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Abstract  I 

 

Abstract 

Apple replant disease (ARD) negatively affects the production in nurseries and orchards 

worldwide. A biotic cause of the disease is most likely since soil disinfection can restore plant 

growth. Fungi have appeared to contribute to the complex of biotic factors, but up to now the 

actual cause of the disease remains unknown. Further, environmentally friendly and practically 

applicable mitigation strategies are missing. Fungal root endophytes were isolated in two 

central experiments of the ORDIAmur consortium. Dark septate endophytes 

(Leptodontidium spp.) were frequently isolated from apple roots. An abundant occurrence of 

Nectriaceae fungi (Dactylonectria torresensis and Ilyonectria robusta) was found in ARD 

roots. Reference sites displayed a different characteristic fungal community. In roots grown in 

irradiated soil, a reduction of the number of isolated fungi and a changed composition of the 

fungal community was found. To investigate the effect of fungal endophytes on apple plants a 

quick and soil-free bio test in Petri dishes was developed using perlite. Inoculated fungi isolated 

from ARD roots induced neutral (Plectosphaerella, Pleotrichocladium, and Zalerion) to 

negative (Cadophora, Calonectria, Dactylonectria, Ilyonectria, and Leptosphaeria) plant 

reactions. After re-isolation, most of the Nectriaceae isolates were confirmed as pathogens. 

Microscopic analyses of ARD-affected roots revealed necroses caused by an unknown fungus 

that forms cauliflower-like (CF) structures in diseased cortex cells. Two extraction methods, 

Harris Uni-Core punch and laser microdissection, were applied to further identify the fungus 

by PCR. Different Nectriaceae species were identified which form intracellular CF structures 

during the infection process. Both extraction methods can be used to identify also yet 

unculturable fungi from selected root areas of interest and help to avoid time-consuming 

isolations. Mycoviruses can influence their fungal hosts in several ways and may alter virulence 

(hyper- or hypovirulence) or toxin production. A hypovirulence-associated mycovirus has the 

potential to act as a sustainable control of fungal plant pathogens. Here, the sequence of a novel 

dsRNA virus originating from Dactylonectria torresensis is described, named Dactylonectria 

torresensis alternavirus 1 (DtAV1), which is a putative member of “Alternaviridae”. In this 

work, Nectriaceae were demonstrated to be involved in ARD. Further investigations of 

microorganism and plant interactions are needed to clarify the cause of the disease, which will 

then help to develop targeted control strategies. 
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Zusammenfassung 

Die Apfel-Nachbaukrankheit (engl. apple replant disease; ARD) beeinträchtigt die Produktion in 

Baumschulen und Erwerbsobstanlagen weltweit. Da durch Bodendesinfektionen das Pflanzenwachstum 

wiederhergestellt werden kann, ist eine Beteiligung von biotischen Faktoren an der komplexen 

Krankheitsursache höchst wahrscheinlich. Insbesondere Pilze scheinen dazu einen Beitrag zu leisten, 

aber bis heute ist die tatsächliche Ursache der Krankheit unbekannt. Außerdem fehlen 

umweltfreundliche und praktisch anwendbare Kontrollstrategien. In zwei Zentralexperimenten wurden 

pilzliche Wurzel Endophyten isoliert. Dunkle, septierte Endophyten (Leptodontidium spp.) wurden 

häufig aus Apfelwurzeln isoliert. Außerdem konnte ein vermehrtes Vorkommen von Nectriaceae 

(Dactylonectria torresensis und Ilyonectria robusta) in Wurzeln aus ARD-Böden nachgewiesen 

werden. Verschiedene Referenzstandorte zeigten eine jeweils charakteristische Pilzgemeinschaft. Bei 

Wurzeln, die in bestrahltem Boden wuchsen, wurde eine Reduktion der Anzahl isolierter Pilze und eine 

veränderte Zusammensetzung der Pilzgemeinschaft festgestellt. Um den Einfluss von pilzlichen 

Endophyten auf Apfelpflanzen zu untersuchen, wurde ein bodenfreier Schnelltest in Petrischalen unter 

Verwendung von Perlit entwickelt. Inokulierte Pilze, welche aus ARD-Wurzeln isoliert wurden, führten 

zu neutralen (Plectosphaerella, Pleotrichocladium und Zalerion) bis negativen (Cadophora, 

Calonectria, Dactylonectria, Ilyonectria und Leptosphaeria) Pflanzenreaktionen. Nach Re-Isolierung 

konnten die meisten Nectriaceae-Isolate als Pathogene bestätigt werden. Mikroskopische Analysen von 

ARD-Wurzeln zeigten Nekrosen, die durch einen unbekannten Pilz verursacht wurden. Dieser bildet 

blumenkohlähnliche (engl. cauliflower-like, CF) Strukturen in erkrankten Rindenzellen. Zwei 

Extraktionsmethoden, Harris Uni-Core-Stanzung und Lasermikrodissektion wurden angewendet, um 

dann den Pilz mittels PCR weiter zu identifizieren. Dabei wurden verschiedene Nectriaceae-Spezies 

identifiziert, die während des Infektionsprozesses intrazelluläre CF-Strukturen bilden. Beide 

Extraktionsmethoden können dazu verwendet werden, auch noch nicht kultivierbare Pilze aus 

ausgewählten Wurzelbereichen zu identifizieren, und sie helfen zeitaufwändige Isolationen zu umgehen. 

Mykoviren können ihre pilzlichen Wirte auf verschiedene Weise beeinflussen und zum Beispiel die 

Virulenz (Hyper- oder Hypovirulenz) oder Toxinproduktion verändern. Ein Hypovirulenz-assoziiertes 

Mycovirus könnte als nachhaltige Bekämpfungsstrategie von pilzlichen Pflanzenpathogenen fungieren. 

Es wird die Sequenz eines neuen dsRNA-Virus beschrieben, welches aus Dactylonectria torresensis 

stammt und den Namen Dactylonectria torresensis Alternavirus 1 (DtAV1) trägt. Das Mycovirus ist der 

Familie "Alternaviridae" zuzuordnen. In dieser Arbeit wurde gezeigt, dass Nectriaceae an der 

Entwicklung von ARD beteiligt sind. Weitere Untersuchungen zur Interaktion von Mikroorganismen 

und Pflanzen sind nötig, um die Ursache der Krankheit aufzuklären. Letzteres hilft dann auch bei der 

Entwicklung von gezielten Bekämpfungsstrategien. 

Schlagworte: Nectriaceae, Bio Test, Mykovirus 
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1. General Introduction 

1.1 Apple production 

The cultivated apple, Malus domestica Borkh., is a worldwide important fruit crop. In 2017, the 

global production amounted 83.1 million t, 50 % of which were produced in China (FAOSTAT 

2019). In Germany, apple is the most important fruit crop with a total consumption of 21 kg per 

person per year (Henrich 2019). The production in Germany was in 2012 800.000 to 1 million t 

of apple on an area of appr. 32.000 ha (Garming et al. 2015). Another important apple growing 

area for fresh market production in the EU is located in Italy. There apples are produced on an 

area of 60.000 ha with yields of appr. 2 million t per year. 

The development of improved management strategies, increased planting densities and selected 

breeding programs for rootstocks and cultivars have intensified the apple production during the 

last decades (Robinson 2011). The average yields of an orchard can vary according to orchard 

localization and cropping system by around 30-40 t per ha (Garming et al. 2015). The planting 

of dwarfing rootstocks is a key factor in today's intensive apple cultivation. Especially the 

Malling series including rootstocks M9 and M26 is of worldwide importance (Volk et al. 2015). 

Already after 4 years, high density orchards can attain full productivity. By grafting scions on 

dwarfing rootstocks, the time to flower is reduced and plants invest more resources in fruit 

production instead of vegetative growth (Fazio et al. 2014). However, next to bacterial fire 

blight and collar rot these rootstocks are also prone to apple replant disease, which limits the 

productivity and therefore the possibility of cultivation in some areas (Robinson 2011). 

Additionally, dwarfing rootstocks have a limited economic lifespan of 12-16 years so that 

orchards need to be replanted more frequently (Volk et al. 2015). 

Apple rootstock propagation is carried out in tree nurseries. The rootstocks are produced from 

rooted vegetative cuttings by layering or stooling (St. Laurent et al. 2010; Volk et al. 2015). 

Full production is reached after two years and can last for 15-25 years. Afterwards, rootstock 

liners are transplanted and grafting or budding of scions on the rootstock is performed (Volk et 

al. 2015). By the fact that production sites are often limited, also in tree nurseries replanting 

may occur. New, healthy field sites are not always available, since production often takes place 

in specialized growing areas and there is high competition for virgin leased land with other 

producers (e.g. plant production for bioenergy production) (Winkelmann et al. 2019). The 

replanting negatively affects tree quality like tree height, trunk diameter and average leaf area 

(Kviklys et al. 2008). 
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Apple replant disease is a crucial factor in apple plant production in tree nurseries as well as for 

the productivity of apple orchards. 

 

1.2 Apple replant disease 

1.2.1 Symptoms and causes 

Apple replant disease (ARD) is a worldwide problem and develops when apple plants are 

replanted at the same site (Mai and Abawi 1981). Recently, ARD was defined as “harmfully 

disturbed physiological and morphological reaction of apple plants to soils that faced alterations 

in their (micro-) biome due to previous apple cultures” (Winkelmann et al. 2019). 

Characteristics of ARD are the specificity for apple or closely related crops, decades of 

persistence in the soil, and immobility (Hoestra 1968; Klaus 1939; Savory 1966). Further, this 

phenomenon is reversible: Plantation in virgin soil or sterilization of the soil can restore plant 

growth (Mai and Abawi 1981; Mazzola 1998; Winkelmann et al. 2019; Yim et al. 2013). 

Plants grown in ARD affected soils exhibit an uneven growth, delayed yields and poor fruit 

quality. In addition, shoot symptoms are stunting, shortened internodes and rosetted leaves. 

Also, the root system is severely affected and displays discolored roots, a reduction of 

functional root hairs and destructions of outer cell layers (Caruso et al. 1989; Hoestra 1968; 

Mai and Abawi 1981; Mazzola 1998; Mazzola and Manici 2012; Savory 1966). Already after 

two weeks of culture in replant affected soil, root tissues show blackening, necrosis and a 

reduction of cell vitality (Grunewaldt-Stöcker et al. 2019). All these symptoms result in a loss 

of productivity and can significantly affect the profitability of an orchard (Geldart 1994; van 

Schoor et al. 2009). 

Molecular and physiological studies showed that phenolic compounds are accumulated in ARD 

roots and may act as antioxidants linking to oxidative stress (Henfrey et al. 2015). Additionally, 

genes of the secondary metabolism are upregulated in plants grown in ARD soil and 

phytoalexins (biphenyls and dibenzofurans) could be detected in high concentrations in the 

roots (Weiß et al. 2017a; Weiß et al. 2017b). The composition of root exudates has been proven 

to be genotype specific and can modulate the soil microbial community (Leisso et al. 2017; 

Winkelmann et al. 2019). 

Soil disinfection experiments with broad spectrum biocides (e.g. Chloropicrin, Methyl Bromide 

or Dazomet), heat treatment and gamma irradiation can significantly improve plant growth, 

thereby linking to a biotic cause of the disease (Hoestra 1968; Jaffee et al. 1982; Mai and Abawi 
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1981; Mazzola 1998; Yim et al. 2013). Fungi are frequently mentioned as causal agents 

including Cylindrocarpon-like fungi and Rhizoctonia species. Further reported agents are 

bacterial genera like Pseudomonas and Bacillus, actinobacteria as well as oomycetous species 

of Pythium and Phytophthora (Manici et al. 2013; Manici et al. 2018; Mazzola 1998; Mazzola 

and Manici 2012; Otto et al. 1994; Tewoldemedhin et al. 2011a; Tewoldemedhin et al. 2011b; 

Utkhede et al. 1992). Nematodes, like plant-parasitic Pratylenchus penetrans, can enhance 

symptom development, but seem to have a minor role in the cause of the disease (Hoestra 1968; 

Mazzola 1998; Mazzola and Manici 2012). However, they might be involved by interacting 

directly or indirectly with other soil microbes (Kanfra et al. 2018; Winkelmann et al. 2019). A 

further difficulty is that many organisms have been described as the cause of ARD without 

scientific proof and results may differ from orchard to orchard and region to region (Mazzola 

and Manici 2012). ARD seems to be more of a disease complex rather than being based on 

independently acting, single pathogens. Environmental conditions such as climate and soil type 

are further components in this complex (Winkelmann et al. 2019), which could be an additional 

reason for the variation in observations for different sites (Mazzola and Manici 2012). 

Nevertheless, it is common to all ARD locations that the bacterial and fungal communities in 

the soil and rhizosphere undergo significant changes during apple cultivation (Caputo et al. 

2015; Franke-Whittle et al. 2015; Rumberger et al. 2007). Toxic compounds possibly 

originating from root exudates might create long-lasting shifts in the soil microbial community 

rather than being biologically active for decades. Overall, the ARD soil - plant system seems to 

be in dysbiosis, and despite of many years of research, the exact etiology of ARD has not yet 

been discovered (Winkelmann et al. 2019). 

1.2.2 Soil and abiotic factors 

Frequent replanting, as it may be practiced in nurseries, leads to a faster induction of ARD in 

comparison to a permanent monoculture due to the repeated mixing of the soil (Winkelmann et 

al. 2019). Further, ARD has been described as a local phenomenon that could be detected in 0-

30 cm depth of the soil (Hoestra 1968). In addition, the author showed that ARD cannot be 

washed off or be induced by soil leachates: ARD soil was filled in glass tubes and leached with 

water several times. The leachates were transferred to steamed ARD soil and were planted with 

seedlings after 6 weeks. The steamed soil with amended leachates did not show any growth 

reduction while the plants were still stunted after cultivation in the leached ARD soil (Hoestra 

1968). Additionally, split root experiments have shown that ARD is not systemic and the 

mobility of causing agents seems to be restricted to roots directly in contact with the affected 

soil (Lucas et al. 2018). 
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Mazzola (1998) listed some abiotic factors that can contribute to tree growth problems, which 

are a low or high pH, phytotoxic compounds, an unbalanced soil nutrition, heavy metal 

contaminations, a poor soil structure and drainage, and cold or drought stress. But these abiotic 

factors are not likely to be the cause of ARD since this disease has a very specific nature and 

other non-rosaceous plant species are not impaired when cultivated in the affected soil. 

However, the soil properties mentioned above can further contribute to poor tree growth 

(Mazzola and Manici 2012). 

1.2.3 Management strategies 

Soil disinfection with broad spectrum biocides like Basamid (Dazomet) is highly efficient (Yim 

et al. 2013; Yim et al. 2017). The active substance is converted to gaseous methyl 

isothiocyanate, which is toxic to almost all soil organisms. Recently, a new registration for 

Basamid was given in Germany until May 2024 among others for the treatment of soil fungi, 

insects, nematodes and weeds in pome fruit (Certis 2019). However, since the use of Basamid 

still poses a potential risk to the environment, there is an urgent need for sustainable alternatives 

to managing replant disease (Winkelmann et al. 2019). The classical procedure of crop rotation 

is not applicable for ARD sites due to the long persistence in the soil. Further, the availability 

of healthy sites is very restricted in often specialized growing areas (e.g. Trentino in Italy or 

Bodensee region in Germany) (Garming et al. 2015; Winkelmann et al. 2019). Planting new 

trees in the former driving lanes may not be an option for all orchards due to construction 

systems, hail nets or irrigation systems (Kelderer et al. 2016; Leinfelder and Merwin 2006; 

Winkelmann et al. 2019). A physical method to overcome ARD is soil steaming. However, it 

is very time-consuming and requires large amounts of energy, which is why it is currently not 

suitable for practical use (Nitt et al. 2015; Winkelmann et al. 2019). 

