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Abstract

The first direct detections of gravitational waves from merging black holes and neutron stars
started the era of gravitational-wave astronomy. Since then, observing merging compact objects
has become routine. Other exciting sources still remain undetected.
Rapidly-rotating neutron stars are predicted to emit weak, long-lasting quasi-monochromatic

waves called continuous gravitational waves (CWs). In the current detector generation, advanced
LIGO and Virgo, various noise sources create far more signal output than a potential CW signal.
CW data analysis tries to overcome the weakness of the signals by integrating over long stretches
of data. Analyzing large amounts of data usually corresponds to large computing cost. For that
reason, CW searches for signals from unknown neutron stars are limited in their sensitivity by
computational cost.
This thesis is concerned with estimating and improving the sensitivity of continuous gravita-

tional wave searches. The first main research work presented in this thesis is a new sensitivity
estimator that can swiftly and accurately predict the sensitivity of a CW search before it is
started. This makes optimizing the search algorithms and therefore improving the sensitivity
easier. The accuracy of the estimator is studied by applying it to many different CW searches.
The work is expanded with an extensive sensitivity review of past CW searches by calculating
their sensitivity depth.
The second main part of this thesis is the development of a new CW search method based on

deep neural networks (DNNs). DNNs are extremely fast once trained and therefore might present
an interesting possibility of circumventing the computational limitations and creating a more
sensitive CW search. In this thesis such a DNN CW search is developed first as a single-detector
search for signals from all over the sky and then expanded to a multi-detector all-sky search
and to directed multi-detector searches for signals from a single position in the sky. The DNNs’
performance is compared to coherent matched-filtering searches in terms of detection probability
at fixed false-alarm level first on idealized Gaussian noise and then on realistic LIGO detector
noise. This thesis finds that the DNNs show a lot of potential: For short timespans of about one
day the networks only lose a few percent in sensitivity depth compared to coherent matched-
filtering. For longer timespans the networks’ performance gradually deteriorates making further
research necessary. As an outlook to future research, this thesis proposes the combination of
short-timespan network outputs, similar to semi-coherent matched-filtering, as a DNN search
method over longer timespans.

Keywords: continuous gravitational waves, data analysis, sensitivity estimation, deep learning
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Kurzfassung

Die ersten direkten Detektionen von Gravitationswellen von verschmelzenden Schwarzen Löchern
und Neutronensternen haben die Ära der Gravitationswellenastronomie eingeläutet. Seitdem
ist die Beobachtung von verschmelzenden kompakten Objekten zur Routine geworden. Andere
interessante Quellen von Gravitationswellen sind jedoch noch unentdeckt.

Schnell rotierende Neutronensterne können schwache, langanhaltende quasi-monochromatische
Wellen aussenden, genannt Kontinuierliche Gravitationswellen (engl.: continuous waves CWs).
In der aktuellen Detektorgeneration, advanced LIGO und Virgo, wird mehr Detektoroutput
durch diverse Rauschquellen erzeugt als durch potenzielle CW Signale. Die Datenanalyse für
CWs versucht die Schwäche der Signale zu überwinden, indem die Daten über lange Zeitspan-
nen integriert werden. Große Mengen von Daten zu analysieren ist jedoch für gewöhnlich mit
großen Ansprüchen an die Rechenleistung verbunden. Deshalb sind Suchen nach CWs von un-
bekannten Neutronensternen in ihrer Empfindlichkeit limitiert durch die begrenzt vorhandene
Rechenleistung.
Diese Doktorarbeit beschäftigt sich mit dem Abschätzen und Verbessern der Empfindlichkeit

von Suchen nach Kontinuierlichen Gravitationswellen. Das erste Hauptforschungsergebnis dieser
Arbeit ist ein neuartiger Abschätzer, der die Empfindlichkeit einer CW-Suche schnell und genau
vorhersagen kann bevor die Suche gestartet wird. Dies vereinfacht die Verbesserung der Suchal-
gorithmen und kann deshalb zu empfindlicheren Suchen führen. Die Genauigkeit des Abschätzers
wird anhand von vielen verschiedenen CW-Suchen untersucht. Die Untersuchung wird ergänzt
durch eine ausführliche Studie der Empfindlichkeit von vergangenen CW-Suchen. Dazu wird
deren Empfindlichkeit in die gemeinsame Größe der Empfindlichkeitstiefe (engl.: sensitivity
depth) umgerechnet.
Das zweite Hauptforschungsergebnis dieser Dissertation ist eine neuartige CW-Suchmethode

mit Hilfe von tiefen neuronalen Netzwerken (engl.: deep neural networks, DNNs). Fertig
trainierte DNNs können extrem schnell angewendet werden und stellen deshalb eine interes-
sante Art und Weise dar, wie möglicherweise mit der Limitierung durch fehlende Rechenleistung
umgegangen und eine empfindlichere Suche konstruiert werden kann. In dieser Arbeit wird eine
solche DNN nutzende CW-Suchmethode präsentiert: zuerst als Suche mit Daten von einem
einzigen Detektor nach Signalen vom gesamten Himmel und dann erweitert zu Suchen mit
Daten von mehreren Detektoren nach Signalen vom gesamten Himmel oder nach Signalen von
einer speziellen Himmelsposition. Die Leistungsfähigkeit der DNNs wird dabei verglichen mit
kohärenten Optimalfiltermethoden im Hinblick auf ihre Detektionswahrscheinlichkeit bei festem
Fehlalarmniveau. Diese Arbeit zeigt das diesbezüglich große Potential von DNNs: Bei der
Analyse von kurzen Zeitspannen von etwa einem Tag verliert das Netwerk nur wenige Prozent
in Empfindlichkeitstiefe gegenüber kohärenten Optimalfiltermethoden. Für längere Zeitspannen
nimmt die Leistungsfähigkeit der Netzwerke im Vergleich jedoch nach und nach ab. An dieser
Stelle wird deshalb weitere Forschungsarbeit benötigt um die Leistungsfähigkeit der DNNs zu
verbessern. Ein Ansatz, der in dieser Arbeit für zukünftige Forschung vorgeschlagen wird, ist
die Kombination von Ergebnissen, die Netzwerke auf kurzen Zeitspannen erreicht haben, als
Ergebnis für längere Zeitspannen zu nutzen. Dieser Ansatz ist ähnlich zum semi-kohärenten
Optimalfilter, der in klassischen CW-Suchen benutzt wird.

Schlagworte: Kontinuierliche Gravitationswellen, Datenanalyse, Empfindlichkeitsabschätzung,
Deep Learning, Neuronale Netzwerke
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1. Introduction

Since the formulation of the two main theories of physics, quantum mechanics and general
relativity, physicists wondered how to combine these two theories. Few experiments can reveal
a combined effect as quantum mechanics is mostly relevant for small length scales while gravity,
i.e. general relativity, is most relevant for the large scale structures of the universe.

Compact astronomical objects such as black holes, neutron stars and white-dwarfs do need
both theories to be accurately described. And while classical electromagnetic observations can
shed some light on the structure and prevalence of these objects, gravitational waves can add a
lot of additional information. This was shown when the LIGO-Virgo collaboration announced
the first direct detection of gravitational waves from black holes [1] and from neutron stars [2].
While the first detections of merging black holes were the starting point of gravitational-wave
astronomy and gave us insight into these fascinating objects, the binary neutron star merger
GW170817 showed us the first glimpse of the exciting future of multi-messenger astronomy from
gravitational waves, electromagnetic waves and neutrinos [3]. The multi-messenger detection has
shown us e.g. a direct connection of binary-neutron-star mergers and short gamma-ray bursts
and kilonova explosions [3], it allowed an independent measurement of the expansion of the
universe [4] and established neutron-star mergers as a major source of heavy elements in the
universe [3, 5, 6].
Gravitational-wave signals from compact binary mergers, however, were only the beginning

of gravitational-wave astronomy. Other exciting types of gravitational waves and sources still
have to be detected. In this thesis we will focus mainly on the predicted gravitational waves
from rapidly-rotating neutron stars. These continuous gravitational waves (CWs) are long-
lasting quasi-monochromatic waves that are expected to be several orders of magnitude weaker
in amplitude than binary-merger signals. A detection of a continuous wave could bring insight
to the structure and prevalence of neutron stars especially as it could potentially also be a
multi-messenger signal if the neutron star is also visible via electromagnetic radiation (e.g. a
pulsar). Continuous gravitational waves can also be emitted by other sources like white-dwarf
binaries and boson clouds around black holes, further increasing their significance and potentially
allowing interesting tests of the main theories of physics.
CW data analysis tries to overcome the weakness of the CW signals by analyzing large amounts

of data, integrating over long timespans to separate the periodic signal from the random noise.
The necessary amount of data is in fact so large that the searches for signals from unknown neu-
tron stars are limited by the availability of computing power despite running for several months
on large computing clusters or powerful volunteer computing projects such as Einstein@Home
[7].
The long run-times of the searches pose additional challenges to the analysis on their own.

One problem, studied in Ch. 6 of this thesis, is the fast and accurate estimation of the sensitivity
of such a search. This is often necessary prior to the search for planning and properly setting up
these long-duration searches, but it can also be used for quick sanity checks of results. The typical
sensitivity calculation for a finished CW search is done with additional large-scale searches
with artificially injected signals, making it expensive and not easily repeatable. Therefore, a
sensitivity estimator can indirectly help in the main task of continuous-wave data analysis:
improving the sensitivity until a detection is made.
Deep neural networks (DNNs) have recently experienced a large breakthrough, achieving

super-human abilities in specialized tasks like image recognition, speech recognition, visual object
detection as well as in more fundamental applications like drug research and genomics [8]. They

1



1. Introduction

have also been applied to gravitational-wave related research to classify disturbances, for searches
and parameter estimation of binary merger signals, long-transient signals and follow-ups to
continuous wave searches [9–27].
Typically, these networks are difficult and time-consuming to train properly but easy and fast

to apply to data. In CW searches the data is usually split in many smaller segments. Therefore,
a network could potentially be trained once but applied many times, making the actual search
very fast. Thus, the low computing cost of neural networks could ultimately lead to a more
sensitive search. In Chs. 7 and 8 of this thesis we developed a deep-learning based CW search
method and compared it to previous search methods.

2



2. Chapter Descriptions and Authorship Clarifications
Chapters 3 to 5 briefly introduce fundamental concepts necessary for the comprehension of
the following chapters. These concepts are partially also discussed in the introduction sections
of the published work presented in chapters 6,7 and 8 but are here presented in a broader
context. Chapter 3 gives a general introduction to gravitational waves in the context of the
theory of general relativity, gravitational-wave detectors and astrophysical sources. Chapter 4
presents continuous-wave data analysis as used for matched-filtering based searches. Chapter 5
establishes the main concepts of deep learning and deep neural networks. These three chapters
were entirely written by the author with some help in proof reading.

Chapter 6 is a reprint of the work published as Dreissigacker, Prix, and Wette [28]. It presents
a fast and accurate sensitivity estimator for some important types of searches for continuous
gravitational waves. This estimator is an improvement of a previous analytic approach by Wette
[29]. It also contains an extensive summary of most types of continuous gravitational-wave
searches. For this review part, the sensitivity in the form of published upper limits of past CW
searches was converted to a common quantity called sensitivity depth. The idea for this work
was provided by R.Prix and K.Wette. The development of the sensitivity estimator was done
by the author in close collaboration with R.Prix and with some help of K.Wette who developed
the analytic predecessor. The initial draft of the text was written by the author and revisions
were performed by R.Prix. The final editing was done in close cooperation with R.Prix.
Chapter 7 is a reprint of the work published as Dreissigacker et al. [30]. It presents a novel

approach for a search for continuous gravitational waves using deep learning. The chapter is a
proof-of-principle study of this approach, establishing benchmark results for a single-detector all-
sky deep-learning searches and comparing the results to coherent matched-filtering sensitivities.
It shows that deep neural networks can be trained to detect continuous gravitational waves
and illustrates some remarkable abilities to generalize its sensitivity to signals that were not
presented to the network during training. As final result it concludes that for short timespans
of data the networks can come close to the matched-filtering sensitivity while it lacks further
behind for longer timespans. The idea for this work was provided by C.Messenger and Ruining
Zhao. The software was initially developed by R. Sharma in collaboration with R.Prix and the
author and later by the author in collaboration with R.Prix. The final network architecture
search and the training of the networks was done by the author. The matched-filtering searches
for the comparison results were performed by R.Prix. The text was written by the author under
the close guidance of R. Prix.
Chapter 8 is a reprint of the work published as Dreissigacker and Prix [31]. The chapter is a

continuation of the work presented in Ch. 7. It expands on the previous study by using simulated
strain data from two detectors simultaneously and by training networks to perform a search for
continuous waves from a fixed sky position. Similar to the previous work it shows that deep
neural networks can detect CW signals in short timespans of data almost as well as coherent
matched-filtering searches but they fall short for longer timespans. The chapter goes on to show
that the neural networks perform well even for signals with parameters that were not contained
in the training set. The chapter also presents the first test of network performance on real LIGO
data, establishing that non-Gaussian noise disturbances significantly reduce the sensitivity. The
DNN software development, network architecture optimization and training were performed by
the author. The matched-filtering comparison software was mainly developed by R. Prix and
adapted and run for the benchmark specifications by the author. The text was written by the
author with some feedback from R.Prix.
Chapter 9 gives some concluding remarks and an outlook by the author.
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3. Gravitational Waves

In the 1860s James Clerk Maxwell discovered that light can be described as an electromagnetic
wave following what we now call the Maxwell equations [32]. This theory turned out to be very
accurate and other researchers, such as Oliver Heaviside [33] and Henry Poincaré [34], started
wondering if a gravitational equivalent to electromagnetic waves exists. After Albert Einstein
completed his theory of general relativity in 1915 [35], the question of whether gravitational
waves existed became controversial. Einstein himself changed his mind multiple times, at some
point simply concluding that he does not know if gravitational waves exist [36]. However, over
time the understanding of Einstein’s theory grew and by the time the first binary pulsar was
discovered in 1974, it was possible to show that its orbit decayed consistent with the energy loss
due to gravitational-wave emissions predicted by general relativity [37]. A further wide-spread
belief that gravitational waves can never be detected directly due to their weakness, was proven
false in 2015 when the LIGO collaboration directly detected a signal from two merging black
holes [1]. While this discovery and the following binary-merger observations started the era of
gravitational-wave astronomy, other types of gravitational waves have still to be detected.

In this chapter we will very briefly introduce the basic equations of Einstein’s theory of
relativity and show how we can derive a wave equation in the linear approximation. For this
purpose we will make use of index notation. Greek spacetime indices take values from 0 to
4, while roman spatial indices take values from 1 to 3. This chapter also uses the Einstein
summation convention, i.e. expressions with repeating indices contain an implicit sum over this
index.
We will go on discussing the effect a gravitational wave has and how it is measured in a

laser-interferometric gravitational wave detector. And finally we will discuss gravitational-wave
sources: first in the context of the first detections and then we will focus on continuous gravita-
tional waves as the main topic of this work.

3.1. Wave Solutions in Linearized General Relativity

In general relativity gravitation is no longer described as a force but instead as curvature of
the spacetime manifold. The Einstein equations (for Gravitational constant and speed of light
G = c = 1 and without cosmological constant Λ = 0)

Gµν = 8πTµν (3.1)

describe how matter and energy, in the form of the stress-energy tensor Tµν , curves spacetime
given by the Einstein tensor Gµν . On the other hand, the geodesic equation of general relativity
describes the motion of a particle as a parametrized path xµ(τ)

d2xµ

dτ2 + Γµνρ
dxν

dτ
dxρ

dτ = Fµ. (3.2)

It tells us that acceleration is either caused by non-gravitational forces Fµ or by curvature of
spacetime given by the Christoffel symbol Γµνρ. John Archibald Wheeler described this very
briefly and poignantly [38]: “Space tells matter how to move; matter tells space how to curve”1.

1He later corrected it to say “spacetime” instead of “space”.
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3. Gravitational Waves

Curvature in these equations can be characterized by a number of different quantities, that
are all functions of the metric of the spacetime manifold gµν and its derivatives with respect to
the coordinate directions ∂µ := ∂

∂xµ :

Gµν := Rµν −
R

2 gµν (3.3)

R := Rµµ (3.4)
Rµν := Rαµαν (3.5)

Rαµβν := ∂βΓαµν − ∂νΓαµβ + ΓασβΓσµν − ΓασνΓσµβ (3.6)

Γαµν := 1
2g

αρ (∂µgρν + ∂νgρµ − ∂ρgµν) . (3.7)

The metric of the spacetime manifold gµν can be used to raise and lower indices as

xµ = gµνx
ν and xµ = gµνxν (3.8)

where gµν are the components of the inverse metric.
Equations (3.3)-(3.7) show that the Einstein equations contain many non-linear terms, making

them a non-linear system of partial differential equations. As such the Einstein equations have
proven to be notoriously difficult to solve. Nonetheless, some analytic solutions for the Einstein
equations have been found, most notably the class of vacuum solutions describing the external
field of idealized astrophysical objects such as the Schwarzschild and Kerr solution. These
solutions are most relevant in the strong gravity regime, e.g. to describe black holes.
Gravitational waves, on the other hand, are only small gravitational disturbances of spacetime.

A spacetime with very weak gravitation can be approximated in a suitable coordinate system
by

gµν = ηµν + hµν (3.9)

where η is the flat (gravitation-free) metric from special relativity and h with |hµν | � 1 is the
small disturbance caused by gravity [39]. With this approximation we can safely ignore h2 terms
and therefore can raise and lower indices with the flat metric η:

hµν := ηµρηνσhµν (3.10)

If we now define the trace-reversed tensor

h̄µν := hµν − h

2η
µν (3.11)

and use some of the gauge freedoms contained in the Einstein equations to require the Lorenz
gauge

∂ν h̄
µν = 0, (3.12)

we can rewrite the Einstein tensor of eq.(3.3) as

Gµν = −1
2η

αβ∂α∂βh̄µν . (3.13)

Note now that � := ηαβ∂α∂β is in fact the definition of the wave operator or d’Alembert-
operator in flat space. Hence, the Einstein equations (3.1) become a system of inhomogeneous
wave equations

�h̄µν = −16πTµν (3.14)

with source term −16πTµν .
If we consider the equation far away from any relevant source, where Tµν = 0, we get the

homogeneous wave equation. These equations are known to have plane wave solutions

h̄µν = Hµνe
iηαβkαxβ+iϕ (3.15)
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with the phase ϕ and the wave vector (kα) = (ω,~k), which gives the spatial direction of prop-
agation ~k and the angular frequency of the wave ω. This also implies a propagation speed of
the wave of 1 = c, the speed of light. It is also well known (see e.g. [39]) that any solution to
this wave equation can be described as superposition of these plane waves. Therefore, we can
continue by considering a plane wave.
While we already introduced four additional gauge equations for the Lorenz gauge, this leaves

a gauge freedom of changing coordinates xα by a vector ξα which fulfills the wave equation
�ξα = 0. This freedom can be used to impose the transverse-traceless (“TT”) gauge [39]

Hα
α = 0 HαβU

β = 0 (3.16)

where we can choose the vector Uα = δα0 as the four-velocity of an object resting in the chosen
coordinate system. This leads to h̄µν in the transverse-traceless projection:

h̄TTµν = hTTµν . (3.17)

For a gravitational wave propagating in z-direction (kα) = (ω, 0, 0, ω) we get the amplitude
tensor

HTT
µν =


0 0 0 0
0 A+ A× 0
0 A× −A+ 0
0 0 0 0

 (3.18)

with only two remaining degrees of freedom A+, A×. These are called the “plus” and “cross”
polarizations of gravitational waves. In analogy to electromagnetism a superposition of two
waves, one of each (linear) polarization, is generally elliptically polarized. Thus, we can write
the spatial part of an elliptically-polarized gravitational-wave signal hij as linear combination
of the two polarization basis tensors [40]

eij+ = x̂ix̂j − ŷiŷj (3.19)
eij× = x̂iŷj + x̂j ŷi. (3.20)

given by coordinate unit vectors x̂ and ŷ. The gravitaitonal-wave tensor is then

hij(τ) = h×(τ)eij× + h+(τ)eij+, (3.21)

parametrized in the source time τ with

h+(τ, z) = A+ cos (ω(τ − z) + ϕ+) (3.22)
h×(τ, z) = A× sin (ω(τ − z) + ϕ×) , (3.23)

the angular frequency ω and the phases ϕ+, ϕ×.
The vacuum solutions to the linearized Einstein equations describe the propagation of a grav-

itational wave far from the source. In order to study how a gravitational wave is generated, we
can use the quadrupole formalism: In the “local wave zone”, where the propagation of the wave
is no longer significantly influenced by the source field, but still even less influenced by the rest of
the universe [41], the gravitational field can be approximated with a multipole expansion. The
lowest non-vanishing multipole order of the gravitational field is the quadrupole moment of the
mass distribution. For a source that is moving slowly and that is small in size compared to the
wavelength of the emitted waves, the quadrupole moment can be expressed as the Newtonian
moment of inertia with the trace removed:

Iij =
∫
ρ(x)

[
xixj −

1
3r

2δij

]
d3x (3.24)
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3. Gravitational Waves

with the mass density ρ(x) and r the distance to the center of the source. The gravitational-wave
tensor in the traceless-transverse (TT) gauge can then be written as

hTTij (τ) = 2
r

[
Ïij(τ − r)

]TT
(3.25)

where TT indicates the transverse-traceless projection and the dots denote time derivatives [42].
The quadrupole formula (3.25) shows that spherically symmetric and rotating axisymmetric

mass distributions do not emit gravitational waves as they do not possess a time-dependent mass
quadrupole. However, small deviations from the symmetry would cause gravitational radiation.

3.2. Effect of a Gravitational Wave on Free-Falling Particles
In the last section we established that the linearized Einstein equations do predict gravita-
tional waves. In order to verify this prediction in an experiment it is necessary to study which
measurable effects a gravitational wave causes. As gravitational waves are fluctuations in the
spacetime metric, the most direct effect should be a measurable distance change perpendicular
to the direction of propagation (cf. eq. (3.18)).
If we look at the geodesic equation (3.2) for a free particle at rest and in the TT gauge for

this frame, i.e. the vector Uµ of eq. (3.16) is the initial four-velocity of the particle:

d
dτ U

µ + ΓµνρUνUρ = 0. (3.26)

We can now calculate the acceleration for a particle at rest

d
dτ U

µ

∣∣∣∣
U i=0

= −Γµ00 = −1
2η

µν (2∂0hν0 − ∂νh00) . (3.27)

But we know from eq. (3.18) that in the TT-gauge all hα0 vanish. Hence free particles are not
accelerated and remain at the same coordinate positions [39].
However, in general relativity the proper distance between two coordinate positions can change

if the spacetime metric changes: Let’s assume two nearby particles are at (x, y, z) = (0, 0, 0)
and (x, y, z) = (δx, 0, 0). The proper distance of the two particles for a gravitational wave
propagating in z-direction can then be calculated as [39]:

lx :=
∫ P1

P0
ds

=
∫ P1

P0

√
gµν dxµ dxν

=
∫ δx

0
dx √gxx

=
∫ δx

0
dx

√
1 + hTTxx

=
∫ δx

0
dx

(
1 + 1

2h
TT
xx +O(h2)

)
=
(

1 + 1
2h

TT
xx

)
δx+O(h2)

(3.28)

where we assumed in the last step that hTTxx is constant over δx. In our wave solution (3.15) hTTxx
of course varies over time and hence the proper distance varies over time and is proportional to
the amplitude of the wave. We can also derive the same expression if the particles are arranged
on the y or z axis. As hTTyy = −hTTxx the y-direction is always compressed if the x-direction is
stretched and vice versa. On the other hand we have hTTzz = 0 and therefore we will not have
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Figure 3.1.: A circle of free-falling particles in the x-y-plane (a) is distorted (b) by a +-polarized
and (c) by a ×-polarized gravitational wave passing the setup in z-direction. Over
time the effect periodically transitions from the top distortion via the circle to the
bottom distortion and back.

any effect in the direction of propagation of the wave. Only perpendicularly space is periodically
stretched and compressed as illustrated in Fig. 3.1.
Note also that if we have three particles at (0, 0, 0), (L, 0, 0) and (0, L, 0), the difference ∆L in

length between the proper distance along the x-axis lx and the proper distance along the y-axis
ly is proportional to the initial distance L, we find:

∆L
L

:= lx − ly
L

= hTTxx (3.29)

This property will be very important in the next section on the detection of gravitational waves
as the dimensionless components hTTij of a gravitational wave are typically smaller than 10−21

and a larger detector magnifies the effect [39].

3.3. Gravitational-Wave Detectors

The first direct detection of gravitational waves happened in 2015 [1] by the LIGO collaboration
by operating two large laser-interferometric detectors, the Laser Interferometer Gravitational-
Wave Observatory (LIGO). A laser-interferometric gravitational-wave detector is based on the
Michelson-interferometer. In these interferometers light is sent out by a laser towards a beam
splitter. In the beam splitter the beam is split into two beams propagating perpendicular to
each other along the two detector arms. At the end of these arms they are reflected back towards
the beam splitter. At the beam splitter the two arm beams interfere and form two new beams,
one back towards the laser and one perpendicular to it. At the latter the beam is directed to a
photodetector, which measures the incoming photons. This principle is illustrated in Fig. 3.2.
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3. Gravitational Waves

Figure 3.2.: Sketch of the configuration of a laser-interferometric detector like LIGO or Virgo:
a Michelson interferometer, where all mirrors and the beam splitter are suspended
as isolation against ground motion. Additionally, mirrors in the arms are used to
form Fabry-Pérot cavities in order to increase the effective arm length. The power
recycling mirror forms a cavity with the entire interferometer. It reflects the light
which normally returns to the laser back into the interferometer increasing the power
(Credit: Fig. 9.3 in [39]).

The power of received light at the photodetector is very sensitive to phase-shifts between the
two arm beams. If for example a gravitational wave propagates such that one arm is compressed
and one is stretched, this leads to different light travel times through the arms which causes a
phase shift between the two beams altering the output on the photodetector. If we assume now
that the mirrors in this detector are freely floating we can use the generalized eq. (3.29):

∆L = Lh (3.30)

to notice that the length change ∆L is proportional to the strain amplitude h and the arm
length of the detector L.

Therefore, the two main arms of the Michelson interferometer are usually chosen as long as
possible. On Earth that lead to the construction of the 4 km-arm-length LIGO detectors [43,
44] and the 3 km Virgo detector [45, 46]. The smaller GEO600 detector [47] with 600 m arm
length was not yet sensitive enough to confidently pick up any of the measured signals. Future
ground-based detector designs are planned with even longer arms: The Einstein Telescope [48]
is supposed to have 10 km long arms and the Cosmic Explorer design study [49] suggests up
to 40 km arm length. Even longer arm lengths are planned for space-based missions. From
100 − 1000 km in the DECIGO proposal [50] to 2.5 Gm in the LISA proposal [51]. However,
in all these detectors non-gravitational-wave related phase-shifts can be induced, making the
output noisy and restricting these detectors to different sensitive frequency ranges.
The noise in the LIGO and Virgo detectors is not always fully explained, but most parts are

understood and can be categorized in five categories [44] (see Fig. 3.3):

1. Quantum noise consists of two main parts:
• at lower frequencies the radiation pressure noise is caused by the fluctuation in the
number of photons hitting and displacing the optical components.
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3.3. Gravitational-Wave Detectors

Figure 3.3.: O2 noise budget of the LIGO Livingston detector (L1). The measured equivalent
noise spectrum (blue) and the main explainable contributions: Technical, quantum,
seismic and thermal noise. The narrow peaks are called lines. Some of them have
known causes, e.g. 60 Hz is the power grid frequency in the US, but many also have
unknown causes (Credit: Fig. 3 of [52]).

• at higher frequencies the shot noise is caused by randomness in photon arrivals at
the photodetector.

2. Seismic noise is caused by the non-static nature of the Earth. Earthquakes, tides, winds
and waves as well as human activity cause vibrations of the ground, large enough to occlude
a gravitational-wave signal.

3. Gravity gradient noise (not shown in Fig. 3.3) is caused by seismic waves producing tem-
porary density disturbances in the Earth close to the detectors. This causes fluctuations
in the Earth gravitational field that couple to the mirrors in the detector.

4. Thermal noise is caused by Brownian motion of the atoms and molecules in the suspen-
sions, substrate and coating of the mirrors and by changes in optical properties of the
mirrors due to temperature changes in the mirror coatings.

5. Technical noise collects many further subdominant noise sources, including:
• angle and length control noise, caused by control loops used for mitigating other more
important noise sources and for locking the detector,
• laser-frequency noise, caused by instability of the lasers frequency,
• Rayleigh scattering noise due to residual gas in the imperfect vacuum system,
• and lines, narrowband disturbances caused by resonance of the suspensions, the AC
powerline and its harmonics and deliberately introduced lines for calibration purposes.
Moreover, there exist many more instrumental lines often also of unknown cause. A
catalogue of known lines is maintained by the LIGO collaboration in the Gravitational
Wave Open Science Center (GWOSC)2.

Space-based gravitational-wave detectors do not encounter seismic noise or gravity gradient
noise but are not actively maintainable and have to fulfill special requirements for space travel,

2https://www.gw-openscience.org/about/ [53]
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3. Gravitational Waves

e.g. being light weight. This increases the technical noise, e.g. from thruster activity. Further-
more, the mirrors can no longer be considered close to each other breaking the approximation for
eq. (3.28). Using the correct transfer function shows that the sensitive frequency range depends
on the size of the detector [54]. Hence the sensitive frequency range for LISA is in the O(mHz)
regime and DECIGO is most sensitive around O(dHz) [55] (cf. Fig. 3.4).

Figure 3.4.: Characteristic strain of the advanced LIGO detectors (aLIGO) at design sensitivity
and for the planned detectors Einstein Telescope (ET), Cosmic Explorer (CE) as
well as the planned space-missions LISA and DECIGO. The color trapezoid are an
estimate of the characteristic strain of several sources (cf. sec. 3.4). This figure was
created with the GW plotter web application (http://www.gwplotter.com/, which
is based on [55]).

3.4. Astrophysical Sources of Gravitational Waves
Up to now we discussed how gravitational waves are a vacuum solution of the linearized Einstein
field equations and how a detector has to be built to measure gravitational waves. In order to
understand potential gravitational-wave signals, we have to look at potential sources.
In gravitational-wave data analysis the signals are typically divided in four categories accord-

ing to duration and if the signal can be reasonably modeled. Short transient signals can either be
from modeled sources, usually the merger of two compact objects, called compact binary coales-
cence, or from unmodeled sources, so-called bursts e.g. from supernova explosions. An overview
of potential transient sources can be found in[56]. Long duration signals can either be individu-
ally modeled, continuous gravitational waves e.g. from non-axisymmetric rotating neutron stars,
or an unmodeled stochastical gravitational-wave background from the early universe, mirroring
the cosmic microwave background in the electromagnetic spectrum. While modeled searches
usually can reach higher sensitivities for the specifically-modeled signals, unmodeled searches
can potentially also detect gravitational waves from previously unknown emission mechanisms.
In this section we will briefly discuss signals from compact binary coalescences in the context

of the first gravitational-wave observations and then concentrate on continuous gravitational
waves throughout this thesis.

12

http://www.gwplotter.com/
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3.4.1. Compact Binary Coalescence

The only observed source of gravitational waves so far are mergers of compact objects, i.e. black
holes and neutron stars. A signal from a merger of two black holes was first detected in 2015
[1], the first signal of two merging neutron stars was detected in 2017 [2]. Since then dozens of
binary merger signals have been detected.
Two astrophysical compact objects orbiting each other radiate energy in the form of gravita-

tional waves. The energy is drawn from the kinetic energy of the two objects. Therefore, the
orbit of the binary is shrinking. As long as the two objects are far apart, their orbits can be
considered to be Keplarian orbits without relativitic corrections [57]. This first phase is usually
called the inspiral phase. In this phase the amplitude of the emitted gravitational wave is pro-
portional to the inverse distance between the two objects (see [58]). Hence, with a large distance
between the objects, the emitted gravitational wave is too weak to be detected. When the orbits
are getting closer, the amplitude gets larger and the wave becomes detectable. On the other
hand, for smaller orbits, we have to consider the first post-Newtonian relativistic corrections
[59].
At some point the system has lost so much energy that the two objects touch each other. This

is called the merger phase of the coalescence. In a short time around the merger the objects
move at highly relativistic velocities and get tidally deformed so much that the post-Newtonian
framework becomes insufficient [60]. At this point the signal can only be modeled by numerically
solving the full Einstein equations [61, 62].

Figure 3.5.: GW150914: The first binary black hole merger observed by LIGO as velocity, sepa-
ration and strain over time. The different phases of the coalescence, inspiral, merger
and ringdown are illustrated by numerical relativity models of the black hole hori-
zons at the top. The strain is reconstructed from the measured signal and compared
to a numerical relativity calculation (Credit: Fig. 2 of [1]).
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The resulting object of the merger is initially highly deformed and emits gravitational radiation
until it settles down either to a neutron star3 or to a black hole [63]. This is called the ringdown
phase. The development of the coalescence signal is illustrated in Fig. 3.5. At the sensitivity of
the current detectors the entire observable signal only lasts from fractions of a second for binary
black hole signals up to tens of seconds for binary neutron star signals [2]. These short-lived
transient signals have dimensionless strain amplitudes up to ∼ 10−21.

The observation of gravitational waves from binary mergers gives information about the preva-
lence of these objects in the universe and can for example be used to test general relativity [64,
65]. Binary-neutron-star merger signals can be accompanied by electromagnetic counterparts
giving insight toward the neutron-star equation of state, i.e. the internal pressure and density
structure of the neutron star [66].

3.4.2. Continuous Gravitational Waves

Continuous gravitational waves (CWs) are long-lasting signals with slowly varying intrinsic fre-
quency. Several interesting potential sources are known, most notably rapidly rotating neutron
stars with some kind of non-axisymmetry. Discovering a continuous gravitational wave could
therefore improve our knowledge of these objects as well as allow for new tests of general rela-
tivity [67, 68].
Continuous gravitational waves have not been observed yet. Their expected amplitude is

much lower than the amplitude of the coalescence signals discussed in Sec. 3.4.1. The best
upper limits on the dimensionless strain amplitude from gravitational-wave-detector data are
currently ∼ 2 · 10−25 [69] for the entire sky and ∼ 10−26 for known pulsars. However, converting
the observed change in frequency of known pulsars, the spindown ḟ , to a gravitational-wave
amplitude with the assumption that all the energy loss is due to graviational radiation often
leads to lower upper limits. These spindown upper limits are as low as ∼ 10−27 for many known
pulsars [70].
To compensate the lower amplitude CW data analysis requires the integration over long

stretches of data. Therefore, CW searches are often limited in sensitivity due to the high
computational cost of the analysis (cf. Ch. 4). Hence, improving the sensitivity of CW searches
can be achieved by improving the detectors or the search methods.

Neutron Stars as Sources of Continuous Waves

Soon after the neutron was discovered by Chadwick [71], the possibility of an inverse beta
decay of electrons and protons to neutrons at very high densities was considered and Baade and
Zwicky [72] proposed a neutron star as a result of supernova explosions. In 1967 Pacini [73]
postulated that a highly magnetized rotating neutron star would emit electromagnetic waves.
These waves are emitted as a beam and therefore are only visible from Earth periodically if the
beam points towards Earth. Neutron stars with these pulsating emissions are called pulsars.
Almost simultaneously, graduate student Jocelyn Bell Burnell and her supervisor Antony Hewish
already observed the first pulsar [74]. Since then over 1500 pulsars have been discovered.
According to its name, a neutron star is supposed to create the pressure necessary to resist

the gravitational collapse by the quantum mechanical degeneracy pressure of neutrons from the
Pauli exclusion principle. This simple degeneracy model can only support neutron stars with a
maximum mass of 0.7 solar masses [75]. However, if we include repulsion of the neutrons due
to the (strong) interaction, this mass limit, the Tolman-Oppenheimer-Volkoff limit, is increased
dramatically. An accurate description therefore also has to model the thermodynamics and
composition of nuclear matter [76]. A recent study considering multiple models of the neutron
star equation of state estimated the maximum mass with the results from the neutron-star

3This is only possible for a merger without a black hole but with sufficiently-light neutron stars.
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core

atmosphere
outer crust
inner crust

Figure 3.6.: Schematic of the structural layers of a neutron star: The neutron star is surrounded
by a thin atmosphere of light gases. The outer crust consists of white-dwarf matter,
heavy nuclei and electrons, the inner crust is made of nuclei, neutrons and electrons.
The core composition is not well known but in the outer regions it likely consists of
neutrons, protons, electrons and muons [78].

merger event GW170817 to be ∼ 2.16 solar masses [66]. The most massive pulsar discovered is
believed to have a mass of ∼ 2.14 solar masses [77].
Nowadays the structure of a neutron star is believed to be roughly divisable into four distinct

regions [78]:

1. The core with the highest pressure contains only neutrons, protons, electrons and muons
but could also contain heavier baryons, and possibly free quarks. It is the largest part of
the star with a radius of 9− 12 km [79].

