of TasA in the 

biofilm and cell fraction. Consistent with previous studies, the deletion of sipW was expected to 

prevent TasA export and it was assumed that the observed protein was intracellular (Stöver and 

Driks, 1999b). To confirm this hypothesis more precise fractionation experiments to determine the 

exact TasA localization were performed. 

 

Figure 42 TasA protein is absent or not exported in tasA-operon mutants of strain DK 1042. 

For determination of TasA protein levels samples of B. subtilis DK 1042 strains wt, ΔtasA (BRK3), ΔtapA-

sipW-tasA (BRK2) and ΔsipW (BRK5) were harvested after 2 days and divided in supernatant and biofilm 

& cell fractions by centrifugation. SDS-PAGE with these samples and subsequent western blotting were 

performed. Protein levels were calculated with ImageJ band quantification and a standard curve. Error bars 

display standard deviations of three biological samples. 
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The impact of different mutants on tasA gene expression, signal peptide cleavage, TasA export and 

maturation of the biofilm was investigated by separation of the cultures in supernatant (S), matrix 

(M) and cell (C) fractions for western blot analysis (see section 2.8.2). To verify, that the separation 

of cells from supernatant and matrix was successful, α-ClpC western blotting was performed. It is 

important to mention, that the data of these TasA localization experiments is not comparable to the 

results of the previous TasA level determination, since exact protein concentrations were 

determined for TasA levels and protein precipitation was performed to examine the TasA 

localization in detail. Additionally, different methods for sample fractionation were applied. 

The localization of TasA in the cultures of wild type DK 1042, ΔtasA, ΔtapA-sipW-tasA and ΔsipW 

mutants was compared (Figure 43). The wild type sample displayed no TasA in the supernatant 

fraction and two bands in the matrix fraction (Figure 43 A). As expected, one band was detected 

on the same height as purified TasA, while one band was lower, probably a degradation product. 

The wild type cell fraction was expected to contain TasA + SigSeq and displayed only one signal 

on the height of TasA without signal sequence. Nevertheless, two signals were observed for 

purified TasA + SigSeq, one on the height of mature TasA and the other slightly higher. Since the 

TasA signal sequence only consists of 27 amino acids, it is not assured that a significant upshift on 

the SDS-gel compared to processed TasA is visible. Thus, suggesting that during purification of 

TasA + SigSeq possibly conformational changes occurred, resulting in observed band patterns. As 

expected, ΔtasA and ΔtapA-sipW-tasA mutants no longer produced TasA (Figure 43 B, C). 

Furthermore, the ΔsipW mutant displayed a TasA signal inside the cell but no export and matrix 

insertion were observed (Figure 43 D). One TasA band in the cell fraction was on the height of 

purified TasA without SigSeq. But the abundant two bands were lower, comparable to the second, 

lower band in wild type matrix fraction. This observation indicates that probably conformational 

changes or degradation of TasA occurred when no regular signal peptide cleavage and export were 

possible. Detection of a light signal in the supernatant fraction suggested either export of TasA 

degradation products or unspecific binding of the antibody.  

In conclusion, precise culture fractionation revealed that TasA is present in the matrix and cell 

fractions of the wild type strain, as expected. The ΔtasA, ΔtapA-sipW-tasA mutants did not produce 

TasA and the ΔsipW mutant was not able to export mature TasA and develop a wrinkly biofilm, 

consistent with previous studies (Stöver and Driks, 1999a). 
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Figure 43 TasA localizes in the cells and matrix of the wt and is not exported in the ΔsipW strain. 

Harvest and fractionation of pellicle biofilm samples was performed as described previously. B. subtilis 

DK 1042 strains (A) wt, (B) ΔtasA (BRK3), (C) ΔtapA-sipW-tasA (BRK2) and (D) ΔsipW (BRK5) were 

fractionated in supernatant (S), matrix (M) and cell (C) samples. Subsequent SDS-PAGE and western 

blotting with ClpC and TasA antibody were performed with purified TasA and TasA with signal sequence 

(+SigSeq) as control. Pellicle biofilms of these strains after 2 days are displayed. 

3.4.1 The structure of TasA comprises two PPII helices 

Addition of purified TasA to the culture of a ΔtasA mutant restores the wrinkly biofilm phenotype 

of the wild type (Romero et al., 2010). Consistent with this, experiments were performed with 

addition of different concentrations of recombinantly produced TasA to ΔtasA mutant cultures and 

even 60 µg TasA were sufficient to promote wrinkle formation (Figure 44). Increasing the amount 

of supplied TasA to 150 µg or 300 µg did not result in significant changes in the biofilm phenotype. 

Moreover, addition of TasA could not restore the wrinkly phenotype in a ΔtapA-sipW-tasA mutant, 

most probably since tapA and sipW are also essential for robust biofilm formation (Chu et al., 

2006).  

Previous studies observed that in vitro TasA fibrils can undergo structural changes under different 

conditions (Chai et al., 2013). In order to better understand the assembly and function of these 

amyloid-like fibrils in the matrix in vivo, the fibril form of TasA in native biofilms was investigated 

in cooperation with Dr. Anne Diehl, Dr. Yvette Roske, Prof. Dr. Hartmut Oschkinat et al. (Diehl 

et al., 2018). Recombinantly produced 2H,13C,15N-TasA261 (supplied by Diehl et al. and referred to 

as TasA261) was added to the culture of the ΔtasA mutant and the wrinkly phenotype was restored 

(Figure 44). These biofilms, which included over 90 % of the supplied protein, were harvested and 

subsequent in situ solid-state MAS NMR experiments were performed (Diehl et al., 2018).  
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Figure 44 Biofilms are reconstructed by TasA addition. 

Pellicle biofilm formation of B. subtilis DK 1042 strains ΔtasA (BRK3) and ΔtapA-sipW-tasA (BRK1) after 

incubation for 2 days at 30 °C. Addition of different concentration of purified TasA restored biofilm 

formation. TasA261 was provided by Anne Diehl et al. and the restored biofilm was harvested for NMR-

studies. 

Characterization of the purified recombinant protein showed that TasA can assume different 

structural forms in vitro dependent on pH, temperature, and incubation time, whereby a rapid shift 

in pH was observed to promote formation of heterogeneous TasA fibrils with high β-sheet-content 

(Chai et al., 2013; Diehl et al., 2018). Comparison of NMR spectra of TasA monomers and two 

high-molecular-weight aggregate forms with the matrix incorporated TasA261 indicated that in 

native biofilms predominantly homogenous, β-sheet-rich TasA fibrils occur, which are resistant to 

B. subtilis proteases (Diehl et al., 2018). 

The crystal structure of monomeric TasA depicts two PPII helices in the dynamic sections of the 

protein (Diehl et al., 2018). The identified PPII helix 1 comprises amino acids A40, S41, G42, 

whereas PPII helix 2 includes T187, P188, T189, A190, P191 and A192 (Figure 45). These flexible 

segments were proposed to facilitate structural changes and fibril formation of TasA. 

To analyze the influence of the identified dynamic PPII helices on TasA secretion, biofilm 

formation and maturation, several tasA mutant strains were established and examined for biofilm 

formation and pellicle phenotype, as well as TasA levels and localization in different fractions.  
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Figure 45 PPII helices in the TasA crystal structure. 

Chimera model of the crystal structure of monomeric TasA (PDB ID 5OF2) with red highlighted PPII 

helices 1 and 2 (Diehl et al., 2018). Detailed view on structure model of amino acid residues in PPII helices 

1 and 2.  

3.4.2 The intact PPII helix 1 is important for proper TasA export 

The relevance of certain amino acids in the TasA PPII helix 1 for biofilm formation was examined 

with the tasA ΔA40, S41 and tasA S41A mutants. Furthermore, substitution mutations to alanine 

of helix adjacent F39 and T38 and were established and analyzed. All strains were constructed 

using the pMAD plasmid, to achieve marker-less replacement. 

The matrix and wrinkle formation of tasA T38A and tasA F39A mutant strains was slightly slower 

than in the wild type strain and addition of CC resulted in less red staining of the biofilm (Figure 

46). The tasA ΔA40, S41 mutant strain developed no wrinkles at any time and only a flat biofilm 

was formed. The culture stayed blue upon addition of CC dye, comparable to the ΔtasA mutant. In 

contrast to this, a wrinkly phenotype similar to the wild type was observed in the tasA S41A mutant, 

but additive CC dye caused an intensive red staining. Taken together, the observed enhanced and 

impaired wrinkle formation in the distinct PPII helix 1 mutants, indicated that the amino acids A40 

and S41 are crucial for TasA dependent biofilm formation.  
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Figure 46 Mutations in the tasA PPII helix 1 lead to distinct phenotypes. 

Pellicle biofilm formation of B. subtilis DK 1042 strains wt, ΔtasA (BRK3) and ΔtapA-sipW-tasA (BRK1) 

in MOLP media were compared with mutants of TasA PPII helix 1; tasA T38A (BRK7), tasA F39A (BRK8), 

tasA ΔA41, S41 (BRK9) and tasA S41A (BRK10) over 2 days and pellicle biofilm formation of these strains 

in MOLP with CC dye after 2 days is displayed. Detailed view on the model of substituted amino acid 

residues in PPII helix 1. 

The TasA protein levels in fractions of PPII helix 1 mutants were determined using quantitative 

western blot analysis (Figure 47). The tasA T38A and tasA F39A mutants contained less TasA in 

the biofilm and cell fraction than the wild type. No TasA was detected in the supernatant fractions 

of these mutants, indicating that in total less TasA was produced but the secreted protein was fully 

incorporated in the matrix. Moreover, the tasA F39A and the tasA ΔA41, S41 mutants contained 

comparably low amounts of TasA, even though the deletion mutant was not able to form wrinkly 

biofilm. Since TasA secretion was observed to be necessary for the wrinkly phenotype, these results 

suggested that the TasA export was affected in the tasA ΔA41, S41 mutant (Figure 43). In contrast 

to this, the tasA S41A mutant strain contained 2-fold higher TasA levels in the biofilm and cell 
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fraction than the wild type and less TasA in the supernatant. Consistent with previous studies, the 

high TasA levels might relate to the observed intensive red coloration of the wrinkly matrix, 

suggesting an enhanced TasA export in the tasA S41A mutant (Romero et al., 2010).  

 

Figure 47 TasA protein levels differ in PPII helix 1 mutant strains. 

For determination of TasA protein levels samples of B. subtilis DK 1042 strains wt, tasA T38A (BRK7), 

tasA F39A (BRK8), tasA ΔA41, S41 (BRK9) and tasA S41A (BRK10) were harvested after 2 days and 

divided in supernatant and biofilm & cell fractions by centrifugation. SDS-PAGE with these samples and 

subsequent western blotting were performed. Protein levels were calculated with ImageJ band quantification 

and a standard curve. Error bars display standard deviations of three biological samples. 

After determination of the protein levels, the exact TasA localization was examined. Therefore, the 

PPII helix 1 mutant samples were separated in supernatant, matrix and cell fractions for western 

blot analysis (Figure 48). The mutants that developed wrinkly biofilms (tasA T38A, tasA F39A, 

tasA S41A) displayed the same TasA localization pattern as the wild type. The tasA S41A mutant 

strain, with reinforced biofilm growth, revealed an additional lower band in the cell fraction. 

However, due to the separation protocol it could not be completely excluded that matrix protein 

remained in this fraction. Furthermore, an impaired wrinkle formation was observed in the tasA 

ΔA41, S41 mutant and remarkably, the TasA localization resembled the pattern of the ΔsipW 

mutant (Figure 43). This result strongly indicates that deletion of these two amino acids of the PPII 

helix 1, at the N-terminus of TasA, might disturb the process of signal peptide cleavage by SipW 

and thus, impaired successful TasA export. 
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Figure 48 A deletion in tasA PPII 1 helix prevents TasA export. 

B. subtilis DK 1042 strains wt and PPII helix 1 mutants tasA T38A (BRK7), tasA F39A (BRK8), tasA ΔA41, 

S41 (BRK9) and tasA S41A (BRK10) were fractionated in supernatant (S), matrix (M) and cell (C) samples. 

