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Abstract

When a sufficiently strong laser field acts on an atom or a molecule, ionization can occur. Elec-
trons released in this process are accelerated by the laser field and the distribution of their final
momenta can be measured. As opposed to using linear or circular polarization to drive the
ionization process, tailored fields provide additional degrees of freedom to create field shapes
with special properties. The present thesis investigates the interaction of atoms and molecules
with such fields through numerical calculation of photoelectron momentum distributions, and
their application towards a time-resolved picture of strong-field ionization.

For a two-color scheme where a weak orthogonal second harmonic is used to probe the
ionization process in a strong linearly polarized laser field by observing the modulation of
the signal as a function of the delay between the two colors, we solve the time-dependent
Schrödinger equation in three dimensions and find the time of ionization resolved by final
photoelectron momentum. We demonstrate that the delay scan is sensitive to Coulomb focus-
ing and reveals signatures of photoelectron holography.

While two-color schemes can be used to measure ionization times in linear polarization,
the attoclock is used in circular polarization. There, the ionization time is inferred from the de-
tection angle of the photoelectron. Because of Coulomb effects, a theoretical model is always
required to determine the precise mapping. Contrary to models that are typically used, we
obtain this mapping without relying on the notion of an electron trajectory. This is achieved by
considering the stationary points of the Dyson integral representation of the time-dependent
Schrödinger equation. We find these stationary points using numerical wave function propa-
gation in complex time and confirm that the maximum of the momentum distributions corre-
sponds well to the time of peak field strength.

Using a counter-rotating bicircular laser field, the concept of the attoclock can be trans-
ferred to other types of polarization. For suitable field strength ratio, the electric field is ap-
proximately linearly polarized around the time of peak field strength while the shape of the
vector potential is similar to the attoclock. First, we apply the trajectory-free theory to this field
to find the most probable time of ionization. Second, we combine the bicircular field with the
two-color scheme. This allows us to compare the ionization time measured in the two-color
scheme with the one measured in the attoclock. We find that the orthogonal two-color scheme
measures ionization time as if the Coulomb potential were not present. However, switching to
parallel polarization, we obtain meaningful ionization times in accordance with the attoclock
principle that ionization takes place most likely at the peak of the pulse. Applying the bicircu-
lar field to a polar molecule, we find that the momentum distribution shows a dependence on
the orientation, but this does not imply an orientation dependence of the ionization time.
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Chapter 1

Introduction

The study of light matter interaction is one of the cornerstones of modern physics. Black-body
radiation and the photoelectric effect lead to the development of quantum mechanics. The
discrete level structure of the hydrogen atom was first inferred from its spectral lines and much
of the knowledge we have today about the structure of matter was obtained by observing its
interaction with radiation.

Strong-field physics studies the interaction of matter with strong electromagnetic fields,
typically provided by an infrared laser that in its focus reaches field strengths comparable
to the static electric field strength acting on a bound electron in an atom. The presence of the
strong field leads to photoionization, but instead of absorbing a single photon upon ionization,
the photoelectron can absorb many more photons than required to overcome the ionization
threshold [1, 2]. This process is called above-threshold ionization (ATI). The physical mech-
anism of the strong-field ionization process extends from multiphoton absorption to tunnel
ionization or even barrier suppression in the case of very strong fields.

Studying the interaction of atoms and molecules with strong fields gives us access to their
electronic or molecular structure on the angstrom spatial scale and their dynamics on the at-
tosecond time scale – the natural time scale of electron dynamics in atoms and molecules. This
is remarkable because the driving laser field has a wavelength much larger (several hundred
nanometers) and varies on a time scale much longer (femtoseconds).

Three mechanisms are primarily responsible for this. First, in the tunneling regime, the
ionization probability depends exponentially on the field strength and is extremely sensitive
to small fluctuations [3–5]. Observable features in the photoelectron momentum distribution
(PMD) can be traced back to the time of ionization with attosecond precision. This is the main
idea behind attosecond angular streaking, or the “attoclock,” where a circularly polarized laser
pulse is used to both ionize an atom and map the ionization time of the photoelectron to its
detection angle [6, 7].

Second, the electron can be driven back to the parent ion after ionization which leads
to laser-induced electron diffraction or rescattering [8–10], high-harmonic generation (HHG)
[11, 12], and non-sequential double ionization (NSDI) [13, 14]. Typically, the returning elec-
tron has a high energy and a small de-Broglie wavelength such that the atomic or molecular
structure is imprinted onto the momentum distribution or the harmonic signal with high res-
olution. For example, the high-energy backscattering signal in the momentum distribution
directly reflects the scattering cross section of the target [15–17]. The diffraction pattern reveals
the molecular structure [18–20]. The harmonic signal reflects the electronic structure of the

1



2 CHAPTER 1. INTRODUCTION

target [21] and allows for full tomographic reconstruction of molecular orbitals [22–24]. The
harmonic emission frequency depends on the return time (attochirp) which can be used to
track molecular dynamics on the attosecond time scale [25, 26].

The third mechanism is related to the second in that high-harmonic generation can be
used as a tabletop source of coherent extreme ultraviolet (XUV) radiation in subsequent ex-
periments. Using long linearly polarized pulses to drive the process, the harmonics come in
the shape of attosecond pulse trains [27]. With few-cycle drivers [28–30] or techniques such
as polarization gating [31–33], single isolated attosecond pulses can be generated with the
current record for the shortest pulse being less than 50 as [34]. Isolated pulses can be used
together with the infrared driver in pump-probe schemes such as attosecond transient ab-
sorption spectroscopy to achieve attosecond resolution on induced electron dynamics [35–37].
Another achievement is the measurement of a time delay between single-photon ionization
from different subshells of rare-gas atoms [38, 39].

Strong-field ionization allows us to study some of the most fundamental manifestations of
quantum mechanics such as the tunneling of an electron through a (time-dependent) potential
barrier. Several variations of the double-slit experiment are realized on the microscopic level as
interference between different pathways of the ionization or harmonic-generation process [40–
42]. Practical applications include the generation of spin-polarized electrons [43, 44] and the
discrimination of enantiomers of chiral molecules via photoelectron circular dichroism [45, 46].
Strong-field physics is also beginning to move into other fields of research. In particular, there
is currently a large interest in high-harmonic generation from solids [47–56] or photoemission
from nanotips [57–62].

The photoelectron momentum distribution and the harmonic signal are the main observ-
ables in a strong-field experiment, whereby in this thesis we focus mostly on the momentum
distribution. Much of the experimental success of strong-field physics stems from develop-
ing techniques to measure this quantity accurately. Experimentally, velocity-map imaging and
reaction microscopes give access to the full three-dimensional momentum distribution. In
velocity-map imaging, a static electric field is used to focus all photoelectrons with a given
momentum to one point on a detector, independently of where in the interaction region the
electron originated [63]. This provides directly a two-dimensional projection of the momen-
tum distribution. The full three-dimensional PMD can be reconstructed using tomography or
inversion techniques [64–67]. In a reaction microscope, ions and photoelectrons are deflected
by electric and magnetic fields to detector plates. From the position of the fragments on the
detectors and their time of flight, the full three-dimensional momentum vector can be calcu-
lated directly for every event [68, 69]. Attosecond bursts from high-harmonic generation can
be fully reconstructed in the time domain using the attosecond streak camera [70] in case of
isolated attosecond pulses or using interference of two-photon transitions (RABBIT) [27] in
case of attosecond pulse trains.

On the theory side, strong-field physics is located in a physical regime between classi-
cal and quantum mechanics. A common trait of most strong-field phenomena is that they
are inherently nonperturbative. In particular, tunnel ionization, rescattering and harmonic-
generation are highly nonlinear processes. Instead, many effects can be understood in terms
of classical trajectories. The most striking examples are the simple man’s model (SMM) of
above-threshold ionization [71] and the three-step model of high-harmonic generation which
describes the generation process as tunnel ionization, followed by free propagation in the laser
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field, and recombination under emission of high-order harmonics [72, 73]. Assuming classi-
cal motion in the excursion step, the model predicts a maximal return energy of 3.17Up and
harmonic cutoff of Ip + 3.17Up. Here, Up is the ponderomotive potential, i.e. the average
kinetic energy of an electron in the laser field, and Ip is the ionization potential. Applying the
model to high-order above-threshold ionization (HATI), a maximum photoelectron energy of
10.01Up is found [74].

Complementary to the simple intuitive picture of classical trajectories lies the solution of
the time-dependent Schrödinger equation which is generally required to achieve quantitative
agreement with experimental results. The Schrödinger equation is usually solved in single-
active-electron approximation where the photoelectron is described by a three-dimensional
wave function and the influence of the nucleus and all other electrons is modeled by a static
effective potential [75]. Although this works remarkably well in most cases [76], the search
for multielectron effects is a constant companion in both theory and experiment [77–80]. A
well-known example of the breakdown of the single-active electron approximation is the non-
sequential double ionization of the helium atom [13, 14]. As of now, time-dependent calcula-
tions in full dimensionality are available for strong-field ionization of helium, but the exponen-
tial growth of the associated Hilbert space makes calculations with more degrees of freedom in-
feasible [81]. Therefore, there is a strong interest to develop new methods (or adapt established
methods to the strong-field ionization problem) in order to find an efficient description of
the relevant degrees of freedom and reduce the computational effort, such as time-dependent
density-functional theory (TDDFT), or modified quantum-chemistry methods [82–86].

Although a solution of the time-dependent Schrödinger equation can be used to reproduce
experimental results and predict new phenomena, it gives limited understanding of the phys-
ical mechanism involved. A very successful approach that lies between the full numerical
solution and the simple man’s model is the strong-field approximation (SFA) in which the ion-
ization amplitude or the harmonic signal is written as an integral over ionization time [87–90].
Applying the saddle-point approximation to the SFA integral leads to the quantum orbit model
(QOM) in which the ionization amplitude is written as a coherent sum of “quantum orbits” –
classical trajectories moving in complex time [91, 92]. The quantum-orbit model allows us
to interpret strong-field phenomena in terms of trajectories while, to some degree, pertaining
comparability with experimental results. Agreement with experimental results or the numer-
ical solution of the time-dependent Schrödinger equation is improved by related techniques
such as analytical R-matrix theory (ARM) [93, 94] as well as semi-classical models such as the
semi-classical two-step model (SCTS) [95], the Coulomb-corrected strong-field approximation
(CCSFA) [96–100] or the Coulomb quantum-orbit strong-field approximation (CQSFA) [101].

Trajectory-based models of strong-field ionization have an inherent notion of ionization
time which is frequently used to interpret strong-field phenomena in a time-resolved way.
This is most visible in the attoclock where a theoretical model is always required to associate
an ionization time with the observed photoelectron momentum. The first main topic of this
thesis is to investigate a way to retrieve momentum-resolved ionization times in strong-field
ionization without the notion of an electron trajectory and apply the method to the attoclock
setup. There, we also compare our results with those obtained by previously used models such
as analytical R-matrix theory [78] or classical backpropagation [102–104].

Going beyond pure linear or circular polarization to drive the ionization process, new in-
sight and applications have been found by using tailored fields such as parallel, orthogonal,
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or bicircular two-color fields. It is common to use the second (or third) harmonic of the fun-
damental (infrared) field because it is easily accessible experimentally by frequency doubling.
In the few-photon regime, the interference between one and two-photon transitions in aω-2ω
field can be used to induce an asymmetry in the emission direction of photoelectrons [105, 106].
Interference between one and three-photon transitions in a ω-3ω field can be used to control
the product yields in photodissociation of molecules [107]. In the strong-field regime, the use
of two-color fields relies on the interpretation of results in terms of trajectories and a bichro-
matic field can be used to both control and extract information about them. For example,
in both above-threshold ionization and high-harmonic generation, there are typically at least
two relevant trajectories that contribute to one final momentum or harmonic order. A weak
second-harmonic field can be used to disentangle their contributions [108–110] and to find
the ionization times or the return times of the dominant trajectory branch [111–115]. In other
cases, the second-harmonic field is nonperturbative. Instead, it is used to create completely
new field shapes where especially the counter-rotating bicircular field [116–119] has drawn
much attention recently because it allows for rescattering and the generation of circular har-
monics [120, 121].

The second main topic of this thesis is to demonstrate the use of tailored fields to inves-
tigate the ionization dynamics in strong-field ionization on the attosecond time scale. First,
we consider an orthogonal streaking scheme with strong infrared and weak second-harmonic
field as in [114] where we assess the role of Coulomb-focusing [122–124] and photoelectron
holography [125, 126]. Then we demonstrate that with a suitable choice of field-strength ratio,
bicircular fields can be used in an attoclock setup to probe the ionization process in approx-
imately linear polarization. We use the bicircular field to investigate orientation-dependent
properties of strong-field ionization of an asymmetric molecule. Going one step further, com-
bining two-color streaking with the bicircular field allows us to compare the two concepts of
ionization time – two-color streaking and angular streaking.

1.1 Outline of the thesis

This thesis comprises seven chapters. After the introduction presented here, Chapter 2 intro-
duces basic concepts and methods used to describe the strong-field ionization of atoms and
molecules. The mechanism of the laser-induced ionization process in various physical regimes
is discussed. The simple man’s model and the three-step model are presented to provide basic
intuition along with the time-dependent Schrödinger equation and derived methods such as
the strong-field approximation, analytical R-matrix theory as well as semiclassical methods.

The following chapters investigate the concept of ionization time in strong-field physics.
Chapter 3 extends work by Henkel and Lein [114] where a two-color streaking scheme was
used to extract trajectory information and ionization times for photoelectrons in linear po-
larization. In particular, the role of Coulomb focusing and photoelectron holography on the
relative weights between different types of trajectories is assessed. The same technique is then
applied to an asymmetric molecule to probe orientation-dependent properties of the ioniza-
tion process. In Chapter 4, a different approach is pursued. There, ionization time is defined
via an integral-representation of the time-dependent Schrödinger equation. The formalism is
applied to the attoclock to investigate the long-standing question of whether there is a de-
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lay between the time of peak field strength and the time of most probable electron emission.
Chapter 5 introduces the “bicircular attoclock,” which transfers the idea of the attoclock to
linear polarization. We analyze photoelectron momentum distributions in regard to the tem-
poral structure of the ionization process using the trajectory-free method presented in Chapter
4, but also using different established methods such as classical backpropagation or analytical
R-matrix theory. In Chapter 6, the idea of the attoclock is combined with streaking such that
the two different notions of ionization time can be unified. The thesis concludes in Chapter 7
with a summary and an outlook. Additional content that is not required for reading the thesis
but to reproduce the presented results is provided in Appendix A.

In parts, the thesis contains results from the following works that are published in peer-
reviewed scientific journals. A full list of the author’s publications can be found at the end of
the thesis.

• N. Eicke and M. Lein,
“Extracting trajectory information from two-color strong-field ionization,”
Journal of Modern Optics 64, 981 (2017).

• N. Eicke and M. Lein,
“Trajectory-free ionization times in strong-field ionization,”
Physical Review A 97, 031402(R) (2018).

• N. Eicke and M. Lein,
“Attoclock with counter-rotating bicircular laser fields,”
Physical Review A 99, 031402(R) (2019).

• N. Eicke, S. Brennecke, and M. Lein,
“Attosecond-Scale Streaking Methods for Strong-Field Ionization by Tailored Fields,”
Physical Review Letters 124, 043202 (2020).

http://dx.doi.org/10.1080/09500340.2016.1257166
http://dx.doi.org/10.1103/PhysRevA.97.031402
http://dx.doi.org/ 10.1103/PhysRevA.99.031402
https://doi.org/10.1103/PhysRevLett.124.043202




Chapter 2

Concepts and methods

This chapter provides the basic physical mechanisms of strong-field ionization as well as
the theoretical methods used in this thesis to describe the interaction of strong laser fields
with atoms and molecules. All of these methods are derived from the nonrelativistic time-
dependent Schrödinger equation in single-active electron approximation.

Atomic units are used throughout the thesis unless stated otherwise. In this system of
units, length is measured in units of the Bohr radius, mass in units of the electron mass, charge
in units of the elementary charge and the unit of time is defined such that the numerical value
of the speed of light becomes the inverse of the fine structure constant. This implies that the
unit of energy is twice the Rydberg energy and the reduced Planck constant is equal to unity.
The unit of the electric field strength is the force acting on an electron in the Coulomb potential
at a distance of one atomic unit, divided by its charge.

2.1 Regimes of laser-induced ionization

The system that is under consideration mostly throughout this thesis consists of an atom or a
molecule in an external electric field. The atom is characterized by its ionization potential Ip
which is the energy difference between the ground-state energy of the singly charged ion and
the ground-state energy of the neutral.1 The electric field at time t, in the simplest case linearly
polarized, can be written as

E(t) = E0 cos(ωt) ez (2.1)

and is characterized by its field strength E0 and frequencyω. Out of the three relevant param-
eters Ip,ω and E0 one can form two dimensionless parameters usually chosen as

γ =

√
2Ipω
E0

(Keldysh parameter), K =
Ip

ω
(Multiphoton parameter). (2.2)

The multiphoton parameter separates the field-induced ionization process into two regimes
depending on whether absorption of a single photon is sufficient to overcome the ionization
threshold (K < 1) or whether multiple photons are required (K > 1). When more photons
are absorbed than required to overcome the ionization threshold, the process is called above-
threshold ionization (ATI) [1]. The single-photon case is usually reached with photon energies

1For a molecule, this is the definition of the adiabatic ionization potential while the vertical ionization potential is
defined as the energy required to ionize at fixed molecular geometry.

7
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in the XUV or X-ray while the case of largeK is reached with visible or near-infrared laser fields.
In this regime, the Keldysh parameter describes the degree of adiabaticity of the ionization
process [87]. For small Keldysh parameter (γ� 1) the combined potential of the atom and the
laser field forms a static barrier through which ionization can occur via tunneling (unless the
field strength becomes too large and the barrier is suppressed).

Ip

Figure 2.1: Schematic depiction of the strong-field-induced tunneling process. The laser potential (black dashed
line) bends the atomic potential (blue curve) such that the bound-state wave function (red area) can tunnel through
the barrier.

This is illustrated in Fig. 2.1. On the contrary, large values of the Keldysh parameter γ� 1
lead to the multiphoton regime. The difference in the physical mechanism of the ionization
process is reflected in the ionization rates associated with the two cases. In the multiphoton
regime, the rate scales like an n-photon process Γ ∝ In where I = ε0c/2E2

0 is the intensity (in
SI units) and n is the number of photons absorbed [127, 128]. In the tunneling regime, on the
other hand, the ionization probability depends exponentially on the field strength2 and it can
be approximated by the PPT (or ADK) rate [3–5]

ΓPPT ∝ exp
(
−

2κ3

3E0

)
. (2.3)

Here, κ =
√

2Ip is the momentum associated with the ionization potential. The intermediate
regime γ . 1 is described as nonadiabatic tunnel ionization. It is the regime that is most
frequently visited in present-day strong-field experiments and also the case that is considered
primarily in this thesis.

2.2 The simple man’s model

The ionization process in the tunneling or nonadiabatic tunneling regime is usually depicted
as a two or three-step process [71–73]. After the electron passes the barrier in the tunnel-
ionization process (ionization step) it appears in the continuum where it is accelerated by the
electric field (propagation step). There, it can be described approximately as a classical point

2In this context, the “∝” symbol indicates proportionality in “exponential accuracy.” The prefactor typically
depends on the field strength as well, but not exponentially.
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particle. Assuming the electron appears in the continuum at some time t0 with vanishing
velocity, we can write Newton’s equation of motion

r̈(t) = −E(t), r(t0) = 0, ṙ(t0) = 0. (2.4)

It can be integrated once to give the velocity v(t) = ṙ(t) as

v(t) = A(t) − A(t0), A(t) = −

∫t
−∞ dt ′ E(t ′) (2.5)

where we have introduced the vector potential A(t). Since for a realistic laser pulse we impose
the conditions

lim
t→±∞E(t) = 0, lim

t→±∞A(t) = 0, (2.6)

A(t) will eventually vanish and the final photoelectron momentum after the end of the pulse
is simply p = −A(t0), giving a relation between the observed photoelectron momentum and
the time of ionization. For the linearly polarized pulse (2.1), the vector potential is given by

A(t) = −E0/ω︸ ︷︷ ︸
A0

sin(ωt) ez. (2.7)

Therefore, there is a maximal observable photoelectron momentum pATI
max = E0/ω and a maxi-

mal observable photoelectron energy (pATI
max)

2/2 = 2Up where

Up =
E2

0
4ω2 (2.8)

is called the ponderomotive potential.
Integrating (2.5) again, we find the position of the photoelectron

z(t) = E0/ω sin(ωt0)(t− t0) + E0/ω
2(cos(ωt) − cos(ωt0)). (2.9)

Here, the first term describes the drift of the photoelectron with its final momentum and the
second term describes its quiver motion in the time-dependent electric field with amplitude
E0/ω

2.

0

100

z(
t) 

[a
.u

.] (a)

0 2 4 6 8 10
Time t [fs]

0.1

0.0

0.1

E(
t) 

[a
.u

.] (b)

Figure 2.2: (a) All trajectories in the simple man’s model that start in the first two cycles of the depicted laser field
(panel (b), E0 = 0.1 a.u., 800 nm wavelength) and lead to the final photoelectron momentum pz = 0.22 a.u. Red
curves show trajectories starting in a descending quarter cycle of the electric field and orange curves those starting
in an ascending quarter cycle.
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A few of these electron trajectories are shown in Fig. 2.2. For a given photoelectron mo-
mentum |pz| < E0/ω, there are two trajectories per cycle of the laser field that lead to that
momentum. The short ATI trajectory starts in an ascending quarter cycle and does not revisit
the parent ion. The long ATI trajectory starts in a descending quarter cycle and revisits the par-
ent ion. This can lead to rescattering [8], high-harmonic generation [11, 12] or non-sequential
double ionization [13, 14] (recollision or recombination step). In case of backscattering by 180◦,
the final electron momentum is

p = −A(t1) − v(t1) = −2A(t1) + A(t0) (2.10)

where the rescattering time t1 is a solution of (2.9) such that z(t1) = 0. Optimizing (2.10) nu-
merically gives pHATI

max ≈ 2.24E0/ωwhich corresponds to a maximum observable photoelectron
energy of approximately EHATI

max ≈ 10.01Up [74]. For high-harmonic generation, on the other
hand, the return energy has to be optimized and a harmonic cutoff at EHHG

max ≈ 3.17Up + Ip

is found [72, 73]. Except for the case where the maximum return energy is actually obtained,
every harmonic order can be reached by two trajectories called the short the and long (HHG)
trajectory.

For a continuous wave (cw) field, the ATI process is repeated in every cycle of the driving
field. Intercycle interference between contributions from different cycles lead to the occurrence
of ATI peaks in the photoelectron momentum distribution. These peaks correspond to an
integer number of absorbed photons [1]. The HHG process, on the other hand, is repeated in
every half-cycle of the driving field. For inversion-symmetric potentials, this leads to peaks
in the harmonic spectrum at odd integer multiples of the frequency of the driving field while
even harmonics are missing [12].

2.3 Time-dependent Schrödinger equation

The interaction of an atom or molecule with a laser field can be described by the nonrelativistic
time-dependent Schrödinger equation

i
∂

∂t

∣∣ψ(t)〉 = H(t)∣∣ψ(t)〉 (2.11)

where ψ is the wave function containing the electronic and nuclear degrees of freedom and
H(t) describes the interaction of the constituents with each other as well as the time-dependent
interaction with the electromagnetic field. To describe the strong-field ionization process,
we employ the following approximations. Since the nuclei are much heavier than the elec-
trons, their motion is neglected and they are considered at fixed position. Then, for a single-
ionization process, only one of the electrons is described fully quantum-mechanically. This is
called the single-active-electron approximation. The spin is also not taken into account. The inter-
action with the electromagnetic field is described within dipole approximation, i.e. effects of the
magnetic field as well as the spatial dependence of the electric field are neglected.3

3Although working in these approximations is adequate for the effects considered in this thesis, there is a large
interest in strong-field physics to go beyond them. For example, to incorporate multielectron effects, a very simple
way is to reduce dimensionality. Instead of considering one electron in two spatial dimensions, one can equally
well consider two electrons in one dimension [14, 129, 130]. Similarly, to describe nuclear dynamics for a diatomic
molecule, one electron in one dimension and one degree of freedom in the internuclear distance can be simulated
[131, 132]. An efficient technique to incorporate nondipole effects to first order in 1/cwas introduced in [133, 134].
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For a wave function ψ(r, t) in one spatial coordinate r, the Hamiltonian can be written as

H(t) =
1
2

p2 + V(r) + E(t) · r (2.12)

with some effective potential V(r) that describes the interaction of the active electron with
the nuclei but also contains an effective interaction of the active electron with the other elec-
trons. Above form of the Hamiltonian is called the length-gauge Hamiltonian. With the vector-
potential (2.5) and the gauge transformation

ψ(r, t)→ eiA(t)·rψ(r, t), (2.13)

the Hamiltonian becomes
H(t) =

1
2
(p + A(t))2 + V(r). (2.14)

This is called the velocity gauge form.
Our main observable is the photoelectron momentum distribution |M(p)|2, i.e. the distri-

bution of final asymptotic momenta after the end of the laser pulse. For a vector potential A(t)

that is zero outside of an interval [0, T ], it can be expressed via the ionization amplitude

M(p) =
〈
ψ

(−)
p
∣∣U(T , 0)

∣∣ψ0
〉
. (2.15)

Here, U(T , 0) is the time-evolution operator that propagates the initial state
∣∣ψ0
〉

to time T in
the presence of the laser field and

∣∣ψ(−)
p
〉

is the incoming scattering state of momentum p.4

2.3.1 Simple solutions of the TDSE

It proves useful to split the full Hamiltonian H in different ways. We define the field-free
Hamiltonian as H0 = p2/2 + V and

HI(t) = H(t) −H0 =

E(t) · r, length gauge

A(t) · p + 1
2 A(t)2, velocity gauge

(2.16)

as the interaction Hamiltonian. If the system is initially in an eigenstate of H0 with energy E0,
the field-free time evolution is given by

U0(t, t ′)
∣∣ψ0
〉
= e−iE0(t−t

′)
∣∣ψ0
〉

(2.17)

where U0 denotes the field-free time-evolution operator. For an atom in single-active-electron
approximation, usually the energy of the initial state reflects the ionization potential, E0 = −Ip.
On the other hand, neglecting the potential V instead of the time-dependent interaction leads
to the Volkov Hamiltonian

HV(t) = p2/2 +HI(t) =

 1
2 p2 + E(t) · r, length gauge
1
2(p + A(t))2, velocity gauge

(2.18)

4In a short-range potential: for any state
∣∣ψout

〉
that under free time evolution approaches a state

∣∣ψ〉 under
full time evolution, the incoming scattering state provides the momentum-space representation of the free state
according to

〈
p
∣∣ψout

〉
=
〈
ψ

(−)
p

∣∣ψ〉 [135]. Asymptotically, it corresponds to a plane wave of momentum p plus an
incoming spherical wave.
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where the time-evolution has explicit solutions in terms of Volkov states [136]

UV(t, t ′)
∣∣p〉 = exp

(
−
i

2

∫t
t ′
dt ′′ (p + A(t ′′))2

)
×


∣∣p + A(t)

〉
, length gauge∣∣p〉, velocity gauge

. (2.19)

Thus, in velocity gauge, the momentum p used as label of the Volkov state is conserved and it
is also called the canonical momentum or drift momentum while the kinematic momentum v(t) =

p + A(t) is time dependent.5

2.4 Strong-field approximation

The strong-field approximation provides an approximate way to evaluate photoelectron mo-
mentum distributions [92, 137]. It relies on the Dyson representation [138] of the time-evolution
operator

U(t, 0) = U0(t, 0) − i
∫t

0
dt ′U(t, t ′)HI(t ′)U0(t

′, 0). (2.20)

Using the orthogonality of bound states with scattering states, the ionization amplitude (2.15)
becomes

M(p) = −i

∫T
0
dt
〈
ψ

(−)
p
∣∣U(T , t)HI(t)U0(t, 0)

∣∣ψ0
〉
. (2.21)

The strong-field approximation consists of (i) neglecting the potential V in the time evolution
after the interaction Hamiltonian HI(t) has acted at time t, i.e. replacing U(T , t) by UV(T , t);
(ii) replacing the scattering state

〈
ψ

(−)
p
∣∣ by a plane wave

〈
p
∣∣. Using these approximations, the

KFR amplitude [87–89]

M1(p) = −i

∫T
0
dt
〈
p
∣∣UV(T , t)HI(t)U0(t, 0)

∣∣ψ0
〉

(2.22)

is obtained. With the Volkov states (2.19), this can be written as

M1(p) = −i

∫T
0
dtM(p, t) e−iS(p,t) (2.23)

with the action

S(p, t) = −Ip t+
1
2

∫T
t

dt (p + A(t))2 (2.24)

and the transition matrix element

M(p, t) =


〈
p + A(t)

∣∣E(t) · r∣∣ψ0
〉
, length gauge〈

p
∣∣A(t) · p + A(t)2/2

∣∣ψ0
〉
, velocity gauge

. (2.25)

The length-gauge expression has a clear physical interpretation in terms of ground-state evo-
lution up to time t, followed by ionization via interaction with the laser field at time t and
propagation to the detector afterwards. The integral over t can be understood as an integral

5In atomic units it is numerically equal to the velocity, hence the notation. Denoting p the canonical momentum
is common terminology in strong-field physics. In the terminology of Hamiltonian mechanics, p would be the
canonical momentum only in velocity gauge, while in length gauge both the canonical and the kinematic momen-
tum equal p + A(t).
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over ionization time. In the velocity-gauge expression, this interpretation is problematic. This
is because in velocity gauge the initial state

∣∣ψ0
〉

is not a good approximation of the ground
state of the system in the presence of the laser field. In fact, it is well known that the KFR am-
plitude is not gauge invariant and length and velocity forms give different results. The length
gauge form is usually favored because it can accurately reproduce PMDs for short range po-
tentials while the velocity gauge form cannot [138]. For long-range potentials, however, both
gauges give wrong results [137].

Eq. (2.22) is also called the direct SFA amplitude because it only describes direct ionization
without rescattering. One scattering event can be included in the SFA by approximating the
time evolution after ionization more accurately according to

U(T , t) ≈ UV(T , t) − i
∫T
t

dt ′UV(T , t ′)VUV(t ′, t). (2.26)

This leads to the improved SFA amplitude [139]

M2(p) = −

∫T
0
dt

∫T
t

dt ′
〈
p
∣∣UV(T , t ′)VUV(t ′, t)HI(t)U0(t, 0)

∣∣ψ0
〉

(2.27)

where now there are two integrals over ionization time t and rescattering time t ′. The total
SFA amplitude is MSFA(p) = M1(p) +M2(p). The second-order (and even higher-order) con-
tributions can be calculated conveniently by reformulating the SFA integral expression as an
evolution equation [140]. However, including higher-order terms does not prove fruitful as
the perturbation series generally does not converge [141].

2.4.1 Saddle-point approximation

When the electric field is not too strong, E0 � (2Ip)3/2, and the multiphoton parameter is large,
Ip/ω � 1, the action is a quickly oscillating function of time and the KFR amplitude can be
evaluated in saddle-point approximation (SPA) [91, 92, 142]. There, the full amplitude (2.23) is
replaced by a sum over stationary points ts = tr + i ti of the action (2.24), defined by

∂

∂t
S(p, t)

∣∣∣∣
t=ts

= 0 (2.28)

and given by
1
2
(p + A(ts))

2 + Ip = 0. (2.29)

The solutions are generally complex where relevant solutions have Im(ts) > 0 [143]. When the
matrix elementM(p, t) is well behaved at ts, the amplitude can be expressed as6

M1(p) ≈
∑
ts

√
−2πi
S̈(p, ts)

M(p, ts) e−iS(p,ts). (2.30)

The integral in the action (2.24) evaluated in complex time is independent of the specific in-
tegration path, assuming the components of A(t) are holomorphic functions. However, the
choice of the standard path first down to the real axis and then along the real axis to the final
time T as depicted in Fig. 2.3 gives the two legs an interpretation of under-the-barrier motion
and propagation after ionization.

6For a function that depends on multiple variables, we use a prime to denote the full derivative with respect to
all variables. A dot always refers to the derivative with respect to time. For functions that depend only on time,
both notations are used.
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ts = tr + i ti

tr T
Re(t)

Im
(t)

Figure 2.3: Standard integration path in the complex plane to evaluate the action (2.24).

At each time on the integration path, the associated quantum orbit has a velocity v(t) =

p + A(t) that enters the kinetic part of the action. Since the action is real on the real axis, the
ionization probability associated with a given stationary point is determined as soon as the
under-the-barrier motion is completed. Integrating the velocity again with respect to time, a
position r(t) is formally obtained. However, the action (2.24) does not depend on position so
the saddle-point equation does not provide the integration constant.7 Setting the position to
zero at the saddle-point time ts, the real part of the position becomes nonzero already during
the first leg of the integration contour. This is because both the line element as well as the
velocity are (mostly) imaginary. In this case, the position Re r(tr) is frequently interpreted
as the tunnel-exit position of the photoelectron. In the adiabatic limit γ → 0, it is equal to
−Ip/E(tr)

2 E(tr) which is exactly the point where the potential in a triangular tunneling barrier
matches the (negative) ionization potential of the system.

For the length-gauge amplitude, Eq. (2.30) cannot be used because typically the transition
matrix element has a pole at ts. For a pole of order µ, a reduced matrix element can be defined,

M̃(p, ts) = lim
t→ts

(t− ts)
µM(p, t). (2.31)

In this case, the ionization amplitude becomes [143, 144]

M1(p) ≈
∑
ts

iµ
Γ(µ/2)
2Γ(µ)

√
−2πi
S̈(p, ts)

[2iS̈(p, ts)]µ/2 M̃(p, ts) e−iS(p,ts). (2.32)

2.5 Analytical R-matrix theory

Analytical R-matrix theory provides an approximate way to evaluate photoelectron momen-
tum distributions including Coulomb effects. It relies on a splitting of position space into two
parts at a sphere of radius a such that different approximations can be applied in the two re-
gions. The boundary radius is chosen rather close to the atom within the tunneling barrier
(1/κ� a� Ip/E0). Introducing (for arbitrary b) the Bloch operator

L(a) = δ(r− a)

(
∂

∂r
+

1 − b

r

)
, (2.33)

7This is different in analytical R-matrix theory or when applying the eikonal approximation to the Dyson inte-
gral. See Sections 2.5, 5.7, and 5.8.
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a Hamiltonian Hout(t) = H(t) − L(a) is defined for the outer region where the wave function
satisfies the inhomogeneous Schrödinger equation

i
∂

∂t
ψ(r, t) = Hout(t)ψ(r, t) + L(a)ψ(r, t). (2.34)

The ionization amplitude can be written as a surface integral [93, 94] which reads8

M(p) = −i

∫T
0
dt

∫
d3r

〈
p
∣∣Uout(T , t)

∣∣r〉L(a)ψ(r, t). (2.35)

Here,Uout is the time-evolution operator for the homogeneous Schrödinger equation i∂tψ(r, t) =
Houtψ(r, t). The analytical R-matrix approach consists of certain approximations in both the in-
ner and the outer region. In the inner region, the electric field is neglected and ψ(r, t) is taken
as the field-free time-evolved bound state eiIptψ0(r). In a potential V(r) ' −Z/r, the bound
state is described by its (large r) asymptotic expression ψ0(r) ' B (κr)Z/κ−1e−κr. (Here, B is
a constant and we neglect a possible angular momentum of the bound state). This defines the
source term in (2.35). In the outer region, the propagator is approximated using eikonal-Volkov
states [145, 146]〈

p
∣∣Uout(T , t)

∣∣r〉 ≈ 1
(2π)3/2 e

−i(p+A(t))·re−
i
2

∫T
t dt

′ (p+A(t ′))2
e−i

∫T
t dt

′V(r+rL(t ′;p,t)) (2.36)

which include the effect of the atomic potential V to first order in the exponent. Here,

rL(t ′; p, t) =
∫t ′
t

dt ′′ (p + A(t ′′)) (2.37)

is the (potential-free) trajectory of the electron in the laser field. Choosing b = Z/κ in the Bloch
operator, these approximations lead to

M(p) ≈ iκ

(2π)3/2

∫T
0
dt

∫
d3r δ(r− a) e−iS(p,T ;r,t)

(
B (κr)Z/κ−1e−κr

)
(2.38)

with the action

S(p, T ; r, t) = −Ipt+ (p + A(t)) · r

+
1
2

∫T
t

dt ′ (p + A(t ′))2 +

∫T
t

dt ′ V(r + rL(t ′; p, t)).
(2.39)

The expression for the ionization amplitude (2.38) can be evaluated in saddle-point approxi-
mation. When aiming for consistency to first order in the potential, the Coulomb correction
to the saddle-point time can be neglected. However, the saddle point ta still depends on the
choice of the boundary radius a. Generally, the smaller a becomes, the larger the imaginary
part of ta becomes; this reflects the increased distance the electron has to travel in imaginary
time from the boundary to the tunnel-exit position. To first order in the potential, the ioniza-
tion amplitude is approximately independent of the boundary radius because the boundary
dependence of the asymptotic expression for the bound state is compensated by the boundary
dependence due to the action.