2. The inner crust contains nuclei, neutrons and electrons. It is expected to be 1−2 km thick
[79].

3. The outer crust essentially mirrors white-dwarf matter: heavy nuclei and free electrons
and is expected to be about 0.5 km thick [79].

4. The atmosphere of a neutron star is likely very thin and possibly contains hydrogen, helium
and other light elements possibly up to carbon [80, 81]. It is only a few centimeters thick
[78].

The pressure and density structure in a neutron star is described by the unknown neutron
star equation of state. Many models for the equation of state exist and gravitational-wave
observations can help with ruling out some of them [82].
The neutron-star crust or magnetic fields are believed to be able to support a “mountain” on

a neutron star. Alternatively, such a mountain could also be maintained through accretion. In
general such a mountain would be a non-axisymmetric distortion of the neutron star with an
equatorial ellipticity

ε := |Ixx − Iyy|
Izz

(3.31)

with the principle moments of inertia Ijj . The amplitude of the emitted continuous gravitational
waves can be derived from the quadrupole formula (3.25) giving [83, 84]

h0 = 16π2G

c4
Izzν

2

d
ε (3.32)
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with a frequency f = 2ν, i.e. twice the rotational frequency ν [42]. This is often considered
the most promising emission mechanism. However, even predictions based on this mechanism
for gravitational-wave strain from known pulsars are usually several orders of magnitude lower
than the current sensitivity of CW searches with advanced LIGO (see Fig. 3.7 ). Because it is
assumed that most neutron stars in the galaxy are still unknown, there are also many searches
for unknown neutron stars assuming that there might be some exceptional neutron stars with
significantly stronger emission. These could then be detected even with current detectors. We
will discuss CW searches and data analysis in more detail in Ch. 4.

Figure 3.7.: Gravitational-wave strain predictions for known pulsars. The grey curve is the
strain sensitivity during the S5 science run of initial LIGO assuming the analysis of
two years of data. The black curve and the dashed black curve are the projected
sensitivity for CW searches with advanced LIGO and with the planned Einstein
Telescope, respectively. The differently colored points represent strain predictions
from different models for neutron star matter and magnetic fields. For more details
and the original figure see [85].

Another emission mechanism for CWs from neutron stars are non-axisymmetric instabilities.
Especially r-modes, toroidal fluid oscillations driven by the Coriolis force of the rotating star
are a promising emission mechanism [86, 87]. The r-mode instability could occur in newborn
or rapidly-accreting neutron stars. The emission would occur at a frequency of approximately
f ≈ 4ν

3 [42] but a more accurate model is quite complicated [88].
The third major type of CW emission from a neutron star is free precession. It occurs if the

neutron star’s symmetry axis does not coincide with its spin-axis defining a wobble angle θW .
The emission frequencies would be f ≈ ν and f ≈ 2ν [42].
The signal model presented in Ch. 4 is able to cover all these emission mechanisms because the

main relevant difference is the relationship of gravitational-wave frequency to rotation frequency.
If a CW search covers a large frequency band, a measured signal could originate from each of
these emission models.

Further Continuous-Wave Sources

Another proposed potential source of CWs are boson clouds bound to black holes. These clouds
would consist of electromagnetically invisible particles, i.e. dark matter. The idea is that bosons,
such as axions, would be spontaneously created from the black holes rotational energy. Close to
the horizon they could also encounter a boost in amplitude increasing the occupation number
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[89] and increase the total mass. These bosons can then form a Bose-Einstein cloud, i.e. all the
quanta would occupy only very few energy levels. These clouds can grow to signficant masses
and emit continuous gravitational waves due to annihilation or level transition [90, 91]. Multiple
studies of the detectability of this type of continuous waves have been performed recently [89,
92–94].
Another promising source are binary systems of compact objects, mostly white-dwarf binaries

but also binaries containing neutron stars or stellar mass black holes. Long before these objects
merge, the emitted signal would be a continuous wave. However, the frequency of these waves
would be far lower than the sensitive frequency range of the ground based detectors [95]. There-
fore, observing the early evolution of binary systems and predicting their merger time is one of
the main science goals of the planned space-based LISA detector [51] and studies for the data
analysis of LISA data with respect to signals from white-dwarf binaries have been performed in
[96] and [97].
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As this thesis is concerned with the sensitivity of searches for continuous gravitational waves and
improvements to it, this chapter will give a brief introduction to continuous-wave data analysis.

We focus on the search for signals from isolated, rotating, non-axisymmetric neutron stars.
However, as there is significant overlap to signals from neutron stars in binary systems, we will
indicate at some points where a binary search would deviate.

4.1. Source and Solar System Barycenter Reference Frames
A gravitational wave in the source frame has only two polarizations (see Sec. 3.1). Therefore,
we can write an arbitrary signal tensor hij(τ) as linear combination of the polarization basis
tensors (eij×, e

ij
+) [40]:

hij(τ) = h×(τ)eij× + h+(τ)eij+ (4.1)

where τ is the emission time of the signal at the source. The polarization basis can further be
decomposed into a tensor product of vectors perpendicular to the direction of propagation. In
this case the basis vectors l̂ and m̂ are usually fixed according to the source geometry, e.g. one
of them as the projection of the spin axis of a rotating neutron star to the wave plane [40]. The
wave plane is the plane perpendicular to the direction of propagation (see Fig. 4.1).

eij× = l̂im̂j + m̂i l̂j and e+ = l̂i l̂j − m̂im̂j (4.2)

This basis is expressed in the source frame, but, in order to determine the influence of the
gravitational wave at the detector, we usually want to switch to a polarization basis easily
expressed in the Earth frame. To do that, we introduce basis tensors (εij×, ε

ij
+) constructed from

two vectors î, ĵ defined with respect to the Earth (see Fig. 4.1).

εij× = îiĵj + ĵiîj and εij+ = îiîj − ĵiĵj (4.3)

We fix one vector in the Earth’s equatorial plane and the other, perpendicular to the first one,
pointing to the Northern hemisphere, i.e. the projection of the Earth rotation axis onto the
wave plane. The angle between the two polarization bases is called polarization angle ψ and
is measured counterclockwise from ĵ to m̂, i.e. cosψ = ĵ · m̂ (see Fig. 4.1). Note that this
polarisation frame is approximately the same in the solar system barycenter frame (SSB)1.
In order to fully convert equation (4.1) to strain in the detector, we need to perform two more

steps [98]:

1. Convert the time of emission in the source frame to the time of arrival at the detector.

2. Consider the detector’s response to signals from different sky positions dependent on its
time-dependent orientation relative to the SSB.

The orbital motion of the Earth is known very accurately. Therefore, it is advantageous to
split the transition from source to detector frame at the intermediate SSB frame. The distance

1The motion of the Earth’s axis due to precession and nutation is less than an arc-second per year. The stellar
parallax due to the distance between SSB and detector is also much less than an arcsecond as typical CW
sources are expected to be at least O(100 pc) away.
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Figure 4.1.: Geometric relationship between SSB, detector and source for an incoming gravi-
tational wave. The reference frames along the line of sight n̂ are the (l̂, m̂) frame
usually aligned with source parameters and the blue (̂i, ĵ) frame aligned with Earth
rotation axis. The inclination angle of the source relative to the line of sight is
denoted as ι.

of the source system barycenter to the SSB d is assumed to be constant2. In the solar system
we have to adjust for three different effects for the transition from detector frame to SSB frame
[98]:

1. the Rømer delay, ∆R�, encoding the variations in the distance and hence light travel time
to the pulsar due to orbital motion in the solar system,

2. the Einstein delay, ∆E�, the combined effect of gravitational redshift and time dilation
due to the bodies in the the solar system,

3. and the Shapiro delay, ∆S�, caused by the wave propagating through the curved space
time of the solar system.

In total, the detector time t is related to the source time τ as:

τ = t+ ∆R� + ∆E� −∆S� −∆source + d

c
(4.4)

where the typical convention to subtract ∆S� is used. The wave travel time is written as the
simple constant approximation d

c and can be neglected [98]. Effects like microlensing could
dynamically change the travel time and lead to deviations from the signal model presented here.
A recent study regarding the effect of micro-lensing for CWs can be found in [99].
The source system correction term ∆source is due to accelerated motion of the source. For

example in a binary system the correction term can be expressed as

∆source = ∆R + ∆E + ∆S (4.5)

with Rømer, Einstein and Shapiro delay in the binary source system. More details on the timing
relation in searches for signals from neutron stars in binary systems can be found in [100, 101].
For an isolated source this term vanishes: ∆source = 0.

2Only accelerated motions would break this assumption. Motion with a constant velocity only causes a constant
Doppler-shift in frequency.
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Expressions for the relativistic corrections can be found in [98]. Only for CWs with frequencies
below 100 Hz the relativistic corrections are small enough to be neglected [102]. The Rømer delay
∆R in the solar system can be expressed as

∆R� = ~r(t) · n̂
c

(4.6)

where ~r(t) is the time-dependent vector from the SSB to the detector (see Fig. 4.1).
For isolated sources the timing relation depends on the sky position n̂ of the source which

can be expressed in equatorial coordinates as right ascension and declination (α, δ). For sources
from binary systems the timing relation also depends on the orbital parameters of the source
system. In any case, it also depends on the detector location on the Earth, i.e. it must be
calculated separately for each detector.
With the timing relation known, we can now write the source-frame equation (4.1) in the

detector frame:
hij(t) = h×(τ(t))eij× + h+(τ(t))eij+ (4.7)

where we express the source polarization basis (eij+, e
ij
×) as rotation of the detector polarization

basis (εij+, ε
ij
×) by the polarization angle ψ (cf. eqs. (4.2), (4.2) and Fig. 4.1):

eij+ = cos 2ψ εij+ + sin 2ψ εij× (4.8)
eij× = − sin 2ψ εij+ + cos 2ψ εij× (4.9)

With the gravitational wave tensor hij at the detector determined, we can now calculate the
detector response to the gravitational wave.

4.2. Detector Response

The detector response of an interferometric gravitational wave detector is given by relative
distance changes between the interferometer arms. We make the reasonable3 assumption that
the detector arm length L is much smaller than the wavelength λGW of the gravitational wave
L� λGW

2π = c
2πfGW . This effectively means that we can consider measurements as instantaneous

because the metric h does not change during the travel time of the photon in the detector arms
[39, 104]. This approximation allows us to write the scalar response h(t) of a detector to an
incoming gravitational wave with tensor hij(τ) as contraction of the detector tensor dij with the
gravitational wave tensor hij :

h(t) = dij(t)hij(τ) (4.10)

where dij are the components of the detector tensor given by

dij = 1
2 (ûiûj − v̂iv̂j) (4.11)

with the unit vectors û and v̂ pointing along the arms of the detector [96].
If we now use (4.7) to express (4.10) in the detector polarization basis we get:

h(t) = (h+(τ(t)) cos 2ψ − h×(τ(t)) sin 2ψ) a(t; n̂)
+ (h+(τ(t)) sin 2ψ + h×(τ(t)) cos 2ψ) b(t; n̂)

(4.12)

3This approximation breaks down when the wavelength is no longer small compared to the LIGO arm length of
4 · 103 m. A quick calculation shows that this occurs roughly at λGW & 105 m, i.e. 3000 Hz. But usually CW
searches only use the more sensitive range in the LIGO detectors of 20− 1500 Hz (see Chapter 6). For larger
interferometers a higher order approximation has to be used: the rigid adiabatic(RA) approximation [96, 103]
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introducing the antenna-pattern functions as contraction [105]

a(t; n̂) := dij(t)εij+(n̂) (4.13)
b(t; n̂) := dij(t)εij×(n̂). (4.14)

They encode the source location dependence of the detector response4.

4.3. CW Signal Model
Previously we only assumed that the gravitational-wave signal can be modeled as a plane wave,
that the gravitational wave has a small amplitude such that the linear approximation of the
Einstein equations holds and that the detector arm length is very small compared to the gravi-
tational wavelength.
In this section we now want to specialize on the signal model for continuous gravitational

waves (CWs). CWs are usually defined as long-lasting5 signals with slowly varying intrinsic
frequency f (see Sec. 3.4.2). Thus we can model h+,×(τ) by

h+(τ) = A+ cos Φ(τ), h×(τ) = A× sin Φ(τ) (4.15)

with a series expansion of the Phase around an arbitrary reference time τref

Φ(τ) = φ0 + 2π
NSD∑
s=0

f (s)(τref)
(s+ 1)! (τ − τref)s+1 (4.16)

with

φ0 := Φ(τref) (4.17)

f (s)(τref) := dsf

dτ s

∣∣∣∣
τref

= 1
2π

ds+1Φ
dτ s+1

∣∣∣∣∣
τref

(4.18)

and the number of spin-down orders (f (1) = ḟ , f (2) = f̈ , ...) considered NSD. As we already
established in section 4.1 that the source time’s τ relation to the detector time t depends on the
sky position of the source n̂, we determined all the phase-evolution parameters λ = (n̂, f, ḟ , f̈ , ...)
affecting the phase evolution in our signal model. If we were considering a neutron star in a
binary system, the orbital parameters of the source would also enter into the phase evolution as
the timing relation would receive further corrections (see Sec. 4.1). The remaining parameters
we established are called amplitude parameters and are denoted as (A+, A×, φ0, ψ).

If we now combine eq. (4.12) and (4.15) we can see that we can separate the two sets of
parameters by introducing new quantities hµ(t;λ) and Aµ(A+, A×, φ0, ψ):

h(t;A, λ) = Aµhµ(t;λ) (4.19)

with an implicit sum over

A1 = A+ cosφ0 cos 2ψ −A× sinφ0 sin 2ψ,
A2 = A+ cosφ0 sin 2ψ +A× sinφ0 cos 2ψ,
A3 = −A+ sinφ0 cos 2ψ −A× cosφ0 sin 2ψ,
A4 = −A+ sinφ0 sin 2ψ +A× cosφ0 cos 2ψ,

(4.20)

4Due to the Rømer delay given by Eq. (4.6) the final measured strain in the detector has an additional dependency
on the sky position.

5Although the amplitude depends on the gravitational frequency (see eq. (4.23)) we assume constant amplitude
in our signal model because the change in frequency is assumed to be small.
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and

h1(t;λ) = a(t; n̂) cos(Φ(τ(t, λ))− φ0), h2(t;λ) = b(t; n̂) cos(Φ(τ(t, λ))− φ0),
h3(t;λ) = a(t; n̂) sin(Φ(τ(t, λ))− φ0), h4(t;λ) = b(t; n̂) sin(Φ(τ(t, λ)− φ0).

(4.21)

This separation was coined JKS factorization after it was first introduced in the fundamental
CW data analysis paper by Jaranowski, Krolak, and Schutz [102].
If the source of the CW is a non-axisymmetric neutron star (cf. Sec. 3.4.2), this expression

can also be formulated with the overall gravitational-wave amplitude h0 and the inclination
angle ι of the neutron stars rotation axis relative to the line of sight (see Fig. 4.1). We replace

A+ = 1
2h0(1 + cos2 ι), A× = h0 cos ι, (4.22)

where the overall amplitude h0 can be derived from the quadrupole formula [83, 84] to be:

h0 = 4π2G

c4
εIzzf

2

d
(4.23)

in terms of the equatorial ellipticity ε := |Ixx − Iyy| /Izz, the moments of inertia Izz along the
spin-axis, Ixx and Iyy perpendicular to the spin axis and the distance d to the neutron star [106].
Therefore, the set of amplitude parameters is also often considered to be (h0, cos ι, ψ, φ0).
The signal model we constructed in this section is only true for a single detector. However,

we can note that the amplitude parameters and therefore the A’s actually do not depend on any
detector-related quantity. Only the phase-evolution parameters are detector-dependent. This
will be important in the next section where we look at how to analyze multi-detector data.

4.4. Matched-Filtering Searches
4.4.1. The Detection Problem: Frequentist and Bayesian approach
An interferometric gravitational-wave detector’s output is contaminated by various noise sources
as we discussed in section 3.3. Although we have now expressed the signal strain (cf. eq. (4.19)),
we still need to distinguish that signal from the noise in the detector. The total detector strain
data x(t) can therefore be written as:

x(t) = n(t) + h(t;A, λ) (4.24)

From this equation onwards we mean by data x a vector of data from all detectors. If we need
to explicitly show how multiple detectors are treated, we will introduce a detector index X: e.g.
xX .
At this point we now have to decide if we want to proceed with the frequentist interpretation

of probabilities or the Bayesian interpretation. In this section we will briefly present both
approaches.

Frequentist Approach

In the detection context we have to consider two hypotheses: the noise (or null) hypothesis
HN : h0 = 0 and the signal hypothesis HS(A, λ) : h0 > 0. Note that the null hypothesis is a
special case of the signal hypothesis. For given data x(t) we need to construct a detection statistic
that tells us if we can reject the null hypothesis. According to the Neyman-Pearson-Lemma [107],
the optimal decision between simple hypotheses is made by setting a decision threshold dth on
any monotone function d(Λ(x)) of the likelihood ratio Λ(x) of the two hypotheses. The function
d(x) is then called the detection statistic. A simple hypothesis is a hypothesis that corresponds
to a single fixed probability distribution. A composite hypothesis, on the other hand, does not fix

23



4. Continuous-Wave Data Analysis

the distribution completely but rather a family of distributions depending on a free parameter.
For now let us assume that A and λ are unknown but have fixed values, making our signal
hypothesis a simple hypothesis. Then the likelihoods of the two hypotheses are given by

HS(A, λ) : P (x|HS(A, λ)) (4.25)
HN : P (x|HN ) (4.26)

where the signal hypothesis likelihood depends on the parameters of the hypothetical signal.
The likelihood ratio is therefore given by

Λ(x;A, λ) = P (x|HS(A, λ))
P (x|HN ) . (4.27)

The decision threshold dth is usually determined for a fixed false-alarm probability pfa:

pfa := P (d(x) > dth|HN ) =
∫ ∞
dth

P (d|h0 = 0) dd, (4.28)

the probability for pure noise data to produce a detection statistic value which exceeds the
threshold. The probability for a signal in the data to be actually classified as such is called the
detection probability:

pdet := P (d(x) > dth|HS(A, λ)) =
∫ ∞
dth

P (d|A, λ) dd (4.29)

Equation (4.28) is the special case of h0 = 0 of equation (4.29) because HN = HS(h0 = 0).
The sensitivity of CW searches is often given by the upper limits hC0 . The frequentist upper

limits give the weakest amplitude that can be detected with a probability C (typically either 90 %
or 95 %), i.e. in n trials a signal with amplitude h0 gives a detection statistic value exceeding
the threshold in C · n of the n cases. This is usually determined by computationally expensive
Monte-Carlo sampling to invert equation (4.29) for the amplitude h0. A sensitivity estimator
as presented in Ch. 6 can give an estimate of the upper limits far more quickly. More details
regarding the upper limit procedure are discussed in Sec. 6.4.
Until now we made the assumption that A and λ are fixed and hence our signal hypothesis

is simple. However, in a general CW search we assume that signals can have very different
parameters A and λ. This makes our signal hypothesis a composite hypothesis and therefore
the Neyman-Pearson lemma is no longer applicable.
Dealing with composite hypothesis is therefore often done with the intuitive approach of

the maximum-likelihood method, i.e. looking at the signal parameters which maximize the
likelihood ratio [108]. The application of the maximum-likelihood method to the detection
problem of continuous waves leads to the F-statistic discussed in Sec. 4.4.3.

Bayesian Approach

The Bayesian version of hypothesis testing is called model comparison. While the frequentist
approach assumed A and λ to be unknown but fixed, in the Bayesian approach we always
consider the values of A and λ to be uncertain and take that into account by formulating a
probability distribution for A and λ before the experiment: the prior probability. We then use
Bayes’ theorem, a basic consequence of the definition of conditional probabilities,

P (H|x, I) = P (x|H, I)
P (x|I) P (H|I) (4.30)

to update the prior probabilities for any hypothesisH with the information of a measurement x(t)
to retrieve posterior probabilities. In the context of the detection problem the prior probability
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to consider is the probability P (HS |I) to have a signal with any parameters (A, λ) given the prior
knowledge I. This information usually stems from previous measurements and from theoretical
considerations but in principle can be chosen arbitrarily. The posterior probability P (HS |x, I)
is the probability for any signal with parameters (A, λ) given the prior information I and the
current measurement x(t). They are related via the (marginal) likelihood P (x|HS , I), which is
the same as the likelihood of eq. (4.25) if the hypothesis is simple, i.e. if A and λ are fixed.
However, in this case we did not need to fix A and λ and have a valid expression for composite
hypothesis as well. The likelihood is calculated by marginalization over the parameters A and
λ:

P (x|HS , I) =
∫
P (x|HS(A, λ), I)P (A, λ|HS , I) dA dλ. (4.31)

The composite hypothesis HS and the simple hypothesis HN are exhaustive and mutually
exclusive, i.e. either there is any signal or no signal. Therefore we can determine the denominator
in (4.30), P (x|I), from the normalization [108]

P (HS |x, I) + P (HN |x, I) = 1. (4.32)

If we now want to compare the general signal hypothesis to the noise hypothesis we can construct
the (marginal) likelihood ratio

BSN (x|I) := P (x|HS , I)
P (x|HN , I) (4.33)

which is called Bayes factor. This has been used to derive a Bayesian detection statistic [108] that
is actually optimal in the Neyman-Pearson sense [109], if the priors match the actual parameter
distributions, i.e. in general only in simulations with known distributions. The frequentist
maximum-likelihood statistic for known phase-evolution parameters but unknown amplitude
parameters has been rederived in a Bayesian way by assuming an unphysical uniform prior on
the amplitude parameters [108, 110]. However, the frequentist maximum likelihood approach
does require fewer integrations and is therefore usually computationally more efficient [108].
In the Bayesian approach model comparison is closely connected to parameter estimation as

the posterior can be marginalized to give distributions of likely values for the separate parame-
ters. Bayesian upper limits are determined by solving the equation

C = P (h0 < hC0 | x) =
∫ hC0

0
P (h0 | x) dh0 , (4.34)

stipulating that the real amplitude h0 lies in the interval [0, hC0 ] with confidence C. P (h0|x)
is determined by marginalizing the other signal parameters, i.e. integrating P (A, λ|x) over all
the other parameters. Thus, Bayesian upper limits have a very different interpretation than
frequentist upper limits. We dicuss this problem in more detail in Sec. 6.3.6. More information
about the application of Bayesian statistics to CW searches can be found e.g. in [111, 112].
As most CW searches are working in the frequentist framework and only a few in the Bayesian

context (cf. overview in Sec. 6.8), we will now focus on the frequentist approach for the
remainder of this chapter.

4.4.2. Detector Data
In order to determine the likelihood of eq. (4.27) or a likelihood based detection statistic, we
have to look at how to describe data in the detector.
In general the data in a detector might be non-complete and non-stationary. However, if we

partition the data in short-duration discrete Fourier transforms called Short Fourier Transforms
(SFTs) [113], we can assume stationarity over this shorter timespan. Using short timespans as
basic data blocks makes it easier to exclude times with either very obvious large noise distur-
bances or times where the detectors did not produce science data. We will first look at the
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data properties in one SFT and later look at how to combine the data of multiple SFTs as first
developed in [113–115].
When recorded in the detector, the data itself is sampled in discrete timesteps tj := j∆t,

giving samples xXj := xX(tj). If we assume that the detector noises are uncorrelated, we can
describe the noise samples nXj := nX(tj) as draws from a multivariate Gaussian distribution
G(0, γXij ) with a covariance matrix γXij = E[nXi nXj ] for each detector. The single-sided power
spectral density (PSD) in a SFT can then be estimated via the Wiener-Khintchine theorem as
[42]

SXα(f) ≈ 2
TSFT

E

[∣∣∣ñXα (f)
∣∣∣2] (4.35)

with the Fourier-transformed noise series of one SFT

ñXα (f) = ∆t
∑
j

nXαje
−2πiftj (4.36)

with nXα (t) := nX(tα + t) with tα the start-time of the SFT α.
In the case of white Gaussian noise, which is sometimes used for testing purposes for example

in the tests of the deep-learning methods presented in Chs. 7 and 8, this expression simplifies
to

SXα = 2σ
2
X(ñXα )
TSFT

(4.37)

given by the variance of the Fourier transformed data ñα.
The probability for data x to consist of draws from the Gaussian distribution with PSD S

can be given as [116]:
P (n|S) = κe−

1
2 (n|n). (4.38)

The normalization factor κ will drop out in the likelihood ratio. The scalar product

(x|y) :=
∑
i,j

xi(γ−1)ijyj . (4.39)

is defined with the inverse of the covariance matrix γ−1.
It has been shown [116–118] that this scalar product can be expressed as

(x|y) = 4
∑
X

Re
∫ ∞

0

x̃X(f)ỹX∗(f)
SX(f) df (4.40)

in the continuum limit ∆t→ 0. This expression is a classical Wiener filter of matched-filtering
theory [42] which is why many CW searches are usually referred to as matched-filtering searches.
We already established that we want to use the stationary Gaussian noise approximation only

over the length of TSFT. If we want to consider the long-lasting (� TSFT) narrowband CW
signals, we can express (4.40) semi-discretely in terms of per-SFT quantities:

(x|y) ≈ 2
∑
X

NSFT∑
α=1
S−1
Xα(f)

∫ TSFT

0
dt xXα (t)yXα (t) (4.41)

where xXα (t) := xX(tα + t) with tα the start-time of the SFT α and SXα the per SFT PSD
acording to eq. (4.35) [106].
We can now use (4.38) and (4.24) to find new expressions for the signal case likelihoods in

(4.27):

P (x|S, h0 = 0) = P (n|S) = κe−
1
2 (n|n) = κe−

1
2 (x|x) (4.42)

P (x|S,A, λ) = P (x− h|S, h0 = 0) = κe−
1
2 (x|x)e(x|h)− 1

2 (h|h) (4.43)

Putting this back into (4.27) and taking the logarithm gives us a simple expression for the
log-likelihood ratio:

ln Λ(x;A, λ) = (x|h)− 1
2(h|h) (4.44)
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4.4.3. F-statistic
The log-likelihood ratio can be used to gain insight whether a signal with parameters A, λ is
present in the data or not. In general, in a realistic CW search at least the Amplitude parameters
A, if not all the parameters, are unknown or only restricted to certain ranges. As mentioned in
Sec. 4.4.1, we have to determine the maximum-likelihood parameters as an estimate of the real
signal parameters and to decide if a signal is present or not.
In order to maximize the likelihood, we substitute (4.19) in (4.44) giving:

ln Λ(x;A, λ) = Aµxµ −
1
2A

µMµνAν (4.45)

with definitions:

xµ(λ) := (x|hµ) (4.46)

Mµν(λ) := (hµ|hν) =
(
∂h

∂Aµ

∣∣∣∣ ∂h

∂Aν
)
. (4.47)

It is easy to show (first in [102]) that this expression can be maximized analytically for the
amplitude parameters A. We get as maximum likelihood amplitude paramters AML:

∂(ln Λ)
∂Aµ

= xµ −MµνAν = 0

xµ = MµνAνML

Mρµxµ = MρµMµνAνML

Mρµxµ = AρML.

(4.48)

Here we introduced the inverse Mρµ of Mµν .
If we now resubstitute (4.48) in (4.45), we get a new detection statistic only dependent on the

phase-evolution parameters λ:

2F(x;λ) := 2 max
A

ln Λ(x;A, λ) = xµM
µνxν (4.49)

This statistic is called the F-statistic of searches for continuous gravitational waves. It was first
derived in [102] and then generalized for the multi-detector case in [117].
The 2F-statistic follows a χ2-distribution with four degrees of freedom and non-centrality

parameter ρ2 = (h|h), which is the square of the definition of the optimal6 signal-to-noise
ratio (SNR) ρ, i.e. it is a central χ2-distribution in the pure noise case and a non-central χ2

distribution in the signal case [102].

P (2F|ρ2) = χ2
4(2F , ρ2) (4.50)

The expectation and variance of the 2F-statistic are hence given by

E[2F ] = 4 + ρ2 σ2[2F ] = 8 + 4ρ2. (4.51)

While the F-statistic already maximizes the likelihood with respect to the amplitude param-
eters A, to find the best signal parameters it must in general still be maximized with respect to
the phase-evolution parameters λ. In the special case of a targeted search for CWs from known
pulsars the phase-evolution parameters λ, frequency, spindowns, sky-position and possibly bi-
nary parameters are known and no further maximization is necessary. In all the other common
search types narrowband, directed and all-sky searches a numerical search for the maximum
likelihood parameters λML is necessary. The differences between the search types are discussed
in Sec. 6.1.

6Optimal in the sense that the matched-filtering for a signal h is performed with the exact model of the signal h.
In contrast we can have a suboptimal SNR ρ2(hS , h) where the template deviates from the signal h = hS+δhS
(see Sec. 4.4.4).
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4.4.4. Templates and Computing Cost
In a wide-parameters space search the influence of a signal in parameter space is only present
in a small area around the signal’s parameters. Hence, many numerical maximization methods,
e.g. Markov-Chain-Monte-Carlo (MCMC) methods, Newton method, etc. are unable to narrow
in on the signal [119]. However, for example MCMC methods have been used for the smaller
parameter space of follow-up searches [120, 121]. We will further discuss follow-ups in Sec. 4.4.5.
The numerical maximization over the phase-evolution parameters λ is therefore usually done

by creating a template bank, i.e. a very dense grid in parameter space P, and computing the
F-statistic for all these points. The sensitivity of such a search then depends on the resolution of
the template bank. The loss of SNR due to lacking resolution is called template bank mismatch:

µ(λS ;λ) := ρ2(λS ;λS)− ρ2(λS ;λ)
ρ2(λS , λS) (4.52)

where
ρ2(λS ;λ) := E[2F ]− 4 (4.53)

describes the SNR coming from a signal with parameters λS searched for with a template with
parameters λ [118].
While the mismatch is not a symmetric quantity it can locally be approximated for small

∆λ = λS − λ. The zeroth order trivially vanishes, while the first order term has to vanish in
order for the F-statistic to have a local extremum at the perfect match λ = λS [118]. Thus, the
lowest non-vanishing order is the second order and it can be used as approximate metric gij on
the parameter space. Using a metric for the parameter-space manifold was first introduced in
[122, 123] and later generalized for the multi-detector F-statistic in [118].

µ(λS ;λS + dλ) = gij(λS)dλidλj +O(dλ3). (4.54)

Increasing the number of templates and therefore increasing template density will always
improve the mismatch and hence the sensitivity of the search. However, the number of templates
required to create a competitive search is very large. The computing cost typically grows linearly
with the templates and thus gets so large that matched-filtering searches are limited in their
sensitivity by computational cost. Therefore, finding a good approximation for the parameter
space has been studied e.g. in [124].
It can be shown (e.g. in [42]) that the number of templates N needed for a search with

phase-evolution parameters λ′ = (α, δ, f, ḟ), i.e. a search for an isolated neutron star where only
the first order spindown is considered, scales approximately as

N ∼ T 5
spanf

2 d4λ′, (4.55)

i.e. with (at least) the fifth order of the observed timespan Tspan.
The computing cost per template comes from an integration over the timespan of data, adding

an additional order to overall computing cost CF , giving

CF ∼ T 6
spanf

2 d4λ′. (4.56)

On the other hand, the SNR of the signals is increased by increasing the amount of data used

ρ2 ∼ Tdata, (4.57)

where Tdata is the total amount of data of all detectors [102]. Tdata is not to be confused
with the observation time Tspan, the timespan from the first data point to the last data point.
Thus, we want to make Tdata (and not Tspan) as large as possible given our fixed computing-
cost budget. The only ways around the computing-cost trade-off are including data from more
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4.4. Matched-Filtering Searches

equally sensitive detectors in the search, reducing the amount of data gaps and eliminating noise
sources in the detector. However, this is usually not a question of data analysis but a question of
detector construction and operation and therefore illustrates the necessity for close cooperation
between experimentalists and data analysts.
For coherent matched-filtering searches this means Tspan = O(days) − O(weeks) with the

maximal currently available computing power, e.g. . 44 days in a recent directed search for CWs
from supernova remnants [125]. This is much less than the expected lifetime of a CW signal
and also much less than the typical duration of LIGO science runs of O(months) − O(years).
Accordingly, for wide-parameter space searches it is possible to find more sensitive methods
than coherent matched-filtering for a fixed computing cost. The most common approaches are
semi-coherent matched-filtering searches.

4.4.5. Semi-coherent Searches and Follow-ups
Methods for wide parameter searches try to minimize the loss in sensitivity while reducing the
computing cost as much as possible, i.e. they try to optimize the sensitivity at fixed computing
cost.
Semi-coherent methods [126] reduce the coherent matched-filtering computing cost by re-

ducing the coherently analyzed timespan Tseg < Tspan and combine multiple segments Nseg
incoherently to a detection statistic over Tspan. These methods are called semi-coherent search
methods. In the easiest case the segments consist directly of the SFTs calculated from the raw
detector data, i.e. typically TSFT = 1800 s (used e.g. in [127]). However, if more computational
resources are available, for example in Einstein@Home searches, longer segments are used to
achieve better overall sensitivity, e.g. up to Tseg ≈ 20 days in the most recent Einstein@Home7

search [128].
A semi-coherent search therefore always consist of at least two steps. First calculating a de-

tection statistic over short segments while maintaining phase coherence and secondly combining
these segments. In this section we want to focus on F-statistic-based semi-coherent searches,
especially the StackSlide [129] and the Hough-F [130] methods. A list of CW searches performed
with these methods as well as with other semi-coherent methods can be found in 6.8. However,
most methods can be identified as implementations of the StackSlide method or variants to the
Hough-F method with different detection statistics and implementations. Further notable semi-
coherent methods are the PowerFlux or Falcon methods [131–133], cross-correlation methods
[134, 135], the TwoSpect algorithm [100] and Viterbi methods [136, 137].
We calculate the final detection statistics F̂ for StackSlide and nc for HoughF as

F̂ :=
Nseg∑
l=1
Fl nc :=

Nseg∑
l=1

Θ(Fl −Fth) (4.58)

where Fl is the coherent F-statistic in segment l, Nseg is the number of segments and Fth is
a common per-segment threshold on the coherent F-statistic for the Hough-F method. Θ(x)
is the Heaviside step function. The StackSlide detection statistic F̂ is usually referred to as
semi-coherent F-statistic and the Hough statistic nc as number count, as it counts the number
of threshold crossings. Other Hough variants usually only deviate from Hough-F by using a
different coherent statistic. PowerFlux and its successor Falcon are derived from the StackSlide
methods, using weights to reduce the influence of disturbances and improving the handling of
the direction-dependent detector antenna patterns [42].
The template grid needed to create a sensitive semi-coherent search is still very fine. However,

it turns out that often fewer templates are needed to calculate the coherent detection statistic
values than for the incoherent statistic of eq. (4.58) (see e.g. [138]) leading to two different

7Einstein@Home is a volunteer-computing project currently achieving a computational power of ∼ 7 PFLOPS
[7].
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4. Continuous-Wave Data Analysis

template grids: the coarse grid for the coherent step and a fine grid for the incoherent step
which usually uses a nearest-neighbor interpolation on the coherent statistic values to calculate
(4.58).
Using these semi-coherent methods reduces the templates needed for a parameter space region

d4λ′ to
N̂ ∼ TspanT

4
segf

2 d4λ′ (4.59)

giving a total computing cost scaling of

CF̂ ∼ T
2
spanT

4
segf

2 d4λ′ (4.60)

effectively replacing T 4
span with the much smaller T 4

seg [42].
Another method to improve sensitivity while avoiding large increases in computing cost are

Follow-up searches or Hierarchical searches [126, 139]. These are done by first executing a
search with a relatively high false-alarm level, i.e. low threshold, often called stage-0, and then
applying additional methods to gradually eliminate the false alarms. The further stages are
usually designed such that they have a very low false-dismissal probability & 99 % such that as
many potential signals as possible get to the next stage. In each successive stage the parameter
space is shrunk to an area around the candidates from the previous stage, the length of the
coherent segments and the detection threshold are increased. While noise candidates are in
general expected to either decrease or remain the same in detection statistic over the stages,
signal induced candidates should increase in detection statistic value and hence also pass the
next thresholds (see e.g. [128]).
As the number of candidates decreases from stage to stage, the higher template density and

longer coherence times remain affordable. In fact, the total computing cost is usually dominated
by stage-0. However, as mentioned in Sec. 3.3, there are also non-Gaussian disturbances in the
data. For CW searches mainly lines, narrowband spectral artifacts, e.g. at the electrid grid
frequency, cause problems as they can appear quite similar to real signals and therefore can
survive the multiple stages.
To reduce the number of candidates caused by lines or other disturbances, many searches use

additional procedures, e.g. removing line disturbances from the detector data before the stage-
0 search [140], applying veto methods (e.g. [141]) and constructing alternative, more robust
detection statistics [142, 143]. Another approach is to cluster candidates with very similar
parameters together and treat them as a single candidate [18, 144]. Moreover, completely
different search methods for the follow-up have also been tested [17, 121].
In addition it is part of ongoing research to find computationally more efficient implemen-

tations of semi-coherent searches [138, 145]. However, this limitation by computational cost
motivates the search for alternative search methods such as a deep-learning search for CWs as
presented in Chs. 7 and 8 of this thesis.
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5. Deep Learning

5.1. Deep Learning and Deep Neural Networks
Deep Learning is a specific kind of machine learning, which is a part of the research on artificial
intelligence. I want to briefly introduce the concepts of artificial intelligence and machine learning
and then focus on deep-learning and deep neural networks.

