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Abstract

Optical coherence tomography (OCT) enables sub-surface three dimensional imaging
with micrometer resolution. The technique is based on the time-of-flight gated detection
of light which is backscattered from a sample and has applications in non-destructive
testing, metrology and contact-less and non-invasive medical diagnostics. With scat-
tering media such as the human skin, the penetration depth is limited to just a few
millimetres, on the other hand, and OCT imaging hence allows to investigate superficial
sample layers only.

Scattering of light is a deterministic process. As a consequence, manipulation of the
beam incident to a turbid sample yields control over the scattered field. Following this
approach, a number of groups demonstrated iterative wavefront optimization algorithms
to be able to focus light transmitted through or backscattered from opaque media. First
applications to optical coherence tomography were shown to extend the penetration
depth as well as to improve the signal-to-noise ratio when imaging biological tissue.

This work explores practical approaches to combine wavefront shaping techniques
with OCT imaging. To this end, a compact spectral domain (SD-) OCT design is
developed which enables single-pass and independent wavefront control at the reference
and at sample beam. Iterative optimization of the phase pattern applied to the sample
beam is shown to selectively enhance the amplitude of the OCT signal received from
scattering media. In a more sophisticated approach, the acquisition of the time-resolved
reflection matrix, which yields the linear dependence of the OCT signal on the field at
the sample beam, is demonstrated. Subsequent wavefront optimization based on a phase
conjugation algorithm is shown to enhance the OCT signal but not image artefacts,
even though no attempt is made to actively suppress these artefacts. The approach
is comparable to iterative wavefront optimization but yields a substantially improved
acquisition speed. First imaging applications demonstrate the algorithm to enhance the
signal-to-noise ratio and the penetration depth with scattering media, such as biological
tissue, and to reduce the observed speckle contrast, similar to compounding algorithms.
Furthermore, the acquisition of the reflection matrix and subsequent signal enhancement
based on binary amplitude-only (on/off) beam shaping is presented for the first time.
The technique can be implemented with digital micromirror devices which enable high-
speed implementations.

The presented techniques constitute substantial improvements compared to previous
works and yield promising results in the context of depth-enhanced OCT imaging with
scattering biological tissue. Approaches to further enhance the performance and the
acquisition speed for real-time in-vivo imaging applications are discussed.

Keywords optical coherence tomography (OCT), interferometry, turbid media,
wavefront shaping, phase conjugation
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1 Introduction

Optical coherence tomography (OCT) is a non-invasive technique which enables sub-
surface three dimensional imaging with micrometer resolution. In principle, the approach
utilizes broadband light sources which feature a low coherence length as well as an
interferometric detection scheme to determine the time-of-flight distribution of light
which is backscattered from a partially transparent sample. Neglecting the effects of
multiple scattering, the time-of-flight directly reflects the penetration depth of light in
the sample and, hence, allows to locate the position of backscattering sample features.
The technique was introduced in 1991, almost 30 years ago, by the group of James
Fujimoto [1]. The potential for medical diagnostics was quickly realized and led to the
first commercial system to be released already in 1996 (Stratus, Humphrey Systems,
now Carl Zeiss Meditec, Germany) [2]. Nowadays, OCT imaging has become a major
tool in the clinical field of ophthalmology due to the capability of high-resolution in-vivo
three dimensional retinal imaging [3, 4]. Further applications include gastrointestinal
[5, 6], intravascular [7, 8], dermatological [9-12] or dental diagnostics [13, 14] as well
as functional extensions such as polarization sensitive [15, 16], spectroscopic [17-19]
or angiographic OCT [20-22], which allow to investigate the tissue birefringence, the
chemical structure, or the perfusion non-invasively, respectively.

The image contrast of OCT systems is based on the capability to suppress multiple
scattered light, which features a random time-of-flight distribution, compared to weakly
scattered signal components whose time-of-flight corresponds to the position of reflective
sample features. Due to strong scattering of light, the penetration or imaging depth with
biological samples such as the human skin typically is restricted to values in the range
of one to two millimetres [9, 11, 12]. As a consequence, the diagnostic value is limited
with such samples in case relevant features, for example tissue lesions or pathological
changes, extend beyond that range.

On the other hand, scattering of light is a deterministic process in case the turbid
sample is assumed to be static. In terms of linear system theory, for example, the turbid
medium can be considered to be described by a highly complicated but constant transfer
function. As a consequence, light which is transmitted trough or reflected from the
sample can be manipulated by shaping the wavefront of the incident beam. In a seminal
work, the first experimental implementation was presented in 2007 by Ivo Vellekoop and
Allard Mosk, who demonstrated an iterative wavefront optimization algorithm to be
able to create a focus from scattered light [23]. The approach resulted in a high number
of similar works to follow with applications for focusing and imaging through turbid
media and biological tissue. In another approach, Sébastien Popoff et al. demonstrated
the acquisition of the optical transmission matrix of a scattering sample in 2010 [24].
The transmission matrix describes the linear dependence of scattered light on the beam
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which is incident to the sample, similar to the transfer function. The approach allows
to investigate the sample‘s scattering properties and has applications for focusing and
imaging with turbid media as well.

The combination of iterative wavefront shaping with optical coherence tomography
was initially demonstrated by Reto Fiolka et al. in 2012 [25]. The group demonstrated
the approach to be able to non-invasively focus light to small particles which are hidden
behind a scattering layer or behind biological tissue. First imaging applications were
demonstrated by Jaeduck Jang et al. in 2013 [26]. The group utilized an iterative
algorithm to optimize the wavefront at the sample beam of a spectral domain optical
coherence tomography (SD-OCT) system. The approach was shown to enhance the
amplitude of the detected OCT signal, and, in later works, the signal-to-noise ratio
(SNR) and the penetration depth when imaging scattering media and biological tissue
[27-29]. The technique requires a rather high number of signal acquisitions, on the other
hand, and is too slow for typical in-vivo imaging applications. In another approach,
Youngwoon Choi et al. presented the acquisition of the time-resolved reflection matrix
in 2013 [30]. Similar to the transmission matrix, the reflection matrix describes the
dependence of the time-of-flight gated backscattered field, which is the acquired OCT
signal, on the field which is applied to the sample beam. The reflection matrix can be
captured with a SD-OCT system and applications to selectively enhance the amplitude
of the detected OCT signal were demonstrated [30]. The technique is comparable to
iterative wavefront optimization but allows to significantly increase the acquisition speed.
Applications to depth-enhanced OCT imaging are not reported to date, though.

Previous works demonstrated wavefront shaping techniques to yield promising results
in the context of depth-enhanced OCT imaging with scattering media, for example
for non-invasive deep tissue diagnostics. On the other hand, publications are scarce
and a number of open questions on how the OCT signal is affected by the approach
remain. A system which is sufficiently fast for typical in-vivo imaging applications is
not yet demonstrated, as well. This work extends on the previous results and provides a
detailed literature survey to review the current state of the art. A compact experimental
design for wavefront modulation at the sample beam of a SD-OCT system is presented
which can be implemented with high-speed commercial systems. With this system,
a number of different wavefront shaping approaches, including iterative optimization,
phase conjugation based on the time-resolved reflection matrix and binary amplitude-
only (on/off) wavefront shaping, are investigated. Principal effects on the resulting OCT
signal are discussed. First imaging applications are shown to increase the contrast and
the penetration depth of the OCT signal when imaging biological tissue.

This work is structured as follows: Chapter 2 discusses principles and fundamentals
of time-domain and spectral domain optical coherence tomography as well as the impact
of scattering. The analytic discussion will be required for later chapters. Chapter 3
presents fundamentals of wavefront shaping techniques and closely related approaches.
Applications for focusing and imaging with strongly scattering media are reviewed.
Chapter 4 elaborates on the application of these approaches to focusing with broad-
band light sources and to OCT imaging. Techniques for depth enhanced OCT imaging
through wavefront shaping are discussed.



Chapters 5 to 9 present the main results achieved in this work. In Chapter 5 a com-
pact SD-OCT design is described which enables independent wavefront control at the
reference and at the sample beam, respectively. The setup is used for the experimental
part of this work and details about implementation, data processing and calibration
are given. Furthermore, an analytic model is presented to demonstrate how the de-
sign performs compared to a conventional OCT system. The model is supported by
numerical and experimental data. The focus of Chapter 6 is on optical coherence to-
mography combined with iterative wavefront optimization at the sample beam. The
approach is compared to sensorless adaptive optics, which is implemented with the same
experimental design, and is shown to locally enhance the amplitude of the OCT signal.
Chapter 7 discusses on a comparable approach which is based on the acquisition of
the time-resolved reflection matrix from the SD-OCT signal and on a phase conjugation
algorithm for subsequent wavefront optimization. The technique yields a substantial im-
provement in acquisition speed compared to the iterative approach. In Chapter 8 the
acquisition of the time-resolved reflection matrix and subsequent wavefront optimiza-
tion is demonstrated with binary amplitude-only beam shaping. Chapter 9 presents
first imaging applications of phase conjugation with the time-resolved reflection ma-
trix. A final critical review of the techniques demonstrated in this work is presented in
Chapter 10. Potential applications and approaches to further enhance the performance
aiming towards in-vivo imaging are discussed.






2 Principles of optical coherence
tomography

Optical coherence tomography (OCT) enables non-invasive label-free three-dimensional
imaging with microscopic resolution. The technique is closely related to white light and
low coherence interferometry as well as to optical coherence domain reflectometry which
was originally developed to locate defects in optical fibres [31, 32] and soon proved to
be feasible for biomedical imaging [33, 34]. The group of James Fujimoto presented
the first OCT system for imaging of ez-vivo biological tissue in 1991 [1]. First in-vivo
imaging applications were presented in 1993 independently by Fercher et al. [35] and by
Swanson et al. [36]. OCT systems were found to be well-suited for ophthalmic diagnos-
tics. Features of interest, such as the human retina, are rather thin and obstructed by
transparent structures of the eye only. The first commercial ophthalmic OCT system
was released in 1996 (Stratus, Humphrey Systems, now Carl Zeiss Meditec, Germany)
[2]. The utilization of near-infrared light sources centred at 1300 nm enabled OCT imag-
ing with thick biological tissue due to weaker scattering compared to 800 nm sources,
which are used for ophthalmic OCT devices, and brought the technique to other clinical
fields [37-39]. Since those early applications, OCT systems underwent major technolog-
ical advancements resulting from novel light sources, improved detectors and detection
schemes as well as enhanced data processing algorithms and extensions for functional
imaging. OCT has become a major diagnostic tool for ophthalmology [2-4]. Further
applications include dermatological [9-12] or dental diagnostics [13, 14] to just name a
few. The implementation of endoscopic OCT probes enabled gastrointestinal [5, 6] and
intravascular [7, 8] imaging. Functional extensions include spectroscopic OCT which en-
ables three dimensional imaging while yielding additional spectroscopic information of
the sample [17-19] as well as angiographic OCT which allows to quantify the perfusion
of living tissue non-invasively [20-22].

2.1 Time-domain optical coherence tomography

OCT is based on the interference of broadband light which allows to determine the time-
of-flight or the optical path length distribution of the electromagnetic wave reflected at
a sample. Typically, OCT systems use point-wise sample illumination, i.e. the beam is
focused at the sample similar to confocal microscopy. The reflected beam is collected
by the imaging optics and superimposed with a static reference beam which has a well-
known optical path length. A sensor detects the intensity of the superimposed reference
and sample beam. Interference is detected only in case the optical path length difference
of both beams is smaller than the coherence length of the light source. Scanning the
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z=ct/2 I scanning reference mirror
Er(t+7)
sample
source
Esc(t) Es(t)

[Er(t+7) + Es(t)]

detector

Figure 2.1: Principle of optical coherence tomography The technique is compara-
ble to a Michelson interferometer with the sample placed at one interferom-
eter arm. Scanning the length of the reference arm allows to determine the
time-of-flight of the beam which is backscattered from the sample. Variables
are discussed in the text body.

length of the reference arm while observing the amplitude of the interference signal,
hence, allows to determine the time-of-flight or the optical path length at the sample
beam, which corresponds to the distance between the reflection site and the OCT system.
Most samples are partially transparent and light reflected from sub-surface layers of
the sample can be detected as well. Point-wise sample illumination, thus, yields the
sample‘s depth-resolved reflectivity profile parallel to the beam axis. This signal is
termed A-scan analogue to ultrasonic imaging. Laterally scanning the sample beam in
one direction yields a cross-sectional image perpendicular to the sample surface, termed
B-scan. The position of the sample surface as well as the sample‘s internal structure can
be determined from this signal, for example. Lateral scanning in two direction yields a
three-dimensional volume scan.

The principle of optical coherence tomography is well-understood by considering a
Michelson interferometer with the sample placed at one interferometer arm (Fig. 2.1).
The beam incident to the interferometer is described by it’s electric field Eg,., which is
coupled to the magnetic field through Maxwell‘s equations. Considering one-dimensional
propagation parallel to the optical axis and neglecting polarisation effects, the field can
be described by a superposition of plane waves with angular frequency w, wavenumber
k and spectrum s(w) [40]:

Ego( 1) = R{Ege(, 1)} (2.1)

Ege(Z ) = /0 s(w)e’*= =9 gy (2.2)

2" and t yield the axial and temporal coordinates, respectively. In case linear operations
are considered only, it is valid to describe the source beam by it‘s analytic field Eg,..(2',t)
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[40]. The intensity of the electromagnetic field is proportional to <]E5rc]2> with angle
brackets denoting temporal averaging [40].

The incident field ;.. is divided at the beamsplitter, reflected at the two interferom-
eter arms, recombined and detected. The field in the plane of the detector, thus, reads
Er(t) + Es(t), where Er describes the field returned from the reference arm and Eg
the field returned from the sample. Displacing the reference mirror by the distance z
increases the length of the reference arm and introduces an additional temporal delay
T = 2z/c to the reflected reference beam. The intensity of the superimposed beams
reads at the detector [40-43]:

I"™P (1) o« (|ER (t+T + Es()]?)

(B + (Es(®)) + 2R{Trs(r)} 23

The first two terms correspond to the intensity returned from the reference and sample
beam, respectively. The third term yields the interference of the two beams which is
described by the real part of the field cross-correlation I'rg(7), which is also termed
cross coherence or mutual coherence function [40, 41, 44, 45]:

I'rs(m) = (Er(t + 7)E5(1))
Irs(7) = I'sp(=T)

2.1.1 Axial ranging

In this Section, the cross-correlation I'rg(7) is shown to reflect the time-of-flight dis-
tribution of the backscattered sample beam. The effect allows to determine the axial
position of backscattering sample features and, thus, enables three dimensional imaging.

We consider the field of the source beam to read Fg..(t) at a single plane (fixed
coordinate 2’) in front of the interferometer. Within the presented one dimensional
model, the field Er(t), which is reflected from the reference arm and which is observed
at the detector, is temporally delayed by tgr = 21r/c compared to the source field. g
is the length of the reference arm and tr yields the corresponding (double-pass) time-
of-flight. Assuming a 50:50 intensity splitting ratio for the beam splitter, the reference
field reads at the detector:

ER(t) = %TREsrc(t + tR) (26)

The factor rr describes the amplitude reflectivity of the reference mirror.

In a similar way we may consider a one dimensional sample featuring N reflective
layers which are displaced by the distance I, from the beamsplitter, respectively [46].
The number n corresponds to the layer index. The field reflected from the sample, thus,
reads:

N
1
= 5 E TsnESTc(t =+ tsn) (27)
n=1
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The factor rg, describes the amplitude reflectivity of the individual sample layers.
tsn = 2lsp/c yields the temporal delay corresponding to the individual reflections. For
the sake of simplicity a uniform sample refractive index is assumed.

The field cross-correlation resulting from interference of the reference and sample beam
reads:

N
1
Lrs(r) = 1R > 1t (Bare(t + 7+ tr) Elyo(t + ton)) (2.8)
n=1
1 N
= Tyre(T) ® 47~Rn§_:1 7% 8(7 — (tsn — tR)) (2.9)

Lsre(7) yields the autocorrelation of the source field FEg,.(t) which is also termed
(temporal) coherence or self coherence function [40, 44]. The field autocorrelation is
calculated similar to the cross-correlation (Eq. 2.4). (1) describes the delta distribution,
the operator ® indicates convolution with respect to the temporal coordinate 7.

Equation 2.9 reveals the capability of optical coherence tomography for axial ranging.
The cross-correlation I'pg(7) features signal peaks which are centred at 7 = tg, —tr and
which are scaled by |rg,|. The peak position, thus, reflects the time-of-flight ts, which
corresponds to backscattering at the individual sample layers subtracted by the time-
of-flight tr of the reference beam. The peak amplitude corresponds to the reflectivity
of the respective sample layers. The shape and the width of the peaks, and hence the
temporal resolution, is described by the coherence function I'g..(7) of the light source.

The time-of-flight directly relates to the single-pass optical path length z = c7/2.
Neglecting the effects of multiple scattering, the penetration depth of light into the
sample, and hence the physical position of backscattering layers, can be determined
from the optical path length and from the sample‘s refractive index profile. The OCT
signal, hence, typically is illustrated in terms of the path length scale z rather than in
terms of the time-of-flight .

2.1.2 Axial resolution and impact of spectral bandwidth

The coherence function of the light source is determined by it’s spectrum. According to
the Wiener Khinich theorem, the power spectral density and the field autocorrelation,
which is the self coherence function I's..(7), form a Fourier transform pair [44-47]. The
coherence function, thus, is found from the inverse Fourier transform (IFT) of the source
power spectral density S(w) = |s(w)|? (compare Eq. 2.2):

Fsrc(7_> = 2171'/ S(w)eth dw (210)

Assuming a Gaussian source spectrum centred at wg, with spectral bandwidth A,
and with total (spectrally integrated) power Sy, the corresponding coherence function is
found to be Gaussian, as well [46, 48]:
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The temporal width of the coherence function, thus, reads A; = 1/A,,. The correspond-
ing full width at half maximum (FWHM) reads AIWHM = 8n(2)/AFWHM  Typically,
it is more convenient to determine the spectrum of the light source in terms of the wave-
length A, though. Assuming the source central wavelength to be Ay, the FWHM of the
coherence function reads [43, 49]:

4In(2) N2
FWHM 0
Ar - 7e AfWHM (2.13)

In general, a large source spectral bandwidth yields a sharply peaked coherence func-
tion and, hence, in a high temporal resolution of the OCT system.

2.1.3 Imaging

Figure 2.2(a) illustrates a schematic time domain optical coherence tomography (TD-OCT)
system which is similar to the previous model (Fig. 2.1). TD-OCT systems capture the
intensity of the superimposed reference and sample beam at a point detector while scan-
ning the length z or the temporal delay 7 = 2 z/c at the reference beam. A full scan
yields a single depth scan, also termed A-scan, at the point at which the sample is
illuminated.

Figure 2.2(b) illustrates the A-scan signal which is expected with a layered sample
according to the previous discussion. The signal features a constant offset which corre-
sponds to the summed intensities of the reference and sample beam and which results
from the incoherent superposition of both beams (Eq. 2.3). Rapidly oscillating signal
peaks are observed in case the time-of-flight at the reference beam matches the time-of-
flight which is corresponding to a reflection at the sample (compare Eq. 2.9 ). Speaking
in terms of reference mirror displacement, signal peaks are observed in case the length
of the reference arm matches the distance between the OCT system and the reflecting
sample layer. The mirror displacement z, hence, directly corresponds to the optical
path-length scale of the OCT scan.

The envelope of the interference peaks is described by the normalized source coherence
function |I's.c(7)|. The axial resolution of the TD-OCT system hence corresponds to the
FWHM of these peaks. In terms of the mirror displacement z, this value reads (compare
Eq. 2.13) [43, 49]:

N (2.14)

The A-scan, i.e. the sample‘s axial reflectivity profile, is acquired from the envelope
of the TD-OCT signal. This quantity is experimentally accessibly by rectifying and
low-pass filtering the AC signal (Fig. 2.2(b)), for example.
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Figure 2.2: Axial ranging with time-domain OCT (a) Schematic interferometer
setup. (b) Expected TD-OCT signal in terms of temporal delay 7 at the
reference arm or in terms of mirror displacement z. A rapidly oscillating
interference signal is observed whenever the total reference arm length Ip + 2
matches the path length [, corresponding to a reflection at the sample.

A schematic of a typical OCT setup for imaging applications is illustrated in Fig. 2.3.
Most OCT designs employ fibre optic components due to their compactness and high
optical stability compared to free space designs [46]. An interferometric detection scheme
equivalent to a Michelson interferometer can be created with a single two by two fibre
optic coupler (Fig. 2.3). A low numerical aperture (NA) objective lens is used to focus
the sample beam at the specimen. Scanning the length of the reference arm yields
the sample‘s depth-resolved reflectivity profile at the point of illumination. Additional
mirror scanners allow to displace the sample beam laterally to acquire multiple depth
profiles at different positions. Lateral beam scanning in one direction, hence, yields
cross-sectional sample images, scanning in two directions yields volume images.

The lateral resolution of the OCT system depends on the beam size at the sample. The
sample beam optics can be treated similar to a confocal setup, with the confocal pinhole
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Figure 2.3: Principle of OCT imaging Most practical OCT systems are based on fibre
optic interferometers. A set of scanning mirrors allows to scan the sample
beam laterally to enable cross-sectional and volume imaging.

created by the optical fibre (Fig. 2.3) [46]. For such a system the lateral resolution
AFWHM yeads [46]:

A
AFWHM _ 37 20 2.1
: 0.37% (2.15)

The number corresponds to the intensity FWHM which is detected from
a point reflector placed in the focal plane of the objective lens in case the sample is

FWHM
Aw

laterally scanned.

The depth of field (DOF) describes the axial range at which the sample beam remains
tightly focused. The DOF depends on the Rayleigh length of the sample beam and,
hence, becomes smaller in case the sample beam is more tightly focused. With most
OCT systems, low NA objective lenses are used to achieve a large DOF. Axial imaging
is performed by scanning the reference mirror over distances of several millimetres. A
large DOF, hence, is required to maintain a comparable lateral resolution and sensitivity
at the full axial field of view (FOV) of the OCT system. In case a low NA objective lens is
used, the impact of the imaging optics on the axial sensitivity of the OCT system can be
neglected. The axial resolution, hence, is dominated by the width of the source coherence
function Ty, only (Sec. 2.1.2). In contrast to conventional optical imaging approaches,
the lateral and axial resolution of OCT systems, thus, can be tuned independently.

2.2 Fourier-domain optical coherence tomography

The cross-correlation with a well-defined reference field yields the time-of-flight of the
sample beam and, in turn, enables non-invasive sub-surface imaging (Sec. 2.1.1). TD-OCT
systems acquire the cross-correlation by scanning the length (or the temporal delay) of
the reference beam and by capturing the intensity of the superimposed fields with a
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scalar detector (Eq. 2.3). The field cross-correlation closely relates to the power spectral
density of the superimposed beams, on the other hand. A signal which is equivalent to
the TD-OCT A-scan hence can be calculated from the spectrum without mechanically
scanning the reference arm, as well.

Two different approaches established to acquire the power spectral density for OCT
imaging practically. Spectral domain optical coherence tomography (SD-OCT) systems
utilize broadband light sources, which are used for TD-OCT systems as well, and replace
the scalar detector of the TD-OCT system with an imaging spectrograph consisting of
a spectrometer and a high-speed camera. A single camera frame yields a full spectrum
from which the A-scan signal is calculated. High-speed and high-sensitivity cameras
are required to enable high A-scan rates, though. In an alternative approach termed
swept source optical coherence tomography (SS-OCT), the spectral raw data can be
acquired sequentially by using a wavelength scanning laser and a scalar detector such
as a photodiode. A single wavelength sweep yields the raw spectral data which is used
to calculate the A-scan. SS-OCT systems allow to use high-sensitivity scalar (point)
detectors as well laser sources which feature a high instantaneous power. High-speed
wavelength scanning sources are required to achieve frame rates which are sufficiently
fast for real-time OCT imaging. Data processing is similar for SD-OCT and SS-OCT
systems. Both techniques calculate the time-domain A-scan signal from the inverse
Fourier transform of the spectral raw data and, hence, are described by the more general
term Fourier domain optical coherence tomography (FD-OCT). This term is used in this
Chapter unless the discussion explicitly applies to SD or SS-OCT systems only.

Adolf Fercher et al. presented the first SD-OCT system in 1995 and demonstrated
the approach to be able to determine the intraocular distances of model eyes [50]. The
first SS-OCT system was presented in 1997 by Stephen Chinn et al. [51]. First in-vivo
SD-OCT ocular imaging was demonstrated 2002 by Wojtkowski et al. and proved the
imaging capability of the technique to be similar to TD-OCT systems [52]. FD-OCT ap-
proaches were largely unnoticed, however, until three independent groups demonstrated
the technique to yield a superior SNR compared to TD-OCT systems in 2003 [53-55].
This discovery triggered a push in OCT development and resulted in most contemporary
OCT systems to be based on Fourier domain techniques. The experimental device which
is developed in this work is based on a SD-OCT system, as well. This Section discusses
principles and fundamentals.

2.2.1 Axial ranging and image artefacts

Most of the considerations which are presented in Sec. 2.1 for TD-OCT devices hold
for FD-OCT systems, as well. The major difference is the way the A-scan signal is
acquired. In contrast to TD-OCT systems, the reference arm is kept static with fixed
arm length [ or fixed temporal delay tp (compare Sec. 2.1.1 and Fig. 2.2). The scalar
intensity detector is replaced with a sensor which captures the power spectral density of
the superimposed reference and sample beam. This data reads:

12
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Figure 2.4: Axial ranging with Fourier domain OCT. (a) Raw power spectral den-
sity acquired with a FD-OCT system. Fringes are observed due to interfer-
ence of the reference and sample beam. (b) Amplitude of the FD-OCT signal
which is calculated from the inverse Fourier transform of Panel (a). Signal
contributions according to Eq. 2.17 are labelled. Compare to Fig. 2.2.

5P (w) = (| Eg(w) + Bs(w)[?)

2.16
= (|Er(w)*) + (| Es(w)*) + (Br(W)E5(w)) + (ER(w)Es(w)) (210

The terms Er and Eg correspond to the fields backscattered from the reference and
sample beam, respectively. The first two terms, hence, describe the respective power
spectral densities. The third and fourth term yield the cross power spectral densities of
both beams. The time domain signal I°”(7), which corresponds to a single A-scan, is
calculated from the inverse Fourier transform of the spectral data I°P(w). According to
the Wiener Khinchin theorem (compare Eq. 2.10) this signal yields the autocorrelation
of the superimposed fields [Er(t) + Eg(t)], which reads:

ISD(T) _ Ffl {ISD(OJ)}

(2.17)
=Tgrr(7) + Tss(r) + Trs(r) + Tsr(7)

The terms I'rr and I'sg describe the autocorrelation of the reference and sample
beam, respectively. I'sg and I'gg yield the cross-correlation of both beams according to
Eq. 2.4.

Often times it is more convenient to acquire the spectral signal in terms of the
wavenumber k = w/c. The IFT of this signal directly yields the SD-OCT signal in
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2 Principles of optical coherence tomography

terms of the (double-pass) optical path length 2’ = ¢7. The single-pass path length
z = 2'/2, which relates to the physical dimensions of the sample, corresponds to half
that number (compare Sec. 2.1.1).

Figure 2.4 illustrates the amplitude of the SD-OCT signal which is expected for the
same layered sample which was previously considered to illustrate the TD-OCT signal
(Fig. 2.2(b)). Contributions from individual signal components (Eq. 2.17) are labelled.
The term I'pg(7) corresponds the cross-correlation of the reference and sample beam and
is termed mutual interference signal in this work. According to the previous discussion
which was given for the TD-OCT signal, I'gs(7) features signal peaks which are centred
at tsy, — tr (Sec. 2.1.1), where tg, is the time-of-flight corresponding to reflections at
different sample layers and tg is the time-of-flight of the (static) reference beam. The
mutual interference signal yields signal peaks which correspond to the axial position
of backscattering sample layers shifted by the length of the reference arm (compare
Sec. 2.1.1). The axial zero position of the SD-OCT signal, hence, corresponds to the
length of the static reference beam projected on the sample beam. The peak width,
i.e. the axial resolution of the OCT system, is determined by the coherence function of
the light source (Eq. 2.9) which depends on the source bandwidth (Sec. 2.1.2).

According to the definition of the cross-correlation, the fourth term in Eq. 2.17 reads
I'sr(T) = I'kg(—7) (Eq. 2.5). The term I'sg(7), hence, yields a copy of the mutual
interference signal which is mirrored with respect to the temporal axis, i.e. with respect
to the axial scale of the OCT image, and which is complex conjugated. This signal
arises from the SD-OCT signal being Hermitian symmetric as a consequence of the raw
spectral data being real valued. T'sr(7) is termed mirror artefact in this work.

The terms I'rr(7) and T'gg(7) yield the autocorrelation of the reference and sample
beam, respectively. Analogue to the discussion given for the mutual interference signal
(Sec. 2.1.1), in terms of the one dimensional model these signal components are found
to read [46]:

FRR( ) + FSS( ) = Fsrc(

(2.18)

(|7"R|2 + Z |rsn|2>
N N
FY N et (7 — (tow — tsn))]

n=1 n/=1
n!

The autocorrelation signal yields a peak, termed DC signal, at 7 = 0 which is pro-
portional to the source coherence function I's..(7) and to the total reflectivity of the
reference and the sample arm [46]. If multiple reflections occur at different depth-layers
of the sample, additional signals arise from mutual interference of these signals. These
signal contributions are termed autocorrelation artefacts. The axial position at which
these signal components are detected within the OCT scan correspond to the respec-
tive time-of-flight difference tg,» — ts,, where tg, is the time-of-flight associated with the
reflection at the n-th sample layer.
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2.2 Fourier-domain OCT

In contrast to TD-OCT systems, which capture a real-valued intensity signal (Eq. 2.3),
the signal captured with FD-OCT systems is complex-valued. The magnitude |7 ()| of
the complex-valued FD-OCT signal can be understood to reflect the visibility of fringes
which are observed in the raw spectral data (Fig. 2.4). The signal phase arg(I°P (7))
reflects the spectral offset of these fringes. As is evident from the definition of the cross-
correlation (Eq. 2.4), the phase of the mutual interference signal directly relates to the
phase of the complex-conjugated sample beam field. The effect allows to recover the
phase of the backscattered sample beam from the SD-OCT signal and is discussed in
Chap. 7 in detail.

The experimentally detected power spectral density is necessarily real-valued. The
FD-OCT signal which is acquired from the inverse Fourier transform of this data, hence,
is Hermitian symmetric. Furthermore, the IFT of the spectral raw data yields the
autocorrelation of the superimposed reference and sample beam rather than the cross
correlation of both fields. As a consequence, compared to TD-OCT systems additional
image artefacts result (Eq. 2.17), but only the mutual interference signal I'rg(7) reflects
the time-of-flight distribution of the sample beam which yields a depth-resolved image
of the sample.

DC and autocorrelation signals typically are detected close to 7 = 0 and do not depend
on the length of the reference beam (Eq. 2.18). The axial position at which mutual
interference and mirror signals are detected is affected by the reference arm length, on
the other hand (Eq. 2.9). The axial zero position of the OCT signal corresponds to
the length of the reference beam projected on the sample beam. In case the length of
the reference arm is changed, mutual interference and mirror signals shift to opposite
directions. As a consequence, the reference arm length typically can be aligned such
that the mutual interference signal does not overlap with image artefacts, which allows
to obtain an unambiguous image from the sample. The effect is further illustrated in
the following Section.

2.2.2 Imaging

Imaging is performed with FD-OCT systems in the same way as with TD-OCT systems.
The sample beam is focused to the specimen and laterally scanned (Fig. 2.3). An A-scan
is taken at each lateral position and yields the sample‘s depth-profile at the respective
point of illumination. Cross sectional or volume images can be constructed from multiple
depth-profiles.

In contrast to TD-OCT systems, the respective A-scans are acquired by capturing the
power spectral density of the sample beam superimposed with the static reference beam,
rather than by mechanically scanning the length of the reference beam and capturing
the intensity of the superimposed fields. The axial FOV, thus, is not determined by the
length over which the reference mirror can be displaced, but by the spectral resolution
of the OCT system. The effect is discussed in Sec. 2.2.4 in detail. Similar to TD-OCT
systems, the axial and lateral resolution of FD-OCT devices depends on the bandwidth of
the light source (Sec. 2.1.2) and on the NA of the imaging optics (Sec. 2.1.3), respectively.

Practical imaging is demonstrated with a commercial SD-OCT system (Telesto I,
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Thorlabs, United States). Figure 2.5(a) illustrates a B-scan which is acquired from
an OCT resolution test target (APL-OP01, Arden Photonics, United Kingdom) which
features multiple reflecting lines engraved to a glass substrate at different depths. The
B-scan consists of 1000 individual A-scans which are taken while incrementing the lateral
position of the sample beam by 5 pm, respectively. Each column of the B-Scan corre-
sponds to the amplitude profile of a single A-scan. Figure 2.5(b) illustrates a B-scan
which is received from a roll of transparent adhesive tape.

The individual components of the OCT signal are labelled in Fig. 2.5 according to the
previous discussion. The DC signal is observed at z = 0. Typically, the amplitude of
the DC artefact exceeds the amplitude of the other signal components by far. The DC
artefact is hardly visible in the scans presented in Fig. 2.5, however, since this artefact
can effectively be suppressed by determining the OCT signal once without a sample
present and subtracting this signal from the subsequent OCT scans. The approach is
enabled with the commercial OCT system by default.

Autocorrelation artefacts (AC) correspond to mutual interference of multiple reflec-
tions at different layers of the sample. The path length at which the signal is detected,
hence, depends on the path length difference of the interfering beams, which is deter-
mined by the internal sample structure and which is close to zero for thin samples. The
sample presented in Fig. 2.5(b) features a curved surface, but the layer thickness is ho-
mogeneous. As a consequence, autocorrelation artefacts appear as multiple parallel lines
which are detected at constant path lengths z, respectively. Autocorrelation artefacts
do not depend on the length of the reference beam and are not affected if the reference
mirror is moved.

