
Parametrised Enumeration

Arne Meier

Februar 2020

Gottfried Wilhelm Leibniz Universität Hannover
Institut für
 Theoretische
Informatik

c: 100
m: 70
y: 0
k: 0

c: 35
m: 0
y: 10
k: 0

c: 0
m: 0
y: 0
k: 35

color guide
(the dark blue is the same with the
university logo)

Wednesday, February 18, 15

Fakultät für Elektrotechnik und Informatik
Institut für Theoretische Informatik
Fachgebiet Theoretische Informatik

Habilitationsschrift

Parametrised Enumeration

Arne Meier
geboren am 6. Mai 1982 in Hannover

Februar 2020

Gutachter Till Tantau
Institut für Theoretische Informatik
Universität zu Lübeck

Gutachter Stefan Woltran
Institut für Logic and Computation 192-02
Technische Universität Wien

Arne Meier
Parametrised Enumeration
Habilitationsschrift, Datum der Annahme: 20.11.2019
Gutachter: Till Tantau, Stefan Woltran

Gottfried Wilhelm Leibniz Universität Hannover
Fachgebiet Theoretische Informatik
Institut für Theoretische Informatik
Fakultät für Elektrotechnik und Informatik
Appelstrasse 4
30167 Hannover

Dieses Werk ist lizenziert unter einer Creative Commons
“Namensnennung-Nicht kommerziell 3.0 Deutschland” Lizenz.

https://creativecommons.org/licenses/by-nc/3.0/deed.de
https://creativecommons.org/licenses/by-nc/3.0/deed.de
https://creativecommons.org/licenses/by-nc/3.0/deed.de

Für Julia,
Jonas Heinrich und Leonie

Anna. Ihr seid mein größtes
Glück auf Erden. Danke für eure
Geduld, euer Verständnis und

eure Unterstützung. Euer
Rückhalt bedeutet

mir sehr viel.
♥

“ ”If I had an hour to solve a problem, I’d spend
55 minutes thinking about the problem and 5 min-
utes thinking about solutions.

— Albert Einstein

Abstract
In this thesis, we develop a framework of parametrised enumeration complexity.
At first, we provide the reader with preliminary notions such as machine models
and complexity classes besides proving them to be well-chosen. Then, we study the
interplay and the landscape of these classes and present connections to classical
enumeration classes. Afterwards, we translate the fundamental methods of kerneli-
sation and self-reducibility into equivalent techniques in the setting of parametrised
enumeration. Subsequently, we illustrate the introduced classes by investigating the
parametrised enumeration complexity of Max-Ones-SAT and strong backdoor sets as
well as sharpen the first result by presenting a dichotomy theorem for Max-Ones-SAT.
After this, we extend the definitions of parametrised enumeration algorithms by
allowing orders on the solution space. In this context, we study the relations “order
by size” and “lexicographic order” for graph modification problems and observe
a trade-off between enumeration delay and space requirements of enumeration
algorithms. These results then yield an enumeration technique for generalised modi-
fication problems that is illustrated by applying this method to the problems closest
string, weak and strong backdoor sets, and weighted satisfiability. Eventually, we
consider the enumeration of satisfying teams of formulas of poor man’s propositional
dependence logic. There, we present an enumeration algorithm with FPT delay
and exponential space which is one of the first enumeration complexity result of
a problem in a team logic. Finally, we show how this algorithm can be modified
such that only polynomial space is required, however, by increasing the delay to
incremental FPT time.

Keywords: Parametrised Complexity, Enumeration Complexity, Parametrised Enu-
meration

vi

Zusammenfassung
In diesem Werk begründen wir die Theorie der parametrisierten Enumeration,
präsentieren die grundlegenden Definitionen und prüfen ihre Sinnhaftigkeit. Im
nächsten Schritt, untersuchen wir das Zusammenspiel der eingeführten Komplex-
itätsklassen und zeigen Verbindungen zur klassischen Enumerationskomplexität auf.
Anschließend übertragen wir die zwei fundamentalen Techniken der Kernelisierung
und Selbstreduzierbarkeit in Entsprechungen in dem Gebiet der parametrisierten
Enumeration. Schließlich untersuchen wir das Problem Max-Ones-SAT und das
Problem der Aufzählung starker Backdoor-Mengen als typische Probleme in diesen
Klassen. Die vorherigen Resultate zu Max-Ones-SAT werden anschließend in einem
Dichotomie-Satz vervollständigt. Im nächsten Abschnitt erweitern wir die neuen Def-
initionen auf Ordnungen (auf dem Lösungsraum) und erforschen insbesondere die
zwei Relationen „Größenordnung“ und „lexikographische Reihenfolge“ im Kontext
von Graphen-Modifikationsproblemen. Hierbei scheint es, als müsste man zwischen
Delay und Speicheranforderungen von Aufzählungsalgorithmen abwägen, wobei dies
jedoch nicht abschließend gelöst werden kann. Aus den vorherigen Überlegungen
wird schließlich ein generisches Enumerationsverfahren für allgemeine Modifika-
tionsprobleme entwickelt und anhand der Probleme Closest String, schwacher und
starker Backdoor-Mengen sowie gewichteter Erfüllbarkeit veranschaulicht. Im let-
zten Abschnitt betrachten wir die parametrisierte Enumerationskomplexität von
Erfüllbarkeitsproblemen im Bereich der Poor Man’s Propositional Dependence Logic
und stellen einen Aufzählungsalgorithmus mit FPT Delay vor, der mit exponentiellem
Platz arbeitet. Dies ist einer der ersten Aufzählungsalgorithmen im Bereich der Team-
logiken. Abschließend zeigen wir, wie dieser Algorithmus so modifiziert werden
kann, dass nur polynomieller Speicherplatz benötigt wird, bezahlen jedoch diese
Einsparung mit einem Anstieg des Delays auf inkrementelle FPT Zeit (IncFPT).