In the next step, the result is made explicitly independent of a. To this end, the boundary-
dependent saddle point ta is expressed via the standard SFA saddle point ts from (2.29). In

8We assume that T is large enough so the scattering state can be replaced by a plane wave.
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the potential-independent part of the action, the remaining a-dependent terms then lead to
cancellation of the exponential part of the asymptotic expression for the bound state. In the
electron trajectory, the remaining a-dependent term cancels the initial position at the boundary
so the trajectory starts at the origin at ts and moves through the boundary at ta. With this
trajectory, the Coulomb term produces the corresponding term (κa)Z/κ from the asymptotic
expression of the bound state automatically when the lower limit of the integral is moved to a
time tκ such that the boundary-matching condition9

(κa)Z/κ = exp
(
−i

∫ta
tκ

dt ′ V(rL(t ′; p, ts)
)
≈ exp

(
−

1
κ

∫a
a0

dzV(z)

)
(2.40)

is fulfilled. For the Coulomb potential, a0 = 1/κ or tκ = ts − iκ
−2. Finally, the expression for

the ionization amplitude [78, 147, 148] becomes

MARM(p) = R(p, ts)e−iSARM(p,ts) (2.41)

with an atomic shape factor R(p, ts) and the action

SARM(p, ts) = SSFA(p, ts) + SC(p, ts). (2.42)

Here, the Coulomb correction to the action is given by

SC(p, ts) =
∫T
ts−iκ−2

dt ′ V(rL(t ′; p, ts)). (2.43)

To determine PMDs accurately in long-range potentials, T should be moved to infinity (see
Appendix A.4.1).

2.6 Semiclassical two-step model

The semiclassical two-step model [95] is based on splitting the ionization process into an ion-
ization and a propagation step. The ionization step is described by launching classical trajec-
tories at various times t and velocities v perpendicular to the instantaneous electric field E(t)
according to the (velocity-resolved) PPT (or ADK) rate [3–5]

ΓPPT(t, v) ∝ exp
(
−

2κ3

3E(t)

)
exp

(
−
κv2

E(t)

)
. (2.44)

Here, E(t) = |E(t)|. The initial position is derived from the TIPIS model [77, 149]. There,
the time-independent Schrödinger equation for a potential behaving asymptotically as V(r) '
−Z/r as r→∞ is solved10 in the presence of a (weak) static electric field E. Assuming the field
points along the z axis, the problem can be approximately separated in parabolic coordinates
(ξ,η,φ) defined by

x =
√
ξη cos(φ), y =

√
ξη sin(φ), z = (ξ− η)/2. (2.45)

9Close to the standard SFA saddle point ts, the electron velocity is approximately iκ and ta can be expressed in
terms of ts as ta ≈ ts − ia/κ. Similarly, tκ ≈ ts − ia0/κ and a0 plays the role of the effective radius at which the
contribution due to the potential is accumulated. Its value is calculated for soft-core potentials in Appendix A.4.2.

10The TIPIS model (tunnel ionization in parabolic coordinates with induced dipole and Stark shift) as presented
originally includes the possibility to introduce a multielectron polarizability via an additional potential −α/r3 E · z
that we neglect here. We also neglect a possible angular momentum around the polarization axis and setm = 0.
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This procedure leads to effective potentials in the ξ and η coordinates where the electron re-
mains bound in the former and a tunneling barrier is formed in the latter. The tunnel-exit
position is found as the point where the effective potential in the η coordinate matches the
energy of the bound state. It is given by

z0 ≈ −
Ip(E) +

√
Ip(E)2 − 4β(E)E

2E
, β(E) = Z−

√
2Ip(E)

2
. (2.46)

Here, Ip(E) is the Stark-shifted ionization potential and the separation constant β(E) can be
interpreted as the remaining nuclear charge in the tunneling coordinate.

After the ionization step, Newtonian motion in the combined laser and Coulomb potential
is assumed in the propagation step. With every trajectory, there is a phase associated that is
based on the semiclassical propagator [150]

GSC(p, T ; r, t) =
1

(2πi)3/2

(
det
(
∂2SSC(p, T ; r, t)

∂r∂p

))1/2

e−iSSC(p,T ;r,t) (2.47)

and given by11

SSC(p, T ; r, t) = ṙN(t) · r +
∫T
t

dt ′
{

1
2

ṙN(t ′)2 + V(rN(t ′)) − rN(t ′) ·∇V(rN(t ′))
}

(2.48)

evaluated along the Newtonian trajectory

r̈N(t ′) = −∇V(rN(t ′)) − E(t ′), rN(t) = r, ṙN(T) = p. (2.49)

The final expression for the ionization amplitude is

MSC(p) =
∑
t,v

√
ΓPPT(t, v)

|det D ′(t, v)|
e−i(SSC(p,T ;r,t)−Ipt) (2.50)

where the deflection function D(t, v) [152] maps the initial conditions to the final momentum
and the sum is taken over all pairs of initial conditions where D(t, v) = p.

It should be noted that the frequently employed way of evaluating the expression (2.50)
using importance sampling in the (square root of the) PPT rate and subsequent binning in
the space of final momenta leads to a wrong power (−1 instead of −1/2) of the Jacobian
|det D ′(t, v)| in the final result. This can be corrected either by taking the Jacobian into ac-
count already in the sampling procedure or by adding a weight corresponding to the missing
power in the binning procedure. Another approach is the use of clustering algorithms [153].

The SCTS model neglects nonadiabatic effects at the ionization step while including Coulomb
effects through use of the TIPIS model. Complementary, the similar CCSFA [96–100] includes
nonadiabatic effects by taking initial conditions from saddle-point SFA but neglects Coulomb
effects on the tunnel-exit position at the ionization step.

11The expression adds a term depending on the gradient of the potential that was missing in the otherwise similar
QTMC (quantum-trajectory Monte Carlo) model [151].





Chapter 3

Streaking with orthogonal two-color
laser fields

In this chapter, a two-color streaking scheme is implemented to extract information about elec-
tron trajectories in above-threshold ionization of atoms and molecules in linearly polarized
laser fields. In the photoelectron momentum distribution, the two-color delay scan shows
signatures of Coulomb focusing and photoelectron holography. Applying the scheme to an
asymmetric molecule, we find a strong orientation dependence in the relative weights of short
and long ATI trajectories. Most of the results from this chapter are published in [154].

3.1 Introduction

Irradiation of atoms and molecules by strong linearly-polarized infrared laser fields produces
rich structures in the photoelectron momentum distribution such as intracycle interference
patterns [40–42], holographic fringes [125, 126], the high-energy backscattering plateau [8], and
the recently discovered low-energy structures [152, 155–158], very low-energy structures [159],
and zero-energy structures [160, 161]. When adding a second or third harmonic to the linearly
polarized field, the signal is modified depending on the relative phase between the two colors
[162–166]. In a few-cycle pulse, the observed structures depend on the carrier-envelope phase
(CEP) [167–169]. Bichromatic fields with control of the relative phase and few-cycle pulses
with control of the CEP are the most basic examples of a tailored field.

Most of the structures appearing in the momentum distribution can be understood as a
coherent sum of a finite number of trajectories or quantum orbits which are characterized by
their relative amplitude and phase as well as their departure or return time. The tunable pa-
rameter provided by the tailored field can be used both to control these trajectories, as well as
extract information about them by observing the modulation of the signal depending on the
relative phase or CEP. For example, in high-harmonic generation – where a given harmonic
order can generally be reached by two trajectories (the short and the long HHG trajectory) – a
weak second-harmonic 2ω field polarized orthogonal to the driving field of frequency ω can
be used to disentangle the two contributions [110]. The presence of the 2ω field induces a
lateral motion of the photoelectron during excursion and with suitable choice of the relative
phase between theω and the 2ω field only one of the two possible trajectories can recombine.
It was later shown experimentally by Shafir et al. [112] and verified theoretically by Zhao and
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Lein [113] that the same setup can be used to retrieve both the ionization and the recombi-
nation time resolved by harmonic order. Depending on the relative phase between the two
colors, only trajectories launched at a certain ionization time can recombine. This leads to a
modulation of the harmonic intensity. In addition to the lateral displacement, the 2ω field in-
duces a nonzero lateral velocity component at recombination time which leads to symmetry
breaking between adjacent half-cycles of the fundamental field and the observation of even
harmonics. Observing the harmonic yield as well as the asymmetry between even and odd
harmonics, both the ionization and the return time can be retrieved; they were found to be in
excellent agreement with the quantum-orbit model.

The orthogonal two-color (OTC) scheme can also be applied to photoelectrons. The coun-
terpart of trajectory-selection in harmonic generation is the streaking double-slit experiment
in above-threshold ionization. With a 2ω field perpendicular to the fundamental ω field, the
short and long ATI trajectory that usually lead to the same final momentum can be separated to
switch their interference structure off or they can be focused in the same direction to enhance
it [108, 109]. This is similar to the “attosecond double slit” where control over the intracycle
interference pattern is achieved via the CEP of a few-cycle pulse [40, 41].

Henkel and Lein showed via numerical solution of the TDSE that an ionization time re-
trieval similar to the one in HHG can also be performed in ATI [114]. There, the presence of
the 2ω field leads to a deflection of the electron trajectories away from the polarization axis. By
observing the modulation of the signal in the direction of the fundamentalω field as a function
of the two-color phase, it is possible to retrieve momentum-resolved ionization times for the
long ATI trajectory as well as the relative weight between the long and the short ATI trajectory.
Again, excellent agreement with the quantum-orbit model was found.

The OTC schemes as described above can be termed kinematical schemes because they
rely on modifying the electron trajectory after ionization. Control and analysis of electron
trajectories is also possible with parallel two-color (PTC) schemes which are based on mod-
ifying the ionization process directly by modulating the electric field strength at ionization
time. By adding a weak second-harmonic field parallel to the strong fundamental field, Porat
et al. were able to retrieve ionization times of trajectories involved in photoelectron hologra-
phy [115]. This is closely related to phase-of-the-phase spectroscopy – a systematic approach
to interpret a set of momentum distributions from two-color irradiation with control of the
relative phase [170–175]. Since the two-color field is periodic in the relative phase, the mo-
mentum distribution can be written as a Fourier series. Often, the variation of the signal at a
given momentum is captured accurately by the lowest-frequency component of the series. In
that case, the argument of the complex coefficient (the “phase of the phase”) is related to the
relative phase that maximizes the signal at that momentum.

Other non-kinematical schemes rely on modulating the phase the electron picks up along
its trajectory due to the 2ω field. In HHG, recombination times, ionization probabilities, and
initial velocities can be measured by using a PTC scheme to modify the phase in the two arms
of the interferometer made up by otherwise equivalent trajectories from adjacent half cycles
that lead to the same harmonic order [111, 176]. This symmetry breaking is again observable
in the production of even harmonics [177]. In ATI, it was shown that ionization times can also
be retrieved using an OTC scheme to modify the phases of the direct and rescattered trajectory
in photoelectron holography and observing the changes in the interference pattern [178, 179].
Similarly, the initial momentum of the photoelectron at the tunnel exit can be resolved [180].
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A completely different approach is taken by two-color schemes where theω component is
weak compared to the 2ω such as the transfer of the attosecond streak camera and the RAB-
BIT technique to the strong-field regime [181, 182]. At comparable intensities of the two fields,
completely new field shapes are produced with many applications such as controlling the rec-
olliding wave packet [183, 184], controlling the direction emission of photoelectrons in rescat-
tering [185, 186], probing Coulomb effects [187, 188], measuring the time evolution of the phase
of a bound state [189, 190], controlling electron-electron correlation in non-sequential double
ionization [191], separating intracycle and intercycle interference patterns [192, 193], and mea-
suring the sub-barrier phase upon tunnel ionization [194]. In molecules, two-color fields can
be used to control the asymmetry in photoionization or dissociation [195–200].

In this chapter, we consider the OTC scheme proposed and implemented by Henkel and
Lein [114]. There, a numerical solution of the TDSE in two spatial dimensions was used to
find the relative weight of the long and the short ATI trajectory as well as the ionization time
of the long ATI trajectory for a model helium atom in a linearly polarized laser field resolved
by final momentum. We present results obtained from the 3D TDSE for the same setting.
After providing the computational details in Section 3.2, we discuss the PMD for the linearly
polarized field in Section 3.3 and for the tailored bichromatic field in Section 3.4 where we
perform the ionization-time retrieval for long trajectories. Section 3.5 repeats the analysis in
the lateral direction which was inaccessible in the previous 2D study. In Section 3.6, the scheme
is applied to the asymmetric helium hydride molecular ion HeH+. Section 3.7 concludes the
chapter.

3.2 Computational details

We solve the 3D TDSE on a Cartesian grid of size 246 × 246 × 246 a.u. and 768 points in each
dimension using the split-operator method [201] with step size 0.03 a.u. over a propagation
time of 1500 a.u.. The electric field is chosen as in [114], i.e.

E(t) = E0f(t) (cos(ωt) ex + ε cos(2ωt+ φ) ey) . (3.1)

Here, ω = 0.05695 a.u. corresponds to 800 nm wavelength and the envelope f(t) describes a
10-cycle trapezoidal pulse of 2 ascending, 6 constant, and 2 descending cycles. We choose
E0 = 0.107 a.u. corresponding to an intensity of 4× 1014 W/cm2. The potential is

V(r) = −
1 + e−r/r0

√
r2 + α

(3.2)

where α = 0.1 a.u. and r0 ≈ 1.613 a.u. is optimized to reproduce the ionization potential Ip ≈
0.904 a.u. of the helium atom. The relative phase φ is varied from 0 to 2π in 32 steps.1 The
photoelectron momentum distribution is obtained by projecting outgoing parts of the wave
function onto Volkov states using an absorber that starts at a distance of 100 a.u. from the
origin. In addition to the solution of the 3D TDSE, we obtain momentum distributions in the
pxpy and pxpz planes with high resolution using a two-dimensional Cartesian grid of size
1312× 1312 a.u. and 4096 points in each dimension. The details of numerical time propagation
are described in Appendix A.1.1.

1Actually, only calculations for the first 16 steps have to be carried out. This is because φ → φ + π leads to a
sign change in the 2ω field and a flip of the PMD in py direction.
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3.3 Linear polarization

A slice (pz = 0) through the photoelectron momentum distribution for the case of purely
linear polarization (ε = 0) is shown in Fig. 3.1. At low energies, the signal is dominated by
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Figure 3.1: Slice (pz = 0) through the photoelectron momentum distribution for the linearly polarized pulse
(ε = 0, log-10 scale). The distribution is normalized to maximum signal 1. Certain structures of the PMD are
highlighted: (CF) Coulomb focusing; (PH) photoelectron holography; (II) intracycle interference; (IC) interference
carpet. Adapted from Fig. 1 in [154].

direct electrons whereas high energies can only be reached by rescattered electrons [8]. These
contributions form two rescattering spheres that extend up to the 10Up cutoff. For the direct
electrons, the long trajectory exhibits Coulomb focusing when passing the parent ion, leading
to a concentration of the signal on the px axis [122–124]. Interference of the dominant long
trajectory with the short trajectory generates intracycle interference [40–42] which is visible as
a modulation of the signal when traversing the px direction. Interference of long scattered
and long non-scattered trajectories leads to photoelectron holography. This is observable as
a modulation of the signal perpendicular to the px direction, forming a finger-like structure
[125, 126]. In the symmetry plane py = 0, the strong-field ionization process is repeated not
in every cycle but in every half cycle of the driving field. This leads to destructive interference
at every second ATI peak and a structure in the momentum distribution that was called an
“interference carpet” in [202].

3.4 Two-color delay scan

Momentum distributions in the presence of the 2ω field (ε = 0.1) for relative phase φ = 0 and
φ = π/2 are shown in Fig. 3.2. φ = 0 leads to a separation of short and long trajectories such
that the intracycle interference becomes less pronounced. φ = π/2 leads to both long and short
trajectories being deflected in the same direction such that the intracycle interference becomes
more pronounced, as was observed experimentally in the streaking double-slit [108, 109]. The
direct-ionization part of the spectrum follows roughly the bent shape of the negative vector
potential with the effect being less relevant at small energies [109].

In the following, we focus on the signal on the (positive) px axis (py = 0, px > 0), i.e.
vanishing photoelectron momentum in the direction of the 2ω field. While in the absence
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Figure 3.2: Slices through momentum distributions in the presence of the 2ω field (log-10 scale) for ε = 0.1 and
relative phases φ = π (a) and φ = π/2 (b). The yellow lines show the shape of the negative vector potential −A(t).
Both distributions are normalized to maximum signal 1. Adapted from Fig. 1 in [154].

of the 2ω field this is the preferred direction of photoelectron emission, the presence of the
2ω field leads to a deflection of the photoelectrons and thus a modulation of the signal as a
function of the relative phase. Since the 2ω-field just changes sign when φ → φ + π, the
on-axis signal is π-periodic.
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Figure 3.3: (a) On-axis signal for the 800 nm field (log-10 scale). (b) Michelson contrast for the modulation of the on-
axis signal due to the 400 nm field. (c) Variation of the on-axis signal as a function of the relative phase, normalized
for each px separately to vary between 0 and 1. The white curve shows the position of the maximum for each
momentum px. The solid lines show the predictions for maximum signal made by the quantum-orbit model (3.15)
and the dashed lines show the predictions made by the simple man’s model (3.7). The red lines show the solution
for the long ATI trajectory and the blue lines show the one for the short ATI trajectory. In (b) and (c), a Gaussian
filter (width 0.04A0) has been applied in the px direction to remove oscillations in the signal that are due to low
signal between the ATI peaks which are clearly visible in (a). We have also interpolated the values along φ from 32
to 256 points in the [0, 2π] interval using Fourier transformation. Adapted from Fig. 2 in [154].

Fig. 3.3(a) shows the on-axis signal for ionization in the 800 nm field and Fig. 3.3(c) shows
the variation of the on-axis signal as a function of the relative phase in the presence of the
400 nm field. Here, the signal has been normalized for each momentum px separately to vary
between 0 and 1. For every px we find the optimal phase φ0 that maximizes the on-axis signal
(white line) and compare it to the predictions for maximum signal made by the simple man’s
(Section 2.2) and the quantum-orbit model (Section 2.4.1) for both the short and the long ATI
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trajectory, see also the derivation in [203].
In the simple man’s model, it can be assumed that a maximum is obtained when no deflec-

tion in the direction of the 2ω field occurs, i.e. the ionization takes place at a zero of the 2ω
vector potential. At constant envelope,

Ay(t0) = −εA0/2 sin(2ωt0 + φ0) = 0 ⇔ φ0 = −2ωt0 (modπ), (3.3)

providing a direct relation between the observed optimal phase φ0 and the time of ioniza-
tion t0. When t = 0 denotes a maximum of the fundamental electric field and we consider
ionization in the following cycle, we find

φa = 2π− 2ωta (short trajectory), φb = π− 2ωtb (long trajectory). (3.4)

Here, the multiples of π have been chosen such that φ ∈ [0,π], noting that the long trajectories
originate in the first quarter cycle and the short trajectories in the second quarter cycle. In the
simple man’s model,

px = −Ax(t0) = A0 sin(ωt0), (3.5)

so the ionization time is given by

ωta = π− arcsin
(
px

A0

)
, ωtb = arcsin

(
px

A0

)
. (3.6)

Thus, the optimal phase derived from the simple man’s model is

φa = 2 arcsin
(
px

A0

)
, φb = π− 2 arcsin

(
px

A0

)
. (3.7)

For the quantum-orbit model, since the second-harmonic field is weak compared to the
fundamental, we can make a first-order expansion of the SFA exponent (2.24). Because the
action is evaluated at its stationary point ts, a first-order correction to ts can change the action
only in second order. Therefore, we can evaluate the perturbation at the unperturbed saddle-
point.2 Neglecting preexponential factors, the signal (2.30) at py = 0 can be written as

M(px,φ) = e−iS(px,ts(px),φ) (3.8)

where

S(px, t,φ) = −Ipt+
1
2

∫T
t

dt
{
(px +Ax(t))

2 +Ay(t,φ)2
}

(3.9)

and ts(px) is the obtained as either one of the two solutions of the perturbation-free saddle-
point equation (2.29)

1
2
(px +Ax(ts))

2 + Ip = 0 (3.10)

that correspond to the short or the long ATI trajectory,

ωta = π− arcsin

(
px − i

√
2Ip

A0

)
, ωtb = arcsin

(
px + i

√
2Ip

A0

)
. (3.11)

We define a(px,φ) as the amplitude according to (3.8) using the solution of (3.10) for the short
trajectory ta and b(px,φ) as the one for the long trajectory tb.

2Note that at py = 0 the linear term in the action vanishes and the correction 1
2

∫T
t
dtAy(t,φ)2 is actually propor-

tional to ε2. This is also the case in the saddle-point equation. Using the same reasoning as above, this second-order
correction to ts can change the action only in fourth order.
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Figure 3.4: Two-color scan in the quantum-orbit model. (a) Signal |a(px,φ)|2 for the short trajectories only. (b)
Signal |b(px,φ)|2 for the long trajectories only. As above, the signal is normalized row wise to vary between 0
and 1. In both panels, the colored line shows for every px the optimal phase φ0 where the on-axis signal has a
maximum. Adapted from Fig. 3 in [154].

The signals |a(px,φ)|2 and |b(px,φ)|2 corresponding to the two amplitudes alone are shown
in Fig. 3.4. To obtain the optimal phase, we evaluate the condition for maximum signal

0 !
=
∂

∂φ
2 ImS(px, ts,φ) =

∂

∂φ
Im
∫T
ts

dtAy(t,φ)2. (3.12)

Assuming more generally that the phase φ induces a time shift of the perturbing field, i.e.
Ay(t,φ) = Ay(Ωt + φ) for suitable Ω, and using that Ay(t,φ) is real for real t, we can further
simplify

∂

∂φ
Im
∫T
ts

dtAy(t,φ)2 =
1
Ω

Im
∫T
ts

dt
∂

∂t
Ay(t,φ)2 = −

1
Ω

ImAy(ts,φ)2. (3.13)

Thus, the final condition is ReAy(ts,φ0) = 0 or ImAy(ts,φ0) = 0. The former can be un-
derstood in that the signal is maximized if the “tunnel-entrance velocity” in the direction of
the streaking field vanishes.3 The latter usually gives the condition for a minimum and is not
relevant here. In the present case, the streaking field is chosen as in (3.3), so the condition for
the maximum becomes

φ0 = −2ωRe ts (modπ). (3.14)

This relation gives us direct access to the real part of the complex ionization time ts. Assuming
a real ionization time, the condition is exactly equivalent to the simple man’s expression (3.3).
Inserting the stationary points (3.11), we get

φa = 2 Re arcsin

(
px − i

√
2Ip

A0

)
, φb = π− 2 Re arcsin

(
px + i

√
2Ip

A0

)
, (3.15)

from which the simple man’s expression (3.7) is retrieved in the limit γ→ 0.
These relations provide the predictions shown in Fig. 3.3(c). There, it can be seen that in

the range of direct ATI electrons (px < A0), the TDSE result agrees well with the maxima from
the quantum-orbit model for the long trajectories. However, there are oscillations around the
position of maximum signal predicted by the quantum-orbit model. These oscillations were

3This condition was assumed in [114, 203] but it was not derived there.
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previously interpreted as intracycle interference of the dominant long trajectory with the weak
short trajectory [114]. In 3D, the oscillations are weaker as compared to the previous 2D study
(see Fig. 2 in the reference). To model the complete signal, we write (up to a px-dependent
normalization)

|M(px,φ)|2 = |a(px,φ) + βb(px,φ)|2 (3.16)

and optimize the fitting parameter β to make the px-dependent maxima of the model signal fit
to the curve of maxima from the TDSE delay scan (Fig. 3.3(c)) in the intermediate momentum
range (0.4 < px/A0 < 0.6). Here, β is complex to allow for an additional phase shift between
short and long trajectories which is expected due to sub-barrier Coulomb effects [99, 188, 190].
The fit returns |β| ≈ 2.80, arg(β)/π ≈ 1.20. This can be compared with the 2D value β ≈ 2.3
from [114], supporting our argument that Coulomb focusing leads to an increased weight of
the long-trajectory branch.4
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Figure 3.5: (a) Model signal (normalized row wise) according to Eq. (3.16) with β optimized to fit the TDSE result.
The white curve shows the maxima from the model signal and the yellow-dashed curve the maxima from the TDSE
delay scan (Fig. 3.3(c)). (b) Momentum-resolved ionization time (relative to the time of peak field strength) for the
long ATI trajectory (blue curve) in comparison with the simple man’s (red dashed curve) and the quantum-orbit
model (red solid curve). The gray curve corresponds to the points of maximum signal in Fig. 3.3(c) with phase
converted to time according to Eq. (3.14). Adapted from Figs. 3 and 5 in [154].

The model signal with optimized β is shown in Fig. 3.5(a). The agreement of the model
signal with the TDSE persists to much higher momenta compared to the previous 2D study
[114]. Two reasons can be given for this. On the one hand, the increased weight of long
trajectories due to Coulomb focusing makes the signal more robust to perturbations by other
types of trajectories. On the other hand, the 2D calculation overestimates the importance of
rescattered trajectories in this momentum range due to the increased recollision probability.

Finally, we retrieve the ionization time from the two-color scan. The ability to do this relies
on the relations (3.3) and (3.14) that connect the ionization time to the observed optimal phase.
To isolate the signal due to the long ATI trajectory, we remove the oscillations due to the short
trajectories from the delay scan by fitting a third-order polynomial in px to the curve of maxima
(white curve in Fig. 3.3(c)) and convert the optimal phase to time. The result is shown in Fig.
3.5(b). As in the 2D case, the retrieved ionization time is in good agreement with the quantum-
orbit model for the long trajectory branch and shows significant disagreement with the simple

4In the previous work [114], β was real. Instead, a weakly px-dependent phase between the short and the long
trajectory branch was introduced to fix the position of the maxima and minima in the delay scan. We find that this
is not necessary here and the model signal can be fitted well using only a single (complex) parameter.
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man’s model. This disagreement is due to the fact that for nonadiabatic tunnel ionization
in linear polarization, the quantum orbit models predicts that the tunnel-exit velocity of the
photoelectron in field direction is nonzero – contrary to a central assumption in the simple
man’s model (see for example [95, 98, 204] or Appendix A.2). For a given ionization time, the
initial velocity is given by the momentum difference between the two red curves in Fig. 3.5(b).

3.5 Lateral dependence of the two-color scan

While in the previous section we investigated the signal along the direction of the fundamen-
tal 800 nm field, this section extends the retrieval scheme to nonzero lateral momentum. We
consider pz 6= 0 instead of py 6= 0 such that the π periodicity of the delay scan remains intact
and the retrieval scheme can be used almost unchanged.
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Figure 3.6: (a) Optimal phase (in units of π) for photoelectron momenta in the pxpz plane. (b) Michelson contrast
in the same plane. In both panels, a two-dimensional Gaussian filter (width 0.04A0) has been applied before
determining the optimal phase to remove oscillations due to a small signal between the ATI rings.

Fig. 3.6(a) shows the optimal phase φ0 at which maximum signal occurs for every mo-
mentum in the pxpz plane5. While the signal in the rescattering region is mostly optimized by
phases aroundφ0 = 0, the direct ionization signal shows the same kind of oscillations found on
axis for a wide range of lateral momenta. In Saddle-point SFA, when the prefactor is neglected,
the effect of the lateral momentum pz can be included simply by replacing Ip → Ip + p2

z/2 in
the action (3.9) and in the saddle-point equation (3.10). We can fit the maxima of the delay
scan to the modified model signal, resulting in a pz-dependent fitting parameter β(pz) which
is shown in Fig. 3.7.

While the argument of β does not change significantly, the absolute value shows strong
oscillations. β drops to about |β| ≈ 1 at pz ≈ 0.12A0, indicating equal strength of the short
and long trajectory branch. At pz ≈ 0.19A0 there is a revival to |β| ≈ 2.2. Such oscillations
are expected due to holography [125, 126]. While in the quantum-orbit model there is only

5This is similar to the phase-of-the-phase method where every momentum is associated with the phase of the
first Fourier component with respect to φ [170]. In this case, however, the first Fourier component is zero because
in the pxpz plane the PMD is periodic in φ with periodicity π. Thus, the phase of the second Fourier component
must be considered instead (see also [172]).
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Figure 3.7: Argument (a) and phase (b) of the fitting parameter β as a function of lateral momentum pz, obtained
by repeating the retrieval scheme from Section 3.4 for py = 0 and in the momentum range (0.4 < px/A0 < 0.6) as
above. Adapted from Fig. 4 in [154].

one kind of long ATI trajectory, in the presence of the Coulomb potential a scattered and non-
scattered long trajectory must be distinguished. These two kinds of long trajectories interfere
to produce holographic structures in the photoelectron momentum distribution. In this case,
β can be thought of as the combined amplitude of two types of long trajectories relative to the
short trajectory. A minimum in the fitting parameter then indicates destructive interference
between the reference and the scattered long trajectory. Indeed, the position of the minima
and maxima of the fitting parameter agree well with the interference minima and maxima in
the holographic structure that can be seen in the unstreaked photoelectron momentum distri-
bution, Fig. 3.1.

3.6 Two-color scan in a molecule

The short and the long ATI trajectories interfere to produce the oscillations in the delay scan
(Fig. 3.3(c)) from which their relative amplitude is retrieved. They start in neighboring quarter-
cycles of the fundamental 800 nm field where it points in opposite directions. For the atom,
there is no preferred direction for electron emission so the retrieved weight |β| depends mostly
on the propagation after ionization. In an asymmetric molecule on the other hand, the relative
weight is expected to depend also on the ionization step and we can use the orthogonal two-
color scheme to probe orientation-dependent properties of the strong-field ionization process.
One of the simplest example of an asymmetric system is the helium hydride molecular ion
HeH+. It is the first molecule that formed after the big bang [205] and was very recently
discovered in terahertz radiation from a planetary nebula [206].

We solve the TDSE in two dimensions on a Cartesian grid of size 512 × 512 a.u. and 2048
points in each dimension with the split-operator method and time step 0.01 a.u. until the final
time T = 2500 a.u. We choose a model potential [207]

V(r) =
−1√

(r − r1)2 + α1
+

−(1 + e−(r−r2)
2/r2

0)√
(r − r2)2 + α2

(3.17)

where the distance between the two centers is |r1 − r2| = 1.4 a.u., which is approximately the
equilibrium distance of HeH+. We assume alignment on the x axis and probe both possible
orientations. The soft-core parameters are chosen as α1 = α2 = 0.5 a.u. Then, r0 ≈ 0.970 a.u.
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is tuned such that the ground-state energy of the system reproduces the ionization potential
Ip ≈ 1.66 a.u. of HeH+ at said internuclear distance.

The dominant ionization channel of HeH+ typically includes nuclear dynamics [132]. At
small intensities, the ion reaches a vibrationally excited state first before it is ionized. At larger
intensities (I > 2× 1015 W/cm2), ionization can take place directly from the vibrational ground
state, but the measured kinetic-energy release after subsequent dissociation reflects a larger
internuclear distance than the equilibrium distance because ionization at large distances is
preferred due to the decrease of the ionization potential.

In our calculation, we define the electric field as

E(t) = E0f(t) (cos(ωt− π/2) ex + ε cos(2ωt+ φ) ey) . (3.18)

Here, ε = 0.04, E0 = 0.24 a.u. (2 × 1015 W/cm2) and ω = 0.05695 a.u. (800 nm) as above. f(t)
describes a three-cycle trapezoidal envelope consisting of one ascending, one constant, and
one descending cycle.
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Figure 3.8: (a) Electric field at intensity 2× 1015W/cm2 and CEP −π/2. (b) Corresponding vector potential. The red
thick lines mark the ionization times of the dominant branch of long ATI trajectories on the positive px axis. The
blue thick lines mark the corresponding ionization times of short ATI trajectories.

The electric field of the fundamental and its vector potential are shown in Fig. 3.8. The
choice of pulse length and CEP ensures that for the direct photoelectrons on the positive px
axis there are dominant contributions only from two neighboring quarter-cycles of the funda-
mental electric field, one branch of long and one branch of short ATI trajectories, and no ATI
peaks occur. We distinguish two cases corresponding to the two possible orientations of the
molecular ion. In case (a), the helium atom is located on the negative x axis and the proton is
located on the positive x axis. Here, the long trajectory originates from the helium side and
the short trajectory from the hydrogen side. Case (b) describes the opposite orientation where
the proton is located on the negative x axis and the helium atom on the positive x axis. Here,
the short trajectory originates from the helium side and the long trajectory from the hydrogen
side. The two cases are shown schematically in Fig. 3.9.

The photoelectron momentum distributions for both possible orientations (in absence of
the 2ω field) are shown in Fig. 3.10. In both cases, there are two large scattering rings due
to recollision in the central cycle of the applied field. Additionally, there is one smaller inner
ring that is due to recollision in the trailing flank of the envelope; it does not extend up to the
10Up cutoff because of the reduced value of the vector potential at the recollision time [208].
Focusing on the direct-ionization spectrum on the positive px axis, we observe significant dif-
ferences. In case (b), there are clear holographic fringes and only weak intracycle interference
structures which suggests a dominance of long trajectories. In case (a), the holographic struc-
tures originating from long trajectories are strongly modified by intracycle interference, see
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Figure 3.9: Orientation-dependent ionization of HeH+. (a) Helium atom on the negative x axis and proton on the
positive x axis. (b) Helium atom on the positive x axis and proton on the negative x axis. Classical trajectories are
launched at the tunnel exit (chosen for simplicity as −Ip/Ex(t0) ex); they are subsequently accelerated by the laser
field and move in a −2/r potential. The long trajectories (red curves) start at a time of 12 a.u. before a zero of the
electric field with lateral velocity±0.25 a.u.. The short trajectory (blue curve) starts 12 a.u. after a zero of the electric
field.
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Figure 3.10: Momentum distributions in the absence of the 2ω field (log-10 scale). (a) HeH+ oriented such that the
helium atom is located on the negative x axis and the proton on the positive x axis. (b). Other orientation with
the helium atom on the positive x axis and the proton on the negative x axis. Both distributions are normalized
independently to maximum signal 1.
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also the modulation of the PMD on the px axis shown in Fig. 3.11(a1) and the large contrast
in that region when the 400 nm field is switched on in 3.11(a2). This points to comparable
strength of the short compared to the long ATI trajectory.
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Figure 3.11: (a1, b1) On-axis signal for the 800 nm field (log-10 scale normalized to maximum signal 1) and the two
possible orientations. (a2, b2) Michelson contrast for the modulation of the on-axis signal due to the 400 nm field.