The sample’s mutual interference signal is detected at depths beyond 1 mm for the
scans presented in Fig. 2.5. This signal component accurately reflects the sample‘s three
dimensional structure. The absolute axial position at which the mutual interference
signal is observed depends on the path length difference between the sample and the
static reference beam. Hence, the three dimensional shape of the sample surface as well
as the internal structure can be determined from the OCT signal. For the presented
data, the reference beam is chosen to be approximately 1 mm shorter compared to the
sample beam. As a consequence, the OCT signal corresponding to the reflection at the
sample surface is detected at this depth. The tilt of the sample presented in Fig. 2.5(a)
as well as the surface curvature of the sample presented in Panel (b) are evident from
the mutual interference signal. In case the length of the reference beam is reduced or
in case the sample is moved farther away from the OCT system, mutual interference
signals are shifted to larger path lengths z.

Due to the Hermitian symmetry of the OCT scan, the signal which is detected at
positive and at negative path lengths is equivalent. Typically, the signal detected at
negative depths hence can be neglected for imaging. An unambiguous image of the
sample is received in case the mutual interference signal does not overlap with image
artefacts or with it‘s mirror image. This can be achieved by changing the length of the
reference arm to shift the axial position of the mutual interference signal.
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Figure 2.5: SD-OCT imaging and image artefacts. B-scan taken with a commercial
SD-OCT system at (a) an OCT resolution test target and (b) at an adhesive
tape roll. Individual signal components are labelled according to the previous
discussion (compare Fig. 2.4). Scalebar 1 mm.

2.2.3 Phase shifting approaches

Due to the finite spectral resolution, FD-OCT systems are most sensitive to signals
which are detected close to z = 0. The effect is discussed in Sec. 2.2.4 in detail. At this
axial position, DC and autocorrelation artefacts are observed, on the other hand, and the
mutual interference signal hence needs to be shifted to larger path lengths to not overlap
with image artefacts. Furthermore, due to the Hermitian symmetry of the OCT scan,
signals detected at positive and at negative depths are equivalent. The unambiguous
OCT scan, thus, is limited to the positive depth range only and the axial field of view is
limited to half the FOV which is actually accessibly with the OCT system. Suppressing
DC, autocorrelation and mirror artefacts greatly increase the image quality and allows
to use the full axial FOV.

Fercher et al. first demonstrated the suppression of SD-OCT image artefacts in 1999
by sequentially acquiring multiple OCT signals while manipulating the phase difference
between the reference and sample beam [56]. A number of groups picked up that ap-
proach and presented improved algorithms [52, 57-60] as well as techniques which allow
to acquire multiple phase-shifted OCT signals in parallel [60-62]. In addition to sup-
pressing image artefacts, phase shifting techniques were further found to enhance the
SNR of the OCT signal [52, 57, 58, 60-62].

Phase shifting approaches are based on the acquisition of multiple OCT signals I g D (1)
taken with a varying phase difference ¢ between the interferometer arms. Considering
phase manipulation at the reference beam, for example by mounting the reference mirror
to a piezoelectric actuator, the effect on the SD-OCT signal is found from Eq. 2.17 and
from the definition of the cross-correlation (Eq. 2.4):

IgD(T) = FRR(T) + Fss(’l') + FRs(T)ew + FSR<7‘)€_i¢ (2.19)

Mutual interference signals and mirror artefacts depend linearly on the relative phase

17



2 Principles of optical coherence tomography

m
©
(c) P
. e)
! mirror i 2
E ‘1] [] LTLILRR] ) E.
E W AC E
~ (0]
N kit i
<
k)
c
(a) o [ ] DC
e
X ©
(]
0] O
e @ O . \ AC e e
B3 o
wreeeenes 2 mutual Y iR mutual
Az =109 Hm ¢ (2 (T ITHL
Ax=12-21pm 0 02 0 02

X/ mm X/ mm X/ mm

Figure 2.6: Phase shifting approaches for SD-OCT imaging. (a) Structure of
the sample drawn to the same scale as the OCT images. (b) Conventional
SD-OCT signal taken at the sample. The individual signal components are
labelled according to the previous discussion. (c) Signal captured with a
two-step phase shifting algorithm (Eq. 2.20). (d) Signal captured with a
four-step phase shifting algorithm (Eq. 2.21).

difference ¢ between the reference and sample beam, but show an opposite behaviour.
DC and autocorrelation artefacts remain static.

A simple differential algorithm allows to eliminate DC and autocorrelation artefacts
(Trr(7)+Tss(7)) from two successive OCT scans which are taken with a relative phase
shift of 7 applied to the reference beam [52]:

1
S S S
12£ep(7) = 5 [IOD(T) - IﬂD(T)]
=T'rs(7) + T'sr(7)
This algorithm was demonstrated, in fact, in 2002 with the very first in-vivo applica-
tion of SD-OCT imaging [52].
The acquisition of multiple signals with at least one non-complementary phase shift

applied allows to additionally suppress mirror artefacts. A simple four-step phase shifting
algorithm, for example, reads [46, 57]:

(2.20)

18.,(r) = 1 [570) ~ 132() — i (15R(r) — 155a())]

=T'gs(7)

(2.21)
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The impact of phase shifting approaches is demonstrated in Fig. 2.6. Panel (a) illus-
trates the structure of group two of the OCT resolution test target whose B-scan with
a commercial device is presented in Fig. 2.5(a). Panel (b) presents a B-scan which is
taken at the sample with the SD-OCT system developed in this work. In contrast to
the previous acquisition, the length of the reference arm is chosen such that autocorrela-
tion and mutual interference signals overlap. The structure of the sample, thus, cannot
easily be identified from the OCT signal. Figure 2.6(c) illustrates the impact of the
differential two step algorithm (Eq. 2.20) on the OCT scan. DC and autocorrelation
artefacts are suppressed. Figure 2.6(d) illustrates the image which is acquired with the
four step algorithm (Eq. 2.21). All image artefacts except the mutual interference signal
are suppressed.

2.2.4 Practical aspects of spectral-domain OCT
Spectral resolution and axial sensitivity

Practical FD-OCT systems feature a finite spectral resolution. For SD-OCT devices
this number is determined by the optical resolution of the spectrograph and by the
pixel size of the connected camera. For SS-OCT devices the resolution depends on the
instantaneous linewidth of the light source and on the temporal integration time of the
detector. The finite resolution causes fine spectral features to be smoothed and, hence,
reduces the visibility of high-frequency spectral fringes. These features relate to OCT
signals which are detected at large temporal delays 7 or at large optical path length
differences z, on the other hand. The sensitivity of FD-OCT systems, hence, is observed
to drop along the axial direction and is highest for low-frequency spectral fringes which
correspond to sample features detected close to z = 0. This effect adds up with the axial
signal drop due to the imaging optics, whose detection sensitivity is highest close to the
focal plane [46].

The spectral resolution of FD-OCT systems can be characterized by a spectral point

spread function (PSF). The experimentally determined spectral raw data If;f; (w) cor-
responds to the convolution of the true spectrum I°P(w) with the PSF:
I5D(w) = PSF(w) ® I°P (w) (2.22)

The OCT signal is calculated from the IFT of the spectral raw data. According to
the convolution theorem, this signal reads:

I3P(1) = FYH{PSF(w)} I°P(7) (2.23)

exrp

Compared to the previous theoretical discussion, an additional term arises which is
multiplied with the (ideal) A-scan signal I°P (7). This term corresponds to the IFT of
the spectral PSF and describes the axial sensitivity loss of the OCT system due to the
finite spectral resolution.

For a quantitative discussion it is more convenient to evaluate the spectral data in
terms of the wavenumber k = w/c and the resulting OCT signal in terms of the single-
pass optical path length z = ¢7/2. For SD-OCT systems, the PSF which describes the
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optical resolution of the spectrograph can be assumed to be a Gaussian function with
FWHM width 5Zpt [46]. The IFT of the PSF is proportional to ezp(—(ézpt)Q/(Zl n(2))),
which is another Gaussian function with half width at half maximum (HWHM) of
z34p = 21n(2) /577" [46]. The amplitude of the OCT signal which is detected at » = 2345,
hence, is reduced by 50 % compared to the signal which would be received if the same
sample feature was detected close to z = 0.

Furthermore, the finite pixel size of the spectrograph camera causes an additional
binning of the spectral raw data. This effect can be taken into account by convolving
the spectrum with a rectangular function with window size 6% [53]. The window size
corresponds to the spectral range which is covered by the individual camera pixels.
Analogue to the PSF of the spectrometer optics (Eq. 2.23), the effect on the A-scan signal
is described by multiplying the ideal OCT signal with the IFT of that function. This
term is found to be proportional to sinc(é,gmz /2). The practical impact is demonstrated
in Sec. 5.3.3 with the SD-OCT system developed in this work.

Discretisation and field-of-view

SD-OCT systems utilize fast digital cameras embedded to the spectrograph to acquire
the spectral raw data. The experimentally acquired data, thus, is discretized due to
the finite pixel size and finite pixel number. The OCT signal is calculated from the
inverse discrete Fourier transform (IDFT) of the digitized spectrum instead as from
the analytic inverse Fourier transform. The IDFT requires the spectral raw data to be
uniformly sampled with respect to the frequency scale w or the wavenumber scale k and
in turn yields a discrete time-domain signal, as well.

Considering the raw spectrum to be acquired at M points with uniform spectral
spacing d,, or di = d,/c, the A-scan calculated from the IDFT of the raw spectral
data has M discrete points, as well. The temporal spacing of the discrete OCT signal
reads d, = 2w /(Md,,) [46, 63, 64]. The spacing of the corresponding single pass optical
path length scale reads d, = cd,/2 = w/(Mdy). The axial FOV of the OCT system,
hence, is limited to the depth range between +z,,4; With 2,4, = Md, /2 = 7/(2dy) [46].
Furthermore, in contrast to the analytic IF'T, the OCT signal calculated from the IDFT
is periodic with respect to the total pixel count M or with respect to the total path
length range 2z,4, [63, 64]. This periodicity causes OCT signals which are detected
from reflections beyond the observable FOV (42z,,4,) to be wrapped back to this range
[53].

2.3 Imaging scattering biological tissue

Figure 2.7 illustrates a SD-OCT signal which is taken with a commercial device ( Telesto 11,
Thorlabs, United States) at a human fingernail and nailfold region. The scan features
a strong signal which corresponds to the reflection caused by the large refractive index
difference at the tissue-air interface. This signal allows to accurately determine the sam-
ple‘s surface topology based on the OCT signal. The signal amplitude which is received
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Figure 2.7: OCT image of the human fingernail and nailfold region (i) epidermis,
(ii) dermis, (iii) cuticle, (iv) nail plate, (v) nail matrix, (vi) nail bed. Labelled
according to [65].

from sub-surface sample features is expected to correspond to the respective backscatter-
ing probability. This value depends on the microscopic tissue structure and, thus, allows
to distinguish different tissue layers based on their OCT signal. Reflections from the
epidermis, the dermis, the nail plate and the nail bed cause quite different signals and
can be identified from the presented scan. The axial (depth-) scale of the OCT signal
reflects the optical path length travelled in the sample and, thus, allows to determine
the size of anatomical features, provided the tissue refractive index is known.

Obviously, the penetration depth of the OCT system is limited to approximately
1.5 mm with the presented data. This effect is evident by observing the signal received
from the nail plate. When the lateral scan position is moved towards the proximal end of
the finger, tissue layers covering the nail plate become thicker. The OCT signal which is
corresponding to the reflection at the nail plate drops below the noise floor and cannot be
observed any more. This work discusses the application of wavefront shaping approaches
to OCT imaging, ultimately to extend the SNR and penetration depth when imaging
in-vivo biological tissue. This Section briefly covers aspects of tissue optical properties
and factors determining the penetration depth of OCT systems.

2.3.1 Optical properties of biological tissue

Biological tissue is highly heterogeneous at length scales covering a few nanometres
up to several centimetres in case of macroscopic tissue structures. Light transmission
trough such a heterogeneous sample can be modelled at a principle level by considering a
medium with random refractive index fluctuations and solving the wave equations. The
approach, based on the extended Huygens-Fresnel principle, was originally developed to
describe optical propagation in the atmosphere [66, 67] and was later adopted to OCT
imaging with biological tissue [37, 68]. Random refractive index fluctuations were shown
to decrease the spatial coherence of the beam upon propagation through the medium
which, in turn, reduces the signal intensity detected with an OCT system [37, 67, 68].
A more intuitive approach approximates the biological medium with a number of
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2 Principles of optical coherence tomography

statistically distributed discrete scattering particles [69]. The macroscopic optical prop-
erties are determined by the particle size-distribution, the scattering probability which
depends on the scattering cross-section and on the particle density, and by the scattering
phase-function which determines the probability density distribution of the scattering
angle [69]. The model can easily be transferred to Monte Carlo simulations which en-
able quantitative numerical studies and allow an intuitive interpretation of the impact
of tissue optical properties on the OCT signal.

The scattering phase function is often written in terms of the Henyey-Greenstein
function which was found to fit the experimental data well for human skin, for example
[70, 71]. The Henyey-Greenstein function describes the angular probability density of
scattering events in terms of a single parameter g, termed scattering anisotropy, which
ranges from —1 (backscattering only) to 1 (forward scattering only). Most human tissue
is experimentally found to be predominantly forward-scattering with values of g greater
than 0.7 [71-73]. With increasing wavelength the scattering probability, often described
in terms of the scattering coefficient, is observed to drop and forward-scattering, i.e.
scattering at small deflection angles, becomes more dominant [73, 74].

The absorption of light, and hence the visual appearance of tissue, is determined by the
spectral absorption characteristics of individual chromophores and by the chromophore
concentration. Typically, the behaviour is dominated by the absorption of blood and
water [73] which are weakly absorbing in the spectral range from 600 nm to 1300 nm
[73, 75]. At near-infrared wavelengths the effects of scattering dominate over absorption.
Most OCT systems, thus, utilize light sources centred at 1300 nm due to weak absorption
and due to the decreased scattering probability at this wavelength.

2.3.2 Impact of scattering on OCT imaging

Early investigations on the impact of scattering assumed ideal discrimination of multiple
scattered light by OCT systems [76-78]. In case an opaque medium is placed in front
of the structure which is imaged, light which is scattered at the medium does not reach
the detection aperture of the OCT system. The model is illustrated in Fig. 2.8(a). The
OCT signal, hence, is expected to be proportional to the fraction of light which reaches
the sample structure without scattering. According to Beer‘s law this value is expected
to drop exponentially with increasing thickness of the scattering layer or with increasing
penetration depth in the medium [76].

Practical OCT systems have a finite acceptance angle and, hence, do detect light
which is scattered at small deflection angles (Fig. 2.8(b)) or which is randomly scattered
to the imaging system after multiple large-angle scattering events (Fig. 2.8(c)), on the
other hand. The single-scattering approximation, thus, was found to be valid at low
penetration depths and for large-angle scattering samples only [79, 80]. Signal contribu-
tions from multiple scattered light become more significant with increasing penetration
depth and cause the negative slope of the detected OCT signal to be less steep than
expected from Beer's law [68, 78-81].

An intuitive understanding of the impact of scattering on the OCT signal can be
taken from Monte Carlo studies which simulate the light distribution in the turbid
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(b)

Figure 2.8: Impact of scattering on OCT imaging. (a) Single scattered light is
detected only. (b) Multiple small-angle forward scattered light is detected.
(c) Multiple large-angle scattered light is detected.

medium by randomly propagating a high number of discrete particle-like photon packets.
Each photon packet undergoes a random walk which is determined by the sample‘s
macroscopic optical properties such as scattering probability and the phase function. The
OCT signal is simulated by recording the number of photons which are backscattered to
the finite detection aperture and by tracking the respective path lengths [79, 82, 83]. The
OCT signal which is detected at optical path lengths z can be divided in contributions
from photon packets whose penetration depth into the sample nearly matches their
path length (Fig. 2.8 Panels (a) and (b)) and in contributions from photon packets with
the same propagation length but which were scattered at shallower sample layers only
(Fig. 2.8(c)) [82, 83]. According to Wang et. al the former are termed least scattered
photons (LSP) and the latter multiple scattered photons (MSP) [83]. Obviously, MSP
signal contributions are not related to the morphology of the sample at the depth at
which the OCT signal is detected.

The penetration depth of OCT systems is determined by the rejection of MSP com-
pared to LSP signal contributions when imaging scattering media. The average number
of scattering events and the incident angle on the detector relative to the optical axis
were shown to be substantially lower for LSP compared to MSP [82, 83]. Thus, the
rejection of multiple scattered light and the penetration depth with scattering media
can be increased by choosing a low acceptance angle or low NA imaging optics [79].
Considering the optical properties of the sample, the penetration depth of OCT systems
is found to be increased with weakly scattering samples (low scattering coefficient) and
with predominantly forward scattering samples (high scattering anisotropy g) [79, 83].
The average number of scattering events is higher for MSP signal contributions and rises
with increasing penetration depth for the LSP as well as for the MSP signal [82, 83]. The
LSP signal which allows to image the sample morphology is found to correspond single-
scattered photon packets at low penetration depths only. With increasing penetration
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depth contributions from multiple small-angle scattered photons dominate [83].

An absolute number for the penetration depth of OCT systems with scattering media
is difficult to give. This value depends on a number of parameters such as the optical
properties of the sample, the dynamic range and the spectral resolution (Sec. 2.2.4) of
the OCT system, the imaging optics and the power and the shape of the illuminating
beam. With human skin the penetration depth typically is found to be in the range of
one to two millimetres for 1300 nm OCT systems [9, 11, 12].
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3 Principles of wavefront shaping

Scattering of light is a deterministic process at time scales at which the turbid medium
can be considered static. Knowledge of the sample‘s scattering properties or of the
distortions which are introduced to the optical beam while propagating through the
medium, hence, allows to counteract or even to harness the effects of scattering for
imaging applications. This Chapter explores principles and fundamentals of wavefront
shaping approaches, which enable focusing and imaging in turbid media by manipulating
the wavefront of the beam which is incident to the sample. Applications to optical
coherence tomography are discussed in Chap. 4.

3.1 Adaptive optics

Probably most contemporary devices which exploit active wavefront control for imaging
with optically inhomogeneous media are based on adaptive optics. The technique was
originally developed to enable diffraction limited detection and optical focusing in the
presence of turbulences and inhomogeneities of the atmosphere, for example for astro-
nomic and for military purposes [85, 86], and can be implemented for microscopic and
OCT imaging, as well [84, 87-91].

Adaptive optical systems actively control the beam which is backscattered from or
which is incident to the sample such that the effects of optical aberrations and scattering
are cancelled. Sensor based approaches require a point-like guide star located near the
object which is supposed to be imaged [85]. In case the medium between the object
and the imaging system is optically homogeneous, light detected from the guide star
can be described by a flat wave in the far field. Inhomogeneities of the medium cause
deformations from this ideal wavefront and, in turn, result in a loss of image quality.
Hartmann-Shack sensors or holographic techniques are used to detect the shape of the
wavefront which is emitted from the guide star after transmission through the turbid
medium. A wavefront shaping element such as a deformable mirror (DM) allows to
correct wavefront deformations and, hence, to obtain a diffraction limited signal from
the guide star with the imaging system. The wavefront correction is valid for light
sources located close to the guide star, too, and hence a diffraction limited image of the
vicinity of the guide star can be obtained, as well.

In another approach, the wavefront correction can be applied to a beam which is
incident to the sample to create a diffraction limited focal spot near the guide star
instead. In the context of optical coherence tomography this high-resolution imaging is
enabled since the sample can be scanned with a fine focal spot [84, 88, 90, 91]. Methods
to create artificial guide stars allow imaging at an arbitrarily chosen position in the
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Figure 3.1: Principle of closed-loop sensor based adaptive optics. Light emitted
from a point-like guide star is detected at a sensor which quantifies aberra-
tions of the wavefront. A closed-loop control is implemented to dynamically
correct deviations from the ideal (flat) wavefront with a wavefront shaping el-
ement such as a deformable mirror. The approach enables diffraction-limited
imaging in the vicinity of the guide star. Image adapted from [84]

sample. For retinal imaging, for example, a low-NA probe beam for which aberrations
at the anterior eye are negligible can be focused to the retina [84].

With strongly scattering samples such as opaque biological tissue it is not easily pos-
sible to create a guide star inside the medium, on the other hand. Some approaches are
discussed in Sec. 3.2.1. In case no guide star is available, methods for sensorless wave-
front correction can be implemented [87, 89]. The technique tries to find an optimal
wavefront correction which is applied by the DM and which cancels optical aberrations
by optimizing some metric of the signal acquired with the imaging system, for example
the total image intensity [87, 89]. The approach is similar to iterative wavefront shaping
which is discussed in Sec. 3.3.

A full review of adaptive optical systems is beyond the scope of this work. In general,
algorithms used for adaptive optics are tuned for fast wavefront optimization with weakly
scattering samples. This is achieved, for example, by estimating the corrective wavefront
from a low number of Zernike polynomials [85]. The effect of wavefront correction can
be understood by considering the optimized wavefront to counteract aberrations present
on the optical system. In contrast, the beam shaping algorithms which are discussed
in the remainder of this work are optimized for strongly scattering samples for which
adaptive wavefront optimization algorithms are not effective since deformations of the
scattered wave are highly heterogeneous, random-like, and may even exceed the spatial
resolution of the wavefront shaping element.
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3.2 Time reversal and phase conjugation

3.2 Time reversal and phase conjugation

Perhaps the most intuitive way to utilize wavefront shaping approaches to deal with
strongly scattering media is based on the time reversal symmetry of the wave equations.
Considering the beam which is incident to the turbid sample to be described by its
electric field Fg.c(z,y,t), the field which is detected at a receiver behind the sample is
described by the term E,.:(z,y,t). In case of monochromatic illumination a granular
(speckle) pattern is observed at the detector. With a pulsed or broadband source the
signal at the receiver is spatially and temporally blurred compared to the incident field.
The wave equations which determine the propagation of the electromagnetic field are
symmetric with respect to forward and backward travelling waves. Thus, illuminating
the sample back-surface with the time-reversed field E,,:(x,y, —t) causes the electromag-
netic wave to backtrack the propagation in the scattering sample and, thus, to recover
the shape of the initial source field Fg,..(z,y,t) at the sample front face after transmission
trough the medium (Fig. 3.2).

Time reversal experiments were initially demonstrated with acoustic waves which obey
wave equations equivalent to the electromagnetic field [92]. Ultrasonic transducers enable
temporal tracking of the instantaneous pressure wave and can be used both as a source
as well as a receiver. Constructing a time reversal mirror from an array of multiple
transducers hence allows to detect the scattered wave spatially and temporally resolved
and to directly play the time-reversed field back to the medium. In case a point source
in front of the sample is used, the time-reversed acoustic wave which is applied from the
other side of the sample creates a spatial focus at the position of the original source and
recovers the temporal profile of the source field after propagating through the scattering
layer [92, 93] (Fig. 3.2). The size of the focal spot was shown to correspond to the
lateral correlation length of the field which is scattered at the sample. This number can
be significantly smaller than the diffraction limited spot size which is corresponding to
the numerical aperture of the time reversal mirror's transducer array [92, 93|. Further
reports demonstrated a time reversal mirror which is consisting of a single transducer
element and which, hence, is capable of temporal beam shaping only to be sufficient for
temporal [93] and lateral [94] focusing of the scattered wave.

Time-reversal approaches cannot directly be translated to optical radiation since
present sensors are not able to temporally track the rapid oscillations of the electromag-
netic field. Holographic and interferometric methods allow to detect and to manipulate
the amplitude and phase of monochromatic electromagnetic waves, on the other hand.
In case of monochromatic radiation, phase conjugation is equivalent to time reversal.
The first application was demonstrated in 1966 by Emmett Leith and Juris Upatnieks
who recorded a hologram of an object hidden behind a scattering layer [95]. Utilizing
the hologram to apply the phase conjugated field to the backside of the scattering layer
was demonstrated to recover the object‘s image at it‘s original position at the other side
of the turbid medium [95]. In case the field emitted from a point source, i.e. a focused
laser beam or a small fluorescent particle, is holographically detected, the approach al-
lows to focus light to the position of this guide star by applying the phase conjugated
field to the other side of the turbid layer (Fig. 3.2). The technique, hence, is similar to
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Figure 3.2: Principle of time reversal and phase conjugation. The field emitted
from a (point) source is recorded after propagation through a scattering
sample. Applying the time-reversed or the phase conjugated field to the
backside of the sample corresponds to a reversal of propagation direction
and recovers the shape of the source field at the front side.

sensor based adaptive optics which requires a point-like guide star, as well (Sec. 3.1). In
2008, Yaqoob et al. demonstrated phase conjugation with a photorefractive crystal to be
feasible for focusing light through thick biological tissue [96]. Purely digital phase con-
jugation approaches were reported after 2010 and utilize interferometric techniques such
as phase shifting or off-axis interferometry to digitally record the phase of the scattered
field and spatial light modulators (SLMs) to create the phase-conjugated beam [97-100]
(Fig. 3.3). Recent reports demonstrated phase conjugation approaches to be sufficiently
fast to focus light through living biological tissue [101-103].

3.2.1 Imaging applications and the optical memory effect

Optical phase conjugation requires a point source or guide star placed behind the scat-
tering layer whose emission can be detected in front of the medium. Applying the phase
conjugated field to the specimen creates a focal spot at the position of the guide star.
In principle, this focus can be scanned for applications such as fluorescence imaging.
On the other hand, optical phase conjugation is highly sensitive to minor displacements
between the optical system and the scattering sample since the phase conjugated beam
adapts to the sample‘s microstructure. In case the sample is moved, the transmitted
field decorrelates and the focal spot is lost [96, 101]. Judkewitz et al. demonstrated
that predominantly forward scattering media allow to laterally shift the transmitted
field without immediately decorrelating by shifting the incident beam (shift/shift corre-
lations) [104]. The effect is valid for small lateral beam displacements only and allows
to scan the focal spot which is created through phase conjugation over a narrow field of
view. This FOV can be sufficient for imaging of microscopic sample structures such as
individual cells hidden behind the scattering layer [104-106] but, in general, is too small
to investigate macroscopic objects.
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Figure 3.3: Principle of digital optical phase conjugation. (a) Light emitted from
a point-like guide star is detected after transmission through the scattering
layer. In contrast to adaptive optics, high-resolution wavefront sensing tech-
niques such as phase shifting interferometry are used. (b) A SLM allows to
play the phase-conjugated wavefront back to the sample. A focal spot at the
position of the original guide star is created.

Hsieh et al. demonstrated scanning of the focal spot behind the scattering layer and
imaging by exploiting correlations of the scattered field known as the optical memory
effect [99]. In case the field incident to a thin turbid medium is tilted by a small angle, the
field which is scattered from the sample is tilted accordingly without fully decorrelating
(tilt/tilt correlations) [104, 107]. The effect allows to laterally shift the speckle field which
is observed behind the scattering medium or the focal spot created through optical phase
conjugation by tilting the beam incident to the sample. The effect is limited to narrow
tilt angles and to thin turbid layers, on the other hand. The lateral FOV over which
the beam can be effectively scanned before the scattered field decorrelates and the focal
spot is lost is proportional to the axial distance between the scattering layer and the
focal spot and inversely proportional to the thickness of the turbid medium [104, 108].
With biological samples, typically the FOV is limited to a few microns [105].

Imaging, hence, is limited to the close vicinity of guide stars whose emission can be
detected to find a phase conjugated wave. Non-invasive imaging is implemented by em-
bedding virtual guide stars, e.g. fluorescent particles, to the sample [109-111]. Those
markers may not distribute homogeneously in the sample, are subject to photobleaching
and may even be cytotoxic, on the other hand. Xu et al. presented a label free ap-
proach in 2011, termed time-reversed ultrasonically encoded optical focusing (TRUE).
The technique uses an ultrasonic transducer to create an acoustic focus in the sample.
Light scattered at this focus is frequency shifted due to interaction with the acoustic wave
and serves as a virtual point source embedded to the sample. The frequency shifted light
is backscattered to the optical system and recorded at a photorefractive crystal which,
in turn, allows to play back the phase conjugated field to the sample and to create an
optical focus at the position of the ultrasonic focus. The technique requires single-sided
sample access only and was shown to be sufficiently fast to be applied to living biologi-
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cal tissue [112]. The approach was demonstrated with holographic (analogue) [109, 112]
and with digital phase conjugation systems [113, 114]. A focal spot can be created at an
arbitrarily chosen target position, depending on the position of the ultrasonic focus. The
approach, hence, enables scanning of macroscopic sample structures for optical imaging
[113, 114].

3.3 Iterative wavefront shaping

Phase conjugation experiments demonstrate the possibility to create a focal spot from
scattered light, provided the correct phase pattern which accounts for scattering at the
medium is applied to the beam incident to the sample. For most practical applications a
point-like guide star embedded to the medium and coherent detection of the field emitted
from that source are not possible, though. Iterative wavefront shaping approaches enable
focusing through scattering media, as well, and require to probe the intensity of the
scattered field at the position of the supposed focal spot only.

3.3.1 Principles

In a seminal work, Ivo Vellekoop and Allard Mosk first demonstrated focusing through
turbid media by iteratively optimizing the shape of the wavefront incident to the sample
in 2007 [23]. The approach can be understood by considering the spatial light modu-
lator, which is used for wavefront manipulation, to be an array of sources illuminating
the sample (Fig. 3.4(a)). The phase and amplitude of the individual sources can be
controlled electronically, depending on the type of spatial light modulator used. In most
practical implementations liquid crystal on silicon (LCOS) devices are employed which
enable phase-only wavefront manipulation. Experiments with micro-electro-mechanical
systems (MEMS) such as DMs or digital micromirror devices (DMDs) are reported as
well are discussed in Sec. 3.3.4.

After transmission through the scattering medium the electromagnetic field features a
spatially fluctuating phase and amplitude pattern. The field observed at a detector array
behind the scattering medium corresponds to the linear superposition of contributions
emitted from the individual source elements, or SLM pixels (Fig. 3.4) [23]:

N
Bt =ty By (3.1)
n=1

The terms E2 and E%* correspond to the complex field amplitudes at the n-th source
and at the m-th detector element, respectively. ¢,,, is the sample’s complex-valued and
random-like transmission matrix which describes the linear relation between the incident
and the scattered field (compare for example [108]).

Considering a single detector pixel with index my, the field observed at this position
corresponds to a sum of complex numbers with random amplitude and random phase
(Eq. 3.1). Assuming the individual contributions to be statistically independent and the
phase to be uniformly distributed, the amplitude of the scattered field |Eﬁff| is expected
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Figure 3.4: Principle of the optical transmission matrix. (a) The beam incident
to a scattering sample is modulated by a spatial light modulator (SLM).
In case of monochromatic radiation a speckle pattern is observed behind the
sample. (b) The field reflected from the SLM is considered to be composed of
a number of independent sources indexed n. Since propagation in the sample
is linear, the field observed at the m-th detector pixel can be described based
on the incident field E;"¢ and the static and complex-valued transmission
matrix ¢y, (Eq. 3.1) [23].

to be Rayleigh distributed, which is the well-known behaviour for monochromatic laser
speckle [44]. In contrast, in case all contributions t,,, E:"¢ from the individual source
modes exactly match in phase, the field amplitude as well as the intensity \Efﬁffﬁ become
maximal. A high intensity, i.e. a focal spot, results at the target pixel m;, which can be
understood to be an effect of constructive interference of the scattered field.

The sample‘s transmission matrix t,,, is static, but the phase of the incident field
EP"¢ can experimentally be manipulated with the SLM. The optimized phase pattern
which is applied by the SLM is found by probing the intensity at the target position
my at which the focus is supposed to be created and by iteratively optimizing the phase
pattern such that the intensity is maximized. The approach is illustrated in Fig. 3.5.
Algorithms for wavefront optimization are discussed in Sec. 3.3.3.

The most straight forward way to probe the intensity of the scattered field is to place
a detector behind the turbid medium. Detector-based approaches allow to investigate
the impact of wavefront shaping on the scattered field and to test dependencies on
experimental parameters. The lateral size of the shaped focus is found to correspond to
the lateral correlation length, i.e. the speckle size, of the scattered field [115], similar to
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Figure 3.5: Principle of iterative wavefront shaping. (a) A flat wavefront incident
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to a scattering sample results in a speckle pattern to be observed at a detector
placed behind the medium. (b) The phase of individual segments of the
incident wavefront can be manipulated using a SLM. Due to the linearity of
propagation, the phase of the respective contributions to the scattered field
shifts accordingly. A high intensity at an arbitrarily chosen target at the
detector is observed if a high number of field contributions match in phase
at this position. The wavefront shaping algorithm iteratively optimizes the
phase pattern applied to the incident beam such that the intensity at the
target is maximized. (c) A high-intensity focal spot on top of a speckle
pattern results with the final optimized wavefront.
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phase conjugation approaches [92, 93]. The focal spot is observed to be created on top of
a speckle background (Fig. 3.5). The local intensity enhancement at the target compared
to the out-of-target intensity rises with increasing number N of source elements, which
corresponds the number of independent wavefront segments controlled by the SLM [23,
116, 117], and drops with increasing target size [116-118]. A number of theoretical
investigations found a linear dependence on the number of wavefront segments in case the
transmission matrix is assumed to obey Gaussian scattering statistics [23, 115, 118-120].
The efficiency of iterative wavefront shaping further depends on the type of wavefront
modulation used. Naturally, the approach is expected to perform best in case the phase
and the amplitude of the incident beam can be manipulated [115, 119]. Most practical
implementations are based on phase-only wavefront control enabled with LCOS SLMs.
The peak intensity of the focal spot is expected to read approximately 78 % of the value
achieved with full-complex wavefront control [23, 115, 118, 119]. Binary amplitude-only
wavefront control, which is for example realized with digital micromirror devices, results
in an expected focal spot intensity of approximately 16 % of the value achieved with
complex-valued wavefront control [120].

3.3.2 Feedback types and imaging applications

Imaging based on iterative wavefront shaping is, similar to optical phase conjugation
(Sec. 3.2.1), performed either by creating a single focal spot inside the sample and scan-
ning this focus using the optical memory effect or by sequentially scanning the position
at which the focus is created. The former method is limited to a narrow FOV at which
a single optimized wavefront is able to create a focus behind the turbid layer before
the scattered field decorrelates. The latter technique requires to optimize the wavefront
which is incident to the sample at each lateral scan position anew. Opposed to optical
phase conjugation, which is a single-shot technique, iterative wavefront shaping typically
requires a high number of acquisitions to find a single optimized wavefront. The latter
approach, thus, faces serious challenges regarding the acquisition speed.

