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This thesis studies the Kronheimer hyperkähler metric on the adjoint orbit of the
classical Lie group SLn (C) of a regular, nilpotent element in its Lie algebra sln(C). We
describe a Kähler potential of this hyperkähler metric in terms of the theta function
on the Jacobian, consisting of invertible sheaves of degree g − 1, of the nilpotent,
spectral curve. By using an explicit description of matricial polynomials of degree
two corresponding to invertible sheaves of degree g − 1 without a non-trivial, global
section on the nilpotent, spectral curve we construct some explicit solutions to Nahm’s
equations.

Kurzzusammenfassung
Diese Dissertation untersucht Kronheimers Hyperkählermetrik auf der adjungierten
Bahn der klassischen Lie Gruppe SLn (C) eines regulären, nilpotenten Elements der
Lie Algebra sln(C). Wir beschreiben ein Kählerpotential dieser Hyperkählermetrik
durch Ausdrücke der Thetafunktion, einer Funktion auf der Jacobischen der nilpoten-
ten Spektralkurve. Wir benutzen eine explizite Beschreibung der zu den invertierbaren
Garben vom Grad g − 1 ohne nicht-trivialen, globalen Schnitt zugehörigen Matrix-
polynomen um explizite Lösungen der Nahmgleichungen zu konstruieren.
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Chapter 1

Introduction

Kronheimer studied in [Kro90b] a hyperkähler structure on the complex nilpotent,
adjoint orbits. These are the orbits of a nilpotent element of gC of the adjoint action
of GC on gC, where G is a compact, connected, semisimple Lie group, GC its com-
plexification and gC the corresponding Lie algebra of GC. He identified such orbits
with a moduli space of g-valued solutions of Nahm’s equations with certain boundary
conditions. The hyperkähler structure on the orbit comes from the fact, that the
moduli space can be seen as a infinite-dimensional version of a hyperkähler quotient.

It is remarkable, that Kronheimer showed the existence of a hyperkähler structure
on complex, regular, semisimple, adjoint orbits too in [Kro90a] and later Biquard and
Kovalev generalized the ideas of Kronheimer to arbitrary complex, adjoint orbits in
[Biq96] and [Kov96] .

Kronheimer’s hyperkähler metric on the moduli space is of the form

gB(t)((b0, b1, b2, b3), (c0, c1, c2, c3)) =

∫ 0

−∞

3∑
i=0

〈bi(t), ci(t)〉dt,

where the bi’s and ci’s are tangent vectors of the tangent space at the point B(t), which
are solutions of the linearization of Nahm’s equation at B(t) with certain boundary
conditions and 〈·, ·〉 is an Ad−invariant inner product on g.

Since it relies on solving a system of ordinary differentianl equations, Kronheimer’s
hyperkähler metric on the nilpotent orbits is very difficult to write down explicitely.
Hitchin proposed in [Hit98] an explicit description of a Kähler potential could help to
make this metric more explicit. In [Hit+87] they described such a Kähler potential
for a fixed complex strucure as a hamiltonian function of a hamiltonian circle action,
which fixes one Kähler form and rotates the other two Kähler forms. If GC = SLn(C)
this Kähler potential of the nilpotent, adjoint orbits is of the form

K(T2(0) + iT3(0)) = −
∫ 0

−∞
tr
(
T2(t)2 + T3(t)2

)
dt,

where the T2 and T3 arise in triples (T1(t), T2(t), T3(t)) of solutions of Nahm’s equa-
tions with certain boundary conditions.

By a result of Beauville in [Bea90] the integrand can be seen as a meromorphic
function on the Jacobian of the nilpotent, spectral curve, which consists of invertible
sheaves of degree g − 1, where g is the arithmetic genus of the curve.

As long as the spectral curve is smooth Hitchin described this integrand in [Hit98]
in terms of the theta function. We will call this formula Hitchin’s formula. By allowing
ordinary double points Bielawski generalized Hitchin’s formula to reducible spectral
curves in [Bie07] and so he was able to describe a Kähler potential on complex, regular,
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semisimple, adjoint orbits in terms of the theta function, what made Kronheimers
hyperkähler metric more explicit.

In this thesis we will generalize Hitchin’s formula to the case of a regular, nilpo-
tent, adjoint SLn(C) - orbit, which allows us to describe a Kähler potential in terms of
the theta function on the highly singular, nilpotent, spectral curve. Our approach is
completely direct, using mainly tools of linear algebra. This leads to extensive compu-
tations, but also to explicit formulas. For example we will compute the theta function
and regular, nilpotent, matricial polynomials corresponding to invertible sheaves of
degree g−1 not lying in the Theta divisor. Using these expressions we are able to com-
pute the integrand of the Kähler potential explicitly in terms of the theta function.
Additionally we use these formulas with additional assumptions to extract explicit
solutions of Nahm’s equations.

Hitchin used in [Hit98] the fact, that the Jacobian variety of a smooth spectral
curve is already compact - it is a torus. Then he compared both sides of Hitchin‘s
formula, which are meromorphic functions on the Jacobian, see section 4.3, by com-
puting the principal parts. These principal parts coincide and hence the difference of
both sides defines a holomorphic function on the compact Jacobian. Thus it has to be
constant. After computing this constant he got his formula. Bielawski in [Bie07] had
to deal with a non-compact Jacobian and he used a certain compactification of the
Jacobian, see [Ale96]. This compactification is based on invertible sheaves of partial
normalisations of the considered reducible, spectral curve. This argumentation is rea-
sonable, since all singularities are isolated. In our case it is unclear how to compactify
the Jacobian in a usefull way. Since the singularities of the nilpotent, spectral curve
are not isolated, we could not carry over the argument of partial normalisations to our
case. Nevertheless during the computations of the principal parts we obtained some
explicit results, which lead us in the end to a completely direct proof of Hitchin‘s
formula in the case of the nilpotent, spectral curve and we could avoid the difficulties
of the compactification of the Jacobian.

We want to mention some important results for nilpotent, adjoint orbits. Kron-
heimer obtained a hyperkähler structure by an infinite-dimensional hyperkähler quo-
tient. In [KS93], [KS96], [KS01b], [KS01a] and [Vil05] they performed finite-dimensional
hyperkähler quotients for adjoint orbits and studied hyperkähler potentials on orbits
with low cohomogeneity. These potentials are simultaneously Kähler with respect to
all complex structures. The regular, nilpotent, adjoint orbit in sl3(C) has cohomo-
geneity four and they gave explicit values for the hyperkähler potential, see[KS01b].
Since their hyperkähler potential and the Kähler potential above coincide in this case,
they obtainted the formula of example 8 in chapter 5 already in a higher generality.
Now we will describe the content of the chapters of this thesis.

Chapter 2 includes by no means any original content. We want to repeat and out-
line some basic concepts, conventions and notations for the later usage. In particular
section 2.1 is dealing with complex analytic spaces, which arise in our case as the
nilpotent, spectral curve. Moreover in section 2.2 and 2.3 we will outline the identi-
fication of the regular, nilpotent, adjoint SLn(C)-orbit with the Kronheimer moduli
space, to picture how the hyperkähler structure and a Kähler potential arise.

In Chapter 3 we start with a precise description of the nilpotent, spectral curve
in section 3.1. In section 3.2 we characterize invertible sheaves of degree g − 1 on the
nilpotent, spectral curve and in section 3.3 we give an explicit formula of the theta
function on the Jacobian as a determinantal function of a certain matrix M . This
matrix M occur as a family of linear condition equations of a sheaf F in the theta
divisor.
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Chapter 4 contains the main result of this thesis. In section 4.1 we repeat the
concept of the Beauville correspondence, an identification of isomorphism classes of
invertible sheaves of degree g−1 without non-trivial, global sections on the nilpotent,
spectral curve with conjugation classes of regular, nilpotent, matricial polynomials. In
section 4.2 we show Hitchin’s formula in the SL3(C)-case. In section 4.3 we generalize
the ideas and computations of section 4.2 to the SLn(C)-case by proving the crucial
burning lemma. This lemma is the main comparison tool to show the required equality
of Hitchin’s formula.

In Chapter 5 we study real sheaves and its theta function. Moreover in section
5.2 we restrict us to some special cases of real sheaves in order to establish explicit
solutions of Nahm’s equations. We will use and extend the ideas of chapter 4.
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Chapter 2

Preliminaries

In this chapter we will repeat the definitions of complex analytic spaces from [GPR94]
and [GR84]. Moreover we repeat some general Lie theory and concepts of [Kro90b],
[Kro90a] and [Hit+87].

2.1 Complex Analytic Spaces

The focus in this section is the repetition of the definition of complex analytic spaces
and invertible sheaves. We set the conventions and notations, which we will use later.
In this thesis the invertible sheaves on a complex analytic curve play a crucial role.

2.1.1 Sheaves and Ringed Spaces

Let (X, T ) be a topological space. A presheaf of abelian groups (respectively of rings)
on X, denoted by

F :=
{
F(U), resVU

}
U,V ∈T
U⊆V

,

consists of a collection of abelian groups (respectively of rings) (F(U))U∈T and a
collection of restriction homomorphisms of abelian groups (respectively of rings)(

resVU : F(V )→ F(U)
)
U,V ∈T
U⊆V

,

where the restriction morphisms have to satisfy for every inclusion of open sets U ⊆
V ⊆W ⊆ X the properties

resUU = IdF(U), resWU = resVU ◦ resWV .

The elements s ∈ F(U) are called local sections and the elements s ∈ F(X) are called
global sections.

A presheaf F of abelian groups (respectively of rings) on a topological space (X, T )
is called a sheaf of abelian groups (respectively of rings) on (X, T ), if it satisfies the
following two properties. Let U ∈ T be an arbitrary open set of X and (Ui)i∈I be an
open cover of U . The first property is called locality and it means if s, t ∈ F(U) are two
local sections with resUUi(s) = resUUi(t) for all i ∈ I, then the two local sections coincide,
s = t. The second property is called gluing property and it means if (si)i∈I is a
collection of local sections of F(Ui) such that they satisfy resUiUi∩Uj (si) = res

Uj
Ui∩Uj (sj)

for all i, j ∈ I, then there exists a local section s ∈ F(U) such that resUUi(s) = si. We
will drop from now on the letter T indicating the topology. If AX is a sheaf of rings on
a topological space X, then the pair (X,AX) is called a ringed space with structure
sheaf AX . Let (X,AX) be a ringed space and F be a sheaf of abelian groups on X. If
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for every open set U ⊆ X the abelian group F(U) has an AX(U) - module structure,
then F is called a sheaf of AX -modules. A sheaf of abelian groups I is called a sheaf
of ideals, if all I(U) are AX(U)-ideals for all open sets U ⊂ X. Hence for every open
set U we can consider the quotient ring AX(U)/I(U). These rings with the induced
restriction morphisms define usually only a presheaf. The sheafification, see [Har77],
of this presheaf is called quotient sheaf and is denoted by AX/I. Let F be a sheaf of
AX -modules, then the stalk at x ∈ X is defined by the direct limit

Fx := lim−→
x∈U
F(U).

The elements of Fx are denoted by sx = [V, s]. It is in a natural way an AX,x-module.
For the structure sheaf we denote the stalk by AX,x.

2.1.2 C-ringed Spaces and Morphisms

Let (X,AX) be a ringed space and let K(U) := U × C be the constant sheaf of fields
of complex numbers C with natural restriction morphisms. The stalk of K is Kx ∼= C.
If the sheaf of rings AX is a sheaf of K-modules too, it is called a sheaf of C-algebras.
Futhermore suppose K is a sheaf of submodules of the sheaf AX , such that the unit
element 1x ∈ Kx is also the unit element of AX,x. Hence we are able to identify
the subalgebra C · 1x ⊂ AX,x with the field C ∼= Kx. Moreover let us assume that
all AX,x are local rings with unique maximal ideals m(AX,x), such that we have a
decomposition of C-vector spaces

AX,x ∼=

∼=C∼=Kx︷ ︸︸ ︷
C · 1x ⊕m(AX,x).

If all these assumptions are satisfied we call the sheaf of C-algebras AX a sheaf of local
C-algebras. The pair (X,AX) is then called a C-ringed space. The most important
example of a C-ringed space comes from complex analysis.

Example 1. Let D be a domain in Cn and let U ⊂ D be an open set. Let

OD :=
{
OD(U), resVU

}
be the sheaf of holomorphic functions on D, where OD(U) is the ring of holomorphic
functions on U and resVU are the natural restriction morphisms, where we sometimes
just write f |U := resVU (f). It is obviously a K-module and hence a sheaf of C-algebras.

The stalk OD,z0 is isomorphic to the C-algebra C{z0} of power series with a non-
zero radius of convergence around z0 ∈ D. The isomorphism is given by

ψ : OD,z0 −→ C{z0}

[U, f ] 7−→
∞∑
k=0

f (k)(z0)

k!
(z − z0)k.

The stalk is a local ring with maximal ideal m(OD,z0) of those convergent pow-
erseries vanishing at z0, i.e. the constant term is 0. Hence we have a decomposition
OD,z0 ∼= C ⊕ m(OD,z0) and the pair (D,OD) is a C-ringed space. Because OD is a
sheaf of local C-algebras we can consider the sheaf of abelian groups O∗D consisting
of the units of OD with respect to the multiplication on OD. These are the nowhere
vanishing holomorphic functions.
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A morphism of C-ringed spaces (X,AX) and (Y,AY ) is a pair

(ϕ,ϕ#) : (X,AX) −→ (Y,AY ) ,

where ϕ : X → Y is a continuous map and ϕ# : AY → ϕ∗(AX) is a morphism of
C-algebras, i.e. a collection of C-algebra homomorphisms

ϕ#(V ) : AY (V ) −→ AX(ϕ−1(V )) =: ϕ∗AX(V )

with the property ϕ#(V ) ◦ resVU = res
ϕ−1(V )
ϕ−1(U)

◦ ϕ#(V ) for every inclusion of open sets
U ⊂ V ⊂ Y .

Let (X,AX) be a C-ringed space and U ⊆ X be an open set. Then the pair
(U,AU ) is a C-ringed space. Here AU is the sheaf of local C-algebras given by the
following collection. If V ⊆ U is an open subset, then AU (V ) := AX(U ∩ V ). The
inclusion ι : U → X induces a lifting homomorphism ι# via

ι#(V ) : AX(V ) −→ AU (V ∩ U)

s 7−→ resVU (s).

The pair (ι, ι#) is a morphism of C-ringed spaces and (U,AU ) together with (ι, ι#) is
called an open C-ringed subspace of (X,AX).

2.1.3 Model Spaces and Complex Analytic Spaces

We start with the definition of complex model spaces. Let (D,OD) be the C-ringed
space of example 1 for a domain D ⊆ Cn. A finite number of holomorphic functions
on D, f1, . . . , fk ∈ OD(D), defines a sheaf of ideals by

I := f1OD + · · ·+ fkOD ⊆ OD.

Its zero-locus is a closed, topologcial subspace

Z := N(I) := {z ∈ D : f1(z) = · · · = fk(z) = 0} ⊆ D.

This allows us to consider the quotient sheaf OD/I, which is the sheafification of the
presheaf defined by U 7→ OD(U)/I(U), see for the definition [Har77]. This quotient
sheaf is a sheaf of rings and the support of it is

Supp(OD/I) := {z ∈ D : OD,z/Iz 6= 0} = {z ∈ D : Iz 6= OD,z} ,

which is exactly the zero-locus Z. For any open set U ⊆ Z we define C-algebras by

OZ(U) := (OD/I|Z) (U) := lim−→
U⊂V⊆D
V open

((OD/I) (V )) .

With the natural restriction morphisms these C−algebras define a sheaf of local C-
algebras. The pair

(Z,OZ)

is a C-ringed space and called a complex model space. The dimension of (Z,OZ) is
the dimension of the topological space Z.
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A C-ringed space (X,OX) with X Hausdorff is called a complex analytic space
if for every x ∈ X exists an open C-ringed subspace (U,OU ), which is isomorphic
as C-ringed spaces to a complex model space. In other words a complex analytic
space looks locally as complex model spaces or as a zero-locus of a finite number of
holomorphic functions.

Let (X,OX) and (Y,OY ) be two arbitrary complex analytic spaces. A morphism
(ϕ,ϕ#) : (X,OX)→ (Y,OY ) of C-ringed spaces is called a holomorphic map. If ϕ is a
homeomorphism and ϕ# is a sheaf isomorphism of C-algebras, then the pair

(
ϕ,ϕ#

)
is called a biholomorphism.

2.1.4 Gluing Property

In this subsection we will repeat the gluing device of [GR84] or [GPR94]. We will
use this construction to describe in chapter 2 the nilpotent, spectral curve in details
as a complex analytic space, which we obtain by gluing together two complex model
spaces.

First let us recall some topological constructions. If (Xi)i∈I is a family of topologi-
cal spaces, then

(⋃
i∈I{i} ×Xi

)
is a topological space with the disjoint union topology.

Furthermore if there are open subsets Xij ⊂ Xj and homeomorphisms τij : Xij → Xji

we get a topological quotient space

X :=

(⋃
i∈I
{i} ×Xi

)
/ ∼,

where (i, xi) ∼ (j, xj) ⇔ xi ∈ Xij , xj ∈ Xji and τij(xi) = xj with the induced
quotient topology given by the natural projection π :

(⋃
i∈I{i} ×Xi

)
→ X, (i, xi) 7→

[i, xi]. If all topological spaces Xi are Hausdorff, then the disjoint union and the
quotient space is Hausdorff too. Because of the definition of the disjoint union topology
we have an open cover of

(⋃
i∈I{i} ×Xi

)
by the sets {i} × Xi. The topological

quotient space has an open cover given by the open sets Ui := π ({i} ×Xi). Note that
π−1 (Ui ∩ Uj) ∩ {i} ×Xi = {i} ×Xij and π−1 (Ui ∩ Uj) ∩ {j} ×Xj = {j} ×Xji.

Let us assume now, that we have sheaves of local C-algebras OXi on the topolog-
ical spaces Xi, such that all pairs (Xi,OXi) are complex analytic spaces and hence(
{i} ×Xi,O{i}×Xi

)
are complex analytic spaces with O{i}×Xi({i}×V ) := OXi(V ) for

an open set V ⊆ Xi. If we have an open set U ⊂ Ui we get sheaves of local C-algebras
on Ui defined by

OUi(U) := O{i}×Xi
(
π−1(U) ∩ {i} ×Xi

)
.

We want to glue the sheaves OUi together to a sheaf on the space X with some
additional gluing data. Before we do so we want to emphasise, that

OUi |Ui∩Uj (U) = O{i}×Xi(π
−1(U ∩ Ui ∩ Uj) ∩ {i} ×Xi)

= O{i}×Xi(π
−1(U) ∩ {i} ×Xij)

= O{i}×Xi |{i}×Xij (π
−1(U)).

Suppose there are sheaf isomorphisms of C-algebras

τ#
ij : OXi |Xij −→ OXj |Xji
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for all i, j ∈ I, which satisfy the gluing (cocycle) condition

τ#
ij ◦ τ

#
jk = τ#

ik

on OXi |Xij∩Xik for all i, j, k ∈ I. With such isomorphisms we get immediatly new
isomorphisms

ρ#
ij : OUi |Ui∩Uj −→ OUj |Uj∩Ui

for all i, j ∈ I, where ρ#
ij(U) := τ#

ij (π−1(U)), and they satisfy the cocycle condition
too, i.e. ρ#

ij ◦ ρ
#
jk = ρ#

ik on OUi |Ui∩Uj∩Uk for all i, j, k ∈ I. With these isomorphisms
we can write down the glued sheaf on X.

For an open set U ⊆ X the C-algebra OX(U) is given by

OX(U) :={
(si)i∈I ∈

∏
i∈I
OUi(U ∩ Ui) : ρ#

ij

(
resU∩UiU∩Ui∩Uj (si)

)
= res

U∩Uj
U∩Uj∩Ui(sj), ∀i, j ∈ I

}
.

The restriction morphisms of OX are coming from the restriction morphisms of OUi
for all i. In other words let Ũ ⊆ U be an inclusion of open sets in X. The restriction
morphisms are then given by

resU
Ũ

: OX(U) −→ OX(Ũ), (si)i∈I 7−→ (resU
Ũ

(si))i∈I ,

which is well defined, because the sheaf homomorphism property implies

g#
ij

(
resU

Ũ
(si)
)

= resU
Ũ

(
g#
ij (si)

)
= resU

Ũ
(sj).

As a result we get a complex analytic space (X,OX) and a natural holomorphic
projection

(
π, π#

)
:

(⋃
i∈I
{i} ×Xi,

∏
i∈I
OXi

)
−→ (X,OX) ,

where π(i, x) 7→ [i, x] and

π#(U) : OX(U) −→
∏
i∈I
OXi(π−1(U))

(si)i∈I 7−→ (si)i∈I

for any open set U ⊂ X. Summarized in a proposition, see for more details [GPR94]
and [GR84] we state the following proposition.

Proposition 1. The sheaf OX is a sheaf of local C-algebras and (X,OX) is a complex
analytic space.

2.1.5 Čech Cohomology

Later in this thesis we will study invertible sheaves on the nilpotent spectral curve. A
usefull tool to study such sheaves is Čech cohomology theory. We want to recall some
basic definitions and concepts of Čech cohomology. All definitions and constructions
are from [GR84] or [GPR94].
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Let (X,OX) be a complex analytic space, let F be a sheaf of OX -modules and let
U := {Ui : i ∈ I} be an open cover of X. For any q ∈ N we define the OX(X)-modules

Cq(U ,F) :=
⊕

i0<···<iq

F
(
Ui0 ∩ · · · ∩ Uiq

)
.

Its elements α ∈ Cq(U ,F) are called the q-cochains, which are given by a family
α = (α(i0, . . . , iq))(i0,··· ,iq)∈Iq+1 , where the α(i0, . . . , iq) ∈ F

(
Ui0 ∩ · · · ∩ Uiq

)
. The

q-coboundary map, a OX(X)-module homomorphism, is defined by

δq : Cq(U ,F) −→ Cq+1(U ,F)

α 7−→ δq(α),

with

δq(α)(i0, · · · , iq+1) :=

q+1∑
η=0

(−1)ηres
Ui0∩···∩Uiq
Ui0∩···∩Uiq+1

(α(i0, · · · iη−1, iη+1, · · · , iq+1)) .

A direct computation shows δq+1 ◦ δq = 0 and hence (Cq(U ,F), δq)q∈N is a com-
plex, which is called the Čech-complex of F with respect to the open cover U . The
image Im(δq−1), the so-called q-coboundaries, is an OX(X)-submodule of the kernel
Ker(δq). The elements of the kernel are called q-cocycles. The q-th Čech cohomology
module with respect to the open cover U is then defined by the quotient module

Ȟq(U ,F) :=
Zq(U ,F)

Bq(U ,F)
=

Ker(δq)

Im(δq−1)
.

The definitions above depend on the choice of the open cover U and in general
a short exact sequence of sheaves of abelian groups does not induce a long exact
sequence of cohomology modules with respect to the open cover U . The q-th Čech
cohomology group or module of F is defined by a direct limit

Ȟq(X,F) := lim−→
U

Ȟq(U ,F)

of the direct system given by refinements, see [GPR94]. We do not need to go deeper
in details how this direct system is defined, because in our case we will have a Leray
cover and then the Čech cohomology is already given by the Čech cohomology module
with respect to this particular cover.

Let U := {Ui : i ∈ I} be an open cover of X and F be a sheaf of OX -modules. We
call U a Leray cover, if Ȟp

(
Ui1 ∩ · · · ∩ Uiq ,F

)
= 0 for all p ≥ 1 and any non-empty

finite set {i1, . . . , iq}.
Proposition 2. (Leray’s Theorem) Let (X,OX) be a compact, complex analytic space.
Let us assume there is a Leray cover U of X, then Ȟq (U ,F) ∼= Ȟq (X,F) for all q ∈ N.

For a proof of this proposition see for example [GPR94]. Leray’s Theorem is crucial
to compute Čech cohomology explicitly because it avoids the difficulty of the direct
limit. Note if X is compact and U is a Leray cover, then we can find a locally finite
Leray cover. Another observation is, if a compact, complex analytic space has a cover
of Stein spaces, then we have by Cartan’s theorem B, [GPR94], already a Leray cover.
The spaces C and C∗ are Stein. Additionally in this compact setting the ring OX(X)
consists only of the constant sections and hence is the field of complex numbers, which
makes the Čech cohomology module in to a C-vector space.
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Two important results in cohomology theory are the following two properties.

Proposition 3. Let (X,OX) be a compact, complex analytic space. If we have a short
exact sequence of OX-modules

0→ F −→ G −→ H → 0,

then we have a long exact sequence of C-vector spaces

· · · → Ȟq(X,F) −→ Ȟq(X,G) −→ Ȟq(X,H) −→ Ȟq+1(X,F)→ · · · .

Proposition 4. Let (X,OX) be a compact, complex analytic space of dimension n and
F be a coherent, analytic sheaf on X, then all Čech Cohomology modules Ȟq(X,F) are
finite dimensional C-vector spaces. Furthermore we have dimC Ȟq(X,F) = 0 for all
q > n. In particular if X is a compact curve, then only the C-vector spaces Ȟ0(X,F)
and Ȟ1(X,F) are possibly non-trivial.

See for the definition of coherence, the definition of the maps between the Čech
cohomology modules and proofs [Har77], [GR84] and [GPR94]. The finite dimension-
ality of the Čech cohomology on a compact curve leads to some important invariants.
For example the complex dimension of Ȟ1(X,OX) is called the (arithmetic) genus of
the curve and the Euler characteristic of an invertible sheaf F is defined by

χ(X,F) :=

n∑
i=0

(−1)i dimC(Ȟi(X,F)).

2.1.6 Invertible Sheaves

Let (X,OX) be a complex analytic space. A sheaf of OX -modules F is called locally
free of rank k, if for every p ∈ X there is an open neighborhood U , a k ∈ N and an
isomorphism of OX(U)-modules ϕ#(U) : F(U) → OX(U)⊕k. A locally free sheaf of
rank 1 is called invertible. Let F be an invertible sheaf, then the dual sheaf Fv is
defined as the sheaf homHom(F ,OX), see [Har77] for a definition. The tensor product
of two invertible sheaves F1 and F2, F1⊗OX F2, is defined by the sheafification of the
presheaf given by U 7→ F1(U) ⊗OX(U) F2(U), which is again invertible [Har77]. We
have F⊗OXFv ∼= OX as sheaves of OX -modules, which explains the name of invertible
sheaves. We will often drop the subscript OX in the tensor product. All together this
implies, that the set of isomorphism classes of invertible sheaves together with the
tensor product forms an abelian group with the structure sheaf as unit element. By
Oka’s theorem, [Oka50], the structure sheafOX of a complex analytic space is coherent
and hence all locally free sheaves of rank n are coherent. In particular we can use
proposition 4 on locally free sheaves.

Let F be an invertible sheaf and let (Ui)i∈I be an open cover of X, such that we
have a collection of module isomorphisms, g#

i (Ui) : F(Ui) ∼= OX(Ui). This gives us
isomorphisms of OX(Ui ∩ Uj)-modules, called transition functions,

g#
ij (Ui ∩ Uj) := g#

i (Ui ∩ Uj) ◦ (g#
j (Ui ∩ Uj))−1 : OX(Ui ∩ Uj) −→ OX(Ui ∩ Uj).

But because for any ring R we have R ∼= EndR(R), r 7→ (a 7→ ra), there is an
element gij ∈ OX(Ui∩Uj), such that g#

ij (Ui∩Uj)(s) = gijs. But the map g#
ij (Ui∩Uj)

is an isomorphism with inverse g#
ij (Ui ∩ Uj)−1 = g#

ji(Ui ∩ Uj) and hence the element
gij has to lie in O∗X(Ui ∩ Uj). Additionally we have g#

ii = IdOX(Ui) and g#
ij ◦ g

#
jk =
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(g#
i )◦ (g#

j )−1 ◦ (g#
j )◦ (g#

k )−1 = g#
i ◦ (g#

k )−1 = g#
ik, which is just the cocylce-condition,

i.e. it is an element in the kernel of the 1-coboundary map δ1. This is equivalent
to 1 = gijgjkgki. Note carefully, that the abelian group structure of O∗X is given by
the multiplication and hence the "sum" in the definition of the coboundary map is
actually a product. To characterize isomorphism classes of invertible sheaves we have
the next proposition from [GR84].

Proposition 5. Let (X,OX) be a compact, complex analytic space. Then there is
an isomorphism of abelian groups between the abelian group of isomorphism classes of
invertible sheaves and the Čech-cohomology group Ȟ1 (X,O∗X).

Proof. We have already observed, that gij is invertible and hence an element of C1(U0∩
U1,O∗X). The abelian group operation of O∗X is given by multiplication, so if we
compute the differential δ1(g)ijk = gijg

−1
ik gjk = 1 we see immediatly, that g ∈ ker(δ1).

In other words every invertible sheaf F induces a cohomology class given by [(gij)].
If we choose now another trivialization hi : F(Ui) → OX(Ui), this induces another
transition function hij and an isomorphism Li : OX(Ui)→ OX(Ui). The isomorphism
Li is just given by a multiplication of a li ∈ O∗X(Ui). We compute (δ0l)ij = lil

−1
j and

get hi = ligi. Furthermore we have hij = δ0(l)ijgij . And this means every invertible
sheaf G, isomorphic to F , has a transition function hij of the form hij = δ0(l)ijgij
for some l ∈ C0(Ui,O∗X). This shows every such invertible sheaf G defines the same
cohomology class. On the other hand for a given cohomology class [(gij)] ∈ Ȟ1 (X,O∗X)
the gluing property proposition 1 says, there is an invertible sheaf F obtained by gluing
the sheaves OX(Ui) together via any representative of the cohomology class. Changing
the representative gives just an invertible sheaf G, which is isomorphic to F .

2.2 Lie groups and Hyperkähler Quotients

In this section we want to repeat some basic facts about Lie groups and hyperkähler
manifolds. In particular we want to repeat a method how to get more hyperkähler
manifolds by a quotient construction. We will follow [FH04], [Lee12] and [Hit+87].

2.2.1 Lie Group Actions and Quotient Manifolds

A smooth real (complex) manifold G is called a Lie group, if there is a group struc-
ture on G, such that the operation and the inversion are smooth (holomorphic)
maps. A Lie algebra is a vector space g over a field K with a Lie bracket, which
is a bilinear map [·, ·] : g × g → g satisfying [x, x] = 0 and the Jacobi-identity
[x, [y, z]] + [y, [z, x]] + [y, [z, x]] = 0 for all x, y, z ∈ g. An important Lie algebra is the
Lie algebra associated to a Lie group denoted by Lie(G). Since a Lie group G is a man-
ifold, the infinite dimensional vector space of smooth vector fields on G forms an infi-
nite dimensional Lie algebra via the Lie bracket given by [X,Y ](f) := (XY −Y X)(f),
where X,Y ∈ V ec(G) and f ∈ C∞(G). The Lie algebra Lie(G) is now the dim(G)-
dimensional sub-Lie algebra given by the left-invariant smooth vector fields, which is
Lie algebra-isomorphic to the tangent space TeG with the commutator of derivations
as Lie bracket.

Let M be a smooth (respectively complex) manifold and and Diff(M) (respec-
tively Aut(M)) its diffeomorphism group (respectively group of holomorphic auto-
morphisms). A group homomorphism σ̃ : G → Diff(M) (respectively Aut(M)) is
called a Lie group action on the manifold M . It is called a smooth (holomorphic) Lie



2.2. Lie groups and Hyperkähler Quotients 13

group action if the induced evaluation map

σ : G×M −→M

(g, p) 7−→ σ̃(g)(p)

is smooth (holomorphic). Moreover we have the maps σg : M →M given by σg(p) :=
σ(g, p) and σp : g → M given by σp(g) := σ(g, p). For a shorthand notation we will
use sometimes g.p := σ(g, p) ∈M . The set

G.p := {g.p : g ∈ G} ⊂M

is called the orbit of G through p. The subgroup

Gp := {g ∈ G : g.p = p} < G

is called the stabilizer of p ∈M . An action is called proper, if the map

ρ : G×M →M ×M
(g, p) 7→ (σ(g)(p), p)

is a proper map, i.e. ifK ⊂M×M is any compact subset then ρ−1(K) is compact too.
An action is called free if all stabilizers Gp are trivial. An action is called transitive,
if for two arbitrary p, q ∈ M there exists always a g ∈ G such that p = σ(g, q). Let
exp : g→ G denote the exponential map, see for a definition [FH04]. For an element
X ∈ g there is a vector field, called the fundamental vector field with respect to X,
defined via the infinitesimally action by

X#
p :=

d

ds
|s=0σ(exp(−sX), p) ∈ TpM,

where p ∈M .

Proposition 6. Let σ̃ : G → Diff(M) be a smooth, proper and free action on a
smooth manifold M . Let p ∈M be a any point in M . Then the orbit G.p is a closed,
embedded submanifold of M and its tangent space at e.p is

Te.p(G.p) =
{
X#
p : X ∈ Lie(G)

}
.

Moreover M/G is a smooth manifold and the natural projection π : M → M/G is a
submersion.

For a proof see for example [Lee12]. As a remark if the Lie group G is compact,
then any action of G is proper. The next lemma shows, that the stabilizer itself is a
closed Lie group.

Lemma 1. If G is a Lie group acting smoothly on a manifold M . Then, for any
element p ∈ M , the stabilizer Gp is a closed Lie subgroup of G. Moreover the corre-
sponding Lie algebra is given by

gp := Lie(Gp) =
{
X ∈ g : X#

p = 0
}
.

If G is a compact Lie group, then Gp is compact too.

Proof. Because e.p = p we see e ∈ Gp. Let g, h ∈ Gp with g.p = p and h.p = p. Then
we have g.(h.p) = p and therefore (gh).p = p. This means gh ∈ Gp, so Gp is closed
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under the group operation. Finally, for g ∈ Gp, we have p = (g−1g).p = g−1.p and
so g−1 ∈ Gp. Therefore Gp is a subgroup. Because the action of G is smooth it is
also continuous. This gives us a continuous map σp(g) := σ(g, p), and we can write
Gp = σ−1

p ({p}). Because M is Hausdorff the one-point set {p} is closed and hence
Gp is closed. By Cartan’s theorem, which says that a closed subgroup of G is an
embedded Lie subgroup, we get a smooth structure on Gp. For the first direction of
the last assertion we fix an element Y ∈ TgGp. Its fundamental vector field is X#

p =
d
ds |s=0 exp(−sY ).p = d

ds |s=0p = 0. The converse follows by the observation, that the
action of exp(−sX) on M is the flow of X#. This means ϕ(0, p) = exp(0).p = p and
dϕ
ds (t, p) = X#

ϕ(t,p) = 0. The last equation says, that the flow is locally constant and
hence exp(−sX) fixes p for all s ∈ (−ε, ε).

2.2.2 The Orbit-Stabilizer Theorem

If we consider a smooth G-action on a manifold M and an orbit G.p for a p ∈ M ,
then the action is automatically transitive and thus G.p a homogeneous G-manifold.
Because every homogeneous G-manifold can be written as a quotient of the Lie group
G by a closed Lie subgroup, we want to write down the identification. A Lie group G
acts in various natural ways smoothly on itself. The crucial actions are the left and
right multiplications as well as their composition the conjugation, i.e.

L : G×G→ G R : G×G→ G c : G×G→ G

(g, h) 7→ gh, (g, h) 7→ hg−1, (g, h) 7→ ghg−1.

These actions induce Lie group isomorphisms G → G given by Lg(h) := L(g, h),
Rg(h) := R(g, h) and cg(h) := c(g, h). Note that the identity is a fixed point of the
conjugation, i.e. cg(e) = e. If H < G is a Lie subgroup of G, then we denote the
restriction of the right translation to H by R|H . For any g ∈ G the stabilizer of the
action R|H is

Hg =
{
h ∈ H : g = Rg(h) = gh−1

}
= {e ∈ H} .

Hence we have a free action.

Lemma 2. If H is a closed subgroup of G, then the action of the right translation
Rh(g) = gh−1 is a proper action.

Proof. We have to show, that ρ : H ×G→ G×G induced by R is a proper map. Let
us define two auxilary maps by

l : G×G→ G×G ι : H ×G→ G×G
(g1, g2) 7→ (g2g

−1
1 , g2), (h, g) 7→ (h, g).

We see immediatly, that l is continuous and bijective with inverse map l−1(k1, k2) :=
(k−1

1 k2, k2), which is also continuous. Hence l is a homeomorphism and therefore a
proper map.

Since H is a closed subgroup of G the set H×G is closed in G×G too. If we pick
a compact set K ⊂ G×G the intersection with the closed set H ×G, i.e. K ∩H ×G,
is compact too. Because ι is the inclusion map we know ι−1(K) = K ∩ H × G and
so the inverse image of ι of an arbitrary compact set is compact. Hence ι is a proper
map.

But since ρ = l ◦ ι, it is a composition of proper maps and therefore it is a proper
map itself.
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As a consequence for a smooth action σ̃ : G→ Diff(M) we see, that the stabilizer
Gp for any p ∈ M acts freely and properly on G by the restriction of the right
translation R|Gp . By proposition 6 we get a smooth manifold G/Gp.

Proposition 7. (Orbit-Stabilizer theorem) Let M be a smooth manifold and G be a
Lie group acting on M smoothly and properly. Then the map

Φ : G/Gp −→ G.p

[g] 7−→ g.p

defines a diffeomorphism between the manifold G/Gp and the the orbit G.p seen as a
closed embedded manifold in M .

Proof. On the level of groups the orbit-stabilizer theorem says Φ is an G- equivariant
isomorphism. Well-definition and bijectivity is easy to see. We see equivariance as
follows. If g1 ∈ G and [g2] ∈ G/Gp then we compute

g1.Φ([g2]) = g1.(g2.p) = (g1.g2).p = Φ((g1.g2).Gp) = Φ(g1.[g2]).

It remains to show, that we have a diffeomorphism. First we observe, that the tangent
space at [e] of the manifold G/Gp is g/gp. Because we have σ(·, p) = Φ ◦ π we get
(dσ(·, p))e = (dΦ)[e]◦(dπ)e. But this means (dΦ)[e](χ+gp) = χX(p). Thus the kernel of
(dΦ)[e] is trivial and hence (dΦ)[e] is injecitve. Because of proposition 6 we know, that

Tp(G.p) =
{
X#
p : X ∈ Lie(G)

}
. This means (dΦ)[e] is surjective and hence bijective.

By using the left translation and equivariance of Φ see dΦ is everywhere invertible.
The inverse function theorem says then, that Φ is everywhere a local diffeomorphism,
hence Φ is a global diffeomorphism.

2.2.3 Adjoint Orbits

Let G be a Lie group and g ∈ G. Recall from the last subsection we have a Lie
group isomorphism given by the conjugation cg(h) = ghg−1, where g, h ∈ G. By
differentiating this map we get isomorphisms of tangent spaces (dcg)h : ThG→ ThG.
By taking h = e and renaming Ad(g) := (dcg)e we get a Lie algebra isomorphism

Ad(g) : g −→ g.

This isomorphism induces the Lie group homomorphism

Ad : G→ GL(g)

g 7→ Ad(g),

which is called the adjoint representation. The adjoint representation can be seen as
a smooth action of the Lie group G on its associated Lie algebra Lie(G) = g (seen as
a smooth manifold), i.e.

Ad : G× g −→ g

(g,X) 7−→ Ad(g)X.

If G is a matrix Lie group, say SLn(C) or SU(n), then the adjoint representation is
just given by the conjugation

Ad(g)(X) =
d

dt
|t=0

(
g exp(tX)g−1

)
= gXg−1,
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where g ∈ G and X ∈ g.
For each element Y ∈ g we get an adjoint orbit

O(Y ) = Ad(G)(Y ) ⊂ g,

which is a smooth (homogeneous) manifold and can be identified with

O(Y ) ∼= G/GY , TIdO(Y ) ∼= TeG/TeGY = g/gY

by the orbit-stabilizer theorem.
In this thesis we are interested in the case when the Lie group G is either the

compact Lie group SU(n) of real dimension n2 − 1 consisting of special, unitary
matrices or its complexificationGC, which is the complex Lie group SLn(C) of complex
dimension n2−1. Both are semisimple Lie groups , which means their asscociated Lie
algebras do not contain any non-trivial abelian ideal. We call an element Y ∈ sln(C)
regular, nilpotent if Y n = 0 and Y n−1 6= 0. In other words Y is GLn(C)-conjugated
to the Jordan canonical form with exactly one Jordan block

N :=


0 0 · · · 0 0
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

 .

For a regular, nilpotent element Y ∈ sln(C) we call the adjoint orbit Oreg(Y ) :=
Ad (SLn(C)) (Y ) the complex, regular, nilpotent, adjoint orbit of SLn(C). Since
Oreg(Y ) ∼= GC/GC

Y the orbit has a natural complex structure and it has complex
dimension n2 − n. Basically this dimension is obtained by the dimension of SLn(C)
minus the dimension of the stabilizer of Y . But the dimension of the stabilizer is
equal to the dimension of a Cartan subalgebra of sln(C). Such a Cartan subalgebra
is given by the complex, diagonal matrices with vanishing trace. Hence the complex
dimension of Oreg(Y ) is given by (n2− 1)− (n− 1) = n2− n. The regular, nilpotent,
adjoint orbit is the unique maximal orbit in the nilpotent variety, see [Kos59] and
[Kro90b]. Because of this uniqueness the regular, nilpotent orbit is independent of
the choice of the regular, nilpotent element Y and we write sometimes only Oreg for
the orbit.

The trace induces a conjugation invariant inner product on sln(C) by

κ : sln(C)× sln(C) −→ R, (X,Y ) 7−→ tr(XY ∗),

where Y ∗ = Y
T .

2.2.4 Moment Maps

Let
(
M2m, ω

)
be a symplectic manifold, i.e. a smooth manifold together with a

smooth, closed, non-degenerated 2-form ω. Let G be a Lie group acting smoothly
by symplectomorphisms on M . This means we have an action σ̃ : G → Diff(M)
such that σ̃(g)∗ω = ω for all g ∈ G. As a consequence the Lie derivative along any
fundamental vector field of the symplectic form vanishes, i.e.

LX#ω =
d

ds
|s=0σ̃(exp(−sX))∗ω =

d

ds
|s=0ω = 0,
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where X ∈ g and X#
p := d

ds |s=0σ̃(exp(−sX))(p). With Cartan’s magic formula and
using closedness of the symplectic form we have

0 = LX#ω = ι(X#)dω + d(ι(X#)ω) = d(ι(X#)ω)

and thus ι(X#)ω is a closed 1-form. In the case when the first de Rahm cohomology
group H1

dR(M) vanishes every closed 1-form is exact and hence there exists for every
X ∈ g a smooth function

µX : M −→ R,

which satisfies dµX = ι(X#)ω. This map is unique up to addition of a constant of
integration and called a Hamiltonian function. Such a hamiltonian function induces
a smooth map

µ : M −→ g∗

p 7−→ µ(p)(X) = µX(p).

The co-adjoint representation acts on g∗ by Ad(g−1)∗. If the map µ equivariant, i.e.
µ (σ(g, p)) = Ad(g−1)∗(µ(p)), then it is called a moment map. A symplectic group
action is called Hamiltonian, if a moment map exists.

In the case G = SU(n), as an application of Whitehead’s lemmas, any symplectic
action of G on a symplectic manifold (M,ω) is Hamiltonian [Wan15].