A promising approach is the biofumigation by using Brassicaceae plants, for example Brassica 

napus, B. juncea or Sinapsis alba. The plants are either incorporated into the soil or applied as 

seed meals (Mazzola et al. 2009; Mazzola et al. 2015; Yim et al. 2016). There, volatile 

glucosinolates are effective that are catalyzed among others to isothiocyanates by plant 

myrosinases (Yim et al. 2016). The application of biofumigation leads to shifts in the soil 

microbial community (Mazzola et al. 2015; Yim et al. 2017). Wang and Mazzola (2019) 

reported that a seed meal combination of B. juncea and S. alba was as efficient in disease 

control as chloropicrin treatment by reducing Pratylenchus infestations and suppression of 

Pythium infections. However, too high application rates of the seed meal combination led to 

phytotoxic reactions and tree mortality. In addition, the success of seed meal application 
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depends on further factors, which are plant genotype (Geneva lines perform better than the 

Malling series), time of application and content of glucosinolates of the seed meal (Wang and 

Mazzola 2019; Winkelmann et al. 2019). In addition, Tagetes plants produce thiophenes and 

terpenoids that have the potential to suppress nematodes and some soil-borne pathogens. When 

cultivated in ARD soil, Tagetes led to changes in the soil microbial community, but those were 

less pronounced as the effects of biofumigation treatments (Yim et al. 2017). 

Arbuscular mycorrhizal fungi (AMF) may have the potential to promote plant health or act as 

biocontrol agents (Azcón-Aguilar and Barea 1996). For instance, AMF can increase the plant 

vigor due to additional uptake of water and nutrients. Čatská (1994) reported a growth 

stimulation of apple plants in ARD soil after inoculation with Glomus fasciculatum. This 

inoculation led also to changes in the rhizosphere composition. As well, Mehta and Bharat 

(2013) reported an increase of apple growth after inoculation with G. fasciculatum under replant 

conditions. 

Inoculation with biocontrol microbes is an alternative strategy for mitigation of ARD 

(Winkelmann et al. 2019). Further, an increase of soil organic matter content and microbial 

biomass by the amendment of diverse composts can help to improve soil suppressiveness 

(Mazzola and Manici 2012). However, the outcome of these practices can vary widely. 

The breeding of ARD resistant or tolerant rootstocks is another mitigation opportunity. So far, 

no resistant genotype has been described, but for example rootstocks G.11 and G.41 of the 

Geneva lines were reported as more tolerant than Malling rootstocks (e.g. M9 and M26) (Auvil 

et al. 2011; Wang and Mazzola 2019). The different rootstock genotypes create a distinct soil 

microbial community (St. Laurent et al. 2010), which might be induced by different root 

exudations of the rootstock genotypes (Leisso et al. 2017). The rootstock G.41 seems to be less 

susceptible to nematode infestation and oomycetes infections (Wang and Mazzola 2019). Also, 

Malus x robusta 5 (genetic source of G.41) is an interesting resource for rootstock breeding 

showing less susceptibility to ARD (Reim et al. 2019). In addition, this genotype is more 

tolerant to cold stress and to diseases like fire blight and powdery mildew (Wöhner et al. 2012). 

Concluding, to perform a targeted control or mitigation of ARD, a better understanding of the 

disease induction and of the microbial interactions is needed (Berg et al. 2017). In the future, 

the focus for a sustainable mitigation of ARD should be on habitat quality together with the 

establishment of favorable soil microbial communities instead of potentially harmful soil 

disinfection treatments (Winkelmann et al. 2019). 
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1.3 Fungal Endophytes 

Numerous reports have indicated that fungi appear to be involved in the yet unrevealed etiology 

of ARD. Therefore, fungal endophytes were in focus of investigations in this thesis. 

1.3.1 Plant and fungal endophyte associations 

Plants can be colonized by a variety of different fungi. Since the development of culture-

independent sequencing methods, endophytes are now defined only by their habitat as 

microorganisms that colonize (at least in parts of their life cycle) the interior of plants (the so-

called endosphere), independent of their function or interaction with the plant (Hardoim et al. 

2015). In roots, they can be for example non-pathogenic, mutualistic associated like arbuscular 

mycorrhizal fungi (AMF), ectomycorrhiza, dark septate endophytes (DSE) or soil-borne 

pathogens (Mandyam and Jumpponen 2005). Thereby the relationship between the fungus and 

the plant can be commensal (without any known effect), mutualistic or pathogenic (Brader et 

al. 2017). The even variable nature of this interaction depends on the host genotype, the 

physiological and developmental state of the crop, biotic and abiotic environmental factors and 

other surrounding microorganisms (Brader et al. 2017; Redman et al. 2001; Schulz et al. 1999). 

Fungal endophytes have different lifestyles. The relationship to the plant can be obligate, e.g. 

mycorrhizal fungi which need the plant tissue to complete the fungal life cycle (Schüβler et al. 

2001). Opportunistic endophytes only enter the plant roots episodically and exist most of the 

time outside the plant tissue (e.g. Trichoderma spp.) (Druzhinina et al. 2011). But, the majority 

of fungi are facultative endophytes that consume plant provided nutrients (Hardoim et al. 2015). 

Schulz and Boyle (2006) listed some characteristics of the interaction between plant roots and 

the fungal endophytes: Endophytic fungi mostly have a broad host spectrum, depending also 

on habitat and season. They actively colonize the root tissue through wounds or direct 

penetration of the cell wall. During the first stage of infection the nutrients are derived from 

storage material in spores, dead cortex cells, plant residues or host exudates. Later, components 

of the symplast and apoplast are used for nutrition. The growth of fungal endophytes can be 

inter- and/or intracellularly and only in some cases a colonization of upper plant parts is 

possible. Usually the vascular tissue remains free of colonization but if so, the reaction is in 

most cases pathogenic (Bacon and Hinton 1996; Schulz and Boyle 2005, 2006). 

Hardoim et al. (2015) investigated a data set of 8,439 sequences (NCBI) of eukaryotic 

endophytic full-length internal transcribed spacer (ITS) regions. Most of the endophytes 

belonged to Glomeromycota (40 %), followed by Ascomycota (31 %), Basidiomycota (20 %), 

Zygomycota (0.1 %) and unidentified phyla (8 %). The Glomeromycota phylum contains 
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arbuscular mycorrhizal fungi (AMF) (Schüβler et al. 2001). For example, the genera Glomus 

and Rhizophagus are obligate symbionts forming associations with various host plants. The 

Ascomycota phylum contains a lot of endophytes, which vary in their function (commensal to 

pathogenic). In the phylum Basidiomycota, a large group of wood decaying fungi together with 

white and brown rot saprotrophs and beneficial ectomycorrhizal fungi is assigned to the class 

Agaricomycetes. Nevertheless, the function of an endophytic fungus often cannot be linked to 

its taxonomic position (Hardoim et al. 2015). Even strains of the same species may display 

interactions with the plant varying from mutualism to pathogenicity. For example, strains of 

Fusarium oxysporum have a narrow host specificity and are reported to be pathogenic to a lot 

of plant species (O'Donnell et al. 2009). But to non-hosts, most of the isolates do not exhibit 

pathogenicity or they may even act as biocontrol agents (Aimé et al. 2013). 

Colonizing plants gives the microorganisms the advantages of a habitat protected from abiotic 

stress and a continuous supply of nutrients. The host plant can benefit from colonization through 

improved growth due to phytohormone production by e.g. a fungus and access to soil nutrients 

and minerals. Furthermore, induced disease resistance, biocontrol of plant pathogens and 

nematodes as well as improved tolerance to abiotic stress are plant performance improving 

mechanisms basing on endophytic microbial interactions (Hardoim et al. 2015; Schulz and 

Boyle 2006). 

1.3.2 Disease Tetrahedron: Likelihood of a disease 

The likelihood and development of a plant disease, including ARD, depends on various factors. 

The interaction between fungi (pathogen), plant (apple) and environment has often been 

described as disease triangle (Agrios 2005). Recently, Brader et al. (2017) supposed the concept 

of a disease tetrahedron considering also biotic factors. The outcome and likelihood of a disease 

depends on the proportions and interplay of disease determining factors. On the plant (host) 

side, these factors are for example rootstock genotype (tolerant/susceptible), planting position 

in the orchard, growth stage and age. The pathogen is influenced by its fitness and adaptation 

to an environment. Moreover, survival, abundance and virulence are affecting the success of an 

infection. Also, environmental factors can favor or suppress disease development including 

temperature, precipitation, and soil parameters like organic matter, pH, nutrient content, toxic 

components (e.g., metals, salt, and pesticides). The fourth driving force consists of biotic factors 

including plant microbiota, alternate hosts, micro- and macro-fauna as well as vectors for 

pathogens (e.g. bacteria, fungi or viruses) (presence, adaption, fitness and association with 

microbiota) (Brader et al. 2017). Vayssier-Taussat et al. (2014) suggested the concept of a 
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pathobiome, since pathogens are acting in context of microbial communities. Additionally, the 

(rhizosphere) microbiome plays a crucial role for plant health and helps suppressing pathogens 

(Berendsen et al. 2012). 

1.3.3 Plant response to fungal colonization 

A broad range of endophytes, pathogens as well as non-pathogens, can produce enzymes and 

phytotoxic compounds that are required for host colonization and infection (Petrini et al. 1992; 

Schulz et al. 2002; Schulz and Boyle 2006; Sieber et al. 1991). Next to the cell wall - as physical 

barrier - the plant defense is based of two layers referred to as plant immune system (Jones and 

Dangl 2006). The first layer is based on the recognition of microbe- (or pathogen-) associated 

molecular patterns (MAMPs/PAMPs) which leads to a MAMP-triggered immunity (MTI) 

(Ausubel 2005; Jones and Dangl 2006). MAMPs are recognized by pattern recognition 

receptors localized on the plant surface, receptor-like kinases (localized on the plasma 

membrane) or by receptor-like proteins (Brader et al. 2017; Newman et al. 2013). The elicitors 

which trigger MTI serve for key functions among the microbes and are therefore conserved 

among pathogens and non-pathogens. This can be for example fungal chitin and β-glucans of 

oomycetes (Newman et al. 2013). Plants often respond with defense reactions to fungal 

colonization (Schulz et al. 1999; Schulz and Boyle 2005). For example, colonization by non-

pathogenic Fusarium oxysporum (strain Fo47) resulted in an overexpression of defense genes 

in tomato roots (Aimé et al. 2013). Both beneficial and pathogenic fungi have developed 

mechanisms to evade plant defense and MTI. This is done by either modifying MAMP 

structures or actively by effector production leading to alterations in plant receptor function and 

structure (Lo Presti et al. 2015; Pel and Pieterse 2013). 

The second plant defense layer after Jones and Dangl (2006) is the effector triggered immunity 

(ETI). It is derived from the recognition of microbial effectors by the plant. Plants respond to 

fungal effectors by producing pathogenesis-related (PR) proteins or indirectly act by using 

assessor proteins to perform ETI (Aoun 2017; Jones and Dangl 2006). For instance, 

manipulation of ETI is carried out by AMF colonization of Medicago truncatula: the 

mycorrhizal fungus Rhizophagus irregularis (previously Glomus intraradices) produces an 

effector (SP7) that interacts with the plant transcription factor (ERF19), which is regulating the 

expression of defense related genes resulting in suppression of defense gene expression (Brader 

et al. 2017; Kloppholz et al. 2011). 

The activation of MTI or ETI leads to a signal transduction and expression of defense related 

genes. Plants respond to fungal colonization by production of secondary metabolites, oxylipins, 
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reactive oxygen species (ROS), defensins or by performance of hypersensitive reactions (HR) 

(cell death) (Brader et al. 2017). Or the fungi succeed in circumventing the plant's defense 

system in various ways and can colonize or infect the plant roots (Aoun 2017). 

 

1.4 Mycoviruses 

Mycoviruses may influence their fungal host in serval ways and might therefore be involved in 

soil microbial interactions as well as in interactions with the plant when infected by the host 

fungus. Also, fungal endobacteria might affect the interaction with either fungi, plant or other 

microorganisms, but in this work the focus was set on mycoviruses. So far, mycoviruses have 

not been studied in context with replant disease. Since pathogenic fungi seem to be involved in 

ARD disease development, the occurrence of mycoviruses was of interest. They may alter the 

virulence of a fungus causing hyper- or hypovirulence. If the latter is the case within isolates 

from ARD-infested apple roots, a sustainable mitigation strategy to control ARD-associated 

fungal pathogens might result from it. 

1.4.1 Mycoviruses: Transmission, genome organization and effect on the host fungus 

Several fungi can be infected by specific viruses, the so-called mycoviruses. Such infections 

were detected in all major phyla of fungi (Ghabrial et al. 2015). Like all viruses, mycoviruses 

depend on living host cells for replication. But in contrast to other viruses, mycoviruses lack 

movement proteins and an extracellular route for infection (Son et al. 2015). Further, this group 

of viruses can be transmitted intercellularly by cell division, horizontally by hyphal anastomosis 

and vertically by the distribution of spores (mostly conidia and sometimes meiotic spores). The 

natural host range is supposed to be restricted to related vegetative compatibility groups 

(Ghabrial et al. 2015; Son et al. 2015). Usually the incompatibility response leads to a 

programmed cell death (PCD) (Choi et al. 2012). However, it was reported that Cryphonectria 

hypovirus 1 (CHV1) was able to suppress this reaction by downregulation of host genes 

involved in PCD (Biella et al. 2002; Shang et al. 2008). Further, it is not known whether 

mycoviruses can be vector transmitted (Ghabrial et al. 2015). Petrzik et al. (2016) reported of a 

double-stranded (ds)RNA virus (Thelephora terrestris virus 1 (TtV1)) in the mycorrhizal fungus 

Thelephora terrestris. TtV1 was also detected by RT-PCR in soil oribatid mites (Steganacarus 

carinatus). However, no transmission trials were carried out. 

Most of the described mycoviruses have a dsRNA genome that is packed in isometric particles. 

But genomes were also characterized with positive or negative single-stranded (ss)RNA as well 
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as DNA genomes (Ghabrial et al. 2015; Jiang et al. 2013; King et al. 2011; Li et al. 2020a; Liu 

et al. 2014; Yu et al. 2013). A mycovirus infection is not an uncommon incident, therefore it 

was suggested that 30-80 % of fungal species might be infected (Ghabrial and Suzuki 2009). 

Some viral families contain both plant- and mycoviruses, such as Partitiviridae and 

Endornaviridae (ICTV, King et al. 2011). Moreover, Totiviridae and Chrysoviridae, originally 

assigned to be mycoviruses, were also identified in plants (Roossinck 2012, 2014). To detect a 

mycovirus infection, often dsRNA extraction is used targeting the dsRNA directly or replicative 

intermediates. Multiple dsRNAs can represent segmented viral genomes or mixed infections 

(Pearson et al. 2009). For instance, one single isolate of Rhizoctonia solani was reported to be 

infected by at least 17 different mycoviral species that were detected by a deep sequencing 

approach (Bartholomäus et al. 2016). 

In most cases a mycoviral infection does not cause any symptoms and remains latent. 

Symptoms can be abnormal pigmentation, irregular growth, and modifications in the sexual 

reproduction (Son et al. 2015). Most interestingly with regard to phytopathogenic fungi are 

deviations in the fungal virulence leading to hyper- or hypovirulence (Ahn and Lee 2001; Xie 

and Jiang 2014). 

1.4.2 Mycovirus mediated hypovirulence to control plant pathogens 

The use of mycoviruses that cause hypovirulence are an interesting approach to manage plant 

pathogenic fungi and thereby reduce crop losses (Xie and Jiang 2014). The most famous 

example is the control of the chestnut blight fungus Cryphonectria parasitica in orchards with 

the dsRNA Hypovirus Cryphonectria hypovirus 1 (CHV1) (Milgroom and Cortesi 2004; 

Shapira et al. 1991). Another example is a mycovirus-mediated hypovirulence in the plant 

pathogenic fungus Fusarium graminearum: Infections with Fusarium graminearum virus 1 

(FgV1) led to decreased growth, altered pigmentation and reductions in mycotoxin production 

(Chu et al. 2002). Also, DNA viruses can mediate hypovirulence: the circular ssDNA virus 

Sclerotinia sclerotiorum hypovirulence-associated DNA virus 1 (SsHADV-1) causes 

hypovirulence in Sclerotinia sclerotiorum, a worldwide distributed plant pathogen (Yu et al. 