Both observations can be explained by assuming a higher yield when ionization occurs via
the hydrogen side compared to the helium side [209]. That is, at the ionization step, the short
trajectory is favored in case (a) and the long trajectory in case (b). Since Coulomb focusing
increases the weight of the long trajectory on axis after the ionization step, the dominance of
the short trajectory in case (a) is mitigated such that on axis the weights are comparable while
in case (b) the dominance of the long trajectory on axis becomes even stronger.

These findings are confirmed by the two-color delay scan, shown in Fig. 3.12 for both
orientations. Here, results from both the TDSE (upper panels) and the SFA (lower panels)
using the model signal (3.16) are shown. In case (b), a clear dominance of the long-trajectory
branch is observed with only small oscillations due to short trajectories. Fitting the TDSE result
to the model signal (in the region 0.4 < px/A0 < 0.6), the dominance of the long trajectory is
reflected in a large value of the fitting parameter |β| ≈ 4.12. On the other hand, very strong
oscillations are observed in case (a), confirming approximately equal strength of both types
of trajectories. The oscillations follow the signal of short trajectories at small momenta px .

0.5A0 and the signal of long trajectories at high momenta px & 0.5A0. This is in agreement
with Fig. 3.10(a) where the holographic interference does become slightly more pronounced
when going to higher px while it is almost completely invisible at small px. Fitting the model
signal to the TDSE in the upper region (0.55 < px/A0 < 0.75), we find |β| ≈ 1.24 which
indicates only a slightly larger weight of long trajectories in that region. In the lower region
(0.25 < px/A0 < 0.35), we find |β| ≈ 0.81 which confirms a slightly larger weight of short
trajectories.

3.7 Conclusion

In this chapter, strong field ionization in a linearly polarized laser field was analyzed by adding
a weak orthogonal second-harmonic probe field. Observing changes in the photoelectron mo-
mentum distribution depending on the relative phase between the two colors, information
about the electron trajectories that constitute the momentum distribution can be extracted. By
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Figure 3.12: Variation of the on-axis signal as a function of the relative phase, normalized for each px independently
to vary between 0 and 1. The upper panels (a1) and (b1) show the TDSE result. Here, the white line shows for every
px the two-color phase φ0 at which maximum signal is obtained. (a2) and (b2) show the model signal (3.16). Here
the free parameter β in the model signal has been optimized to fit the maxima of the model signal (white line) to
the curve of maxima from the TDSE (yellow dashed line) in the momentum range 0.55 < px/A0 < 0.75 in case (a)
and in the range 0.4 < px/A0 < 0.6 in case (b).

fitting the observed signal to a model signal obtained from the quantum-orbit model, it is
possible to retrieve the amplitude of the long trajectory relative to the amplitude of the short
trajectory as well as the ionization time of the long trajectory resolved by final momentum.
Compared to a previous study in 2D, we found that in 3D the weight of the long trajectory is
increased due to Coulomb focusing. Together with the fact that rescattering is less pronounced
in 3D compared to 2D, this enabled us to isolate the long trajectory accurately and retrieve its
ionization time in a comparably large momentum range. We confirmed that this ionization
time is in good agreement with the quantum-orbit model and shows significant disagreement
with the simple man’s model. This effect can be seen as a signature of a nonzero initial velocity
of the photoelectron due to nonadiabatic effects. Extending the OTC scheme to nonzero lateral
momentum reveals a modulation of the relative amplitude between long and short trajectories
due to photoelectron holography.

In a diatomic molecule, the scheme can be used to probe orientation-dependent properties
of the ionization process and disentangle the contributions arising from different ionization
pathways. While for an atom only the ionization time of the dominant long trajectory can
be accessed, probing asymmetric molecules allowed us observe the short trajectory, at least
in a region of momentum space. Unfortunately, the dominance of the short trajectory is only
weakly pronounced, leading to large oscillations in the delay scan. This makes it hard to
actually retrieve its ionization time.
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It would be interesting to test the sensitivity of the two-color scheme on the initial state. For
example, when ionizing from a p state instead of from an s state, an additional π shift between
short and long trajectories should be detectable in the phase of the fitting parameter. Also, the
effect of the Coulomb potential on the ionization time could be investigated. However, this is
not straightforward because the oscillations due to short trajectories are much larger compared
to the expected effect. For the molecule, it would be interesting to extended the two-color scan
to 3D. There, the Coulomb-focused branch of long trajectories is expected to be even stronger
which could lead to a very clear signal with only small oscillations and an accurate ionization
time retrieval, maybe accurate enough to estimate the importance of Coulomb effects on the
ionization time. Coulomb focusing could even lead to the long trajectory being dominant
when ionizing via the helium side. In that case, the two orientations could be compared to
investigate the orientation-dependence of the ionization time.

We will come back to this point in Chapter 6 where the linear driver is replaced by a bi-
circular field. This will allow us to observe the contributions from short and long trajectories
completely independently of each other and to estimate the importance of Coulomb effects on
the ionization time retrieval.





Chapter 4

Trajectory-free ionization times

While in the previous chapter an experimentally feasible scheme to measure ionization time
in linear polarization was explored, this chapter focuses on a purely theoretical definition of
momentum-resolved ionization time based on the Dyson representation of the time-evolution
operator. Applied to the attoclock where strong-field ionization in a nearly circularly polarized
field maps time to the detection angle of the photoelectron, we investigate the question of a
possible time delay between the time of most probable electron emission and the time of peak
field strength. Many results contained in this chapter are published in [210].

4.1 Introduction

With access to subfemtosecond or attosecond time scales provided by strong laser fields, the
question about the exact timing of the ionization process arises. A central achievement of at-
tosecond physics was the observation of time delays in single-photon ionization from different
subshells of rare-gas atoms measured with the RABBIT technique and the attosecond streak
camera [38, 39]. In single-photon ionization, this ionization time delay has a clear physical
interpretation in terms of a Wigner time [211].

In the strong-field regime, on the other hand, the concept of ionization time arises naturally
due to the trajectory picture which connects a given final momentum of the photoelectron
with a time of ionization. It is closely related to the question of tunneling time, i.e. the time
spent by a particle under a tunneling barrier [212], but is more involved because the barrier
formed by the atomic potential and the laser field is time dependent. Tunneling time has been
a controversial topic in quantum mechanics ever since Pauli’s remark about the difficulties in
defining a time operator as a self-adjoint operator conjugate to the Hamiltonian [213]. In case
of tunneling through a time-independent potential barrier, several expressions have therefore
been suggested for the tunneling time, many of which can be written in terms of the derivative
of the absolute value or phase of the transmission amplitude through the barrier with respect
to the barrier height or the energy of the incident particle [214]. This includes for example the
Büttiker-Landauer time [215, 216] which is similar to the Keldysh time, i.e. the imaginary time
needed by a particle with imaginary momentum to cross a tunneling barrier in real space, and
the Larmor time which uses spin precession as a stopwatch to track the time spent under the
barrier [217].

Within strong-field physics, attempts have been made to define or measure both the ion-

35
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ization time as well as the tunneling time. While in linear polarization the ionization time can
be probed using streaking schemes such as the OTC scheme presented in Chapter 3, ionization
time measurements in circular polarization rely on the attoclock. First implemented by Eckle
et al. [6], the attoclock makes use of the fact that in the simple man’s model the ionization
time of an electron (in strong-field ionization of an atom in a circularly polarized laser pulse)
is mapped to its detection angle [71]. In a perfectly circularly polarized laser pulse, there is no
preferred direction so the photoelectron momentum distribution has rotational symmetry. This
symmetry can be broken either by using a slightly elliptically polarized field or a short pulse
envelope. In both cases, the PMD exhibits a clear maximum which in the simple man’s model
is aligned with the negative value of the vector potential at the time of peak field strength.

In a real experiment, or when solving the time-dependent Schrödinger equation, one finds
that this is not exactly the case. Instead, the maximum is rotated, usually forward with respect
to the handedness of the electric field [218]. This offset angle is the main observable in an
attoclock experiment from which the ionization time is inferred. For this purpose, however,
a theoretical model is required. In the trajectory picture, the momentum distribution can be
thought of being composed of trajectories that are characterized by a set of of initial conditions
(ionization time, position, and velocity), and a mapping that connects the initial conditions
with the final momentum. In this picture, the origin of the shift could be due to an ionization
time delay with respect to the time of peak field strength, but also due the Coulomb force of
the parent ion on the outgoing electron as well as due to an initial velocity of the photoelectron
in field direction. Making assumptions about some of the initial conditions as well as the
mapping, the ionization time that corresponds to the maximum of the momentum distribution
can be retrieved and is usually thought of as the most probable time the electron leaves the
tunneling barrier [219].

Assuming classical motion after tunnel ionization, Eckle et al. obtained an upper limit of
34 as on the ionization time delay with respect to the time of peak field strength in strong-field
ionization of helium [7]. Using a more advanced classical model that starts trajectories with
vanishing initial velocity at the tunnel exit position given by a separation of the Schrödinger
equation in parabolic coordinates including the Stark shift (TIPIS), Pfeiffer et al. found vanish-
ing ionization time delay within experimental accuracy in argon and helium [77]. Later, Lands-
man et al. found a small positive ionization time delay using the same method and interpreted
this delay as tunneling time [220, 221]. Indeed, it was confirmed shortly after that in helium
the offset angle in experimental [222] or theoretical [223] momentum distributions cannot be
explained by the TIPIS model when assuming that ionization is most likely at the peak of the
pulse. Camus et al. measured the difference in the attoclock offset angle between argon and
krypton by considering a mixture of two gases, derived initial conditions for classical trajecto-
ries using Wigner trajectories that predict a nonzero initial velocity of the photoelectron in field
direction and interpreted their result as a nonzero tunneling time [224, 225]. On the contrary,
in a purely theoretical work, zero ionization time delay was found when applying analytical
R-matrix theory to the attoclock problem to find the ionization time that corresponds to the
peak of the momentum distribution obtained from the TDSE in strong-field ionization of the
hydrogen atom [78]. Theoretical offset angles from strong-field ionization of atomic hydrogen
were eventually verified experimentally [226, 227].

Instead of interpreting the attoclock by observing the momentum distribution, it is pos-
sible to define the ionization time directly from the time-dependent wave function. Teeny et
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al. measured the probability flow through the tunnel exit of a time-dependent tunneling bar-
rier and found both large positive delay times as well as an initial velocity offset at the tunnel
exit position [228, 229]. Yuan et al. defined an instantaneous ionization rate by observing
the overlap of the time-dependent state with the bound states of the system and found that it
peaks later than the field maximum [230]. Douguet et al. employed Bohmian trajectories and
also found a large positive mean ionization time [231]. Another approach that can be used to
interpret attoclock experiments as well as obtain the instantaneous ionization rate directly is
classical backpropagation [102–104]. There, the outgoing electron wave packet from a solution
of the TDSE is represented as phase-space distribution of classical trajectories which are prop-
agated backwards in time until a suitable tunnel-exit condition is met. Using the zeros of the
electron velocity in the direction of the instantaneous electric field for this purpose, vanishing
ionization time delay was found.

In all of the above works where the observable was the photoelectron momentum distri-
bution, some kind of an electron trajectory was used to relate the observed photoelectron mo-
mentum at the peak of the momentum distribution to the time of ionization. In this chapter, we
use a method that does not require the notion of an electron trajectory to define a momentum-
resolved ionization time. Similar to the derivation of the KFR amplitude (2.22) presented in
Section 2.4, we start from the Dyson expression (2.21) for the ionization amplitude

M(p) = −i

∫T
0
dtD(p, t) (4.1)

where the integrand is given by

D(p, t) =
〈
ψ

(−)
p
∣∣U(T , t)HI(t)U0(t, 0)

∣∣ψ0
〉
. (4.2)

In the SFA as described in Section 2.4, the full time-evolution operator is replaced by the Volkov
time-evolution operator and the scattering state by a plane wave. Ionization time is then de-
fined as a stationary point of the action. Here, we do not employ the above approximations
and we consider the full integrand of the Dyson representation. Since it is not clear how to split
the integrand into transition matrix element and action when the strong-field approximation
is not employed, we instead use the stationary points of the entire integrand and define the
ionization time for given momentum p via

∂

∂t
logD(p, t)

∣∣∣∣
t=ts

= 0. (4.3)

The solution of this equation provides a mapping from photoelectron momentum p to the
complex ionization time ts. We evaluate this mapping and apply it to the attoclock setup to
find the most probable ionization time.1

The chapter is organized as follows. In Section 4.2, we demonstrate the validity of the
saddle-point approximation using the full integrand when the atomic potential after ioniza-
tion is neglected as in standard SFA. Afterwards, we apply the definition to the attoclock setup
where we proceed with a full numerical solution of (4.3). Section 4.3 gives a formal introduc-
tion to the attoclock and derives the conditions that must be imposed on target and pulse in
an attoclock setup. Section 4.4 gives the computational details. In Section 4.5, we explain the

1The idea is based on previous work by M. Hartmann [232] who investigated imaginary-time displacements of
the integration path in the Dyson integral (4.1).
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details of solving the TDSE in the complex plane and present first results. In Section 4.6, we
give details on how to properly define the offset angle. In Section 4.7, we obtain the ionization
time in the attoclock setup for a wide range of intensities and investigate the question of a
possible ionization time delay. Section 4.8 concludes the chapter.

4.2 Strong-field approximation with full integrand

Even when the strong-field approximation is applied to the integrand (4.2), the stationary
points (4.3) do not necessarily resemble the ones found in standard SFA (as described in Section
2.4) because only the action is considered there.

Thus, before proceeding with a full numerical evaluation of (4.3), we explore how the sta-
tionary points of the full integrand behave when the potential after interaction with the field
is neglected. That is, we consider the simplified integrand

D(p, t) =M(p, t) e−iSSFA(p,t) (4.4)

with SSFA(p, t) and M(p, t) given by (2.24) and (2.25). To evaluate this expression, we have
to make some assumption on the matrix element. We adopt the form given by Gribakin and
Kuchiev [143] who state the asymptotic form of a bound s-state wave function in a potential
V(r) ' −Z/r at r→∞ as

ψ0(r) ' Arν−1e−κr, ν = Z/κ (4.5)

and its Fourier transform in the vicinity of the “standard” SFA saddle point as2

ψ̃0(q) =
1

(2π)3/2

∫
d3r e−iq·rψ0(r) '

A√
π/2

(2κ)νΓ(ν+ 1)
(q2 + κ2)ν+1 . (4.6)

In length gauge, the transition matrix element (2.25) becomes〈
p + A(t)

∣∣E(t) · r∣∣ψ0
〉
= E(t) · i∇kψ̃0(k)|k=p+A(t)

∝ (p + A(t)) · E(t)
((p + A(t))2 + κ2)ν+2 ∝

S̈SFA(p, t)
(ṠSFA(p, t))ν+2

(4.7)

where in the last line we have omitted p-independent prefactors. As a result, the (simplified)
Dyson integrand (4.4) becomes

D(p, t) ∝ S̈SFA(p, t)
(ṠSFA(p, t))ν+2

e−iSSFA(p,t). (4.8)

In the following, we consider strong-field ionization of atomic hydrogen (Ip = 0.5 a.u.,
ν = 1) in a circularly polarized laser field

Ax(t) = −E0/ω cos(ωt),

Ay(t) = −E0/ω sin(ωt).
(4.9)

Here,ω = 0.05695 a.u. corresponds to a wavelength of 800 nm.
The logarithmic derivative and the absolute value of the Dyson integrand (4.4) in the com-

plex plane at the classically expected momentum p = E0/ω are shown in Fig. 4.1. For the

2The full expression is slightly different as the stationary point (4.3) does not necessarily have to be close to the
SFA saddle point. For the hydrogen atom and a (zero-range) δ potential, however, (4.6) is exact.
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Figure 4.1: (a) Logarithmic derivative (4.3) of the Dyson integrand in strong-field approximation (4.4) at E0 = 0.05
(log-10 scale, arb. units). The contour lines show times of constant argument and indicate the path of steepest
descent from the relevant stationary point (marked by an arrow). (b) Absolute value of the Dyson integrand at the
same field strength (log-10 scale, arb. units). (c,d) Same as (a,b) but for higher field strength E0 = 0.10. Here, two
relevant stationary points are found and the integrand has a slightly different argument at each of them. Therefore,
there are two slightly different types of contours (dashed and dotted), each going through one of the two points.
The contours meet on the real axis in a zero of the integrand where its argument changes from one to the other.

small field strength, there are two saddle points below the standard SFA saddle point (which
shows up as a pole here because the logarithmic derivative (4.3) includes a term with ṠSFA

in the denominator), the upper of which (ti ≈ 10.8 a.u.) is the relevant one. Going to higher
field strengths, the two saddle points approach each other, merge and split horizontally in the
complex plane. In this case, they both become relevant.

The critical field strength at which the second stationary points becomes relevant can be
estimated. We write the saddle-point equation (4.3) for the full integrand as

ṠSFA
...
SSFA − (ν+ 2)(S̈SFA)

2 − i(ṠSFA)
2S̈SFA = 0, (4.10)

where for simplicity we have omitted the arguments (p, t). To simplify the equation, we go to
the adiabatic regime and expand the vector A(t) at some real time tr to first order in imaginary
time ti,

A(t) = A(tr) − itiE(tr) + O(t2
i). (4.11)

Here, higher orders correspond to derivatives of the electric field which can be neglected when
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the field is varying slowly. In this approximation we get

ṠSFA ≈ −
1
2
(v0 − iE(tr)ti)2 − Ip,

S̈SFA ≈ (v0 − iE(tr)ti) · E(tr),
...
SSFA ≈ −E(tr)2.

(4.12)

Here, v0 = p + A(tr) is the initial velocity of the photoelectron. Inserting this into the saddle-
point equation (4.10), we find that the equation for the imaginary part can be satisfied with
v0 · E(tr) = 0, while for the real part one obtains

f(ti) =

(
Ieff
p −

E2
0t

2
i

2

)
− ti

(
Ieff
p −

E2
0t

2
i

2

)2

+ E2
0t

2
i(ν+ 2) = 0. (4.13)

Here, E0 = E(tr) and the effective ionization potential is given by Ieff
p = Ip + v2

0/2.
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Figure 4.2: (a) Saddle-point condition (4.13) evaluated at Ieff
p = 0.5 a.u., ν = 1 (hydrogen) and various field strengths

0.04 a.u. (blue), 0.06 a.u. (orange), 0.08 a.u. (green) and 0.10 a.u. (red). The dots at the end of the curves mark the
Keldysh time at which the standard SFA saddle-point (2.29) is expected in the adiabatic limit. (b) Critical field
strengths at Z = 1 for various values of the ionization potential evaluated numerically (solid lines) and in adiabatic
approximation (4.15) (dashed line).

This fifth-order polynomial is plotted in Fig. 4.2(a). In general, the equation is fulfilled

twice between the real axis and the Keldysh time tk =
√

2Ieff
p /E0, while for high intensities

there is no solution. This shows that at a given tr, the imaginary time ti must “become imagi-
nary” itself to correct the real time. In this case, which corresponds to the horizontal splitting
in Fig. 4.1(c,d), there are two solutions at different real part with identical imaginary part.

The emergence of two solutions is necessary. Inserting the Keldysh time into (4.13), we find
f(tK) = 2Ieff

p (ν + 2) > 0 while also f(0) = Ieff
p > 0. Thus, solutions in ti ∈ (0, tK) always come

in pairs. In the weak field limit, the two solutions can be approximated by

t
(0)
i =

1
Ieff
p

+ O(E2
0), t

(1)
i =

√
2Ieff
p

E0
−

√
ν+ 2

(2Ieff
p )1/4

√
E0

−
1

4Ieff
p

+ O(E
1/2
0 ). (4.14)

When the field strength increases, the two solutions approach each other until they merge. To
find the critical field strength, we solve the conditions f(ti) = 0 and f ′(ti) = 0 exactly. The
result can be written as

Ecrit
0 = g(ν) (2Ieff

p )3/2, tcrit
i = h(ν)

√
2Ieff
p /E

crit
0 (4.15)
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Species ν g(ν) h(ν)

Short range 0.000 0.099 0.333
Helium 0.744 0.089 0.305
Hydrogen 1.000 0.086 0.297

Table 4.1: Some values of the functions g(ν) and h(ν) that give the dependence of the critical field strength on the
wave function asymptotics for different species.

with functions g and h that depend only weakly on ν. Some values of both functions are listed
in Table 4.1.3

Fig. 4.2(b) shows the numerically obtained critical field strength in circular polarization
for different Ip in comparison with our estimate. Even at 800 nm, there is good agreement
which can be attributed to the fact that since the critical field strength is comparably large one
automatically moves into the adiabatic regime where the approximation is valid.

In the next step, we proceed with evaluating the momentum distribution in saddle-point
approximation using the full stationary points of the Dyson integrand. To this end, we write

M(p) = −i

∫T
0
dtD(p, t) = −i

∫T
0
dt e−iS(p,t) (4.16)

with S(p, t) = i logD(p, t) and D(p, t) given by (4.4). The simplest case is just to consider
the upper saddle point. Since this saddle point avoids the pole of the matrix element at the
conventional SFA saddle point, we can simply use (2.30), giving

M(p) ≈

√
−2πi
S̈(p, ts)

e−iS(p,ts) =

√
−2π

D̈(p, ts)
(D(p, ts))3/2. (4.17)

More accurately, we can use the uniform approximation [233]. There, both saddle points (be-
fore and after the merger) can be taken into account by expanding the action to third order at
a point between the two and evaluating the resulting integrals analytically. Both approxima-
tions can be compared with a full numerical evaluation of the KFR amplitude (2.23) as well as
with the saddle-point approximation at the conventional SFA saddle point including the pole
according to (2.32).

The result is shown in Fig. 4.3 for the same parameters as above. For the lower field
strength, the saddle points stay separated and the saddle-point approximation using only the
upper one gives decent result, especially in the regions of momentum space where the separa-
tion between the saddle points is large. For the higher field strength, in the vicinity of the max-
imum of the photoelectron momentum distribution the separation is lost and the saddle-point
approximation for one saddle point diverges. The uniform approximation, on the other hand,
agrees very well with the full numerical result and is superior to the conventional saddle-point
approximation at the pole.

The good agreement with the full numerical solution in SFA suggests that the stationary
points of the full integrand can be interpreted as ionization time in a meaningful way. In the
following, we obtain these stationary points in the TDSE to generate a time-to-momentum
mapping as is required to interpret attoclock momentum distributions.

3The results (4.14) and (4.15) are derived in Appendix A.3. There, approximate forms for g and h are provided
as well.
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Figure 4.3: (a) Imaginary part of the saddle-point time as a function of radial momentum for field strength E0 =

0.05 a.u. (b) Radial slice through the photoelectron momentum distribution in various approximations. (c,d) Same
as (a,b) for higher field strength E0 = 0.10 a.u. The inset in panel (c) shows the real part of the saddle-point time.

4.3 The attoclock

Attosecond angular streaking, or the “attoclock,” makes use of the fact that in a circularly
polarized laser pulse

Ax(t) = −A0 cos(ωt)

Ay(t) = −A0 sin(ωt)
(4.18)

the ionization time t0 is mapped to the detection angle of the photoelectron. In the simple
man’s model, where the final photoelectron momentum is given by the negative vector poten-
tial at ionization time, p = −A(t0), the photoelectron is detected at

px = A0 cos(ωt0)

py = A0 sin(ωt0)
(4.19)

such that the detection angle is simply φ = ∠(px,py) = ωt0. In reality, this mapping must
be modified, mainly because the force due to the Coulomb potential of the parent ion on the
outgoing electron shifts the angle forward with respect to the handedness of the electric field.
This is sketched in Fig. 4.4 for a classical trajectory that propagates in the laser field in the
presence of the Coulomb potential.

A simple expression for the classical offset angle due to the Coulomb force can be given in
limiting cases. In the long-wavelength limit, the electron essentially moves out of the Coulomb
potential in straight line. When the field is sufficiently weak, the tunnel-exit position is far
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Figure 4.4: Attoclock principle. At the time of ionization, the electric field E points in the +y direction. The
photoelectron appears at the tunnel exit in −y direction and is accelerated by the force FL due to the laser field.
In the absence of a potential, the electron follows the blue dashed trajectory with asymptotic momentum opposite
to the instantaneous vector potential A. When the potential is taken into account (blue solid curve), the Coulomb
force FC changes the angle at which the electron is emitted with respect to the Coulomb-free case. The image shows
the strong-field ionization of hydrogen (Ip = 0.5 a.u.) at E0 = 0.025 a.u. and 800 nm wavelength. The electron starts
at the tunnel exit chosen for simplicity as −Ip/E0 ey and it subsequently moves according to Newton’s equations
of motion in the combined potential of Coulomb attraction and laser field.

enough away to justify a perturbative treatment of the Coulomb force which acts as a braking
force on the outgoing electron [234, 235]. This leads to4

φ =
ωπ

(2Ip)3/2 . (4.20)

In another approach, the attoclock offset is interpreted as a Rutherford (half) scattering event
[236]. There, the impact parameter is approximated by the tunnel-exit position Ip/E0 and the
final momentum is chosen as the classically expected value E0/ω. This approach results in

φ =
ω2

E0Ip
. (4.21)

When a cw field as in (4.18) is used, the photoelectron momentum distribution is cylin-
drically symmetric and the attoclock offset cannot be observed. Thus, a slightly elliptically
polarized pulse or an ultrashort pulse envelope is used to break the symmetry.5 In that case,
the PMD exhibits a maximum from which the offset angle is inferred. The basic requirement
we have on a meaningful attoclock setup (consisting of a target and a pulse) is that in the ab-
sence of the atomic potential the maximum is attributed to an ionization time that corresponds
to the peak of the electric field strength and is aligned with the negative vector potential at that
time. This is not always the case.6 In the following, we derive conditions under which this
statement holds in SFA. Consider a pulse in the xy plane symmetric around t = 0 given by

Ax(−t) = Ax(t),

Ay(−t) = −Ay(t).
(4.22)

4See also Appendix A.4.3 or [94] where (almost) the same expression is derived from ARM theory.
5Instead of using elliptically polarized fields where the exact location of the polarization ellipse might be un-

known, a circularly polarized field can be used together with a second-harmonic linearly polarized field to break
the symmetry [237].

6See [238]. Using an orthogonal two-color field with comparable field strengths of the two colors, it is possible
to devise a field shape where the maximum of the PMD does not correspond to the time of peak field strength,
already in SFA.
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The symmetry condition implies that A points in the ±x direction at t = 0 and all odd deriva-
tives of Ax and all even derivatives of Ay vanish, so A(0) · E(0) = 0 and E(0) · Ė(0) = 0. In
particular, the electric field E(t) has an extremum at t = 0,

d

dt
E(t)

∣∣∣∣
t=0

=
E(0) · Ė(0)
E(0)

= 0. (4.23)

Evaluating the vector potential in the complex plane at zero real part of the ionization time,
ts = i ti, we find that Ax(ts) is purely real and Ay(ts) purely imaginary, as can be quickly
verified by writing their Taylor expansions and using the symmetry properties (4.22) on the
derivatives. This means that the saddle-point equation (2.29),

1
2
(px +Ax(ts))

2 +
1
2
(py +Ay(ts))

2 +
1
2
p2
z + Ip = 0, (4.24)

can be split into real and imaginary parts as

(ImAy(ts))
2 = (px + ReAx(ts))2 + 2Ip + p2

y + p2
z,

0 = py ImAy(ts).
(4.25)

The equation for the real part implies ImAy(ts) 6= 0, so from the imaginary part we find
py = 0. Thus, the saddle-point condition assigns time zero to the pxpz plane.

We show that the momentum distribution also has an extremum there. The momentum
distribution (2.23) in length-gauge SFA (up to a p-dependent phase) can be written as

M1(p) = −i

∫T/2

−T/2
dtM(p, t) e−iS(p,t) (4.26)

with the action

S(px,py,pz, t) = −

∫t
0
dt ′
{

1
2
(px +Ax(t

′))2 +
1
2
(py +Ay(t

′))2 +
1
2
p2
z + Ip

}
(4.27)

and matrix element

M(px,py,pz, t) =
〈
px +Ax(t),py +Ay(t),pz

∣∣Ex(t) x+ Ey(t)y∣∣ψ0
〉
. (4.28)

Replacing py → −py and t→ −t in (4.27) and using the conditions on the field (4.22), we find
that the action simply changes its sign, S(px,−py,pz,−t) = −S(px,py,pz, t). For the matrix
element we obtain

M(px,−py,pz,−t) =
〈
px +Ax(t),py +Ay(t),pz

∣∣(Ex(t) x+ Ey(t)y)C∣∣ψxz0

〉
, (4.29)

where ψxz0 (x,y, z) = ψ0(−x,y,−z) and we have introduced the antihermitian conjugation op-
erator

〈
r
∣∣C∣∣ψ〉 = ψ(r). Assuming a condition on the initial state,

C
∣∣ψxz0

〉
= eiϕ

∣∣ψ0
〉
, (4.30)

this implies M(px,−py,pz,−t) = e−iϕM(px,py,pz, t). Putting everything together, we find
that the KFR amplitude satisfies

M1(px,−py,pz) = −e−iϕM1(px,py,pz) ⇒ |M1(px,−py,pz)|2 = |M1(px,py,pz)|2.
(4.31)
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That is, if the pulse has forward-backward symmetry and the initial state is compatible with
that symmetry, this symmetry will carry over to the photoelectron momentum distribution
which must have extrema in the pxpz plane when traversing the py direction. Condition (4.30)
is obviously fulfilled for atomic s states. For atomic p states states co- or counter-rotating with
m = ±1 it can also be fulfilled, but for molecules it generally cannot (unless the molecule is
aligned with a symmetry axis).

4.4 Computational details

We now go beyond the SFA and solve the 2D TDSE (2.11) on a Cartesian grid of size 400 ×
400 a.u. and 2048 bins in each dimension using the split-operator method with step size 0.01 a.u.
up to the final time T = 880 a.u. The photoelectron momentum distribution is obtained by pro-
jecting outgoing parts of the wave function onto Volkov states via an absorber that starts at
a distance of 150 a.u. from the origin. The vector potential describes a two-cycle circularly
polarized laser pulse,

Ax(t) = −A0 cos(ωt/4)4 cos(ωt),

Ay(t) = −A0 cos(ωt/4)4 sin(ωt).
(4.32)

Here,ω = 0.05695 a.u. corresponds to 800 nm wavelength. The atomic potential is defined as

V(r) =
−1√
r2 + α

, (4.33)

where α = 0.64 a.u. is chosen to approximately reproduce the ionization potential Ip = 0.5 a.u.
of the hydrogen atom. Pulse and ground state clearly satisfy the symmetry conditions (4.22)
and (4.30).
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Figure 4.5: 2D Momentum distributions for strong-field ionization of an hydrogen atom in a circularly polarized
field at field strength E0 = 0.05 a.u. (1.75 × 1014 W/cm2). (a) Strong-field approximation. (b) Time-dependent
Schrödinger equation. In both panels, the orange dashed line gives the values of the negative vector potential
(4.32). Panel (b) is adapted from Fig. 1 in [210].

The momentum distribution for field strength E0 = 0.05 a.u. is shown in Fig. 4.5. The SFA
momentum distribution in panel (a), calculated by numerical evaluation of the KFR integral
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(2.23), is clearly symmetric with a maximum on the positive px axis. In the TDSE, this sym-
metry is broken and the distribution is rotated forward with respect to the handedness of the
electric field. While from the previous section it is clear that the quantum-orbit model assigns
t = 0 to the maximum of the SFA distribution, our goal is to assign an ionization time to the
maximum of the distribution calculated by solving the TDSE. Several mappings have been
suggested for this purpose that typically rely on the trajectory picture of strong-field ioniza-
tion. Here, we employ the trajectory-free definition of ionization time provided by the Dyson
representation (4.1).

4.5 TDSE in the complex plane

In order to evaluate the saddle-point condition (4.3), we must calculate the Dyson integrand

D(p, t) =
〈
ψ

(−)
p
∣∣U(T , t)HI(t)U0(t, 0)

∣∣ψ0
〉

(4.34)

given by (4.2) for complex time t. To this end, we propagate the state HI(t)U0(t, 0)
∣∣ψ0
〉

in
complex time along the standard integration path (Fig. 2.3) first down to the real axis and then
along the real axis to the final time T using the split operator method with real or imaginary
time step and a complex absorbing potential to determine the momentum amplitude as usual.

For time propagation, we always use the velocity gauge. In order to evaluate the length-
gauge form of the Dyson integrand, the interaction operatorHI(t) = E(t) · r is applied at initial
time t and the resulting state is transformed to velocity gauge using (2.13). This makes the
computation much more stable compared to propagation in length gauge because it avoids
calculating terms that include complex E and large r. When calculating the initial state

∣∣ψ0
〉
,

the kinetic-energy operator is defined using a five-point finite-difference scheme instead of
using the fast Fourier transformation. This is necessary because the noise in the initial state
introduced by the FFT would be amplified by the length-gauge interaction. The saddle-point
condition is then evaluated using two or three evaluations of the Dyson integrand and a finite-
difference scheme in the imaginary time direction (which we find to be more stable compared
to a real time step).7

This procedure provides the values of the logarithmic derivative (4.3) at all p simultane-
ously. While generally some kind of root finding and several calculations are required to find
the saddle-point time ts for a given p, the saddle-point momentum for a given ionization time
can be found directly. Since in the attoclock setup we are interested in how the rotation angle
of the distribution compares to the time of peak field strength, t = 0, we evaluate the saddle-
point condition at Re(t) = 0 and various imaginary parts. This is shown in Fig. 4.6 for both
length and velocity gauge.

In both cases, for sufficiently large imaginary part Im(t) two saddle points (denoted by
S1 and S2) emerge that show a rotation similar to the maximum of the PMD in Fig. 4.5(b).
Scanning through the imaginary part systematically, we find the mapping shown in Fig. 4.7.

In (a), it is evident that the imaginary time at which saddle points emerge in length gauge
is much smaller compared to velocity gauge which is closer to standard SFA (2.29) that con-
siders only the action. Fig. 4.7(b) compares the rotation angle of time-zero saddle points. They

7The Dyson integrand (4.2) in complex time was also considered in [232]. There, propagation was always
performed in length gauge where the split-operator FFT scheme does not work. Instead, finite differences were
used to discretize the Laplace operator and a Runge-Kutta scheme was used for time propagation.
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Figure 4.6: Logarithmic derivative (4.3) at field strength E0 = 0.05 a.u. and Re(t) = 0 (arbitrary normalization,
log-10 scale). (a, b) Length gauge. (a) Im(t) = 8.2 a.u. (b) Im(t) = 8.8 a.u. (c, d) Velocity gauge. (c) Im(t) = 15.0 a.u.,
(d) Im(t) = 15.4 a.u. Panels (a) and (b) are adapted from Fig. 1 in [210].

are found to be approximately constant in the vicinity of the bulk of the PMD (p ≈ 1 a.u.) but
also different in both gauges. This difference is not surprising. While the momentum distri-
bution as an observable quantity must be independent of the choice of gauge, the integrand
in the Dyson representation does not have to be gauge independent so the imaginary times
and rotation angles of the saddle points do not have to be gauge independent, either. To inter-
prete the stationary points as ionization time, we argue that the length-gauge form should be
used. This is because the interpretation of the Dyson integral as field-free evolution, followed
by ionization and subsequent propagation to the detector only holds in length gauge [138].
In velocity gauge, the initial state U0(t, 0)

∣∣ψ0
〉

appearing in the Dyson integral is not a good
approximation of the field-free time-evolved ground state which would carry an additional
spatially-dependent phase due to the gauge transformation (2.13).