Subsequent SDS-PAGE and western blotting with ClpC and TasA antibody were performed with purified 

TasA and TasA with signal sequence (+SigSeq) as control. Pellicle biofilms of these strains after 2 days are 

displayed. 

3.4.3 Mutations in tasA PPII helix 2 impair biofilm formation 

Single marker-less substitution mutations to alanine were established to analyze the influence of 

single amino acid changes in the tasA PPII helix 2 on the biofilm phenotype. The point mutations 

tasA T187A, tasA P188A, tasA T89A, tasA D190A, tasA F191A and tasA D192A were introduced 

in strain DK 1042.  

The wrinkle formation of the tasA T187A mutant was slowed on day one, but red staining with CC 

dye and biofilm morphology on day two were similar to the wild type (Figure 49). The tasA T189A 

and tasA F191A mutants displayed the same wrinkle phenotype as the wild type, albeit red staining 

with CC dye was slightly decreased. An affected biofilm formation was observed in the tasA P188A 

mutant, since first bulges were formed on day two and the approach supplemented with CC dye 

barely stained red. No bulges and no red staining were observed in tasA D190A and tasA D192A 

mutant strains, comparable to the phenotype of the ΔtasA mutant.  

These observations indicate that in PPII helix 2 the amino acids P188, D190 and D192 might be 

important for TasA fibril formation and matrix maturation. 
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Figure 49 Several PPII helix 2 mutations affect the biofilm phenotype. 

Pellicle biofilm formation of B. subtilis DK 1042 strains wt, ΔtasA (BRK3) and ΔtapA-sipW-tasA (BRK1) 

in MOLP media were compared with mutants of TasA PPII helix 2; tasA T187A (BRK11), tasA P188A 

(BRK12), tasA T189A (BRK13), tasA D190A (BRK14), tasA F191A (BRK15) and tasA D192A (BRK16) 

over 2 days and pellicle biofilms of these strains in MOLP with CC dye after 2 days are displayed. Detailed 

view on model of substituted amino acid residues in PPII helix 2.  

Quantitative western blots of supernatant and pellet fractions were performed to determine the 

TasA levels in different mutant strains. The biofilm and cell fractions of mutant strains tasA T187A, 

tasA F191A and tasA T189A exhibited higher TasA levels than the wild type (Figure 50). These 

strains still formed wrinkles comparable to the wild type control, but tasA T189A and tasA F191A 

strains did not display equal red staining suggesting that the TasA structure and thus dye binding 

were affected (Figure 49). In all mutants with less or no wrinkle formation (tasA P188A, tasA 

D190A, tasA D192A) low TasA protein levels in the biofilm and cell fraction were observed, 

consistent with absence of red coloration. Higher TasA levels in the supernatant than in the biofilm 
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and cell fraction were detected for the tasA D192A mutant indicating that TasA was exported, but 

fibril formation and matrix maturation were impaired.  

 

Figure 50 Distinct TasA protein levels in PPII helix 2 mutants. 

For determination of TasA protein levels samples of B. subtilis DK 1042 strains wt, tasA T187A (BRK11), 

tasA P188A (BRK12), tasA T189A (BRK13), tasA D190A (BRK14), tasA F191A (BRK15) and tasA 

D192A (BRK16) were harvested after 2 days and divided in supernatant and biofilm& cell fractions by 

centrifugation. SDS-PAGE with these samples and subsequent western blotting were performed. Protein 

levels were calculated with ImageJ band quantification and a standard curve. Error bars display standard 

deviations of three biological samples. 

Furthermore, the localization of TasA in supernatant, matrix or cell fraction was examined in the 

PPII helix 2 mutant strains. The strains forming wrinkly biofilm (tasA T187A, tasA P188A, tasA 

T189A, tasA F191A) displayed TasA localization in matrix and cell fractions similar to the wild 

type. A slight, lower band in the cell fraction was detected in tasA T187A and tasA T189A strains, 

but due to the fractionation protocol it is possible that matrix protein remained in the cell sample 

(Figure 51 A, B). The tasA P188A, tasA D190A and tasA D192A strains displayed TasA signal in 

the supernatant fraction suggesting that TasA was presumably processed and exported but not 

entirely included into the biofilm. Notably, all TasA signals in these mutants were slightly lower 

than in the wild type. This might be explained with conformational changes that possibly prevented 

successful TasA fibril formation and biofilm maturation. The alanine substitution of asparagine in 

the PPII helix completely abolished wrinkle formation and appeared to have more impact than 

alanine substitution of proline, because wrinkle formation was completely abolished and not only 

slowed. 
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Figure 51 TasA localizes in the supernatant of several PPII helix 2 mutant strains. 

B. subtilis DK 1042 strains wt and PPII helix 2 mutants tasA T187A (BRK11), tasA P188A (BRK12), tasA 

T189A (BRK13), tasA D190A (BRK14), tasA F191A (BRK15) and tasA D192A (BRK16) were 

fractionated in supernatant (S), matrix (M) and cell (C) samples. Subsequent SDS-PAGE and western 

blotting with ClpC and TasA antibody were performed with purified TasA and TasA with signal sequence 

(+SigSeq) as control. Pellicle biofilms of these strains after 2 days are displayed. 

To sum up, NMR experiments with TasA261 from native, reconstituted biofilms demonstrated, that 

in vivo probably homogenous, β-sheet-rich TasA fibrils occur (Diehl et al., 2018). The crystal 

structure of monomeric TasA displayed two PPII helices. These possibly flexible segments were 

analyzed to reveal the function of the TasA PPII helices in export, fibril formation and thus, matrix 

composition. Examination of tasA PPII helix 1 mutants suggested that this flexible structure near 

the N-terminus could play a role in SipW recognition and processing mechanisms. The tasA PPII 

helix 2 might be involved in fibril folding and matrix maturation, as the distinct phenotypes of the 

mutants indicated. Nevertheless, further experiments are required to completely characterize the 

mechanics of TasA export, fibril formation and the interactions of TasA with other matrix 

components. 
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3.4.4 Biofilm formation is affected in clpC mutants 

The AAA+ protein ClpC is involved in regulation of biofilm formation in B. subtilis (see section 

1.4.2). Together with the adaptor protein MecA, ClpC controls the activity of the key regulator 

Spo0A-P and the protease complex ClpCP influences expression of e.g. eps- and tapA-operons by 

proteolysis of key regulators (Chai et al., 2010a; Ogura and Tsukahara, 2010; Prepiak et al., 2011). 

Furthermore, the matrix protein TasA, which forms amyloid-like fibrils, was observed to be a 

possible interaction partner for ClpC in vitro (unpublished, Janine Kirstein) (Romero et al., 2010). 

Previous studies demonstrated that the folding of functional amyloids is often assisted by different 

proteins or chaperones in bacteria and prion propagation of yeast protein was observed to be 

facilitated by the Hsp104 chaperone system in S. cerevisiae and the ClpB chaperone system in 

E. coli (Cámara-Almirón et al., 2018; Chernoff et al., 1995; Nenninger et al., 2009; Shu et al., 2016; 

Yuan et al., 2014). Therefore, the influence of the chaperone ClpC on pellicle formation was 

examined with special regard to TasA.  

To monitor whether the strain DK 1042 or the more domesticated strain 168 were better suited to 

analyze phenotypes of clpC mutants, a ΔclpC mutant and a clpC DWB mutant were assessed in 

these strains under biofilm conditions. The ΔclpC mutants of both strains displayed slowed wrinkle 

formation and the biofilm matrix in the ΔclpC (DK 1042) mutant did not decompose after 3 days 

(Figure 52). The ClpC DWB mutation prevents ATP hydrolysis, so that adaptor protein and 

substrate binding but no translocation can take place (Kirstein et al., 2006). The phenotype of the 

clpC DWB (DK 1042) mutant resembled the wild type, but significant differences were observed 

in strain 168. Already on day one strong wrinkle formation occurred and addition of CC dye 

resulted in red coloring of the biofilm, whereas the wild type (168) stayed blue. Since clpC mutants 

in the domesticated strain 168 displayed more severe, distinguishable pellicle phenotypes, this 

strain was utilized for further examination of ClpC and its adaptor proteins in biofilm formation.  
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Figure 52 Pellicle formation is affected in clpC mutants in strain 168 and DK 1042. 

Pellicle biofilms of B. subtilis strains wt 168, ΔclpC 168 (BRK17), clpC DWB 168 (BRK19), wt DK 1042, 

ΔclpC 1042 (BRK18) and clpC DWB DK 1042 (BRK20) in MOLP media were compared over 3 days and 

pellicle biofilms of these strains in MOLP with CC dye after 3 days are displayed.  

The TasA protein levels in strains 168 and DK 1042 wild type, ΔclpC mutants and clpC DWB 

mutants were determined using quantitative western blot analysis. The clpC (168) mutants 

contained higher TasA levels in the biofilm and cell fractions than the wild type (168) and no TasA 

in the supernatant fractions (Figure 53). Likewise, no TasA was present in the supernatant fractions 

of clpC (DK 1042) mutants, but a lower TasA level was observed in the biofilm and cell fraction 

of the clpC DWB (DK 1042) mutant compared to the wild type (DK 1042). Consistent with 

previous observations, high TasA levels in the biofilm and cell fraction of clpC DWB (168) were 

probably linked to red coloration of the wrinkly biofilm in presence of amyloid binding CC dye 

(Figure 41) (Romero et al., 2010). However, the ΔclpC (168) mutant did only form light bulges 

and stayed blue, despite high TasA concentrations. This observation suggests that TasA integration 

in the matrix is affected, possibly due to impaired expression of other matrix compounds and 

altered regulation of cellular development, as suggested by previous studies (Chai et al., 2010a; 

Ogura and Tsukahara, 2010; Prepiak et al., 2011). 
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Figure 53 TasA protein levels vary in clpC mutants of strains 168 and DK 1042. 

For determination of TasA protein levels samples of B. subtilis strains wt 168, ΔclpC 168 (BRK17), clpC 

DWB 168 (BRK19), wt DK 1042, ΔclpC DK 1042 (BRK18) and clpC DWB DK 1042 (BRK20) were 

harvested after 2 days and divided in supernatant and biofilm & cell fractions by centrifugation. SDS-PAGE 

with these samples and subsequent western blotting were performed. Protein levels were calculated with 

ImageJ band quantification and a standard curve. Error bars display standard deviations of three biological 

samples. 

3.4.5 ClpCP dependent degradation is involved in pellicle formation 

The regulatory degradation of different key players, such as transcriptional regulator SlrR or two-

component regulator DegU-P, by the ClpCP protease complex can affect biofilm formation in 

B. subtilis (Chai et al., 2010a; Ogura and Tsukahara, 2010). To gain further insight into this 

regulatory involvement in pellicle biofilm formation and possible influences on biofilm component 

TasA, different clpC mutants with altered P-loops for ClpP interaction were examined (see section 

3.2.3).  

Previous experiments already indicated that the ΔclpC mutant developed less wrinkles than the 

wild type and that the clpC DWB mutant displayed enhanced wrinkle formation and red staining 

with additional CC dye (Figure 52). Mutations in of the clpC P-loop, preventing ClpCP degradation 

activity (clpC VGF::GGR, clpC Δloop) resulted in increased wrinkle formation and red staining, 

when compared to the wild type (Figure 28/Figure 54). Consistent with earlier studies, this 

observation suggests that the ClpCP degradation activity might be involved in down-regulation of 

biofilm formation (Chai et al., 2010a; Ogura and Tsukahara, 2010). Compared to the wild type, no 

differences in pellicle phenotype were observed for the clpC VGF::IGF mutant. ClpC VGF::IGF 

displayed enhanced degradation activity with ClpP in vitro, but since the substrate selection was 



3.4   Results 

111 

still dependent on adaptor proteins, the mutant probably processed the same substrates as wild type 

ClpC and no changes in biofilm formation could be observed (Figure 31).  

 

Figure 54 Wrinkle formation is enhanced when ClpCP degradation is prevented. 

Pellicle biofilm formation of B. subtilis 168 strains wt, ΔclpC (BRK17), clpC DWB (BRK19), clpC 

VGF::GGR (BRK21), clpC Δloop (BRK22) and clpC VGF::IGF (BRK23) in MOLP media were compared 

over 3 days and pellicle biofilms of these strains in MOLP with CC dye after 3 days are displayed.  