2010). Purified virus particles were applicated extracellularly by spraying on plants 

(Arabidopsis thaliana and Brassica napus) and thus could infect the host fungus. Under field 

conditions, the virus particle application reduced disease severity and enhanced rapeseed yields 

(Yu et al. 2013). Xie and Jiang (2014) assumed that hypovirulent strains occupy the same niche 

as the virulent strain and grow well on the host plant. Thereby both strains come in contact and 

the virus can be transmitted to the plant pathogen. Moreover, the hypovirulent strains produce 
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the same PAMPs and/or effectors as the pathogen, thereby activating the hosts defense response 

specifically targeting the pathogen (Xie and Jiang 2014). 

1.5 Project ORDIAmur 

This work is part of the project ORDIAmur (Overcoming Replant Disease by an Integrated 

Approach). Aim of this project is the understanding of replant disease induction and to develop 

environmentally friendly, practicable and sustainable mitigation strategies. To achieve this, 

plant and soil science are combined with socio-economic studies also to enable a transfer of 

knowledge between science and practice (www.ordiamur.de). ORDIAmur is part of the 

BonaRes consortium that focus on the sustainable use of soils as limited resource 

(www.bonares.de). 

1.6 Objectives and Hypotheses 

Apple Replant disease is a complex phenomenon that has major impacts on the productivity of 

apple plants in nurseries as well as in orchards. The etiology of ARD remains unrevealed up to 

now. Moreover, there is still need of sustainable mitigation strategies. 

The aim of this work was to characterize and quantify apple fungal root endophytes and their 

mycoviruses. Both endophytes and their associated mycoviruses may contribute to symptom 

development also by their absence. Moreover, mycoviruses may influence the virulence of the 

host fungus by causing hyper- or hypovirulence. Hypovirulence-associated strains might be 

used in future as sustainable mitigation strategy for ARD. Another objective of this work was 

to compare endophytes in apple roots growing in ARD- and control soils, which were obtained 

from two central experiments (CE1 and CE2). For a causal analysis of ARD, fungi needed to 

be isolated, identified and tested in a bioassay whether they infect or colonize apple roots. 

Therefore, the hypotheses of this thesis are: 

1. Fungi are involved in the disease development of ARD. 

2. There are differences in the fungal community in apple plants growing in control soil 

compared to that in ARD soil. 

3. Some fungal isolates are pathogens and have a negative influence on the growth of apple 

plants. 

4. Mycoviruses are involved in the causal ARD complex. 
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Abstract  

Apple Replant Disease (ARD) affects the plant production in apple nurseries and orchards 

worldwide. Reductions in plant growth and yield result in economic losses. Shifts in the soil 

microbial community are characteristic for all ARD sites but the explicit cause remains yet 

undiscovered. ARD was induced at three reference field sites with traceable and comparable 

cropping histories. At the filed sites, samples were taken from plants in ARD plots and from 

plots were apple was planted for the first time (Apple New). The roots of sampled plants were 

surface disinfected prior to investigate the fungal endophyte community. Compared to Apple 

New plants, ARD plants displayed a clearly reduced shoot growth. An enrichment of 

Nectriaceae fungi, especially of Dactylonectria torresensis and Ilyonectria robusta, was found 

in ARD roots. Leptodontidium spp., belonging to the dark septate endophytes (DSE), was the 

most frequent isolated fungal endophyte from field plants. Furthermore, a biotest was conducted 

with soil from the field sites cultivating plants in untreated or gamma irradiated ARD and grass 

soil, respectively. Again, Nectriaceae species were most prevalent in ARD roots, while 

members of DSE belonging to Helotiales and Pleosporales seem to be reduced in their 

abundance. Each site displayed a characteristic fungal community. Plant growth was enhanced 

in gamma irradiated soils. These roots showed a reduction of the number of isolated fungi 

together with an altered fungal community. The role of Nectriaceae fungi as possible pathogens 

as well as of DSE in context with ARD should be addressed in further experiments.  
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2.1 Introduction 

Apple Replant Disease (ARD) is a worldwide problem and defined as “a harmfully disturbed 

physiological and morphological reaction of apple plants to soils that faced alterations in their 

(micro-) biome due to previous apple cultures” (Winkelmann et al. 2019). Plants exhibit growth 

diminutions together with reduced and delayed yields. This results in economic losses for plant 

producers (Geldart 1994). The root system - as interface of soil and plant - is reduced in size 

and displays discolored roots (Mai and Abawi 1981; Mazzola and Manici 2012; Winkelmann 

et al. 2019). Microscopic analyses of roots defined early diagnostic symptoms, which are 

necrosis and blackening along with cytoplasmic inclusion bodies and a loss in cell vitality. 

These changes in the root structure are often associated with fungal infections (Grunewaldt-

Stöcker et al. 2019). 

Soil disinfection by thermal, irradiation or chemicals treatments can restore the plant growth, 

which gives evidence of a biotic cause of the disease (Mai and Abawi 1981; Mazzola 1998; 

Yim et al. 2013). Several organisms were reported associated with the disease. These are 

nematodes, actinobacteria, chromista of the class Oomycetes (Pythium and Phytophthora), and 

fungi. Especially Cylindrocarpon-like fungi, Fusarium spp., and Rhizoctonia spp. are 

frequently reported to be involved in the etiology of ARD (Hoestra 1968; Manici et al. 2003; 

Manici et al. 2013; Manici et al. 2017; Mazzola 1998, 1999; Tewoldemedhin et al. 2011a; 

Utkhede et al. 1992). Various reports that claim to have found the causal agent are available in 

literature but lack profound experimental support. Moreover, the experimental designs are often 

difficult to compare, as the orchards usually have very individual cropping histories. This leads 

to many contradictory reports (Mazzola and Manici 2012). Hence, up to now the explicit cause 

of ARD is still undiscovered. 

Mahnkopp et al. (2018) described the set up of three reference locations in the BonaRes project 

ORDIAmur: These locations have a defined, traceable and comparable cropping history with 

differences in their soil characteristics. ARD was induced in the field by frequent replanting 

cycles. Grass plots served as control. In the 5th replanting generation also one third of the grass 

plot was grown with apple for the first time (Apple New). For a biotest in the greenhouse the 

soil was taken from the field (ARD and grass soil) and sterilized by gamma irradiation or 

remained untreated. 

Since the root system is in direct contact with the diseased soil, our focus was on fungal root 

endophytes. Due to cultivation independent analyses, endophytes are now defined by their 
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habitat only as “microorganisms inhabiting the interior of plants (endosphere) irrespective of 

the function in association with the plant” (Brader et al. 2017; Hardoim et al. 2015). 

Our aim was to characterize and quantify the fungal endophyte community by a culture 

dependent approach. Therefore, fungal endophytes were isolated from surface disinfected roots 

either from the field experiment (ARD and Apple New) or from the biotest (ARD and grass 

soil, untreated or irradiated, respectively). Furthermore, we looked for differences in the fungal 

community of the three reference sites with different soil types. 

 

2.2 Material and methods 

2.2.1 Experiments and plant material 

In the BonaRes project ORDIAmur three reference sites with traceable cultivation history were 

selected under the aspect that Rosaceae species were not cultivated before. For the field 

experiment CE1 (central experiment 1) ARD was induced by replanting the rootstock 

‘Bittenfelder Sämling’ (hereafter given as Bittenfelder) in a cycle of two years. At the sites 

Ellerhoop (x-coordinate 53.71435; y-coordinate 9.770143 WGS 84, Schleswig-Holstein, 

Northern Germany), Heidgraben (x-coordinate 53.699199; y-coordinate 9.683171; WGS 84, 

Schleswig-Holstein, Northern Germany) and Ruthe (x-coordinate 52.243668; y-coordinate 

9.819700; WGS 84, near Hanover, Germany) four plots with apple were arranged and another 

four plots with grass cover were used as control, respectively. Detailed description of the 

experiment as well as soil characteristics are given by Mahnkopp et al. (2018). In April 2016 

apple was replanted for the 5th time in Heidgraben and for the first time one third of the grass 

plots was grown with apple, too (referred to as Apple New). For the locations Ellerhoop and 

Ruthe the 5th replanting generation was in 2017. Samples were taken in Heidgraben in 

November 2016 and in Ellerhoop one year later in November 2017. Furthermore, fungal 

endophytes were isolated out of Bittenfelder roots before planting in the field (t0, April 2017, 

n= 3 plants). The plants used in CE1 were grown from seeds in showing beds and originated 

from a local nursery. 

In a central greenhouse experiment in 2017, CE2, soil from ARD and grass plots of the three 

reference locations was brought to Hanover for a biotest (Mahnkopp et al. 2018). Either the soil 

remained untreated or it was sterilized by γ-irradiation (≥ 10 kGy). ARD sensitive in vitro 

propagated Malus domestica ‘M26’ plants (hereafter referred to as M26) were grown for 8 
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weeks in the soil (Yim et al. 2013). Additionally, in vitro propagated Bittenfelder plants (clonal 

progeny of one plant) were grown in Ruthe soil. 

2.2.2 Surface disinfection and fungal endophyte isolation 

Adherent soil was removed by carefully washing the roots with tap water. The roots were 

dipped for 30 s in 70 % Ethanol followed by 7.5 min in 2 % NaOCl solution amended with 

Tween 20 and were washed five times in sterile distilled water. To control the success of the 

surface disinfection 100 µl of the last wash water was spread on 2 % malt extract agar plates 

(MEA) amended with Oxytetracycline (OTC, 50 µg mL-1). 

Fungal endophytes were isolated in CE1 7 month after planting in autumn 2016 from 

Heidgraben plants and in autumn 2017 from Ellerhoop plants (ARD and Apple New, n= 12 

plants per treatment). Before starting the biotest CE2 2017, 4 plants were surface disinfected 

after acclimatization (t0). After 8 weeks of culture, 4 plants were sampled per treatment 

(untreated or γ-irradiated ARD and grass soil from three locations). Surface disinfected roots 

were cut and 4 1 cm-root segments were placed onto 3 MEA + OTC plates per plant. Plates 

were cultured for 2 to 7 days at 24 °C in the dark. Growing mycelium was separated and sub-

cultured. 

In CE2 2017, surface disinfected roots were additionally plated on 1.5 % water ager (penicillin 

50 µg mL-1, rifampicin 10 µg mL-1, and pimaricin 25 µg mL-1) to especially isolate members 

of Oomycetes. Sub-cultures were performed as described above on MEA. 

2.2.3 Endophyte identification 

Fungi from pure cultures were identified in a direct PCR using primers ITS 1 and 4 (White et 

al. 1990). PCR conditions for the identification of fungal cultures are described in Popp et al. 

(2019). Further, isolates of the Nectriaceae were investigated in detail performing a multi locus 

analysis (CE1 Ellerhoop 2017 and CE2 2017; Cabral et al. 2012a): Primer pairs CYLH3F and 

CYLH3R (Crous et al. 2004) for histone H3 (HIS), T1 (O'Donnell and Cigelnik 1997), and Bt-

2b (Glass and Donaldson 1995) targeting partial β-tubulin (TUB) gene as well as CylEF-1 (5’- 

ATG GGT AAG GAV GAV AAG AC-3’; J.Z. Groenewald, unpublished) together with CylEF-

R2 (Crous et al. 2004) for translation elongation factor 1-α gene (TEF) were applied. PCR 

products were analyzed by Sanger sequencing using the sense primer of each amplification 

product (Microsynth Seqlab, Göttingen, Germany). Results were submitted to BLASTn 

analysis (Megablast, NCBI, Rockville Pike, USA) and are presented as first hit (sorted by max. 

score). The naming of Nectriaceae isolates is based on the HIS gene results. 
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2.3 Results 

2.3.1 Identification of fungal endophytes in CE1 

ARD was successfully induced in the field experiment at all three reference sites. The shoot 

fresh mass was significantly reduced comparing the 1st and 4th replant generation (Mahnkopp 

et al. 2018). There were clear differences regarding the shoot growth between the Apple New 

and ARD plants (5th replant generation, Fig. 2.1, Ellerhoop). 

 

Fig. 2.1 Representative plants Ellerhoop CE1 2017. ’Bittenfelder’ plants harvested 7 months after 

planting from plots Apple New (left side, apple planted for the first time in the same soil type) and ARD 

(right site, 5th replanting generation) 

 

The total number of fungal endophytes isolated from surface disinfected Bittenfelder roots (n= 

144 root sections of 12 plants per treatment) was n= 164 Apple New vs. n= 148 ARD, 

Heidgraben 2016 and n= 153 Apple New vs. n= 188 ARD, Ellerhoop 2017 (Fig. 2.2). Fungal 

endophytes were identified by ITS-PCR. A higher diversity of fungal genera (number of 

different fungal genera) was found in Apple New in comparison to ARD (29 vs. 19 for 

Heidgraben and 25 vs. 17 for Ellerhoop). For both reference sites, one third of the total fungal 

community was made up of Leptodontidium spp. belonging to the order Helotiales. In 

Heidgraben the second largest group were members of Hypocreales, especially Nectriaceae 
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fungi whose proportion of the total fungal community was increased in ARD (37 %) compared 

to Apple New (22 %). In addition, the percentage of isolates belonging to the order Pleosporales 

was reduced in ARD (12 %) compared to Apple New (20 %). Isolates identified as Zalerion sp. 

(Lulworthiales) had in both treatments a proportion of 8 %. About half of the fungal community 

of Apple New plants harvested from the reference site Ellerhoop were identified as Helotiales 

species followed by members of Pleosporales (like Pleotrichocladium and Periconia, 18 %) 

and Lulworthiales (Zalerion sp., 14 %). Nectriaceae species had a proportion of 13 % of the 

total fungal community. In comparison to that, the proportion of isolates identified as members 

of Helotiales (43 %), Lulworthiales (7 %) and Pleosporales (5 %) was reduced in ARD roots 

while the number of Hypocreales isolates (44 %) increased markedly, especially the abundance 

of Ilyonectria species. Only a few isolates assigned to Basidiomycota were isolated in CE1 

(Fig. 2.2). These belonged mostly to the class Agaricomycetes. Next to other fungal species, 

Nectriaceae species were already identified in Bittenfelder nursery plants before planting in the 

field (Table 2.1; t0, CE1 2017 Ellerhoop). 