To investigate whether the ionization is most probable at the peak of the electric field
strength, the rotation angle corresponding to time zero must be compared with the rotation
angle of the PMD maximum. Measuring this angle accurately is a nontrivial task. This is be-
cause the PMD is extremely flat along the angular direction in vicinity of the maximum and
a small amount of noise in the PMD already changes its position. Additionally, it must be
checked that the angle is converged with respect to the simulation volume that effectively cuts
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Figure 4.7: Imaginary part (a) and rotation angles (b) of saddle-point time at time zero and E0 = 0.05 a.u. In both
panels, red curves correspond to velocity gauge and blue curves to length gauge. The dashed lines are calculated
using standard SFA, Eq. (2.29). The points marked S1, S2, S ′1 and S ′2 correspond to the points at the same imaginary
time in Fig. 4.6(b,d). Adapted from Fig. 1 in [210].

Method Bins Size [a.u.] Angle [deg]
Linear fit 2048 400 17.46
Power method 2048 400 17.44
Linear fit 4096 800 17.40
Eikonal 4096 800 17.55

Table 4.2: Maximum angle of the PMD at E0 = 0.05 a.u. calculated with the methods described in the text.

off the long-range Coulomb potential at a radius of about 150 a.u. and that it is independent of
the absorber used to measure the PMD.

In Table 4.2, we compare two methods to find angle φ = ∠(px,py) at which the maxi-
mum of the PMD |M(px,py)|2 is found, as well as two different grid sizes. The first two rows
show results for the present calculation using the grid parameters as above and an absorbing
boundary to measure the PMD (which results in a discretized momentum-space wave func-
tion). Here, linear fit uses the zero of a linear fit to the (three-point finite difference) gradient
of the PMD in the vicinity of the array maximum and is our preferred method. Power method
is an ad-hoc method based on the expectation value of the probability distribution ∝ |M|2/ε

with ε = 0.01. (For ε = 1 this would correspond to the mean value and for ε → 0 to the array
maximum). Both methods give results very close to each other.

The lower two rows show results for a calculation with a larger simulation volume. There,
linear fit uses absorbing boundaries as above, but with a larger (and softer) absorber that covers
a distance of 100 a.u. The good agreement with the above values indicates only a small change
due to the use of the absorber and its position. This is confirmed by the eikonal method. There,
the wave function is propagated only over a time span of 250 a.u. such that it stays confined
to the simulation volume. Defining

∣∣ψ〉 as the final state and
∣∣ψ0
〉

as the ground state, the
contribution of the latter is removed via∣∣ψ̃〉 = (I− ∣∣ψ0

〉〈
ψ0
∣∣) ∣∣ψ〉. (4.35)

Afterwards, a region around the origin is removed using a mask function

f(r) =
1

1 + e−(r−r0)/∆r
(4.36)
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Prescription Angle [deg] Difference [deg] Time difference [as]
Differential, prefactor 1 17.46 3.42 25.38
Differential, prefactor p 14.04 0.00 0.00
Differential, prefactor p2 11.73 −2.30 −17.08
Integrated 13.77 −0.27 −1.96
Differential, envelope corrected 14.85 0.81 6.03
Integrated, envelope corrected 13.98 −0.05 −0.40

Table 4.3: Rotation angle of the PMD at E0 = 0.05 a.u. according to different prescriptions. “Differential” denotes
the angle of the PMD maximum. “Integrated” denotes the maximum of the radially integrated distribution (4.38).
The third column gives the difference of the observed angle with respect to the cylindrical one and the fourth
column the resulting time delay as above. The envelope correction is explained in the next section.

with r0 = 40 a.u. and ∆r = 5 a.u. The remaining part of the final state is projected onto eikonal
states, Eq (2.36) with A = 0 evaluated using (A.53), leading to

M(p) ≈ 1
(2π)3/2

∫
d3r e−ip·re−i/p log(r·p+rp)f(r)ψ̃(r). (4.37)

Here, the integral is evaluated using Romberg integration [239]. Using eikonal states does
not require an absorber and incorporates the force on the outgoing photoelectron due to the
Coulomb potential perturbatively, but does so up to r→∞.

In addition to the practical question of measuring the rotation angle of the PMD, we find
that there is a more fundamental ambiguity in defining that angle. The angle at which the
Cartesian distribution |M(p,φ)|2 (probability per dpxdpy) peaks is different from the angle at
which the distribution p|M(p,φ)|2 in cylindrical coordinates (probability per angle element dφ
per radial-momentum element dp) peaks.8 This dependence is quite significant. Between the
Cartesian and the cylindrical maximum, the difference is ∆φ = 3.42◦ which corresponds to
a time difference of ∆φ/ω = 25.4 as. Different prescriptions have been used throughout the
literature. In the recent 3D study using ARM theory [78] the volume element p2 in spherical
coordinates was included whereas many experiments use the integrated distribution, in 2D
given by

w(φ) =

∫∞
0
dpp|M(p,φ)|2, (4.38)

i.e. the angular distribution. We find the maximum from this prescription to be very close to
the maximum of the cylindrical distribution. The angles φ, their differences ∆φ and the time
differences ∆t = ∆φ/ω implied by them are printed in Table 4.3.

4.6 Geometrical factors and origin of the angle ambiguity

In order to understand this ambiguity, we consider a function

F(p,α) = |M(p)|2 (1 + α(G(p) − 1)) (4.39)

whereα allows us to scale the pure Cartesian momentum distribution (α = 0) to one multiplied
with some modifier G(p) at α = 1 (which is later chosen to be the radial factor p).

8This was also noted in the appendix of [240] but it implications for the attoclock were not addressed. Energy-
dependent angular offsets were also found for long pulses in elliptical polarization in [241].
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Let the Cartesian PMD have a maximum at p0. To observe how the position of the maxi-
mum changes with α, we have to solve

∂

∂pj
F(p,α) = 0. (4.40)

Writing p = p0 + ∆p and expanding to first order in α and ∆p, we find

∑
i

∂2F

∂pj∂pi

∣∣∣∣
p0

∆pi +
∂2F

∂pj∂α

∣∣∣∣
p0

α = 0. (4.41)

For α→ 1, this evaluates to
1

|M|2
Hess|M|2∆p +∇G = 0. (4.42)

That is, if the gradient of the modifierG is parallel to one of the principal axes of the Hessian of
|M|2 at the maximum, the maximum can only be shifted in this direction. For a radial function
G(p) = p, this would be the case for a true rotation of the momentum distribution where (start-
ing from the Coulomb-free momentum distribution where one of the principal axes points in
the radial direction) the maximum is rotated around the origin and the principal axes of the
quadratic approximation in the vicinity of the maximum are rotated by that same angle. In
the attoclock, however, we find that this is not the case. The distribution is “over rotated” in
the sense that the internal rotation is larger compared to the external rotation (see Fig. 4.8).
Since the PMD is extremely flat as a function of angle in the vicinity of the maximum, a small

1 0 1 2
Momentum px [a.u.]

2

1

0

1

2

M
om

en
tu

m
 p

y [
a.

u.
]

0.0

0.2

0.4

0.6

0.8

1.0

Figure 4.8: Momentum distribution as in Fig. 4.5(b). The red lines mark the principal axes of quadratic expansion
of the PMD in the vicinity of the (Cartesian) maximum.

mismatch can induce a large angular shift.
To decide which prescription to use, we consider a classical description of the ionization

process where the momentum distribution can be written as [152]

|M(p)|2 =

∫
dt

∫
dvW(t, v) δ(p − D(t, v)). (4.43)

Here, W(t, v) is the instantaneous ionization probability per unit time and velocity (for exam-
ple the PPT rate (2.44)) and the deflection function D(t, v) maps the initial conditions to the
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final momentum. Assuming a single relevant contribution for every final momentum, we can
resolve the δ-function to get

|M(p = D(t, v))|2 =
W(t, v)

|det D ′(t, v)|
. (4.44)

If the most probable ionization time (the maximum of the instantaneous ionization rate) is to
be inferred from the maximum of the attoclock PMD, it is evident that the Jacobian must be
taken into account, too. In the simple man’s model,

D(t, v) = −A(t) + vE⊥(t)/E(t), (4.45)

so the Jacobian can be calculated explicitly and is given by

|det D ′(t, v)| =
∣∣∣∣E(t) + v E(t) · Ė⊥(t)

E(t)2

∣∣∣∣ = E(t)|1 + v k(t)|. (4.46)

Here,

k(t) =
Ȧ(t) · Ä⊥(t)

|Ȧ(t)|3
(4.47)

is identified as the curvature of the vector potential. In circular polarization, there is constant
curvature |k(t)| = ω/E0, so the Jacobian is also time independent and we find |det D ′| = ωp

(where in 3D the momentum pwould have to be replaced by the momentum component in the
polarization plane). The Jacobian can also be motivated from SFA. Evaluating the saddle-point
equation (2.29) for a cw field

Ax(t) = −A0 cos(ωt)

Ay(t) = −A0 sin(ωt)
(4.48)

in the plane of polarization by writing the saddle-point time as ts = tr + i ti and separating
real and imaginary part, one finds

ωtr = ∠(px,py), cosh(ωti) =
2Ip + p2 +A2

0
2A0p

. (4.49)

At the saddle point, the second derivative of the action becomes

S̈(p, ts) = (p + A(ts)) · E(ts) = −iA0ωp sinh(ωti). (4.50)

The bulk of the momentum distribution is located close to the momentum pmin corresponding
to the minimal imaginary part ti of the saddle-point ts. There,

∂

∂p

(
2Ip + p2 +A2

0
2A0p

)∣∣∣∣
p=pmin

= 0 (4.51)

which implies

pmin =
√
A2

0 + 2Ip, cosh(ωti) =

√
A2

0 + 2Ip
A0

, sinh(ωti) =

√
2Ip
A0

. (4.52)

Inserting this into (4.50), we find

S̈(p, ts(p)) = −i
√

2Ipωp+ O((p− pmin)
2). (4.53)
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This implies that the SFA prefactor √
−2πi
S̈(p, ts)

(4.54)

from the signal in saddle-point approximation (2.30) contains – when it is squared to determine
the PMD – the inverse of the classical Jacobianωp.

Both the classical argument as well as the SFA motivate us to use the cylindrical factor p
when determining the maximum of the PMD, as we will do in the following. This procedure is
expected to provide the momentum corresponding to the maximum of the instantaneous rate
W. The most accurate prescription would also take the ultrashort pulse envelope into account.
Using the actual shape of the vector potential (4.32) including the envelope to calculate the
Jacobian (4.46), the maximum is fairly close to the cylindrical one (see the envelope-corrected
values in Table 4.3). Good agreement with the cylindrical maximum is also obtained when
integrating along lines that are perpendicular to tangent of the instantaneous vector potential
instead of integrating in the radial direction.9

4.7 Intensity scan
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Figure 4.9: (a) Rotation angles of the PMD for various intensities including prefactors 1 (upper blue curve), p
(middle red curve), and p2 (lower green curve). The angles are compared with rotation angles of time-zero saddle
points in velocity gauge (upper black curve) and length gauge (lower black curve). (b) Ground-state population
after the end of the pulse and ionization yield. Adapted from Fig. 2 in [210].

Repeating the steps above for various intensities, we find the attoclock angles shown in Fig.
4.9(a). For the angles corresponding to time zero, we have used the fact that the rotation angle
of the saddle points at time zero is approximately constant in the region where the momentum
distribution is actually concentrated, see Fig. 4.7(b). Therefore, we can assign a single angle
that we define for simplicity as the rotation angle of time zero at the radius that corresponds
to the maximum of the PMD in cylindrical coordinates.

For low to intermediate intensities, the rotations angles of the PMD are in good agreement
with the rotation angles corresponding to time zero. This indicates that the PMD maximum is
due to ionization very close to the time of peak field strength. At higher intensities, the rotation

9A similar method was used to investigate the longitudinal momentum spread in elliptically polarized laser
fields. There, elliptical coordinates were introduced and the PMD was integrated along lines of constant general-
ized radius [242].
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angles are shifted to smaller values because the instantaneous ionization rate maximizes at
earlier times due to depletion of the bound state, see also Fig. 4.9(b).10

Instead of comparing the angles, we can find the ionization times corresponding to the
maxima of the PMD directly. Here, we choose the maxima in cylindrical coordinates and
evaluate the integrand in length gauge according to the arguments given above. At fixed
momentum p, the saddle-point equations (4.3) can be solved for ts using Newton’s method for
a single (complex) variable. Here, we must consider that the exponentials that are required to
perform time propagation are precalculated with a given time step ∆t = 0.01 a.u., leading to a
discrete grid of accessible complex times. The Newton iteration leads to times incommensurate
with that grid. This could be fixed by changing the time step during the calculation. This
requires reevaluating the exponentials, which is computationally expensive. Instead, after
each step in the Newton iteration, we continue from the nearest grid point. The iteration stops
when the same point is reached twice and the final result is obtained by the last estimate. (The
accuracy of this estimate is still much better than the grid spacing). As starting value, we use
the imaginary time ti at which a saddle point emerges at time zero and estimate the real time
using the difference ∆φ between the red curve and the length-gauge curve in Fig. 4.9(a) as
tr ≈ ∆φ/ω. Using these values, convergence can usually be reached in at most three steps.
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Figure 4.10: Ionization times corresponding to the maxima of the PMD in cylindrical coordinates obtained by
finding the stationary points of the Dyson integrand (4.2) in length gauge (black curve) and by solving the SFA
saddle-point equation (2.29). Adapted from Fig. 2 in [210].

The result is shown in Fig. 4.10. Compared to the ionization time that the SFA saddle-point
equation would assign to the maxima (dashed line in the figure), the ionization times from the
Dyson integral are much closer to zero and never positive.11

10This was also observed in the 3D calculation [78] which we reproduce in Appendix A.1.3. In 3D, however,
depletion is less significant compared to 2D. This is because in 3D parabolic coordinates – in which the static
tunneling problem can be solved – only a fraction of the full nuclear charge remains in the tunneling coordinate,
leading to a larger barrier to tunnel through. A 1D potential that has a weak-field static ionization rate like 3D
hydrogen must have (asymptotic) nuclear charge Z = 1/2. A 2D potential with equivalent static rate requires
Z = 3/4. See Appendix A.5.

11Here, a single time of ionization is assigned to a final momentum. Since no trajectory is involved, the observable
does not allow us to make a statement about the propagation through the tunneling barrier or the “tunnel exit.”
This is different in ARM where the trajectories can be used to derive initial conditions for classical motion [243].
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4.8 Conclusion

The ability to interpret photoelectron momentum distributions in strong-field ionization in a
time-resolved way typically relies on electron trajectories such as classical trajectories, Bohmian
trajectories, or quantum orbits. Using the stationary points of the Dyson integral representa-
tion of the time-dependent Schrödinger equation, momentum-resolved ionization times can be
defined without relying on the concept of an electron trajectory. Although conceptually sim-
ilar to the stationary points that appear in the quantum-orbit model, they are not equivalent
even when the strong-field approximation is applied to the Dyson integral. This is because the
stationary points of the full integrand also include the transition matrix element whereas the
quantum-orbit model only considers the exponential of the action. Indeed, the relevant saddle
point is typically found in imaginary time between the real axis and the “standard” SFA saddle
point that is close to the Keldysh time. The relevant saddle point is accompanied by a second
irrelevant one closer to the real axis. We derived expressions that provide the positions of the
two points in the adiabatic weak-field limit. For large field strengths, the two saddle points
merge after which they both become relevant. Using the adiabatic model, we estimated the
critical field strength for the merger. Applying the saddle-point approximation to the upper
saddle point or the uniform approximation to both saddle points, we found that photoelectron
spectra can be calculated accurately.

When the potential after the interaction time in the Dyson integral is taken into account,
the saddle points must be determined numerically. Evaluating the stationary-point condition
for the attoclock by solving the time-dependent Schrödinger equation in complex time, we
obtained the ionization time that corresponds to the maximum of the momentum distribution.
Here, two ambiguities must be taken into account. First, the observed attoclock offset angle
depends on which volume element is used. Second, the retrieved ionization time depends on
the choice of gauge. Arguing that the volume element in cylindrical coordinates should be
used and that the Dyson integrand should be evaluated in length gauge, we found that the
most probable ionization time is close to the time of peak field strength, supporting previous
results that obtained zero ionization time delay [78, 102].

We circumvent the ambiguity in the angle in the next chapter when introducing an atto-
clock using bicircular fields, There, the Jacobian is constant in the vicinity of the maximum and
the initial conditions of the ionization step are directly mapped to the final momentum. We
will also apply the trajectory-free retrieval method and evaluate parts of the TDSE momen-
tum distribution in saddle-point approximation. In the future, it would be interesting to apply
the definition and retrieval procedure to other field shapes, such as linear polarization where
it could be possible to retrieve ionization times of rescattered electrons. The definition could
also be generalized to harmonics to find ionization times resolved by harmonic order instead
of photoelectron momentum, or to frustrated tunnel ionization [244] to resolve the ionization
time of electrons that end up populating Rydberg states.



Chapter 5

Attoclock with bicircular fields

Ionization time in linear polarization can be measured with streaking schemes while in circular
polarization the attoclock is typically employed. Both techniques provide a certain notion of
ionization time that cannot be compared directly because the results are obtained for different
field shapes. In this chapter, we demonstrate that the concept of the attoclock can be transferred
to the linear regime using counter-rotating bicircular laser fields. Some results of this chapter
are published in [245].

5.1 Introduction

While the attoclock allows us to measure the time of ionization, it can more generally be seen as
a tool to study strong-field ionization in an interference-free and recollision-free environment.
The attoclock was used to estimate the importance of multi-electron effects in the ionization
step [77, 78, 80], and to investigate the lateral [246, 247], the transverse [248], and the longi-
tudinal [242, 249–252] momentum spread in tunnel ionization. Obtaining an accurate picture
of the ionization step is important because it is the first step in the three-step process that
leads to rescattering, harmonic generation and non-sequential double ionization. In particu-
lar, semi-classical models of strong-field ionization rely on its accurate description [95, 151].
In the adiabatic regime of small Keldysh parameter γ � 1, the ionization process becomes
quasistatic and independent of the field shape. For the Coulomb potential, or generally in
the weak-field limit, the Schrödinger equation can then be separated in parabolic coordinates
which leads to the TIPIS model of initial conditions for trajectory-based models [77, 149] or the
weak-field asymptotic theory of static ionization rates [253, 254]. For arbitrary field strength,
the ionizing system can be described by Siegert states, which are eigenstates of the nonher-
mitian Hamiltonian describing the atom in a constant electric field with outgoing boundary
conditions [255–257]. The real part of the complex-energy eigenvalue E = Er − iΓ/2 of the
Siegert state describes the Stark-shifted energy of the bound state Er while the imaginary part
gives the static ionization rate Γ .

The independence of the ionization step on the field shape in the adiabatic regime implies
that the use of circularly polarized fields, which are inherent to the attoclock, is not a limita-
tion. In the nonadiabatic regime, however, significant differences between circular and linear
polarization occur already during the ionization step. In linear polarization, the quantum-orbit
model predicts a symmetric distribution of the initial velocity of the electron perpendicular and

55
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a nonzero velocity parallel to the instantaneous field direction (See Appendix A.2). The par-
allel velocity is responsible for the fact that quantum mechanically the 2Up cutoff is avoided
[137]. Soft recollisions under the barrier lead to further enhancement of the signal in the classi-
cally forbidden region [258]. On the contrary, in circular polarization the quantum-orbit model
predicts zero parallel velocity but an asymmetric distribution of initial perpendicular velocity.
This can be viewed as nonadiabatic energy absorption under the tunneling barrier [127, 128]
and it can be observed in the PMD as the mean photoelectron energy being higher than the
ponderomotive energy [259]. In addition, there is a nonadiabatic asymmetry in ionization
rates between co- and counter-rotating orbitals [260, 261].

Ionization time as well as properties of the electron trajectories in linear polarization can be
probed using streaking techniques (see Chapter 3 and references therein). However, the part
of the PMD that is due to ionization times close to peak field strength is centered around zero
momentum and strongly influenced by Coulomb effects [123, 124, 262] while contributions
from different ionization times lead to intracycle interference [40, 41]. This makes it hard to
observe the tunneling-step directly, e.g. to answer the question whether the time of peak field
strength corresponds to most probable ionization time in linear polarization.

In this chapter, we show how the ionization step in approximately linear polarization can
be probed with an attoclock technique that employs counter-rotating bicircular fields. First
devised by Eichmann et al. [116], bicircular fields consisting of a fundamental infrared field
and its second harmonic have become an important tool in strong-field physics. At suitable
field-strength ratio of the two colors, the electron can revisit the parent ion which leads to the
observation of rescattering [263–268], non-sequential double ionization [269–271], and high-
harmonic generation [120, 121]. High-order above-threshold ionization in the bicircular field
allows for the retrieval of scattering cross sections in a larger angular range compared to linear
polarization [272]. For HHG, conservation of angular momentum dictates that harmonics of
order 3n±1 are generated which are circularly polarized with helicity±1. In the time domain,
an approximately linearly polarized attosecond pulse emerges during each third of a cycle of
the driving field [116].

In contrast to these recollision-based phenomena that require an approximately equal field
strength of both circularly polarized colors, we consider the special case of the bicircular field
where the field strength ratio of fundamental to second harmonic is exactly 2 : 1. We title
the resulting field shape a “quasilinear field” because at this ratio, the bicircular electric field
approximates linear polarization near its peaks three times per optical cycle. At the same time,
the shape of the vector potential has the attoclock property that time is mapped directly onto
the momentum distribution. The relevant quantity, however, is not an offset angle as in the
conventional attoclock, but a shift in the direction perpendicular to its maximum. We obtain
PMDs for a model helium atom by solving the time-dependent Schrödinger equation and we
investigate the attoclock shift with respect to the attosecond time structure of the ionization
process.

The chapter is organized as follows. In Section 5.2, we consider the case of equal field-
strength ratio to make a connection to the case that is mostly considered in the literature. Then
we move to a ratio of 2 : 1. After explaining the main idea behind the quasilinear field and
providing the computational details in Section 5.3, first results and the calibration of the clock
are provided. In Section 5.4, we use the trajectory-free method developed in Chapter 4 to
investigate the attoclock shift and compare our results with circular polarization. To interpret
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the results, we evaluate parts of the PMD by applying the saddle-point approximation to the
Dyson integral in Section 5.5. In the following sections, we apply established methods to the
bicircular attoclock that have previously been used to interpret momentum distributions in
the conventional attoclock such as classical backpropagation (Section 5.6), analytical R-matrix
theory (Section 5.7), and a related method based on applying the Eikonal approximation to the
Dyson integral (Section 5.8). Section 5.9 concludes the chapter.

5.2 Strong-field ionization in bicircular laser fields

The vector potential of the bicircular field can be written as

A(t) = −
E0/ω√
1 + ε2

[(
cos(ωt)
sin(ωt)

)
+
ε

2

(
± cos(2ωt)

sin(2ωt)

)]
, (5.1)

where a positive sign describes a co-rotating bicircular field and a negative sign a counter-
rotating one. The derived electric field E(t) = −Ȧ(t) is given by

E(t) =
E0√

1 + ε2

[(
− sin(ωt)

cos(ωt)

)
+ ε

(
∓ sin(2ωt)

cos(2ωt)

)]
, (5.2)

so the parameter ε gives the field-strength ratio between fundamental and second harmonic.
When calculating the time-averaged intensity I = cε0/T

∫T
0 dtE(t)2 the mixed terms average

out such that the intensity is the sum of the intensities of the two fields. The prefactor is defined
such that the intensity becomes independent of the field-strength ratio, i.e. I = c ε0 E

2
0.

1 0 1
Ax [a.u.]

1

0

1

A y
 [a

.u
.]

(a1)

= 0

0.1 0.0 0.1
Ex [a.u.]

0.1

0.0

0.1

E y
 [a

.u
.]

(b1)

= 0

1 0 1
Ax [a.u.]

(a2)

= 1/2

0.1 0.0 0.1
Ex [a.u.]

(b2)

= 1/2

1 0 1
Ax [a.u.]

(a3)

= 1

0.1 0.0 0.1
Ex [a.u.]

(b3)

= 1

1 0 1
Ax [a.u.]

(a4)

= 2

0.1 0.0 0.1
Ex [a.u.]

(b4)

= 2

1 0 1
Ax [a.u.]

(a5)

=

0.1 0.0 0.1
Ex [a.u.]

(b5)

=

Figure 5.1: Counter-rotating bicircular fields for various field-strength ratios at 800 nm wavelength and E0 =

0.05 a.u. (intensity 1.75 × 1014 W/cm2). (a) Vector potential. (b) Electric field. (1) Only fundamental field. (2)
Ratio 2 : 1 of fundamental to second harmonic. (3) Equal field strength. (4) Ratio 1 : 2 of fundamental to second
harmonic. (5) Only second harmonic field. The red dot marks t = 0, the green dot t = 172 as.

The field shape and the vector potential for various ratios of fundamental to second har-
monic are shown in Fig. 5.1. For ε→ 0, a circularly polarized field of frequency ω is retrieved
and for ε → ∞ a circularly polarized field of frequency 2ω. In most applications, the field-
strength ratio is chosen close to one (Fig. 5.1(3)) because then the recollision-based phenomena
can occur.
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We solve the 3D TDSE for precisely this case on a Cartesian grid of size 300× 300× 300 a.u.
and 1024 points in each dimension with time step ∆t = 0.02 a.u. and a propagation time of
2000 a.u. The electric field (5.2) with ε = 1,ω = 0.05695 a.u and E0 = 0.05 a.u. is multiplied with
a trapezoidal envelope of two ascending, six constant and two descending cycles. We consider
both the Coulomb potential V(r) = −1/r as well as a short-range potential V(r) = −α/r e−r/r0

with α ≈ 1.908 and r0 = 1 a.u. (similar to [78]) that reproduces the correct Ip of the hydrogen
atom. To avoid the singularity, both potentials are converted to pseudopotentials at a radius
of 1 a.u. according to the procedure described in Appendix A.1.3. The PMD is measured by
projecting outgoing parts of the wave function onto Volkov states via an absorber that covers
a distance of 50 a.u. to the boundary of the simulation volume.
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Figure 5.2: Projection of the 3D photoelectron momentum distribution (log-10 scale) for strong-field ionization of
atomic hydrogen in a counter-rotating bicircular laser field. (a) KFR amplitude according to (2.23) with matrix
element (4.7) at ν = 0 (short-range potential). (b) TDSE for a short-range potential. (c) TDSE for a long-range
potential. All distributions are normalized separately to maximum signal 1.

Results are shown in Fig. 5.2. Already in standard SFA in panel (a), the PMD exhibits strong
intracycle interference. Going from the SFA to the TDSE for a short range potential in (b), the
direct signal from panel (a) is accompanied by a significant amount of rescattering.1 In the
TDSE for the hydrogen atom in panel (c), there is additional distortion due to the long-range
potential.

For high-order ATI and HHG, the bicircular field is often viewed as being made of three
overlapping sections of approximately linear polarization in one cycle, each producing one
rescattering sphere in the PMD as well as one approximately linearly polarized attosecond
pulse. For the maxima of the PMD due to direct electrons, however, this picture does not hold.
This is because at the time of peak field strength the tunneling barrier is rotating. In linear
polarization, the orientation of the barrier would be constant during each half cycle because
the direction in which the field points does not change.

5.3 The quasilinear field

A field shape where the electric-field direction remains approximately constant can be created
as follows. We consider a bicircular field of field-strength ratio 2 : 1 of fundamental to second

1See [264, 265] for a detailed analysis of rescattering in bicircular fields using a saddle-point analysis of the
improved SFA.
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harmonic (Fig. 5.1(2)), described by the vector potential

A(t) = −
2√
5
E0

ω

[(
cos(ωt)
sin(ωt)

)
+

1
4

(
− cos(2ωt)

sin(2ωt)

)]
. (5.3)

At this ratio, the electric field E(t) = −Ȧ(t) exhibits three sharp peaks per optical cycle of the
fundamental field. In the vicinity of the peaks, the field is approximately linearly polarized.
Indeed, expanding at t = 0 we find

E(t) =
3E0√

5

[(
0

1 − 1
2(
√

2ω)2t2

)]
+ O(t3) (5.4)

which corresponds to linear polarization with effective field strength

Epeak =
3E0√

5
(5.5)

and effective frequency
ωeff =

√
2ω (5.6)

Here, we choose ωeff = 0.05695 a.u. such that the effective frequency corresponds to 800 nm.
This means that the true wavelength of the fundamental field is with approximately 1131 nm
somewhat larger. We then consider strong-field ionization from the ground state of the soft-
core potential

V(r) =
−1√

r2 + α
, (5.7)

where in two dimensions α ≈ 0.0684 a.u. approximately reproduces the ionization potential
Ip ≈ 0.904 a.u. of the helium atom.

3 2 1 0 1 2
Momentum px [a.u.]

3

2

1

0

1

2

3

M
om

en
tu

m
 p

y [
a.

u.
]

-200 as

-100 as

0 as

100 as

200 as

(a)

0.0

0.2

0.4

0.6

0.8

1.0

E(t)

3 2 1 0 1 2
Momentum px [a.u.]

3

2

1

0

1

2

3

M
om

en
tu

m
 p

y [
a.

u.
]

(b)

0.0

0.2

0.4

0.6

0.8

1.0

E(t)

Figure 5.3: 2D Momentum distributions for strong-field ionization of a helium atom in a bicircular field of field-
strength ratio 2 : 1 at 1131 nm and field strength E0 = 0.10 (intensity 7× 1014 W/cm2)). (a) Strong-field approxima-
tion for a cw field. (b) Time-dependent Schrödinger equation for a short pulse. Adapted from Fig. 1 in [245].

A momentum distribution calculated by numerical integration of the KFR amplitude (2.23)
for the field strength E0 = 0.10 a.u. is shown in Fig. 5.3(a) together with the negative vector
potential −A(t) and the electric field E(t) in the inset. In contrast to the PMD calculated for
equal field strengths (Fig. 5.2), there is is no intracycle interference in this case. Instead, the
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branches are well separated because the vector potential is much larger at the time of peak
field strength. Both the lower frequency of the fundamental field (ω → ω/

√
2) as well as the

optimized field strength ratio (1 : 1 → 2 : 1) help to achieve this. Additionally, considering
helium instead of hydrogen allows us to go to larger field strengths.

With the maxima due to direct electrons clearly visible, our aim is to interpret the PMD
as an attoclock. For this purpose, the flow of time through the PMD must be determined. In
SFA, it is given by the saddle-point equation (2.29). This equation is usually solved for the
ionization time ts = tr + i ti given a momentum p. Here, it is useful to consider the inverse2

p = −ReA(ts)± ImA⊥(ts)

√
1 −

2Ip
(ImA(ts))2 . (5.8)

Here, Im A⊥ is perpendicular to Im A and has the same length. Inserting a fixed value of tr
we find all momenta that correspond to this given ionization time. The equation gives two
branches of solutions which are joined when the square root vanishes at minimal imaginary
part ti of the ionization time. A few of these lines are also shown in Fig. 5.3(a). Note that
because of the forward-backward symmetry of the vector potential, the flow of time must
be an even function of time so it is constant to first order in the vicinity of either one of the
peaks. We can obtain an expression for this speed of the clock by evaluating (5.8) at tr = 0 and
minimal imaginary part ti such that the square root vanishes. The expression then gives

dpy

dtr
=

2E0√
5

(
cosh(ωti) +

1
2

cosh(2ωti)
)
≈ Epeak cosh(ωeffti). (5.9)

The condition of vanishing square root, on the other hand, reads

√
2Ip =

2E0√
5ω

(
sinh(ωti) +

1
4

sinh(2ωti)
)
≈
Epeak

ωeff
sinh(ωeffti). (5.10)

Combining these two results, we find

dpy

dtr
≈ Epeak

√
1 + γ2

eff, γeff =

√
2Ipωeff

Epeak
. (5.11)

Here, γeff is the effective Keldysh parameter of the corresponding linearly polarized field. Fi-
nally, the absolute value of the momentum is pmax

x ≈ Epeak/(2ω), so we obtain for the relative
shift in py direction approximately

1
pmax
x

dpy

dtr
≈ 2ω

√
1 + γ2

eff. (5.12)

This can be compared with the conventional attoclock in circular polarization where the flow of
time through the momentum distribution is independent of the Keldysh parameter and given
simply by dφ/dt = ω, where φ = ∠(px,py). The factor involving the Keldysh parameter in
the bicircular field is due to non-adiabatic initial velocities parallel to the instantaneous field
direction which SFA predicts for linear, but not for circular polarization [273]. The additional
factor of two is due to the different field geometry.

Fig. 5.3(b) shows the momentum distribution obtained by solving the TDSE for the same
parameters as in Fig. 5.3(a). Here, we used the split-operator method on a grid of size

2See Appendix A.2 where the expression is derived.
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300 × 300 a.u. using 2048 bins in each dimension and multiplied the vector potential (5.3) by
an envelope f(t) = cos(ωt/6)4 (3-cycle pulse) to avoid ATI rings in the PMD and obtain a clear
maximum. The time step is 0.004 a.u. and we propagate until the final time T = 750 a.u. The
maximum of the PMD is clearly shifted towards positive momenta along the py direction.
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Figure 5.4: (a) Projection of the PMD in Fig. 5.3(b) onto the py axis, normalized to maximum signal 1. (b) Shift and
rotation angle of the bulk of the PMD.

This can also be seen when projecting the relevant branch of the PMD onto the py axis,
see Fig. 5.4(a). The change in the PMD from the SFA to the TDSE is really a shift, not a
rotation as would be the case for the circular attoclock. To verify this, we calculate a linear
regression px = −apy + b through the main part of the PMD and find a ≈ 0.018. This can be
compared to the shift of the mean value 〈py〉/〈px〉 ≈ 0.150 which is much larger. Converting
the two quantities to angle and repeating the TDSE calculation over a wide range of intensities,
the result shown in Fig. 5.4(b) is obtained. There, it is evident that the shift of the mean
always exceeds the internal rotation by far. This could allow for a simple calibration of the
relative phase of the two-color field (which effectively rotates the whole distribution) in an
experiment. Another benefit of the quasilinear field is the very good agreement of the peak of
the distribution in px direction with the classically expected value Epeak/(2ω) which provides
a way for intensity calibration.

This is shown in Fig. 5.5(b). For comparison, the peak radial momentum for the circular
attoclock is shown in Fig. 5.5(a). There, we have used a two-cycle pulse

A(t) = −
E0

ω
cos
(
ωt

4

)4
(

cos(ωt)
sin(ωt)

)
(5.13)

withω = 0.05695 a.u. corresponding to 800 nm wavelength but otherwise the same parameters
as in the bicircular field. For circular polarization, the maximum is typically found at larger
radii compared to the simple man’s estimate p = E0/ω. This is a known nonadiabatic effect
[259, 260]. To lowest order in the Keldysh parameter, saddle-point SFA predicts an offset from
the simple man’s prediction of ∆p = ω/E0 · Ip/3 (see Eq. (A.37) in Appendix A.2.1) which
agrees reasonably well with the numerical result.