Iterative wavefront shaping techniques require some means to determine the intensity
of the scattered field at the target at which a focal spot is supposed to be created only,
but no guide star whose complex-valued field is detected after transmission through
the scattering layer (Sec. 3.2). Vellekoop et al. demonstrated non-invasive focusing by
embedding fluorescent particles to the sample which can be used as point-like intensity
probes [118]. Wavefront shaping is enabled by maximizing the total fluorescence emission
which is detected in front of the sample. In case fluorescence from multiple particles is
detected simultaneously, the observed signal does not reflect the intensity at a single
spatially confined target, on the other hand, and the wavefront shaping algorithm can
fail to create a single focal spot. To overcome this problem a non-linear probe, for
example the two photon fluorescence signal emitted from a small particle, can be taken
to create a feedback for the wavefront shaping algorithm instead [121, 122]. Indeed,
Katz et al. showed a non-linear optical feedback to be necessary to focus light in case
the fluorophores are densely packed [123]. Once the optimized wavefront is found, the
focal spot can be scanned for fluorescence imaging behind the scattering layer [105, 106,
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122, 123]. The FOV of the technique is limited to the vicinity of the intensity probe
which was the original target for focusing (compare Sec. 3.2.1).

Non-invasive and label free wavefront shaping was demonstrated similar to TRUE
(Sec. 3.2.1) with feedback probes created from light which is scattered at a focused
acoustic wave [124] or by measuring the amount of light which is locally absorbed at the
target position. The local absorption can be quantified from the sample‘s photoacoustic
response [125-128], which is the acoustic signal detected with an ultrasonic transducer
after absorption of a short laser pulse in the sample. Both techniques probe the intensity
at the focal position of the transducer and, thus, allow to scan the position at which the
wavefront shaping algorithm creates an optical focus by scanning the focus of the trans-
ducer [126, 127]. The combination of wavefront shaping and photoacoustic imaging is of
particular interest since the width of the optical focus can be significantly smaller than
the width of the transducer‘s diffraction limited acoustic focus [127, 128]. Detection of
the acoustic signal after sample excitation with a focused beam, thus, enables photoa-
coustic imaging below the resolution limit of the transducer [127]. Tzang et al. proposed
an alternative method to quantify the local absorption at the target which is based on
the direct detection of the sample‘s thermal expansion with an OCT system [129]. The
approach is complementary to photoacoustic feedback and enables non-invasive optical
focusing, as well. In contrast to photoacoustic feedback, the technique cannot directly
be applied for imaging, on the other hand, and the penetration depth is limited by the
penetration depth of the OCT system, which is low compared to photoacoustic systems
for most biological samples. Non-invasive wavefront shaping directly based on the OCT
signal was first demonstrated in 2012 and is discussed in detail in Chap. 4.

3.3.3 Algorithms

This Section intends to provide a brief discussion on some of the most popular algorithms
for iterative wavefront shaping which were implemented in the scope of this work. In
general, the algorithms try to find an optimized pattern to be applied to the spatial light
modulator such that the feedback signal, which reflects the intensity at the target, is
maximized (Fig. 3.5). In most practical implementations the modulated beam is either
imaged or focused from the plane of the SLM to the sample. Due to their iterative nature,
wavefront shaping algorithms require no knowledge of the sample’s optical properties and
correct for aberrations and misalignments present in the optical setup, as well.

The number of degrees of freedom of the wavefront incident to the sample matches
the pixel count of the SLM, which typically is in the range of 10° or higher for most
modern devices. This number is too high to optimize iteratively within a reasonable time
span and, thus, most algorithms group multiple pixels to larger segments with uniform
amplitude and phase each. The number of degrees of freedom of the incident wavefront
matches the number of independent segments in this case.

The algorithm originally proposed by Vellekoop and Mosk optimizes the phase delay
at each individual wavefront segment one after another [23, 130]. At each segment, a
number of different phase delays is tested (e.g. ten uniformly sampled phases from 0
to 2m) and the phase which results in a maximum intensity at the target is chosen,
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3.3 Iterative wavefront shaping

respectively. The full wavefront is constructed by sequentially repeating this procedure
for all segments within the beam aperture. The run-time of the algorithm, thus, depends
on the number N of optimized wavefront segments and on the number m of different
phase-values applied to each segment. Full wavefront optimization, thus, requires to
apply mN phase patterns to the SLM and to measure the resulting intensity at the
target position, respectively.

The sequential algorithm probes the field which is reflected from a single SLM segment
one at a time. In case a high number of segments, i.e. small segment sizes, are used,
the algorithm becomes sensitive to experimental noise due to the low intensity of light
reflected from the individual segments. To overcome this problem, phase patterns which
span the full aperture of the beam at once are tested instead. The approach was first
demonstrated with the partitioning algorithm presented by Ivo Vellekoop and Allard
Mosk in 2008 [130]. Conkey et al. presented a genetic algorithm in 2012 which has been
used in a high number of wavefront shaping experiments reported in literature since
and which was implemented in the scope of this work, too [131]. The genetic algorithm
creates an initial set, or population, of random phase patterns. Each phase pattern
is ranked according to the intensity which results at the target once it is applied to
the SLM. The patterns are optimized by repeatedly creating new generations of phase
masks from the previous population. New phase patterns are blended from two randomly
chosen phase masks from the previous generation whereas the selection probability rises
with increasing rank. Additionally, random fluctuations are included to newly generated
patterns (mutation). The mutation probability is set to drop for later generations to
allow the algorithm to converge. The genetic algorithm was demonstrated to outperform
the sequential algorithm in the presence of experimental noise and with temporally
unstable samples [131].

3.3.4 Acquisition time

Acquisition time is a critical factor when the technique is supposed to be applied to
living biological samples. Due to macroscopic sample movements, respiration, blood
flow and cellular movement the physical structure of the sample quickly changes and the
scattered field decorrelates. As a consequence, the focal spot created through optical
phase conjugation or through iterative wavefront shaping quickly decays at time scales
down to a few milliseconds [101-103, 112].

The acquisition time required to find an optimized wavefront which focuses scattered
light to a single spot depends, in general, on the number N of independent segments
or degrees of freedom of the incident wavefront, on the number m of signal acquisitions
which are required to find the optimal phase for each wavefront segment, and on the
time required for each individual signal acquisition. The efficiency of wavefront shaping
is expected to rise with increasing number N which, hence, typically is chosen to be
as high as possible within a reasonable optimization time (Sec. 3.3.1). The number of
acquisitions m which are required to find the optimal phase for each wavefront segment
is determined by the optimization algorithm. If the modulation characteristics of the
SLM is unknown, this number needs to be high in order to find the phase iteratively.

35



3 Principles of wavefront shaping

With a well defined modulation characteristics, techniques similar to phase shifting in-
terferometry can be employed to find the optimal segment phases. A minimal number
of m = 3 acquisitions for each wavefront segment results. The technique is similar to
transmission matrix approaches which are discussed in the next Section. A number of
high-speed wavefront shaping systems are reported which are based on a parallelized
optimization algorithm originally reported by Meng Cui in 2011 [132]. The algorithm
requires, in principle, a minimum number of m = 2 acquisitions per degree of freedom
of the incident wavefront. Choi et al. demonstrated another optimization algorithm in
2013 which enables wavefront shaping with SD-OCT systems and which requires a single
(m = 1) acquisition for each segment of the optimized wavefront [30]. The technique is
strongly related to transmission matrix approaches presented in the next Section and is
discussed in detail in Chap. 7.

The time required for a single signal acquisition depends on the speeds of wavefront
control and feedback detection. Typically, the acquisition speed is limited by the frame
rate of the spatial light modulator rather than by the detector. Liquid crystal devices
which are often used for phase-only wavefront manipulation feature response times in
the range of several milliseconds (150 ms for the device used in this work) and, thus,
are not suited for fast systems. Most high-speed wavefront shaping approaches, thus,
are based on micro-electro-mechanical systems such as DMs [25, 105, 106, 122, 133] or
DMDs [26, 134] which feature frame rates in the kHz up to the MHz range and which,
hence, enable wavefront optimization well below 1 ms per independent wavefront seg-
ment [133, 134]. DMs enable phase only modulation but come with a low number of
independent pixels. DMDs, on the other hand, feature a high pixel count but enable
binary amplitude (on/off) modulation only, which results in a reduced efficiency of the
optimized wavefront compared to phase-only wavefront control (Sec. 3.3.1). Recently,
Feldkhun et al. implemented Cui‘s parallel wavefront shaping algorithm [132] with wave-
front manipulation based on acousto-optic modulators [135]. The approach was shown to
be extremely fast and enabled wavefront shaping with N = 100 independent wavefront
segments in only 10 ps [135].

3.4 Transmission matrix approaches

Optical propagation in a scattering but static sample is considered to be a linear and
time-invariant process in case the intensity of the electromagnetic field is low. The linear
relation between the scattered field and the field incident to the sample can be described
through the complex-valued transmission matrix t,,, which quantifies the sample‘s scat-
tering properties (Eq. 3.1). Knowledge of the transmission matrix allows to reconstruct
the incident field by detecting the scattered field, i.e. for imaging, or to optimize the
wavefront incident to the medium such that an arbitrary field distribution is created
after scattering, for example for focusing similar to iterative wavefront shaping.
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Figure 3.6: Experimental designs for transmission matrix acquisition. (a) Trans-
mission geometry with external reference beam. (b) Reflection geometry with
reference beam. (c) Self-referenced transmission geometry. Abbreviations:
SLM spatial light modulator, ref reference beam.

3.4.1 Principles and acquisition

In principle, the transmission matrix can easily be determined experimentally according
to the definition given in Eq. 3.1. Switching on a single segment of the beam incident
to the sample (E2™ = 1 if n = n/, zero otherwise) and detecting the complex-valued
field E%* which is scattered to a detector placed behind the medium directly yields the
column of the reflection matrix F¢ = Egzl tn ¢ = ty which corresponds to the
respective wavefront segment. The full matrix is determined by iterating all segments.
This approach is kept for almost all practical transmission matrix acquisition methods
which are reported in literature and which are discussed in this work. The measurement
of the complex-valued scattered field necessitates interferometric acquisition techniques
which, in turn, require to superimpose the scattered field with a static reference beam
(Fig. 3.6 Panels (a) and (b)). In many practical applications the implementation of a
reference beam which is bypassing the sample is not possible, however, since an optical
access to the sample back surface is not available or not practical.

In 2008 it was reported by Vellekoop et. al. that during iterative wavefront shaping
a sinusoidal intensity fluctuation is observed at the target if a single wavefront segment
is modulated while the rest of the beam remains static [118]. A brief analysis of this
observation reveals that a fraction of the beam which is reflected at the SLM without
being modulated can be used as reference for the interferometric acquisition as well,
even though this beam is scattered at the sample (Figs. 3.6(c) and 3.7(a)). The approach
allows to determine the transmission matrix without additional external reference beam.

Similar to the previous Section, the electric field incident to the sample is assumed
to read E;" in the plane of the spatial light modulator, where n is the index of the
respective wavefront segments (Fig. 3.4). Considering modulation at the n/-th segment
only while leaving the rest of the beam static, the field which is scattered to the m-th
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pixel of a detector placed behind the medium reads (Fig. 3.7(b)):

Edt =t B 4 EreT (3.2)

!
The term Efnef corresponds to those parts of the beam which are not manipulated
by the SLM and which are scattered to the m-th element of the detector, as well. This
term, hence, is considered static and reads E,,; F = Zgil 2 b B3¢ according to Eq. 3.1.
The intensity at the detector in case only the phase ¢5/¢ = arg(£:7¢) of the modulated
wavefront segment is changed is found from the interference law (compare Eqgs. 2.3 and

2.4) [118]:
TS50 o [t [ |ES[? 4+ |ELET 2 + 2R{Ton (655°)} (3.3)

The interference term (third term) corresponds to the real part of the field cross-
correlation Iy, [118]:
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Obviously, we find #{I';,} o< cos(¢;¢ 4 const.), i.e. the intensity at the detector features
a cosine fluctuation in case the phase ¢77¢ of the n’-th wavefront segment is modulated
(Fig. 3.7(c)).

In principle, the term I'), probes the amplitude and the phase of the transmission
matrix t,,,. This information can be used to find an optimized wavefront which results
in focusing at the detector, similar to iterative wavefront shaping [118]. A major gener-
alization of the concept was proposed by Sébastien Popoff et al. who presented the first
experimental acquisition of the optical transmission matrix in 2010 [24].

First, instead as with a single point detector as presented by Vellekoop et. al [118],
the scattered field can be investigated at a large detector array with a high number of
pixels simultaneously. This consideration is included to the previous equations through
the subscript m, which reflects the index of the detector element or detector pixel.

Second, Popoff et al. noted that the transmission matrix can be recovered from the
interference signal through algorithms well-known from phase shifting interferometry.
The group proposed a four step algorithm (compare Eq. 2.21) which reconstructs the
transmission matrix from the intensity I9¢(¢%7¢) (Eq. 3.3) which is detected with four
discrete phase shifts ¢;/° applied to the modulated part of the incident beam, respectively
[24, 119]. Taking Egs. 3.3 and 3.4 into account, this algorithm yields [24, 119]:

1 3
it =1 | (1 o =0 ) i (1 () - 1 (5))]
= tn/ (E;_ff>*

This is the n/-th row of the observed transmission matrix 2. The exact transmission
matrix t,,, is not accessible experimentally since the reference field E,Tﬂef which is used
for the interferometric acquisition results from parts of the beam which are scattered at
the sample and, hence, have an unknown amplitude and phase profile (Fig. 3.7).

(3.5)
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Figure 3.7: Self-referenced transmission matrix measurement. (a) Beam in the
plane of the SLM. A fraction of the beam incident to the sample is mod-
ulated. Another part of the beam remains static and serves as a reference
for interferometric acquisition. (b) The modulated and the static reference
beam are both scattered at the sample and interfere at the detector (compare
Fig. 3.4). (c) A sinusoidal intensity fluctuation is observed in case the phase
of the modulated part of the wavefront is changed. The phase and ampli-
tude of the scattered field which results from sample illumination with the
modulated wavefront segment, i.e. one column of the transmission matrix,
can be determined from this signal using phase shifting algorithms.

Third, in a more general way the transmission matrix t,,, describes the linear rela-
tion between the complex amplitudes E; ¢ of the n-th optical basis mode incident to
the sample and the amplitude E%* at the m-th scattered mode [24, 119]. The modes
correspond to an (arbitrarily chosen) orthogonal basis of the electromagnetic field at the
planes of wavefront manipulation and detection, respectively. So far, this work consid-
ered wavefront manipulation on a pixel-by-pixel basis in both planes only. This basis is
indeed shown to be orthogonal [136] and is well-suited to describe the scattered field in
the plane of the detector since it aligns well with the pixelated signal received with a
scientific camera, for example.

In case a pixel-by-pixel or segment-by-segment basis is chosen to describe the field
which is incident to the sample, similar to iterative wavefront shaping the system can be
sensitive to experimental noise (compare Sec. 3.3.3). The individual basis modes corre-
spond to spatially non-overlapping segments of the wavefront and, thus, their respective
intensity is low compared to the total power of the beam. Instead, the transmission
matrix can be determined for a set of modes which span a large fraction of the beam.
Typically, a plane wave or a Hadamard basis is chosen. The individual modes of the
plane wave basis can be created with a phase-only SLM by applying a set of linear phase
ramps with different tilt angle for each mode, respectively [30]. In case of a Hadamard
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basis the phase patterns which create the individual modes correspond to the respective
rows of a Hadamard matrix [24, 119]. The values of the Hadamard matrix read 1 or
—1, which correspond to phase delays of 0 and w. The row-vectors of the matrix are
mutually orthogonal by definition. The total number of modes matches the dimension
of the Hadamard matrix and typically is a power of two since the matrix can easily be
constructed for this case.

To summarize, the optical transmission matrix is acquired experimentally by using a
spatial light modulator to sequentially apply a set of basis modes to the beam which is
incident to the sample. Each mode spans a large fraction of the beam, but a part of the
beam remains unmodulated to provide a static reference for the interferometric acqui-
sition (Fig. 3.7(a)). A detector which is placed behind the scattering sample captures
the intensity of the scattered field (Fig. 3.7(b)). The SLM is used to shift the phase
offset of the respective mode which is incident to the sample, but not the phase of the
static part of the wavefront. Multiple acquisitions with different phase delays allow to
reconstruct the complex-valued scattered field from the intensity which is captured at
the detector (Eq. 3.5). The field which results from sample illumination with a single
mode corresponds to a single column of the observed transmission matrix (Eq. 3.5). The
full matrix is captured by repeating this procedure for all modes.

3.4.2 Application to focusing

Once the transmission matrix is experimentally determined, a wavefront which creates a
focal spot from scattered light at the m:th detector pixel, similar to iterative wavefront
shaping, can be calculated from the complex-conjugate of the corresponding matrix row
[24, 118, 119]:

EZTC’Opt — <tobs >* (3.6)

mgn

src,opt

The phase of the incident wavefront reads arg(Ex, ) = —arg(tmn)+ o according
to the definition of the observed transmission matrix (Eq. 3.5). The intensity at the
detector once the optimized wavefront is applied to the sample is evident by inserting
Eq. 3.6 in Eq. 3.1:

2
Iﬁft o<

N
Z |tmn|€’ arg(tmn) |ETSLTC|ei(—arg(tmtn)+<bfff) (3.7)
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For an arbitrarily chosen detector element (m # m;) Eq. 3.7 corresponds to a sum of
random phasors. In contrast, at the target pixel m; the individual contributions add up
in phase and, indeed, a high intensity results:

N
D tmenl 1B
n=1

Utilizing the transmission matrix for single-point focusing is equivalent to iterative
wavefront shaping [119] and, hence, the same considerations regarding the focusing effi-
ciency apply (Sec. 3.3.1). In contrast to the previous approach, the transmission matrix

2
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needs to be determined once and the optimized wavefront can directly be calculated
afterwards without further acquisitions or iterative optimization algorithms. The trans-
mission matrix describes the scattered field at the complete field of view of the detector
and, hence, a wavefront which creates a focal spot from scattered light an any position
within the FOV can be found without needing to reacquire the matrix. Furthermore,
multiple wavefronts optimized for different target positions can be superimposed for
simultaneous focusing [24]. To this end a m-element target vector Eﬁft’mmd, which
describes the supposed field at the detector after wavefront shaping, may be defined.
The vector elements, for example, are chosen to be unity if the index m corresponds
to a detector pixel at which a focus is supposed to be created and zero otherwise. The
optimized incident wavefront reads in this case according to Eq. 3.6 [24]:

M
Egpt _ Z (tfgz> Eg;it,target (39)

m=1

3.4.3 Imaging applications

Transmission matrix as well as iterative wavefront shaping approaches both enable focus-
ing of scattered light but require some means to determine the intensity of the scattered
field after transmission through the medium. In contrast to iterative wavefront shaping,
which tries to maximize the intensity at the target by iteratively optimizing the incident
wavefront (Fig. 3.5), transmission matrix approaches track small intensity fluctuations
which result from interference of the phase-modulated wavefront with a static reference
field (Fig. 3.7). A number of iterative wavefront shaping algorithms utilize this effect,
as well, and cannot clearly be distinguished from transmission matrix approaches, for
example the parallelized algorithm which was presented by Meng Cui [132] and which
was implemented with a number of high-speed wavefront shaping systems (Sec. 3.3.4).
As a major difference, the transmission matrix determines the scattered field at a spa-
tially extended field of view simultaneously, in contrast to point detection in case of
iterative wavefront shaping. Transmission matrix approaches, thus, enable focusing at
any point within the FOV once the matrix is determined whereas iterative wavefront
shaping approaches require to repeat the optimization algorithm at each target position.

Non-invasive techniques to determine the local optical intensity inside a scattering
sample were demonstrated for iterative wavefront shaping (Sec. 3.3.2) and can be applied
to transmission matrix approaches, as well. Chaigne et al., for example, demonstrated
the acquisition of the transmission matrix from the photoacoustic response of a scattering
sample [137]. Youngwoon Choi et al. demonstrated the acquisition of the matrix and
optical focusing based on the sample‘s OCT signal [30]. This approach is discussed in
detail in Chaps. 4 and 7. Imaging can be performed by scanning the position of the focal
spot, similar to the methods discussed in Sec. 3.3.2. In contrast to the iterative wavefront
shaping, utilizing the transmission matrix enables scanning beyond the correlation length
of scattered light since the matrix can be used to recalculate new wavefronts for focusing
at different scan positions. The FOV of the approach is limited to the FOV of the
detector which was used to determine the transmission matrix.
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Additionally, knowledge of the transmission matrix in principle allows to directly
reconstruct the electromagnetic field which is emitted from a hidden object by detecting
the scattered field after transmission through the turbid layer [24, 119, 138, 139]. The
technique enables imaging through the scattering layer but requires detailed knowledge
of the transmission between the object and the detection plane, i.e. calibration of the
imaging system with a high-resolution wavefront measurement in the plane of the hidden
object. The approach was demonstrated for imaging with a static scattering layer placed
in a microscopic setup [139] but is not feasible for imaging with dynamically changing
(living) biological tissue.

Similar to the transmission matrix, the reflection matrix of a scattering sample can
be determined by changing the detection geometry [140, 141]. The approach requires
single-sided sample access only and, thus, allows to utilize a static reference beam for
interferometric detection of the back-scattered light [140, 141] (Fig. 3.6(b)). As a con-
sequence, fast single-shot interferometric acquisition techniques such as off-axis holog-
raphy can be used [141]. Knowledge of the reflection matrix allows to investigate the
sample‘s scattering properties [141] and enables focusing of back-scattered light similar
to the transmission matrix (Sec. 3.4.2). The application to imaging is not as straight-
forward as with the transmission matrix, on the other hand, since light backscattered
from different depths of the sample is detected simultaneously. A number of groups uti-
lized time-of-flight gating to detect the reflection matrix with light backscattered from
a selected depth only. The technique combines reflection matrix approaches with OCT
imaging and is discussed in Sec. 4.2 in detail.

3.4.4 Singular value decomposition

A singular value decomposition of the transmission or reflection matrix allows to quantify
the scattering properties of the sample. A detailed discussion of this effect is beyond the
scope of this work, however. Recent studies further demonstrated correlations between
modes which correspond to large eigenvalues and strongly scattering particles which are
embedded to the sample. This correlations enable non-invasive focusing and imaging.

The DORT method (french acronym for decomposition of the time reversal operators)
tries to identify dominant scatterers present in the turbid sample from a singular value
decomposition of the time reversal operator 7T [142]. This operator is calculated from
the reflection or from the transmission matrix 7" and, in principle, describes the relation
between the target field distribution for optical phase conjugation and the resulting scat-
tered field after application of the phase conjugated wave to the sample [142] (compare
Egs. 3.1 and 3.9). The eigenvalues of the time reversal operator yield modes which are
scaled by the phase conjugation process only, i.e. modes for which the scattered field after
phase conjugation actually matches the target light distribution. The eigenvalues quan-
tify the corresponding scaling factors. In many practical implementations the singular
value decomposition of the time reversal operator 7T is found from the decomposition
of the transmission matrix 7" instead, which yields equivalent eigenvectors [140].

Prada et al. demonstrated in the context of ultrasonic time reversal (Sec. 3.2) that
large eigenvalues of the time reversal operator are associated with dominant scatterers
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present in the sample [142]. Namely, in case single-scattered waves are detected only,
a one-to-one association exists and, hence, coupling the wavefront to the sample which
corresponds to the largest eigenvalue creates a focus at the strongest reflecting particle
[142]. Popoff et al. implemented the approach with the optical reflection matrix acquired
from a scattering sample and demonstrated non-invasive focusing to strongly reflecting
particles hidden inside the medium [140]. Imaging in the vicinity of dominant scatterers
can be performed similar to iterative wavefront shaping by exploiting the optical memory
effect to laterally scan the focal spot (Sec. 3.3.2). In another approach, an image of
dominant scattering particles embedded to the sample can directly be constructed from
the eigenvectors corresponding to the largest eigenvalues of the time reversal operator,
as well [143].

The approach is valid in the case the detected reflection matrix is dominated by single-
scattered waves only, however [140, 142]. The application to strongly scattering samples
was recently demonstrated by Aumry Badon and is based on the suppression of signal
contributions from multiple scattered light prior to the singular value decomposition of
the matrix [143]. The approach is similar to full field optical coherence tomography
and is discussed in Sec. 4.2. Seungwoon Jeong et. al. demonstrated the singular value
decomposition with a comparable system to enable non-invasive focusing in the presence
of multiple scattered light. The approach is discussed in Sec. 4.4.2.

3.4.5 Acquisition time and enhancements

The same considerations made for iterative wavefront shaping (Sec. 3.3.4) apply for the
acquisition speed of transmission and reflection matrix approaches, as well. Namely, the
total acquisition time depends on the total number of independent modes or wavefront
segments incident to the sample, on the number of signal acquisitions per mode (three for
phase shifting algorithms, one for off-axis holography) and on the speed of the detector
and the spatial light modulator. High-speed systems, thus, need to enable fast SLMs
for wavefront manipulation. In principle, most approaches discussed in Sec. 3.3.4 can be
employed, as well.
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4 State of the art: Applications of
wavefront shaping to optical coherence
tomography

Optical coherence tomography utilizes confocal and coherence gating to suppress multi-
ple scattered light and to enable imaging in turbid media. In practical applications the
rejection of multiple scattered light is not complete, however, and a significant fraction
of the OCT signal arises from multiple small-angle scattering events. These signal con-
tributions reflect the sample morphology, as well, and become relevant when strongly
forward scattering media such as biological tissue are imaged (Sec. 2.3.2).

This Chapter discusses current state of the art techniques to combine OCT and wave-
front shaping for depth enhanced imaging with scattering samples. In principle, two
approaches are reported to date. The acquisition of the sample’s reflection matrix
combined with full field optical coherence tomography (FF-OCT) enables additional
rejection of multiple scattered light for depth enhanced imaging with turbid samples.
The technique exploits correlations between the incident beam and the single scattered
reflected wave and is discussed in Sec. 4.2. In another approach, iterative wavefront
shaping or optical phase conjugation based on the reflection matrix is used for non-
invasive focusing of multiple scattered light inside the sample. The OCT signal depends
linearly on the amplitude of the electromagnetic field and, thus, the received signal can
directly be enhanced by focusing small-angle scattered light to the detection volume.
This work focuses on the latter technique, which can be implemented with full field as
well as with scanning OCT systems. A detailed discussion of the approach is given in
Secs. 4.3 and 4.4. Remaining problems which are supposed to be covered in this work
are discussed in Sec. 4.5.

4.1 OCT designs

Reflection matrix as well as iterative wavefront shaping techniques require to include
a spatial light modulator to the OCT system which enables wavefront manipulation at
the beam illuminating the sample. Designs which are reported to date are illustrated in
Fig. 4.1, assuming a reflective SLM is used. The Mach-Zehnder design (Fig. 4.1(a)) al-
lows to separate the reference from the sample beam and enables independent wavefront
shaping by including the SLM to the sample beam only. The field which is backscat-
tered from the sample is not manipulated again at the SLM prior to detection. On
the other hand, the design is rather bulky, requires a high number of optical compo-
nents and a high mechanical stability, and cannot directly be implemented to existing
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Figure 4.1: OCT designs enabling wavefront manipulation. (a) Mach-Zehnder
design. The SLM manipulates the sample beam only [30, 143-147]. (b) SLM
at sample arm. The sample beam passes the SLM again after reflection at
the sample [25]. (c) SLM at source beam. The sample and the reference
beam are affected simultaneously by wavefront manipulation with the SLM
[26—29]. Abbreviations: SLM spatial light modulator, ref reference beam.

OCT systems which are based on a Michelson interferometer (Fig. 2.3). Figure 4.1(b)
illustrates a Michelson interferometer based OCT design. Placing the SLM at the sam-
ple beam enables wavefront shaping while leaving the reference beam static. The field
which is backscattered from the sample passes the SLM again prior to detection, on the
other hand. Figure 4.1(c) illustrates another design based on a Michelson interferom-
eter. Placing the SLM at the source beam allows to feed the shaped wavefront to a
conventional OCT scan head which includes the optics of the reference and the sample
beam [26]. The approach causes the shaped wavefront to be coupled to the reference
beam as well, on the other hand. As a consequence, the reference beam does not remain
static during the acquisition of OCT signals with differently shaped wavefronts applied.

4.2 Exploiting the reflection matrix to suppress multiple
scattered light

The reflection matrix describes the linear dependence between the backscattered field
and the field which is incident to the sample. Typically, light reflected from different
depths is detected simultaneously and, hence, the matrix cannot directly be used for
imaging (Sec. 3.4.3). The acquisition of the reflection matrix requires single-sided sample
access only and, in contrast to transmission matrix approaches, a static reference beam
can be added for interferometric acquisition of the complex-valued backscattered field
(Fig. 3.6). Utilizing a broadband instead of a monochromatic light source allows to
detect the reflection matrix time-of-flight or depth selectively. The approach is similar
to time domain optical coherence tomography since interference at the detector is only
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observed from the fraction of backscattered light whose optical path length matches the
length of the reference beam (Fig. 2.2). The reference arm length, hence, determines the
depth from which backscattered light is detected during the acquisition of the matrix.

Experimental devices to capture the time-gated reflection matrix are similar to FF-OCT
systems with wavefront manipulation at the sample beam. In contrast to conventional
FF-OCT systems, a spatially coherent source needs to be employed to enable beam shap-
ing with the SLM, however. The reference beam is supposed to remain static and the
field which is reflected from the sample should not pass the SLM again between scatter-
ing and detection. Hence, all reports demonstrating the experimental acquisition of the
time-gated reflection matrix are based on the Mach-Zehnder design to date (Fig. 4.1(a))
[30, 143-147]. The suppression of multiple scattered light is demonstrated with full-field
imaging configurations only, which project the conjugate of the objective focal plane to
a scientific camera [143, 145-147]. As a consequence, the spatial frequency spectrum or
the angle-resolved image of the field which is backscattered from the sample is observed.
Complex-valued signal acquisition is enabled through interferometric techniques such as
phase shifting interferometry [143, 147] or off-axis holography [145, 146].

Kang et al. demonstrated the acquisition of the time-gated reflection matrix with a set
of plane wave basis modes incident to the sample at different angles, respectively [145].
The reflection matrix corresponds to the complex-valued backscattered field which is
captured in case of sample illumination with the individual modes and, thus, quantifies
the angle-resolved backscattered field depending on the angle of illumination. The re-
flection matrix contains contributions from single scattered and from multiple scattered
light. In case of single scattering at an object which is placed inside the turbid layer,
however, the change in lateral momentum of the backscattered wave reflects the spatial
frequency of the hidden object, which is the object‘s transfer function [145]. Depth en-
hanced OCT imaging is achieved by collective accumulation of single scattering (CASS).
Reflection matrix elements with equal momentum difference between the incident and
the backscattered wave correspond to the same component of the object transfer func-
tion and match in phase. In contrast, the phase of signal contributions from multiple
scattered light is randomly distributed. Hence, the summation of complex-valued reflec-
tion matrix elements with equal momentum difference enhances single-scattered signal
contributions compared to the contributions from multiple scattered light and yields the
object transfer function, from whose Fourier transform an image of the hidden object is
received [145].

The approach was experimentally demonstrated to be feasible for micrometer resolu-
tion full-field imaging of samples hidden below tissue samples up to 0.9 mm thick [145].
Recently, an improved implementation of the technique was demonstrated which utilizes
random phase patterns for the acquisition of the reflection matrix instead of a plane wave
basis [146]. To further enhance the penetration depth, optical aberrations present in the
sample are identified and corrected for in post-processing. The approach, in principle,
applies an additional digital phase-correction to the experimentally acquired reflection
matrix which is iteratively optimized such that the total intensity of the CASS image
becomes maximal. The final optimized phase map reflects aberrations which are present
in the sample [146].
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Badon et al. demonstrated the suppression of multiple scattered light based on spatial
correlations of the incident and the backscattered field [143]. The group utilized a spatial
light modulator to scan the position of point illumination at the sample and acquired
the respective full-field image by Fourier transforming the angle-resolved backscattered
field, which is captured with the experimental device. The reflection matrix, thus, yields
the spatial distribution of the backscattered field depending on the point of illumina-
tion. In principle, a wide field OCT image with confocal illumination and detection can
be constructed from the diagonal elements of the matrix. This technique is equivalent
to conventional FF-OCT imaging [143]. In another approach, the OCT signal corre-
sponding to single-scattered light is expected to be detected close to the position of
illumination, i.e. near the diagonal elements of the reflection matrix. Off-diagonal ele-
ments hence are removed to suppress signal contributions from multiple-scattered light
[143]. A subsequent singular-value decomposition of the filtered matrix allows to identify
strongly reflecting particles embedded to the sample, similar to the techniques discussed
in Sec. 3.4.3. The approach was experimentally demonstrated to enable micrometer
resolution imaging of objects hidden below biological tissue up to 0.8 mm thick [143].

Very recently, Badon et al. demonstrated an enhanced post-processing method based
on the distortion matrix [148]. The distortion matrix describes the difference of the
reflection matrix which is acquired with point-by-point sample illumination to the signal
which is expected in case the beam is reflected at an ideal point-source in the sample
plane and back propagated through a homogeneous non-scattering medium. A singular
value decomposition of the distortion matrix additionally allows to identify and correct
for optical aberrations present in the sample, similar to the iterative approach presented
by Kang et al. [146], and enables imaging [148].

4.3 Spectral and temporal shaping of scattered light

The discussion on wavefront shaping and transmission matrix approaches which is given
in Chap. 3 considered monochromatic radiation and manipulation and detection of the
optical wavefront in the spatial domain only. For OCT imaging broadband light sources
are required, however, and the signal is captured time-of-flight dependent, i.e. in the
temporal (Sec. 2.1) or spectral (Sec. 2.2) domain. This Section illustrates general as-
pects of wavefront shaping with broadband sources and discusses temporal and spectral
shaping of scattered light based on spatial manipulation of the beam which is incident
to the turbid sample.

A number of reports demonstrated iterative wavefront shaping by probing the sample‘s
non-linear optical response, for example the emitted two photon fluorescence, and opti-
mizing the incident wavefront such that this signal is maximized [121-123] (Sec. 3.3.2).
To this end, Ti:Sapphire sources were used, which can be employed for OCT imaging
as well, and spatial focusing of scattered light was demonstrated experimentally with
the pulsed sources [121-123]. To maximize the sample‘s non-linear optical response, the
pulsed illumination needs not only to be spatially focused but temporally focused as well
to yield a high instantaneous intensity at the fluorophore, however [121]. As a conse-
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Figure 4.2: Coupling of temporal and spatial degrees of freedom in a scat-
tering medium. Illuminating a sample with varying spatial modes causes
different spatial (not shown, see Fig. 3.4) and temporal speckle profiles to
be observed behind a turbid sample. Spatial shaping of the incident beam
enables temporal manipulation of the scattered field.

quence, iterative wavefront shaping with a non-linear optical feedback probe results in
spatial and temporal compression of the scattered laser pulse. The effect was directly
observed by Katz et al. in 2011 [121].