Table 2.1 Fungal endophytes isolated from surface disinfected Bittenfelder roots before planting in 

CE1 Ellerhoop 2017 (t0). Plants originated from a nursery. Isolation of 37 fungi out of 36 root pieces 

from three plants. Identification by ITS-PCR and BLASTn search (first hit) 

Plant ITS Identification Number 

Plant 1 Dactylonectria sp. 2 

  Ilyonectria sp. 1 

  Nectriaceae sp. 1 

  Psiloglonium sp. 2 

  Mortierella sp. 1 

  Paraphaeosphaeria sporulosa 1 

  Pythium sylvaticum 1 

Plant 2 Bjerkandera sp. 1 

  Chaetomium sp. 1 

  Fusarium sp. 1 

  Ilyonectria sp. 1 

  Plectosphaerella sp. 1 

  Psiloglonium sp. 1 

  Trichocladium sp. 1 

  not identified 4 

Plant 3 Ilyonectria sp. 5 

  Nectriaceae sp.  2 

  Cadophora sp. 4 

  Leptodontidium sp.  3 

  Mortierella sp. 1 

  Psiloglonium sp. 1 

  not identified 1 
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Apple new n= 164

Leptodontidium Cadophora Mycochaetophora

Geomyces Ilyonectria Dactylonectria

Nectria Fusarium Clonostachys

Trichoderma Zalerion Fusiconidium

Pleotrichocladium Prosthemium Paraphaeospaeria

Trematosphaeria Alternaria Dictyosporium

Pleosporales Exophiala Cladophialophora

Chaetosphaeriales Clohesyomyces Gaeumannomyces

Monacrosporium Penicillium Psiloglonium

Ceartobasidium Phlebiella not identified

a ARD n= 148

Leptodontidium  Cadophora Hymenoscyphus
Helothiales Ilyonectria Cylindrocladiella
Fusarium Trichoderma Zalerion
Pleotrichocladium Prosthemium Pyrenocheata
Herpotrichia Paraphaeopspaeria Dendryphion
Fusiconidium Atractospora Plectosphaerella
Agaricomycetes not identified

ARD n= 188

Leptodontidium  Cadophora

Pezicula Varicosporium

Helotiales Ilyonectria

Dactylonectria Cylindrocarpon

Nectria not identified Zalerion

Phoma Fusiconidium

Paraphaeosphaeria Paraphoma

Pleotrichocladium Cladosporium

Dothideomycetes not identified

Apple new n= 153

Leptodontidium Mycocheatophora Tetracladium

Hymenoscyphus Cadophora Geomyces

Glarea Zalerion Ilyonectria

Dactylonectria Fusarium Calonectria

Pleotrichocladium Periconia Prosthemium

Pyrenocheata Trematosphaeria Fusiconidium

Paraphaeosphaeria Paraphoma Pleosporales

Penicillium Phialophora Agricales

Auriculariales not identified

b 

Heidgraben 

Ellerhoop 
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Fig. 2.2 (previous page) Fungal endophyte isolation field experiment CE1. Isolation from surface 

disinfected roots of ’Bittenfelder’ plants 7 months after planting. Reference sites a) Heidgraben (planting 

in 2016) and b) Ellerhoop (planting in 2017). Soil variants are Apple new (left side, apple planted for 

the first time in the respective soil type) and ARD (right side, 5th replanting). n = number of isolated 

fungi of 144 root segments (from n = 3 plants out of 4 field plots, respectively). Identification by ITS-

PCR and Sanger sequencing. Sectors denote members of Helotiales (grey); Nectriaceae (dotted/ orange); 

Lulworthiales (old rose); Pleosporales (blue) and Basidiomycota (green) 

 

Since the proportion of Nectriaceae isolates was increased in the ARD fungal community, the 

isolates obtained from Ellerhoop roots in 2017 were identified to the species level by a multi 

locus analysis (Fig. 2.3). In Apple New, 20 isolates were assigned to Nectriaceae, which 

corresponds to 13 % of total isolated fungal isolates. Another 84 Nectriaceae isolates were 

gained from ARD roots (44 % of total isolated fungal endophytes). Ilyonectria robusta was 

only identified in ARD roots and represented the largest proportion of the Nectriaceae 

community in this treatment. Both soil treatments, Apple New and ARD, shared Dactylonectria 

torresensis, Ilyonectria sp. 1 AE-2001, Ilyonectria crassa, and Ilyonectria europaea. Only one 

isolate of Calonectria sp. and Ilyonectria pseudodestructans was gained from Apple New roots. 

Here, Fusarium was only detected in Apple New roots from Ellerhoop. Regardless, 

Fusarium spp. were isolated in equal proportions from both treatments of Heidgraben plants 

(2016) (Fig. 2.2). 

 

Fig. 2.3 Identification of Nectriaceae isolates CE1 Ellerhoop 2017. Isolation from surface disinfected 

roots of ’Bittenfelder’ plants 7 months after planting. Soil variants are Apple New (a, apple planted for 

the first time in the same soil type) and ARD (b, 5th replanting). n = number of isolated Nectriaceae 

fungi of 144 root segments (from n = 3 plants out of 4 field plots, respectively). Identification by Sanger-

sequencing of histone 3 (HIS) gene 

Apple New n= 20 

Dactylonectria torresensis
Fusarium sp.
Ilyonectria crassa
Ilyonectria sp. 1  AC-2011
Calonectria sp.
Ilyonectria europaea
Ilyonectria pseudodestructans

ARD n= 84

Ilyonectria robusta
Dactylonectria torresensis
Ilyonectria crassa
Ilyonectria sp. 1  AC-2011
Ilyonectria europaea
not identified

a b 
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2.3.1 Identification of fungal endophytes in CE2 

The greenhouse biotest CE2 confirmed the presence of ARD. Gamma irradiation led to an 

increase in shoot length after 8 weeks of cultivation compared to untreated ARD and grass soil 

variants (Mahnkopp et al. 2018). 

Before starting the experiment, no fungi could be isolated from young, acclimatized M26 roots 

at t0. After eight weeks of cultivation, fungal endophytes were isolated from surface disinfected 

M26 roots and identified by means of ITS-PCR. Additionally, in vitro propagated Bittenfelder 

plants were grown in Ruthe soil in this experiment. The number of isolated fungi was almost 

the same for plants grown in untreated ARD and grass soil. In contrast, the number of fungal 

isolates obtained from roots grown in gamma treated soil was clearly reduced (Fig. 2.4). 

 

Fig. 2.4 Fungal endophyte isolation CE2 2017. Isolation from surface disinfected roots of M26 and 

’Bittenfelder’ plants after 8 weeks culture in untreated and γ-irradiated ARD soil and grass soil from the 

reference site locations Heidgraben, Ellerhoop and Ruthe. n = number of isolated fungi of 48 root 

segments (from n = 4 plants). Identification by ITS-PCR and Sanger sequencing. Sectors denote 

members of Helotiales (grey); Nectriaceae (dotted/ orange); Lulworthiales (old rose); Pleosporales 

(blue) and Basidiomycota (green) 
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The fungal community of roots grown in untreated ARD soils from the three reference sites 

consisted mainly of members of Hypocreales (especially Nectriaceae, Ilyonectria spp. and 

Dactylonectria spp.), Lulworthiales (Zalerion spp.) and Helotiales (e.g. Cadophora spp. and 

Leptodontidium spp.) (Fig. 2.4). Further, also some isolates of Pleosporales 

(Leptosphaeria spp., Pleotrichocladium spp. and Pyrenochaeta spp.) were found in roots 

cultured in untreated ARD soils. Only one Fusarium isolate was gained from roots grown in 

untreated Heidgraben ARD soil. The irradiation of ARD soil led to a completely different 

fungal community. Here, fast growing fungi like Fusarium, Penicillium and Trichoderma were 

found. In roots grown in irradiated ARD soil from Ellerhoop only Cylindrocladiella spp. was 

detectable. Roots of plants grown in irradiated Ruthe ARD soil revealed also Basidiomycota 

(Clitopilus spp. and Fomes spp.). 

For roots grown in untreated grass soil of the sites Heidgraben and Ruthe the biggest proportion 

of the fungal community was formed by members of Helotiales (for example Cadophora spp., 

Leptodontidium spp., Mycochaetophora spp.). In exception to roots from Ellerhoop, only some 

Nectriaceae isolates were detectable in this treatment (Fig. 2.4). Also, the gamma irradiation of 

the grass soil led to a different community comparing to the untreated soil. Here, the community 

isolated from roots grown in Ruthe soil differed to those of Heidgraben and Ellerhoop. 

Additionally, in this experiment, in vitro propagated Bittenfelder plants were grown in Ruthe 

soil. Less fungal endophytes were isolated from Bittenfelder roots. Furthermore, both 

rootstocks display similarities in their fungal community. 

Besides MEA also water agar was used in CE2 2017 to isolate especially oomycetes (see 

addendum Table 8.1). Less fungi were isolated with water agar compared to MEA, but similar 

fungal endophytes were identified in the different treatments. Here, only one Pythium ultimum 

isolate was gained from M26 roots grown in untreated ARD soil from Ruthe. 

Summarizing, each location has a site-specific fungal community. But overall similarities were 

detectable, like the enrichment of Nectriaceae species in untreated ARD soils compared to 

untreated grass soils. The irradiation of the soil resulted in a reduction in the total number of 

fungal isolates and a different fungal community compared to the untreated soil (Fig. 2.4). 
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Fig. 2.5 Identification of Nectriaceae fungi in CE2. Isolation from surface disinfected roots of M26 

and ’Bittenfelder’ plants after 8 weeks culture in untreated (ut) and γ-irradiated (G) ARD soil and grass 

soil from all three reference site locations. n = number of isolated fungi of 48 root segments (from n = 

4 plants). First identification by macroscopic features and ITS sequencing of Nectriaceae members 

(excluding Fusarium). In-depth species identification by Sanger sequencing of histone 3 (HIS) genes 

 

Nectriaceae isolates harvested in CE2 2017 were identified to the species level (Fig. 2.5). 

Comparing the treatments, most of Nectriaceae isolates were obtained from roots grown in 

untreated ARD soil. D. torresensis was most abundant in both untreated soils, ARD and grass. 

I. robusta could only be detected in root grown in untreated ARD soil like I. europaea, 

I. pseudodestructans, Rugonectria rugulosa and Thelonectria species. Next to D. torresensis, 

D. hordeicola and I. crassa isolates were obtained from roots grown in untreated grass soil. All 

six isolates harvested from roots out of irradiated ARD soil were identified as Cylindrocladiella 

species. From roots grown in irradiated grass soil two Calonectria isolates were found. 

 

2.4 Discussion 

ARD was successfully induced in the field experiment CE1. Clear differences in the shoot 

growth of ARD and Apple New plants were visible. Further, unexpected ARD effects resulting 

from small-scale soil heterogeneity could be excluded by using EMI soil sensing technology 

(Mahnkopp et al. 2018). The fungal endophyte community of apple consisted mainly of 

members of Helotiales, Hypocreales and Pleosporales. These groups of fungal endophytes are 

frequently reported to colonize plant roots (Knapp et al. 2012). For cost reasons, the Bittenfelder 

plants used in CE1 originated from a nursery and were raised from seeds in the field. Therefore, 

Grass ut n= 6

Dactylonectria torresensis

Dactylonectria hordeicola

Ilyonectria crassa

ARD G n= 6

Cylindrocladiella sp.

Grass G n= 2

Calonectria sp.Dactylonectria torresensis
Ilyonectria robusta
Ilyonectria europaea
Ilyonectria pseudodestructans
Rugonectria rugulosa
Thelonectria sp.
macroscopic identification

ARD ut n= 21
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already an initial fungal community could be detected in these plants (Table 2.1). However, it 

is supposed that plants raised in the same soil will accumulate a similar fungal community. 

Further, clear differences in the growth of plants in both treatments (Fig. 2.1) could be observed 

suggesting that the initial fungal community is not determining for the altered growth. 

An enrichment of Nectriaceae fungi (former described as Cylindrocarpon-like fungi) in the 

fungal community of ARD plants could be found in both experiments (CE1 and CE2). 

Especially I. robusta and D. torresensis were most frequently identified in ARD roots. 

Nectriaceae fungi were often reported to be negatively correlated with plant growth and could 

be detected in ARD soils, rhizosphere soils and roots (Deakin et al. 2018; Franke-Whittle et al. 

2015; Manici et al. 2013; Manici et al. 2018). In some experiments a pathogenicity of these 

fungi could be proved (Braun 1995; Dullahide et al. 1994; Mazzola 1998). In contrast to that, 

in other inoculation experiments Nectriaceae fungi only exhibited low infection rates and low 

to no pathogenicity although similar high colonization frequencies as found in our experiments 

were observed for roots grown in native soils (Manici et al. 2003; Manici et al. 2018; 

Tewoldemedhin et al. 2011a; Tewoldemedhin et al. 2011c). Apparently, there might be factors 

in the ARD soil that favor an infection of the roots by Nectriaceae fungi, which are missing 

under artificial inoculation conditions (Manici et al. 2018). 

Compared to other members of Nectriaceae fungi, Fusarium spp. were not that frequently 

abundant. Fusarium species could be isolated from the field experiment CE1 and in the biotest 

CE2 from roots grown in untreated and irradiated soils. Results of other isolation experiments 

suggested that the Fusarium genus is irrelevant in context with ARD (Manici et al. 2003; Manici 

et al. 2013; Tewoldemedhin et al. 2011b). 

The largest proportion of the fungal community of Bittenfelder plants in CE1 consisted of 

Leptodontidium spp., which is classified in the order Helotiales and seems to be a very common 

root endophyte (Lee et al. 2017; Nallanchakravarthula et al. 2014; Pecoraro et al. 2012; Upson 

et al. 2009b). In isolation experiments with strawberry and raspberry plants (both Rosaceae) in 

association with black root rot, Cadophora/ Leptodontidium spp. were the second most 

abundant group of fungal endophytes after Nectriaceae species (Weber and Entrop 2017). As 

reported there, especially D. torresensis was causing the black root rot. Leptodontidium belongs 

to the group of dark septate endophytes (DSE). Also, Cadophora spp. (Helotiales), 

Alternaria spp., Herpotrichia spp., Periconia spp., Pyrenochaeta spp. (Pleosporales) and 

Zalerion spp. (Lulworthiales) are referred to DSE. DSE frequently colonize plant roots in very 

different environments and ecosystems and are characterized by melanized, septate hyphae 
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(Jumpponen and Trappe 1998; Mandyam and Jumpponen 2005; Newsham 2011). This group 

of fungal endophytes is polyphyletic and contains several taxa that belong to different fungal 

orders in Ascomycota (Jumpponen and Trappe 1998; Knapp et al. 2015). A clear demarcation 

of fungal species belonging to the DSE does not yet exist and depends on the definition by the 

authors (Knapp et al. 2012). This group of endophytes is worldwide distributed and often 

associated with environments under abiotic stress (Mandyam and Jumpponen 2005; Read and 

Haselwandter 1981). More than over 600 plant species are reported to be colonized by DSE, 

giving indications for no host specification (Jumpponen and Trappe 1998). The influence of the 

DSE colonization on the host plant is controversial (Mayerhofer et al. 2013): Inoculation 

experiments showed negative (Stoyke and Currah 1993; Tellenbach et al. 2011; Wilcox and 

Wang 1987) to positive plant responses (Newsham 1999; Upson et al. 2009a; Usuki and 

Narisawa 2007; Wu et al. 2010). Further, the ecological function of DSE is not yet understood 

(Jumpponen and Trappe 1998; Mandyam and Jumpponen 2005). Therefore, different apple 

DSE isolates should be tested in the future in inoculation experiments for plant growth 

promoting or pathogenic effects, either alone or in combination with other fungal isolates or 

(ARD) soil organisms (e.g. collembola or nematodes). 

The irradiation treatment of ARD soil in the biotest CE2 led to an increased plant growth 

(Mahnkopp et al. 2018). The reduction of the number of isolated fungi as well as a shift in the 

fungal endophyte community in irradiation treatments seemed to have a beneficial impact on 

plant growth. This further supports an involvement of fungal biotic factors in the disease 

complex. Fusarium spp. and Trichoderma spp., as typical saprobes and fast-growing fungi, 

were often reported as first colonizers in pasteurized or irradiated soils (Manici et al. 2013; 

Mazzola 1998). 

The isolation experiments showed that some species or groups of fungal endophytes are 

common colonizers of apple plants. But there are also differences in the individual fungal 

endophyte community depending on the crops (ARD or grass soil) or soil type. Also, 

differences in the soil microbial communities between soils with grass cover and ARD affected 

soils were reported (Deakin et al. 2018; Radl et al. 2019). The fungal community of M26 and 

Bittenfelder plants, both cultivated in Ruthe soil in CE2, was quite similar. On the other hand, 

the soil origin had an effect on the individual root fungal community. Bonito et al. (2014) 

investigated the fungal root endophyte community in replicated plantings of Populus, Quercus 

and Pinus trees at three different field sites. There, the soil origin had a larger effect on the 

fungal community than the host species. The communities of fungal root endophytes seem to 
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be more influenced by the dispersal and biogeography than by the host availability (Bonito et 

al. 2014; Nallanchakravarthula et al. 2014). 