Defining artificial intelligence (AI) is difficult as not even intelligence is well defined but
rather known as an intuitive concept. Intelligence is usually associated with making good and
foresighted decisions in the context of your environment. According to that, animals and humans
possess different levels of intelligence. Artificial intelligence is the task of creating a machine or
machine-run algorithms that can perform tasks and solve problems usually requiring human or
animal level intelligence [146, 147].
The idea of artificial intelligence is very old. Even in antiquity Aristotle dreamed of automated

tools, which could replace servants and slaves [146]. With the development of computers this
idea seemed suddenly to be in reach of technology causing a first wave of AI research in the
1950s. The first AI programs of this era were implemented as symbolic artificial intelligence: A
program with a fixed set of rules such that it can solve the specific task it was designed for. A
typical example for symbolic AI are so-called expert systems, programs that supposedly could
replace a human expert in a field. For example systems that are predicting pre-term birth risks
[148] or monitoring the Space Shuttle mission control [149].
In the 1980s a new approach was developed: machine-learning [147]. Instead of fixing the rules

and applying them to data, the task for the programs was changed to finding the necessary rules
from the given data itself. The learned set of rules can then be applied to a new data set. We can
also imagine the training of a machine-learning algorithm as finding a series of transformations
of the data to an optimal representation. The allowed transformations are usually determined
before the learning process and can be coordinate changes, linear projections, translations or
nonlinear operations. In Fig. 5.1 we show as an example how finding the right transformation
can make a classification of data points easier.
Since its invention, machine-learning has been implemented with many different algorithms

and methods. They can be classified according to three different properties [150]:

• Either an algorithm is trained with human supervision, i.e. the algorithm is given the
desired output of training examples, supervised learning, or the algorithm has to learn
without labels, unsupervised learning.

• Either the algorithm learns from fixed size data sets, Batch learning, or from a continuous
data stream, online learning.

• Either the algorithm compares a new instance of data to a set of labeled training instances
and chooses the new label from the most similar example, instance-based learning, or the
algorithm infers a model from the training data which is then used for example to classify
new data, model-based learning. For example, a spam-filter that looks for specific words
occuring in previous spam mails to flag a new mail as spam would be instance-based, while
fitting a set of data points with a function would be an example of model-based learning.

For continuous-gravitational-wave (CW) searches the training data has to be created with
artificially injected signals because training needs thousands of signals and none have been
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(a) (b)

Figure 5.1.: Machine-learning algorithms find transformations to represent data more simply. In
the coordinate system (Cartesian) in (a) the points are clearly not separable along
one variable. If we apply a transformation to polar coordinates (b), we can separate
the points along one variable.

detected yet. Therefore, labeling the data with the desired output is easy and the typical
downside of supervised learning - the time-consuming step of labeling data - is moot. Thus,
using a supervised algorithm is sensible, as they are usually more capable than unsupervised
algorithms, if the labels are available. Due to the size of the searched parameter space (cf. Sec.
4.4), it is likely that an instance-based approach would require large amounts of computational
resources, because the complexity of instance-based learning is growing with the amount of data.
Therefore, a model-based approach seems more promising.
While it is possible to generate a continuous stream of CW signals in Gaussian noise with

the existing tools of the lalsuite software package, for the work in Chs. 7 and 8 we decided
to make use of pre-generated fixed data sets. This was easier to implement efficiently with the
deep-learning toolkit Keras [151] than a data stream because a data stream always has to
generate new data faster than the network can process it independent of the used hardware.
As discussed above, machine-learning algorithms are trained to find an optimal data repre-

sentation by learning to apply transformations. The fundamental idea of deep-learning is to
learn a complex transformation to optimize the final representation by decomposing it into a
sequence of simple transformations. This is done in the form of layers. Each layer implements a
transformation from one data representation to the next one. Typically, this layered approach
is implemented as a neural network: if we stack more than two layers, the network is called a
deep neural network; a network with one or two layers is sometimes referred to as shallow neural
network [147].

In the context of the CW search method developed in this thesis (see Chs. 7 and 8), we
decided to use a deep-neural network trained as a noise-versus-signal classifier. Deep neural
networks (DNNs), a model-based approach, have recently shown remarkable capabilities: from
image and speech recognition to language translation, DNNs dominated recent machine-learning
competitions [8]. Furthermore, DNNs have also been shown to be useful tools in many different
aspects of gravitational-wave research [9–27].
As the naming suggests, the smallest structural unit of a neural network is the neuron. Its
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working principle was designed after neurons in human or animal brains, which, dependent on
a combination of the strength of their input connections, either do output a signal (“fire”) or
not. However, this original idea of modeling the way human or animal brains work, is nowa-
days mainly reflected in vocabulary. Neurons in a modern neural network behave significantly
differently than neurons in the human brain [147].

5.2. Neurons, Layers, Networks
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Figure 5.2.: A dense neural network with three inputs (green), two outputs (red) and three
hidden layers (blue).

To understand the working principle of neural networks, we want to look at neurons in the
simplest layer, the dense layer. In a dense layer every neuron is connected to every neuron of
the previous layer (see Fig. 5.2).
The i-th neuron in a dense layer can be modeled as functions fi : Rn × Rn+1 → R of two

vectors: the inputs to the neuron ~x as well as the intrinsic weights and the bias of the neuron
(~wi, bi):

fi(x; ~wi, bi) := a(zi) := a

 n∑
j=1

wijxj + bi

 (5.1)

where a : R → R is called activation function and z is the pre-activation output (illustrated in
Fig. 5.3) [152].
The xj are the inputs to the neuron, i.e. either the input to the network or the output of

neurons of the previous layer. In a dense layer the number of inputs and weights per neuron is

~w, b a

x1

x2

f(x; ~w, b)

Figure 5.3.: A single neuron of a neural network. In this example the neuron has two inputs,
two weights ~w, a bias b and an activation function a.
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always equal. We therefore have one weight for every input and the bias value. However, we
will see later that it can be beneficial to reuse weights for several inputs (see Sec. 5.5.1).
The bias bi acts as a threshold at the point of the weighted sum of inputs, where the behavior

of the activation function changes. To ease notation, from now on we will consider the bias as
another weight wi0 := bi which always has an input of x0 := 1, giving the neuron equation as

fi(x;wi) = a(
n∑
j=0

wijxj). (5.2)

Note that from now on we will implicitly include the bias if we mention the weights of the DNN.

3 2 1 0 1 2 3
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Figure 5.4.: Six important activation functions in neural networks: Sigmoid, rectified linear unit
(ReLU), Heaviside step function, leaky ReLU, exponential linear unit (ELU) and
scaled ELU (SELU).

The weights wi in eq. (5.2) are the trainable parameters of a neuron. Therefore, each neuron
possesses Nweights := n+ 1 trainable parameters, where Nweights is determined by the number of
connections n the neuron has to other neurons.
The activation function a is the same for all neurons in a layer, often it is even the same for

all but the output neurons in a network. We consider the activation function as part of the
neuron and its layer, but sometimes it is also considered to be a separate layer. The activation
function must be at least piecewise differentiable with respect to all the weights wi ∈ R. If
the activation function is a non-linear function, then it can be shown that a neural network
can approximate every function if the DNN has enough neurons. This is called the universal
approximation theorem (see [153–155]).
The step function

Θ(z) =
{

0 z < 0
1 z ≥ 0

(5.3)

is one of the simplest activation functions. A neuron using it is sometimes also called a percep-
tron. It was invented in 1957 by Frank Rosenblatt [150]. Using only a multi-layer perceptron
network, it can be shown that all the basic logic gates can be built by setting the weights of a
multi-layer perceptron ([155], see e.g. [150] for the “Xor”-gate).
However, over time, it turned out that other activation functions lead to more success in train-

ing neural networks. Rumelhart, Hinton, and Williams [156] introduced the sigmoid function

σ(z) = 1
1 + e−z

(5.4)

and more recently the rectified linear unit (ReLU)

r(z) = max(0, z) (5.5)
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brought further improvements for training a neural network [157, 158]. Nowadays, many different
activation functions are used. Some popular examples illustrated in Fig. 5.4 are leaky ReLU
[159]

l(z) = max(0.01z, z), (5.6)

exponential linear unit (ELU) [160] and scaled ELU (SELU)[161]

s(α, z, λ) = λ

{
α(ex − 1) x < 0
x x > 0

(5.7)

with λ = 1 and arbitrary α for ELU and λ = 1.0507 and α = 1.67326 for SELU.
The activation function in the output layer usually deviates from the activation function of

the remaining layers and is chosen such that error calculations (cf. Sec. 5.3) can be done more
easily. In classifiers the activation function of the last layer is usually a softmax function

si(x) = exi∑Noutputs
j=1 exj

, i = 1, ..., Noutputs (5.8)

making sure the output values are adding to one and therefore can be interpreted as probability
estimates for the respective classes [150].
In a DNN neurons are arranged in layers (see Fig. 5.2). The layers are connected by the

functions of the neurons as given in eq. (5.2). All neurons of a layer combined form a transfor-
mation from one data representation to the next one. Depending on the weights of the neurons
the layers perform different transformations.
A neural network consists of three types of layers, the input layer, the output layer and the

layers in between, called hidden layers. The output layer or simply output must have the size of
the desired answer. The size is the number of classes in a classification task and e.g. the same
size as the input for a neural network trained to manipulate images. The hidden layers are the
ones actually performing transformations to get from the input representation of the data to the
output representation. Geometrically these transformations can be imagined as trying to unfold
a crumpled paper ball back to a flat sheet of paper. Like humans would try to unfold the paper
step by step, each hidden layer in the network slightly unravels a highly folded manifold [147].
The input layer or simply the input is the data that the network is supposed to analyze. For

the input size we typically distinguish two types of dimensions: the input dimensions and the
channels dimension. For example, a RGB image would be an input with two input dimensions,
height and width, and a third dimension containing the three channels that encode the red,
green and blue part of the picture. A single instance of data, e.g. a single image, given to the
network is often referred to as (input) sample. Training a network typically requires many data
samples. The entirety of samples used for training is called the training set.

5.3. The Training Loop of a Neural Network
5.3.1. Loss and Gradient Descent
We have already established that each layer in a network possesses trainable parameters called
weights and that a machine-learning algorithm is supposed to learn a set of rules from a given
labeled training set. This translates to finding the best possible weights such that the input is
transformed with a sequence of simple transformations to give back the label of the respective
data sample. But how does it perform this task?
For the network to be able to improve itself, it has to have some kind of measure on how

wrong a prediction – the result of applying the network to a data sample x – is. For that
purpose we define a loss (or cost) function L : RNout → R that measures the distance between
the Nout network predictions yN and labels Y associated with this data sample. In classification
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Figure 5.5.: The training loop of a neural network consists of the forward pass and the backward
pass. In the forward pass the network is evaluated for the inputs from the training
set. The output is a prediction of the label of this input sample. The predictions
are then compared to the labels of the training set to calculate the loss. In the
backward pass the gradient of the loss with respect to the weights is calculated and
then used to update the weights of the network via gradient descent.

the number of labels equals the number of classes. The label Yk for class k is 1 if the sample
belongs to that class, otherwise it is zero. The loss function is then used as feedback to adjust
the weights to get a result closer to the label [147]. In this section we count the layers with an
upper index and components with lower indices. The network output is the output of the last
(N -th) layer, hence the notation yN .
A typical loss function for a regression task, e.g. predicting the SNR of continuous gravita-

tional waves, is the mean-squared-error function:

L(yN ) = 1
N out

Nout∑
k=1

(
yNk − Yk

)2
. (5.9)

For classification, as used in Chs. 7 and 8, the most common loss function is the categorical
cross-entropy

L(yN ) = −
Nout∑
k=1

Yk ln yNk

Nout=2= −Y1 ln yN1 − (1− Y1) ln(1− yN1 ),

(5.10)

which is also called binary cross-entropy in the Nout = 2 case [150]. The loss function has to
be chosen such that minimizing it correlates with success for the task at hand. It is not always
possible to optimize directly for the metric that measures success on a problem because the loss
must be differentiable and ideally calculable for a single instance of data [147]. Furthermore,
the loss calculation has to be fast in order to prevent slowing down the training. For example,
the detection probability at a fixed false alarm level is not suited as a loss, because we would
need many noise samples without a signal to determine a false alarm threshold and then many
signal samples to calculate the detection probability (cf. Sec. 7.2.1). This calculation can only
sensibly be done for the entire training set and is much too slow to perform during the training
of a neural network. However, the detection probability or other quantities can be calculated
additionally to measure the performance of a neural network and ensure that reducing the loss
correlates with an improved performance.
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Theoretically, the easiest way to get to parameters with smaller loss is to determine the
(negative) gradient of the loss with respect to the weights and follow it towards the global
minimum1 by alternately updating the parameters and recalculating the gradient. This method
is called gradient descent and is an essential part of the core loop of the neural network training.
A network is usually initialized with random parameters, i.e. random data transformations,
and then the training loop is repeated for many thousands of training samples until the loss is
sufficiently minimized [147].
Determining the gradient in an efficient way is usually done with the backpropagation al-

gorithm. It was first introduced in the 1970s but became popular after Rumelhart, Hinton,
and Williams [156] discovered that it made learning of neural networks significantly faster than
previously used methods [152].
The goal of the backpropagation algorithm is to calculate the gradient, i.e. the partial deriva-

tives ∂L
∂wlij

of the loss function L with respect to the weights wlij . Our notation here symbolizes

that the weight wlij is the weight of the connection of the j-th neuron in the previous layer to
the i-th neuron of the layer l. If the network contains M weights calculating the finite differ-
ences L(wlij)−L(wlij−δw

l
ij)

δwlij
for all weights wlij in all layers l would require M + 1 passes through

the entire network. As the network can contain a long chain of transformations and thousands
to millions of parameters, it is therefore usually prohibitive to calculate the finite difference for
every parameter. Instead backpropagation uses the chain rule of differentiation to pass through
the network backwards avoiding duplicate calculations.
Let us consider a network with N layers. We call the input (x,Y), where x is the data sample

and Y its label. Each layer l performs a transformation T l = al ◦wl consisting of the activation
function al and a matrix product of the weights wl with the input x. The output of layer l is
therefore generalized from (5.2) as

yli = (T l(yl−1))i = al(zli) = al

∑
j

wlijy
l−1
j

 (5.11)

where zl denotes the pre-activation output of layer l. With this notation we can now look at how
an input passes forward through the network during evaluation and how it passes backwards
during gradient calculations:

1. Forward pass: The input x is given to the network and passed to the neurons in the first
hidden layer with weights w1. The first hidden layer applies a transformation T 1 giving

y1
i = (T 1(x))i = a1

∑
j

wlijxj

 (5.12)

and passes the result to the second layer, which applies T 2 giving y2 = T 2(y1). This
repeats until we reach the output layer N with output yN = TN ◦TN−1 ◦ ...◦T 1(x). Then
the loss L = L(yN (x,w),Y) is calculated from the final outputs yN and the label Y.

2. Backward pass: For a given input x we now consider the partial derivatives of the loss
with respect to the weights wlij . Hence, we have to apply the chain rule of differentiation.

1Our algorithm can also get stuck in a local minimum. We will come back to that problem in the context of the
parameter update in Sec. 5.3.2
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We calculate
∂L(yN (x,w),Y)

∂wlij
= ∂L
∂yN

∂yN

∂wlij

= ∂L
∂yN

∂yN

∂yN−1
∂yN−1

∂wlij

= ...

= ∂L
∂yN

∂yN

∂yN−1 ...
∂yl+1

∂yl
∂yl

∂wlij
.

(5.13)

Notice that each time we go to an earlier layer l − 1, we get an additional term in this
expression. If we calculate the partial derivatives for the weights in the last layer N , we
have to determine [152]

∂L(yN )
∂wNij

= δN
∂yN

∂wNij
= δNi a

′N (zNi )yN−1
j , δNi := ∂L

∂yNi
(yN ) (5.14)

where a′ = da(z)
dz is the derivative of the activation function. This derivative is analytically

known and zN and yN−1 are known from the forward pass. δN , sometimes called the error
term of layer N [152], is just the analytically known derivative of the loss function L with
respect to the components of yN evaluated at the known yN values from the forward pass.
Hence, calculating this equation requires no additional pass through the network.
If we define δl in the same way for layer l, we get a recursive relationship [152]:

δli := ∂L
∂yN

∂yN

∂yN−1 ...
∂yl+1

∂yli

=
∑
k

δl+1
k

∂yl+1
k

∂yli

=
∑
k

δl+1
k a′l+1(zl+1

k )wl+1
ki .

(5.15)

In this equation the derivative of the activation function a′l+1(z) is again analytically
known and has to be evaluated with the values we get from a forward pass zl+1. The
current weights wl+1 are of course also known. So the only remaining term to calculate
is δl+1. However, this term can be substituted recursively until we get back to eq. (5.14).
The gradient (5.13) can therefore be calculated as

∂L
∂wlij

= δl
∂yl

∂wlij

=
∑
k

(δl+1a′l+1wl+1)k
∂ylk
∂wlij

= (δNa′NwN · · · a′l+1wl+1a′l)iylj ,

(5.16)

where we traced the δl’s backwards according to (5.15) giving us a long sequence of matrix
products from the end of the network to layer l. For that reason this process is known as
backpropagation.

The backpropagation algorithm reduces the total number of passes through the network re-
quired to calculate the gradient to two. The number of parameters M only influences the speed
of a single pass but not the number of passes. This huge saving in computing cost is why
backpropagation enabled the study of much bigger neural networks.
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5.3.2. Parameter Update

After we determined the gradient, we can update our weights with an optimizer. The simplest
approach is to repeat the backpropagation algorithm with one input sample after the other,
giving:

w(next step) = w − η ∂L
∂w

. (5.17)

In the deep-learning context this is typically called stochastic gradient descent (SGD) with
a learning rate η. While SGD is very fast in calculating any update and is low in memory
consumption, calculating the gradient from single samples introduces a lot of noise as the single
sample cannot represent the underlying distribution. For example, the gradient calculated from
a single cat image will likely not lead to the best classifier of pictures of many different animals.
The gradient updates then point in different direction and partially reverse each other, leading
to an inefficient path towards the minimum. Another problem with the randomness of SGD is
that it can never settle at the minimum and will fluctuate around it. A solution to that problem
is gradually reducing the learning rate, similar to the numeric optimization method simulated
annealing. On the other hand, this randomness allows the network to leave local minima again,
making it more likely to converge to the global minimum [150].
Batch gradient descent (BGD) also follows eq. (5.17) but it uses the average gradient over

many input samples. This increases the cost per update and memory usage. However, the larger
the batch size, the smaller the random fluctuation in the gradient descent because the batch of
data represents the underlying distribution of the training samples better than a single sample.
This leads to a shorter path towards the minimum but also increases the risk to get stuck in a
suboptimal local minimum. One big advantage of BGD compared to SGD is that BGD can make
use of matrix operations which are highly parallelizable and therefore can profit very much from
running on GPUs while SGD has to calculate every small descent step sequentially [150]. The
balancing of the batch size is an important part of hyperparameter optimization of a network
(cf. 5.4.3).
However, regular gradient descent presented here is still quite slow. A faster optimizer is

for example momentum optimization. The introduction of a momentum term m increases the
chances of avoiding local minima and accelerates convergence to a minimum by building up
momentum (see e.g. [150]).

w(next step) = w +m (5.18)

m(next step) = βm− η ∂L
∂w

. (5.19)

The momentum is usually intialized as m = 0. The parameter β ∈ [0, 1] is usually chosen as
β ∼ 0.9.

The speed of optimizers however often also depends on careful tuning of the learning rate η.
Some popular optimizers, including Adam[162] and Nadam [163], avoid this by using adaptive
learning rate algorithms. In these optimizers the learning rate η is typically reduced over time in
order to allow the algorithm to settle down to a loss minimum, often leading to faster and better
convergence [150]. The choice of an optimizer is also part of the hyperparameter optimization
of a network (cf. 5.4.3).
For the search for continuous gravitational waves with a DNN, we decided to use the adaptive

learning rate algorithm Adadelta [164]. It is very fast and robust and does not require much
hyperparameter tuning. Adadelta was derived from Adagrad [165] and works by locally
accumulating past gradients as an exponentially decaying average of the squared gradients

g2 =
(
∂L
∂w

)2
. (5.20)
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Assuming gradient updates at timesteps t, t − 1, ... we can write the running average squared
gradient E[g2] as

E[g2]t = ρE[g2]t−1 + (1− ρ)g2
t , (5.21)

where E[g2]0 = 0 is the initial value and ρ is a decay constant similar to the β for the momentum
method. The weight update then works as

wt = wt−1 + ∆wt (5.22)

with
∆wt := − η√

E[g2]t + ε
gt, (5.23)

where a constant ε > 0 is added to make the denominator more stable. However, the learning
rate η in Adadelta is not constant but also determined as an exponentially decaying running
average of the past parameter updates ∆wt−1, ...,∆w0:

E[∆w2]t = ρE[∆w2]t−1 + (1− ρ)∆w2
t . (5.24)

This running average is used for an approximation of a parameter update with a diagonal Hessian
(Newton’s method) for locally smooth curvature. The second order parameter update is given
by

∆w ∼
∂L
∂w
∂2L
∂w2

. (5.25)

In the approximation the inverse of the second derivative is calculated as

1
∂2L
∂w2

∼ ∆w
∂L
∂w

, (5.26)

where the ∆w in the numerator is calculated with the running median in eq. (5.24) and the
gradient ∂L

∂w in the denominator from eq. (5.21). Therefore, the total parameter update is
performed by

∆wt = −
√
E[∆w2]t−1 + ε√
E[g2]t + ε

gt. (5.27)

The ε helps with the initialization of the numerator for ∆w0 = 0 and ensures progress, even if
previous updates did get small. The approximation is always positive ensuring that the update
follows the negative gradient at each step. Due to the recursive relationship in eq. (5.27) for
∆xt, the denominator lacks behind by one time step. This makes the optimizer more robust to
large sudden gradients, as the effective learning rate is decreased by the denominator before the
numerator can react [164].

5.4. Main Challenges in Deep-Learning
5.4.1. Preparing Data
Constructing a proper training set is very important to get reasonable results with a machine-
learning algorithm. At the current state machine-learning algorithms need large amounts of data
to learn: thousands of input samples for simple problems and millions of samples for image or
speech recognition [150]. In general, it is beneficial to have the training set as big as possible (cf.
Sec. 5.4.2). Unfortunately, it is often limited in size by the ability to label data efficiently. In
the context of gravitational-wave detection this is usually not an issue as high quality modeled
signals, which originally were developed for matched-filtering searches (cf. Sec. 4.3), can be
used to generate training samples. In this case the training set size is mainly limited by memory
and computing cost considerations.
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The training set also works similar to a Bayesian prior distribution (cf. Sec. 4.4.1). The ratio
of samples of the different classes sets a weight on their contribution to the loss function, making
it easier to classify an overrepresented class but less likely to identify an underrepresented class.
For example, if an image classifier is trained on a training set containing only one image of a
cow and otherwise cats and dogs, the resulting network will most likely not be able to learn to
recognize cows in new images. Therefore, the training data should follow the same distribution
as the underlying problem or at least be a subdistribution of it.
Another important property of the training set is the size of the input samples themselves. If

they contain many unimportant pieces of information the network will have difficulties extracting
the relevant parts. Therefore, it is crucial to condense the relevant information of training
set samples to the smallest size possible [150]. In the deep-learning approach to continuous
gravitational wave searches (cf. Chs. 7 and 8) this is solved by reducing the input size to the
maximal size a signal can have in the frequency domain.
A very important step with regard to the handling of data is to have at least one separate test

set, which is not used for training or network architecture optimization. A test set can either
have the same distribution of samples as the training set, i.e. the same as the problem we are
trying to solve, or it can test how the network performs for samples outside the training set
distribution. This is called testing the generalization of the network. For example, a test could
check how a cat-dog classifier would classify images of wolves or in the context of gravitational
waves how a signal-noise classifier deals with different signal types or different noise disturbances
(cf. Secs. 7.4.1 and 7.4.1).
Carefully constructing the test set is arguably even more important than the construction

of the training set. A bad training set gives bad network performance, but a bad test set
gives unreliable results. If only the training set itself is used for testing, the network will
start to recognize classes from certain exceptional features of the training samples that might
be irrelevant to the actual task. For example, recognizing polar bears just from the snowy
background. The network will then show very good performance on the training set but much
worse performance on the test set. This is called overfitting and is discussed in more detail in
Sec. 5.4.2.
If we do not want to use a single neural network but find the optimal network for our task,

we have to use a third set of data samples: the validation set. The validation set should consist
of samples from the same distribution as the training set. If the available data is limited this
is usually achieved by a so-called validation split: A large set of samples is split in e.g. 80%
training samples and 20% validation samples. Extensively optimizing the network architecture
according to the performance on the validation set, however, can lead to a bias towards specific
features in the validation set. Then the performance on the validation set is very good but the
network fails on the test set. This again is a form of overfitting.
Training and validation set results, e.g. loss over time, should only be used to monitor

the training and architecture optimization progress, respectively. Only a properly constructed,
independent test set can give an unbiased final performance estimate.

5.4.2. Overfitting and Underfitting

During or after training a neural network, you can usually identify bad performance as one
of two problems: overfitting or underfitting. In order to recognize over- and underfitting we
need our training set, validation set and test set to all contain different samples from the same
distribution.
If a neural network shows significantly better performance on the training set than on the

validation set (when optimizing the network architecture: better performance on the validation
set than on the test set), this is called overfitting the training set (validation set). An example
of overfitting is shown for the detection probability of a CW neural network in Fig. 5.6a.
Overfitting typically occurs if we have too many parameters in the network relative to the
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Figure 5.6.: Detection probability vs. training time of a noise-signal classifier for CWs: In (a)
the network clearly overfits the data. The training performance reaches the desired
performance marked in red and the validation set performance remains low although
both sets contain samples of the same distribution. In (b) the network underfits the
data. Training and validation performance are very similar but far from the desired
performance marked by the red line.

amount of different data samples. The network will start “memorizing” exactly the training
samples and looses the ability to generalize. This corresponds to fitting a polynomial of a high
order to a low number of data points, see the orange 20th degree polynomial fit in Fig. 5.7.
While the fit does give the correct value at every data point, it does not resemble the original
underlying function and would give bad predictions if we added additional points.
Overfitting can be avoided by increasing the training set size or by reducing the number of

parameters in the network, as well as some other techniques. In the situation where the training
set can easily be increased in size, like a CW search, increasing the training set is typically
the right way to go. Alternatively, if the network gets so large that it gets difficult and time-
consuming to train, shrinking the network is also an option. In the case of limited training
data it is common to use so-called regularization layers to artificially add additional information
to prevent overfitting. For example, Dropout layers [166, 167] add small amounts of damping
noise to the network training by randomly setting some weights to zero during the training
step. Another layer that has a regularization effect is the Batch Normalization layer that we
will discuss in Sec. 5.5.3 [150].
A network can also underfit the training data. In this case the performance of the network on

the training set, validation set and test set is similar but suboptimal (see Fig. 5.6b). Underfitting
occurs if the network does not have enough parameters for the complexity of the problem or if
suboptimal training prevents the network from making use of enough parameters2. An example
of suboptimal training would be that the gradient descent algorithm settles on a local minimum
instead of the global minimum. Underfitting corresponds to fitting a low order polynomial to
data points from a higher order polynomial shown by the red cubic fit in Fig. 5.7. Such a fit
has large errors for almost all data points.
Underfitting can be fought by increasing the network’s size, e.g. by adding parameters. Ad-

ditionally, it can be tackled by removing unnecessary complexity from the task to solve, e.g.
finding a representation of CW signals such that the input size can be smaller without loos-

2This can also be interpreted as the problem being too hard for the current network to solve.
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original polynomial

cubic fit

5th degree fit

20th degree fit

data points

Figure 5.7.: Fitting a fifth degree polynomial (blue, dotted) from some noisy data points (blue)
with a cubic polynomial (red), with a 20th degree polynomial (orange) and with
a fifth degree polynomial (green). Only the fifth degree polynomial fit approxi-
mates the original function with a low error and would give good predictions for
newly added data points. The 20th degree polynomial overfits and the third degree
polynomial underfits the data.

ing information. If regularization layers are used, removing them can also help improve the
performance.

5.4.3. Network Architecture and Hyperparameters

As mentioned in the last section, overfitting and underfitting can be caused by a non-optimal
algorithm, i.e. non-optimal network architecture or training . Especially if the available amount
of data is limited, improving the algorithm is the only way of avoiding over- and underfitting
and improving the network’s performance. For that purpose, the algorithm usually contains
many hyperparameters which can be adjusted to improve performance.

Hyperparameters are parameters that are not determined by the training loop of the neural
network, but instead parameters, which determine how well a network trains and performs after
training with a certain data set. It includes the number and type of the layers in the network, the
types of activation functions used, the weight initialization at the start of the training, the choice
of optimizer, the Batch size and the learning rate. The number of possible hyperparameters is
very large and it will only be possible to tweak a limited number of parameters. In this work
we therefore only briefly discuss a few approaches to optimizing some of the hyperparameters.
A more detailed discussion can be found in [150].
The most common approach is manual hyperparameter optimization, where the developer

improves the performance by trial and error. Often the success depends on the intuition of the
machine-learning developer as there are no fixed rules. Algorithm-based approaches on the other
hand require significantly more effort to set up but usually deliver better results [147].
For a long time, the learning rate η was arguably considered as the most important hyperpa-

rameter [150]. However, as presented in Sec. 5.3.2, some modern optimizers like Adadelta [164]
are adaptive learning rate algorithms and can achieve similar results as algorithms with hand-
picked learning rates. Testing this type of optimizer therefore might bring more performance
improvement than tweaking the learning rate.
The batch size is often picked as the largest possible size which fits into the memory of the

GPU used for training. A larger batch size reduces the noise in the gradient calculation and
therefore usually reaches the minimum faster. The choice of batch size is often connected to the
learning rate as using small learning rates with large batch sizes can avoid some of the problems
of large batch sizes discussed in Sec. 5.3.2 [150].
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Most hyperparameters are defined by the network architecture. Optimizing all of them can
be quite difficult and costly. Therefore, many researchers do not start from scratch, but with an
architecture that has shown success in other related fields of research 3. These networks can then
be tuned and tested on a validation data set for a different problem. It is often useful to start
with a network with more parameters than actually needed and prevent overfitting with either
regularization or by improving the training set. The reverse, starting with a small network and
fighting underfitting, is usually more difficult [150].
As discussed in Sec. 5.2, it can be shown that a neural network can approximate every

function if the DNN has enough neurons. However, in many cases fewer neurons are required
if they are distributed over more layers. Hence, having a deeper network is often advantageous
[155]. On the other hand, deeper networks often have the problem that gradients in early layers
tend towards zero. This is called the vanishing gradient problem and will be discussed in Sec.
5.4.4.

5.4.4. Vanishing Gradient Problem

An often occurring problem especially in deep neural networks is the vanishing gradient problem.
As we discussed in section 5.3.1 the network calculates the gradient by recursively calculating
error terms δl, effectively propagating the error backwards through the network. Due to the
many products of eq. (5.16) the gradients for the early layers can get very small if the weights
in later layers are smaller than one. Ultimately, the gradient corrections sometimes are so small
that no meaningful change in the weights of the earlier layers happens during the gradient
descent update. This problem gets worse when a network becomes deeper and deeper, as more
and more layers are added [150]. A more detailed study of the reasons for this problem can be
found in [158].
This problem was known for a long time and contributed to the partial abandonment of neural

networks in the early 2000s. Since then, however, the problem has been partially alleviated when
a connection to using saturating activation functions was discovered [158]. By changing from
the nature-inspired sigmoid activation function to non-saturating activation functions such as
the Rectified Linear Unit function (ReLU) (cf. 5.2) the gradient is kept large for arbitrarily
large input values [150].
However, as mentioned in Sec. 5.4.3, it is often advantageous to use deeper networks. Hence,

neural networks became deeper and the problem of vanishing gradients reappeared. For networks
only consisting of dense layers a permanent solution has been found: the SELU activation
function (see [161] and Fig. 5.4) can have a self-normalizing effect in dense networks. For some
non-dense architectures, e.g. networks with skip connections or Inception modules (cf. Sec.
5.5.4) as used for the CW search in Chs. 7 and 8, the vanishing gradient problem can still occur
and other activation functions might outperform SELU [150].
Popular methods to fight the vanishing gradients problem include normalizing the inputs,

Batch normalization layers (cf. sec. 5.5.3) and residual connections (cf. sec. 5.5.4).
The opposite problem is less common. If many large terms are multiplied, the gradient

corrections for the early layers become too large. This is called the exploding gradients problem
[150]. Besides normalization and Batch normalization, one common approach to fighting this
problem is gradient clipping, i.e. clipping a gradient if it exceeds a fixed maximum value (see
[168]).

3From personal communication of the author at the Deep Learning Bootcamp 2017, Dresden https://indico.
mpi-cbg.de/event/42/overview
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5.5. Advanced Concepts
5.5.1. Convolutional Layer
We often want to detect local features independently of their position in the input data. This
translational invariance can be achieved by using convolutional layers.
In a convolutional layer the neurons are not connected to every single neuron of the previous

layer but are connected only to a small area called the receptive field. This receptive field is then
slid over the input giving one output neuron per application (see Fig. 5.8a). In a convolutional
layer the weights are shared between neurons, i.e. we construct a filter consisting of one weight
for every neuron in the receptive field. If we consider multiple convolutional layers the receptive
field of the last layer in the first input grows with every layer (see Fig. 5.8d. Sometimes the
receptive field of a single layer is shifted by more than one neuron from one output neuron to
the next to spread out the receptive field even more. The step size is usually called stride.

Due to the limited receptive field, single convolutional layers can only detect small low-level
features, e.g. edges or corners, in the receptive field. However, sliding the filter makes sure that
the network learns to detect a certain feature independently of its position in the input. Stacking
these layers leads to a hierarchical combination of smaller features to large scale features, e.g.
geometrical shapes, faces, cars, animals, etc. [150]. With each additional convolutional layer
the receptive field with respect to the input data is increased. Stacking enough convolutional
layers therefore allows contributions from the entire input in a single filter (see Fig. 5.8d).
Furthermore, because a certain feature is detected independently of its position, a network with
enough convolutional layers will often have a translational invariance of features. This is very
important in image recognition in order to recognize e.g. a cat at any position in the image. It
is also relevant for our use case of CW searches as it ensures that signals will be detected by
their shape no matter the exact position in the frequency band (cf. Sec. 7.3).
The sliding of the receptive field also allows fully convolutional networks to not require a fixed

input size. However, this ability breaks down as soon as a dense layer is added to the network.
Nevertheless, many networks, e.g. AlexNet [169] and ResNet[170], make use of dense layers at
the end because they are good at classifying the data dependent on the features detected by
convolutional layers.
A single filter would only allow a convolutional layer to detect a single feature. Instead a

convolutional layer uses multiple filters producing a respective output for every single one of
them. These outputs are called feature maps as they encode where in the input the different
features can be found. Technically these feature maps are stored in an additional dimension with
the size equaling the number of filters. This is the channels dimension of the neural network
introduced in Sec. 5.2. If the input to a convolutional layer already possesses multiple channels,
e.g. a color picture with RGB channels, the convolutional filters always extend over the entire
channels dimension (see Fig. 5.8c), thereby relating features from different channels.
The filter size and the number of filters fix the number of weights in a convolutional layer,

making it independent of the number of neurons in the previous layer. In a dense network every
added neuron in the input adds weights for every neuron in the previous dense layer: the number
of weights grows linearly with the number of neurons. The number of weights in a convolutional
layer

NConv
weights = c · f (5.28)

is just the product of the number of feature maps or channels c and the size of the filter f .
Hence, a convolutional neural network can cover a large input with far less parameters than a
dense network, making it computationally cheaper. However, convolutional layers rely on the
data to be separable in features. Dense networks on the other hand are input agnostic.
The output of a convolutional layer is typically smaller than the input size, as the receptive

field cannot be centered on the edges of the input shape. To keep the output size the same as the
input size, the input is usually zero-padded to avoid these size losses at the edge (see Fig. 5.8b).
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If a stride > 1 is used, the output will be even further decreased in size. This is usually done
intentionally to reduce the computational cost of subsequent layers. However, in most cases this
task can be fulfilled better by pooling layers.
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Figure 5.8.: Application of a size 3 filter in a convolutional layer: In a simple convolutional layer
(a) the filter is moved over the input a, giving a smaller output b. Often the edges
are zero-padded (b) to keep the output the same size as the input. If the input
has multiple channels (two channels in example (c)) the filter has three weights per
channel and the receptive field extends over all channels. If multiple convolutional
layers are stacked (e.g. two filter size 3 layers in (d)), the network’s receptive field,
measured on the input a, grows.