Typical phase-only SLMs which are used for wavefront shaping experiments allow to
(axially) shift the modulated beam by only one to two wavelengths, which is not sufficient
to significantly change the temporal profile of the beam. Fortunately, the turbid medium
couples the spatial profile of the incident beam to the temporal and spectral shape of the
scattered field. The effect can be understood by considering the scattering medium to be
a linear and time invariant system. Adopting the model given in Sec. 3.3 and Fig. 3.4,
transmission from the n-th element of the incident wavefront to the m-th element of the
scattered beam can be described based on the sample‘s impulse response Ay, (t):

) = 3 () ® EZ(1) (1)
n=1

In contrast, the optical transmission matrix t,,, describes the propagation of monochro-
matic radiation only (Eq. 3.1). The symbol ® denotes the convolution operator. The
approach is equivalent to descriptions based on the sample‘s Green function [119, 149].

Each segment of the incident beam or, more general, each incident mode E2"(t) gives
rise to a different spatial and temporal field distribution h,, (t)® E57¢(t) in the detection
plane [121, 150]. The effect is illustrated in Fig. 4.2 and can be understood by taking
into account that the individual incident modes couple to different areas of the scattering
sample. Thus, different temporal and spatial profiles result depending on the respective
trajectory of the scattered field.

Spatial manipulation of the beam incident to the sample yields control over the tem-
poral profile after scattering. For example, light can selectively be coupled to trajectories
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which give rise to the same temporal delay. In another approach, scattered light can
be spatially and temporally focused by manipulating the spatial phase profile of the
incident beam without actually manipulating the temporal profile. Due to the linearity
of propagation, phase manipulation of the respective incident modes shifts the corre-
sponding contributions to the scattered field accordingly (Fig. 3.5). The phase profile of
the incident beam, thus, can be optimized such that constructive interference is created
from scattered light at one point in space and time, similar to the approaches which are
discussed in Chap. 3 for monochromatic radiation.

Aulbach et al. initially demonstrated shaping and compression of a short laser pulse
based on iterative wavefront optimization in 2011 [151]. The group superimposed the
scattered pulse with a static reference beam at a point detector placed behind the turbid
sample [151]. The approach selectively detects light which is scattered to the position
of the detector at the temporal delay which matches the temporal delay of the reference
beam. Spatial and temporal focusing at the detector was demonstrated with an iterative
algorithm which optimizes the phase profile of the incident beam such that the detector
signal is maximized [151]. In a similar approach, Mounaix et al. demonstrated the
full field acquisition of the scattered field after sample illumination with a pulsed source.
The technique allows to determine the transmission matrix from light whose path length
matches the length of the reference beam only, i.e. which is detected at a given temporal
delay [152]. The approach hence is similar to the acquisition of the time-gated reflection
matrix, which is discussed in Sec. 4.2, but determines the scattered field in transmission
geometry. Phase conjugation based on the time-gated transmission matrix was shown to
enable spatial and temporal focusing of scattered light [152, 153] (compare Sec. 3.4.2).

A turbid medium couples the spatial profile of the incident beam to the spectrum of
scattered light, as well. Fourier transforming Eq. 4.1 yields [149, 154-157]:

N
B (w) = 3 B (@) B () (4.2)
n=1

As with the temporal profile, each mode E;"“(w) which is incident to the sample gives
rise to a different spatial and spectral profile hy,, (w)E:S ¢(w) at the detection plane [121,
149, 150, 154, 156]. Hence, spectral shaping of the scattered field is enabled through
spatial manipulation of the beam incident to the sample as well, similar to temporal
shaping [150, 154, 158].

Equation 4.2 is equivalent to describing the scattered field in terms of the spectrally
resolved transmission matrix t,,,(w) which can be determined experimentally with a
monochromatic source tuned to different wavelengths, for example [156, 157]. Knowledge
of the spectrally resolved transmission matrix was shown to yield spatial control over
the scattered field, similar to the monochromatic transmission matrix (Sec. 3.4), and
temporal or spectral control, as well [153, 156, 157].
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4.4 Wavefront shaping techniques for direct OCT signal
enhancement

4.4.1 Technical implementation

The combination of wavefront shaping and optical coherence tomography was first
demonstrated in 2012 by Reto Fiolka et al. [25]. The group included a deformable
mirror to the sample arm of a TD-OCT system (Fig. 4.1(b)) and implemented Meng
Cui‘s parallelized iterative wavefront shaping algorithm to optimize the amplitude of
the OCT signal which is received from a scattering sample [25, 132]. The combination
with SD-OCT was demonstrated by Jaeduck Jang et al. [26] and by Youngwoon Choi
et al. [30] in 2013. Both groups implemented algorithms which are similar to transmission
matrix approaches (Sec. 3.4).

Jang et al. included a digital micromirror device to the source beam of a SD-OCT
system [26] (Fig. 4.1(c)). The DMD enables high-speed wavefront manipulation and the
optical design allows to feed the shaped wavefront to the scan head of a conventional
SD-OCT system, which includes the optical elements of the reference and sample beam
and which enables high-speed object scanning. On the other hand, the DMD enables
binary amplitude wavefront manipulation only. To overcome this problem, Jang et al.
noted that the phase of the beam which is diffracted at the DMD can be manipulated by
laterally shifting the amplitude pattern which is applied to the device [26]. The group,
thus, implemented a wavefront shaping algorithm which uses the DMD to sequentially
create different basis modes and which captures the OCT signal for 25 different lateral
positions of the respective amplitude pattern at the DMD screen. A wavefront which
enhances the OCT signal received at an arbitrarily chosen time-of-flight is then calcu-
lated. For each basis mode, the lateral position of the corresponding amplitude pattern
is chosen which yields the highest signal amplitude at the target. The phase of the
OCT signal is neglected. Subsequently, the laterally shifted patterns from all modes are
superimposed and applied to the DMD. Similar to transmission matrix approaches, a
wavefront which enhances the signal at any position within the axial field of view of the
OCT system can be found without further signal acquisition. In contrast, however, the
approach is purely based on the intensity of the acquired OCT signal. The phase of the
incident field is not directly manipulated and the phase of the scattered field cannot be
detected since the reference beam does not remain static in case different wavefronts are
applied due to the optical design (Fig. 4.1(c)).

In contrast, Choi et al. presented a Mach-Zehnder based SD-OCT design with a phase-
only SLM placed at the sample beam [30] (Fig. 4.1(a)). The design features a static
reference beam and enables the acquisition of the complex-valued SD-OCT signal from
just a single acquisition of the spectral raw data (Sec. 2.2). The group utilized the SLM to
apply a set of different basis modes to the sample beam. The resulting SD-OCT signal
corresponds to the time-of-flight resolved backscattered field, respectively. Similar to
the acquisition of the optical transmission matrix (Sec. 3.4.1), the time-of-flight resolved
reflection matrix, hence, can be acquired by iterating the respective basis modes and
saving the resulting complex-valued OCT signal to the corresponding column of the
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matrix [30]. The total number of measurements which are required to capture the full
reflection matrix, thus, is at least three times lower compared to phase shifting algorithms
(Sec. 3.4.1) and matches the number N of incident modes exactly. The group further
demonstrated a phase conjugation algorithm equivalent to the approach discussed in
Sec. 3.4.2 to be able to calculate an optimized wavefront from the reflection matrix
which selectively enhances the received SD-OCT signal once the wavefront is applied to
the sample beam. Phase conjugation with the time-resolved reflection matrix, hence,
yields similar results to the iterative optimization algorithm which was demonstrated
by Jang et al. [26]. A significantly reduced number of signal acquisitions is required,
however. On the other hand, the approach requires a static reference beam to capture
the reflection matrix and phase-only modulation to apply the optimized wavefront.

4.4.2 Non-invasive focusing

OCT signal enhancement based on wavefront shaping, in principle, focuses backscattered
light at a given time-of-flight to the position of the imaging system‘s detector [30], similar
to the experiments in transmission geometry reported by Aulbach et al. [151] (Sec. 4.3).
If the technique is supposed to be used for depth enhanced imaging it is important to
investigate in which way the approach affects the light distribution inside the scattering
sample. Ideally, one wishes the detected OCT signal to be proportional to the electric
field which is single scattered at the object to be imaged. Using wavefront shaping to
maximize the OCT signal in this case enhances the intensity at the detection volume,
i. e. at the object, and enables non-invasive focusing. With practical systems these ideal
conditions cannot be met, however, since OCT devices detect multiple scattered light to
some extent, as well (Sec. 2.3.2). Even in the presence of multiple scattered light, the
amplitude and the SNR of the OCT signal can be enhanced in case light is focused to
the position of the hidden object, though.

Fiolka et al. demonstrated non-invasive optical focusing by embedding small reflect-
ing particles behind a forward scattering turbid layer and using an iterative wavefront
shaping algorithm to enhance the OCT signal which is detected from these particles
[25]. The technique requires the target particles to be sparsely distributed to ensure the
detected signal corresponds to the reflection at a single particle only. In case multiple
particles are simultaneously present at the detection volume the approach is observed
to produce a split focus [159] since the OCT signal is proportional to the field reflected
from either particle. The technique further requires to clearly identify the OCT signal
which is resulting from the respective target particles, i.e. the particles need to be visible
in the OCT scan. For depth enhanced imaging one actually is interested in the case con-
ventional OCT imaging is not possible, though, i. e. signal contributions from multiple
scattered light dominate compared to weakly scattered light.

Jeong et al. demonstrated non-invasive focusing inside a scattering sample based on a
singular value decomposition of the time-gated reflection matrix [144] (compare Sec. 4.2).
In principle, the largest eigenvalue and the corresponding eigenvector of the matrix reflect
the wavefront with the highest intensity after reflection at the sample. In case a strongly
reflecting target object is hidden inside the turbid medium, this wavefront was shown
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to preferentially couple light to trajectories which interact with the target compared to
trajectories without any target interaction [144]. In terms of OCT imaging, the former
signal contributions reflect the sample morphology whereas the latter are considered
signal noise from multiple scattered light. The effect becomes stronger the smaller the
object gets and was demonstrated to enable non-invasive focusing at the hidden target
[144].

Choi et al. demonstrated the acquisition and singular value decomposition of the re-
flection matrix with a monochromatic source and compared the approach to iterative
wavefront shaping based on the backscattered field [160]. The group demonstrated the
iterative wavefront shaping algorithm to preferentially couple light to those eigenmodes
of the scattering sample which correspond to the largest eigenvalues [160]. The exper-
iment was recently repeated with time-gated acquisition similar to optical coherence
tomography [161]. Due to the preferential coupling to high-reflectivity eigenmodes, iter-
ative wavefront shaping based on the OCT signal was demonstrated to focus light to a
strongly reflecting target embedded to the sample as well [161], similar to the previous
approach based on the singular value decomposition of the time-gated reflection matrix
[144].

The previous reports considered a partitioning algorithm (compare [130]) for iterative
wavefront optimization [160, 161]. Other iterative optimization algorithms are expected
to find comparable wavefronts and iterative wavefront shaping further is equivalent to
point-wise focusing based on phase conjugation with the reflection matrix (Sec. 3.4.2).
Hence, no matter what kind of wavefront optimization procedure is utilized, light which
is scattered at strongly reflecting sample structures and the corresponding contributions
to the OCT signal are expected to be predominantly enhanced with wavefront shaping,
even in case these signal features cannot clearly be identified in the original OCT signal
due to multiple scattering.

4.4.3 Depth-enhanced imaging

To date, imaging based on the direct enhancement of the OCT signal through wavefront
shaping approaches, in contrast to the techniques discussed in Sec. 4.2, is demonstrated
by the group of YeongKeun Park with the system which was presented by Jang et al.
in 2013 only [26-29] (Sec. 4.4.1). Iterative wavefront shaping is utilized to selectively
enhance the amplitude of the SD-OCT signal at a given time-of-flight one at a time.
Depth enhanced imaging is enabled by optimizing the incident wavefront for signal en-
hancement at different positions in the axial field of view individually and by stitching
a full depth-scan from the in-target point-optimized OCT signals [26].

The acquisition time required to capture a single A-scan is determined by the time
required to find the optimized wavefronts, similar to the acquisition of the reflection
matrix, and by the time which is required to subsequently scan the axial position of point-
wise signal enhancement for imaging. The former is determined by the optimization
algorithm whereas the latter corresponds to the pixel count at the axial FOV of the
optimized A-scan. In contrast to comparable wavefront optimization algorithms, the
method proposed by Jang et al. requires a rather high number of acquisitions (Sec. 4.4.1).
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Due to high-speed wavefront manipulation enabled with a DMD and due to efficient data
processing the optimization of a single depth-scan could be demonstrated within 15 s
for a set of 300 basis modes and for 200 pixels at the optimized A-scan, nonetheless
[28]. Cross-sectional imaging is enabled by scanning the position of sample illumination
and repeating the full optimization process at each lateral position, respectively. The
approach was shown to enable depth-enhanced SD-OCT imaging with biological samples
[27-29] and to be sufficiently fast for in-vivo imaging with anaesthetized and fixated mice
[28].

4.5 Remaining problems

A number of approaches demonstrated depth enhanced FF-OCT imaging based on the
acquisition of the time-gated optical reflection matrix (Sec. 4.2). The technique, in prin-
ciple, exploits correlations between the incident and the backscattered sample beam to
additionally suppress multiple-scattered light which is detected by the OCT system.
The acquisition of the time-gated reflection matrix requires sophisticated optical designs
which cannot easily be implemented with existing OCT devices. Furthermore, the ap-
proach was demonstrated with phase-only liquid crystal spatial light modulators only,
which are subject to low frame rates and, hence, cause long acquisition times which
prohibit in-vivo imaging. The concept, thus, is not further pursued in this work.

The group of YeongKeun Park demonstrated depth enhanced OCT imaging based on
iterative wavefront shaping (Sec. 4.4.3). The presented system can easily be implemented
by modifying existing SD-OCT systems to include a DMD for wavefront manipulation
at the source beam (Fig. 4.1(c)). The approach potentially enables high-speed imaging
since fast spatial light modulators as well as commercial SD-OCT heads, which include
beam scanning optics, can be used. The experimentally demonstrated system still re-
quired 15 s to capture a single A-scan, however. This number is too high for in-vivo
imaging applications with most biological samples and is mainly caused by the inefficient
optimization algorithm, which requires a large number of iterations.

In contrast, Choi et al. demonstrated a potential high-speed algorithm which enables
OCT signal enhancement based on the time-resolved reflection matrix. The number of
acquisitions required to capture the matrix is reduced 25-fold compared to the algorithm
presented by Jang et al. (Sec. 4.4.1). On the other hand, the approach requires a sophis-
ticated optical design, since the reference beam is required to remain static during the
acquisition of the reflection matrix, and phase-only modulation of the beam which is inci-
dent to the sample. As a consequence, the approach cannot be implemented by modifying
existing SD-OCT systems and the utilization of fast micro-electro-mechanical systems
for wavefront manipulation is not yet demonstrated. One column of the time-resolved
reflection matrix is taken from a single acquisition of the complex-valued SD-OCT signal.
The matrix, in principle, is supposed to reflect the complex-valued backscattered field
which results from sample illumination with the respective basis modes. The mutual
interference component of the complex SD-OCT signal is proportional to the field which
is backscattered from the sample, but image artefacts which are additionally detected
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with SD-OCT systems are not (Sec. 2.2.1). To date, a detailed theoretical investigation
on how the time-resolved reflection matrix relates to the complex-valued SD-OCT signal
is not yet reported and the impact of image artefacts on the acquisition of the matrix
and on subsequent phase conjugation for OCT signal enhancement is not discussed.

Jang et al. and Choi et al. both demonstrated the amplitude of the OCT signal to be
enhanced as an effect of iterative wavefront shaping or optical phase conjugation. Yu
et al. demonstrated the iterative algorithm to enhance the penetration depth of OCT
systems when imaging scattering media [27]. The group defined the penetration depth
to correspond to that optical path length at which the amplitude of the enhanced OCT
signal drops below the noise threshold of the imaging system [27]. The group did not
investigate whether signal contributions from multiple scattered light are enhanced by
wavefront shaping as well, though, and thus it is not clear whether an actual benefit for
imaging with turbid media exists. Imaging applications of phase conjugation with the
time-resolved reflection matrix are not yet demonstrated at all.

The upcoming Chapters try to resolve some of these open problems.
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5 Double interferometer OCT design for
independent beam shaping

In this Chapter, a compact spectral domain OCT design is presented which enables
independent and single-pass beam shaping at the reference and sample arm using a single
spatial light modulator, respectively. The system differs from a conventional SD-OCT
layout only in the optical design at the source arm of the interferometer and, thus, can
easily be implemented to existing SD-OCT systems to take advantage of pre-designed
or commercial components.

This Chapter illustrates the optical design of the OCT system used in this work
and discusses calibration and data acquisition methods necessary to capture a signal.
A further analytic and numerical discussion of the presented OCT layout compared to
conventional SD-OCT designs is provided. Supporting experimental data is given. Parts
of the contents presented in this Chapter have already been published [162].

5.1 Experimental design

5.1.1 Optical design

The experimental OCT system used in this work is illustrated in Fig. 5.1. In principle
the system is based on a double-interferometer design with a Linnik-type interferometer
for SD-OCT signal acquisition (right half of Fig. 5.1) and a Michelson interferometer
introduced at the source path (left half of Fig. 5.1). The Linnik-design of the second
interferometer allows to align the length and focal position of the reference arm inde-
pendently. More important, the design matches the dispersion at both interferometer
arms since equal optical components are used [163, 164]. Both arms of the Michelson
interferometer use non-overlapping parts of a reflective spatial light modulator as end
mirror. This allows to utilize a single SLM to independently shape both beams.

A number of previous works demonstrated comparable double-interferometer OCT
designs, predominantly for the use with common-path OCT systems [165-171]. The
approach allows to manually align the path-length difference between the reference and
sample beam, which is not possible with conventional common path devices. The design
can be understood by considering the arm lengths at the Michelson interferometer to
be l12 and at the Linnik interferometer to be lp g, respectively (Fig. 5.1). Due to the
double-interferometer design four distinct beams are created which potentially produce
an interference signal at the detector. The relative temporal delay of the individual
beams differs, however, and is determined by the arm lengths of the two interferometers.
The beam which is reflected at the bottom-half of the SLM and reflected at the reference
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Figure 5.1: Experimental design. Abbreviations: SLD superluminescent diode,
Pol linear polarizer, BS non-polarizing 50:50 beamsplitter, SLM spatial light
modulator, M mirror, A aperture, F' neutral density filter, MO microscope
objective, SM single-mode optical fibre. Image reproduced from [162]*.

arm of the Linnik interferometer is delayed by (I + [g)/c. The beam reflected at the
SLM screen bottom half and reflected at the sample is delayed by (I; +lg)/c. Similarly,
the beams reflected at the top half of the SLM and reflected at either arm of the Linnik
interferometer are delayed by (lo + lg,s)/c, respectively.

By choosing l; > Iy and Ig < lg the lengths of the interferometer arms can be aligned
such that [y +1Ig = lo +1g. In this case the beam which is reflected at the bottom half of
the SLM and from the Linnik interferometer’s reference arm (blue beam in Fig. 5.1) has
the same optical path length as the beam which is reflected at the top-half of the SLM
screen and from the sample (red beam in Fig. 5.1). The OCT system detects mutual
interference from these two beams which are considered to be the effective reference and
sample beam, respectively [166-171]. Both beams are modulated at different parts of
the spatial light modulator and do not pass the SLM again prior to detection. The
approach, hence, enables independent and single-pass beam shaping at both beams.

The other two beams are delayed by l; + lg and by Iy + g (Fig. 5.1). These beams
are significantly longer or shorter compared to the effective reference arm length I; + [,
respectively, due to the imbalanced arm lengths of the two individual interferometers
(i, > Iy and I < lg). As a consequence, mutual interference with these beams is not
detected which, in principle, is an effect of the limited spectral resolution of the OCT
system. A more detailed theoretical discussion is given in Sec. 5.4.

'This article is licensed under a Creative Commons Attributions 4.0 International License
(http://creativecommons.org/licenses/by/4.0/).
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Figure 5.2: Photograph of the experimental design. Abbreviations: SLM spatial
light modulator, BS beamsplitter.

5.1.2 Experimental implementation

Figure 5.2 illustrates a photograph of the OCT setup with important elements labelled.
The system utilizes a fibre-coupled superluminescence diode with a nominal center wave-
length of 830 nm, FWHM bandwidth of 20 nm and maximal output power of 13 mW
(SLD830S-A10, Thorlabs, USA). The source is operated by a current and temperature
stabilized laser diode driver (CLD1015, Thorlabs, USA). Light from the source is trans-
mitted through a linear polarizer (LPVIS050-MP, Thorlabs, USA) and collimated with
a plano-convex lens (f = 35 mm). An additional graduated iris aperture placed directly
next to the lens allows to define the beam diameter. A 50:50 beam splitting cube (BS011,
Thorlabs, USA) divides the source beam to illuminate two different halves of the SLM
in combination with a mirror. For wavefront manipulation a phase-only liquid crystal on
silicon spatial light modulator is used (NIR11 display and HEO1080P controller, Holo-
eye, Germany). The device has a resolution of 1920 x 1080 pixel with a nominal pitch of
8 nm, respectively, and provides a phase shift of at least 27 at the spectral range from
420 to 1064 nm. The SLM is imaged to the objective lens MO; using a 4 f-design with
two plano-convex lenses (f = 100 mm). An aperture placed in the Fourier plane allows
to block higher diffraction orders of light reflected at the SLM. The Linnik interferom-
eter consists of a 50:50 beam splitting cube (BS013, Thorlabs, USA) and two identical
infinity-corrected objective lenses with a numerical aperture of 0.25 (PlanN 10z, Olym-
pus, Japan). The reference arm optics are mounted to a linear translation stage to align
it‘s length. An absorptive neutral density filter (typical ND 1.0) in combination with
a zero-aperture iris diaphragm (SM1D12CZ, Thorlabs, USA) allow to manipulate the
reference beam'‘s intensity. Light reflected from the reference and from the sample arm
is coupled to a single-mode optical fibre (P3-780A-FC-5, Thorlabs, USA). For fibre cou-
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pling a five-axis fibre port (PAF-X-18-A, Thorlabs, USA) was used for the experiments
presented in this and in the next Chapter. To improve the stability in later acquisitions
the port was exchanged for an aspheric lens (f = 15.3 mm, NA 0.16) placed at a fixed
distance from the fibre tip. The alignment necessary for fibre coupling is achieved by
mounting both fibre and aspheric lens to a single tip-tilt platform. The SD-OCT signal
is detected by coupling the optical fibre to a spectrograph (SR500i and DV420A-OFE
camera, Andor, United Kingdom). The spectral resolution of the device determines the
axial field of view of the OCT system and is discussed in Sec. 5.3.3.

For simplicity the optical design does not include a scanner at the sample beam.
Instead the sample is mounted to a set of three perpendicularly aligned manual trans-
lation stages for coarse alignment and to a three-axis piezoelectric stage (P-611.2s and
P-622.ZCD, Physik Intrumente, Germany) for fine alignment and automated sample
scanning and imaging.

Furthermore, an additional tube lens and a CMOS camera placed behind a removable
mirror allows to use the system as a microscopic setup, e.g. to image the sample and to
align it to the OCT system.

5.1.3 Data acquisition

The different algorithms which are discussed in this work are implemented with a set of
customized Matlab functions. The individual approaches are explained in the respective
Sections. At this point just a brief overview on how the OCT signal is acquired from the
detection hardware without details on implementation is presented. This data processing
is common to all other algorithms used in the upcoming Chapters.

The spectral raw-data is captured from the spectrograph camera via an USB connec-
tion by using the application programming interface provided by the manufacturer. This
data comes as a vector of 1024 16-bit integers which reflect the power spectral density
detected at the camera. The corresponding wavelength-scale depends on the orientation
of the spectrometer grating and is retrieved from a previous calibration, which is loaded
from a text file (Sec. 5.3.1). The wavelength scale is converted to the corresponding
spectroscopic wavenumber scale v = 1/A. In a next step the detected power spectral
density is linearly interpolated and upsampled to a uniformly spaced wavenumber grid
with 2048 pixels. The spectral data is then transformed to a single OCT A-scan by
calculating the complex-valued inverse Fourier transform using Matlab‘s ifft algorithm.
The resulting data yields the OCT signal for the depth range z = 0 to z = 22,42, Where
Zmaz 18 the maximal depth-range of the OCT signal. Finally the left and right halves
of the data are swapped using a fftshift algorithm. The complex-valued A-scan for the
depth range from —z00 t0 +2mar results.

The depth-scale which corresponds to the OCT signal is determined by the spacing
of the resampled spectral data. The depth scale is calculated from the equations given
in Sec. 2.2.4 and is divided by a factor two to describe the OCT signal in terms of the
single-pass optical path length, i.e. the penetration depth in the sample.

The OCT signal received from the inverse fast Fourier transform (IFFT) of the raw
spectral data reads I°P[m] and is complex-valued. For most figures presented in this
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work a logarithmic scale is used to illustrate the signal amplitude |I°?[m]|. The ampli-
tude of the OCT signal actually corresponds to the auto and cross-correlations of the
backscattered reference and sample beams, which is the inverse Fourier transform of
the detected power spectral density (Sec. 2.2.1). The signal amplitude |I°?[m]|, hence,
is considered to be a power quantity and, as a consequence, the signal level in decibel
(dB) is calculated according to 10 logio(|[I°P[m]|) (i.e. 10 dB/decade) for all illustrations
which are presented in this work.

5.2 SLM calibration and characterization

5.2.1 Principles

In this work, a liquid crystal on silicon (LCOS) SLM designed for phase only modulation
is used. The SLM display consists of a thin parallel aligned nematic (PAN) liquid
crystal (LC) layer on top of a CMOS backplane, which reflects light transmitted through
the LC and sets the respective voltage which is applied to the individual pixels of the
display at the same time [172, 173].

PAN LCOS SLMs enable phase-only wavefront shaping through electrically controlled
birefringence [172]. The liquid crystal molecules are aligned parallel to the long axis of the
SLM screen [172]. The nematic LC layer, thus, is anisotropic and optically birefringent
[174, 175] with the extraordinary optical axis being aligned parallel to the orientation of
the crystals [175]. The application of an external voltage tilts the LC molecules parallel
to the electric field [174, 175]. In case the field is applied parallel to the axis of incident
light, i.e. perpendicular to the plane of the LC display, the extraordinary refractive index
of the LC layer changes [174, 175].

The device enables phase-only wavefront modulation in case the polarization of in-
cident light is aligned parallel to the extraordinary optical axis of the LC layer. The
quantitative phase delay depends on the wavelength of modulated light and on the ap-
plied voltage, which needs to be calibrated to achieve a defined phase shifting behaviour.

5.2.2 Polarizer alignment

To operate the SLM correctly the incident light needs to be linearly polarized with the
polarization orientation aligned to the extraordinary optical axis of the device. To this
end a linear polarizer mounted to a rotation stage in front of the SLM is included to the
optical design (Fig. 5.1).

In general, linearly polarized light becomes elliptically polarized after reflection at the
birefringent SLM display [174]. The ellipticity depends on the angle ¢ between the
polarization direction and the orientation of the extraordinary axis, and on the phase
delay A¢ at the extraordinary axis. The intensity which is transmitted through a crossed
polarizer (analyser) placed behind reads [174, 176]:

I(A¢, o) = Iy sin® (2¢g) sin® <;A¢)> (5.1)
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5 Double interferometer OC'T design for independent beam shaping

To align the orientation of the polarizer an additional analyser and a CMOS camera
to monitor the transmitted intensity are introduced behind the SLM. A set of uniform
phase patterns is applied to the SLM to introduce a random phase shift A¢ at the
extraordinary optical axis. The integrated camera image is proportional to the inten-
sity transmitted through the crossed polarizer. The intensity is not expected to be a
uniformly distributed random variable with this measurement. The variance of the ob-
served intensity is expected to be proportional to sin?(2¢g), nonetheless (Eq. 5.1). The
polarizer can, thus, be aligned parallel to the extraordinary axis of the SLM (¢ = 0) by
finding the polarizer orientation at which the variance of the detected intensity becomes
minimal. The approach allows to align the polarizer with an accuracy of two degree,
which is the minimal angular resolution of the rotation platform to which the polarizer
is mounted.

5.2.3 Beam position calibration

For the approaches presented in this work knowledge of the positions at which the
two beams are reflected at the SLM with respect to the screen coordinates is required
(compare Fig. 5.1). A custom Matlab application is used to create a set of two concentric
ring patterns at the SLM. The diffracted beam is imaged with a CMOS camera placed
at the position of the objective lens of the OCT system. The position of both beams at
the SLM screen is determined by manually cropping the diameter of the source beam
and changing the position of the concentric ring patterns at the SLM while observing the
diffracted beam. The beam positions are saved to a text file and read upon initialization
of the OCT system.

5.2.4 Switching time

LCOS spatial light modulators are known for rather low frame rates which are affected
by the thickness of the liquid crystal layer and by the applied voltages [173, 175]. The
switching time is experimentally estimated by displaying a random reference phase pat-
tern to the SLM screen and capturing the resulting static speckle pattern at a CMOS
camera. Then, other random phase patterns iterating with the reference pattern are ap-
plied and the image resulting from illumination with the reference pattern is captured,
respectively. The correlation of these images with the image resulting from static illu-
mination is calculated depending on the refresh rate of the SLM. Figure 5.3 illustrates
the corresponding data. A correlation close to unity is achieved with update intervals
above 150 ms. In this case, the reference image captured with repeated SLM updates
matches the static image.

The presented method gives a rather coarse estimation of the refresh rate achievable
with the SLM since the timing cannot be controlled exactly, mainly due to the unbuffered
signal acquisition via an USB connection. The proof-of-concept experiments presented
in this work are not optimized for a high acquisition speed. To ensure well-defined beam
shaping a temporal delay of 150 ms is introduced between any refresh of the SLM screen
and subsequent data acquisition with the methods presented in this work.
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Figure 5.3: Estimation of SLM switching time. The graph illustrates the correla-
tion of the diffracted beam detected with dynamic SLM updates with the
corresponding image acquired with a static SLM pattern.

5.2.5 Phase shifting characteristics and correction

The SLM used in this work is digitally addressed at a single 8-bit color channel of a high
definition media interface (HDMI). The device, thus, can be used similar to a second
screen connected to a personal computer, whereas the grayscale values applied to the
individual pixels determine the respective phase shift which is applied to the beam. The
mapping between the applied grayscale value and the phase delay which is resulting
at the near infrared beam used for the OCT system is determined with a customized
calibration procedure based on self-referenced two beam interferometry. The approach
is modified from the work presented by Fuentes et al. [177].

The SLM is used to create two distinct beams (probe and reference beam) by filling
the pattern with a binary grating which blocks the zeroth diffraction order except for the
aperture of the two beams (Fig. 5.4(a)). Since the phase modulation characteristics of
the SLM is yet to be determined, the gray levels corresponding to the grooves and bars
of the binary grating are manually chosen such that a maximum diffraction efficiency
is observed. A CMOS camera (DCC 1545M, Thorlabs, USA) captures the intensity of
the diffracted beam without any further optical elements in between. To this end a
removable mirror is inserted to the experimental setup behind the SLM.

Another static Ronchi grating is applied to the reference beam (Fig. 5.4(a)). The
grating period is chosen such that the first diffraction order overlaps with the probe
beam in the plane of the camera. Due to the tilt between the two beams a linear fringe
pattern is observed on top of some residual undiffracted light (Fig. 5.4(b)). In case the
uniform grayscale of the SLM pattern corresponding to the probe beam is changed the
fringe positions shift according to the applied phase delay.

The phase shifting characteristics of the SLM is determined experimentally by cap-
turing a cross-sectional intensity profile of the linear fringe patterns which are observed
with different grayscale values at the probe beam. The corresponding data is drawn
to Fig. 5.4(c). A customized Matlab script is implemented to track the fringe positions
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Figure 5.4: Principle of self-referenced two-beam interferometry for SLM cal-
ibration. (a) Pattern applied to the SLM. The reference beam remains
static. The graysale at the aperture corresponding to the sample beam is
varied. (b) Intensity pattern captured at the camera after free propagation.
Scalebar 1 mm. A cross-sectional intensity profile of the interference fringes
is taken. (c) Fringe profiles taken for different grayscale values applied to the
probe beam. The fringe displacement reflects the phase shift at the probe
beam.

observed with the individual measurements based on intensity thresholding. The rela-
tive phase shift at the probe beam is calculated from the relative displacement of the
interference fringes, a displacement by one fringe period corresponds to a phase shift
of 27 [177]. The implemented algorithm labels and tracks individual fringes and, thus,
allows to investigate phase shifts larger than 27 without phase wrapping.

Two beam interferometry requires a spatially coherent light source. This condition is
met by the single-mode fibre coupled source used for the OCT system. Furthermore, the
coherence length of the source needs to be larger than the path length difference between
the two interfering beams. For the data presented, the lateral displacement between the
reference and probe beam was chosen to be 2 mm in the plane of the SLM. The camera
was placed at a distance of 30 cm which results in a geometrical path length difference of
7 pm, which is well below the coherence length of the source. The method, thus, allows
to calibrate the SLM directly with the broadband source used for the OCT system.

The phase shifting characteristics acquired by two beam interferometry is illustrated
in Fig. 5.5(a). Obviously the behaviour is non-linear and exceeds the desired range of 27.
In principle, this non-linearity can be compensated digitally by adapting the grayscale
image which is applied to the SLM. In practical applications a linear phase shift vs.
grayscale characteristics is more convenient, however.

The individual pixels of the SLM screen are digitally addressed by the controller via a
pulse code modulation scheme [172]. The alignment of the liquid crystal molecules, i.e.
the effective phase shift, is determined by the root mean square voltage at the respective
pixels [173]. The mapping between the 8-bit image which is transferred from the personal
computer to the SLM and the voltage which is actually applied to the individual pixels
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Figure 5.5: SLM phase modulation characteristics and gamma correction.
(a) Phase modulation characteristics acquired from self-referenced two beam
interferometry. (b) Gamma look up tables applied to the SLM controller,
respectively.

is set by a gamma look up table (LUT) which is saved to the controller. The phase
modulation characteristic presented in Fig. 5.5(a) is taken with a default linear LUT
(Fig. 5.5(b)).