Schlagwörter: Parametrisierte Algorithmen, Aufzählungskomplexität, Parametri-
sierte Aufzählungsalgorithmen

vii

Acknowledgement
At first, I wish to deeply thank my family for always being sympathetic and support-
ive. Secondly, I want to express my gratitude to all my coauthors of publications
which have been incorporated in this thesis. In particular, I show appreciation to
Nadia Creignou, Raïda Ktari, Julian-Steffen Müller, Fréderic Olive, Johannes Schmidt
(thanks, Johannes, for the discussion on Theorem 3.2), and Heribert Vollmer who
have been working with me at the initial steps into this exciting new field. Fur-
thermore, I thank Maurice Chandoo and Anselm Haak for their valuable comments
on various parts of this thesis. Particularly, I would like to thank Martin Lück for
his feedback on Section 3.2, and Johannes Fichte for proof reading Chapter 1. I
want to give thanks to Christian Reinbold for discussions on Chapter 6. Eventually,
I appreciate Anselm’s feedback to my teaching demonstration and Fabian’s on my
scientific talk. Finally, I wish to thank Stefan Woltran, and Till Tantau for reviewing
this thesis.

Danksagung
Zuerst möchte ich meine tiefste Dankbarkeit bei meiner Familie ausdrücken. Euer
Verständnis und eure Unterstützung in allen Lebenslagen sind das Fundament meiner
Forschung. An zweiter Stelle bedanke ich mich bei allen meinen Mitautoren von
Veröffentlichungen, die in diese Arbeit eingeflossen sind. Besonderer Dank gehört
hierbei Nadia Creignou, Raïda Ktari, Julian-Steffen Müller, Fréderic Olive, Johannes
Schmidt (besonderer Dank geht an Dich für die Diskussion zu Theorem 3.2) und
Heribert Vollmer, die bei den wichtigen ersten Publikationen zur parametrisierten
Enumeration mitgewirkt haben. Schließlich richtet sich meine Dankbarkeit an
Maurice Chandoo und Anselm Haak für ihre wertvollen Rückmeldungen zu unter-
schiedlichen Abschnitten dieser Arbeit. Insbesondere möchte ich Martin Lück für
seine Hinweise zum Abschnitt 3.2 sowie Johannes Fichte für das Korrekturlesen
von Kapitel 1 danken. Christian Reinbold bin ich für die Diskussionen zu Kapitel 6
zu Dank verpflichtet. Schließlich danke ich Anselm für seine Rückmeldung zu
meiner Lehrprobe und Fabian für seine Tipps zu meinem wissenschaftlichen Vortrag.
Abschließend möchte ich mich noch bei Stefan Woltran und Till Tantau für das
begutachten dieser Arbeit bedanken.

viii

Contents

1 Introduction 1
1.1 Parametrised Complexity . 3
1.2 Enumeration . 6
1.3 Team Logics . 10
1.4 Results . 13
1.5 Publications . 13

2 Preliminaries 15
2.1 Complexity Theory . 15
2.2 Parametrised Complexity Theory . 15
2.3 Enumeration . 17
2.4 Parametrised Enumeration . 19
2.5 Orders . 21

3 Enumeration Complexity Landscape 23
3.1 Incremental FPT . 25
3.2 Connections to Classical Enumeration 27
3.3 CardinalitySAT . 34

4 Principles of Parametrised Enumeration 37
4.1 Kernelisation . 37
4.2 Self-Reducibility and Bounded-Search-Trees 42

4.2.1 Enumeration Complexity of Max-Ones-SAT 42
4.2.2 Enumeration of Strong HORN-Backdoor Sets 47

4.3 A Dichotomy for the Enumerability of Max-Ones-SAT 48

5 Parametrised Enumeration with Orders 57
5.1 Graph Modification Problems . 57

5.1.1 Lexicographic Order . 61
5.1.2 Order by Size . 62

5.2 Generalised Modification Problems 65
5.2.1 Closest String . 68
5.2.2 Backdoors . 69
5.2.3 Weighted Satisfiability Problems 71

ix

6 Enumeration in Poor Man’s Propositional Dependence Logic 73
6.1 Team-based Propositional Logic . 74
6.2 Group Theory . 75
6.3 Enumeration Complexity . 76

6.3.1 The Group Action of Flipping Bits 79
6.3.2 Limiting Memory Space . 89

7 Conclusion 95

8 Outlook 99

Bibliography 101

x

1Introduction

“ ”[. . .]; les charmes enchanteurs de cette sublime
science ne se decelent dans toute leur beaute qu’a
ceux qui ont le courage de l’approfondir.

[. . .]; the enchanting charms of this sublime sci-
ence reveal themselves in all their beauty only to
those who have the courage to go deeply into it.

— Carl Friedrich Gauß, 30. April 1807.
[CF12]

In the last decade, implicitly using modern technologies silently became a common
procedure in copious areas of living. Before leaving home, we check the rain forecast
on our smartphone. In the morning, we buy groceries or various other things over
the internet, and they are delivered even the same day. Driving a car to a new place
without using a navigation system and relying solely on a printed map instead seems
absurd these days. However, often, we do not realise how complex and striking the
development of the underlying algorithmic tasks has been.

The process of finding an (algorithmic) solution lies in the heart of theoretical
computer science. Despite the variety of different techniques that are utilised, we
want to exemplify this richness slightly more detailed in the following. Consider
the problem of finding a shortest possible route visiting cities from a given list and
each of them exactly once. This task is well-known under the name the travelling
salesperson problem (TSP), whose origin lies in the work of William Rowan Hamilton
and his icosian game [Ham53]. In this game, one is given a dodecahedron, which is
a polyhedron with twelve flat faces (or also a twelve sided dice):

In this specific graph, one searches for a round trip of the mentioned type that
also is a cycle. Historically, such routes are called Hamiltonian today, and the thick
edges depict a possible one.