When the initial state carries angular momentum, another offset from the simple man’s
prediction was found for circular polarization in [260]. To observe this offset, we repeat above
calculations for neon and increase the (effective) wavelength to 1600 nm to move more into
the adiabatic regime. Here, the Tong-Lin potential (A.14) is used where we have replaced
the radius r by

√
r2 + α and tuned α ≈ 0.135 a.u. such that the 2p states of the 2D potential



62 CHAPTER 5. ATTOCLOCK WITH BICIRCULAR FIELDS

0 2 4 6 8 10 12 14 16 18
Intensity [1014 W/cm2]

0

1

2

3

4

5
Pe

ak
 ra

di
al

 m
om

en
tu

m
 p

 [a
.u

.]
(a) Neon p +

Neon p
Helium

0 2 4 6 8 10 12 14 16 18
Intensity [1014 W/cm2]

0

1

2

3

4

5

Pe
ak

 m
om

en
tu

m
 p

m
ax

x
 [a

.u
.] (b) Neon p +

Neon p
Helium

Figure 5.5: (a) Radial momentum at the maximum of the PMD (including prefactor p) in the circular attoclock.
(b) Momentum px at the maximum of the PMD in the bicircular attoclock. In both panels, the blue curve shows
the 2D TDSE result for helium and the black dashed curve shows the classical (adiabatic) estimate (E0/ω for the
circularly polarized field and Epeak/(2ω) for the bicircular field). In panel (a), the black dot-dashed curve adds
the first nonadiabatic correction ωIp/(3E0) to the classical estimate. The orange and the green curve show the 2D
TDSE result for neon at 1600 nm (effective) wavelength and initial states carrying angular momentum m = ±1. In
panel (b), the black dashed curves add the adiabatic correction mEpeak/(2Ip) due to the angular momentum to the
classical estimate. In panel (a), the black dot-dashed curves include the adiabatic correction mE0/(2Ip) as well as
the nonadiabatic correctionωIp/(3E0).

reproduce the ionization potential Ip ≈ 0.793 a.u. of neon. Interestingly, this offset is also
visible in the bicircular case, although the field has no sense of rotation at the time of peak
field strength. Indeed, saddle-point SFA predicts that in the adiabatic limit half the angular
momentum of the initial state is found as an initial velocity offset at the tunnel exit.

Ip/Epeak · ∆p = m/2 (5.14)

(see Appendix A.2.3). Again, we find that this prediction agrees reasonably well with the TDSE
result.3

5.4 Attoclock analysis

Similar to the attoclock analysis for the circularly polarized field in the previous Chapter 4,
we wish to interpret the quasilinear field (5.3) as an attoclock and investigate how the time of
peak field strength is related to the most probable ionization time. For the circularly polarized
field, we found that due to geometrical factors the maximum of the ionization rate does not
necessarily correspond to the maximum of the momentum distribution (see Section 4.6). In a
classical picture of the ionization process, the ratio between the two is given by the Jacobian
(4.46) of the deflection function that connects the initial conditions with the final photoelectron
momentum. For the quasilinear field, taking the derivative of the Jacobian at initial velocity

3In [260], the difference in position of the maxima was considered a nonadiabatic effect. There, circular po-
larization was used and momentum was measured in units of A0 = E0/ω. In these units, the offset becomes
∆p/A0 = γmE0/(2Ip)3/2 when expressed via the Keldysh parameter or (∆p/A0 = m/(2K) when expressed via the
multiphoton parameter). In the adiabatic limit γ → 0, only the relative offset goes to zero while an absolute offset
is always produced at the ionization step. Our result is also in conflict with [261] where it was stated that in the
adiabatic limit, the information about the initial direction of the electron’s rotation is lost.
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v = 0 (perpendicular to the instantaneous field direction), we find

∂

∂t
|det D ′(t, v)|

∣∣∣∣
v=0

= E ′(t),
∂

∂v
|det D ′(t, v)|

∣∣∣∣
v=0

= E(t)k(t). (5.15)

The time derivative always vanishes at the time of peak field strength. The derivative with
respect to the velocity vanishes when the curvature of the vector potential is zero. At the time
of peak field strength, this is exactly the case for a counter-rotating bicircular field when the
field-strength ratio is chosen 2 : 1. Thus, the Jacobian is constant to first order in the vicinity
of the peak of the PMD and cannot influence its position. This motivates us to observe the
maximum of the Cartesian PMD directly without further modifications by geometrical factors.
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Figure 5.6: (a) Rotation angles ∆φ of the maxima of the PMD in the circular attoclock including prefactors 1 (orange
curve), p (red curve) and p2 (green curve). (b) Relative shifts ∆py/pmax

x of the maxima of the PMD in the bicircular
attoclock. In both panels, the black lines gives the angles or shifts of time zero according to the saddle-point
condition for the Dyson integrand (4.3). The SFA scales on the second axis give the time that is associated with a
given angle or relative shift according to the SFA saddle-point equation (2.29). Adapted from Fig. 2 in [245].

Fig. 5.6(b) shows the relative shifts ∆py/pmax
x at time zero for the quasilinear field (5.3)

for various intensities while Fig. 5.6(a) shows the corresponding angles ∆φ for the circular
attoclock pulse (5.13). Since there is no ambiguity in defining the offset angle for the quasilinear
field, there is only one curve for the shift of the PMD maxima in panel (b). In both panels, the
gray lines in the background provide the time that one would associate with a given relative
shift or angle according to the SFA saddle-point equation (2.29). For the circular attoclock,
the SFA flow of time dφ/dt = ω is a constant over all intensities leading to equidistant lines.
This is not the case for the bicircular attoclock where the speed of the clock (5.12) depends on
the intensity via the Keldysh parameter γeff. Qualitatively, the curves in Fig. 5.6(a, b) behave
in a similar way with an approximately constant time value at intermediate intensities and a
turn to earlier times at higher intensities. As before (see Chapter 4), this is expected due to
depletion, see also Fig. 5.7.

To compare the influence of depletion on the PMD we, can write a simple model where the
total instantaneous ionization rateW(t) is written as

W(t) = −Ṗ(t) = Γ(t)P(t). (5.16)

Here, P(t) is the population at time t and Γ(t) is the rate in absence of depletion. The maximum
is found where

0 = Ẇ(t) = −P̈(t) = Γ̇(t)P(t) + Γ(t)Ṗ(t)
(5.16)
= Γ̇(t)P(t) − Γ(t)2P(t) ⇔ Γ̇(t) = Γ(t)2 (5.17)
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Figure 5.7: Ground-state population after the end of the pulse (blue curve) and ionization yield (orange curve). (a)
Circular attoclock. (b) Bicircular attoclock.

Suppose the maximum in the absence of depletion is at t0, i.e. Γ̇(t0) = 0, then we can solve
(5.17) approximately via

Γ̇(t0 + ∆t) − Γ(t0 + ∆t)
2 = Γ̈(t0)∆t− Γ(t0)

2 + O(∆t2), (5.18)

so there is a shift to earlier times given by

∆t ≈ Γ(t0)
2

Γ̈(t0)
= −Γ(t0)σ

2 (5.19)

Here, σ2 = −Γ(t0)/Γ̈(t0) measures the width of the ionization burst. That is, depletion has a
negligible effect on an attoclock measurement when (i) the instantaneous ionization rate Γ(t0)

is small; (ii) the width of contributing times σ is small, i.e. the field has a sharp maximum. At
this point, the circular and bicircular attoclock behave very differently. At a given intensity, the
peak field strength is stronger in the bicircular attoclock by a factor of 3/

√
5 ≈ 1.342 leading

to a higher instantaneous rate. The width is more complicated to compare because in the
circular attoclock it is determined by the field envelope. Ideally, if the circular attoclock is to
be used to investigate ionization dynamics in circular polarization, the ellipticity should be as
small as possible. On the contrary, this increases σ such that depletion effects become strong.
In the bicircular attoclock, the shape of the electric field around the maximum is an inherent
property of the bicircular field. At the same peak field strength and same (effective) frequency,
the bicircular field decreases faster around the maximum compared to elliptical polarization
for any ellipticity larger than zero. In this sense, depletion is expected to affect the bicircular
attoclock less.

To investigate how the observed shifts in the PMDs relate to the ionization time, we use the
trajectory-free method developed in Chapter 4. Varying the momentum in the py direction at
at fixed pmax

x and solving the saddle-point equation (4.3) for every such momentum, we obtain
the time-to-momentum mapping required to interpret the attoclock momentum distribution.4

For the central intensity (E0 = 0.1 a.u.), this mapping is shown in Fig. 5.8(a). We ob-
serve that the slope of the time-momentum curve is in good agreement with the quantum-
orbit model which was used to calibrate the clock in Eq. (5.12) and in significant disagreement

4In the following, we propagate only until the final time T = 300 a.u. Since the main branch of the PMD origi-
nates from times around t = 0 and the photoelectron energies are rather large, the final time is sufficient for those
photoelectrons to reach the absorbing boundary of the simulation volume.
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Figure 5.8: (a) Time-to-momentum mapping on a slice through the maximum of the PMD (see Fig. 5.3) along the
px direction at E0 = 0.1. The blue solid curve gives the real part of the stationary points of the Dyson integrand
according to Eq. (4.3). The red solid curve gives the corresponding times when the potential is neglected in the
time evolution after the interaction time. The black dashed curve is obtained as the solution of the SFA saddle-
point equation (2.29) and the gray dashed curve as the solution of the same equation with Ip → 0 (simple man’s
model SMM). (b) Difference of the momenta in the py direction assigned to a given ionization time between the
full evaluation of the saddle-point equation (blue curve in panel (a)) and the potential-free case (red curve in panel
(a)).

with the simple man’s model, reflecting how the mapping is changed due to the nonvanishing
parallel exit velocities. This was already visible in the ionization-time retrieval for truly linear
polarization in Chapter 3. (Interestingly, the time-to-momentum mapping derived from (4.3)
in the potential-free case is not exactly equal to the one derived from the quantum-orbit model.
This is because the former also incorporates the SFA matrix element in the saddle-point equa-
tion). For a given ionization time, there is a momentum shift ∆py towards higher momenta
compared to the potential-free case, see also Fig. 5.8(b). This shift gets larger for later ion-
ization times which is plausible because the effect of the Coulomb potential on the outgoing
photoelectron is smaller when the peak of the electric field is yet to come.
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Figure 5.9: Ionization time in the bicircular attoclock (squares) and in the circular attoclock (circles). The black
curves give the trajectory-free ionization time according to (4.3) where for the momentum we have used the max-
imum of the PMD in Cartesian coordinates (prefactor 1) in the bicircular attoclock and in cylindrical coordinates
(prefactor p) in the circular attoclock. The colored curves give the Coulomb-free ionization time according to the
SFA saddle-point equation (2.29). Adapted from Fig. 3 in [245].

In Fig. 5.6(b), the momentum shift corresponding to time zero is compared to the attoclock
shift of the momentum distribution for various intensities. Similarly, varying the angle at
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constant radial momentum we find the offset angle that correspond to time zero in the circular
attoclock. This is shown in Fig. 5.6(a). Alternatively, we solve the saddle-point equation (4.3)
with p at the maximum to find the dominant ionization time directly. This is shown in Fig.
5.9. As expected, the retrieved times resemble closely the difference between the curves of
maximum signal and the curves of time zero on the SFA time scale in Fig. 5.6. We find that for
small intensities the ionization time for the maxima is close to zero. For higher intensities, the
quasilinear case shows a delay of more than 10 attoseconds that is not present in the circular
case.

5.5 Saddle-point approximation in the Dyson integral

To what extend stationary points in the Dyson integral can be interpreted as ionization times
depends on how well the ionization amplitude can be described with knowledge of the inte-
grand in the vicinity of the stationary points, i.e. it depends on the applicability of the saddle-
point approximation. While in Section (4.2) we found that the saddle-point approximation can
give good results when the strong-field approximation is employed, the same question has not
been answered when the potential is taken into account.

Similar to the previous section, we vary the momentum along the py direction to obtain
the time-momentum relation, but go one step further and evaluate the Dyson integrand (4.2)
and its first and second derivative along the way. This allows us to calculate the contribution
of the respective stationary point to the photoelectron momentum distribution in saddle-point
approximation using (4.17).
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Figure 5.10: Saddle-point approximation of the Dyson integral in the bicircular attoclock at E0 = 0.1 a.u. (a) Blue
curve, slice through the photoelectron momentum distribution from Fig. 5.3(b) in py direction through the max-
imum, normalized to maximum signal 1. Green curve, PMD evaluated on the same line by applying the saddle-
point approximation according to (4.17), multiplied with the same normalization constant. The maxima of the two
curves are highlighted with gray dashed lines. (b) Value of the second derivative S̈(p, ts) in units of the SFA value

S̈SFA =
√

2Ip Epeak

√
1 + γ2

eff for linear polarization at peak field strength based on the action (2.24). Panel (a) is
adapted from Fig. 1 in [245].

The result for E0 = 0.1 a.u. is shown in Fig. 5.10(a) in comparison with a slice through
the maximum of the PMD taken directly from the solution of the TDSE (see Fig. 5.3(b)). We
observe reasonable agreement in the vicinity of the maximum and very good agreement for
negative py momenta, i.e. those momenta that correspond to ionization times before the time
of peak field strength. Interestingly, the position of the maximum of the distribution obtained
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in saddle-point approximation shows an even larger momentum shift compared to the one
obtained directly from the TDSE. This can be attributed to the prefactor in Eq. (4.17) that gets
larger for later ionization times (see Fig. 5.10(b)). Indeed, when the prefactor is neglected
in the saddle-point approximation, the position of the maximum agrees with the momentum
shift from time zero.
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Figure 5.11: Attoclock shift of the momentum distribution in saddle-point approximation (4.17) (green curve) and
in saddle-point approximation neglecting the prefactor (brown curve). For reference, the curves from Fig. 5.6 are
reprinted as gray lines in the background.

This is shown in Fig. 5.11 where we have calculated the attoclock shift of the momentum
distribution in saddle-point approximation for many intensities, both with and without the
prefactor. Going to smaller intensities where no ionization-time delay was found, the position
of the maximum is not changed by the prefactor and agrees reasonably well with the shifted
maximum of the PMD.

To get a better understanding of the applicability of the saddle-point approximation to
the full Dyson integral (4.1), a closer investigation of the structure of the integrand D(p, t)
is required. Mapping the complete integrand at fixed p in the complex time plane by direct
numerical evaluation is not feasible because one solution of the TDSE is required to evaluate
the integrand for one complex time. Fortunately, we can decrease the computational effort
significantly by using complex analysis.

For a holomorphic function f(z), the function values on a given region U of the complex
plane and all derivatives are determined by its values on the boundary ∂U and can be calcu-
lated5 using Cauchy’s integral formula

f(n)(z) =
n!

2πi

∮
∂U

dw
f(w)

(w− z)n+1 . (5.20)

Alternatively, we can use the fact that with z = x + iy and f = u + iv, u and v are harmonic
functions, i.e. they satisfy Laplace’s equation ∆u = ∆v = 0. Finding the values of f on the
inside of U is therefore equivalent to solving the Dirichlet-type boundary-value problem for u
and v given their values on ∂U.

We assume D(p, t) to be holomorphic in t for a given momentum p, at least in a region
of the complex time plane, and evaluate it at E0 = 0.1 a.u. in a rectangle that extends from
−30 a.u. to 30 a.u. in real time and 0 a.u. to 8 a.u. in complex time. We traverse the boundary of
the rectangle in steps of 0.2 a.u. while solving the TDSE to obtain D(p, t) for t on the boundary,

5Assuming the boundary ∂U consists of piecewise smooth curves [274].
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but for all p at once. If D(p, t) is indeed holomorphic, its integral around the boundary of the
rectangle must vanish. In other words, the integral I along the section on the real line must be
equal to I ′, the sum of the three integrals with imaginary time component. Indeed, evaluating
I and I ′ at the maximum of the momentum distribution (p = pmax) and defining ∆I = I−I ′ we
find |∆I/I| = 7.60×10−5 using the trapezoidal rule (1.60×10−5 using Simpson’s rule), which is
reasonably close to zero. We thus proceed with evaluating the Cauchy integral to find the val-
ues of D(p, t) on the inside of the rectangle. Additionally, we solve Laplace’s equation for the
real and imaginary part on a grid commensurate with the boundary points by discretizing the
Laplace operator with three-point finite differences and using a simple relaxation algorithm.
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Figure 5.12: Dyson integrand D(pmax, t) at E0 = 0.10 a.u. on a slice through the complex-time plane at Im (t) = 4 a.u.
(a) Absolute value (in a.u., log-10 scale). (b) Phase (unwrapped and shifted by an arbitrary value). In both panels,
the blue curve gives the values obtained by direct numerical wave-function propagation, the orange curve those
obtained by evaluating Cauchy’s integral (5.20), and the red curve those obtained by solving the boundary-value
problem for Laplace’s equation.

Fig. 5.12 shows the values of D(pmax, t) obtained in this way on a slice at Im (t) = 4 a.u.
through the rectangle. This is compared with evaluating D(pmax, t) directly by solving the
TDSE numerically in the complex plane on the same slice. Here, we find very good agreement
(with the exception of very late times where the integrand is so small that it is negligible for
the integral anyway).

Fig. 5.13 shows the absolute value, phase and logarithmic derivative of D(pmax, t) on the
inside of the rectangle as calculated by solving Laplace’s equation. The logarithmic deriva-
tive in panel (c) reveals the position of the main stationary point S1 in good agreement with
the previous calculation relying on a direct evaluation of the integrand (see Fig. 5.9). From
the stationary point, we follow the contour of steepest descent (white line). From panel (a),
it is evident that towards positive tr the integrand is decreasing rapidly, as is required for a
successful application of the saddle-point approximation. Towards negative tr, however, the
steepest descent contour ends in a zero Z1 of the integrand (a pole of the logarithmic deriva-
tive). From this zero, the integration path can be continued via another stationary point S2 to
end up in yet another zero Z2, that is connected via a third stationary point S3 to a zero Z3 that
marks the electric field minimum before the main peak of the field.

For comparison, the structure of the Dyson integrand in SFA is shown in Fig. 5.14. There,
the signal shows forward-backward symmetry in time and features only one relevant station-
ary point as in Section 4.2.6

6The difference to the previous calculation, apart from the species and the field shape, is that in Section 4.2, the
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Figure 5.13: Complete mapping of the Dyson integrand D(pmax, t) at E0 = 0.10 a.u. in a region of the complex time
plane, calculated by solving the boundary-value problem for the Laplace equation in the real and imaginary part
of D. (a) Absolute value |D| of the integrand (in a.u., log-10 scale). (b) Phase arg(D) of the integrand (arb. shifted).
(c) Absolute value of the logarithmic derivative |∂tD/D| (in a.u., log-10 scale). (d) Magnitude of the electric field
(normalized to maximum value 1). In panels (a), (b), and (c), the white line moves through stationary points in the
direction of steepest descent, i.e. at constant phase. These stationary points are marked as S1, S2, and S3 in panel
(c). Segments of the contour end in zeros marked as Z1, Z2, and Z3. The zeros in the upper right corner are artifacts
from the numerical solution of the boundary-value problem.

Going back to the situation where the potential is taken into account, parameterizing the
path by the real time tr and writing the imaginary time on the path as a function ti(tr), the
contribution of the path to the Dyson integral becomes

− i

∫
dtr (1 + it ′i(tr))D(p, tr + iti(tr)). (5.21)

The integrand (including the line element) along the three branches of the path is shown in
Fig. 5.15(a).

The dominant contribution is picked up in the main branch that corresponds to the previously-
found stationary point S1. However, the two earlier segments also add to the final value of the
integral, but with a different phase which is shown in Fig. 5.15(b).

In Fig. 5.16, we calculate the PMD on a slice through the maximum as in Fig. 5.10, but now
going beyond the saddle-point approximation, integrating the Dyson integrand in complex
time and considering all three branches (red curve) or considering only the last segment (or-
ange curve).7 When considering only the last segment, we find very good agreement with the
signal obtained in saddle-point approximation, implying that the disagreement with the TDSE

expression for the matrix element was approximated by taking only the long-range behavior of the wave function
into account. This is not the case here.

7Since the integral is path independent, we have evaluated it numerically along a straight line that starts in a
zero Z1 or Z3 and ends in the upper right corner of the rectangle where the integrand is vanishingly small.
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Figure 5.14: Mapping of the Dyson integrand as in Fig. 5.13 when employing the strong-field approximation, i.e.
neglecting the potential V in time-propagation after the interaction time. Since there is no attoclock shift of the
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as in Fig. 5.13.
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Figure 5.15: Absolute value (a) and phase (b) of the Dyson integrand (5.21) at p = pmax and E0 = 0.10 a.u. on the
steepest descent contour (white line in Fig. 5.13).

is not due to a failure of the SPA to describe the integrand in the vicinity of the saddle-point.
Instead, the disagreement can be attributed to neglecting the earlier contributions from the
main cycle of the field. Taking them into account leads to almost perfect agreement with the
TDSE result. The earlier contributions reflect a fundamental asymmetry present in the Dyson
integral when the potential is taken into account. An interaction with the electric field at earlier
times does not necessarily lead to immediate ionization, but it can “prepare” later ionization
and thus contribute to some momentum, that would otherwise be attributed only to a later
time. This is different from the strong-field approximation where an interaction with the field
always leads to ionization.

Going one step further, it is clear that when the potential is taken into account, even previ-
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Figure 5.16: (a) Various approximations of the PMD at E0 = 0.1 a.u. Blue curve, slice through the TDSE photo-
electron momentum distribution in py direction through the maximum, normalized to maximum signal 1. Green
curve, PMD evaluated on the same line by applying the saddle-point approximation according to (4.17) as in Fig.
5.10, but with the integrand evaluated using Cauchy’s formula. Orange curve, numerical evaluation of the integral
of the last segment of the steepest-descent contour (white line in Fig. 5.13). Red curve, numerical evaluation of
all three segments. (b) Momentum distribution as in Fig. 5.3(a). The orange dashed line indicates the slice along
which the PMD is evaluated in panel (a).

ous cycles of the electric field cannot be neglected if the photoelectron momentum distribution
is to be reproduced including its phase, because the Stark shift in previous cycles leads to a de-
viation of the phase of the bound state from the field-free approximation. Also, if depletion is
important, contributions of previous cycles must cancel out contributions from the main cycle
so the total amplitude can decrease accordingly. In our case, the ionization yield is rather small
(about 0.84 percent) so the absolute value of the PMD can be reproduced well by considering
only the main cycle of the field.
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Figure 5.17: Mapping of the Dyson integrand as in Fig. 5.13 but for the circularly polarized field (5.13) at the same
peak field strength and the maximum of the momentum distribution.
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Figure 5.18: (a) Approximations on a slice in px direction through the maximum of the PMD in circular polarization.
Blue curve, slice through the TDSE photoelectron momentum distribution in py direction through the maximum,
normalized to maximum signal 1. Green curve, PMD evaluated on the same line by applying the saddle-point
approximation according to (4.17). Orange curve, numerical evaluation of the integral on the steepest-descent
contour (white line in Fig. 5.17). (b) PMD for the same peak field strength as in the bicircular case. The orange line
indicates the slice along which the PMD is evaluated in panel (a).

Fig. 5.17 shows the integrand for circular polarization where we have chosen the same peak
field strength as in the bicircular case. Around the main stationary point, the structure is not
qualitatively different to the quasilinear case with the steepest descent contour ending in a zero
of the integrand. Attempting to approximate the PMD using the saddle-point method, we also
find a similar behavior. The contribution to the integral due to the main stationary point can
be well approximated with the saddle-point method, but considering solely this contribution
leads to a slight overestimation of the signal.

5.6 Classical backpropagation

For the conventional attoclock, much of the discussion about how to interpret the momentum
distribution is rooted in the fact that a variety of different methods are used to obtain the
time-to-momentum mapping. While in the previous section we have used the concept of the
Dyson integral representation, in the next two sections we are going to apply methods to the
quasilinear field that are already established for the conventional attoclock.

One of these methods is the classical backpropagation. [102–104]. Classical backpropaga-
tion starts from the ionized wave packet ψ(x,y) after the end of the laser pulse. The wave
function defines a local momentum by its phase gradient

v(x,y) = ∇ argψ(x,y) = Im
(
∇ψ(x,y)
ψ(x,y)

)
. (5.22)

Assuming the wave packet is located sufficiently far from the ion such that the potential can be
approximated by a Coulomb potential, the local velocity can be mapped to final momentum
(px,py) via Kepler’s formula [95, 149]

(px,py) = DF(x,y) = p
p (L× a) − a

1 + p2L2 ,
p2

2
=
v2

2
−

1
r

. (5.23)

Here, L = r × v and a = v × L − r/r is the Runge-Lenz vector. For fixed ψ, we call DF(x,y)
the forward deflection function. A backwards deflection function (t, v) = DB(x,y) leading to
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the space of initial condition is defined by propagating classical trajectories starting at position
(x,y) with velocity v(x,y) backwards in time in the presence of the potential and the laser field
until a tunneling criterion is met. As in previous works [102, 103], we use the velocity criterion
that stops backpropagation at the ionization time t when there is a zero of the velocity in
instantaneous field direction.8 The initial velocity v is then taken as the remaining component
perpendicular to the instantaneous field direction.

Knowledge of the backwards deflection function allows us to define the instantaneous ion-
ization rate

W(t, v) =
|ψ(x,y)|2

|det D ′B(x,y)|
, (5.24)

while the forward deflection function can be used to calculate the momentum distribution

|M(px,py)|2 =
|ψ(x,y)|2

|det D ′F(x,y)|
. (5.25)

Eliminating the wave function |ψ(x,y)|2, we find the familiar expression (4.44) where now we
have access to the full Jacobian which can be calculated as

|det D ′(t, v)| = |(DF ◦D−1
B ) ′(t, v)| =

|D ′F(x,y)|
|D ′B(x,y)|

. (5.26)

We solve the 2D TDSE with the split-operator method on a Cartesian grid of size 600× 600 a.u.
and 4096 points in each dimension and time step 0.004 a.u. To avoid oscillations in the phase
of the electron wave packet that impede a clear definition of the local momentum v (especially
at low intensities), the initial state has to be extremely stable under time evolution. Therefore,
we do not use the exact ground state of the (grid) Hamiltonian but instead an eigenstate of
the time-evolution operator at finite time step as explained in Appendix A.1.2. For a practical
calculation, the wave packet does not really have to be propagated to the end of the laser pulse.
Instead, starting from position (x,y) and local momentum v(x,y) one can solve Newton’s
equations of motion forward in time in the presence of the laser field until the pulse is over
before going to the Kepler orbit. For the bicircular attoclock pulse, we choose the final time
T = 78.016 a.u. (before the end of the pulse but after the main ionization burst located at time
zero) while for the circular attoclock pulse we choose T = 110.332 a.u. (after the end of the
pulse).

Results for the intermediate intensity (E0 = 0.10 a.u.) for the circular attoclock setup are
shown in Fig. 5.19. Knowledge of both mappings DF from position to momentum and DB
from position to initial conditions allows us to relate a momentum (px,py) with a given set
of initial conditions (t, v) and vice versa. This is shown using contour lines in Fig. 5.19. The
contour lines in the space of initial conditions (a) show fixed radial momentum and emission
angle of the photoelectron while the contour lines in the momentum distribution (c) show fixed
ionization time and initial velocity. The effect of the Jacobian (5.26) can be seen as a change
in the area formed by the contour lines (where in (a) a fixed size would indicate a Jacobian
|det D ′| ∝ p since the contour lines map to polar coordinates).

The corresponding result for the bicircular attoclock is shown in Fig. 5.20. The scaling of the
t and v axes in (a) is chosen exactly as 1/Epeak ≈ 7.45 a.u. such that in the simple man’s model
and in the vicinity of the maximum the contour lines would be squares of equal size. There,

8See also [104] where other possible criteria have been explored.
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Figure 5.19: Classical backpropagation of an electron wave packet in the circular attoclock at E0 = 0.1 a.u. (a)
Distribution of backpropagated trajectories in the space of initial conditions. (b) Electron wave packet at the end
of the laser pulse. (c) Photoelectron momentum distribution calculated via forward propagation of the EWP in (b).
All distributions are normalized to maximum signal 1. In (b) a mask has been used to remove the contribution
from the bound state and isolate the wave packet. The horizontal contour lines in (a) indicate a fixed angle in the
PMD with a spacing of 20◦ and the red line located at zero angle. The vertical contour lines indicate fixed radial
momentum in (c) with spacing 0.2 a.u. and the red line at E0/ω ≈ 1.76 a.u. Radial contour lines in (c) show constant
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Figure 5.20: Classical backpropagation of an electron wave packet in the bicircular attoclock at E0 = 0.1 a.u. (a)
Distribution of initial conditions. (b) Electron wave packet during the pulse. (c) Photoelectron momentum dis-
tribution. All distributions are normalized to maximum signal 1. In (b) a mask has been used to remove the
contribution from the bound state and isolate the wave packet. Horizontal contour lines in (a) show a fixed value
of the final py momentum with spacing 0.2 a.u. the red line at zero momentum. Vertical contour lines show fixed
px momentum with spacing 0.2 a.u. and the red line at −Ax(0) ≈ 1.67 a.u. Vertical contour lines in (c) show fixed
initial velocity with spacing 0.2 a.u. and the red line at zero velocity. Horizontal contour lines show constant time
of ionization with spacing 0.2/Epeak ≈ 1.49 a.u. and the red line at time zero.

the speed of the clock in the vicinity of the maximum is assumed to be dpy/dt = Epeak ≈
0.134 a.u. and initial velocity maps directly to final momentum, dpx/dv = 1 a.u. In (c), the
contour lines are chosen by the same argument such that in the simple man’s model they
would form squares of equal size around the maximum. Using classical backpropagation to
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evaluate the Jacobian at the maximum of the PMD we find∂px∂t ∂px
∂v

∂py
∂t

∂py
∂v

 ≈
−0.001 a.u. 0.896 a.u.

0.136 a.u. −0.007 a.u.

 . (5.27)

The small values on the diagonal imply that the two coordinates are well separated. The fact
that ∂px/∂v < 1 a.u. means that there is some focusing in velocity coordinate in the sense that
the momentum distribution gets narrower compared to the distribution of initial conditions.
In the time coordinate we find good agreement with the value from the simple man’s model

rather than the non-adiabatic SFA expression (5.11) which gives dpy/dt ≈ Epeak

√
1 + γ2

eff ≈
0.154 a.u. for the effective Keldysh parameter γeff ≈ 0.571 has to be taken into account. This is
not surprising. Just like the simple man’s model, classical backpropagation relies on vanishing
tunnel-exit velocities in the instantaneous field direction whereas SFA includes such velocities.
Writing this velocity as vy(t) = py(t) +Ay(t), we find from (5.11) that

vy(0) = 0,
dvy

dt
≈ Epeak

(√
1 + γ2

eff − 1
)

, (5.28)

so in the the ascending quarter cycle the velocity is is parallel to the acceleration of the photo-
electron whereas in the descending quarter cycle the velocity is antiparallel to the acceleration.
In the first case (lower part of the PMD) a backpropagating electron will reach zero velocity
after it reaches the SFA velocity, leading to an earlier ionization time for a given momentum.
In the second case (upper part of the PMD) the electron will reach zero velocity before turning
around and reaching the SFA velocity, leading to a later ionization time. Thus there is a larger
time range required to produce the entire PMD in classical backpropagation compared to SFA.
This could be responsible for some of the artifacts in Fig. 5.20. In circular polarization on the
other hand, the SFA predicts vanishing initial velocities in the instantaneous field direction and
it was found that the distribution of initial conditions from backpropagation agrees very well
with the SFA [103, 104]. The incompatibility of SFA initial conditions with the assumption of
vanishing initial velocity when using backpropagation for (quasi) linear polarization could be
mitigated by choosing a different tunnel-exit criterion. Some progress towards such a “nona-
diabatic velocity criterion” was already made in [104]. However, we stick to the commonly
used zero-velocity criterion here.

Fig. 5.21 shows the relative shifts and offset angles of the maxima obtained by forward
propagation of the electron wave packet which are found to be in very good agreement with
earlier results from the TDSE (shown in the background). In addition to this, classical back-
propagation allows us to find the maximum of the instantaneous ionization rate W(t, v) and
use the deflection function D(t, v) to find the corresponding momenta and their angles/shifts.
This is also shown in Fig. 5.21. In the circular attoclock, the angles corresponding to maxi-
mum (differential) ionization rate are always smaller compared to the Cartesian angles (and
also smaller than the cylindrical ones). In the bicircular attoclock, we find that there is good
agreement at low intensities whereas at higher intensities the shift corresponding to maximum
rate is somewhat smaller.

To define the time of ionization, classical backpropagation gives us several possibilities. We
can (i) find the initial conditions (t, v) that lead to the maximum of the momentum distribution,

(tion, vion) = D−1
(

arg max
(px,py)

|M(px,py)|2
)

; (5.29)
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Figure 5.21: (a) Rotation angles of the maxima of the PMD in the circular attoclock obtained by forward propagation
of an electron wave packet (red curve) and rotation angles of the momenta D(t, v) that correspond to the maxima
of the instantaneous double-differential ionization rate W(t, v) (brown curve). (b) Relative shifts in the bicircular
attoclock obtained by forward propagation (blue curve) and relative shifts corresponding to the maximum of the
instantaneous ionization rate (brown curve). In both panels, the curves from Fig. 5.6 are reprinted in gray.

(ii) find the maximum of the double-differential distributionW(t, v),

(tion, vion) = arg max
(t,v)

W(t, v); (5.30)

(iii) integrate over the initial velocity to find the most probable ionization time,

tion = arg max
t

∫
dvW(t, v). (5.31)
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Figure 5.22: Ionization time from classical backpropagation. Squares show results for the bicircular attoclock and
circles show results for the circular attoclock. Results are colored in black when obtained according to definition
(5.29), brown when obtained according to definition (5.30) and purple when definition (5.31) is used. Curves from
Fig. 5.9 are shown in gray in the background. Adapted from Fig. 3 in [245].

The results for all three possibilities are shown in Fig. 5.22. Independently of what defini-
tion is used, we find that the ionization time is generally zero for small intensities and nega-
tive for high intensities. Generally, the maximum of the double-differential rate gives the most
negative values, the maximum of the integrated distribution the least negative and the time
corresponding to the maximum of the PMD something in between. However, ionization times
in the bicircular attoclock are always more negative compared to the circular attoclock when
the same definition is used for both.
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Apart from using the bicircular attoclock to mimic linear polarization, which is an experi-
mentally feasible scheme, a half-cycle pulse could also be used, at least theoretically, to inves-
tigate ionization dynamics in linear polarization. This was done for a half-cycle in one dimen-
sion in [275]. There, the PMD was thought of being composed of classical trajectories that start
at a predefined tunnel exit with vanishing velocity. Then, the instantaneous ionization rate
W(t) was obtained such that the distribution of the final momenta of these classical trajecto-
ries matches the PMD. This is actually similar to classical backpropagation but not equivalent.
By imposing an additional constraint (the tunnel exit position) it is possible to reproduce the
PMD but not the intermediate (position-space) wave packet on the way to the detector. Clas-
sical backpropagation drops the constraint on the tunnel-exit position and is able to reproduce
also the intermediate wave packet. The results are still similar. Negative ionization times were
also found in [275] and we have verified that comparably large negative ionization times are
obtained for a half-cycle pulse in 1D when classical backpropagation is used instead.