A LUT which is resulting in a customized phase shifting behaviour can estimated
from the values 7/ [n] of the default linear LUT and from the phase shift ¢'"[n] which
is measured with that LUT applied [178]. The index n corresponds to the 8-bit brightness
of the image applied to the SLM. The values of the custom LUT ~¢“$™[p] are found
by interpolating y°“**°"[n] (query values) at the positions of the desired phase shifts
peUstomn] (query points) from the values 7/"[n] of the default LUT (sample values)
and the measured phases ¢'"[n] (sample points). To mitigate the effect of experimental
noise a polynomial fit to the experimentally acquired phase shift ¢! [n] is taken for the
calculation

Figure 5.5 illustrates the LUT calculated for linear 27 phase shifting with the OCT
source and the experimentally acquired characteristic once the LUT is saved to the SLM
controller. Indeed, the desired linear behaviour is achieved. The custom LUT effectively
crops the voltage range which is applied to the SLM. Due to this effect and due to the
digital addressing scheme of the SLM display, the LUT contains only 150 independent
elements, i.e. independent phase shifts, opposed to 256 independent values of the 8-bit
image which is sent from the personal computer to the SLM controller.

5.2.6 Dispersion

The wavelength dependency of the phase delay applied by the spatial light modulator
can be estimated by including the device to the OCT setup presented in Fig. 5.1. In
case a sample consisting of a single strongly reflecting layer is placed in front of the
OCT system a linear fringe pattern is observed in the power spectral density which is

65



5 Double interferometer OC'T design for independent beam shaping

860 3 3 860 on o
5 & o
E 850 1 2 E 850 0 2
~ ~ ©
< o S o <
= . 0o = -
B 840 e ——— £ D a0 2n &
Q .\ 9
: : 2 830
830
s s
820 820
0 100 200 0 100 200
slm grayscale / arb.u. slm grayscale / arb.u.

Figure 5.6: Principle of SLM dispersion measurement. (a) Spectral raw-data ac-
quired with a single-reflecting sample and with the SLM manipulating the
phase at the reference beam. (b) Unwrapped phase shift acquired at each
pixel of the raw-spectrum individually. Image adapted from [162].

acquired by the spectrograph. Indeed, the period of this fringe pattern corresponds to the
path length differences between the sample and reference beam and the fringe positions
correspond to the relative phase differences. This effect is exploited by SD-OCT systems
which acquire the sample‘s image from the inverse Fourier transform of the spectral data
(Sec. 2.2).

To estimate the dispersion of the SLM the spectral raw data is considered only. When
imaging a single-reflecting sample such as a silver mirror the signal, in principle, reads
[46, 57):

I(k) = A(k) + B(k) cos(EAL + ¢(k) + ¢o(k)) (5.2)

Al = lp — lg corresponds to the path-length difference between the reference and
sample beam. A(k) and B(k) denote the offset and amplitude of fringes observed in the
spectral raw data. ¢o(k) is a constant phase offset and ¢(k) an additional wavelength-
dependent phase shift. The SLM is now used to manipulate the phase at one of the
interfering beams with the setup presented in Fig. 5.1 and the spectral raw data I(k) is
captured for each gray-value applied to the SLM screen. The spectra are then low-pass
filtered to suppress artefacts present in the OCT signal which do not correspond to the
reflection at the mirror. The resulting data is illustrated in Fig. 5.6(a).

The intensity fluctuations which are observed at the individual pixels of the spec-
trograph, i.e. at the individual rows in Fig. 5.6(a), reflect the phase shift ¢(k) which
is observed at the corresponding wavelength as a result of modulation by the SLM.
The phase shift is recovered by estimating the parameters A(k) and B(k) from the
minimal and maximal intensities of the raw data, normalizing the data according to
(I(k) — A(k))/B(k) [176] and taking the inverse cosine. The unwrapped wavelength-
dependent phase shift is illustrated in Fig. 5.6(b). Since the phase unwrapping algorithm
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Figure 5.7: SLM dispersion. (a) Wavelength-dependent phase shift acquired after
subtraction of the reference data. (b) Spectral mean of Panel (a). (c)
Wavelength-dependent phase deviation from the spectral mean. (d) Colour-
coded histograms of the phase deviation. Each row corresponds to the his-
togram of the corresponding row in Panel (c). Image adapted from [162].

is unable to distinguish positive from negative phase slopes in practical applications it
does not matter whether the SLM is used to manipulate the reference or sample beam.
To account for phase instabilities of the experimental design the measurement is al-
ternated with reference phase acquisitions, which is the same measurement with zero
voltage applied to the SLM.

The wavelength dependent phase delay resulting from modulation with the SLM after
subtraction of the reference data is illustrated in Fig. 5.7(a). This data is taken after
previous gamma correction (Sec. 5.2.5) and, hence, the wavelength-averaged phase shift
features a linear 27 modulation, as intended (Fig. 5.7(b), compare Fig. 5.5(a)).

Figure 5.7(c) illustrates the deviation between the wavelength-dependent phase shift
and a polynomial fit the spectral mean (Fig. 5.7(b)). Strong fluctuations are observed
with this signal. The presented approach is sensitive to intensity fluctuations of the
raw data close to the observed fringe minima and maxima due to the large slope of
the inverse cosine at arguments close to 1. As a consequence, discontinuities in the
acquired phase shift result at the positions which correspond to these local extrema
(and at the extrema of the reference data). These measurement artefacts are evident
in Fig. 5.7 Panels (a) and (c¢). To estimate the wavelength-dependency of the SLM
nonetheless, Fig. 5.7(d) illustrates the color-coded histograms for the data acquired at
each wavelength, respectively. From this data the wavelength-dependent deviation of
the applied phase shift compared to the spectral mean is estimated to be smaller than
+0.17. This value is considered to be sufficient for the algorithms presented in this work.
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5.3 OCT calibration and characterization

5.3.1 Spectral calibration

The software package provided by the spectrograph manufacturer for manual control
(Solis v.4, Andor, United Kingdom) provides a default spectral calibration and allows
to rotate the spectrometer grating such that the desired spectral range is imaged to the
camera. With the grating used in this work a spectral range of approximately 40 nm
can be imaged at once.

The spectral scale was manually calibrated by imaging the fluorescence emitted from a
HeNe Laser (Aerotech, USA) and comparing the position of the observed spectral peaks
to their nominal wavelength [179]. The spectrograph software‘s manual calibration tool
was then used to recalibrate the device. The final spectral scale was saved to a text-file
and is read by the customized OCT software upon initialization.

The central wavelength of the superluminescence diode is observed to shift to larger
wavelengths in case the diode is operated at low power. Hence, the spectral calibra-
tion was taken for different positions of the spectrometer grating such that the central
wavelengths 830, 835 and 840 nm are imaged.

5.3.2 Spatial resolution
Axial resolution

The axial resolution of the SD-OCT system depends on the bandwidth of the light
source and on the spectral range which is captured by the spectrograph. The source is
specified for a FWHM bandwidth of 20 nm. From the Eqgs. 2.13 and 2.14 the nominal
axial resolution achieved with the source is found to be 15.2 pm at air.

Due to the digital signal acquisition the OCT signal is discretized with respect to it‘s
axial scale. The axial sampling interval d, is determined by the spectral range covered
by the spectrograph (Sec. 2.2.4). With the wavelength calibration used for the central
wavelength of 830 nm a value of d, = 8.3 pm is found. With the calibration for a central
wavelength of 840 nm, which is used for the low power operation of the light source, a
resolution of d, = 8.5 um results.

The FWHM axial resolution which is expected with the source corresponds to about
two pixel of the discretized OCT signal. The experimentally acquired peak width is
further increased due to leakage of the discrete Fourier transform. This effect, in prin-
ciple, occurs whenever the position of the reflecting layer does not exactly align to the
discrete axial grid of the OCT signal. In this case the spectral window from which the
inverse discrete Fourier transform is calculated is not an exact multiple of the period of
the spectral interference fringes and, as a consequence, a broadened peak results in the
OCT A-scan [63]. This effect prohibits to test the axial resolution of the OCT system
directly by investigating the peak width with a sample such as a plain mirror.
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Figure 5.8: Depth of field of the OCT system. (a) Structure of the resolution
test target. (b) Scan taken at the sample with a four-step phase shifting
algorithm. Compare Fig. 2.6(d). (¢) The same scan with 10x magnification
of the lateral scale.

Lateral resolution and depth of field

The lateral resolution of the OCT system and the depth of field are determined by
the NA of the imaging optics, similar to confocal microscopy. For a beam diameter
of 4 mm which is used for most experiments presented in this work the objective lens
is underfilled and an effective NA of 0.14 results. With this value the FWHM lateral
resolution is calculated to be 2.76 nm (Eq. 2.15).

The effect of the imaging optics is evident when taking a closer look to an OCT scan
which is acquired with a resolution test target (APL-OP01, Arden Photonics, United
Kingdom). Such a scan is illustrated in Fig. 5.8. The location of the focal plane of the
imaging optics is clearly visible from the scan since the lateral resolution is maximal
at the corresponding depth. The lateral FWHM of the signal detected from sample
structures at the focal plane is found to be (3.5 4+ 0.5) pm with the presented data. The
resolution of sample features which are displaced from the focal plane quickly decreases
due to the limited DOF of the imaging optics. This effect is accepted in this work
since the choice of rather high-NA imaging optics increases the total intensity which is
detected by the OCT system, on the other hand.

5.3.3 Spectral resolution and axial sensitivity

The axial field of view of the SD-OCT system is limited by the spectral sampling
of the acquired raw data (Sec. 2.2.4). The maximal sampling interval is found to be
dy = 3,91 cm~!. This value corresponds to a (single-sided) FOV of 24, = 4.0 mm for
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Figure 5.9: Impact of spectral resolution on the SD-OCT signal. The solid black
line illustrates the signal acquired from a strongly reflecting sample. The
arrows indicate the axial shift of the sample‘s mutual interference and mirror
signal when the length of the reference arm is reduced. The points illustrate
the respective peak amplitudes as the reference arm length, i.e. the axial
position of the detected signal, is scanned. Gray lines showcase individual
A-scans for illustratory purposes. The dashed line illustrates the product of
a sinc function and a Gaussian fit to the experimental data.

the OCT system. The observed image is always wrapped to the range +z,,4, (Sec. 2.2.4).
The amplitude of wrapped signal components which correspond to reflections outside of
the axial FOV is not reduced due to the discretization of the spectral raw data alone,
on the other hand (Sec. 2.2.4).

In contrast, the finite optical resolution of the spectrograph reduces the visibility of
high-frequency interference fringes. As a consequence, the OCT system is less sensitive
to signals detected from large depths or from sample features located outside of the
axial FOV (Sec. 2.2.4). The effect is demonstrated in Fig. 5.9 which illustrates the OCT
signal taken at a single strongly reflecting surface. Image artefacts are not suppressed.
Hence, a strong DC signal is present at z = 0 and the signal is symmetric with respect
to it‘s depth scale. The strong signal peak observed at a depth of 0.5 mm corresponds
to the reflection at the sample. The axial position at which the signal is detected shifts
in case the length of the reference arm is changed. The observed peak amplitude, which
is illustrated by the points drawn to Fig. 5.9, drops with increasing displacement. This
effect is independent from the effects of the imaging optics finite depth of field, which is
discussed in Sec. 5.3.2. From the data presented in Fig. 5.9 the axial range at which the
signal amplitude is observed to drop by less then a factor of two is found to be 1.9 mm,
which is about half the axial FOV of the system. This corresponds to a sensitivity loss
of —3 dB. The sensitivity at the edge of the axial FOV (z = 4.0 mm) is observed to
drop by —12.2 dB. These values have to be compared to the dynamic range of the OCT
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device, on the other hand. With the presented system this value is found to be at least
30 dB and, hence, signal features within the axial FOV can safely be detected.

In Sec. 2.2.4 analytic expressions were given which describe the axial sensitivity loss
expected for the OCT system. Fitting these expressions to the experimental data pre-
sented in Fig. 5.9 allows to estimate the optical resolution of the spectrograph. To this
end a fill factor of 100 % is considered for the camera which is attached to the spec-
trograph. The spectral range covered (and integrated) by the individual pixels, hence,
corresponds to the spectral sampling interval d. To estimate the spectrometer‘s optical
resolution the data presented in Fig. 5.9 is normalized by the sensitivity loss expected
from spectral binning alone, described by a sinc function. Subsequently, a Gaussian fit
to the resulting data is calculated (Sec. 2.2.4). The FWHM of the fit function reads
4.2 mm, which corresponds to a FWHM optical resolution of 5Zpt =6.58 cm™! (com-
pare Sec. 2.2.4). This value will be used in the next Section. The product of the sinc
function and the Gaussian fit, which together yield the expected axial sensitivity loss, is
illustrated in Fig. 5.9.

5.4 Analysis of the design

5.4.1 Analytic model

The presented double interferometer OCT design is intended to enable independent
beam shaping at the reference and sample beam. So far, only a heuristic explanation
of the approach is given, however. This Section provides a more sophisticated analysis.
Similar to the discussion given in Sec. 2.1 the OCT system can be described within a
one-dimensional model by considering a set of two cascaded interferometers. The model
is illustrated in Fig. 5.10.

The double interferometer design is easily understood by first considering the signal
which is expected with a conventional SD-OCT device. Such a system is based on a
single interferometer which corresponds to the right Panel in Fig. 5.10. The signal I°7
which is expected for the conventional SD-OCT design is composed from autocorrelation
artefacts I'rr and I'gg resulting from the reference and the sample beam, respectively,
from mirror artefacts I'sg and from the mutual interference signal I'rg which reflects
the morphology of the sample (Eq. 2.17). Analytic expressions for the respective terms
in case a one-dimensional layered sample is considered are given in Egs. 2.9 and 2.18.
As is evident from these equations the mutual interference and autocorrelation signals
are found from the convolution of the coherence function (or autocorrelation) I'g..(7)
of the light source with some term which basically reflects the structure of the sample.
The same applies to the mirror signal I'gr, as is easily verified from the symmetry of
the cross-correlation (Eq. 2.5).

The analytic expressions given for the OCT signal (Egs. 2.9, 2.17 and 2.18) still hold
for the double-interferometer design if the term I, . is considered to correspond to the
autocorrelation of the field F’,.. which is incident at the second interferometer (Fig. 5.10),
instead as to the autocorrelation I'y.. of the field Fy.. which is directly emitted from

the light source. FE._. is found from the convolution of Eg,.. with the (one dimensional)
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Figure 5.10: Model of the OCT design. The OCT system is modelled from two
cascaded one dimensional Michelson interferometers. The signal expected
with the conventional OCT system is discussed in Chap 2. The effect of
the additional interferometer is described by it‘s impulse response h(t).
Variables are explained in the text body. Image adapted from [162].

impulse response of the first interferometer:

Eo(t) = h(t) ® Egre(t) (5.3)

Making use of the identity [f ® g]*[f ® g] = [f * f] ® [g* g] [180, 181], where * denotes
the cross-correlation according to Eq. 2.4, the autocorrelation of the field incident to the
second interferometer reads:

F;rc(T) = H(7) ® T'spe(7) (5.4)

[sre(7) is the coherence function (or autocorrelation) of the light source. H(7) de-
scribes the autocorrelation of the impulse response h(t) of the first interferometer. Now,
as previously discussed the SD-OCT signal is found from the convolution of I, . with

some structural terms. For a conventional OCT system (I",. = Is..) this signal reads

ISP (7). The signal expected with the double interferometer OCT, thus, reads according
to Eq. 5.4:

Lipane(T) = H(r) ® I°P(7) (5.5)

The impulse response h(t) of the first interferometer can be written in terms of the
impulse responses hi(t) and ho(t) of the respective arms, i.e. h(t) = hi(t) + ha(t)
(Fig. 5.10). The autocorrelation, thus, reads analogue to the previous discussion given
for the SD-OCT signal (Eq. 2.4):
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5.4 Analysis of the design

H(1) = Hy1(7) + Haa(7) + Hio(7) + Ho1(7) (5.6)

The signal which is expected for the double interferometer design yields:

Lioe(T) = [Hi1(m) ® I5P(7)] + [Hoa(7) ® 177 (7)] (5.7)
+ [Hiao(1) ® I9P(7)] + [Ha (1) ® TP (7)]

Hq1 and Hso correspond to the autocorrelation of the beams which are reflected at
either interferometer arm, respectively. Hio and Hsy correspond to the cross-correlation,
i.e. mutual interference, of the two beams (Eq. 2.4).

Now, to give a more intuitive understanding, the impulse responses of the two inter-
ferometer arms are quickly found in terms of the one dimensional model (Fig. 5.10):

hi(t) = r1/2 8(t + 211 /c) (5.8)

ha(t) = 12/2 §(t + 215 /c) (5.9)
Hiy (1) = |r1)?/4 6(7) (5.10)
Hayo(T) = |r2|?/4 6(7) (5.11)
Hyo(7) = rir5/4 6(1 + 2Al/c) (5.12)
Hoy (1) = 1ire/4 6(1 — 2Al/c) (5.13)

l12 and r1 o describe the lengths and amplitude reflectivities of the two interferometer
arms, respectively (Fig. 5.10). Al = [; — Iy yields the arm length difference. With this
result the OCT signal reads in terms of the depth-scale z = ¢7/2 (compare [162]):

Ligupie(2) = (11 + [r2*) /A T°P (2) 41105 /4 T5P (2 + Al) + 1ir /4 TP (2 — Al) (5.14)

To summarize, as an effect of the double interferometer design the SD-OCT signal
which is expected for a conventional SD-OCT system is reproduced three-fold. The first
term in Eq. 5.14 describes the signal which corresponds to the incoherent superposition
of the two beams which are reflected at the first interferometer. As a result the signal is
reproduced at it’s original depth-axis and scaled by the total reflectivity (|rq|? +|rs|?)/4.
In contrast, the second and third term result from mutual interference of the beams
reflected at the first interferometer. The corresponding OCT signal, hence, is axially
shifted by Al, which is the distance matching the arm length difference of the first
interferometer. These signal components allow to shape the reference and sample beam
independently by manipulation the field only at the first interferometer, on the other
hand. The effect is discussed in the next Section.
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Figure 5.11: Calculated double interferometer OCT signal. (a) Signal amplitude for a sample consisting of three
reflective layers. The difference Ig — [g between the lengths of the reference and sample beam is close to zero.
(b) Phase at the respective signal peaks in case the phase difference Ay at the first interferometer is changed.
(c) and (d) Same as (a) and (b), reference arm length reduced by 1.5 mm. (d) and (e) Same as (a) and (b),
reference arm length reduced by 10 mm. Image adapted from [162].
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5.4.2 Numerical calculation

The expected OCT signal is explicitly calculated. To this end a Matlab script is used
to evaluate the spectrum of a broadband light source at a densely spaced frequency
grid. The source spectrum is multiplied by the complex-valued transfer function of the
double-interferometer OCT design which is analytically found for the one dimensional
model analogue to the previous discussion [162]. The OCT signal is then calculated from
the IFF'T of the resulting power spectral density. The simulation code is available online
[182]. The arm length difference is assumed to read Al = 10 mm, which is close to the
experimental value (9.7 mm). For illustratory purposes a rather low source bandwidth
of 5 nm, which yields broad OCT signal peaks, and a layered sample with layer spacing
of 0.5 mm is chosen.

The OCT signal which is expected for the double-interferometer design is illustrated
in Fig. 5.11(a). The axial sensitivity loss of due to a finite spectral resolution is not
taken into account for the calculation of the OCT signal. Close the z = 0 the signal
which corresponds to the first term in Eq. 5.14 is evident. This signal corresponds to
the signal observed with a conventional SD-OCT system. The signal, hence, features a
strong DC peak at z = 0 and autocorrelation artefacts close to the DC peak. Mutual
interference and mirror signals are observed at z = g — [p = 42 mm and feature a larger
amplitude compared to autocorrelation artefacts. Due to the double interferometer
design additional copies of this signal are observed which are shifted by +Al = £(l; —12)
with respect to the axial scale of the scan (compare Eq. 5.14).

To better identify the impact of the individual signal components the effect of phase
shifting at the first interferometer is considered. To this end the calculation of the OCT
signal is repeated for |r1| = |ra] = 1 and for different values of Ap = arg(r1) — arg(ra),
which is the phase difference between the two interferometer arms. The OCT signal
which is reproduced close to z = 0 is expected to be insensitive to the phase difference
A since the corresponding signal components results from the incoherent superposition
if the two beams which are reflected at the first interferometer (first term in Eq. 5.14).
In contrast, the signal which is shifted by the distance —Al with respect to the axial
scale is expected to be proportional to exp(iAp) (second term in Eq. 5.14) whereas the
signal which is shifted by +Al is proportional to exp(—iAy) (third term in Eq. 5.14).
Figure 5.11(b) illustrates the phase of the calculated OCT signal at the positions of the
respective signal peaks. Indeed this behaviour is found with the numerically calculated
signal, as well.

5.4.3 Independent phase manipulation

The axial sensitivity loss which is resulting from the finite spectral resolution of the OCT
system is drawn to Fig. 5.11(a). This data corresponds to the fit functions found for
the experimentally observed sensitivity drop which is discussed in Sec. 5.3.3. As is evi-
dent from Fig. 5.11(a) the additional axially displaced signal components are effectively
suppressed due to the finite spectral resolution of the SD-OCT system in case the arm
length difference Al = [1 — I3 at the first interferometer is chosen to be sufficiently large.
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5 Double interferometer OC'T design for independent beam shaping

Mutual interference signal components I'rg and mirror artefacts I'sg depend on the
lengths of the reference and sample beam, respectively. The position at which these
signal components are detected in the scan, hence, can be shifted by changing the length
of the reference arm lr. To enable beam shaping and phase manipulation with the
OCT system the reference arm length is chosen such that the arm length difference at
the first interferometer is compensated, i.e. lg — g ~ l; — l2, and such that Ig — g is
sufficiently large compared to the axial field of view of the OCT system. In this case the
mutual coherence and mirror signal components which correspond to the first term in
Eq. 5.14 and which are detected at z = +(lg — lg) are moved outside of the axial FOV.
Mutual interference signals corresponding to the second term in Eq. 5.14 are detected
at z = (Is — lg) — (I1 — l2) and, hence, are moved close to z = 0. The same applies to
mirror artefacts which correspond to the third term in Eq. 5.14 and which are detected
at z = —(ls — lg) + (I1 — l2). The effect is illustrated in Fig. 5.11.

In this case the OCT system detects mutual interference signals which are proportional
to exp(iAyp), where Ag is the relative phase difference between the two arms of the
first interferometer, and mirror artefacts which are proportional to exp(—iAyp). This
is exactly the behaviour which is expected if phase shifting is directly enabled at the
individual arms of a conventional SD-OCT system as discussed in Sec. 2.2.3.

5.4.4 Experimental phase manipulation

The previous numeric results are validated experimentally. To this end the OCT signal
is taken at a sample consisting of a stack of cover glass slides (CG15CH2, Thorlabs,
USA). The resulting signal amplitude is illustrated in Fig. 5.12(a). At path lengths be-
low |z| =1 mm a number of autocorrelation signals are detected. Beyond this range
the observed signal peaks correspond to mutual interference and mirror signals which
are detected from the reflections at the individual sample interfaces. Analogue to the
numeric calculation presented in Fig. 5.11(f) the SLM is used to apply a uniform phase
delay to the lower beam of the first interferometer (Fig. 5.1). According to the previous
discussion this is considered to correspond to a positive phase delay Ap. Figure 5.12 (b)
illustrates the phase of the complex-valued OCT signal which is detected at the sig-
nal peaks whose amplitude is above a threshold. Similar to the numeric calculations
(Fig. 5.11(f)) the phase at mutual interference signal components is found to be propor-
tional to the phase which is applied by the SLM. Figure 5.12(c) illustrates the average
phase shift at the four rightmost signal peaks in Fig. 5.12(a). The data aligns well to
the previous phase calibration of the SLM (Figs. 5.5 and 5.7).

5.4.5 Independent beam shaping

The effect of (lateral) beam shaping is not described in terms of the one dimensional
model. Investigating the expected signal in terms of the impulse responses yields some
insight, nonetheless. In principle the OCT signal can be written in terms of Egs. 2.17 and
5.7. Only signal components located close to z = 0 are detected due to the finite spectral
resolution. Considering the previous discussion, in case the length of the reference arm
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Figure 5.12: SLM-based phase shifting with the OCT system. (a) OCT signal am-
plitude observed with a sample consisting of four reflective layers. (b) Phase
of signal components above amplitude threshold (dashed line in Panel (a))
if the SLM is used to manipulate the phase delay at the effective reference
beam. (c) Average phase at the four rightmost signal peaks. Image adapted
from [162].

is chosen according to lg — lg = [; — l2 the signal reads:

19000 (T) ~ [H11(7) + Hoa(7)] ® [Tre(r) + Das(7)]

+ Hio(7) ® Trs(7) + Ho1(7) ® Tgr(T) (5.15)

The first term yields autocorrelation artefacts, the second and third term describe
mutual interference and mirror signals. Analogue to the discussion given in Sec. 5.4.1
the fields reflected from the reference and sample beam can be written in terms of the
impulse responses hr and hg of the respective arms of the second interferometer:

I'rs = [hr ® Espc] * [hg ® Egpe (5.16)

The operator * denotes the cross-correlation according to Eq. 2.4. Taking use of the
identity [hy * ha] ® [ER * Eg] = [h1 ® ER| * [ha ® Eg] (compare Sec. 5.4.1), the second
term in Eq. 5.15 reads:

His ® Tps = [h1 ® hp ® Egpe] * [ha ® hs ® B (5.17)
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5 Double interferometer OC'T design for independent beam shaping

Obviously, this signal corresponds to mutual interference of the beam which is re-
flected at one arm of the first interferometer and at the reference arm (described by the
compound impulse response (h; ® hr)) with the beam which is reflected at the other
arm of the first interferometer and which is reflected at the sample (described by the
impulse response (hg ® hg)). Thus, the two beams can be considered to be the effective
reference and sample beam for the double interferometer OCT design.

Similarly, the first term in Eq. 5.15 is found to yield the sum of the autocorrelations of
the terms [h1 ®hrp® Esrc], [hg ® hrp ® ESTC], [hl ® hg ® Esrc] and [hg ® hg ® ESTC]. The
signal, hence, corresponds to the summed autocorrelation of all four beams (reflected
at either arm at the first interferometer and at either arm of the second interferometer)
which are created by the double interferometer design (compare [168, 169]). Thus, not
only the autocorrelation of the effective sample and reference beam alone are observed,
but additional autocorrelation artefacts, as well.

Considering the symmetry of the cross-correlation (Eq. 2.5) and the properties of the
convolution with respect to time reversal and complex conjugation the third term in
Eq. 5.15 is verified to yield the mirror image of the effective mutual interference signal:

[Ha1 ® Dsg] (1) = [Hi2 ® Trs]" (—7) (5.18)

The effect of beam shaping can be considered by taking the spatial dependence of
the respective impulse responses into account in case optical propagation is assumed
to be translation invariant or otherwise by describing the linear optical propagation
in terms of Green’s functions. A detailed analysis is beyond the scope of this work.
The one-dimensional model demonstrates that the mutual interference OCT signal and
the mirror image result from the cross-correlation of the effective reference and sample
beam, which correspond to reflections at either arm of the first interferometer. A spatial
light modulator is used as end mirror at both interferometer arms, and, thus, allows
to manipulate the phase or the shape of these beams independently (Fig. 5.1). The
capability for phase manipulation is demonstrated experimentally in Sec. 5.4.4 and is
utilized in this work to implement phase shifting algorithms to suppress SD-OCT image
artefacts. The beam shaping capabilities are demonstrated in the upcoming Chapters.
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6 Iterative wavefront shaping

Iterative wavefront shaping manipulates the spatial profile of the beam which is incident
to a turbid sample such that a focal spot is created from scattered light. Further details
are discussed in Sec. 3.3. Due to the iterative optimization approach the technique
requires no detailed knowledge about the imaging properties of the optical system. The
technique, hence, is experimentally robust and is well-suited to investigate principal
effects of beam shaping applied to OCT imaging with strongly scattering samples. On the
other hand, the approach is rather slow and, thus, not suited for full image enhancement.
A quantitative analysis of wavefront shaping with OCT systems, hence, is deferred to
implementations with improved algorithms which are discussed in Chapter 7 and 8.
Parts of the contents presented in this Chapter have already been published [162, 183].

6.1 Algorithm and implementation

Iterative wavefront shaping based on optical coherence tomography is implemented with
a genetic algorithm which was presented by Conkey et al. in 2012 [131]. In principle,
the algorithm applies a set of random phase patterns to the SLM, determines the OCT
signal resulting from illumination with the respective wavefronts and then optimizes the
phase patterns such that the signal is maximized. The genetic algorithm allows to test
the effect of phase patterns which span the full diameter of the illuminating beam at
once. Furthermore, the algorithm was shown to yield a faster signal enhancement at a
low number of iterations compared to other iterative algorithms and to perform better
in the presence of experimental noise [131]. Further details are discussed in Sec. 3.3.3.

The algorithm groups the pixels of the SLM to a set of N segments (or macropixels)
with uniform phase each (compare Sec. 3.3.3). Only those segments which are located
within the circular area at which the two beams are reflected at the SLM (compare
Sec. 5.2.3) are manipulated. With the experimental design presented in Chap. 5 the
optimization algorithm, thus, can be used for beam shaping either at the reference or
at the sample beam. For each phase pattern which is applied to the SLM the resulting
OCT A-scan is acquired. A scalar feedback value is calculated by evaluating the average
amplitude of the signal detected at a previously set target depth. A finite target size is
chosen to account for small sample displacements during the acquisition. The iterative
wavefront shaping algorithm optimizes the pattern which is applied to the SLM such
that the feedback value, i.e. the OCT signal at the target depth, is maximized.

The algorithm can be combined with phase shifting approaches (Sec. 2.2.3) to en-
hance the SNR and to suppress OCT image artefacts during the acquisition. This is
implemented by either using the SLM to manipulate the phase at the other beam which
is not shaped by the optimization algorithm or by superimposing the respective phase
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6 Iterative wavefront shaping

shifts to the phase patterns applied to the shaped beam. The feedback value for the
optimization algorithm is taken from the amplitude of the OCT signal retrieved from
the phase shifting algorithm.

The optimization algorithm can be used with a scalar feedback which is obtained
from any other sensor, as well. To verify the functionality, the algorithm was tested in
a conventional wavefront shaping setup, where a camera is used to monitor the speckle
pattern resulting from light transmitted through a scattering sample. The feedback
value is calculated from the intensity detected at one spot at the camera. Wavefront
optimization with this setup enhances the intensity observed at the target and creates
a focal spot on top of a speckle background (compare Sec. 3.3) [23, 131].

6.2 Local signal enhancement

To verify the approach and to demonstrate the capability of the OCT design presented
in Chap. 5 to manipulate the reference and the sample beam independently, the effect of
wavefront shaping at both beams is demonstrated experimentally. To this end, optical
aberrations are introduced to the reference beam on purpose by displacing the reference
mirror My from the focal plane of the reference arm objective lens MOg (Fig. 5.1). The
OCT signal is taken at a sample consisting of multiple layers of scattering polymer film
(Parafilm M, Pechiney Plastic Packaging, USA). The sample’s extinction coefficient was
estimated to be (6.9 & 1.2) mm~! from Beer‘s law.

6.2.1 Axial localization

Figure 6.1(a) illustrates the A-scan which is acquired in case a uniform phase pattern
is applied to the SLM. The signal is taken with a four-step phase shifting algorithm
(Eq. 2.21) to enhance the SNR. Signal peaks which correspond to reflections at the cover
glass slide placed on top of the sample (z = 0.15 mm) and to reflections at the interfaces
between the individual polymer layers are clearly visible. The optical thickness of the
respective sample layers is found to be approximately 0.2 mm.

The iterative wavefront shaping algorithm is used to enhance the OCT signal which
corresponds to the reflection at the interface between the fifth and sixth polymer layer.
The feedback for the optimization algorithm is calculated from the amplitude of the
OCT signal, integrated at the axial range illustrated in Fig. 6.1(a). Figure 6.1(b) dis-
plays the feedback value which corresponds to the respective best (top-ranked) phase
pattern throughout the optimization process while optimizing the wavefront at the sam-
ple beam. The feedback signal is incremented step-wise each time the algorithm finds
a new optimal wavefront. With increasing number of iterations the initial slope tapers
off. Both observations are expected for the genetic algorithm [131].

Figure 6.1, Panels (d) and (e) illustrate the final phase patterns which are found in
case the optimization algorithm is used to shape the wavefront applied to the reference
and sample beam, respectively. The pattern applied to the reference beam resembles
the wavefront which corresponds to spherical aberrations. In contrast, the phase pattern
applied to the sample beam is highly heterogeneous and random-like. This is expected
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Figure 6.1: Iterative wavefront shaping with a layered sample and misaligned
reference beam. (a) OCT signal acquired with flat wavefronts applied
to both beams, with wavefront shaping at the reference and sample beam,
respectively, and with both optimized phase patterns applied simultaneously.
(b) Feedback value corresponding to the best-ranked phase pattern during
wavefront shaping at the sample beam. (c) Phase pattern corresponding to
a flat wavefront. (d) Optimized phase patterns at the reference and (e) at
the sample beam.

for wavefront shaping with a strongly scattering sample. The optimized wavefront does
not actually compensate optical aberrations but rather shifts the phase of the individual
wavefront segments such that constructive interference is created from scattered light
(Sec. 3.3).

Figure 6.1(a) presents the OCT signals which are acquired once the optimized phase
patterns are applied to the respective beams. In case the shaped wavefront is applied
to the reference beam the total amplitude of the detected OCT signal is observed to be
increased. The signal enhancement reads 8.4 dB (7.0-fold linear enhancement) at the
target. With the presented experimental data the misalignment of the reference arm
causes the power which is detected from the reference beam to be actually lower than
the power which is detected from the sample. The shaped reference beam couples more
light to the point detector and, hence, increases the amplitude of the observed OCT
signal.

In contrast, in case the beam incident to the sample is shaped a local signal enhance-
ment only at the target depth results which reads 10.0 dB (10.0-fold linear enhancement)
(Fig. 6.1(a)). This behaviour is expected for wavefront shaping with a scattering sam-
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ple. In principle, the optimization algorithm creates constructive interference from signal
contributions which are detected at a finite time-of-flight window, i. e. at the target, only.
At other depths, no such effect results (compare Sec. 4.3).