Deviating to other reports, almost no Rhizoctonia or Pythium isolates were obtained in this 

isolation experiments. The few Basidiomycota isolates obtained belonged mostly to the 

Agaricomycetes. This class includes wood decaying fungi as well as white and brown rot 

saprophytes and beneficial ectomycorrhiza (Hardoim et al. 2015). Manici et al. (2013) 

conducted a biotest with rootstock M9 in ARD, fallow and sterilized (irradiated) soil. There, 

87 % of total isolated root endophytes were Fusarium spp., Cylindrocarpon-like isolates, 

Rhizoctonia sp. and Pythium spp. Only in German orchards Pythium spp. prevailed as pathogen 

together with Cylindrocarpon-like fungi and therefore a site-specific effect of ARD pathogens 

could be demonstrated (Manici et al. 2013). Additionally, the authors reported that the 

occurrence of Rhizoctonia did not correlate with plant growth, suggesting a minimal role in the 

replant disease. Admittedly, the choice of the isolation medium as well as the duration of 

surface disinfection may have biased the number and species of isolated fungi. However, using 

water ager with a different combination of antibiotics in CE2 for isolation resulted in less 

isolated fungi but similar species. Further, only one Pythium isolate was obtained in CE2, 

suggesting that Pythium spp. are not the dominating pathogens at the ORDIAmur ARD field 

sites. 

Fungal isolates obtained in the experiments CE1 and CE2 were identified by ITS-PCR. If any, 

most isolates could only be determined up to the genus level. One problem created by the 

increasing number of culture-independent investigations is the increase of uncharacterized 

microorganisms in the data bases together with ambiguous results caused by continuous 

changes in taxonomy by phylogenetic studies and old, remaining entries in the databases 

(Brader et al. 2017; Hofstetter et al. 2019). To give one example: Isolates assigned to 

Zalerion sp. were frequently isolated from apple roots. BLASTn search with the sequence in 

the NCBI data base gave also hits with the same max. score to the order Helotiales and 

Halenospora sp., which belongs to Helotiales. According to mycobank.ork one species, 

Halenospora varia, is recorded, but its current name is Zalerion varia. The latter belongs to a 

completely different order Lulworthiales. Regardless, taxonomy cannot necessarily be linked 

to function, since even stains of the same species might display different pathogenicity or other 

traits (Aimé et al. 2013; Hardoim et al. 2015). For this reason, inoculation experiments are 

indispensable to investigate the biology of fungal isolates. 
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2.5 Conclusion 

Extensive isolation experiments from ORDIAmur ARD field sites with traceable and 

comparable cropping history revealed insights in the fungal root endophyte community. An 

enrichment of Nectriaceae fungi, especially of species D. torresensis and I. robusta, was found 

in ARD roots suggesting an involvement as pathogens in the replant disease complex. Further, 

members of DSE belonging to Helotiales and Pleosporales seem to be reduced in their 

abundance. Up to now, little is known of the ecology of this group of fungal endophytes. The 

role of Nectriaceae fungi as possible pathogens as well as of DSE in context with ARD should 

be addressed in further experiments.  
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Abstract 

Dactylonectria torresensis isolate O6-1-A obtained from replant diseased apple roots was 

subjected to double-stranded RNA (dsRNA) extraction. Illumina sequencing was applied and 

de novo assembled sequences were confirmed by RT-PCR followed by 5’-RACE and 3’-end 

determination. Thereby a novel dsRNA virus was detected named Dactylonectria torresensis 

alternavirus 1 (DtAV1), which is a putative member of the newly proposed mycoviral family 

“Alternaviridae”. The genome of DtAV1 is composed of three dsRNA segments, dsRNA1 

(3578 bp), dsRNA2 (2668 bp) and dsRNA3 (2467 bp), each encoding one open reading frame. 

BLASTp analyses gave best hits to Fusarium poae alternavirus 1. Phylogenetic analyses further 

strengthened the affiliation of DtAV1 to “Alternaviridae”. This is the first report of a mycovirus 

in D. torresensis that is a putative member of “Alternaviridae”. The influence of the mycoviral 

infection on the host fungus and apple plants needs to be further investigated. 
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5.1 Introduction 

Mycoviral infections are reported for all major taxonomic groups of fungi (Ghabrial et al. 2015). 

Mycoviruses with a double-stranded (ds) RNA genome are grouped according to the 

International Committee on Taxonomy of Viruses (ICTV) into seven families (Chrysoviridae, 

Endornaviridae, Megabirnaviridae, Partitiviridae, Quadriviridae, Reoviridae and Totiviridae 

and one genus Botybirnavirus (Kotta-Loizou and Coutts 2017). Kozlakidis et al. (2013) 

proposed the family “Alternaviridae” and the genus “Alternavirus” with Alternaria alternata 

virus 1 (AaV-1) (Aoki et al. 2009) as its type virus. So far, six more viruses are reported to be 

members of “Alternaviridae”: Aspergillus mycovirus 341 (AMV) (Hammond et al. 2008), 

Aspergillus foetidus dsRNA mycovirus (AfMV) (Kozlakidis et al. 2013), Aspergillus 

heteromorphus alternavirus 1 (AheAV1) (Gilbert et al. 2019), Fusarium poae alternavirus 1 

(FpAV1) (Osaki et al. 2016), Fusarium graminearum alternavirus 1 (FgAV1) (He et al. 2018) 

and Fusarium incarnatum alternavirus 1 (FiAV1) (Zhang et al. 2019). 

Apple replant disease (ARD) is often associated with biotic factors as potential cause and 

especially fungi of the family Nectriaceae (also known as Cylindrocarpon-like fungi) became 

focus of investigations in the recent years (Manici et al. 2013; Manici et al. 2018; Popp et al. 

2019; Tewoldemedhin et al. 2011c). Mycoviral infections can influence their host fungi in 

several ways. The virus may be able to modulate the virulence or toxin production of its fungal 

host and thus alter the interaction between fungus and plant (Hammond et al. 2008; Márquez et 

al. 2007). For example, Cryphonectria hypovirus 1 (CHV1) causes hypovirulence of the tree 

pathogen Cryphonectria parasitica, which causes chestnut blight (Shapira et al. 1991). On the 

other hand, a viral dsRNA up regulates the virulence of Nectria radicicola (current name 

Ilyonectria destructans, (Zinssm. Rossmann, L. Lombard & Crous, Studies in mycology 80: 

217 (2015) [MB#810954]), the causal fungus of ginseng root rot (Ahn and Lee 2001). Further, 

a viral infection in Fusarium graminearum (strain DK21) reduced the mycotoxin production 

(trichothecene, 60-fold) besides other changes (Chu et al. 2002). In addition, mycoviruses with 

their potential as sustainable biocontrol agents of plant pathogenic fungi are getting more 

attention during the recent years (Xie and Jiang 2014; Yu et al. 2013). 

Since sustainable mitigation strategies of the replant disease are still missing (Winkelmann et 

al. 2019), Nectriaceae isolates obtained from surface disinfected replant diseased roots were 

screened for mycoviral infections by dsRNA extraction. Here we describe a new alternavirus 

found in Dactylonectria torresensis by a deep sequencing approach of dsRNA and a 

phylogenetic analysis of its putative RNA-dependent RNA polymerase (RdRp). In addition, the 
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presence of tentatively named Dactylonectria torresensis alternavirus 1 (DtAV1) was confirmed 

by RT-PCR amplification performed on total nucleic acid extracts of D. torresensis. 

5.2 Material and Methods 

5.2.1 Fungal isolate 

A total of 41 Nectriaceae isolates obtained in central experiment 2 (CE2) in 2017 (Mahnkopp 

et al. 2018) from apple roots grown in ARD soils were screened for mycoviral infections by 

dsRNA extraction. The fungal isolate of D. torresensis (O6-1-A, Fig. 5.1) was isolated from 

roots grown in ARD soil from the experimental site Ellerhoop (x-coordinate 53.71435; y-

coordinate 9.770143 WGS 84, Schleswig-Holstein, northern Germany). Surface disinfected 

roots were plated on 1.5 % water agar amended with penicillin (50 µg mL-1), rifampicin 

(10 µg mL-1) and pimaricin (25 µg mL-1). Sub-culturing was done on 2 % malt extract agar. 

The isolate was identified as D. torresensis by PCR amplification of histone 3 gene (HIS) using 

primer pairs CYLH3F and CYLH3R (Crous et al. 2004) and translation elongation factor 1-α 

gene (TEF) (CylEF-1 (5′-ATG GGT AAG GAV GAV AAG AC-3′; J.Z. Groenewald, 

unpublished), and CylEF-R2 (Crous et al. 2004), followed by Sanger sequencing and NCBI 

BLASTn analysis (Popp et al. 2019). 

 

 

Fig. 5.1 Example of Dactylonectria torresensis isolate O6-1-A; 21 days after growth on malt extract 

agar 
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5.2.2 Extraction of dsRNA 

Fungal mycelium was grown in 2 % malt extract broth for at least one week, grinded in liquid 

nitrogen and stored at -80 °C until use. For extraction a modified protocol of Morris and Dodds 

(1979) was applied as described in Lesker et al. (2013), besides using another cellulose (acid 

washed, powder for column chromatography, Merck, Darmstadt, Germany). For further 

purification of dsRNA, the eluate was digested with RNase T1 and DNase I (Roche, Mannheim, 

Germany). Finally, the dsRNA pellet was suspended in 20 µl 5 mM Tris. 

5.2.3 Illumina library preparation and de novo assembly 

Illumina library preparation was performed as described in Knierim et al. (2019): ribosomal 

RNA was removed (RiboMinus Plant Kit, Invitrogen, Carlsbad, USA) followed by random 

cDNA synthesis with random octamer primers (RevertAid H Minus Reverse Transcriptase, 

Thermo Fisher Scientific, Waltham, USA), second strand synthesis (NEBNext, mRNA Second 

Strand Synthesis Module, NEB, Ipswich, USA), library preparation (Nextera XT Library Kit, 

Illumina, San Diego, USA), DNA quantification (Qubit dsDNA HS Assay Kit, Life 

Technologies, Carlsbad, USA) and quality analyses (High Sensitivity DNA Chips, Agilent 

2100 Bioanalyzer, Agilent Technologies, Santa Clara, USA). The run was performed as paired-

end reads on a MiSeq sequencer (Illumina 2x301, DSMZ, Braunschweig, Germany). Raw reads 

were trimmed (1 % error probability limit) and de novo assembled using Geneious software 

(Biomatters, Auckland, New Zealand). Consensus sequences were built out of the first 1000 

contigs and translated into all possible frames. A local BLASTp was performed with these 6000 

protein sequences against a local virus database to identify viral contigs. 

5.2.4 RT-PCR and RACE 

To confirm the results of the deep sequencing and to complete the sequences, primers were 

designed based on the de novo assembled virus sequences (all primers used are listed in 

Table 5.1). Total nucleic acids of the fungal isolate were extracted using silica particles (Menzel 

et al. 2002). For cDNA synthesis 3 µl total nucleic acid extract was incubated with 1 µl of anti-

sense primer (primer No. 2, 4 or 6 for RNA1-3, respectively) at 99 °C for 3 min and rapidly 

cooled on ice. The cDNA mix consisted of 2 µl RT buffer, 0.5 µl dNTPs (10 mM, Roth, 

Karlsruhe, Germany), and 1 µl RevertAid reverse transcriptase (20 U µl-1, Thermo Fisher, 

Waltham, USA) in a total volume of 10 µl and was incubated for 1 h at 42 °C. The PCR mix 

included 5 µl Phusion Flash High Fidelity PCR Master Mix (Thermo Fisher, Waltham, USA), 

0.5 µl of each sense and anti-sense identification primer (primer No. 1-6) for the corresponding 
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RNA (10 µM) and 1 µl cDNA in a total volume of 10 µl. The cycle conditions were 98 °C for 

15 s, followed by 34 cycles at 98 °C for 15 s, 62 °C for 5 s and 72 °C for 20 s, followed by a 

final elongation at 72 °C for 5 min. RT-PCR was performed in a C100 thermal cycler (BioRad, 

Hercules, USA). 

Table 5.1 Primer designed to verify de novo assembled virus sequences by RT-PCR 

Primer No. Primer designation Sequence 

1 DacRNA1_ident_s CGTATGAAGAACTGTTGGCTACCCG 

2 DacRNA1_ident_as CGACATCATCAGCACGATTGAGGG 

3 DacRNA2_ident_s CCGTGCCTTAACAAGCCTGGG 

4 DacRNA2_ident_as GCCTTGTCAGCAGATCCATGCC 

5 DacRNA3_ident_s CGCTTTCATGCCATCGGTGAG 

6 DacRNA3_ident_as CGGAAATCATTGACACCACGACC 

7 Dac_1_5end CGCTGCGCACCAACAAATTC 

8 Dac_2_5end GACGGCTACCGAGAGGAAGTTAGC 

9 Dac_3_5end GTACACCTCGTGCGTAGGATCG 

10 Dac_1_5_nested TCCTCCGCTTATTGATATGC 

11 Dac_2_5_nested TTGATATAGGACACCTTGCCAGTCTGAG 

12 Dac_3_5_nested TCGGCCTGATCAGGCATTTTGAAC 

13 Dac_1_3_end GCATGGGACAAGTTGATACCGC 

14 Dac_2_3_end CGTACTTGCAGCCGCCAACGC 

15 Dac_3_3_end GATGCGGCGTACCGTGCATCG 

16 Poly-G15 CTCAAACAGTCACGGGGGGGGGGGGGGG 

17 Poly-C14 ATCCTGCAGGCGCGCCCCCCCCCCCCCC 

18 RACE-BOE1 GACCACGCGTATCGATGTCGACTTTTTTTTTT

TTTTTT(AGC) 

19 RACE-BOE2 GACCACGCGTATCGATGTCGA 

 

For rapid amplification of 5’-ends (RACE) cDNAs were synthesized as described above with 

primer No. 7-9 (Table 5.1). After purification with SureClean Plus (Bioline, London, UK), 3 µl 

of each cDNA was tailed in a 20 µl reaction volume with C and G (5 mM), respectively, using 

Terminal deoxynucleotidyl transferase (20 U) for 30 min at 37 °C. 3 µl of each tailed cDNA 

was used in PCR reactions using nested primers specific for RNA1-3 (primer No. 10-12) 

together with a poly-G or poly-C primer (primer No. 16 and 17). The 3’-ends were determined 

by using a modified oligo (dT) 16 primer (primer No. 18), a nested primer (primer No. 19) and 

a primer specific for RNA1-3 (primer No. 13-15). 
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5.2.5 Phylogenetic analysis 

A complete alignment with full RdRp amino acid sequences of all known members of 

“Alternaviridae” was carried out by using Muscle software in MEGA 6 software (Tamura et 

al. 2013). The model with the smallest BIC value was applied (LG G) to build a maximum 

likelihood phylogenetic tree using the bootstrap method with 1000 replications. Hubei toti-like 

virus 7 was used as an outgroup according to Kotta-Loizou and Coutts (2017). 

5.2.6 Alignment 

Untranslated region (UTR) of the 5’-end sequences were aligned in ClustalX2.1. Amino acid 

motives of dsRNA1 of “Alternaviridae” described by Gilbert et al. (2019) were searched and 

marked by using the program SnapGene Viewer 4.3.7. 

5.3 Results 

A total of 41 Nectriaceae isolates were screened for mycoviral infections by dsRNA extraction. 

In seven isolates dsRNA fragments were visible after gel electrophoresis. Gel electrophoreses 

of the dsRNA extract obtained from D. torresensis isolate O6-1-A showed four fragments with 

approximately sizes of 3.5, 2.8, 2.5 and 1.5 kb (Fig. 5.2, lane 4). 

After Illumina sequencing of dsRNAs, a total number of 204 000 reads was generated which 

were assembled into three contigs. All three contigs could be confirmed by RT-PCR out of total 

nucleic extracts. Following 5’-RACE and 3’-end determination RNA1 consists of 3578 bp, 

RNA2 of 2668 bp and RNA3 of 2467 bp excluding the poly-A tail (Fig. 5.3). No contig was 

generated for the fourth dsRNA fragment. So far, separate cloning and sequencing approaches 

with the fourth dsRNA delivered no sequence similarities after BLASTx with known viral 

sequences. 