2.2.5 Hyperkähler Manifolds and Hyperkähler Quotients

Let us consider a triple
(
M2m, g, I

)
, whereM2m is a smooth 2m-dimensional manifold,

g is a Riemannian metric and I is a complex structure. The triple is called a Kähler
manifold if the metric g is compatible with the complex structure, i.e. g(IX, IY ) =
g(X,Y ) for all smooth vector fields X,Y , and if the so-called Kähler form ωI(X,Y ) :=
g(IX, Y ) is closed, i.e. dωI = 0. The Kähler form makes any Kähler manifold to a
symplectic manifold.

The tuple
(
M4m, g, I, J,K

)
is called a hyperkähler manifold, if all triples

(
M4m, g, I

)
,(

M4m, g, J
)
,
(
M4m, g,K

)
are Kähler manifolds and the three complex structures sat-

isfy the quaternionic relations

I2 = J2 = K2 = IJK = −Id.

The corresponding Kähler forms are denoted by ωI , ωJ and ωK .
We will recall the trivial example of a hyperkähler manifold, because at a later

stage we need an infinite dimensional analogue of it.

Example 2. Obviously R4 is a 4-dimensional, real vector space and a smooth man-
ifold, where all tangent spaces are isomorphic to R4 too. For any point p ∈ R4 the
standard inner product

gp ((x0, x1, x2, x3), (y0, y1, y2, y3)) = 〈(x0, x1, x2, x3), (y0, y1, y2, y3)〉 =
3∑
i=0

xiyi
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defines a Riemannian metric on R4. With the matrices

Ip =


0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

 , Jp =


0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

 , Kp =


0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0


we get three endomorphism on the tangent spaces TpR4, which induce complex struc-
tures on R4. The metric satisfies

〈IpX, IpX〉 = 〈X,X〉, 〈JpX,JpX〉 = 〈X,X〉, 〈KpX,KpX〉 = 〈X,X〉

for all X ∈ TpR4 ∼= R4 and hence is compatible with all of the complex structures. For
every such complex structure we consider the 2-forms

ωI,p(Xp, Yp) := gp(IpXp, Yp) = 〈(−x1, x0,−x3, x2), (y0, y1, y2, y3)〉
= −x1y0 + x0y1 − x3y2 + x2y3

= (dx0 ∧ dx1)p(Xp, Yp) + (dx2 ∧ dx3)p(Xp, Yp),

ωJ,p(Xp, Yp) := gp(JpXp, Yp) = 〈(−x2, x3, x0,−x1), (y0, y1, y2, y3)〉
= −x2y0 + x3y1 + x0y2 − x1y3

= (dx0 ∧ dx2)p(Xp, Yp) + (dx3 ∧ dx1)p(Xp, Yp),

ωK,p(Xp, Yp) := gp(KpXp, Yp) = 〈(−x3,−x2, x1, x0), (y0, y1, y2, y3)〉
= −x3y0 − x2y1 + x1y2 + x0y3

= (dx0 ∧ dx3)p(Xp, Yp) + (dx1 ∧ dx2)p(Xp, Yp).

These forms are obviously closed and non-degenerate and hence symplectic forms and
therefore R4 is a hyperkähler manifold. If we identify R4 with the quaternions H, then
the endomorphisms Ip, Jp,Kp correspond to the multiplication by i, j, k ∈ H.

Now let
(
M4m, g, I, J,K

)
be a hyperkähler manifold and G be a compact Lie

group. Suppose that G acts smoothly, freely and by isometries on M , i.e. σ̃(g)∗g = g.
Furthermore let us assume, that G is a Hamiltonian action with respect to all of the
symplectic manifolds

(
M4m, ωI

)
,
(
M4m, ωJ

)
,
(
M4m, ωK

)
with corresponding moment

maps µI , µJ and µK . Finally we suppose that 0 ∈ g∗ is a regular value of all moment
maps. Then the next theorem from [Hit+87] shows how to produce new hyperkähler
manifolds as quotients.

Theorem 1. Let N :=
(
µ−1
I (0) ∩ µ−1

J (0) ∩ µ−1
K (0)

)
⊆ M . Then the dim(M) −

2dim(G)-dimensional manifold N/G has a hyperkähler structure.

2.3 Adjoint Orbits and the Kronheimer Moduli Space

In this section we want to outline the constructions of Kronheimer and Biquard from
[Kro90b], [Kro90a] and [Biq96]. Kronheimer found a hyperkähler structure on the
nilpotent (and semisimple) adjoint orbits of a semisimple Lie algebra gC. Basically
he identified such an orbit with a space of solutions of Nahm’s equations with cer-
tain boundary conditions. Then he identified this solution space with an infinite-
dimensional analogue of a hyperkähler quotient, which we will call the Kronheimer
Moduli Space.
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2.3.1 An infinite dimensional Hyperkähler Manifold

Let us fix now the compact, semisimple Lie group G = SU(n) of unitary matrices
with determinant equal to 1 and its Lie algebra su(n) of traceless, skew-hermitian
matrices. Its complexifications are the complex matrices with determinant equal to
1, i.e. GC = SLn(C), and its Lie algebra sln(C) of trace free complex matrices.

First we fix a nilpotent element Y ∈ gC. By the Jacobson-Morosov theorem
[Kro90b] we know, there is a Lie algebra homomorphism

ρC : sl2(C)→ gC,

such that the triple

Y = ρC
(

0 0
1 0

)
, X := ρC

(
0 1
0 0

)
, H := ρC

(
1 0
0 −1

)
forms an sl2(C)-triple, i.e. they satisfy the relations

[H,X] = 2X, [H,Y ] = −2Y, [X,Y ] = H.

Because we fixed the Lie group we know sln(C) ⊆ gl(Cn) and hence ρC is a complex-
linear Lie algebra representation to the Lie algebra sl2(C). Now let

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
be the so-called Pauli-matrices. With σ̃1 := (−i)σ3, σ̃2 := (−i)σ2 and σ̃3 := (−i)σ1

we get a basis of su(2), which satisfies

−2σ̃1 = [σ̃2, σ̃3], −2σ̃2 = [σ̃3, σ̃1], −2σ̃3 = [σ̃1, σ̃2]

and (
0 0
1 0

)
=

1

2
(σ̃2 + iσ̃1),

(
0 1
0 0

)
=

1

2
(−σ̃2 + iσ̃1),

(
1 0
0 −1

)
= iσ̃3.

Now we can define a homomorphism ρ : su(2)→ su(n) by

ρ(σ̃1) :=
1

i
(Y + Y H), ρ(σ̃2) := (Y − Y H), ρ(σ̃3) :=

1

i
[Y H , Y ].

If the sl2-triple satisfies X = Y H and HH = H, then this map is a Lie algebra
homomorphism and its complexification coincides with ρC.

Let us denote the triple σ := (σ̃1, σ̃2, σ̃3). Kronheimer studied in [Kro90b] gradient
flow equations or in an equivalent manner by a substitution Nahm’s equations, which
are the three equations

Ṫ1(t) = −[T2(t), T3(t)],

Ṫ2(t) = −[T3(t), T1(t)],

Ṫ3(t) = −[T1(t), T2(t)],

(2.1)

where Ti : (−∞, 0] → g are smooth maps for i ∈ {1, 2, 3}. Then Kronheimer consid-
ered the set of solutions of Nahm’s equations with boundary conditions
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M(0, σ) :={
(T1, T2, T3) ∈ C∞

(
(−∞, 0], g⊕3

)
: solution of (2.1), lim

t→−∞
Ti(t) = 0,

T1(0) = Ad(g0) (ρ(σ̃1)) , T2(0) = Ad(g0) (ρ(σ̃2)) , T3(0) = Ad(g0) (ρ(σ̃3))

for some g0 ∈ G
}
.

By [Biq96] such solutions satisfy |Tj(t)+
Ad(g0)(ρ(σ̃j))

2(t−1) | ≤ c
(1+|t|)1+δ for some positive

constants c, δ > 0 and all t ∈ (−∞, 0]. With such a constant δ he considered a space
of tuples of smooth maps

Aδ :=
{
B := (B0, B1, B2, B3) ∈ C∞

(
(−∞, 0], g⊕4

)
: ‖B0(t)‖1,δ <∞ and

‖Bj(t)−
Ad(g0)(ρ(σ̃j))

2(t− 1)
‖1,δ <∞ for some g0 ∈ G and for all j ∈ {1, 2, 3}

}
,

where the norm is defined by

‖Bj(t)‖1,δ := sup
t∈(−∞,0]

(
(1 + |t|(1+δ)) |Bj(t)|

)
+ sup
t∈(−∞,0]

(
(1 + |t|(2+δ))

∣∣∣∣dBjdt (t)

∣∣∣∣) .
Here by an abuse of notation | · | denotes the norm induced by an Ad-invariant inner
product of g and the usual absolute value. The L2-norm is well-defined and defines
an inner product on Aδ by

(B,C)L2 :=

∫ 0

−∞

3∑
i=0

〈Bi(t), Ci(t)〉dt,

where 〈·, ·〉 is an Ad-invariant inner product of g. Its induced norm on Aδ is complete
by the Riesz-Fischer theorem. In other words Aδ is a Banach space and hence a
Banach manifold with tangent space TBAδ at a point B = (B0, B1, B2, B3), which is
isomorphic to Aδ. We will denote the elements of TBAδ by small letters (b0, b1, b2, b3).
With the inner products (b, c)L2 for all b, c ∈ TBAδ we get a Riemannian metric on
Aδ.

As an infinite dimensional analogous of example 2 this Banach manifold carries a
hyperkähler structure. Three almost complex structures are given by endomorphisms
of TBAδ defined by

IB(b0, b1, b2, b3) := (−b1, b0,−b3, b2),

JB(b0, b1, b2, b3) := (−b2, b3, b0,−b1),

KB(b0, b1, b2, b3) := (−b3,−b2, b1, b0).

They clearly satisfy the quaternionic relations and they induce three 2-forms

ωI,B(b, c) := (IBb, c)L2,B , ωJ,B(b, c) := (JBb, c)L2,B , ωK,B(b, c) := (KBb, c)L2,B .

The almost complex structures are integrable, the 2-forms are closed and non-degenerate
and the metric is compatible with all of the three almost complex structures, see
[Biq96].



2.3. Adjoint Orbits and the Kronheimer Moduli Space 21

2.3.2 Kronheimer Moduli Space

With the hyperkähler manifold Aδ Biquard performed a hyperkähler quotient. We
want to roughly outline his procedure. First he considered a gauge Banach Lie group

G0,δ :=
{
g ∈ C∞ ((−∞, 0], G) : g(0) = Id, (∇Bg)g−1 ∈ Aδ ∀B ∈ Aδ

}
with a smooth, in the sense of Banach manifolds, proper and free action on Aδ, a
gauge transformation, defined by

τ : G0,δ ×Aδ −→ Aδ

(g,B) 7−→
(
Ad(g)B0 −

dg

dt
g−1, Ad(g)B1, Ad(g)B2, Ad(g)B3

)
.

The details to show smoothness, properness and freeness are computed in a slightly
different situation in [Gal18]. The condition (∇Bg)g−1 ∈ Aδ means that τ(g,B) lies
in Aδ too for all g ∈ G0,δ and B ∈ Aδ, see for definition and details [Kro90a] and
[Biq96]. We have also the following claim.

Claim 1. The group action τ is hamiltonian with respect to all of the complex struc-
tures I, J,K and the maps

µXI : Aδ −→ R

B 7−→
∫ 0

−∞
〈−Ḃ1(t)− [B0, B1]− [B2, B3], XB〉dt,

µXJ : Aδ −→ R

B 7−→
∫ 0

−∞
〈−Ḃ2(t)− [B0, B2]− [B3, B1], XB〉dt,

µXK : Aδ −→ R

B 7−→
∫ 0

−∞
〈−Ḃ3(t)− [B0, B3]− [B1, B2], XB〉dt,

are the corresponding hamiltonian functions, where X : Aδ → TAδ is a smooth vector
field.

These maps are well defined by the definition of Aδ, for a proof and smoothness
see [Gal18]. We say a tuple (B0, B1, B2, B3) satisfy the extended Nahm’s equations if
we have

Ḃ1(t) = −[B0, B1]− [B2, B3]

Ḃ2(t) = −[B0, B2]− [B3, B1]

Ḃ3(t) = −[B0, B3]− [B1, B2],

where the Bi ∈ C∞((−∞, 0], g).
We denote Mext(0, σ) := µ−1(0) := µ−1

I (0) ∩ µ−1
J (0) ∩ µ−1

K (0) ⊂ Aδ the solution
space of the extended Nahm’s equations in Aδ. Here the maps µI , µJ , µK are the
corresponding moment maps with respect to the hamiltonian functions of claim 1.
Kronheimer and Biquard showed, thatMext(0, σ)/G0,δ is a smooth Banach manifold
and that the hyperkähler structure of Aδ descends to the quotient, i.e. it is a hyper-
kähler quotient. Furthermore we have an identificationM(0, σ) ∼=Mext(0, σ)/G0,δ as
smooth Banach manifolds, see [Biq96]. In other wordsM(0, σ) admits a hyperkähler
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structure. We call the hyperkähler manifold

Mext(0, σ)/G0,δ

the Kronheimer moduli space. It could make sense to call this space the Biquard
moduli space, but i wanted to emphasize Kronheimers beautiful ideas. Kronheimer
showed then in [Kro90b] by studying equivalent complex trajectories, seen Oreg(Y )
as a complex manifold andMext(0, σ)/G0,δ seen as a complex manifold with complex
structure I, that the map

(Mext(0, σ)/G0,δ, I) −→ (Oreg(Y ), i)

[T0, T1, T2, T3] 7−→ T2(0) + iT3(0)

is a biholomorphism. Then this biholomorphism carries the hyperkähler structure of
Mext(0, σ)/G0,δ to the regular, nilpotent orbit.

2.3.3 Circle Action and Kähler Potential

It is difficult to describe the hyperkähler metric on Oreg(Y ) explicitely because of
the behavior of the identification of the regular, nilpotent orbit with the Kronheimer
moduli space, where we would have to solve a system of differential equations. Hitchin
proposed to study a Kähler potential of the Kähler structure of a fixed complex
structure. The next claim from [Hit+87] and [Hit98] describes how such a Kähler
potential arise.

Proposition 8. Let (M, g, I, J,K) be a hyperkähler manifold and let ωI , ωJ , ωK be
the three Kähler forms. Moreover let X be a smooth vector field with the properties

LXωI = 0, LXωJ = ωK , LXωK = −ωJ .

Furthermore let µXI : M → R be a hamiltonian function with respect to the form ωI .
Then 2µXI is a Kähler potential for the Kähler manifold (M, g, J), i.e.

ωJ = 2i∂J∂Jµ
X
I .

Proof. The function µXI satisfies by assumption dµXI = ιXωI , so we get for any smooth
vector field Y

dµXI (JY ) = (∂J + ∂J)µXI (JY ) = i(∂J − ∂J)µXI (Y ).

On the other hand we have by the hyperkähler structure and the compatibility of the
metric

dµXI (JY ) = ιXωI(JY ) = g(IX, JY ) = g(KX,Y ) = ωK(X,Y ).

Together this means i(∂J − ∂J)µXI (Y ) = ωK(X,Y ) and hence we have

−2i∂J∂Jµ
X
I = i(∂J∂J − ∂J∂J)µXI (Y ) = di(∂J − ∂J)µXI (Y ) = d(ωK) = LXωK = −ωJ .
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Following Hitchin in [Hit98], we have a natural SO(3)-action on M ext(0, σ)/G0,δ

given by

α : SO(3)×M ext(0, σ)/G0,δ −→M ext(0, σ)/G0,δ

(P, [B0(t), B1(t), B2(t), B3(t)]) 7−→

B0(t),

3∑
j=1

P1jBj(t),

3∑
j=1

P2jBj(t),

3∑
j=1

P3jBj(t)

 .
Let SO(2) ⊂ SO(3) be a circle action which fixes B1, i.e.

P =

1 0 0
0 cos(α) − sin(α)
0 sin(α) cos(α)

 , α ∈ [0, 2π).

With bi ∈ TB(t)Aδ this circle action satisfies

IB(α(P, b)) = IB(b0, b1, cos(α)b2 − sin(α)b3, sin(α)b2 + cos(α)b3)

= (−b1, b0,− sin(α)b2 − cos(α)b3, cos(α)b2 − sin(α)b3) = α(P, IB(b))

and

gB(α(P, a), α(P, b))

=

∫ 0

−∞
〈a0, b0〉+ 〈a1, b1〉+ 〈cos(α)a2 − sin(α)a3, cos(α)b2 − sin(α)b3〉

+ 〈sin(α)a2 + cos(α)a3, sin(α)b2 + cos(α)b3〉dt

=

∫ 0

−∞
〈a0, b0〉+ 〈a1, b1〉+ cos(α)2〈a2, b2〉 − cos(α) sin(α)〈a2, b3〉 − cos(α) sin(α)〈a3, b2〉

+ sin(α)2〈a3, b3〉+ sin(α)2〈a2, b2〉+ sin(α) cos(α)〈a2, b3〉
+ cos(α) sin(α)〈a3, b2〉+ cos(α)2〈a3, b3〉dt

=

∫ 0

−∞
〈a0, b0〉+ 〈a1, b1〉+ cos(α)2〈a2, b2〉+ sin(α)2〈a3, b3〉

+ sin(α)2〈a2, b2〉+ cos(α)2〈a3, b3〉dt

=

∫ 0

−∞
〈a0, b0〉+ 〈a1, b1〉+ 〈a2, b2〉+ 〈a3, b3〉dt

= gB(a, b).

Because ωI,B(α(P, a), α(P, b)) = gB(IBα(P, a), α(P, b)) = gB(α(P, IBa), α(P, b)) =
gB(IBa, b) = ωI,B(a, b) the circle action is a symplectic action. Furthermore we have

ωJ,B(α(P, a), α(P, b)) + iωK,B(α(P, a), α(P,B))

= (cos(α) + i sin(α)) (ωJ,B(a, b) + iωK,B(a, b)) .

This means the action fixes the Kähler form ωI and rotates the other two Kähler
forms.

Claim 2. Let X :=

(
0 1
−1 0

)
∈ so(2) and let X# be its fundamental vector field with

respect to the circle action which fixes B1. Then the fundamental vector field is given
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by

X#
B(t) = (0, 0, B3(t),−B2(t)) .

Moreover the following equations hold

LX#ωI = 0, LX#ωJ = ωK , LX#ωK = −ωJ .

Proof. Let B(t) = (B0(t), B1(t), B2(t), B3(t)) ∈ Aδ. Then the fundamental vector
field is given by

X#
B(t) =

d

dθ
|θ=0 (B0(t), B1(t), cos(θ)B2(t)− sin(θ)B3(t), sin(θ)B2(t) + cos(θ)B3(t))

= (0, 0, B3(t),−B2(t))

and therefore

IB(t)X
#
B(t) = (0, 0, B2(t), B3(t)) ,

JB(t)X
#
B(t) = (−B3(t),−B2(t), 0, 0) ,

KB(t)X
#
B(t) = (B2(t),−B3(t), 0, 0) .

Let Y and Z be two smooth vector fields. For a small enough ε > 0 we choose
curves γ : (−ε, ε) → Aδ, δ : (−ε, ε) → Aδ, such that γ(0) = B(t), dγ

dκ(0) = YB(t)

and δ(0) = B(t), dδ
dν (0) = ZB(t). For any smooth function f ∈ C∞(Aδ) we have

YB(t)(Z·(f)) = d
dκ |κ=0Zγ(κ)(f) and ZB(t)(Y·(f)) = d

dν |ν=0Yδ(ν)(f). For the sake of
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clarity let us drop in the next computations the argument (t). We have

(LXωI)B(YB, ZB)

= d(ιXωI)B(YB, ZB) = YB(ιXωI(Z))− ZB(ιXωI(Y ))− ωI,B([Y, Z]B)

=
d

dκ
|κ=0

(
ωI(Xγ(κ), Zγ(κ))

)
− d

dν
|ν=0

(
ωI(Xδ(ν), Yδ(ν))

)
− ωI(XB, [Y,Z]B)

=
d

dκ
|κ=0

∫ 0

−∞
〈γ2(κ), Zγ(κ),2〉+ 〈γ3(κ), Zγ(κ),3〉dt

− d

dν
|ν=0

∫ 0

−∞
〈δ2(ν), Yδ(ν),2〉+ 〈δ3(ν), Yδ(ν),3〉dt

−
∫ 0

−∞
〈B2, [Y,Z]A,2〉+ 〈B3, [Y,Z]A,3〉dt

=

∫ 0

−∞
〈 d
dκ
|κ=0γ2(κ), Zγ(0),2〉+ 〈 d

dκ
|κ=0γ3(κ), Zγ(0),3〉dt

+

∫ 0

−∞
〈γ2(0),

d

dκ
|κ=0Zγ(κ),2〉+ 〈γ3(0),

d

dκ
|κ=0Zγ(κ),3〉dt

−
∫ 0

−∞
〈 d
dν
|ν=0δ2(ν), Yδ(0),2〉+ 〈 d

dν
|ν=0δ3(ν), Yδ(0),3〉dt

−
∫ 0

−∞
〈δ2(0),

d

dν
|ν=0Yδ(ν),2〉+ 〈δ3(0),

d

dν
|ν=0Yδ(ν),3〉dt

−
∫ 0

−∞
〈B2, [Y,Z]B,2〉+ 〈B3, [Y,Z]B,3〉dt

=

∫ 0

−∞
〈YB,2, Zγ(0),2〉+ 〈YB,3, Zγ(0),3〉dt−

∫ 0

−∞
〈ZB,2, Yδ(0),2〉+ 〈ZB,3, Yδ(0),3〉dt

+

∫ 0

−∞
〈γ2(0), YB(Z·,2)〉+ 〈γ3(0), YB(Z·,3)〉dt

−
∫ 0

−∞
〈δ2(0), ZB(Y·,2)〉+ 〈δ3(0), ZB(Y·,3)〉dt

−
∫ 0

−∞
〈B2, [Y, Z]B,2〉+ 〈B3, [Y,Z]B,3〉dt

=

∫ 0

−∞
〈YB,2, ZB,2〉+ 〈YB,3, ZB,3〉dt−

∫ 0

−∞
〈ZB,2, YB,2〉+ 〈ZB,3, YB,3〉dt

= 0.

This shows the first equation. Moreover we have

ωJ,B(YB, ZB) =

∫ 0

−∞
〈−YB,2, ZB,0〉+ 〈YB,3, ZB,1〉+ 〈YB,0, ZB,2〉+ 〈−YB,1, ZB,3〉dt,

ωK,B(YB, ZB) =

∫ 0

−∞
〈−YB,3, ZB,0〉+ 〈−YB,2, ZB,1〉+ 〈YB,1, ZB,2〉+ 〈YB,0, ZB,3〉dt.
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With the last two formulas we compute

(LXωJ)B(YB, ZB)

= d(ιXωJ)B(YB, ZB)

= YB(ιXωJ(Z))− ZB(ιXωJ(Y ))− ωJ,B([Y,Z]B)

=
d

dκ
|κ=0

(
ωJ(Xγ(κ), Zγ(κ))

)
− d

dν
|ν=0

(
ωJ(Xδ(ν), Yδ(ν))

)
− ωJ(XB, [Y,Z]B)

=
d

dκ
|κ=0

∫ 0

−∞
〈−γ3(κ), Zγ(κ),0〉+ 〈−γ2(κ), Zγ(κ),1〉dt

− d

dν
|ν=0

∫ 0

−∞
〈−δ3(ν), Yδ(ν),0〉+ 〈−δ2(ν), Yδ(ν),1〉dt

−
∫ 0

−∞
〈−B3, [Y, Z]B,0〉+ 〈−B2, [Y, Z]B,1〉dt

=

∫ 0

−∞
〈−YB,3, ZB,0〉+ 〈−YB,2, ZB,1〉dt+

∫ 0

−∞
〈−B3, YB,0(Z·,0)〉+ 〈−B2, YB,1(Z·,1)〉dt

−
∫ 0

−∞
〈−ZB,3, YB,0〉+ 〈−ZB,2, YB,1〉dt−

∫ 0

−∞
〈−B3, ZB,0(Y·,0)〉+ 〈−B2, ZB,1(Y·,1)〉dt

−
∫ 0

−∞
〈−B3, [Y, Z]B,0〉+ 〈−B2, [Y, Z]B,1〉dt

=

∫ 0

−∞
〈−YB,3, ZB,0〉+ 〈−YB,2, ZB,1〉dt−

∫ 0

−∞
〈−ZB,3, YB,0〉+ 〈−ZB,2, YB,1〉dt

= ωK,N (YB, ZB).

This shows the second equation. In the same way we see (LXωK)B(YB, ZB) =
−ωJ,B(YB, ZB) and hence we have proven the claim.

By proposition 8 we know, that a hamiltonian function µX#

I defines a Kähler po-
tential with respect to the complex structure J . The next claim from [Hit98] describes
such a moment map.

Claim 3. Let X =

(
0 1
−1 0

)
∈ so(2) and X# its fundamental vector field with respect

to the circle action fixing B1. Then the map

µXI : Aδ −→ R

B(t) 7−→ 1

2

∫ 0

−∞
〈B2(t), B2(t)〉+ 〈B3(t), B3(t)〉dt

is a hamiltonian function.

Proof. Let us fix a tangent vector Y (t) := (y0(t), y1(t), y2(t), y3(t)) ∈ TB(t)Aδ. Let
us consider the curve γ : (−ε, ε) → Aδ, s 7→ B(t) + sY (t) with γ(0)(t) = B(t) and
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dγ
ds (0)(t) = Y (t). Then we have

d(µXI )B(t)(Y (t)B(t))

=
d

ds
|s=0µ

X
I (γ(s)(t))

=
1

2

d

ds
|s=0

∫ 0

−∞
〈B2(t) + sy2(t), B2(t) + sy2(t)〉+ 〈B3(t) + sy3(t), B3(t) + sy3(t)〉dt

=

∫ 0

−∞
〈B2(t), y2(t)〉+ 〈B3(t), y3(t)〉dt = gB(t)(IB(t)X

#
B(t), Y (t))

= ωI,B(t)(X
#
B(t), Y (t)) =

(
ι(X#)ωI,B(t)

)
(Y (t)).

In our case where g = su(n) we have 〈a, a〉 = tr(aa∗) = −tr(a2). So we write the
Kähler potential in the form

K(B(t)) = 2µXI (B(t)) = −
∫ 0

−∞
tr
(
B2(t)2 +B3(t)2

)
dt. (2.2)

The last formula is basically the start of this thesis, where we want to give a formula
of tr(B2(t)2 +B3(t)2) in terms of the theta function on the nilpotent, spectral curve.
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Chapter 3

Nilpotent, Spectral Curve, its
Jacobian Variety and the
Generalized Theta Function

In this chapter we want to study the nilpotent, spectral curve, its Jacobian variety
and its theta divisor. It turns out, that the theta divisor is given by the zero-set
of a determinantal function. This polynomial is called the theta function and we
will describe it in full details. The main tool to describe the Jacobian is, of course,
the exponential sequence together with the characterization of invertible sheaves via
Čech-cohomology.

3.1 Nilpotent, Spectral Curve

3.1.1 Ambient Space |OCP1(2)|

In this first subsection we will repeat well-known constructions of some complex an-
alytic spaces. We begin with the construction the complex projective space CP1.
Because this thesis is based on making explicit computations and working in local
coordinates, it is important to write down carefully the used notations, even if the
geometric object is widely well-known. Let us consider the sets

W1 := C 3 ζ̃, W0 := C 3 ζ,
W01 := W1 \ {0} = C∗, W10 := W0 \ {0} = C∗.

Furthermore let us endow these sets with the sheaf of holomorphic functions OWi for
i ∈ {0, 1}. The two pairs (W1,OW1), (W0,OW0) are complex analytic model spaces.
Furthermore the map(

ϕ10, ϕ
#
10

)
:
(
W10,OW0|W10

)
−→ (W01,OW1 |W01) ,

given by ϕ10(ζ) = 1
ζ for ζ ∈W10 with lifting operator defined by the assignment

ϕ#
10(W ) : OW1 |W01(W ) −→ OW0|W10

(ϕ−1
10 (W ))

s1 7−→ ϕ∗10s1 := s1 ◦ ϕ10

for any open subset W ⊂W01 is biholomorphic. Via this biholomorphism we are able
to glue the two model spaces (Wi,OWi), i ∈ {0, 1}, together by proposition 1 to get
the complex, projective space CP1 := W0 ∪W1/∼ with its structure sheaf OCP1 of
holomorphic functions on CP1. If W ⊆ CP1 is an arbitrary open set, then an element
f ∈ OCP1(W ) is given by a pair f = (f1, f0) ∈ OW1(W ∩W1) × OW0(W ∩W0) such
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that ϕ#
10(W ∩W01)(s1)(ζ) = (ϕ∗10s1)(ζ) = s1(1

ζ ) = s0(ζ) holds for all ζ ∈ W10 ∩W .
The complex analytic space (

CP1,OCP1

)
is one of the most beautiful complex analytic spaces. For example it is an Einstein-
Kähler manifold with the Fubini-Study metric and admits an antipodal map, an an-
tiholomorphic involution (see the lecture notes of Andrei Moroianu [Mor04] ).

Let OCP1(1) be Serre’s twisting sheaf, i.e. the invertible sheaf on CP1 given by
the transition function h10(ζ) = 1

ζ . Let us denote by OCP1(−1) := OCP1(1)v :=
Hom (OCP1(1),OCP1) the dual sheaf of Serre’s twisting sheaf, which is the sheaf hom
of OCP1(1) and OCP1 , see for definitions [Har77]. One can show, that the transition
function of OCP1(−1) is just given by k10(ζ) = 1

h10(ζ) = ζ. For an integer k ∈ Z we
define

OCP1(k) := OCP1(1)⊗k,

where we take the dual sheaf for negative k. These are all invertible sheaves and
their transition functions are given by l10(ζ) = 1

ζk
. Furthermore every other invertible

sheaf on
(
CP1,OCP1

)
is isomorphic to one of those OCP1(k) by the famous Birkhoff -

Grothendieck theorem or just in other symbols Ȟ1(CP1,O∗
CP1) ∼= Z.

To every invertible sheaf OCP1(k) we associate a 2-dimensional complex mani-
fold |OCP1(k)|, called the total space, together with a natural projection πOCP1 (k) :

|OCP1(k)| → CP1. The next step is to describe the total space of the sheaf OCP1(2)
as a complex 2-dimensional manifold via gluing. First we take two complex analytic
model spaces

(V1,OV1) ∼=
(
C2,OC2

)
, (V0,OV0) ∼=

(
C2,OC2

)
,

with coordinates (ζ̃, η̃) ∈ V1 and (ζ, η) ∈ V0. We define the spaces

V01 := C∗ × C =
{

(ζ̃, η̃) ∈ V1 : ζ̃ 6= 0
}
, V10 := C∗ × C = {(ζ, η) ∈ V0 : ζ 6= 0}

and a biholomorphic map, by abusing the notation,(
ϕ10, ϕ

#
10

)
: (V10,OV0 |V10) −→ (V01,OV1 |V01)

given by

ϕ10 : V10 −→ V01, (ζ, η) 7−→
(

1

ζ
,
η

ζ2

)
with lifting operator defined by

ϕ#
10(V ) : OV1 |V01(V ) −→ OV0|V10 (ϕ−1

10 (V ))

s1 7−→ ϕ∗10s1 := s1 ◦ ϕ10

for any open subset V ⊂ V01. By the gluing property, proposition 1, of complex
analytic spaces we get a complex analytic space

(T,OT ) ,
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where T := V1 ∪ V0/∼ and (ζ, η) ∼ (ζ̃, η̃) if and only if (ζ, η) ∈ V10, (ζ̃, η̃) ∈ V01 and
(ζ̃, η̃) ∼= ϕ10(ζ, η) = (1

ζ ,
η
ζ2

). For any open set V ⊆ T the sections of OT (V ) are given
by pairs (f1, f0) ∈ OV1(V ∩ V1) × OV0(V ∩ V0) such that (ϕ∗10f1)(ζ, η) = f1(1

ζ ,
η
ζ2

) =

f0(ζ, η) for all (ζ, η) ∈ V10∩V . The space (T,OT ) has a natural holomorphic projection(
πT , π

#
T

)
: (T,OT )→

(
CP1,OCP1

)
,

which is given by (ζ̃, η̃) 7→ ζ̃ and (ζ, η) 7→ ζ and with lifting operator

π#
T (W ) : OCP1(W ) −→ OT (π−1

T (W ))

s 7−→ π∗T s := s ◦ πT

for any open set W ⊂ CP1.
At this point we want to emphasise, that the pair

(
|OCP1(2)|, πOCP1 (2)

)
defines

a holomorphic line bundle on the complex, projective space. This holomorphic line
bundle is the tangent bundle of CP1 and this is the reason, why we have choosen the
letter T .

3.1.2 Nilpotent, Spectral Curve

A complex analytic space is locally the zero-set of a finite number of holomorphic
functions. To describe the nilpotent, spectral curve as a complex analytic space we
start with the two holomorphic functions ηn ∈ OV0(V0) and η̃n ∈ OV1(V1). With these
holomorphic functions we get two ideal sheaves

InV1 := η̃nOV1 ⊂ OV1 and InV0 := ηnOV0 ⊂ OV0 ,

which induce two zero-sets

U1 :=
{

(ζ̃, 0) ∈ V1

}
=
{

(ζ̃, η̃) ∈ V1 : η̃n = 0
}

= zero(InV1),

U0 := {(ζ, 0) ∈ V0} = {(ζ, η) ∈ V0 : ηn = 0} = zero(InV0).

We want to define sheaves of local C-algebras on the sets U0 and U1 to get two complex
model spaces. The two ideal sheaves InV1 and InV0 produce two quotient presheaves on
V1 and V0 defined by the assignment

V ′ 7→ OV1(V ′)/InV1(V ′) and V 7→ OV0(V )/InV0(V ),

where V ′ is an open subset of V1 and V an open subset of V0. But before we continue
to define our model spaces we will study the support of the two quotient presheaves,
i.e. the set of those points, where the stalk is not trivial.

Claim 4. Let p1 ∈ V1 \U1 and p0 ∈ V0 \U0 be two points. Then the stalks are trivial,
i.e.

OV1,p1/InV1,p1 = 0 and OV0,p0/InV0,p0 = 0.

If p1 = (ζ̃1, 0) ∈ U1 and p0 = (ζ0, 0) ∈ U0, then we have

OV1,p1/InV1,p1 ∼= OW1,ζ̃1
[η]/(ηnOW1,ζ̃1

),

OV0,p0/InV0,p0 ∼= OW0,ζ0 [η]/(ηnOW0,ζ0).
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In particular the quotient presheaves are supported on U1 and U0 respectively.

Proof. We will only prove the cases p0 ∈ V0 \ U0 and p0 ∈ U0. The two other cases
work similarly. So let p0 ∈ V0 \ U0. Then there is an open, probably very small,
neighborhood of p0, say V ′, such that V ′ ∩ U0 = ∅. Thus on V ′ the holomorphic
function (ζ, η) 7→ ηn is a unit of the ring OV0(V ′). Since the stalk of the ideal sheaf
is defined by InV0,p0 = lim−→V 3p0

(ηnOV0) (V ) the pair (V ′, ηn) defines a representative
of an element [V ′, ηn] of InV0,p0 . But the element [V ′, ηn] is also a unit of the local
ring OV0,p0 , in other words we have OV0,p0 ∼= InV0,p0 . This proves the first part. Now
let p0 ∈ U0 and therefore it is of the form p0 = (ζ0, 0). By example 1 any element
of sp0 ∈ OV0,p0 is expandable into a convergent powerseries in C{ζ − ζ0, η}. If we
only expand in the η-coordinate we can write sp0 =

∑∞
l=0 s

l
p0η

l, where the slp0 are
elements of OW0,ζ0 . An element of InV0,p0 expanded in the η-coordinate is of the form
ηn
∑∞

l=0 k
l
p0η

l, where the klp0 are elements of OW0,ζ0 . Thus the quotient ring consists
of elements of the form sp0 =

∑n−1
l=0 s

l
p0η

l with slp0 ∈ OW0,ζ0 , which proves the second
part of the claim.

The quotient sheaves with respect to the ideal sheaves InV1 and InV0 are given by
the sheafification of the quotient presheaves above. If V is an open set of V0, then the
sheafification (in [Har77] it is called the sheaf associated to the presheaf) is defined
as follows(

OV0/InV0
)

(V ) :=
{
s = (sp)p∈V ∈

∏
p∈V

(
OV0,p/InV0,p

)
: ∀p ∈ V ∃V ′ ⊂ V open

∃s′ ∈ OV0(V ′)/InV0(V ′) s.t. sq = s′q ∀q ∈ V ′
}
.

This definition delivers clearly a sheaf [Har77], where the stalks of the sheaf and the
stalks of the presheaf coincide. We restrict these quotient sheaves to the sets U1, U0

to get sheaf of rings on U1, U0. So let U ⊆ U0 and U ′ ⊆ U1 be arbitrary open sets,
then the restriction of the quotient sheaves is given by

OU1(U ′) :=
(
OV1/InV1

)
|U1(U ′) := lim−→

U ′⊂V ′

(
OV1/InV1

)
(V ′),

OU0(U) :=
(
OV0/InV0

)
|U0(U) := lim−→

U⊂V

(
OV0/InV0

)
(V ).

Since taking direct limits does not change the stalks by claim 4, these sheaves are not
only sheaf of rings, but sheaves of local C-algebras. We will describe the local sections
in more details.

Claim 5. Let U ⊆ U0 and let U ′ ⊆ U1 be open sets. Let W ⊂ W0 and W ′ ⊂ W1 be
the open sets satisfying U = W×{0} and U ′ = W ′×{0}. Then a section s0 ∈ OU0(U)
and a section s1 ∈ OU1(U ′) can be written as

s0 (ζ, η) =
n−1∑
l=0

sl0 (ζ) ηl, s1(ζ̃, η̃) =
n−1∑
l=0

sl1(ζ̃)η̃l,

where sl0 ∈ OW0(W ) and sl1 ∈ OW1(W ′).

Proof. We will prove only the case for U0 and the case for the set U1 works similarly.
Let us consider an element [V, s] ∈ OU0(U), where V is an open set of V0 containing
the set U and let s = (sp)p∈V ∈

(
OV0/InV0

)
(V ) be an element of the sheafification
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of the quotient presheaf. If p ∈ V \ U , then we have already seen in claim 4, that
sp = 0. Let us suppose p ∈ U ∩ V . Then by definition of the sheafification there
is an open neighborhood Vp ⊂ V of p such that we can glue the sq together to a
section of the quotient presheaf for all q ∈ Vp. In other words, there is a section
sp ∈ OV0(Vp)/InV0(Vp) with spq = sq for all q ∈ Vp. We have a presheaf and so we
have restriction morphisms too. Therefore we can shrink the open set Vp ⊂ C2 to
an open set of the form Wp ×Kp, where ζ ∈ Wp, η ∈ Kp are open subsets of C and
p ∈Wp ×Kp. Because sp is a holomorphic function on Wp ×Kp we Taylor expand it
in the η-coordinate around η0 = 0 and we get

sp(ζ, η) =
n−1∑
l=0

sp,l(ζ)ηl,

with sp,l ∈ OW0(Wp) and (ζ, η) ∈ Wp × Kp. But since sp is a polynomial in the
η-coordinate we can extend this holomorphic function to a holomorphic function on
Wp×C. So for every p ∈ U ∩V we get an open setWp×C and a holomorphic function
sp on W p × C. The holomorphic functions sp0 and sp1 coincide on (Wp0 ∩Wp1) × C
for two points p0, p1 ∈ U ∩ V , because by the definition of the sheafification we have
sp0q = sp1q for all q ∈ Vp. Since OW0 is a sheaf and ∪p∈U∩VWp = W , we can glue
the family of holomorphic functions (sp,l)p∈U∩V together to a holomorphic function
sl0 ∈ OW0(W ). In other words we get a holomorphic function on W × C defined by

s0 (ζ, η) =
n−1∑
l=0

sl0 (ζ) ηl.

On the other hand such a holomorphic function defines clearly an element of

(OV0/InV0)(W × C)

and since U ⊂W × C we get an element [W × C, s0] ∈ OU0(U).

At this point we see immediatly, that the sheaves OU1 and OU0 are sheaves of
local C-algebras, where the multiplication of two holomorphic functions is given by
the multiplication of the polynomials in claim 5 truncated by ηn respectively η̃n. And
finally we get two complex model spaces by the pairs (U1,OU1) and (U0,OU0). Let us
define the sets

U10 := {(ζ, 0) ∈ U0 : ζ 6= 0} , U01 :=
{

(ζ̃, 0) ∈ U1 : ζ̃ 6= 0
}

and the biholomorphic map, again by abusing the notation,(
ϕ10, ϕ

#
10

)
: (U10,OU0 |U10) −→ (U01,OU1 |U01)

given by

ϕ10 : U10 −→ U01. (ζ, η) 7−→
(

1

ζ
,
η

ζ2

)
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with lifting operator

ϕ#
10(U) : OU1 |U01(U) −→ OU0|U10

(ϕ−1
10 (U))

s1

(
ζ̃, η̃
)
7−→ (ϕ∗10s1)(ζ, η) := (s1 ◦ ϕ10)(ζ, η) = s1

(
1

ζ
,
η

ζ2

)
for any open subset U ⊂ U01. By the gluing property, proposition 1, we can glue them
together to a complex analytic space, called the nilpotent, spectral curve, which we
denote by

(Cn,OCn) ,

where Cn := U1 ∪ U0/ ∼ with (ζ̃, 0) ∼ (ζ, 0) if and only if (ζ̃, 0) ∈ U01, (ζ, 0) ∈ U10

and (ζ̃, 0) = (1
ζ , 0) = ϕ10(ζ, 0). For any open set U ⊆ Cn the local sections are given

by pairs (f1, f0) ∈ OU1(U ∩ U1) × OU0(U ∩ U0) such that (ϕ∗10res
U∩U1
U∩U01

(f1))(ζ, η) =

resU∩U1
U∩U01

(f1)(1
ζ ,

η
ζ2

) = resU∩U0
U∩U10

(f0)(ζ, η). In the rest of the thesis we often do not
write the restrictions of the local functions or sections, because it makes the most
formulas unnecessarily confusing. Instead we will often write the pair (f1, f0) satisfies
f1(1

ζ ,
η
ζ2

) = f0(ζ, η) on U10. Because {U1, U0} is an open cover of the topological
space Cn with Ui = Wi×{0}, i ∈ {0, 1}, the topological space Cn is homeomorphic to
CP1 and is therefore compact and one dimensional. Moreover we have a holomorphic
projection (

πCn , π
#
Cn

)
: (Cn,OCn) −→

(
CP1,OCP1

)
given by (ζ̃, 0) 7→ ζ̃, (ζ, 0) 7→ ζ and with lifting operator

π#
Cn

(W ) : OCP1(W ) −→ OCn(π−1
Cn

(W ))

(s1, s0) 7−→ (s1, s0)

for an open set W ⊆ CP1. Because of claim 5 the stalk of OCn at p ∈ Cn is

OCn,p ∼= OCP1,p[η]/〈ηnOCP1,p〉. (3.1)

In other words the local ringsOCn,p admit some nilpotent elements and hence the curve
is non-reduced. Furthermore we see, that OCn,p is a finitely generated OCP1,p- module

and hence the projection
(
πCn , π

#
Cn

)
is a finite morphism of complex analytic spaces.