5.5.2. Pooling Layers

A Pooling layer is similar to a convolutional layer in the sense that it possesses a receptive field
which moves over the input data for the different output neurons. However, instead of learning
a filter, i.e. a linear transformation, it performs a fixed operation: typically either taking the
maximum or the average over the receptive field [147]. Pooling layers usually work with a stride
such that the receptive fields of the neurons do not overlap.
A common problem for convolutional layers is the large amount of memory required to store

values calculated during the forward pass and needed for the backpropagation algorithm [150].
The convolutional layer is well suited for extracting features from data but it usually only slightly
decreases the data in size and sometimes even enlarges the data by adding more channels. Pool-
ing layers are therefore introduced to downsample the input such that following convolutional
layers are computationally more efficient [150]. Reducing the size of the network in that way
allows for more stacked layers and therefore often improves performance [147].
Furthermore, pooling layers help a convolutional network to be locally translational invariant.

A pooling layer combines neighbouring input neurons in a feature map essentially keeping only
the information that the feature is in any of the inputs covered by its receptive field [150].
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The most common type of pooling layer described here is applied channel by channel only
reducing the input dimensions. A different type, so-called depth-wise pooling layers, specifically
pool different features together, combining for example rotated versions of the same feature. For
a similar purpose, convolutional neural networks sometimes use convolutional bottleneck layers:
convolutional layers with a filter size of one and a smaller number of channels than the input.
This forces the network to combine feature maps with a weighted sum, creating higher level
features. We will come back to these in Sec. 5.5.4.

5.5.3. Normalization and Batch Normalization
An important step to successfully train a neural network is input normalization. If the input is
not normalized, the different input samples often lead to very differently scaled weight deriva-
tives. This can produce conflicting gradients slowing down the learning process significantly.
While input normalization fixes this problem for the input, a similar problem can occur between
any two layers of the network.
Batch normalization introduced by Ioffe and Szegedy in 2015 [171] adds a normalization layer

just before or after all or some of the activation functions in the network. It allows the network to
learn the optimal normalization for the inputs of each layer in the network. Batch Normalization
helps with gradient propagation through the network. The vanishing gradient problem of Sec.
5.4.4 can be fought quite successfully with this technique.
A batch normalization layer introduces two trainable parameters β and γ per channel, which

are the optimal mean and scale of the output. The layer first zero-centers and normalizes the
input x with the estimated input mean µB and standard deviation σB calculated over all input
dimensions and over a batch of input samples.

x̂i = xi − µB√
σ2
B + ε

(5.29)

where ε is a small constant preventing divisions by zero and the indices i numerate the samples in
the batch of data. The normalized input x̂ is then rescaled and offset by the learned parameters
setting the mean and standard deviation of the output to β and γ, respectively:

yi = γx̂i + β. (5.30)

During training Batch normalization calculates the mean µB and standard deviation σB over
a batch of data. However, when we apply a network, we can in general not expect to have a
batch of data. We might only have a single data sample and hence cannot calculate the mean
and standard deviation in the presented way. Thus, the Batch Normalization layer possesses
additional learned parameters determined during training but separately from the usual back-
propagation algorithm: a moving mean µ and standard-deviation σ of the input replacing the
batch mean and standard deviation. It is updated after every batch as

µ′ = mµ+ (1−m)µB (5.31)
σ′ = σ2 + (1−m)σ2

B (5.32)

with momentum term m ≈ 0.99 [150].

5.5.4. Residual Connections and Inception Modules
Two additional concepts became popular after causing significant improvements in the image
classification on the ImageNet data set [172]: Inception [173] and residual [170] networks. They
won the ILSVRC contest4 in 2014 and 2015 respectively.

4The Imagenet large scale visual recognition challenge [174] was an annually conducted contest from 2010 to
2017 which looked for the best performing algorithm in various visual recognition tasks, especially on the
ImageNet data set.

47



5. Deep Learning

Residual networks introduce residual connections, also called skip or shortcut connections, in
the network. These are connections of non-neighbouring layers. For example, they may connect
a layer l directly to the layer l + 2 (see Fig. 5.9a). This residual connection adds the output
of the previous layer to the output of the circumvented part of the network and applies the
activation function after the sum. Let us assume without the skip connection layer l+ 1 in Fig.
5.9a approximates a function T (yl). If we now add the skip connection passing layer l + 2 the
approximated function changes to [150]

T̄ (yl) = T (yl) + yl. (5.33)

Especially after initialization layers often have very small weights and an output close to zero.
A layer with a residual connection reproduces the input instead. If we look at the gradient
calculation for the weights of layer l, the derivative

∂T̄

∂wl
= ∂T

∂wl
+ ∂yl

∂wl
= ∂T

∂wl
+ a′(zl)yl−1 (5.34)

does not vanish even if ∂T
∂wl

does. Therefore, if in a non-residual network the gradient for wl
vanishes when we propagate it through layer l+1 (cf. Secs. 5.4.4 and 5.3.1), this cannot happen
with the skip connection. It allows the gradient to “flow around” those parts of the network that
diminish the gradient, making sure that the layers earlier in the network can still be trained.
Therefore, residual connections allow to train deeper networks and usually speed up the training
as well [170].
Inception modules or blocks were introduced in [173]. Inception modules have layers working

in parallel instead of sequential and usually replace simple convolutional layers. Instead of a
single convolutional layer with a fixed filter size, the Inception module trains and calculates
multiple layers from a shared input. Each layer calculated from the initial input starts its own
sub-sequence of layers, which we will call columns (see Fig. 5.9b). Typically in the columns
the Inception module contains convolutional layers with different filter sizes and pooling layers
(see Fig.5.9b). After a couple of layers in each column the column outputs are recombined by
concatenating the resulting feature maps in the channels dimension.
Hereby, zero-padding ensures (see Fig. 5.8b) that the feature maps of the different convo-

lutional layers have the same input-dimension sizes and can be concatenated. The different
filter sizes in the columns allow the network to learn differently-scaled features. Furthermore,
the different paths in the Inception block often contain additional convolutional layers with size
one. These filters cannot identify features along the input dimensions but only along the channel
dimension. They are usually used to combine different features and reduce the size of the data.
Therefore, each of the differently sized convolutional layers in the Inception module can have
many feature maps but the combined output of the Inception module is kept relatively small.
The construction of the Inception module makes training a network with the same number of
parameters as a sequential convolutional network much more efficient and effective. Hence, it is
also possible to make deeper networks with Inception module, improving performance further
[150].
The combination of residual connections and Inception modules brought further improvements

in the field of image recognition in the form of the InceptionResnet architecture [175]. The
networks developed in the context of this work to search for continuous gravitational waves
make use of both: residual connections and Inception modules. They are 1D adaptations of the
2D networks presented in [170] and [175]. One InceptionResnet block used in Ch. 8 is illustrated
in Fig. 5.10.
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layer l

layer l + 1

+

activation

layer l + 2

+

activation

layer l + 3

(a) residual connections

previous layer (64)

Conv1D(32,1) Conv1D(32,1)

Conv1D(32,5)

Conv1D(32,3)

Conv1D(16,1)

MaxPooling(3)

Conv1D(16,1)

concatenate channels (96)

(b) Inception module

Figure 5.9.: (a) Residual connections (red) allow the network to skip for example the layers l+1
or l + 2. The gradient calculation is therefore less affected by the weights of the
circumvented layers improving the gradient calculation for earlier layers. Inception
modules (b) use parallel layers with different filter sizes to allow more diverse features
to be detected. In this figure the notation Conv1D(c,f) denotes a 1D convolutional
layer with a filter size of f , c feature maps and a stride of 1. MaxPooling(3) is a max
pooling layer with a receptive field of 3 and a stride of 3. In the end the columns in
the Inception module are combined by concatenation resulting in 96 channels. The
previous layer had 64 channels.

previous layer

Conv1D(32,1)
Conv1D(32,1)

Conv1D(32,5)

Conv1D(32,1)

Conv1D(48,5)

Conv1D(64,5)

concatenate (128)

Conv1D(384,1)
+

ReLU activation

Figure 5.10.: Inception-ResNet-A block as used in Ch. 8 with the same notation as in Fig.
5.9. The residual connection (red) skips the entire Inception module. Compared
to the original block (see Fig. 16 in [175]) the 3 × 3 filters were replaced by one
dimensional filters of size 5. The other InceptionResNet-v2 blocks were adapted
similarly.
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6. Fast and Accurate Sensitivity Estimation for
Continuous-Gravitational-Wave Searches

This chapter is essentially a reprint of the paper published as Dreissigacker, Prix, and Wette
[28], with minor changes and reformatting as a chapter of this thesis.

6.0. Abstract
This chapter presents an efficient numerical sensitivity-estimation method and implementation
for continuous-gravitational-wave searches, extending and generalizing an earlier analytic ap-
proach by Wette [29]. This estimation framework applies to a broad class of F-statistic-based
search methods, namely (i) semi-coherent StackSlide F-statistic (single-stage and hierarchical
multi-stage), (ii) Hough number count on F-statistics, as well as (iii) Bayesian upper limits on
F-statistic search results (coherent or semi-coherent). We test this estimate against results from
Monte-Carlo simulations assuming Gaussian noise. We find the agreement to be within a few %
at high detection (i.e. low false-alarm) thresholds, with increasing deviations at decreasing detec-
tion (i.e. higher false-alarm) thresholds, which can be understood in terms of the approximations
used in the estimate. We also provide an extensive summary of sensitivity depths achieved in
past continuous-gravitational-wave searches (derived from the published upper limits). For the
F-statistic-based searches where our sensitivity estimate is applicable, we find an average rel-
ative deviation to the published upper limits of less than 10%, which in most cases includes
systematic uncertainty about the noise-floor estimate used in the published upper limits.

6.1. Introduction
The recent detections of gravitational waves from merging binary-black-hole and double neutron-
star systems [1, 2, 176] have opened a whole new observational window for astronomy, allowing
for new tests of general relativity [64], new constraints on neutron star physics [82] and new
measurements of the Hubble constant [4], to mention just a few highlights.
Continuous gravitational waves (CWs) from spinning non-axisymmetric neutron stars repre-

sent a different class of potentially-observable signals [85, 177], which have yet to be detected
[91]. These signals are expected to be long-lasting (at least several days to years) and quasi
monochromatic, with slowly changing (intrinsic) frequency. The signal amplitude depends on
the rich (and largely not yet well-understood) internal physics of neutron stars [178], as well as
their population characteristics [78, 179]. A detection (and even non-detection) of CWs could
therefore help us better understand these fascinating astrophysical objects, and may allow for
new tests of general relativity [67, 68].

Overview of Search Categories
We can categorize CW searches in two different ways: either based on the search method, or on
the type of explored parameter space.

The search methods fall into two broad categories: coherent and semi-coherent (sometimes also
referred to as incoherent). Roughly speaking, a coherent search is based on signal templates
with coherent phase evolution over the whole observation time, while semi-coherent searches
typically break the data into shorter coherent segments and combine the resulting statistics
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from these segments incoherently (i.e. without requiring a consistent phase evolution across
segments). However, there are many different approaches and variations, which are beyond the
scope of this work, see e.g. [91] for a more detailed overview. Here we will exclusively focus
on coherent and semi-coherent methods based on the F-statistic, which will be introduced in
Sec. 6.2.
Coherent search methods are the more sensitive in principle, but in practice they suffer from

severe computing-cost limitations: For finite search parameter spaces the required number of
signal templates grows as a steep power-law of the observation time, making such searches
infeasible except when the search region is sufficiently small. For larger signal parameter spaces
the observation time needs to be kept short enough for the search to be computationally feasible,
which limits the attainable coherent sensitivity. This is where semi-coherent searches yield
substantially better sensitivity at fixed computing cost (e.g. see [126, 180]).
Based on the explored parameter space, we distinguish the following search categories (refer-

encing a recent example for each case):

(i) Targeted searches are looking for CW emission from known pulsars [181]. The pulsar spin
evolution, the sky position and possibly the binary orbital parameters of these systems
are known very accurately. Assuming a fixed relationship between pulsar spin and CW
frequency, these searches therefore only need to target a single point in parameter space
for each pulsar. Hence these searches are done with an optimal fully-coherent search [182].

(ii) Narrow-band searches for known pulsars assume a small uncertainty in the relationship
between CW frequency and the measured pulsar spin rates. This finite search parameter
space requires a template bank with (typically) many millions of templates, still allowing
for optimal fully-coherent search methods to be used [183].

(iii) Directed (isolated) searches aim at isolated neutron stars with known sky-position and
unknown spin frequency. The search parameter space covers the unknown frequency and
spindowns of the neutron star signal within an astrophysically-motivated range [184, 185].

(iv) (Directed) binary searches aim at binary systems with known sky-position and parameter-
space uncertainties in the frequency and binary-orbital parameters. Typically these sources
would be in low-mass X-ray binaries, with the most prominent example being Scorpius X-1
(Sco X-1)) [135, 186].

(v) All-sky (isolated) searches search the whole sky over a large frequency (and spindown)
band for unknown isolated neutron stars [187, 188].

(vi) All-sky binary searches are the most extreme case, covering the whole sky for unknown
neutron stars in binary systems [100, 189].

Sensitivity Estimation
In this work we use the term sensitivity to refer to the upper limit on signal amplitude h0 (or
equivalently sensitivity depth D ≡

√
S/h0, see Sec. 6.2.5). This can be either the frequentist

upper limit for a given detection probability at a fixed false-alarm level (p-value), or the Bayesian
upper limit at a given credible level for the given data.
Sensitivity therefore only captures one aspect of a search, namely how “deep” into the noise-

floor it can detect signals, without accounting for how “wide” a region in parameter space is
covered, how much prior weight this region contains, or how robust the search is to deviations
from the signal model. Comparing sensitivity depth therefore only makes sense for searches over
very similar parameter spaces. A more complete measure characterizing searches would be their
respective detection probability, which folds in sensitivity depth, breadth in parameter space,
as well as the prior weight contained in that space [190, 191].
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However, it is often useful to be able to reliably and cheaply estimate the sensitivity of a
search setup without needing expensive Monte-Carlo simulations:

• In order to determine optimal search parameters for a semi-coherent search (i.e. the num-
ber and semi-coherent segments and template-bank mismatch parameters), it is important
to be able to quickly asses the projected sensitivity for any given search-parameter com-
bination (e.g. see [180, 190–192]).

• For setting upper limits for a given search, one typically has to repeatedly add software-
generated CW signals to the data and perform a search, in order to measure how often these
signals are recovered above a given threshold. By iterating this procedure one tries to find
the weakest signal amplitude that can be recovered at the desired detection probability (or
“confidence”). This can be very computationally expensive, and a quick and reasonably-
reliable estimate for the expected upper-limit amplitude can therefore substantially cut
down on the cost of this iterative process, which can also improve the accuracy of the
upper limit.

• The estimate can also serve as a sanity check for determining upper limits1.

A number of theoretical sensitivity estimates have been developed over the past decades. One
of the first estimates was obtained for a coherent F-statistic search [193], yielding

h0 = 11.4
√
S

Tdata
, (6.1)

for a 90% confidence upper limit at 1% false-alarm (per template). S denotes the (single-sided)
noise power spectral density, and Tdata is the total duration of data from all detectors, e.g. for
a search spanning one day (i.e. Tspan = 24 h), one detector could have yielded 18 h of (possibly
non-contiguous) usable data and another detector 16 h, giving a total of Tdata = 34 h.
This first estimate was later generalized to the semi-coherent Hough [130] and StackSlide

method [194, 195], yielding an expression of the form

h0 = κN1/4
seg

√
S

Tdata
, with κ ∼ 7− 9 , (6.2)

for the same confidence and false-alarm level as Eq. (6.1), and where Nseg denotes the number
of semi-coherent segments.
These latter results suggested the inaccurate idea that the sensitivity of semi-coherent searches

follows an exact N1/4
seg scaling. However, this was later shown [29, 180] to not be generally a

good approximation except asymptotically in the limit of a large number of segments (Nseg &
100− 1000).

Furthermore, these past sensitivity estimates relied on the assumption of a “constant signal-
to-noise ratio (SNR)” population of signals. While this approximation substantially simplifies
the problem, it introduces a noticeable bias into the estimate, as discussed in more detail in [29].
For example, the constant-SNR bias combined with the incorrect N1/4

seg scaling in Eq. 6.2 would
result in an overestimate by a factor of two of the sensitivity of the first Einstein@Home search
on LIGO S5 data [196].
These limitations of previous sensitivity estimates were eventually overcome by the ana-

lytic sensitivity-estimation method developed by Wette for semi-coherent StackSlide F-statistic
searches. In this work we simplify and extend this framework by employing a simpler di-
rect numerical implementation. This further improves the estimation accuracy by requiring

1In fact, in the course of this work we have identified a bug in the upper-limit script of a published result, while
trying to understand the discrepancy between the estimate and the published value, see Sec. 6.6.3.
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fewer approximations. It also allows us to generalize the framework to multi-stage hierarchical
StackSlide-F searches, Hough-F searches (such as [196]), as well as to Bayesian upper limits
based on F-statistic searches.

Plan of this Chapter

Sec. 6.2 provides a description of the CW signal model and introduces different F-statistic-based
search methods. In Sec. 6.3 we present the sensitivity-estimation framework and its implementa-
tion, for both frequentist and Bayesian upper limits. Section 6.4 discusses how (frequentist) up-
per limits are typically measured using Monte-Carlo injection-recovery simulations. Section 6.5
provides comparisons of our sensitivity estimates to simulated upper limits in Gaussian noise,
while in Sec. 6.6 we provide a comprehensive summary of published sensitivities of past CW
searches (translated into sensitivity depth), and a comparison to our sensitivity estimates where
applicable. We summarize and discuss the results in Sec. 6.7. Further details on the referenced
searches and upper limits are given in appendix 6.8. More technical details on the signal model
can be found in appendix 6.9. Finally, appendix 6.11 contains a discussion of the distribution
of the maximum F-statistic over correlated templates.

6.2. F-statistic-based Search Methods
This section provides an overview of the F-statistic-based search methods for which sensitivity
estimates are derived in Sec. 6.3. Further technical details about the signal model and the F-
statistic are given in appendix 6.9. For a broader review of the CW signal model, assumptions
and search methods, see for example [85, 91, 177]

6.2.1. Signal Model

For the purpose of sensitivity estimation we assume the data time series xX(t) from each detector
X to be described by Gaussian noise, i.e. nX(t) ∼ Gauss(0,SX) with zero mean and (single-
sided) power-spectral density (PSD) SX . A gravitational-wave signal creates an additional strain
hX(t) in the detector, resulting in a time series

xX(t) = nX(t) + hX(t) . (6.3)

For continuous gravitational waves the two polarization components can be written as

h+(τ) = A+ cos (φ(τ) + φ0) ,
h×(τ) = A× sin (φ(τ) + φ0) ,

(6.4)

where φ(τ) describes the phase evolution of the signal in the source frame. For the quasi-periodic
signals expected from rotating neutron stars, this can be expressed as a Taylor series expansion
around a chosen reference time (here τref = 0 for simplicity) as

φ(τ) = 2π(f τ + 1
2 ḟ τ

2 + . . .) , (6.5)

in terms of derivatives of the slowly-varying intrinsic CW frequency f(τ). For a triaxial neutron
star spinning about a principal axis, the two polarization amplitudes are given by

A+ = 1
2h0 (1 + cos2 ι) , A× = h0 cos ι , (6.6)

in terms of the angle ι between the line of sight and the neutron star rotation axis and the overall
signal amplitude h0. This definition uses the gauge condition of A+ ≥ |A×|. After translating
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the source-frame signal into the detector frame (see appendix 6.9 for details), the strain signal
hX(t) at each detector X can be expressed in the factored form

hX(t;A, λ) =
4∑

µ=1
Aµ hXµ (t;λ) , (6.7)

which was first shown in [102], and where the four amplitudes Aµ depend on the amplitude
parameters {h0, cos ι, ψ, φ0} as given in Eq. 6.60). The four basis functions hXµ (t;λ), which
are given explicitly in Eq. (6.61), depend on the phase-evolution parameters λ = {n̂, f, ḟ , . . .},
namely sky position n̂, frequency f and its derivatives f (k) = dkf/dτk

∣∣∣
τref

, and binary-orbital
parameters in the case of a neutron star in a binary.

6.2.2. Coherent F-statistic
For pure Gaussian-noise time series {nX(t)} in all detectors X, the likelihood can be written as
(e.g. see[116–118]):

P (x = n | S) = κ e−
1
2 (n,n) , (6.8)

in terms of the multi-detector scalar product

(x, y) ≡ 4 Re
∑
X

∫ ∞
0

x̃X(f) ỹX∗(f)
SX(f) df , (6.9)

where x̃(f) denotes the Fourier transform of x(t), and x∗ denotes complex conjugation of x.
Using the additivity of noise and signals (cf. Eq. (6.3)), we can express the likelihood for data
x, assuming Gaussian noise plus a signal h(A, λ) as

P (x | S,A, λ) = P (x− h(A, λ) | S)

= κ e−
1
2 ((x−h),(x−h)) . (6.10)

From this we obtain the log-likelihood ratio between the signal and noise hypotheses as

ln Λ(x;A, λ) ≡ ln P (x | S,A, λ)
P (x | S)

= (x, h)− 1
2 (h, h) . (6.11)

Analytically maximizing the log-likelihood ratio over A (c.f. appendix 6.9) yields the F-statistic
[102]:

F(x;λ) ≡ max
A

ln Λ(x;A, λ) (6.12)

The statistic 2F follows a χ2-distribution with four degrees of freedom and non-centrality ρ2,

P (2F | ρ2) = χ2
4(2F ; ρ2) , (6.13)

with expectation and variance

E[2F ] = 4 + ρ2 , var[2F ] = 8 + 4ρ2 , (6.14)

where ρ corresponds to the signal-to-noise ratio (SNR) of coherent matched filtering.
In the perfect-match case, where the template phase-evolution parameters λ coincide with the

parameters λs of a signal in the data x, the SNR can be explicitly expressed as

ρ2
0 ≡ (h, h) = 4

25
h2

0
S
Tdata R

2(θ) , (6.15)
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where Tdata is the total duration of data from all detectors2, S denotes the multi-detector noise
floor (defined in Eq. (6.19) and (6.20)), and R(θ) is a geometric factor quantifying the detector
response.
The response function R(θ) (following the definition in [29]) depends on the subset of signal

parameters
θ ≡ {n̂, cos ι, ψ} , (6.16)

and is defined with the normalization: 〈
R2
〉
θ

= 1 . (6.17)

The explicit expression of R2 can be found in appendix 6.10. Using this normalization with
Eq. (6.15) we can recover the well-known sky- and polarization-averaged squared-SNR expression
(e.g. see [102]): 〈

ρ2
0

〉
θ

= 4
25
h2

0
S
Tdata . (6.18)

The multi-detector noise-floor S is defined as the harmonic mean over the per-detector PSDs
SX , namely

1
S
≡ 1
N

∑
X

1
SX

. (6.19)

Note that in practice CW searches do not assume stationary noise over the whole observation
time Tspan, but only over short durations of order ∼ 30 mins. This corresponds to the length
of the Short Fourier Transforms (SFTs) that are typically used as input data. The present
formalism can straightforwardly be extended to allow for this type of non-stationarity [197]. In
this case the definition Eq. (6.19) of the multi-detector noise-PSD S generalizes to the harmonic
mean over all SFTs,

1
S
≡ 1
NSFT

∑
α

1
Sα

, (6.20)

where α is an index enumerating all SFTs (over all detectors), and Sα is the corresponding noise
PSD estimated for SFT α.

6.2.3. Semi-coherent F-statistic Methods

Semi-coherent methods [126] divide the data into Nseg segments each spanning a duration
Tseg < Tspan. The segments are analyzed coherently, and the per-segment detection statis-
tics are combined incoherently. Generally this yields lower sensitivity for the same amount of
data analyzed than a fully-coherent search. However, the computational cost for a fully-coherent
search over the same amount of data is often impossibly large, while the semi-coherent cost can
be tuned to be affordable and hence ends up being more sensitive at fixed computing cost [126,
129, 180].
There are a number of different semi-coherent methods currently in use, such as PowerFlux,

FrequencyHough, SkyHough, TwoSpect, CrossCorr, Viterbi, Sideband, loosely-coherent statis-
tics and others (e.g. see [91] and references therein). Many of these methods work on short
segments, typically of length Tseg ∼ 30 min, and directly use the power in the frequency bins of
Short Fourier Transforms (SFTs) as the coherent base statistic.
In this work we focus exclusively on sensitivity estimation of F-statistic-based methods,

namely StackSlide-F (e.g. see [180]) and Hough-F introduced in [130]. Here the length of
segments is only constrained by the available computing cost, and segments will typically span
many hours to days, which yields better sensitivity, but also requires higher computational cost.

2Not to be confused with the observation time Tspan, denoting the total time between the first sample of the
data and the last.
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Therefore, many of the computationally expensive semi-coherent F-statistic searches are run on
the distributed Einstein@Home computing platform [7].
Note that these methods, which use multiple SFTs for every segment, are not to be confused

with the (albeit closely related) “classical” StackSlide and Hough methods, which use single
SFTs directly as coherent segments, as described for example in [195].

StackSlide-F : Summing F-statistics

The StackSlide-F method uses the sum of the coherent per-segment F̃-statistic values in a given
parameter-space point λ as the detection statistic, namely

2F̂ ≡
Nseg∑
`=1

2F̃` , (6.21)

where F̃` is the coherent F-statistic of Eq. (6.12) in segment `. This statistic follows a χ2-
distribution with 4Nseg degrees of freedom and non-centrality ρ2, i.e.

P (2F̂ | ρ2) = χ2
4Nseg(2F̂ ; ρ2) , (6.22)

where the non-centrality ρ2 is identical to the expression for the coherent squared SNR of
Eq. (6.15), with Tdata referring to the whole data set used, and S is the corresponding noise floor.
However, the non-centrality in the semi-coherent case cannot be considered a “signal to noise
ratio”, due to the larger Nseg-dependent degrees of freedom of the χ2 distribution compared to
Eq. (6.13), which increases the false-alarm level at fixed threshold and reduces the “effective”
semi-coherent ˆSNR to ˆSNR2 = ρ2/

√
Nseg (e.g. see Eq.(14) in [198]).

The expectation and variance for 2F̂ are

E[2F ] = 4Nseg + ρ2 , var[2F ] = 8Nseg + 4ρ2 . (6.23)

We note that StackSlide-F searches often quote the average F over segments instead of the sum
F̂ , i.e.

F ≡ 1
Nseg

F̂ . (6.24)

Hough-F : Summing Threshold Crossings

The Hough-F method [130] sets a threshold F̃th on the per-segment coherent F̃-statistics and
uses the number of threshold-crossings over segments as the detection statistic, the so-called
Hough number count nc, i.e.

nc ≡
Nseg∑
`=1

Θ(F̃` − F̃th) , (6.25)

where Θ(x) is the Heaviside step function.

6.2.4. Mismatch and Template Banks
In wide-parameter-space searches the unknown signal parameters λ ∈ P are assumed to fall
somewhere within a given search space P. In this case one needs to compute a statistic (such
as those defined in the previous sections) over a whole “bank” of templates T ≡ {λi}Ni=1. This
template bank has to be chosen in such a way that any putative signal λs ∈ P would suffer only
an acceptable level of loss of SNR. This can be quantified in terms of the so-called mismatch
µ, defined as the relative loss of ρ2(λs;λ) in a template λ with respect to the perfect-match
ρ2(λs;λs) = ρ2

0 (of Eq. (6.15)), namely

µ(λs;λ) ≡ ρ2(λs;λs)− ρ2(λs;λ)
ρ2(λs;λs)

. (6.26)
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We can therefore express the “effective” non-centrality parameter ρ2
eff in a template point λ in

the F-statistic χ2-distribution of Eqs. (6.13),(6.22) as

ρ2
eff ≡ ρ2(λs;λ) = (1− µ) ρ2

0 . (6.27)

6.2.5. Sensitivity Depth
The F-statistic non-centrality parameter ρ2 depends on signal amplitude h0 and overall noise
floor S (cf. Eq. (6.20)) only through the combination h0/

√
S, as seen in Eq. (6.15). The sensi-

tivity of a search is therefore most naturally characterized in terms of the so-called sensitivity
depth [199], defined as

D ≡
√
S
h0

, (6.28)

in terms of the overall noise PSD S defined as the harmonic mean over all SFTs used in the
search, see Eq. (6.20).
A particular choice of search parameters (Nseg, Tdata, template bank) in general yields a

frequency-dependent upper limit h0(f), due to the frequency-dependent noise floor S(f). How-
ever, for fixed search parameters this will correspond to a constant sensitivity depth D, which
is therefore often a more practical and natural way to characterize the performance of a search,
independently of the noise floor.

6.3. Sensitivity Estimate
As discussed in more detail in the introduction, by sensitivity we mean the (measured or ex-
pected) upper limit on h0 for a given search (or equivalently, the sensitivity depth D =

√
S/h0),

which can either refer to the frequentist or Bayesian upper limit.

6.3.1. Frequentist Upper Limits
The frequentist upper limit is defined as the weakest signal amplitude h0 that can be detected
at a given detection probability pdet

3 (typically chosen as 90% or 95%) above a threshold dth on
a statistic d(x). The threshold can be chosen as the loudest candidate obtained in the search,
or it can be set corresponding to a desired false-alarm level pfa (or p-value), defined as

pfa(dth) ≡ P (d > dth | h0 = 0) , (6.29)

which can be inverted to yield dth = dth(pfa). The detection probability for signals of amplitude
h0 is

pdet(dth;h0) ≡ P (d > dth | h0) , (6.30)

which can be inverted to yield the upper limit h0(dth, pdet).
We can write pfa(dth) = pdet(dth;h0 = 0), and so we can express both in terms of the general

threshold-crossing probability as

P (d > dth | h0) =
∫ ∞
dth

P (d | h0) dd . (6.31)

6.3.2. Approximating Wide-parameter-space Statistics
As discussed in Sec. 6.2.4, a wide parameter-space search for unknown signals λ ∈ P normally
proceeds by computing a (single-template) statistic over a bank of templates T ≡ {λi}Ni=1 cov-
ering the parameter space P. This results in a corresponding set of (single-template) statistic

3or equivalently, false-dismissal probability pfd = 1− pdet
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values {d1(x;λi)}, which need to be combined to form the overall wide-parameter-space statistic
d(x). This would naturally be obtained via marginalization (i.e. integrating the likelihood over
P), but in practice is mostly done by maximizing the single-template statistic over T, i.e.

d(x) ≡ d∗(x) ≡ max
λi∈T

d1(x;λi) . (6.32)

Noise Case

It is difficult to determine a reliable expression for P (d∗ | h0 = 0) for the pure noise case of
Eq. (6.29), even if the single-template statistic P (d1 | h0 = 0) follows a known distribution (such
as for the F-based statistics discussed in Sec. 6.2). The reason for this difficulty lies in the
correlations that generally exist between “nearby” templates in λi ∈ T.

If all N templates were strictly uncorrelated, one could use the well-known expression
Eq. (6.73) [29, 200] for the distribution of the maximum. In this case one can also relate the
single-trial p-value p1

fa ≈ pfa/N to the wide-parameter-space p-value pfa (for p1
fa � 1).

Although it is a common assumption in the literature, template correlations do not simply
modify the “effective” number of independent templates to use in Eq. (6.73), but they generally
also affect the functional form of the underlying distribution for the maximum d∗, as illustrated
in appendix 6.11 with a simple toy model.
In this work we assume that the upper limit refers to a known detection threshold in Eq. (6.30).

This can be obtained either from (i) the loudest observed candidate (the most common situation
in real searches), or from (ii) setting a single-template p-value p1

fa and inverting the known single-
template distribution Eq. (6.29), or from (iii) a numerically-obtained relation between pfa and
the threshold dth, e.g. via Monte-Carlo simulation.

Signal Case

We assume that the highest value of d1 will be realized near the signal location, i.e.

d∗(x) ≈ d1(x;λ∗) , (6.33)

where λ∗ is the “closest” template ∈ T to the signal location λs, defined in terms of the mismatch
Eq. (6.26). This template yields the highest effective non-centrality parameter over the template
bank, namely

ρ2
eff ≡ ρ2(λs;λ∗) = (1− µ) ρ2

0(λs) . (6.34)

This assumption turns out to be valid as long as the p-value pfa is low (typically pfa . 1%) and
the signals have relatively high detection probability (typically pdet ∼ 90% or 95%). However,
in Sec. 6.5 we also encounter deviations from the predictions that can be traced to violations of
this assumption.

6.3.3. StackSlide-F Sensitivity

We first consider a semi-coherent StackSlide-F search using the summed F̂-statistic of Eq. (6.21),
i.e. d1(x;λ) = 2F̂(x;λ). This case also includes fully-coherent F-statistic searches, which simply
correspond to the special case Nseg = 1.

We see from Eq. (6.31) that in order to estimate the sensitivity, we need to know P (2F̂ | h0).
This can be obtained via marginalization (at fixed h0) of the known distribution P (2F̂ | ρ2) of
Eq. (6.22), combined with the assumption Eq. (6.34) that the highest statistic value will occur
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in the “closest” template, with mismatch distribution P (µ):

P (2F̂ | h0) =
∫
P (2F̂ , θ, µ | h0) d4θ dµ

=
∫
P (2F̂ | h0, θ, µ)P (θ)P (µ) d4θ dµ

=
∫
P (2F̂ | ρ2

eff)P (θ)P (µ) d4θ dµ , (6.35)

where ρ2
eff(h0, θ, µ) = ρ2

0(h0, θ) (1− µ) in terms of the perfect-match non-centrality ρ2
0 defined in

Eq. (6.15), and in the last step we used the fact that the distribution for 2F̂ is fully specified in
terms of the non-centrality parameter ρ2 of the χ2-distribution with 4Nseg degrees of freedom,
as given in Eq. (6.22).
Equation (6.35) requires five-dimensional integration for each sensitivity estimation, which

would be slow and cumbersome. One of the key insights in [29] was to notice that the perfect-
match SNR ρ0 of Eq. (6.15) depends on the four parameters θ only through the scalar R2(θ),
and we can therefore use a reparametrization∫

θ(R2)
P (θ) d4θ = P (R2) dR2 , (6.36)

where θ(R2) denotes the subspace of θ values yielding a particular R2 from Eq. (6.67).
The one-dimensional distribution P (R2) can be obtained by Monte-Carlo sampling over the

priors of sky-position n̂ (typically either isotropically over the whole sky, or a single sky-position
in case of a directed search) and polarization angles cos ι (uniform in [−1, 1]) and ψ (uniform
in [−π/4, π/4]). The resulting values of R2(θ) are histogrammed and used as an approximation
for P (R2), which can be reused for repeated sensitivity estimations with the same θ-priors. We
can thus rewrite Eq. (6.35) as

P (2F̂ | h0) =
∫
P (2F̂ | ρ2

eff)P (R2)P (µ) dR2 dµ , (6.37)

with

P (2F̂ | ρ2
eff) = χ2

4Nseg(2F̂ ; ρ2
eff) , (6.38)

ρ2
eff(h0, R

2, µ) = 4
25

h2
0
S
Tdata R

2 (1− µ) . (6.39)

The mismatch distribution P (µ) for any given search can be obtained via injection-recovery
Monte-Carlo simulation, where signals are repeatedly generated (without noise) and searched
for over the template bank, obtaining the corresponding mismatch µ for each injection. This
is a common step in validating a search and template-bank setup. Alternatively, for some
search methods pre-computed estimates for the mismatch distributions exist as a function of
the template-bank parameters, e.g. for the Weave search code [145].
Inserting Eq. (6.37) into the detection probability of Eq. (6.31), we obtain

pdet(2F̂th;h0) =
∫
pdet(2F̂th; ρ2

eff)P (R2)P (µ) dR2 dµ , (6.40)

where
pdet(2F̂th; ρ2

eff) ≡
∫ ∞

2F̂th
χ2

4Nseg(2F̂ ; ρ2
eff) d2F̂ . (6.41)

Equation (6.40) can be easily and efficiently computed numerically, and simple inversion (via
1-D root-finding) yields the sensitivity (i.e. upper limit) h0 for given detection probability pdet
and threshold 2F̂th.
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6.3.4. Multi-stage StackSlide-F Sensitivity
The sensitivity estimate for a single StackSlide-F search can be generalized to hierarchical multi-
stage searches, where threshold-crossing candidates of one search stage are followed up by deeper
subsequent searches in order to increase the overall sensitivity (e.g. see [126, 129, 139, 188, 201]).
We denote the n stages with an index i = 1 . . . n. Each stage i is characterized by the number
N

(i)
seg of segments, the amount of data T (i)

data, the noise PSD S(i), a mismatch distribution P (µ(i)),
and a threshold 2F̂ (i)

th (corresponding to a false-alarm level p(i)
fa at that stage).