Each RNA contains one open reading frame (ORF). The ORF of RNA1 (nt position 63-3437) 

has a size of 1124 aa with an estimated molecular weight of 126.6 kDa. This corresponded with 

the frame sizes of segment 1 of AMV, AfMV and AheAV1 (Table 5.2). BLASTp analyses gave 

the best hit with the RdRp sequence of Fusarium poae alternavirus 1 (Ident 58.3 %). The ORF 

of dsRNA2 (nt position 67-2334) has a size of 755 aa with a predicted molecular weight of 

81.8 kDa. The amino acid sequence of segment 2 fitted also best to Fusarium poae 

alternavirus 1 ORF2 (Ident 37.5 %). The ORF of dsRNA3 (nt position 76-2289) consists of 

737 aa with a molecular weight of 79.7 kDa. BLASTp analysis revealed again the highest 

similarities to Fusarium poae alternavirus 1 ORF of RNA3 (Ident 42.1 %). 
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Fig. 5.2 Gel electrophoresis of dsRNA extracts. From the left: Size standard (M; PstI digested Lambda 

DNA), lane 1 isolate 22-1-B (Dactylonectria torresensis), lane 2 isolate 20-1-B (D. torresensis), lane 3 

isolate O16-2-D (Ilyonectria robusta) and lane 4 isolate O6-1-A (D. torresensis) 

 

 

Fig. 5.3 Genome organization of Dactylonectria torresensis alternavirus 1: The genome consisted 

out of three dsRNA molecules each encoding one open reading frame (ORF) (blue box). Untranslated 

regions (UTR) are marked as single lines. ORF1 included motives of the RNA-dependent RNA 

polymerase (RdRp). ORF2 and 3 depicted hypothetical proteins. Each RNA had a poly(A) tail at the 3’-

end.
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Table 5.2 Overview of “Alternaviridae”: Virus name and abbreviation as given in the GenBank (www.ncbi.nlm.nih.gov/) or original literature. Number of double-

stranded RNA (dsRNA) segments; segment size in base pairs (bp); Open reading frame (ORF) size with nt= nucleotides, aa= amino acids and estimated molecular 

weight in kilo Dalton (kDa). Protein Function with RNA-dependent RNA polymerase (RdRp) and hypothetical protein (Hyp). Untranslated regions (UTR) length; 

3’- UTR without poly A-tail 

Virus name Abbre-

viation 

Literature Original host dsRNA 

segments 

Segment (bp) Acession 

Nr. 

ORF size (nt; aa; 

kDa) 

Func

-tion 

UTR  

length (bp) 

5’-

UTR 

3’-

UTR 

Alternaria 

alternata virus 1 

AaV-1 Akoi et al. 

2009 

Alternaria 

alternata EGS 

35-193 

4 dsRNA1 (3613) AB368492 3450; 1149; 129 RdRp 48 69 

dsRNA2 (2794) AB438027 2535; 844; 91 Hyp 52 157 

dsRNA3 (2576) AB438028 2280; 759; 82 Hyp 51 209 

dsRNA4 (1420) AB438029 1182; 393; 41 Hyp 50 147 
           

Aspergillus 

mycovirus 341 

AMV Hammond 

et al. 2008 

Aspergillus 

niger 341 

4 dsRNA1 (3,588) EU289897 3,375; 1,124; 127 RdRp 51 145 

           

Aspergillus 

foetidus dsRNA 

mycovirus 

AfMV Kozlakidis 

et al. 2013 

Aspergillus 

foetidus IMI 

41871 

4 dsRNA1 (3,588)  HE588144  3,375; 1,124; 127  RdRp 51  145  

dsRNA2 (2,770) HE588145 2,406; 801; 87 Hyp 48 280 

dsRNA3 (2,466) HE588146 2,181; 726; 79 Hyp 50 187 

dsRNA4 (2,005) HE647818 1,743; 580; 65 Hyp 50 168 
           

Aspergillus 

heteromorphus 

alternavirus 1 

AheAV1 Gilbert et 

al. 2019 

Aspergillus 

heteromorphus 

isolate CBS 

117.55 

3 dsRNA1 3576 MK279437 3375; 1,124; 127 RdRp 42 142 

dsRNA2 2742 MK279438 2502; 833; 91 Hyp 48 184 

dsRNA3 2427 MK279439 2184; 727; 79 Hyp 49 184 

           

Fusarium poae 

alternavirus 1 

FpAV1 Osaki et al. 

2016 

Fusarium poae 

MAFF 240374 

3 dsRNA1 3559 LC150613 3372; 1123; 126 RdRp 82 105 

dsRNA2 2496 LC150614 2271; 756; 84 Hyp 82 120 

dsRNA3 2482 LC150615 2232; 743; 81 Hyp 77 153 
           

Fusarium 

graminearum 

alternavirus 1 

FgAV1 He et al. 

2018 

Fusarium 

graminearum 

AH11 

3 dsRNA1 3524 MG254901 3372; 1123; 126 RdRp 80 72 

dsRNA2 2470 MG254902 2271; 756; 84 Hyp 79 120 

dsRNA3 2485 MG697236 2232; 743; 81 Hyp 77 151 
           

Fusarium 

incarnatum 

alternavirus 1 

FiAV1 Zhang et 

al. 2019 

Fusarium 

incarnatum 

LY003-07 

3 dsRNA1 3548 MH899114 3372; 1123;126 RdRp 82 71 

dsRNA2 2514 MH899115 2271; 756; 84 Hyp 80 118 

dsRNA3 2498 MH899116 2220; 739; 81 Hyp 78 153 
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Phylogenetic analyses of dsRNA1 showed that the putative RdRp sequence of this mycovirus 

found in D. torresensis fitted very well in mycoviruses of the proposed family “Alternaviridae” 

(Fig. 5.4). It is more closely related to the virus found in Fusarium species compared to the 

viruses in other fungi (Aspergillus and Alternaria). Like AheAV1, FpAV1, FgAV1 and FiAV1 

the genome of DtAV1 is tripartite. 

 

Fig. 5.4 Phylogenetic tree of the proposed family “Alternaviridae”: Amino acid sequences of putative 

RdRp sequences of the viruses available in the NCBI GenBank were aligned with MUSCLE and a 

maximum likelihood phylogenetic tree was built using MEGA 6 software. Bootstrap values (%) 

obtained with 1000 replicates are indicated on branches and branch lengths correspond to genetic 

distance; scale bar at lower left corresponds to a genetic distance of 0.5. Accession Numbers: Alternaria 

alternata virus 1 (BAF94335.1), Aspergillus mycovirus 341 (ABX79997.1), Aspergillus foetidus 

dsRNA mycovirus (CCD33020.1), Aspergillus heteromorphus alternavirus 1 (AZT88575.1), Fusarium 

poae alternavirus 1 (BAV56306.1), Fusarium graminearum alternavirus 1 (AUG68999.1), Fusarium 

incarnatum alternavirus 1 (AYJ09265.1) and Hubei toti-like virus 7 (APG76025.1) as an outgroup 

(Kotta-Loizou & Coutts 2017) 

 

 

 

Fig 5.5 Alignment of 5’-UTR of RNA1-3. Alignment in ClustalX2.1 

 

Eight amino acid motives were found on RNA1 including the ADD motive for the RdRp of 

“Alternaviridae” (addendum Table 8.4). An alignment of the 5’-UTR sequences of RNA1-3 

revealed conserved sequences which are GCT (T/C) TTA and TC (A/G) A (G/A) TAGGC 

(Fig. 5.5).  



Chapter 5: Sequence of an alternavirus from Dactylonectria torresensis 38 

 

5.4 Discussion 

Deep sequencing analysis of the dsRNA extract of D. torresensis isolate O6-1-A revealed that 

the fungus is infected by a mycovirus, which is a putative member of the proposed family 

“Alternaviridae”. Although after gel electrophoresis of the dsRNA extract four fragments were 

visible on the gel the de novo assembly gave only hits for three dsRNA segments. According 

to its size of approximately 1.5 kb the smallest fragment of the dsRNAs would fit to RNA4 of 

AaV-1 and AfMV. In contrast, the fragment size is too small to associate it to a member of the 

Chrysoviridae. For this virus family four to five dsRNAs are reported. In Fusarium species the 

smallest fragment of the Chrysoviridae is always > 2 kb (Fusarium graminearum virus-ch9; 

dsRNA5 2423 bp (Darissa et al. 2011); Fusarium graminearum virus 2; dsRNA5 2414 bp (Yu 

et al. 2011); Fusarium oxysporum f. sp. dianthimycovirus 1; dsRNA4 2646 bp (Lemus-Minor 

et al. 2015). For “Alternaviridae” viruses with both four (AaV-1, AMV, AfMV) and three 

dsRNA segments (AheAV1, FpAV1, FgAV1, FiAV1) are described. Furthermore, it was 

reported that during mycovirus transfer the smallest dsRNA of AMV got lost and was not 

detectable (Hammond et al. 2008). Other mycoviral infections in this fungal isolate cannot be 

excluded, but no further RdRp sequences were found in the deep sequencing approach as well 

as no hits to sequences of RNA4 of other members of the “Alternaviridae”. 

Phylogenetic analyses revealed that DtAV1 fits well in the family of “Alternaviridae”. It seems 

to be more related to the “Alternavirus” of Fusarium species, which are like D. torresensis 

members of the fungal family Nectriaceae. “Alternaviridae” are related to Totiviridae and 

Chrysoviridae, but there is a clear delineation between these viral families (Gilbert et al. 2019). 

Gilbert et al. (2019) described eight conserved motives in the amino acid sequences of dsRNA1 

for different members of “Alternaviridae”. These motives could also be detected in the amino 

acid sequence of DtAV1 RNA1. Moreover, as with other members of "Alternaviridae", the 

RdRp domain ADD could be detected in motive VI instead of GDD, which is almost universally 

conserved in other virus genera (Gilbert et al. 2019). By aligning 5’-UTR sequences of RNA1-

3, conserved domains were discovered. Viruses with a multipartite genome often have 

conserved sequences within the 5’-UTR (Gilbert et al. 2019). Conserved sequences in the 5’-

UTR were also described for AaV-1 (Aoki et al. 2009), AfMV (Kozlakidis et al. 2013), 

AheAV1 (Gilbert et al. 2019) and FiAV1 (Zhang et al. 2019). 

In summary, evidence that DtAV1 is a member of “Alternaviridae” is given by the fact that 

protein comparisons (BLASTp analyses) gave best hits to FpAV1. Phylogenetic analyses of the 

amino acid sequence of RNA1 further confirmed this. Members of “Alternaviridae” have an 
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ADD motive (RdRp) on RNA1 instead of GDD. Further amino acid motives similarities of 

RNA1 as described by Gilbert et al. (2019) were also found. 

In Alternaria alternata the infection with AaV-1 led to an impaired growth phenotype that was 

correlated with high concentrations of dsRNA. The isolate exhibited reduced mycelia growth, 

aerial mycelia collapse, unregulated pigmentation and cytolyses. Abnormally enlarged vesicles 

resulted in the burst of mycelial cells (Aoki et al. 2009). In contrast to that, in Aspergillus niger 

the AMV infection had no marked effect on the host fungus (Hammond et al. 2008). For all 

other viruses of “Alternaviridae” virus-host interaction studies are missing. D. torresensis is a 

pathogen involved in the apple replant disease complex that infects the roots (Popp et al. 2019). 

Manici et al. (2018) investigated cultural filtrates of D. torresensis isolated from ARD diseased 

apple roots. The authors reported the production of toxins (tentoxin, HC toxin and zearalenone) 

and low molecular weight compounds (rabelomycin and nidulin) by the fungus together with 

phytotoxic activity of culture filtrates (reduced root elongation and tissue softening). Therefore, 

it is of great interest to study the effect of the mycoviral infection regarding a possible control 

strategy of the replant disease. Experiments are in progress to cure the fungal isolate and to 

investigate the effects of the virus infection on the host fungus D. torresensis and possible 

effects respecting the plant-fungus-virus interaction. 

This is the first report of a virus belonging to “Alternaviridae” in D. torresensis. Therefore, we 

suppose the name Dactylonectria torresensis alternavirus 1 (DtAV1).
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6. General Discussion 

6.1 Fungal Endophytes 

6.1.1 Involvement of fungal endophytes in ARD 

One aim of this work was to investigate whether fungal endophytes are involved in the 

development of ARD. Here, a culture-dependent approach was used to characterize and 

quantify the fungal endophyte community (Chapter 2). Fungal isolates are essential to 

investigate the relationship with apple plants for functions such as pathogenicity or plant growth 

promotion and for further interactions with other ARD organisms. On the other hand, culture-

independent approaches would have allowed the detection of also yet unculturable 

microorganisms (Brader et al. 2017). 

The isolations from experiments CE1 and CE2 confirmed the hypothesis that there are 

differences in the fungal root endophyte community comparing apple plants grown in control 

soil and ARD soil. An enrichment of Nectriaceae species, especially of D. torresensis and 

I. robusta, was found for roots grown in ARD soil compared to Apple New soil (CE1, 

Chapter 2). This could also be confirmed in experiment CE2: Only a few Nectriaceae isolates 

were obtained from roots grown in untreated grass soil. On the other hand, isolates assigned to 

Helotiales, like Leptodontidium spp., Cadophora spp., and Mycochaetophora spp., occurred 

frequently in this variant. Further, the latter isolates are characterized by dark, septate mycelium 

and can be considered as DSE fungi. In contrast, much more Nectriaceae isolates were gained 

from roots grown in untreated ARD soils, while on the other hand the number of DSE isolates 

were in most cases less frequently found in the untreated ARD soil variants. Same tendencies 

were observed for all reference sites, which have different soil types but share a defined 

cropping history (Mahnkopp et al. 2018). The gamma irradiation of the soil resulted in a clear 

reduction in the number of isolated fungi and a complete different fungal community compared 

to untreated soils, while the plant growth was significantly increased. This indicates that biotic 

agents are involved in the disease development of ARD. The perlite test (Chapter 3) has shown 

that some fungal isolates are able to directly infect apple roots leading to strong wilting of shoots 

and plant mortality. This further supports the hypothesis of an involvement of fungi in the 

development of ARD. Nectriaceae isolates of Calonectria sp., D. torresensis, I. crassa, 

I. europaea and I. robusta caused severe wilting and killed M26 plants in the test already after 

14 dpi. These fungi were re-isolated and were thereby confirmed as pathogens for apple plants. 

In addition, the PCR analyses of Harris samples and LMD thin-sections (Chapter 4) have shown 

that a complex of Nectriaceae species produces intracellular CF-like structures during cell 
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infection with further tissue necroses. This validates the hypothesis that some fungal isolates 

are pathogens and have a negative influence on the growth of apple plants. But also, an isolate 

of Cadophora luteo-olivacea belonging to DSE fungi caused severe wilting, stunting and 

necrosis of M26 plants at 14 dpi in the perlite test. However, this isolate was not re-isolated. 

Other DSE isolates obtained from roots grown in untreated ARD soils in CE2, like 

Leptodontidium sp. or Pleotrichocladium sp. did not display such strong effects. The role of 

DSE and Nectriaceae fungi in context of ARD will be discussed in the following sub-chapters. 