Finally, Fig. 6.1(a) also displays the signal which is acquired in case both optimized
phase patterns are applied to the respective beams at the same time. The effects of
both wavefronts add up and a local signal enhancement at the target due to shaping of
the sample beam as well as a general signal enhancement due to the increased coupling
of the reference beam to the detector is observed. The resulting signal increase at the
target reads 18.0 dB (63.0-fold linear enhancement).

6.2.2 Lateral localization

In this Section the effect of lateral sample displacement is investigated. To this end, a
piezoelectric stage is used to mechanically move the sample in front of the OCT system
after wavefront shaping. Similar to the A-scans presented in Fig. 6.1(a) a volume scan is
captured after applying the optimized phase patterns to the SLM. The phase patterns
remain static throughout the respective acquisition.

Figure 6.2(al) illustrates a cross-sectional B-scan (image plane perpendicular to the
sample surface) retrieved from the volume scan in case a flat phase pattern is applied to
the SLM. Panel (a2) presents a close-up to the position which corresponds to the target
for the wavefront shaping algorithm. Panel (a3) illustrates an En-Face scan (image plane
parallel to the sample surface) in the plane of the target depth. Figure 6.2 Panels (b1)
to (b3) illustrate the same data in case the wavefront is optimized at the reference beam.
Obviously, the total image brightness, i.e. signal amplitude, is enhanced. The shape of
the observed signal remains the same, on the other hand. This is evident by comparing
Panels (a3) and (b3). The image correlation between the two panels reads 0.87, i.e. both
scans present nearly the same speckle pattern. This finding is not surprising. Speckle
observed by the OCT system result from constructive or destructive interference of light
which is backscattered to the detector as the sample is scanned [46, 184]. The observed
speckle pattern, hence, is not expected to change in case a different static wavefront is
applied to the reference beam

Figure 6.2 Panels (c1) to (c3) illustrates the signal which is taken after application of
the shaped wavefront to the sample beam. Obviously, only close to the target position for
which the wavefront is optimized (centred in Panels (c2) and (¢3)) a visible enhancement
of the signal amplitude is evident. In case of large sample displacements only speckle
are observed (Fig. 6.2(c3)), similar to the acquisition with a flat wavefront. The speckle
patterns observed in both cases are found to be uncorrelated, on the other hand. The
image correlation between Panels (a3) and (¢3) reads —0.02. This behaviour is expected
since illuminating the sample with differently shaped beams affects the shape of the
backscattered field as well and, hence, produces different speckle patterns. Figure 6.2
Panels (d1) to (d3) presents the scans which are taken in case the respective optimized
wavefronts are applied to both beams at the same time. Once again, the effects of
wavefront optimization at the reference and at the sample beam cumulate. The image
correlation between Panels (¢3) and (d3) reads 0.96.

82



6.2 Local signal enhancement

(a1) \dl) BEEEKY
1.36

amplitude / dB

Wy o

1.34
1.36

[
i ANy
Y i [
) It W,\ ﬂ“l“

i b 40 i b il 1 b

[ RN
A
A

1.34
1.36

LI T
I “'l’ﬂ“'"“

g 1.34

e i 136

optical path length / mm
optical path length / mm

Figure 6.2: Impact of sample displacement on signal enhancement through
wavefront shaping. (al) B-scan taken with flat wavefront applied to
both beams. (a2) Close-up to the target position for wavefront shaping.
(a3) En-Face scan in the plane of the target depth. (bl to b3) Same as (al
to a3), wavefront optimized at reference beam. (cl to ¢3) Wavefront op-
timized at sample beam. (d1 to d3) Wavefront optimized at both beams.
Scalebar 10 pm. Image adapted from [162].

The effect of wavefront shaping on the OCT signal is observed to be limited to a
narrow lateral range. Vellekoop et al. demonstrated iterative wavefront shaping with
a monochromatic source and in transmission geometry to produce a focal spot whose
intensity profile matches the autocorrelation of the observed speckle pattern [115]. The
size of the focal spot, hence, is comparable to the observed speckle size. Choi et al.
demonstrated selective enhancement of the OCT signal similar to iterative wavefront
shaping, which is discussed in this Chapter [30]. The approach was shown to create a
laterally confined focal spot from light which is backscattered from the sample, analogue
to the experiments in transmission geometry [30]. Due to the confocal detection geom-
etry of the SD-OCT system presented in this work, the point at which the sample is
illuminated and the point from which the signal is detected are scanned simultaneously,
though. As a consequence, a focal spot which is created from backscattered light due to
wavefront shaping is not directly observed at the point detector.

The OCT system captures the field which is backscattered from the sample and which
is integrated at the detector. As the sample is scanned, speckle are observed due to
constructive or destructive interference of the detected field [46, 184]. The field which is
backscattered to the detector does not decorrelate immediately in case the sample beam
or the sample is moved, on the other hand. With anisotropically scattering media, for
example, laterally scanning the incident beam over a limited range causes the scattered
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Figure 6.3: Effect of sensorless adaptive optics correction on the OCT signal.
Same as Fig. 6.1 with optimized wavefronts calculated by the adaptive optics
algorithm. Image adapted from [162].

beam to shift accordingly without fully decorrelating [104]. As a consequence, a finite
speckle size is observed. Correlations of the scattered field apply in case a shaped beam
is incident to the sample, as well [104] (compare Sec. 3.2.1). The lateral range at which
the OCT signal is enhanced as an effect of wavefront shaping, hence, corresponds to
speckle size which is observed during scanning (compare Fig. 6.2).

6.3 Comparison to adaptive optics

For comparison an algorithm for sensorless adaptive optical correction is implemented
which is based on the work presented by Jian et al. [185]. The algorithm calculates a
scalar feedback from the amplitude of the OCT signal similar to the approach used for
iterative wavefront shaping. In contrast, the corrective phase pattern which is applied
to the individual beams is assumed to be a linear superposition of Zernike modes. The
algorithm tries to find the coefficients for the respective modes such that the received
feedback value is maximized.

The individual coeflicients are optimized one at a time. For each mode a discrete and
uniformly sampled set of coefficients is chosen and the feedback value, i.e. the intensity of
the OCT signal at the target, is measured. Subsequently, a set of more closely sampled
coefficients centred at the previous optimal value is tested to determine the coefficient
with improved accuracy. The process is repeated for all modes individually, but modes
under test are superimposed with the pre-optimized phase pattern. The algorithm, thus,
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Figure 6.4: Impact of sample displacement on the OCT signal with adaptive
optics correction. Same as Fig. 6.2 with optimized wavefronts calculated
by the adaptive optics algorithm (compare Fig. 6.3). Image adapted from
[162].

is sensitive to the chosen sequence of Zernike modes. For the data presented in this work
the algorithms starts with the correction of defocus, astigmatism, tip and tilt before
optimizing the residual modes up to the fourth radial order (14 modes in total).

The effect on the resulting OCT scan is illustrated in Fig. 6.3. The signal is taken
with the same sample which was considered in the previous Section and, hence, can
directly be compared to the effect of iterative wavefront shaping. The total amplitude
of the OCT scan is observed to be enhanced in case of adaptive optics correction at the
reference beam, similar to the data presented in Fig. 6.1(a). The signal enhancement at
the target depth reads 11.7 dB (14.6-fold linear enhancement). The optimized wavefront
(Fig. 6.3(c)) is dominated by defocus and resembles the phase pattern found by the it-
erative algorithm (Fig. 6.1(d)). In contrast, only a minor signal enhancement of 3.8 dB
(2.4-fold linear enhancement) results in case the adaptive optimization algorithm is ap-
plied to the sample beam. The algorithm finds a rather smooth wavefront (Fig. 6.3(d))
which is, in contrast to the random-like phase pattern found by the iterative algorithm
(Fig. 6.1(e)), not able to account for scattering at the sample.

Figure 6.4 presents the signal received in case the sample is scanned with the respective
optimized phase patterns applied, analogue to the data shown for the iterative algorithm
(Fig. 6.2). The effect of wavefront optimization at the reference beam is comparable for
both approaches. In contrast, in case the sample beam is manipulated a local signal
enhancement is observed only with the iterative optimization algorithm (Fig. 6.2) but
not with the adaptive optics algorithm. The iterative wavefront shaping algorithm finds a
phase pattern which creates constructive interference from scattered light and is, hence,
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6 Iterative wavefront shaping

sensitive to minor sample displacements (Fig. 6.2). No such effect is observed with
adaptive optics wavefront correction, which corrects for low-order aberrations only.

6.4 Imaging applications

Iterative wavefront shaping can be applied to directly enhance the amplitude of the
detected OCT signal. Due to the axially and laterally localized effect the signal needs
to be optimized for each point of the scan anew, on the other hand. The approach is
demonstrated in Fig. 6.5. Panel (a) illustrates a set of color-coded A-scans. Each row
corresponds to a single scan which has been optimized for point-wise signal enhancement
at different target depths, respectively. The diagonal elements in the figure reflect the
in-target amplitude of the optimized OCT signals. The wavefront shaping algorithm is
observed to yield a visible signal enhancement at the respective target position. Next to
the target depth, i.e. at positions where the signal is not optimized on purpose, no similar
effect is visible. This observation aligns well with previous works [26]. A fully-optimized
A-scan is constructed by stitching the diagonal elements [26]. The resulting signal is
illustrated in Fig 6.5 Panels (b) and (c). Panel (d) presents the relative enhancement of
the optimized scan compared to the signal acquired with a flat wavefront.

As is evident from Fig. 6.5 Panels (b) to (d), iterative wavefront shaping indeed can
significantly enhance the amplitude of the OCT scan. The approach was demonstrated
in previous works with similar algorithms, as well [26-29]. The iterative optimization
algorithm presented in this work is much too slow for any practical imaging applications,
on the other hand. For the data illustrated in Fig. 6.5 the acquisition of a single point-
optimized scan took 40 min. The process is repeated for each pixel in the axial FOV of
the A-scan anew to optimize the signal at each target depth individually. In total, the
acquisition of the fully-optimized signal, which is taken from 137 point optimized scans
for the data presented in Fig. 6.5, took approximately four days. In the next Chapters
algorithms are presented which significantly speed up the process and which enable a
comparable acquisition in just a few minutes. A quantitative discussion of the effect of
wavefront shaping on OCT imaging, hence, is deferred to these approaches.
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Figure 6.5: Full A-scan optimization with iterative wavefront shaping. (a) A-
scans taken with point-wise signal enhancement at different target depths.
(b) and (c) A-scan stitched from the in-target amplitude of the point-
optimized scans, respectively. The data corresponds to the diagonal elements
in Panel (a). (d) Relative signal enhancement compared to the scan acquired
with a flat wavefront. Image adapted from [183].
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7 Reflection matrix approach

In this Chapter an enhanced algorithm for wavefront shaping based on the time-resolved
reflection matrix is presented. The matrix describes the linear dependence between the
time-of-flight or depth-resolved backscattered field, which is the received SD-OCT signal,
and the field which is incident to the sample (Sec. 4.4). Once the matrix is determined,
a wavefront which yields a selective enhancement of the OCT signal can directly be
calculated similar to the approaches discussed in Sec. 3.4.2. In contrast to the iterative
algorithm presented in the previous Chapter, the reflection matrix tests the optical
response of the sample, i.e. the backscattered field, in a controlled rather than in a
random way. The algorithm also takes additional information into account, such as the
linearity of the OCT signal, the signal phase and the phase shifting characteristics of the
SLM. Furthermore, the full field of view of the OCT system is considered rather than
just the signal received from a confined target position. As a consequence, the approach
yields a significant increase in acquisition speed compared to the iterative algorithm.

The acquisition of the time-resolved reflection matrix was initially presented by Choi
et al. in 2013 [30] (Sec. 4.4). The group demonstrated wavefront optimization based
on the matrix to selective enhance of the SD-OCT signal received from a scattering
sample and presented the approach to enhance the intensity of light which is delivered
to a given target depth, similar to non-invasive focusing. The group did not discuss
the impact of signal artefacts which are detected with SD-OCT systems, on the other
hand, and imaging applications are not yet demonstrated. This Chapter extends on the
previous work and tries to resolve these problems. Parts of the presented contents have
already been published [186].

7.1 Matrix formalism applied to spectral domain OCT

7.1.1 Definition of the time-resolved reflection matrix

A detailed formalism on how the time-resolved reflection matrix relates to the signal
which is acquired with a SD-OCT system is not yet reported in literature. In Sec. 2.2
it was demonstrated that the SD-OCT signal can be written in terms of the autocorre-
lations (I'gr and I'sg) and cross-correlations (I'rs and I'sgr) of the reference field Er
and the field Eg which is backscattered from the sample to the detector. The reflection
matrix describes the relation between the detected OCT signal and the field which is
incident to the sample. Hence, single-pass wavefront shaping at sample beam is consid-
ered, i.e. the beam which is incident to the sample is manipulated once and does not
pass the spatial light modulator again after reflection at the sample and acquisition at
the detector.
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The field in the plane of the spatial light modulator is assumed to read F;,. This
field is constructed from a linear superposition of basis modes whose electric field reads
e (r' t), respectively, where r’ is a two-dimensional vector which describes the lateral
coordinate in the plane of the SLM:

Optical propagation through the imaging system and scattering at the sample is con-
sidered to be a linear process [119]. The field which is backscattered to the detector,
thus, can be written:

N
Es(r,t) = Aneli(r,t) (7.2)
n=1

The term e (r,t) corresponds to the field which is scattered form the respective source

modes e(r',t) to the detector. The explicit form is found in terms of the Green‘s
function g which describes the linear propagation between the plane of the SLM and the
plane of the detector [119, 187]:

e (r,t) = // / e(x' ) g(r,r' t —t') dr'dt’ (7.3)
Aspe J —00

The integration is performed over the area Ag.. which is covered by the beam in the
initial plane. The Green‘s function implicitly contains the temporal delay of the beam
upon reflection at the sample and, hence, determines the shape of the detected OCT
signal. Since the system is considered to be time invariant, the function depends on
the relative temporal delay (¢ — ') only. The function further describes the lateral
propagation of the beam between the two planes. With a scattering sample, the lateral
propagation is not assumed to be translation invariant and, hence, cannot be described
by convolving the incident field with a constant PSF. Detailed knowledge of Green'‘s
function is not required for the following discussion, on the other hand.

The individual components of the detected SD-OCT signal are found from Eq. 7.2 and
from the definition of the cross-correlation (Eq. 2.4). The reference field is considered
to be static.
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Lrr(T // (Er(r,t+7) Eg(r,t)) dr (7.4)
Adet

1115'5 Z Z Ap A an ) (75)

n=1n/=1
Lrs(T ZA Lra(T (7.6)
Lsr(T ZA Crn(— (7.7)

//Adet (vt 4 7) e (r ’t)> dr (7.8)

T pn(7 / /A (Ea e H(e.0)) dr (7.9)

The detected SD-OCT signal corresponds to the sum of Eqgs. 7.4 to 7.7 (compare
Eq. 2.17). The integration is performed over the active area Age; of the detector. The
temporal average (e) is taken with respect to the integration time of the detector. Due to
the time-invariance of propagation this term does not depend on the absolute temporal
scale t. For convenience, complex conjugation is denoted with overlined quantities ® in
this Chapter.

Equation 7.4 yields the reference beam autocorrelation. Obviously, this signal com-
ponent is not affected by wavefront manipulation at the sample beam. Equation 7.5
yields the autocorrelation of the sample beam. This signal is described by the autocor-
relation I',, and the cross-correlation Iy, ;. off the individual source modes which
are applied to the sample beam (Eq. 7.8) and depends non-linearly on the amplitudes
A,, of the modes (Eq. 7.5). Equation 7.6 yields the mutual interference signal as defined
in Chap. 2. This signal is described by a linear combination of the cross-correlations
TRy, of the reference field with the respective backscattered source modes (Eq. 7.9). The
signal is proportional to the complex conjugate amplitude A,, of the individual modes.
This behaviour is expected. According to the definition used in this work (Eq. 2.4) the
cross-correlation I'gg is proportional to the complex conjugate field Eg at the sample
beam. Equation 7.7 yields the mirror image of the mutual interference signal. This term
is found from the symmetry of the cross-correlation (Eq. 2.5).

As discussed in Sec. 2.2.4 the signal which is acquired with any practical SD-OCT
system is discretized with respect to the temporal scale 7,,, = m d, + 179, where m is the
index and M the total number of pixels. The mirror signal, hence, can be written in
matrix notation due to the linearity of Eq. 7.7

Lsrlm Z Rmirror A (7.10)
Rmirror — ar[M +1—m] (7.11)
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The inverse discrete Fourier transform, from which the OCT signal is calculated, is
periodic with respect to the total number of pixels M [63]. The term M + 1 — m yields
the pixel index which corresponds to a time-of-flight of —7,,.

For imaging one is interested in the mutual interference signal I'rg, on the other hand.
A linear description of this component is found by considering the complex conjugate of
Eq. 7.6:

n=1

Ryn = Lrp[m] (7.13)

Equation 7.13 yields the definition of the time-resolved reflection matrix which is used
in this work. The matrix provides a linear description of the mutual interference signal
in terms of the field incident to the sample, characterized by the amplitudes A,.

7.1.2 Phase conjugation applied to optical coherence tomography

On optimized wavefront which selectively enhances the acquired OCT signal, similar to
iterative wavefront shaping, is found directly from the reflection matrix using a phase
conjugation approach analogue to the technique presented in Sec. 3.4.2. To this end, a
M x 1 vector V'79¢ ig created which reflects the target pixels. The optimal amplitudes
of the respective basis modes which are applied to the sample beam (Eq. 7.1) are found
from the complex-conjugate of the reflection matrix [24, 118, 119]:

M
AP = 3" Ry Vikaroet (7.14)
m=1

In matrix notation, this equation reads A%t = RiVtar9et where R' is the conjugate
transpose reflection matrix. The optimized wavefront is found by superimposing all basis
modes with the respective complex-valued amplitude Ay? t applied (Eq. 7.1).

In case only a single pixel of the OCT scan, denoted by the index my, is targeted,
the target vector reads V9" = §,,, .. where ¢ is the Kronecker symbol. The optimal
amplitudes of the incident modes, thus, correspond to the ms-th row of the conjugate re-
flection matrix A% = R,,., (compare Eq. 3.6). In case of multiple or spatially extended
targets, the optimized incident field calculated from Eq. 7.14, hence, can be understood
to be found from a linear superposition of wavefronts which are calculated for signal
enhancement at the individual target pixels, respectively.

The effect of phase conjugation on the acquired mutual interference OCT signal I'rg
is found by inserting Eq. 7.14 into Eq. 7.12. Considering a single target pixel m;, the
signal reads:

N
Trslm] = RpnBmn (7.15)
n=1

At the target m = m; the individual summands read |Ry,»|?, i.e. the respective contri-
butions from individual modes to the superimposed OCT signal are all aligned to the
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real axis. As a consequence, the signal amplitude |T'rg| is enhanced at the target. In
contrast, at m # my the phase of the individual summands is randomly distributed and,
hence, no amplitude enhancement results. The effect is equivalent to phase conjugation
with the transmission matrix, which is discussed in Sec. 3.4.2.

The target pixel m; corresponds to a given time-of-flight, depending on the axial
scale of the OCT system, and the phase conjugation algorithm enhances the signal
amplitude at the selected target time-of-flight only. The approach can be understood
to manipulate the phase of the individual modes which are incident to the sample such
that the respective contributions to the OCT signal are aligned to the same phase at the
target, resulting in a large amplitude of the superimposed signal. The temporal profile
of the scattered modes differs, on the other hand. As a consequence, the incident beam
needs to be optimized for each target time-of-flight individually.

An interesting feature results from the fact that the reference field Fr remains static
throughout the process. The phase of the OCT signal which is detected at the tar-
get effectively probes the average phase difference between the reference field and the
backscattered sample field in the plane of the detector (Eq. 7.9). Phase conjugation con-
structs an incident wavefront such that this phase difference is aligned to the same value
for signal contributions from the respective modes and at the target time-of-flight only.
Since the reference beam remains static, on the other hand, this implies that actually
contributions to the backscattered sample beam field Eg (Eq. 7.2) are aligned in phase.
As a consequence, phase conjugation with the OCT signal enhances the amplitude of
light which is backscattered to the detector at the selected time-of-flight. The tech-
nique, thus, enables spatial and temporal focusing of backscattered light, similar to the
approaches discussed in Sec. 4.3. This effect was directly observed by Choi et al. [30].

Neglecting the effects of multiple scattering at the sample, the axial time-of-flight scale
of the OCT signal, or the corresponding optical path length scale, directly relates to the
penetration depth in the sample. Light which is detected at a given target time-of-flight,
thus, can be considered to be backscattered from the corresponding target depth. For
convenience, the term target depth is used in this Chapter rather than the term target
time-of-flight.

7.2 Experimental implementation

7.2.1 Reflection matrix acquisition

The time-resolved reflection matrix is acquired experimentally with the setup presented
in Chap. 5. Similar to the approach presented in Chap. 6 multiple pixels of the pattern
which is applied to the SLM are grouped to larger segments with uniform phase each.
A set of L active segments with linear index [ is manipulated only. The segments are
chosen such that the area at which the sample beam is reflected at the SLM is covered
(compare Secs. 5.2.3 and 6.1). A set of N basis modes is constructed from the L x N
basis matrix B. The n-th column of the matrix yields the complex-valued amplitude
pattern which is applied to the linearly indexed SLM segments and which corresponds to
the n-th basis mode. For the data presented in this Chapter a Hadamard basis is chosen
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(Sec. 3.4.1). The columns of the matrix are mutually orthogonal and feature values of
+1 only, which aligns well to a phase-only modulation of 0 and 7. The basis matrix B
is a N x N square matrix in this case.

To acquire the time-resolved reflection matrix only a single basis mode is applied to
the sample beam one at a time. The mutual interference signal which is acquired in
this case reads I'gs[m] = Ry (Eq. 7.12). The complex-conjugated OCT signal which
is captured with the n-th mode, hence, yields the n-th column of the matrix. The full
reflection matrix is acquired by sequentially applying all modes.

The complex-valued OCT signal is taken directly from the inverse discrete Fourier
transform of the spectral raw data. Since this data is real-valued, the complex OCT
signal is Hermitian symmetric and additional signal artefacts are observed. The effect
is discussed in Sec. 7.4. At this point we may assume the OCT system to capture
the mutual interference signal I'rg only. This can be achieved through phase shifting
algorithms (Sec. 2.2.3), similar to the approach presented in the previous Chapter.

7.2.2 Phase conjugation

To selectively enhance the OCT signal once the reflection matrix is determined, the
amplitudes A" of the incident modes for focusing at the respective target depth are
calculated from Eq. 7.14. The phase ¢;” * which is applied to the individual segments of
the SLM, i.e. the optimized sample beam wavefront, is found from the linear combination
of modes, whose phase pattern is described by the basis matrix By, [30]:

N
<Z>?pt =arg (Z BlnAZpt> (7.16)

n=1

Due to the modulation characteristics of the SLM, only the phase of the individual
segments is set. The full complex-valued amplitude A7’ " of the individual modes is con-
sidered for the calculation of the optimized phase pattern, nonetheless. The magnitude
| AP t| can considered to be a weighting factor for phase-contributions from individual
modes.

7.2.3 Speckle compounding

The OCT signal which is acquired with any static wavefront applied to the sample is
subject to interference of the backscattered beam. As a consequence, a randomly dis-
tributed amplitude results for the OCT signal and speckle are observed in case the sample
is scanned [46, 184, 188]. Compounding algorithms were demonstrated to significantly
reduce the speckle contrast by averaging the OCT signal over multiple independent real-
izations of the speckle pattern [184, 188], for example by illuminating the sample under
different angles [184], by slightly displacing the sample beam [184] or by randomly mod-
ulating the wavefront at the sample beam [188]. With the algorithm presented in the
previous Section the acquired reflection matrix already probes the OCT signal which
is resulting from sample illumination with a set of independent wavefronts. A signal
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with reduced speckle contrast, thus, can be acquired in post-processing by averaging the
amplitude of the respective signals, i.e. by averaging the columns of the matrix. The
approach is similar to the technique presented by Liba et al. [188] and does not require
any additional signal acquisition once the reflection matrix is captured. The compound-
ing algorithm is used in this work for a quantitative comparison to the effects of phase
conjugation.

7.3 Selective signal enhancement with artefact suppression

The acquisition of the time-resolved reflection matrix is demonstrated experimentally
with a scattering sample consisting of a set of stacked layers of pergamin paper ( What-
man 2122, GE Healthcare, United Kingdom) (Fig. 7.1(a)). The sample’s extinction
coefficient was estimated to be 30 & 10 mm™! from Beer’s law. A five-step phase shift-
ing algorithm [58], similar to the four-step algorithm presented in Sec. 2.2.3, is used to
suppress all components of the SD-OCT signal except the mutual interference signal
I'rg. To determine the dependence of I'rg on the field which is incident to the sample,
the sample’s time-resolved reflection matrix is experimentally acquired for a set of 1024
Hadamard basis modes.

Figure 7.1(b) illustrates the OCT signal which is acquired with a flat wavefront applied
to the sample beam as well as the signal which is taken from the reflection matrix using
the compounding algorithm presented in Sec. 7.2.3. Obviously, with the compounding
algorithm the apparent fluctuations of the signal amplitude are reduced. Furthermore,
similar to the compounding algorithm which reflects the mean value of the signal am-
plitudes which result from sample illumination with a random wavefront, the 95-th
percentile of the amplitudes is illustrated, as well. This value gives a good estimate to
the maximal signal which is expected in case the beam incident to the sample is not
controlled. The signal resulting from sample illumination with a flat wavefront does not
exceed this level.

Figure 7.1 further illustrates the OCT signal which is detected once the reflection ma-
trix is used to find an optimized wavefront which selectively enhances the signal (Fig. 7.1
Panels (d) and (e)). Similar to the algorithm presented in Chap. 6 the optimized phase
patterns are observed to be random-like (compare Fig. 6.1(e)). After application to
the sample beam, a significant amplitude enhancement at the target depth results which
reads 15.0 dB (31.6-fold linear enhancement) and 11.4 dB (13.9-fold linear enhancement)
compared to the compounding algorithm, respectively. Similar to the discussion given
in Sec. 6.2, the apparent signal enhancement is limited to the axial and lateral target
position for which is wavefront is optimized.

In contrast to the iterative algorithm which is presented in Chap. 6, phase conjugation
based on the time-resolved reflection matrix allows to directly calculate an optimized
wavefront which selectively enhances the signal amplitude at any point within the field of
view of the OCT system without further acquisition. Figure 7.2(a) illustrates a set of A-
scans which are point-optimized for different target depths, similar to the data presented
in Fig. 6.5. The sample’s mutual interference signal is evident in the right hemisphere
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Figure 7.1: Selective signal enhancement through phase conjugation. (a) Sample
photograph. (b) A-scan taken with a flat wavefront and with optimized
phase patterns. The average signal amplitude resulting from random sample
illumination is illustrated for comparison. (c) to (e) Phase patterns applied
to the sample beam, respectively. Image adapted from [186].

(first and fourth quadrant in Fig. 7.2(a)). Due to the phase shifting algorithm, DC,
autocorrelation and mirror artefacts are suppressed. The diagonal elements in Fig. 6.5(a)
reflect the amplitude of the OCT signal at the respective target position. Similar to
the iterative optimization algorithm (Fig. 6.5) a selective signal enhancement at the
target results which is limited to those positions at which a mutual interference signal
is observed.

Figure 7.2(b) illustrates the signal amplitude at the respective target depths only.
This data corresponds to the diagonal elements in Panel (a) and yields a fully-optimized
scan [26]. A significant amplitude enhancement is evident at the position of the mutual
interference signal. At a depth of about 1 mm the slope of the OCT signal decreases,
which hints on the detected signal to be dominated by strongly multiple scattered light
(Sec. 2.3.2). Phase conjugation is observed to enhance the corresponding signal, as well.

7.4 Impact of image artefacts

In the previous Section the acquisition of the reflection matrix is demonstrated with a
five-step phase shifting algorithm. Conventional approaches to determine the transmis-
sion or the reflection matrix require interferometric techniques such as phase shifting
interferometry to determine the phase of the scattered field from the real-valued in-
tensity data which is captured with a sensor such as a CMOS camera (Sec. 3.4.1). In
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Figure 7.2: Full A-scan optimization with phase conjugation. (a) A-scans taken
with a five-step phase shifting algorithm and optimized for signal enhance-
ment at different target depths. Quadrants are labelled by Roman numbers.
(b) Signal amplitude at in-target (diagonal) elements of Panel (a) only. This
data corresponds to a fully optimized A-scan (compare Fig. 6.5). Image
adapted from [186].

contrast, optical coherence tomography is already an interferometric technique itself and
does not require additional approaches to determine the phase of the backscattered field.
With SD-OCT systems, for example, the phase is encoded in the offset of interference
fringes which are observed in the raw spectral data and can be acquired from the com-
plex inverse Fourier transform. The time-resolved reflection matrix, hence, can be taken
directly from the conventional SD-OCT signal. The approach requires a single signal ac-
quisition for each basis mode applied to the sample and, thus, yields a five-fold increase
in acquisition speed compared to the sequential five-step phase shifting algorithm which
is demonstrated in the previous Section. The approach was first demonstrated by Choi
et al. in 2013 [30].

With the conventional SD-OCT signal image artefacts are observed, on the other
hand (Sec. 2.2.1), which contribute to the experimentally observed reflection matrix
R taken from the complex-conjugated signal (Sec. 7.2). These artefacts ultimately
arise from the fact that the spectral raw data is real-valued, resulting in the OCT
signal to be Hermitian symmetric, and from the fact that the SD-OCT system does not
actually capture the cross-correlation I'rg of the reference and the sample beam but the
autocorrelation of the superimposed beams (Sec. 2.2.1). The reflection matrix R,,, is
assumed to yield a linear description of the mutual interference signal I'rg only, on the
other hand (Eq. 7.12).
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Typically, the individual components of the SD-OCT signal are detected at different
positions within the scan. DC and autocorrelation artefacts, for example, are detected
close to z = 0 and are not affected by the length of the reference arm. In contrast, the
position at which mutual interference and mirror signals are detected can be manipulated
by changing the reference arm length. Typically, the reference mirror is aligned such
that mutual interference and mirror signals do not overlap with each other or with
autocorrelation signals.

The phase conjugation algorithm requires knowledge of the rows of the reflection
matrix which correspond to the signal detected at the target time-of-flight only. Signal
enhancement at the m;-th pixel requires knowledge of the my-th row of the reflection
matrix, for example. In this Section, hence, the signal at the target is assumed to be
dominated by just one signal component to investigate the impact of image artefacts
on phase conjugation with the reflection matrix. The case multiple signal components
overlap is discussed in Sec. 7.4.5.

7.4.1 Target signal dominated by mutual interference components

First we may consider the case the OCT signal at the target pixel m; is dominated
by mutual interference signals. The m;-th row of the observed reflection matrix Rgs’fn
which is taken from the experimental SD-OCT signal, hence, matches the same row of
the matrix R,,,, which corresponds to the mutual interference signal only (Eq. 7.12).
The optimized wavefront to enhance the signal at the target is calculated from Eq. 7.14
using the experimentally acquired matrix R%S. Since only mutual interference signals
are detected at the target, the effect on the resulting OCT signal is the same as if the
matrix R,,, was used. As a consequence, phase conjugation is expected to selectively
enhance the signal at the target depth.

Due to the Hermitian symmetry of the conventional SD-OCT signal which is acquired
once the optimized wavefront is applied to the sample beam, the signal amplitude at
the mirror position of the target depth is enhanced, too. Furthermore, a selective en-
hancement of autocorrelation artefacts is expected. In Sec. 7.1.2 reasons are presented
indicating that phase conjugation actually enhances the amplitude of light which is
backscattered from the target depth to the detector, assuming multiple scattering to
be negligible. Autocorrelation artefacts which result from mutual interference of light
reflected at the target depth with light which is backscattered from another strongly
reflecting layer of the sample, for example the sample front surface, are expected to be
enhanced as a result of phase conjugation, as well.

7.4.2 Target signal dominated by mirror artefacts

Mirror artefacts depend linearly on the field incident to the sample and, hence, can be
written in terms of the matrix R]"°" similar to the time-resolved reflection matrix
(Eq. 7.10). The experimentally observed reflection matrix R% is acquired from the

complex-conjugated OCT signal, on the other hand. Hence, the m;-th row of that
matrix reads R?,’{fn = Rmirror if the signal at the my-th pixel is dominated by mirror
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Figure 7.3: Effect of phase conjugation on mutual interference and mirror sig-
nals. (a) Phasor diagram for contributions from individual basis modes to
the OCT signal detected at the target depth. The rotation direction in case
a negative phase delay —¢g is applied to the sample beam is illustrated. (b)
The reflection matrix is found from the complex-conjugate signal. (c) The
phase conjugation algorithm applies a negative phase delay —@.ps, where @ops
is the phase of the individual reflection matrix elements, to the sample beam.
Contributions to the mutual interference signal are aligned to the real axis.

artefacts. The phase conjugation algorithm calculates an optimized wavefront from
the complex conjugate of the experimentally observed matrix (Eq. 7.14). Inserting into
Eq. 7.10 yields the effect on the OCT signal in case mirror artefacts are dominant at the
target depth:

N
Psnlm) = Y Rt Ryt (7.17)
n=1

In contrast to phase conjugation with the mutual interference signal (Eq. 7.15), this
equation corresponds to a sum of complex values with randomly distributed phase at
the target m = my;. As a consequence, no significant signal enhancement results.

The phase conjugation algorithm, hence, selectively enhances the OCT signal if mutual
interference components I'rg are targeted, but no similar effect is expected if mirror
artefacts ['sp are targeted. This behaviour results from both signal components being
complex conjugated with respect to each other. The effect is illustrated in Fig. 7.3.
Panel (a) illustrates the phasors which correspond to the contributions from individual
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source modes to the detected OCT signal, i.e. the summands in Eqs. 7.10 and 7.12. The
application of a negative phase delay —¢g to the sample beam rotates contributions to
the mutual interference signal in mathematically positive direction and contributions
to mirror components in negative direction. The reflection matrix is acquired from the
complex conjugate signal (Fig. 7.3(b)). The phase conjugation algorithm probes the
phase ¢ops of the individual reflection matrix elements and applies a negative phase
delay —@gps to the individual source modes at the sample beam. As a consequence, the
contributions from the individual modes to the mutual interference signal are all aligned
to the real axis and a large amplitude results for the superimposed signal. In contrast,
if the mirror signal is targeted the contributions from individual modes still feature a
randomly distributed phase after the application of the phase conjugation algorithm. No
significant amplitude enhancement results for the superimposed signal.