The TasA levels in fractions of the different clpC mutant strains were determined with quantitative 

western blotting (Figure 55). The ΔclpC mutant contained high TasA levels, but no red coloration 

with CC dye and slowed wrinkle formation were observed, most probably due to affected 

expression of different matrix compounds and impaired incorporation of TasA in the biofilm. 

Mutations in clpC, preventing ClpCP degradation activity (clpC DWB. clpC VGF::GGR, clpC 

Δloop), resulted in increased levels of TasA in the biofilm and cell fraction, when compared to the 

wild type. This result is consistent with previously observed enhanced wrinkle formation and red 

coloration with CC dye. The clpC VGF::IGF mutant also contained high TasA levels, while 

displaying the same phenotype as the wild type. Moreover, increased TasA levels in the supernatant 

fraction were observed in all strains with mutations in the ClpC P-loop (clpC VGF::GGR, clpC 

Δloop, clpC VGF::IGF), which might be due to affected TasA incorporation into the matrix and 

disturbed regulations altering the matrix composition.  
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Figure 55 TasA protein levels are increased in clpC mutants. 

For determination of TasA protein levels samples of B. subtilis 168 strains wt, ΔclpC (BRK17), clpC DWB 

(BRK19), clpC VGF::GGR (BRK21), clpC Δloop (BRK22) and clpC VGF::IGF (BRK23) were harvested 

after 2 days and divided in supernatant and biofilm & cell fractions by centrifugation. SDS-PAGE with 

these samples and subsequent western blotting were performed. Protein levels were calculated with ImageJ 

band quantification and a standard curve. Error bars display standard deviations of three biological samples. 

To further examine the influence of ClpC on TasA localization under biofilm conditions, more 

precise sample fractionation and western blot analysis were performed. The TasA localization 

pattern of the clpC DWB mutant strain resembled the wild type, despite significant differences in 

phenotypes (Figure 56). Unfortunately, no fractionation of the ΔclpC mutant sample was possible, 

which might be due to decreased cell stability in this strain. The different clpC loop mutants 

(clpC VGF::GGR, clpC Δloop, clpC VGF::IGF) displayed a TasA localization comparable to the 

wild type. 

These observations are consistent with previous studies showing that degradation of key regulators 

by ClpCP influence biofilm formation in B. subtilis and that for typical pellicle and wrinkle 

formation the presence of functional ClpC is necessary. 
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Figure 56 TasA localization is not disturbed in clpC mutant strains. 

Harvest and fractionation of pellicle biofilm samples was performed as described previously. B. subtilis 168 

strains wt, ΔclpC (BRK17), clpC DWB (BRK19), clpC VGF::GGR (BRK21), clpC Δloop (BRK22) and 

clpC VGF::IGF (BRK23) were fractionated in supernatant (S), matrix (M) and cell (C) samples. Subsequent 

SDS-PAGE and western blotting with ClpC and TasA antibody were performed with purified TasA and 

TasA with signal sequence (+SigSeq) as control. Pellicle biofilms of these strains after 2 days are displayed. 

3.4.6 Adaptor protein YpbH could be involved in regulations via ClpCP 

Until now, three adaptor proteins for ClpC, facilitating substrate specificity and ClpC activity are 

known, namely MecA, McsB and YpbH (Kirstein et al., 2007; Persuh et al., 2002; Turgay et al., 

1998). To evaluate differences between these adaptor proteins in biofilm formation, pellicle 

phenotypes of mutant strains (ΔmecA, ΔmcsB, ΔypbH) were analyzed.  

A highly pleiotropic phenotype was observed in the ΔmecA mutant strain (Figure 57). On the one 

hand biofilm growth and wrinkle formation were impaired on day one. On the other hand, distinct 

wrinkles developed until day three and strong red staining with CC dye was observed. This 

phenotype appeared to be consistent with the already described influence of MecA on biofilm 

regulation by targeting of key regulator Spo0A (Prepiak et al., 2011). The ΔmcsB mutant strain 

also displayed impaired initiation of biofilm formation since no matrix was visible on day one and 

wrinkle formation only started at day three. Deletion of ypbH led to enhanced wrinkle formation 
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even starting on day one. A strong wrinkly phenotype was visible on day three, which was 

comparable to clpC mutants preventing substrate degradation by ClpCP (clpC DWB, 

clpC VGF::GGR, clpC Δloop). These observations suggest that YpbH, besides its role in 

competence and sporulation, could influence ClpCP activities in biofilm formation (Persuh et al., 

2002). 

 

Figure 57 Deletion of ClpC adaptor proteins affects pellicle formation. 

Pellicle biofilm formation of B. subtilis 168 strains wt, ΔmecA (BRK24), ΔmcsB (BRK25) and ΔypbH 

(BRK26) in MOLP media were compared over 3 days and pellicle biofilms of these strains in MOLP with 

CC dye after 3 days are displayed.  

The TasA concentrations in the different adaptor protein deletion strains were analyzed using 

quantitative western blots (Figure 58). The ΔmcsB and ΔmecA mutants contained higher TasA 

concentrations in biofilm and cell as well as supernatant fractions than the wild type, but only 

ΔmecA stained red with CC dye present (Figure 57). Though, the ΔmcsB and ΔclpC mutants display 

a comparable decrease in wrinkle formation despite high TasA levels. This might indicate that 

McsB, together with ClpC, could be involved in expression of other biofilm compounds and thus, 

matrix formation and TasA incorporation is affected in the deletion mutants. The TasA levels of 

the ΔypbH strain were comparable to the wild type, while an enhanced wrinkle formation was 

observed in the mutant. These results are consistent with the slight red coloration of the matrix with 

CC dye and suggest further reasons for the hyper-wrinkly phenotype, than enhanced TasA 

expression.  
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Figure 58 TasA protein levels differ in adaptor protein deletion mutants. 

For determination of TasA protein levels samples of strains wt 168, ΔmecA (BRK24), ΔmcsB (BRK25) 

and ΔypbH (BRK26) were harvested after 2 days and divided in supernatant and biofilm& cell fractions by 

centrifugation. SDS-PAGE with these samples and subsequent western blotting were performed. Protein 

levels were calculated with ImageJ band quantification and a standard curve. Error bars display standard 

deviations of three biological samples. 

Precise sample fractionation of ClpC adaptor protein mutants was performed to analyze the TasA 

localization pattern (Figure 59). The TasA distribution in all mutants was comparable to the wild 

type, despite the significant differences in the pellicle morphology (Figure 57). This indicated that 

the observed phenotypes were probably not caused by defects in TasA export. 

 

Figure 59 TasA localization is not affected in ClpC adaptor protein mutant strains. 

B. subtilis strains wt 168, ΔmecA (BRK24), ΔmcsB (BRK25) and ΔypbH (BRK26) were fractionated in 

supernatant (S), matrix (M) and cell (C) samples. Subsequent SDS-PAGE and western blotting with ClpC 

and TasA antibody were performed with purified TasA and TasA with signal sequence (+SigSeq) as control. 

Pellicle biofilms of these strains after 2 days are displayed. 
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Consistent with previous studies, ClpC was observed to be involved in pellicle biofilm formation 

of B. subtilis, albeit no clear role for the chaperone in TasA folding could be determined (Chai et 

al., 2010a; Ogura and Tsukahara, 2010; Prepiak et al., 2011). Deletion of clpC probably affected 

matrix maturation, whereas clpC mutants with impaired ClpCP degradation activity contained 

elevated TasA levels and thus, displayed enhanced wrinkle formation. A comparable phenotype 

was observed in the ΔypbH mutant, suggesting that this adaptor protein might be involved in 

regulatory proteolysis by ClpCP. Nevertheless, future experiments need to identify possible 

substrates for YpbH dependent ClpCP activities and evaluate the exact involvement of the adaptor 

protein in biofilm formation.  
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4 Discussion 

4.1 McsB facilitates diverse ClpC dependent activities  

In B. subtilis the AAA+ chaperone ClpC is involved in many cellular processes, such as 

competence development, sporulation and stress response (Krüger et al., 1994; Pan et al., 2001; 

Turgay et al., 1998). The influence of ClpC and protease complex ClpCP on heat stress response 

is linked to regulatory mechanisms, like expression of class III heat shock genes, as well as general 

protein quality control and removal of misfolded proteins (Kirstein et al., 2007, 2005; Krüger et 

al., 2000; Krüger and Hecker, 1998). In E. coli it was observed that a successful thermotolerance 

development depends on disaggregation and refolding of heat induced subcellular protein 

aggregates (Weibezahn et al., 2004). Since disaggregases like ClpB or ClpG, that perform this task 

in various Gram-negative bacteria, are absent in B. subtilis, ClpC has been considered to 

accomplish this function (Katikaridis et al., 2019; Lee et al., 2018; Schlothauer et al., 2003; 

Weibezahn et al., 2004). In vitro studies confirmed that adaptor proteins MecA and YpbH can 

enable ClpC dependent disaggregation and refolding of heat aggregated substrate in the absence of 

the protease ClpP (Schlothauer et al., 2003). However, deletion of mecA and ypbH did not result in 

thermosensitivity. 

Besides adaptor proteins MecA and YpbH, McsB is known to facilitate ClpC dependent activities 

in B. subtilis (Kirstein et al., 2005). The adaptor protein McsB is a protein arginine kinase that is 

activated by McsA, and is involved in post-translational regulation and targeting of proteins to 

PQC systems (Elsholz et al., 2012; Kirstein et al., 2007; Macek et al., 2019; Trentini et al., 2016). 

In addition to high expression and activation of the arginine kinase activity under heat stress, McsB 

colocalizes with subcellular protein aggregates at the cell poles (Kirstein et al., 2008). The 

chaperones ClpC and ClpX, as well as the protease ClpP are recruited to those aggregates and it 

was suggested that McsB might also function as adaptor protein for ClpX (Lilge et al., 2020). 

Moreover, McsB is able to outcompete MecA for binding to ClpC in vitro (Kirstein et al., 2007). 

Latest in vivo studies confirmed that the clearance of aggregates by ClpC and associated recovery 

from heat shock is only possible in presence of adaptor protein McsB (Hantke, 2019). Nevertheless, 

the exact mechanism for removal of heat induced aggregates by either disaggregation and refolding 

or degradation involving McsB in B. subtilis has not been described yet. 
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4.1.1 Adaptor protein and arginine kinase activities of McsB 

In this work, the ClpC dependent disaggregation and refolding of heat induced aggregates was 

characterized in vitro. Consistent with previous studies, the adaptor protein MecA facilitated 

moderate ClpC dependent disaggregation and refolding of protein aggregates (Figure 8) 

(Schlothauer et al., 2003). With McsB/McsA activating ClpC, a slightly enhanced disaggregation 

activity, albeit no efficient refolding was observed (Figure 8). In contrast to adaptor protein MecA, 

McsB possesses arginine kinase activity, which was suggested to interfere with effective substrate 

refolding in this system. 

In general, phosphorylation of amino acid residues can alter the properties of proteins, often 

resulting in activation or inhibition of enzymes as well as influencing their interaction capacity and 

thereby affecting many regulatory processes, as reviewed extensively (Garcia-Garcia et al., 2016; 

Kobir et al., 2011; Olsen et al., 2006; Soufi et al., 2008). Arginine residues are especially important 

for protein-protein, protein-small molecule or protein-nucleic acid interactions and 

phosphorylation by McsB kinase modifies the charge from positive to negative, whereby these 

interactions can be substantially influenced (Fuhrmann et al., 2016, 2015a, 2009; Lancelot et al., 

1979; Luscombe, 2001; Schmidt et al., 2014). One example is the phosphorylation of the heat shock 

regulator CtsR by McsB, resulting in impaired DNA binding of the repressor (Fuhrmann et al., 

2009). Furthermore, McsB dependent phosphorylation was observed to influence degradation of 

transcriptional modulator MgsR, which is part of the σB regulon (Lilge et al., 2020). 