5.7 Analytical R-matrix theory

Another theoretical method that can be used to obtain a time-to-momentum mapping is analyt-
ical R-matrix theory (introduced in Section 2.5). It was applied to the (conventional) attoclock
setup in [78, 94, 240] and lead to the conclusion that the maximum of the PMD corresponds
well to the time of peak field strength.

Although ARM theory uses trajectories that are not influenced themselves by the atomic
potential, the attoclock rotation of the momentum distribution is present in the theory. This is
the case even if the unperturbed SFA saddle-point ts from (2.29) is used to evaluate the action
(2.42). It can be understood intuitively in terms of complex-step differentiation [276]. For a
function f that is real on the real axis, its derivative can be estimated accurately using

Imf(x+ ih) = f ′(x)h+ O(h3). (5.32)

When the standard integration path from ts down to the real axis tr = Re ts and then to the
final time T is chosen, the Coulomb correction (2.43) in the ARM action (2.42) can be split in an
under-the-barrier and beyond-the-barrier contribution,9

SC1(p, ts) =
∫tr
ts−iκ−2

dt ′ V(rL(t ′; p, ts)), SC2(p, ts) =
∫T
tr

dt ′ V(rL(t ′; p, ts)). (5.33)

In the second part, we split the outgoing electron trajectory into its real and (constant) imagi-
nary part,

ImSC2(p, ts) =
∫T
tr

dt ′ ImV(Re rL(t ′; p, ts) + i Im rL(tr; p, ts)). (5.34)

Note that the imaginary part of the electron trajectory satisfies

Im rL(tr; p, ts) = Im
∫tr
ts

dt (p + A(t))

= ∇p Im

{
−Ip ts +

1
2

∫T
ts

dt (p + A(t))2

}
= ∇p ImSSFA(p, ts).

(5.35)

9It is not always possible to evaluate the Coulomb correction along this path because sometimes there is an
intersection with a branch cut [148, 258]. For the attoclock in the vicinity of the maximum, however, this is usually
not the case.
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Here, we could replace tr by T in the upper limit of the integral because all contributions to
the integral between tr and T are real. In the vicinity of a maximum of the PMD, the gradient
is small. Using complex-step differentiation, we can now relate the potential being evaluated
on a complex trajectory to a force evaluated on a real trajectory:∫T

tr

dt ′ ImV(Re rL(t ′; p, ts) + i Im rL(tr; p, ts))

≈∇p ImSSFA(p, ts) ·
∫T
tr

dt ′∇V(Re rL(t ′; p, ts))︸ ︷︷ ︸
−∆p

.
(5.36)

Here, the integral encodes the accumulated classical force ∆p acting on the electron on the
outgoing trajectory. Now the complete action can be written as

ImSARM(p, ts) ≈ ImSSFA(p, ts) − ∆p ·∇p ImSSFA(p, ts) + ImSC1(p, ts)

≈ ImSSFA(p − ∆p, ts) + ImSC1(p, ts)
(5.37)

and taking the under-the-barrier contribution aside, the beyond-the-barrier contribution of
the Coulomb-correction leads to a shift of the maximum of the PMD by ∆p. Since for the
attoclock the under-the-barrier contribution is forward-backward symmetric in time, it does
not by itself lead to an attoclock offset angle (although it influences the observed angle when
the beyond-the-barrier contribution is taken into account). It follows that when the potential is
zero (sufficiently small) already when the under-the-barrier motion is completed, the attoclock
offset angle is zero. This is usually the case for a short-range potential where zero offset is
nicely confirmed by the TDSE [78, 226, 277].

To define the ionization time at the maximum of the PMD, note that the modification of the
action (2.42) by the Coulomb correction suggests a modification of the saddle point time ts.
This was used by Torlina et al. [78, 147] to define the ionization time for a given momentum p
within ARM theory as a stationary point of the boundary-matched action,

∂

∂t
SSFA(p, t)

∣∣∣∣
t=ts

+
∂

∂t
SC(p, t)

∣∣∣∣
t=ts

= 0. (5.38)

Arguing that the Coulomb correction is small, they used this equation to derive a first-order
correction to the SFA saddle point as ts = t

(0)
s + ∆tC with

∆tC = −
∂tSC(p, t(0)

s )

∂2
tSSFA(p, t(0)

s )
. (5.39)

This expression was then used to find the time-to-momentum mapping for the attoclock. In
this section, we apply ARM theory to the bicircular attoclock. Potential, pulse shape, envelope
and parameters are chosen exactly as for the TDSE calculations in Section 5.3.

First, we obtain the momentum distribution (2.41) within ARM theory and its maximum for
every intensity.10 The relative shift of this maximum in py direction is shown in Fig. 5.23(b).

10The PMD has been evaluated in the way presented by Pisanty [148], i.e. including the prefactor ∝ 1/
√
S̈(p, ts)

and using the unperturbed saddle-point t(0)
s in the action (2.42), noting that a first-order correction to the saddle

point can change the result only to second order. This is slightly different from the version used by Torlina et al. in
[78, 147] where the first-order corrected saddle point (5.39) was used to evaluate the action but the prefactor was
neglected. There, it was argued that the prefactor has no angular dependence and cannot influence angle-resolved
spectra. However, already from Section 4.5 we know that multiplying the PMD with radial factors does influence
the angle at which the maximum is found.
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Figure 5.23: (a) Rotation angles of the PMD maxima (including prefactor p) in the circular attoclock from ARM
theory (red curve) and rotation angles of the momenta that correspond to time zero (black curves). (b) Relative
shifts in the bicircular attoclock from ARM theory (blue curve) and relative shifts that correspond to time zero
(black curves). In both panels, the dashed black line gives the first-order approximation (5.39) and the solid black
line gives the exact solution of the saddle-point equation (5.38). The curves from Fig. 5.6, showing the TDSE result,
are reprinted in gray.

For comparison, Fig. 5.23(a) shows the corresponding offset angle in the circular attoclock
(5.13). Second, we find the relative shift (or the rotation angle in the circular attoclock) that
according to (5.38) is attributed to time zero. More precisely, for the bicircular attoclock, we
choose the classically expected value px = Epeak/(2ω) and search py such that Re ts = 0. For
the circular attoclock, the radial momentum p is chosen as the maximum of the PMD obtained
for a cw field from saddle-point SFA neglecting the prefactor [260] and the angle is tuned such
that Re ts = 0. We evaluate both the first-order correction to the SFA saddle-point time (5.39) as
well as the full solution according to the definition (5.38). We find that the relative shift derived
from the full solution is actually significantly smaller compared to both the PMD maximum
and the shift derived from the first-order correction to the SFA saddle-point. This is also the
case for the rotation angle in the circular attoclock.

To understand the origin of this discrepancy, one has to go back to the expression for the
ionization amplitude (2.35) from which ARM theory is derived. Inserting the eikonal-Volkov
propagator (2.36) and collecting all terms in the exponential, the action can be written as (5.50)
where r(φ) = a(cos(φ), sin(φ)) is restricted to points on the boundary that separates the inner
and the outer region at radius a in the tunneling barrier [93]. With the action parameterized
by t and φ, we solve the saddle-point equations

∂

∂t
S(p, t, r(φa))

∣∣∣∣
t=ta

= 0,
∂

∂φ
S(p, ta, r(φ))

∣∣∣∣
φ=φa

= 0 (5.40)

numerically for different matching radii a and obtain the momenta p for which Re ta = 0.
For the circular attoclock, the rotation angle that corresponds to time zero is shown in Fig.

5.24(a). The angle shows a strong dependence on the matching radius a such that no physical
angle can be defined. However, introducing a perturbation parameterα and replacing V → αV

in (2.39), we can construct a first-order approximation

t
(1)
a = t

(0)
a + 1 · ∂ta(α)

∂α

∣∣∣∣
α=0

(5.41)

which is shown to be independent of the matching radius in Fig. 5.24(b) and allows for the
definition of a physical rotation angle. This result is not entirely surprising since the Eikonal-
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Figure 5.24: Boundary-dependence of the angle that corresponds to time zero in the circular attoclock at E0 =

0.10 a.u. (a) Exact solution of (5.40) with the action (2.39). (b) First-order approximation according to (5.41).

Volkov Ansatz takes the potential into account only approximately via a linear term in the
action.

Going back to the action (2.42) from which the saddle points were obtained originally, we
note that the lower limit in the Coulomb integral ts − iκ−2 is obtained only after matching the
Coulomb phase in the action to the asymptotic tail of the bound-state wave function. Since
the boundary-matching effectively introduces a choice of the matching radius a0 = 1/κ (see
Appendix A.4.2), an exact solution of the saddle-point equation produces a value at the lower
end of the curve in Fig. 5.24(a) which is too small. Thus one can say that when solving the
saddle-point equation (5.38), it is not true that a first-order solution can be used because the
influence of the potential is small. Rather, the consistent first-order solution must be used
because it is the only way to extract a meaningful quantity from the boundary-matched action.
Still, the strong dependence of the rotation angle in Fig. 5.24(a) raises the question about how
good the assumption of ARM theory about the linear correction to the action being sufficient
in the tunneling region really is. Moreover, we note that even the first-order solution in Fig.
5.23 gives angles and shifts that are smaller than the angles and shifts of the PMD maxima.

It is possible to derive a quadratic correction to the action. We start from the semiclassical
propagator (2.48) which gives an action

SSC(p, T ; r, t) = ṙN(t) · r +
∫T
t

dt ′
{

1
2

ṙN(t ′)2 + V(rN(t ′)) − rN(t ′) ·∇V(rN(t ′))
}

(5.42)

evaluated along the Newtonian trajectory

r̈N(t ′) = −∇V(rN(t ′)) − E(t ′), rN(t) = r, ṙN(T) = p (5.43)

with initial position r and final momentum p. Integrating once and assuming the pulse is over
at time T such that A(T) = 0, the electron velocity becomes

ṙN(t ′) = p + A(t ′) +

∫T
t ′
dt ′′∇V(rN(t ′′)). (5.44)

Using this expression, the action can be rewritten as (see Appendix A.4.4)

SSC(p, T ; r, t) = (p + A(t)) · r +
∫T
t

dt ′
1
2
(p + A(t ′))2

+

∫T
t

dt ′ V(rN(t ′)) −
1
2

∫T
t

dt ′

(∫T
t ′
dt ′′∇V(rN(t ′′))

)2

.

(5.45)
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We want to include only terms up to quadratic order in the potential V . Since the last term in
the action is already squared, we can replace the full trajectory rN(t ′) with the Coulomb-free
trajectory

r0(t
′) = r +

∫t ′
t

dt ′′ (p + A(t ′′)). (5.46)

For the linear term, we have to take the first-order correction of the trajectory due to the po-
tential into account. Writing

rN(t ′) = r0(t
′) +

∫t ′
t

dt ′′
∫T
t ′′
dt ′′′∇V(rN(t ′′′)) (5.47)

we find up to quadratic order∫T
t

dt ′ V(rN(t ′)) =
∫T
t

dt ′ V(r0(t
′))

+

∫T
t

dt ′∇V(r0(t
′)) ·
∫t ′
t

dt ′′
∫T
t ′′
dt ′′′∇V(r0(t

′′′)).

(5.48)

Using partial integration, this can be expressed as∫T
t

dt ′ V(rN(t ′)) =
∫T
t

dt ′ V(r0(t
′))

+

∫T
t

dt ′

(∫T
t ′
dt ′′∇V(r0(t

′′))

)2

−

∫T
t ′
dt ′′∇V(r0(t

′′)) ·
∫t ′
t

dt ′′
∫T
t ′′
dt ′′′∇V(r0(t

′′′))

∣∣∣∣∣
T

t

.

(5.49)

The boundary term vanishes while the term in the second line adds to the last term in (5.45).
Thus, the action including quadratic terms in V becomes

SSC(p, T ; r, t) = (p + A(t)) · r +
∫T
t

dt ′
1
2
(p + A(t ′))2

+

∫T
t

dt ′ V(r0(t
′)) +

1
2

∫T
t

dt ′

(∫T
t ′
dt ′′∇V(r0(t

′′))

)2

.

(5.50)

When the phase evolution of the bound state is also incorporated into the action, the result is
equivalent to the action used in ARM theory (2.39), the only difference being a new quadratic
term that can be evaluated along the Coulomb-free electron trajectory.

Including this term in the action and solving the saddle-point equation (5.40), we find that
the attoclock rotation angle corresponding to time zero still depends on the matching radius,
see Fig. 5.25(a). However, constructing a second-order estimate,

t
(2)
a = t

(0)
a + 1 · ∂ta(α)

∂α

∣∣∣∣
α=0

+ 12 · 1
2
∂2ta(α)

∂α2

∣∣∣∣
α=0

, (5.51)

we find independence of the boundary and a well-defined rotation angle that is larger than the
first-order estimate (5.51) that takes the potential into account only via the linear term, see Fig.
5.25(b).
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Figure 5.25: Boundary-dependence of the angle that corresponds to time zero in the circular attoclock at E0 =

0.10 a.u. (a) Exact solution of (5.40) with the action (5.50) that includes the potential in a linear and a quadratic
term. The gray line is reprinted from Fig. 5.24(a) and gives the exact solution to the same equation but with the
action (2.39) that includes the potential only via the linear term. (b) Second-order approximation according to
(5.51). The gray line is reprinted form Fig. 5.24(b) and gives the first-order approximation according to (5.41).
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Figure 5.26: (a) Rotation angles of the momenta that correspond to time zero in the circular attoclock. (b) Relative
shifts in the bicircular attoclock. In both panels, the dashed line gives the first-order estimate (5.41) using the linear
term in the action while the dot-dashed line shows the second-order estimate (5.51) employing also the quadratic
term in the action. The curves from Fig. 5.6 are reprinted in gray.

The boundary-independent first- and second-order estimates are shown in Fig. 5.26 for
all intensities. We find that the first-order version consistently reproduces the saddle points
calculated previously using the boundary-matched action (Fig. 5.23), while the second-order
estimate gives larger angles and shifts that give somewhat better agreement with the angles
and shifts obtained directly from the TDSE.

5.8 Eikonal approximation in the Dyson integral

Instead of applying the eikonal-Volkov approximation to the ARM expression for the ioniza-
tion amplitude (2.35), it is also possible to apply it directly to the Dyson expression (4.1) as was
demonstrated by Klaiber for a half-cycle pulse and a 1D model atom [278].

Approximating the bound-state wave function by its (2D) asymptote ψ0(r) ∝ rν−1/2 e−κr

with ν = Z/κ, the ionization amplitude (in length gauge) becomes

M(p) ∝ −i

∫T
0
dt

∫
d2r e−iS(p,t,r) (E(t) · r) rν−1/2 e−κr. (5.52)
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Here, the action S is the same as in Eq. (2.39), containing the kinetic part from standard SFA,
the phase evolution of the bound state, and the Coulomb correction as in ARM theory. Here,
the quadratic term from (5.50) that we derived from the semiclassical propagator (2.48) can
also be included.11 The entire integrand is then written as an exponential

M(p) ∝ −i

∫T
0
dt

∫
d2r e−iStot(p,t,r) (5.53)

with
Stot(p, t, r) = S(p, t, r) + i log(E(t) · r) + i(ν− 1/2) log r− iκr. (5.54)

The ionization time can now be defined as stationary point of the total action via

∂

∂t
Stot(p, t, rs)

∣∣∣∣
t=ts

= 0, ∇r Stot(p, ts, r)|r=rs = 0. (5.55)

Compared to ARM theory, this is much closer to our trajectory-free definition (4.3) in the sense
that not only the action, but also the non-exponential part is considered in the saddle-point
equation. The main difference to our exact calculation, apart from using the eikonal-Volkov
approximation and the asymptotic expression for the bound state, is that an additional saddle-
point approximation in the spatial integral is employed.
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Figure 5.27: Rotations angles of momenta corresponding to time zero in the circular attoclock according to (5.55).
(a) Exact solution. (b) Approximate solution. In both panels, the dashed line corresponds to angles obtained from
the action (2.39) including terms linear in V while for the dot-dashed line also the quadratic term (5.50) has been
included.

Again, we solve the saddle-point equations numerically to find the angles that correspond
to Re ts = 0. For the circular attoclock, the result is shown in Fig. 5.27(a) for an exact solution of
(5.55) and in Fig. 5.27(b) using a first or second-order expansion around the potential-free sad-
dle point. Our ability to evaluate an exact solution stems from the fact that instead of choosing
a boundary as in ARM theory and fixing the distance to the core, the additional saddle point
equation for the position coordinate selects an initial position rs within the tunneling barrier
automatically, eliminating the ambiguity due to arbitrary choice of the matching radius. The

11The quadratic term was also found in the 1D study [278] using the eikonal approximation. There, another term
was found that includes the Laplacian of the potential. This term was called a “quantum term” because it is of
order  h0 whereas the quadratic correction also found from the semiclassical propagator is of order 1/ h. For the
Coulomb potential in 3D, the quantum term does not contribute since ∆(1/r) = −δ(r)/r2. In 2D, the term would
contribute but we neglect it in the present study.
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imaginary part of the corresponding saddle-point time ts is somewhere between the Keldysh
time and the real axis, reflecting the reduced distance the electron has to travel in imaginary
time to reach the tunnel exit position compared to boundary-matched ARM theory where it
starts at the origin.

We find that the exact solution in Fig. 5.27(a) is still too small by some extent, while the
approximate solutions in Fig. 5.27(b) are almost indistinguishable from the ARM results in
Fig. 5.26. Both show some disagreement with the trajectory-free ionization times. Thus, we
conclude that the difference is probably not due to a fundamentally different saddle-point
equation, but rather due to the approximations made in the integral. Already in Section 5.4 we
have seen that the structure of stationary points in the complex plane is significantly altered
by the fact that there can be bound-state dynamics after the interaction operator has acted on
the bound state. This is neglected when the eikonal-Volkov approximation is used.

5.9 Conclusion

In this chapter, an in-depth analysis of photoelectron momentum distributions from strong-
field ionization with two types of fields has been provided, a circular laser field and a bicircu-
lar laser field of field-strength ratio 2 : 1 of fundamental to second harmonic (quasilinear field).
The bicircular field approximates linear polarization close to the time of peak field strength
while the shape of the vector potential resembles an attoclock. Absence of intracycle interfer-
ence, rescattering, and geometrical effects lead to a very easy to analyze signal that allows us
to study the region of the momentum distribution that corresponds to ionization close to the
time of peak field strength. The momentum distribution shows an attoclock shift from which
we retrieved the most probable ionization time using the trajectory-free method based on the
Dyson integral presented in Chapter 4. We found that in the quasilinear field the ionization
time can show a small ionization-time delay of approximately 10 attoseconds with respect to
the time of peak field strength that is not present in circular polarization.

The ionization time retrieved from the Dyson integral is similar, but not equivalent to the
one obtained using analytical R-matrix theory. There, ionization time is also defined as a sta-
tionary point of an integral representation of the ionization amplitude, but the ansatz is funda-
mentally different. While the integration variable in the Dyson integral marks the interaction
time with the electric field, the integration variable in ARM theory marks the time of transi-
tion through a boundary. Despite this conceptual difference, the retrieved ionization times be-
have very similarly when the eikonal-Volkov approximation is used instead of a full numerical
evaluation. This is still true when a quadratic correction to the action based on a semiclassical
propagator is employed. The differences emerge when going beyond these approximations.
By evaluating the Dyson integrand in the complex plane numerically, we showed that around
a given ionization time there is a fundamental asymmetry between earlier and later times due
to bound-state dynamics that is not present when the eikonal-Volkov approximation is used.
We believe that this is connected to the fact that the structure of stationary points is altered.
In this context, we note that a weakness of the Dyson expression in terms of physical inter-
pretation is the field-free time evolution of the bound state before the interaction time. When
this does not adequately reflect the true time evolution, it must be compensated by the time
evolution after the interaction time, as the result of the Dyson integral is exact.
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It could be possible to derive a better splitting between free time evolution and interaction
in the Dyson expression that takes the phase-evolution and depletion of the bound state into
account. The stationary points of that expression could lead to an even better definition of
trajectory-free ionization time. Alternatively, it could be possible to evaluate the stationary
points of the R-matrix Ansatz (2.35) fully numerically. This would involve a full solution of the
TDSE in the inner region and circumvent the problem of approximating the true time evolution
by field-free time evolution. However, two challenges would have to be overcome. First,
the wave function in the inner region must be evaluated numerically in complex time. This
involves propagation in the direction of positive imaginary time which is inherently unstable.
Second, the propagator from the R-matrix surface to the final momentum must be evaluated. It
is not obvious how to achieve this efficiently in complex time when the potential is taken into
account nonperturbatively. Additionally – although it is clear that the ionization amplitude is
independent of the boundary radius – it would have to be checked that the ionization times
are, too.12

5.10 Outlook

Coming back to tailored fields in general, we note that the counter-rotating bicircular field of
field-strength ratio 2 : 1 is not all that they have to offer for the attoclock idea. For example, a
tricircular ω − 2ω + 4ω field [279] can be used to approximate a linearly polarized field even
better than the bicircular ω − 2ω field considered in this chapter. Indeed, the electric field
(shown in Fig. 5.28(b)) derived from the vector potential (Fig. 5.28(a))
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Figure 5.28: (a) Vector potential of the “tricircular attoclock” (5.56) at E0 = 0.1 a.u. and 800 nm wavelength (orange
curve). The gray line shows the “bicircular attoclock” (5.3) at the same intensity and the same wavelength. (b)
Electric field strength. The blue curve shows the tricircular field and the gray curve shows the bicircular field. (c)
Vector potential (5.57) for the “variable-speed attoclock” at E0 = 0.1 a.u., 800 nm wavelength and ε = 0.05. The
gray line shows the vector potential for ε = 0. (d) Electric field strength. The blue curve shows the tailored field
and the gray curve shows the circular field.

12That is to say, the real part of the saddle-point time. The imaginary part should depend on the boundary radius
because the electron must traverse real distance with imaginary velocity.

13Around the time of peak field strength, this is one order better than the bicircular field (5.4).
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Another possibility is the “variable-speed attoclock.” It is possible to devise a field shape
where the vector potential lies on a circle but it is traversed with variable angular speed. The
vector potential

A(t) = −
E0

ω

[(
cos(ωt)
sin(ωt)

)
+ ε

(
sin(ωt)
cos(ωt)

)
+ ε

(
− sin(3ωt)

cos(3ωt)

)]
(5.57)

satisfies A(t) = E0/ω + O(ε2) and ∠(Ax(t),Ay(t)) = π +ωt + 2ε cos(2ωt) + O(ε3). Because
of the variable speed, the field strength E(t) = E0 − 4εE0 sin(2ωt) + O(ε2) is time dependent.
First calculations using ARM theory seem to indicate that in this field the ambiguity in the
attoclock offset angle is mitigated. A similar situation can be created noting that close to the
field maximum, generally a pulse envelope leads to a vector potential that is curved stronger
than a circle while a nonzero ellipticity leads to a vector potential that is curved less. At the
right value of the ellipticity, the effect of the pulse envelope can be compensated. For example,
for a two-cycle sin4 envelope, the vector potential

A(t) = −
E0

ω
cos
(
ωt

4

)4
(
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sin(ωt)

√
5/2

)
(5.58)

satisfies A(t) = E0/ω + O(t4), i.e. it lies on a circle in the vicinity of the maximum at t = 0.
More realistically, the envelope is applied to the electric field. For a two-cycle cos2 pulse, the
electric field

E(t) = E0 cos
(
ωt

4

)2
(

cos(ωt)
sin(ωt)

√
3/2

)
(5.59)

leads to A(0) = 2
√

3/3E0/ω ≈ 1.15E0/ω and A(t) = A(0) + O(t4).



Chapter 6

Streaking with tailored fields

After transferring the concept of the attoclock to linear polarization, in this chapter we apply
streaking to the quasilinear field provided by the bicircular attoclock. This allows us to im-
prove upon the ionization time retrieval in several ways and unify the two previously distinct
notions of ionization time provided by the attoclock for circular polarization and streaking for
linear polarization. Most results from this chapter are published in [280].

6.1 Introduction

Ionization-time measurements in strong-field ionization have previously relied either on streak-
ing (see Chapter 3) or on the attoclock (see Chapter 4). It is important to understand how these
two different notions of ionization time are related.

A direct comparison is problematic because the attoclock measures ionization time in circu-
lar polarization while streaking can only be applied to linear polarization where it has strong
limitations such as the inability to resolve low-energy electrons (because of strong Coulomb
effects), high-energy electrons (because there is overlap with the onset of the backscattering
plateau) or photoelectrons originating in the rising slope of the electric field (because they
are hidden under the Coulomb-focused long trajectories). This is true for both the two-color
scheme presented by Henkel and Lein [114] and extend upon in Chapter 3 as well as in the
parallel two-color scheme presented by Porat et al. [115]. Similarly, in the HHG-based scheme
[112, 113], electrons launched during the rising slope of the field cannot recombine and conse-
quently cannot be resolved.

Part of the problem has been solved in Chapter 5, where we have implemented an attoclock
using bicircular fields and transferred the attoclock concept to (quasi) linear polarization. In
this Chapter, we apply streaking to the quasilinear field provided by the bicircular attoclock
which allows us to compare the two approaches directly. Here, we consider both the orthogo-
nal scheme as described in Chapter 4 as well as the parallel scheme from Porat et al. [115].

The fact that the quasilinear field points in an approximately constant direction near the
time of ionization leads to another advantage that is absent from the circular attoclock. It
enables us to probe orientation-dependent properties of anisotropic systems such as molecules
without mixing contributions from different angles between molecular axis and polarization
axis. Here, we apply the quasilinear field to an asymmetric potential resembling the polar
helium hydride molecular ion to measure the time of ionization for both possible orientations.

87
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The chapter is organized as follows. While a derivation of the time-to-phase mapping in
orthogonal streaking was provided already in Chapter 3, the corresponding mapping for the
parallel scheme has yet to be derived. Thus, in Section 6.2 we consider the parallel scheme in
the framework of the strong-field approximation. Section 6.3 then gives the details of applying
both the orthogonal and the parallel scheme to the quasilinear field. In Section 6.4, we provide
the results for a model helium atom while in Section 6.6 we extend the retrieval scheme to a
helium hydride model. Section 6.7 concludes the chapter.

6.2 The parallel two-color scheme

In the parallel two-color scheme as described in the work of Porat [115] and the original work
on phase-of-the-phase spectroscopy [170], a weak second-harmonic probe field is applied in
addition to a strong fundamental where the relative phase between the two can be controlled.
Measuring the modulation of the PMD as a function of the two-color phase, momentum-
resolved ionization times can be retrieved. Limiting ourselves to the signal along the direction
of the two fields, we can write in one dimension

Aω(t) = −
E0

ω
sin(ωt) (6.1)

for the fundamental and
A2ω(t,φ) = −

εE0

2ω
sin(2ωt+ φ) (6.2)

for the second harmonic. The total vector potential is

A(t,φ) = Aω(t) +A2ω(t,φ) (6.3)

and the derived electric field
E(t) = Eω(t) + E2ω(t,φ). (6.4)

The presence of the 2ω-field modulates the signal as a function of the relative phase φ. Our
goal is to relate the optimal relative phase φ that maximizes the signal at a given momentum
p to the time of ionization t. Here, two effects have to be taken into account. (i) The 2ω electric
field changes the field strength at ionization time, influencing the observed yield directly; (ii)
The 2ω vector potential changes the mapping from observed photoelectron momentum to
ionization time, also influencing the yield because the change in ionization time leads to a
change of the field strength of the fundamental field.

In the simple man’s model, we consider a momentum p which originates from ionization
at time t0. The presence of the probe field leads to a momentum shift

∆p = −A2ω(t0,φ) (6.5)

such that at p we now observe photoelectrons that would have final momentum p − ∆p =

p + A2ω(t0,φ) in the absence of the 2ω field. These photoelectrons originate from a dif-
ferent ionization time t0 − ∆t. Since the time-momentum mapping without 2ω field reads
p = −Aω(t0), we have

∆t = ∆p/Eω(t0) = −A2ω(t0,φ)/Eω(t0). (6.6)
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The electric field at this ionization time is Eω(t0) + ∆Eω, where

∆Eω = −Ėω(t0)∆t = A2ω(t0,φ) Ėω(t0)/Eω(t0). (6.7)

Thus, the total electric field leading to momentum p in the presence of the 2ω field is

Eω(t0) + E2ω(t0,φ) + ∆Eω = Eω(t0) + E2ω(t0,φ) +A2ω(t0,φ) Ėω(t0)/Eω(t0). (6.8)

We assume that the signal is maximized when the total electric field is maximal. Therefore, for
a maximum in the delay scan to occur, the derivative with respect to the relative phase must
vanish,

Ėω(t0)

Eω(t0)

∂A2ω(t0,φ)
∂φ

∣∣∣∣
φ=φ0

+
∂E2ω(t0,φ)

∂φ

∣∣∣∣
φ=φ0

= 0. (6.9)

Inserting expressions (6.1) and (6.2) for theω and 2ω fields, we find

− 2 cos(ωt0) sin(φ0 + 2ωt0) + cos(φ0 + 2ωt0) sin(ωt0) = 0. (6.10)

Expanding t0 in a power series in φ0, this can be solved via

− 2ωt0 =
4
3
φ0 +

4
81
φ3

0 + O(φ5
0). (6.11)

This equation allows us to relate the measurable quantity φ0 to the time of ionization t0. Since
the third-order term is already small, it is sufficient to use the linear expression. Thus, we find
that the simple relation (3.3), −2ωt0 = φ0, from orthogonal streaking has to be modified by a
correction factor of 4/3 when the parallel scheme is used instead.

The same result can be obtained using the strong-field approximation. As usual, we can
assume that, since the perturbation is small, the modification of the signal due to the second-
harmonic field can be expressed as a modification of the action (2.24)

∆S(φ, ts) =
∫T
ts

dt (p+Aω(t))A2ω(t,φ). (6.12)

Here, ts = tr + i ti is the unperturbed saddle point (2.29) which satisfies

1
2
(p+Aω(ts))

2 + Ip = 0 ⇔ p = −ReAω(ts), ImAω(ts) =
√

2Ip. (6.13)

The signal at a given momentum is maximized when

∂

∂φ
Im∆S(φ, ts)

∣∣∣∣
φ=φ0

= 0. (6.14)

Inserting the expression (6.1) and (6.2) for the ω and 2ω fields and replacing p according to
(6.13), the maximum condition becomes

A2
0ε

6ω
sinh(ωti)3(−2 cos(ωtr) sin(φ0 + 2ωtr) + cos(φ0 + 2ωtr) sin(ωtr)) = 0. (6.15)

The term that depends on the imaginary time ti factorizes, making the maximum condition
independent of the ionization potential and exactly equivalent to the classical expression (6.10)
when the time t is replaced by the real part tr of the complex ionization time ts. This agreement
is quite remarkable because the central assumption about vanishing initial velocity parallel to
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the instantaneous field direction which is used in the simple man’s model is in the case of
nonadiabatic tunnel ionization not compatible with the quantum-orbit model.

Since in truly linear polarization the PMD is strongly affected by Coulomb effects, a pure
SFA description as given above is typically inadequate to model the effect of the probe field.1

However, in the quasilinear field (5.3) which we are going to use in the following, Coulomb
effects are much less important.

6.3 Computational details

We solve the two-dimensional time-dependent Schrödinger equation (2.11) on a grid of size
400× 400 a.u. using 2048 points in each dimension with time step 0.006 a.u. and propagate up
to T = 752 a.u. The atomic potential V(r) is chosen as before (5.7) to model a helium atom in
two dimensions. The vector potential is defined as

A(t) = f(t)(Aωeff(t) +A2ωeff(t,φ) es). (6.16)

Here, Aωeff(t) is the bicircular field (5.3) with ωeff =
√

2ω used in chapter 5. To implement
both orthogonal streaking as well as the parallel scheme, the probe field

A2ωeff(t,φ) = −
ε

2
3E0√
5ωeff

sin(2ωefft+ φ) (6.17)

is added. Here, ε = 0.02, ωeff = 0.05695 a.u. (800 nm) and the envelope f(t) = cos(ωt/6)4 (3-
cycle pulse) is the same as was used in Chapter 5. The direction of the probe field es is chosen
as es = ex in the case of orthogonal streaking and es = ey in for the parallel scheme. In both
cases, we vary the relative phase φ between 0 and 2π in 32 steps.

6.4 Results

For both the orthogonal and the parallel scheme, we want to retrieve the ionization time from
the modulation of the signal as a function of the relative phase. For the derivation of the the
phase-to-time mappings (3.14) and (6.11) for the two schemes, the signal in the direction of the
fundamental component was considered. When the quasilinear field is used instead, a slight
modification is required.

The quasilinear field mimics linear polarization, but the vector potential in the vicinity of
the maximum at t = 0 is shifted away from zero. This would suggest to use the shifted px =

−Ax(0) axis to perform the ionization time retrieval. In practice, this is problematic because the
bicircular field breaks the exact symmetry that is present in truly linear polarization. Instead,
to implement orthogonal streaking, we obtain a reference curve by finding the maximum of the
px-dependent signal for every py. The probe field then moves the maximum away from the
reference (“streaking”) and we track for every py the distance between the streaked maximum
to the reference in px direction.

The result is shown in Fig. 6.1(a). There, the black solid line indicates the optimal phase in
the sense that the maximum lies on the reference. To implement the PTC scheme, we project
the main branch of the PMD onto the py axis and observe for every py the modulation of the

1In the experiment [115] the CCSFA was used to relate the measured optimal phase to ionization time.
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Figure 6.1: (a) Orthogonal streaking. The image shows the difference in px position of the streaked maximum to
the reference as a function of the relative phase φ, normalized for every py separately to maximum absolute value
1. The black solid line gives for every py the optimal phase φ0 for which the position of the maximum coincides
with the reference. Time is converted to phase via Eq. (3.14). (b) Parallel two-color scheme. The image shows the
modulation of the signal as a function of the relative phase φ, normalized for every momentum py separately to
vary between 0 and 1. Relative phase is converted to time according to Eq. (6.11). (c, d) Same as (a, b) but with
the relative phase shifted by π and using minimization instead of maximization in case of the PTC scan. In all
four panels, the red solid line shows the momentum-dependent ionization time for linear polarization according to
the quantum-orbit model; the orange dashed line shows the ionization time according to the simple man’s model.
Here, the result for linear polarization (see Chapter 3) with effective frequency and field strength was used to map
the py momentum to ionization time. Panels (a) and (b) are adapted from Fig. 3 in [280].

signal as a function of the relative phase. The result is shown in Fig. 6.1(b). There, the black
solid line shows the optimal phase where the signal is maximized. Converting phase to time2

via Eq. (6.11) we find that the momentum-resolved ionization time is shifted with respect to the
prediction by the quantum-orbit model (red solid curve). At t = 0 we find py = 0.255 a.u. in
very good agreement with the attoclock shift of the momentum distribution (∆py = 0.245 a.u.).
In orthogonal streaking, however, this attoclock shift is not visible. Converting phase to time
via Eq. (3.14), we find almost perfect agreement with the ionization time predicted by the
quantum orbit model (py = 0.015 a.u. for t = 0).