The initial wide-parameter-space search (stage i = 1) yields candidates that cross the threshold
2F (1)

th in certain templates {λ}. The next stage follows up these candidates with a more sensitive
search, which can be achieved by reducing the mismatch µ(i) (choosing a finer template bank
grid), or by increasing the coherent segment length (and reducing the number of segments N (i)

seg).
Often the final stage i = n in such a follow-up hierarchy would be fully coherent, i.e. N (n)

seg = 1.
In order for any given candidate (which can be either due to noise or a signal) to cross the

final threshold 2F (n), it has to cross all previous thresholds as well, in other words Eqs. (6.29)
and (6.30) now generalize to

p
(tot)
det (h0) = P ({2F̂ (i) > 2F̂ (i)

th }
n
i=1 | h0) . (6.42)

In order to make progress at this point we need to assume that the threshold-crossing probabil-
ities in different stages are independent of each other, so for j 6= i we assume

P (2F̂ (i)>2F̂ (i)
th | ρ

2, 2F̂ (j)>2F̂ (j)
th ) = P (2F̂ (i)>2F̂ (i)

th | ρ
2) , (6.43)

which would be exactly true if the different stages used different data (see also [129]). In
the case where the same data is used in different stages, this approximation corresponds to
an uninformative approach, in the sense that we do not know how to quantify and take into
account the correlations between the statistics in different stages. We proceed without using
this potential information, which could in principle be used to improve the estimate. It is not
clear if and how much of an overall bias this approximation would introduce. A detailed study
of this question is beyond the scope of this work and will be left for future study.

Using the assumption of independent stages we write

p
(tot)
det (h0) =

∫ n∏
i=1

p
(i)
det(2F̂

(i)
th ;h0, R

2)P (R2) dR2 , (6.44)

p
(tot)
fa =

n∏
i=1

p
(i)
fa (2F̂ (i)

th ) , (6.45)

where now the R2-marginalization needs to happen over all stages combined, as the signal
parameters R2(θ) are intrinsic to the signal and hence independent of the stage. On the other
hand, the mismatch distribution P (µ(i)) depends on the stage, as each stage will in general use
a different template grid, and so we have

p
(i)
det(2F̂

(i)
th ;h0, R

2) =
∫ 1

0
p

(i)
det(2F̂

(i)
th ; ρ2 (i)

eff )P (µ(i)) dµ(i) , (6.46)

where pdet(2F̂th; ρ2
eff) is given by Eq. (6.41) using the respective per-stage values.

Equation (6.44) can easily be solved numerically and inverted for the sensitivity h0 at given
p

(tot)
det and a set of thresholds {2F̂ (i)

th }.
Note that in practice (e.g. [201]) one would want to choose the thresholds in such a way

that a signal that passed the 1st-stage threshold 2F̂ (1)
th should have a very low probability of

being discarded by subsequent stages, in other words p(i>1)
det ≈ 1, and therefore p(tot)

det (h0) ≈
p

(1)
det(2F̂

(1)
th ;h0). Therefore, subsequent stages mostly serve to reduce the total false-alarm level

p
(tot)
fa , allowing one to increase the first-stage p(1)

fa by lowering the corresponding threshold F̂ (1),
resulting in an overall increased sensitivity.
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6.3.5. Hough-F Sensitivity
Here we apply the sensitivity-estimation framework to the Hough-F statistic introduced in
Sec. 6.2.3. We define the per-segment threshold-crossing probability as

p`th(h0, R
2) ≡ P (2F̃` > 2F̃th | h0, R

2)
= p`det(2F̃th;h0, R

2)

=
∫ 1

0
pdet(2F̃th; ρ2

eff,`)P (µ̃) dµ̃ , (6.47)

where the per-segment effective SNR ρeff,` is given by replacing Tdata and S in Eq. (6.39) with
the per-segment quantities T `data and S`. For the per-segment mismatch µ̃` we assume that the
distribution P (µ̃) is the same for all segments.
The key approximation for the estimate is that for a given signal {h0, R

2(θ)}, the coherent
per-segment F̃`-statistic has the same threshold-crossing probability pth in every segment `, i.e.
p`th = pth for all ` = 1 . . . Nseg. This allows us to write the probability for the Hough number
count nc of Eq. (6.25) for a fixed signal {h0, R

2} as a binomial distribution:

P (nc | h0, R
2) =

(
Nseg
nc

)
pnc

th (1− pth)Nseg−nc , (6.48)

with pth(h0, R
2) given by Eq. (6.47). For a given threshold nc,th on the number count the

detection probability is

pdet(nc,th;h0, R
2) =

Nseg∑
nc=nc,th

P (nc | h0, R
2) . (6.49)

Marginalization over R2 yields the detection probability at fixed amplitude h0:

pdet(nc,th;h0) =
∫
pdet(nc,th;h0, R

2)P (R2) dR2 . (6.50)

We can numerically solve this for h0 at given pdet and number-count threshold nc,th yielding the
desired sensitivity estimate.

6.3.6. Bayesian Upper Limits
Bayesian upper limits are conceptually quite different [202] from the frequentist ones discussed up
to this point. A Bayesian upper limit hC0 of given confidence (or “credible level”) C corresponds
to the interval [0, hC0 ] that contains the true value of h0 with probability C. We can compute
this from the posterior distribution P (h0 | x) for the signal-amplitude h0 given data x, namely

C = P (h0 < hC0 | x) =
∫ hC0

0
P (h0 | x) dh0 . (6.51)

The Bayesian targeted searches (here referred to as BayesPE) for known pulsars (see Table 6.5
and Sec. 6.8.5) compute the posterior P (h0 | x) directly from the data x, using a time-domain
method introduced in [112].
Here we focus instead on F-statistic-based searches over a template bank. As discussed in

[202], to a very good approximation we can compute the posterior from the loudest candidate
2F∗(x) found in such a search, using this as a proxy for the data x, i.e.

P (h0 | x) ≈ P (h0 | 2F∗(x)) (6.52)
∝ P (2F∗(x) | h0)P (h0) , (6.53)
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where we used Bayes’ theorem. The proportionality constant is determined by the normalization
condition

∫
P (h0 | x) dh0 = 1.

We have already derived the expression for P (2F | h0) in Eq. (6.37). Hence for any choice of
prior P (h0) we can now compute the Bayesian upper limit hC0 (2F∗) for given loudest candidate
2F∗ by inverting Eq. (6.51).

It is common for Bayesian upper limits on the amplitude to choose a uniform prior in h0
(e.g. see [203]), which has the benefit of simplicity, and also puts relatively more weight on
larger values of h0 than might be physically expected (weaker signals should be more likely than
stronger ones). This prior therefore results in larger, i.e. “more conservative”, upper limits than
a more physical prior would.
Note that the Bayesian ULs of targeted searches for known pulsars (see Sec. 6.8.5) compute

the h0-posterior directly from the data rather than from an F-statistic. Therefore we cannot use
a known threshold or loudest candidate 2F∗ for inverting Eq. (6.51) and hence we cannot apply
the above framework directly. We instead compute an expected depth by calculating estimates
for 2F∗-values drawn randomly from the central χ2

4-distribution and averaging the results.

6.3.7. Numerical Implementation

The expressions for the various different sensitivity estimates of the previous sections have been
implemented in GNU Octave [204], and are available as part of the OctApps [205] data-analysis
package for continuous gravitational waves.
The function to estimate (and cache for later reuse) the distribution P (R2) of Eq. (6.36) is

implemented in SqrSNRGeometricFactorHist(). The sensitivity-depth estimate for StackSlide-
F-searches is implemented in SensitivityDepthStackSlide(), both for the single-stage case of
Eq. (6.40) and for the general multi-stage case of Eq. (6.44). For single-stage StackSlide-F there
is also a function DetectionProbabilityStackSlide() estimating the detection probability for
a given signal depth D and detection threshold.

The Hough-F sensitivity estimate of Eq. (6.50) is implemented in SensitivityDepthHoughF().
An earlier version of this function had been used for the theoretical sensitivity comparison in
[196] (Sec. VB, and also [206]), where it was found to agree within an rms error of 7% with the
measured upper limits. The Bayesian F-based upper limit expression Eq. (6.51) is implemented
in SensitivityDepthBayesian().

Typical input parameters are the number of segments Nseg, the total amount of data Tdata,
the mismatch distribution P (µ), name of detectors used, single-template false-alarm level p1

fa
(or alternatively, the F-statistic threshold), and the confidence level pdet. The default prior
on sky-position is isotropic (suitable for an all-sky search), but this can be restricted to any
sky-region (suitable for directed or targeted searches).
The typical runtime on a ThinkPad P51 with 3GHz Intel Xeon E3 for a sensitivity estimate

including computing P (R2) (which is the most expensive part) is about 25 seconds per detector.
When reusing the same θ-prior on subsequent calls, a cached P (R2) is used and the runtime is
reduced to about 10 seconds total, independently of the number of detectors used.

6.4. Determining Frequentist Upper Limits

In order to determine the frequentist upper limit (UL) on the signal amplitude h0 defined in
Eq. (6.30), one needs to quantify the probability that a putative signal with fixed amplitude h0
(and all other signal parameters drawn randomly from their priors) would produce a statistic
value exceeding the threshold (corresponding to a certain false-alarm level, or p-value). The
upper limit on h0 is then defined as the value hpdet

0 for which the detection probability is exactly
pdet, typically chosen as 90% or 95%, which is often referred to as the confidence level of the
UL.
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Note that here and in the following it will often be convenient to use the sensitivity depth
D ≡

√
S/h0 introduced in Sec. 6.2.5 instead of the amplitude h0. We denote Dpdet as the

sensitivity depth corresponding to the upper limit hpdet
0 (note that this corresponds to a lower

limit on depth).
The UL procedure is often implemented via a Monte-Carlo injection-and-recovery method: A

signal of fixed amplitude h0 =
√
S/D and randomly-drawn remaining parameters is generated

in software and added to the data (either to real detector data or to simulated Gaussian noise).
This step is referred to as a signal injection. A search is then performed on this data, and
the loudest statistic value F∗ is recorded and compared against the detection threshold Fth.
Repeating this injection and recovery step many times and recording the fraction of times the
threshold is exceeded yields an approximation for pdet(Fth;D). By repeating this procedure over
different D values and interpolating one can find Dpdet corresponding to the desired detection
probability (and therefore also hpdet

0 ).
We distinguish in the following between measured and simulated upper limits:

• Measured ULs refer to the published UL results obtained on real detector data. These
typically use an identical search procedure for the ULs as in the actual search, often using
the loudest candidate (over some range of the parameter space) from the original search as
the corresponding detection threshold for setting the UL. The injections are done in real
detector data, and normally the various vetoes, data-cleaning and follow-up procedures of
the original search are also applied in the UL procedure.

• Simulated ULs are used in this work to verify the accuracy of the sensitivity estimates.
They are obtained using injections in simulated Gaussian noise, and searching only a small
box in parameter space around the injected signal locations. The box size is empirically
determined to ensure that the loudest signal candidates are always recovered within the
box. Only the original search statistic is used in the search without any further vetoes or
cleaning.

A key difference between (most) published (measured) ULs and our simulated ULs concerns the
method of interpolation used to obtain Dpdet : In practice this is often obtained via a sigmoid
pdet-interpolation approach (Sec. 6.4.1), while we use (and advocate for) a (piecewise) linear
threshold interpolation (Sec. 6.4.1) instead.

6.4.1. Sigmoid pdet Interpolation

In this approach one fixes the detection threshold Fth and determines the corresponding pdet for
any given fixed-D injection set. The corresponding functional form of pdet(D) has a qualitative
“sigmoid” shape as illustrated in Fig. 6.1. An actual sigmoid function of the form

y(D) = 1
1 + e−k (D−D0) , (6.54)

is then fitted to the data by adjusting the free parameters k and D0, and from this one can
obtain an interpolation value for Dpdet .
One problem with this method is that the actual functional form of pdet(D) is not analytically

known, and does not actually seem to be well described by the sigmoid of Eq. (6.54), as seen
in Fig. 6.1. In this particular example the true value at pdet = 90% just so happens to lie very
close to the sigmoid fit, but the deviation is quite noticeable at pdet = 95% (see the zoomed
inset in Fig. 6.1).
Another problem with this method is that the range of depths required to sample the relation

pdet(D) often needs to be quite wide, due to initial uncertainties about where the UL value would
be found, which can compound the above-mentioned sigmoid-fitting problem. Furthermore, the
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Figure 6.1.: Detection probability pdet versus sensitivity depth D for the
S6-CasA-StackSlide-F search (cf. Table 6.2 and Sec. 6.8.3), using a detec-
tion threshold of 2F th = 8. The squares indicate the results from a simulation in
Gaussian noise, while the solid line gives the best-fit sigmoid of Eq. (6.54).
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Figure 6.2.: Histogram of recovered loudest 2F values for repeated searches on signal injections
at fixed sensitivity depth D = 86 Hz−1/2 (with all other signal parameters random-
ized), using the search setup of the S6-CasA-StackSlide-F directed search. The
vertical line indicates the resulting threshold value 2F th = 7.995 corresponding to
pdet = 90 % for this injection set.
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injection-recovery step can be quite computationally expensive, limiting the number of trials
and further increasing the statistical uncertainty on the pdet measurements.

Both of these problems can be mitigated to some extent by using the sensitivity-estimation
method described in Sec. 6.3 to obtain a fairly accurate initial guess about the expected UL
value, and then sample only in a small region around this estimate, in which case even a linear
fit would probably yield good accuracy.

6.4.2. Piecewise-linear Threshold Interpolation

An alternative approach is used in this work to obtain the simulated ULs: For each set of fixed-D
injections and recoveries, we determine the threshold on the statistic required in order to obtain
the desired detection fraction pdet. This is illustrated in Fig. 6.2, which shows a histogram of
the observed loudest 2F candidates obtained in each of N = 104 injection and recovery runs
at a fixed signal depth of D = 86 Hz−1/2, using the S6-CasA-StackSlide-F search setup (cf.
Sec. 6.8.3). By integrating the probability density from 2F = 0 until we reach the desired value
1− pdet, we find the detection threshold 2F th at this signal depth D. Repeating this procedure
at different depths therefore generates a sampling of the function Dpdet(2F th), illustrated in
Fig. 6.3. These points can be interpolated to the required detection threshold, which yields the
desired upper-limit depth Dpdet .
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Figure 6.3.: Sensitivity depth versus detection threshold. Boxes and solid lines indicate the
piecewise-linear interpolation through the obtained thresholds at different depths
of an injection-recovery simulation, using the S6-CasA-StackSlide-F search setup
([185] and Sec. 6.8.3).

We see in in Fig. 6.3 that this function appears to be less “curvy” in the region of interest
compared to pdet(D) shown in Fig. 6.1. This allows for easier fitting and interpolation, for
example a linear or quadratic fit should work quite well. In fact, here we have simply used
piecewise-linear interpolation, which is sufficient given our relatively fine sampling of signal
depths.
As already mentioned in the previous section, using the sensitivity estimate of Sec. 6.3 one can

determine the most relevant region of interest beforehand and focus the Monte-Carlo injection-
recoveries on this region, which will help ensure that any simple interpolation method will work
well.
Alternatively, for either the pdet(D)- or the D(2Fth)-sampling approach, one could also use

an iterative root-finding method to approach the desired pdet or 2Fth, respectively.
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6.5. Comparing Estimates Against Simulated Upper Limits
In this section we compare the sensitivity estimates from Sec. 6.3 against simulated ULs for two
example cases (an all-sky search and a directed search), in order to quantify the accuracy and
reliability of the estimation method and implementation. This comparison shows generally good
agreement, and also some instructive deviations.
Both examples are wide-parameter-space searches using a template bank over the unknown

signal parameter dimensions (namely, {sky, frequency and spindown} in the all-sky case, and
{frequency and first and second derivatives} in the directed-search case).
The simulated-UL procedure (see Sec. 6.4) performs a template-bank search over a box in

parameter space containing the injected signal (at a randomized location) in Gaussian noise.
On the other hand, the sensitivity estimate (cf. Eq. (6.40)) uses the mismatch distribution P (µ)
obtained for this template bank via injection-recovery box searches on signals without noise. We
refer to this in the following as the box search.

It will be instructive to also consider the (unrealistic) case of a perfectly-matched search,
using only a single template that matches the signal parameters perfectly for every injection,
corresponding to zero mismatch µ = 0 in Eq. (6.40). We refer to this as the zero-mismatch
search.

6.5.1. Example: S6-AllSky-StackSlide-F Search

In this example we use the setup of the all-sky search S6-AllSky-StackSlide-F [207], which
was using the GCT implementation [138] of the StackSlide-F statistic and was performed on the
volunteer-computing project Einstein@Home [7], see Table 6.1 and Sec. 6.8.2 for more details.
Figure 6.4 shows the comparison between simulated ULs and estimated sensitivity depths
D90% versus threshold 2F th, for the box search (squares and solid line), as well as for the zero-
mismatch search (crosses and dashed line). We see excellent agreement between estimated and
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Figure 6.4.: Comparison of estimated and simulated sensitivity depth D90% as a function of
threshold 2F th for the S6-AllSky-StackSlide-F search [207]. The solid line shows
the UL estimate for the box search, and the squares (�) show the corresponding
simulated ULs. The dashed line indicates the estimate for the zero-mismatch case,
and the crosses (×) are for the simulated zero-mismatch ULs. In the box search
we observe an increasing divergence at decreasing thresholds due to noise effects,
discussed in Sec. 6.5.1.

simulated ULs for the zero-mismatch search. We also find very good agreement for the box-
search at higher thresholds, while we see an increasing divergence D →∞ of the simulated ULs
at decreasing thresholds, which is not captured by the estimate.
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This discrepancy can be understood as the effect of noise fluctuations, which can enter in two
different ways (that are not completely independent of each other):

(i) For decreasing thresholds the corresponding false-alarm level Eq. (6.29) grows, as it be-
comes increasingly likely that a “pure noise” candidate (i.e. unrelated to a signal) crosses
the threshold. In the extreme case where pfa approaches pdet, the frequentist upper limit
would tend to h0 → 0, corresponding to D → ∞4. This is illustrated in Fig. 6.5 showing
the distribution of the loudest 2F in a box search on pure Gaussian noise, which can be
compared to the diverging depth of the simulated box search around 2F th . 6 in Fig. 6.4.
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Figure 6.5.: Distribution of the loudest 2F for a box search on pure Gaussian noise, using the
S6-AllSky-StackSlide-F search setup.

We note that the procedures used for measured ULs in CW searches typically make sure
that the detection threshold has a very small false-alarm level, and we thus expect this
effect to have a negligible impact in cases of practical interest.

(ii) The sensitivity estimate for wide-parameter-space searches makes the assumption that the
loudest candidate 2F∗ is always found in the closest template to the signal (i.e. with the
smallest mismatch µ), as discussed in Sec. 6.3.2. However, while the closest template has
the highest expected statistic value (by definition), other templates can actually produce the
loudest statistic value in any given noise realization. How likely that is to happen depends
on the details of the parameter space, the template bank and the threshold. Generally it is
more likely at lower thresholds, as more templates further away from the signal are given
a chance to cross the threshold (despite their larger mismatch).
The true distribution P (2F∗ | h0) of a box search will therefore be shifted to higher
values compared to the approximate distribution used in Eq. (6.37). This implies that
an actual search can have a higher detection probability than predicted by the estimate
(corresponding to a larger sensitivity depth).

Both of these effects contribute to different extents to the box-search discrepancy in Fig. 6.4 at
lower thresholds:
The sampling distribution for 2F∗ in the presence of relatively strong signals at D = 20 Hz−1/2

is shown in the left plot of Fig. 6.6, both for a simulated box search as well as for the assumed
distribution in the estimate. We see that most of the loudest candidates obtained in the sim-
ulation are above 2F∗ > 9, and are therefore extremely unlikely to be due to noise alone, as

4Bayesian upper limits do not have this property, e.g. see [202] for more detailed analysis of these different types
of upper limits.
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Figure 6.6.: Loudest 2F distribution for a box-search (using the S6-AllSky-StackSlide-F
setup) with signals at a depth of D = 20 Hz−1/2 (left plot) and D = 46 Hz−1/2

(right plot). The black histogram shows the assumed distribution for sensitivity
estimation in Eq. (6.37), and the lighter color shows the histogram obtained in a
Monte-Carlo simulation with signals injected in Gaussian noise.

seen from Fig. 6.5. The difference between the two distributions in the left plot of Fig. 6.6 is
therefore soley due to effect (ii). However, we see in Fig. 6.4 that the resulting discrepancy in
the sensitivity estimate at D = 20 Hz−1/2 is still very small.

For weaker signals at D = 46 Hz−1/2, we see in the right plot of Fig. 6.6 that the corresponding
distribution now overlaps with the pure-noise distribution of Fig. 6.5. The sensitivity depth
therefore increasingly diverges for thresholds in the range 2F th ∼ [5.8, 6.1] due to the increasing
impact of effect (i).

6.5.2. Example: Multi-directed O1-MD-StackSlide-F

In this example we use the search setup of the directed search O1-MD-StackSlide-F [191] cur-
rently running on Einstein@Home. This search consists of several directed searches for different
targets on the sky, including Vela Jr. and Cas-A.
The comparison between simulated and estimated UL depths D90% for these two targets is

shown in Fig. 6.7. We see again very good agreement (relative deviations . 3%) in the zero-
mismatch case. However, these deviations are larger than in the all-sky case shown in Fig. 6.4.
We suspect that this is due to the different antenna-pattern implementations of Eq. (6.65)
between the search code and the estimation scripts: We see different signs of the deviation for
different sky positions (Vela Jr. versus Cas-A), and the effect disappears when averaging over
the whole sky (as seen in Fig. 6.4). However, the small size of the deviations did not warrant
further efforts to try to mitigate this.
For the box-search case we see good agreement at higher thresholds, with again increasing

deviations at lower thresholds due to the noise effects discussed in the previous all-sky example
Sec. 6.5.1.

6.6. Comparing Estimates Against Measured Upper limits

In this section we present a general overview of measured sensitivity depths Dmeas derived from
the published upper limits of various past CW searches. For the subset of searches where an
F-statistic-based method was used (and for Bayesian targeted ULs), we provide the sensitivity
estimate for comparison.
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Figure 6.7.: Comparison of estimated and simulated sensitivity depth D90% as a func-
tion of the threshold 2F th for two targets of the multi-directed search setup
O1-MD-StackSlide-F . The solid lines show the UL estimate for a box search, while
the squares (�) show the corresponding simulated ULs. The dashed lines indicate
the estimate for the zero-mismatch case, and the crosses (×) are for the simulated
zero-mismatch ULs. The upper group of curves are for the target Vela Jr., while
the lower group of curves are for Cas A.

The results are summarized in Tables 6.1– 6.4 for the different search categories (all-sky,
directed and narrow-band, binary and targeted), and more details about each search are found
in Appendix 6.8.

6.6.1. General Remarks and Caveats

Converting Published h0 ULs into Depths D

Some searches already provide their upper limits in the form of a sensitivity depth Dpdet , but
in most cases only the amplitude upper-limits hpdet

0 are given. For these latter cases we try
to use a reasonable PSD estimate S(f) for the data used in the search in order to convert
the quoted amplitude upper limits into sensitivity depths according to Eq. (6.28). This PSD
estimate introduces a systematic uncertainty in the converted depth values, as in most cases we
do not have access to the “original” PSD estimate used for the h0 UL calculation.

In particular, even small differences in windowing or the type of frequency averaging can
result in large differences in the PSD estimate near spectral disturbances. This can translate
into large differences in the resulting converted depth values. In order to mitigate outliers due to
such noise artifacts we quote the median over the converted measured depth values {Dk} (where
k either runs over multiple frequencies, targets or detectors) and estimate the corresponding
standard deviation using the median absolute deviation (MAD) [208], namely

Dmed ≡ median [Dk] ,

σ̂ ≡ 1.4826 median
[ ∣∣∣Dk −Dmed

∣∣∣ ] . (6.55)

Comparing Different Searches by Sensitivity Depth D

We can see in the tables 6.1– 6.4 that searches within the same search category often show roughly
comparable sensitivity depths. At one end of the spectrum are the fully-targeted searches, for
which the parameter space (for each pulsar) is a single point, and one can achieve the maximal
possible sensitivity for the available data, namely D ∼ O

(
500 Hz−1/2

)
(see Table 6.5). At the
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other end of the spectrum lies the all-sky binary search with a sensitivity depth of D ∼ 3 Hz−1/2

(see Table 6.4), which covers the largest parameter space of any search to date.
One cannot directly compare searches on sensitivity depth alone, even within the same search

category. Other key aspects of a search are the parameter-space volume covered, the total
computing power used, and the robustness of the search to deviations from the assumed signal-
or noise-model.
Is it intuitively obvious that the more computing power spent on a fixed parameter-space

volume, the more sensitive the search will tend to be, although the increase in sensitivity is
typically very weak, often of order the 10th-14th root of the computing power [180].
It is also evident that the larger the parameter space covered by a search, the less sensitivity

depth can be achieved due to the increased spending of computing power on “breadth” rather
than depth. Ultimately the most directly relevant characteristic of a search would be its total
detection probability [190, 191], which factors in both breadth and depth as well as the underlying
astrophysical prior on signal amplitudes over the parameter space searched.

6.6.2. All-sky Searches
Estimated and measured sensitivity depths for all-sky searches are given in Table 6.1, and further
details about individual searches can be found in appendix 6.8.2.
The mean relative error between measured and estimated depths is 9 %, while the median

error is 7 %.
One case of interest is the surprisingly large discrepancy of ∼ 18% observed for the

S6-AllSky-StackSlide-F+FUP search, shown in Fig. 6.8, where we see a significantly higher
measured depth (Dmed

meas = 46.9 Hz−1/2) than estimated (Dest = 38.3 Hz−1/2).
This can be traced back to the template-maximization approximation used in the estimate,

namely effect (ii) discussed in Sec. 6.5.1. The low threshold used in the search (2F th = 6.1)
appears to be at the cusp of becoming affected by pure-noise candidates (effect (i) in Sec. 6.5.1),
but this effect is still small and does not account for the discrepancy. Furthermore, the upper
limit procedure used a multi-stage follow-up, which ensures the final false-alarm level (p-value)
is very small, which rules out contamination from pure-noise candidates.
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Figure 6.8.: Estimated (–) and simulated (�) sensitivity depth versus threshold 2F th for
the S6-AllSky-StackSlide-F (+FUP) search setup, illustrating the effect of the
template-maximization in the estimate (discussed in Sec. 6.5.1). The triangles
(∆) and dashed lines show the measured upper-limit depth Dmed

meas in the initial
S6-AllSky-StackSlide-F search [207], and the diamond (�) shows the correspond-
ing result from the follow-up (FUP) search [201] (threshold 2F th = 6.1).
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Data Search method f [Hz] ḟ [nHz
s ] Dest [Hz−1/2] Dmed

meas [Hz−1/2] σ̂Dmeas [Hz−1/2] Ref, Sec

S2 Hough [200, 400] [-1.1, 0] – 11.3 1.5 [209],6.8.2
S2 F [160, 728.8] 0 6.5 5.5 1.6 [210],6.8.2

S4 StackSlide [50, 1000] [-10, 0] – 10.5 1.1 [195],6.8.2
S4 Hough [50, 1000] [-2.2, 0] – 13.4 0.7 [195],6.8.2
S4 PowerFlux [50, 1000] [-10, 0] – {6.1, 21.3}1 {0.7, 2.3} [195],6.8.2
S4 F+Coinc [50, 1500] [-9.5, 1] – 8.5 0.5 [211],6.8.2

earlyS5 PowerFlux [50, 1100] [-5, 0] – {16.1, 47.9}1 {2.4, 5.9} [212],6.8.2
earlyS5 F+Coinc [50, 1500] [-12.7, 1.3] – 10.9 0.2 [213],6.8.2

S5 PowerFlux [50, 800] [-6, 0] – {25.7, 71.3}1 {0.7, 2.2} [214],6.8.2
S5 Hough-F [50, 1190] [-2, 0.1] 30.5 30.0 1.4 [196],6.8.2
S5 Hough [50, 1000] [-0.9, 0] – 28.1 0.6 [215],6.8.2
S5 StackSlide-F [1249.7, 1499.7] [-2.9, 0.6] 27.0 30.7 – [216],6.8.2

VSR1 FTD+Coinc [100, 1000] [-16, 0] – 22.6 6.0 [217],6.8.2

VSR2,4 FreqHough+FUP [20, 128] [-0.1, 0.015] – 35.5 11.1 [218],6.8.2

S6 StackSlide-F [50, 510] [-2.7, 0.3] 34.4 37.0 – [207],6.8.2
S6 StackSlide-F+FUP [50, 510] [-2.7, 0.3] 38.3 46.9 – [201],6.8.2
S6 PowerFlux [100, 1500] [-11.8, 10] – {17.9, 52.8}1 {1.4, 3.4} [219],6.8.2

O1 StackSlide-F [20, 100] [-2.7, 0.3] 46.4 48.7 – [188],6.8.2
O1 PowerFlux [20, 200] [-10, 1] – 28.9 2.2 [188],6.8.2
O1 PowerFlux [20, 475] [-10, 1] – {19.9, 54.6}1 {1.3, 3.2} [187],6.8.2
O1 SkyHough [20, 475] [-10, 1] – 22.4 1.1 [187],6.8.2
O1 FTD+Coinc [20, 475] [-10, 1] – 23.7 2.1 [187],6.8.2
O1 FreqHough [20, 475] [-10, 1] – 21.4 10.6 [187],6.8.2
O1 PowerFlux [475, 2000] [-10, 1] – {18.6, 50.9}1 {1.3, 3.4} [127],6.8.2
O1 SkyHough [475, 2000] [-10, 1] – 16.8 3.0 [127],6.8.2
O1 FTD+Coinc [475, 2000] [-10, 1] – 10.9 0.6 [127],6.8.2

Table 6.1.: All-sky searches: estimated Dest and measured sensitivity depth Dmeas (median and standard deviation, see Sec. 6.6.1). The columns
labeled f and ḟ give the frequency and spindown ranges covered by each search. Sensitivity depths in italics refer to 90%-confidence
upper limits, while normal font refers to 95%-confidence. See appendix 6.8.2 for further details on the individual results.

1Sensitivity depths corresponding to worst linear and circular polarization, respectively, cf. Sec. 6.8.1
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6.6.3. Directed and Narrow-band Searches
Estimated and measured sensitivity depths for directed and narrow-band searches are given in
Tables 6.2 and 6.3, and further details about individual searches can be found in appendix 6.8.3.
The mean relative error between measured and estimated depths is 5 %, and the median error

is 1 %.
For the S6-NineYoung-F search for nine young supernova remnants shown in Table 6.3, the

mean relative error between measured and estimated depths is 4 % (median error 4 %).
For two cases of interest we investigated more closely to understand the origin of the observed

deviation:
S5-GalacticCenter-StackSlide-F search [220]: the reason for the relatively large deviation

of 19% in this case between Dest = 58.2 Hz−1/2 and Dmed
meas = 72.1 Hz−1/2 can be understood

by looking at the details of this search setup: contrary to the assumed uniform averaging of
antenna-pattern functions over time (cf. Sec. 6.3.3), this search setup was specifically optimized
by choosing the relatively short segments of Tseg = 11.5 hours in such a way as to maximize
sensitivity, by selecting times of maximal antenna-pattern sensitivity towards the particular sky
direction of the galactic center. This is described in more detail in [199], and is quoted there as
yielding a sensitivity improvement of about 20%, consistent with the observed enhancement of
measured sensitivity compared to our estimate.

S6-CasA-StackSlide-F search [185]: the deviation between the estimated sensitivity depth
Dest = 79.6 Hz−1/2 versus the measured value Dmed

meas = 72.9 Hz−1/2 does not seem very large per
se, but is unusual for the estimate because it typically does not tend to overestimate sensitivity
by that much. A detailed investigation led us to discover a bug in the original upper-limit
script used in [185], which resulted in the injection-recovery procedure to sometimes search the
wrong box in parameter space, missing the injected signal. By artificially reproducing the bug
in our upper limit simulation we are able to confirm that this bug does account for a decrease
in detection probability of about 7%, resulting in an underestimation of the upper-limit depth
as shown in Fig. 6.9.
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Figure 6.9.: Estimated (–) and simulated (�) sensitivity depth versus threshold 2F th for the
S6-CasA-StackSlide-F search setup [185]. The published upper limits are plotted
as triangles (∆), while the diamonds (�) show the simulated depths if we incorporate
the bug found in the original UL procedure.
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Science run Search method Target f [Hz] Dest [Hz−1/2] Dmed
meas [Hz−1/2] σ̂Dmeas [Hz−1/2] Ref, Sec

earlyS5 F Crab 59.56±0.006 221.3 223.1 – [221],6.8.3

S5 F CasA [100, 300] 35.9 35.5 0.8 [200],6.8.3
S5 StackSlide-F GalacticCenter [78, 496] 58.2 72.1 4.5 [220],6.8.3

VSR4 5-vector Vela 22.384±0.02 – 100.5 – [222],6.8.3
VSR4 5-vector Crab 59.445±0.02 – 90.1 – [222],6.8.3

S6 F NineYoung (Table 6.3) [46, 2034] 37.8 37.7 0.3 [184],6.8.3
S6 StackSlide-F CasA [50, 1000] 79.6 72.9 0.4 [185],6.8.3
S6 LooselyCoherent OrionSpur [50, 1500] – {30.2, 85.7}2 {2.3, 4.3} [223],6.8.3
S6 F NGC6544 [92.5, 675] 29.3 29.6 1.7 [224],6.8.3

O1 5-vector 11 pulsars < ±0.11 – 111.6 12.2 [183],6.8.3
O1 Radiometer SN1987A [25, 1726] – 11.1 4.3 [225],6.8.4
O1 Radiometer GalacticCenter [25, 1726] – 7.7 2.9 [225],6.8.4

Table 6.2.: Directed and narrow-band searches: estimated Dest and measured sensitivity depth Dmeas (median and standard deviation, see Sec. 6.6.1).
The column labeled f gives the frequency range covered by each search (omitting ḟ and f̈ search ranges). Sensitivity depths in italics
refer to 90%-confidence upper limits, while normal font refers to 95%-confidence. See appendix 6.8.3 for further details on the individual
results.

1Search band around twice the pulsar spin frequency
2Sensitivity depths corresponding to worst linear and circular polarization, respectively, cf. Sec. 6.8.1
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SN remnant G1.9 G18.9 G93.3 G111.7 G189.1 G266.2deep G266.2wide G291.0 G347.3 G350.1
Name DA 530 Cas A IC 443 Vela Jr. Vela Jr. MSH 11-62
Dest [Hz−1/2] 29.0 43.9 46.8 29.3 40.1 38.3 24.2 41.1 32.8 37.3
Dmed

meas [Hz−1/2] 28.3 44.4 49.6 31.5 39.2 40.8 26.1 44.0 32.1 36.1
σ̂Dmeas [Hz−1/2] 0.8 1.3 1.5 0.9 1.2 1.0 0.7 1.2 0.8 1.1

Tdata [106 s] 1.2 3.1 2.8 1.1 2.3 1.9 0.7 2.2 1.4 1.9
2Fth 58.0 56.3 55.6 55.6 55.3 53.7 52.8 56.6 54.1 57.6

Table 6.3.: S6-NineYoung-F search: estimated Dest and measured sensitivity depth Dmeas (median and standard deviation, see Sec. 6.6.1) for nine
young supernova remnants [184]. All sensitivity depths refer to 95%-confidence. See appendix 6.8.3 for further details.

Science run Search method Target f [Hz] Dmed
meas [Hz−1/2] σ̂Dmeas [Hz−1/2] Ref, Sec

S2 F ScoX1 [464, 484],[604, 624] 4.1 0.1 [210],6.8.4

S5 Sideband ScoX1 [50, 550] 8.1 1.0 [226],6.8.4

S6,VSR2,3 TwoSpect AllSky [20, 520] 3.2 0.4 [189],6.8.4
S6,VSR2,3 TwoSpect ScoX1 [20, 57.25] 8.2 4.0 [189],6.8.4

S6 TwoSpect ScoX1 [40, 2040] 5.7 1.6 [227],6.8.4
S6 TwoSpect J1751 {435.5, 621.5, 870.5}±1 9.4 1.2 [227],6.8.4

O1 Viterbi ScoX1 [60, 650] 7.6 1.0 [186],6.8.4
O1 CrossCorr ScoX1 [25, 2000] 24.0 2.0 [135],6.8.4
O1 Radiometer ScoX1 [25, 1726] 5.8 1.0 [225],6.8.4

Table 6.4.: Binary searches: measured sensitivity depth Dmeas (median and standard deviation, see Sec. 6.6.1). All sensitivity depths refer to
95%-confidence. See appendix 6.8.4 for further details on the individual results.
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6.6.4. Searches for Neutron Stars in Binaries
Measured sensitivity depths for searches for CWs from neutron stars in binary systems are given
in Table 6.4, and further details about individual searches can be found in appendix 6.8.4. In
this case the only F-statistic-based search is S2-ScoX1-F , for which we obtain an estimate of
Dest = 4.4 Hz−1/2 (assuming an average mismatch of µ ∼ 0.1/3 corresponding to a cubic lattice
with maximal mismatch of 0.1 [210]). The relative error between measured and estimated
sensitivity depth is therefore 8 %.