With the holomorphic projections
(
πT , π

#
T

)
and

(
πCn , π

#
Cn

)
we can consider the

inverse image sheaf of an invertible sheaf OCP1(k) on
(
CP1,OCP1

)
, k ∈ Z. Let us

denote the inverse image sheaves OT (k) := π∗TOCP1(k) and OCn(k) := π∗CnOCP1(k).
These sheaves are also invertible sheaves and they have transition functions of the
form (ζ, η) 7→ 1

ζk
, seen as an element of OT (V0 ∩ V1) or OCn(U0 ∩ U1) respectively.

See for definitions and properties [GPR94].
At this point we want to investigate very roughly in an algebraic point of view.

Because ηn and η̃n are polynomials, we can do all the above constructions in the
algebraic category too to get a proper, algebraic curve

(
Calgn ,OalgCn

)
, which is non-

reduced. It comes with a regular projection morphism to the complex projective
space

(
CP1,OCP1

)
, such that the topological map is a homemorphism in the Zariski

topology and hence this projection morphism makes the curve to a projective variety,
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see [Dre06]. We will use this observations later to carry over some algebraic properties
to the analytic case.

3.1.3 Spectral Curve

A way more compact description of the nilpotent spectral curve is as follows, where
all local considerations above play its role. Because of the gluing map (ϕ10, ϕ

#
10) we

see ϕ#
10(V01)(η̃) = 1

ζ2
η. Hence the pair (η̃, η) defines a global section of the invertible

sheaf OT (2) = π∗TOCP1(2) on T . This section is called the tautological section [Hit83].
Furthermore the pair (η̃n, ηn) defines a global section of the invertible sheaf OT (2n)
and hence it induces a sheaf homomorphism

(η̃n, ηn) · (V ) : OT (−2n)(V ) −→ OT (V )

(s1, s0) 7−→ (η̃ns1, η
ns0)

for every open set V ⊆ T . We get a sheaf of ideals defined by

In := (η̃n, ηn) · OT (−2n) ⊆ OT .

The zero set of this sheaf of ideals gives us a topological space Cn = zero(In) and a
sheaf of local C-algebras on Cn defined by OCn := OT /In

∣∣
Cn

. The pair (Cn,OCn) is
just the nilpotent, spectral curve.

There is a more general construction of such spectral curves, which explains the
name. Let us consider a global section of

(Ã(ζ̃), A(ζ)) ∈ Ȟ0
(
CP1,OCP1(2)⊗ gln(C)

)
.

Such a pair (Ã(ζ̃), A(ζ)) is given by polynomials of degree 2 with matrix coefficients

Ã(ζ̃) = Ã0 + Ã1ζ̃ + Ã2ζ̃
2, A(ζ) = A0 +A1ζ +A2ζ

2,

where Ai, Ãi ∈ gln(C) and they satisfy Ã
(

1
ζ

)
= A (ζ) for all ζ ∈ W10. This implies

immediatly

Ã0 = A2, Ã1 = A1, Ã2 = A0

and we see, that a matricial polynomial A(ζ) = A0 + A1ζ + A2ζ
2 uniquely defines

such a global section. In the rest of this thesis we will often consider only matricial
polynomials A(ζ) onW0, but we always have the global section

(
Ã(ζ̃), A(ζ)

)
in mind.

The characteristic polynomials define two polynomial functions and hence holo-
morphic functions on V0 and V1 given by

P1 := det
(
η̃Idn − Ã(ζ̃)

)
∈ OV1(V1), P0 := det (ηIdn −A(ζ)) ∈ OV0(V0).

They satisfy on V10

(ϕ∗10P1)(ζ, η) = det

(
η

ζ2
Idn −

(
A2 +A1

1

ζ
+A0

1

ζ2

))
=

1

ζ2n
det (ηIdn −A(ζ))

=
1

ζ2n
P0(ζ, η).
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In other words the pair (P1, P0) defines a global section of OT (2n). We get again a
sheaf of ideals by

I(P1,P0) := (P1, P0) · OT (−2n),

which gives us a complex analytic space
(
C(P1,P0),OC(P1,P0)

)
called the spectral curve

of the matricial polynomialA(ζ), whereOC(P1,P0)
:= OT /I(P1,P0)|C(P1,P0)

. If we assume

now, that the global section (Ã
(
ζ̃
)
, A (ζ)) is nilpotent at all points p ∈ CP1, then

the characteristic polynomials are just P1(ζ̃, η̃) := det
(
η̃Idn − Ã

(
ζ̃
))

= η̃n and
P0(ζ, η) := det (ηIdn −A (ζ)) = ηn. In other words the corresponding spectral curve
of a nilpotent, matricial polynomial is just the nilpotent, spectral curve we started
with. We see immediatly, that any such nilpotent, global section induces the same
nilpotent, spectral curve.

3.2 Jacobian Variety of Nilpotent, Spectral Curve

We want to describe the set of isomorphism classes of invertible sheaves of degree
g − 1 on (Cn,OCn), which we call the Jacobian of degree g − 1 of Cn and denoting
it by Jacg−1(Cn). The set of isomorphism classes of degree k will be denoted by
Jack(Cn). The Picard group Pic(Cn) consists of all isomorphism classes of invertible
sheaves with the group structure defined by the tensor product of invertible sheaves,
see [Har77]. The unit element is just the structure sheaf OCn . We have already seen
in proposition 5, that the isomorphism classes of invertible sheaves are characterized
by Ȟ1

(
Cn,O∗Cn

)
. To study and computing a cohomology group it is often usefull to

find a short exact sequence of sheaves of abelian groups, such that the corresponding
long exact sequence, coming from the cohomology theory, inherits the cohomology
group we want to compute. In the case of computing Ȟ1(Cn,O∗Cn) the helpful short
exact sequence is the exponential sequence

0→ Z
2πi·−→ OCn

exp−→ O∗Cn → 1.

Note that the group structure of the sheaf of abelian groups O∗Cn is given by multipli-
cation and this explains the 1 at the far right. The sheaf of locally constant functions
with values in the integers on Cn is denoted by Z. The exponential map is defined by
the standard exponential map truncated by ηn respectively η̃n in the sense of claim
5. Since the exponential map is surjective on the stalks, the exponential sequence is
exact, see for more details [GPR94].

This short exact sequence leads to the long exact sequence of cohomology groups

0 −→ Ȟ0(Cn,Z) −→ Ȟ0(Cn,OCn) −→ Ȟ0(Cn,O∗Cn) −→ Ȟ1(Cn,Z)

−→ Ȟ1(Cn,OCn) −→

∼=Pic(Cn)︷ ︸︸ ︷
Ȟ1(Cn,O∗Cn) −→ Ȟ2(Cn,Z) −→ Ȟ2(Cn,OCn) −→ . . .

But because Z is a sheaf of abelian groups on the topological space Cn, which is
homeomorphic to the simply-connected, topological space CP1, we can use Poincaré
duality to see Z ∼= H0(CP1,Z) ∼= Ȟ2(Cn,Z). Moreover the sets U0, U1 are both
homeomorphic to C and U10 is homeomorphic to C∗ and hence they are all Stein spaces
[GPR94]. For Stein manifolds X Cartan’s theorem B holds, which says Ȟp(X,F) = 0
for all p > 0 and coherent OX -modules F . Thus U := {U0, U1} forms a Leray cover
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with two open sets. This implies immediatly Ȟ2(Cn,OCn) = 0, which is also clear
because the topological dimension of Cn is 1. The curve Cn is simply connected and
hence it has trivial first fundamental group. By the Hurewicz theorem H1(Cn,Z)
vanishes and by the Poincaré duality again we have Ȟ1(Cn,Z) = 0. Thus the long
exact sequence of cohomology groups reduces to the short exact sequence

0→ Ȟ1(Cn,OCn)
exp−→

∼=Pic(Cn)︷ ︸︸ ︷
Ȟ1(Cn,O∗Cn)

deg−→

∼=Z︷ ︸︸ ︷
Ȟ2(Cn,Z)→ 0. (3.2)

We define the degree of an invertible sheaf on the nilpotent, spectral curve (Cn,OCn)
as the integer given by the image of the map deg in the long exact sequence above.
The degree is additive with respect to the tensor product on the Picard group and
therefore tensoring by an invertible sheaf of degree k gives an isomorphism between
Jac0(Cn) and Jack(Cn), [Har77]. We need to compute Jac0(Cn), which is given
by the kernel of the degree map in the short exact sequence above. But the kernel
is by exactness the image of the exponential map and hence we want to compute
Ȟ1(Cn,OCn) to describe Im(exp).

After the introduction of the degree of an invertible sheaf we can state some prop-
erties coming from the algebraic behavior of the nilpotent, spectral curve. For a
proper scheme over C of dimension 1 there is a Riemann-Roch theorem for locally
free sheaves, see for example [Sta19] or [BFM75]. But Serre made in [Ser56] a con-
nection between the algebraic point of view and the analytic point of view. He shows,
that there is a bijection between the set of algebraic, coherent sheaves and analytic,
coherent sheaves. By a theorem of Oka [Oka50], we know that the structure sheaf
of a complex analytic space is coherent and hence its invertible sheaves are coherent
too. Moreover Serre showed, that the cohomology groups of both point of views are
isomorphic as C-vector spaces. In other words the Riemann-Roch theorem carries over
to the analytic case of the nilpotent, spectral curve.

Proposition 9. (Riemann-Roch) Let F be an invertible sheaf on the nilpotent, spec-
tral curve (Cn,OCn). Let χ(Cn,F) = dimC

(
Ȟ0(Cn,F)

)
− dimC

(
Ȟ1(Cn,F)

)
be the

complex Euler characteristic and let g := dimC
(
Ȟ1(Cn,OCn)

)
be the arithmetic genus

of the nilpotent, spectral curve. Then we have

χ(Cn,F) = deg(F) + χ(OCn) = deg(F) + 1− g.

Another property of algebraic geometry uses the following. Via the holomorphic
projection map

(
πCn , π

#
Cn

)
one can see the structure sheaf OCn as a finitely generated

OCP1-module. In other words the projection
(
πCn , π

#
Cn

)
is a finite morphism. Since

the projective space CP1 is a complex manifold we have the next proposition, see
[Har77] and [GPR94]. Coherence of the direct image sheaf is Grauert’s direct image
theorem, [GPR94].

Proposition 10. Let F be an invertible sheaf on the nilpotent, spectral curve (Cn,OCn)
and let πCn,∗F be the direct image sheaf seen as a coherent OCP1- module. Then the
sheaf πCn,∗F is locally free of rank n and for all q ≥ 0 the cohomology groups are
isomorphic as C-vector spaces, i.e.

Ȟq(Cn,F) ∼= Ȟq(CP1, πCn,∗F).

An immediate consequence of proposition 10, proposition 9 and the Riemann-Roch
theorem on CP1 is the following corollary.
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Corollary 1. We have the equation

deg(F) + (1− g) = deg(πCn,∗F) + n.

Proof. We compute with proposition 10 and proposition 9 and the Riemann-Roch
theorem on CP1

deg(F) + 1− g = χ(Cn,F) = dimC
(
Ȟ0(Cn,F)

)
− dimC

(
Ȟ1(Cn,F)

)
= dimC

(
Ȟ0(CP1, πCn,∗F)

)
− dimC

(
Ȟ1(CP1, πCn,∗F)

)
= χ(CP1, (πCn,∗F)) = deg(πCn,∗F) + rk(πCn,∗F)

(
1− g(CP1)

)
= deg(πCn,∗F) + n.

3.2.1 Generators of Ȟ1(Cn,OCn) and the Arithmetic Genus

Next we want to prove the following proposition, which can be found in [AHH90] or
[Hit98].

Proposition 11. The cohomology group Ȟ1(Cn,OCn) has a basis as a complex vector
space by monomials of the form

ζ−kηl ∈ OCn(U10),

where 0 ≤ l ≤ n− 1 and 1 ≤ k ≤ 2l − 1. In particular we have

g := dimC(Ȟ1(Cn,OCn)) = (n− 1)2.

Proof. Note that U0, U1 form a Leray cover of Cn and hence we only have to compute
the Čech-cohomology group with respect to this open cover instead of computing the
direct limit over refinements of open covers. In the definition of Čech-cohomology
we have the maps δk : Ck(OCn) → Ck+1(OCn). Since Ker(δ1) = OCn(U0 ∩ U1)
and Im(δ0) = OCn(U0) ⊕ OCn(U1) the first Čech-cohomology group Ȟ1(Cn,OCn) is
given by holomorphic functions on U0 ∩ U1 modulo holomorphic functions on U0 and
holomorphic functions on U1, in symbols

Ȟ1(Cn,OCn) = OCn(U0 ∩ U1)/OCn(U0)⊕OCn(U1).

By claim 5 we can write a section on U10 in the form s0 =
∑n−1

l=0 s
l
0(ζ)ηl, where

sl0 ∈ OW0(W10). But we have U10
∼= C∗ and so we can expand the sl0 into Laurent

series, hence we have

s0(ζ, η) =

n−1∑
l=0

∞∑
k=−∞

aklζ
kηl

with some complex coefficients akl ∈ C. On U0 and on U1 the holomorphic functions
expand into the form

n−1∑
l=0

∞∑
k=−∞

bklζ
kηl on U0,

n−1∑
l=0

∞∑
k=0

cklζ̃
kη̃l on U1.

We restrict the first function just to U10. For the second function we have to restrict
it to U01 first, i.e. to an element of OCn(U01) and then sending via ϕ#

10(U01) to
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OCn(U10) = OCn(ϕ−1
10 (U01)). Hence the second function, written as a holomorphic

function on U10, is given by

n−1∑
l=0

∞∑
k=0

cklζ̃
kη̃l =

n−1∑
l=0

∞∑
k=0

ckl
1

ζk

(
η

ζ2

)l
=

n−1∑
l=0

0∑
k=−∞

cklζ
k−2lηl.

So an element of the quotient space OCn(U0 ∩ U1)/OCn(U0) ⊕ OCn(U1) has a rep-
resentative of the form

∑n−1
l=1

∑−1
k=−2l+1 bklζ

kηl. We conclude that every element of
Ȟ1(Cn,OCn) is given by a representative of the form

bCn(ζ, η) :=

n−1∑
l=1

2l−1∑
k=1

bklζ
−kηl =

n−1∑
l=1

2l−1∑
k=1

Bl

(
1

ζ

)
ηl,

where Bl(1
ζ ) :=

∑2l−1
k=1 bklζ

−k. The coefficients bkl are complex numbers and every
Bl(

1
ζ ) is dependent of 2l − 1 of them. Therefore bCn is dependent of

n−1∑
l=1

(2l − 1) = 2

n−1∑
l=1

l −
n−1∑
l=1

1 = 2
n(n− 1)

2
− (n− 1) = (n− 1)2

complex numbers. By the definition of the arithmetic genus we conclude

g := dimC Ȟ1(Cn,OCn) = (n− 1)2.

By using the projection formula, see [Har77], we have

πCn,∗π
∗
CnOCP1(n− 2) ∼= (πCn,∗OCn)⊗OCP1(n− 2).

Moreover by using the isomorphism of claim 7 in section 4.1.4 we see immediatly
deg(πCn,∗π

∗
Cn
OCP1(n − 2)) = −n. By inserting the invertible sheaf π∗CnOCP1(n − 2)

into corollary 1 we get

deg(π∗CnOCP1(n− 2)) + 1− g = deg(πCn,∗F) + n = 0

and thus we have

deg(OCn(n− 2)) = deg(π∗CnOCP1(n− 2)) = n(n− 2) = g − 1. (3.3)

3.2.2 Jacobian Variety

In this subsection we want to compute the Jacobian variety Jacg−1(Cn) and describe
the transition functions of invertible sheaves of degree g− 1 on the nilpotent, spectral
curve.

Theorem 2. Let (Cn,OCn) be the nilpotent, spectral curve. Then the exponential
map exp is an isomorphism

exp : Ȟ1(Cn,OCn) ∼= Jac0(Cn).

In particular we have

Jacg−1(Cn) ∼= Jac0(Cn) ∼= Ȟ1(Cn,OCn) ∼= Cg.
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Furthermore the isomorphism classes of invertible sheaves of degree 0 have transition
functions of the form

h10(ζ, η) =

(
d00 +

n−1∑
l=1

2l−1∑
k=1

dkl
1

ζk
ηl

)
,

where the coefficients dkl ∈ C and d00 is a non-zero complex number. Furthermore
invertible sheaves of degree g − 1 have transition functions of the form

g10(ζ, η) =
1

ζn−2
h10(ζ, η).

Proof. We have already seen in equation (3.2), that the long exact sequence reduces
to

0→ Ȟ1(Cn,OCn)
exp−→

∼=Pic(Cn)︷ ︸︸ ︷
Ȟ1(Cn,O∗Cn)

deg−→

∼=Z︷ ︸︸ ︷
Ȟ2(Cn,Z)→ 0.

Hence by exactness we have injectivity of the exponential map and hence it is an
isomorphism on its image, which is the group Jac0(Cn) of invertible sheaves of degree
0. To compute the transition functions we take a representative of a cohomology class
of Ȟ1(Cn,OCn)

bCn(ζ, η) :=

n−1∑
l=1

2l−1∑
k=1

Bl

(
1

ζ

)
ηl

and compute its image under the exponential map truncated by ηn. Thus we get

exp (bCn(ζ, η)) =
n−1∏
k=1

n−1∑
r=0

1

r!
Bk

(
1

ζ

)r
ηrk.

Since we are on the nilpotent, spectral curve the term ηrl is at most ηn−1. If we fix a
number q and if we consider two numbers r and l, such that rl = q, then we have the
term Bl(

1
ζ )r, which has ζ-terms from

(
1
ζ

)r
to
(

1
ζ2l−1

)r
. The smallest exponentiation

is 1
ζr and the biggest possible exponentiation is

(
1

ζ2l−1

)r
= 1

ζ2q−r . Therefore we have
the highest range of exponentiations if we set r = 1 and q = l. We can follow, that the
transition functions of invertible sheaves of degree 0 on the nilpotent, spectral curve
are of the form

1 +
n−1∑
l=1

2l−1∑
k=1

cklζ
−kηl.

If we multiply a transition function of an invertible sheaf F by a non-zero constant d00,
then the new invertible sheaf is isomorphic to F . This follows basically by definition
of Ȟ1(Cn,O∗Cn). We define dkl = ckld00 and the transition function gets

h10(ζ, η) =

(
d00 +

n−1∑
l=1

2l−1∑
k=1

dklζ
−kηl

)
.

The last part of the proof follows from the fact, that the transition function of a
tensor product of two invertible sheaves is just the multiplication of the two transition
functions truncted by ηn. Because of equation (3.3) we know, that the degree of
OCn(n−2) := π∗CnOCP1(n−2) is n(n−2) = g−1. The transition function ofOCn(n−2)
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is just 1
ζn−2 , which does not depend on η and so we do not have to truncate. In other

words if we take an invertible sheaf L of degree 0 with transition function h10 and
tensoring it with OCn(n− 2) we get an invertible sheaf F = L⊗OCn(n− 2) of degree
g − 1 with transition function

g10(ζ, η) =
1

ζn−2
h10(ζ, η).

3.3 Theta Divisor and Theta Function

In this section we want to describe the theta divisor, the set of invertible sheaves of
degree g−1 on the nilpotent, spectral curve with a non-trivial, global section. It turns
out, that it is an affine variety in Jacg−1(Cn), a zero locus of a polynomial function.
This polynomial is given by a determinant of a certain matrix M and it is called
the (generalized) theta function. The first step is to describe this matrix M and the
second step is to compute its determinant.

3.3.1 Theta Divisor and Condition Equations

The theta divisor is defined by the set of invertible sheaves of degree g−1, which have
a non-trivial, global section. As a formula this means

Θ :=
{
F ∈ Jacg−1(Cn) : dimC Ȟ0(Cn,F) 6= 0

}
.

We have seen in theorem 2, that the invertible sheaves of degree g− 1 have transition
functions of the form

g10(ζ, η) =
1

ζn−2

(
d00 +

n−1∑
l=1

2l−1∑
k=1

dklζ
−rηls

)
,

with complex coefficients dkl ∈ C and a non-zero constant d00 6= 0. An arbitrary
global section of an invertible sheaf F ∈ Jacg−1(Cn) is given by a pair (s1, s0)
of holomorphic functions s0 ∈ OU0(U0) and s1 ∈ OU1(U1) such that they satisfy
s1

(
1
ζ ,

η
ζ2

)
= g10(ζ, η)s0(ζ, η) on U10. By claim 5 we can write these two functions as

power series, i.e.

s1

(
1

ζ
,
η

ζ2

)
=

n−1∑
q=0

∞∑
p=0

ãpq
1

ζp+2q
ηq, s0(ζ, η) =

n−1∑
q=0

∞∑
p=0

apqζ
pηq.

We are searching for all possible invertible sheaves, given by the coefficients dkl ∈ C,
such that the global section is not the zero section. The pair (s1, s0) forms a non-
trivial section if and only if at least one coefficient apq or ãpq is non-zero. Hence we
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have to equate the coefficients of the following equation

n−1∑
q=0

∞∑
p=0

ãpq
1

ζp+2q
ηq =

1

ζn−2

(
d00 +

n−1∑
l=1

2l−1∑
k=1

dklζ
−kηl

)
n−1∑
q=0

∞∑
p=0

apqζ
pηq

=
n−1∑
q=0

∞∑
p=0

d00apq
1

ζn−2−p η
q +

n−1∑
l=1

2l−1∑
k=1

n−1∑
q=0

∞∑
p=0

dklapq
1

ζn−2+k−p η
l+q,

(3.4)

which gives us conditions on the coefficients. We want to extract from the equation
(3.4) the condition equations on the dkl to be an invertible sheaf with a non-trivial
global section. We start by considering the left hand side of (3.4). There are monomi-
als of the form 1

ζp+2q η
q and hence for a fixed integer 0 ≤ q′ ≤ n− 1 there is no integer

p′ with p′ ≤ 2q′ − 1 such that the monomial 1
ζp′
ηq
′ appears on the left hand side of

(3.4). But such a monomial can appear on the right hand side. Thus for every pair
(p′, q′) of integers with 0 ≤ q′ ≤ n− 1 and p′ ≤ 2q′− 1 we get an equation in terms of
apq and dkl. We quickly compute

1

ζn−2−p η
q =

1

ζp′
ηq
′ ⇔ p = n− 2− p′ and q = q′,

1

ζn−2+k−p η
q+l =

1

ζp′
ηq
′ ⇔ p = n− 2 + k − p′ and q = q′ − l.

The sum on the right hand of (3.4) sums up every dkl, thus for the coefficient 1
ζp′
ηq
′

we have the linear equation

0 = d00an−2−p′,q′

+ d11an−2−p′+1,q′−1

+
(
d12 d22 d32

)an−2−p′+1,q′−2

an−2−p′+2,q′−2

an−2−p′+3,q′−2



+
(
d13 d23 d33 d43 d53

)

an−2−p′+1,q′−3

an−2−p′+2,q′−3

an−2−p′+3,q′−3

an−2−p′+4,q′−3

an−2−p′+5,q′−3


+ . . .

+
(
d1q′ d2q′ · · · d2q′−1,q′

)


an−2−p′+1,0

an−2−p′+2,0
...

an−2−p′+2q′−1,0

 .

(3.5)

We call this linear equation the (p′, q′)-th condition equation.

Theorem 3. Let F ∈ Jacg−1(Cn) be an invertible sheaf characterized by the coeffi-
cients dkl ∈ C of its transition function. Let (s1, s0) be a global, possibly trivial, section
of F characterized by its coefficients apq and ãpq. Then we have

0 = ap0 = ãp0, ∀p ≥ n− 1.
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For every integer 1 ≤ q ≤ n− 1 we have

apq = ãpq = 0, ∀p ≥ n− 2.

In particular every global, possibly trivial, section of F is of polynomial type.

Proof. First let us consider the coefficient η0. Equation (3.4) delivers the equation

∞∑
p=0

ãp0
1

ζp
=

1

ζn−2

∞∑
p=0

d00ap0ζ
p =

∞∑
p=0

ap0
1

ζn−2−p .

Explicitly this gives us the equations

...
0 = d00a(n−1)0,

ã00 = d00an−2,0,

ã10 = d00an−3,0,

...
ãp0 = d00an−2−p,0,

...
ãn−2,0 = d00a00,

ãn−1,0 = 0.

...

Since the coefficient d00 is non-zero, we get immediatly the first part of the theorem.
We will split up the second part into two parts. First we will show ãpq = 0 for all
p ≥ n − 2 and 1 ≤ q ≤ n − 1. Let us fix a 1 ≤ q ≤ n − 1 and let p ≥ n − 2. The
monomial on the left hand side of (3.4) with coefficient ãpq is 1

ζp+2q η
q. Note that

p+ 2q ≥ n− 2 + 2q. We will show, that on the right hand side every monomial is of
the form 1

ζr η
q with r ≤ n − 2 + 2q − 1 and hence there is no monomial on the right

hand side of the form 1
ζp+2q η

q. Equating the coefficients says then ãpq = 0. In the first
summand on the right hand side of (3.4) has monomials of the form 1

ζn−2−p′ η
q, and

hence n− 2− p′ ≤ n− 2 < n− 2 + 2q ≤ p+ 2q, what we wanted. We have to consider
the second summand more carefully. Let us pick two integers (l, q′) with l + q′ = q,
1 ≤ l ≤ n− 1 and 0 ≤ q′ ≤ n− 1. Thus the monomials on the right hand side of (3.4)
are of the form 1

ζn−2+k−p′ , where 1 ≤ k ≤ 2l − 1 = 2(q − q′)− 1. But this means

n− 2 + k − p′ ≤ n− 2 + 2l − 1− p′ = n− 2 + 2(q − q′)− 1− p′ ≤ n− 2 + 2q − 1

< n− 2 + 2q ≤ p+ 2q.

To finish the proof of the theorem we have to show now apq = 0 for all p ≥ n − 2
and 1 ≤ q ≤ n − 1. We do this via induction over the q’s. If we consider q = 1 then
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equation (3.4) delivers

∞∑
p=0

ãp1
1

ζp+2
η =

∞∑
p=0

d00ap1
1

ζn−2−p η
1 +

1∑
k=1

∞∑
p=0

dk1ap0
1

ζn−2+k−p η
1+0

=
∞∑
p=0

d00ap1
1

ζn−2−p η
1 +

∞∑
p=0

d11ap0
1

ζn−2+1−p η
1.

When we fix a p ≥ n − 2, then the monomial with coefficient ap1 is 1
ζn−2−p η

1. Note
that n−2−p ≤ 0, since p ≥ n−2. Because q = 1 we have always p′+ 2q = p′+ 2 > 0
and hence on the left hand side of (3.4) appears no monomial of the form 1

ζn−2−p η
1.

So the equation leads to

0 = d00ap1
1

ζn−2−p η
1 + d11ap+1,0

1

ζn−2−p η
1.

But here we see, since p ≥ n− 2, p+ 1 ≥ n− 2 + 1 = n− 1 and thus ap+1,0 = 0 by the
first part of the theorem and the equation 0 = d00ap1 remains. Again with d00 6= 0
and the equation 0 = d00ap1 we finish the base case q = 1 of the induction. Let us fix
now an arbitrary 1 ≤ q ≤ n − 1 and let us suppose, that apq′ = 0 for all q′ < q and
p ≥ n− 2. This means we are considering an equation with monomial 1

ζn−2−p η
q. But

since p ≥ n− 2, this means n− 2− p ≤ 0 and hence the left hand side does not have
a monomial of this form. Thus the equation (3.5) gets

0 = d00apq

+ d11a(p+1)(q−1)

+
(
d12 d22 d32

)a(p+1)(q−2)

a(p+2)(q−2)

a(p+3)(q−2)



+
(
d13 d23 d33 d43 d53

)

a(p+1)(q−3)

a(p+2)(q−3)

a(p+3)(q−3)

a(p+4)(q−3)

a(p+5)(q−3)


+ · · ·

+
(
d1q d2q ... d(2q−1)q

)


a(p+1)0

a(p+2)0
...

a(p+2l′−1)0

 .

But by induction hypothesis the most of the coefficients above vanish and the only
remaining equation is

0 = d00apq,

which, with d00 6= 0 again, gives us the last part of the theorem.
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3.3.2 The Matrix M

We have seen above, that for every pair (p′, q′) with 1 ≤ q′ ≤ n − 1 and p′ ≤ 2q′ − 1
we get the (p′, q′)-th condition equation

0 = d00an−2−p′,q′

+ d11an−2−p′+1,q′−1

+
(
d12 d22 d32

)an−2−p′+1,q′−2

an−2−p′+2,q′−2

an−2−p′+3,q′−2



+
(
d13 d23 d33 d43 d53

)

an−2−p′+1,q′−3

an−2−p′+2,q′−3

an−2−p′+3,q′−3

an−2−p′+4,q′−3

an−2−p′+5,q′−3


+ . . .

+
(
d1q′ d2q′ ... d2q′−1,q′

)


an−2−p′+1,0

an−2−p′+2,0
...

an−2−p′+2q′−1,0

 .

But since p′ ∈ Z there are infinitely many equations. But by the theorem 3 we know
that for a p′ ≤ 0 every coefficient vanishes and hence the equation is trivial. Thus we
get only for every 1 ≤ q′ ≤ n − 1 and every 1 ≤ p′ ≤ 2q′ − 1 a possibly non-trivial
condition equation. In total we have g linear equations, since

n−1∑
q′=1

2q′−1∑
p′=1

1 =

n−1∑
q′=1

(2q′ − 1) = 2
n(n− 1)

2
− (n− 1) = (n− 1)2 = g.

By theorem 3 the number of possibly non-vanishing coefficients apq is

(n− 1) +
n−1∑
q=1

(n− 2) = (n− 1) + (n− 1)(n− 2) = (n− 1)2 = g.

We put all these coefficients into a vector of Cg by defining

~a :=
(
a00, a10, . . . , an−2,0, a01, a11, . . . , an−3,1,a02, a12, . . . , an−3,2, . . . ,

a0,n−1, a1,n−1, . . . , an−3,n−1

)T
.

By the g different linear condition equations of the form (3.5) we get a g × g-matrix
M , such that the system of linear equations

M~a = 0

is satisfied. Moreover every vector ~a satisfying M~a = 0 defines a global section of
the invertible sheaf F characterized by the dkl’s via the transition function. So an
invertible sheaf has a non-trivial, global section if and only if the kernel of the matrix
M is not trivial.

Proposition 12. An invertible sheaf F ∈ Jacg−1(Cn) lies in the theta divisor if and
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only if its corresponding matrix M ∈ Cg×g, arising from the condition equations (3.5),
is not invertible.

The determinant is our main tool to decide if this matrix M is invertible or not.
Before we compute the determinant we have to study the structure of the matrix M
in more details. An important observation of the condition equation is the following.
If we have a product dklan−2−p′+k,q′−l in the (p′, q′)-th condition equation, then the
product dklan−2−(p′+1)+k,q′−l is in the the (p′ + 1, q′)-th condition equation. This
motivates the next definition.

Definition 1. Let us fix an invertible sheaf F ∈ Jacg−1(Cn) characterized by the
complex coefficients dkl of its transition function. For 0 ≤ l ≤ n− 1 we call a matrix
Avwl ∈ Cv×w a v × w-Hankel matrix of degree l with respect to the sheaf F , if it is of
the form

Avwl =



. . .
...

...
...

· · · dl−2,l dl−1,l dll · · ·
· · · dl−1,l dll dl+1,l · · ·
· · · dll dl+1,l dl+2,l · · ·

...
...

...
. . .

 .

For l < 0 we set the convention Avwl = 0 ∈ Cv×w.

The Matrix M consists of blocks of such Hankel-matrices, i.e.

M =

A
1(n−1)
1 A

1(n−2)
0 · · · A

1(n−2)
−(n−3) A

1(n−2)
−(n−2)

A
3(n−1)
2 A

3(n−2)
1 · · · A

3(n−2)
−(n−4) A

3(n−2)
−(n−3)

...
...

. . .
...

...
A

(2(n−2)−1)(n−1)
n−2 A

(2(n−2)−1)(n−2)
n−3 · · · A

(2(n−2)−1)(n−2)
0 A

(2(n−2)−1)(n−2)
−1

A
(2(n−1)−1)(n−1)
n−1 A

(2(n−1)−1)(n−2)
n−2 · · · A

(2(n−1)−1)(n−2)
1 A

(2(n−1)−1)(n−2)
0


,

where the Avwl are v × w-Hankel matrices of degree l with respect to the sheaf F .
We give the matrix M some matrix coordinates to determine the entries in the

matrix. We define two index sets

P := {(i, j) : 1 ≤ j ≤ n− 1, 1 ≤ i ≤ 2j − 1} ⊂ N× N,

Q := {(s, t) : 1 ≤ s ≤ n− 2, 0 ≤ t ≤ n− 1} ∪ {(0, 0)} ⊂ N× N.

The set P are the row-coordinates and the set Q are the column-coordinates of the
matrixM . The pair of numbers (j, t) indicates a particular Hankel block Avwl and the
pair of numbers (i, s) describes the coordinates of elements in this particular Hankel-
block. We may write

((i, j), (s, t)) ∈ P ×Q

for the position of a matrix entry, i.e. first the row-coordinate and then the column-
coordinate. We have now the following crucial observation.

Theorem 4. Let F ∈ Jacg−1(Cn) be an invertible sheaf and M its corresponding
matrix M of the condition equations (3.5). Then the matrix entry m(i,j),(s,t) of the
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matrix M at the coordinate ((i, j), (s, t)) ∈ P ×Q is

m(i,j),(s,t) = di−s,j−t.

Moreover if either 1 ≤ i − s ≤ 2(j − t) − 1 and 1 ≤ j − t ≤ n − 1 or i − s = 0 and
j − t = 0, then the entry is a possibly non-zero coefficient dkl. Every other entry is
zero.

Proof. As we defined the coordinates ((i, j), (s, t)) we have all the information we
need. The index (i, j) tells us, that we are in the (p′, q′)-th-conditon equation with
(p′, q′) = (i, j). The index (s, t) says, that we consider the coefficient an−2−s,t in this
particular condition equation. In a given (p′, q′)-condition equation we have prod-
ucts dklan−2−p′+k,q′−l. This means in the (p′, q′)-th-condition equation the coefficient
an−2−s,t appears exactly once in the product

dp′+(n−2−s)−(n−2),q′−tan−2−s,t = dp′−s,q′−tan−2−s,t.

With (p′, q′) = (i, j) we have the desired product di−s,j−tan−2−s,t and therefore we
have

m(i,j),(s,t) = di−s,j−t.

The last part of the claim follows by the fact, that the coefficients dkl are possibly
non-zero only if either 1 ≤ l ≤ n− 1 and 1 ≤ k ≤ 2l − 1 or l = k = 0.

In order to make the matrix coordinates P ×Q, the matrixM and theorem 4 more
visible we refer to example 5

3.3.3 Theta Function

We want to compute the determinant of the matrix M . Recall we gave the matrix
coordinates ((i, j), (s, t)) ∈ P ×Q, where we defined

P := {(i, j) : 1 ≤ j ≤ n− 1, 1 ≤ i ≤ 2j − 1} ,
Q := {(s, t) : 1 ≤ s ≤ n− 2, 0 ≤ t ≤ n− 1} ∪ {(0, 0)}.

We want to use the Leibniz-formula

det(M) =
∑
σ∈Sg

(
sign(σ)

g∏
i=1

mi,σ(i)

)
.

Here the symmetric group Sg consists of bijective maps σ : {1, . . . , g} → {1, . . . , g},
where the set {1, . . . , g} play the role of matrix coordinates and g is the genus of the
curve. We want to adjust this idea to matrix coordinates with index sets P , Q. We
make the following definitions.

Definition 2. A subset D ⊆ P ×Q is called regular, if it is of the following form

D := { ((i, j), (s, t)) ∈ P ×Q : each (i, j) and each (s, t) appears exactly one time and
either 1 ≤ i− s ≤ 2(j − t)− 1 and 1 ≤ j − t ≤ n− 1 or i− s = j − t = 0}.

The set of regular sets is denoted by R(P ×Q).

For each regular set we need a signum.



48 Chapter 3. Nilpotent, Spectral Curve, its Jacobian Variety and the Generalized
Theta Function

Definition 3. Let P,Q be the index sets above and D ∈ R(P × Q) be a regular set.
We define a map on P and a map on Q by

−P : P × P −→ Z

(i2, j2)−P (i1, j1) :=

{
j2 − j1, j2 6= j1

i2 − i1, j2 = j1
,

−Q : Q×Q −→ Z

(s2, t2)−Q (s1, t1) :=

{
t2 − t1, t2 6= t1

s1 − s2, t2 = t1
.

We define an order on P by (i1, j1) < (i2, j2) if and only if 0 < (i2, j2) −P (i1, j1).
The signum of the regular set D is defined by

sign(D) :=
∏

((i1,j1),(s1,t1))∈D
((i2,j2),(s2,t2))∈D

(i1,j1)<(i2,j2)

(s2, t2)−Q (s1, t1)

(i2, j2)−P (i1, j1)
.

Now we can write down the determinant of the matrix M .

Theorem 5. Let (Cn,OCn) be the nilpotent, spectral curve. Let F ∈ Jacg−1(Cn) be
an invertible sheaf of degree g − 1 determined by dkl ∈ C, for 1 ≤ l ≤ n − 1 and
1 ≤ k ≤ 2l − 1. Then the invertible sheaf F belongs to the theta divisor, i.e.

F ∈ Θ :=
{
F ∈ Jacg−1(Cn) : dimC(Ȟ0(Cn,F)) 6= 0

}
if and only if the theta function, given by

θ(F) := det(M) =
∑

D∈R(P×Q)

sign(D)
∏

((i,j),(s,t))∈D

di−s,j−t

 ,

vanishes.

The theorem provides us a big reduction of combinatorial computations. The
symmetric group Sg is huge with g! elements. But the elements of the symmetric
group do not care about the zeros in the matrix M . The regular sets D play the
role of those elements in the symmetric group, such that the product

∏g
i=1mi,σ(i) is a

product over the variables dkl and hence is a priori non-zero. All other products are
zero.

Proof. By theorem 4 we know, that the entry at ((i, j), (s, t)) of M is di−s,j−t if it
exists and is zero otherwise. Therefore the determinant can be written as the sum over
bijective maps σ : P → Q, such that either 1 ≤ i−pr1(σ(i, j)) ≤ 2(j−pr2(σ(i, j)))−1
and 1 ≤ i− pr2(σ(i, j)) ≤ n− 1 or i− pr1(σ(i, j)) = i− pr2(σ(i, j)) = 0. Here pr1, pr2

are projections to the first resp. second variable. Every other element of the symmetric
group induces a product in the Leibniz formula with a zero factor. Every such bijective
map σ induces a subset

Dσ := {((i, j), σ(i, j)) ∈ P ×Q} ⊂ P ×Q.
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But by bijectivity of σ the set Dσ has to be regular. The signum of a regular set
coincides with the signum of an element of the symmetric group.

The next corollary is a statement about the indices, which helps to check, if the
theta function is correctly computed.

Corollary 2. Let D ∈ R(P ×Q) be a regular set and let us consider the monomial

Mon(D) =
∏

((i,j),(s,t))∈D

di−s,j−t.

Then we have∑
((i,j),(s,t))∈D

(i− s) =
∑

((i,j),(s,t))∈D

(j − t) =
1

6
(n3 − n) =

1

6
(n+ 1)n(n− 1).

Proof. Because D is regular each (i, j) and (s, t) appears exactly one time in D. This
means that the sum

∑
((i,j),(s,t))∈D i− s is over every possible i and s and therefore it

is equal to
∑

(i,j)∈P i−
∑

(s,t)∈Q s. We have

∑
(i,j)∈P

i =

n−1∑
j=1

2j−1∑
i=1

i =

n−1∑
j=1

(2j − 1)2j

2
=

n−1∑
j=1

(2j2 − j)

= 2
1

6
(n− 1)n(2(n− 1) + 1)− (n− 1)n

2
,

∑
(s,t)∈Q

s =

n−1∑
t=0

n−2∑
s=0

s = n
(n− 2)(n− 1)

2
.

This means∑
((i,j),(s,t))∈D

(i− s) = 2
1

6
(n− 1)n(2(n− 1) + 1)− (n− 1)n

2
− (n− 2)

(n− 1)n

2

=
1

6
(n− 1)n (4n− 2− 3− 3(n− 2))) =

1

6
(n− 1)n(n+ 1).

For the second equation we calculate similarly

∑
(i,j)∈P

j =

n−1∑
j=1

2j−1∑
i=1

i = 2
1

6
(n− 1)n(2(n− 1) + 1)− (n− 1)n

2
,

∑
(s,t)∈Q

t =

n−2∑
s=1

n−1∑
t=0

s = n− 2
(n− 1)n

2
.

Hence we get ∑
((i,j),(s,t))∈D

(j − t) =
1

6
(n− 1)n(n+ 1).
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3.3.4 Examples

In this section we will compute the transition functions of invertible sheaves and the
theta function for the nilpotent, spectral curves with n ∈ {2, 3, 4}.
Example 3. Let us start with n = 2, the nilpotent, spectral curve (C2,OC2). We
compute easily the arithmetic genus, which is g = (n− 1)2 = 1 and hence

Jacg−1(Cn) = Jac0(Cn) ∼= C.

By proposition 11 the elements of Ȟ1(C2,OC2) are of the form

n−1∑
k=1

2k−1∑
l=1

aklη
kζ−l =

1∑
k=1

1∑
l=1

aklη
kζ−l = a11

η

ζ
,

where a11 is a complex number. In other words we have Ȟ1(C2,OC2) = 〈ηζ 〉 ∼= C. By
the exponential map every element of Jac0(C2) can be described as

exp

(
a
η

ζ

)
= 1 + a

η

ζ
+
a

2

(
η

ζ

)2

+ . . . mod η2 = 1 + a
η

ζ
.

If we homogenize the transition function, every invertible sheaf has a transition func-
tion of the form

g10(ζ, η) = d00 + d11
η

ζ
.

The theta divisor is now given by the invertible sheaves of degree g−1 = 0 with a non-
trivial, global section. Hence if F is an invertible sheaf and the pair (s1, s0) ∈ F(C2)
is a global section, it has to satisfy s1(1

ζ ,
η
ζ2

) = g10(ζ, η)s0(ζ, η) on U10. But because
s1 ∈ OU1(U1) and s0 ∈ OU0(U0) we expand the two functions around the origin in Ui
into powerseries, i ∈ {0, 1}. This gives us the equation( ∞∑

k=0

ãk0
1

ζk
+
∞∑
k=0

ãk1
1

ζk+2
η

)
=

(
d00 + d11

1

ζ
η

)( ∞∑
k=0

ak0ζ
k +

∞∑
k=0

ak1ζ
kη

)

=
∞∑
k=0

d00ak0ζ
k +

∞∑
k=0

(
d11ak0ζ

k−1 + d00ak1ζ
k
)
η.

Equating coefficients gives us ãk0 = ak0 = 0 for all k > 0. The only condition equation
is

d11a00 = 0.

Hence we have a non-trivial, global section, i.e. a00 6= 0, if and only if d11 = 0. The
matrix M is just M =

(
d11

)
and the theta function is

θ(F) = d11.

The approach via regular sets is as follows. For n = 2 we have the index sets

P = {(1, 1)}, Q = {(0, 0)}

and the only possible regular set is then

D = P ×Q = {((1, 1), (0, 0))}.
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The signum is 1 and we get the formula for the theta function θ(F) = d11.