The impact of arginine phosphorylation on McsB-dependent ClpC activities was examined 

utilizing the kinase inactive McsB C167S mutant (Kirstein et al., 2005). The ClpC ATPase 

induction was reduced with McsB C167S/McsA, when compared to kinase active McsB (Figure 

11 D). This is consistent with the observed decrease in ClpC disaggregation activity in vitro (Figure 

11 A/Figure 36). Nevertheless, McsB C167S displayed a kinase independent adaptor protein 

function. Previous studies showed that the kinase inactive McsB C167S mutant still interferes with 

DNA-binding of repressor CtsR in vitro and functions as adaptor protein targeting transcriptional 

regulator MgsR for degradation in vivo (Kirstein et al., 2005; Lilge et al., 2020). Furthermore, a 

reduced aggregate removal capacity of the mcsB C167S mutant strain was observed under heat 

stress conditions in vivo (Hantke, 2019). Notably, McsB C167S/McsA-activated ClpC displayed 

improved refolding efficiency in vitro, compared to kinase active McsB (Figure 11 B/Figure 36). 

This enhanced substrate recovery with kinase inactive McsB C167S reinforces the hypothesis that 
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arginine phosphorylation by McsB could interfere with successful substrate refolding. Moreover, 

the substrate recovery was dependent on the presence of McsA, even though α-pArg blots 

confirmed the kinase inactivity of the McsB C167S mutant (Figure 12 A, B/Figure 14 A). These 

observations, combined with an improved ClpC ATPase induction by McsB C167S in presence of 

McsA, indicate that a protein-protein interaction of McsB with McsA is important for efficient 

ClpC functions, independent of kinase activation (Figure 12 D). 

Taken together, McsB, activated by McsA, facilitated moderate ClpC dependent disaggregation of 

heat induced aggregates, whereby the McsB kinase activity appeared to interfere with substrate 

refolding in vitro (Figure 8/Figure 11). Though, in vivo there are many factors that could influence 

this disaggregation and refolding process and it was assumed that an important part of the active 

system was missing in the initial disaggregation and refolding in vitro experiments. 

4.1.2 A refolding system based on arginine phosphorylation and dephosphorylation 

Protein arginine phosphorylation by McsB serves as reversible post-translational modification in 

B. subtilis and many regulatory factors are targets of the kinase in vivo (Elsholz et al., 2012; 

Schmidt et al., 2014). However, detection of phosphorylation on arginine residues was only 

possible in a strain lacking the phosphatase YwlE or in presence of phosphatase inhibitors. Because 

of the sequence homology, YwlE was first annotated as a tyrosine phosphatase, but later described 

to specifically dephosphorylate arginine residues in vivo and in vitro (Elsholz et al., 2012; 

Fuhrmann et al., 2013a; Kirstein et al., 2005; Musumeci et al., 2005). In B. subtilis, YwlE is the 

only arginine phosphatase and is considered to play a major role in stress sensing (Elsholz et al., 

2012, 2011a; Fuhrmann et al., 2013a; Kirstein et al., 2008, 2006). 

Phosphatase YwlE enables efficient disaggregation and refolding 

It is known that equal amounts of YwlE and McsB/McsA inhibit the ClpC ATPase and ClpCP 

degradation activities in vitro (Kirstein et al., 2007). The inhibitory influence of YwlE on McsB 

activities was proposed to be independent of protein-protein interactions, since YwlE and McsB 

do not form a stable complex (Fuhrmann et al., 2016). Experiments with decreasing YwlE 

concentrations revealed that the inhibitory impact on the McsB/McsA-induced ClpC ATPase 

activity is relieved in presence of lowered concentrations of YwlE (Figure 9 D). These low YwlE 

concentrations are consistent with physiological YwlE levels (Hantke, 2019; Muntel et al., 2014). 

Moreover, presence of these catalytic amounts of YwlE substantially increased the disaggregation 

and refolding efficiency of heat induced aggregates by McsB/McsA-activated ClpC in vitro (Figure 
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9 A, B). With both, activated McsB kinase and phosphatase YwlE present, all protein aggregates 

were dissolved, and successful reactivation of the substrate was observed. These results imply that 

YwlE could also support removal of heat induced aggregates in vivo. Consistent with this, altered 

levels of YwlE can have drastic impact on aggregate removal capacities, thermotolerance and 

thermoresistance in B. subtilis (Hantke, 2019).  

Specifically engineered anti-phospho-arginine antibodies (α-pArg), kindly provided by Fuhrmann 

et al., were utilized to monitor phosphorylation and dephosphorylation events during the 

disaggregation and refolding process (Fuhrmann et al., 2015b). Western blots of the in vitro 

disaggregation samples revealed arginine phosphorylation of ClpC, McsB, McsA and soluble Mdh 

(Figure 10 A). Remarkably, low concentrations YwlE, which no longer inhibited McsB/McsA-

induced ClpC ATPase activity, catalyzed the dephosphorylation of all previously detected 

phosphorylated proteins, thus verifying the potent activity of this phosphatase (Figure 9 D/Figure 

10 B). It is important to mention, that successful refolding was only achieved in presence of 

catalytic amounts of YwlE. This supports the previous suggestion, that arginine phosphorylation 

interfered with substrate refolding. Based on these observations, it is likely to speculate that the 

success of ClpC dependent disaggregation and refolding is connected to a well-balanced interplay 

of McsB kinase and YwlE phosphatase activities.  

Notably, two cysteine residues are located in the active-site pocket of YwlE and are crucial for the 

phosphatase activity (Fuhrmann et al., 2013a, 2013b). Under oxidative stress conditions YwlE is 

inactivated by formation of a disulfide bridge between these cysteine residues (Fuhrmann et al., 

2016). Experiments with a phosphatase inactive YwlE C7S mutant demonstrated that the efficient 

disaggregation and refolding of heat induced aggregates by ClpC depends on the phosphatase 

activity of YwlE (Figure 13 A, B/Figure 14 B). Nevertheless, in presence of active YwlE, the 

phosphorylation of proteins by McsB is necessary for disaggregation and refolding, as observed 

with the kinase inactive McsB C167S mutant (Figure 11 B). Furthermore, active YwlE reduced the 

ClpC ATPase activity, regardless of McsB kinase activity, and the inactive YwlE C7S largely 

decreased ClpC disaggregation activity in presence of McsB C167S/McsA (Figure 11 D/Figure 13 

A). These observations imply that in addition to McsB kinase and YwlE phosphatase activities, 

protein-protein interactions between YwlE and other components could influence this 

disaggregation system. 
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Summarizing, both McsB kinase and YwlE phosphatase activities are required for efficient 

aggregate removal and refolding by ClpC in vitro. Other in vivo studies demonstrated that active 

McsB and YwlE are involved in thermotolerance development and aggregate clearance in 

B. subtilis (Hantke, 2019; Moliere, 2012). The data obtained in this study suggests that McsB is 

not only involved in CtsR regulation, but might also facilitate the ClpC dependent removal of 

possibly toxic protein aggregates by disaggregation and refolding under heat stress conditions, 

which was already shown to be important for heat tolerance in E. coli (Weibezahn et al., 2004).  

Factors regulating McsB- and YwlE-dependent refolding 

The presence of well-functioning PQC machineries is essential for the bacterial cell. This is 

emphasized by the severe phenotypes of mcsB, clpC or clpP mutants and the toxic impact of 

antibiotic compounds, like ADEP, resulting in unrestrained proteolysis by ClpP (Brötz-Oesterhelt 

et al., 2005; Elsholz et al., 2012; Kirstein et al., 2009a; Kock et al., 2004; Krüger et al., 1994; 

Msadek et al., 1994). Furthermore, the control over arginine phosphorylation levels in the cell is 

of importance, since a deletion of ywlE resulted in global transcriptomic changes (Elsholz et al., 

2012). Under normal conditions, the arginine kinase activity of McsB is inhibited by binding to 

ClpC and counteracted by YwlE in vivo and in vitro (Elsholz et al., 2011b; Kirstein et al., 2007). 

Upon heat shock, the expression of class III heat shock genes rises, including the repressor ctsR, 

as well as mcsB, mcsA and clpC (Krüger and Hecker, 1998). The inhibitory ClpC interaction with 

McsB is decreased, which leaves place for kinase activation by McsA and phosphorylation of 

substrates (Elsholz et al., 2011b).  

To gain more insight into the possible function of the disaggregation and refolding system, in vitro 

order-of-addition experiments were performed with McsB kinase activator McsA and phosphatase 

YwlE. These experiments indicated that addition of McsA activated McsB kinase and facilitated 

ClpC dependent disaggregation and refolding at any point of time in presence of YwlE (Figure 

15/Figure 16). In contrast to previous experiments, YwlE did not quickly dephosphorylate proteins 

and phosphorylation was even detected in the presence of YwlE, suggesting that the phosphatase 

might be inactivated by incubation without activated McsB. Consistent with this, weak 

oligomerization was proposed to inactivate YwlE and cognate tyrosine phosphatases in the absence 

of phosphorylated substrate and with increasing substrate concentrations the phosphatase is 

reactivated (Blobel et al., 2009). Furthermore, order-of-addition experiments with YwlE revealed 

that successful disaggregation and refolding upon phosphatase addition was only possible when 
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phosphorylated proteins were still detected in the sample (Figure 17/Figure 18). This agrees with 

previous observations, that the positive impact of YwlE on disaggregation and refolding is directly 

linked to its phosphatase activity (Figure 13). 

The described protein quality control system characterized in this thesis, consists of AAA+ protein 

ClpC, arginine kinase McsB, its activator McsA and phosphatase YwlE. Both McsA and YwlE are 

redox-sensing proteins and take part in heat- and oxidative stress response systems in B. subtilis 

(Elsholz et al., 2011b; Fuhrmann et al., 2016). These stress response systems are intricately 

interwoven, since the expression of class III heat shock genes, under control of repressor CtsR is 

also induced during oxidative stress (Leichert et al., 2003; Mostertz et al., 2004). In contrast to 

CtsR inactivation by an intrinsic thermosensor upon heat stress, McsA serves as redox sensor 

enabling McsB dependent CtsR de-repression under oxidative stress conditions (Elsholz et al., 

2011b, 2010). It is tempting to speculate, that the redox sensitivity of McsA and YwlE could 

influence the here described ClpC dependent disaggregation and refolding machinery under 

different stress conditions. Upon oxidative or severe heat stress, YwlE and McsA might be 

inhibited and the protein control machinery, formerly refolding substrates could be switched to 

degradation of proteins irreversibly damaged by these severe conditions. Consistent with this 

hypothesis, in vivo studies observed that the ClpCP degradation activity is important for the 

removal of puromycin induced aggregates, containing truncated and misfolded proteins, that 

cannot be refolded (Hantke, 2019). 

The mechanism of McsB and YwlE dependent refolding 

McsB kinase and YwlE phosphatase were observed to be necessary for an efficient ClpC dependent 

disaggregation and refolding system. Therefore, the detailed operating principle of this mechanism 

was further characterized. Previous experiments suggested that protein arginine phosphorylation 

by McsB interferes with efficient substrate refolding in vitro (Figure 8/Figure 11). Notably, 

arginine phosphorylation of model substrate Mdh could only be observed in the soluble fractions 

in vitro, indicating that substrate proteins are most probably still phosphorylated after ClpC 

translocation and disaggregation (Figure 10 A/Figure 14 B). This McsB dependent phosphorylation 

might stabilize the unfolded and soluble state of substrate proteins. The phosphorylation of highly 

disordered proteins containing serine-arginine rich regions was already shown to increase their 

solubility, as well as phosphorylation of yeast or soybean proteins used in food production 

(Campbell et al., 1992; Huang and Kinsella, 1986; Nikolakaki et al., 2008). In the case of this 
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refolding system. it was hypothesized that substrate phosphorylation by McsB could stabilize the 

unfolded state of the substrate after disaggregation by ClpC. Subsequent dephosphorylation of the 

soluble proteins by catalytic amounts of YwlE might then enable controlled refolding and substrate 

recovery. 