But now, let us turn back to the problem of the travelling salesperson. The mere
question of whether a journey shorter than a given cost exists, gained a wealth

1

of attention by researchers in many different subareas of computer science and
mathematics. The foundational work on TSP developed many remarkable algorith-
mic techniques (for instance, integer programming [Bea65], cutting-plain method
[Mar+02]) and also improved the view of the landscape of computational complexity
theory drastically. In this area, one is interested in measuring the required runtime
and memory that is needed to solve the problem dependent on a formal computation
model. In 1972, Richard Karp proved in his seminal publication “Reducibility Among
Combinatorial Problems” [Kar72] (among 21 other problems) the NP-completeness
of a very closely related problem (finding Hamiltonian paths in graphs) and thereby
settled the intractability of TSP. Intuitively speaking, NP-completeness of a problem
interdicts the existence of an algorithm for that particular problem (and accordingly
for TSP) running in polynomial time (unless the complexity classes NP and P coin-
cide which would be a dramatic and quite unlikely event). Here, the complexity class
P encompasses all problems solvable in polynomial time and NP those which can be
solved in nondeterministic polynomial time. Comparing both classes, one can show
that for problems in the class P their solutions can be efficiently detected (that is, in
polynomial time with respect to the input length), whereas, for NP, solutions can
only be efficiently verified. It is worth asking in this context how P and NP exactly
relate to each other, that means, either P = NP is true or P is a strict subclass of
NP. Unfortunately, since the 1970s, this remains to be an open question of research.
Today, we still do not know whether efficiently verifying solutions also always al-
lows for efficiently finding them. This question is well-known as the prominent
P-versus-NP problem. It belongs to the “Millennium Prize Problems” [Cla] which is
a list of problems advertised by the Clay Mathematics Institute. This list contains the
seven most important, open problems in mathematics. Solving For solving problems
on this list, the institute has awarded one million US-dollar in prize money. So far
only the Poincaré conjecture has been proved [Per03]. Solving the P-versus-NP prob-
lem positively, that is, showing P = NP, would yield severe consequences to not only
the computation of efficient routing solutions but would also imply that vast parts of
the currently used cryptographic protocols on the internet are insecure. One reason
for this lies in the meaning of a completeness result. Essentially, every NP-complete
problem can be seen as a representative of this complexity class NP: Every other
problem in this class NP can be efficiently translated (in some way) into this partic-
ular problem. As a result, if we can solve this specific problem in polynomial time
then we can do so as well for every other problem in NP. This fact led to a long list
of attempts to solve this problem (positively or negatively) as reported by Gerhard
Woeginger on his website https://www.win.tue.nl/~gwoegi/P-versus-NP.htm.
We want to emphasise that this website only contains attempts and none of them has
solved this major question yet. Nevertheless, we all know that today, carrier compa-
nies still succeed in delivering their packages to their customers. As a consequence,
people who are not familiar with complexity theory might question the practical
relevance of such theoretical results. At first, one has to know that the quality of the

2

https://www.win.tue.nl/~gwoegi/P-versus-NP.htm

transport routes which currently are produced is suboptimal—the carrier computes
only a “close to optimal” route. Let us define “close to optimal” more precisely
in the following. Christofides [Chr76] attacked this problem in the framework of
approximation algorithms. Here, one constructs deterministic procedures which aim
for solutions that are very close to an optimal one. By a clever approach, Christofides
constructed an algorithm which guarantees to find a route that is at most 1.5 times
longer than an optimal one (since 2014, there exists an improvement to 1.4 [SV14]).

As an interesting fact, humans are very good in spotting (close to) optimal solutions
and it is very difficult to translate this intuition into an algorithmic scheme. This
fact sometimes results in humans as a last step in the process of spotting solutions
efficiently [Enc17].

As we have seen, the NP-completeness of a problem theoretically and practically
interdicts the existence of algorithms solving it and running in polynomial time
unless P = NP. Nonetheless, science has found many other ways to attack such
problems today; constructing approximation algorithms is only one of them. This
can also be seen as the crucial point of Woeginger’s website. Although all of the
presented attempts failed in proving either result, the research on the P-versus-NP
problem still is indispensable as it spawns new techniques and insights into the heart
of this critical problem.

1.1 Parametrised Complexity
One further intriguing approach to cope with such problems is to perform a fine-
grained complexity analysis by considering their so-called parametrised complex-
ity. Downey and Fellows—who can be seen as initiators of this field [DF13;
DF99]—argue that “parameterized complexity [. . .] is more attuned to analysing
computational questions which arise in practice than traditional worst-case analysis.”
By their statement, they underline how the coarseness of (traditional) worst-case
complexity and NP-completeness results might obfuscate feasible solutions for re-
strictions of the considered problem. In parametrised complexity, the structure of the
problem is of utmost interest:

The complexity of a problem usually not only relies on the size of the input!

Instead, many problems exhibit so-called parameters (or parametrisations) which
are the true source of complexity. Formally, such parameters are functions mapping
an input often to a natural number and are denoted with the Greek letter Kappa κ.
Spotting such parameters is a key task in reaching deeper views on the problem of
interest. In the succeeding process of analysing the parametrised complexity of the
given problem, we want to elaborate on two relevant types of studied algorithmic
runtimes. On one hand, runtimes of the form f(κ(x)) ·p(|x|) are much desired, where
f is an arbitrary computable function, κ is the parametrisation, and x is the input.
By contrast, one usually tries to avoid runtimes of the kind nf(κ(x)). An obvious
objection here is that f, as an arbitrary computable function, could grow so fast

1.1 Parametrised Complexity 3

that it renders both of the aforementioned runtimes infeasible. While this is true
in theory, these parameters are often of a much smaller value in practice. Typically,
one aims for parameters that are growing slowly or even constant [AFN04]. Then
one could argue that, under worst-case complexity notion, algorithms with both
runtimes solve the problem efficiently (in polynomial time). Nevertheless, a runtime
of n6 or higher is not really of a practical use. By contrast, a runtime of 6 · n is a
quite fast linear time algorithm.