Example 4. Next we will consider the nilpotent spectral curve with n = 3. We
compute g = (n− 1)2 = 4 and for the transition functions we get

1

ζ3−2
g10(ζ, η) =

1

ζ3−2

(
d00 +

3−1∑
l=1

2l−1∑
k=1

dklζ
−kηl

)

=
1

ζ

(
d00 + d11

1

ζ
η +

(
d12

1

ζ
+ d22

1

ζ2
+ d32

1

ζ2

)
η2

)
.

We see immeditaly
Jac3(C3) ∼= C4.

To compute the theta divisor we pick again an arbitrary invertible sheaf and assume,
that the pair (s1, s0) is a global section. We get the equation

3−1∑
l=0

∞∑
k=0

ãkl
1

ζk+2l
ηl

=

∞∑
k=0

ãk0
1

ζk
+

∞∑
k=0

ãk1
1

ζk+2
η +

∞∑
k=0

ãk2
1

ζk+4
η2

=

(
d00

1

ζ1
+ d11

1

ζ2
η +

(
d12

1

ζ2
+ d22

1

ζ3
+ d32

1

ζ4

)
η2

) 3−1∑
l=0

∞∑
k=0

aklζ
kηl

=
∞∑
k=0

d00ak0
1

ζ1−k +

( ∞∑
k=0

d00
1

ζ1−k ak1 +
∞∑
k=0

d11
1

ζ2−k ak0

)
η

+
( ∞∑
k=0

1

ζ1−k d00ak2 +
∞∑
k=0

d11
1

ζ2−k ak1 +
∞∑
k=0

d12
1

ζ2−k ak0

+
∞∑
k=0

d22
1

ζ3−k ak0 +
∞∑
k=0

d32
1

ζ4−k ak0

)
η2.

By equating the coefficients we get the condition equations

0 = d00a01 + d11a10,

0 = d00a02 + d12a10,

0 = d11a01 + d12a00 + d22a10,

0 = d22a00 + d32a10,

which induce the matrix M

M =


0 d11 d00 0
0 d12 0 d00

d12 d22 d11 0
d22 d32 0 0

 .

The determinant and thus the theta function is then

θ(F) := det(M) = d2
00d12d32 + d00d

2
11d22 − d2

00d
2
22.
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On the other hand the regular sets are

D1 := {((1, 2)(1, 2)), ((1, 1)(1, 1)), ((2, 2)(1, 0)), ((3, 2)(0, 0))},
D2 := {((1, 2)(1, 2)), ((1, 1)(1, 1)), ((3, 2)(1, 0)), ((2, 2)(0, 0))},
D3 := {((1, 2)(1, 2)), ((2, 2)(1, 1)), ((3, 2)(1, 0)), ((1, 1)(0, 0))}.

The signs of these regular sets are

sign(D1) = +1, sign(D2) = −1, sign(D3) = +1.

This gives us the same theta function as above

θ(F) := d2
00d12d32 + d00d

2
11d22 − d2

00d
2
22.

Example 5. Now we deal with the case n = 4. First note that g = (n−1)2 = 32 = 9.
The transition functions of invertible sheaves of degree g − 1 = 8 are given by

g10(ζ, η) =
1

ζ2

(
d00 + d11

1

ζ
η +

(
d12

1

ζ
+ d22

1

ζ2
+ d32

1

ζ3

)
η2

+

(
d13

1

ζ
+ d23

1

ζ2
+ d33

1

ζ3
+ d43

1

ζ4
+ d53

1

ζ5

)
η3
)
,

where we see
Jac8(C4) ∼= C9.

The matrix M associated to the invertible sheaf F is given by

M(F) =



0 0 d11 0 d00 0 0 0 0
0 0 d12 d00 0 0 d00 0 0
0 d12 d22 0 d11 d00 0 0 0
d12 d22 d32 d11 0 0 0 0 0
0 0 d13 0 0 0 0 0 d00

0 d13 d23 0 d12 0 d11 d00 0
d13 d23 d33 d12 d22 d11 0 0 0
d23 d33 d43 d22 d32 0 0 0 0
d33 d43 d53 d32 0 0 0 0 0


.

Here we see the Hankel-block structure very well. The theta function is

θ(F) =

d3
00 (d00d11d22(d12d33d32 + d23d43d11 + d33d22d22 − d11d33d33 − d22d23d32 − d12d22d43))

− d3
00 (d00d11d32(d12d23d32 + d13d43d11 + d33d22d12 − d11d23d33 − d12d43d12 − d32d22d13))

+ d3
00

(
d2

00d12(d23d43d32 + d33d53d12 + d43d33d22 − d12d43d43 − d22d53d23 − d32d33d33)
)

− d3
00

(
d2

00d22(d13d43d32 + d23d53d12 + d33d33d22 − d12d43d33 − d22d53d13 − d32d33d23)
)

+ d3
00

(
d2

00d32(d13d33d32 + d23d43d12 + d33d23d22 − d12d33d33 − d22d43d13 − d32d23d23)
)

− d3
00

(
d2

00d11(d13d33d53 + d23d43d33 + d33d23d43 − d33d33d33 − d13d43d43 − d53d23d23)
)

− d3
00

(
d2

11d12(d33d11d32 − d12d32d32)
)

− d3
00

(
d3

11(d12d33d32 + d23d43d11 + d33d22d22 − d11d33d33 − d22d43d12 − d32d22d23)
)

− d3
00 (d00d11d12(d12d43d32 + d23d53d11 + d33d32d22 − d11d43d33 − d22d53d12 − d32d32d23))

+ d3
00 (d00d11d22(d12d33d32 + d23d43d11 + d33d22d22 − d11d33d33 − d22d43d12 − d32d22d23)) .
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Note at this point, that the sum over all left indices in a monomial is equal to the sum
of all right indices, which is just 1

6(n− 1)n(n+ 1) = 10, see corollary 2.
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Chapter 4

Hitchin’s Formula on the Regular,
Nilpotent, Adjoint Orbit

We have seen in chapter 2 by Kronheimer, that the regular, nilpotent, adjoint orbit
Oreg(sln(C)) admits a hyperkähler structure induced by the L2-norm on the Kro-
nheimer moduli space. Nevertheless an explicit description is still not known. A
possibility to express a hyperkähler metric is to find a Kähler potential by fixing a
complex structure. Because a hyperkähler structure induces an S2 of Kähler struc-
tures, there is a natural SO(3)-action on the space of Kähler forms. By fixing the
Kähler form ωI and rotating the other two Kähler forms we get an SO(2)-action.
This action is Hamiltonian and hence it induces a momentum map. Its hamiltonian
function is SU(n)-conjugation invariant and it induces a Kähler potential with re-

spect to the complex structure J , i.e. g = i∂J∂J(2µXI ) with X =

(
1 0
0 1

)
∈ so(2)

where K(T1, T2, T3) = 2µXI (T1, T2, T3) = −
∫ 0
−∞ tr

(
T2(t)2 + T3(t)2

)
dt. The goal of

this section is to rephrase this expression in terms of invertible sheaves on the nilpo-
tent, spectral curve of degree g − 1. The Kähler potential gets a bit more explicit,
because one does not have to solve a system of differential equations. If (T1, T2, T3) is
an element ofM(0, σ), then

A(ζ)(t) :=

=A0(t)︷ ︸︸ ︷
(T2(t) + iT3(t)) +

=A1(t)︷ ︸︸ ︷
2iT1(t) ζ +

=A2(t)︷ ︸︸ ︷
(T2(t)− iT3(t)) ζ2

defines a regular, nilpotent, matricial polynomial. With A+(ζ)(t) := 1
2A1(t) +A2(t)ζ,

solutions of Nahm’s equations imply a Lax equation

d

dt
A(ζ)(t) = [A(ζ)(t), A+(ζ)(t)] .

But this implies

d

dt
tr(An) = tr((n− 1)An−1A′) = (n− 1)tr(An−1[A,A+]) = (n− 1)tr([An, A+]) = 0

for all n ∈ N and hence the characteristic polynomial of A(ζ)(t) is independent of
the variable t. The zero-locus of the characteristic polynomial is then the nilpotent,
spectral curve. Beauville showed in [Bea90] that there is a correspondence between
isomorphism classes of invertible sheaves of degree g− 1 not lying in the theta divisor
and GLn(C)-conjugation classes of regular, nilpotent, matricial polynomials satisfying
the characteristic equation. So for every t0 ∈ (−∞, 0] the matrix polynomial A(ζ)(t0)
gives us an isomorphism class of invertible sheaves of degree g − 1 not lying in the
theta divisor. For smooth, spectral curves Hitchin described in [Hit98] the expression
tr
(
T 2

2 + T 2
3

)
in terms of invertible sheaves. Bielawski generalized in [Bie07] these
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ideas to reducible, spectral curves,the case of a semi-simple adjoint orbit, by allow-
ing ordinary double points. This chapter wants to transform the ideas of Hitchin
and Bielawski to the nilpotent, spectral curve and prove an analogous expression for
tr
(
T 2

1 + T 2
2 + T 2

3

)
= tr

(
A0A2 − 1

4A
2
1

)
and tr

(
T 2

2 + T 2
3

)
= tr (A0A2) in terms of the

theta function. The computations are completely direct.

4.1 Global Sections, Evaluation Map and Flows

In order to compute explicit regular, nilpotent, matricial polynomials we need a precise
description of the cohomology module Ȟ0 (Cn,F(1)).

4.1.1 Inverting the Matrix M

Let F ∈ Jacg−1(Cn) be an invertible sheaf of degree g − 1 and let us consider again
the corresponding matrix M ∈ Cg×g from section 3.3.2. Suppose θ(F) 6= 0, i.e. M
is invertible or equivantly F does not lie in the theta divisor. We want to invert the
matrix M for a later usage and to do so, we want to use Cramer’s rule, [Fis05]. Thus
we have to compute all the possible cofactors of the matrix M . Recall in section 3.3.2
we defined the index sets

P := {(i, j) : 1 ≤ j ≤ n− 1, 1 ≤ i ≤ 2j − 1} ,
Q := {(s, t) : 1 ≤ s ≤ n− 2, 0 ≤ t ≤ n− 1} ∪ {(0, 0)}.

Let us fix an index ((a, b), (u, v)) ∈ P × Q. We denote the matrix arising from the
matrix M without the (a, b)-row and (u, v)-column by M̂((a,b),(u,v)). We do the same
strategy as in section 3.3.3 and so we define two index sets

P(a,b) := P \ {(a, b)} , Q(u,v) := Q \ {(u, v)} .

Verbally the same as in the case of P ×Q we have the following definition.

Definition 4. A subset D ⊆ P(a,b) × Q(u,v) is called regular, if it is of the following
form D :={

((i, j), (s, t)) ∈ P(a,b) ×Q(u,v) : each (i, j) and each (s, t) appears exactly once

and either 1 ≤ i− s ≤ 2(j − t)− 1 and 1 ≤ j − t ≤ n− 1 or i− s = j − t = 0

}
.

The set of regular sets is denoted by R
(
P(a,b) ×Q(u,v)

)
.

Because we have to be carefull with the sign of a cofactor we need additionally the
next definition.

Definition 5. Let us define the functions

ιrow : P −→ N ιcolumn : Q −→ N

(a, b) 7−→ a+ (b− 1)2, (u, v) 7−→

{
v(n− 2) + n− u , v ≥ 1

(n− 1)− u , v = 0

and

ν : P ×Q −→ N

((a, b), (u, v)) 7−→ ιrow(a, b) + ιcolumn(u, v).
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Claim 6. If we number the rows and the columns of the matrixM with {1, . . . , g}, then
1 ≤ ιrow(a, b) ≤ g, 1 ≤ ιcolumn(u, v) ≤ g and for a fixed index ((a, b), (u, v)) ∈ P ×Q
the (a, b)-th row is the ιrow(a, b)-th row and the (u, v)-th column is the ιcolumn(u, v)-th
column.

Proof. We compute the number of the row with index (a, b) ∈ P . By the definition
this is

a+
b−1∑
α=1

2α−1∑
β=1

1 = a+
b−1∑
α=1

(2α− 1) = a+ 2
b−1∑
α=1

α−
b−1∑
α=1

1

= a+ 2
(b− 1)b

2
− (b− 1) = a+ (b− 1)(b− 1)

= ιrow(a, b).

Furthermore by the definition of the column-index we have (n − 2) − (u − 1) =
(n− 1)− u = ιcolumn(u, 0) if v = 0 and (n− 1) + (v− 1)(n− 2) + (n− 2)− (u− 1) =
v(n− 2) + n− u = ιcolumn(u, v) if v 6= 0. This shows the claim.

Finally we can state the next theorem, which gives us the possibility to invert the
matrix M .

Theorem 6. Let ((a, b), (u, v)) ∈ P ×Q be a fixed index. The cofactor C((a,b),(u,v)) of
M , i.e. the determinant of the matrix M̂((a,b),(u,v)) and multiplied by (−1)ιrow(a,b)+ιcolumn(u,v),
is given by

C((a,b)(u,v)) = (−1)ν(a,b,u,v)
∑

D∈R(P(a,b)×Q(u,v))

sign(D)
∏

((i,j),(s,t))∈D

di−s,j−t

 .

The inverse of the matrix M is given by

M−1 =
1

θ

(
C((a,b),(u,v))

)T
((a,b)(u,v))∈P×Q .

Proof. The formula m(i,j),(s,t) = di−s,j−t of theorem 4 still holds for the matrix
M̂((a,b),(u,v)) with index set P(a,b) × Q(u,v). This means the arguments in the proof
of theorem 5 transforms in the exact way to this case to compute the determinant of
M̂((a,b),(u,v)). The inverted matrix is then given by Cramer’s rule M−1 = adj(M)

det(M) .

4.1.2 Basis of Ȟ0
(
Cn,F(1)

)
Recall by theorem 3 that a global section of an invertible sheaf F(1) ∈ Jacg−1+n(Cn)
with transition function 1

ζn−1 g10(ζ, η) is a pair (s1, s0) ∈ OU1(U1) ×OU0(U0) of local
sections satisfying on U10 the equation

(ϕ∗10s1)(ζ, η) = s1

(
1

ζ
,
η

ζ2

)
=

1

ζn−1
g10(ζ, η)s0 (ζ, η)

and we can write these local holomorphic functions in the form

s1(ζ̃, η̃) =
n−1∑
l=0

sl1(ζ̃)η̃l, s0(ζ, η) =
n−1∑
l=0

sl0(ζ)ηl,
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where s0
0 is a polynomial of degree n − 1 and all other sl0 , l 6= 0, are polynomials of

degree n− 2. Let us write

s0
0(ζ) =

n−1∑
i=0

ai0ζ
i = a00 + a10ζ + · · ·+ an−1,0ζ

n−1,

sl0(ζ) =
n−2∑
i=0

ailζ
i = a0l + a1lζ + · · ·+ an−2,lζ

n−2

for ζ ∈W0 and let us define the vector ~a ∈ Cg+n

~a :=
(
a00, a10, . . . , an−1,0, a01, a11, . . . , an−2,1, a02, a12, . . . , an−2,2, . . . ,

a0,n−1, a1,n−1, . . . , an−2,n−1

)T
.

By the same strategy as in section 3.3.2, i.e. equating coefficients of a global
section of F(1)(Cn), we obtain similar condition equations. In other words the vector
~a ∈ Cg+n defines a global section (s1, s0) of F(1) if and only if

A~a = 0 (4.1)

for a matrix A ∈ Cg×g+n. The matrix A has the same structure of Hankel-blocks as
the matrix M . We extend the matrix coordinates as follows. We define

P ext := P = {(i, j) : 1 ≤ j ≤ n− 1, 1 ≤ i ≤ 2j − 1} ,
Qext := {(s, t) : 1 ≤ s ≤ n− 1, 0 ≤ t ≤ n− 1} ∪ {(0, 0)}.

Proposition 13. The entry κ(i,j),(s,t) ∈ C of the matrix A at the coordinate ((i, j), (s, t)) ∈
P ext ×Qext is

κ(i,j),(s,t) = di−s,j−t.

In particular if either 1 ≤ i− s ≤ 2(j − t)− 1 and 1 ≤ j − t ≤ n− 1 or i− s = 0 and
j − t = 0, then the entry κ(i,j),(s,t) is possibly non-zero. Every other entry is zero.

Note that A is essentially obtained by the matrix M with n new columns with
column-index (n− 1, i), i ∈ {0, ..., n− 1}, since we only extended the index set Q to
Qext and by proposition 13.

Lemma 3. If the invertible sheaf F ∈ Jacg−1(Cn) does not lie in the theta divisor,
then the matrix A has full rank, i.e. rk(A) = g. Moreover we have

Ȟ0(Cn,F(1)) ∼= Ker(A) ∼= Cn.

Proof. The matrix A has the g × g matrix M as a submatrix. With our condition of
a non-vanishing theta function this submatrix is invertible and therefore we can find
g linear independent rows in the matrix A. We conclude that A is surjective and the
image of A is g-dimensional. By the rank-nulity theorem [Fis05] we know, that the
kernel is (g + n)− g = n-dimensional as a C-vector space.

Now we want to describe a basis of the vector space Ȟ0 (Cn,F(1)) by using M−1.
First we split up the equation A~a = 0. Let C be the matrix obtained by replacing
all elements in the (n− 1, i)-column of A with a 0. Let B be the matrix obtained by
replacing all elements in the other columns of A with a 0. We have A = C + B ∈
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Cg×g+n and equation (4.1) gets

A~a = C~a+B~a = 0.

Let us define the vector ~τ ∈ Cg by
~τ :=(
a10, . . . , a(n−1)0, a11, . . . , an−2,1, a12, . . . , an−2,2, . . . , a1,n−1, . . . , an−2,n−1

)T
.

Because the zeroes in the matrix C we have then

M~τ = C~a = −B~a.

But the matrix M is invertible and so we get

~τ = −M−1B~a. (4.2)

The matrix B is non-zero at the column-coordinate (n− 1, i) and everywhere else 0.
This means the vector ~b =

(
b(i,j)

)
(i,j)∈P := B~a ∈ Cg is given by

b(i,j) =

n−1∑
µ=0

κ(i,j),(n−1,µ)a0µ.

Equation (4.2) describes the dependency of ~τ in terms of the variables a0l for l ∈
{0, . . . , n − 1} and the sheaf F . We see, that the complex vector space of global
sections Ȟ0(Cn,F(1)) is n-dimensional by considering the a0l as our free variables of
the global sections (s1, s0). Because κ(i,j),(n−1,µ) = di−(n−1),j−µ the index i has to be
bigger or equal then n− 1. Hence we have n− 1 ≤ i ≤ 2j − 1 and it follows bn2 c ≤ j.
For every j smaller then bn2 c the element b(i,j) is zero and therefore we have

b(i,j) =

{∑n−1
µ=0 di−(n−1),j−µa0µ, bn2 c ≤ j,

0, bn2 c > j.

By theorem 6 with l ∈ {0, . . . , n− 1} and k ∈ {1, . . . , 2l − 1} we have

akl = −1

θ

∑
(i,j)∈P
bn
2
c≤j

C((i,j),(n−1−k,l))b(i,j).

This formula describes every coefficient of a global section in terms of the free variables
a0l. Now we describe a basis of Ȟ0(Cn,F(1)).

Theorem 7. For a l0 ∈ {1, ..., n} we fix the free varibales

al00,l0−1 = 1 and al00l = 0 for all l 6= l0 − 1.

Then we have
bl0(i,j) = κ(i,j),(n−1,l0−1)a

l0
0,l0−1 = di−(n−1),j−(l0−1).

Furthermore let (rl01 , r
l0
0 ) be the global section induced by the coefficients

al0kl := −1

θ

∑
(i,j)∈P
bn
2
c≤j

C((i,j),(n−1−k,l))di−(n−1),j−(l0−1), k 6= 0,
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then the n global sections (rl01 , r
l0
0 ) form a basis of the C-vector space Ȟ0(Cn,F(1)).

Proof. This follows by the previous calculations.

Remark 1. By construction of the basis of theorem 7 we have the following property.
If we evaluate the section rl00 at the point ζ0 = 0, then we get

ev(0)(rl00 ) = ηl0−1.

Formally speaking it is non-zero in the (l0 − 1)-th formal neighborhood and zero in
every other formal neighborhood over the point {0} ⊂ U0.

4.1.3 Evaluation Map

In the last section we saw that Ȟ0 (Cn,F(1)) is n-dimensional as is the C-vector space
C[η]/〈ηn〉. We want to make a connection between these two spaces, such that we can
represent the multiplication by η by an endomorphism.

Let p ∈ Cn be an arbitrary point in our nilpotent spectral curve and πCn(p) ∈ CP1

its corresponding point in the complex projective space. We want to evaluate a global
section s ∈ Ȟ0 (Cn,F(1)) of an invertible sheaf F ∈ Jacg−1(Cn) \Θ at πCn(p).

By equation (3.1) the stalk of any invertible sheaf is given by

OCn,p ∼= OCP1,p[η]/ηnOCP1,p

∼= (OCP1,p ⊗ C[η]/〈ηn〉).

Let m
(
OCP1,p

)e
be the extended maximal ideal of the stalk OCP1,p into OCn,p ∼=

OCP1,p⊗C[η]/〈ηn〉. WithDp := {p} and the C-algebraODp(Dp) := OCn,p/m
(
OCP1,p

)e
we get a 0-dimensional, complex analytic space(

Dp,ODp
)
.

We set here ODp(∅) = 0. By natural isomorphisms of C-algebras, see [GW10], we get

ODp(Dp) = OCn,p/m
(
OCP1,p

)e ∼=
∼=C︷ ︸︸ ︷(

OCP1,p/m(OCP1,p)
)
⊗(C[η]/〈ηn)〉 ∼= C[η]/〈ηn〉) ∼= Cn.

If we take now an invertible sheaf F ∈ Jacg−1(Cn), then the stalks F(1)p ∼= OCn,p
are isomorphic and we get maps

Ȟ0 (Cn,F(1)) −→ F(1)p −→ OCn,p/m
(
OCP1,p

)e ∼= C[η]/〈ηn〉

s 7−→ sp = [Up, res
Cn
Up

(s)] 7−→ [sp] := [Up, res
Cn
Up

(s)] + m(OCP1,p)
e.

We denote the composition of these two maps by ev(p), i.e. ev(p)(s) = [sp] and
call it the evaluation map at p ∈ Cn. If we take a point p ∈ U0 and a global section s
of F(1) then it induces an element of the stalk F(1)p via [Up, res

Cn
Up

(s)], where Up is an
open neighborhood of p in Cn. By choosing Up small enough such that Up ⊆ U0 and
writing the global section as a pair s = (s1, s0) we see that resU1

Up∩U1
(s1) is uniquely

determined by resU0
Up∩U0

(s0) via s1(1
ζ ,

η
ζ2

) := 1
ζn−1 g10(ζ, η)s0(ζ, η). In particular with

p = (ζ0, 0) ∈ U0 the evaluation map ev(p)(s) is uniquely determined by s0(ζ0, η) ∈
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C[η]/〈ηn〉. In this case we can write

ev(p)(s) = [sp] = s0(ζ0, η) =

n−1∑
l=0

sl0(ζ0)ηl.

If p = (0, 0) ∈ U1, then the last equation works if we replace s0 with s1.
We call a point p ∈ Cn a common zero of a global section s if ev(p)(s) = 0. A

point p = (ζ0, 0) ∈ U0 is a common zero if all the sl0(ζ0) vanish simultaneously for all
l ∈ {0, . . . , n− 1}.

Theorem 8. Let F be an invertible sheaf in Jacg−1(Cn). Then the sheaf F(1) has a
non-zero, global section s ∈ Ȟ0 (Cn,F(1)) with a common zero p ∈ Cn if and only if
the invertible sheaf F lies in the theta divisor, i.e. F ∈ Θ.

Proof. ” ⇒ ” : Let s = (s1, s0) be such a section with a common zero p ∈ Cn. If
p = (0, 0) ∈ U0, then ev(p)(s) = 0 implies s0(ζ, η) = ζt0(ζ, η) for a t0 ∈ OU0(U0). Thus
for (ζ, η) ∈ U0 ∩ U1 we have s1(1

ζ ,
η
ζ2

) = 1
ζn−1 g10(ζ, η)s0(ζ, η) = 1

ζn−2 g10(ζ, η)t0(ζ, η).
In other words the pair (s1, t0) defines a global section of F . Since the section s in
non-zero, the section (s1, t0) is non-zero too. In the same way the claim follows for
p = (0, 0) ∈ U1. Now let us assume p ∈ U1 ∩ U0 and let us write p = (ζ0, 0) ∈ U0 and
p = ( 1

ζ0
, 0) ∈ U1. Because the sl0 and sl1 are polynomials with a common zero p we

have for all l ∈ {0, . . . , n− 1}

sl0(ζ) = (ζ0 − ζ)tl0(ζ), sl1

(
1

ζ

)
=

(
1

ζ0
− 1

ζ

)
tl1

(
1

ζ

)
,

where the tl0 and tl1 are polynomials with deg(tli) = deg(sli)− 1. Summing up over the
monomials ηl we get

s0(ζ, η) = (ζ0 − ζ)t0(ζ, η), s1

(
1

ζ
,
η

ζ2

)
=

(
1

ζ0
− 1

ζ

)
t1

(
1

ζ
,
η

ζ2

)
,

such that (
1

ζ0
− 1

ζ

)
t1

(
1

ζ
,
η

ζ2

)
=

1

ζn−1
g10(ζ, η)(ζ0 − ζ)t0(ζ, η),

which is clearly satisfied for ζ = ζ0. For ζ 6= ζ0 we have the equivalent equation

t1

(
1

ζ
,
η

ζ2

)
=

1

ζn−1

(ζ0 − ζ)(
1
ζ0
− 1

ζ

)g10(ζ, η)t0(ζ, η).

But since (ζ0−ζ)(
1
ζ0
− 1
ζ

) = −ζζ0 for all ζ ∈ U0 ∩ U1 \ {ζ0} the last equality is

t1

(
1

ζ
,
η

ζ2

)
=

1

ζn−1
(−ζζ0)g10(ζ, η)t0(ζ, η) =

1

ζn−2
(−ζ0g10(ζ, η)) t0(ζ, η).

The pair (t1, t0) is indeed a global section of the invertible sheaf given by the
transition function 1

ζn−2 ((−ζ0)g10(ζ, η)). Since a multiplication by a non-zero constant
does not change the isomorphism class of an invertible sheaf, (t1, t0) ∈ Ȟ0(Cn,F).
Since the global section (s1, s0) is non-trivial, the section (t1, t0) is a global, non-
trivial section too and therefore F ∈ Θ.
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”⇐ ” : Let us consider now an invertible sheaf in the theta divisor F ∈ Θ. Then
there is a non-zero, global section (t1, t0) ∈ Ȟ0(Cn,F) satisfying

t1

(
1

ζ
,
η

ζ2

)
=

1

ζn−2
g10(ζ, η)t0(ζ, η)

on U10. By multiplying the transition function with a non-zero constant (−ζ0) and
using the computations in the first part of the proof, we see

s0(ζ, η) := (ζ0 − ζ)t0(ζ, η), s1(ζ̃, ζ̃) := (ζ̃0 − ζ̃)t1(ζ̃, ζ̃)

is a non-zero global section of F(1) with a common zero p = (ζ0, 0) ∈ U0. This proves
the theorem.

The theorem says if an invertible sheaf F ∈ Jacg−1(Cn) does not lie in the theta
divisor, then a non-trivial, global section (s1, s0) ∈ Ȟ0 (Cn,F(1)) cannot have a com-
mon zero.

Corollary 3. Let F ∈ Jacg−1(Cn) \Θ and p ∈ Cn. Then the evaluation map

ev(p) : Ȟ0 (Cn,F(1))→ Ȟ0
(
Dp,ODp

)
is an isomorphism of n-dimensional C-vector spaces.

Proof. We have already seen, that Ȟ0 (Cn,F(1)) and Ȟ0
(
Dp,ODp

)
are both n- di-

mensional C-vector spaces. Theorem 8 says if the image of a section s of the evaluation
map ev(p) is zero, i.e. p is a common zero of the section s, then it is the zero section.
In other words the kernel of the evaluation map is trivial and hence the homomor-
phism is injective. The dimensions of the two C-vector spaces coincide and hence
ev(p) is an isomorphism.

4.1.4 Beauville Correspondence

In this section we follow [Bea90] and [AHH90]. With the holomorphic projection map
(πCn , π

#
Cn

) of the nilpotent, spectral curve (Cn,OCn) to the complex projective space
(CP1,OCP1) we are able to consider direct image sheaves. We have already seen in
proposition 10, that the direct image πCn,∗OCn is a locally free sheaf of rank n on CP1.
By the famous Birkhoff-Grothendieck-theorem, see [Hit98], this locally free sheaf is
decomposible into a direct sum of invertible sheaves.

Claim 7. The direct image sheaf πCn,∗OCn of the structure sheaf OCn, seen as an
OCP1-module, is isomorphic to

OCP1 ⊕OCP1(−2)⊕ · · · ⊕ OCP1(−2(n− 1)).

Proof. Let W ⊂ CP1 and U := W × {0} ⊂ Cn. Then the OCP1(W )-module of
the direct image is πCn,∗OCn(W ) = OCn(π−1

Cn
(W )) = OCn(U). Hence an element

of πCn,∗OCn(W ) is given by a pair of holomorphic functions (s1, s0) ∈ OU1(U1 ∩
U) × OU0(U0 ∩ U) such that (ϕ∗10s1)(ζ, η) = s1(1

ζ ,
η
ζ2

) = s0(ζ, η). We write these
holomorphic functions in the form

s1(ζ̃, η̃) =

n−1∑
l=0

sl1(ζ̃)η̃l, s0(ζ, η) =

n−1∑
l=0

sl0(ζ)ηl.
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Here the sl1 ∈ OCP1(W1 ∩ W ) and sl0 ∈ OCP1(W0 ∩ W ) are local functions for all
l ∈ {0, . . . , n− 1}. By equating the coefficients and using ϕ10(ζ, η) = (1

ζ ,
η
ζ2

) we have

sl1

(
1

ζ

)
1

ζ2l
= sl0(ζ).

Thus the pair (sl1, s
l
0) is a local section of OCP1(−2l)(W ). Hence the map

χ(W ) : πCn,∗OCn(W ) −→ OCP1(W )⊕OCP1(−2)(W )⊕ · · · ⊕ OCP1(−2(n− 1))(W )

(s1, s0) 7−→
(
(s0

1, s
0
0), (s1

1, s
1
0), . . . , (sn−1

1 , sn−1
0 )

)
defines is an isomorphism of OCP1(W )-modules with inverse map given by

(
(s0

1, s
0
0), (s1

1, s
1
0), . . . , (sn−1

1 , sn−1
0 )

)
7−→

(
n−1∑
l=0

sl1(ζ̃)η̃l,
n−1∑
l=0

sl0(ζ)ηl

)
.

Because we have choosen an arbitrary open set W these isomorphisms define an
isomorphism of OCP1-modules.

Let F ∈ Jacg−1(Cn)\Θ be an invertible sheaf of degree g−1 without a non-trivial,
global section. The theta divisor condition says Ȟ0(Cn,F) = 0. By the Riemann-
Roch-theorem, proposition 9, we have Ȟ1(Cn,F) = 0, since

−dimC
(
Ȟ1(Cn,F)

)
= dimC

(
Ȟ0(Cn,F)

)
− dimC

(
Ȟ1(Cn,F)

)
= deg(F) + 1− g = 0.

With proposition 10 we have

Ȟ0(Cn,Fn) = Ȟ0(CP1, πCn,∗F) = 0, Ȟ1(Cn,F) = Ȟ1(CP1, πCn,∗F) = 0

and by corollary 1 we get

−deg(πCn,∗F) = rk(πCn,∗F) = n.

But the only locally free sheaves on (CP1,OCP1) of rank n of degree −n with trivial
cohomology are isomorphic to OCP1(−1)⊕n and so we get an isomorphism of OCP1-
modules

ξ : πCn,∗F ∼=
n−times︷ ︸︸ ︷

OCP1(−1)⊕ · · · ⊕ OCP1(−1) . (4.3)

This means that all direct image sheaves πCn,∗F of invertible sheaves F of degree
g − 1 not lying in the theta divisor look equivalent as OCP1-modules. But since F
is an OCn-module the direct image πCn,∗F has an additional structure given by a
πCn,∗OCn-module structure, i.e. a sheaf homomorphism of C-algebras

πCn,∗m : πCn,∗OCn −→ End(πCn,∗F).

Here End is the sheaf hom. With the isomorphism of claim 7 the morphism πCn,∗m
induces a morphism of OCP1-modules

πCn,∗m̃ : OCP1 ⊕OCP1(−2)⊕ · · · ⊕ OCP1(−2(n− 1)) −→ End(πCn,∗F)
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and thus we get a morphism of OCP1-modules

πCn,∗m̃|OCP1 (−2) : OCP1(−2) −→ End(πCn,∗F) ∼= End(πCn,∗F(1)).

With the isomorphism ξ we see πCn,∗F(1) ∼= O⊕nCP1 and so we have in a non-canonical
way

πCn,∗m̃|OCP1 (−2) ∈ Hom (OCP1(−2), End(πCn,∗F)))

= Ȟ0(CP1,Hom (OCP1(−2), End(πCn,∗F)))

∼= Ȟ0(CP1,Hom (πCn,∗F(1), πCn,∗F(1)⊗OCP1(2)))

∼= Ȟ0(CP1,Hom(O⊕n
CP1 ,O⊕nCP1 ⊗OCP1(2)))

∼= Ȟ0(CP1, End(O⊕n
CP1))⊗ Ȟ0(CP1,OCP1(2))

∼= End(O⊕n
CP1)⊗ Ȟ0(CP1,OCP1(2))

∼= gln(C)⊗ Ȟ0(CP1,OCP1(2))

∼= Ȟ0(CP1, gln(C)⊗OCP1(2)).

Hence the morphism πCn,∗m̃|OCP1 (−2) can be described as a pair of matricial polyno-
mials of degree 2 (

Ã(ζ̃), A(ζ)
)
∈ Ȟ0

(
CP1, gln(C)⊗OCP1(2)

)
.

The map πCn,∗m̃|OCP1 (−2)(CP1), seen as an element of

Hom
(
πCn,∗F(1)(CP1), πCn,∗F(3)(CP1)

)
and using proposition 10, is given by its contruction by the multiplication of the global
section (η̃, η) ∈ OCn(2)

m(η̃,η)(Cn) : Ȟ0(Cn,F(1)) −→ Ȟ0(Cn,F(3))

(s1, s0) 7−→ (η̃s1, ηs0).

Therefore the morphism πCn,∗m̃|OCP1 (−2)(CP1) satisfies(
πCn,∗m̃|OCP1 (−2)(CP1)

)n
= 0 and

(
πCn,∗m̃|OCP1 (−2)(CP1)

)n−1
6= 0

and so the matricial polynomial A(ζ) is nilpotent and regular for all ζ ∈W0.
In other words every invertible sheaf F ∈ Jacg−1(Cn) \ Θ induces a global sec-

tion (Ã(ζ̃), A(ζ)) ∈ Ȟ0
(
CP1, gln(C)⊗OCP1(2)

)
, such that A(ζ) = A0 + A1ζ + A2ζ

2

is a regular, nilpotent, matricial polynomial of degree 2. Because W0 is dense in
CP1 the matricial polynomial A(ζ) already defines the global section (Ã(ζ̃), A(ζ))
completely. The matricial polynomial depends on the choice of the isomorphism ξ
and thus the regular, nilpotent, matricial polynomial A(ζ) corresponding to a sheaf
F ∈ Jacg−1(Cn) \ Θ is only unique up to GLn(C)-conjugations, i.e. conjugation by
automorphisms of OCP1(−1)⊕n.

Beauville showed in [Bea90] the following central theorem.
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Theorem 9. (Beauville Correspondence) There is a bijection between Jacg−1(Cn)\Θ
and the set of GLn(C)-conjugation classes of regular, nilpotent, matricial polynomials(

Ã(ζ̃), A(ζ)
)
∈ Ȟ0

(
CP1, gln(C)⊗OCP1(2)

)
.

We have seen above how we get a conjugation class of regular, nilpotent, matricial
polynomials from an invertible sheaf of degree g − 1 not lying in the theta divisor.
The inverse map is given by mapping a regular, nilpotent, matricial polynomial to the
invertible sheaf G(−1)|Cn . The sheaf G is a sheaf on T with support on Cn given by
the cokernel sheaf of the short exact sequence

0→ OT (−2)⊕n
η·Idn−A(ζ)−→ O⊕nT −→ G → 0.

For more details and a proof of invertibility of G(−1)|Cn as OCn-module see [Bea90]
or [AHH90].

Now we want to make use of the evaluation map. The global section (η̃, η) ∈
OCn(2)(Cn) induces a morphism by multiplication

m(η̃,η)(U) : F(U) −→ F(2)(U), (s1, s0) 7−→ (η̃s1, ηs0).

This morphism defines more morphisms given by

m(η̃,η),p : OCn,p ∼= Fp −→ Fp ∼= OCn,p, sp = [Up, s] 7−→ [Up,m(η̃,η)s]

and

[m(η̃,η),p] : ODp(Dp) −→ ODp(Dp)

[sp] = [Up, s] + m(OCP1)e 7−→ [Up,m(η̃,η)s] + m(OCP1)e.

Then, just by definition, we have

[(m(η̃,η)s)p] = [m(η̃,η),p][sp]

and so we have a commutative diagram

Ȟ0(Cn,F(1))
ev(p) //

m(η̃,η)

��

Ȟ0(Dp,ODp)

[m(η̃,η),p]

��
Ȟ0(Cn,F(3))

ev(p) // Ȟ0(Dp,ODp).

The evaluation map in the bottom row is not an isomorphism. A choosen isomorphism
ξ 4.3 induces an isomorphism Ȟ0(Cn,F(3)) ∼= Ȟ0(Cn,F(1))⊗Ȟ0(CP1,OCP1(2)). Thus
the morphismm(η̃,η) induces a map (Ãend, Aend) ∈ End(Ȟ0(Cn,F(1)))⊗Ȟ0(CP1,OCP1(2)).
By writing (Ãend, Aend) in the form

Ãend(ζ̃) = Ãend0 + Ãend1 ζ̃ + Ãend2 ζ̃2, Aend(ζ) = Aend0 +Aend1 ζ +Aend2 ζ2

we get for every p = (ζ0, 0) ∈ U0 an endomorphism (Ãζ̃0 , Aζ0) ∈ End(Ȟ0(Cn,F(1))).
By choosing now a basis of Ȟ0(Cn,F(1)) then the matrix corresponding to (Ãζ̃0 , Aζ0)
is just the regular, nilpotent, matrical polynomial at the point ζ0. In other words we
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have a commutative diagram

Cn
EV (ζ0)

//

A(ζ0)

��

ΦB

%%

Cn

N

��

ΨC

xx
Ȟ0(Cn,F(1))

ev(ζ0)//

Aζ0
��

Ȟ0(Dζ0 ,ODζ0 )

[m(η̃,η),ζ0
]

��
Ȟ0(Cn,F(1))

ev(ζ0)// Ȟ0(Dζ0 ,ODζ0 )

Cn
EV (ζ0)

//
ΦB

99

Cn
ΨC

ff

,

where ΨC is the coordinate function coming from the standard basis
{

1, . . . , ηn−1
}
of

Ȟ0(Dp,ODp) and ΦB is the coordinate function of any choice of a basis of Ȟ0(Cn,F(1)).
The map N is just the Jordan canonical form of a nilpotent matrix with only one Jor-
dan block as a lower-triangular matrix.

We will use this diagram and the basis of theorem 7 in the next sections to compute
A(ζ0) for every ζ0 ∈ W0 explicitely. Moreover the commutativity of this diagram
reflects the fact, that multiplication by η evaluated at ζ0 can be seen as a multiplication
of an Eigenvalue of A(ζ0).

4.1.5 Flows

Elements of the Kronheimer moduli space induce linear flows on the jacobian in the
direction of the invertible sheaf Lt ∈ Jac0(Cn) with transition function exp(tηζ ) but
with varying starting points F ∈ Jacg−1(Cn) at t = 0, see [Hit83], [SC97] and [HM89].
Thus we are interested in invertible sheaves of the form F⊗Lt ∈ Jacg−1(Cn) for t ∈ C.
In the next theorem and the rest of this thesis we have taken −t, but since t ∈ C it
has no influence. This choice of the sign will give us solutions of Nahm’s equations on
[0,∞) instead of (−∞, 0] in chapter 5.

Theorem 10. Let F ∈ Jacg−1(Cn) be an invertible sheaf characterized by its transi-
tion function 1

ζn−2 g10(ζ, η) and its coefficients dkl ∈ C. Furthermore let Lt ∈ Jac0(Cn)

be the invertible sheaf with transition function exp(−tηζ ) for every t ∈ C and let
F t := F ⊗ Lt ∈ Jacg−1(Cn). Then the coefficients of the transition function of
the invertible sheaf F t are given by

dkl(t) :=

k∑
j=0

(−1)jdk−j,l−j
tj

j!
∈ C.

Proof. If we consider the truncated powerseries of exp
(
−tηζ

)
, i.e.

1− tη
ζ

+
t2

2

η2

ζ2
− t3

3!

η3

ζ3
+ · · · ± tn−1

(n− 1)!

ηn−1

ζn−1
.

and multiply it with the transition function of F(1) we get the result. More pre-
cisely , if we consider the formula of the multiplication of polynomials ((ai) ∗ (bj))l =∑

i+j=l aibj , for a fixed ηl we get
∑

i+j=l

(∑2i−1
k=1 dki

(−t)j
j!

1
ζk+j

)
. Now we fix a 1

ζm , i.e.

we consider ηl

ζm . The summation index j goes from 0 to l, i goes from l to 0 and
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k = m− j goes from m to 0. In other words we get

dml(t) = dml + dm−1,l−1
(−t)1

1!
+ dm−2,l−2

(−t)2

2!
+ · · ·+ d0,l−m

(−t)m

m!
.

4.2 Hitchin’s Formula in the case n = 3

Hitchin studied in [Hit98] the integrand of the Kähler potential for a description
of the (Hyper-) Kähler metric in terms of invertible sheaves in the Jacobian of its
corresponding smooth spectral curve. We will call the analogous formula for the
nilpotent, spectral curve Hitchin’s formula.

Theorem 11. (Hitchin’s formula, n=3) Let F ∈ Jac3(C3) \Θ an invertible sheaf of
degree 3 (= g−1) on the nilpotent, spectral curve C3. Let t ∈ C and let Lt ∈ Jac0(C3)

be the invertible sheaf of degree 0 with transition function exp
(
−tηζ

)
. Let F t :=

F⊗Lt ∈ Jac3(C3) and let A(ζ, t) = A0(t)+A1(t)ζ+A2(t)ζ2 be a representative of the
GL3(C)-conjugation class of regular, nilpotent, matricial polynomials corresponding to
the invertible sheaf F t. Then we have the equation

tr

(
A0(t)A2(t)− 1

4
A1(t)2

)
=

3

2

θ′′(F t)θ(F t)− θ′(F t)θ′(F t)
θ(F t)2

=
3

2

d2

dt2
log
(
θ(F t)

)
,

for all t ∈ C whereever F t /∈ Θ.