To test this hypothesis, a special disaggregation and refolding experiment was set up. The 

McsB/McsA induced ClpC disaggregation of phosphorylated substrate was stopped after 15 min 

by addition of a ClpC trap mutant (ClpC DWB). This ClpC DWB trap mutant binds adaptor 

proteins and forms a hexameric barrel, but ATP hydrolysis and thus, substrate processing is not 

feasible in this mutant (Kirstein et al., 2006). As expected, an extended complex formation peak 

was observed upon addition of ClpC DWB, since the substrate translocation was stopped, similar 

to experiments with a ClpB trap mutant from E. coli (Figure 20 A) (Weibezahn et al., 2003). 

Furthermore, no relevant Mdh activity could be recovered, supporting the first part of the 

hypothesis, that arginine phosphorylation interferes with successful refolding. Addition of YwlE, 

simultaneous with ClpC DWB, enabled recovery of Mdh activity in the extent of previously 

disaggregated substrate (Figure 20 A, B). Thus, endorsing the second part of the hypothesis, that 

dephosphorylation of the disaggregated substrate by YwlE could assist substrate refolding. These 

observations strongly indicate that the mechanism for protein recovery depends on phosphorylation 

of substrates by activated McsB, disaggregation by ClpC and subsequent dephosphorylation by 

YwlE, supporting refolding of substrate proteins. 

Comparable protein folding systems based on phosphorylation and dephosphorylation of the 

substrate are not described until now. However, in eukaryotes different post-translational 

modifications (PTM) are supporting protein maturation in the endoplasmatic reticulum (ER). 

Protein glycosylation is known to improve the stability and solubility of unfolded proteins, whereat 

protein folding depends on coordinated trimming of the PTM as well as interaction with chaperones 

of the protein quality control system (Jayaprakash and Surolia, 2017; Xu and Ng, 2015). 

Furthermore, a site-specific ubiquitination and deubiquitination cycle at the ER membrane is 

involved in chaperone assisted protein folding of a signaling coreceptor (Perrody et al., 2016). In 

prokaryotes many chaperone-dependent protein folding systems are described so far. They are 

highly diverse and can function via, e. g. ATP-dependent substrate binding and release (DnaK, 

DnaJ, GrpE) (Szabo et al., 1994), ATP-dependent substrate binding, encapsulation and release 

(GroELS) (Chen et al., 2013; Hayer-Hartl et al., 2016) or by ATP-independent substrate 
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encapsulation and release (trigger factor) (Singhal et al., 2015). However, the exact processes 

promoting protein folding are often not completely understood and the data obtained in this work 

indicates that PTM based folding mechanisms also occur in bacteria and need to be further 

investigated. 

4.1.3 Aggregate removal by protein rescue or degradation 

The hexameric AAA+ protein ClpC can associate with heptameric ClpP to form a protease complex 

and ClpC adaptor proteins target substrates for degradation (Kirstein et al., 2007; Schlothauer et 

al., 2003; Turgay et al., 1998). Recent studies observed, that proteins phosphorylated by McsB can 

be recognized by the N-terminal domain of ClpC and are thus targeted to ClpCP for degradation in 

absence of adaptor proteins (Trentini et al., 2016). However, the targeting of heat shock regulator 

CtsR by McsB to protease complex ClpCP does not depend on phosphorylation of the substrate, 

but on McsB as adaptor protein in vivo (Elsholz et al., 2010). Furthermore, McsB is degraded by 

ClpCP, but under heat shock conditions YwlE prevents rapid degradation of McsB in vivo (Elsholz 

et al., 2010; Kirstein et al., 2005). Therefore, experiments with ClpP were performed to assess the 

involvement of ClpC in disaggregation and ClpCP in degradation as well as possible influences on 

the McsB and YwlE dependent refolding in vitro. 

The addition of ClpP to the disaggregation experiment did not only result in complete aggregate 

removal and substrate degradation, but moderate protein refolding occurred with McsB/McsA-

activated ClpCP (Figure 21/Figure 29). As observed before, the ClpC ATPase activity was 

increased in presence of ClpP (Figure 24 A) (Turgay et al., 1998). These results are consistent with 

studies showing that high ATPase rates and fast substrate translocation support the ClpXP 

degradation activity (Martin et al., 2008). Furthermore, interactions between chaperone and 

protease via highly conserved loops were observed to contribute to their activity (Kim et al., 2001). 

In E. coli the ClpX P-loop stabilizes the ClpX-ClpP interaction, and further dynamic contacts 

between ClpX pore-2-loops and N-terminal loops of ClpP can regulate ATPase rates for efficient 

activities (Martin et al., 2007). Thus, the efficacies of substrate degradation by AAA+ proteases or 

disaggregation by AAA+ chaperones are dependent on a specific interplay between ATPase- and 

translocation rate, unfolding force of the chaperone, interaction with the protease, as well as 

properties of the substrate itself (Martin et al., 2008). The results of this work suggest that a 

dynamic interaction between ClpC and ClpP might allow a small substrate fraction to escape from 

full degradation. Consistent with this, the substrate transition between Clp chaperones and ClpP 
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was considered to be facilitated by ATP dependent conformational changes, resulting in rotation-

like movements of the chaperone on the protease (Beuron et al., 1998; Lopez et al., 2020; Ripstein 

et al., 2020). 

Remarkably, addition of protease ClpP to the complete refolding system, including YwlE, did not 

result in the expected substrate degradation. In presence of both, YwlE and ClpP, substrate 

disaggregation and refolding activities were favored (Figure 22). This impact of YwlE, interfering 

with substrate degradation and promoting recovery, was observed to be mainly connected to the 

phosphatase activity (Figure 24 B). Application of the phosphatase inactive YwlE C7S mutant did 

not affect the low refolding activity in presence of ClpP, but impaired ClpC dependent aggregate 

removal (Figure 23). It is tempting to speculate, that YwlE C7S interaction with compounds of this 

system could occur via pArg residues, thus altering ClpC and ClpCP activities (Fuhrmann et al., 

2013a). Thereby it is unlikely, that direct protein-protein interaction of YwlE with ClpCP result in 

conformational changes affecting the induced degradation efficiency, because YwlE had no impact 

on MecA dependent substrate degradation by ClpCP (Figure 24 B). Since most phosphorylated 

substrate was detected in the soluble fraction, it is also possible that the translocated substrate is 

not always directly handed over to ClpP for degradation, but highly active YwlE has the 

opportunity to dephosphorylate, thus facilitating refolding instead of degradation of substrates 

(Figure 10 A/Figure 14 B). 

Different models describe the unfolding of proteins by barrel shaped AAA+ chaperones and 

protease complexes. Mechanical pulling of the substrate through the axial pore can unfold proteins 

and either direct full translocation of the substrate or several binding, pulling and release cycles 

could be performed (Cordova et al., 2014; Kenniston et al., 2005; Li et al., 2015). However, the 

substrate properties might contribute to the applied unfolding mechanism, since even highly 

knotted polypeptide chains can enter the flexible ClpXP pore for degradation, while other stable, 

native proteins require repeated binding and pulling by ClpXP in E. coli (Kenniston et al., 2005; 

Lee et al., 2001; Sivertsson et al., 2019). The disaggregation and unfolding of protein aggregates 

by the ClpB/KJE system depends on partial threading, without unfolding of native protein domains, 

which suffices for reactivation of heat aggregated substrates (Haslberger et al., 2008). Nevertheless, 

ClpB does not interact with a protease and is less stable than ClpC. Notably, MecA-activated ClpC 

disaggregates the whole substrate, regardless of domain structure, transferring it directly to ClpP 

for degradation (Haslberger et al., 2008). Taking this in account, the results of this work might 
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indicate that McsB and YwlE could destabilize the interaction between ClpC and ClpP, thus 

allowing refolding of substrates in presence of the protease. Since both ClpC and ClpP are 

phosphorylated by McsB, dephosphorylation by YwlE could possibly alter protein-protein 

interactions and threading mechanics in this system (Figure 24) (Elsholz et al., 2012; Schmidt et 

al., 2014).  

Different studies suggested a connection between the McsB kinase activity and ClpCP dependent 

substrate degradation. Apparently, the kinase inactive McsB C167S mutant is not degraded by 

ClpCP in vitro and CtsR is stabilized in a mcsB C167S mutant strain under heat shock conditions 

in vivo (Elsholz et al., 2010; Kirstein et al., 2007). Nevertheless, β-casein was still degraded by 

McsB C167S/McsA-activated ClpCP, but not as efficient as with kinase active McsB/McsA 

(Figure 27 D). This reduced degradation activity was further decreased in presence of active YwlE, 

suggesting that not only McsB kinase and YwlE phosphatase activities but also interactions 

between YwlE and ClpC or ClpP might play a role in this system (Figure 27 D). These experiments 

are consistent with previous observations, that McsB C167S can act as adaptor protein for ClpC 

and enables decreased aggregate clearance in vivo (Figure 11) (Hantke, 2019). However, an 

efficient ClpCP substrate degradation facilitated by McsB appeared to depend on both, the adaptor 

protein function, as well as the arginine kinase activity. 

Disaggregation and refolding of model substrate Citrate synthase 

In vivo a big variety of substrate proteins are processed by the bacterial protein quality control 

system. Therefore, different model substrates are utilized for in vitro examination of chaperone and 

protease systems, such as heat inactivated Mdh, luciferase, α-Glucosidase or citrate synthase (Cs) 

for investigation of the E.coli ClpB/KJE system (Katikaridis et al., 2019; Mogk et al., 2003b, 

2003a; Schlieker et al., 2004; Weibezahn et al., 2004). In addition to model substrate Mdh, the 

ClpC dependent disaggregation and refolding of heat aggregated citrate synthase (Cs) was 

examined in this work. The complete removal of aggregates was not achieved, consistent with other 

studies utilizing this substrate (Figure 36 A/Figure 37 A) (Katikaridis et al., 2019). In contrast to 

experiments with the model substrate Mdh, McsB/McsA-activated ClpC facilitated ample 

refolding of Cs even in the absence of YwlE (Figure 36 B/Figure 8 B). Nevertheless, application 

of kinase inactive McsB C167S or addition of YwlE again improved the refolding efficiency, 

consistent with the experiments utilizing Mdh (Figure 36 B/Figure 37 B). Furthermore, presence 

of ClpP also enhanced refolding of Cs, although Cs did not appear to be a substrate for degradation 
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by McsB/McsA-activated ClpCP (Figure 37 D). Notably, the ClpC ATPase activity was not 

increased in presence of ClpP and Cs, consistent with studies observing a reduced ClpXP ATPase 

activity in presence of stable substrates (Figure 37 C) (Burton, 2001). However, the experiments 

with Cs as model substrate indicate that the ClpC dependent disaggregation and refolding system, 

based on substrate phosphorylation by McsB and dephosphorylation by YwlE, enhanced the 

refolding efficiency with different substrates and may also improve aggregate clearance and protein 

rescue in vivo. 

Model of ClpC dependent disaggregation and refolding in vivo 

In particular, the disaggregation and refolding of heat impaired proteins is an efficient system for 

removal of subcellular protein aggregates and occurs among many species, implying that the 

characterized protein rescue systems may fulfill this task in B. subtilis (Mogk et al., 2018; Wallace 

et al., 2015; Weibezahn et al., 2004). Here, a model is proposed for ClpC dependent disaggregation 

and refolding of possibly toxic heat induced aggregates in vivo, based on results of experiments in 

this work as well as previous studies. Under non-heat shock conditions, the adaptor protein and 

arginine kinase McsB is mostly inactivated by ClpC and YwlE, leaving place for e.g. MecA-

dependent ClpC activity (Figure 60) (Elsholz et al., 2011a; Kirstein et al., 2007). Upon heat shock, 

the repressor of class III heat shock genes, CtsR, is inactivated by an intrinsic thermosensor and 

expression of the clpC-operon, including mcsB and mcsA, rises, whereas transcription levels of 

ywlE only increase slightly (Maaβ et al., 2014; Nicolas et al., 2012). At the same time, the McsB 

interaction with ClpC is decreased, allowing McsB kinase activation by McsA, and rapid 

degradation of McsB is prevented by YwlE (Elsholz et al., 2011a, 2010). During heat stress the 

components of the here described disaggregation and refolding system localize at subcellular 

protein aggregates and could facilitate their removal (Kirstein et al., 2008). The misfolded and 

aggregated proteins are probably targeted for ClpC dependent disaggregation by McsA-activated 

McsB (Hantke, 2019). Arginine phosphorylation could stabilize the unfolded substrate and 

subsequent dephosphorylation by YwlE might assist correct refolding and substrate recovery 

instead of degradation, thus supporting protein homeostasis in B. subtilis. 
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Figure 60 Schematic model of ClpC, McsB, McsA, YwlE roles in the PQC system. 