6.6.5. Targeted Searches for Known Pulsars
Estimated and measured sensitivity depths for targeted searches are given in Table 6.5, and
further details about individual searches can be found in appendix 6.8.5.
Note that the quoted upper limits of the BayesPE-method are obtained by Bayesian

parameter-estimation [112] of P (h0 | x) directly on the data x. Therefore, we cannot di-
rectly apply the Bayesian sensitivity estimate derived in Sec. 6.3.6, which assumes an initial
F(x)-statistic computed on the data, from which the Bayesian upper limit would be derived.
We therefore provide an approximate comparison with the expected sensitivity estimate, which
we compute by estimating depths using 2F∗ drawn from a central χ2

4 distribution (given each
target corresponds to a single template) and averaging the resulting estimated D values. In
cases where several targets are covered by the search, we assume for simplicity that the targets
are isotropically distributed over the sky and compute a single all-sky sensitivity estimate. For
single-target searches the exact sky position is used for the estimate.
The mean relative error between measured and estimated depths is 16 %, and the median

error is 10 %.
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Science run Search method Targets Dmed
est [Hz−1/2] σ̂Dest [Hz−1/2] Dmed

meas [Hz−1/2] σ̂Dmeas [Hz−1/2] Ref, Sec

S1 F(worst-orientation) J1939+21 70.8 39.8 64.2 38.1 [193],6.8.5
S1 F J1939+21 110.4 66.7 101.8 61.8 [193],6.8.5
S1 BayesPE J1939+21 81.5 19.8 85.2 14.3 [193],6.8.5

S2 BayesPE 28 pulsars 243.5 54.3 156.4 42.2 [228],6.8.5

S3,4 BayesPE 78 pulsars 337.8 81.2 299.5 79.0 [229],6.8.5

earlyS5 BayesPE Crab 621.3 129.7 774.1 – [221],6.8.5
S5 BayesPE 116 pulsars 997.8 210.4 932.1 317.1 [230],6.8.5

VSR2 BayesPE,F ,5-vector Vela 351.9 78.5 408.5 20.8 [231],6.8.5

S6,VSR2,4 BayesPE,F ,5-vector 195 pulsars 555.7 116.2 514.7 171.0 [203],6.8.5

O1 BayesPE,F ,5-vector 200 pulsars 321.6 74.0 355.8 95.4 [182],6.8.5

Table 6.5.: Targeted searches for known pulsars: estimated Dest and measured sensitivity depth Dmeas (with respectively, median and standard
deviation, see Sec. 6.6.1). All sensitivity depths refer to 95%-confidence. See appendix 6.8.5 for further details on the individual results.
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6.7. Discussion
In this chapter we presented a fast and accurate sensitivity-estimation framework and imple-
mentation for F-statistic-based search methods for continuous gravitational waves, extending
and generalizing an earlier analytic estimate derived by Wette. In particular, the new method
is more direct and uses fewer approximations for single-stage StackSlide-F searches, and is also
applicable to multi-stage StackSlide-F searches, Hough-F searches and Bayesian upper limits
(based on F-statistic searches).
The typical runtime per sensitivity estimate is about 10 seconds with cached P (R2) distri-

bution, and about 25 seconds per detector for the first call with a new parameter prior. The
accuracy compared to simulated Monte-Carlo upper limits in Gaussian noise is within a few %
(provided the threshold corresponds to a low false-alarm level), and we find generally good agree-
ment (of less than ∼ 10% average error) compared to published upper limits in the literature.
Several factors leading to the observed deviations in various cases are discussed in detail.
We also provided a comprehensive overview of published CW upper limit results, converting

the quoted h0 upper limits into sensitivity depths. This introduces some systematic uncertain-
ties, as we often do not have access to the original PSD estimate used for the upper limits. We
therefore advocate for future searches to directly provide their upper-limit results also in terms
of the sensitivity depth of Eq. (6.28), in order to allow easier direct comparison between searches
and to sensitivity estimates.

6.8. Appendix A: Details on Referenced CW Searches

6.8.1. General Remarks

In this appendix we will refer to the different detectors as G for GEO600 [47], V for VIRGO [45,
46], H1 and H2 for the two LIGO detectors in Hanford (4km, 2km) and L1 for LIGO Livingston
[43, 44].
We will use the common abbreviations CW for continuous gravitational waves, SFT for Short

Fourier Transform, PSD for power spectral density and UL for upper limits.
The quoted sensitivity depths in Tables 6.1 - 6.5 can correspond to different confidence levels,

as some searches use 90%- and others 95%-confidence upper limits. The applicable confidence
level is denoted by using regular versus italic font in the tables, respectively.
For searches over many frequencies, multiple targets or for upper limits reported separately

for different detectors, we use a consistent averaging procedure using the median and median
absolute deviation of Eq. (6.55) in order to estimate the mean and standard deviation in an
outlier-robust way.
PowerFlux and loosely-coherent searches typically give separate upper limits for circular (best)

polarisation and for the worst linear polarization, but not the more common type of population-
averaged upper limits. There has been some work estimating conversion factors for these upper
limits into polarization-averaged sensitivity, writing DPF ∼ wworstDPF

worst and DPF ∼ wbestDPF
best.

For example [29] obtains the conversion factors in the ranges wworst ∼ 1.1 − 1.3 and wbest ∼
0.39 − 0.46. More recent work estimating these conversion factors on O1 data (cf. Fig.[188])
for 90%-confidence upper limits yields [232] wworst = 1.51 ± 0.13 and wbest = 0.52 ± 0.02.
However, these conversion factors were obtained by treating the set of upper limits as a whole,
they should not be used to derive a proxy of population average upper limits in individual
frequency bands. Furthermore, PowerFlux strict upper limits are derived by taking the highest
upper limits over regions of parameter space. This procedure has the advantage of the upper
limits retaining validity over any subset of parameter space, such as a particular frequency or a
particular sky location. However, the maximization procedure makes it difficult to convert the
data into population average upper limits which are more robust to small spikes in the data.
Given that there is currently some uncertainty on the detailed values of the conversion factors
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to use for different PowerFlux searches, here we report the best/worst upper limits converted
into sensitivity depths separately in Tables 6.1 and 6.2.
Generally, for converting h0 upper limits into depths according to Eq. (6.28), we need to use

an estimate for the corresponding noise PSD S, for which we either use a corresponding PSD
over the data used in the search, where available, or a ’generic’ PSD estimate from LIGO for the
given science run [233, 234] otherwise. This adds another level of uncertainty in the conversions,
which could easily be in the range 10% − 20% due to different calibrations and different types
of averaging over time.

6.8.2. All-sky Searches, see Table 6.1

S2-AllSky-Hough [209]

The first all-sky search for CWs from isolated neutron stars, using a semi-coherent Hough trans-
form method applied on Short Fourier Transforms (SFTs) of the data of length Tseg = 30 min.
The search used data from the second LIGO Science Run (S2), and the number of SFTs used
in the search was 687 from L1, 1761 from H1 and 1384 from H2.

The UL sensitivity depth for this search is calculated as the mean over the three depths for
H1, L1 and H2, where each depth is computed from the respective quoted best upper-limit value
h95%

0 and the corresponding PSD S in TABLE III of [209].

S2-AllSky-F [210]

A matched-filtering search based on the coherent (single-detector) F-statistics, using 20 SFTs
from H1 and 20 SFTs from L1 (SFT length TSFT = 30 min). The per-detector F-statistic values
were combined via a coincidence scheme, determining the most significant candidate in each
∼ 1 Hz band, which was then used for measuring the upper limits.

The sensitivity depth for this search is calculated from the given (combined multi-detector)
upper limits h95%

0 (f) over the search frequency range, combined with the harmonic mean over
generic H1- and L1- PSDs for the LIGO S2 data.

The estimate was calculated with the mean loudest templates of the search given in the paper
as Fth = (39.5, 32.2) for the L1 and H1 detector, respectively, and we used an average mismatch
of 0.5 % in the H1 search and 1 % in the L1 search, estimated from Figs. 27, 28 in [210].

S4-AllSky-{StackSlide,Hough,PowerFlux}[195]

Three semi-coherent all-sky searches using different search methods, all based on incoherently
combining SFTs of length Tseg = 30 min. The StackSlide and the Hough search used 1004 SFTs
from H1 and 899 from L1 and the Hough search additionally included 1063 SFTs from H2. The
PowerFlux search used 1925 and 1628 SFTs from H1 and L1, respectively.

The sensitivity depths are calculated from the quoted upper limits h95%
0 (f) from each of

the three searches over the search frequency range, combined with the PSDs for two (H1 and
L1) detectors (as a common reference) from the S4 science run. Note that the Hough depth
corresponds to the quoted multi-detector UL, while the other searches reported only per-detector
ULs.

S4-AllSky-F+Coinc[211]

A search which used the distributed computing project Einstein@Home [7] to analyze 300 h of H1
data and 210 h of L1 data from the S4 run. The data was split into 30 h long segments coherently
analyzed with the multi-detector F-statistic followed by a coincidence-step. The measured sensi-
tivity depth D90%

meas is calculated by converting the quoted sensitivity factors R90% = {31.8, 33.2}
(for frequencies below and above 300 Hz, respectively) into sensitivity depths. However, given
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these were computed with respect to an (arithmetic) averaged PSD estimate (given in Fig.1 in
the paper), we first converted these factors back into equivalent h0 values using the mean-PSD,
and then computed the Depth with respect to the harmonic-mean (over detectors) generic noise
PSD for S4.

earlyS5-AllSky-PowerFlux [212]

An all-sky search with PowerFlux over the first eight months of S5 data. The search in total
used roughly 4077 h of H1 data and 3070 h L1 data, divided into SFT segments of Tseg = 30 min.
The sensitivity depth is calculated from the quoted per-detector upper limits h95%

0 (f) over
the search frequency range and the corresponding S5 noise PSDs.

earlyS5-AllSky-F+Coinc [213]

An all-sky search run on Einstein@Home [7], using 660 h of data from H1 and 180 h of L1 data,
taken from the first 66 days of the LIGO S5 science run. The data was divided into 28 segments
of Tseg = 30 h duration, and each segment was searched using the fully-coherent multi-detector
F-statistic. These per-segment F-statistics were combined across segments using a coincidence
scheme.
The measured sensitivity depthD90%

meas is calculated as the median over the converted sensitivity
depths converted from the quoted sensitivity factors R90% = {29.4, 30.3} in the paper for the
frequencies below and above 400 Hz, respectively.

S5-AllSky-PowerFlux [214]

An all-sky search using PowerFlux analyzing the whole of LIGO S5 data, broken into more than
80 000 50 %-overlapping 30-minute SFTs from both H1 and L1.
The sensitivity depth is calculated from the quoted upper limits h95%

0 and the S5 noise PSD.

S5-AllSky-Hough-F [196]

An all-sky search using the Hough-F variant of the semi-coherent Hough method described in
Sec. 6.2.3, which was run on Einstein@Home. The analyzed data consisted of 5550 and 5010
SFTs from the LIGO H1 and L1 interferometers, respectively, taken from the second year of the
S5 science run. The data was divided into 121 segments of length Tseg = 25 h, and the coherent
per-segment F-statistic was combined via the Hough method to compute the Hough number
count of Eq. (6.25).
The sensitivity depth of the search is calculated from the quoted h90 %

0 upper limits and the
corresponding S5 noise PSD.
The estimated sensitivity depth uses the generalization of the estimator described in Sec. 6.3.5

with a number-count threshold of nc,th = 70, a per segment threshold of F̃th = 2.6 and a
mismatch histogram obtained from an injection-recovery simulation (with an average mismatch
of µ̃ = 0.61).

S5-AllSky-Hough [215]

An SFT-based Hough all-sky search on S5 data. The search was split into the first and the
second year of S5, which were searched separately. The first year used 11 402 SFTs from H1,
12 195 SFTs from H2 and 8 698 SFTs from L1, of length TSFT = 30 min. The analysis of the
second year used 12 590 H1-SFTs, 12 178 H2-SFTs and 10 633 L1-SFTs.
The sensitivity depth is calculated from the quoted h90%

0 upper limits of the second year search
found in the paper and from the S5 noise PSD.
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S5-AllSky-StackSlide-F [216]

A high frequency all-sky search to complement previous lower-frequency all-sky searches on S5
data. The search used the so-called GCT method [138] implementing the StackSlide-F statistic
and was run on the distributed Einstein@Home platform. The search used a total of 17 797
SFTs spanning the whole two years of S5 data from H1 and L1, divided into 205 segments of
length Tseg = 30 h.
The measured sensitivity depth D90%

meas is determined by extrapolating the depth values given
in the paper for critical ratios of 0 and 3.5 to the median critical ratio over all frequency bands
of −0.15 according to figure 6 of [216].
For the estimate we determined the median threshold over all frequency bands from figure

4 of [216] to 2F th = 5.72. Two mismatch histograms at 1255 Hz and 1495 Hz generated with
injection-recovery studies were used. The average mismatch for both was µ ≈ 0.82. The quoted
value is the mean of the two estimates with different mismatch histograms.

VSR1-AllSky-FTD+Coinc [217]:

An all-sky search using data from the first Virgo science run, VSR1. The search method uses
a time-domain implementation of the coherent F-statistic, computed over 2-day coherent seg-
ments, which are combined using coincidences. In total the search used 134 days of data.
The measured sensitivity depth D90%

meas is calculated as median of the given sensitivity factors
of 15.6 and 22.4.

{VSR2,4}-AllSky-FreqHough+FUP [218]

This all-sky search was performed using data from initial Virgos second (VSR2) and forth
(VSR4) science run. It used the FrequencyHough transform as incoherent step with 149 days of
data of VSR2 and 476 days of data of VSR4 using segments of length 8192 seconds. The initial
candidates were followed-up using 10 times longer segments.
The measured sensitivity depth was calculated from upper limits h90%

0 extracted from figure
12 of [218] and the harmonic mean of the PSD estimates of VSR2 and VSR4 in 0.1 Hz frequency
bands.

S6-AllSky-StackSlide-F [207]

This search used 12 080 SFTs from L1 and H1 data to perform a StackSlide-F search based
on the GCT implementation, and was run on Einstein@Home. The search used 90 coherent
segments of length Tseg = 60 h.

The measured sensitivity depth D90%
meas is determined by extrapolating the depth from the given

critical ratios 0 and 6 to the median critical ratio of −0.07 according to figure 5 of [207].
The estimated depth is given for a threshold of 2F th = 6.694 which is the median of the

thresholds given for the frequency bands in figure 4 of [207]. For the estimate two mismatch
histogram created with injection-recovery studies for 55 Hz and 505 Hz was used. The average
mismatch of the grid in the parameter space was at both frequencies found to be µ = 0.72. The
quoted value is the mean of the two estimates with different mismatch histograms.

S6-AllSky-StackSlide-F+FUP [201]

A multi-stage follow-up on candidates from the S6-AllSky-StackSlide-F search described in
the previous paragraph, zooming in on candidates using increasingly finer grid resolution and
longer segments. Every candidate from the initial stage with 2F ≥ 6.109 was used as the center
of a new search box for the first-stage follow-up, continuing for a total of four semi-coherent
follow-up stages. The sensitivity of the search is dominated by the initial-stage threshold,
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because the later stages are designed to have a very low probability of dismissing a real signal.
The measured sensitivity depth D90%

meas = 46.9 Hz−1/2 of this search is directly taken from the
quoted value in the paper.
The estimated multi-stage sensitivity of Sec. 6.3.4 using the thresholds given in the paper,

namely {2F (i)
th } = (6.109, 6.109, 7.38, 8.82, 15) and a mismatch histogram generated by recovery

injection studies for the main search and mismatch histograms provided by the original authors
for every stage with average mismatches {µ(i)} = (0.72, 0.55, 0.54, 0.29, 0.14), yields a value of
D90% = 38.3 Hz−1/2, which differs significantly from the quoted measured sensitivity depth. As
discussed in Sec. 6.5, we trace this discrepancy to the low threshold used, which significantly
affects the loudest-candidate mismatch approximation used in the theoretical estimate.

S6-AllSky-PowerFlux [219]

The data used by this search span a time of 232.5 d with duty factor of the detectors of 53% for
H1 and 51% for L1.
The measured sensitivity depth is calculated from the quoted upper limits h95%

0 in the paper
and the S6 noise PSD.

O1-AllSky-StackSlide-F [188]

A low-frequency all-sky search for gravitational waves from isolated neutron stars using the
distributed computing project Einstein@Home on data from Advanced LIGO’s first observing
run (O1). This search used the GCT implementation of the semi-coherent StackSlide-F method
with Nseg = 12 segments of length Tseg = 210 h in the initial search stage. The analyzed data
consisted of 4 744 SFTs from the H1 and the L1 detector. The search also included a hierarchical
follow-up similar to the S6Bucket follow-up search[201].
The measured sensitivity depth D90%

meas = 48.7 Hz−1/2 of this search is directly taken from the
quoted value in the paper.
The sensitivity estimate used a threshold 2F th = 14.5 which we inferred from figure 4 in [188]

and we obtained the mismatch histograms of the template grid at different frequencies using an
injection-recovery study, which yielded an average mismatch of µ = 0.35 and µ = 0.37 at 20 Hz
and 100 Hz respectively. The quoted depth is the average of the two different estimates resulting
for each mismatch histogram. Note that the contrary to the measured sensitivity, the estimate
only uses the first-stage parameters in this case, as we currently cannot model the line-robust
statistic used in the follow-up stages. However, as mentioned in Sec. 6.3.4, the overall detection
probability is dominated by the first stage, while subsequent stages mostly serve to reduce the
false-alarm level.

O1-AllSky-{PowerFlux,Hough,FTD+Coinc} [127, 187]

Two papers detailing the results of all-sky searches on O1 data using four different search meth-
ods.
The first paper [187] searched the lower frequency range [20, 475] Hz, using four methods:

PowerFlux, FrequencyHough, SkyHough and a time-domain F-statistic search with segment-
coincidences (denoted as FTD+Coinc). The PowerFlux, FrequencyHough and SkyHough search
used SFT lengths in the range 1800 − 7200s as coherent segments while the Time-Domain F-
statistic used a coherence time of Tseg = 6 d. The total amount of analyzed data was about 77 d
of H1 data and 66 d of L1 data.
In the second paper [127] three of these searches were extended up to 2000 Hz, namely Pow-

erFlux, SkyHough and a time-domain F-statistic search with segment-coincidences (denoted as
FTD+Coinc), using the same data.
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The sensitivity depths for the four searches are calculated from the quoted h95%
0 amplitude

upper limits and the noise PSD for the O1 science run.
Note that for the SkyHough method a sensitivity depth of 24.2 Hz−1/2 is quoted in the paper.

However, this value is based on a slightly different convention for the multi-detector noise PSD
S (maximum over detectors instead of the harmonic mean) than used here. For consistency
with the other searches in Table 6.1 we therefore compute the sensitivity depth by converting
from the quoted h95%

0 upper limits instead.
A comparison of PowerFlux 90%-confidence upper limits for an isotropic polarization popula-

tion were provided for the O1 Einstein@Home paper [188], with a frequency spacing of 0.0625 Hz,
which are converted into sensitivity depth using the O1 noise PSD.

6.8.3. Directed Searches, see Tables 6.2, 6.3

earlyS5-Crab-F [221]

This search aimed at the Crab pulsar and used the first nine month of initial LIGO’s fifth
science run (S5). It consisted of both a targeted (described in Sec. 6.8.5) and a directed F-
statistic search described here. The directed search used 182, 206 and 141 days of data from the
H1, H2 and L1 LIGO detectors, respectively. The measured depth value is calculated from the
given upper limits h95%

0 and the PSD estimate of the S5 data at the search frequency.
The estimated depth uses the StackSlide estimator for a coherent search with Nseg = 1

segment, a threshold of Fth = 37 and a maximal template bank mismatch of 5% (given in
the paper), from which we estimate the average mismatch as µ̃ ∼ 1

3 5% (assuming a square
lattice).

S5-CasA-F [200, 235]

The first search for continuous gravitational waves from the Cassiopeia A supernova remnant
using data from initial LIGO’s fifth science run (S5). The search coherently analyzed data in
an interval of 12 days (934 SFTs of length 30 min) using the F-statistic.

The measured sensitivity depth is obtained from the quoted upper limits h95%
0 in the paper

and the S5 noise PSD.
The estimate is calculated using the StackSlide estimator for a coherent search (Nseg = 1

segment), with the mismatch histogram for an A∗n lattice with maximal mismatch of µ = 0.2
(obtained from LatticeMismatchHist() in [205]), and the average threshold of 2Fth = 55.8
(averaged over the respective loudest 2F-candidates found in each of the upper-limit bands).

S5-GalacticCenter-StackSlide-F [199, 220]

The first search for continuous gravitational waves directed at the galactic center. The search
used LIGO S5 data and the GCT implementation of the StackSlide-F semi-coherent search
algorithm with 630 segments, each spanning 11.5 h, for total data set of 21 463 SFTs of length
30 min.
The segments of the search were selected from the whole S5 science run in such a way as

to maximize the SNR for fixed-strength GW signals at the sky position of the galactic center.
Therefore the selected segments fall at times where the antenna patterns of the LIGO detec-
tors are better than average for this particular skyposition. As discussed in Sec. 6.6.3, the
sensitivity-estimation method presented in this work assumes the antenna patterns are aver-
aged over multiple days, which causes a unusually large deviation between the estimate and the
measured sensitivity depth from the h90%

0 upper limits.
The estimate is calculated using the mismatch histogram (with mean µ = 0.13) obtained from

an injection-recovery study on the template bank of this search, and a detection threshold of
2F th = 4.77.
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VSR4-{Vela,Crab}-5-vector [222]

This coherent narrow-band search on the data from initial Virgo’s forth science run (VSR4) was
directed at the Vela and the Crab pulsars. This search used the 5-vector method, and covers a
range of ±0.02 Hz the twice the known frequencies of Vela and Crab. The total amount of data
used is 76 d.
The measured sensitivity depth for this search was obtained from the published h95%

0 upper
limits and the noise PSD estimate for VSR4.

S6-NineYoung-F [184]

This search was directed at nine different targets, listed in Table 6.3, each corresponding to
a (confirmed or suspected) compact object in a young supernova remnant. The search uses a
fully-coherent F-statistic. The amount of data used for every target varies between 7.3 · 105 s
and 3.1 · 106 s (cf. Table 6.3).
The measured depth is calculated for each of the targets from the quoted upper limits h95%

0
and the corresponding PSD for the actual data used in the search.
The estimate for each target is calculated using the StackSlide estimator for a coherent search

(Nseg = 1 segment), with the mismatch histogram for an A∗n lattice with maximal mismatch
of µ = 0.2 (obtained from LatticeMismatchHist() in [205]), and the average 2Fth threshold
found for each target (averaged over the respective loudest 2F-candidates found in each of the
upper-limit bands) are given in Table 6.3.
The ’NineYoung’ entry in Table 6.2 presents the median depth over all targets for the measured

and estimated depths, respectively.

S6-CasA-StackSlide-F [185]

A search directed at Cassiopeia A, which was run on the distributed computing project Ein-
stein@Home using data from the LIGO S6 science run. The search was based on the GCT
implementation of the semi-coherent StackSlide-F statistic, with Nseg = 44 segments of length
Tseg = 140 h, and a total amount of data of 13 143 SFTs of length 30 min from the two LIGO de-
tectors in Hanford (H1) and Livingston (L1). The measured sensitivity depth given in Table 6.2
is computed from the h90%

0 upper limits quoted the paper [185] combined with the corresponding
PSD estimates. However, as discussed in 6.6.3, this measurement suffered from a bug in the
upper-limit script and as a result is somewhat too conservative (i.e. too high).
The estimated sensitivity is calculated assuming an average threshold of F th = 8.25 (estimated

from Fig. 4 in [185]) using the mean over estimates with different mismatch histograms generated
by injection-recovery studies at different frequencies (spanning 50− 1000 Hz, average mismatch
∼ 9%).

S6-OrionSpur-LooselyCoherent [223]

This was a search employing the so-called loosely-coherent method, aimed at the Orion spur
towards both the inner and outer regions of our Galaxy. The explored sky regions are disks with
6.87 ◦ diameter around 20h10m54.71s + 33◦33′25.29′′ and 7.45 ◦ diameter around 8h35m20.61s −
46◦49′25.151′′. The data used in this search spanned 20 085 802 s with duty factors of 53% and
51% for LIGO Hanford and Livingston respectively. Due to weighting of the data the effective
amount of data used was only ∼ 12.5% of the available S6 data. For the analysis data segments
of length 30 min were searched coherently.

The measured sensitivity depth was calculated from the quoted upper limits h95%
0 and a PSD

estimate for the LIGO S6 data.
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S6-NGC6544-F [224]

This was the first search directed at the nearby globular cluster NGC 6544. The search coherently
analyzed data from the two LIGO detectors S6 science run with the F-statistic, using a single
coherent segment with Tseg = 9.2 d. The search analyzed two different data stretches separately.
The first one contained 374 SFTs while the second contained 642 SFTs, with SFT duration of
30 min.

The measured depth was determined from the upper limits h95%
0 given in figure 2 of [224] and

a PSD estimate for the LIGO S6 run.
The estimate used the StackSlide estimator with one segment, a threshold of 2Fth = 55

(quoted in the paper) and an average mismatch of 0.2/3 (assuming a roughly square lattice).

O1-Narrow-band-5-vector[183]

A narrow-band search aiming at 11 known pulsars using the fully-coherent 5-vector method on
data from Advanced LIGO’s first observing run (O1). The search used a total of 121 days of
data from the Hanford (H1) and Livingston (L1) detectors.
The sensitivity depth in the table is calculated from the median over the single-target depths,

which are converted from the upper-limits h95% quoted in the paper and the corresponding noise
PSD of the data used.

O1-{SN1987,GalacticCenter}-Radiometer[225]

Described in Sec.6.8.4.

6.8.4. Searches for Neutron Stars in Binary Systems, see Table 6.4

S2-ScoX1-F[210]

This first search designed specifically aimed at the NS in the LMXB system Scorpius X-1, using
a coherent single-detector F-statistic and a coincidence check on a 6 h long stretch of S2 dat.
The measured sensitivity depth was calculated from the quoted upper limits h95%

0 in the paper
(for the zero-eccentricity case e = 0) and the PSD estimate of the corresponding S2 data.

S5-ScoX1-Sideband[226]

A search aimed at Scorpius X-1 by incoherently combining sidebands of a coherent F-statistic
search that only demodulates the signal for the sky-position but not its binary-orbital Doppler
modulation. This method used a stretch of 10 days of data selected from the S5 science run
for maximal sensitivity. Two searches were performed, one with no prior assumptions about
the orientation of Sco-X1, and one using more restrictive angle-priors based on electromagnetic
observations.
Bayesian upper limits h95%

0 were computed over the search frequency range, which we convert
into sensitivity depths (for the unknown-polarization case, see Fig.5(a) in [226]) using the noise
PSD for the data given in the paper. In each 1Hz-band, 2× 106 upper limit values were quoted,
of which we use the maximum value in each 1Hz-band in order to be consistent with the usual
“loudest-candidate” approach of setting upper limits in a given frequency band.

{S6,VSR2,3}-{AllSky,ScoX1}-TwoSpect[189]

A TwoSpect search for unknown binary signals from any sky-position, and a directed TwoSpect
search for Scorpius X-1 specifically. This search used data from LIGO S6 science run, as well as
from Virgo VSR2 and VSR3 runs, spanning 40 551 300 s from each detector.
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The quoted upper limits h95%
0 for the all-sky search and the Scorpius X-1 search were converted

into Depths using a combined (generic) PSD for the S6, VSR2 and VSR3 science runs.

S6-{ScoX1,J1751}-TwoSpect[227]

A search for CW from the low-mass X-ray binaries Scorpius X-1 and XTE J1751-305 using the
TwoSpect algorithm. It used about 4 · 107 s from each of the two detector in the S6 science
run. It used two different length of the SFTs 840 s and 360 s which also where the length of the
coherently analysed segments.
The given sensitivity depth D95%

0 is obtained from the quoted h95%
0 upper limits combined

with the corresponding noise PSD for S6 data.

O1-ScoX1-Viterbi[186]

A search aimed at Scorpius X-1 using the Viterbi search method performed on 130 days of data
from Advanced LIGO’s first observational run (O1), segmented into coherent segments of length
Tseg = 10 days.
The measured sensitivity depth is converted from the quoted upper limits h95%

0 (for unknown
polarization) and the noise PSD of the corresponding O1 data.
Note that contrary to many other search methods, this search setup appears to result in a

frequency-dependent sensitivity depth, namely D(f) ∝ f−1/4 (see Eq.(9) in [186]). For consis-
tency with other searches, we quote the median and (MAD) standard-deviation over frequencies
in Table 6.4, and note that the total range of sensitivity depths of this search is found as
D(f) ∼ 11 (f/f0)−1/4 Hz−1/2 ∈ [4.6, 11.2] Hz−1/2 with f0 = 60.5 Hz.

O1-ScoX1-CrossCorr[135]

This search aimed at Scorpius X-1 using the CrossCorr search algorithm using data from Ad-
vanced LIGO’s first observational run (O1). The data was split into coherently analysed seg-
ments (SFTs) with a (frequency-dependent) length between 240 s and 1400 s.
The measured sensitivity depth is obtained from the quoted (isotropic-prior) upper limits

h95%
0 and the noise PSD of the O1 data. Note, however, that the search ULs are given per

0.05 Hz bands, which is unusually small compared to most other upper-limit bands (typically
0.25 − 1 Hz), and therefore they display more variability. In order to make these ULs more
comparable to other searches, we use the 95th-percentile highest upper limits per 1Hz-bands
(as recommended in Fig. 5 of [135]). This ’binning’ procedure only has a small effect on the
resulting sensitivity depth, which is reduced from 25.3 Hz−1/2 to 24.0 Hz−1/2.

Note that this search has a frequency-dependent sensitivity depth, which starts at around
D(25 Hz) ∼ 45 Hz−1/2 for low frequencies, asymptoting down to D ∼ 23 Hz−1/2 above f &
800 Hz. However, in order to be consistent with other searches, we quote the median and
(MAD) standard deviation over all frequencies in Table. 6.4.

O1-{ScoX1 and others}-Radiometer[225]

The ’Radiometer’ search method, which was developed mainly for stochastic background
searches, can also be used for directed CW searches at particular sky-positions. This method
does not use a particular signal model, which allows it to be sensitive to a wide range of possible
signal families, at the cost of somewhat lower sensitivity to ’regular’ CW signals. This search
aimed at the sky-positions of Sco-X1, as well as at the supernova remnant 1987A and the
galactic center.
The search reported h90%

0 (and h95%
0 for Sco-X1, reported in [135]) upper limits in narrow

frequency bands of 1/32Hz = 0.03125 Hz bands, which is unusually small compared to most
other upper-limit bands (typically 0.25 − 1 Hz), and therefore they display more variability.
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In order to make these ULs more comparable to other searches, we use the 95th-percentile
highest upper limits per 1Hz-bands (as recommended in Fig. 5 of [135]), and following the same
procedure as used for the CrossCorr results (discussed in Sec. 6.8.4).

6.8.5. Targeted Searches, see Table 6.5

S1-J1939+21-{F,BayesPE}[193]

This first CW search on data from GEO600 and LIGO’s first science run (S1). It used
(16.7, 5.73, 8.73, 8.9) days of data from four detectors, GEO600 (G1), LIGO Livingston (L1),
LIGO Hanford-4 km (H1), and LIGO Hanford-2 km (H2), respectively. Two types of searches
were performed, a coherent F-statistic search as well as direct Bayesian parameter estimation
(BayesPE).
Table 6.5 gives the mean and standard deviation for the sensitivity depths over the four

detectors. The measured sensitivity depth for the F-search was determined from the quoted
upper limits h95%

0 in table IV[193] for the most pessimistic ι (cos ι = 0) and ψ, and from the
quoted numbers in the conclusion for the (standard) population-averaged orientation. The noise
PSD values are taken from table III in [193]. The corresponding estimate is calculated with
the StackSlide estimator for Nseg = 1 and quoted threshold values 2Fth = (1.5, 3.6, 6.0, 3.4)
for the four detectors from Table III in the paper. For the ’worst-case’ estimate we use the
prior cos ι = 0 and minimise the sensitivity depth over ψ ∈ [−π/4, π/4] in order to reflect the
’conservative’ ULs quoted in the paper. Note, however, that contrary to the typically small
false-alarm level (p-value) of the UL thresholds used (typically 1%), the loudest candidates used
as thresholds had relatively high p-values of 83%, 46%, 20% and 49%, respectively, as seen in
table III of [193].

S2-Known pulsars-BayesPE[228]

A coherent targeted search for 28 known isolated radio pulsars was performed using the Bayesian
parameter-estimation pipline (BayesPE) on data from the second LIGO Science Run (S2), using
910 h of data from H1, 691 h from H2 and 342 h of L1 data from the S2 data set.

The measured sensitivity depth is calculated from the quoted Bayesian upper limits h95%
0 and

corresponding noise PSD estimates for the S2 science run.
The sensitivity estimate is performed using the Bayesian sensitivity estimator, for simplicity

assuming the sources are distributed isotropically over the sky.

{S3,4}-Known pulsars-BayesPE[229]

This search targeted 78 known radio pulsars by analysing (45.5, 42.1, 13.4) days of data from
the three detectors (H1, H2, L1) from the third science run (S3) of LIGO and GEO600, and
(19.4, 22.5, 17.1) days of data from the three detectors from the S4 science run. The analysis
used the Bayesian parameter-estimation pipeline (BayesPE).
The measured sensitivity depth was determined from the quoted Bayesian upper limits h95%

0
combined with the noise PSD of the S3 and S4 science runs combined (using harmonic mean).
The sensitivity estimate is calculated using the Bayesian sensitivity estimate, for simplicity

assuming the sources to be isotropically distributed on the sky.

earlyS5-Crab-BayesPE[221]

This search on 9 months of data from the early LIGO S5 science run targeted only the Crab pulsar
at twice its rotation rate, using the Bayesian parameter-estimation pipeline. A corresponding
narrow-band search using the F-statistic is described in Sec. 6.8.3. The targeted search used
201, 222 and 158 days of data of the H1, H2 and L1 LIGO detectors.
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The measured depth is determined from the quoted (i.e. the corrected value in the Erratum)
upper limit h95%

0 assuming an isotropic polarization prior, and the corresponding noise PSD of
the detectors for the early S5 science run data.

S5-Known pulsars-BayesPE[230]

A search targeting 116 known pulsars using 525 days of H1 data, 532 days of H2 data and
437 days of L1 data from LIGO’s fifth science run (S5). The search employed the Bayesian
parameter-estimation pipeline.
The measured sensitivity depth is calculated from the quoted Bayesian upper limits h95%

0 and
the noise PSD of the S5 data.
The estimate is calculated with the Bayesian sensitivity estimator under the assumption that

the targets are distributed isotropically over the sky.

VSR2-Vela-{BayesPE,F,5-vector}[231]

A targeted search for the Vela pulsar using Virgo’s second science-run (VSR2) data, using three
different methods: Bayesian parameter estimation, the F-statistic (and G-statistic) and the
5-vector method. The data set consisted of 149 days of Virgo data.

Two types of searches and upper limits were computed, namely (i) using uninformative
(isotropic) priors on the pulsar orientation, and (ii) using angle priors on cos ι and ψ from
electromagnetic observations.
In Table 6.5 we only give the measured depth corresponding to the isotropic prior, averaged

over the three methods, which obtained very similar results. This was computed from the quoted
upper limits h95%

0 and the noise PSD for the Vela VSR2 run. The measured sensitivity depth
obtained when using the angle priors is found as DV elaAnglePriorsHz−1/2.

The estimated sensitivity depth is calculated using the Bayesian sensitivity estimator.

{S6,VSR2,4}-Known pulsars-{BayesPE,F,5-vector}[203]

This search targeted 195 known pulsars, using 149 days of VSR2 and 76 days of VSR4 data for
pulsars with a CW frequency lower than f < 40 Hz and an additional 238 days of S6 data from
H1 and 225 days from L1 for faster spinning pulsars with f > 40 Hz. The analysis was done
using three different methods: Bayesian parameter estimation, the F-statistic (or G-statistic for
restricted angle priors) and the 5-vector method.
The given measured sensitivity depth in Table 6.5 is the median and MAD standard devia-

tion over the sensitivity depths for the different targets (averaged over high- and low-frequency
targets). The sensitivity depths are obtained from the quoted upper limits h95%

0 and the cor-
responding noise PSD estimate of the data used (which is either S6 and VSR2 and VSR4 for
high-frequency targets f > 40 Hz, or only VSR2 and VSR4 for low-frequency targets).
The estimated sensitivity is obtained from the Bayesian sensitivity estimator assuming an

isotropic prior over the sky, averaged over high- and low-frequency depths results.