After we saw that distinguishing these two types of runtimes is sensible, let us turn
back to the central observation from above about the structure of the investigated
problems. Clearly, this structure is a manifold aspect highly depending on the
problem of interest. Often, it is very tedious to detect a parameter which is severely
influencing the runtime and, on the other hand, also relevant for practice. For
instance, if one considers the satisfiability problem of propositional formulas (SAT),
the number of variables is a very weak parameter: Typically, this parameter is neither
bounded nor slowly growing, albeit the problem SAT can be solved in time 2k · |ϕ|
where k is the number of variables of a given formula ϕ. As a consequence, Samer
and Szeider [SS09] searched for a more fruitful parameter. It turned out that such a
parameter is treewidth [BK08] encoding the tree-likeliness of a graph (the smaller the
parametric value the closer the graph is to being a tree). Samer and Szeider proved
that SAT parametrised by its treewidth (for specific graph representations of input
formulas) is fixed-parameter tractable (FPT), that is, of the aforementioned much
desired runtime f(κ(x)) · p(|x|).

A quantified Boolean formula (QBF) is an extension of propositional formulas by
combining existential (∃) and universal (∀) quantifiers with variables. The seman-
tics require that subsequent formulas have to be fulfilled for one (∃) or both (∀)
truth values. Such formulas allow to express several problems relevant for practice
(such as verification tasks and consistency questions of computer programs) that
are presumably of even higher complexity than SAT. Now, similarly, recent research
[Fic+17; CW16a; CW16b] shows that graph representations of real-world instances
of QBFs seem to exhibit hidden structures not appearing in randomly generated
instances. Again, the parameter treewidth describes these patterns appropriately.
Earlier, Gottlob et al. [GSS02] showed that some specific restrictions of QBFs pa-
rametrised by treewidth are in FPT, as well. However, for general QBF formulas,
one has to additionally incorporate the quantifier alternations into the parameter to
reach FPT as shown by Pan and Vardi [PV06].

Similarly to the work on TSP, the search for parametrised algorithms has yielded
numerous new astounding techniques such as kernelisation [DF99], search trees and
branching algorithms [HNW08; ST08], iterative compression [RSV04], or colour
coding [AYZ95; Cyg+15]. Let us exemplify one of these techniques to provide a
better understanding of what parametrised complexity really is about. The method
we want to elaborate on is kernelisation, which is best explained via the vertex-cover
problem (VERTEX-COVER). A vertex-cover of a given undirected graph is a (sub-)set

1.1 Parametrised Complexity 4

of its vertices such that every edge of the graph is incident to a vertex from the cover.
As an example, let us consider the following undirected graph with its vertex covers
of size 3, both emphasised on the right-hand side by white filling:

1 2

3 4

5

1 2

3 4

5

1 2

3 4

5

The remaining combinations, where the cover is again filled in white, are no
vertex-covers as the thick lines indicate an uncovered edge.

1 2

3 4

5

1 2

3 4

5

1 2

3 4

5

1 2

3 4

5

1 2

3 4

5

1 2

3 4

5

1 2

3 4

5

1 2

3 4

5

The problem VERTEX-COVER now asks, given an undirected graph G and a natural
number k ∈ N, if G has a vertex-cover of size ≤ k. VERTEX-COVER is among the
prominent 21 problems of Richard Karp [Kar72] and was classified as NP-complete.
What we have seen so far lets us deduce that VERTEX-COVER is an intractable
problem. In the following, we will analyse the problem in a more detailed way and
will compute a kernelisation of the considered instance. Suppose we are given the
above graph, the integer k = 3, and we need to decide whether this instance belongs
to VERTEX-COVER or not.

How can we find an answer to the question in a systematic way? How does the
inherent structure of the graph helps us? Firstly, the vertices with “high” degree are
important: If there is a vertex present with a degree d > 3 it must be part of the
vertex cover because otherwise, we can only cover at most d− 3 of its edges. In our
case, the only two vertices of this kind are number 3 and 4. So, let us choose for
vertex 3. What is the next step? Now, that we have decided upon vertex 3, we cover
all its edges to the vertices 1, 2, 4, and 5. Accordingly, the degrees of these adjacent
vertices decreased by one or, equivalently, we remove 3 from the graph and decrease
k by one to 2.

1 2

3 4

5

1 2

4

5

Now, that vertex 4 has a degree of 3, comparing it to the updated value of k = 2,
this still is a high degree leading to selecting vertex 4 next.

1 2

3 4

5

1 2

5

In this last step, k reaches the value of 1 and every remaining vertex has a degree
of either 1 or 0. Accordingly, there exists no vertex with a high degree. Moreover,
we are left with only a single edge. For this graph computing a vertex cover of size 1

1.1 Parametrised Complexity 5

is very easy. The general algorithm would stop here by returning the reached graph
and k = 1 (in the general case, the algorithm would not return graphs with more
than k2 many edges, and instead output a trivial no-instance).

What have we done now? Essentially, after having iteratively selected mandatory
vertices, we reached a threshold size of the graph which can be brute-forced in the
size of the parameter. More formally, we computed a smaller subgraph G ′ and a new
value k ′ in time linear in k plus the size of the original graph G. For this subinstance
(G ′, k ′) we have that k ′ ≤ k and the size of G ′ is bounded quadratically in k ′.

Let us shortly reflect on the presented algorithmic paradigm. In our case, we have
computed the prominent Buss kernelisation1, which, in fact, is even a polynomial
kernelisation (that is, the kernel has polynomial size; here quadratic). There even
exists also a linear kernelisation by Nemhauser and Trotter [NT75] which we do not
investigate further.

Kernelisations provide a compression of the original problem instance to its
“kernel” which often is a subinstance like in our case a subgraph. Usually, the size
of this subinstance is eminently reduced such that brute-forcing it often is a valid
option. In our case, we have seen that VERTEX-COVER parametrised by the value of k
is in FPT via the sketched kernelisation. Accordingly, the technique of kernelisation
can be seen as an efficient notion of preprocessing. We will later in Section 4.1
return to this technique and show how it can be employed to characterise a new
complexity class.

The generalised version of VERTEX-COVER, known as the hitting-set problem, has
practical applications for dynamically detecting potential data races in multithreaded
programs [OC03]. Besides, it has a long tradition in parametrised complexity theory
[DF13; FG06; Nie06].

Now, that we have provided an insight into the area of parametrised complexity,
we leave the category of decision problems and turn on towards the other central
area of this thesis: Enumeration complexity.