Under normal conditions transcription of the clpC operon is repressed by CtsR and both ClpC and YwlE 

interfere with kinase activation of McsB (Elsholz et al., 2011a; Kirstein et al., 2007). Upon heat shock, CtsR 

is inactivated by an intrinsic thermosensor and the clpC operon is highly expressed (Elsholz et al., 2010). 

McsA can activate McsB, which targets protein aggregates and promotes ClpC- and YwlE-dependent 

disaggregation and refolding rather than ClpCP-dependent degradation. 

4.1.4 The properties of the ClpCP interaction enable degradation and refolding 

In B. subtilis, disaggregation and refolding of heat impaired substrates is dependent on AAA+ 

chaperone ClpC, as indicated by observations of this thesis and previous studies (Hantke, 2019). 

Nevertheless, ClpC possesses a P-loop, containing a highly conserved tripeptide (VGF), which 

facilitates the interaction with hydrophobic pockets on the surface of protease ClpP (Kim et al., 

2001). In vivo, the thermosensitive phenotype of a ΔclpC mutant was already observed to be 

restored in a clpC mutant with altered P-loop (VGF::GGR) in B. subtilis (Figure 34 A, B) (Moliere, 

2012). This ClpC VGF::GGR mutant facilitated substrate disaggregation and refolding in vitro, 
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while no substrate degradation could take place, due to impaired ClpC-ClpP interaction (Figure 28 

B/Figure 29). In vivo studies demonstrated, that the disaggregation activity of this ClpC VGF::GGR 

mutant is sufficient for aggregate clearance (Hantke, 2019). Thus, the ClpCP degradation activity 

was dispensable for thermotolerance development and recovery from heat shock in B. subtilis. 

However, ClpC can fulfil both activities, disaggregation and refolding of substrates as well as 

degradation in complex with ClpP and the question remains, if one activity could be favored under 

heat stress conditions in vivo or if a special set of proteins is refolded while others are degraded. 

This could be resolved in future experiments with mass spectrometric approaches and pulse-chase 

analysis to examine protein levels in different mutant strains under various conditions.  

In this study, the ClpC VGF tripeptide on the P-loop tip was substituted by an IGF, present in e.g. 

ClpX or E. coli ClpA. The amino acids valine and isoleucine differ only in one methyl group, but 

this change was already observed to influence the ligand selectivity a protein (Yuan et al., 2010). 

Notably, a substitution of the E. coli ClpX IGF tripeptide with VGF largely decreased the ClpXP 

degradation efficiency in vitro (Amor et al., 2019). Consistent with this, a ClpC VGF::IGF 

substitution mutation substantially increased degradation rates of MecA- and McsB/McsA-

activated ClpCP, while the ATPase activity was comparable to wild type ClpC (Figure 31). This 

impact is probably caused by an improved association between ClpC and ClpP as suggested by 

titration experiments (Figure 39). But neither surface plasmon resonance (SPR) spectroscopy 

experiments by Jolene Pörschke (Master´s thesis, Institute for Microbiology, LUH) nor Microscale 

thermophoresis (MST) experiments were able to support this yet. Especially the multiple protein 

interactions between adaptor proteins facilitating ClpC oligomerization and subsequent ClpP 

binding, complicate the intricate setup. In the future, isothermal titration calorimetry (ITC), specific 

pull-down experiments or additional buffer and adaptor protein systems for MST could be 

investigated. Nevertheless, application of the ClpC VGF::IGF mutant in the disaggregation and 

refolding assay revealed remarkable results. While ClpC VGF::IGF was able to refold substrate in 

presence of YwlE more effectively than wild type ClpC, addition of ClpP resulted in substrate 

degradation (Figure 32/Figure 33). Thus, compared to wild type ClpCP, the degradation activity 

was not affected by the phosphatase YwlE (Figure 22). These observations suggest that the 

ClpC VGF::IGF mutant overcame the inhibitory impact of YwlE in presence of ClpP, most 

probably due to the proposed increased ClpC-ClpP affinity. In conclusion, B. subtilis ClpC with 

the VGF tripeptide for ClpP interaction might be perfectly equipped for degradation as well as 

reactivation of substrates under distinct conditions. 
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The clpC VGF::IGF mutant in vivo 

Since ClpC is highly involved in thermotolerance development, a clpC VGF::IGF mutant strain 

was characterized regarding heat stress phenotypes in vivo. Only marginal improvements in 

thermotolerance and thermoresistance were observed compared to the wild type (Figure 34 C). 

This ClpC mutant may enable enhanced degradation of damaged proteins in vivo, resulting in the 

slight advantage under heat stress conditions. However, ClpC activity and substrate recognition 

still depend on adaptor proteins (Battesti and Gottesman, 2013; Kirstein et al., 2009b, 2006). 

Therefore, ClpC VGF::IGF-ClpP probably processed the same substrates as wild type ClpCP, but 

it still needs to be evaluated whether the mutant could interfere with protein rescue in vivo. 

In vivo studies focusing on transcriptomic changes in clpC P-loop mutant strains, revealed further 

insight into the involvement of ClpCP in many regulatory pathways (Jolene Pörschke, Master´s 

thesis, Institute for Microbiology, LUH). A loss of ClpCP degradation activity in the clpC 

VGF::GGR mutant strain affected transcription of key regulators in competence development, 

possibly due to missing degradation of ComK/ComS, as well as several heat stress and oxidative 

stress related regulators. A clpC VGF::IGF mutant strain displayed no significant changes 

compared to the wild type strain, probably because of already discussed control over substrate 

selection by adaptor proteins. However, it needs to be assessed in future experiments if the 

enhanced degradation activity of the ClpC VGF::IGF mutant in complex with protease ClpP can 

also be observed in vivo. 

Moreover, it would be interesting to have a closer look on ClpE and its special features. This AAA+ 

Hsp100 consists of a hybrid structure, with the N-terminal domain of ClpX and linker-domain, 

double Walker B domains and VGF tripeptide in the P-loop comparable to ClpC. Under severe 

heat stress conditions ClpE is highly expressed and was shown to take part in CtsR regulation and 

presumably disaggregation of substrates (Derre et al., 1999; Derré et al., 1999; Gerth et al., 2004; 

Miethke et al., 2006). ClpE can be activated without help of adaptor proteins dependent on the N-

terminal zinc finger, but nevertheless interacts with McsB, which was recently proposed to be also 

an adaptor protein for ClpX (Elsholz et al., 2011a; Lilge et al., 2020; Miethke et al., 2006). So far, 

not much is known about the exact disaggregation and degradation mechanics of ClpE. In its role 

as supporter of protein quality control under severe stress conditions, it might be possible that ClpE 

could possess an even higher disaggregation activity than ClpC with a broader substrate spectrum 

acquired by the distinct N-terminal domain. Recently, the disaggregase ClpG was shown to be the 
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dominant disaggregase with higher unfolding force than the established ClpB/KJE system, in 

various bacteria (Katikaridis et al., 2019). 

4.1.5 Differences in adaptor protein dependent ClpC activation 

Activation of AAA+ protein ClpC can be facilitated by N-terminal and linker domain interaction 

with adaptor proteins in B. subtilis (Kirstein et al., 2006). These adaptor proteins select substrates 

and target them to ClpC for disaggregation or degradation by the ClpCP complex. The adaptor 

protein MecA contains a N-terminal domain (NTD) and a C-terminal domain (CTD) (Kirstein et 

al., 2006; F. Wang et al., 2009). The NTD recruits and binds substrate proteins and the CTD 

facilitates ClpC oligomer formation and activation. Deletion of the ClpC NTD or linker domain 

results in strongly reduced MecA binding (Kirstein et al., 2006). Furthermore, a mutation on the 

tip of the linker domain, clpC F436A, severely affected S. aureus and B. subtilis ClpC activities 

(Carroni et al., 2017). Activation of this ClpC F436A mutant is still possible with McsB, but not 

with adaptor protein MecA in vitro (Hantke, 2019). Other mutations in the NTD of ClpC were 

shown to affect only the activation by McsB. The protein arginine kinase McsB phosphorylates 

different residues of ClpC in vivo and in vitro and phosphorylation of ClpC R5 and ClpC R254 

were observed to be substantial for McsB dependent but not for MecA dependent ClpC activation 

(Elsholz et al., 2012). Likewise, substitution mutations of E32 and E106 in the NTD of ClpC 

prevent recognition of phosphorylated substrate, while activation via adaptor protein MecA is still 

possible (Trentini et al., 2016). 

In this study, additional substitution mutations in the N-terminal adaptor protein interaction site of 

ClpC were identified to alter ClpC ATPase and ClpCP degradation activities (Figure 38). Different 

activation patterns of the ClpC R9A mutant by MecA or McsB/McsA were observed. MecA 

facilitates full activation of ClpC R9A, whereas the McsB/McsA dependent activation was 

affected. Furthermore, activation of the ClpC R83A mutant was impaired with both adaptor 

proteins and the ClpC R9A R83A double mutant could not be activated at all. In addition to this, 

variances in protein degradation by either MecA- or McsB/McsA-activated ClpCP were observed. 

Notably, MecA facilitated accelerated substrate degradation by ClpCP, when compared to 

McsB/McsA (Figure 39). Degradation of the adaptor protein MecA only started after 

approximately 80 % of substrate was degraded, while McsB degradation occurred simultaneous 

with the substrate. These results imply that MecA can be “reused” as adaptor protein for 

degradation, while McsB might be degraded attached to the substrate. These observations strongly 
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suggest that different ClpC activation mechanisms occur, facilitated by adaptor proteins MecA and 

McsB. The distinct properties of these adaptor proteins, such as the arginine kinase activity of 

McsB, could result in alterations of substrate degradation by ClpCP. 

In conclusion, this work presents that the AAA+ protein ClpC from B. subtilis can fulfil various 

functions, whereby different activation mechanisms by adaptor proteins MecA or McsB could alter 

affiliated ClpC activities. Moreover, a ClpC dependent disaggregation and refolding system for 

removal of heat induced aggregates was characterized in vitro. The refolding mechanism was 

proposed to depend on a well concerted interplay of both McsB kinase and YwlE phosphatase 

activities.  

4.2 TasA and ClpC are important for pellicle biofilm formation 

In the second part of this thesis biofilm formation of Gram-positive model organism B. subtilis was 

examined. In general, biofilm formation is the most abundant lifestyle of bacterial communities 

and relevant for several domains of research in medicine or agriculture (Hunter, 2008). A broad 

knowledge of biofilm formation is crucial for treatment of different diseases caused by pathogenic 

bacteria, since these biofilm communities exhibit a higher tolerance against external influences, 

such as host immune responses or antibiotics (Donlan, 2002; Mah, 2012; Olsen, 2015). However, 

these advantages are also shared by bacterial biofilms formed on plants (Danhorn and Fuqua, 

2007). Soil-dwelling B. subtilis as well as many other bacteria colonize plant roots, acting as 

phytopathogen or forming a symbiotic relationship, which can enhance plant growth and thereby 

even improve crop yield (Bogino et al., 2013; Hashem et al., 2019; Ramakrishna et al., 2019). 

Because of this wide-ranging significance of biofilms, a detailed insight into regulation of biofilm 

formation and matrix composition is essential.  

In this study structural characteristics of TasA, one of the most abundant biofilm matrix 

components, were investigated in B. subtilis (Branda et al., 2006; Romero et al., 2010). This protein 

was first described to be associated with spore formation and to possess antimicrobial properties 

(Stöver and Driks, 1999b). Processing by signal peptidase SipW is essential for TasA secretion and 

assisted by TapA, TasA forms extracellular amyloid-like fibrils (Romero et al., 2011, 2010; Stöver 

and Driks, 1999b, 1999a). In vitro studies observed that specific pH and surface conditions can 

promote TasA fibril formation, comparable to the self-assembly of other bacterial amyloids, e.g. 

chaplins from S. coelicolor (Bokhove et al., 2013; Chai et al., 2013; Diehl et al., 2018; Ekkers et 
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al., 2014; Keller et al., 2011; Moores et al., 2011). So far, only the bacteriotoxin Mcc from 

K. pneumoniea and the transcription termination factor Rho from C. botulinum have been proposed 

to share functions of fungal prion proteins, which can self-propagate amyloid formation (Liebman 

and Chernoff, 2012; Shahnawaz et al., 2017; Wickner et al., 2007; Yuan and Hochschild, 2017). 