In order to prove this theorem directly we want to compute the left hand side in
terms of the coefficients of the transition functions. Since the trace is conjugation
invariant, the term tr

(
A0(t)A2(t)− 1

4A1(t)2
)
is independent of the choice of repre-

sentative of the conjugation class. We will describe such a representative, a regular,
nilpotent, matricial polynomial A(ζ) coming from a global section

(
Ã(ζ̃), A(ζ)

)
∈

Ȟ0
(
CP1, gln(C)⊗OCP1(2)

)
, in terms of coefficients of the transition function of an

invertible sheaf F ∈ Jac3(C3)\Θ. To compute the matricial polynomial A(ζ), ζ ∈W0,
we will fix a ζ0 ∈ W0 and consider the following diagram of the Beauville correspon-
dence

C3

EV (ζ0)
//

A(ζ0)

��

ΦB

%%

C3

N

��

ΨC

yy
Ȟ0(C3,F(1))

ev(ζ0)//

Aζ0
��

Ȟ0(Dζ0 ,ODζ0 )

[m(η̃,η),ζ0
]

��
Ȟ0(C3,F(1))

ev(ζ0)// Ȟ0(Dζ0 ,ODζ0 )

C3

EV (ζ0)
//

ΦB

99

C3

ΨC

ee

.

Because we consider n = 3, we have dimC
(
Ȟ0 (C3,F(1))

)
= 3. If we denote a

basis of Ȟ0 (C3,F(1)) by B =
{
r1, r2, r3

}
, then the map ΦB is the coordinate function
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of the C-vector space Ȟ0(C3,F(1)) with respect to the basis B, i.e.

ΦB : C3 −→ Ȟ0 (C3,F(1)) , (x1, x2, x3) 7−→ x1r
1 + x2r

2 + x3r
3

and ΨC is the coordinate function of the C-vector space C[η]
〈η3〉 with respect to the basis

C :=
{

1, η, η2
}
. The multiplication with η, the map [m(η̃,η),ζ0 ], is of course a linear

map and induces a matrix N := Ψ−1
C ◦ [m(η̃,η),ζ0 ] ◦ ΨC , which is just the Jordan

canonical form with exactly one Jordan block

N :=

0 0 0
1 0 0
0 1 0

 .

Let us denote the transformation matrix of the evaluation map ev(ζ0) with Ev(ζ0)
with respect to the bases B and C. The regular, nilpotent, matricial polynomial at
ζ0 ∈W0 is then given by

A(ζ0) = Φ−1
B ◦Aζ0 ◦ ΦB

= Φ−1
B ◦ ev(ζ0)−1 ◦ [m(η̃,η),ζ0 ] ◦ ev(ζ0) ◦ ΦB

= Φ−1
B ◦ ev(ζ0)−1 ◦ΨC ◦N ◦Ψ−1

C ◦ ev(ζ0) ◦ ΦB

= EV (ζ0)−1NEV (ζ0).

Thus we want to compute the matrix EV (ζ0) and its inverse.

4.2.1 A Basis of Ȟ0 (C3,F(1))

To compute EV (ζ0) we use the basis of theorem 7 to get the coordinate function ΦB.
Since the basis is given by coefficients aikl, i ∈ {1, 2, 3}, consisting of cofactors of the
matrix M of section 3.3.2, we will compute in a first step these cofactors. The index
sets of the matrix M in n = 3 are

P = {(1, 1), (1, 2), (2, 2), (3, 2)} , Q = {(1, 0), (0, 0), (1, 1), (1, 2)}

and we have the following

Lemma 4. The cofactors of the matrix M corresponding to an invertible sheaf F ∈
Jac3(C3) \Θ are given by

C((2,2),(1,0)) = d32d
2
00, C((3,2),(1,0)) = −(d2

00d22 − d00d
2
11),

C((2,2),(0,0)) = −d2
00d22, C((3,2),(0,0)) = d2

00d12,

C((2,2),(1,1)) = d22d11d00, C((3,2),(1,1)) = −d12d11d00,

C((2,2),(1,2)) = d00d12d22, C((3,2),(1,2)) = −d00d
2
12.

Proof. This follows immediatly by direct computations. Let us recall the matrix M
is given by

M(F) =


0 d11 d00 0
0 d12 0 d00

d12 d22 d11 0
d22 d32 0 0

 .

We just have to be careful with the correct signs.
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With bn2 c = b3
2c = 2, by theorem 7 and lemma 4 we can write down the coefficients

of the basis vectors. The first basis vector is given by
(
a1

00, a
1
01, a

1
02

)
= (1, 0, 0),

~b1 = (0, 0, 0, d12) and

a1
10 = −1

θ
C((3,2),(1,0))d12 = −(d00d

2
11 − d2

00d22)d12

θ
,

a1
20 = −1

θ
C((3,2),(0,0))d12 = −d

2
00d

2
12

θ
,

a1
11 = −1

θ
C((3,2),(1,1))d12 =

d00d11d
2
12

θ
,

a1
12 = −1

θ
C((3,2),(1,2))d12 =

d00d
3
12

θ
.

The second basis vector is given by
(
a2

00, a
2
01, a

2
02

)
= (0, 1, 0), ~b2 = (0, 0, 0, d11) and

a2
10 = −1

θ
C((3,2),(1,0))d11 = −(d00d

2
11 − d2

00d22)d11

θ
,

a2
20 = −1

θ
C((3,2),(0,0))d11 = −d

2
00d11d12

θ
,

a2
11 = −1

θ
C((3,2),(1,1))d11 =

d00d
2
11d12

θ
,

a2
12 = −1

θ
C((3,2),(1,2))d11 =

d00d11d
2
12

θ
.

The third basis vector is given by
(
a3

00, a
3
01, a

3
02

)
= (0, 0, 1), ~b3 = (0, 0, d00, 0) and

a3
10 = −1

θ
C((2,2),(1,0))d00 = −d

3
00d32

θ
,

a3
20 = −1

θ
C((2,2),(0,0))d00 =

d3
00d22

θ
,

a3
11 = −1

θ
C((2,2),(1,1))d00 = −d

2
00d11d22

θ
,

a3
12 = −1

θ
C((2,2),(1,2))d00 = −d

2
00d12d22

θ
.
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With these computations we have a basis of Ȟ0 (C3,F(1)) given by the polynomials

r1
0(ζ, η) := a1

00 + a1
10ζ + a1

20ζ
2 + a1

01η + a1
11ζη + a1

02η
2 + a1

12ζη
2

= 1− 1

θ
C((3,2),(1,0))d12ζ −

1

θ
C((3,2),(0,0))d12ζ

2

− 1

θ
C((3,2),(1,1))d12ζη −

1

θ
C((3,2),(1,2))d12ζη

2,

= 1− (d00d
2
11 − d2

00d22)d12

θ
ζ − d2

00d
2
12

θ
ζ2

+
d00d11d

2
12

θ
ζη +

d00d
3
12

θ
ζη2

r2
0(ζ, η) := a2

00 + a2
10ζ + a2

20ζ
2 + a2

01η + a2
11ζη + a2

02η
2 + a2

12ζη
2

= −1

θ
C((3,2),(1,0))d11ζ −

1

θ
C((3,2),(0,0))d11ζ

2

+ η − 1

θ
C((3,2),(1,1))d11ζη −

1

θ
C((3,2),(1,2))d11ζη

2,

= −(d00d
2
11 − d2

00d22)d11

θ
ζ − d2

00d11d12

θ
ζ2

+ η +
d00d

2
11d12

θ
ζη +

d00d11d
2
12

θ
ζη2

r3
0(ζ, η) := a3

00 + a3
10ζ + a3

20ζ
2 + a3

01η + a3
11ζη + a3

02η
2 + a3

12ζη
2

= −1

θ
C((2,2),(1,0))d00ζ −

1

θ
C((2,2),(0,0))d00ζ

2

− 1

θ
C((2,2),(1,1))d00ζη + η2 − 1

θ
C((2,2),(1,2))d00ζη

2

= −d
3
00d32

θ
ζ +

d3
00d22

θ
ζ2

− d2
00d11d22

θ
ζη + η2 − d2

00d12d22

θ
ζη2.

Here ri0 ∈ OU0(U0) and ri1 ∈ OU1(U1) is uniquely determined by ri0 to get a global
section (ri1, r

i
0) ∈ Ȟ0(Cn,F(1)), i ∈ {1, 2, 3}.

4.2.2 Inverting the Evaluation Map

In this subsection we want to compute EV (ζ0) and its inverse for a fixed (ζ0, 0) ∈ U0.
Because U0 is dense in Cn and a global section (s1, s0) ∈ Ȟ0 (C3,F(1)) is completely
determined by s0 we will often call s0 already a global section, but we always think
in terms of pairs (s1, s0). Let s0 = ΦB (x1, x2, x3) = x1r

1 + x2r
2 + x3r

3 be a global
section of F(1) for some (x1, x2, x3) ∈ C3. The transformation matrix EV (ζ0) with
respect of the bases B,C of the evaluation map ev(ζ0) is EV (ζ0) = Ψ−1

C ◦ ev(ζ0)◦ΨB.
By definition of the evaluation map and the considerations in section 4.1.3 we get
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ev(ζ0) ◦ΨB (x1, x2, x3)

= ev(ζ0)
(
x1r

1
0(ζ, η) + x2r

2
0(ζ, η) + x3r

3
0(ζ, η)

)
= x1ev(ζ0)(r1

0) + x2ev(ζ0)(r2
0(ζ, η)) + x3ev(ζ0)(r3

0(ζ, η))

= x1

(
1− 1

θ
C((3,2),(1,0))d12ζ0 −

1

θ
C((3,2),(0,0))d12ζ

2
0 −

1

θ
C((3,2),(1,1))d12ζ0η

− 1

θ
C((3,2),(1,2))d12ζ0η

2
)

+ x2

(
− 1

θ
C((3,2),(1,0))d11ζ0 −

1

θ
C((3,2),(0,0))d11ζ

2
0 + η − 1

θ
C((3,2),(1,1))d11ζ0η

− 1

θ
C((3,2),(1,2))d11ζ0η

2
)

+ x3

(
− 1

θ
C((2,2),(1,0))d00ζ0 −

1

θ
C((2,2),(0,0))d00ζ

2
0 −

1

θ
C((2,2),(1,1))d00ζ0η

+ η2 − 1

θ
C((2,2),(1,2))d00ζ0η

2
)
.

Thus the transformation matrix of ev(ζ0) is

EV (ζ0) = 1− ζ0

θ

C((3,2),(1,0))d12 C((3,2),(1,0))d11 C((2,2),(1,0))d00

C((3,2),(1,1))d12 C((3,2),(1,1))d11 C((2,2),(1,1))d00

C((3,2),(1,2))d12 C((3,2),(1,2))d11 C((2,2),(1,2))d00


− ζ2

0

θ

C((3,2),(0,0))d12 C((3,2),(0,0))d11 C((2,2),(0,0))d00

0 0 0
0 0 0

.

For ζ0 ∈W0 let us define

G :=
1

θ

C((3,2),(1,0))d12 C((3,2),(1,0))d11 C((2,2),(1,0))d00

C((3,2),(1,1))d12 C((3,2),(1,1))d11 C((2,2),(1,1))d00

C((3,2),(1,2))d12 C((3,2),(1,2))d11 C((2,2),(1,2))d00

 ,

H :=
1

θ

C((3,2),(0,0))d12 C((3,2),(0,0))d11 C((2,2),(0,0))d00

0 0 0
0 0 0

 ,

F (ζ0) := G+ ζ0H.

In this notation we see EV (ζ0) := 1−ζ0F (ζ0). If the operator norm is ‖ζ0F (ζ0)‖∞ < 1
, then the Neumann series

∑∞
k=0 (ζ0N(ζ0))k converges and the inverse of EV (ζ0) =

1− ζ0F (ζ0) is
EV (ζ0)−1 = 1 + ζ0F (ζ0) + ζ2

0F (ζ0)2 + . . . .

For properties of the Neumann series see for example [Wer07]. But a priori the
operator norm ‖ζ0F (ζ0)‖∞ can be huge. Let us take an ε > 0 small enough, such
that every ζ0 ∈ Bε(0) ⊂W0 satisfies ‖ζ0F (ζ0)‖∞ < 1. Hence in a probably very small
neighborhood of 0 ∈ W0 we are able to invert the matrix EV (ζ0) via the Neumann
series.

4.2.3 Matricial Polynomials

The regular, nilpotent, matricial polynomial at ζ0 ∈ W0 with respect to an invert-
ible sheaf F ∈ Jac3(C3) \ Θ is given by A(ζ0) = EV (ζ0)−1NEV (ζ0). In a small
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neighborhood of 0 ∈W0 we can write

A(ζ0) =
(
1 + ζ0F (ζ0) + ζ2

0F (ζ0)2 + · · ·
)
N (1− ζ0F (ζ0)) .

By the Beauville correspondence, theorem 9, or see [AHH90], we know the matricial
polynomial A(ζ) is of degree 2. This means we are only interested in the terms 1, ζ0, ζ

2
0

and all other higher terms will cancel out. The truncated series (by ζ3
0 ) of EV (ζ0)−1

is

1 + ζ0F (ζ0) + ζ2
0G

2 = 1 + ζ0G+ ζ2
0 (H +G2)

and we get

A(ζ0) =
(
1 + ζ0F (ζ0) + ζ2

0G
2
)
N (1− ζ0F (ζ0)) modulo ζ3

0

= N (1− ζ0F (ζ0)) + ζ0GN + ζ2
0 (−GNG+HN) + ζ2

0G
2N

= N + ζ0 (GN −NG) + ζ2
0

(
−GNG+HN −NH +G2N

)
.

Now we compute the matrices GN −NG and −GNG+HN −NH +G2N .

Lemma 5. The entries of the matrix θ2G2 are

(G2)11 = C((3,2),(1,0))d12C((3,2),(1,0))d12 + C((3,2),(1,1))d12C((3,2),(1,0))d11

+ C((3,2),(1,2))d12C((2,2),(1,0))d00,

(G2)21 = C((3,2),(1,0))d12C((3,2),(1,1))d12 + C((3,2),(1,1))d12C((3,2),(1,1))d11

+ C((3,2),(1,2))d12C((2,2),(1,1))d00,

(G2)31 = C((3,2),(1,0))d12C((3,2),(1,2))d12 + C((3,2),(1,1))d12C((3,2),(1,2))d11

+ C((3,2),(1,2))d12C((2,2),(1,2))d00,

(G2)12 = C((3,2),(1,0))d12C((3,2),(1,0))d11 + C((3,2),(1,0))d11C((3,2),(1,1))d11

+ C((2,2),(1,0))d00C((3,2),(1,2))d11,

(G2)22 = C((3,2),(1,0))d11C((3,2),(1,1))d12 + C((3,2),(1,1))d11C((3,2),(1,1))d11

+ C((3,2),(1,2))d11C((2,2),(1,1))d00,

(G2)32 = C((3,2),(1,0))d11C((3,2),(1,2))d12 + C((3,2),(1,1))d11C((3,2),(1,2))d11

+ C((3,2),(1,2))d11C((2,2),(1,2))d00,

(G2)13 = C((3,2),(1,0))d12C((2,2),(1,0))d00 + C((3,2),(1,0))d11C((2,2),(1,1))d00

+ C((2,2),(1,0))d00C((2,2),(1,2))d00,

(G2)23 = C((2,2),(1,0))d00C((3,2),(1,1))d12 + C((2,2),(1,1))d00C((3,2),(1,1))d11

+ C((2,2),(1,2))d00C((2,2),(1,1))d00,

(G2)33 = C((2,2),(1,0))d00C((3,2),(1,2))d12 + C((2,2),(1,1))d00C((3,2),(1,2))d11

+ C((2,2),(1,2))d00C((2,2),(1,2))d00.

Proof. This follows by matrix multiplication.
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Lemma 6. We have

NG =
1

θ

 0 0 0
C((3,2),(1,0))d12 C((3,2),(1,0))d11 C((2,2),(1,0))d00

C((3,2),(1,1))d12 C((3,2),(1,1))d11 C((2,2),(1,1))d00

 ,

GN =
1

θ

C((3,2),(1,0))d11 C((2,2),(1,0))d00 0

C((3,2),(1,1))d11 C((2,2),(1,1))d00 0

C((3,2),(1,2))d11 C((2,2),(1,2))d00 0

 ,

NH =
1

θ

 0 0 0
C((3,2),(0,0))d12 C((3,2),(0,0))d11 C((2,2),(0,0))d00

0 0 0

 ,

HN =
1

θ

C((3,2),(0,0))d11 C((2,2),(0,0))d00 0

0 0 0
0 0 0

 ,

GNG =
1

θ2



C((3,2),(1,0))d11C((3,2),(1,0))d12 + C((2,2),(1,0))d00C((3,2),(1,1))d12

C((3,2),(1,0))d11C((3,2),(1,0))d11 + C((2,2),(1,0))d00C((3,2),(1,1))d11

C((3,2),(1,0))d11C((2,2),(1,0))d00 + C((2,2),(1,0))d00C((2,2),(1,1))d00

C((3,2),(1,1))d11C((3,2),(1,0))d12 + C((2,2),(1,1))d00C((3,2),(1,1))d12

C((3,2),(1,1))d11C((3,2),(1,0))d11 + C((2,2),(1,1))d00C((3,2),(1,1))d11

C((3,2),(1,1))d11C((2,2),(1,0))d00 + C((2,2),(1,1))d00C((2,2),(1,1))d00

C((3,2),(1,2))d11C((3,2),(1,0))d12 + C((2,2),(1,2))d00C((3,2),(1,1))d12

C((3,2),(1,2))d11C((3,2),(1,0))d11 + C((2,2),(1,2))d00C((3,2),(1,1))d11

C((3,2),(1,2))d11C((2,2),(1,0))d00 + C((2,2),(1,1))d00C((2,2),(1,1))d00


,

G2N =
1

θ2

(G2)12 (G2)13 0
(G2)22 (G2)23 0
(G2)32 (G2)33 0

 .

In particular we have

GN −NG =
1

θ

 −d2
00d11d22 + d00d

3
11 d32d

3
00 0

d2
00d12d22 − 2d00d

2
11d12 2d2

00d11d22 − d00d
3
11 −d32d

3
00

0 d00d
2
11d12 + d2

00d12d22 −d2
00d11d22


and

HN −NH =
1

θ2

d2
00d11d12θ −d3

00d22θ 0
−d2

00d
2
12θ −d2

00d11d12θ d3
00d22θ

0 0 0

 .

Moreover we have

−GNG = − 1

θ2



(d22 − d2
11)d11(d22 − d2

11)d12 + (−d32)d11d
2
12

(d22 − d2
11)d11(d22 − d2

11)d11 + (d32)d2
11d12

(d22 − d2
11)d11(−d32) + (−d32)(−d11d22)

d2
11d12(d22 − d2

11)d12 + (−d11d22)d11d
2
12

d2
11d12(d22 − d2

11)d11 + (−d11d22)d2
11d12

d2
11d12(−d32) + (−d11d22)(−d11d22)

d11d
2
12(d22 − d2

11)d12 + (−d12d22)d11d
2
12

d11d
2
12(d22 − d2

11)d11 + (−d12d22)d2
11d12

d11d
2
12(−d32) + (−d12d22)(−d11d22)


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and

G2N =
1

θ2



(d22 − d2
11)d12(d22 − d2

11)d11 + (d22 − d2
11)d11d

2
11d12 + (−d32)d11d

2
12

(d22 − d2
11)d12(−d32) + (d22 − d2

11)d11(−d11d22) + (−d32)(−d12d22)
0

d11d
2
12(d22 − d2

11)d11 + d2
11d12d

2
11d12 + (−d11d22)d11d

2
12

d11d
2
12(−d32) + d2

11d12(−d11d22) + (−d11d22)(−d12d22)
0

d3
12(d22 − d2

11)d11 + d11d
2
12d

2
11d12 + (−d12d22)d11d

2
12

d3
12(−d32) + d11d

2
12(−d11d22) + (−d12d22)(−d12d22)

0


,

where we set d00 = 1 in the last two equations just to write it down more compactly.

Proof. This follows by standard matrix multiplication and lemma 4.

Lemma 6 contains everything we need to describe one direction of the Beauville
correspondence explicitly.

Theorem 12. Let (C3,OC3) be the nilpotent, spectral curve and let F ∈ Jac3(C3)\Θ
be an invertible sheaf of degree 3 without a non-trivial global section. We set d00 =
1. Then the corresponding GL3(C)-conjugation class of regular, nilpotent, matricial
polynomials has a representative of the form

A0 =

0 0 0
1 0 0
0 1 0

 ,

A1 = GN −NG

=
1

θ

 −d11d22 + d3
11 d32 0

d12d22 − 2d2
11d12 2d11d22 − d3

11 −d32

0 d2
11d12 + d12d22 −d11d22


A2 = −GNG+HN −NH +G2N

=
1

θ2

d12d11(θ − d4
11 + d2

11d22) (d22 − d2
11)3 − d12d32d22 d11d32(−d2

11)
−d2

12(θ − d4
11) −d11d12(2θ − d4

11) d12d32(d22 + d2
11)− d3

22

d3
12d

3
11 −d2

12(θ − d4
11) d11d12(θ − d2

11d22)

 .

Proof. This follows by the previous three lemmas and the formula A(ζ0) = N +
ζ0 (GN −NG) + ζ2

0

(
−GNG+HN −NH +G2N

)
.

Remark 2. Note that −C((3,2),(1,1))d12 + C((3,2),(1,2))d11 = 0. This is the crucial
observation to formulate in a later stage the burning lemma.

4.2.4 Trace tr
(
A0A2 − 1

4
A2

1

)
After the description of nilpotent, regular, matricial polynomials in the previous sec-
tion we are able to state a theorem, which is basically the theorem 11 without the
ingredient of flows.

Theorem 13. Let (C3,OC3) be the nilpotent, spectral curve and let A(ζ) = A0 +
A1ζ +A2ζ

2 be the corresponding matricial polynomial of theorem 12 corresponding to
an invertible sheaf F ∈ Jac3(C3) \Θ. Then we have the following equation

tr

(
A0A2 −

1

4
A2

1

)
=

3

2

3d2
00d

2
11θ − (d00d

3
11)2

θ2
.
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To prove this directly we need some lemmas. The first lemma is

Lemma 7. The trace of A1 vanishes. Furthermore we have

tr(A2
1) =

1

θ2

(
2C2

((3,2),(1,0))d
2
11 − 2C((2,2),(1,0))d00C((3,2),(1,0))d12

− 2C((3,2),(1,0))d11C((2,2),(1,1))d00 − 2C((2,2),(1,0))d00C((2,2),(1,2))d00

+ 4C((2,2),(1,0))d00C((3,2),(1,1))d11 + 2C2
((2,2),(1,1))d

2
00

)
.

Proof. From theorem 12 we see immediatly the vanishing trace of A1. Now we com-
pute

tr(A2
1) =

1

θ2

(
C2

((3,2),(1,0))d
2
11 + C((2,2),(1,0))d00

(
− C((3,2),(1,0))d12 + C((3,2),(1,1))d11

)
+ C((2,2),(1,0))d00

(
− C((3,2),(1,0))d12 + C((3,2),(1,1))d11

)
+
(
− C((3,2),(1,0))d11 + C((2,2),(1,1))d00

)2
− C((2,2),(1,0))d00

(
− C((3,2),(1,1))d11 + C((2,2),(1,2))d00

)
− C((2,2),(1,0))d00

(
− C((3,2),(1,1))d11 + C((2,2),(1,2))d00

)
+
(
− C((2,2),(1,1))d00

)2)
=

1

θ2

(
C2

((3,2),(1,0))d
2
11 − C((2,2),(1,0))d00C((3,2),(1,0))d12

+ C((2,2),(1,0))d00C((3,2),(1,1))d11 − C((2,2),(1,0))d00C((3,2),(1,0))d12

+ C((2,2),(1,0))d00C((3,2),(1,1))d11 + C2
((3,2),(1,0))d

2
11

− 2C((3,2),(1,0))d11C((2,2),(1,1))d00 + C2
((2,2),(1,1))d

2
00

+ C((2,2),(1,0))d00C((3,2),(1,1))d11 − C((2,2),(1,0))d00C((2,2),(1,2))d00

+ C((2,2),(1,0))d00C((3,2),(1,1))d11 − C((2,2),(1,0))d00C((2,2),(1,2))d00

+ C2
((2,2),(1,1))d

2
00

)
=

1

θ2

(
2C2

((3,2),(1,0))d
2
11 − 2C((2,2),(1,0))d00C((3,2),(1,0))d12

− 2C((3,2),(1,0))d11C((2,2),(1,1))d00 − 2C((2,2),(1,0))d00C((2,2),(1,2))d00

+ 4C((2,2),(1,0))d00C((3,2),(1,1))d11 + 2C2
((2,2),(1,1))d

2
00

)
.

Lemma 8. The trace of A0A2 is given by tr (A0A2) = Z1 + Z2, where

Z1 =
1

θ
C((2,2),(0,0))d00 −

1

θ2
C((3,2),(1,0))d11C((3,2),(1,0))d11

− 1

θ2
C((2,2),(1,0))d00C((3,2),(1,1))d11 +

1

θ2
C((3,2),(1,0))d12C((2,2),(1,0))d00

+
1

θ2
C((3,2),(1,0))d11C((2,2),(1,1))d00 +

1

θ2
C((2,2),(1,0))d00C((2,2),(1,2))d00,

Z2 = −1

θ
C((2,2),(0,0))d00 −

1

θ2
C((3,2),(1,1))d11C((2,2),(1,0))d00

− 1

θ2
C((2,2),(1,1))d00C((2,2),(1,1))d00.

Proof. The matrix A0 is the Jordan canonical form with exactly one Jordan block
seen as a lower-triangular matrix. So by doing the matrix multiplication A0A2 we
just need to use the computations of lemma 6 and read out the correct terms.
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Now we are able to prove theorem 13.

Proof. We have tr(A0A2 − 1
4A

2
1) = −1

4 tr(A
2
1) + Z1 + Z2. With lemma 4 , lemma 7

and lemma 8 we have
tr(A0A2 − 1

4A
2
1) =

− 1

4

1

θ2

(
2C2

((3,2),(1,0))d
2
11 − 2C((2,2),(1,0))d00C((3,2),(1,0))d12

− 2C((3,2),(1,0))d11C((2,2),(1,1))d00 − 2C((2,2),(1,0))d00C((2,2),(1,2))d00

+ 4C((2,2),(1,0))d00C((3,2),(1,1))d11 + 2C2
((2,2),(1,1))d

2
00

)
+

1

θ
C((2,2),(0,0))d00 −

1

θ2
C((3,2),(1,0))d11C((3,2),(1,0))d11

− 1

θ2
C((2,2),(1,0))d00C((3,2),(1,1))d11 +

1

θ2
C((3,2),(1,0))d12C((2,2),(1,0))d00

+
1

θ2
C((3,2),(1,0))d11C((2,2),(1,1))d00 +

1

θ2
C((2,2),(1,0))d00C((2,2),(1,2))d00

− 1

θ
C((2,2),(0,0))d00 −

1

θ2
C((3,2),(1,1))d11C((2,2),(1,0))d00

− 1

θ2
C((2,2),(1,1))d00C((2,2),(1,1))d00

=
1

θ2

3

2

(
− C2

((3,2),(1,0))d
2
11 + C((2,2),(1,0))d00C((3,2),(1,0))d12

+ C((3,2),(1,0))d11C((2,2),(1,1))d00 + C((2,2),(1,0))d00C((2,2),(1,2))d00

− 2C((2,2),(1,0))d00C((3,2),(1,1))d11 − C2
((2,2),(1,1))d

2
00

)
=

1

θ2

3

2

(
− (d2

00d22 − d00d
2
11)2d2

11 − d32d
2
00d00(d2

00d22 − d00d
2
11)d12

− (d2
00d22 − d00d

2
11)d11d22d11d00d00 + d32d

2
00d00d00d12d22d00

+ 2d32d
2
00d00d12d11d00d11 − (−d22d11d00)2d2

00

)
=

1

θ2

3

2

(
− (d4

00d
2
22 − 2d2

00d22d00d
2
11 + d2

00d
4
11)d2

11 − d12d32d
2
00d00d

2
00d22

+ d00d12d32d
2
00d00d

2
11 − d2

00d22d11d22d11d00d00 + d00d
2
11d11d22d11d00d00

+ d32d
2
00d00d00d12d22d00 + 2d32d

2
00d00d12d11d00d11 − d2

22d
2
11d

2
00d

2
00

)
=

1

θ2

3

2

(
− 3d4

00d
2
11d

2
22 + 3d3

00d22d
4
11 − d2

00d
6
11 + 3d2

00d12d32d
2
00d

2
11

)
=

1

θ2

3

2

(
3d2

00d
2
11(d2

00d12d32 + d00d22d
2
11 − d2

00d
2
22)− d2

00d
6
11

)
=

3

2

3d2
00d

2
11θ − (d00d

3
11)2

θ2
.

4.2.5 Flows and Hitchin’s formula

Let F ∈ Jac3(C3) and let Lt ∈ Pic0(C3), t ∈ C, be a family of invertible sheaves
given by transition functions exp

(
−tηζ

)
. We get a family of invertible sheaves in the

Jacobian via F t = F ⊗ Lt ∈ Jac3(C3), which we can describe in terms of transition
functions depending on the variable t.

Lemma 9. Let 1
ζ

(∑2
l=0

∑2l−1
k=1 dkl

ηl

ζk

)
be the transition function of an invertible sheaf

F ∈ Jac3(C3). The transition function of the invertible sheaf F ⊗ Lt is given by
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1
ζ g10(ζ, η)(t) =

1

ζ

(
d00 + (d11 − d00t)

η

ζ
+

(
d12

1

ζ
+

(
d22 − d11t+

1

2
d00t

2

)
1

ζ2
+ d32

1

ζ3

)
η2

)
.

Proof. This is basically the statement of theorem 10 with n = 3.

The theta function of an invertible sheaf F is θ(F) = d2
00d12d32+d00d

2
11d22−d2

00d
2
22.

The sheaf F t defines a theta function too, which is holomorphic in the parameter t.
The first two derivatives are important in order to prove Hitchin’s formula.

Lemma 10. We have the following formulas,

θ(F t) = θ(F)− d00d
3
11t+

3

2
d2

00d
2
11t

2 − d3
00d11t

3 +
1

4
d4

00t
4

=

(
θ(F)− 1

4
d4

11

)
+

1

4
(d11 − d00t)

4 ,

θ(F t)′ = −d00(d11 − d00t)
3,

θ(F t)′′ = 3d2
00(d11 − d00t)

2.

Moreover if F t ∈ Jac3(C3) \Θ, then we have

d2

dt2
log
(
θ(F t)

)
=
θ(F t)(θ(F t))′′ − (θ(F t))′(θ(F t))′

θ(F t)2

=
θ(F t)3d2

00(d11 − d00t)
2 − (d00(d11 − d00t)

3)2

θ(F t)2
.

Proof. We just compute θ(F t) =

d2
00d12d32 + d00(d11 − d00t)

2(d22 − d11t+
1

2
d00t

2)− d2
00(d22 − d11t+

1

2
d00t

2)2

= d2
00d12d32 + d00(d2

11 − 2d11d00t+ d2
00t

2)(d22 − d11t+
1

2
d00t

2)

− d2
00(d2

22 − 2d11d22t+ d00d22t
2 + d2

11t
2 − d00d11t

3 +
1

4
d2

00t
4)

= d2
00d12d32 + d00d22d

2
11 − d00d

3
11t+

1

2
d2

00d
2
11t

2

− 2d2
00d11d22t+ 2d2

00d
2
11t

2 − d3
00d11t

3 + d3
00d22t

2 − d3
00d11t

3 +
1

2
d4

00t
4

− d2
00d

2
22 + 2d2

00d11d22t− d3
00d22t

2 − d2
00d

2
11t

2 + d3
00d11t

3 − 1

4
d4

00t
4

= d2
00d12d32 + d00d22d

2
11 − d2

00d
2
22

+ (−d00d
3
11 − 2d2

00d11d22 + 2d2
00d11d22)t

+ (
1

2
d2

00d
2
11 + 2d2

00d
2
11 + d3

00d22 − d3
00d22 − d2

00d
2
11)t2

+ (−d3
00d11 − d3

00d11 + d3
00d11)t3

+ (
1

2
d4

00 −
1

4
d4

00)t4

= θ(F)− d00d
3
11t+

3

2
d2

00d
2
11t

2 − d3
00d11t

3 +
1

4
d4

00t
4

= θ(F)− 1

4
d4

11 +
1

4
(d11 − d00t)

4 .
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Then the derivatives are

θ(F t)′ = −d00d
3
11 + 3d2

00d
2
11t− 3d3

00d11t
2 + d4

00t
3 = −d00(d11 − d00t)

3,

θ(F t)′′ = 3d2
00d

2
11 − 6d3

00d11t+ 3d4
00t

2 = 3d2
00(d11 − d00t)

2.

With
d2

dt2
log
(
θ(F t)

)
=
θ(F t)θ(F t)′′ − θ(F t)′θ(F t)′

θ(F t)2

and by inserting the derivatives of the theta function we get the last formula.

At this stage we can prove Hitchin’s formula, theorem 11, in the case n = 3.

Proof. If we replace the invertible sheaf F with the invertible sheaf F t we know
by lemma 9, that we have to replace θ by θ(F t), d11 by (d11 − d00t) and d22 by
(d22 − d11t+ 1

2d00t
2). Theorem 13 gets

tr

(
A0(t)A2(t)− 1

4
A1(t)2

)
=

3

2

3d2
00(d11 − d00t)

2θ(F t)− (d00(d11 − d00t)
3)2

θ(F t)2
.

By lemma 10 this is just equal to

3

2

d2

dt2
log(θ(F t)) =

3

2

θ(F t)(θ(F t))′′ − (θ(F t))′(θ(F t))′

θ(F t)2
.

This finishes the proof of Hitchin’s formula in the case n = 3.

4.3 Hitchin’s Formula

In this section we want to adjust the computations and ideas of the case n = 3 to the
general case. We start again by describing a representative of the GLn(C)-conjugacy
class of regular, nilpotent, matricial polynomials corresponding to an invertible sheaf
F ∈ Jacg−1(Cn) \Θ. With this explicit description we are able to compute the trace
tr
(
A0A2 − 1

4A
2
1

)
. Then we will compute the term 3

2
d2

dt2
log
(
θ(F t)

)
and compare it

with tr
(
A0A2 − 1

4A
2
1

)
by using the crucial burning lemma.

4.3.1 Beauville Correspondence

To describe a representative of the GLn(C)-conjugacy class of regular, nilpotent, ma-
tricial polynomials A(ζ) = A0 + A1ζ + A2ζ

2 corresponding to an invertible sheaf
F ∈ Jacg−1(Cn) \Θ we will use again the following commutative diagramm.

Cn
EV (ζ0)

//

A(ζ0)

��

ΦB

%%

Cn

N

��

ΨC

xx
Ȟ0 (Cn,F(1))

ev(ζ0)//

Aζ0
��

Ȟ0(Dζ0 ,ODζ0 )

[m(η̃,η),ζ0
]

��
Ȟ0 (Cn,F(1))

ev(ζ0)// Ȟ0(Dζ0 ,ODζ0 )

Cn
EV (ζ0)

//
ΦB

99

Cn
ΨC

ff
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The first step is the computation of the transformation matrix of the evaluation map
and its inverse. Recall that a global section s ∈ Ȟ0 (Cn,F(1)) is a pair (s1, s0) ∈
OU1(U1)×OU0(U0), which we can write s0(ζ, η) =

∑n−1
l=0 s

l
0(ζ)ηl, where s0

0 is a poly-
nomial of degree n − 1 and the sl0, l 6= 0, are polynomials of degree n − 2. Let us
denote the choosen basis of Ȟ0 (Cn,F(1)) of theorem 7 by B =

{
r1, . . . , rn

}
. Since

ri = (ri1, r
i
0) and ri1 is uniquely determined by ri0 we do the computations for ri0. Let

aikl be the coefficients of the basis vector ri0. We define the coefficient vector without
the free variables ai0l

τ i :=
(
ai10, . . . , a

i
n−1,0, a

i
11, . . . , a

i
n−2,1, . . . , a

i
1,n−1, . . . , a

i
n−2,n−1

)T ∈ Cn+g

and the matrix of all such coefficient vectors

T :=
(
τ1, . . . , τn

)
∈ C(g+n)×n.

Furthermore, for a ζ0 ∈W0 ⊂ CP1, let us define a matrix L(ζ0) ∈ Cn×(g+n) by

L(ζ0) :=


ζ0 ζ20 ζ30 · · · ζn−1

0 0 0 · · · 0 0 0 · · · 0
0 0 0 · · · 0 ζ0 ζ20 · · · ζn−2

0 0 0 · · · 0
...

...
...

. . .
...

...
...

. . .
...

...
...

...
...

0 0 0 · · · 0 0 0 · · · 0 ζ0 ζ20 · · · ζn−2
0

 .

Then by definition of ΨC , if the standard basis vectors of Cn are denoted by ei, we
can write

Ψ−1
C

(
ev(ζ0)(ri)

)
= ei + L(ζ0)τi ∈ Cn.

For an arbitrary global section s = (s1, s0) ∈ Ȟ0 (Cn,F(1)), written as a linear com-
bination of the basis vectors s =

∑n
i=1 xir

i = ΦB (x1, . . . , xn), we get

EV (ζ0)


x1

x2
...
xn

 = Ψ−1
C ◦ ev (ζ0) ◦ ΦB (x1, . . . , xn) =

n∑
i=1

xiΨ
−1
C

(
ev(ζ0)(ri0)

)

=
(
Ψ−1
C

(
ev(ζ0)(r1

0)
)
, · · · , Ψ−1

C (ev(ζ0)(rn0 ))
)

x1

x2
...
xn

 .

Thus the transformation matrix of ev(ζ0) with respect to the bases B and C is given
by

EV (ζ0) =
(
Ψ−1
C

(
ev(ζ0)(r1

0)
)
, . . . , Ψ−1

C (ev(ζ0)(rn0 ))
)

= 1n + L(ζ0)T.

By considering a probably very small neighborhood of 0 ∈ W0 we can always make
the operator norm ‖L(ζ0)T‖ < 1 for all ζ0 in this neighborhood. Hence the Neumann
series of L(ζ0)T converges and the inversion of EV (ζ0) = 1− (−L(ζ0)T ) is given by

EV (ζ0)−1 =

∞∑
k=0

(−L(ζ0)T )k .
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The regular, nilpotent, matricial polynomial in a small neighbhorhood of 0 ∈W0 is

A(ζ0) = EV (ζ0)−1NEV (ζ0) =

( ∞∑
k=0

(−L(ζ0)T )k
)
N (1n + L(ζ0)T )

= N +NL(ζ0)T − L(ζ0)TN − L(ζ0)TNL(ζ0)T + (L(ζ0)T )2N

+ higher terms in ζ0.

By [AHH90] or the Beauville correspondence we know, that the matricial polynomial
A(ζ0) has to have degree 2 and hence we are only interested in 1, ζ0 and ζ2

0 . All terms
of higher order than 2 cancel out.

Lemma 11. The only ζ1
0 terms in A(ζ0) are in the term NL(ζ0)T − L(ζ0)TN and

they are given by
−a2

10 −a3
10 · · · −an10 0

a1
10 − a2

11 a2
10 − a3

11 · · · an−1
10 − an11 an10

...
...

. . .
...

...
a1

1n−2 − a2
1n−1 a2

1n−2 − a3
1n−1 · · · an−1

1n−2 − an1n−1 an1n−2

 .

Proof. Because the ζ1
0 -term appears only in n different columns in L(ζ0) we get

Q := L(ζ0)T modulo ζ2
0 =


a1

10 a2
10 · · · an10

a1
11 a2

11 · · · an11
...

...
. . .

...
a1

1n−1 a2
1n−1 · · · an1n−1

 ∈ Cn×n.

Moreover we have

−QN = −


a2

10 a3
10 · · · an10 0

a2
11 a3

11 · · · an11 0
...

...
. . .

... 0
a2

1n−1 a3
1n−1 · · · an1n−1 0

 ,

NQ =


0 0 0 0
a1

10 a2
10 · · · an10

a1
11 a2

11 · · · an11
...

...
. . .

...
a1

1n−2 a2
1n−2 · · · an1n−2


and therefore

NQ−QN =


−a2

10 −a3
10 · · · −an10 0

a1
10 − a2

11 a2
10 − a3

11 · · · an−1
10 − an11 an10

...
...

. . .
...

...
a1

1n−2 − a2
1n−1 a2

1n−2 − a3
1n−1 · · · an−1

1n−2 − an1n−1 an1n−2

 .
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Lemma 12. The ζ2
0 -term of NL(ζ0)T − L(ζ0)TN is

−a2
20 −a3

20 · · · −an20 0

a1
20 − a2

21 a2
20 − a3

21 · · · an−1
20 − an21 an20

...
...

. . .
...

...
a1

2n−2 − a2
2n−1 a2

2n−2 − a3
2n−1 · · · an−1

2n−2 − an2n−1 an2n−2

 .

Proof. This follows by the same computations as in lemma 11.

Lemma 13. The ζ2
0 -term of (L(ζ0)T )2N is (vst) with s, t ∈ {1, · · · , n}, where

vst :=

n−1∑
j=0

aj+1
1s−1a

t+1
1j

for t 6= n and vsn = 0.

Proof. We have

Q(QN) =


a1

10 a2
10 · · · an10

a1
11 a2

11 · · · an11
...

...
. . .

...
a1

1n−1 a2
1n−1 · · · an1n−1




a2
10 a3

10 · · · an10 0
a2

11 a3
11 · · · an11 0

...
...

. . .
...

...
a2

1n−1 a3
1n−1 · · · an1n−1 0


and therefore we have

vst :=
n−1∑
j=0

aj+1
1s−1a

t+1
1j .

Lemma 14. The ζ2
0 -term of L(ζ0)TNL(ζ0)T is (wst) with s, t ∈ {1, · · · , n}, where

wst :=

n−2∑
j=0

aj+2
1s−1a

t
1j .

Proof. We have

QNQ =


a1

10 a2
10 · · · an10

a1
11 a2

11 · · · an11
...

...
. . .

...
a1

1n−1 a2
1n−1 · · · an1n−1




0 0 · · · 0
a1

10 a2
10 · · · an10

a1
11 a2

11 · · · an11
...

...
. . .

...
a1

1n−2 a2
1n−2 · · · an1n−2


and therefore we have

wst :=
n−2∑
j=0

aj+2
1s−1a

t
1j .

Theorem 14. Let F ∈ Jacg−1(Cn)\Θ be an invertible sheaf of degree g−1 not lying
in the theta divisor. Then a representative of its corresponding GLn(C)-conjugacy
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class of nilpotent, regular, matricial polynomials is given by A(ζ) = A0 +A1ζ +A2ζ
2,

where

A0 =


0 0 · · · 0 0
1 0 · · · 0 0
...

. . . . . .
...

...
0 0 · · · 1 0

 ,

A1 =


−a2

10 −a3
10 · · · −an10 0

a1
10 − a2

11 a2
10 − a3

11 · · · an−1
10 − an11 an10

...
...

. . .
...

...
a1

1n−2 − a2
1n−1 a2

1n−2 − a3
1n−1 · · · an−1

1n−2 − an1n−1 an1n−2

 ,

A2 =


−a2

20 −a3
20 · · · −an20 0

a1
20 − a2

21 a2
20 − a3

21 · · · an−1
20 − an21 an20

...
...

. . .
...

...
a1

2n−2 − a2
2n−1 a2

2n−2 − a3
2n−1 · · · an−1

2n−2 − an2n−1 an2n−2



−


w11 w12 · · · w1n

w21 w22 · · · w2n
...

...
. . .

...
wn1 wn2 · · · wnn

+


v11 v12 · · · v1n−1 0
v21 v22 · · · v2n−1 0
...

...
. . .