Fig. 6.1(c) shows the result from the OTC delay scan when the phase of the streaking field

2Taking also the pulse envelope into account, we find from the classical maximum condition (6.9) an additional
factor of 27/26 which we apply here. Deriving the envelope correction from SFA, the time-to-phase conversion
(6.11) becomes dependent on the ionization potential Ip. This was not the case for the cw fields where in (6.15)
the term involving the imaginary part ti of the complex ionization time ts separated. However, for small Keldysh
parameter γ → 0 the numerical value of the classical correction is retrieved. For the case considered here, the
nonadiabatic correction to the pulse-envelope correction is small and will be neglected.
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is shifted by π. While π periodicity was present on the on-axis signal in the OTC scan for truly
linear polarization (see Chapter 3), this is not necessarily the case for the quasilinear field.3 In
the parallel scheme, shifting the phase of the streaking field by π leads to attenuation instead
of amplification of the ionization yield. Thus, in Fig. 6.1(d) we find for every py the optimal
phase that leads to a minimum in the delay scan.
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Figure 6.2: Delay scan around time zero in comparison with different models. The upper row (a-c) shows orthogo-
nal streaking; the lower row (d-f) shows the parallel scheme. The first column (a,d) shows the TDSE result as in Fig.
6.1. The second and third columns show the corresponding results when the modulation of the signal is calculated
in ARM theory (b,e) or SFA (c,f). The black solid lines show the ionization time obtained by converting the optimal
relative phase. The dashed lines show the corresponding result when the relative phase of the streaking field is
shifted by π and minimization instead of maximization is used in case of the parallel scheme. In all panels, the
predicted ionization time in the quantum-orbit model and simple man’s model for linear polarization are marked
as red solid and orange dashed lines, respectively.

Fig. 6.2(a,d) shows the two types of optimization curves together in a region around zero
momentum shift for orthogonal streaking (a) and the parallel scheme (d) where in both cases
good agreement between the two variants is found. Fig. 6.2(b,e) and (c,f) show the the re-
trieved ionization time when the momentum distribution is calculated using ARM theory or
saddle-point SFA (in both cases we have included a prefactor ∝ S̈−1/2 in the amplitude). As
expected, the numerically retrieved ionization time in SFA follows consistently the real part of
the SFA saddle-point time. Small deviations to this behavior are expected due to: (i) a small
difference between the ionization time in quasilinear polarization compared to truly linear po-
larization; (ii) contributing higher-order terms in the conversion rule (6.11); (iii) higher-order
effects in the relative field strength of the streaking field that have not been considered in the
derivation; (iv) mixing of momenta corresponding to different ionization times due to the pro-
jection; (v) the nonadiabatic terms in the envelope correction factor; (vi) The SFA prefactor.
Going beyond SFA and taking the Coulomb potential into account perturbatively using ARM

3In 3D, defining a reference could be avoided altogether by applying the probe field in the z direction. In
this case, the signal would be π periodic in the pxpy plane where ionization times could be retrieved for every
momentum. This scheme could also be applied to the conventional attoclock. Experimental implementation would
be challenging for it effectively requires a three-dimensional field shape.
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theory, the behavior observed in the TDSE calculations is well reproduced.
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Figure 6.3: Momentum shift of time zero in comparison with the attoclock shift of the momentum distribution in
TDSE (a) or ARM (b). In both panels, the black solid curve gives the attoclock shift of the momentum distribution.
The red solid curve shows the retrieved ionization time from the parallel scheme while the blue solid curve gives
the ionization time retrieved from orthogonal streaking. The dashed curve give the corresponding result when the
phase of the streaking field is shifted by π and minimization instead of maximization is used in case of the PTC
scan. Panel (a) is adapted from Fig. 4 in [280].

Fig. 6.3 shows the momentum shift of time zero obtained from the orthogonal and the
parallel scheme for many intensities in comparison with the attoclock shift of the momentum
distribution using the TDSE (a) or ARM (b). We find that the agreement between the parallel
scheme and the attoclock shift persists at all intensities with small deviations at higher intensi-
ties where depletion is important. Orthogonal streaking, on the other side, always gives values
close to zero.

To explain this, note that the quasilinear field has a well-defined direction during the ion-
ization process. Effects that could change the position of the maximum of the PMD, such as an
initial velocity of the photoelectron or the Coulomb force of the parent ion acting on the out-
going electron point in the direction of the instantaneous electric field. That is, they can shift
the distribution only on its integral, i.e. the negative vector potential. So do depletion and a
possible ionization-time delay. In case of orthogonal streaking, the combined vector potential
must be considered which at φ = 0 crosses the reference vector potential (ε = 0) at py = 0. In-
dependent of whether the distribution is shifted along the streaked vector potential, the point
at which the maximum lies on the reference is still py = 0 which is thus assigned to t = 0.
This effect can be seen clearly from the streaked PMD in Fig. 6.4 (where we have increased the
relative field strength in the probe field to ε = 0.1 for better visibility).

More formally, the invisibility of the attoclock shift in the OTC scheme can be understood
in an Coulomb-corrected simple man’s model where attoclock shift is due to the force of the
potential on the outgoing electron and acts in the instantaneous field direction which defines
the tunneling direction. When a field in both the x and y component is present, the ratio of the
Coulomb-shifts ∆px and ∆py in the two components is equal to the field strength-ratio

∆px

∆py
=
Ex(t0,φ)
Ey(t0)

. (6.18)

For the two-color scheme in the absence of the potential shift, we write py = −Ay(t0). The
Coulomb potential leads to a momentum change ∆py such that the same py now originates
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Figure 6.4: Photoelectron momentum distribution from the solution of the 2D TDSE (normalized to maximum
signal 1). In addition to the bicircular field (6.16), the probe field (6.17) with φ = 0 and ε = 0.1 has been applied
in the x direction (“orthogonal streaking”). The black dashed lines show contours of constant signal s in steps of
∆s = 0.2. The white dashed line shows the negative vector potential without probe field and the orange dashed
line shows the negative vector potential in the presence of the probe field. The reference curve (maxima of the PMD
without probe field) is shown as a white solid curve while the curve of maxima in the presence of the probe field is
shown as a solid orange curve.

from a different ionization time t0 + ∆t, i.e.

py = −Ay(t0 + ∆t) + ∆py = −Ay(t0) + Ey(t0)∆t+ ∆py︸ ︷︷ ︸
=0

(6.19)

from which we conclude
∆t = −

∆py

Ey(t0)
. (6.20)

In the 2ω component, suppose the relative phase is tuned such that in the absence of the
Coulomb potential no deflection occurs, 0 = px = −Ax(t0,φ0). Incorporating a possible
Coulomb shift ∆px in the direction of the streaking field, we have instead

p ′x = −Ax(t0 + ∆t,φ0) + ∆px

= −Ax(t0,φ0)︸ ︷︷ ︸
=0

+Ex(t0,φ0)∆t+ ∆px
(6.20)
= ∆py

(
∆px

∆py
−
Ex(t0,φ0)

Ey(t0)

)
(6.18)
= 0. (6.21)

Thus, the optimal phase that leads to no deflection of the photoelectron in the absence of the
Coulomb potential for some py is still the optimal phase for the same py momentum when the
potential is taken into account. To fix this, the Coulomb potential would have to be taken into
account already in the derivation of the phase-to-time mapping, introducing similar ambigui-
ties as the conventional ionization-time retrieval based on the attoclock.

In the parallel scheme, the agreement of the attoclock shift with the momentum corre-
sponding to time zero can be related to the observation made by Ivanov et al. that in order
to maximize the additional yield due to a weak perturbing field δE that is applied to a strong
field E, the delay between the two fields must be chosen such that the perturbation amplifies
the peak of the strong field. [281]. Formally, the yield is a nonlinear functional of the electric
field, P[E], defining a functional derivative via

P[E+ δE] − P[E] =

∫T
0
dt
δP[E]

δE(t)
δE(t) + O(δE2). (6.22)
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It was shown numerically that for a short pulse peaking at t = 0, the maximum of the func-
tional derivative

δP[E]

δE(t)
(6.23)

is also found at t ≈ 0. In our case we can understand the 2ωeff-field as a small perturbation in
that sense and write

P[Eωeff + E2ωeff ] − P[Eωeff ] =

∫T
0
dt
δP[Eωeff ]

δE(t)
E2ωeff(t,φ) + O(ε2). (6.24)

The 2ωeff field thus probes the functional derivative at t ≈ −φ/(2ωeff).
In Fig. 6.5(a) the modulation of the yield at E0 = 0.1 a.u. in the main branch of the PMD as a

function ofφ is shown. In Fig. 6.5(b) we obtain the optimal phase that maximizes the yield and
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Figure 6.5: Phase dependence of the overall yield. (a) Modulation of the signal ratio for the main branch of the
quasilinear field at E0 = 0.10 a.u as a function of the relative phase φ. (b) Optimal phase at which a maximum
(solid line) or minimum (dashed line, here the phase must be shifted by π) of the signal ratio is obtained. Phase is
converted to time according to 2ωefft+ φ = 0.

find – in agreement with Ivanov’s results – that the phase is very close to zero for intensities
where depletion is negligible. Our main result Fig. 6.3(a) can be seen as a momentum-resolved
version of this. Not only the overall yield is maximized by amplifying the fundamental field
at its peak, but also the signal at the maximum of the PMD, which is thus assigned to the time
of peak field strength.4

6.5 Experimentally realistic parameters

Finally, we want to consider two additional points which are important for the experimental
implementation. First, the possibility to achieve converged results even when using a larger
field strength in the probe field, and second, using a different frequency in the probe field. For
the parallel scheme, let f(py,φ, ε) denote the signal in the presence of the probe field projected
onto the py axis. We can write

f(py,φ, ε) = f(py,φ, 0) + ε
∂

∂ε
f(py,φ, ε)

∣∣∣∣
ε=0

+ O(ε2). (6.25)

4In this context, we note that it would be interesting to try and generalize Ivanov’s idea by evaluating the
functional derivative not only for the overall yield, but also for the photoelectron momentum distribution.
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Since f(py,φ, 0) does not depend on φ, the maximum condition ∂φf(py,φ, ε) = 0 in the par-
allel scheme for ε→ 0 evaluates to a condition on the derivative,

∂

∂φ

∂

∂ε
f(py,φ, ε)

∣∣∣∣
ε=0

= 0. (6.26)

For orthogonal streaking, let g(py,φ, ε) = pmax
x − pref

x denote py-dependent distance between
the maximum position pmax

x in the presence of the streaking field and the reference position
pref
x without streaking field. Writing

g(py,φ, ε) = ε
∂

∂ε
g(py,φ, ε)

∣∣∣∣
ε=0

+ O(ε)2, (6.27)

the streaking condition g(py,φ, ε) = 0 for ε→ 0 evaluates to

∂

∂ε
g(py,φ, ε)

∣∣∣∣
ε=0

= 0. (6.28)

Thus, an accurate retrieval of the ionization time requires an accurate evaluation of the deriva-
tives ∂εf and ∂εg. Instead of just using a small value of ε as above, we can use higher ε
together with a more accurate formula to evaluate the derivative. This requires the evaluation
at negative ε, which is equivalent to shifting the relative phase φ to φ+ π as above.
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Figure 6.6: Momentum shift of time zero in comparison with the attoclock shift of the momentum distribution for
larger field-strength of the streaking field. (a) As in Fig. 6.3(a) but for ε = 0.04. (b) Time zero shifts obtained by
evaluating the derivatives (6.26) and (6.28) using a calculation for ε = 0.04 and the three-point formula for the
derivative. The curves from Fig. 6.3(a) for ε = 0.02 are reprinted gray in the background. Panel (a) is adapted from
Fig. 4 in [280].

Fig. 6.6(a) shows the time-zero shifts as in Fig. 6.3(a) but at ε = 0.04 instead of ε = 0.02.
Here, some disagreement with the previous result is found. Using the calculations at ε = 0.04
and the three-point formula to evaluate the derivatives, the result shown in Fig. 6.6(b) is found
and it agrees nicely with the average of the two ε = 0.02 curves.

As for the second point, the frequency 2ωeff was chosen such that direct comparison with
previous results for linear polarization is possible. When solving the TDSE, we have the free-
dom of choosing the vector potential as we wish, but in a realistic experiment the current choice
of frequency is problematic for two reasons. First, the ratio of the required frequency to the
fundamental frequency used in the laboratory 2ωeff/ω = 2

√
2 is not easily accessible. Second,

the fact that the ratio is not even a rational number implies that the field is not periodic. For
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Frequency Effective frequency ratio α First order Third order
2ω 1.41421 2.00000 0.66667
2ωeff 2.00000 1.33333 0.04938
3ω 2.12132 1.28571 0.03499

Table 6.1: Correction factors for the parallel scheme according to (6.32).

us, this was not a problem because of the ultrashort pulse envelope, but in an experiment with
a long pulse, periodicity is required.

In principle, one could use the same approach as in the ionizing field also in the probe field.
Superimposing linearly polarized 2ω and 4ω fields, we can write

A2ωeff(t) = −
ε

2
2E0√
5ω

(
sin(2ωt+ φ) +

1
4

sin(4ωt+ 2φ)
)

. (6.29)

Close to the maximum (φ = −2ωt) this can be expanded as

E2ωeff(t,φeff) = εEpeak

(
1 −

1
2
(2ωefft+ φeff)

2 + O((2ωefft+ φeff)
4)

)
(6.30)

where we have introduced the effective phase shift φeff =
√

2φ. Then the 4/3 rule can be used
as is when an additional conversion factor

√
2 is taken into account to convert the relative phase

φ of the streaking field to the effective relative phaseφeff needed to perform the ionization time
retrieval. On the other hand, there is no particular reason to use 2ωeff other than comparability
with linear streaking schemes and a linearly polarized field with frequency 2ω or 3ω could be
used instead. The former corresponds to an effective frequency multiplier of 2ω/ωeff =

√
2.

The latter corresponds to 3ω/ωeff = 3/
√

2. Repeating the calculations from Section 6.2 for
these relative frequencies α (with α =

√
2 or α = 3/

√
2), we find the general result

− α cos(ωt0) sin(φ0 + αωt0) + cos(φ0 + αωt0) sin(ωt0) = 0 (6.31)

which can be solved approximately via

− αωt0 =
α2

α2 − 1
φ0 +

α2

3(α2 − 1)3φ
3
0 + O(φ5

0). (6.32)

Some values of the phase-to-time conversion factors are listed in Table 6.1. The 3ω case is
particularly appealing because it is very close to using 2ωeff which is reflected in a similar
conversion factor and also a low contribution of higher order terms. 2ω could be used in
principle but the conversion factor is quite high which leads to lower absolute accuracy in the
retrieved ionization time. Additionally, the nonlinear terms contribute significantly. This is
because the 2ω case is closer to the limiting case

√
2ω = ωeff for which the maximum of the

streaking field is exactly as sharp as the maximum of the bicircular field and the ionization
time retrieval becomes impossible. This is reflected in a divergence of the coefficients in the
expansion (6.32).

Fig. 6.7 shows the time-to-momentum mapping at E0 = 0.10 a.u. for the orthogonal and the
parallel scheme, obtained by solving the TDSE for various frequencies in the probe field and
using the conversion factors (6.32) for the parallel scheme. We find good agreement between
the variants.
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Figure 6.7: Time-to-momentum mapping around time zero as in Figs. 6.2(a,d). (a) Orthogonal streaking. (b) Parallel
scheme. Both panels show the average of the two variants (one with the phase shifted by π).

6.6 Orientation dependence in molecules

Since one branch of the momentum distribution in the quasilinear field originates from a region
where the electric field points along an approximately constant direction, we can used it to
study orientation dependent properties in strong-field ionization of molecules.5 We consider
the HeH+ model from Chapter 3 with potential (3.17) aligned along the y direction and probe
both possible orientations where ionization can occur either via the helium or the hydrogen
side. We set E0 = 0.18 a.u. and consider several effective wavelengths λeff = λ/

√
2.
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Figure 6.8: (a) Projection of the main branch of the PMD onto the py axis at λeff = 800 nm. Solid curve, molecular
ion oriented such that ionization occurs at the hydrogen side. Dashed curve, ionization at the helium side. The
gray vertical lines indicate the position of the PMD maximum. (b) Attoclock shift of the momentum distribution
and streaking of the HeH+ model at E0 = 0.18 a.u. and various wavelengths. Black curves, attoclock shift of the
momentum distribution. Red curves, parallel scheme. Blue curves, orthogonal streaking. Orange dashed lines,
adiabatic model as explained in the text. The open symbols show the case where the molecular ion is oriented such
that ionization takes place via the helium side. The filled symbols correspond to ionization via the hydrogen side.
For results obtained by the orthogonal or the parallel scheme, we have taken the average of the two possible ways
(one with the phase shifted by π). Panel (b) is adapted from Fig. 4 in [280].

Solving the 2D TDSE with the same parameters as above, we find significant differences in
the momentum distributions. Fig. 6.8(a) shows the projections of the PMDs onto the py axis
at λeff = 800 nm. There, it is evident that both the ionization yield as well as the attoclock shift

5Molecular attoclock setups with conventional attoclock pulses were also considered in [282–284]. In [285], the
attoclock offset angle was shown to be different in the forward and backward direction for a chiral molecule.
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depend on the orientation. At λeff = 800 nm, the yield in the main lobe of the three-lobe PMD is
1.24×10−3 when ionizing via the helium side and 6.27×10−3 when ionizing via the hydrogen
side. Converting the different attoclock shifts to a time difference according to (5.12),

∆t =
∆py

pmax
x 2ω

√
1 + γ2

eff

, (6.33)

we find an apparent ionization-time delay of 13.13 as when ionizing via the helium side com-
pared to the hydrogen side. Fig. 6.8(b) shows the attoclock shift of the momentum distribution
in the quasilinear field for both orientations and several wavelengths. This shift is generally
larger when ionization occurs via the hydrogen side with an approximately constant apparent
delay of more than 10 attoseconds. Next, we evaluate both two-color schemes as above with
ε = 0.02 to find the shift that corresponds to t = 0, the peak of the pulse. As before, orthogonal
streaking always gives values close to zero. When the parallel scheme is employed, the time-
zero momentum shift again agrees with the attoclock shift of the momentum distribution. This
is true for both orientations, suggesting that the apparent delay does not correspond to a real
delay in ionization time.

In fact, the difference in the attoclock shift can be understood in a simple classical model
without assuming a delay in ionization time, but considering that the tunnel-exit position de-
pends on the orientation via an orientation-dependent ionization potential. To obtain Ip(E), we
solve the 2D TDSE in a small box of size 200× 200 a.u. and 1024 points in each dimension with
time step ∆t = 0.02 a.u. in a slowly varying electric field E(t) = αt while absorbing outgoing
parts of the wave function via an absorber that covers a distance of 25 a.u. from the boundary of
the simulation volume. From the time dependent calculation, we extract the field-dependent
ionization potential as

Ip(E,α) = Re

(〈
ψ(t)

∣∣− i∂t∣∣ψ(t)〉〈
ψ(t)

∣∣ψ(t)〉
)∣∣∣∣∣
t=E/α

. (6.34)

Assuming

Ip(E,α) = Ip(E) + α
∂

∂α
Ip(E,α)

∣∣∣∣
α=0

+ O(α2) (6.35)

and running the calculation for two different slopes α and 2α, we can eliminate the linear term
and extrapolate to the quasistatic case α→ 0 via

Ip(E) ≈ 2Ip(E,α) − Ip(E, 2α). (6.36)

For α = 1.25 × 10−3 a.u. we find (in atomic units) Ip(E) ≈ 1.657 ± 0.403E + 0.633E2 where the
“+” case denotes ionization via the helium side and the “−” case denotes ionization via the
hydrogen side. We use the field-dependent ionization potential to find the tunnel-exit position
y0 according to the TIPIS model,6

y0 =
Ip(E) +

√
Ip(E)2 − 4β(E)E

2E
, β(E) = Z−

√
2Ip(E)

4
(6.37)

with Z = 2.
6See Section 2.6. In this case, the 2D version [104] must be used. There, the separation constant β is different

from the 3D expression (2.46). Note also that the TIPIS model requires the potential to be approximately −Z/r

in the tunneling region. For the potential under consideration (3.17), this is the case because the origin has been
chosen symmetrically between the two centers.



100 CHAPTER 6. STREAKING WITH TAILORED FIELDS

15 10 5 0 5 10 15
Position y [a.u.]

4

2

0

2

Po
te

nt
ia

l e
ne

rg
y 

[a
.u

.]

H +   He

(a)

E y + V(r)
E y 2/r

15 10 5 0 5 10 15
Position y [a.u.]

4

2

0

2

Po
te

nt
ia

l e
ne

rg
y 

[a
.u

.]

He  H +

(b)

Ip(0)
Ip(E)

Figure 6.9: Molecular potential (3.17) in the presence of a strong field E ≈ 0.24 a.u. (a) Molecular ion oriented such
that ionization takes place via the helium side. (b) Reverse orientation where ionization occurs via the hydrogen
side. In both panels, the blue curve is the complete potential, the orange curve assumes a −2/r potential for the
molecule, the black dashed line shows the field-free ionization potential and the red dashed line shows the shifted
ionization potential. The green dots show the tunnel-exit position according to the TIPIS model (6.37).

This is illustrated in Fig. 6.9. Different tunnel-exit positions lead to different attoclock
shifts. To calculate them approximately, we solve Newton’s equations of motion in a static
field,

ÿ(t) = −Z/y2 + E, y(0) = y0, ẏ(0) = 0. (6.38)

The attoclock shift is then determined as ∆p = p(t) − p0(t) for large t where p(t) is the time
dependent momentum from the solution of Newton’s equation and p0(t) = E t is the time
dependent momentum in the same setting with Z = 0. It is shown for both orientations as
orange dashed line in Fig. 6.8 and good agreement with the TDSE results is found in the long-
wavelength limit where the static approximation is expected to work best.

6.7 Conclusion

In this chapter, streaking with a weak probe field was applied to the quasilinear field (intro-
duced in Chapter 5) to determine the time of ionization for various momenta in the photoelec-
tron momentum distribution. The ionization time is inferred from the optimal relative phase
between the driving field and the probe via a simple linear relation with a constant factor that
depends on whether the probe field is orthogonal or parallel to the driving field. Compared to
applying the schemes to linear polarization, the bicircular field offers several advantages. The
absence of intracycle interference and strong Coulomb effects allows us to reach attosecond
precision in the delay scan, resolve the region around the maximum of the momentum distri-
bution, and compare the attoclock shift of the momentum distribution with the momentum
that is assigned to the time of peak field strength by the two-color scheme. Using solutions of
the TDSE as well as ARM theory, we found that orthogonal streaking (as introduced in Chap-
ter 3) measures ionization time as if the Coulomb potential were not present and the time of
peak field strength is assigned to the maximum of the Coulomb-free momentum distribution.
Switching to parallel polarization, the time of peak field strength is instead assigned to the
Coulomb-shifted maximum of the momentum distribution. Physically, the conflicting results
can be understood in that the orthogonal scheme relies for its phase-to-time mapping on the
propagation step in the probe field which itself can be altered by Coulomb effects. The parallel
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scheme, on the other hand, relies on modifying the signal already at the ionization step. Here,
the agreement between the Coulomb-shifted maximum of the momentum distribution and the
time of peak field strength persists even in case of an asymmetric molecule, although the at-
toclock shift depends on the orientation. This orientation dependence can be understood as a
modification of the tunnel-exit position due to an orientation-dependent ionization potential.

The physical explanation for orthogonal streaking not being able to reveal Coulomb effects
assumed a sufficiently adiabatic situation. Although we found no significant differences for
the frequencies considered here, it might be fruitful to consider much higher frequencies in
the probe field and investigate whether the delay scan becomes sensitive to the attoclock shift.
Taking Coulomb effects into account in orthogonal streaking by modifying the phase-to-time
mapping would have to rely on similar assumptions made for trajectory-based models for
the attoclock. Instead, the scheme could be used to calibrate the relative phase between the
bicircular field and the probe.

The absence of the attoclock shift in the orthogonal scheme could explain why in the HHG-
based ionization-time retrieval that uses OTC fields, the retrieved ionization times agreed so
well with the Coulomb-free SFA ionization times [113]. This is the case although a Coulomb-
correction to both the ionization and the return time – similar to the attoclock shift – is also
present in HHG.7 It would be interesting to revisit the parallel scheme in HHG [111, 176]
and investigate whether – similar to photoelectrons – the Coulomb correction can be resolved
there. Coming back to the parallel scheme with photoelectrons, the attoclock shifts for both
orientations of the asymmetric molecule could be compared with the momenta that correspond
to the peak of the pulse according to the stationary points of the Dyson integral.

Finally, we note that a force on the outgoing electron trajectory perpendicular to the driving
field can be implemented not only externally by a probe field, Such a force is present naturally
due to the magnetic component of the laser field [287]. It leads to a momentum transfer in
light-propagation direction which can be observed experimentally or be seen in TDSE calcu-
lations when going beyond the electric dipole approximation [288, 289]. The point of minimal
momentum transfer defines a momentum that can be used as reference for the attoclock [290].
However, similar to the OTC scheme, this momentum corresponds rather to the maximum of
the Coulomb-free momentum distribution instead of the Coulomb-shifted maximum [280].

7Using ARM theory, Torlina et al. derived a first-order correction to the saddle-point times for ionization and
recombination [286]. In a simple classical model it can be shown that in the adiabatic limit the correction to the
return time vanishes while the correction to the ionization time (for fixed harmonic order) depends only the ion-
ization potential Ip and is given by ∆t = −π/(2Ip)3/2 which evaluates to approximately −31.3 as for helium. This
is similar to the attoclock formula (4.20) which states that the Coulomb force on the outgoing electron shifts the
mapping from angle to time in the attoclock by the same value.





Chapter 7

Summary and conclusion

Strong-field physics allows us to access attosecond time scales and angstrom spatial scales
via different mechanisms. In strong-field ionization, variations of the electric field strength
modulate the ionization probability on the subcycle time scale. Recollision phenomena that
lead to the generation of high harmonics and rescattered photoelectrons are sensitive to the
attosecond dynamics in atoms and molecules and the electron trajectory during excursion.

In this thesis, we explored the time structure of the strong-field ionization process, which is
the first step in the three-step process that leads to rescattering and high-harmonic generation.
Our main observable was the photoelectron momentum distribution. This choice allowed us
to investigate field shapes where the ionization step can be observed directly without hav-
ing to take complications due to the recollision step into account. In this scope, we explored
three main concepts and their applications for attosecond time-retrieval: two-color schemes,
bicircular laser fields, and the Dyson integral representation of the ionization amplitude.

The Dyson integral provides via its stationary points a mapping from the final photoelec-
tron momentum to the time of ionization. This mapping does not require the notion of an
electron trajectory which makes it independent of assumptions about Newtonian motion. Con-
sidering strong-field ionization in a circularly polarized laser field (“attoclock”) and searching
for the stationary points by numerical wave-function propagation in complex time, we found
that the maximum of the photoelectron momentum distribution corresponds well to the time
of peak field strength.

Bicircular fields can be used to create a different kind of attoclock where close to the time
of peak field strength the laser field is approximately linearly polarized (“quasilinear field”).
Applying the trajectory-free method to this field, we found a delay of about 10 attoseconds be-
tween the most probable ionization time and the time of peak field strength. While ultimately
the origin of the albeit small delay remains unresolved, we have made progress in understand-
ing the time structure of the Dyson integral by calculating its integrand in a large region of the
complex plane. Here, we found that for an accurate description of the ionization amplitude,
times much earlier than the expected ionization time cannot be neglected.

In contrast to the purely theoretical definition of ionization time in the Dyson integral, two-
color schemes provide a time-to-momentum mapping that is derived from an experimentally
observable quantity – the momentum distribution changing with the two-color phase. We ap-
plied two-color schemes to both a linearly polarized driver and to the bicircular field. The latter
allowed us to obtain a signal without intracycle interference or rescattering and to resolve the
region of the momentum distribution originating from around the time of peak field strength.
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We found that the measured ionization time is compatible with the idea that ionization is most
probable at the time of peak field strength when the probe field is parallel to the driving field,
and that ionization time is measured as if the Coulomb potential were not present when the
probe field is orthogonal to the driving field. Both statements remain true for an asymmetric
molecule even though the momentum distribution shows an orientation dependence.

Our results lead to a better understanding of the time structure of strong-field ionization
and to what extent it is possible to assign a single ionization time to a final momentum. The
methods that we developed can be used to investigate how such times depend on the applied
field, and how different methods to measure these times relate to each other.

The concepts and methods introduced in this thesis have many applications and potential
for future work. First of all, the quasilinear field should be investigated further. Most of the
research on the circular attoclock could be easily transferred to the quasilinear field, such as
the definition of ionization time that measures the probability flow through the tunnel exit
[228]. The bicircular field is also the perfect testing ground for investigating the emergence of
longitudinal velocity components during nonadiabatic tunnel ionization. In this regard, clas-
sical backpropagation could be used together with the the recently introduced nonadiabatic
velocity criterion [104] that takes a possible initial longitudinal velocity of the photoelectron
into account. Another interesting concept is the lateral width of the momentum distribution
[246, 247]. There, the idea is that not only the ionization probability maximizes close to the
time of peak field strength, but also the width of the distribution of initial transverse velocities.
Thus, the lateral width is an alternative attoclock observable that could be investigated for the
bicircular field. A very important application of the bicircular field is the study of molecules.
For an arbitrarily aligned molecule subject to an elliptically polarized pulse, attosecond time
retrieval with attoclock methods is difficult because the variation in the ionization rate due
to the field competes with the variation in the rate due to the molecular structure [284]. This
effect should be mitigated in the bicircular field because the direction of the field remains con-
stant. Thus, we believe that the quasilinear field could become a powerful tool to analyze
orientation-dependent properties of strong-field ionization of molecules.

As for the trajectory-free method, several solutions of the TDSE are usually required to find
the ionization time for a single momentum. An efficient propagation scheme together with
GPU support allowed us to perform the large number of calculations required to find ioniza-
tion times for many momenta, but not for the entire momentum distribution. Using Cauchy’s
formula, the integrand can be evaluated much easier. This could make generating a time-to-
momentum mapping for the entire momentum distribution feasible. By integrating the signal
over slices of equal time, the ionization rate and its maximum could be obtained. This proce-
dure would avoid the problem of geometrical factors that must be taken into account when the
maximum of the momentum distribution is used to infer the most probable ionization time.
Being able to calculate the Dyson integrand in extended regions of the complex plane could
also help solving the problem that momentum distributions calculated from the TDSE have
limited value in terms of interpretability compared to using trajectory-based models of strong-
field ionization. For example, interfering contributions in the momentum distribution such
as intracycle interference structures that originate from ionization at different times could be
disentangled by calculating them independently of each other. Most generally, since the appli-
cation of the Dyson integral is not limited to strong-field physics, its stationary points could be
used to interpret other phenomena in a time resolved way.



Appendix A

Methods

A.1 Time-dependent Schrödinger equation

A.1.1 Calculating the momentum distribution

To obtain the photoelectron momentum distribution, we introduce a complex absorbing poten-
tial iVC that separates the wave function into an inner and outer part,

∣∣ψ(t)〉 = ∣∣ψ1(t)
〉
+
∣∣ψ2(t)

〉
such that we can write two Schrödinger equations

i∂t
∣∣ψ1(t)

〉
= H(t)

∣∣ψ1(t)
〉
− iVC

∣∣ψ1(t)
〉

(A.1)

for the inner part and
i∂t
∣∣ψ2(t)

〉
= H(t)

∣∣ψ2(t)
〉
+ iVC

∣∣ψ1(t)
〉

(A.2)

for the outer part, respectively [14]. Here, the complex potential absorbs parts of the inner
wave function

∣∣ψ1(t)
〉

which in turn acts as a source term for
∣∣ψ2(t)

〉
. This splitting is exact

in the sense that the sum of the two equations cancels the absorbing potential and the full
Schrödinger equation for

∣∣ψ(t)〉 is retrieved. If the absorbing potential is located far away
from the nucleus and provides for efficient absorption and negligible reflection, the potential
V in the time evolution for

∣∣ψ2(t)
〉

can be neglected. Then an explicit solution for
∣∣ψ2(t)

〉
can

be given as ∣∣ψ2(t)
〉
≈ −i

∫t
0
dt ′UV(t, t ′)iVC

∣∣ψ1(t
′)
〉
. (A.3)

Taking the Fourier transform at time T and using the Volkov states (2.19), we obtain

M(p) =
〈
ψ

(−)
p
∣∣ψ(T)〉

≈
〈
p
∣∣ψ2(T)

〉
= −i

∫T
0
dt e−

i
2

∫T
t dt

′ (p+A(t ′))2
J(p, t).

(A.4)

Here, the source term in length gauge is

J(p, t) =
1

(2π)3/2

∫
d3r e−i(p+A(t))·riVCψ1(r, t) (A.5)

and in velocity gauge the canonical momentum has to be used. This method, already used in
[14, 291], is similar to the time-dependent surface-flux amplitude [292] where the source term
is given by

J(p, t) =
1

(2π)3/2

∫
dσ e−i(p+A(t))·r ·

(
p + A(t) + p̂

2

)
ψ(r, t). (A.6)
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Here, the integral over r is evaluated on a surface encompassing the simulation volume. While
these methods allows us to omit a fully numerical calculation of the outer wave function∣∣ψ2(t)

〉
, the inner part

∣∣ψ1(t)
〉

usually has to be solved fully numerically. To this end, we
employ the split-operator method [201]. There, the full time-evolution operator for a short
time period in velocity gauge is approximated as

U(t+ ∆t, t) = e−i∆t/2Ve−i∆t/2 (p+A(t+∆t/2))2
e−i∆t/2V + O(∆t3). (A.7)

The wave function is usually represented on an up to three-dimensional Cartesian grid where
the fast Fourier transformation1 can be used to switch between position and momentum-space
representation. There, the diagonal terms in the splitting scheme can easily be applied. Since
calculating exponentials numerically is expensive, the kinetic-energy part is split again into

e−i∆t/2 (p+A(t+∆t/2))2
=

D∏
i=1

e−i∆t/2 (pi+Ai(t+∆t/2))2
. (A.8)

InD dimensions on a grid withN bins in each dimension, this reduces the number of exponen-
tials that have to be calculated from ND to ND. In each (or every few) time steps, the source
term (A.5) is evaluated, also using the FFT, and accumulated according to (A.4).

Aside from the number of bins, the grid on which the TDSE is solved numerically is charac-
terized by a length Lwhich represents the size of the simulation volume in position space. The
use of the FFT to evaluate the source term (A.5) then imposes conditions on the grid on which
the momentum distribution is represented. Let ∆x = L/N denote the grid spacing in position
space. Then the momentum space resolution is ∆k = 2π/L and kmax = π/∆x is the maximal
momentum that can be represented on the grid. Part of the problem in calculating accurate
photoelectron momentum distributions is that the physical scales imposed by the problem
and the relations given by the FFT may not always be compatible. The size of the atom im-
poses a minimal grid spacing ∆x � 1/κ (where κ =

√
2Ip) but the momentum distribution

is most accurately represented if the maximal grid momentum is of the same order as the ex-
pected photoelectron momentum, kmax ≈ 3F0/ω. Using the relation between ∆x and kmax,
this implies F0 � κω. Depending on the species and pulse parameters, this condition may
or may not be fulfilled. To mitigate the problem, we usually switch to a larger spacing when
evaluating the source term (A.5). In the 3D case, we can additionally calculate high-resolution
slices of the momentum distribution. For example, setting pz = 0, the source term in velocity
gauge can be written as

J(p, t) =
1

(2π)2/2

∫
d2r e−ip·r

(
1

(2π)1/2

∫
dz iVCψ1(r, t)

)
. (A.9)

That is, the wave function can be first reduced to 2D by integrating out the z coordinate be-
fore it is Fourier transformed. Because the 2D Fourier transform is much faster and memory
conserving it can be done on larger grid (using zero padding) which allows us to increase the
resolution significantly.