The prion propagation of yeast protein is supported by the Hsp104 chaperone system in 

S. cerevisiae and the ClpB chaperone system in E. coli (Chernoff et al., 1995; Yuan et al., 2014).  

In bacteria, the assembly of functional amyloids is often facilitated by various protein interactions, 

e. g. chaperones supporting formation of curli amyloid fibrils in E. coli (Cámara-Almirón et al., 

2018; Nenninger et al., 2009; Shu et al., 2016). These functional amyloids were observed to have 

different roles in virulence, reproduction and especially in biofilm formation (Chapman, 2002; 

Claessen, 2003; Dueholm et al., 2010; Oh et al., 2007; Romero et al., 2010). In B. subtilis amyloid-

like TasA fibrils stabilize the extracellular biofilm matrix and deletion of tasA severely impairs 

biofilm formation (Romero et al., 2010). 

Pellicle biofilms of B. subtilis were examined regarding the essential functions of the tapA-sipW-

tasA operon and TasA localization in matrix formation. The laboratory B. subtilis strains wild type 

DK 1042 and the more domesticated strain wild type 168 were utilized to examine the phenotypes 

of different mutants in pellicle formation (see section 1.4.2) (Konkol et al., 2013; Zeigler et al., 

2008). Comparison of both strains revealed more distinct wrinkle formation and accelerated 

biofilm growth in strain DK 1042 (Figure 41). As expected, deletion of tasA affected the biofilm 

formation and strain DK 1042 developed a flat biofilm, whereas no matrix formation was observed 

in strain 168. Deletion mutants of signal peptidase W (sipW) or the whole tapA-sipW-tasA operon 

fully impaired biofilm formation in both strains, consistent with previous studies (Branda et al., 

2006; Hamon et al., 2004; Romero et al., 2010). TapA was described to support TasA fibril 

formation and facilitates attachment of these fibrils to the cell surface (Romero et al., 2011). Since 

TapA and TasA export depends on SipW, which processes the N-terminal signal sequence of these 

proteins, it was expected that no functional TasA could be secreted in absence of SipW (Figure 43 

D) (Stöver and Driks, 1999b, 1999a). The differences in biofilm formation between the B. subtilis 

strains were probably caused by various mutations in strain 168, which influence biofilm associated 

regulations and alter the pellicle matrix less robust (see section 1.4.2) (McLoon et al., 2011). 

Nevertheless, it needs to be kept in mind, that distinct laboratory stocks of strain 168 are used in 

different research groups. The ability of these 168 strains to form complex colonies and pellicles 
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was observed to vary (Gallegos-Monterrosa et al., 2016). Since these variations can complicate 

comparison between different studies, many mutants were compared in strain 168 and DK 1042, 

during this work. The strain DK 1042 is closely related to the “wild ancestor” NCIB 3610 and only 

comprises one mutation facilitating genetic studies (Konkol et al., 2013). Therefore, different 

aspects of biofilm formation are often examined in strain DK 1042 (Dragoš et al., 2018; Earl et al., 

2019; Gallegos-Monterrosa et al., 2016; Otto et al., 2019; Richter et al., 2018). 

4.2.1 PPII helices contribute to the structural integrity of TasA 

In vitro, TasA was already described to form fibrils, which can undergo structural changes in 

different pH and surface conditions (Chai et al., 2013; Romero et al., 2010). During this work, the 

form of TasA fibrils in the biofilm matrix in vivo was resolved in cooperation with Dr. Anne Diehl, 

Dr. Yvette Roske, Prof. Dr. Hartmut Oschkinat et al. (Diehl et al., 2018). It was observed that 

addition of recombinantly produced TasA to a ΔtasA mutant restored the wrinkly biofilm 

phenotype in B. subtilis DK 1042, consistent with previous studies (Figure 44) (Romero et al., 

2010). Biofilms were then reconstructed with 2H,13C,15N-TasA261 and harvested for NMR studies 

(Diehl et al., 2018). Examination of recombinantly produced TasA in NMR experiments revealed 

that three distinct structural forms could occur, the monomeric form and two aggregated high-

molecular-weight forms, one with high helical or loop structure content and the other with high β-

structure-content. Comparison with the matrix incorporated TasA demonstrated that in vivo 

probably β-sheet-rich, homogenous fibrils occur, which are resistant against extracellular 

proteases. 

The resolved crystal structure of monomeric TasA displayed two dynamic sections with 

polyproline II (PPII) helical structure (Figure 45) (Diehl et al., 2018). PPII helices are, besides 

commonly occurring α-helices and β-sheets, an important conformation in folded polypeptide 

chains (Adzhubei and Sternberg, 1993). These structures can provide elasticity, support protein-

protein interactions and were observed to be involved in self-assembly of fibril and prion proteins 

(Adzhubei et al., 2013; Camilloni et al., 2012; Gill, 2000). Therefore, the importance of the PPII 

helices in the structure of B. subtilis TasA for biofilm formation was investigated by examination 

of strains with tasA alanine substitution and deletion mutations in PPII helix 1 and 2. 
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TasA PPII helix 1 supports SipW dependent processing and export 

The described PPII helix 1 is located near the N-Terminus of TasA and comprises amino acids 

A40, S41 and G42. Mutant strains tasA T38A and tasA F39A did not exhibit apparent differences 

in pellicle phenotypes or TasA export patterns, as expected, because the substituted amino acids 

are not directly located in the anticipated flexible region (Figure 46/Figure 48). However, a non-

wrinkly phenotype was observed in the tasA ΔA40, S41 mutant, similar to the ΔtasA mutant (Figure 

46). Fractionation of the sample revealed, that TasA ΔA40, S41 was expressed but not exported, 

comparable to TasA in a ΔsipW mutant (Figure 48/Figure 43). The results suggested that this 

deletion in the PPII helix 1, near the N-terminus of TasA, probably disturbed the recognition and 

processing of the N-terminal signal sequence by SipW, necessary for successful TasA export 

(Branda et al., 2006; Serrano et al., 1999; Stöver and Driks, 1999b). Consistent with this, several 

studies reported that PPII helices have properties enabling protein recognition and protein-protein 

interactions, which might be important for the SipW dependent processing of TasA (Adzhubei et 

al., 2013; Bochicchio and Tamburro, 2002; Siligardi and Drake, 1995). 

Moreover, the substitution mutation tasA S41A displayed opposite phenotypical characteristics 

(Figure 46). While biofilm growth in this mutant strain was comparable to the wild type DK 1042, 

an enhanced wrinkle formation could be observed. The wrinkly morphology of B. subtilis biofilms 

was considered to facilitate liquid transport and was proposed to be promoted by localized cell 

death, which enables mechanical forces to build 3-dimensional structures depending on stiffness 

of the matrix (Asally et al., 2012; Wilking et al., 2013). Even though no direct correlation between 

complexity of wrinkle formation and expression levels of epsA-O and tapA-sipW-tasA operons in 

different strains was observed, both operons are essential for sound matrix formation and mutant 

strains with affected biofilm regulation, overproducing Eps and TasA, were described to develop 

more wrinkles (Chu et al., 2006; Gallegos-Monterrosa et al., 2016; Kearns et al., 2005; Richter et 

al., 2018; Seminara et al., 2012). Therefore, the observed increased TasA levels in the matrix 

fraction of the tasA S41A mutant strain, might suggest that in this case enhanced TasA production 

and export could be responsible for the hyper-wrinkly phenotype (Figure 47) (Kearns et al., 2005; 

Seminara et al., 2012; Trejo et al., 2013). The high TasA levels indicated that the PPII helix S41A 

mutation might facilitate fibril formation and/or enhanced SipW recognition, processing and thus, 

TasA export (Adzhubei et al., 2013; Rath et al., 2005). 
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TasA PPII helix 2 might be involved in fibril formation 

The crystal structure of monomeric TasA predicted that the PPII helix 2 includes amino acids T187, 

P188, T189, D190, F191 and D192. Examination of the tasA PPII helix 2 in pellicle morphology 

revealed different phenotypes in the individual substitution mutant strains (Figure 49). The pellicle 

biofilms of tasA T187A, T189A and F191A mutant strains were similar to the wild type strain 

DK 1042. A decreased or no wrinkle formation was observed in the tasA P188A, D190A and 

D192A mutant strains. Notably, unlike the wild type, TasA localized in the supernatant fraction of 

these three mutants and the TasA protein band in all fractions was slightly lower than wild type 

TasA (Figure 51). 

Previous studies examined the amino acid propensity in PPII structures and observed preferences 

for specific amino acids on distinct helical positions (Kumar and Bansal, 2016). The observations 

of this work suggest that the three amino acids, P188, D190 and D192, might be involved in 

building the characteristic PPII helix structure in TasA and substitutions with alanine disrupted this 

pattern. Moreover, the results indicate that disturbance of the PPII helix 2 could affect TasA fibril 

formation and thus matrix incorporation, resulting in the observed decrease of wrinkle formation 

(Figure 49). This is consistent with studies showing that fibril formation and assembly can be 

supported by PPII helical structures, as already stated for e.g. elastin, abductin and lamprin 

(Bochicchio and Tamburro, 2002). 

 

The results of this study reinforce the relevance of amyloid-like TasA fibrils in matrix formation 

of B. subtilis. By investigation of TasA incorporated in pellicle biofilms, it was observed that in 

vivo predominantly β-sheet rich, homogenous TasA fibrils occur and analysis of the TasA crystal 

structure predicted two PPII helices (Diehl et al., 2018). Examination of strains with mutations in 

the tasA PPII helix 1 revealed that this dynamic segment near the N-terminus could facilitate signal 

peptide processing and secretion of TasA (Figure 46/Figure 48). Mutations in the TasA PPII helix 

2 suggested that this flexible region could be important for fibril folding and thus, matrix 

maturation (Figure 49/Figure 51). These observations indicate that the PPII helices in TasA might 

play a vital role in TasA export and biofilm formation. 
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4.2.2 ClpC activities regulate biofilm formation 

The regulation of biofilm formation and expression of the eps-operon and tapA-operon depend on 

a sophisticated network with different key regulators in B. subtilis (see section 1.4.2). The 

Hsp100/AAA+ protein ClpC, together with associated protease ClpP (ClpCP), is involved in this 

intricate system by e. g. regulatory degradation of SlrR (Chai et al., 2010a). SlrR is essential in the 

early stages of biofilm formation and promotes matrix production by complex formation with SinR, 

the repressor of the eps-operon and tapA-operon (Chai et al., 2010a; Kobayashi, 2008). ClpCP 

dependent degradation or autocleavage of SlrR was described to relieve the influence of the key 

regulator. Moreover, the phosphorylated two-component response regulator DegU (DegU-P) is 

targeted to ClpCP for degradation (Molière et al., 2016; Ogura and Tsukahara, 2010). Various 

cellular processes underly the control of DegU-P in a concentration-dependent manner, whereby 

low levels can promote complex colony development and BslA expression (Kobayashi, 2007b; 

Verhamme et al., 2007). Furthermore, activity of the key regulator Spo0A-P is influenced by 

MecA-ClpC, independent of ClpCP dependent degradation (Prepiak et al., 2011). In addition to 

this regulatory involvement, in vitro studies observed ClpC interaction with the biofilm protein 

TasA, which forms amyloid-like fibrils stabilizing the matrix in B. subtilis (Janine Kirstein, 

unpublished) (Romero et al., 2010). This observation suggests that ClpC could influence TasA 

folding inside the cell and may promote successful export and formation of amyloid-like fibrils, 

comparable to other chaperones in bacteria that interact with amyloid proteins and Hsp104 in 

S. cerevisiae and ClpB in E. coli, which influence propagation of yeast prion proteins (Cámara-

Almirón et al., 2018; Chernoff et al., 1995; Nenninger et al., 2009; Serio and Lindquist, 2001). 