...
...

vn1 vn2 · · · vnn−1 0

 .

Proof. The matrix A1 is given by lemma 11. The matrix A2 is given by lemma 12,
lemma 13 and lemma 14.

We have an immediate observation.

Corollary 4. The matrices A0, A1, A2 of theorem 14 are trace-free. In particular the
matricial polynomial A(ζ) = A0 +A1ζ+A2ζ

2 induces an element of Ȟ0(CP1, sln(C)⊗
OCP1(2)).

Proof. Obviously A0 is trace-free. The trace of A1 vanishes, because it is the commu-
tator of the two matrices Q and N , which is

−a2
10 +

(
a2

10 − a3
11

)
+ · · ·+ an1n−2 = 0.

With the same argument the first matrix in the expression of A2 has vanishing
trace too. It remains to show, that the matrix (vst)st − (wst)st is trace-free. Let
us denote vjst := aj+1

1s−1a
t+1
1j and wjst := aj+2

1s−1a
t
1j . So we have wss =

∑n−2
j=0 w

j
ss and

vss =
∑n−1

j=0 v
j
ss. The trace of the matrix (vst)st − (wst)st is

n∑
s=1

(vss − wss) =

n∑
s=1

n−1∑
j=0

vjss −
n−2∑
j=0

wjss

 =

n∑
s=1

n−1∑
j=0

vjss −
n∑
s=1

n−2∑
j=0

wjss

=

n−1∑
j0=0

 n∑
s=1

vj0ss −
n−2∑
j=0

wjj0+1,j0+1

 =

n−1∑
j0=0

n−1∑
s=1

vj0ss −
n−2∑
j=0

wjj0+1,j0+1


=

n−1∑
j0=0

n−1∑
s=1

(
vj0ss − ws−1

j0+1,j0+1

)
,
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where we used vnn = 0. But we have

vj0ss = aj0+1
1s−1a

s+1
1j0

= ws−1
j0+1,j0+1

and hence the trace vanishes.

4.3.2 Trace tr
(
A0A2 − 1

4
A2

1

)
In this subsection we will use theorem 14 to compute the expression tr

(
A0A2 − 1

4A
2
1

)
.

An immediate corollary of the theorem is the following corollary.

Corollary 5. With q ∈ {2, . . . , n} and r ∈ {1, . . . , n− 1} we have

(A1)1r = −ar+1
10 , (A1)1n = 0,

(A1)qr = ar1q−2 − ar+1
1q−1, (A1)qn = an1q−2.

Furthermore we have

(A2)1r = −ar+1
20 − w1r + v1r

= −ar+1
20 −

n−2∑
j=0

aj+2
10 ar1j +

n−1∑
j=0

aj+1
10 ar+1

1j ,

(A2)1n = −w1n = −
n−2∑
j=0

aj+2
10 an1j ,

(A2)qr = ar2q−2 − ar+1
2q−1 − wqr + vqr

= ar2q−2 − ar+1
2q−1 −

n−2∑
j=0

aj+2
1q−1a

r
1j +

n−1∑
j=0

aj+1
1q−1a

r+1
1j ,

(A2)qn = an2q−2 − wqn = −an2q−2 −
n−2∑
j=0

aj+2
1q−1a

n
1j .

In particular we have

(A2)qq+1 = aq+1
2q−2 − a

q+2
2q−1 −

n−2∑
j=0

aj+2
1q−1a

q+1
1j +

n−1∑
j=0

aj+1
1q−1a

q+2
1j .

In chapter 5 we will denote the term (A2)qq+1 by αq.

Lemma 15. We have

tr (A0A2) =
n−1∑
q=1

− n−2∑
j=0

aj+2
1q−1a

q+1
1j +

n−1∑
j=0

aj+1
1q−1a

q+2
1j

 ,

tr
(
A2

1

)
=

n∑
s=1

n∑
q=1

(
aq1s−2 − a

q+1
1s−1

)(
as+1

1q−1 − a
s
1q−2

)
.
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Proof. Because A0 is the regular, nilpotent matrix with only one Jordan block and
by corollary 5 we have

tr (A0A2) =
n−1∑
q=1

(A2)qq+1 =
n−1∑
q=1

aq+2
2q−1 − a

q+1
2q−2 −

n−2∑
j=0

aj+2
1q−1a

q+1
1j +

n−1∑
j=0

aj+1
1q−1a

q+2
1j


=

n−1∑
q=1

− n−2∑
j=0

aj+2
1q−1a

q+1
1j +

n−1∑
j=0

aj+1
1q−1a

q+2
1j

 .

Moreover, just by matrix multiplication, we have (A2
1)st =

∑n
q=1(A1)sq(A1)qt and so

the diagonal elements of A2
1 are

(A2
1)ss =

n∑
q=1

(A1)sq(A1)qs =

n∑
q=1

(
aq+1

1s−1 − a
q
1s−2

)(
as+1

1q−1 − a
s
1q−2

)
.

Thus the trace of A2
1 is

tr(A2
1) =

n∑
s=1

(A2
1)ss =

n∑
s=1

n∑
q=1

(
aq+1

1s−1 − a
q
1s−2

)(
as+1

1q−1 − a
s
1q−2

)
.

Now we can state the main lemma in this subsection.

Lemma 16. We have

tr

(
A0A2 −

1

4
A2

1

)
=

3

2

 n∑
s=1

n−2∑
q=1

as1q−1a
q+2
1s−1 −

n−1∑
s=1

n−1∑
q=1

as+1
1q−1a

q+1
1s−1

 .

Proof. We combine the two expressions of lemma (15) and compute

tr

(
A0A2 −

1

4
A2

1

)

=

n−1∑
q=1

− n−2∑
j=0

aj+2
1q−1a

q+1
1j +

n−1∑
j=0

aj+1
1q−1a

q+2
1j

− 1

4

n∑
s=1

n∑
q=1

(aq+1
1s−1 − a

q
1s−2)(as+1

1q−1 − a
s
1q−2)

=

n−1∑
q=1

− n−1∑
s=1

as+1
1q−1a

q+1
1s−1 +

n∑
j=s

as1q−1a
q+2
1s−1

− 1

4

n−1∑
s=1

n−1∑
q=1

as+1
1q−1a

q+1
1s−1

− 1

4

n−1∑
s=1

n−1∑
q=1

aq+1
1s−1a

s+1
1q−1 +

1

4

n∑
s=1

n−2∑
q=1

as1q−1a
q+2
1s−1 +

1

4

n∑
s=1

n−2∑
q=1

as1q−1a
q+2
1s−1

=
3

2

 n∑
s=1

n−2∑
q=1

as1q−1a
q+2
1s−1 −

n−1∑
s=1

n−1∑
q=1

as+1
1q−1a

q+1
1s−1

 .
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4.3.3 Burning Lemma

This section is about a lemma, which we will use later to compare the trace

tr

(
A0(t)A2(t)− 1

4
A1(t)2

)
and 3

2
d2

dt2
log(θ(F t)). The invertible sheaf F t is from section 4.3.4. The burning lemma

is the heart of the direct proof of Hitchin’s formula and it is called burning lemma
because it burns out all unnecessary terms. We will always use the notation C((i,j),(u,v))

for the cofactor of the matrixM by canceling out the (i, j)-row and the (u, v)-column.
Similarly we use the notation M((i,j),(u,v)) for the minor and a multiple subscripts if
we cancel out several rows and columns.

Theorem 15 (Burning Lemma). Let F ∈ Jacg−1(Cn) \Θ be an invertible sheaf not
lying in the theta divisor and M the corresponding matrix.

i) Let (s, t) ∈ Q such that s ≤ n− 4 and t ≤ n− 3. Then we have∑
(i,j)∈P

C((i,j),(s,t))di−s−2,j−t−2 = 0.

ii) Let (s, t), (u, v) ∈ Q such that (s, t) 6= (u+1, v+1) and (u+1, v+1) ∈ Q. Then
we have ∑

(α,β)∈P

C((α,β),(s,t))dα−u−1,β−v−1 = 0.

iii) Let us fix a 1 ≤ q ≤ n. With the indices (s, t) = (n − 2, q − 1) and (u, v) =
(n− 3, q − 2) we get (s, t) = (u+ 1, v + 1). Then we have∑

(α,β)∈P

∑
(a,b)∈P

C((α,β),(s,t))(−dα−u−1,β−v−1)C((a,b),(u,v))(−da−s−1,b−t−1)

= θ

 ∑
(a,b)∈P

C((a,b),(u,v))da−u−2,b−v−2)

 .

Furthermore with the elements (u, v) = (n− 2, q − 1) and (s, t) = (n− 3, q − 2)
we have (u, v) = (s+ 1, t+ 1). Then we have∑

(α,β)∈P

∑
(a,b)∈P

C((α,β),(s,t))(−dα−u−1,β−v−1)C((a,b),(u,v))(−da−s−1,b−t−1)

=

 ∑
(α,β)∈P

C((α,β),(s,t))dα−s−2,β−t−2)

 θ.

iv) Let us consider indices (s, t), (u, v) ∈ Q with s 6= n− 2 and u 6= n− 2 satisfying
(s, t) = (u+ 1, v + 1). Then we have∑

(α,β)∈P

∑
(a,b)∈P

C((α,β),(s,t))(−dα−u−1,β−v−1)C((a,b),(u,v))(−da−s−1,b−t−1) = 0.
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Furthermore if we have elements (s, t), (u, v) ∈ Q with s 6= n− 2 and u 6= n− 2
satisfying (u, v) = (s+ 1, t+ 1). Then we have∑

(α,β)∈P

∑
(a,b)∈P

C((α,β),(s,t))(−dα−u−1,β−v−1)C((a,b),(u,v))(−da−s−1,b−t−1) = 0.

v) We have the equation∑
(s,t)∈Q

∑
(i,j)∈P

C((i,j),(s,t))

θ
di−s−2,j−t−2 =

∑
(s,t)∈Q

n−3≤s≤n−2

∑
(i,j)∈P

C((i,j),(s,t))

θ
di−s−2,j−t−2.

vi) We have the equation∑
(s,t)∈Q

∑
(u,v)∈Q

∑
(α,β)∈P

∑
(a,b)∈P

C((α,β),(s,t))

θ
(−dα−u−1,β−v−1)

C((a,b),(u,v))

θ
(−da−s−1,b−t−1)

=
∑

(s,t)∈Q
s=n−2

∑
(u,v)∈Q
u=n−2

∑
(α,β)∈P

∑
(a,b)∈P

C((α,β),(s,t))

θ
(−dα−u−1,β−v−1)

C((a,b),(u,v))

θ
(−da−s−1,b−t−1)

+ 2
θ

θ

∑
(u,v)∈Q
u=n−3

∑
(a,b)∈P

C((a,b),(u,v))

θ
da−u−2,b−v−2).

vii) Let (a, b), (α, β) ∈ P . Then we have

n∑
t=1

C((a,b),(n−2,t−1))dα−n+1,β−t+1 = θδ(a,b),(α−1,β) −
∑

(s,t)∈Q
s 6=n−2

C((a,b),(s,t))dα−s−1,β−t.

Since there will be a lot of indices, we want to compute a little archetyplical
example. It describes the idea behind the burning lemma.

Example 6. Let us consider the matrix

D :=

(
d00 d11

d11 d22

)
.

The determinant is det(D) = d00d22 − d2
11, which we write as Laplace expansion

det(D) = C11d00 + C12d11 =

=d22︷︸︸︷
M11 d00 −

=d11︷︸︸︷
M12 d11. With C indicating the cofactors and

M the minors. But we also have

C11d11 + C12d22 =

=d22︷︸︸︷
M11 d11 −

=d11︷︸︸︷
M12 d22 = 0.

The summation of cofactors multiplied with its elements in a neighbor column vanishes.

For the rest of this section we use the abbreviation ιr for the function ιrow and
ιc for the function ιcolumn of definition 5 to indicate the number of the row and the
column and it allows us to indicate the signs of the cofactors precisely.
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Proof. i) First we observe that if (s, t) ∈ Q with s ≤ n − 4 and t ≤ n − 3, then
(s+2, t+2) ∈ Q too. We Laplace expand the minorM((i,j),(s,t)) along the (s+2, t+2)-
th column. This means in a formula

M((i,j),(s,t)) =
∑

(a,b)∈P
(a,b)6=(i,j)

C ((i,j),(s,t))
((a,b),(s+2,t+2))

da−s−2,b−t−2

=
∑

(a,b)∈P
(a,b)6=(i,j)

(−1)ιr(a,b)−δ(a,b)>(i,j)(−1)ιc(s+2,t+2)−δ(s+2,t+2)>(s,t)M ((i,j),(s,t))
((a,b),(s+2,t+2))

da−s−2,b−t−2.

We sum up and get∑
(i,j)∈P

C((i,j),(s,t))di−s−2,j−t−2 =
∑

(i,j)∈P

(−1)ν(i,j,s,t)M((i,j),(s,t))di−s−2,j−t−2

=
∑

(i,j)∈P

∑
(a,b)∈P

(a,b)6=(i,j)

(−1)ν(i,j,s,t)(−1)ιr(a,b)−δ(a,b)>(i,j)(−1)ιc(s+2,t+2)−δ(s+2,t+2)>(s,t)

·M ((i,j),(s,t))
((a,b),(s+2,t+2))

da−s−2,b−t−2di−s−2,j−t−2.

Now we consider an index of the double sum ((i0, j0), (a0, b0)) ∈ P ×P with (i0, j0) 6=
(a0, b0). Since (i0, j0) 6= (a0, b0) there appears the double index ((a0, b0), (i0, j0)) ∈
P × P in the double sum too. The summand of the index ((i0, j0), (a0, b0)) is

(−1)ν(i0,j0,s,t)(−1)ιr(a0,b0)−δ(a0,b0)>(i0,j0)(−1)ιc(s+2,t+2)−δ(s+2,t+2)>(s,t)

·M ((i0,j0),(s,t))
((a0,b0),(s+2,t+2))

da0−s−2,b0−t−2di0−s−2,j0−t−2

and the summand of the index ((a0, b0), (i0, j0)) is

(−1)ν(a0,b0,s,t)(−1)ιr(i0,j0)−δ(i0,j0)>(a0,b0)(−1)ιc(s+2,t+2)−δ(s+2,t+2)>(s,t)

·M ((a0,b0),(s,t))
(i0,j0),(s+2,t+2)

di0−s−2,j0−t−2da0−s−2,b0−t−2.

The minors are equal and so these two summands differ only by the sign. Note that
ν(a, b, s+ 2, t+ 2) = ν(a, b, s, t) and thus we have

(−1)ν(i0,j0,s,t)(−1)ιr(a0,b0)−δ(a0,b0)>(i0,j0)(−1)ιc(s+2,t+2)−δ(s+2,t+2)>(s,t)

= (−1)ν(i0,j0,s,t)(−1)ν(a0,b0,s+2,t+2)(−1)−δ(a0,b0)>(i0,j0)
−δ(s+2,t+2)>(s,t)

= (−1)ν(a0,b0,s,t)(−1)ν(i0,j0,s+2,t+2)(−1)(−1)δ(i0,j0)>(a0,b0)
+δ(s+2,t+2)>(s,t)

= (−1)(−1)ν(a0,b0,s,t)(−1)ιr(i0,j0)−δ(i0,j0)>(a0,b0)(−1)−ιc(s+2,t+2)−δ(s+2,t+2)>(s,t) .

In other words the summands are equal with opposite sign. Therefore in the double
sum for each double index we find exactly one other double index such that the
summands cancel each other out. Hence we have proved the claim.
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ii) We follow the same strategy as above. We expand the M(α,β)(s,t) minor along
the (u+ 1, v + 1)-th column and we get∑

(α,β)∈P

C((α,β),(s,t)dα−u−1,β−v−1 =
∑

(α,β)∈P

(−1)ν(α,β,s,t)M((α,β),(s,t)dα−u−1,β−v−1

=
∑

(α,β)∈P

(−1)ν(α,β,s,t)
∑

(a,b)∈P
(α,β)6=(a,b)

(−1)ιr(a,b)−δ(a,b)>(α,β)(−1)ιc(u+1,v+1)−δ(u+1,v+1)>(s,t)

·M ((α,β),(s,t))
((a,b),(u+1,v+1))

da−u−1,b−v−1dα−u−1,β−v−1.

Again by comparing ((α0, β0), (a0, b0)) ∈ P×P and ((a0, b0), (α0, β0)) ∈ P×P we see,
the summands only differ by the sign, which is exactly the opposite. And therefore
they canceling each other out.

iii) Note that s = n− 2 and (s, t) = (u+ 1, v + 1) implies u = n− 3. Just by the
Laplace expansion we have∑
(α,β)∈P

∑
(a,b)∈P

C((α,β),(s,t))(−dα−u−1,β−v−1)C((a,b),(u,v))(−da−s−1,b−t−1)

=

 ∑
(α,β)∈P

C((α,β),(u+1,v+1))dα−u−1,β−v−1

 ∑
(a,b)∈P

C((a,b),(u,v))da−(u+1)−1,b−(v+1)−1


= θ

 ∑
(a,b)∈P

C((a,b),(u,v))da−u−2,b−v−2

 .

The case u = n− 2 and (u, v) = (s+ 1, t+ 1) follows analogous.
iv) Note that s ≤ n− 3 and (s, t) = (u+ 1, v + 1) implies u ≤ n− 4. We have by

the Laplace expansion∑
(α,β)∈P

∑
(a,b)∈P

C((α,β),(s,t))(−dα−u−1,β−v−1)C((a,b),(u,v))(−da−s−1,b−t−1)

=

 ∑
(α,β)∈P

C((α,β),(u+1,v+1))dα−u−1,β−v−1

 ∑
(a,b)∈P

C((a,b),(u,v))da−(u+1)−1,b−(v+1)−1


= θ

 ∑
(a,b)∈P

C((a,b),(u,v))da−u−2,b−v−2

 .

But the sum in the right parenthesis, because u ≤ n − 4, is of the form of i) and
therefore vanishes.

The case (u, v) = (s+ 1, t+ 1) follows analogous.
v) This follows by i).
vi) This follows by ii) and iii).
vii) The case (a, b) = (α−1, β) is just the usual Laplace expansion in a complicated

way written down. For the other case we have to show∑
(s,t)∈Q

C((a,b),(s,t))dα−s−1,β−t = 0.
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We follow the same strategy as in i) and expand the minor M((a,b),(s,t)) along the
(α− 1, β)-row. This means we have

M((a,b),(s,t)) =
∑

(u,v)∈Q
(u,v)6=(s,t)

(−1)ιr(α−1,β)−δ(α−1,β)>(a,b)(−1)ιc(u,v)−δ(u,v)>(s,t)

·M ((a,b),(s,t))
((α−1,β),(u,v))

dα−1−u,β−v.

Hence we have∑
(s,t)∈Q

C((a,b),(s,t))dα−s−1,β−t

=
∑

(s,t)∈Q

(−1)ν(a,b,s,t)
∑

(u,v)∈Q
(u,v)6=(s,t)

(−1)ιr(α−1,β)−δ(α−1,β)>(a,b)(−1)ιc(u,v)−δ(u,v)>(s,t)

·M ((a,b),(s,t))
((α−1,β),(u,v))

dα−1−u,β−vdα−s−1,β−t.

We fix again two double indices ((s0, t0), (u0, v0)) ∈ Q and ((u0, v0), (s0, t0)) ∈ Q with
(s0, t0) 6= (u0, v0). The summand of the index ((s0, t0), (u0, v0)) is

(−1)ν(a,b,s0,t0)(−1)ιr(α−1,β)−δ(α−1,β)>(a,b)(−1)ιc(u0,v0)−δ(u0,v0)>(s0,t0)

·M ((a,b),(s0,t0))
((α−1,β),(u0,v0))

dα−1−u0,β−v0dα−s0−1,β−t0

and the summand of the index ((s0, t0), (u0, v0)) is

(−1)ν(a,b,u0,v0)(−1)ιr(α−1,β)−δ(α−1,β)>(a,b)(−1)ιc(s0,t0)−δ(s0,t0)>(u0,v0)

·M ((a,b),(u0,v0))
((α−1,β),(s0,t0))

dα−1−s0,β−t0dα−u0−1,β−v0 .

But the signs are opposite since it differs by the terms (−1)δ(u0,v0)>(s0,t0) and (−1)δ(s0,t0)>(u0,v0) .
Hence the two summands are equal with opposite sign and therefore in the summation
they cancel each other out.

4.3.4 Derivatives of the Theta function

In this subsection we want to compute d2

dt log
(
θ(F t)

)
and reduce the number of terms

in its expression via the burning lemma.
Let F ∈ Jacg−1(Cn) \ Θ and Lt ∈ Jac0(Cn) be a family of invertible sheaves

corresponding to the transition function exp
(
−tηζ

)
for t ∈ C. Then we define F t :=

F ⊗ Lt ∈ Jacg−1(Cn). If M is the matrix corresponding to F with θ(F) = det(M),
then we denote the corresponding matrix of F t with θ

(
F t
)

= det (M(t)) by M(t).
We know already by theorem 10, that the matrix M(t) is obtained by replacing the
elements dkl (even if they are 0) in the matrix M by the dkl(t) below. The dkl(t) are
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polynomials in the variable t and we have

dkl(t) :=

k∑
j=0

(−1)jdk−j,l−j
tj

j!
,

d′kl(t) = −
k∑
j=0

(−1)jdk−j−1,l−j−1
tj

j!
= −dk−1l−1(t),

d′′kl(t) =

k∑
j=0

(−1)jdk−j−2,l−j−2
tj

j!
= dk−2l−2(t).

The matrices M(t),M ′(t),M ′′(t) are then just given by the entries at (i, j) ∈ P
and (s, t) ∈ Q,

(M(t))(i,j)(s,t) = di−s,j−t(t),

(M ′(t))(i,j)(s,t) = −di−s−1,j−t−1(t),

(M ′′(t))(i,j)(s,t) = di−s−2,j−t−2(t).

In the rest of the section we drop the arguments ”(t)” and ”(F t)” in the formulas.

Lemma 17. Let us assume F t does not lie in the theta divisor for all t in a neigh-
borhood of t0 ∈ C. Then, in this neighborhood of t0, we have

3

2

d2

dt2
log (θ) =

3

2

θ′′θ − θ′θ′

θ2
=

3

2

(
tr
(
M−1M ′′

)
− tr

((
M−1M ′

)2))
.

Proof. With the differential rule of the determinant we have

θ′ = tr
(
M−1M ′

)
det(M) = tr

(
M−1M ′

)
θ.

Furthermore we compute

θ′′ =
d2

dt2
det(M) =

d

dt
tr(M−1M ′) det(M)

= tr

(
d

dt
(M−1M ′)

)
det(M) + tr

(
M−1M ′

)
tr
(
M−1M ′

)
det(M)

= tr
(
−M−1M ′M−1M ′ +M−1M ′′)

)
θ + tr

(
M−1M ′

)
tr
(
M−1M ′

)
θ.

Hence we finish the proof with the following computation

θ′′θ − θ′θ′

θ2
= tr(−(M−1M ′)2 +M−1M ′′) + tr(M−1M ′)2 − tr(M−1M ′)2

= tr(−(M−1M ′)2) + tr(M−1M ′′).

Now we compute the terms tr
(
(M−1M ′)2

)
and tr

(
M−1M ′′

)
. We need these

two computations to prove Hitchin’s formula. We will use the burning lemma very
frequently to reduce the number of summands. It is indicated by bl

=.

Theorem 16. We have
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i)

tr
(
M−1M ′′

)
=

1

θ

∑
(s,t)∈Q

n−2≤s≤n−3

 ∑
(i,j)∈P

C((i,j),(s,t))di−s−2,j−t−2

 ,

ii) tr((M−1M ′)2)

=
∑

(s,t)∈Q
s=n−2

∑
(u,v)∈Q
u=n−2

∑
(α,β)∈P

∑
(a,b)∈P

C((α,β),(s,t))

θ
dα−u−1,β−v−1

C((a,b),(u,v))

θ
da−s−1,b−t−1

− 2
θ

θ

∑
(u,v)∈Q
u=n−3

∑
(a,b)∈P

C((a,b),(u,v))

θ
da−u−2,b−v−2

and

iii) tr(M−1M ′′)− tr
(
(M−1M ′)2

)
=

∑
(s,t)∈Q
s=n−2

∑
(i,j)∈P

C((i,j),(s,t))

θ
di−s−2,j−t−2 −

∑
(s,t)∈Q
s=n−3

∑
(i,j)∈P

C((i,j),(s,t))

θ
di−s−2,j−t−2

−
∑

(s,t)∈Q
s=n−2

∑
(u,v)∈Q
u=n−2

∑
(α,β)∈P

∑
(a,b)∈P

C((α,β),(s,t))

θ
dα−u−1,β−v−1)

C((a,b),(u,v))

θ
da−s−1,b−t−1.

Proof. Recall that the inverse is given by M−1 = 1
θ (C((i,j)(s,t)))

T
(i,j)(s,t). Therefore we

have

(M−1M ′)(s,t)(u,v) =
∑

(i,j)∈P

C((i,j),(s,t))

θ
m′(i,j)(u,v) =

∑
(i,j)∈P

C((i,j),(s,t))

θ
(−di−u−1,j−v−1),

(M−1M ′′)(s,t)(u,v) =
∑

(i,j)∈P

C((i,j),(s,t))

θ
m′′(i,j)(u,v) =

∑
(i,j)∈P

C((i,j),(s,t))

θ
di−u−2,j−v−2.

Furthermore we have

(M−1M ′)2
(s,t)(s,t) =

∑
(u,v)∈Q

(M−1M ′)(s,t)(u,v)(M
−1M ′)(u,v)(s,t)

=
∑

(u,v)∈Q

 ∑
(i,j)∈P

C((i,j),(s,t))

θ
(−di−u−1,j−v−1)

 ∑
(i,j)∈P

C((i,j),(u,v))

θ
(−di−s−1,j−t−1)

 .

With the burning lemma, theorem 15, we can compute the traces. We have

tr(M−1M ′′) =
∑

(s,t)∈Q

(M−1M ′′)(s,t)(s,t) =
1

θ

∑
(s,t)∈Q

 ∑
(i,j)∈P

C((i,j),(s,t))di−s−2,j−t−2


bl
=

1

θ

∑
(s,t)∈Q

n−2≤s≤n−3

 ∑
(i,j)∈P

C((i,j),(s,t))di−s−2,j−t−2


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and

tr((M−1M ′)2) =
∑

(s,t)∈Q

(M−1M ′)2
(s,t)(s,t)

=
∑

(s,t)∈Q

∑
(u,v)∈Q

 ∑
(i,j)∈P

C((i,j),(s,t))

θ
(−di−u−1,j−v−1)


·

 ∑
(i,j)∈P

C((i,j),(u,v))

θ
(−di−s−1,j−t−1)


=

∑
(s,t)∈Q

∑
(u,v)∈Q

∑
(α,β)∈P

∑
(a,b)∈P

C((α,β),(s,t))

θ
dα−u−1,β−v−1

C((a,b),(u,v))

θ
da−s−1,b−t−1

bl
=

∑
(s,t)∈Q
s=n−2

∑
(u,v)∈Q
u=n−2

∑
(α,β)∈P

∑
(a,b)∈P

C((α,β),(s,t))

θ
dα−u−1,β−v−1

C((a,b),(u,v))

θ
da−s−1,b−t−1

− 2
θ

θ

∑
(u,v)∈Q
u=n−3

∑
(a,b)∈P

C((a,b),(u,v))

θ
da−u−2,b−v−2.

This shows i) and ii). iii) follows by combining i) and ii).

4.3.5 Statement and Proof of Hitchin’s Formula

Finally we have all necessary lemmas to state and prove Hitchin’s Formula on the
nilpotent, spectral curve (Cn,OCn).

Theorem 17. Let F be any invertible sheaf in the Jacobian Jacg−1(Cn) \Θ. Let Lt

be the family of invertible sheaves corresponding to the transition function exp
(
−tηζ

)
with t ∈ C and let F t := F⊗Lt ∈ Jacg−1(Cn). Let A(ζ)(t) = A0(t)+A1(t)ζ+A2(t)ζ2

be the corresponding regular, nilpotent, matricial polynomial to the invertible sheaf F t
as long as F t /∈ Θ. Then for each t such that F t does not lie in the theta divisor holds
the equation

tr

(
A0(t)A2(t)− 1

4
A1(t)2

)
=

3

2

d2

dt2
log
(
θ(F t)

)
.

In order to prove this theorem we will do some smaller computations and at the end
we patch everything together. When we write sv

= this means "swapping the variable"
and it indicates the commutativitiy A · b · C · d = A · d · C · b.

Lemma 18. Let us fix a q ∈ {1, . . . , n− 2}. Then we have

n∑
r=1

ar1q−1a
q+2
1r−1 =

1

θ

∑
(α,β)∈P

C((α,β),(n−2,q−1))dα−(n−2)−2,β−(q−1)−2

− 1

θ

∑
(a,b)∈P

C((a,b),(n−3,q−2))da−(n−3)−2,b−(q−2)−2.
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Proof. We compute

n∑
r=1

ar1q−1a
q+2
1r−1

=

n∑
r=1

− ∑
(α,β)∈P

C((α,β),(n−2,q−1))

θ
dα−n+1,β−r+1


·

− ∑
(a,b)∈P

C((a,b),(n−2,r−1))

θ
da−n+1,b−(q+2)+1


=

n∑
r=1

∑
(α,β)∈P

∑
(a,b)∈P

C((α,β),(n−2,q−1))

θ
dα−n+1,β−r+1

C((a,b),(n−2,r−1))

θ
da−n+1,b−q−1

sv
=

n∑
r=1

∑
(α,β)∈P

∑
(a,b)∈P

C((α,β),(n−2,q−1))

θ
da−n+1,b−q−1

C((a,b),(n−2,r−1))

θ
dα−n+1,β−r+1

=
∑

(α,β)∈P

∑
(a,b)∈P

C((α,β),(n−2,q−1))

θ
da−n+1,b−q−1

(
n∑
r=1

C((a,b),(n−2,r−1))

θ
dα−n+1,β−r+1

)
bl
=

∑
(α,β)∈P

∑
(a,b)∈P

C((α,β),(n−2,q−1))

θ
da−n+1,b−q−1

(θ
θ
δa=α−1,

b=β
−
∑

(s,t)∈Q
s 6=n−2

C((a,b),(s,t))

θ
dα−s−1,β−t

)

=
∑

(α,β)∈P

∑
(a,b)∈P

C((α,β),(n−2,q−1))

θ
da−n+1,b−q−1

θ

θ
δa=α−1,

b=β

−
∑

(α,β)∈P

∑
(a,b)∈P

(
C((α,β),(n−2,q−1))

θ
da−n+1,b−q−1

) ∑
(s,t)∈Q
s 6=n−2

C((a,b),(s,t))

θ
dα−s−1,β−t


sv
=

∑
(α,β)∈P

C((α,β),(n−2,q−1))

θ
d(α−1)−n+1,β−(q−1)−2

θ

θ

−
∑

(s,t)∈Q
s 6=n−2

∑
(a,b)∈P

(
C((a,b),(s,t))

θ
da−n+1,b−(q−1)−2

) ∑
(α,β)∈P

C((α,β),(n−2,q−1))

θ
dα−s−1,β−t


bl,ii)
=

∑
(α,β)∈P

C((α,β),(n−2,q−1))

θ
dα−(n−2)−2,β−(q−1)−2

θ

θ

−
∑

(a,b)∈P

∑
(α,β)∈P

C((a,b),(n−3,q−2))

θ
da−n+1,b−(q−1)−2

C((α,β),(n−2,q−1))

θ
dα−(n−3)−1,β−(q−2)

bl,iii)
=

∑
(α,β)∈P

C((α,β),(n−2,q−1))1

θ
dα−(n−2)−2,β−(q−1)−2

θ

θ

−
∑

(a,b)∈P

C((a,b),(n−3,q−2))

θ
da−(n−3)−2,b−(q−2)−2

θ

θ
.
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Lemma 19. For all r, q ∈ {1, ..., n− 1} we have

ar+1
1q−1a

q+1
1r−1

=
∑

(s,t)∈Q
s=n−2
t=q−1

∑
(u,v)∈Q
u=n−2
v=r−1

∑
(α,β)∈P

∑
(a,b)∈P

C((α,β),(s,t))

θ
dα−u−1,β−v−1

C((a,b),(u,v))

θ
da−s−1,b−s−1.

Proof. We compute

ar+1
1q−1a

q+1
1r−1

=
( ∑

(α,β)∈P

C((α,β),(n−2,q−1))

θ
dα−n+1,β−(r+1)+1

)( ∑
(a,b)∈P

C((a,b),(n−2,r−1))

θ
da−n+1,b−(q+1)+1

)
=

∑
(α,β)∈P

∑
(a,b)∈P

C((α,β),(n−2,q−1))

θ
dα−n+1,β−(r+1)+1

C((a,b),(n−2,r−1))

θ
da−n+1,b−(q+1)+1

=
∑

(s,t)∈Q
s=n−2
t=q−1

∑
(u,v)∈Q
u=n−2
v=r−1

∑
(α,β)∈P

∑
(a,b)∈P

C((α,β),(s,t))

θ
dα−u−1,β−v−1

C((a,b),(u,v))

θ
da−s−1,b−t−1.

Now we have everything necessary to prove theorem 17.

Proof. From lemma 16 we know

tr

(
A0A2 −

1

4
A2

1

)
=

3

2

 n∑
t=1

n−2∑
q=1

at1q−1a
q+2
1t−1 −

n−1∑
r=1

n−1∑
q=1

ar+1
1q−1a

q+1
1r−1

 .

By the previous two lemmas 18 and 19 we have

n∑
r=1

n−2∑
q=1

ar1q−1a
q+2
1r−1 −

n−1∑
r=1

n−1∑
q=1

ar+1
1q−1a

q+1
1r−1

=

n−2∑
q=1

(1

θ

∑
(α,β)∈P

C((α,β),(n−2,q−1))dα−(n−2)−2,β−(q−1)−2

− 1

θ

∑
(a,b)∈P

C((a,b),(n−3,q−2))da−(n−3)−2,b−(q−2)−2

)

−
n−1∑
r=1

n−1∑
q=1

∑
(α,β)∈P

∑
(a,b)∈P

C((α,β),(n−2,q−1))

θ
dα−(n−2)−1,β−(r−1)−1

·
C((a,b),(n−2,r−1))

θ
da−(n−2)−1,b−(q−1)−1

=
∑

(s,t)∈Q
s=n−2

∑
(i,j)∈P

C((i,j),(s,t))

θ
di−s−2,j−t−2 −

∑
(s,t)∈Q
s=n−3

∑
(i,j)∈P

C((i,j),(s,t))

θ
di−s−2,j−t−2

−
∑

(s,t)∈Q
s=n−2

∑
(u,v)∈Q
u=n−2

∑
(α,β)∈P

∑
(a,b)∈P

C((α,β),(s,t))

θ
dα−u−1,β−v−1

C((a,b),(u,v))

θ
da−s−1,b−t−1.
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Finally by theorem 16 and lemma 17 this is equal to

tr(M−1M ′′)− tr
(
(M−1M ′)2

)
=

d2

dt2
log
(
θ(F t)

)
.

This proves the theorem 17 with Hitchin’s formula.

Two corollaries of the proof of theorem 17 and lemma 15 are the following.

Corollary 6. As long as the invertible sheaf F t does not lie in the theta divisor we
have the formula

tr (A0(t)A2(t)) =
d2

dt2
log(θ(F t)).

Proof. Via lemma 15 and lemma 16 we see, that the difference of the two equations,
one with the term tr

(
A0A2 − 1

4A
2
1

)
and the other with the term tr (A0A2), is only

given by the factor 3
2 . Then we use the proof of Hitchin’s formula to get equality with

the right-hand side.

Corollary 7. Let X ∈ Oreg (sln(C)) and let (T1, T2, T3) ∈ M(0, σ) be the element
corresponding to X via Kronheimer’s identification. Let

A(ζ, t) = (T2(−t) + iT3(−t)) + (2iT1(−t)) ζ + (T2(−t)− iT3(−t)) ζ2

and let F−t ∈ Jacg−1(Cn) \ Θ be the corresponding invertible sheaf to the regular,
nilpotent, matricial polynomial A(ζ,−t). Then the value of the Kähler potential at X
is

K(X) = −
∫ 0

−∞
tr(T2(t)2 + T3(t)2)dt = −

∫ 0

−∞
tr(A0(−t)A2(−t))dt

= −
∫ 0

−∞

d2

dt2
log(θ(F−t))dt = −[

d

dt
log(θ(F−t))]0−∞dt

=
θ′(F0)

θ(F0)
.

Proof. The first equality is equation (2.2). Then we just integrate the equality of
corollary 6. Note that the improper integral is well-defined because the theta function
is of polynomial type in the variable t
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Chapter 5

Real Sheaves and Special Solutions
of Nahm’s Equations

5.1 Real Sheaves

Elements of the Kronheimer moduli space, triples (T1, T2, T3) with

Ti ∈ C∞ ((−∞, 0], su(n))

solving Nahm’s equations, induce regular, nilpotent, matricial polynomials of the form

A(ζ) :=

A0:=︷ ︸︸ ︷
(T2(0) + iT3(0)) +

A1:=︷ ︸︸ ︷
2iT1(0) ζ +

A2:=︷ ︸︸ ︷
(T2(0)− iT3(0)) ζ2,

which satisfy AT0 = −A2, A
T
1 = A1. This property is called the reality condition. The

corresponding invertible sheaf F ∈ Jacg−1(Cn) \ Θ satisfies such a reality condition
too, see for example [Hit83] or [Bie07]. In this section we want to characterize such real
sheaves on the nilpotent, spectral curve and prove their theta function is real-valued.

5.1.1 Reality Condition

In this subsection we recall the definitions of a real sheaf, see [Hit83] or [Bie07]. At
the end we apply these definitions to the nilpotent, spectral curve. The antipodal
map on CP1 induces on the total space of OCP1(2) an anti-holomorphic involution,
called a real structure, given by the map

τ : |OCP1(2)| −→ |OCP1(2)|[
(ζ̃, η̃), (ζ, η)

]
7−→

[(
−1

ζ̃
,− η̃

ζ̃
2

)
,

(
−1

ζ
,− η

ζ
2

)]
.

Clearly it satisfies the involutive property τ2 = id and it is anti-holomorphic. The
nilpotent, spectral curve Cn is invariant under this real structure. Note that τ |U0(U0) =
U1 and τ |U1(U1) = U0, where U0 and U1 are the open sets given by the standard open
cover of Cn and hence τ |U1∩U0(U1 ∩ U0) = U0 ∩ U1, see subsection 3.1.2.

This real structure τ induces a real structure σ on the Jacobian as follows. Let
g10(ζ, η) be a transition function of an invertible sheaf E of an arbitrary degree. A
local section (s1, s0) ∈ E(U) on an open set U has to satisfy the equation s1(1

ζ ,
η
ζ2

) =

g10(ζ, η)s0(ζ, η) on U10. We get a new transition function defined by

g̃01

(
1

ζ
,
η

ζ2

)
:= g10 (τ(ζ, η)),
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where the local sections (s̃1, s̃0) satisfy g̃01(1
ζ ,

η
ζ2

)s̃1(1
ζ ,

η
ζ2

) = s̃0(ζ, η) on U10. We
denote the invertible sheaf given by the new transition function g̃01 by σ(E)(= τ∗E)
and we get a map

σ : Pic(Cn) −→ Pic(Cn)

E 7−→ σ(E).

In particular, for a fixed k ∈ Z, the invertible sheaf OCn(k) with transition function
g10 (ζ, η) = 1

ζk
induces the transition function g̃01

(
1
ζ ,

η
ζ2

)
= ζk. In other words we

have σ(OCn(k)) ∼= OCn(k) and hence the real structure preserves the sheaves OCn(k).
Therefore it preserves the degree of the sheaves.

Let E be an arbitrary invertible sheaf in the Jacobian and let (s1, s0) ∈ E(U) be a
local section on an open set U ⊆ Cn. Then the real structure induces a local section
of σ(E) on τ(U) given by (

τ∗s0, τ∗s1

)
∈ σ(E)(τ(U)).

So if the sheaf E has no non-trivial, global sections, then a σ(E) has no non-trivial,
global sections too and therefore the real structure preserves the Theta divisor in
Jacg−1(Cn). The restriction of σ gives us a map

σ|Jacg−1(Cn)\Θ : Jacg−1(Cn) \Θ −→ Jacg−1(Cn) \Θ.

The next definition is from [Bie07].

Definition 6. We call an invertible sheaf E of degree kn real, if we have as OCn-
modules

E ∼= σ(E)v ⊗OCn OCn(2k).

We characterize now the real sheaves of degree 0 on the nilpotent, spectral curve.

Lemma 20. An invertible sheaf L of degree 0 on the nilpotent, spectral curve, given
by the transition function g10(ζ, η) =

∑n−1
l=0

∑2l−1
k=1 dkl

ηl

ζk
, is real if and only if the

coefficients dkl satisfy the equation

dkl = (−1)k+ld2l−k,l.

Proof. Invertible sheaves of degree 0 are real if and only if L ∼= σ(L)v. This is satisfied
if and only if their transition functions coincide (up to a multiplication by a non-zero
constant). The transition function of σ(L) is given by

g̃01

(
1

ζ
,
η

ζ2

)
= g10(τ(ζ, η)) =

n−1∑
l=0

2l−1∑
k=1

dkl

(− η

ζ
2 )l

(−1
ζ
)k

=
n−1∑
l=0

2l−1∑
k=1

(−1)l+kdkl
1

ζ2l−k η
l.

The local sections of σ(L) satisfy g̃01(1
ζ ,

η
ζ2

)s1(1
ζ ,

η
ζ2

) = s0(ζ, η) on U10 and hence the
local sections (s̃1, s̃0) of its dual satisfy s̃1(1

ζ ,
η
ζ2

) = g̃01(ζ, η)s̃0(ζ, η) U10. Hence we
can equate the coefficients of the transition function g10 and g̃01. This gives us our
desired result.

Because solutions of Nahm’s equations of the Kronheimer moduli space induce
real sheaves for all t ∈ (−∞, 0] we are interested in flows of real sheaves.
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Lemma 21. Let F ∈ Jacg−1(Cn) and Lt be the invertible sheaf of degree 0 with
transition function exp

(
−tηζ

)
for a t ∈ C. Let F t := F ⊗ Lt. If F is a real sheaf,

then F t is real for all t ∈ R.

Proof. The coefficients of the transition functions of F t are given by

dkl(t) =

k∑
i=0

(−1)idk−i,l−i
ti

i!
.

By using Lemma 20 we get

dkl(t) =
k∑
i=0

(−1)idk−i,l−i
ti

i!
=

k∑
i=0

(−1)k−i+l−id2(l−i)−(k−i),l−i
ti

i!

= (−1)k+l
k∑
i=0

d2l−k−i,l−i
ti

i!
= (−1)k+ld2l−k,l(t).

We used here t = t, since t ∈ R.

5.1.2 Theta Function of Real Sheaves

In this subsection we study the theta function of real sheaves. We have already seen,
that a Kähler potential on the regular, nilpotent, adjoint orbit is given by K(X) =
θ′(F0)
θ(F0)

, where F t is the flow of invertible sheaves induced by elements of the Kronheimer

moduli space. A Kähler potential is a real function and hence θ′(F0)
θ(F0)

∈ R. We will
show, that the theta function of any real sheaf is real-valued.