1.2 Enumeration
Completely different to deciding the existence of a satisfying assignment of a propo-
sitional formula is the algorithmic task of outputting all satisfying ones. This type of
procedure is well-known under the term enumeration (of objects) and is a significant
problem in the areas of combinatorics, computational geometry, and operations
research [AF96]. Moreover, recent results unveil major importance in web search,
data mining, bioinformatics, and computational linguistics [COS11]. Albeit research
on this topic has been vividly carried out before, the formal origins of the field of
enumeration complexity can be dated to the work of Johnson, Papadimitriou and Yan-
nakakis [JPY88b]. Certainly, algorithms in this field generally require an exponential

1Jonathan F. Buss and Judy Goldsmith acknowledge Samuel R. Buss for this algorithm via a personal
communication reference [BG93].

1.2 Enumeration 6

runtime as the solution space of a problem instance typically is of that particular size.
As a result, classifying problems problems in terms oft their overall runtime of their
respective algorithms is usually abandoned. Instead, one is interested in the delay
of the algorithm: The delay of an enumeration algorithm measures, in worst-case
complexity notion, the elapsed time during outputting two consecutive solutions.
Significantly to note, such algorithms must avoid printing duplicated solutions (in
the whole process), that is, the same solution never is output more than once. It
is worth to mention that this restriction might impose tremendous constraints on
space requirements of an enumeration algorithm; in the naïve approach, all output
solutions are stored in a priority queue (of possibly exponential space). The class of
all problems with enumeration algorithms outputting solutions with polynomial de-
lay (DelayP) is a central complexity class in this field. Despite the disregarded space
requirements, this class widely is seen as an efficient way of enumeration in this
area of research. Typical representatives of DelayP encompass the enumeration of
satisfying assignments for Horn or Krom formulas [CH97], structures for first-order
query problems with possibly free second-order variables and at most one existential
quantifier [DS11], or cycles in graphs [RT75].

Beyond TSP, the most prominent NP-complete problem is SAT as it is the first
problem which was proven to be of this particular completeness by Cook [Coo71]
and, independently behind the Iron Curtain, by Levin [Lev73]. As a consequence,
SAT received a wealth of theoretical attention until today and is presumably one
of the most analysed and tackled problems in science. Today, there even exists
an association [SAT] whose aim “is to promote science and research, in particular
with regard to the Satisfiability Problem and related areas.” This utmost interest of
researchers all over the globe brought highly optimised algorithms, known as SAT
solvers today. The mentioned SAT-association even organises a SAT conference every
year on which state-of-the-art SAT solvers compete in challenges. Surprisingly, these
algorithms solve formulas with even hundred thousands or millions of variables
[BHJ16] while brute-forcing such instances is hopeless already for hundreds of
variables on basic computers. Clearly, this situation shows a vast theory-practice
gap: As described before, the NP-completeness of SAT should make it impossible
for the problem to be of practical relevance. Nevertheless, instances of the problem
are routinely solved every single day by these SAT solvers in industry. As a result,
one could reasonably question the meaningfulness of this theory. Nevertheless, the
theory is still valid as it has proven that there exist hard instances of SAT which even
these solvers cannot solve in an acceptable amount of time. Despite this, formula
instances occurring in practice seem to embody more structure (in a similar way as
explained for parametrised complexity theory). One promising approach to improve
understanding the structuredness of SAT is given by the area of proof theory [Elf+16;
Nor15]. Addressing this observation from a different angle, as a notable result of
the “practical tractability” of SAT, many other problems are presently translated into
SAT [BHJ17]. That means, one describes another problem instance with the help

1.2 Enumeration 7

of a propositional formula and subsequently attacks this problem with a powerful
SAT solver. The computed solutions, that is, satisfying assignments, then correspond
to some desired information depending on the selected problem from which one
translated into SAT. As explained in the beginning of this section, one often is
interested in all solutions or only the cheap ones (that might be generated in the
beginning). Consequently, enumerating satisfying assignments is a very relevant
topic of research. However, of course, efficiently outputting solutions for arbitrary
SAT instances still is out of the question (as again, it would yield the collapse of P
and NP).

In view of the previous remarks, we elaborate in the following on a fast way
to enumerate solutions for a specific case of formulas, namely, Horn formulas.
This type of formulas, named after Alfred Horn, permits a fast decision algorithm.
Horn formulas consist of conjunctions of Horn clauses which can be written in an
implication form. For instance, the following formulas are Horn clauses:

x→ y, 1→ x, x∧ y→ 0, x∧ y→ z.

All these formulas can be rewritten using negation and disjunction:

¬x∨ y, x, ¬x∨ ¬y, ¬x∨ ¬y∨ z.

We see that such clauses have at most one single positive variable—the remaining
variables are negated. As already mentioned, such formulas can be efficiently
checked for satisfiability. The idea is to search for unit clauses, that is, clauses of size
one. For such clauses the variable has to be set to true. In our case this happens for
x, so we set x to true. Then, this procedure is executed on the following modified
formula:
(1.) Delete the lastly detected unit clause.

(2.) If this clause was x then delete all ¬x from the formula and remove all clauses
containing x.

(3.) If this clause was ¬x then delete all x from the formula and remove all clauses
containing ¬x.

We repeat this process as long as we can find unit clauses and accept if this is no
longer the case (and the formula does not contain empty clauses). In the running
example, we have created a new unit clause from the first Horn clause: y is set to true.
In the next iteration, we could detect the clause z (from the last clause), however,
the third Horn clause became already empty (by deleting ¬y due to modification
rule (2.)). Empty clauses in a formula intuitively mean that the clause became false
and accordingly the formula is false under the currently evaluated assignment. As a
result, the algorithm stops by saying that the input formula is not satisfiable. If the
algorithm does not spot neither an empty clause nor a unit clause, then the formula
is satisfiable.

1.2 Enumeration 8

Now, let us return to the particular enumeration algorithm for printing satisfying
assignments of Horn formulas. It is a recursive algorithm with two parameters: A
given formula F and a partial assignment A on the variables of F. In the following,
let F(A) denote the formula that is obtained by inserting all truth values of variables
as specified by A in F (in a similar fashion as explained above). It is important
to mention that F being Horn implies the same for F(A). The recursive algorithm
iteratively constructs assignments. We say that the assignment A is not total if not
every variable in F has a specified truth value.
(1.) If A satisfies F and all variables of F have a value under A then A is printed.