Therefore, the impact of ClpC on pellicle biofilm formation, with special regard to matrix 

component TasA, was investigated utilizing different clpC and ClpC adaptor protein mutants.  

In order to identify variations in B. subtilis strains regarding ClpC dependent biofilm formation, 

clpC mutants were examined in strains 168 and DK 1042. Previous studies observing slowed 

decomposition of the matrix in a ΔclpC mutant could be confirmed in strain DK 1042, albeit 

wrinkle formation was decreased compared to the wild type in both strains (Figure 52) (Chai et al., 

2010a). The clpC DWB mutant strains, expressing a ClpC trap mutant that cannot hydrolyze ATP 

and process bound substrate, displayed enhanced biofilm formation in both examined B. subtilis 

strains (Figure 52) (Kirstein et al., 2006). Especially the clpC DWB (168) mutant was observed to 

develop extensive wrinkles and red coloration upon addition of Congo Red (CC) dye. This CC dye 
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was described to bind to TasA amyloid-like fibrils, resulting in red coloration of the matrix (Figure 

52) (Romero et al., 2010). The wild type (168) did not exhibit this red coloration upon addition of 

CC, probably due to lower TasA levels (Figure 53). However, the ΔclpC (168) mutant contained 

elevated TasA levels, but no red coloration of the matrix with CC dye was observed. These results 

indicate that TasA maturation and incorporation in the matrix could be disturbed in absence of 

ClpC. An altered expression of matrix compounds, such as Eps, in ΔclpC mutants was already 

described to affect matrix composition and may also explain the observed decrease in wrinkle 

formation (Chai et al., 2010a; Ogura and Tsukahara, 2010; Prepiak et al., 2011). The enhanced 

wrinkle formation in the clpC DWB trap mutant suggested that active ClpC, which processes 

substrates and can transfer them to ClpP for degradation, might be necessary for well-adjusted 

biofilm formation (Figure 53). Overall, comparison of both B. subtilis strains revealed that the 

observed influences of the clpC mutants were especially severe in strain 168. The domesticated 

strain 168 was described to form less robust pellicle biofilms due to alterations in different genes 

associated to biofilm formation (McLoon et al., 2011). The results imply that the clpC mutations 

further perturbed this already affected regulation in strain 168. These evident changes of 

morphology facilitated examination of biofilm formation in clpC (168) mutants. 

The involvement of ClpC in biofilm regulation is related to ClpCP regulatory proteolysis and 

therefore, pellicle biofilm formation was examined with different clpC (168) mutants affecting this 

protease complex. The interaction between ClpC and protease ClpP depends on the VGF tripeptide 

on the tip of the P-loop (Kim et al., 2001). A ClpC VGF::GGR mutation or deletion of this 

interaction loop (ClpC Δloop) resulted in loss of degradation activity, while the substrate was still 

translocated and disaggregated by ClpC in vitro (Figure 28 B/Figure 29). The ClpC VGF::IGF 

mutation was observed to increase the degradation activity of the ClpCP complex in vitro (Figure 

31 B). 

In vivo, the clpC VGF::IGF mutant strain displayed no phenotypical impact on pellicle biofilm 

formation, when compared to the wild type strain, suggesting that a possible increased degradation 

activity does not influence biofilm morphology (Figure 54). Impaired ClpCP degradation activity 

in mutant strains clpC VGF::GGR and clpC Δloop resulted in accelerated biofilm growth and 

wrinkle formation, similar to strain clpC DWB (Figure 54). Since these mutations did not influence 

TasA export and localization, the altered morphology was probably caused by missing ClpCP 

degradation activity, most likely on a regulatory level (Figure 55/Figure 56). Consistent with these 
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observations, other biofilm studies in S. aureus described a decreased matrix formation in clpC and 

clpX deletion mutants and increased biofilm formation in clpP mutants (Frees et al., 2004). This 

impact of clpP (and clpX) in S. aureus is linked to control over the repressor of biofilm formation 

Agr (“accessory gene regulator”) and cell wall hydrolase Sle1 (Boles and Horswill, 2008; Frees et 

al., 2003; Liu et al., 2017). 

The results from experiments in this work suggest a connection of increased pellicle biofilm 

formation in B. subtilis with ClpC dependent substrate degradation by ClpP (Figure 54). Further 

experiments need to evaluate in more detail whether the observed impact could depend on impaired 

degradation of key regulators like SlrR or DegU-P and if other unknown factors play a role in this 

network. 

ClpC adaptor proteins involved in regulation of biofilm formation 

The adaptor proteins MecA, McsB and YpbH facilitate substrate selection and activation of ClpC 

in B. subtilis (Kirstein et al., 2009b, 2007; Persuh et al., 2002; Turgay et al., 1998). Influences of 

respective adaptor proteins on biofilm formation were assessed by examination of deletion mutants. 

Initiation of biofilm formation was delayed in a ΔmecA strain, but in later growth states enhanced 

matrix development and high TasA expression were observed (Figure 57/Figure 58). MecA as 

adaptor protein for ClpC is known to be involved in competence development by targeting of 

ComK for ClpCP dependent degradation as well as in biofilm formation and sporulation by altering 

Spo0A-P transcriptional activity (Prepiak et al., 2011; Turgay et al., 1998). This regulatory impact 

of MecA on Spo0A-P is ClpC dependent, while here, compared to inactivation of ComK, no 

degradation of the regulator occurs (Prepiak et al., 2011). It was proposed, that the MecA-ClpC 

complex targets Spo0A-P bound to promotors and interferes with transcription, which results in 

e.g. downregulation of eps genes (Tanner et al., 2018). De-repression of Spo0A-P repressed 

promotors by MecA was not reported. This involvement of MecA in Spo0A-P regulation is 

consistent with the observations of this work. Biofilm formation is, among others, initiated by 

rising levels of Spo0A-P, which lead to expression of sinI, and overexpression of MecA was 

described to downregulate the expression of sinI (Bai et al., 1993; Kearns et al., 2004; Prepiak et 

al., 2011; Shafikhani et al., 2002). High concentrations of Spo0A-P again repress sinI and thus, the 

deletion of mecA might result in affected initiation of biofilm formation by missing control over 

Spo0A-P regulation (Chai et al., 2011). Furthermore, the observed enhanced matrix formation and 

increased TasA levels in later growth phases might be linked to increased expression of eps and 
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tapA-sipW-tasA operons due to relieved Spo0A-P repression by ClpC-MecA (Prepiak et al., 2011; 

Tanner et al., 2018). Nevertheless, regulation of biofilm formation is highly complex and the 

deletion of mecA probably affected many aspects of this network. 

Furthermore, the influence of ClpC adaptor protein and arginine kinase McsB on biofilm formation 

was examined with a deletion mutant. Similar to the ΔmecA strain, initiation of biofilm formation 

was delayed in the ΔmcsB strain, but wrinkle formation was still decreased in later growth states 

compared to the wild type strain (Figure 57). This phenotype resembled the ΔclpC strain, since 

reduced wrinkle formation and no red coloration were observed despite high TasA levels (Figure 

52/Figure 53/Figure 58). No involvement of McsB, in its role as adaptor protein for ClpC, in 

biofilm formation was reported yet. However, the observations of this work indicate that McsB 

might be involved in ClpC dependent expression of various biofilm compounds and thus, matrix 

formation and TasA incorporation were affected in the deletion mutant. Moreover, several 

substrates for the protein arginine kinase McsB were identified in B. subtilis (Elsholz et al., 2012). 

Transcriptional analyses revealed a connection between the McsB kinase activity and many 

developmental processes, including biofilm formation and the key regulator Spo0A was found to 

be a target for McsB kinase activity (Schmidt et al., 2014). Therefore, McsB might participate in 

regulation of biofilm formation in its role as adaptor protein for ClpC and as protein arginine kinase, 

influencing key regulators. 

Compared to MecA and McsB not much is known about ClpC adaptor protein YpbH, so far. This 

paralogue of MecA was observed to be involved in the same cellular processes, such as sporulation 

and competence development, and it was proposed that YpbH also participates in Spo0A-P 

regulation (Persuh et al., 2002; F. Wang et al., 2009). Deletion of ypbH resulted in accelerated 

biofilm growth and enhanced wrinkle formation compared to the wild type strain (Figure 57). 

These observations do not correspond to the ΔmecA phenotype and suggest that MecA and YpbH 

could participate in diverse regulatory networks. Moreover, it is to mention that despite enhanced 

wrinkle formation, the TasA levels were not increased in the ΔypbH mutant strain and the 

phenotypic pattern was similar to clpC mutants which were no longer able to transfer substrate to 

ClpP for degradation (clpC DWB, clpC VGF::GGR, clpC Δloop) (Figure 54/Figure 58). These 

results suggest that YpbH might be the adaptor protein responsible for targeting of essential key 

players towards ClpCP for regulatory degradation in biofilm formation. In future experiments, 

combined pull-down assays with YpbH under biofilm conditions and mass spectrometric 
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approaches may help to find substrates targeted by this adaptor protein and experiments with strains 

overexpressing ypbH might support characterization of the regulatory mechanisms defining 

biofilm formation. 

 

Examination of clpC in pellicle formation of B. subtilis could neither demonstrate nor exclude a 

possible role of ClpC in assistance of TasA folding, but was consistent with previous studies, 

reporting participation of the AAA+ chaperone in regulatory processes (Ogura and Tsukahara, 

2010; Prepiak et al., 2011; Tanner et al., 2018). Since the network controlling biofilm formation is 

highly complex, not all aspects of ClpC involvement in biofilm regulation are understood so far. 

Results presented in this work imply distinct functions of ClpC adaptor proteins and suggest that 

YpbH might facilitate regulatory degradation by ClpCP and thus influences biofilm formation in 

B. subtilis. 
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4.3 Summary and Conclusion 

Protein homeostasis entails the removal of misfolded and aggregated protein species by either 

refolding or degradation and is crucial for cellular survival. This work characterizes a system from 

B. subtilis for disaggregation and refolding of heat induced protein aggregates in vitro. While 

disaggregation was carried out by the AAA+ chaperone ClpC, protein arginine phosphorylation by 

the kinase and adaptor protein McsB as well as dephosphorylation by the phosphatase YwlE were 

observed to be essential for the refolding process. Therefore, arginine phosphorylation is a post-

translational modification not only involved in adjustments of cellular regulatory networks, but 

might also play a role in protein rescue mechanisms in vivo (Elsholz et al., 2012; Schmidt et al., 

2014). The finding that post-translational modifications could be involved in protein folding in 

bacteria may help to understand protein maturation and refolding processes in prokaryotes. 

One important aspect of PQC systems is the distinction between protein rescue and degradation. 

The examined chaperone ClpC can form a protease complex with ClpP (ClpCP) for degradation of 

substrate proteins. In presence of active McsB and YwlE not degradation, but substrate refolding 

was observed to be the preferred activity. This might represent a possible regulation for substrate 

rescue or removal mechanisms. Consistently, the ClpC P-loop, with the conserved VGF tripeptide 

for interaction with ClpP, was demonstrated to be perfectly fitted to enable a switch between ClpC 

chaperone and ClpCP protease functions. This characterization of ClpCP activities provides 

detailed insights into bacterial AAA+ protease complexes, that are involved in general as well as 

regulatory degradation processes and were recently found to be an effective target for different 

antimicrobial compounds.  

Functional amyloid proteins fulfill distinct tasks in signal transduction, cell regulation and 

scaffolding in eukaryotes and prokaryotes. In B. subtilis, the biofilm protein TasA forms amyloid-

like fibrils, stabilizing the extracellular matrix (Romero et al., 2010). Mutations in flexible regions 

of tasA revealed the significance of PPII helices for export and folding of the fibril protein, while 

activities of the chaperone ClpC could not be linked to fibril maturation. These insights into 

amyloid secretion and assembly in bacteria may help to understand regulations of functional 

amyloids and folding mechanisms of pathogenic amyloids, which are associated to many human 

diseases (Loquet et al., 2018). 
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