It is a matter of definition which signal component is termed mutual interference and
which is termed mirror artefact. Both signal components yield the same information
and, thus, are suited to image the sample morphology. The phase conjugation algorithm
presented in this Chapter can easily be changed to enhance the amplitude of those signal
components which are termed mirror artefacts in this work, but not mutual interference
signals. This is readily achieved by calculating the experimentally observed reflection
matrix R directly from the OCT signal and not from the complex conjugated signal.
The matrix yields a linear description of mirror artefacts (Eq. 7.10) but not of mutual
interference signals (Eq. 7.12) in this case.

7.4.3 Target signal dominated by autocorrelation artefacts

In case the signal at the target is dominated by autocorrelation artefacts, the correspond-
ing row of the observed reflection matrix reads R%%, = T gr[mi] 4+ Tnn[me] (Eqs. 7.4 and
7.5). The autocorrelation of the reference beam I'rr remains static throughout the ac-
quisition and, hence, is constant. The autocorrelation of the sample beam I'gg depends
on the wavefront which is applied to the sample and, in principle, is fully described by
the term T'y,,» (Eq. 7.5), which is the cross-correlation of the n-th and the n'-th source
mode after reflection at the sample. During the acquisition of the reflection matrix only
isolated modes are applied and, thus, the cross terms I';,,,/ -, are not accessed, on the
other hand. As a consequence, the experimentally acquired reflection matrix does not
sufficiently probe the autocorrelation terms. Furthermore, the autocorrelation signal
does not depend linearly on the field at the sample beam, which is a requirement for
the phase conjugation algorithm. As a consequence, no signal enhancement is expected
from phase conjugation if autocorrelation artefacts are targeted.

7.4.4 Impact of the double interferometer OCT design

The analytic discussion of the time-resolved reflection matrix and subsequent phase
conjugation (Sec. 7.1) is based on the assumption that only the field which is applied to
the sample beam is modulated, whereas the reference field remains static. This is not
fully true for the double-interferometer OCT design which is used in this work.
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7.4 Impact of image artefacts

In Sec. 5.4.5 it was demonstrated that the mutual interference and the mirror signal
which are detected by the OCT system correspond to the cross-correlation between the
effective reference and sample beam. The SLM enables independent single-pass beam
shaping at either beam, respectively. During the experimental acquisition of the time-
resolved reflection matrix, the wavefront at the effective sample beam is manipulated
only, the effective reference beam remains static. The mutual interference and mirror
signals which are detected with the double-interferometer design, thus, can indeed be
described in terms of the formalism which is discussed in Sec. 7.1.

The detected autocorrelation signal results from the autocorrelation of the effective
reference and sample beam, respectively. These signal components are included in the
analytic discussion given in Sec. 7.1. As a consequence of the double-interferometer
design additional signal artefacts are observed, though. These signal components corre-
spond to the autocorrelation of the beam which is reflected at the part of the SLM at
which the (sample beam) wavefront is modulated and which is reflected at the reference
mirror, as well as the autocorrelation of the beam reflected at the static half of the
SLM and reflected at the sample (Sec. 5.4.5). These additional signal components are
not included to the model which is presented in Sec. 7.1. The autocorrelation signals
resulting from the effective reference and sample beam are not enhanced with the phase
conjugation algorithm (Sec. 7.4.3). A similar behaviour is expected for the additional
autocorrelation artefacts, as well.

7.4.5 Overlapping signal components

In practical applications, multiple signal components can be detected at the same time-
of-flight. In case the length of the reference arm is chosen to be too short, for example,
mutual interference signals might overlap with mirror signals or with autocorrelation
artefacts. The previous Sections demonstrated the phase conjugation algorithm to en-
hance the mutual interference signal only. Further signal components which are detected
at the same time-of-flight result from reflections at different depths at the sample and,
hence, can be considered to be uncorrelated. As a consequence, the effect of image
artefacts can be treated similar to experimental noise.

Experimental noise which is detected during signal acquisition introduces phase errors
to the reflection matrix. As a consequence, the phase conjugation algorithm does not
align the contributions from individual source modes exactly in phase. On the other
hand, the amplitude of the superimposed OCT signal is enhanced in case the individual
modes are only roughly aligned to one direction in the complex plane, as well. Compared
to ideal phase conjugation a lower signal enhancement results, though. The effect can be
exploited for binary amplitude-only wavefront optimization and is discussed in Chap. 8.

A detailed discussion requires a sophisticated SNR, analysis of the phase conjugation
approach which needs to take the statistical properties of the reflection matrix into
account and which is beyond the scope of this work. In general, a limited enhancement
of mutual interference signals is expected with the phase conjugation algorithm even in
case image artefacts are detected at the same time-of-flight. The signal enhancement is
expected to drop with increasing artefact amplitude.
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Figure 7.4: Impact of image artefacts on phase conjugation. (a) Conventional
A-scans taken after phase conjugation for signal enhancement at different
target depths. Image artefacts were not suppressed during the acquisition
of the reflection matrix. (b) Signal amplitude at the in-target (diagonal)
elements of Panel (a). Image adapted from [186].

7.4.6 Experimental validation

The previous considerations are verified experimentally. The acquisition which is pre-
sented in Sec. 7.3 is repeated with the same experimental parameters. The time-resolved
reflection matrix is taken directly from the conventional complex-valued SD-OCT signal
without phase shifting algorithm this time. Figure 7.4(a) illustrates a set of A-scans for
which the phase conjugation algorithm was used to enhance the signal at different target
depths. The signal is symmetric with respect to the vertical axis since mirror artefacts
are not suppressed in contrast to the data presented in Fig. 7.2(a). Additional strong
autocorrelation artefacts are evident close to z = 0.

The phase conjugation algorithm yields different effects depending on what kind of
signal dominates at the target depth, i.e. at the diagonal elements in Fig. 7.4(a). At
label (1) autocorrelation artefacts dominate at the target. As a consequence, no sig-
nificant effect on the amplitude of the OCT signal is evident. In contrast, at label (2)
the mutual interference signal which is detected from the sample is targeted (compare
Fig. 7.2(a)). As a consequence, the amplitude at the target position as well as the am-
plitude of the corresponding mirror image is enhanced. Furthermore, faint ghost images
of the sample are observed which are axially displaced by approximately 1 mm. One of
the ghost images is, for example, evident at a depth of 1.6 mm. The amplitude of the
ghost images is observed to be enhanced, as well, in case the mutual interference signal
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is targeted. Finally, a selective enhancement of autocorrelation artefacts is observed in
case mutual interference signals are targeted (compare Sec. 7.4.1). At label (3) a ghost
image is targeted by the phase conjugation algorithm. A selective enhancement at the
target and at the mutual interference signal which corresponds to the ghost image is
observed. The lower hemisphere of Fig. 7.4(a) (third and fourth quadrant) corresponds
to the case only autocorrelation and mirror artefacts are targeted by the algorithm. No
significant effect on the amplitude of the received signal is evident.

As discussed in Sec. 7.3, the diagonal elements of Fig. 7.4(a) yield an OCT signal
which is optimized at the full axial scan range [26] (Fig. 7.4(b)). Similar to the same
approach based on phase-shifting interferometry (Fig. 7.2(b)), the amplitude of mutual
interference signals is observed to be enhanced. No comparable effect results for autocor-
relation and mirror artefacts, even though these signal components are not suppressed
during the measurement of the time-resolved reflection matrix or during the subsequent
signal acquisition.

7.5 Quantitative signal enhancement

Figure 7.5(b) illustrates the amplitude of the enhanced OCT signal in case the number
of modes for which the reflection matrix is acquired is changed. The resulting optimized
phase patterns which are found by the phase conjugation algorithm are illustrated in
Fig. 7.5(e). Similar to the observations made by Choi et al. [30], the slope of the sig-
nal enhancement reads approximately 5 dB per decade, i.e. if the number of modes is
increased by a factor 100 (two decades), the OCT signal is enhanced by an additional
factor of ten (10 dB). With a large number of modes, starting at N = 1024 for the pre-
sented data, the amplitude enhancement resulting from phase conjugation is observed
to taper off (compare [30]).

Figure 7.5(c) illustrates the average signal amplitude which is resulting from sample
illumination with a random phase pattern. This data is taken directly from the acquired
reflection matrix (Sec. 7.2.3). Hence, the parameters of the random wavefront, such as
the segment size and the physical beam diameter, are equal to the optimized wavefront.
With increasing number of modes, i.e. with a higher spatial wavefront resolution, the
amplitude of the OCT signal is observed to drop. Imperfections of the experimentally
applied wavefront arise whenever there is a step in the phase pattern at the SLM due
to cross-talk between the individual pixels. The number of these phase steps rises with
increasing number of modes (Fig. 7.5(e)) and, hence, the SLM is expected to perform
worse when operated at a high spatial resolution. Furthermore, diffraction occurs at
phase steps between neighbouring wavefront segments and a part of the diffracted light
does not reach the sample. The amount of diffraction losses is expected to be increased
with rising number of modes, as well. Both effects can be reduced by increasing the
beam diameter in the plane of the SLM.

A number of reports discussed on the quantitative signal enhancement which is ex-
pected from iterative wavefront shaping or from optical phase conjugation (Sec. 3.3),
whereas both approaches are considered to be mathematically equivalent [119]. The en-
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hancement factor 7 is defined according to n = Iop:/Ire t, where I, is the peak intensity
at the target after phase conjugation [115]. I,.¢ corresponds to the ensemble average of
the intensity which is detected for different realizations of the random medium [23, 115]
or to the average intensity which is detected outside of the target with the optimized
wavefront applied to the sample [119]. In an equivalent approach, in this work I,s
is estimated from the mean signal which is resulting at the target but with a random
wavefront whose parameters match those of the optimized wavefront applied to the sam-
ple (Fig. 7.5(c)). Figure 7.5(d) illustrates the relative amplitude enhancement which is
achieved with the phase conjugation algorithm. With the number of modes chosen to
be as low as 32 the amplitude of the OCT signal is already observed to be enhanced
approximately four-fold (6 dB) and the reflection matrix can be acquired very quickly.
With 128 modes a signal enhancement close to ten-fold (10 dB) is achieved.

In addition, Fig. 7.5(d) illustrates the theoretically expected amplitude enhancement.
In case the complex-valued amplitude of the incident wave is manipulated, the intensity
enhancement is expected to read n = N [115, 119], where N is the number of degrees
of freedom of the shaped wavefront, i.e. the number of modes. In case of phase-only
wavefront manipulation the enhancement reads approximately 0.78 N [23, 118, 119].
The signal enhancement is further expected to drop proportional to 1/M, where M
is the number of degrees of freedom of the scattered field at the target [118]. If the
algorithm is used to enhance the signal at two independent point targets at the same
time, for example, the shaped field is assumed to be equally focused to both targets and
the resulting peak-intensity is reduced by 50 %, respectively [118]. In case a broadband
light source is used, one has to take into account that the scattered field is correlated at
a finite spectral range dw only [150, 153, 155, 156, 189-191]. Phase conjugation with the
broadband light source, hence, is considered to create constructive interference from a
set of M independent spectral channels simultaneously, resulting in a reduced intensity
enhancement which is proportional to 1/M [156, 157, 189, 192]. The number M can be
estimated from the spectral correlation length dw and from the source bandwidth Aw
to be M = Aw/dw [157].

In Sec. 7.1.2 it was shown that phase conjugation with the SD-OCT signal enhances
the amplitude of light which is backscattered to the detector at the selected target
time-of-flight. The resulting OCT signal does not probe the intensity |Eg|? of the
backscattered field, but the cross-correlation with the static reference beam. The cross-
correlation is proportional to the field amplitude |Eg| (compare Egs. 2.4 and 2.17). The
phase conjugation algorithm, hence, is expected to yield an enhancement of the OCT
signal amplitude which is proportional to the square root of the intensity enhancement,
ie. n = /0.78 N/M [30, 151]. As is evident from Fig. 7.5(d), the experimental data
is well-described by this function and the experimental system performs close to the
predictions for M = 1, i.e. close to the optimal value. A brief discussion on this effect is
provided.

The spectral correlation length dw, and, hence, the number M, is not accessible with
the experimental system which is used in this work. dw can easily be tested by imple-
menting monochromatic phase conjugation with a wavelength tunable source [155] or
with a SS-OCT system which enables wavefront manipulation similar to this work. The
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Figure 7.5: Quantitative signal enhancement. (a) Fully optimized A-scan ac-
quired with a set of N = 1024 modes (compare Fig. 7.4(b)). The target
depths at which the signal enhancement is evaluated are marked by arrows.
(b) Amplitude of the optimized signal at the respective target depths (o)
and at next signal pixel to the left (O0) and to the right (¢). (c¢) Mean sig-
nal amplitude at the targets resulting from random wavefront illumination.
(d) Relative enhancement of the optimized signal (Panel (b)) compared to
random wavefront illumination (Panel (c¢)). The dashed lines represent the
expected amplitude enhancement which reads /0.78 N/M with M = 1 to
M =5 from the topmost to the bottom line. (e) Phase patterns found for

signal enhancement at the second target depth (blue arrow) for different
numbers of modes. Scalebar 1 mm.
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spectral correlation length is related to the time-of-flight distribution of the detected
light [150, 153, 155, 156, 189-191, 193]. In case circular Gaussian scattering statistics
are assumed (similar to the assumptions made for the theoretical discussion on the effect
of phase conjugation [119]) the frequency cross-correlation between scattered fields can
be written [190, 191]:

(B(w + Aw)E*(w)) x P(Aw) (7.18)
P(Aw) = / h p(t)e Bt at (7.19)

P(Aw) yields the Fourier transform of p(t), which is the probability density function
of the time-of-flight distribution of scattered light [190, 191]. A broad time-of-flight
distribution, hence, results in a small spectral correlation length and in a large number of
independent spectral channels which, in turn, reduce the efficiency of phase conjugation.

Point-wise phase conjugation with the OCT signal, as presented in this Chapter,
enhances the signal which is detected at a finite time-of-flight window only. The width of
this time-of-flight window corresponds to the axial resolution of the OCT system, which
is the inverse Fourier transform of the source power spectral density (Sec. 2.1.2). As
a consequence, the effective spectral correlation length dw is comparable to the source
bandwidth Aw and the number of effective independent spectral channels M can be
considered to be approximately unity. The experimental system (Fig. 7.5), hence, is
observed to perform close the theoretical prediction for M = 1.

7.6 Axially extended signal enhancement

So far, the phase conjugation algorithm was only demonstrated for signal enhancement
at single point-like targets. The approach is also capable to enhance the OCT signal
which is received from an extended or from multiple target depths simultaneously. As
discussed in the previous Section, this comes at the price of a reduced peak amplitude
enhancement which is proportional to y/1/M where M is the number of independent
signal pixels at the target.

The approach is demonstrated in Fig. 7.6 with the same sample which is used in the
previous acquisitions. Figure 7.6(a) presents a B-scan which is captured at the sample.
The signal corresponding to the reflection at the sample front surface is evident at a
depth of about 0.8 mm. Figure 7.6(b) illustrates the B-scan which is captured at the
sample in case the phase-conjugation algorithm is used for point-like signal enhance-
ment. The point-optimized wavefront is applied to the sample beam and remains static
throughout the acquisition of the B-scan, similar to the data presented in Sec. 6.2. The
lateral position to which the scanner was fixed during the acquisition of the reflection
matrix is centred in the B-scan. Similar to the observations made for iterative wavefront
shaping (Sec. 6.2), a significant enhancement of the OCT signal is only evident at the
axial target depth and at the lateral position at which the reflection matrix was acquired
and for which, hence, the phase conjugation algorithm finds a valid optimized wavefront.
Figure 7.6, Panels (c) to (f) present the same data, but the phase conjugation algorithm
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Figure 7.6: Phase conjugation with extended targets. (a) B-scan taken with a uni-
form wavefront applied to the sample beam. (b) B-scan taken with the wave-
front for point-wise phase conjugation at a depth of 0.95 mm applied (com-
pare Fig. 6.2). (c) to (f) same as Panel (b) with phase patterns calculated for
axially extended signal enhancement. The enhanced depth-ranges are chosen
to be 25 pm (3 A-scan pixel, Panel (c)), 50 pm (6 pixel, Panel (d)), 75 pm
(9 pixel, Panel (e)) and 100 pm (12 pixel, Panel (f)), respectively. Scalebar
50 pm.

is now used to find a single optimized wavefront which enhances the OCT signal at up to
12 pixels simultaneously according to Eq. 7.14. As a result, the signal indeed appears to
be enhanced at an extended depth range, but only at the lateral position at which the re-
flection matrix was acquired. Hence, a needle-like signal is evident in Fig. 7.6 Panels (e)
and (f). The amplitude at the extended target is not observed to be homogeneous after
phase conjugation. This is most likely an effect of the sample‘s reflectivity profile not
being homogeneous at the target range, resulting in an inhomogeneous OCT signal, as
well.
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8 Reflection matrix approach applied to
binary amplitude-only wavefront shaping

In this Chapter the reflection matrix approach is translated to binary amplitude-only
wavefront manipulation. In contrast to phase conjugation with the reflection matrix, the
technique can directly be implemented with wavefront control enabled by micro-electro-
mechanical systems such as digital micromirror devices which feature frame rates in the
kHz range and which, hence, enable high-speed imaging applications. The presented
technique is inspired by similar approaches which were demonstrated for iterative wave-
front shaping [120] and for optical phase conjugation [102] in transmission geometry
with monochromatic sources. This Chapter presents to my knowledge the first report
on the acquisition of the time-resolved reflection matrix based on binary amplitude-only
wavefront manipulation and the subsequent application for OCT signal enhancement.

8.1 Principles

8.1.1 Matrix acquisition

The time-resolved reflection matrix which is discussed in the previous Chapter probes the
linear dependence of the field backscattered from the sample on the incident field. The
experimental acquisition is discussed in Secs. 7.1 and 7.2. A spatial light modulator is
used to apply a set of basis modes to the sample beam and the resulting SD-OCT signal,
which reflects the amplitude and the phase of the time-resolved backscattered field, is
captured, respectively. Phase control of the incident beam is not necessary to determine
the phase of the scattered field, but allows to suppress SD-OCT image artefacts by
using phase shifting algorithms. The reflection matrix, thus, can be acquired with a
set of amplitude-only patterns, which are applied to the sample beam to create the
respective basis modes, just as well as with basis modes which are created by phase-only
wavefront control.

8.1.2 OCT signal enhancement

The phase conjugation algorithm (Sec. 7.1.2), which is in the previous Chapter shown
to selectively enhance the OCT signal, is not feasible for amplitude-only wavefront ma-
nipulation; the phases of the individual modes cannot directly be manipulated to create
constructive interference from the scattered field. Instead, an optimized wavefront is
constructed by switching individual modes which are incident to the sample on (unity
amplitude) or off (zero amplitude) [102, 120]. The approach is illustrated in Fig. 8.1.
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Figure 8.1: Principle of binary amplitude-only wavefront manipulation.
(a) Phasor diagram of contributions from individual modes to the OCT sig-
nal which is received at the target (compare Fig. 7.3) and the corresponding
projections to the real axis. Applying all modes with unity amplitude to the
sample beam results in a low amplitude of the superimposed OCT signal.
(b) Applying only those modes whose phasors point in the same hemisphere
of the complex plane (real part > 0) yields an OCT signal with enhanced
amplitude. Compare [120]

Each mode which is applied to the sample beam yields an OCT signal at the target depth
whose amplitude and phase is randomly distributed. In case all modes are superimposed,
the corresponding signal contributions are superimposed as well due to the linearity of
the OCT signal. A low overall signal amplitude results from the sum of random phasors
(Fig. 8.1(a)).

Without loss of generality the supposed optimized OCT signal is assumed to be aligned
to the real axis. An optimized wavefront is found by superimposing only those modes,
for which the projection of the respective OCT signal to the real axis is larger than zero
(Fig. 8.1(b)) [102, 120]. Modes which reduce the signal amplitude, i.e. whose projection
to the real axis is negative, are switched off. Hence, only modes whose contributions
to the OCT signal add up constructively are applied to the sample beam and a local
amplitude enhancement at the target results.

The phase of the OCT signal which is resulting from illumination with the respective
source modes is encoded in the reflection matrix. The matrix further describes the signal
at the full axial field of view of the OCT system. Hence, similar to the phase conjugation
algorithm, an optimized wavefront which enhances the signal at any point within the
FOV can directly be calculated once the matrix is determined.
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8.2 Experimental implementation

8.2 Experimental implementation

8.2.1 Reflection matrix acquisition

The acquisition of the reflection matrix with binary amplitude only wavefront manipu-
lation is enabled analogue to the approach discussed in Sec. 7.2. Multiple pixel of the
pattern which is applied to the SLM are grouped to larger segments. Binary amplitude-
only wavefront manipulation is implemented with the phase-only SLM, which is used in
this work, by assigning an amplitude of either zero ore one to each segment, respectively.
For those segments which are switched on (unity amplitude), a uniform phase of zero
is applied to all pixels which are grouped to the corresponding segment. For those seg-
ments which are switched off (zero amplitude) a random phase pattern is applied to the
underlying pixels. Light which is reflected at segments which are switched off produces a
diffusive speckle pattern which yields a negligible amplitude in the plane of the sample.

Similar to the previous approach (Sec. 7.2), a set of L active segments is manipulated
only. The active segments are chosen such that the area at which the sample beam is
reflected from the SLM is covered. A set of NV basis modes is constructed from a L x N
basis matrix B. In contrast to the previous Chapter, B is considered to be a binary
matrix with values of zero or one. For the experiments presented in this Chapter, B is
created by thresholding a Hadamard matrix, which was used in the previous Chapter
to define the basis modes, as well (Sec. 7.2). The n-th column of the basis matrix B
corresponds to the amplitude pattern which is applied to the set of (linearly indexed)
active SLM segments to create the n-th mode.

The reflection matrix is acquired by sequentially applying each mode to the SLM
and by saving the complex-valued SD-OCT signal which is resulting from illumination
with the respective wavefront to the n-th column of the matrix. In contrast to the
approach presented in the previous Chapter, complex conjugation of the OCT signal is
not required.

8.2.2 Mode superposition approach

Signal enhancement at a single target time-of-flight, corresponding to the m;-th pixel of
the OCT signal, is considered. Once again, the calculation of an optimized wavefront
which enhances the signal at the target requires knowledge of the m;-th row of the
reflection matrix only. The complex-valued matrix element R,,,, reflects the phase of
the OCT signal which is resulting at the target time-of-flight from illumination with
the n-th mode. To each mode, an optimal binary amplitude A;” tis assigned which is,
according to the discussion given in Sec. 8.1.2, chosen such that only those modes whose
projection to the real axis is positive at the target are switched on (compare Fig. 8.1):

1 if R{Rupme @} >0
opt _ men
A { 0 else (8.1)

The term ¢p,7*" = arg(zgzl Rp,n) yields the mean phase of the my-th row of the
reflection matrix, which is the mean phase of the OCT signal detected at the target.
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The final binary amplitude-only wavefront which is applied to the sample beam is
found by superimposing the individual basis modes with their respective amplitudes A5’ t
applied. The amplitude A7” " of the I-th active SLM segment, thus, reads in principle
A?pt = 27]:/:1 B, A% where By, is the basis matrix. On the other hand, due to the
binary modulation scheme an exact superposition of the individual amplitude patterns
is not possible since amplitudes Afp " other than zero or one are not allowed. Instead,
an approximate wavefront is found with the method presented by Jang et al. [26] by
thresholding the amplitude pattern such that half of the SLM segments are switched on
and the other half of the segments are switched off [26, 194]. This method is termed
mode superposition in the context of this Chapter:

opt __ 1 if Zgzl BlnAzpt > Amed
A = (8.2)
0 else

The term A,,.q corresponds to the median of the ideal amplitude pattern ZnN:1 By, A%

8.2.3 Segment superposition approach

Due to amplitude thresholding, only an approximate to the optimal wavefront is found
with the mode superposition approach. Thresholding can be avoided by directly testing
the OCT signal with a segment-by-segment basis, i.e. by switching only single segments
of the sample beam wavefront on and saving the resulting OCT signal to the reflection
matrix. The approach allows to decide for each mode individually whether it needs to
be switched on or off [102, 120]. The technique was demonstrated by Akbulut et al.
for iterative wavefront shaping in transmission geometry with a monochromatic source
[120]. The signal which is received with only a small fraction of the incident beam
switched on is very weak, on the other hand, and a low SNR results if the segment size
is chosen to be small or if a large number of segments, i.e. a high spatial resolution of
the shaped wavefront, is used. Hence, a hybrid approach is presented which tests the
field which is backscattered from the sample with a set of modes which span the full
diameter of the sample beam but which calculates the optimized wavefront in terms of
a segment-by-segment basis and which, hence, requires no amplitude thresholding. The
approach is termed segment superposition in the context of this Chapter.

The optimized wavefront is calculated from the same reflection matrix R,,, which is
used for the previous mode superposition approach. The matrix has size M x N and
probes the OCT signal (pixel count M) which is resulting from illumination with the
set of N Hadamard basis modes. The pseudoinverse B~! of the basis matrix B, which
yields the amplitude patterns corresponding to the individual source modes in terms of
the respective SLM segments, is calculated using the Matlab function mldivide accord-
ing to B~! = midivide(B,I"). The algorithm calculates B! such that BB~! = I*,
where I is the L x L identity matrix. The reflection matrix Ry,,, which is experi-
mentally acquired with the set of Hadamard modes, is then transformed to a segment-
by-segment basis using the right-hand side multiplication with the pseudoinverse basis
matrix: R, = Zflv:l RmnB;ll.
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Figure 8.2: Signal enhancement through binary amplitude-only wavefront ma-
nipulation. (a) A-scan taken with a flat wavefront and with optimized
wavefronts applied to the sample beam, respectively. (b) Flat wavefront. All
segments switched on. (¢) Wavefront calculated with the mode superposition
algorithm and (d) with segment superposition. Compare Fig. 7.1.

R,y is a M x L matrix which yields the phase of the OCT signal which is resulting
from sample illumination with the respective wavefront segments (indexed [) at different
time-of-flights (indexed m). The optimized wavefront is found analogue to the previous
approach (Eq. 8.1) by directly switching only those segments on whose projection to the
real axis is positive:

(8.3)

A?pt _ 1 if %{Emtl €_i¢m:an} >0
0 else

In contrast to the previous technique, the algorithm directly yields an amplitude of
zero or one for each segment of the optimized wavefront.

8.3 Selective signal enhancement

The approach is demonstrated experimentally with a sample consisting of multiple layers
of stacked pergamin paper. The same sample which is presented in Sec. 7.3 is used.
Figure 8.2(a) illustrates the OCT signal taken with a flat wavefront applied to the sample
beam, i.e. with all active SLM segments switched on (Fig. 8.2(b)). The reflection matrix
is acquired with the algorithm discussed in Sec. 8.2.1 for a set of N = 1024 basis modes.
Similar to the compounding algorithm which is presented in Sec. 7.2.3, the average of
the matrix yields the mean signal and the 95-th percentile yields the maximal signal
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8 Reflection matrix approach applied to binary amplitude-only wavefront shaping

which is expected from sample illumination with a random wavefront. The amplitude
of the signal which is captured with a flat wavefront applied to the sample beam is
found to exceed both of these signals (Fig. 8.2(a)). With the flat wavefront, the full
diameter of the sample beam is switched on. In contrast, during the acquisition of the
reflection matrix only a fraction of the active SLM segments are switched on to create
the respective basis modes and, hence, a weaker signal amplitude results.

Figure 8.2(a) further presents the OCT signal which is acquired once the mode su-
perposition and the segment superposition algorithm presented in Sec. 8.2 are used to
selectively enhance the signal which is received from a depth of 0.703 mm. The corre-
sponding patterns which are applied to the SLM are illustrated in Fig. 8.2 Panels (c)
and (d). The SLM which is utilized in this work enables phase-only wavefront control
only. As is visible from the inset in Fig. 8.2(c), the optimized wavefront is constructed
from non-overlapping square segments with uniform phase (unity amplitude) and from
segments to which a random phase pattern is applied (zero amplitude).

As is evident from Fig. 8.2, both algorithms significantly enhance the signal amplitude
at the target by switching off half of the sample beam in a controlled way. With the mode
superposition approach, the signal at the target depth is observed to be enhanced by
9.7 dB (9.3-fold linear enhancement) compared to the average signal which is resulting
from random illumination. With the segment superposition approach this value reads
11.2 dB (13.2-fold linear enhancement).

8.4 Impact of image artefacts

The algorithms are used to enhance the signal which is received from different target
depths, similar to the experimental data presented in Sec. 7.4.6. The resulting data
is illustrated in Fig. 8.3 for the mode superposition approach and in Fig. 8.4 for the
segment superposition algorithm.

Similar to phase conjugation with the time-resolved reflection matrix (Fig. 7.4), both
algorithms selectively enhance the mutual interference signal which is received from
the sample and which is observed at a depth of approximately 0.6 mm. The signal
enhancement is limited to the respective target depth, i.e. to the diagonal elements of
Fig. 8.3(a) and 8.4(a). The individual point-optimized A-scans are Hermitian symmetric
since the conventional SD-OCT signal is detected after applying the optimized wavefronts
to the sample beam, respectively. The signals which are illustrated in Figs. 8.3(a) and
8.4(a), hence, are symmetric with respect to the vertical axis.

In contrast to phase conjugation (Fig. 7.4), binary wavefront optimization is observed
to enhance mirror artefacts in addition to the mutual interference signal. As a conse-
quence, the fully-optimized A-scan, which is stitched from the in-target amplitude of the
respective point-optimized scans analogue to the approach given in the previous Chap-
ter, appears to be symmetric with respect to z = 0 (Fig. 8.3 and 8.4 Panel (b)). The
mode superposition approach is found to not increase autocorrelation artefacts which
are detected close to z = 0. In contrast, the segment superposition approach is found to
enhance these signal components, as well.
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Figure 8.3: Impact of image artefacts on the mode superposition algorithm.
(a) A-scans taken at a scattering sample after using the algorithm for signal
enhancement at different target depths. (b) Signal amplitude at in-target
(diagonal) elements of Panel (a) only.

The binary wavefront optimization algorithms which are presented in this Chapter are
expected to enhance mirror artefacts in the same way as the mutual interference OCT
signal. The algorithms switch those modes or segments on for which the real part of
the corresponding OCT signal is larger than zero (Sec. 8.2). Obviously, the approach
is insensitive to complex conjugation of the signal. Due to the Hermitian symmetry of
the complex-valued SD-OCT signal (I°P(z) = [I°P(—2)]*) the algorithms, hence, are
expected to find exactly the same optimized wavefront in case the depth z or if the
corresponding mirror image located at —z is targeted.

Autocorrelation artefacts result from mutual interference of the sample beam reflected
from different depths. Binary wavefront optimization switches those modes on whose
contributions to the OCT signal have roughly the same phase, resulting in constructive
interference with the optimized wavefront and an enhanced signal amplitude. In princi-
ple, there is no reason why the algorithm should not enhance autocorrelation artefacts
in the same way it enhances mutual interference and mirror components. On the other
hand, the binary Hadamard-like basis which is used for the mode superposition approach
is not orthogonal, in contrast to the phase-only Hadamard basis which is used in the pre-
vious Chapter. Furthermore, due to the binarisation of the optimized amplitude pattern
(Sec. 8.2.2) an additional mixing of modes occurs. Differences between the ideal and
the approximated and experimentally applied wavefront affect autocorrelation artefacts
which are sensitive to the sample beam wavefront and whose amplitude, as a conse-
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Figure 8.4: Impact of image artefacts on the segment superposition algorithm.
(a) A-scans taken at a scattering sample after using the algorithm for signal
enhancement at different target depths. (b) Signal amplitude at in-target
(diagonal) elements of Panel (a) only.

quence, is not enhanced. In contrast, the segment superposition algorithm calculates
the optimized wavefront in terms of the field which is reflected from individual spatially
non-overlapping segments of the SLM (Sec. 8.2.3). This is an orthogonal basis of the
electric field [136] and no mixing of modes occurs with the algorithm. As a consequence,
the optimized wavefront is observed to enhance autocorrelation artefacts, as well.

8.5 Quantitative signal enhancement

Similar to the discussion given in Sec. 7.5 the algorithms presented in this Chapter are
evaluated for different numbers of basis modes for which the reflection matrix is acquired.
Binary amplitude-only wavefront optimization is evaluated with the same sample which
is used in Sec. 7.5 and with the same experimental parameters. The data presented
in this Section, hence, can directly be compared to the data presented in the previous
Chapter for phase-only wavefront optimization.

Figure 8.5 illustrates the relative enhancement of the OCT signal amplitude which is
achieved with the segment superposition algorithm. Similar to the data presented in
Fig. 7.5(d), the signal enhancement is calculated from the ratio of the amplitude of the
optimized OCT signal compared to the average amplitude which is resulting from sam-
ple illumination with a random wavefront. The signal resulting from random wavefront
illumination is taken from the average amplitude of the reflection matrix (Sec. 7.2.3).
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8.5 Quantitative signal enhancement

Similar to phase-only wavefront optimization, the slope of the signal enhancement is
observed to read approximately 5 dB per decade, i.e. the signal enhancement is approx-
imately proportional to v/N.

The theoretical intensity enhancement which is expected for binary wavefront ma-
nipulation reads 1 = Iopt/Iref = 1+ (N’ + 1) /7 according to Akbulut et al. [102, 120],
where N’ is the number of wavefront segments which are switched on with the optimized
wavefront [120]. In case the number of segments is chosen to be sufficiently large, ap-
proximately half of the segments are switched on and the intensity enhancement reads
n ~ N/(2m). The OCT signal probes the amplitude of the backscattered field. The
amplitude enhancement, thus, is expected to read \/N/(27) (compare Sec. 7.5). As is
evident from Fig. 8.5(b) the experimental data is well described by this function.

The reference intensity Iy, which is used to determine the relative signal enhance-
ment, is defined to equal the intensity of the scattered field which is observed outside of
the target position in case the optimized wavefront is applied to the sample [102, 120].
In this work, in an equivalent approach the reference signal is evaluated from the signal
which is detected at the target but with a set of random binary wavefronts whose param-
eters match those of the optimized wavefront applied to the sample (compare Sec. 7.5).
On average, only half of the wavefront segments are switched on in case of random
wavefront illumination, on the other hand. Compared to sample illumination with the
full beam, as implemented with the phase conjugation algorithm which is discussed in
the previous Chapter, the reference intensity is reduced by approximately 50 % [120]
and the relative amplitude enhancement expected from binary wavefront shaping, thus,
reads only \/N/(4m).