(2.) If F(A) is satisfiable and A is not total yet then select a variable x for which
A is not defined and recursively check (F(A ∪ {x = 0}), A ∪ {x = 0}) and
(F(A ∪ {x = 1}), A ∪ {x = 1}).

The first step of this algorithm clearly is in polynomial time as the evaluation of
formulas under a given assignment is in P (it can even be solved by polynomial-
sized circuits with logarithmic depth and bounded fan-in [Bus+92]). Step two
uses the polynomial time decision algorithm sketched above and then branches
recursively. The satisfiability check here is crucial to the success of the algorithm
obeying a polynomial delay as “wrong” assignments immediately are discontinued
in the following process.

What is the idea of the algorithm? The algorithm repeatedly reduces the instance
to a smaller one and recursively builds a bounded search tree on the assignments.
These two approaches, self-reducibility and the technique of bounded search trees
are fundamental concepts in enumeration complexity that will also play a role in
Section 4.2. Besides, these compressing steps resemble kernels from parametrised
complexity theory.

Beyond the search for polynomial delay algorithms, a special type of delay has been
studied: incremental polynomial time (IncP), that is, the i-th delay is polynomial in
the input length and in i. While initially, the runtime is polynomial, later it eventually
becomes exponential (for solution spaces of that size). A well-studied problem in
this enumeration complexity class is the task of generating all maximal solutions of
systems of equations modulo 2 [Kha+05]. Even today, it is not clear whether this
problem can be solved with a polynomial delay. More, an open question of research
is the exact relation of IncP to DelayP.

Parametrised Enumeration. The theory of parametrised enumeration allows for a
fine-grained enumeration complexity analysis from the perspective of parametrised
complexity. In this thesis, we establish this young field by presenting its formal
foundations and first results. Prior to the research of Creignou et al. [Cre+13;
Cre+15; Cre+17b; Cre+19], some preliminary work has existed. In 2002 and
2006, Fernau [Fer02] and Damaschke [Dam06] already considered a way of FPT-
enumeration algorithms which we will specify later. They focussed, respectively, on
cardinality minimum and inclusion minimal solutions for hitting set problems, and

1.2 Enumeration 9

other subset minimisation problems. Of course, the existence of such an enumeration
algorithm requires only an FPT-number2 of minimal solutions for every instance,
which is quite restrictive. Nevertheless, Fernau was able to show that the problem
to enumerate all minimum cardinality vertex covers is possible in FPT-time. Of
course, considering the general vertex cover problem preempts the existence of an
FPT enumeration algorithm as the number of distinct vertex-covers exceeds any
FPT-like runtime in the worst case. This observation clearly motivates to further
investigate the algorithmic possibilities for this problem. In Section 4.1, we will see
how this problem can be approached to present an enumeration algorithm running
with FPT-delay.

In this thesis, we will see how parametrised enumeration unites parametrised
complexity theory with enumeration complexity theory, utilises and benefits from
several pivotal techniques stemming from both areas. One of these paradigms
will be computing the kernel of an instance (kernelisation) [Dam06; FSV13] (see
Section 4.1). For this algorithmic process we will create a new method, enum-
kernelisation, which characterises the parametrised enumeration complexity class
DelayFPT. Furthermore, we show how self-reducibility [Sch76; KV91; CH97; Sch09]
(cf. Section 4.2) together with bounded search trees can be employed to enumerate
satisfying assignments for formulas of a specific SAT variant; this will yield a com-
plete dichotomous classification for this problem where all other cases cannot be
efficiently enumerated in DelayFPT. Another application in the scope of backdoor
sets confirms that our definitions match.

Furthermore, we will extend the new theory of parametrised enumeration al-
gorithms by orders, that is, we enable our theory to cope with partial orders on
the solution space (which must be obeyed during the enumeration process). We
exemplify this extension via kinds of graph modification problems. Finally, this
section culminates in the construction of a completely generic enumeration scheme
for very general modification problems which will be demonstrated in numerous
ways. The last part of this thesis provides one of the first enumeration complexity
results in the area of the quite young team logics which touch many other disciplines
of research such as linguistics [Abr+13], biology [Abr+13], game [Bra15] and social
choice theory [Shp15].

1.3 Team Logics
Expressing dependencies within formulas has a history which goes back to branching
quantifiers by Henkin [Hen59]. Three decades later, Hintikka and Sandu [HS89]
brought independence-friendly (IF) logic (which Tulenheimo [Tul04] investigated
in the modal setting), and Hodges [Hod97a; Hod97b] considered compositional
semantics for it. This type of semantics can be seen as the cornerstone of the family

2We use the class name FPT to abbreviate a function of the form f(k) · p(n), where f is a computable
function, p a polynomial, k a parameter value, and n the input length. That is, we describe
quantities or runtimes in terms of how the runtimes of machines for languages in FPT are defined.

1.3 Team Logics 10

of modern logics of dependence and independence by Väänänen [Vää07; Vää08].
Afterwards, different concepts of operators have been introduced and studied in the
context of these logics. Among them, in 2012, Galliani analysed specific inclusion
atoms yielding inclusion logic [Gal12], and Grädel together with Väänänen defined
independence logic [GV13].