1For the 3D calculations, we use the FFTW library which is parallelized on single nodes via OpenMP and on
multiple nodes via MPI. In 2D, we use MATLAB’s implementation of CUDA FFT on Nvidia GPUs.
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A.1.2 Obtaining the bound state

The ground state or a low-lying excited state in a potential V is frequently calculated using
imaginary time propagation. There, the short-time propagator e−∆tH0 (imaginary time step
−i∆t) is repeatedly applied. For a random initial state∣∣ψ〉 =∑

n

cn
∣∣n〉, H0

∣∣n〉 = En∣∣n〉 (A.10)

this leads to an exponential suppression of all contributions depending on the energy eigen-
value,

e−tH0
∣∣ψ〉 =∑

n

cne
−tEn

∣∣n〉. (A.11)

After renormalizing the state, all contributions with energy larger than the ground-state energy
are reduced in every step and the series converges to the ground state of H0. For a practical
calculation, the short-time propagator must be approximated which induces an error. When
using the split-operator scheme, one can show (using the Baker-Campbell-Hausdorff formula)
that this error corresponds to actually propagating the state according to a different Hamilto-
nian

Heff(∆t) = T + V +
1
24

[V + 2T , [V , T ]]∆t2 + O(∆t4). (A.12)

Since the error term contains the time step, the effective Hamiltonian is different for a real time
step ∆t and an imaginary time step −i∆t, i.e. the eigenstate is found for a different system
compared to which it is propagated for later. To minimize the effect of the error term, one
could use smaller and smaller time steps for the imaginary time propagation. Instead, we use
the power method. This can be thought of as approximating the short-time propagator as

e−∆tH0 ≈ (I− ∆tH0) (A.13)

which seems like a crude approximation but gives the exact eigenstates of H0 (unless ∆t is too
large in which case it will diverge).

When a high stability of the initial state is required, we find the ground state of the real
time evolution operator directly. To this end, note that the spectrum of e−i∆tH0 lies on the
unit circle in the complex plane as shown in Fig. A.1. By applying the power method to the
operator e−i∆tH0+i I, the iteration via repeated application of the operator will converge to the
ground state because as it has the largest eigenvalue (by absolute value). When approximating
the short-time propagator using the split-operator method, the iteration converges to a state
that is not exactly the ground state of H0 but instead of Heff. As opposed to the ground state of
H0, this state is exactly conserved in subsequent real-time propagation for finite step size ∆t.

When the real-time evolution starts in the presence of an absorbing potential, some parts
of the initial state are also absorbed. This leads to a background in the PMD that decreases the
dynamic range that can be accessed in the simulation. To mitigate this problem – for example
when both direct and rescattered electrons up to the cutoff are to be resolved – we let the
numerically obtained ground state relax in the presence of the absorber until the absorption
per unit time falls below some threshold.

A.1.3 Choice of the potential

For any single-active-electron calculation, an effective potential has to be devised. Ideally, this
potential takes the atomic nucleus (or the nuclei in case of a molecule) into account, as well as
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Figure A.1: Sketch of a typical spectrum of the short-time propagator. The position of the ground state depends on
the time step while the continuum cutoff depends on the time step and the grid spacing.

a0 a1 a2 a3 a4 a5 a6 Ip

H 1.0 0.000 0.000 0.000 0.000 0.000 0.000 0.500
Yu 0.0 1.908 1.000 0.000 0.000 0.000 0.000 0.500
He 1.0 1.231 0.662 −1.325 1.236 −0.231 0.480 0.904
Ne 1.0 8.069 2.148 −3.570 1.986 0.931 0.602 0.793
Ar 1.0 16.039 2.007 −25.543 4.525 0.961 0.443 0.580
Xe 1.0 51.356 2.112 −99.927 3.737 1.644 0.431 0.445
Ne+ 2.0 8.043 2.715 0.506 0.982 −0.043 0.401 1.505
Ar+ 2.0 14.989 2.217 −23.606 4.585 1.011 0.551 1.016

Table A.1: Parameters for the Tong-Lin potential (A.14) taken from [75].

the effect of the other electrons in a multi-electron system in an approximate way. A popular
choice is the potential

V(r) = −
a0 + a1e

−a2r + a3re
−a4r + a5e

−a6r

r
(A.14)

derived by Tong and Lin [293] using density-functional theory. Parameters for many atoms
can be found in [75] which we reprint in Table A.1 for convenience. The first parameter a0

always gives the asymptotic charge of the ion and a0 + a1 + a5 = Z adds up to the nuclear
charge.

When the TDSE (2.11) is solved with the split-operator FFT method, it is best to avoid the
the r→ 0 singularity. This can be achieved by converting the potential into a pseudo potential
according to the procedure described by Troullier and Martins in [294]. The basic idea is to
calculate the bound-state wave function

ψ(r, θ,φ) = RAE
l (r) Ylm(θ,φ) (A.15)

and introduce a cutoff radius rcl below which the radial wave function is replaced with

RPP
l (r) =

RAE
l (r), r > rcl

rl exp(p(r)), r 6 rcl
. (A.16)
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rcl c2 c4 c6 c8 c10 c12

H 1.0 −1.115 10+0 −2.486 10−1 1.957 10+0 −2.419 10+0 1.309 10+0 −2.717 10−1

Yu 1.0 −1.910 10+0 −7.295 10−1 4.237 10+0 −5.122 10+0 2.752 10+0 −5.694 10−1

He 1.5 −1.227 10+0 −3.013 10−1 6.555 10−1 −3.498 10−1 8.376 10−2 −7.736 10−3

Ne 1.5 −2.129 10+0 −6.473 10−1 1.336 10+0 −7.055 10−1 1.676 10−1 −1.537 10−2

Ar 1.5 −5.270 10−1 −3.967 10−2 −5.400 10−2 5.302 10−2 −1.520 10−2 1.503 10−3

Xe 2.0 1.423 10−1 −2.893 10−3 −6.711 10−2 2.238 10−2 −2.970 10−3 1.467 10−4

Ne+ 1.5 −2.157 10+0 −6.648 10−1 1.334 10+0 −7.026 10−1 1.668 10−1 −1.530 10−2

Ar+ 1.5 −5.237 10−1 −3.918 10−2 −6.085 10−2 5.632 10−2 −1.592 10−2 1.566 10−3

Table A.2: Parameters for the wave function (A.16) from which the pseudo potential (A.19) can be generated.

Here, p is a polynomial

p(r) = c0 + c2 r
2 + c4 r

4 + c6 r
6 + c8 r

8 + c10 r
10 + c12 r

12 (A.17)

and the seven coefficients are determined by the condition that (i) the transition between the
two wave functions at rcl is continuous up to the fourth derivative; (ii) the curvature of the
pseudo potential at the origin is zero; (iii) the norm of the wave function is conserved. To
calculate the radial wave function RAE

l (r), we solve the radial Schrödinger equation

−
1
2
d

dr
(rRAE

l (r)) +

(
l(l+ 1)

2r2 + V(r)

)
(rRAE

l (r)) = E(rRAE
l (r)) (A.18)

using an adaptive step size backwards differentiation method and match the solution at r <
10−4 a.u. to the asymptotic solution rl (l − r Z + 1) while at r > 10 a.u. we match to the large r
asymptotic solution rZ/κ−1 e−κr.

In Table A.2 we approximate some coefficients from which pseudo wave functions for the
Tong-Lin potential (A.14) can be built.2 From the pseudo wave function, the pseudo potential
is generated by inserting the pseudo wave function in the radial Schrödinger equation (A.18)
and solving for the potential, giving

VPP
l (r) =

V(r), r > rcl

El +
l+1
r p ′(r) +

p ′′(r)+(p ′(r))2

2 r 6 rcl
. (A.19)

Inserting the energy of the bound state El enforces the correct asymptotic behavior of the re-
sulting potential.

The Tong-Lin potential for helium, its pseudo potential, the ground-state wave function
and the pseudo wave function are shown in Fig. A.2. The asymptotically correct behavior of
the pseudo wave function ensures that all properties of the ionization process in length-gauge
saddle-point SFA are reproduced. Additionally, the correct asymptotic behavior of the pseudo
potential ensures that weak field static ionization rates [253, 254] are reproduced.

Also in the regime of nonadiabatic tunnel ionization, good results can be obtained. Fig.
A.3 shows the attoclock offset angle (a) and ionization yield (b) for strong-field ionization of
hydrogen in attoclock configuration (the pulse (4.32) is chosen as in Chapter 4). Here, we have

2The cutoff radius is always chosen greater than the outermost node of the radial wave function. Thus, the
pseudo wave function does not have nodes. If the bound state of the original potential is an s state, the correspond-
ing bound state of the pseudo potential is a 1s state. Similarly, considering a p state of the original potential, the
corresponding bound state of the pseudopotential is a 2p state.
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Figure A.2: (a) Tong-Lin potential (A.14) for helium and its (l = 0) pseudo potential (A.19) for cutoff radius rcl =
1.5 a.u. (b) Ground-state radial wave function rR(r) for the Tong-Lin Potential and pseudo wave function.
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Figure A.3: Attoclock offset angles (a) and ionization yield (b) for 3D hydrogen in attoclock configuration. In (a),
the PMD has been multiplied by p2 as in [78] before the angles have been obtained using the maxima of the PMD.

solved the 3D TDSE with the pseudo potential (A.19) on a grid of size 256 × 256 × 256 a.u.
and 768 points in each dimension over a time of 1000 a.u with time step 0.02 a.u. As usual, the
PMD is obtained by projecting outgoing parts of the wave function onto Volkov states. Both
the offset angles as well as the yield are in excellent agreement with the values provided in
[78] where the TDSE has been solved for the same pulse parameters but with the full Coulomb
potential.

While direct ionization can be well described using the pseudo potential, rescattering of
the electron on the parent ion causes difficulties. Fig. A.4 shows differential cross sections
calculated using positive-energy solutions of the radial Schrödinger equation (A.18) and the
method described in the appendix of [295] for both the Tong-Lin and the pseudo potential.
Good results are obtained for hydrogen and helium, but significant disagreement is found for
neon and argon.

To improve the agreement, one would have to use a different potential for each angular
momentum l. While this is easily implemented in a solver that relies on a decomposition of the
time-dependent wave function into spherical harmonics, it is not straightforward to achieve in
Cartesian coordinates. The next best thing we can do is to distinguish even and odd parity and
use an l = 0 potential for even parity and l = 1 for the odd-parity component. For neon, using
the 2s and 2p states at cutoff radius rcl = 1.5 a.u, good agreement with the original differential
cross section is obtained. In argon, however, no significant improvement is found (here, the 3s
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Figure A.4: Differential scattering cross sections at 1 a.u. momentum for various species. (a) Hydrogen. (b) Helium.
(c) Neon. (d) Argon. In all panels, the black dashed line gives the Rutherford cross section. The cross section for
the Tong-Lin potential (A.14) and the given species is shown as blue solid line. When the pseudo potential (A.19) is
used instead, the cross section marked as a red dashed line is found instead. The orange dashed line give the cross
section when different potentials are used depending on angular momentum.

and 3p states at cutoff radius rcl = 1.5 a.u were used).

A.1.4 Choice of the absorbing potential

The absorbing potential is chosen as a nth-order polynomial (usually n = 4)

VC(r) =

0 r < r0

α(r− r0)
n r > r0

. (A.20)

To determine a suitable value for α, we go to a simplified 1D setting and write a wave function
in the absorber region at momentum p using the eikonal approximation as

ψ(r) = ψ(r0) exp
(
ip(r− r0) −

1
p

∫r
r0

dr ′ VC(r
′)

)
(A.21)

such that the transmission coefficient becomes

ε =
|ψ(r0 + ∆r)|

2

|ψ(r0)|2
= exp

(
−

2α
p

(∆r)n+1

n+ 1

)
. (A.22)

This allows us to choose some desired transmission error at the relevant energy scale of the
problem (specified by p) to determine the strength of the absorbing potential as

α =
(n+ 1)p
2(∆r)n+1 (− log ε). (A.23)
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Usually 10−15 6 ε 6 10−10 and p is chosen somewhat above the cutoff momentum in a given
calculation. Then the absorber is made wide enough such that reflections become manageable.

A.2 Strong-field approximation

A.2.1 Adiabatic expansion of the saddle-point equation

To solve the SFA saddle-point equations (2.29), one can employ a Taylor-expansion of the vec-
tor potential around a given real part tr of the ionization time [296],

A(t) = A(tr) −

∞∑
n=1

E(n−1)(tr)

n!
(iti)

n. (A.24)

Here, E(n)(tr) denotes the nth derivative of the electric field. Denoting by v0 = p + A(tr) the
tunnel-exit velocity of the photoelectron, the saddle-point equation becomes(

v0 −

∞∑
n=1

E(n−1)

n!
(iti)

n

)2

+ 2Ip = 0. (A.25)

Here, we have omitted the argument tr for simplicity. The strong-field ionization problem
typically involves two different time scales provided by the Keldysh time

√
2Ip/E0 (where E0

is a characteristic field strength of the problem) and the frequency ω of the applied laser field.
Their dimensionless combination is the Keldysh parameter γ. We choose to measure real time
in terms of the frequency, tr = t̂r/ω, and imaginary time in multiples of the Keldysh time,
ti =

√
2Ip/E0 t̂i. Then, a dimensionless electric field can be written as E(n) = E0ω

n Ê(n).
Also introducing a dimensionless velocity v0 =

√
2Ipv̂0 and inserting these definitions into

(A.25), the saddle-point equation becomes3

(
v̂0 −

∞∑
n=1

γn−1Ê(n−1)

n!
(it̂i)

n

)2

+ 1 = 0. (A.26)

Including terms up to first order in γ,(
v̂0 − it̂iÊ +

1
2
γ t̂2
i Ê ′
)2

+ 1 = 0. (A.27)

Defining the auxiliary velocity

ŵ0 = v̂0 +
1
2
γ t̂2
i Ê ′ (A.28)

and separating real and imaginary part, we find

ŵ0 · Ê = 0 (A.29)

and
ŵ2

0 − t̂
2
iÊ

2 + 1 = 0. (A.30)

3Note that the Keldysh parameter appears in different order compared to the imaginary time. Therefore, an
expansion to fixed order in imaginary time, as performed for example in [297], is not equivalent to an expansion to
fixed order in the Keldysh parameter. In particular, in the adiabatic limit, the Keldysh parameter goes to zero but
the imaginary time does not have to.
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This suggests the general procedure to choose any auxiliary velocity ŵ0 that satisfies (A.29),
then solving (A.30) for the imaginary time and find the true initial velocity v̂0 from (A.28). At
γ→ 0 the difference between the two velocities vanishes and the conditions

v0 · E = 0, t2
i =

2Ip + v2
0

E2 (A.31)

are retrieved. This is the foundation of the zero-transverse-velocity assumption in SCTS and
related models (see Section 2.6).

The effect of the first-order correction (A.28) is essentially a modification of the initial ve-
locity in the direction of E ′. In linear polarization (E ‖ E ′), this leads to an initial velocity of
the photoelectron in tunneling direction [95, 98, 204]. In circular polarization (where E ⊥ E ′),
it leads to a modification of the velocity perpendicular to the tunneling direction.

A.2.2 Adiabatic limit of the action

Using the same expansion as above, the imaginary part of the action (2.24) that determines the
ionization rate, can be evaluated in the adiabatic limit. We define a scaled (imaginary part of
the) action

Im Ŝ =

(
(2Ip)3/2

E0

)−1

ImS. (A.32)

Then we can write

2Im Ŝ = −t̂i + Im
∫ t̂i

0
(−idt̂)

(
v̂0 − it̂Ê +

1
2
γt̂2Ê ′ + O(γ2)

)2

= −t̂i −

∫ t̂i
0
dt̂
(
v̂2

0 − t̂
2Ê2 + γt̂2Ê ′ · v̂0 + O(γ2)

)
= −t̂i(1 + v̂2

0) +
1
3
t̂3
iÊ

2 −
1
3
γt̂3
iÊ
′ · v̂0 + O(γ2).

(A.33)

Inserting the lowest-order solution for the saddle point,

2Im Ŝ = −
2(1 + v̂2

0)
3/2

3Ê
− γ

(1 + v̂2
0)

3/2

3Ê3
Ê ′ · v̂0 + O(γ2). (A.34)

For γ → 0, the exponent of the ADK rate (2.44) is retrieved. The first-order correction leads
to an offset of the maximum position in the photoelectron momentum distribution. It can be
found by maximizing (A.34) subject to the constraint v̂0 · Ê = 0 and is given by

∆v̂0 = −
γ

6Ê2

(
Ê ′ −

Ê ′ · Ê
Ê2

Ê
)

. (A.35)

The term in parentheses is the component of Ê ′ perpendicular to the electric field Ê. In linear
polarization, the first-order correction vanishes because Ê ‖ Ê ′. In circular polarization, on the
other hand, Ê ⊥ Ê ′ and the correction has observable consequences. To evaluate it, we go back
to atomic units. There, the velocity offset becomes

∆v0 = −
Ip

3E2

(
Ė −

Ė · E
E2 E

)
. (A.36)
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For circular polarization A(t) = −E0/ω (cos(ωt), sin(ωt)), the correction evaluates to [260,
298–300]

|∆v0| =
ωIp

3E0
(A.37)

and it points in the direction of the negative vector potential. Therefore, it leads to a higher
mean photoelectron energy compared to the adiabatic case [301].

A.2.3 Angular momentum states

Consider an initial state carrying angular momentum (l,m) with asymptotic behavior

ψ0(r)→ Arν−1 e−κr Ylm(r̂), ν = Z/κ. (A.38)

In saddle-point approximation where the SFA matrix element (2.25) is evaluated close to the
pole, it will include a term eimφ [143] where φ is the tunneling angle which (for a field in the
xy plane) is given by

tanφ =
py +Ay(ts)

px +Ax(ts)
. (A.39)

Since φ is complex, the absolute value |eimφ|2 = e−m 2Imφ is different from one. This leads to
a modification of the signal depending on the magnetic quantum numberm of the initial state
[260, 302]. Here, both the yield as well as the expected photoelectron energy are modified. In
the adiabatic limit γ→ 0, the tunneling angle simplifies to

tanφ =
vy − itiEy
vx − itiEx

(A.40)

where vx = px + Ax and vy = py + Ay. Here, all fields are evaluated at the real part tr of the
saddle-point time ts. The imaginary part of the tunneling angle is given by

2Imφ = log

√
(vx − tiEy)2 + (vy + tiEx)2

(vx + tiEy)2 + (vy − tiEx)2 =
2 v · E⊥√

2Ip E
+ O(v3) (A.41)

where E⊥ = (−Ey,Ex, 0). Thus, the signal (restricting ourselves to the exponential part) is
determined by

2ImS−m 2Imφ = −
2(2Ip)3/2

3E
−

√
2Ip v2

E
−

2m v · E⊥√
2Ip E

+ O(v3) (A.42)

and the maximum is found at
v0 ≈ −

mE⊥
2Ip

. (A.43)

Noting that r0 = −IpE/E2 can be thought of the position of the tunnel exit, this can be put in
the suggestive form

Lexit = r0 × v0 =

(
−
IpE
E2

)
×
(
−
mE⊥
2Ip

)
=
m

2
ez, (A.44)

indicating that half the angular momentum of the initial state “survives” the static tunneling
process.
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A.2.4 Explicit solution of the saddle-point equation

Consider the saddle-point equation (2.29)

1
2
(p + A(ts))

2 + Ip = 0 (A.45)

with the vector potential A evaluated at the saddle-point time ts. Decomposing A(ts) into real
and imaginary part, this can be written as

(p + Re A(ts))
2 = (Im A(ts))

2 − 2Ip,

(p + Re A(ts)) · Im A = 0.
(A.46)

The first equation implies that the real part of initial velocity at the complex ionization time
p + Re A(ts) lies on a circle of radius

√
(Im A(ts))2 − 2Ip. The second equation implies that it

also lies on a line perpendicular to Im A(ts). The solution of both the real and imaginary part
of the saddle-point equation is given by the two intersections, so the final momentum is given
by

p = −Re A(ts)±
Im A⊥(ts)
|Im A(ts)|

√
(Im A(ts))2 − 2Ip. (A.47)

Here, Im A⊥ is perpendicular to Im A and has the same length. For a given Re ts the imaginary
part Im ts must be large enough for the square root to be real. The expression can be seen as a
generalization of the simple man’s expression

p = −A(tr)±
E⊥(tr)
|E(tr)|

v (A.48)

which is retrieved from (A.47) in the adiabatic limit where we can replace A(ts) = A(tr) −

itiE(tr) and ti =
√

2Ip + v2/E(tr). Here, v is the initial velocity perpendicular to the instanta-
neous field direction.

A.3 Stationary points of the full Dyson integrand

To analyze the structure of the saddle points, it is useful to measure the imaginary time in
units of the Keldysh time, t̂i = ti/tK, and set α = E0/(2Ieff

p )3/2. With these definitions, the
saddle-point condition (4.13) becomes

f̂(t̂i) = 2α(1 − t̂2
i) − t̂i(1 − t̂2

i)
2 + 4t̂2

iα(ν+ 2) = 0. (A.49)

For α→ 0, the two solutions approach t̂(0)
i → 0 and t̂(1)

i → 1. To find an approximate solution
in the weak field case, we write t(0)

i as a power series in α and t(1)
i as a power series in

√
α.

Inserting the series expansions into (A.49) and solving order by order for the coefficients, we
find

t̂
(0)
i = 2α+ O(α3), t̂

(1)
i = 1 −

√
α(ν+ 2) − α/2 + O(α3/2) (A.50)

from which (4.14) is obtained by reinserting t̂i and α in terms of their definition.
To find the critical field strength where the two solutions merge, we have to solve f̂(t̂i) = 0

and f̂ ′(t̂i) = 0 for αcrit and tcrit
i , given ν. The solutions define two functions g and h such that

αcrit = g(ν), t̂crit
i = h(ν). (A.51)
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Although their explicit form is quite cumbersome, they can be represented accurately by their
(1, 1) Padé approximants at ν = 0 given by

g(ν) =
4(10 + ν)

27(15 + 4ν)
, h(ν) =

75 + 8ν
225 + 54ν

. (A.52)

The result (4.15) in the main text can be obtained by reinserting the definitions of α and t̂i into
(A.51).

A.4 Analytical R-matrix theory

A.4.1 Correction after the end of the laser pulse

For a long-range potential V(r) ' −Z/r, the ARM correction to the action (2.43) after the end
of the laser pulse must also be considered. It can be evaluated in closed form [146] and one
finds ∫∞

T

dt ′ V(rL(t ′; p, ts)) =
∫∞
T

dt
−Z√

(r + p (t− T))2
=
Z

p
log(r · p + r p). (A.53)

Here, r = rL(T ; p, ts) is the position of the photoelectron at time T . The integral is actually
divergent but the divergent part is always real and depends only on the final momentum and
not on the position. It therefore does not affect the observable spectrum and can be omitted.
It is the same expression also found in the asymptotic expression for the Coulomb scattering
state [135]

ψ
(−)
p (r) ' eip·r eiZ/p log(r·p+rp) as r+ r · p/p→∞. (A.54)

A.4.2 Boundary matching for soft-core potentials

The lower limit tκ = ts− ia0/κ in the integral (2.43) must be chosen to fit the under-the-barrier
contribution of the Coulomb correction of the action to the asymptotic tail of the bound-state
wave function [93], i.e.

(κa)Z/κ = exp
(
−

1
κ

∫a
a0

dz
−Z√
z2 + α

)
. (A.55)

The integral can be evaluated to∫a
a0

dz
1√
z2 + α

= log

 a+
√
a2 + α

a0 +
√
a2

0 + α

 (A.56)

such that condition (A.55) becomes

(κa)Z/κ = exp

Z
κ

log

 a+
√
a2 + α

a0 +
√
a2

0 + α

 . (A.57)

In the asymptotic region
√
a2 + α ' a, so a cancels and we find

κ =
2

a0 +
√
a2

0 + α
⇒ a0 =

1
κ
−
ακ

4
. (A.58)

Then the lower limit becomes
tκ = ts − iκ

−2 + iα/4. (A.59)

For α = 0, the familiar result for the Coulomb potential is retrieved.
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A.4.3 Momentum shift in the attoclock

In the adiabatic limit γ→ 0, the momentum shift

∆p = −

∫T
tr

dt ′∇V(Re rL(t ′; p, ts)) (A.60)

from (5.36) can be evaluated exactly.4 Using the expansion (A.24) for γ → 0 and v0 = 0, the
position of the photoelectron at tr is

Re rL(tr; p, ts) = Re
∫tr
ts

dt (p + A(t)) = Re
∫tr
ts

dtA(t) = −
Ip E(tr)
E(tr)2 . (A.61)

Here, we have used the fact that ti =
√

2Ip/E(tr) according to (A.31). After the tunnel exit,
the photoelectron is accelerated with constant acceleration such that for t > tr,

Re rL(t; p, ts) = −
Ip E(tr)
E(tr)2 −

1
2

E(tr)(t− tr)2. (A.62)

Inserting this into (A.60) and assuming a Coulomb-potential for V = −1/r after the tunnel exit,
the integral can be evaluated analytically. The result is

∆p =
πE(tr)
(2Ip)3/2 . (A.63)

For the bicircular attoclock, E ‖ ey while the px position of the maximum is given by pmax
x ≈

Epeak/(2ω). Thus, the relative shift becomes

∆py

pmax
x

≈ 2πω
(2Ip)3/2 . (A.64)

For the circular attoclock, the maximum is located at radial momentum pr ≈ E0/ω and one
finds [234, 235]

∆φ ≈ πω

(2Ip)3/2 . (A.65)

A.4.4 Semiclassical action

We consider the action

SSC(p, T ; r, t) = ṙN(t) · r +
∫T
t

dt ′
{

1
2

ṙN(t ′)2 + V(rN(t ′)) − rN(t ′) ·∇V(rN(t ′))
}

(A.66)

from the semiclassical propagator (2.48). Here, rN(t ′) describes a Newtonian trajectory

r̈N(t ′) = −∇V(rN(t ′)) − E(t ′), rN(t) = r, ṙN(T) = p (A.67)

that starts at initial position r at time t and ends with final momentum p at time T . Inserting
the electron velocity

ṙN(t ′) = p + A(t ′) +

∫T
t ′
dt ′′∇V(rN(t ′′)), (A.68)

4The Keldysh parameter γwas originally thought of describing the time associated with tunneling compared to
the period of the field. By studying the dependence of ∆p on the upper limit T in (A.60), one can show that γ also
describes the time in which a given percentage of the attoclock shift is acquired, relative to the period of the field.
In the adiabatic limit γ → 0, the attoclock shift is acquired in a time much shorter than the field period such that
the direction of the field can be assumed to be constant.
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The kinetic part of the action (A.66) evaluates to

ṙN(t) · r +
∫T
t

dt ′
1
2

ṙN(t ′)2

= (p + A(t)) · r +
∫T
t

dt ′
1
2
(p + A(t ′))2

+ r ·
∫T
t

dt ′∇V(rN(t ′)) +
∫T
t

dt ′ (p + A(t ′)) ·
∫T
t ′
dt ′′∇V(rN(t ′′))

+
1
2

∫T
t

dt ′

(∫T
t ′
dt ′′∇V(rN(t ′′))

)2

.

(A.69)

In the last part of the action(A.66), we can use partial integration to get

−

∫T
t

dt ′ rN(t ′) ·∇V(rN(t ′))

= rN(t ′) ·
∫T
t ′
dt ′′∇V(rN(t ′′))

∣∣∣∣∣
T

t

−

∫T
t

dt ′ ṙN(t ′) ·
∫T
t ′
dt ′′∇V(rN(t ′′)).

(A.70)

Here, the first term is equal to

rN(t ′) ·
∫T
t ′
dt ′′∇V(rN(t ′′))

∣∣∣∣∣
T

t

= −r ·
∫T
t

dt ′∇V(rN(t ′)) (A.71)

while the second term can be written as

−

∫T
t

dt ′ ṙN(t ′) ·
∫T
t ′
dt ′′∇V(rN(t ′′))

= −

∫T
t

dt ′ (p + A(t ′)) ·
∫T
t ′
dt ′′∇V(rN(t ′′)) −

∫T
t

dt ′

(∫T
t ′
dt ′′∇V(rN(t ′′))

)2

.

(A.72)

The two contributions (A.71) and (A.72) cancel exactly the second line on the r.h.s. of Eq. (A.69)
while adding to the term in the last line, but with a different sign. Leaving the Coulomb-phase
term in (A.66) untouched, the semiclassical action becomes

SSC(p, T ; r, t) = (p + A(t)) · r +
∫T
t

dt ′
1
2
(p + A(t ′))2

−
1
2

∫T
t

dt ′

(∫T
t ′
dt ′′∇V(rN(t ′′))

)2

+

∫T
t

dt ′ V(rN(t))
(A.73)

which is equal to (5.45) in the main text.

A.5 Static ionization rates

For a bound state in D = 1, 2, 3 dimensions with asymptotic behavior

ψ0(r)→
B√
2π
rα e−κr, α =

Z

κ
−
D− 1

2
, (A.74)
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the weak-field static ionization rate is given by5

ΓD(B,Z) = |B|2
( κ

2π

)(3−D)/2
(

2κ2

E

)2Z/κ−(D−1)/2

e−2κ3/(3E). (A.75)

Although the exponential part is the same in all dimensions, the prefactor and thus the rate
depends on the dimension. The choice of dimension can be compensated for by altering Z.
For a 1D potential with asymptotic nuclear charge Z1 to have the same field-strength scaling
of the rate as a 3D potential with charge Z3, we require that the exponent in the prefactor be
the same, i.e.

2Z3

κ
− 1 =

2Z1

κ
⇒ Z1 = Z3 −

κ

2
. (A.76)

For a 2D potential, the condition reads

2Z3

κ
− 1 =

2Z2

κ
−

1
2
⇒ Z2 = Z3 −

κ

4
. (A.77)

In particular, for a 1D model potential to have the same field-strength scaling of the rate as
hydrogen, the asymptotic nuclear charge must be Z1 = 1/2. For a 2D model potential, the
asymptotic nuclear charge must be Z2 = 3/4.

A similar result was obtained using a completely different approach in [306, 307]. There,
a 1D effective potential for hydrogen was created as follows. From the ground-state wave
function ψ0(r) = e−r/

√
π, the density e−2r/π is obtained. Projecting this density onto the z

axis, the one-dimensional density (|z|+1/2)e−2|z| is found from which a one-dimensional wave
function ψ0(z) =

√
|z|+ 1/2 e−|z| is generated. Then, by inversion of the 1D time-independent

Schrödinger equation, a potential is found. It is given by

V1(z) = −
3 + 4|z|

2(1 + 2|z|)2 (A.78)

and, in accordance with the argument above, has asymptotic nuclear charge 1/2.
This agreement is quite general. Generating a density from the asymptotic expression

(A.74) in 3D and projecting it onto the z axis, we find for large |z|

ρ1(z) '
∫∞

0
dρρ

(
B3

(√
ρ2 + z2

)Z3/κ−1
e−κ
√
ρ2+z2

)2

'
(
B3 e

−κ|z| |z|Z3/κ−1/2
√

2κ

)2

. (A.79)

This asymptotic behavior matches the 1D asymptote (A.74) when Z1 = Z3 − κ/2 as above. For
the prefactor, we find

B3√
2κ

=
B1√
2π

⇒ B1 =

√
π

κ
B3. (A.80)

Inserting the prefactor B1 and the corrected charge Z1 into the expression for the rate (A.75),
we find Γ1(B1,Z1) = Γ3(B3,Z3)/2, i.e. the field-strength scaling of the rate turns out correct, but

5For the ground state of hydrogen (D = 3, Z = 1, κ = 1, B =
√

2) the expression was already given by Landau
and Lifshitz [303]. For a short-range potential (Z = 0), the exact same expression can be obtained from the strong-
field approximation in saddle-point approximation in the adiabatic limit. The general 3D expression was derived in
[3, 5, 304]. In general, the derivation makes use of a separation of the Schrödinger equation in parabolic coordinates
where the asymptotic tail of the wave function in the tunneling region is matched to a WKB solution, see [253]. For
the 1D and 2D case, the derivation of the 3D case can be repeated almost unchanged. The 1D expression is also
provided in [305].
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the rate is underestimated by a constant factor of 2. Similarly, for a 2D model potential we find

ρ2(ρ) '
∫∞
−∞ dz

(
B3√
2π

(√
ρ2 + z2

)Z3/κ−1
e−κ
√
ρ2+z2

)2

'
(
B3 e

−κρ ρZ3/κ−3/4
√

2(πκ)1/4

)2

. (A.81)

This asymptotic behavior matches the 2D asymptote (A.74) when Z2 = Z3 − κ/4 as above. For
the prefactor, we find

B3√
2(πκ)1/4

=
B2√
2π

⇒ B2 =
(π
κ

)1/4
B3. (A.82)

Inserting the prefactor B2 and the corrected charge Z2 into the expression for the rate (A.75), we
find Γ2(B2,Z2) = Γ3(B3,Z3)/

√
2, i.e. in a 2D density-based potential, the rate is underestimated

by a constant factor of
√

2.
To fix the error in the rates, as well as extend the 3D/2D or 3D/1D correspondence beyond

the weak-field case, a current-density based potential could be used instead. Solving the time-
independent Schrödinger equation in three dimensions in a static external electric field, we
obtain the ionizing Siegert state ψ3 with complex energy according to the procedure described
in [308]. From the Siegert state, a density n3 = |ψ3|

2 as well as a current density j3 = Imψ3∇ψ3

is found and projected onto the symmetry axis to obtain quantities n1 and j1. Then, a 1D
(ionizing) wave function ψ1 can be written as [309]

ψ1(z) =
√
n1(z) exp

(
i

∫z
0
dz ′

j1(z
′)

n1(z ′)

)
. (A.83)

Inverting the 1D time-independent Schrödinger equation using this state and the same com-
plex energy value as for the 3D Siegert state, a (real) potential V1 is obtained.
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Figure A.5: Current-density based potentials. (a) Field strength E = −0.05 a.u. (b) Field strength E = −0.10 a.u. In
both panels, the orange line shows V1(z) + E · z where V1 is the density-based potential (A.78). The blue line gives
the current-density based potential for the given field strength. The green line indicates the Stark-shifted ionization
potential (real part of the complex energy eigenvalue). The gray dashed line shows the frequently used soft-core
potential −1/

√
z2 + 2 + E · z for reference.

This is shown in Fig. A.5. As expected, the current-density based potential is smaller com-
pared to the density-based potential in the tunneling region, reflecting its ability to provide
a larger ionization rate. To make use of the potential in a time dependent calculation, a vi-
able approach could be to calculate it for various field strengths and then make an adiabatic
approximation where the potential at time t is given by the current-density based potential
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of field strength E(t). Although the current-density based potential corresponds to Z = 1/2
when the field is turned off, it can be expected to give meaningful results for observables such
as Coulomb momentum shifts. The potential is derived from the exact 3D Siegert state so for a
static field it must describe the Coulomb attraction properly. This suggests that the asymptotic
(large z) behavior of the current-density based potential (in the presence of a field E < 0) is
−0.5/z+E · z only in the barrier region, but beyond the barrier it changes to −1/r+E · z+ c(E)
with a field-dependent offset c(E). The purely density-based potential, on the other hand,
always corresponds to Z = 1/2 and cannot be expected to take Coulomb effects beyond the
barrier into account properly.
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