Before we state the result of the theta function of arbitrary real sheaves, we start
with an auxillary lemma. The theta function is a determinant of a matrix M with a
certain structure. If we Laplace expand the matrix M we can write

θ = det (M) = db00 det
(
M̃
)

for some b ∈ N and M̃ some submatrix of M . The remaining matrix M̃ is kind of
persymmetric, which we will use later and which is the reason why we wanted to
exclude the factor db00. Because the theta function is a summation of monomials over
regular index sets, every regular set has to have a subset B corresponding to the factor
db00. First we define now this set B.

Definition 7. Let u ∈ N, n ≥ 2. We define

B−1 := {((i, j), (s, t)) ∈ P ×Q : j = t = n− 1, i = s, 1 ≤ s ≤ n− 2} ,
Bu := {((i, j), (s, t)) ∈ P ×Q : i = s, j = t = n− 2− u, 1 ≤ s ≤ n− 3− 2u} .
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The index set B is defined by

B :=B−1 ∪
bn
2
c−2⋃

u=0

Bu

=
{

((i, j), (s, t)) ∈ P ×Q : j = t = n− 1, i = s, 1 ≤ s ≤ n− 2
}

∪
bn
2
c−2⋃

u=0

{
((i, j), (s, t)) ∈ P ×Q : i = s, j = t = n− 2− u, 1 ≤ s ≤ n− 3− 2u

}
.

Lemma 22. For every regular set D ∈ R(P ×Q) we have B ⊂ D. In particular we
have a decomposition of the regular set

D = B ∪ DB.

Proof. Let us take an arbitrary regular set D and its elements are of the form

((i, j), (s, t)) ∈ P ×Q.

First let t = n − 1. The columns (s, n − 1) of M contain the elements di−s,j−(n−1).
But, because 1 ≤ j ≤ n− 1, this is only possible at j = n− 1. Because t− j = 0 we
need to have i − s = 0 too, i.e. we have a d00 at this position. This is exactly B−1.
In other words every regular set contains this set. If n ≤ 3 we are already done.

Now we assume n ≥ 4 and we use induction over u. The base case is u = 0, i.e.
we will show B0 ⊂ D for all regular sets D. If D is an arbitrary regular set, we are
considering the indices with t = n−2. There are two possibilities. The first j = n−2
and the second j = n− 1. In the case j = n− 1 we have j − t = n− 1− (n− 2) = 1
and therefore i − s = 1 too. If 1 ≤ s ≤ n − 3 then 2 ≤ i ≤ n − 2. But the index
(i, n−1) is already in B−1. Because every index appears exactly one time in a regular
set, this possibility cancels. It only remains j = t = n−2 with j− t = 0 and therefore
i− s = 0. This shows B0 ⊂ D.

The induction assumption is
⋃l−1
u=0Bu ⊂ D for all regular sets D. In the induction

step we have to show, that Bl is a subset too. Observe that if bn2 c − 2 ≤ l, then Bl is
empty (there is no s). This means we are considering indices with t = n − 2 − l and
1 ≤ s ≤ n− 3− 2l.

If j = n − 2 − l, then j − t = 0 and we have 1 ≤ i = s ≤ n − 3 − 2l. This is the
index in Bl. Therefore we have to show, that for all other j the possible indices (i, j)
are already in a Bu for −1 ≤ u ≤ l − 1 .

Now we consider the case j = n − 1 and we fix an s. Because j − t = n − 1 −
(n− 2− l) = l + 1 we have 1 ≤ i− s ≤ 2(l + 1)− 1 = 2l + 1. Hence i ≤ 2l + 1 + s ≤
2l + 1 + n− 3− 2l = n− 2. But these indices (i, n− 1) are already in B−1.

The last case is to consider if n−2−l+1 ≤ j ≤ n−2. Hence 1 ≤ i−s ≤ 2(j−t)−1
and hence i ≤ 2j−2(n−2−l)−1+s ≤ 2j−2n+3+2l+n−3−2l = 2j−n. Now we take
Bu with u = n−2−j. Observe that if j = n−2, then u = 0 and if j = n−2−(l−1) then
u = l−1. By induction assumption we know such Bu are subsets of all regular sets D.
Because i = s in Bu we have 1 ≤ i ≤ n− 3− 2u = n− 3− 2(n− 2− j) = 2j− (n− 1).
This means all the above calculated indices (i, j) are allready in Bu, with u = n−2−j.

Hence the only indices remaining are given by Bl and therefore Bl ⊂ D for all
regular sets D.
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Theorem 18. If an invertible sheaf F ∈ Jacg−1(Cn) is real, then the theta function
is real-valued, i.e.

θ(F) ∈ R.

Proof. Recall that the theta function is given by a sum of monomials comming from
some regular sets. Let us denote Mon(D) := sign(D)

∏
((i,j),(s,t))∈P×Q di−s,j−t the

monomial of the regular set D ∈ R(P × Q). We cannot expect, that all monomials
are already real. We will show, that for every regular set D we can find another,
possibly the same, regular set D such that Mon(D) = Mon(D). If D = D the
monomial is already real. If D 6= D then we have

Mon(D) +Mon(D) = Mon(D) +Mon(D) ∈ R.

By lemma 22 we have a decomposition D = B ∪ DB. Hence for a regular set D
we define the following map:

β : DB → P ×Q
((i, j), (s, t)) 7→ ((̃i, j̃), (s̃, t̃)),

where

ĩ = n− 1− 2t+ s, j̃ = n− 1− t,
s̃ = n− 1− 2j + i, t̃ = n− 1− j.

First we have to check, that this map is well-defined, i.e. β(DB) ⊂ P ×Q.
1 ≤ ĩ ≤ 2j̃−1 : This inequality is equivalent to 1 ≤ n−1−2t+s and n−1−2t+s ≤

2(n− 1− t)− 1 = 2(n− 1)− 2t− 1. And this again is equivalent to 2t− s ≤ n− 2 and
s ≤ n − 2. The second inequality holds obviously. To show the first, we note that if
((i, j), (s, t)) ∈ DB, then t 6= n − 1 and if t = n − 2 − u we have n − 3 − 2u + 1 ≤ s.
Therefore with a t = n−2−u we compute 2t−s ≤ 2(n−2−u)−(n−3−2u+1) = n−2.
This is exactly the first inequality.

1 ≤ j̃ ≤ n − 1 : This means 1 ≤ n − 1 − t ≤ n − 1. The second inequalitiy is
immediate. The first follows from the fact, that t = n − 1 holds if and only if the
element lies in B.

1 ≤ s̃ ≤ n−2, or 0 = s̃ = t̃ : First we want to show 1 ≤ n−1−2j+i ≤ n−2, what is
equivalent to 1 ≤ 2j−i ≤ n−2. The inequality 1 ≤ 2j−i is immediate. Because of the
definition of B (the index is in DB = D\B) we see, if we have the case j = n−1, then
we have n− 1 ≤ i and by the definition of P we have i ≤ 2(n− 1)− 1. The inequality
2(n−1)−i ≤ n−2 holds for all n ≤ i and the only remaining index is i = n−1. In this
case we have i = j = n−1 and it is clear by definition, that we have 0 = s̃ = t̃. In the
case j = n−2−u, by the definition of B, we have n−3−2u+1 ≤ i ≤ 2(n−2−u)−1.
But then we have 2j − i ≤ 2(n− 2− u)− (n− 3− 2u+ 1) = n− 2. Therefore we are
done.

0 ≤ t̃ ≤ n − 1 : This is equivalent to 0 ≤ n − 1 − j ≤ n − 1 and this is again
equivalent to 0 ≤ j ≤ n− 1. This is always satisfied.

Because we have

β(β((i, j), (s, t))) = β((n− 1− 2t+ s, n− 1− t), (n− 1− 2j + i, n− 1− j))
= ((n− 1− 2(n− 1− j) + (n− 1− 2j + i), n− 1− (n− 1− j)),

(n− 1− 2(n− 1− t) + (n− 1− 2t+ s), n− 1− (n− 1− t))
= ((i, j), (s, t)),
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the map β is bijective on its image. Now we define

DB := β(DB), D := B ∪ DB.

Because β is bijective, the set D is regular again.
We show now, if D = D then the monomial Mon(D) is already real. The equality

D = D implies

β((i, j), (s, t)) = ((n− 1− 2t+ s, n− 1− t), (n− 1− 2j + i, n− 1− j)) ∈ D.

If ((i, j), (s, t)) = β((i, j), (s, t)) we get i− s = n− 1− 2t and i− s = −(n− 1) + 2j.
The sum of these equations gives k = i − s = j − t = l and by the reality condition,
lemma 20, dll is real. If ((i, j), (s, t)) 6= β((i, j), (s, t)) in the monomial Mon(D) we
have both factors di−s,j−t and dn−1−2t+s−(n−1−2j+i),n−1−t−(n−1−j) = d2(j−t)−(i−s),j−t.
But by the reality condition we have

di−s,j−td2(j−t)−(i−s),j−t = (−1)i−s+j−td2(j−t)−(i−s),j−td2(j−t)−(i−s),j−t ∈ R.

Therefore if D = D the monomial Mon(D) consists only of factors of real numbers
or pairs of complex numbers and its complex conjugate as above and hence it is a
real-valued monomial.

We show now sign(D) = sign(D). Recall sign(D) =
∏

(i1,j1)<(i2,j2)
(s2,t2)−(s1,t1)
(i2,j2)−(i1,j1) .

We compute

(̃i2, j̃2)−P (̃i1, j̃1) = (n− 1− 2t2 + s2, n− 1− t2)−P (n− 1− 2t1 + s1, n− 1− t1)

=

{
−2t2 + 2t1 + s2 − s1, t1 = t2

t1 − t2, t1 6= t2

=

{
s2 − s1, t1 = t2

t1 − t2, t1 6= t2

= (−1) ((s2, t2)−Q (s1, t1)) .

and

(s̃2, t̃2)−Q (s̃1, t̃1) = (n− 1− 2j2 + i2, n− 1− j2)−Q (n− 1− 2j1 + i1, n− 1− j1)

=

{
2j2 − 2j1 + i1 − i2, j1 = j2

n− 1− j2 − (n− 1− j1), j1 6= j2

=

{
i1 − i2, j1 = j2

j1 − j2, j1 6= j2

= (−1) ((i2, j2)−P (i1, j1)) .

Because

(s2, t2)−Q (s1, t1)

(i2, j2)−P (i1, j1)
=

(−1)((̃i2, j̃2)−P (̃i1, j̃1))

(−1)((s̃2, t̃2)−Q (s̃1, t̃1))
=

(̃i2, j̃2)−P (̃i1, j̃1)

(s̃2, t̃2)−Q (s̃1, t̃1))

we see

sign(D) = sign(B)sign(DB) = sign(B)
1

sign(DB)
= sign(B)sign(DB) = sign(D).
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Finally if we take a regular set D and its monomial Mon(D) we get, with lemma
20 and lemma 22,

Mon(D) =
∏

((i,j),(s,t))∈D

di−s,j−t =
∏

((i,j),(s,t))∈B

di−s,j−t
∏

((i,j),(s,t))∈DB
di−s,j−t

=
∏

((i,j),(s,t))∈B

di−s,j−t
∏

((i,j),(s,t))∈DB
(−1)i−s+j−td2(j−t)−(i−s),j−t

=
∏

((i,j),(s,t))∈B

di−s,j−t
∏

((i,j),(s,t))∈DB
(−1)2(i−s)

∏
((i,j),(s,t))∈DB

d2(j−t)−(i−s),j−t

=
∏

((i,j),(s,t))∈B

di−s,j−t
∏

((i,j),(s,t))∈DB
d2(j−t)−(i−s),j−t

=
∏

((i,j),(s,t))∈B

di−s,j−t
∏

((̃i,j̃),(s̃,t̃))∈DB

dĩ−s̃,j̃−t̃

= Mon(D).

The equality ∏
((i,j),(s,t))∈DB

(−1)i−s+j−t =
∏

((i,j),(s,t))∈DB
(−1)2(i−s)

follows by regularity of the set DB. This shows the theorem.

5.2 Special Solutions of Nahm’s Equations

In order to produce explicit solutions of Nahm’s equations for a flow F t ∈ Jacg−1(Cn)\
Θ Hitchin defined in [Hit83] a covariant derivate on the rank n bundle

Et := Ȟ0
(
Cn,F t(1)

)
over the interval (−∞, 0] by

∇t :=
d

dt
+

(
1

2
A1(t) +A2(t)ζ

)
,

where A(t)(ζ) is the corresponding matricial polynomial to the invertible sheaf F t.
Then by taking a covariantly constant basis of Et with respect to ∇t on (−∞, 0]
he trivialized the vector bundle Et. He showed, if Q(t) is the corresponding basis
tranformation matrix, then the triple

(T1(t), T2(t), T3(t)) :=(
i

2
Q(t)−1A1(t)Q(t),

1

2
Q(t)−1(A0(t) +A2(t))Q(t),

−i
2
Q(t)−1(A0(t)−A2(t))Q(t))

)
satisfies Nahm’s equations. Moreover he showed, if F is a real sheaf such that
Hitchin’s Hermitian form on Ȟ0

(
Cn,F t(1)

)
is positive definite, see [Hit83], then we

have Ti(t)
T

= −Ti(t) and hence the solutions of Nahm’s equations are su(n)-valued.
To avoid the difficulties of finding a covariantly constant basis and computing

Hitchin’s Hermitian form to characterize those sheaves with definite Hermitian form
we will restrict ourselves to a very special case.
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5.2.1 Matricial Polynomials in "Jordan"-form

Theorem 19. Let F ∈ Jacg−1(Cn)\Θ be an invertible sheaf on the nilpotent, spectral
curve of degree g − 1 not lying in the Theta divisor. Let dkl ∈ C be the coefficients
of the transition function of the sheaf F and let A(ζ) be the corresponding matricial
polynomial of theorem 14. Let us suppose dkl = 0 for all k 6= l. Then A1 is a diagonal
matrix of the form

A1 =



−a2
10 0 0 · · · · · · 0

0 a2
10 − a3

11 0
. . .

...

0 0 a3
11 − a4

12
. . .

...
...

...
. . . . . . . . .

...
...

. . . an−1
1n−3 − an1n−2 0

0 · · · · · · · · · 0 an1n−2


and A2 is of "Jordan"-form, i.e.

A2 =



0 α0 0 · · · · · · 0

0 0 α1
. . .

...
...

...
. . . . . . . . .

...
...

. . . αn−3 0
... 0 αn−2

0 · · · · · · · · · 0 0


,

where αs := as+2
2s−1 − a

s+3
2s − ws+1,s+2 + vs+1,s+2, with s ∈ {0, . . . , n− 2}.

We suspect, that the assumption dkl = 0 for all k 6= l ensures for real sheaves, that
the basis of theorem 7 is already orthogonal with respect to Hitchin’s inner product.
First we need to study cofactors of the matrix M .

Lemma 23. Let F be an invertible sheaf as in theorem 19. Let (i, j) ∈ P , l ∈
{0, . . . , n− 1} and 0 ≤ k ≤ 2l − 1. If i− (n− 1− k) 6= j − l holds, then the cofactor
C((i,j),(n−1−k,l)) = 0 vanishes.

Proof. Let us fix an index (i0, j0) ∈ P and let us define

K(i0,j0) : = {(k, l) ∈ Q : i0 − k = j0 − l}
= {(i0 − τ, j0 − τ) ∈ Q : τ ∈ {0, . . . , n− 1}} .

The indices in K(i0,j0) indicate, if at ((i0, j0), (k, l)) is a variable of the form dττ , but it
can be zero if the variable is for example d−1,−1. For each such (i0− τ, j0− τ)-column
we define

I(i0−τ,j0−τ) : = {(i, j) ∈ P : i− (i0 − τ) = j − (j0 − τ)}
= {(i0 − η, j0 − η) ∈ P : η ∈ {0, . . . , n− 1}} .

These indices indicate, if at ((i, j), (i0− τ, j0− τ)) is a variable of the form dηη. Since
the elements ofK(i0,j0) are of the form (k, l) = (i0−τ, j0−τ), τ ∈ {0, . . . , n−1} and the
elements of I(i0−τ,j0−τ) are of the form (i, j) = ((i0−τ)+η, (j0−τ)+η) = (i0−τ̃ , j0−τ̃),
τ̃ ∈ {0, . . . , n−1}, the number of indices inK(i0,j0) is the same as the number of indices
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in I(i0−τ,j0−τ) for all τ . Let us take now the matrix M and cancel the (i0, j0)-row
and the (n − 1 − k0, l0)-column, where (k0, l0) satisfies i0 − (n − 1 − k0) 6= j0 − l0.
Canceling means, we remove an index of I(i0−τ,j0−τ) for each τ ∈ {0, . . . , n− 1}. But
because we have i0− (n− 1− k0) 6= j0− l0, we do not remove an index of K(i0,j0). In
other words in the matrix without the (i0, j0)-row and the (n− 1− k0, l0)-column we
can find |K(i0,j0)|-vectors with

(
|K(i0,j0)| − 1

)
-rows with possibly non-zero entry. This

implies linear dependence of these vectors and hence the minor as well as the cofactor
C((i0,j0),(n−1−k0,l0)) is zero. |K(i0,j0)| means the number of elements in the finite set
K(i0,j0).

Now we prove theorem 19.

Proof. Let us consider the coefficients of the basis of theorem 7

aτkl = −1

θ

∑
(i,j)∈P
bn
2
c≤j

C((i,j),(n−1−k,l))di−(n−1),j−(τ−1).

A summand vanishes if and only if C((i,j),(n−1−k,l)) = 0 or di−(n−1),j−(τ−1) = 0. If
i− (n− 1) 6= j − (τ − 1) the second equation is satisfied and we get a first condition,
that a summand does not vanish, namely

i− (n− 1) = j − (τ − 1)

needs to be satisfied. By lemma 23 we get a second condition,

i− (n− 1− k) = j − l.

Because of theorem 14 we are only interested in k = 1 and k = 2. With these two
conditions the coefficient aτ1l is possibly non-zero if l = τ − 2 and the coefficient aτ2l is
possibly non-zero if l = τ − 3. Hence the only possibly non-zero coefficients are of the
form

as+2
1s , as+3

2s ,

where s ∈ {0, . . . , n− 2}. This implies that the expressions wst =
∑n−2

j=0 a
j+2
1s−1a

t
1j and

vst =
∑n−1

j=0 a
j+1
1s−1a

t+1
1j are only possibly non-zero if t = s+ 1. Moreover we have

wss+1 = as+1
1s−1a

s+1
1s−1, vss+1 = as+1

1s−1a
s+2
1s .



106 Chapter 5. Real Sheaves and Special Solutions of Nahm’s Equations

In other words the matrices V = (vst)st and W = (wst)st are of "Jordan"-form. If we
consider A1, by canceling out every aτ1l without l = τ − 2, we get

A1 =


−a2

10 −a3
10 · · · −an10 0

a1
10 − a2

11 a2
10 − a3

11 · · · an−1
10 − an11 an10

...
...

. . .
...

...
a1

1n−2 − a2
1n−1 a2

1n−2 − a3
1n−1 · · · an−1

1n−2 − an1n−1 an1n−2



=



−a2
10 0 0 · · · · · · 0

0 a2
10 − a3

11 0
. . .

...

0 0 a3
11 − a4

12 . . .
...

...
. . . . . . . . . . . .

...
...

. . . an−1
1n−3 − an1n−2 0

0 · · · · · · · · · 0 an1n−2


,

which is of course a diagonal matrix. If we consider the part of A2 with the coefficients
aτ2l, , by canceling out every aτ2l without l = τ − 3, we get

−a2
20 −a3

20 · · · −an20 0

a1
20 − a2

21 a2
20 − a3

21 · · · an−1
20 − an21 an20

...
...

. . .
...

...
a1

2n−2 − a2
2n−1 a2

2n−2 − a3
2n−1 · · · an−1

2n−2 − an2n−1 an2n−2



=



0 −a3
20 0 · · · · · · 0

0 0 a3
20 − a4

21
. . .

...
...

...
. . . . . . . . .

...
...

. . . an−1
2n−4 − an2n−3 0

... 0 an2n−3

0 · · · · · · · · · 0 0


.

Putting these and the matrices V,W together, we get

A2 =



0 −a320 − w12 + v12 0 · · · · · · 0

0 0 a320 − a
4
21 − w23 + v23

. . .
.
.
.

.

.

.
.
.
.

. . .
. . .

. . .
.
.
.

.

.

.
. . . an−1

2n−4 − a
n
2n−3 − wn−2n−1 + vn−2n−1 0

.

.

. 0 an2n−3 − wn−1n

0 · · · · · · · · · 0 0


,

which is of "Jordan"-form.

5.2.2 Explicit Description of Special Solutions of Nahm’s Equations

In this subsection we are still considering only sheaves F ∈ Jacg−1(Cn) \ Θ, where
the coefficients of its transition function satisfy dkl = 0 for all k 6= l. Because we want
to describe explicit solutions of Nahm’s equations we need a nicely choosen basis of
Ȟ0
(
Cn,F t(1)

)
. Because of theorem 19 the condition dkl = 0 for all k 6= l says, that

the basis of theorem 7 is already in such a nice form. The ”Jordan”-form of the
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regular, nilpotent, matricial polynomial corresponding to F simplifies the problem
significantly and we do not need to compute Hitchin’s Hermitian form of [Hit83].

We will consider only real sheaves, such that the obtained solutions of Nahm’s
equations are su(n)-valued. By lemma 20 the coefficients dll of the transition function
of F are all real numbers and hence all coefficients of the basis aτkl and all αs are real
too.

If we fix an open interval (t0, t1) ⊆ R such that F t = F ⊗Lt ∈ Jacg−1(Cn) \Θ for
all t ∈ (t0, t1) we know by lemma 21, that all sheaves F t are real and of the special
case dkl(t) = 0 for all k 6= l and t ∈ (t0, t1). For such an open interval the coefficients
aτkl(t) and αs(t) are polynomials in t and so smooth real-valued functions on (t0, t1).
Since the matricial polynomial is regular we have αs(t) 6= 0. Let us suppose, that the
αs(t) = as+2

2s−1(t) − as+3
2s (t) − ws+1,s+2(t) + vs+1,s+2(t) are negative for all t ∈ (t0, t1)

and s ∈ {0, . . . , n− 2}, i.e. αs(t) < 0. We write αs(t) = i2|αs(t)| and we define

Pµ(t) :=

√√√√ n−2∏
s=µ−1

(i2 |αs(t)|), Pn(t) := 1

for µ ∈ {1, . . . , n− 1}. All Pµ(t) are non-zero too and we define an invertible matrix

P (t) :=


P1(t) 0 · · · 0

0 P2(t)
. . .

...
...

. . . . . .
...

0 · · · · · · Pn(t)

 .

We have

Pµ(t)

Pµ+1(t)
=

√
i2(n−2−(µ−1))

(∏n−2
s=µ−1 |αs(t)|

)
√
i2(n−2−µ)

(∏n−2
s=µ |αs(t)|

) = i
√
|αµ−1(t)|

for all µ ∈ {1, . . . , n− 1}. We conjugate the regular, nilpotent, matrical polynomial
A(t, ζ) = A0(t) +A1(t)ζ +A2(t)ζ2 of theorem 19 by the matrix P (t),

Â0(t) := P (t)−1A0(t)P (t), Â1(t) := P (t)−1A1(t)P (t), Â2(t) := P (t)−1A2(t)P (t),
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and we get the matrices

Â0(t) =



0 0 0 · · · · · · 0

i
√
|α0(t)| 0 0

. . .
...

0 i
√
|α1(t)| 0

. . .
...

...
. . . . . . . . . . . .

...
...

. . . i
√
|αn−3(t)| 0 0

0 · · · · · · 0 i
√
|αn−2(t)| 0


,

Â1(t) =



−a2
10(t) 0 0 · · · · · · 0

0 a2
10(t)− a3

11(t) 0
...

0 0 a3
11(t)− a4

12(t)
. . .

...
...

...
. . . . . . . . .

...
...

. . . an−1
1n−3(t)− an1n−2(t) 0

0 · · · · · · · · · 0 an1n−2(t)


,

Â2(t) =



0 i
√
|α0(t)| 0 · · · · · · 0

0 0 i
√
|α1(t)| . . .

...
...

. . . . . . . . .
...

...
. . . i

√
|αn−3(t)| 0

... 0 i
√
|αn−2(t)|

0 · · · · · · · · · 0 0


.

We see immediatly the properties Â0(t)
T

= −Â2(t) and Â1(t)
T

= Â1(t) as we wished
to have. We want to remark, that the basis transformation on Ȟ0

(
Cn,F t(1)

)
given

by the matrix P (t) is not a normalization with respect to Hitchin’s Hermitian form
of the choosen (orthogonal) basis of theorem 7 because Pn = 1 and hence it is not
covariantly constant with respect to ∇t. Moreover we suspect if Hitchin’s Hermitian
form is definite, that the assumption αs(t) < 0 is satisfied. We define now candidates
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of solutions of Nahm’s equations

T1(t) :=
i

2
Â1(t)

=
i

2



−a2
10(t) 0 0 · · · · · · 0

0 a2
10(t)− a3

11(t) 0
. . .

...

0 0 a3
11(t)− a4

12(t)
. . .

...
...

...
. . . . . . . . .

...
...

. . . an−1
1n−3(t)− an1n−2(t) 0

0 · · · · · · · · · 0 an1n−2(t)


,

T2(t) :=
1

2

(
Â0(t) + Â2(t)

)

=
i

2



0
√
|α0(t)| 0 · · · · · · 0√

|α0(t)| 0
√
|α1(t)| . . .

...

0
√
|α1(t)| 0

. . .
...

...
. . . . . . . . . . . .

...
...

. . . . . . 0
√
|αn−2(t)|

0 · · · · · · · · ·
√
|αn−2(t)| 0


,

T3(t) := − i
2

(
Â0(t)− Â2(t)

)

=
1

2



0 −
√
|α0(t)| 0 · · · · · · 0√

|α0(t)| 0 −
√
|α1(t)|

...

0
√
|α1(t)| 0

. . .
...

...
. . . . . . . . . . . .

...
...

. . . . . . 0 −
√
|αn−2(t)|

0 · · · · · · · · ·
√
|αn−2(t)| 0


.

These matrices are trace-free and they satisfy the condition Ti(t)T = −Ti(t). In other
words the matrices Ti(t) ∈ su(n). The commutators of these matrices are

[T2, T3] =

i

2


|α0| 0 · · · 0

0 |α1| − |α0| · · ·
...

...
. . .

...
0 · · · · · · −|αn−2|

 = − i
2


α0 0 · · · 0

0 α1 − α0 · · ·
...

...
. . .

...
0 · · · · · · −αn−2

 ,
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[T3, T1] =

i

4



0 (−2a210 + a311)
√
|α0| 0 · · ·

(−2a210 + a311)
√
|α0| 0 (a210 − 2a311 + a412)

√
|α1|

. . .

0 (a210 − 2a311 + a412)
√
|α1| 0

. . .

.

.

.
. . .

. . .
. . .

.

.

.
. . .

0 · · · · · · · · ·

· · · · · · 0

. . .
.
.
.

. . .
.
.
.

. . .
. . .

.

.

.
(an−2

1n−4 − 2an−1
1n−3 + an1n−2)

√
|αn−3| 0 (an−1

1n−3 − 2an1n−2)
√
|αn−2|

0 (an−1
1n−3 − 2an1n−2)

√
|αn−2| 0


,

[T1, T2] =

i

4



0 (−2a210 + a311)
√
|α0| 0 · · ·

−(−2a210 + a311)
√
|α0| 0 (a210 − 2a311 + a412)

√
|α1|

. . .

0 −(a210 − 2a311 + a412)
√
|α1| 0

. . .

.

.

.
. . .

. . .
. . .

.

.

.
. . .

0 · · · · · · · · ·

· · · · · · 0

. . .
.
.
.

. . .
.
.
.

. . .
. . .

.

.

.
−(an−2

1n−4 − 2an−1
1n−3 + an1n−2)

√
|αn−3| 0 (an−1

1n−3 − 2an1n−2)
√
|αn−2|

0 −(an−1
1n−3 − 2an1n−2)

√
|αn−2| 0


.

Now we state the main result of this chapter.

Theorem 20. Let F ∈ Jacg−1(Cn) \ Θ. Let us suppose, that the coefficients dkl
of the transition function of F satisfy dkl = 0 for all k 6= l. Additionally let us
assume F is a real sheaf, i.e. dll ∈ R. Let (t0, t1) ⊆ R be an open interval such that
F t ∈ Jacg−1(Cn) \ Θ for all t ∈ (t0, t1). Then for s ∈ {0, . . . , n − 2} we have the
equations

i) d
dta

s+2
1s (t) = αs(t) = as+2

2s−1(t)− as+3
2s (t)− ws+1,s+2(t) + vs+1,s+2(t),

ii) d
dta

s+3
2s (t) = −as+2

1s (t)αs+1(t)

= −as+2
1s (t)

(
as+3

2s (t)− as+4
2s+1(t)− as+3

1s+1(t)as+3
1s+1(t) + as+3

1s+1(t)as+4
1s+2(t)

)
,

iii) i
2
d
dt

(√
|αs(t)|

)
= i

4

(
as+1

1s−1(t)− 2as+2
1s (t) + as+3

1s+1(t)
)√
|αs(t)|.
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In particular the triple of su(n)-valued functions (T1(t), T2(t), T3(t)) satisfies Nahm’s
equations on the interval (t0, t1), i.e.

d

dt
T1(t) = [T2(t), T3(t)],

d

dt
T2(t) = [T3(t), T1(t)],

d

dt
T3(t) = [T1(t), T2(t)].

Remark 3. The Nahm’s equations in theorem 20 are different from those in the
Kronheimer moduli space by the sign. Since we considered the invertible sheaf Lt
with transition function exp(−tηζ ), where we have limt→∞ exp(−tηζ ) = 0, we want
t ∈ [0,∞) instead of (−∞, 0] as in the Kronheimer moduli space. To get elements of
the Kronheimer moduli we just need to take the triple (T1(−t), T2(−t), T3(−t)).

Before we start the proof of theorem 20, we are in need of a lot technical lemmas.
The ideas of the lemmas are similar to the burning lemma. A lot of the lemmas are
vanishing results, which need a precise study of the signs of cofactors. For the rest of
this section we use the abbreviation ιr for the function ιrow and ιc for the function
ιcolumn of definition 5 to indicate the number of the row and the column and it allows
us to indicate the signs of the cofactors precisely. Moreover we will always use the
notation C((i,j),(u,v)) for the cofactor of the matrix M by canceling out the (i, j)-row
and the (u, v)-column. Similarly we use the notation M((i,j),(u,v)) for the minor and a
multiple subscript if we cancel out several rows and columns. Additionally we consider
in this section only invertible sheaves satisfying the assumptions in theorem 20. The
first lemma is a swapping index porperty.

Lemma 24. Let (i, j) ∈ P and (p, q), (a, b) ∈ P \ {(i, j)}. Let s ∈ {0, . . . , n− 2} and
let v ∈ {0, . . . , n− 2} \ {s}. Then we have

i) C ((i,j),(n−2,s))
((p,q),(n−2,v))

C((a,b),(n−2,v)) = C((i,j),(n−2,s))
((a,b),(n−2,v))

C((p,q),(n−2,v)),

ii) C ((i,j),(n−3,s))
((p,q),(n−2,v))

C((a,b),(n−2,v)) = C((i,j),(n−3,s))
((a,b),(n−2,v))

C((p,q),(n−2,v)).

iii) For v ∈ {0, . . . , n− 2} \ {s− 1, s} we have

C ((i,j),(n−3,s))
((p,q),(n−4,v))

C((a,b),(n−4,v)) = C((i,j),(n−3,s))
((a,b),(n−4,v))

C((p,q),(n−4,v)).

Proof. i) The idea of the proof is just to Laplace-expand both sides carefully and
compare then these expressions. The main difficulty is to deal with the signs of the
cofactors, which makes the proof very unwieldy and lengthy. First we write

C ((i,j),(n−2,s))
((p,q),(n−2,v))

(−1)ν(a,b,n−2,v)M((a,b),(n−2,v)) = C((i,j),(n−2,s))
((a,b),(n−2,v))

(−1)ν(p,q,n−2,v)M((p,q),(n−2,v)).

We first Laplace-expand both sides and we get

C ((i,j),(n−2,s))
((p,q),(n−2,v))

M((a,b),(n−2,v)) = C ((i,j),(n−2,s))
((p,q),(n−2,v))

∑
(α1,β1)∈P

(α1,β1)6=(a,b)

C ((a,b),(n−2,v))
((α1,β1),(n−2,s))

dα1−(n−2),β1−s,

C((i,j),(n−2,s))
((a,b),(n−2,v))

M((p,q),(n−2,v)) = C((i,j),(n−2,s))
((a,b),(n−2,v))

∑
(α2,β2)∈P

(α2,β2)6=(p,q)

C ((p,q),(n−2,v))
((α2,β2),(n−2,s))

dα2−(n−2),β2−s.
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The cofactors are only possibly non-zero if p− q = a− b = n− 2− v and α1 − β1 =
α2 − β2 = n − 2 − s by lemma 23. But since v 6= s we have (α1, β1) 6= (p, q) and
(α2, β2) 6= (a, b) anyway. This means, we only have to show

(−1)ν(a,b,n−2,v)C ((i,j),(n−2,s))
((p,q),(n−2,v))

C ((a,b),(n−2,v))
((α,β),(n−2,s))

= (−1)ν(p,q,n−2,v)C((i,j),(n−2,s))
((a,b),(n−2,v))

C((p,q),(n−2,v))
((α,β),(n−2,s))

for (α, β) 6= (p, q) and (α, β) 6= (a, b). Just for notation we define Q∗ := Q \
{(n− 2, v), (n− 2, s)}. We expand now all terms above and get

C ((a,b),(n−2,v))
((α,β),(n−2,s))

= (−1)ιr(α,β)−δ(α,β)>(a,b)(−1)ιc(n−2,s)−δs>vM ((a,b),(n−2,v))
((α,β),(n−2,s))

= (−1)ιr(α,β)−δ(α,β)>(a,b)(−1)ιc(n−2,s)−δs>v

·
∑

(w,x)∈Q∗
C ((a,b),(n−2,v))

((α,β),(n−2,s))
((p,q),(w,x))

dp−w,q−x

= (−1)ιr(α,β)−δ(a,b)<(α,β)(−1)ιc(n−2,s)−δs>v

· (−1)ιr(p,q)−δ(p,q)>(a,b)−δ(p,q)>(α,β)(−1)ιc(w,x)−δ(w,x)>(n−2,v)−δ(w,x)>(n−2,s)

·
∑

(w,x)∈Q∗
M ((a,b),(n−2,v))

((α,β),(n−2,s))
((p,q),(w,x))

dp−w,q−x

= (−1)ιr(α,β)−δ(a,b)<(α,β)(−1)ιc(n−2,s)−δs>v

· (−1)ιr(p,q)−δ(p,q)>(a,b)−δ(p,q)>(α,β)(−1)ιc(w,x)−δ(w,x)>(n−2,v)−δ(w,x)>(n−2,s)

·
∑

(y,z)∈Q∗\{(w,x)}

∑
(w,x)∈Q∗

C ((a,b),(n−2,v))
((α,β),(n−2,s))

((p,q),(w,x))
((i,j),(y,z))

dp−w,q−xdi−y,j−z,

C ((i,j),(n−2,s))
((p,q),(n−2,v))

= (−1)ιr(p,q)−δ(p,q)>(i,j)(−1)ιc(n−2,v)−δv>s

·
∑

(ε,φ)∈Q∗
C ((i,j),(n−2,s))

((p,q),(n−2,v))
((a,b),(ε,φ))

da−ε,b−φ

= (−1)ιr(p,q)−δ(p,q)>(i,j)(−1)ιc(n−2,v)−δv>s

· (−1)(a,b)−δ(a,b)>(i,j)−δ(a,b)>(p,q)(−1)(ε,φ)−δ(ε,φ)>(n−2,v)−δ(ε,φ)>(n−2,s)

·
∑

(η,ξ)∈Q∗\{(ε,φ)}

∑
(ε,φ)∈Q∗

C ((i,j),(n−2,s))
((p,q),(n−2,v))

((a,b),(ε,φ))
((α,β),(η,ξ))

da−ε,b−φdα−η,β−ξ,
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C((p,q),(n−2,v))
((α,β),(n−2,s))

= (−1)ιr(α,β)−δ(α,β)>(p,q)(−1)ιc(n−2,s)−δs>v

·
∑

(w,x)∈Q∗
C((p,q),(n−2,v))

((α,β),(n−2,s))
((a,b),(w,x))

da−w,b−x

= (−1)ιr(α,β)−δ(α,β)>(p,q)(−1)ιc(n−2,s)−δs>v

· (−1)ιr(a,b)−δ(a,b)>(α,β)−δ(a,b)>(p,q)(−1)ιc(w,x)−δ(w,x)>(n−2,v)−δ(w,x)>(n−2,s)

·
∑

(y,z)∈Q∗\{(w,x)}

∑
(w,x)∈Q∗

C((p,q),(n−2,v))
((α,β),(n−2,s))

((a,b),(w,x))
((i,j),(y,z))

da−w,b−xdi−y,j−z,

C((i,j),(n−2,s))
((a,b),(n−2,v))

=
∑

(ε,φ)∈Q∗
C((i,j),(n−2,s))

((a,b),(n−2,v))
((p,q),(ε,φ))

dp−ε,q−φ

= (−1)ιr(a,b)−δ(a,b)>(i,j)(−1)ιc(n−2,v)−δv>s

· (−1)ιr(p,q)−δ(p,q)>(i,j)−δ(p,q)>(a,b)(−1)ιc(ε,φ)−δ(ε,φ)>(n−2,v)−δ(ε,φ)>(n−2,s)

·
∑

(η,ξ)∈Q∗\{(ε,φ)}

∑
(ε,φ)∈Q∗

C((i,j),(n−2,s))
((a,b),(n−2,v))

((p,q),(ε,φ))
((α,β),(η,ξ))

da−ε,b−φdα−η,β−ξ.

If we fix now all indices and multiply the cofactors, we get

(−1)ιr(α,β)−δ(a,b)<(α,β)(−1)ιc(n−2,s)−δs>v

· (−1)ιr(p,q)−δ(p,q)>(a,b)−δ(p,q)>(α,β)(−1)ιc(w,x)−δ(w,x)>(n−2,v)−δ(w,x)>(n−2,s)

· C ((a,b),(n−2,v))
((α,β),(n−2,s))

((p,q),(w,x))
((i,j),(y,z))

di−y,j−zdp−w,q−x

· (−1)ιr(p,q)−δ(p,q)>(i,j)(−1)ιc(n−2,v)−δv>s

· (−1)ιr(a,b)−δ(a,b)>(i,j)δ(a,b)>(p,q)(−1)ιc(ε,φ)−δ(ε,φ)>(n−2,v)−δ(ε,φ)>(n−2,s)

· C ((i,j),(n−2,s))
((p,q),(n−2,v))

((a,b),(ε,φ))
((α,β),(η,ξ))

dα−η,β−ξda−ε,b−φ

= (−1)ιr(α,β)−δ(α,β)>(p,q)(−1)ιc(n−2,s)−δs>v

· (−1)ιr(a,b)−δ(a,b)>(α,β)−δ(a,b)>(p,q)(−1)ιc(w,x)−δ(w,x)>(n−2,v)−δ(w,x)>(n−2,s)

C((p,q),(n−2,v))
((α,β),(n−2,s))

((a,b),(w,x))
((i,j),(y,z))

di−y,j−zda−w,b−x

· (−1)ιr(a,b)−δ(a,b)>(i,j)(−1)ιc(n−2,v)−δv>s

· (−1)ιr(p,q)−δ(p,q)>(i,j)−δ(p,q)>(a,b)(−1)ιc(ε,φ)−δ(ε,φ)>(n−2,v)−δ(ε,φ)>(n−2,s)

· C((i,j),(n−2,s))
((a,b),(n−2,v))

((p,q),(ε,φ))
((α,β),(η,ξ))

dα−η,β−ξdp−ε,q−φ.

By checking every term on each side, we see they are equal and this proves i). The
parts ii) and iii) work identically the same.

We need a certain extension of the burning lemma.
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Lemma 25. Let (p, q), (i, j) ∈ P be two fixed indices. Then we have∑
(u,v)∈Q

C((p,q),(u,v))di−u−2,j−v−1 = θδ(p,q)=(i−2,j−1).

Proof. The case (p, q) = (i−2, j−1) is just the usual Laplace expansion. For the case
(p, q) 6= (i − 2, j − 1) we expand the cofactor C((p,q),(u,v)) along the (i − 2, j − 1)-th
row and we get

C((p,q),(u,v)) = (−1)ν(p,q,u,v)M((p,q),(u,v))

= (−1)ν(p,q,u,v)
∑

(ρ,δ)∈Q\{(u,v)}

C ((p,q),(u,v))
((i−2,j−1),(ρ,δ))

di−2−ρ,j−1−δdi−u−2,j−v−1.

So we only have to show C ((p,q),(u,v))
((i−2,j−1),(ρ,δ))

= −C ((p,q),(ρ,δ))
((i−2,j−1),(u,v))

. By considering the

signs of the expansions

C((p,q),(u,v)) = (−1)ν(p,q,u,v)M((p,q),(u,v)),

C ((p,q),(u,v))
((i−2,j−1),(ρ,δ))

= (−1)ν(p,q,u,v)(−1)ιr(i−2,j−1)(−1)ιc(ρ,δ)(−1)δ(i−2,j−1)>(p,q)+δ(ρ,δ)>(u,v)

·M ((p,q),(u,v))
((i−2,j−1),(ρ,δ))

,

C((p,q),(ρ,δ)) = (−1)ν(p,q,ρ,δ)M((p,q),(ρ,δ)),

C ((p,q),(ρ,δ))
((i−2,j−1),(u,v))

= (−1)ν(p,q,ρ,δ)(−1)ιr(i−2,j−1)(−1)ιc(u,v)(−1)δ(i−2,j−1)>(p,q)+δ(u,v)>(ρ,δ)

·M ((p,q),(ρ,δ))
((i−2,j−1),(u,v))

,

we see the difference lies in the term (−1)δ(ρ,δ)>(u,v) . In one term this expression is
positive and in the other it has to be negative.

The next lemma is helpful to cancel out needless terms.

Lemma 26. Let (i, j) ∈ P .

i) Let (u, v) ∈ Q be an index such that u 6= n − 2 and u 6= n − 3 and s ∈
{0, . . . , n− 2}. Then we have∑

(p,q)∈P\{(i,j)}

C((i,j),(n−2,s))
((p,q),(u,v))

dp−u−1,q−v−1 = 0.

ii) Let s ∈ {0, . . . , n − 2} and let (u, v) ∈ Q such that (u, v) 6= (n − 2, s + 1) and
(u, v) 6= (n− 3, s). Then we have∑

(p,q)∈P

C((p,q),(u,v))dp−u−1,q−v = 0.

iii) Let s ∈ {0, . . . , n− 2} and let v ∈ {0, . . . , n− 2} \ {s− 1}. Then we we have

∑
(p,q)∈P\{(i,j)}

C ((i,j),(n−2,s))
((p,q),(n−3,v))

θ
(−dp−(n−3)−1,q−v−1)di−(n−1),j−s−1 = 0
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Proof. i) First we consider the case v = n − 1. But then we have dp−u−1,q−v−1 =
dp−u−1,q−n = 0 and we are done. In the case v 6= n − 1 we know (u + 1, v + 1) ∈ Q.
We expand the cofactors along the (u+ 1, v + 1)-th column and we get∑

(p,q)∈P\{(i,j)}

C((i,j),(n−2,s))
((p,q),(u,v))

dp−u−1,q−v−1

=
∑

(p,q)∈P\{(i,j)}

(−1)ιr(i,j)−δ(p,q)>(i,j)(−1)ιc(u,v)−δ(u,v)>(n−2,s)

·M((i,j),(n−2,s))
((p,q),(u,v))

dp−u−1,q−v−1

=
∑

(p,q)∈P\{(i,j)}

(−1)ιr(i,j)−δ(p,q)>(i,j)(−1)ιc(u,v)−δ(u,v)>(n−2,s)

 ∑
(a,b)∈P\{(i,j),(p,q)}

C ((i,j),(n−2,s))
((p,q),(u,v))

((a,b),(u+1,v+1))

da−(u+1),b−(v+1)

 dp−u−1,q−v−1.