Aiming for the logical modelling of uncertainty, imperfect information, or func-
tional (in-)dependence, Väänänen realised that usual Tarskian semantics have to
be abandoned: it is futile to reason with respect to single assignments in this set-
ting. Ingeniously, he invented team semantics by adopting Hodges’ compositional
semantics. Initially, Väänänen [Vää07] considered the setting of predicate logic
(first-order logic, FO). Here, a team corresponds to a set of FO assignments with the
same domain of variables. Essentially, such an FO team is the same as a database
table where variables are its attributes and the assignments are the records. At a first
glance, team semantics seems to modify the usual meaning of the “or”-connective
∨: The disjunction of two formulas ϕ,ψ is satisfied by a given team T if and only
if there exist a partition T1] T2 = T such that T1 satisfies ϕ and T2 satisfies ψ.
On teams of cardinality one, this is equivalent to the classical semantics of ∨ as,
by definition, the empty team satisfies any formula. Moreover, the dependence
operator eponymous for Dependence Logic (DL) is an atomic formula of the form
=(x1, . . . , xn, y) where the xi (for 1 ≤ i ≤ n) and y are variables. Then, such an
atomic formula is satisfied by a team T if and only if all assignments that agree on
the xi also agree on y. Accordingly, the value of y is functionally determined by the
xis. Now the connection to database theory becomes more evident as dependence
atoms reassemble functional dependencies in this logic.

In the following, we will give a brief glimpse into the expressive power of the
two mentioned connectives, ∨ and =(), by sketching a result of Lohmann [Loh12,
Thm. 4.13]. We will consider the model-checking problem in propositional de-
pendence logic, that is, given a set of propositional assignments (the team) and a
formula, asking if the team satisfies the formula. Now, the much stressed problem
SAT stays NP-complete for formulas of 3CNF (conjunctive normal form with three
elements per clause), that is for instance, formulas of the kind

ϕ := (x1 ∨ ¬x2 ∨ x3)∧ (¬x1 ∨ ¬x4 ∨ x2)∧ (x1 ∨ ¬x2 ∨ x4).

Let us recall that the three subformulas with only ∨ inside are called clauses.
Formulas in 3CNF can be translated into a model-checking instance of propositional
dependence logic as follows. On the one hand, we use a formula of the type

f(ϕ) := (t1 ∧=(v1))∨ (t2 ∧=(v2))∨ (t3 ∧=(v3))∨ (t4 ∧=(v4)).

saying that there exists a split of the team T into four subteams T1, . . . , T4 (for each
variable of ϕ one, required by the disjunctions) and vj is constant in Tj. Note that

1.3 Team Logics 11

some of these subteams might be empty. Intuitively, we will use in the following
the combination of vi and ti to express the parity of the variable xi in a clause.
That is, we want to mimic whether xi or ¬xi is in that very clause. Before we can
completely understand the interplay of these variables, we need to introduce the
team T := {c1, . . . , c3}:

ci(vj) =

1, if xj is in clause i

0, otherwise,
ci(tj) =

1, if xj or ¬xj is in clause i

0, otherwise.

Informally, ci encodes the i-th clause of ϕ. Let us consider the construction for the
propositional formula from above:

v1 v2 v3 v4 t1 t2 t3 t4

c1 1 0 1 0 1 1 1 0

c2 0 1 0 0 1 1 0 1

c3 1 0 0 1 1 1 0 1

Let us turn back to the aforementioned parity property. In order to satisfy f(ϕ) by
the team T , we need to divide T such that in a subteam Ti we have no two c, c ′ with
opposite vi-values. Accordingly, there are no two assignments in Ti which correspond
to clauses in ϕ such that one contains xi and the other ¬xi. More, all c-entries in Ti
have the same vi (and thereby either all positive or negative xi in the corresponding
clause) and ti is set to 1.

How is ‘satisfiability of ϕ’ related to ‘T fulfilling f(ϕ)’? A satisfying assignment
A of ϕ, for instance, is A(x1) = 1 = A(x2) and the other two variables are set to
0. In the following, we will explain how T can be split into subteams such that
each subteam satisfies the corresponding subformula of f(ϕ). Assign c1, c3 ∈ T1 and
c2 ∈ T2. The subteam T1, for variable x1, satisfies t1 and v1 is constant 1 here as x1
occurs in the first and third clause positively. Likewise T2 satisfies t2 and v2 again is
constant 1. Principally, Ti contains all “clauses” cj which are satisfied by variable xi
with a constant (0 or 1) truth value guaranteed by =(vi). Now, we have seen how
a satisfying assignment leads to a satisfying partition of the team. For the other
direction, that from a satisfying splitting one can construct a satisfying assignment
for ϕ, consider the following argument. We show how splitting into n subteams
(for n variables of ϕ) allows to construct a satisfying assignment. One merely needs
to investigate the teams Ti and detect to which constant value the respective vi is
mapped. If the value is 0 then one sets A(xi) = 0 and otherwise one maps A(xi) = 1.
From this it follows that the formula is satisfied as all “clauses” c are satisfied and
not distributed on the subteams in a contradictory fashion.

The discussed example shows that a dependence atom of arity one for each
variable in combination with linear many splitting disjunctions and conjunctions

1.3 Team Logics 12

already suffices to express an NP-complete problem. By this observation, one may
guess that richer logics in this area might encode highly complex problems.

As we have mentioned in the beginning of this section, history showed how many
different logics can be adapted to team semantics. In this thesis, we consider a
very weak version of propositional team logic and study, for the first time, the
parametrised complexity of enumeration in a team logic. This research can be seen
as an initial step in the currently unknown landscape of enumeration complexity of
the team logics of dependence and independence.

1.4 Results
In this thesis, we lay out the foundations of the framework of parametrised enu-
meration. This is an important first step which has to be conducted very carefully.
Subsequently, we thoroughly examine this heart of the matter and ensure the def-
initions are adequate. We then approve the introduced classes and consider the
landscape of these classes (Chapter 3). Here, we particularly work with the class
of incremental FPT enumeration (IncFPT), and connect the area of parametrised
numeration to its classical counterpart (Section 3.2). In particular, newly introduced
parametrised function classes are utilised to prove this touch point of the two areas
of research. In the setting of parametrised enumeration, we study two variants:
unordered (Chapter 4) and ordered enumeration (Chapter 5). For unordered enu-
meration, we investigate how two crucial techniques, kernels (Section 4.1) and
self-reducibility (Section 4.2), can be transferred to this new framework. These
results again underline that our definitions are sensible. We close this part by pre-
senting a dichotomy theorem (Section 4.3). Turning towards ordered enumeration,
we show the significance of graph modification problems [BHL14] in this context
(Section 5.1). Such problems, relevant in copious areas of research, encompass the
modification of a graph by deletion or introduction of edges, respectively, removing
vertices to transform the graph into another obeying a specific property (for example,
being triangular, that is, all its induced cycles are triangles). In this context, we
will see how a specific characterisation known from parametrised complexity theory
plays a crucial role in allowing efficient enumeration in this setting. Afterwards,
we fundamentally generalise this technique to obtain a parametrised enumeration
scheme for arbitrary modification problems (Section 5.2). Finally, we study parame-
trised enumeration of Poor Man’s Propositional Dependence Logic (Chapter 6) and
present the first enumeration results for a team logic.