6.1.2 The role of DSE fungi in the context of ARD 

In this work, DSE fungi were frequently isolated from apple roots. Especially 

Leptodontidium spp. seems to be a typical plant endophyte (Lee et al. 2017; 

Nallanchakravarthula et al. 2014; Pecoraro et al. 2012; Upson et al. 2009b). Manici et al. (2013) 

isolated also Cadophora spp. from apple, but these were not further discussed. In investigations 

of black root rot in other members of Rosaceae like strawberry and raspberry, Cadophora and 

Leptodontidium spp. were the second most abundant group of fungal endophytes after 

Nectriaceae species (especially D. torresensis) (Weber and Entrop 2017). In general, DSE are 

ubiquitous in occurrence and can often be traced in stressed environments (Jumpponen and 

Trappe 1998; Mandyam and Jumpponen 2005; Read and Haselwandter 1981). DSE were 

reported in over 600 plant species and the effect of colonization is not clear and can vary from 

positive over neutral to negative (Jumpponen and Trappe 1998; Mayerhofer et al. 2013; 

Newsham 2011). In the perlite test (Chapter 3), the DSE fungi isolated from roots grown in 

untreated ARD soils in CE2 2017 showed varying effects after 42 dpi: M26 plants inoculated 

with Pleotrichocladium sp. (Pleosporales) and Zalerion sp. (Lulworthiales) appeared healthy, 

while Leptodontidium sp. (Helotiales) as well as Pyrenochaeta sp. (Pleosporales) led to 

shortened shoots and the latter also to mild wilting. On the other hand, inoculation with 

Cadophora luteo-olivacea (Helotiales) resulted in negative effects on the plant performance 

with shortened shoots and strong wilted and necrotic leaves. However, no re-infection trails 

were carried out with this group of fungi to confirm them as pathogens. 

In general, DSE fungi are considered to be multi-functional (Mandyam and Jumpponen 2005): 

Like mycorrhizal fungi, DSE can facilitate the nutrient uptake from the rhizosphere, which can 

promote plant growth and increase plant fitness. This might further indirectly protect the plant 

by the reduction of carbon sources in the host rhizosphere for other pathogens. But in contrast 

to the arbuscules of AMF, DSE fungi lack a specialized interface for the transfer of nutrients 

between fungus and plant (Peterson et al. 2008). In addition, DSE can produce secondary 
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metabolites which are toxic to herbivores and which can promote plant growth (Mandyam and 

Jumpponen 2005; Newsham 1999, 2011). The melanin in the DSE fungal cell wall helps fungi 

to survive in harsh environments and to protect from stresses like oxidizing agents and 

ultraviolet light (Eisenman and Casadevall 2012). Mandyam and Jumpponen (2005) suggested 

that DSE fungi with their broad host spectrum may control plant community dynamics by the 

varying host responses to colonization. 

Despite the very frequent isolations from surface disinfected root pieces, typical DSE structures 

such as microsclerotia and melanized hyphae were rarely described in the detailed microscopic 

and histological analyses of apple and rose roots conducted by Grunewaldt-Stöcker et al. (2019, 

unpublished data). In contrast to that, DSE isolates inoculated in the perlite test were able to 

build such structures (Chapter 3). The reason for the few observations of melanized hyphae 

might be that DSE fungi are also able to form non-melanized, hyaline hyphae in their plant 

hosts, which are hard to detected by microscopy (Haselwandter and Read 1982; Newsham 

1999; Yu et al. 2001). These hyphae could not be stained with Trypan blue, a chitin targeting 

stain that is often used in the microscopy of roots, indicating that the colonizing fungus produces 

low amounts of chitin or develops a poor fungal cell wall (Barrow and Aaltonen 2001). For 

detection, the usage of a lipid specific stain, e.g. Sudan IV, together with DIC microscopy is 

necessary (Barrow and Aaltonen 2001). Yu et al. (2001) suggested that the hyaline hyphae 

produced by melanized DSE fungi often went unnoticed in microscopic studies and that this 

resulted in an underestimation of the true abundance of DSE. However, already after two weeks 

of cultivation in ARD affected soil, the roots of apple are extensively colonized by Nectriaceae 

fungi which may limit the establishment of DSE fungi in the roots (Grunewaldt-Stöcker et al., 

unpublished data). This might be another reason for the few DSE observations. Therefore, it 

would be interesting to expose a DSE pre-colonized apple plant to different Nectriaceae species. 

The DSE colonization might then reduce the available space for other endophytes (Mandyam 

and Jumpponen 2005). Co-inoculation experiments should be carried out to further investigate 

the interaction between DSE fungi, Nectriaceae and other ARD associated organisms like 

nematodes or collembola. 

The diverse group of DSE fungi may contain pathogens as well as species with positive effects 

on apple plant similar to mycorrhizal fungi. But in contrast to the obligate symbiotic AMF, 

many DSE can be cultured axenically. This make these fungi very interesting for applications 

as biofertilizers (Mandyam and Jumpponen 2005), which may help to enhance the productivity 

in ARD affected apple orchards. So far, the role of DSE fungi in context of ARD remains 

elucidated and should be further investigated in the future. 
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6.1.3 The role of Nectriaceae in context of ARD 

Nectriaceae, which include the former known group of Cylindrocarpon-like fungi, were 

frequently reported to be involved in the etiology of ARD (Braun 1995; Dullahide et al. 1994; 

Manici et al. 2013; Manici et al. 2018; Mazzola 1998). The fungal species Cylindrocarpon 

destructans (current name Ilyonectria destructans, former teleomorph Nectria radicicola) was 

often described to cause root rot in several plants, e.g. blackberry (Cedeño et al. 2004), 

grapevine (Rego et al. 2001), ginseng (Kernaghan et al. 2007), oak (Sánchez et al. 2002), and 

scots pine (Unestam et al. 1989). Samuels and Brayford (1990) detected morphological 

variations in a collection of C. destructans. Up to now, phylogenetic analyses revealed that 

Cylindrocarpon destructans is a species complex, and a lot of new species were established 

within the Cylindrocarpon-like fungi (Agustí-Brisach et al. 2016; Brayford et al. 2004; Cabral 

et al. 2012a; Cabral et al. 2012b; Chaverri et al. 2011; Crous et al. 2004; Lechat et al. 2010; 

Lombard et al. 2014, 2015; Salgado-Salazar et al. 2015; Salgado-Salazar et al. 2016; Zeng and 

Zhuang 2013, 2019). For the identification of ARD related Nectriaceae the HIS gene provided 

the best resolution and thus confirmed former results of Cabral et al. (2012a) and Lawrence et 

al. (2019). 

In this work, different Nectriaceae were frequently isolated in experiments CE1 and CE2 from 

apple roots grown in ARD affected soils (Chapter 2). In another biotest, Manici et al. (2013) 

described results similar to those of CE2: Cylindrocarpon-like fungi were the major pathogens 

and negatively correlated with plant growth. Here, too, gamma irradiation led to an increase in 

plant growth as well as to an altered fungal community with lowest colonization of 

Cylindrocarpon-like fungi compared to untreated soil variants. 

The perlite test has demonstrated that some Nectriaceae isolates can infect apple roots and have 

a pathogenic effect (Chapter 3). Our own previously conducted greenhouses experiments failed 

to confirm pathogenicity. Also, in other inoculation experiments difficulties in the reproduction 

of pathogenicity of Nectriaceae species were reported (Manici et al. 2003; Manici et al. 2018; 

Tewoldemedhin et al. 2011a). This indicates that native ARD soils contain factors that favor 

the disease and are absent under artificial conditions (Manici et al. 2018). In addition, Manici 

et al. (2018) reported that isolates of D. torresensis produced metabolites (tentoxin, HC toxin 

and zearalenone) that might be phytotoxic and may contribute to growth depressions as well as 

antibiotics (rabelomycin and nidulin) that may affect the bacteria and other fungi in the 

rhizosphere community. However, the involvement of those metabolites in pathogenicity of 

D. torresensis was not yet verified. Further, the development of Nectriaceae in the soil is yet 
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poorly understood. In experiments conducted by Radl et al. (2019) Ilyonectria species occurred 

in only very low abundance in the rhizosphere and there were no differences between apple 

plants grown in ARD soil and in grass soil from the site Ellerhoop. However, from apple roots, 

high frequencies of Dactylonectria and Ilyonectria were isolated (Manici et al. 2018). This 

confirms our results and underlines that as plant pathogens their essential habitat is inside the 

root. 

A complex of Nectriaceae species was identified to be associated with the formation of CF 

structures leading to necrosis (Chapter 4). Different genera of Nectriaceae were identified in 

small tissue cubes of Harris Uni-Core Punch samples and also when samples of single laser-

micro dissected CF structures were combined in one PCR cup. Co-infections of different 

Nectriaceae species seemed to appear on a very small scale. These differences also might be 

biased by taxonomic uncertainties in comparisons with GenBank information. So far it remains 

unclear whether gene transfer has occurred between the different Nectriaceae species described 

here. However, it is not entirely unlikely, because horizontal gene transfer has been reported in 

Fusarium: Two linage-specific chromosomes were transferred between otherwise genetically 

isolated strains and thereby converted a non-pathogenic stain into a pathogen (Ma et al. 2010). 

In general, horizontal gene transfer between fungi seem to play a role in the evolution of 

pathogens (Brader et al. 2017). 

Histological analyses conducted by Grunewaldt-Stöcker et al. (unpublished data) demonstrated 

that Nectriaceae fungi can infect the roots directly, massively spread within the tissue and result 

in necroses. Further, the stele remains free of fungal colonization, which prevents a systemically 

distribution to other plant parts. This is in agreement with split root experiments that confirmed 

the local characteristics of ARD (Lucas et al. 2018). The split root experiment demonstrated 

that the disease cannot spread from a separated root part via the shoot to other parts of the plant, 

but is limited to the local root section, which is in direct contact with the ARD soil (Lucas et al. 

2018). 

In addition, in cortex tissue, intracellular fungal hyphae were also associated with the 

occurrence of black inclusion bodies. These infections together with the loss of cell vitality 

(Grunewaldt-Stöcker et al. 2019) have probably a considerable proportion on symptom 

development and thereby will lead to reductions in root and shoot growth and yield. However, 

so far it remains unclear what mechanisms promote disease caused by Nectriaceae. Factors, 

probably originating from the plant itself may shift the soil microbial community to a structure 

that favors infection and spread of Nectriaceae fungi. 
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6.1.4 ARD microbes and plant interactions 

Fungal pathogens were often reported to be associated with ARD (Manici et al. 2013; Mazzola 

1998; Mazzola and Manici 2012) and were also shown in this work to be involved in the disease 

development (Chapter 2-4). Transcriptome analyses revealed that genes related to biphenyl and 

dibenzofuran phytoalexin biosynthesis are upregulated in M26 plants grown in ARD affected 

soils (Weiß et al. 2017b). Also, inoculation experiments with Pythium ultimum led to an 

activation of phytoalexin biosynthesis genes (Shin et al. 2016). Phytoalexins are antimicrobial 

defense compounds in apple plants (Chizzali and Beerhues 2012). It was shown, that the 

defense pathway associated with biotic stress (bacteria and fungi) was activated but the outcome 

was not a sufficient disease defense. This might be due to an impaired exudation of these 

potentially phytotoxic compounds or a disturbed formation of reactive oxygen species (Weiß 

et al. 2017a). Furthermore, it should be examined whether other components of the ARD 

complex described here, especially the Nectriaceae species D. torresensis and I. robusta, would 

also lead to an upregulation of phytoalexin biosynthesis genes and in addition, which 

phytoalexins would be produced. 

Reim et al. (2020) investigated candidate genes in the context of ARD: among others, biphenyl 

synthase genes (BIS1-BIS4) belonging to the phytoalexin biosynthesis pathway were 

upregulated in plants grown in ARD soil, and gene expression positively correlated with the 

total phytoalexin content of plants. Further, the authors reported that the less susceptible 

genotype MAL0595 accumulated less phytoalexins in comparison to susceptible M26 and B63 

rootstocks (Reim et al. 2020). The hypothesis was made whether different ARD soils can lead 

to different phytoalexin patterns (Reim et al. 2020). Results from experiment CE2 showed that 

the soil from each location created an individual fungal root endophyte community (Chapter 2). 

Perhaps different fungal endophytes may result in varying phytoalexin production, which 

indeed might be an additional reason for contradictory reports for the different cropping regions. 

The last decades of research indicated that ARD is a complex phenomenon dealing with 

microbial dysbiosis in the soil rather than the cause of a single group of fungal pathogens 

(Mazzola and Manici 2012; Winkelmann et al. 2019). Replanting experiments indicated that 

the changes in soil microbial communities might be induced by the plant itself: Five replanting 

cycles of ‘Gala’ seedlings in non-cultivated orchard soils induced similar changes in the 

bacterial and fungal communities together with growth reductions like in replant soil (Mazzola 

1999). Interactions between plant and microbes can result in changes in the host physiology, 

leading to altered root exudation. This may also influence the composition and function of soil 
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and plant microbial communities as well as the interactions of microbes (Brader et al. 2017). 

The microbiome of the plant rhizosphere suppresses pathogens and plays a crucial role in plant 

health (Berendsen et al. 2012). Changes in the community composition may favor disease. It 

was shown, that different rootstock genotypes produce distinct root exudates, which lead to 

shifts in the soil microbial communities (Leisso et al. 2017; Winkelmann et al. 2019). 

Additionally, next to phytoalexins, also other phenolic compounds seem to play a role in ARD. 

The roots grown in ARD affected soils were reported to accumulate phenolic compounds 

potentially acting as antioxidants and thereby linking to oxidative stress (Henfrey et al. 2015). 

Also in root exudates, the phenolic compounds, e.g. phloridzin, were detectable (Hofmann et 

al. 2009; Leisso et al. 2018; Nicola et al. 2016). These phenolic substances can act against 

pathogens and help in the detoxification of reactive oxygen species (Emmett et al. 2014; 

Henfrey et al. 2015). In the replant disease of ginseng (Panax ginseng) the production of root 

exudates containing allelochemicals is related to root rot caused by Nectriaceae fungi: The 

phenolic acids, salicylic, cinnamic, and benzoic acid inhibited hyphal growth of 

Cylindrocarpon destructans, but stimulated the activity of hydrolytic and pathogenesis related 

enzymes like pectinase and cellulase (Sun et al. 2013). Further, it was reported that the virulent 

species Ilyonectria mors-panacis, which causes also root rot in ginseng, produces next to 

hydrolytic enzymes phenol oxidases to detoxify the accumulated polyphenols (Farh et al. 2018). 

Similar effects were also observed for Fusarium oxysporum f.sp. niveum, a fungus that causes 

Fusarium wilt in long-term watermelon monoculture: The watermelon root exudates containing 

allelochemicals seemed to promote the wilt. In vitro applications of cinnamic acid strongly 

inhibited hyphal growth and conidia production but activated hydrolytic enzymes (pectinase, 

proteinase, cellulase and to a lesser extend amylase) and highly stimulated the mycotoxin 

production (Wu et al. 2008). Although Ilyonectria species could only be detected in low 

abundance in the rhizosphere of apple plants grown in ARD soil (Radl et al. 2019) the phenolic 

root exudates may have reduced fungal growth but stimulated pathogenicity related enzyme 

activity or even toxin production. Further it was shown that in Sanqi ginseng (Panax 

notoginseng), the application of plant produced autotoxic ginsenosides altered the taxa 

composition in the fungal microbiome and stimulated soil-borne pathogens while potentially 

beneficial taxa were reduced (Li et al. 2020b). Whether the potentially phytotoxic phytoalexins 

produced by the apple plants or other phenolic root exudates have the same effect on the soil 

microbial community has not yet been demonstrated. 
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A deeper understanding of ARD associated microbe and plant interactions may help to 

modulate soil communities and facilitate the development of sustainable and ecologically 

friendly solutions in apple production. 

 

6.2 Mycoviruses for mitigation of ARD 

6.2.1 Mycoviruses of “Alternaviridae” and in Nectriaceae fungi 

The hypothesis that mycoviruses are involved in the causal ARD complex could not be 

validated in this work. This requires further investigations. However, the description of the full-

length sequence of DtAV1 is the first step for deeper analyses of the mycovirus biology and 

interaction studies with its host fungus D. torresensis and with apple plants. To investigate the 

effects of the DtAV1 infection, e.g. on sporulation, growth, virulence, and pigmentation, the 

fungus needs to be cured, for example by using cycloheximide (Aoki et al. 2009). The perlite 

test can help to examine the relationship between mycovirus, fungal endophyte and apple plant. 