It remains to show

C ((i,j),(n−2,s))
((p,q),(u,v))

((a,b),(u+1,v+1))

da−(u+1),b−(v+1)dp−u−1,q−v−1

= −C ((i,j),(n−2,s))
((a,b),(u,v))

((p,q),(u+1,v+1))

dp−(u+1),q−(v+1)da−u−1,b−v−1.

But their signs are

(−1)ιr(p,q)−δ(p,q)>(i,j)(−1)ιc(u,v)−δ(u,v)>(n−2,s)(−1)ιr(a,b)−δ(a,b)>(i,j)−δ(a,b)>(p,q)

(−1)ιc(u+1,v+1)−δ(u+1,v+1)>(n−2,s)−δ(u+1,v+1)>(u,v)

and

(−1)ιr(a,b)−δ(a,b)>(i,j)(−1)ιc(u,v)−δ(u,v)>(n−2,s)(−1)ιr(p,q)−δ(p,q)>(i,j)−δ(p,q)>(a,b)

(−1)ιc(u+1,v+1)−δ(u+1,v+1)>(n−2,s)−δ(u+1,v+1)>(u,v) ,

where the only difference is in terms (−1)δ(p,q)>(a,b) and (−1)δ(a,b)>(p,q) . In other words
one cofactor has positive sign and the other negative sign and so, if we sum up, they
cancel each other out.

ii) Because u ≤ n− 4 we know (u+ 1, v) ∈ Q and (u+ 1, v) 6= (u, v). We expand
the cofactors along the (u+ 1, v)-th column and we get∑

(p,q)∈P

C((p,q),(u,v))dp−u−1,q−v

=
∑

(p,q)∈P

(−1)ν(p,q,u,v)

 ∑
(a,b)∈P\{(p,q)}

C ((p,q),(u,v))
((a,b),(u+1,v))

da−u−1,b−v

 dp−u−1−q−v.
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We have

(−1)ιr(p,q)(−1)ιc(u,v)C ((p,q),(u,v))
((a,b),(u+1,v))

= (−1)ιr(p,q)(−1)ιc(u,v)(−1)ιr(a,b)−δ(a,b)>(p,q)(−1)ιc(u+1,v)−δ(u+1,v)>(u,v)M ((p,q),(u,v))
((a,b),(u+1,v))

,

(−1)ιr(a,b)(−1)ιc(u,v)C ((a,b),(u,v))
((p,q),(u+1,v))

= (−1)ιr(p,q)(−1)ιc(u,v)(−1)ιr(p,q)−δ(p,q)>(a,b)(−1)ιc(u+1,v)−δ(u+1,v)>(u,v)M ((a,b),(u,v))
((p,q),(u+1,v))

.

We see the sign changes. Because we sum over (p, q) ∈ P and (a, b) ∈ P \ {(p, q)} we
can always find such a pair with opposite sign and so they cancel out.

iii) If we expand the theta function along the (n−3, v)-column we get with lemma
24

C ((i,j),(n−2,s))
((p,q),(n−3,v))

(−dp−(n−3)−1,q−v−1)di−(n−1),j−s−1θ

=
∑

(a,b)∈P

C ((i,j),(n−2,s))
((p,q),(n−3,v))

(−dp−(n−3)−1,q−v−1)di−(n−1),j−s−1C((a,b),(n−3,v))da−(n−3),b−v

=
∑

(a,b)∈P

C((i,j),(n−2,s))
((a,b),(n−3,v))

da−(n−3),b−vdi−(n−1),j−s−1C((p,q),(n−3,v))(−dp−(n−3)−1,q−v−1)

= M((i,j),(n−2,s))di−(n−1),j−s−1C((p,q),(n−3,v))(−dp−(n−3)−1,q−v−1).

Summing over the (p, q) ∈ P the last term vanishes by ii) of the burning lemma.

The next lemma is the crucial lemma to prove the equation i) of theorem 20.

Lemma 27. We have

i)
d
dt
θ(Ft)
θ(Ft) =

∑n−2
m=0 a

m+2
1m (t),

ii) −
∑

(i,j)∈P
bn
2
c≤j

d
dt(C((i,j),(n−2,s))(t))

θ(Ft) di−(n−1),j−s−1(t) = as+2
2s−1(t)+

(∑n−2
m=0
m6=s

am+2
1m (t)

)
as+2

1s (t),

iii) −
∑

(i,j)∈P
bn
2
c≤j

C((i,j),(n−2,s))(t)

θ(Ft)
d
dt

(
di−(n−1),j−s−1(t)

)
= −as+3

2s (t) + vs+1,s+2(t).

Proof. In the proof we will drop the arguments (t) and (F t) to get a little bit more
clearness. i) By theorem 16 and its proof we have

θ′

θ
= tr(M−1M ′) =

∑
(u,v)∈Q

 ∑
(i,j)∈P

C((i,j),(u,v))

θ
(−di−u−1,j−v−1)

 .

Now we apply ii) of the burning lemma and every term with u 6= n − 2 cancels out.
It remains

tr(M−1M ′) =

n−2∑
v=0

− ∑
(i,j)∈P

C((i,j),(n−2,v))

θ
di−(n−2)−1,j−v−1)

 =

n−2∑
v=0

av+2
1v .
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ii) Let us fix an (i, j) ∈ P and consider 1
θ
d
dt

(
C((i,j),(n−2,s))

)
di−(n−1),j−s−1. By the

formula of the derivative of a determinantal function we have

1

θ

d

dt

(
C((i,j),(n−2,s))

)
di−(n−1),j−s−1

= (−1)ν(i,j,n−2,s)
∑

(u,v)∈Q
(u,v)6=(n−2,s)

∑
(p,q)∈P\{(i,j)}

C((i,j),(n−2,s))
((p,q),(u,v))

θ
(−dp−u−1,q−v−1)di−(n−1),j−s−1

= (−1)ν(i,j,n−2,s)
n−2∑
v=0
v 6=s

∑
(p,q)∈P\{(i,j)}

C ((i,j),(n−2,s))
((p,q),(n−2,v))

θ
(−dp−(n−2)−1,q−v−1)di−(n−1),j−s−1

+ (−1)ν(i,j,n−2,s)
n−2∑
v=0

∑
(p,q)∈P\{(i,j)}

C ((i,j),(n−2,s))
((p,q),(n−3,v))

θ
(−dp−(n−3)−1,q−v−1)di−(n−1),j−s−1

+ (−1)ν(i,j,n−2,s)
∑

(u,v)∈Q
u6=n−2
u6=n−3

∑
(p,q)∈P\{(i,j)}

C((i,j),(n−2,s))
((p,q),(u,v))

θ
(−dp−u−1,q−v−1)di−(n−1),j−s−1.

The third term vanishes because of lemma 26. For the first term let us fix a v 6= s.
Then we write 1 = θ

θ =
∑

(a,b)∈P
C((a,b),(n−2,v))

θ da−(n−2),b−v and with lemma 24 we get

(−1)ν(i,j,n−2,s)

C ((i,j),(n−2,s))
((p,q),(n−2,v))

θ
(−dp−(n−2)−1,q−v−1)di−(n−1),j−s−1

= (−1)ν(i,j,n−2,s)

C ((i,j),(n−2,s))
((p,q),(n−2,v))

θ
(−dp−(n−2)−1,q−v−1)di−(n−1),j−s−1 ∑

(a,b)∈P

C((a,b),(n−2,v))

θ
da−(n−2),b−v


= (−1)ν(i,j,n−2,s)

∑
(a,b)∈P

C ((i,j),(n−2,s))
((p,q),(n−2,v))

θ

C((a,b),(n−2,v))

θ
(−dp−(n−2)−1,q−v−1)

di−(n−1),j−s−1da−(n−2),b−v

= (−1)ν(i,j,n−2,s)
∑

(a,b)∈P

C((i,j),(n−2,s))
((a,b),(n−2,v))

θ

C((p,q),(n−2,v))

θ
(−dp−(n−2)−1,q−v−1)

di−(n−1),j−s−1da−(n−2),b−v

= (−1)ν(i,j,n−2,s)

 ∑
(a,b)∈P

C((i,j),(n−2,s))
((a,b),(n−2,v))

θ
da−(n−2),b−v

 C((p,q),(n−2,v))

θ

(−dp−(n−2)−1,q−v−1)di−(n−1),j−s−1

= (−1)ν(i,j,n−2,s)M((i,j),(n−2,s))

θ

C((p,q),(n−2,v))

θ
(−dp−(n−2)−1,q−v−1)di−(n−1),j−s−1

=
C((i,j),(n−2,s))

θ

C((p,q),(n−2,v))

θ

(
−dp−(n−2)−1,q−v−1

)
di−(n−1),j−s−1.
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This means, we get

−
∑

(i,j)∈P

∑
(p,q)∈P\{(i,j)}

(−1)ν(i,j,n−2,s)

C ((i,j),(n−2,s))
((p,q),(n−2,v))

θ
(−dp−(n−2)−1,q−v−1)di−(n−1),j−s−1

=
∑

(i,j)∈P

∑
(p,q)∈P

C((i,j),(n−2,s))

θ

C((p,q),(n−2,v))

θ
dp−(n−2)−1,q−v−1di−(n−1),j−s−1

=
(
−
∑

(i,j)∈P

C((i,j),(n−2,s))

θ
di−(n−1),j−s−1

)(
−

∑
(p,q)∈P

C((p,q),(n−2,v))

θ
(−dp−(n−1),q−v−1)

)
= as+2

1s av+2
1v .

For the second term we fix an arbitrary v with v 6= s− 1. Then by lemma 26 we have

(−1)ν(i,j,n−2,s)
∑

(p,q)∈P\{(i,j)}

C ((i,j),(n−2,s))
((p,q),(n−3,v))

θ
(−dp−(n−3)−1,q−v−1)di−(n−1),j−s−1 = 0.

With v = s− 1 we have

(−1)ν(i,j,n−2,s)
∑

(p,q)∈P

(−1)

C ((i,j),(n−2,s))
((p,q),(n−3,s−1))

θ
(−dp−(n−3)−1,q−(s−1)−1)di−(n−1),j−s−1

= (−1)ν(i,j,n−2,s)
∑

(p,q)∈P

(−1)ιr(p,q)−δ(p,q)>(i,j)(−1)ιc(n−3,s−1)−

=0︷ ︸︸ ︷
δ(n−3,s−1)>(n−2,s)

·
M ((i,j),(n−2,s))

((p,q),(n−3,s−1))

θ
dp−(n−3)−1,q−(s−1)−1di−(n−1),j−s−1

= (−1)ιr(i,j)(−1)ιc(n−2,s)
∑

(p,q)∈P

(−1)ιr(p,q)−δ(p,q)>(i,j)(−1)ιc(n−3,s−1)(−1)

· (−1)δ(n−2,s)>(n−3,s−1)

M((i,j),(n−3,s−1))
((p,q),(n−2,s))

θ
dp−(n−3)−1,q−(s−1)−1di−(n−1),j−s−1

= (−1)(−1)ιr(i,j)(−1)ιc(n−3,s−1)
∑

(p,q)∈P

(−1)ιr(p,q)−δ(p,q)>(i,j)(−1)ιc(n−2,s)−δ(n−2,s)>(n−3,s−1)

cot

M((i,j),(n−3,s−1))
((p,q),(n−2,s))

θ
dp−(n−3)−1,q−(s−1)−1di−(n−1),j−s−1

= (−1)(−1)ν(i,j,n−3,s−1)
∑

(p,q)∈P

C((i,j),(n−3,s−1))
((p,q),(n−2,s))

θ
dp−(n−3)−1,q−(s−1)−1di−(n−1),j−s−1

= (−1)(−1)ν(i,j,n−3,s−1)M((i,j),(n−3,s−1))

θ
di−(n−1),j−s−1

= −
C((i,j),(n−3,s−1))

θ
di−(n−1),j−s−1.

Summing up over (i, j) ∈ P gives as+2
2s−1 and this proves ii).

iii) First we use the trick to expand θ along the (n − 2, s)-column, i.e. 1 =
θ
θ =

∑
(p,q)∈P

C((p,q),(n−2,s))

θ dp−(n−2),q−s. Now we consider −as+3
2s + vs+1,s+2 and fix the
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indices (i, j) ∈ P and (p, q) ∈ P . We get with the burning lemma vii)

−C((p,q),(n−2,s))

θ
dp−(n−2),q−s

−C((i,j),(n−3,s))

θ
di−(n−1),j−s−2

+
−C((p,q),(n−2,s))

θ
dp−(n−1),q−s−1

−C((i,j),(n−2,s+1))

θ
di−(n−1),j−s−2

=
C((p,q),(n−2,s))

θ
di−(n−1),j−s−2(

C((i,j),(n−2,s+1))

θ
dp−(n−1),q−s−1 +

C((i,j),(n−3,s))

θ
dp−(n−2),q−s

)
=
C((p,q),(n−2,s))

θ
di−(n−1),j−s−2(θ

θ
δ(i,j)=(p−1,q) −

∑
(u,v)∈Q

(u,v)6=(n−2,s+1)
(u,v)6=(n−3,s)

C((i,j),(u,v))

θ
dp−u−1,q−v

)

=
C((p,q),(n−2,s))

θ
d(p−1)−(n−1),q−s−2

−
∑

(u,v)∈Q
(u,v)6=(n−2,s+1)

(u,v) 6=(n−3,s)

C((p,q),(n−2,s))

θ
dp−u−1,q−v

C((i,j),(u,v))

θ
di−(n−1),j−s−2

If we sum up over (p, q) ∈ P , because of lemma 26, the last term vanishes and the
only remaining non-vanishing term is∑
(p,q)∈P

C((p,q),(n−2,s))

θ
d(p−1)−(n−1),q−s−2 = −

∑
(p,q)∈P

C((p,q),(n−2,s))

θ

d

dt

(
dp−(n−1),q−s−1

)
.

The last minus sign appears, because d
dtdp−(n−1),q−s−1(t) = −d(p−1)−(n−1),q−s−2(t).

To prove ii) of theorem 20 we need again some vanishing formulas.

Lemma 28. i) For s ∈ {0, . . . , n− 2} we have

∑
(i,j)∈P

∑
(p,q)∈P\{(i,j)}

(
C ((i,j),(n−3,s))

((p,q),(n−2,s+1))

dp−(n−2)−1,q−(s+1)−1

)
di−(n−1),j−s−2 = 0.

ii) We have

∑
(i,j)∈P

n−2∑
v=0
v 6=s

∑
(p,q)∈P\{(i,j)}

(
C ((i,j),(n−3,s))

((p,q),(n−3,v))

dp−(n−3)−1,q−v−1

)
di−(n−1),j−s−2 = 0.

iii) For all v ∈ {0, . . . , n− 2} \ {s− 1} we have

∑
(i,j)∈P

∑
v 6=s

∑
(p,q)∈P\{(i,j)}

(
C ((i,j),(n−3,s))

((p,q),(n−4,v))

dp−(n−4)−1,q−v−1

)
di−(n−1),j−s−2 = 0.
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Proof. i) Observe, that for each pair of indices ((i, j), (p, q)) ∈ P×P with (i, j) 6= (p, q)
there exists exactly one other pair ((p, q), (i, j)) ∈ P × P . This means, it suffices to
show for fixed indices (i, j) and (p, q) we have

C ((i,j),(n−3,s))
((p,q),(n−2,s+1))

= −C ((p,q),(n−3,s))
((i,j),(n−2,s+1))

.

We have

C ((i,j),(n−3,s))
((p,q),(n−2,s+1))

= (−1)ν(p,q,n−2,s+1)−δ(p,q)>(i,j)−δ(n−2,s+1)>(n−3,s)M ((i,j),(n−3,s))
((p,q),(n−2,s+1))

,

C ((p,q),(n−3,s))
((i,j),(n−2,s+1))

= (−1)ν(i,j,n−2,s+1)−δ(i,j)>(p,q)−δ(n−2,s+1)>(n−3,s)M ((p,q),(n−3,s))
((i,j),(n−2,s+1))

.

The only difference of these two expressions is in the sign (−1)δ(i,j)>(p,q) and hence we
have the desired claim.

ii) Now we consider the formula of the burning lemma ii). It says if (s, t), (u, v) ∈ Q
such that (u, v) 6= (s+ 1, t+ 1) and (s+ 1, t+ 1) ∈ Q, then we have∑

(α,β)∈P

C((α,β),(s,t))dα−u−1,β−v−1 = 0.

In particular for (s, t) = (u, v) = (n− 3, v) we can write∑
v 6=s

∑
(α,β)∈P

C((α,β),(n−3,v))dα−(n−3)−1,β−v−1 = 0.

Let us fix (i, j) ∈ P such that i− j = n− 3− s. Since v 6= s and Lemma 23 we get∑
(α,β)∈P\{(i,j)}

C((α,β),(n−3,v))dα−(n−3)−1,β−v−1 = −C((i,j),(n−3,v))di−(n−3)−1,j−v−1 = 0.

We expand now all cofactors C((α,β),(n−3,v)) on the left-hand side along the (n− 3, s)-
column and we get

0 =
∑

(α,β)∈P

C((α,β),(n−3,v))dα−(n−3)−1,β−v−1

=
∑

(α,β)∈P

(−1)ν(α,β,n−3,v)
∑

(i,j)∈P\{(α,β)}

C((α,β),(n−3,v))
((i,j),(n−3,s))

di−(n−3)−1,j−v−1dα−(n−3)−1,β−v−1.

iii) We expand the theta function along the (n− 4, v)th-column and we get

θ =
∑

(a,b)∈P

C((a,b),(n−4,v))da−(n−4),b−v.

With lemma 24 we have

C ((i,j),(n−3,s))
((p,q),(n−4,v))

dp−(n−4)−1,q−v−1di−(n−1),j−s−2C((a,b),(n−4,v))da−(n−4),b−v

= C((i,j),(n−3,s))
((a,b),(n−4,v))

da−(n−4),b−vdi−(n−1),j−s−2C((p,q),(n−4,v))dp−(n−4)−1,q−v−1.
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Summing up over the (a, b) ∈ P we get

M((i,j),(n−3,s))di−(n−1),j−s−2C((p,q),(n−4,v))dp−(n−4)−1,q−v−1.

Summing up over the (p, q) ∈ P \ {(i, j)} and with ii) of the burning lemma we get
zero.

The next lemma is the crucial lemma to prove ii) of theorem 20.

Lemma 29. Let s ∈ {0, . . . , n− 2}. Then we have the formulas

i) −
∑

(i,j)∈P
bn
2
c≤j

C((i,j),(n−3,s))(t)

θ(Ft)
d
dtdi−(n−1),j−s−2(t)

=
∑

(i,j)∈P
bn
2
c≤j

C((i,j),(n−3,s))(t)

θ(F t)
di−(n−1)−1,j−s−3(t)

= −as+2
1s (t)

(
as+4

2s+1(t)− as+3
1s+1(t)as+4

1s+2(t)
)

+
∑

(i,j)∈P

C((i,j),(n−2,s))(t)

θ(F t)
di−n−1,j−(s+3)(t),

ii) as+3
1s+1(t)

(
−
∑

(i,j)∈P
C((i,j),(n−2,s))(t)

θ(Ft) di−n,j−s−2(t)
)

= −as+2
1s (t)as+3

2s (t)−
∑

(p,q)∈P

(
C((p,q)),(n−4,s−1))(t)

θ(F t)
dp−(n−1),q−(s+2)(t)

)

+
∑

(i,j)∈P

(
C((i,j),(n−2,s))(t)

θ(F t)
d(i−2)−(n−1),(j−1)−(s+2)(t)

)
,

iii) −
∑

(i,j)∈P
bn
2
c≤j

d
dt
C((i,j),(n−3,s))(t)

θ(Ft) di−(n−1),j−s−2(t)−
d
dt
θ(Ft)
θ(Ft) a

s+3
2s (t)

= −as+3
1s+1(t)as+3

2s (t)−
∑

(p,q)∈P

C((p,q)),(n−4,s−1))(t)

θ(F t)
dp−(n−1),q−(s+2)(t),

iv) −as+3
1s+1(t)as+3

2s (t) = −as+2
1s (t)as+3

1s+1(t)as+3
1s+1(t)

+as+3
1s+1(t)

 ∑
(i,j)∈P

C((i,j),(n−2,s))(t)

θ(F t)
di−n,j−s−2(t)

 ,

v) −as+3
1s+1(t)as+3

2s (t) = −as+2
1s (t)as+3

1s+1(t)as+3
1s+1(t) + as+2

1s (t)as+3
2s (t)

−
∑

(i,j)∈P

C((i,j),(n−2,s))(t)

θ(F t)
di−n−1,j−(s+3)(t)

+
∑

(p,q)∈P

C((p,q)),(n−4,s−1))(t)

θ(F t)
dp−(n−1),q−(s+2)(t),
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vi) −
∑

(i,j)∈P
bn
2
c≤j

d
dt
C((i,j),(n−3,s))(t)

θ(Ft) di−(n−1),j−s−2(t)−
d
dt
θ(Ft)
θ(Ft) a

s+3
2s (t)

= as+2
1s (t)

(
as+3

2s (t)− ws+1s+2(t)
)
−
∑

(i,j)∈P

C((i,j),(n−2,s))(t)

θ(F t)
di−n−1,j−(s+3)(t).

Proof. In the proof we will drop the arguments (t) and (F t) to get a little bit more
clearness. i) By lemma 27, the burning lemma vii) and lemma 26 we get

as+2
1s

(
−as+4

2s+1 + as+3
1s+1a

s+4
1s+2

)
= as+2

1s

( ∑
(p,q)∈P

C((p,q),(n−2s+1))

θ
dp−1−(n−1),q−(s+3)

)
=
(
−
∑

(i,j)∈P

C((i,j),(n−2,s))

θ
di−(n−1),j−(s+1)

)( ∑
(p,q)∈P

C((p,q),(n−2,s+1))

θ
dp−1−(n−1),q−(s+3)

)
=

∑
(i,j)∈P

∑
(p,q)∈P

(
−
C((i,j),(n−2,s))

θ
dp−1−(n−1),q−(s+3)

)
(θ
θ
δ(p,q)=(i−1,j) −

C((p,q),(n−3,s))

θ
di−(n−2),j−s −

∑
(u,v)∈Q

(u,v)6=(n−2,s+1)
(u,v)6=(n−3,s)

C((p,q),(u,v))

θ
di−u−1,j−v

)

=

− ∑
(i,j)∈P

C((i,j),(n−2,s))

θ
di−1−1−(n−1),j−(s+3)

 θ

θ

+

 ∑
(i,j)∈P

C((i,j),(n−2,s))

θ
di−(n−2),j−s

 ∑
(p,q)∈P

C((p,q),(n−3,s))

θ
dp−1−(n−1),q−(s+3)


= −

∑
(i,j)∈P

C((i,j),(n−2,s))

θ
di−1−1−(n−1),j−(s+3) +

θ

θ

∑
(p,q)∈P

C((p,q),(n−3,s))

θ
dp−1−(n−1),q−(s+3)

= −
∑

(i,j)∈P

C((i,j),(n−2,s))

θ
di−n−1,j−(s+3) −

∑
(i,j)∈P

C((i,j),(n−3,s))

θ

d

dt

(
di−(n−1),j−(s+2)

)
.



5.2. Special Solutions of Nahm’s Equations 123

ii) With lemma 25 we get

as+3
1s+1

− ∑
(i,j)∈P

C((i,j),(n−2,s))

θ
di−n,j−s−2


=

− ∑
(p,q)∈P

C((p,q),(n−2,s+1))

θ
dp−(n−1),q−(s+2)

− ∑
(i,j)∈P

C((i,j),(n−2,s))

θ
di−n,j−s−2


=

∑
(i,j)∈P

∑
(p,q)∈P

(
C((i,j),(n−2,s))

θ
dp−(n−1),q−(s+2)

C((p,q),(n−2,s+1))

θ
di−n,j−s−2

)

=
∑

(i,j)∈P

∑
(p,q)∈P

(
C((i,j),(n−2,s))

θ
dp−(n−1),q−(s+2)

)(θ
θ
δ(p,q)=(i−2,j−1)

−
C((p,q),(n−3,s))

θ
di−(n−1),j−(s+1) −

C((p,q)),(n−4,s−1))

θ
di−(n−4)−2,j−(s−1)−1

−
∑

(u,v)∈Q
(u,v)6=(n−2,s+1)

(u,v)6=(n−3,s)
(u,v)6=(n−4,s−1)

C((p,q)),(u,v))

θ
di−u−2,j−v−1

)

= −
∑

(i,j)∈P

∑
(p,q)∈P

C((i,j),(n−2,s))

θ
di−(n−1),j−(s+1)

C((p,q),(n−3,s))

θ
dp−(n−1),q−(s+2)

−
∑

(i,j)∈P

∑
(p,q)∈P

C((i,j),(n−2,s))

θ
di−(n−4)−2,j−(s−1)−1

C((p,q)),(n−4,s−1))

θ
dp−(n−1),q−(s+2)

−
∑

(i,j)∈P

∑
(p,q)∈P

∑
(u,v)∈Q

(u,v)6=(n−2,s+1)
(u,v)6=(n−3,s)

(u,v)6=(n−4,s−1)

C((i,j),(n−2,s))

θ
di−u−2,j−v−1

C((p,q),(u,v))

θ
dp−(n−1),q−(s+2)

+
∑

(i,j)∈P

∑
(p,q)∈P

(
C((i,j),(n−2,s))

θ
dp−(n−1),q−(s+2)

)(
θ

θ
δ(p,q)=(i−2,j−1)

)
.

If u− v 6= (n− 2)− (s+ 1) lemma 23 ensures, that the term∑
(p,q)∈P

C((p,q),(u,v))

θ
dp−(n−1),q−(s+2) = 0

vanishes. In the case u ≤ n−5 and u−v = (n−2)− (s+1) we have (u+1, v+1) ∈ Q
and so by the burning lemma ii)∑

(i,j)∈P

C((i,j),(n−2,s))

θ
di−u−2,j−v−1 = 0.
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Thus the third term vanishes and by using the Laplace expansion for the theta function
it remains

as+3
1s+1

− ∑
(i,j)∈P

C((i,j),(n−2,s))

θ
di−n,j−s−2


= −as+2

1s as+3
2s −

∑
(p,q)∈P

C((p,q)),(n−4,s−1))

θ
dp−(n−1),q−(s+2)

+
∑

(i,j)∈P

C((i,j),(n−2,s))

θ
d(i−2)−(n−1),(j−1)−(s+2).

iii) We will write ν := ν(i, j, n− 3, s) to shorten the formulas. Let us compute

−
∑

(i,j)∈P
bn
2
c≤j

d
dtC((i,j),(n−3,s))

θ
di−(n−1),j−s−2

= −
∑

(i,j)∈P
bn
2
c≤j

(−1)ν(i,j,n−3,s) d
dtM((i,j),(n−3,s))

θ
di−(n−1),j−s−2

= −
∑

(i,j)∈P
bn
2
c≤j

(−1)ν
∑

(u,v)∈Q
(u,v)6=(n−3,s)

∑
(p,q)∈P\{(i,j)}

C((i,j),(n−3,s))
((p,q),(u,v))

θ
(−dp−u−1,q−v−1)di−(n−1),j−s−2

=
∑

(i,j)∈P
bn
2
c≤j

(−1)ν
∑

(n−3,v)∈Q
v 6=s

∑
(p,q)∈P\{(i,j)}

C ((i,j),(n−3,s))
((p,q),(n−3,v))

θ
dp−(n−3)−1,q−v−1di−(n−1),j−s−2

+
∑

(i,j)∈P
bn
2
c≤j

(−1)ν
∑

(n−2,v)∈Q

∑
(p,q)∈P\{(i,j)}

C ((i,j),(n−3,s))
((p,q),(n−2,v))

θ
dp−(n−2)−1,q−v−1di−(n−1),j−s−2

+
∑

(i,j)∈P
bn
2
c≤j

(−1)ν
∑

(n−4,v)∈Q

∑
(p,q)∈P\{(i,j)}

C ((i,j),(n−3,s))
((p,q),(n−4,v))

θ
dp−(n−4)−1,q−v−1di−(n−1),j−s−2

+
∑

(i,j)∈P
bn
2
c≤j

(−1)ν
∑

(u,v)∈Q
u6=n−2
u6=n−3
u6=n−4

∑
(p,q)∈P\{(i,j)}

C((i,j),(n−3,s))
((p,q),(u,v))

θ
dp−u−1,q−v−1di−(n−1),j−s−2.
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By lemma 28 a lot of terms vanish and it remains

−
∑

(i,j)∈P
bn
2
c≤j

d
dtC((i,j),(n−3,s))

θ
di−(n−1),j−s−2

=
∑

(i,j)∈P
bn
2
c≤j

(−1)ν(i,j,n−3,s)
n−2∑
v=0
v 6=s+1

∑
(p,q)∈P\{(i,j)}

C ((i,j),(n−3,s))
((p,q),(n−2,v))

θ
dp−(n−2)−1,q−v−1di−(n−1),j−s−2

+
∑

(i,j)∈P
bn
2
c≤j

(−1)ν(i,j,n−3,s)
∑

(p,q)∈P\{(i,j)}

C ((i,j),(n−3,s))
((p,q),(n−4,s−1))

θ
dp−(n−4)−1,q−(s−1)−1di−(n−1),j−s−2.

Now we expand the theta function along the (n − 2, v)-column and we have 1 =
θ
θ = 1

θ

∑
(a,b)∈P C((a,b),(n−2,v))da−(n−2),b−v. We fix the indices (i, j), (p, q) ∈ P and

v ∈ {0, . . . , n− 2} \ {s+ 1}. With lemma 24 we have

−
∑

(a,b)∈P

(−1)ν(i,j,n−3,s)

C ((i,j),(n−3,s))
((p,q),(n−2,v))

θ
(−dp−(n−2)−1,q−v−1)di−(n−1),j−s−2

·
C((a,b),(n−2,v))

θ
da−(n−2),b−v

= (−1)ν(i,j,n−3,s)

− ∑
(a,b)∈P

C((i,j),(n−3,s))
((a,b),(n−2,v))

θ
da−(n−2),b−v

 di−(n−1),j−s−2

C((p,q),(n−2,v))

θ
(−dp−(n−2)−1,q−v−1)

= (−1)ν(i,j,n−3,s)−M((i,j),(n−3,s))

θ
di−(n−1),j−s−2

−C((p,q),(n−2,v))

θ
dp−(n−2)−1,q−v−1

=
−C((i,j),(n−3,s))

θ
di−(n−1),j−s−2

−C((p,q),(n−2,v))

θ
dp−(n−2)−1,q−v−1.

Summing up over the indices (i, j), (p, q) ∈ P and v we get

n−2∑
v=0
v 6=s+1

 ∑
(i,j)∈P

−C((i,j),(n−3,s))

θ
di−(n−1),j−s−2

 ∑
(p,q)∈P

−C((p,q),(n−2,v))

θ
dp−(n−2)−1,q−v−1



= as+3
2s

 ∑
v 6=s+1

av+2
1v

 .



126 Chapter 5. Real Sheaves and Special Solutions of Nahm’s Equations

Note that v 6= s+ 1 implies always (i, j) 6= (p, q). For the remaining term we compute

∑
(i,j)∈P
bn
2
c≤j

(−1)ν(i,j,n−3,s)
∑

(p,q)∈P\{(i,j)}

C ((i,j),(n−3,s))
((p,q),(n−4,s−1))

θ
dp−(n−4)−1,q−(s−1)−1di−(n−1),j−s−2

=
∑

(i,j)∈P
bn
2
c≤j

(−1)ιr(i,j)(−1)ιc(n−3,s)
∑

(p,q)∈P\{(i,j)}

(−1)ιr(p,q)−δ(p,q)>(i,j)

· (−1)ιc(n−4,s−1)−δ(n−4,s−1)>(n−3,s)

M ((i,j),(n−3,s))
((p,q),(n−4,s−1))

θ
dp−(n−4)−1,q−(s−1)−1di−(n−1),j−s−2

=
∑

(i,j)∈P
bn
2
c≤j

(−1)ιr(i,j)(−1)ιc(n−4,s−1)
∑

(p,q)∈P\{(i,j)}

(−1)ιr(p,q)−δ(p,q)>(i,j)(−1)ιc(n−3,s)

· (−1)(−1)δ(n−3,s)>(n−4,s−1)

M((i,j),(n−4,s−1))
((p,q),(n−3,s))

θ
dp−(n−4)−1,q−(s−1)−1di−(n−1),j−s−2

= −
∑

(i,j)∈P
bn
2
c≤j

(−1)ν(i,j,n−4,s−1)
∑

(p,q)∈P\{(i,j)}

C((i,j),(n−4,s−1))
((p,q),(n−3,s))

θ
dp−(n−4)−1,q−(s−1)−1di−(n−1),j−s−2

= −
∑

(i,j)∈P
bn
2
c≤j

(−1)ν(i,j,n−4,s−1)M((i,j),(n−4,s−1))

θ
di−(n−1),j−s−2

= −
∑

(i,j)∈P
bn
2
c≤j

C((i,j),(n−4,s−1))

θ
di−(n−1),j−s−2.

Putting the last two computations together we get the formula of iii). The formula
of iv) is just the multiplication of as+3

1s+1 with the formula in iii) of lemma 27. The
formula in v) follows immediatly by iv) and ii) and the formula of vi) follows by v)
and iii).

Now we prove theorem 20.

Proof. We will drop the arguments (t) and (F t). Let s ∈ {0, . . . , n− 2}.
i) We compute the derivative of as+2

1s and we get

d

dt
as+2

1s = −
∑

(i,j)∈P
bn
2
c≤j

d
dt

(
C((i,j),(n−2,s))di−(n−1),j−s−1

)
θ − θ′C((i,j),(n−2,s))di−(n−1),j−s−1

θ2

= −
∑

(i,j)∈P
bn
2
c≤j

d
dtC((i,j),(n−2,s))

θ
di−(n−1),j−s−1 −

∑
(i,j)∈P
bn
2
c≤j

C((i,j),(n−2,s))

θ

d

dt

(
di−(n−1),j−s−1

)

− θ′

θ
(−as+2

1s ).

By applying lemma 27 we get the result directly.
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ii) Let us derive the coefficient as+3
2s . We get

d

dt
as+3

2s = −
∑

(i,j)∈P
bn
2
c≤j

d
dtC((i,j),(n−3,s))

θ
di−(n−1),j−s−2

−
∑

(i,j)∈P
bn
2
c≤j

C((i,j),(n−3,s))

θ

d

dt

(
di−(n−1),j−s−2

)
− θ′

θ
(−as+3

2s )

Now we apply lemma 29 and we are done.
iii) We have

i

2

d

dt

√
|αs(t)| =

i

2

√
i2
d

dt

√
αs(t) =

i

2

√
i2

1

2

1√
αs(t)

d

dt
αs(t) = − i

2

1

2

1√
|αs(t)|

d

dt
αs(t)

and so the equation in iii) gets

− i
2

1

2

1√
|αs(t)|

d

dt
αs(t) =

i

4

(
as+1

1s−1(t)− 2as+2
1s (t) + as+3

1s+1(t)
)√
|αs|,

or equivalently

d

dt
αs(t) =

(
as+1

1s−1(t)− 2as+2
1s (t) + as+3

1s+1(t)
)
αs.

With i) and ii) we compute

d

dt
αs =

d

dt

(
as+2

2s−1 − a
s+3
2s − ws+1,s+2 + vs+1,s+2

)
=

d

dt
as+2

2s−1 −
d

dt
as+3

2s − 2as+2
1s

d

dt
as+2

1s +

(
d

dt
as+2

1s

)
as+3

1s+1 + as+2
1s

(
d

dt
as+3

1s+1

)
= as+1

1s−1αs − a
s+2
1s αs+1 − 2as+2

1s αs + αsa
s+3
1s+1 + as+2

1s αs+1

=
(
as+1

1s−1 − 2as+2
1s + as+3

1s+1

)
αs

=
(
as+1

1s−1 − 2as+2
1s + as+3

1s+1

) (
as+2

2s−1 − a
s+3
2s − a

s+2
1s as+2

1s + as+2
1s as+3

1s+1

)
.

Finally the matrices (T1(t), T2(t), T3(t)) of theorem 20 satisfy Nahm’s equations by i)
and iii). This proves the theorem.

5.2.3 Examples

Example 7. We will consider the case n = 2 and hence g = (n − 1)2 = 1. The
transition function of any invertible sheaf F ∈ Jac0(C2) is of the form g10(ζ, η) =
d00 + d11

η
ζ and the theta function is θ(F) = d11. This means all invertible sheaves

are of the special case above and we have a2
10 = −d00

d11
. An invertible sheaf F is real,

if d11 ∈ R. In terms of flows we have d11(t) = d11 − td00. A representative of
the GL2(C)-conjugation class of regular, nilpotent, matricial polynomials of a sheaf
F t ∈ Jac0(C2) \Θ is given by

A(ζ, t) =

(
0 0
1 0

)
+

(
d00
d11(t) 0

0 − d00
d11(t)

)
ζ +

(
0 − d200

d11(t)2

0 0

)
ζ2.
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This leads to solutions of Nahm’s equations

T1(t) =
i

2

(
d00
d11(t) 0

0 − d00
d11(t)

)
, T2(t) =

i

2

(
0 d00

d11(t)
d00
d11(t) 0

)
, T3(t) =

1

2

(
0 − d00

d11(t)
d00
d11(t) 0

)
.

Any element of Oreg(sl2(C)) is SU(2)-conjugated to a matrix of the form

X := Â0(0) = i

(
0 0
d00
d11

0

)
for some negative real number d11. For such an element, via the solutions of Nahm’s
equations above, the Kähler potential is given by K(X) = θ′(Ft)

θ(Ft) = −d00
d11

> 0. Hence a
Kähler potential is given by

K(X) =

√
tr
(
XX

T
)

up to a multiplication of a constant. This is not surprising, because the regular, nilpo-
tent orbit coincides with the minimal, nilpotent orbit in the case n = 2 and it is

well-known, that K(X) =

√
tr
(
XX

T
)

(up to a multiplication by a constant) is a

Kähler potential on the minimal, nilpotent orbit in any complex, simple Lie algebra,
see [KS01c].

Example 8. In this last example we consider the case n = 3. The genus is g =
4. Let F ∈ Jac3(C3) \ Θ be an invertible sheaf of degree 3. Let us suppose its
transition function is of the form g10(ζ, η) := 1

ζ

(
d00 + d11

η
ζ + d22

η2

ζ2

)
with d11, d22 ∈

R. Moreover let us assume the inequalities

d2
11 > d22 > 0,

which ensures α0 and α1 are negative terms. The theta function is θ(F) = d00d
2
11d22−

d2
00d

2
22 > 0. For simplicity we set d00 = 1. We get matrices by conjugating the matrices

Ai by the coordinate transformation matrix P ,

Â0 = i


0 0 0

(d211−d22)
3
2

θ 0 0

0 (d22)
3
2

θ 0

 ,

Â1 =


(d211−d22)d11

θ 0 0

0
(2d22−d211)d11

θ 0

0 0 −d11d22
θ

 ,

Â2 = i

0
(d211−d22)

3
2

θ 0

0 0 (d22)
3
2

θ
0 0 0

 .
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By theorem 20 we get su(n)-valued solutions of Nahm’s equations

T1(t) =
i

2


(d11(t)2−d22(t))d11(t)

θ(Ft) 0 0

0
(2d22(t)−d11(t)2)d11(t)

θ(Ft) 0

0 0 −d11(t)d22(t)
θ(Ft)

 ,

T2(t) =
i

2


0 (d11(t)2−d22(t))

3
2

θ(Ft) 0

(d11(t)2−d22(t))
3
2

θ(Ft) 0 (d22(t))
3
2

θ(Ft)

0 (d22(t))
3
2

θ(Ft) 0

 ,

T3(t) =
1

2


0 − (d11(t)2−d22(t))

3
2

θ(Ft) 0

(d11(t)2−d22(t))
3
2

θ(Ft) 0 − (d22(t))
3
2

θ(Ft)

0 (d22(t))
3
2

θ(Ft) 0

 .

These matrices already appeared in [KS93] up to a reparametrization, where they are
called flow lines. Let us consider the matrix

R =

−
√

3
2 + 1

2 i 0 0

0 −1
2 −

√
3

2 i 0

0 0
√

3
2 −

1
2 i

 ∈ SU(3).

Now we conjugate the matrix

Â0 = i


0 0 0

(d211−d22)
3
2

θ 0 0

0 (d22)
3
2

θ 0


by the matrix R and we get

Âconj0 = RÂ0R
−1 = RÂ0R

T
=


0 0 0

− (d211−d22)
3
2

θ 0 0

0 − (d22)
3
2

θ 0

 .

With a = − (d211−d22)
3
2

θ and c = − (d22)
3
2

θ (it is the notation of [KS93] ) we get

a
2
3 + c

2
3 = (−1)

2
3
d2

11

θ
2
3

.

Thus the value of the Kähler potential is√(
a

2
3 + c

2
3

)3
=
−d3

11

θ
=
θ′(F0)

θ(F0)
= K(Âconj0 ) = K(Â0)

This formula coincides with the formula in higher generality of [KS93], [KS01b] with
b = 0 in their notation.

With fixed numbers d11 = −
√

2 and d00 = d22 = 1 we have the property d2
11 >

d22 > 0. We have d22(t) = 1+
√

2t+ t2

2 =
(

t√
2

+ 1
)2

, d11(t) = −
√

2−t = −
√

2( t√
2
+1),
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d11(t)2 = 2d22(t) and θ(F t) =
(

t√
2

+ 1
)4

. This leads to solutions of Nahm’s equations

T1(t) =
i

2


−
√

2(
t√
2

+1
) 0 0

0 0 0

0 0
√

2(
t√
2

+1
)

 =


−i

(t+
√

2)
0 0

0 0 0
0 0 i

(t+
√

2)

 ,

T2(t) =
i

2


0 1(

t√
2

+1
) 0

1(
t√
2

+1
) 0 1(

t√
2

+1
)

0 1(
t√
2

+1
) 0

 =


0 i√

2(t+
√

2)
0

i√
2(t+

√
2)

0 i√
2(t+

√
2)

0 i√
2(t+

√
2)

0

 ,

T3(t) =
1

2


0 −1(

t√
2

+1
) 0

1(
t√
2

+1
) 0 −1(

t√
2

+1
)

0 1(
t√
2

+1
) 0

 =


0 −1√

2(t+
√

2)
0

1√
2(t+

√
2)

0 −1√
2(t+

√
2)

0 1√
2(t+

√
2)

0

 .

We see easily, that these matrices are well-defined on the interval [0,∞) and they solve
Nahm’s equations

d

dt
T1(t) = [T2(t), T3(t)],

d

dt
T2(t) = [T3(t), T1(t)],

d

dt
T3(t) = [T1(t), T2(t)].
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