For a quantitative comparison to phase-only wavefront optimization, the relative sig-
nal enhancement is calculated by using the average signal received with a set of random
phase-only wavefronts as reference, instead as random binary wavefronts (Fig. 8.5(b)).
This reference amplitude is illustrated in Fig. 7.5(c) and was used to calculate the signal
enhancement achieved with the phase conjugation algorithm, as well. The resulting data
is presented in Fig. 8.5(c) for the segment superposition algorithm and in Fig. 8.5(d) for
the mode superposition approach. In addition, the theoretically expected value which
reads \/N/(4n) is illustrated. The segment superposition algorithm is found to perform
slightly better compared to the expectation. The mode superposition algorithm, on the
other hand, performs significantly worse. This behaviour is expected since the mode
superposition approach utilizes a thresholding operation to approximate the optimal
wavefront with a binary amplitude pattern (Sec. 8.2.2). In contrast, no such approxi-
mation is used with the segment superposition algorithm (Sec. 8.2.3).

Both approaches are found to perform worse compared to phase-only modulation
(Fig. 7.5(d)). The phase conjugation algorithm, for example, yields a signal enhance-
ment of approximately 10 dB with a set of 128 modes (Fig. 7.5(d)). With binary am-
plitude modulation, a comparable enhancement requires to use a set of 1024 modes
(Fig. 8.5(c)). The expected signal enhancement reads y/N/(4m) for binary wavefront
control and v/0.78 N for phase-only wavefront control (Sec. 7.5). As a consequence, bi-
nary wavefront manipulation yields a signal enhancement which is 4.95 dB lower than
the value which is expected for phase-only modulation with the same number of modes.
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8 Reflection matrix approach applied to binary amplitude-only wavefront shaping

Considering the slope of the signal enhancement to be 5 dB per decade, which results
from the enhancement being proportional to v/N, binary amplitude control requires to
use approximately ten times as many modes to yield an amplitude enhancement which
is comparable to phase-only wavefront optimization.
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Figure 8.5: Quantitative signal enhancement with binary amplitude-only wave-
front modulation. (a) Optimized A-scan acquired with the segment super-
position algorithm for a set of N = 1024 modes. The target depths at which
the signal enhancement is evaluated are marked by arrows. (b) Relative en-
hancement of the OCT signal amplitude compared to sample illumination
with a random binary wavefront. The enhancement is evaluated at the tar-
gets marked in Panel (a) (o) and at the next signal pixels to the left ((J) and
to the right (¢), respectively. Dashed line: \/N/(27). (c) Relative amplitude
enhancement compared to sample illumination with a random phase-only
wavefront (Fig. 7.5(c)). Dashed line: /N/(47). (d) Same as Panel (c) with
wavefront optimized by the mode superposition algorithm. (e) Optimized
phase patterns calculated by the segment superposition algorithm for signal
enhancement at the second target (blue arrow). Scalebar 1 mm.
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9 Imaging Applications

9.1 Principles

The methods which are presented in Chapter 7 and 8 enable the acquisition of A-scans
which are optimized at the full axial field of view of the OCT system. The approach
is illustrated with the pseudocode presented in Fig. 9.1. For each A-scan, the reflection
matrix is captured once. Subsequent phase conjugation (Chap. 7) or binary wavefront
optimization (Chap. 8) allows to enhance the amplitude of the OCT signal which is
received at a selected target time-of-flight. Similar to the technique presented by Jang
et al. [26, 27| a fully optimized A-scan is acquired by point-optimizing the signal at
different depths and stitching the scan from the in-target amplitude of the respective
point-optimized signals. On the other hand, the field which is scattered at the sample
quickly decorrelates in case the sample beam is moved (Sec. 6.2). Wavefront shaping,
hence, allows to enhance the OCT signal only close to the lateral position at which
the reflection matrix was acquired. As a consequence, for cross-sectional or volume
imaging the process needs to be repeated at each lateral scan position anew, including
the acquisition of the reflection matrix once per A-scan (compare [27]).

Full image enhancement based on the algorithm is demonstrated with a scattering
phantom consisting of iterating layers of pergamin paper (Whatman 2122, GE Health-
care, United Kingdom) and cover glass slides (CG15CH2, Thorlabs, United States).
Figure 9.2(a) presents a conventional B-scan. The sample is tilted with respect to the
optical axis and aligned such that mutual interference and mirror signals overlap. As
a consequence, the morphology of the sample is not easily determined from the scan.
Figure 9.2(b) presents a scan which is acquired with the compounding algorithm pre-
sented in Sec. 7.2.3. The data corresponds to the average signal amplitude received
from sample illumination with a random phase-only wavefront. Speckle noise is reduced
and deeper layers of the sample are visible. Figure 9.2(c) illustrates the signal which is
acquired with wavefront optimization. Phase-only wavefront control and the phase con-
jugation algorithm presented in Chap. 7 are used. The approach features an improved
performance compared to binary amplitude-only wavefront modulation (Chap. 8). The
mutual interference signal, which yields an unambiguous image of the sample morphol-
ogy, is observed to be enhanced with the phase conjugation algorithm. Image artefacts,
on the other hand, are present in the image but are not enhanced (compare Sec. 7.4).

The effect can be exploited to additionally suppress image artefacts in post-processing.
The amplitude of signal components which are not affected by phase conjugation is
estimated from the 95-th percentile of the amplitude of the individual columns of the
reflection matrix (compare Figs. 7.1(b), 7.2(b) and 7.4(b)). Similar to the compounding
algorithm (Sec. 7.2.3) this data corresponds to the maximal signal amplitude which is
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9 Imaging Applications

for 1 = 1 to numberLateralScanPositions
// for each A-scan
move sample beam to lateral scan position

// acquire reflection matrix
for n = 1 to numberModes
apply phase pattern corresponding to n-th mode to SLM
acquire raw spectrum
interpolate spectrum to linear wavenumber grid
calculate SD-OCT signal from complex IFFT
save conjugate signal to n-th column of reflection matrix
end

// acquire optimized A-scan

initialise optimized A-scan with NaN values

for m = 1 to numberOptimizedPixel
// capture point-optimized OCT signal
apply phase pattern for focusing at m-th pixel to the SLM
acquire raw spectrum
interpolate spectrum to linear wavenumber grid
calculate SD-0CT signal from complex IFFT of spectrum
// stitch fully-optimized scan
save m-th pixel of SD-0CT signal to m-th pixel of the
optimized A-scan

end

end

Figure 9.1: Pseudocode for SD-OCT imaging based on phase conjugation with
the time-resolved reflection matrix. Comments are marked red.

expected in case of sample illumination with a random wavefront. This background data
is then subtracted from the image which is retrieved with the wavefront optimization
algorithm. The result is illustrated in Fig. 9.2(d). Residual artefacts are suppressed and
a clear sample image is gained. Some dark spots result at those positions where the
amplitude of image artefacts is overestimated by the algorithm, though.

9.2 Impact of phase conjugation on imaging

Asis evident from Fig. 9.2, phase conjugation yields a significant amplitude enhancement
with the signal received from the sample. The signal which is received from depths
between the individual strongly reflecting layers is enhanced as well, on the other hand.
These positions correspond to the bulk-volume of the cover glass slides from which no
reflection is expected. The observed signal, hence, is considered to result from light
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Figure 9.2: Application of phase conjugation to imaging. (a) Conventional OCT
scan taken at a layered sample. (b) Image captured with the compounding
algorithm. (c) Scan acquired with phase conjugation. Number of modes
N = 256. (d) Phase conjugation with additional artefact suppression. Image
adapted from [186].

which is multiple scattered at the previous sample layers and whose optical path length
does not match the actual penetration depth in the sample.

OCT imaging is based on the suppression of multiple scattered light, which yields a
diffusive time-of-flight distribution, compared to single- or weakly scattered light whose
time-of-flight is correlated to the position of reflecting sample structures. No benefit
for depth enhanced imaging results if both signal contributions are equally enhanced.
The signal-to-noise ratio of the data presented in Fig. 9.2 is estimated by taking the
average of the six rightmost A-scans (Fig. 9.2 Panels (b) and (c¢)) and fitting a third-
order polynomial to the signal baseline. The resulting data is illustrated in Fig. 9.3. The
SNR correspond to the peak-to-valley distance of the respective scans and is observed to
be increased by about 4 dB with phase conjugation compared to speckle compounding.
As a consequence, the OCT signal which is received from the sixth interface of the
scattering phantom is clearly visibly with the signal captured with the phase conjugation
algorithm (Fig. 9.2(c)), but not with the compounding algorithm (Fig. 9.2(b)).

Finally, the approach is demonstrated with biological tissue. Figure 9.4 presents imag-
ing with a sample cut from a food-quality chicken thigh. The conventional OCT signal
(Fig. 9.4(a)) is subject to strong speckle which appear to be rather coarse due to the
large lateral step width which is chosen to be 20 pm for the presented data. As a con-
sequence, the lower boundary of the epidermis is not clearly visible, even though avian
skin is rather thin compared to that of mammals [195], and the tissue morphology is not
evident from the OCT signal. With the compounding algorithm (Fig. 9.4(b)), speckle
are reduced and the boundary between the epidermis and the dermis becomes visible
at a depth of about 1.1 mm as well as some structures which are located deeper in the
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Figure 9.3: SNR estimation of the enhanced OCT signal. (a) Average of the
six right-most A-scans in Fig. 9.2 Panels (b) and (d). Fitted baselines are
illustrated by dashed lines. (b) Baseline-subtracted signals. Image adapted
from [186].

dermis. The epidermis produces a stronger OCT signal and, hence, the position of the
dermal-epidermal junction is also evident from the single A-scan illustrated in Panel (e).
Figure 9.4(c) illustrates the image which is captured with the phase conjugation algo-
rithm. To better estimate the SNR, the amplitude color-scale is chosen to cover the
same dynamic range of 30 dB which is used for Panels (a) and (b), as well. With the
phase conjugation algorithm the signal amplitude received from backscattering sample
structures such as the epidermis is enhanced. This effect is also evident from the single
A-scan illustrated in Panel (e). An increased image contrast compared to the com-
pounding algorithm (Fig. 9.4(b)) and, hence, a better SNR is observed. Furthermore,
considering Panel (c), the phase conjugation algorithm is found to reduce the speckle
contrast similar to the compounding algorithm. This effect is not surprising, though.
Speckle result from interference of uncontrolled waves which are randomly backscattered
to the detector. The phase conjugation algorithm stitches the OCT image from a set of
scans which are optimized for signal enhancement, i.e. for constructive interference of the
backscattered field, at each voxel of the OCT scan individually. The image which is re-
ceived with the phase conjugation algorithm, hence, can be considered to be constructed
from bright speckles only.
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Figure 9.4: Phase conjugation with biological tissue. (a) Conventional OCT scan.
(b) Image captured with the compounding algorithm. (c) Scan acquired with
phase conjugation. Number of modes N = 256. (d) Phase conjugation with
additional artefact suppression. (e) Amplitude of the two A-scans marked by
the dashed line in Panel (b) and (c), respectively. The amplitude color-scale
corresponds to the same dynamic range of 30 dB for all scans. Panels (a) to
(d) adapted from [186].
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10 Discussion

10.1 Double interferometer OCT design

The experimental part of this work is based on a double interferometer OCT design which
is presented in Chap. 5. The design was analytically, numerically and experimentally
demonstrated to be capable of independent phase manipulation at the reference and
sample beam of the OCT system, respectively. This capability was used to implement
phase-shifting algorithms to suppress SD-OCT image artefacts (Sec. 2.2.3) for the data
presented in Chap. 6 and in Sec. 7.3. The one dimensional analytic model which is
presented in Sec. 5.4 to analyse the OCT design does not cover the effects of spatial
wavefront shaping since lateral beam propagation is neglected. The experimental data
shown in this work, especially the data presented in Chap. 6, supports the claim that
the reference and sample beam, indeed, can be shaped independently, on the other hand.

OCT imaging can benefit from a number of different approaches for wavefront shaping
at the sample beam. Some of them are presented in this work, others include adaptive
optics [84, 90, 91, 185], Bessel beam illumination to enhance the penetration depth
[196, 197], or multi beam illumination to enhance the frame rate of the OCT system.
In general, the reference beam needs to be efficiently coupled to the detector as well
and, hence, the reference beam should be adapted to the illumination scheme. With
the design presented in this work, multiple illumination schemes can be applied to the
reference and the sample beam, respectively, and can be digitally switched.

In contrast to conventional SD-OCT designs, the amplitude of autocorrelation arte-
facts is enhanced two-fold with the double interferometer design presented in this work
(Sec. 5.4). On the other hand, the simplified experimental design yields a major ben-
efit compared to a Mach-Zehnder setup, which too enables independent beam shaping
(Sec. 4.1). Compared to a conventional OCT interferometer only the source arm needs
to be modified. Beam shaping, thus, can be implemented with existing SD-OCT systems
by making only minor modifications to existing free space scanners, similar to the con-
cept illustrated in Fig. 10.1. In this case, the imaging system does not need to be fully
re-designed and already implemented (high-speed) data acquisition and data processing
algorithms of the existing OCT system can be utilized.

10.2 Acquisition speed and improvements
The acquisition of a single A-scan optimized with the phase conjugation algorithm took

approximately four minutes for the data presented in Fig. 9.4. The reflection matrix
was acquired for a set of NV = 256 modes and each A-scan was stitched from a set of 377
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Figure 10.1: Double interferometer design implemented with a commercial SD-
OCT system. (a) Conventional SD-OCT system consisting of a base unit
(e.g. TELS320, Thorlabs, United States) and a scanner which contains the
reference and sample beam optics (e.g. OCTP-1300/M, Thorlabs, United
States). (b) Scanner modified for independent wavefront shaping at the
sample beam, similar to the setup used in this work (Fig. 5.1).

point-optimized scans (compare, for example, Fig. 7.4). As a consequence, each A-scan
required a set of 633 acquisitions in total, whereas different phase patterns need to be
applied to the SLM, respectively.

Even though the approaches presented in Chapter 7 and 8 are significantly faster
compared to iterative wavefront shaping (Sec. 6.4), an acquisition time of several minutes
for a single A-scan does not allow to apply the technique to image large samples within
a reasonable time. Furthermore, as discussed in Sec. 3.3.4, the field which is scattered at
living biological tissue is observed to decorrelate within milliseconds due to macroscopic
tissue movement, blood flow and cellular movement [101-103, 112]. As a consequence,
the acquisition of the reflection matrix and subsequent phase conjugation need to be
completed within a comparable time span.

On the other hand, the acquisition speed is mostly limited by technical constraints of
the experimental design, such as the low frame rate of the SLM (compare Sec. 5.2.4).
The imaging algorithms which are presented in Chaps. 7 and 8 are divided in two steps:
The measurement of the time-resolved reflection matrix and the subsequent acquisition
of the enhanced OCT signal based on the matrix (compare Fig. 9.1). Approaches to
increase the speed of both steps are discussed.

10.2.1 Reflection matrix acquisition

The reflection matrix probes the optical response of a scattering sample in case of il-
lumination with a set of different wavefronts. As a consequence, the time required to
capture the reflection matrix is proportional to IV, where N is the number of degrees
of freedom of the incident field or the number of independent modes. In general, phase
conjugation is expected to become more effective with increasing number N (compare
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Secs. 7.5 and 8.5). On the other hand, even with a rather low number of modes in the
order of 100 the amplitude of the OCT signal can already be increased approximately
ten-fold with the phase conjugation algorithm (Sec. 7.5).

In general, one wants to capture the reflection matrix for as many modes as possible
within a short amount of time. The acquisition time per mode depends on the number of
measurements required to determine the complex-valued signal which is resulting from
sample illumination with a single mode. In case the matrix is directly captured from the
conventional SD-OCT signal, as presented in Chapter 7 and 8, only a single acquisition
of the corresponding spectral raw data is required [30]. In principle, the reflection
matrix cannot be determined faster than that. The approach reduces the number of
measurements 25-fold compared to the algorithm presented by Jang et al. [26-29] who
used an approach similar to phase conjugation and who presented the only application
to direct OCT image enhancement, comparable to the techniques presented in this work,
which is reported to date.

The acquisition time of the reflection matrix is also proportional to the time which
is required to update the wavefront which is incident to the sample and to capture the
resulting OCT signal. The OCT system and the data processing which is used in this
work is optimized for a high versatility rather than for a high acquisition speed. Con-
temporary commercial SD-OCT systems can achieve A-scan rates well above 100 kHz,
though. The speed of wavefront control is determined by the frame rate of the spa-
tial light modulator. The approaches presented in this work are based on phase-only
wavefront modulation. High-speed phase modulation can be implemented with micro-
electro-mechanical systems such as deformable or segmented mirrors [105, 133, 137, 159,
198, 199]. Furthermore, holographic approaches can be used to implement phase-only
wavefront modulation with fast amplitude-only SLMs such as digital micromirror de-
vices, similar to the approach presented by Conkey et al. [194]. The algorithms which
are presented in Chap. 8 require binary amplitude-only wavefront control and can di-
rectly be implemented with DMDs.

Finally, I would like to point out that the time-resolved reflection matrix probes the
dependence of the OCT signal on the incident wavefront accurately at the complete field
of view of the OCT system as long as the sample beam is not displaced or scanned.
With the system presented in this work, the FOV corresponds to a single line scan
perpendicular to the sample surface. The FOV can easily be extended by implementing
a multi-beam acquisition, for example by using the SLM to split the sample and the
reference beam, respectively, and by using a linear fibre bundle to couple the respective
back-scattered beams to the spectrograph. The acquisition of the reflection matrix and
phase conjugation can be conducted at each beam in parallel and, hence, the total time
required to capture an optimized B-scan is reduced. Alternatively, the reflection matrix
can be acquired with a FF-OCT system, as discussed in Sec. 4.2. In this case the FOV for
which the reflection matrix remains valid corresponds to a plane parallel to the sample
surface. Similarly, a line-field SD-OCT or SS-OCT system can be utilized which probes
a plane perpendicular to the sample surface [30, 200]. Ultimately, a full-field SS-OCT
system may be used to probe the whole sample volume at once [201]. The observations
which are made for a conventional SD-OCT system in this work are expected to hold for
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line-field and full-field SS-OCT systems, as well. The approach can significantly speed
up the imaging process since the sample does not need to be scanned for imaging and,
thus, the reflection matrix does not need to be reacquired at each lateral image position.
On the other hand, large datasets have to be dealt with and the implementation of
efficient real-time data processing may prove to be challenging.

10.2.2 Image acquisition

The image acquisition algorithm presented in this work uses wavefront optimization to
acquire a set of point-optimized scans. A fully-optimized scan is stitched from these
signals, similar to the approach presented by Jang et al. [26-29] (compare Fig. 9.1). As
a consequence, for each voxel of the optimized image a single OCT signal needs to be
acquired with individually optimized wavefront applied to the sample beam, respectively.
The time required to capture the image, thus, depends on the frame rates of the OCT
system and the SLM, which is discussed in the previous Section, and is proportional to
the number of image voxels. The latter can be reduced by either cropping the field of
view or by reducing the spatial resolution of the scan. Neither approach is beneficial for
imaging, though.

Alternatively, the phase conjugation algorithm may be used to enhance the signal at
multiple voxels simultaneously. The approach is presented in Sec. 7.6. Enhancing the
signal at two voxels at the same time, for example, already yields a two-fold reduction
of the number of acquisitions which are required to capture an optimized image. The
amplitude enhancement which is expected in case of phase conjugation with an extended
target is expected to drop, though [118] (Secs. 7.5 and 7.6). On the other hand, the
sample‘s reflectivity profile and the resulting OCT signal are not uniform. The phase
conjugation algorithm, thus, is expected to predominantly enhance the signal which is
received from strongly reflecting layers placed in the extended target, resulting in an
increased image contrast. Further experimental verification is required, though.

Alternatively, a singular value decomposition of the reflection matrix may be used to
identify phase patterns which enable focusing at dominant backscattering sample fea-
tures [137, 140, 143, 144, 148] (Sec. 3.4.4). An OCT image can directly be acquired
from the corresponding eigenvalues [143], in which case no additional signal acquisition
is necessary once the reflection matrix is captured, or from the OCT signal which is
measured once the incident beam is focused to the dominant sample features. The num-
ber of additional signal acquisitions corresponds to the number of dominant eigenvalues
in the latter case. The approach was successfully demonstrated with FF-OCT systems
(Sec. 4.2). The application to SD-OCT is not yet reported and requires further careful
analysis, though.
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10.3 Comparison of phase-only and binary amplitude-only
wavefront control

The acquisition of the time-resolved reflection matrix and subsequent phase conjugation
is shown to selectively enhance the OCT signal in Chap. 7. The approach was originally
demonstrated by Choi et al. [30]. In addition to the previous work, an analytic framework
on how the time-resolved reflection matrix relates to the complex-valued SD-OCT signal
is presented (Sec. 7.1). From this, the technique is originally shown to locally enhance the
OCT signal but not image artefacts, even though artefacts are not actively suppressed
(Sec. 7.4). Furthermore, applications for direct OCT image enhancement are presented
in Chap. 9 for the first time.

In Chap. 8 the acquisition of the time-resolved reflection matrix and subsequent wave-
front optimization is originally demonstrated based on binary amplitude-only beam shap-
ing. The mode superposition approach presented in Sec. 8.2 can directly be compared
to the iterative wavefront shaping algorithm which was demonstrated by Jang et al. [26—
29]. The group demonstrated the only application of wavefront shaping for direct OCT
image enhancement and for depth enhanced imaging, comparable to this work, which is
reported to date. In contrast to the algorithm presented by Jang et al., binary wavefront
optimization based on the time-resolved reflection matrix reduces the number of signal
acquisitions required to find an optimal wavefront which selectively enhances the OCT
signal 25-fold.

OCT signal enhancement based on phase-only wavefront shaping (Chap. 7) is shown
to outperform binary amplitude-only wavefront shaping (Chap. 8) in a number of as-
pects in this work. In contrast to binary wavefront shaping, phase conjugation enhances
the mutual interference OCT signal only, but not mirror and autocorrelation artefacts
(Sec. 7.4). The effect can be used to enhance the OCT signal and to suppress image
artefacts in post-processing without additional signal acquisitions and without phase
shifting approaches (Chap. 9). Furthermore, the amplitude enhancement which is ex-
pected with phase-only modulation is approximately 5 dB higher compared to binary
wavefront shaping with the same number of modes (Sec. 8.5).

As a major benefit, binary amplitude-only wavefront shaping can directly be im-
plemented with digital micromirror devices which enable high-speed and high-resolution
beam shaping. On the other hand, binary wavefront shaping requires approximately ten-
times as many signal acquisitions to yield the amplitude enhancement which is achieved
with phase-only wavefront control (Sec. 8.5) and, thus, the speed advantage is partially
eaten up. Furthermore, phase only wavefront control can be implemented with DMDs
as well, for example by using the DMD to apply a binary amplitude hologram which
creates the desired phase pattern from diffracted light [194]. The approach requires a
more sophisticated experimental design, though, and a stronger light source since only
a part of the diffracted light (e.g. the first diffraction order [194]) can be used.
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10.4 Depth enhanced imaging

This work demonstrates wavefront shaping techniques to be able to significantly enhance
the signal amplitude which is detected with a SD-OCT system from a scattering sample.
This result aligns well with previous observations [26-30]. To date, imaging applications
are demonstrated with binary amplitude modulation only [27-29]. The approach is
comparable to the mode superposition algorithm presented in Chap. 8. The techniques
which are demonstrated in this work feature a number of improvements compared to
the previous approach which are relevant for imaging.

The mode superposition algorithm which is presented in Sec. 8.2.2 requires a signifi-
cantly reduced number of measurements compared to previous works [26-29] (Sec. 10.2.1).
The segment superposition approach presented in Sec. 8.2.3 is further shown to yield a
higher signal enhancement compared to mode superposition (Sec. 8.5) and phase-only
wavefront optimization (Chap. 7) is demonstrated to outperform both binary amplitude-
only wavefront shaping approaches in this aspect. The effect of wavefront shaping
on SD-OCT image artefacts is not yet discussed in literature. In this work, binary
amplitude-only wavefront shaping is demonstrated to enhance the mutual interference
OCT signal and image artefacts, as well (Sec. 8.4). In contrast, phase-only wavefront
shaping is shown to affect the mutual interference OCT signal, which reflects the sample
structure, only (Sec. 7.4). Furthermore, phase conjugation is demonstrated to reduce the
speckle contrast of the OCT signal similar to a compounding algorithm (Chap. 9). This
effect is not yet demonstrated in literature. Altogether, the approaches presented in this
work are expected to perform better compared to previous wavefront shaping techniques
which were demonstrated for direct OCT signal enhancement [26-29]. First applications
which are given in Chap. 9 yield substantially improved OCT images compared to these
works.

Yu et al. demonstrated wavefront shaping to extend the penetration depth of OCT
systems with scattering media [27]. The group estimated the penetration depth by
fitting an exponential function to the OCT signal received from a scattering sample and
by determining the depth at which the exponential fit drops below the noise threshold
[27]. Considering this criterion, the phase conjugation algorithm presented in this work
is expected to yield a greater increase in penetration depth due to the improved signal
enhancement compared to binary amplitude-only wavefront shaping. On the other hand,
the OCT image contrast is determined by the suppression of multiple scattered light
compared to weakly scattered light. As demonstrated in Chap. 9, wavefront optimization
is observed to enhance the amplitude of multiple scattered light as well and, hence, no
benefit for depth enhanced imaging results if both signal contributions are enhanced by
the same amount. The effect is not yet discussed in literature and the criterion which
is used by Yu et al. to determine the penetration depth of the OCT system does not
address this problem [27].

Depth enhanced OCT imaging is enabled in case the signal, which is resulting from
weakly scattered light detected from strongly reflecting sample features, is enhanced
more strongly than diffusively multiple scattered light. This effect can in principle
be enabled since wavefront optimization couples light to dominant eigenchannels of the
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scattering sample which correspond to reflections at dominant reflecting layers [144, 160,
161]. The effect is discussed in Sec. 4.4.2 in detail. This behaviour is not yet verified
for SD-OCT imaging and requires further careful analysis, though. Furthermore, as
discussed in Sec. 7.5, phase conjugation is expected to enhance light which is detected
from a narrow time-of-flight window more strongly than light detected from a wide time-
of-flight range. In principle, the different time-of-flight statistics of weakly and strongly
multiple scattered light can be exploited to enhance the SD-OCT image contrast. The
approach should be evaluated in future studies.

First imaging applications which are presented in Chap. 9 demonstrate phase conjuga-
tion to indeed yield an enhanced image contrast, or signal-to-noise ratio, with scattering
media. This work focuses on algorithms and principle effects of wavefront shaping ap-
plied to optical coherence tomography, though. The experimental system which is used
has a high versatility to enable the presented proof-of-concept experiments, but is too
slow to enable a quantitative study with a large number of samples. Further quantita-
tive analysis, hence, should be conducted with an enhanced experimental design which
is based on the approaches demonstrated in this work and on the concepts discussed in
Secs. 10.1 and 10.2.

10.5 Applications and outlook

The techniques which are presented in this work can directly be used to enhance the
signal amplitude when imaging scattering media with SD-OCT systems. For practical
applications the acquisition speed needs to be enhanced, though. In the next step the
double interferometer OCT design which is presented in this work should be realized
within a commercial SD-OCT system which already incorporates data acquisition and
data processing algorithms which are sufficiently fast for real-time in-vivo OCT imaging
(compare Fig. 10.1). The crucial aspect of the approach is the implementation of high-
speed wavefront manipulation which needs to synchronized to the acquisition of the OCT
signal. Phase-only wavefront manipulation should be implemented with holographic
techniques and with a high-resolution DMD [194]. In principle, full-complex wavefront
control can be realized with this approach, as well [194], and yields a further increased
signal enhancement compared to phase-only control [119]. The algorithms which are
presented in this work can directly be applied to such a system. First proof-of-concept
imaging approaches presented in Chap. 9 yield promising results for depth enhanced
imaging with scattering biological tissue and should be further validated with the high-
speed system.

The OCT signal which is detected from a certain depth is to some extend related to the
amplitude of light which is backscattered from the corresponding position in the sample,
depending on whether the OCT signal is dominated by weakly scattered or by strongly
multiple scattered light. Using phase conjugation to selectively enhance the OCT signal
which is received from a small target, thus, can selectively and non-invasively focus light
to that position. The approach was demonstrated experimentally by Fiolka et al. [25]
and is discussed in detail in Sec. 4.4.2. Applications of non-invasive focusing in scattering
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media such as biological tissue include, for example, optogenetics or phototherapy and
can be combined with OCT imaging to locate the target structures for focusing.

Multimodal imaging approaches which require focusing at the sample can benefit from
OCT-based phase conjugation, as well. Adding, for example, a monochromatic light-
source to the SD-OCT system allows to use the setup for confocal Raman imaging and
to investigate the sample‘s chemical structure. OCT imaging can be used to investigate
the sample morphology and to identify points of interest, for example pathological tissue
structures. OCT-based phase conjugation finds an optimized wavefront which couples
light backscattered from the target structure more efficiently to the detector. Subsequent
switching to the monochromatic source can allow to selectively couple Raman-shifted
light which is backscattered from the target to the detector, as well. The approach, thus,
enables the selective investigation of the sample‘s chemical structure at the target and
can be used for applications such as non-invasive deep-tissue diagnostics.
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In this work the combination of wavefront shaping and spectral domain optical coherence
tomography is demonstrated. Wavefront shaping techniques try to manipulate the beam
which is incident to a scattering sample such that constructive interference at the detector
is created from scattered light. Applied to OCT imaging, the technique allows to focus
light which is backscattered at a given time-of-flight to the detector, resulting in the
amplitude of the OCT signal to be increased.

Wavefront manipulation is demonstrated with a double-interferometer SD-OCT de-
sign which includes a spatial light modulator for beam shaping to the first interferometer.
The experimental system is shown to enable independent phase shifting and beam shap-
ing at the reference and at the sample beam, respectively. In contrast to comparable
approaches, such as a Mach-Zehnder OCT design, the setup is rather compact and re-
quires to modify the optical elements at the source path only compared to a conventional
(single interferometer) free space SD-OCT system or OCT scanner.

In a first application, iterative wavefront shaping is demonstrated. The approach is
based on an iterative algorithm which optimizes the phase pattern applied to the sample
beam such that the amplitude of the OCT signal detected at an arbitrarily chosen target
time-of-flight is enhanced. The approach is experimentally robust but requires a rather
long optimization time. The resulting signal enhancement is observed to be limited only
to the target time-of-flight and to the lateral position of the sample beam for which the
wavefront is optimized. Signal enhancement at another axial or lateral target position
requires to repeat the optimization process.

In a more sophisticated approach, the acquisition of the time-resolved reflection matrix
is demonstrated. The reflection matrix describes the linear dependence of the complex-
valued time-of-flight-resolved backscattered field, which is the detected OCT signal, on
the field which is applied to the sample beam. Phase conjugation based on the reflection
matrix allows to find an optimized wavefront which locally enhances the OCT signal at
an arbitrarily chosen position within the observed field of view. The approach, hence, is
comparable to iterative wavefront optimization but allows to substantially increase the
acquisition speed. The technique was initially demonstrated by Choi et al. [30], but a
detailed discussion on how the matrix relates to the SD-OCT signal and on the impact
of image artefacts which are detected with SD-OCT systems had not yet been reported.
In this work, such an analytic model is developed. Based on the model, the phase
conjugation algorithm is shown to enhance the OCT signal, but not image artefacts.
The result is verified experimentally.

Acquisition time is critical in case the technique is applied to in-vivo imaging. Hence,
the acquisition of the time-resolved reflection matrix and subsequent wavefront opti-
mization is demonstrated for the first time based on binary amplitude-only wavefront
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manipulation. The presented algorithm is comparable to previous iterative wavefront
shaping approaches [26] but requires a significantly reduced number of signal acquisi-
tions to find an optimized wavefront. Wavefront manipulation is based on an on/off
modulation of individual segments of the sample beam. The technique, thus, can be
implemented with fast micro-electro-mechanical systems such as digital micromirror de-
vices. On the other hand and in contrast to the presented phase-conjugation algorithm,
binary amplitude-only wavefront optimization is found to enhance the amplitude of OCT
image artefacts, as well. Furthermore, the approach requires to control approximately
ten times as many modes at the sample beam to yield an overall signal enhancement
which is comparable to the effect of phase-only wavefront shaping.

Finally, first imaging applications are presented. Similar to previous works based
on iterative wavefront optimization [27], the phase conjugation algorithm is utilized to
directly enhance the amplitude of the SD-OCT signal which is captured from a scattering
sample. Since image artefacts are not enhanced, these artefacts can be suppressed in
post-processing without further signal acquisition. Phase conjugation is demonstrated to
enhance the signal-to-noise ratio and the penetration depth when imaging turbid media
such as biological tissue. In addition, the approach is shown to reduce the observed
speckle contrast, similar to compounding algorithms.

Previous works demonstrated iterative wavefront shaping techniques to enhance the
penetration depth of OCT systems when imaging scattering media and biological tissue
[26—29]. The algorithms which are presented in this work perform substantially better in
terms of the required number of measurements, i.e. the acquisition speed, and in terms
of the achieved signal enhancement compared to the iterative approach.

Depth enhanced OCT imaging can increase the utility of non-invasive OCT imaging
for medical diagnostics. When investigating samples such as the human skin, for ex-
ample, structures of interest such as lesions and pathological tissue changes can easily
extend beyond the penetration depth of a conventional OCT system, effectively render-
ing the system useless for diagnostic purposes. Wavefront shaping approaches can help
to increase the penetration depth and the SNR when investigating such samples and first
imaging applications yield promising results in this context. The major challenge which
needs to be addressed to apply the technique to in-vivo imaging is the required acquisi-
tion time, though. The experimental approach which is demonstrated in this work can
be implemented with modifications of commercial (high-speed) SD-OCT systems and
with high-speed wavefront manipulation enabled by micro-electro-mechanical systems.
The presented algorithms, in principle, require a minimal number of measurements to
find an optimal wavefront at the sample beam and can directly be used with such a
system. It can, thus, be expected that the presented approaches provide valuable tools
for future deep-tissue OCT imaging and for non-invasive medical diagnostics.
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