O1-Known pulsars-{BayesPE,F,5-vector}[182]

In this search 200 known pulsars were targeted using three different methods: Bayesian pa-
rameter estimation, the F-statistic (or G-statistic for restricted angle priors) and the 5-vector
method. The searches used 78 and 66 days of H1 and O1 data from the first observational run
of advanced LIGO (O1), respectively.
The measured sensitivity depth is obtained from the quoted Bayesian upper limits h95%

0 over
all targets and the corresponding noise PSD for the LIGO detectors during O1.
The estimated sensitivity depth is determined from the Bayesian estimator as an all-sky

estimate assuming the targets are isotropically uniformly distributed over the sky.
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6.9. Appendix B: CW Signal Model and F-statistic
A plane gravitational wave arriving from a direction n̂ (unit vector) can be written [236] in TT
gauge (in the notation of [105]) as a purely spatial strain tensor

←→
h with two polarizations +,×,

namely ←→
h (τ) = h+(τ)←→e + + h×(τ)←→e × , (6.56)

where τ is the emission time of the signal in the source frame, and ←→e + and ←→e × are the two
polarization basis tensors, which can be constructed from a right-handed orthonormal basis
{ˆ̀, m̂,−n̂} as ←→e + = ˆ̀⊗ ˆ̀− m̂⊗ m̂ and ←→e × = ˆ̀⊗ m̂+ m̂⊗ ˆ̀.
The measured scalar CW signal hX(t) at time t by detector X is the response of the detector

to the GW tensor
←→
h (τX(t)), where τX(t) denotes the emission time of a wavefront that reaches

detector X at time t. This timing relationship depends on the sky-position n̂ of the source as
well as any binary-orbital parameters in case of a CW from a neutron star in a binary system,
as it describes the time-dependent light-travel time from the source to the detector. In the long-
wavelength limit we assume the GW wavelength to be much larger than the detector armlength,
which is a good approximation for current ground-based detectors up to kHz frequencies. This
allows us to write the detector response as a tensor contraction (in both tensor indices):

hX(t) =
←→
d X(t) :

←→
h (τX(t)) , (6.57)

where
←→
d X = û⊗ û− v̂ ⊗ v̂ for interferometer arms along unit vectors û and v̂.

It is helpful to define a source-independent orthonormal polarization basis {ı̂, ̂,−n̂} instead,
where for any sky position n̂, the unit vector ı̂ is chosen to lie in Earth’s equatorial plane
(pointing West) and ̂ is pointing in the northern hemisphere. This defines the (sky-position
dependent) alternative polarization basis as←→ε +(n̂) ≡ ı̂⊗ ı̂− ̂⊗ ̂ and←→ε ×(n̂) ≡ ı̂⊗ ̂+ ̂⊗ ı̂. The
rotation between these two basis systems defines the polarization angle ψ, which is measured
counterclockwise from ı̂ to ˆ̀, and relates the two polarization basis tensors as

←→e + = ←→ε + cos 2ψ +←→ε × sin 2ψ (6.58)
←→e × = −←→ε + sin 2ψ +←→ε × cos 2ψ . (6.59)

Combining these expression, we can obtain the factored signal form hX(t;A, λ) = Aµ hXµ (t;λ) of
Eq. (6.7), which was first derived in [102]. The four amplitudes {Aµ}4µ=1 depend on the signal
amplitude h0, the inclination angle ι via A+(h0, ι) and A×(h0, ι) given in Eq. (6.6). They also
depend on the polarization angle ψ, and the reference-time phase φ0, namely

A1 = A+ cosφ0 cos 2ψ −A× sinφ0 sin 2ψ ,
A2 = A+ cosφ0 sin 2ψ +A× sinφ0 cos 2ψ ,
A3 = −A+ sinφ0 cos 2ψ −A× cosφ0 sin 2ψ ,
A4 = −A+ sinφ0 sin 2ψ +A× cosφ0 cos 2ψ ,

(6.60)

and the four (detector-dependent) basis functions hXµ (t;λ) are

hX1 (t) = aX(t) cosφ(τX(t)) ,
hX2 (t) = bX(t) cosφ(τX(t)) ,
hX3 (t) = aX(t) sinφ(τX(t)) ,
hX4 (t) = bX(t) sinφ(τX(t)) ,

(6.61)

in terms of the antenna-pattern functions aX(t), bX(t) given by the contractions

aX(t; n̂) =
←→
d X(t) :←→ε +(n̂) ,

bX(t; n̂) =
←→
d X(t) :←→ε ×(n̂) .

(6.62)
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Using the factored signal form of Eq. (6.7), the log-likelihood ratio Eq. (6.63) now takes the
form

ln Λ(x;A, λ) = Aµ xµ −
1
2A

µMµνAν , (6.63)

where we defined
xµ(λ) ≡ (x, hµ) , and Mµν(λ) ≡ (hµ, hν) , (6.64)

in terms of the four basis function hµ(t;λ) defined in Eq. (6.61). The 4 × 4 antenna-pattern
matrix M can be shown to be well approximated by the block-diagonal form

M = S−1 Tdata

(
M 0
0 M

)
withM ≡

(
A C
C B

)
, (6.65)

defining the antenna-pattern coefficients A,B,C, which depend on the sky-position n̂.
We see in Eq. (6.63) that the log-likelihood ratio is a quadratic function of the amplitudes Aµ,

and can therefore be analytically maximized [102] (or marginalized [108]) to yield the well-known
F-statistic:

F(x;λ) ≡ max
A

ln Λ(x;A, λ)

= 1
2 xµM

µν xν ,
(6.66)

withMµν defined as the inverse matrix toMµν of Eq. (6.65).

6.10. Appendix C: Definition of the Geometric Factor R2

The geometric factor R2 can be explicitly expressed [106] as

R2(θ) = 25
4 [α1A(n̂) + α2B(n̂) + 2α3C(n̂)] , (6.67)

with the sky-dependent antenna-pattern coefficients {A,B,C} of Eq. (6.65), and

α1 ≡
1
4 (1 + cos2 ι)2 cos2 2ψ + cos2 ι sin2 2ψ , (6.68)

α2 ≡
1
4 (1 + cos2 ι)2 sin2 2ψ + cos2 ι cos2 2ψ , (6.69)

α3 ≡
1
4 (1− cos2 ι)2 sin 2ψ cos 2ψ . (6.70)

One can show that R2 averaged over ψ ∈ [−π/4, π/4] and cos ι ∈ [−1, 1] yields〈
R2
〉

cos ι,ψ
= 5

2 (A(n̂) +B(n̂)) , (6.71)

and further averaging n̂ isotropically over the sky yields〈
R2
〉
θ

= 1 . (6.72)

6.11. Appendix D: Distribution of F-statistic Maximized over
Correlated Templates

It has been a long-standing assumption (e.g. [29, 200]) that the distribution of the statistic
2F∗(x) ≡ maxλi 2F(x;λi) in Gaussian noise x, maximized over a template bank λi ∈ T of

90



6.11. Appendix D: Distribution of F-statistic Maximized over Correlated Templates

i = 1 . . .N (generally correlated) templates can be modelled by assuming maximization over an
“effective” number of uncorrelated trials N ′ instead, namely

P (2F∗ | N ′) = N ′ cdf0(2F∗)N ′−1 pdf0(2F∗) , (6.73)

where

pdf0(2F) = P (2F | ρ = 0) , (6.74)

cdf0(2F) =
∫ 2F

0
pdf0(2F ′) d2F ′ , (6.75)

where the (single-template) F-statistic in pure Gaussian noise follows a central χ2 distribution
(with four degrees of freedom in the fully-coherent case Eq. (6.13), or 4Nseg degrees of freedom
for a semi-coherent F-statistic over Nseg segments, Eq. (6.22)).

We show here by counter-example that the model of Eq. (6.73) is not generally accurate, as
correlations between templates do not simply modify N ′ but also change the functional form of
the distribution. It has been hypothesized previously [29] that these (already-observed) devia-
tions might be due to certain approximations (c.f. [106]) used in the numerical implementation
of the F statistic. While such effects will account for some amount of deviation, one can show
this effect to be quite small overall.
We demonstrate the fundamental statistical nature of this discrepancy by using a simpler

example: We generate a time-series {xj}N−1
j=0 of N = 200 samples drawn from a Gaussian

distribution and compute the Fourier transform x̃k normalized to E[|x̃k|2] = 2, such that
2F2(x, f) ≡ |x̃(f)|2 follows a central χ2 distribution with two degrees of freedom in every fre-
quency bin f . We can therefore set pdf0(2F2) = χ2

2(2F2; 0) and use the corresponding cdf in
Eq. (6.73).
We consider different cases of oversampling by zero-padding the time-series to a multiple

(denoted as the oversampling factor in Fig. 6.10) of the originalN time samples: theN/2−1 = 99
(positive) frequency bins without oversampling are strictly uncorrelated (and we also know that
there can be at most N = 200 independent templates in total, given the length of the initial
timeseries). With increasing oversampling, the correlations between frequency bins increase.
We repeate this process 106 times for different noise realizations, and in each case we compute
2F∗2 (x) over all the (positive) frequency bins of the Fourier power, and histogram these values.
We then fit the number of effective templates N ′ in the theoretical distribution of Eq. (6.73) by
minimizing the (symmetric) Jensen–Shannon divergence between the measured and theoretical
distributions. The results are shown in Fig. 6.10 for different cases of oversampling. We see
that for increased oversampling, i.e. more correlations between ’templates’ (i.e. frequency bins),
the functional form of the histogram agrees less with the theoretical distribution assuming
independent templates. The effect seems to saturate for oversampling & 10, with N ∼ 230
greater than the known maximal number (i.e. N = 200) of (strictly) independent templates in
this vector space.
There is no simple or intuitive explanation for this effect that we are aware of, but it is

reminiscent of a similarly surprising result found in the localization of the maximum over different
assumed signal durations of transient CW signals, see Figs. 8 and 9 in [110]. The distribution
of the statistic is identical in each time-step, but the steps are correlated, resulting in a peculiar
non-uniform distribution of the location of the maximum.
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Figure 6.10.: Stair-case plot: histogram (over 106 repeated trials) of 2F∗2 = maxk |x̃k|2 for
Fourier transforms of Gaussian-noise timeseries, using different oversampling fac-
tors (a)–(d), where oversampling = 1 corresponds to the original FFT frequency
resolution. Solid thin line: corresponding best-fit theoretical model Eq. (6.73) with
an effective number of templates N ′.
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7. Deep-Learning Continuous Gravitational Waves

This chapter is essentially a reprint of Dreissigacker et al. [30], with minor changes and refor-
matting as a chapter of this work.

7.0. Abstract

We present a first proof-of-principle study for using deep neural networks (DNNs) as a novel
search method for continuous gravitational waves (CWs) from unknown spinning neutron stars.
The sensitivity of current wide-parameter-space CW searches is limited by the available com-
puting power, which makes neural networks an interesting alternative to investigate, as they are
extremely fast once trained and have recently been shown to rival the sensitivity of matched fil-
tering for black-hole merger signals [9, 10]. We train a convolutional neural network with residual
(short-cut) connections and compare its detection power to that of a fully-coherent matched-
filtering search using the Weave pipeline. As test benchmarks we consider two types of all-sky
searches over the frequency range from 20 Hz to 1000 Hz: an “easy” search using T = 105 s of
data, and a “harder” search using T = 106 s. Detection probability pdet is measured on a signal
population for which matched filtering achieves pdet = 90% in Gaussian noise. In the easiest test
case (T = 105 s at 20 Hz) the DNN achieves pdet ∼ 88%, corresponding to a loss in sensitivity
depth of ∼ 5% versus coherent matched filtering. However, at higher-frequencies and longer
observation time the DNN detection power decreases, until pdet ∼ 13% and a loss of ∼ 66% in
sensitivity depth in the hardest case (T = 106 s at 1000 Hz). We study the DNN generalization
ability by testing on signals of different frequencies, spindowns and signal strengths than they
were trained on. We observe excellent generalization: Only five networks, each trained at a
different frequency, would be able to cover the whole frequency range of the search.

7.1. Introduction

Gravitational waves from binary mergers are now being observed routinely [1, 2, 237, 238] by the
Advanced LIGO [44] and Virgo [46] detectors. In contrast, the much weaker and longer-lasting
(days–months) narrow-band continuous gravitational waves (CWs) from spinning deformed neu-
tron stars are yet to be detected, despite a multitude of searches over the past decade (see [85,
91, 177] for reviews) and continuing improvements in search methods (e.g. see [28] for a recent
overview).
A key limitation of current search methods for CWs with unknown parameters is the “ex-

ploding computing cost problem”: give that a putative signal would be very weak, one needs to
integrate as much data as possible in order to increase the signal-to-noise ratio (SNR). However,
for a fully-coherent matched-filtering search (which is close to statistically optimal [108]), the
corresponding computing cost grows as a high power ∼ Tn of the data timespan T , with n & 5.
This typically limits the longest coherent duration to days–weeks before the computing cost
would become infeasible.
Therefore the class of semi-coherent methods has been developed, producing computationally

cheaper searches. They allow the analysis of more data, typically resulting in better sensitivity
than a corresponding coherent search at fixed computing cost (e.g. see [28, 180]). Such methods
combined with massive amounts of computing power, either via local compute clusters or via
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the distributed public computing platform Einstein@Home [7], currently yield the best state-of-
the-art sensitivity to CW signals (e.g. see [239–241] for recent examples).
In this work we investigate deep neural networks (DNNs) [8, 152, 155] as a novel search method

for CWs. The field of DNNs, also referred to as Deep Learning, has emerged as one of the most
successful machine-learning paradigms in the last decade, dominating wide-ranging fields [8]
such as image recognition, speech recognition and language translation, as well as certain board
[242] and video games [243, 244].
More recently DNNs have started to draw attention in the field of gravitational-wave searches:

(i) as a classifier for non-Gaussian detector transients (glitches) [21–24], (ii) as a search method
for unmodelled burst signals [25, 26] in time-frequency images produced by coherent Wave-
Burst [27], and (iii) as a direct detection method for black-hole merger signals in gravitational-
wave strain data [9–13].
This last approach (iii) is of particular interest to us, as [9, 10] have illustrated for the first time

that DNNs can achieve a detection power comparable to that of (near-optimal) matched filtering,
at a fraction of the search time. This is relevant for CW searches: while semi-coherent methods
for wide-parameter-space searches are the most sensitive approach currently known, they are by
design less sensitive than the statistical optimum achievable according to the Neyman-Pearson-
Searle lemma [109].
With DNNs the computationally expensive step is shifted to the preparation stage of the

search: the architecture tuning and “learning” of optimal network weights (i.e. the training),
while the execution time on given input vectors is very short (typically fractions of a second).
Determination of the noise-distribution (for estimation of the false alarm level pfa) and measure-
ment of upper limits require many repeated searches over different input data sets, with and
without injected signals. The relative search speed advantage of DNNs compared to traditional
search methods therefore accumulates dramatically over these operations allowing very fast and
flexible search characterizations.
The plan of this chapter is as follows: In section 7.2 we define and characterize our test

benchmarks. In section 7.3 we describe our deep-learning approach to searching for continuous
gravtational waves: explaining the network architecture and how it was trained. In section
7.4 we characterize the performance our DNN achieves on the test benchmarks in comparison
to the matched-filtering performance and how it generalizes beyond the benchmarks’ search
parameters. And finally we discuss these results in section 7.5.

7.2. Comparison Test Benchmarks

7.2.1. Benchmark Definitions

In order to characterize the detection power of the DNN that we introduce in the next section,
we define two benchmark search setups and measure the corresponding sensitivity achieved on
them with a classical (near-optimal) matched-filter search method described in Sec. 7.2.2.
We compare the sensitivity in the Neyman-Pearson sense, also known as the receiver-operator

characteristic (ROC), using the “upper limit” conventions used in most CW searches (cf. [28]):
measure the detection probability pdet at a chosen false-alarm level pfa for a signal population
of fixed amplitude h0, with all other signal parameters (i.e. polarization, sky-position, frequency
and spindown) drawn randomly from their priors. In order to characterize the signal strength
in noise, we use sensitivity depth D [28, 199], defined as

D ≡
√
S
h0

, (7.1)

where S is the power-spectral density (PSD) of the (Gaussian) noise at the signal frequency, and
h0 is the signal amplitude. In particular we are interested in the sensitivity depth D90% that
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corresponds to the signal amplitude h90%
0 at which the search yields a detection probability of

pdet = 90% at a fixed false-alarm level, which here is chosen as pfa = 1% per 50 mHz frequency
band.
We consider two all-sky searches (parameters summarized in Table. 7.1) over a range in fre-

quency f and first-order spindown ḟ , one using T = 105 s ∼ 1.2 days, and one using T = 106 s ∼
12 days of data assuming a single detector (chosen as LIGO Hanford). These two searches could

parameter name parameter values

data span T = 105 s / T = 106 s
detectors LIGO Hanford
noise stationary, white, Gaussian
sky-region all-sky
frequency band f ∈ [20, 1000] Hz
spin-down range ḟ ∈ [−10−10, 0] Hz/s

Table 7.1.: Definition of the two benchmark searches.

realistically be performed with coherent matched filtering. The required computing cost for the
search and its characterization (upper limits, false alarm level) however would still require a large
cluster of, say, O (1000) cores for over a month or so (see Table 7.2). Therefore actually perform-
ing these two full searches only for the purpose of characterizing the matched-filtering sensitivity
would be infeasible. Instead we characterize the matched-filter search on only five narrow fre-
quency bands of width ∆f = 50 mHz starting at frequencies f0 = 20, 100, 200, 500 and 1000 Hz,
yielding a total of ten representative test cases.

7.2.2. Weave Matched-filtering Sensitivity

For the matched-filter search we use the recently-developed Weave code [145], which implements
a state-of-the-art CW search algorithm [245] based on summing coherent F-statistics [102, 197]
over semi-coherent segments on optimal lattice-based template banks [246, 247]. This code
can also perform fully-coherent (i.e. single-segment) F-statistic searches, which we use for the
present proof-of-principle study. The benchmark search definitions in Table 7.1 are chosen in
such a way that a fully-coherent search is still computationally feasible. This yields a simpler
and cleaner comparison than using a semi-coherent search setup, as we can easily design near-
optimal search setups (by using relatively fine template banks) without the extra complication
of requiring costly sensitivity-optimization at fixed computing cost [180, 191, 245].
The Weave template banks are characterized by a maximal-mismatch parameter m, which

controls how fine the templates are spaced in parameter space. These are chosen as m = 0.1
and m = 0.2 for the two searches with T = 105 s and T = 106 s, respectively. The reason for
choosing the larger mismatch value (i.e. coarser template bank) in the T = 106 s case is to keep
the computing cost of the corresponding test-cases still practically manageable, as the coherent
cost scales with mismatch parameter as ∝ m2 for a four-dimensional template bank (e.g. see
Eq.(24) in [246]).
By repeated injections of signals in the data and recovery of the loudest F-statistic candidate

in the template bank, one can measure the relative SNR-loss µ compared to a perfectly-matched
template. The resulting measured average mismatch 〈µ〉 quantifies in some sense how close to
“optimal” the matched-filter sensitivity will be (compared to an infinite-computing cost search
with m = 0), and is found as 〈µ〉 ∼ 5% and 〈µ〉 ∼ 11%, respectively for the two searches.
Using the template-counting and timing models [145, 205, 248] for Weave and the resampling
F-statistic, we can estimate the total number of templates and the corresponding total runtime
for these two benchmark searches as ∼ 78 days and ∼ 45 000 days on a single CPU core, re-
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spectively. Table. 7.2 provides a summary of the Weave search parameters and characteristics.

name T = 105 s T = 106 s

mismatch parameter m 0.1 0.2
average SNR loss 〈µ〉 5% 11%
Number of templates N 4 · 1011 3 · 1014

Search time [single CPU core] 6.7 · 106 s 3.9 · 109 s

Table 7.2.: Weave parameters and characteristics for the two searches.

In order to estimate the sensitivity for the ten test cases defined in the previous section (i.e.
five frequency slices of ∆f = 50 mHz for each search of T = 105 s and T = 106 s, respectively), we
first determine the corresponding detection thresholds Fth on the F-statistic corresponding to a
false-alarm level of pfa = 1% for each case. This is done by repeatedly (105 times for T = 105 s,
and ∼ 104 times for T = 106 s, respectively) performing each search over Gaussian noise and
thereby recording the distribution of the loudest candidate, which yields the relationship between
threshold and false-alarm level. The corresponding detection probability pdet for any given signal
population of fixed D is obtained by injecting signals into Gaussian noise data and measuring
how many times the loudest candidate exceeds the detection threshold. By varying the injected
D we can eventually find D90% for the desired pdet = 90% (e.g. see [28] for more details and
discussion of this standard “upper limit” procedure). By a final injection+recovery Monte-Carlo
we can verify that the achieved Weave detection probability for the quoted thresholds and signal
strengths D90% in Table. 7.3 is pdet ∼ 90%− 91%, which is sufficiently accurate for our present
purposes.
The sky template resolution grows as ∝ f2 as a function of frequency f , resulting in a corre-

sponding increase in the number of templates at higher frequency. This increases the number
of “trials” in noise at the higher-frequency slices, which results in a corresponding increased
false-alarm threshold (chosen in order to keep the false-alarm level at pfa = 1%) as well as an
increased computing cost, shown in Table. 7.3.

f0 20 Hz 100 Hz 200 Hz 500 Hz 1000 Hz

T = 105 s
N∆f 5 · 105 1 · 107 5 · 107 3 · 108 1 · 109

CPU∆f [s] 0.1 4.9 19 2.3 · 102 1.7 · 103

Fth(pfa) 20.6 23.6 25.1 27.0 28.6

T = 106 s
N∆f 3 · 108 8 · 109 3 · 1010 2 · 1011 8 · 1011

CPU∆f [s] 45 3 · 103 1.4 · 104 1.6 · 105 6.9 · 105

Fth(pfa) 27.5 31.1 32.5 34.2 36.2

Table 7.3.: Weave characteristics for the ten test cases, each covering a frequency “slice” of
∆f = 50 mHz, starting at f0, of the full searches defined in Table. 7.1. The detection
thresholds Fth correspond to a false-alarm level of pfa = 1% over the band ∆f . N∆f
is the number of templates used per respective frequency band. CPU∆f denotes the
search time in seconds for the respective ∆f band on a single CPU core.
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D90% [Hz−1/2] f0 = 20 Hz 100 Hz 200 Hz 500 Hz 1000 Hz

T = 105 s 11.4 10.8 10.4 9.9 9.7
T = 106 s 29.3 28.2 27.6 26.8 26.0

Table 7.4.: Measured Weave “upper limit” sensitivity D90% at false-alarm level of pfa = 1%.

Stem Block

Endblock

Residual Block

Residual Block

n times

Figure 7.1.: Illustration of the general network architecture used in this study.

7.3. Deep-Learning CWs
Our general approach is similar to that of [9, 10] in that we directly use the detector strain
data as our network input, and train a simple classifier with two output neurons for the classes
“noise” and “signal (in noise)”. However, given that CW signals are long in duration and narrow
in frequency, instead of using the time-series input it makes more sense in our case to use the
frequency-domain representation of that data. We therefore provide the real- and imaginary
parts of the fast Fourier transform (FFT) of the data as a two-dimensional input vector over
frequency bins, using the native FFT resolution of 1/T . We chose the network input size to
be sufficiently large to contain the widest signal (signals get stretched in frequency domain by
spindown ḟ and Doppler shifts) twice, so that we can slide the network along the frequency
axis in steps of half the network input width, guaranteeing that one input window will always
contain the full signal.

7.3.1. Network Architecture
We started experimenting with DNN architectures similar to those described in [9, 10], but
eventually by trial and error converged on a ResNet architecture [170], which showed better
performance for our problem cases.
We have chosen slightly different networks for the two searches (T = 105 s and T = 106 s) of

Table. 7.1, as these correspond to signals with rather different width in frequency domain: the
network in the T = 105 s cases contains six instances of a residual block, while in the T = 106 s
cases the network uses twelve.
The network layers can be separated into three parts: the stem block, a block of multiple

residual blocks, and an end-block, see Fig 7.1. The stem block consists of a standard convolu-
tional layer, while each of the residual blocks is built according to [170]. The endblock contains
a dense softmax layer with two final output neurons, corresponding to the estimated probability
psignal that the input contains a signal, and pnoise = 1− psignal for pure noise sample. The DNNs
are implemented in the Keras framework[151] on top of a Tensorflow[249] backend.
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Figure 7.2.: Validation detection probability for T = 105 s, f0 = 1000 Hz, “H1” for training with
training sets containing 10, 100, 1000, 10000 and 50000 signals.

7.3.2. DNN Training and Validation

Training the network is performed on a synthesized data-set of input vectors, where half contain
pure Gaussian noise, and half contain a signal added to the noise. One full pass through this
training set is commonly referred to as a training epoch. Using a pre-computed set of 10 000
signals, each signal is added to 24 dynamically-generated noise realizations, which are also used
as pure-noise inputs. The number of signals in the training set was determined empirically, as
using more signals gives diminishing performance improvements (see Fig. 7.2). The signals are
scaled to a fixed depth D90%

training for each test case and randomly shifted in frequency within
the network input window. These training depths were estimated semi-analytically using the
method of [28, 205], and differ slightly from the final measured values D90% of Table. 7.4, which
had not yet been available at the time of training. When testing the network on signals of
different depths, the detection probability behaves as expected, see Sec. 7.4.4. Furthermore, we
found that using a different choice of training depth did not significantly affect training success.
Every few epochs of training, we perform a validation step, where the detection probability

of the network is measured on an independent data set. This validation set contains another
20 000 input vectors, half containing signals in noise (of fixed depth D90%), and half containing
noise only.
In order to compute the network’s detection probability pDNN

det , we treat the output neuron
psignal as a statistic, and follow the usual “upper limit” procedure described in Sec. 7.2.2: we
repeatedly run the network on Gaussian noise inputs in order to determine the pfa = 1% detection
threshold. We then run the network on the signal set and measure for what fraction of signals
the statistic exceeds that threshold.
The evolution of the detection probability as a function of training epoch (or similarly, as

a function of training time) is presented in Fig. 7.3, illustrating the progress of learning. In
order to test the variability and dependence of the learning success on the random initialization
of the network, we train a “cloud” of ∼ 100 differently-initialized network instances. We use
the network at its point of best validation performance from each test case for the further test
results presented in the next sections.
Most of the training was performed on Nvidia GTX 750 GPUs. We see in Fig. 7.3 that for most

cases the improvements in detection probability seem to have leveled off after the training time
(about one day in the T = 105 s cases, and about 10 days in the T = 106 s cases). However, in the
case of T = 106 s, f0 = 1000 Hz, “H1” seen in Fig.7.3d (and also for T = 106 s, f0 = 500 Hz, “H1”,
not shown), there still seems to be a slowly increasing trend in detection probability at the end
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(c) T = 106 s, f0 = 20 Hz, “H1”
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Figure 7.3.: Validation detection probability pDNN
det of the DNN versus training time (or mean

trained epoch) for 100 different network instances trained for each of four test
cases: (a) T = 105 s, f0 = 20 Hz, “H1”, (b) T = 105 s, f0 = 1000 Hz, “H1”, (c)
T = 106 s, f0 = 20 Hz, “H1” and (d) T = 106 s, f0 = 1000 Hz, “H1”, all trained on
Nvidia GTX 750. The solid horizontal line denotes the matched-filtering detection
performance of pdet = 90%.
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Figure 7.4.: Validation detection probability pDNN
det of the DNN versus training time for a single

network trained on Nvidia TITAN V for the case T = 106 s, f0 = 1000 Hz, “H1”.

of training time. Therefore we trained a single network instance for these two cases again on
a more powerful Nvidia TITAN V GPU for many more epochs, until the validation detection
probability seemed to level off, which is shown in Fig. 7.4.
Overall we observe an dramatic increase in “difficulty” the DNN has in learning the different

test cases along the direction of increasing data span T and frequency f , also seen clearly in
Table. 7.5. In the easiest case of T = 105 s, f0 = 20 Hz, “H1” the DNN achieves a detection
probability of pDNN

det ∼ 88%, nearly rivalling matched-filtering performance, while in the hardest
case of T = 106 s, f0 = 1000 Hz, “H1” it only manages pdet ∼ 13% (also see Table 7.5). This may
not be very surprising, given that the cases become increasingly more compute-intensive (more
templates) along the same axis for matched filtering, as seen in Table. 7.3. In the frequency-
domain input vectors of the DNN, this would manifest by the signals being more widely spread-
out due to increased frequency drift ḟ T and Doppler stretching.

7.4. Testing DNN Performance

After the training and validation steps, we perform a series of tests on the best DNN found
for each test case (i.e. with the highest pDNN

det over all validation steps), in order to more fully
characterize its performance as a CW detection method. In these tests we simulate the signals
and noise directly for any given depth using the standard CWLALSuite[250] machinery, in
order to independently verify the network performance. Hence we are not using a traditionally
fixed testing set but generate it on demand.

7.4.1. Verifying Detection Probabilities

As a sanity check we measure again the detection probability pDNN
det at pfa = 1% for the ten

cases over the respective frequency bands for a signal population at the matched-filtering D90%

of Table. 7.4. The resulting DNN test results obtained with the independent test-pipeline are
given in Table. 7.5. These results usually agree to ∼ 2 percentage points in detection probability
with the corresponding best pDNN

det originally observed in the validation step, seen in Figs. 7.3,7.4.
A second interesting question is how the detection probability depends on the false-alarm level

pfa (commonly referred to as ROC curve) for a fixed signal population. This is shown in Fig. 7.5
in comparison to the matched-filter ROC.
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pDNN
det [%] f0 = 20 Hz 100 Hz 200 Hz 500 Hz 1000 Hz

T = 105 s 87.6+0.7
−0.6 85.4+0.7

−0.7 84.1+0.7
−0.7 80.2+0.8

−0.8 73.0+0.9
−0.9

T = 106 s 68.8+0.9
−0.9 50.0+1.0

−1.0 38.7+0.9
−1.0 25.4+0.8

−0.9 13.1+0.6
−0.7

Table 7.5.: Detection probabilities in % of the best networks for each case at false alarm level
pfa = 1 % and 90 % matched-filtering depth.
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Figure 7.5.: ROC-curve: Detection probability pdet versus pfa for the 105 s search (left) and
the 106 s search (right). The solid red lines indicate the measured ROC curves for
matched filtering.

7.4.2. Generalization in Frequency f

If we want to perform a search over the whole frequency range (e.g. as defined in Table. 7.1)
using DNNs, we would need to determine how many different networks we have to train in
order to cover this range with a reasonable overall sensitivity. Alternatively we can also train
a single DNN with signals drawn from the full frequency range of the search and compare its
performance.
The results of these tests are shown in Fig. 7.6, which show how the five DNNs, trained at their

respective frequencies f0, perform over the full frequency range of the search. In addition we
show the performance of another network that has been trained directly over the full frequency
range.

We see that the “specific” networks trained only on a narrow frequency range still perform
reasonably well over a fairly broad range of frequencies, and especially that networks trained at
higher frequencies generalize well to lower frequencies. This result shows that a small number
of networks O (5) would be able to cover the whole frequency range at a similar detection
performance that was obtained on the individual training frequencies. Furthermore, it seems
quite feasible to train a single network over the full frequency range directly, achieving similar
(albeit slightly lower) performance to the “specialized” networks trained at narrow frequency
bands.

7.4.3. Generalization in Spin-down ḟ

A further interesting aspect to consider is how far in spindown ḟ the performance network ex-
tends beyond the range that it was trained on, i.e. ḟ ∈ [−10−10, 0] Hz/s as given in Table. 7.1.
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Figure 7.6.: Detection probability pdet versus injection frequency f for networks trained at five
different frequencies and for a network trained with signals drawn from the full
frequency range (solid black line). The dashed vertical lines mark the respective
training frequencies for the five “specialized” networks. The horizontal dashed line
represents the coherent matched filtering detection performance.

This is shown in Fig. 7.7. We see that the DNN detection probability remains high even for
spindowns that are 1-2 orders of magnitude larger than the training range. In particular, net-
works trained at higher frequencies seem to have a wider generalization range in spindown,
which makes sense as they would have learned to recognize signal shapes with larger Doppler
broadening, a qualitatively similar effect to having more spindown.

7.4.4. Generalization in Signal Strength

Another important issue is how well the DNN generalizes for signals of different strength D, given
that we only trained each network at one specific depth D90%

training, an estimate of the matched
filtering depth. The results of this test are shown in the efficiency plots of Fig. 7.8. We see that
generally the dependence of pdet(D) for the DNNs seems to be quite similar to that of matched
filtering, but shifted to its overall (lower) performance level.
Conversely we also calculated the “upper limit” sensitivity depth D90%

DNN where the network
achieves 90% detection probablity (see Table 7.6). These values correspond to a sensitivity loss
of 5% − 21% (as a function of frequency) for the T = 105 s search, and 26% − 66% for the
T = 106 s search.

D90 %
DNN[Hz−1/2] f0 = 20 Hz 100 Hz 200 Hz 500 Hz 1000 Hz

T = 105 s 10.8 10.0 9.5 8.6 7.7
T = 106 s 21.6 16.5 14.3 11.1 8.9

Table 7.6.: Sensitivity depths D90%
DNN at false-alarm level of pfa = 1% achieved by the network for

the ten test cases. The respective matched filter depths can be found in Table 7.4.
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Figure 7.7.: Detection probability pdet versus injected spin-down ḟ for networks trained at
give different frequencies. The green shade in the middle marks the 10−10 Hz/s
wide spin-down band the networks were trained on. The x-axis is plotted as a
symmetric logarithm, i.e. logarithmical for the larger negative values, linear for
|ḟ | < −10−10 Hz/s and logarithmical for the larger positive values. The red shades
at the edges illustrates where we start losing SNR purely by the network input
window being smaller than the widest signals.

7.4.5. Timing

The total amount of computational resources needed, is another interesting point of comparison
to a matched filter search. The total search times for using the matched-filter Weave method
on the two benchmark searches can be found in Table. 7.2.
For the DNN the total computation time consists of two parts: Training time and prediction

time (i.e. calculating one output statistic psignal for one input data vector). The training time for
the two network architectures is ∼ 1 d and ∼ 10 d per network for the T = 105 s and T = 106 s
cases, respectively. Only part of this time is actually spent on training the network, another
part is calculating the detection probability of the network every few epochs in order to monitor
the progress of training.
The prediction time in comparison is almost negligible. The smaller networks for the T = 105 s

cases require ∼ 3 ms for processing one input window. The larger networks for the T = 106 s
cases need ∼ 10 ms per prediction. Each search requires a different number of sliding input
windows to cover the whole frequency range, and the total search time can be found in table
7.7.

Cost [s] Training Search Follow-up Total

T = 105 s 4.3 · 105 58.8 2.2 · 104 4.5 · 105

T = 106 s 4.3 · 106 196 6.5 · 107 6.9 · 107

Table 7.7.: DNN computing cost (in seconds) for training, search and follow-up (using matched-
filtering). The respective matched-filtering cost can be found in Table 7.2

An important detail to note in a direct comparison between matched filtering and a pure
classifier “signal” vs “noise” DNN search is that matched filtering yields far more information
on outlier candidates that cross the threshold. In particular, its signal parameters will be well
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(c) T = 106 s, f0 = 20 Hz, “H1”
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Figure 7.8.: Detection probability pdet versus injection depth D for networks trained on the
respective matched-filtering depth D90% (indicated by the vertical red line with the
at 90 %). The blue vertical line gives the sensitivity depth for the DNN at 90 %
detection probability.

constrained already, allowing a follow-up search to be performed in a small region of parameter
space. The DNN classifier, on the other hand, would flag input windows (of width ∆fIW)
in frequency as outliers to be followed up. Assuming we follow up two input windows per
candidate, one can estimate the total expected follow-up cost (using matched-filtering) as a
fraction 2 (∆fIW/∆f) pfa of the total matched-filtering cost (see Table 7.2), where pfa = 1% is
the false-alarm probability per ∆f = 50 mHz band.

Therefore even including all the training time and assuming a matched-filter follow-up, the
DNN search would still seem to be requiring less computing power. At the present stage,
however, we cannot realise this potential benefit given that our DNN search so far is far less
sensitive overall.
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7.5. Discussion
In this work we have shown that Deep Learning (DNN) can in principle be used to directly
search for CW signals in data, at substantially faster search times than matched filtering. For
the hand-optimized network architecture studied here, the DNN detection probability (at fixed
false alarm) is found to be somewhat competitive (88% − 73% over the full frequency range)
with matched filtering (90%) for short data-spans of T ∼ 1 day, while the detection performance
falls short (69%−13%) for a longer data span of T ∼ 12 days. On the plus side, the DNN search
shows a surprising ability to extend further in frequency and spindown than it was trained for,
and is generally much faster in search performance than matched filtering.
Overall we find that Deep Learning has potential to become a useful CW search tool, but

probably a lot more work and effort is required to achieve this. A few immediate ideas we are
planning to pursue next in this project are: automated large-scale architecture optimization,
training for parameter-estimation in addition to pure classification, extending it to a multi-
detector search, and investigating performance on non-Gaussian detector noise.
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8. Deep-Learning Continuous Gravitational Waves:
Multiple detectors and realistic noise

This chapter is essentially a reprint of Dreissigacker and Prix [31], with minor changes and
reformatting as a chapter of this work.