In “Alternaviridae” only AaV-1 infection led to impaired growth and abnormal pigmentation 

in the host fungus Alternaria alternata. Cycloheximide treatment decreased the amount of 

dsRNAs and led to a normal growth and phenotype of the fungus (Aoki et al. 2009). Hammond 

et al. (2008) could not find any effects of AMV infection in Aspergillus niger. For all other 

members of “Alternaviridae” only the sequence was deposited in the GenBank. Therefore, it 

remains unclear whether members of “Alternaviridae” may cause hypovirulence and can be 

used in a mitigation strategy for ARD. 

A crucial element for the use of a mycovirus to control fungal diseases is the establishment of 

the virus population at the site of action (Xie and Jiang 2014). One limiting factor in treating 

fungal diseases with hypovirulence associated mycoviruses is the fungal vegetative 

incompatibility that may inhibit virus transmission. Xie and Jiang (2014) listed some strategies 

to overcome this problem: This can be for example the amendment of chemicals, the use of 

mycoviruses with a strong infectivity and by discovering a universal mycovirus donor or by 

establishing vectors for transmission. According to Ghabrial et al. (2015) no vectors have been 

described for mycoviruses so far. One simple reason might be the additional effort for such 

studies. Recently, Petrzik et al. (2016) reported the detection of the dsRNA virus TtV1 in the 

mycorrhiza fungus Thelephora terrestris as well as in the soil oribatid mite Steganacarus 

carinatus. But unfortunately, no transmission trials were carried out. After the discovery of a 

hypovirulent mycovirus in a pathogenic fungus associated with ARD, its interaction with other 
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soil organisms would be very interesting to investigate. A lot of potential vectors for mycovirus 

transmission are available in ARD affected soil, for example collembola, mites and nematodes, 

which are currently investigated in the ORDIAmur project (Kanfra et al. 2018; Winkelmann et 

al. 2019, Michaelis et al. unpublished data). By feeding on soil fungi these vectors might help 

in virus transmission, overcoming the restriction to fungal related vegetative compatibility 

groups. 

In general, investigations of mycoviral infections are still very limited. So far only one 

description of a mycovirus infection in Cylindrocarpon-like fungi reported a mycovirus in 

Ilyonectria destructans (former Nectria radicicola) with an upregulated virulence of the fungus 

(Ahn and Lee 2001) in ginseng (Panax ginseng). Ginseng is also susceptible to replant disease, 

and Nectriaceae fungi which cause ginseng root rot, are one of the major threats to ginseng 

production. Therein fungal strains contained up to four dsRNAs. Of those, the 6.0-kbp L1 

dsRNA was responsible for virulence upregulation, also containing RdRp motives (Ahn and 

Lee 2001). This virus was assigned to Partitiviridae (Liu et al. 2012). In samples from replant 

diseased ginseng fields, the incidence of L1 dsRNA infected fungal strains was significantly 

increased compared to plant samples of first cropping fields (Ahn and Lee 2001). Whether in 

ARD fungi of the Nectriaceae might be associated with hypervirulence should be further 

examined. As Nectriaceae are root pathogens of various plants (Lawrence et al. 2019), it is not 

unlikely to detect a hypovirulent strain, which then might transfer a mycovirus to apple plant 

pathogens to decrease their virulence and also to overcome potentially existing hypervirulence 

in the fungal spectrum of ARD. 

6.2.2 Mycoviruses in fungal endophytes 

The interaction of mycoviruses with the plant and also other (soil) organisms is fairly unknown. 

At present, an increasing number of mycoviruses are being discovered by deep sequencing 

methods and often only sequences are stored in the GenBank without any further biological 

examination. The investigations are mainly concentrated on fungi with economic importance, 

but other fungal endophytes can also be an interesting subject of research (Roossinck 2014). 

Endophytic fungi of two plant species originating from a wild plant community were surveyed 

for viral infections. In the described system the viral diversity was the greatest, followed by a 

lower diversity of fungi and plants (Feldman et al. 2012). This indicated that the occurrence of 

mycoviruses is very common and that they may have potentially mutualistic effects for their 

host in the ecosystem. Especially in harsh environments the viruses may act in epigenetic 

aspects by providing additional genetic information (Bao and Roossinck 2013). A famous 
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example for a mutualism induced by a mycovirus is the three-way symbioses of tropical panic 

grass (Dichanthelium lanuginosum) with the fungal endophyte Curvularia protuberata. The 

infection with Curvularia thermal tolerance virus (CThTV) leads to enhanced thermal tolerance 

(Márquez et al. 2007). The symbiotic plants can bear a soil temperature of 65 °C but if grown 

separately, both the fungus as well as the plant cannot grow at temperatures higher than 38 °C. 

Only in the presence of CThTV, the fungus is able to confer heat tolerance to its host plant 

(Márquez et al. 2007). Therefore, it is of great interest to monitor also other fungal endophytes 

obtained from apple roots for the presence of mycoviruses, for example DSE fungi. It might be 

possible that mycovirus infections can be found, which could help the plant in adapting to the 

adverse conditions in ARD affected soils. Further, it would be interesting whether ARD 

pathogens and other apple endophytes share same mycoviruses and if the outcome of the 

infection will be the same for both fungal hosts. 

 

6.3 Outlook 

In this work, it was demonstrated that fungal endophytes are involved in ARD. Nectriaceae 

species were enriched in roots grown in ARD soil and were shown to have a negative effect on 

apple plants. In addition, fungal isolates assigned to DSE were also frequently isolated from 

apple roots but were reduced in the relative abundance in ARD. The effect of DSE fungi on 

apple plants needs to be elucidated. Co-inoculation experiments with Nectriaceae and DSE 

isolates should be carried out, for example in the perlite test system. Further, it should be 

investigated whether candidate genes like the biphenyl synthase genes are upregulated after 

inoculation with different Nectriaceae or DSE isolates, and if so what kind of phytoalexins are 

produced. Additionally, the effect of apple root exudates as well as phytoalexins on fungal 

growth and enzyme production would be of interest. 

For mitigation of ARD different strategies are conceivable: For instance, some easy culturable 

DSE fungi might have plant growth promoting effects and may be used as biofertilizers. On the 

other hand, the effect of mycoviruses regarding hypovirulence or other potentially positive 

effects on fungal ARD endophytes or apple plants should be further considered. 
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8. Addendum 

Table 8.1 Fungal endophyte isolations CE2 2017 using water agar. Surface disinfected roots 

of M26 and Bittenfelder were grown for 8 weeks in untreated or irradiated (Gamma) ARD or 

grass soil, respectively, from the reference sites Heidgraben, Ellerhoop and Ruthe. Relative 

Colonization Frequency (RFC) in % is the number of root pieces with fungal mycelium divided 

through the number of total incubated root pieces. Identification by ITS-PCR and Sanger 

sequencing and number (n) of isolates 

 

Genotype Location Soil Treatment RCF (%) Identification  n of 

isolates 

M26 Heidgraben ARD untreated 25 Nectria sp. 3 

  Cylindrocladiella sp. 1 

  Bjerkandera sp. 1 

  Leptodontidium sp. 1 

  Zalerion sp  1 

  not identified 4 

ARD Gamma 4,2 Calonectria sp. 1 

Grass untreated  18,8 Fusarium sp. 3 

  Leptodontidium sp. 2 

  Cadophora sp.  1 

  Clohesyomyces sp. 1 

Grass Gamma 0     

Ellerhoop ARD  untreated 12,5 Dactylonectria sp. 2 

  Nectria sp.  2 

ARD Gamma 7,1 Trichoderma sp. 1 

  not identified 1 

Grass untreated 6,3 Dactylonectria sp. 2 

  Trichocladium sp. 1 

Grass Gamma 3,6 not identified 1 

Ruthe ARD untreated 43,8 Dactylonectria sp. 5 

  Doratomyces sp. 1 

  Exophiala sp. 1 

  Pyrenochaeta sp 1 

  Plectospherella sp. 1 

  Pythium ultimum 1 

  not identified 4 

ARD Gamma 8,3 Trichoderma sp. 1 

  not identified 1 

Grass untreated 15,6 Cadophora sp.  1 

  Dactylonectria sp. 1 

  not identified 4 

Grass Gamma 4,2 Phoma sp. 1 
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Bittenfelder Ruthe ARD untreated 18,75 Dactylonectria sp. 2 

  Ilyonectria sp. 1 

  Nectria sp. 1 

  Cadophora sp.  1 

  Doratomyces sp. 1 

  not identified 2 

ARD Gamma 0 
  

Grass untreated 0     

Grass Gamma 6,25 Geomyces sp. 1 

  Leptosphaeria sp. 1 
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Table 8.2 Identification of endophytic root fungi harvested by punching with a Harris Uni-Core 

from pre-selected fine root samples with distinct infection sites or symptom-free tissue (sf). Fresh or 

fixed root samples of M26 plants grown in December 2018 (biotest 1) and May 2019 (biotest 3) for two 

to four weeks in untreated (ut) or gamma irradiated (γ) soils of apple replant diseased plots from sites 

Ellerhoop (E), Heidgraben (H) and Ruthe (R). NA= no amplification, Negative control (N ctrl) = only 

PCR reagents without root samples, Positive control (P ctrl) = fungal DNA of D. torresensis added to 

the PCR mix. Sanger sequencing of genes histone 3 (HIS), and translation elongation factor 1-α (TEF) 

for identification, first hits of BLASTn analysis 

Treatment Plant no. Sample ID HIS TEF 

Biotest 1     

E-ARD-ut 1 314 NA Hypocreales sp.1 

E-ARD-ut 2 322 Rugonectria rugulosa  Hypocreales sp. 

E-ARD-ut 3 331 Rugonectria rugulosa  NA 

E-ARD-ut 3 332 Rugonectria rugulosa  Hypocreales sp. 

H-ARD-ut 2 316 Rugonectria rugulosa  Hypocreales sp. 

H-ARD-ut 2 318 Rugonectria rugulosa  NA 

H-ARD-ut 3 327 Dactylonectria torresensis  NA 

H-ARD-ut sf 1 334 Dactylonectria torresensis  NA 

H-ARD-ut sf 1 335 Ilyonectria europaea Dactylonectria torresensis 

H-ARD-ut sf 2 306 Rugonectria rugulosa  NA 

R-ARD-ut 1 311 Rugonectria rugulosa  NA 

R-ARD-ut 1 312 Dactylonectria torresensis  NA 

R-ARD-ut 2 319 Rugonectria rugulosa  Ilyonectria venezuelensis 

R-ARD-ut 3 328 Rugonectria rugulosa  NA 

N ctrl  N1 NA NA 

N ctrl  N2 NA NA 

P ctrl  P1 Dactylonectria torresensis Dactylonectria torresensis 

Biotest 3     

E-ARD-ut 1 345 Rugonectria rugulosa NA 

E-ARD-ut 1 347 Ilyonectria robusta NA 

E-ARD-ut 1 349 Rugonectria rugulosa  Hypocreales sp.1 

E-ARD-ut sf 1 394 Dactylonectria torresensis NA 

E-ARD-ut 2 362 Rugonectria rugulosa  not tested 

E-ARD-ut 2 364 Dactylonectria torresensis not tested 

E-ARD-ut 3 380 Dactylonectria torresensis NA 

E-ARD-ut 3 382 Dactylonectria torresensis Hypocreales sp. 

E-ARD-ut 3 385 Rugonectria rugulosa Hypocreales sp. 

H-ARD-ut 1 338 NA Hypocreales sp. 

H-ARD-ut 1 340 Leptosphaeria sp.  NA 

H-ARD-ut 1 341 Rugonectria rugulosa Hypocreales sp. 

H-ARD-ut 1 342 Leptosphaeria sp.  NA 

H-ARD-ut 2 358 Dactylonectria torresensis Hypocreales sp.  

H-ARD-ut 3 374 Ilyonectria robusta NA 

H-ARD-ut 3 377 Dactylonectria torresensis NA 

H-ARD-ut 3 378 Dactylonectria torresensis NA 

H-ARD-γ s 1 400 Rugonectria rugulosa NA 

H-ARD-γ s 2 403 Ilyonectria robusta NA 

H-ARD-γ s 3 405 Dactylonectria torresensis NA 

H-ARD-γ s 3 406 Fusarium graminearum NA 

H-ARD-γ sf 1 398 NA NA 

H-ARD-γ sf 1 399 NA NA 

H-ARD-γ sf 2 401 NA NA 

H-ARD-γ sf 2 402 NA NA 
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H-ARD-γ sf 3 404 NA NA 

R-ARD-ut 1 350 Rugonectria rugulosa  NA 

R-ARD-ut 1 351 Conocephalum sp. not tested 

R-ARD-ut sf 1 396 Dactylonectria torresensis NA 

R-ARD-ut 2 368 Dactylonectria torresensis Hypocreales sp. 

R-ARD-ut 2 369 Ilyonectria robusta NA 

R-ARD-ut 2 372 Rugonectria rugulosa  NA 

R-ARD-ut 3 386 Leptosphaeria sp.  NA 

R-ARD-ut 3 387 Dactylonectria torresensis Hypocreales sp. 

R-ARD-ut 3 391 1*. Dactylonectria torresensis,  NA 

   2*. Ilyonectria robusta  

N ctrl  N3 NA NA 

N ctrl  N4 NA NA 

1 Hypocreales sp. ICMP 13358, s light browning, *sequencing of two colonies in transformation  
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Table 8.3 Identification of endophytic root fungi collected by laser microdissection from cryo-

sections of pre-selected areas with distinct fungal cauliflower-like structures (CF). Fixed tissue of M26 

fine roots grown in 2018 (biotest 1) and 2019 (biotest 2) for two to four weeks in untreated (ut) apple 

replant diseased soil (ARD) from the sites Ellerhoop (E), Heidgraben (H) and Ruthe (R). Sanger 

sequencing of genes histone 3 (HIS) or translation elongation factor 1-α (TEF) for identification, 

exemplarily after colony sequencing, first hits of BLASTn analysis 

Treatment Plant No. Sample ID Gene Identification 

Colony 

sequencing 

Biotest 1      

E ARD ut  1 11 HIS Ilyonectria europaea  

E ARD ut  2 13 HIS Cylindrocladiella sp.   

E ARD ut  3 14 HIS Rugonectria rugulosa  

E ARD ut  4 15 HIS Ilyonectria europaea  

H ARD ut 1 6 HIS Dactylonectria torresensis  

H ARD ut 2 6.1-2 HIS Dactylonectria torresensis  

H ARD ut  3 18 HIS Cylindrocladiella sp. 1. colony 

    Ilyonectria europaea 2. colony 

    Ilyonectria europaea 3. colony 

H ARD ut  3 19 HIS Ilyonectria europaea 1. colony 

    Ilyonectria europaea 2. colony 

    Cylindrocladiella sp. 3. colony 

H ARD ut  4 30 HIS Ilyonectria europaea  

R ARD ut  1 12 HIS Cylindrocladiella sp.  

R ARD ut  2 17 HIS Ilyonectria europaea 1. colony 

    Dactylonectria torresensis 2. colony 

    Dactylonectria torresensis 3. colony 

Biotest 2      

E ARD ut 5 211 HIS Dactylonectria torresensis  

H ARD ut 2 77 HIS Dactylonectria torresensis  

H ARD ut 2 83 HIS Dactylonectria torresensis  

H ARD ut 3 118 HIS Ilyonectria robusta   

H ARD ut 3 119 HIS Ilyonectria robusta   

H ARD ut 3 131 TEF Hypocreales sp.1  

R ARD ut 1 103 HIS Dactylonectria torresensis  

R ARD ut 3 139 HIS Rugonectria rugulosa  

R ARD ut 3 136 TEF Hypocreales sp.  
1Hypocreales sp. ICMP 13358 culture 
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Table 8.4 Conserved amino acid motives of dsRNA1. Gilbert et al. (2019) described eight conserved motives in the open reading frame of RNA1 of 

“Alternaviridae” members. Here these motives were found in the amino acid sequence of RNA1 of DtAV1 (orange mark). The ADD motive VI (green mark) is a 

conserved RdRp motive of “Alternaviridae”
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