8.0. Abstract

The sensitivity of wide-parameter-space searches for continuous gravitational waves is limited by
computational cost. Recently it was shown that Deep Neural Networks (DNNs) can perform all-
sky searches directly on (single-detector) strain data [30], potentially providing a low-computing-
cost search method that could lead to a better overall sensitivity. Here we expand on this
study in two respects: (i) using (simulated) strain data from two detectors simultaneously, and
(ii) training for directed (i.e. single sky-position) searches in addition to all-sky searches. For
a data timespan of T = 105 s, the all-sky two-detector DNN is about 7 % less sensitive (in
amplitude h0) at low frequency (f = 20 Hz), and about 51 % less sensitive at high frequency
(f = 1000 Hz) compared to fully-coherent matched-filtering (using WEAVE). In the directed
case the sensitivity gap compared to matched-filtering ranges from about 7−14% at f = 20 Hz to
about 37−49% at f = 1500 Hz. Furthermore we assess the DNN’s ability to generalize in signal
frequency, spindown and sky-position, and we test its robustness to realistic data conditions,
namely gaps in the data and using real LIGO detector noise. We find that the DNN performance
is not adversely affected by gaps in the test data or by using a relatively undisturbed band of
LIGO detector data instead of Gaussian noise. However, when using a more disturbed LIGO
band for the tests, the DNN’s detection performance is substantially degraded due to the increase
in false alarms, as expected.

8.1. Introduction

Observing gravitational waves from compact binary mergers has become routine [1, 2, 237,
238, 251]. The long-lasting but weak narrow-band signals from spinning non-axisymmetric
neutron stars called continuous gravitational waves (CWs) however remain elusive at the current
sensitivity of the Advanced LIGO [44] and Virgo [46] detectors. Despite great improvements in
the search methods (see e.g. [28] for a recent review) and numerous searches conducted on past
and recent detector data (see Refs. [85, 91, 177] for reviews), no CW discovery has been made
yet.
The sensitivity of CW searches is typically limited by the prohibitive computing cost. A CW

signal is expected to last longer than the observation time. Hence, to increase the signal-to-noise
ratio (SNR) of a search, it needs to integrate over as much data as possible but for a typical
fully coherent matched-filtering search the computing cost grows as a high power ∼ Tn, n ≥ 5
of the time span of data T . Therefore these statistically almost optimal searches [108] can only
be performed with coherence times of days to weeks at most.

The main method to circumvent this limitation is to use semicoherent methods. These consist
of using shorter coherent segments and combining their results incoherently resulting in an
improved sensitivity at fixed computing cost [126, 180]. Nevertheless the currently most sensitive
wide parameter space searches (see e.g. [252–254]) are using massive amounts of computational
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resources, either in the form of local computer clusters or the distributed computing project
Einstein@Home [7].
In this work we study the feasibility of deep neural networks (DNNs) as an alternative search

method. DNNs have been shown to be able to approximate any Borel-measurable function [153,
154] (see also [155] for a more general discussion). Therefore they should in principle be able to
approximate gravitational-wave-search methods.
In fact the method of training a DNN, also called deep learning, has been established to be able

to detect gravitational waves directly from strain data [9–15] for signals from mergers of compact
objects. More recently it was used for the first time on simulated continuous gravitational wave
signals [30] and it was applied to the related long transient signals [16]. Furthermore DNNs
have been studied as a follow-up method for CW searches [17, 18], as well as for parameter
estimation of searches for compact binary merger signals [19, 20] and for a multitude of other
gravitational-wave-search related applications such as classifying disturbances (glitches) and
searches for unmodeled burst signals [21–27].
In this work we continue the effort towards building a competitive neural-network-based search

method for CWs by gradually moving towards more realistic test- and training scenarios: by
simultaneously using data from two detectors, by including directed search cases, and by testing
the trained DNNs on Gaussian data with gaps and on real LIGO data with varying degrees of
instrumental disturbances.
The plan of this chapter is as follows: in Sec 8.2 we define the new benchmark cases, we

discuss the updated deep-learning approach in Sec. 8.3, we characterize the performance of the
DNNs on the benchmarks by testing them on Gaussian noise in Sec. 8.4 and finally we extend
this characterization to the intricacies of real detector noise in Sec. 8.5. In Sec. 8.6 we discuss
our results.

8.2. Comparison Test Benchmarks
We characterize the DNNs as search method on the following two-detector benchmark searches,
each assuming two different timespan baselines of T = 105 s and T = 106 s: an all-sky search and
two directed searches pointing at the supernova remnants of Cassiopeia A (CasA) and G347.3-
0.5 (G347), respectively. For the coherent matched-filter comparison we use the Weave search
code [145] in the same way as in [30].
We measure the sensitivity of the DNNs and the matched-filtering searches by determining

the detection probability pdet at a chosen false-alarm level of pfa = 1 % per 50 mHz frequency
band. The false-alarm level corresponds to a threshold on the respective detection statistic of
the DNNs and the matched-filtering searches for a signal population of fixed signal amplitude
given in terms of the sensitivity depth D [28, 199], defined as

D ≡
√
S
h0

, (8.1)

where S is the power spectral density of the noise at the signal frequency, and h0 is the signal
amplitude. In particular we will use D90% to refer to the 90%-upper limit depth, corresponding
to a signal amplitude h90% where a search method achieves a detection probability of pdet = 90%
at a false-alarm threshold of pfa = 1% per 50 mHz frequency band.

For reasons of speed and simplicity, at this stage of the project we still use simulated Gaussian
noise for the DNN training and for the matched-filtering comparison. However, in Sec. 8.5 we
do show tests of our DNN search pipeline on data with realistic gaps and also using real LIGO
detector data.
The two-detector benchmarks are similar to the previously-used single-detector benchmarks

of [30], as they encompass data spans of T = 105 s and T = 106 s, and the all-sky searches cover
the same parameter space as the previous single-detector all-sky cases (see Table 8.1).
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8.2. Comparison Test Benchmarks

The new directed search benchmarks are derived from the Einstein@Home multi-directed
search for CWs in O1 data (cf. [253]). They cover a frequency range of 20-1500 Hz and large
ranges of first and second-order spindown, which are functions of the characteristic age of the
targeted supernova remnant and the frequency (see Table 8.2). Compared to the original search,
however, the total observation time is substantially reduced to the two benchmark spans of
T = 105 s and T = 106 s.

Similarly to [30], we limit the required matched-filtering computing cost by only searching a
narrow frequency band of ∆f = 50 mHz at a few representative starting frequencies in the range
of 20-1500 Hz. The characteristics of the matched-filtering searches can be found in Table 8.3.

parameter name parameter values

data span T = 105 s / T = 106 s
detectors LIGO Hanford (H1) + Livingston (L1)
noise stationary white Gaussian1

sky-region all-sky
frequency band f ∈ [20, 1000] Hz
spindown range ḟ ∈ [−10−10, 0] Hz/s

Table 8.1.: Definition of all-sky (two-detector) benchmark searches.

parameter name parameter values

data span T = 105 s / T = 106 s
detectors LIGO Hanford (H1) + Livingston (L1)
noise stationary white Gaussian1

sky-position CasA / G347
frequency band f ∈ [20, 1500] Hz
spindown range −f/τ ≤ ḟ ≤ 0 Hz/s
second order spindown 0 Hz/s2 ≤ f̈ ≤ 5f/τ2

characteristic age τ CasA: 330 yrs, G347: 1600 yrs

Table 8.2.: Definition of directed benchmark searches, modeled after [253].

search mismatch mean SNR loss templates

all-sky T = 105 s 0.1 4% 7 · 1011

all-sky T = 106 s 0.2 8% 4 · 1014

G347 T = 105 s 0.1 5% 1 · 1010

G347 T = 106 s 0.2 10% 6 · 1012

CasA T = 105 s 0.1 5% 6 · 1010

CasA T = 106 s 0.2 10% 3 · 1013

Table 8.3.: Weave coherent matched-filtering search parameters and characteristics.

1Excluding the real-data tests in Sec. 8.5.2
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D90%
MF [Hz−1/2] 20 Hz 100 Hz 200 Hz 500 Hz 1000 Hz

a-s T = 105 s 16.0 15.0 14.5 14.2 13.6
a-s T = 106 s 42.0 40.1 39.4 38.3 35.9
D90%

MF [Hz−1/2] 20 Hz 500 Hz 1000 Hz 1500 Hz

G347 T = 105 s 18.5 17.1 – 16.5
G347 T = 106 s 46.1 43.9 – 43.1
CasA T = 105 s 17.5 16.3 – 15.7
CasA T = 106 s 46.1 43.8 43.4 –

Table 8.4.: Sensitivity depths D90%
MF achieved by the Weave coherent matched-filtering search

for the (two-detector) all-sky (a-s) and directed cases defined in Tables. 8.1 and 8.2.
The all-sky sensitivity is improved by a factor of approximately

√
2 compared to the

single-detector values reported in [30], as expected for coherent matched filtering. As
training the CasA case T = 106 s, f0 = 1500 Hz, “H1L1” required more GPU memory
than available to us, we reduced the maximum frequency in the search to 1000 Hz.

8.3. Deep-Learning CWs

The approach used here is an evolved version of our previous deep-learning study in [30]: We
train a noise-versus-signal classifier on strain data from two detectors. The input is provided as
two separate channels per detector, each containing respectively the real and imaginary part of
the Fourier transform of the strain data. This results in four input channels for our two-detector
cases.2

However the networks could easily be trained for data from more detectors by adding addi-
tional channels. As for matched-filtering the additional data would increase the computational
cost. Due to this straight forward generalization we only consider two-detectors as most matched-
filtering searches at the moment only consider data from the two most sensitive detectors (e.g.
see [28]).
We determine the maximal width in frequency of the signals in the allowed parameter space

of the search and set the DNN input size to twice this width. This allows us to slide half
overlapping windows over the frequency band to guarantee any signal is fully contained in at
least one window. This leads to an increase of the DNN input size with observation time as well
as with the number of detectors.

8.3.1. Finding a Network Architecture

We started experimenting with the modified 1D-ResNet architecture from [30] and other 1D-
versions of architectures like InceptionResNet-v2 [175] which have proven successful for image
recognition. For various different architectures we trained a network on a smaller number of
samples for the T = 105 s, f0 = 1000 Hz, “H1L1” benchmark case. We compare the different
networks’ performance by calculating their detection probability on the validation set described
in Sec. 8.3.2.
The architecture with the best detection probability in these experiments is an Inception-

ResNet architecture: The InceptionResNet-v2 architecture was modified to feature one-
dimensional inputs. For the T = 105 s cases this network was further enlarged by increasing
the number of block repetitions by 2, in width by increasing the filter sizes by 2 as well as the
number of filters in every convolutional layer by a factor of 4. The resulting network needs

2Note that a neural network with one input dimension and multiple channels is still commonly referred to as a
1D network.
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8.3. Deep-Learning CWs

too much memory3 for the larger inputs of the T = 106 s cases, therefore we use the original
non-enlarged network for the T = 106 s benchmark cases.
The DNN input is first normalized by its standard deviation. The DNN output is created

with a global average pooling layer and a dense layer with two final neurons and a softmax
activation. The two outputs are encoding the estimated probabilities that the input contains a
signal in noise psignal or pure noise, pnoise = 1− psignal, respectively.

The DNN was implemented in Tensorflow 2.0 [249] with its inbuilt Keras API (tf.keras).
The CW signal generation was performed using the python SWIG-wrapping [255] of lalsuite
[250].

8.3.2. DNN Training and Validation

We trained a total of 25 networks, one for each case listed in Table 8.4 and in addition one all-sky
and two directed networks trained for the entire respective search frequency range of the T =
105 s second searches. As in [30] each of the networks is trained with a set of synthesized input
vectors, where half contain pure Gaussian noise, and half contain a signal added to the noise.
The training set is built from 5 000 pre-computed signals which are added to 24 dynamically
generated noise realizations each. The noise realizations are also added as pure noise examples
giving 240 000 samples in the training set in total.
The number of 5 000 signals was determined as a compromise between requirements in com-

puting resources and the diminishing improvements which could be gained with a bigger training
set (cf. [30] for details).
The signals are scaled to an evolving depth Dtraining(epoch) which starts low, i.e. with louder

signals, and then increases every five epochs until it reaches the final training depth Dtraining,
according to the following curriculum:

Dtraining(epoch) =
Dtraining

γ(epoch mod 5) , (8.2)

where γ(n) = (1.75, 1.5, 1.25, 1, 1, 1, ...), i.e. the signals get weaker until, after 15 epochs, the
sensitivity depth reaches Dtraining, which is chosen as the semi-analytic estimate for the Weave-
sensitivity depth D90%

MF , using the method of Ref. [28]. At the time of training the final measured
Weave matched-filtering sensitivity depths of Table. 8.4 were not yet available, which is why
we used the faster (but less accurate) sensitivity-estimation instead.

This type of curriculum learning [256] is necessary to teach the network to find the weak
signals at the final depth. Without it the network seemed unable to pick up the weak signals at
the beginning and therefore was unable to learn at all. This is probably a consequence of the
vastely increased number of parameters in the network compared to the network used in [30].
The DNNs were trained with a categorical cross entropy loss and the Adadelta optimizer

[164]. They were each trained for 10 days on NVIDIA GPUs (RTX2060,70,80(Ti), GV100,
GTX 1660(Ti)) contained in the ATLAS computing cluster. By that time all the networks were
fully trained, i.e. they did not show any significant improvement over the last couple of epochs.
During training we perform a validation step every five epochs where the detection probability

is calculated on 20 000 independently-generated samples: 10 000 pure noise samples and 10 000
samples containing signals in Gaussian noise of the fixed depth Dtraining.
In order to avoid a numerical overflow in the final softmax activation layer, we do not use

the estimated softmax probabilities as a detection statistic. Instead we directly use the final
linear network output which corresponds to psignal (i.e. the respective input to the final softmax
activation) as a detection statistic. The detection probability is calculated in the usual way as
the fraction of signal cases where this statistic crosses over the pfa = 1 % threshold.

3The largest GPU used (NVIDIA Quadro GV100) has 32GB of GPU memory.
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8.4. Characterizing DNN Performance on Gaussian Noise

As the networks’ parameters have been optimized for the training set and the network architec-
ture (or hyperparameters) was optimized for the validation set, we need to evaluate the network’s
performance on an independent test set to fully characterize its performance as a CW detection
method. This test set consists of noise and signals with randomly drawn parameters from a
distribution isotropic in the sky and uniform in the other parameters. It is generated on-the-fly
using the LALSuite software library [250, 255].

8.4.1. Detection Probabilities at Fixed False Alarm

The results in the following are presented in two ways:

1. the detection probability pDNN
det obtained at false alarm pfa = 1% per 50 mHz frequency

band for a signal population of fixed depth D90%
MF , for which the coherent Weave matched-

filtering search achieves pdet = 90 %.

2. The “upper-limit” depth D90%
DNN for the network, where it achieves a detection probability

of pDNN
det = 90% at pfa = 1% per 50 mHz frequency band.

The measured DNN sensitivity on the all-sky search benchmarks is given in Tables 8.5 and
8.6. Similar to the previous single-detector results in [30], for T = 105 s at low frequencies the
DNN achieves a performance close to matched filtering, while it increasingly falls behind for
higher frequencies. However, for the T = 106 s cases the new network does not perform well and
quickly drops to low sensitivity at increasing frequency.
The measured DNN sensitivity for the directed search benchmarks is also given in Tables 8.5

and 8.6. The results are similar in nature to the all-sky search results. For the T = 105 s searches
for both targets the DNN gets relatively close to the matched-filtering performance, while for
the T = 106 s searches they rapidly lose sensitivity when going to higher frequencies.
Note that in the T = 106 s searches our new network seems to perform worse and fall off

more rapidly compared to the previous benchmark results in [30]. This loss in performance at
T = 106 s can be traced back to two reasons: First, the new network architecture was optimized
only for the T = 105 s searches, and second we only trained a single network instance instead
of picking the best from an ensemble of 100 networks, as was done in [30], due to the increased
hardware requirements of the new network architecture.

D90 %
DNN[Hz−1/2] 20 Hz 100 Hz 200 Hz 500 Hz 1000 Hz

a-s T = 105 s 14.9 13.2 12.4 10.6 49.0
a-s T = 106 s 29.6 17.5 13.9 9.7 7.9
D90 %

DNN[Hz−1/2] 20 Hz 500 Hz 1000 Hz 1500 Hz

G347 T = 105 s 16.3 13.6 – 11.1
G347 T = 106 s 33.9 11.7 – 1.3
CasA T = 105 s 16.4 13.4 – 11.5
CasA T = 106 s 28.1 0.05 1.4 –

Table 8.5.: Network sensitivity depths D90%
DNN for the (two-detector) all-sky (a-s) and directed

search cases. The corresponding matched-filtering sensitivity depths are given in
Table 8.4. As training the CasA case T = 106 s, f0 = 1500 Hz, “H1L1” required more
GPU memory than available to us, we reduced the maximum frequency in the search
to 1000 Hz.
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pDNN
det [%] 20 Hz 100 Hz 200 Hz 500 Hz 1000 Hz

a-s T = 105 s 84.4+4.0
−2.3 79.5+3.3

−3.5 78.1+3.3
−2.9 70.4+3.3

−3.4
659.1+4.4

−3.7
a-s T = 106 s 60.5+3.7

−3.1 24.5+3.1
−3.1 11.2+3.1

−2.4 3.3+2.4
−1.3 0.7+0.7

−0.8

pDNN
det [%] 20 Hz 500 Hz 1000 Hz 1500 Hz

G347 T = 105 s 79.6+3.1
−3.1 71.8+5.1

−7.7 – 64.2+3.6
−3.6

G347 T = 106 s 71.2+3.1
−3.0 2.6+2.1

−1.2 – 0.4+1.1
−0.6

CasA T = 105 s 86.4+3.3
−5.5 75.2+3.1

−4.4 – 65.5+3.4
−3.6

CasA T = 106 s 54.6+3.3
−3.7 0.6+0.6

−0.7 0.7+1.0
−0.7 –

Table 8.6.: Network detection probabilities pDNN
det with 95 % error region for the (two-detector)

all-sky (a-s) cases and directed cases for signals at the matched-filtering sensitiv-
ity depths D90%

MF given in Table 8.4. As training the CasA case T = 106 s, f0 =
1500 Hz, “H1L1” required more GPU memory than available to us, we reduced the
maximum frequency in the search to 1000 Hz.

8.4.2. Generalization

One of most promising features of the DNN benchmarks results found in [30] was the surprising
capability of the DNN to generalize to signal parameters it was not trained for. We confirm this
feature for the new DNN used for the T = 105 s all-sky searches in this work for frequency, signal
strength, spindowns and sky position. For the T = 105 s directed search benchmarks introduced
in this work, we also find a remarkable capability to generalize despite being less general than
the all-sky DNNs. Given the rather poor DNN performance on the T = 106 s cases, discussed
in Sec. 8.4.1, we do not include those in the generalization tests shown here.

Frequency

To avoid large computational cost for the training, we want to use as few networks as possible,
optimally even a single one, to cover the search band with a reasonable sensitivity. Therefore we
want to compare how a network trained over the full frequency band compares to “specialized”
narrow-band networks trained on 50 mHz bands, when tested over the full frequency range.
The results of these tests for the all-sky two detector T = 105 s search can be found in Fig.

8.1. We find that the “specialized” networks trained for small frequency bands generalize well
to lower frequency and slightly worse but still quite well to higher frequencies, confirming the
findings in the single-detector case in [30]. However, the network trained over the full frequency
range shows promise as it seems to fall only marginally behind the specialized networks for most
frequencies – even beating some of the specialized networks at their training frequencies.
In the case of directed-search DNNs shown in Fig. 8.2, we see much narrower generalization

around the trained frequencies of the “specialized” networks compared to the all-sky cases.
The better generalization of the all-sky networks is likely due to the (known) near-degeneracy
between frequency and sky position for short observation times. The networks trained over the
full frequency in the directed cases significantly fall behind the specialized networks at their
respective frequencies, contrary to our finding in the all-sky case. This is also likely connected

4The given result is from a network trained on the whole frequency range, the specialized network performed
worse, having a sensitivity depth of 7.9 Hz−1/2 (see Fig. 7.6).

5The network did not reach 90 % detection probability even at the lowest depth tested D90% = 0.1 Hz−1/2

6The given result is from a network trained on the whole frequency range, the specialized network performed
worse, reaching a detection probability of 47.9+4.0

−3.8% (see Fig. 7.6).
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Figure 8.1.: Detection probability pdet versus injection frequency f for the all-sky networks
trained at five different frequencies and for a network trained with signals drawn
from the full frequency range (solid black line). The dashed vertical lines mark
the respective training frequencies for the five “specialized” networks. The solid
red horizontal line represents the coherent matched-filtering detection performance.
The shaded areas around each curve show the 95 % error regions. The analogous
single-detector result is found in Fig.6a of [30].
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Figure 8.2.: Detection probability pdet versus injection frequency f for networks trained at three
different frequencies for the CasA and the G347 target, respectively, and for a net-
work trained with signals drawn from the full frequency range (solid black line).
The dashed vertical lines mark the respective training frequencies for the three
networks. The solid red horizontal line represents the coherent matched-filtering
detection performance. The shaded areas around each curve show the 95 % error
regions.
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8.4. Characterizing DNN Performance on Gaussian Noise

to the mentioned near-degeneracy, as in the directed case, increasing the frequency range forces
the network to learn many new signal shapes, while in the all-sky case the new signal shapes
where already covered via signals from different sky-positions.

Signal Strength

To fully characterize a search method it is important to look at the detection efficiency curve,
i.e. the detection probability for different signal strengths, shown in Fig. 8.3. This is especially
interesting given that we use a single (final) depth Dtraining for training (cf. Sec. 8.3.2). The
observed efficiency curves are very similar across the different searches, hence we only show two
representative examples, the directed CasA search at T = 105 s, f0 = 20 Hz, “H1L1”, and an
all-sky search at T = 105 s, f0 = 1000 Hz, “H1L1”.

In general the DNNs show qualitatively similar efficiency curves as matched-filter searches.
We notice especially that the curves become almost indistinguishable for the low frequency cases
while for higher frequency the DNNs relations seems to be shifted towards their overall lower
sensitivity.
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(a) T = 105 s, f0 = 20 Hz, “H1L1”, CasA
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Figure 8.3.: Detection probability pdet versus injection depth D for networks trained on the
respective matched-filtering depth D90%

MF (indicated by the vertical solid line with
the diamond at 90 %). The second vertical line which crosses the DNN curve at
90 % gives the sensitivity depth for the DNN at 90 % detection probability. The
shaded region around the DNN curve is the 95 % error region. The respective errors
for the matched-filtering results are smaller than the thickness of the curve.

Spindowns

Another important aspect we want to consider is the detectability of signals with first and second
order spindowns outside of the training range, shown in Figs. 8.4 and 8.5, respectively.
For the all-sky searches we observe a similar behavior (not shown) in ḟ to the results reported

in Fig.7 of [30] for the single-detector benchmarks: a plateau of nearly constant detection proba-
bility by far exceeding the training region. For the directed searches, however, we see a different
behavior in ḟ , shown in Fig. 8.4: the DNNs plateau of nearly-constant detection probability
falls off starting from the maximum absolute spindown value of the training set. The gener-
alization is not completely symmetric, though, and extends to larger negative than positive
spindowns. This might be an effect of the purely positive second-order spindown breaking the
degeneracy. The strong generalization beyond trained spindowns of the all-sky DNNs might be
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due to the (known) near-degeneracy between spindown and sky position for short observation
times compared to a year.
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Figure 8.4.: Detection probability pdet versus injected spindown ḟ for networks trained at dif-
ferent frequencies. The x-axis is plotted as a symmetric logarithm, i.e. logarithmic
for the larger negative values, linear for |ḟ | < −10−10 Hz/s and logarithmic for the
larger positive values. The vertical dashed lines mark the minimal spindown ḟ used
in the training set. Its absolute value increases with frequency. The maximal used
spindown for all cases is 0 Hz/s (dotted line). The shaded areas around each curve
show the 95 % error regions.

The generalization results on the second-order spindown of the directed searches in Fig. 8.5
show a qualitatively similar behavior to the first-order spindown: a plateau of nearly-constant
detection probability and a drop starting at about |f̈ | & 10−14 Hz/s2, approaching zero near
|f̈ | & 10−11 Hz/s2. Contrary to the first-order spindown results, however, the drop happens
many orders of magnitude beyond the trained range of f̈ . 10−17 Hz/s2. This is not surprising,
given that a second-order spindown of this order would only change the signal phase by about
10−2 rad over the short timespan of T = 105 s and is therefore still effectively negligible.

Sky Position

Another interesting question is the sensitivity as a function of the sky-position of the signal. For
this we measure and plot the DNN detection probability as a function of the sky-position of the
signal injections, shown in Fig. 8.6.
Here we use signals injected at fixed SNR (ρ = 8.94) instead of the fixed-depth D injections

used in other tests. By fixing the signal SNR, we can probe the intrinsic sky-position sensitivity
of the trained network independently of the detector antenna-patterns while for signals at fixed
depth the SNR varies with sky position.
For the directed searches in Fig. 8.6a- 8.6d we see a clear preference for the trained sky-

position, while sensitivity localization improves with frequency. This is qualitatively similar
to how matched filtering behaves, but with a wider sensitive sky region around the targeted
sky-position. For matched filtering we estimate the sensitive region to be of order ∼1 rad at
f = 20 Hz and ∼10−2 rad at f = 1500 Hz.
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Figure 8.5.: Detection probability pdet versus injected second order spindown f̈ for networks
trained at different frequencies. All other parameters were the same as during
training. The x-axis is plotted as a symmetric logarithm, i.e. logarithmic for the
larger negative values, linear for |f̈ | < −10−20 Hz/s and logarithmic for the larger
positive values. The vertical dashed lines mark the maximal second order spindown
f̈ used in the training set, which increases with frequency. The minimal used second
order spindown for all cases is 0 Hz/s2(dotted line). The shaded areas around each
curve show the 95 % error regions.
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(a) CasA, T = 105 s, f0 = 20 Hz, “H1L1”
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(b) CasA, T = 105 s, f0 = 1500 Hz, “H1L1”
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(c) G347, T = 105 s, f0 = 20 Hz, “H1L1”
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(d) G347, T = 105 s, f0 = 1500 Hz, “H1L1”
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(e) All-sky, T = 105 s, f0 = 20 Hz, “H1L1”
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(f) All-sky, T = 105 s, f0 = 1000 Hz, “H1L1”

Figure 8.6.: Detection probability pdet as a function of the sky-position of injected signals in
equatorial coordinates (Hammer projection). The detection probability is measured
at fixed SNR ρ = 8.94. In (a)-(d) the respective sky position of CasA or G347 is
marked by a white plus.

For the all-sky DNNs we see a preference for signals coming from the equatorial poles (latitude
±π/2) instead, shown in Figs. 8.6e- 8.6f. In the f = 20 Hz case this effect is relatively small (with
a difference of only ∼5 % in detection probability), and much more pronounced at f = 1000 Hz,
where we see some additional structure in right ascension.
We suspect that the observed preference for signals coming from the poles is likely due to

their smaller Doppler-broadening compared to signals from the equator, which makes them more
concentrated in the frequency domain and therefore easier to “see” for the network. This is also
consistent with the DNN detection probability decreasing with increasing signal frequency and
increasing observation time, which both result in signals getting more spread out in frequency
due to the increase in Doppler broadening.

8.5. Testing Network Performance on Real Data
In order to conduct a search for CWs with a DNN, the network has to to be able to handle real
detector data, which differs in three aspects from the simulated Gaussian data used so far in
this study:

1. potentially different noise levels between detectors
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Figure 8.7.: Duty factor vs detection probability of an all-sky DNN in Gaussian and real noise.
The solid red curve with its shaded region represents the behaviour of matched
filtering on Gaussian noise, the blue crosses represent the DNN’s performance on
Gaussian noise and the yellow circles represent the DNN’s performance on real LIGO
O1 detector noise. The error bars indicate the 95 % confidence interval.

2. typically non-contiguous data, i.e. gaps in the data due to real gravitational-wave detectors
not being in lock continuously

3. non-Gaussian disturbances in the data, in particular near-monochromatic lines that can
mimic CWs and trigger false alarms (e.g. see [142] for more discussion).

Here we assess the impact of these effects on the detection performance of a DNN trained on
ideal simulated Gaussian noise without gaps. In order to separate the different effects, we first
test the DNN on simulated Gaussian noise with realistic data gaps, and then with real detector
noise, both from a “quiet” undisturbed band and from a disturbed band. The next natural step
would be to train networks directly on real detector noise, however this is beyond the scope of
this work.
The detector data used is from the LIGO O1 observing run, which can be retrieved from the

Gravitational Wave Open Science Center (GWOSC) [53].

8.5.1. Gaussian Noise with Data Gaps

In order to generate data with realistic gaps we randomly select start-times from the LIGO O1
run and retrieve the corresponding gap profile over T = 105 s. We then generate Gaussian white
noise and signals with the same gaps, and we calculate the duty factor of this gap profile as
Tdata
2T ≤ 1, where Tdata is the amount of data from both detectors.
In Fig. 8.7 we show the results of detection probability as a function of duty factor for two test

cases, namely the all-sky benchmarks for T = 105 s, f0 = 20 Hz, “H1L1” and T = 105 s, f0 =
200 Hz, “H1L1”. In both cases we see that the DNN’s detection probability (cross markers)
shows a similar drop in detection probability with decreasing duty factor as matched-filtering
does (solid line). This indicates that the loss in detection probability stems purely from the
intrinsic lowered signal SNR (due to the reduced amount of data), despite the network being
trained on fully-contiguous data only.
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Figure 8.8.: Histogram of the distribution of DNN detection statistic values (predictions) for
1000 real-noise input samples. The two distributions correspond to two different
start-times, with similar duty factors ∼ 82% and for the same 5 Hz band around
200 Hz. In one case (blue) a disturbance in the data results in a long tail of higher
statistic values, which leads to a higher detection threshold at fixed false-alarm,
thereby reducing detection probability compared to the undisturbed case (orange).

8.5.2. Performance on Real Detector Data

For this test we use real strain data from the LIGO O1 observing run, with gating and cleaning
applied for a recent Einstein@Home7 search [253].
For a time-span of T = 105 s with randomly-selected start-time during O1, we draw 1 000

random 50 mHz-frequency bands from within a 5 Hz band around the test frequency. Using
these data samples we determine the detection probability in the usual way: apply the DNN to
the data samples (assumed to be pure noise) to determine the detection threshold at pfa = 1 %,
then repeat the procedure with added signals of depth D90%

MF in order to determine the detection
proability (i.e. the fraction of signal samples where the DNN prediction exceeds the threshold).
We found that performing an additional pre-normalization of the data by the individual

detector noise floors improves the DNN detection performance in the presence of differing noise
floors between the two detectors.
The results of the real-data tests are shown in Fig. 8.7 (filled circles), plotted again as a

function of duty factor. For the frequency band at f = 200 Hz in Fig. 8.7b there are many data
points basically matching the Gaussian-noise performance, while for others there is a substantial
loss in detection probability. This loss can be traced to the presence of “line” disturbances in
the data as the disturbed bands create a longer-tailed distribution of DNN detection statistic
values for noise inputs. This is illustrated in Fig. 8.8 for one example. In the low-frequency
f = 20 Hz case in Fig. 8.7a we see a significant overall drop in detection probability, due to a
large number of lines and other disturbances we observed in this frequency band.

8.6. Discussion

In this work we demonstrated that the already-established ability of a deep neural network to
search for continuous gravitational waves in the data of a single detector can be extended to
two-detector searches. While the larger size of the input data increases the challenge for the
DNN the results for short data spans remain reasonably competitive with matched filtering.

7https://einsteinathome.org
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8.6. Discussion

On the other hand our architecture searches did not yet yield a reasonably competitive neural
network for the longer T = 106 s data span. Therefore we mostly focused on characterizing the
performance of the T = 105 s networks for now.
Also note that compared to state-of-the-art CW searches the DNN sensitivity achieved here

is not yet competitive. For example all-sky searches roughly achieve a sensitivity depth of
30− 50 Hz−1/2 (e.g. see [28]) while directed searches go up to 54− 83 Hz−1/2 [253].

As was shown in [30] the computing cost of a neural network search is dominated by the
training time and the time of a matched-filtering follow-up8. This implies that multiple reuses
of a trained DNN do not signficantly increase the overall computing cost. Training, executing
and following-up the T = 105 s search, using the networks presented in this chapter, is roughly
two times faster than the respective matched-filtering search.
Furthermore we studied the features of a DNN search directed at a specific sky-position.

These directed searches show comparable performance to the all-sky searches at T = 105 s with
respect to the respective matched filter sensitivities, but show less generalization in frequency
and first-order spindown.
A common trend observed here, consistent with the previous study [30], is that the network

performance seems to degrade when signals are spread over a wider frequency band, i.e. for
higher frequencies, sky positions with more Doppler spreading, and for longer timespans. This
shows that the networks still have difficulties learning this aspect of input signals.
We have further shown that DNNs seem relatively robust towards data gaps that differ from

the training set, and we found that the impact of unequal detector noise floors can be alleviated
by per-detector data normalization. Furthermore, as expected, we find that the performance
on real detector noise is significantly reduced in the presence of non-Gaussian disturbances, i.e.
“lines”.
We can identify the following remaining steps towards a competitive and practical DNN search

method:

1. Train the networks on real detector data in order to “learn” to classify disturbances as
noise.

2. Further optimize network architecture to further close the gap to matched filtering under
data ideal conditions.

3. Design a “semi-coherent”-type search method by combining the DNN predictions from
short time spans (such as T = 105 s).

8The matched-filtering follow-up is currently necessary for a fair comparison as otherwise a matched-filtering
search would deliver far more information about candidates than the DNN.
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9. Outlook

With the first detection of gravitational waves from binary-black-hole and binary-neutron-star
mergers, gravitational-wave research entered the new era of gravitational-wave astronomy. A
detection of continuous gravitational waves (CWs) could contribute to gravitational-wave as-
tronomy with insights about neutron stars and maybe even more fundamental principles, like
the existence of axions (as we saw in Sec. 3.4.2).

Searches for continuous gravitational waves are getting more and more sensitive but even
the current most sensitive searches for known pulsars do not yet reach the estimated necessary
sensitivity as illustrated in Fig. 3.7. Therefore, wide-parameter searches for unknown pulsars
might be the most promising search type as they could detect the one neutron star radiating
strongly enough to be detected with the current advanced LIGO detectors.
However, wide-parameter CW searches are severely limited by computational cost. The high

computational cost often makes it necessary to efficiently estimate the sensitivity of searches to
sensibly determine search parameters before launching the search and to verify the upper limits.
In the course of this work, a faster and more accurate sensitivity estimator was developed (see
Ch. 6). This estimator was also used when we explored a new approach to CW searches: deep
neural networks (see Chs. 7 and 8). We saw that deep neural networks (DNNs) can detect CWs
for small amounts of data under the idealized circumstances of white Gaussian noise. We also
saw that DNNs need further research in order to become a competetive search method. During
the work on this thesis we also tested some alternative approaches and improvements.
For example, we trained networks to denoise gravitational-wave data. In this case the labels

for the training set are not whether the data contains a signal or not but just the pure injected
signals, i.e. for noise all labels are zero. While this approach did show some promise and was also
explored for signals from merging binaries in [257], it was not clear how to use the denoised data
efficiently and the straight-forward training for a detection statement seemed more promising.
Furthermore, an exploration of “semi-coherent” deep-learning searches for CWs was started.

In this approach, a longer timespan of data, e.g. T = 106 s, is divided into segments of a shorter
timespan, e.g. T = 105 s. A network trained on the short timespan, as presented in Chs. 7 and
8, is then applied to every segment. In each segment the network has also to be slid over the
frequency range, giving a time-frequency map of network predictions as output.
These outputs can now be combined to form a new detection statistic on data of the longer

timespan. This can be done e.g. by summing as is used in the classical StackSlide method to
combine F-statistic values (presented in Sec. 4.4.5). However, in our first tests a secondary
neural network seemed to be able to reach better performance. This network is trained on the
time-frequency map outputs of the first network to predict if there is a signal in the data or not.
In our first tests we used a dense network with 3 hidden layers of 32 neurons each and single-
detector data. This small network was able to give a better performance than the “coherent”
network for the T = 106 s, f0 = 1000 Hz benchmark from Ch. 7. The “semi-coherent” pipeline
improved the sensitivity depth of D90% = 8.9 Hz−1/2 to D90% & 12 Hz−1/2. However, this is still
far less sensitive than the coherent matched-filtering result at 26 Hz−1/2.

Further research will reveal if the DNN performance can be improved enough so that their
incredible speed advantage can eventually create more sensitive searches than matched-filtering.
Simultaneously matched-filtering methods are also improved upon continuously. It therefore
remains to be seen which method will ultimately lead to the first detection of a continuous
wave, catapulting the field of CW data analysis into the exciting future of gravitational-wave
astronomy.
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