1.5 Publications
Chapter 3 discusses new and unpublished insights into the classes IncFPT and
OutputFPT. Furthermore, it presents the first connection to classical enumeration
complexity theory and finishes with some remarks on a cardinality version of the
SAT problem. In this section, we define the parametrised version of the class of

1.4 Results 13

nondeterministic multivalued functions with values that are polynomially verifiable
and guaranteed to exist, TF(NP), known from Megiddo and Papadimitriou [MP91].
We show that a collapse of TF(NP) to FP is equivalent to a collapse of OutputFPT
to IncFPT. There exists only a technical report on these results, which can be found
at the Computing Research Repository (CoRR) [Mei18]. The results in Chapter 4
and Section 4.3 have been published at the 38th International Symposium on Math-
ematical Foundations of Computer Science in 2013 [Cre+13], and in the Springer
journal Theory of Computing Systems [Cre+17b]. Parts of Chapter 5 have been
published at the 9th International Conference on Language and Automata Theory
and Applications in 2015 [Cre+15], and in the MDPI journal Algorithms in 2019
[Cre+19]. The results in Chapter 6 advance the classical enumeration results of a
publication at the Tenth International Symposium on Foundations of Information and
Knowledge Systems, 2018 [MR18] and of a technical report, which can be found at
the Computing Research Repository (CoRR) [MR17], to parametrised enumeration
complexity.

1.5 Publications 14

2Preliminaries

“ ”The whole of science is nothing more than a re-
finement of everyday thinking.

— Albert Einstein

In this chapter we introduce the required mathematical tools and notions for this
thesis. We assume familiarity with basic notions in logics and complexity theory. If a
deeper introduction is needed, we refer the reader to the textbooks of Mendelson
[Men87] and Sipser [Sip12].

The truth values true and false are denoted with the symbols > and ⊥. Propositi-
onal variables are usually denoted with x, y, z and formulas with greek letters ϕ,ψ.
If ϕ is a formula, x and t are variables, then ϕ(t/x) is ϕ where each occurrence of x
is replaced by t.

2.1 Complexity Theory
Most algorithms constructed in this thesis are using exponential space in the input
size while outputting the solutions of a given instance. As Turing machines cannot
access specific bits of exponentially sized data in polynomial time, one commonly
uses the RAM model as the machinery of choice; see the work of Creignou et al.
[Cre+17a]. Usually, polynomially restricted RAMs (RAMs where each register
content is polynomially bounded w.r.t. the input size) suffice for our purposes.

Besides the standard complexity classes P and NP, we will make use of the classes
for (non)deterministic doubly exponential time, that is, EE := DTIME(22n) and
NEE := NTIME(22n). In this context, DTIME(f), respectively, NTIME(f) refers to
deterministic, respectively, nondeterministic RAMs running in time O(f) for some
runtime function f : N→ N.

2.2 Parametrised Complexity Theory
In this section, we will present a brief introduction into the field of parametrised
complexity theory. For a deeper introduction we kindly refer the reader to the
textbooks of Flum and Grohe [FG06], Niedermeyer [Nie06], or Downey and Fellows
[DF13].

Consider a decision problem Q ⊆ Σ∗ over some alphabet Σ. Then L ⊆ Q × Σ∗

is called a parametrised language (or problem). Given an instance 〈x, k〉 ∈ Q× Σ∗,
we call k the parameter (of L). Often, a polynomial time computable function
κ : Σ∗ → Σ∗, the parametrisation, is used to directly address this parameter. In such
a case, one also writes (Q,κ) to denote the parametrised problem. In most cases,

15

the codomain of the parameter is a natural number and as a result, L is a subset of
Σ∗ and then κ : Σ∗ → N also is defined via the set of natural numbers.

Definition 2.1 (Fixed-parameter tractable).
Let (Q,κ) be a parametrised problem over some alphabet Σ. If there exists a determinis-
tic algorithm A and a computable function f : N→ N such that for all x ∈ Σ∗

• A accepts x if and only if x ∈ Q, and

• A has a runtime of O(f(κ(x)) · |x|O(1)),
then A is an fpt-algorithm for (Q,κ) and (Q,κ) is fixed-parameter tractable (or short,
in the complexity class FPT).

In Section 4.3, we will require an appropriate notion of reductions in this setting.
The following definition serves for this purpose.

Definition 2.2 (fpt-reduction).
Let (Q,κ) and (P, λ) be two parametrised problems over alphabets Σ and Γ . Then a
function f : Σ∗ → Γ∗ is an fpt-reduction from (Q,κ) to (P, λ), in symbols (Q,κ) ≤fpt

(P, λ), if f can be computed in FPT time w.r.t. κ, and there exists a computable function
h : N→ N such that

• x ∈ P if and only if f(x) ∈ Q, and

• λ(f(x)) ≤ h(κ(x)).

Analogously to showing usual NP-hardness with respect to ≤p
m-reductions, in

parametrised complexity theory one aims for lower bounds for the complexity class
W[1] (which we define presently) with respect to ≤fpt-reductions.

Definition 2.3.
The class W[1] is the class of parametrised problems (Q,κ) which can be ≤fpt-reduced
to the following problem

Problem: Short Single-Tape Turing Machine Halting Problem

Input: Single-tape NTM M, integer k.
Parameter: The integer k.
Question: Does M accept the empty string in ≤ k steps?

It is worth to mention that the W-symbol for the complexity class stems from
a different characterisation of this complexity class which is the weft of a circuit.
A circuit has weft i ∈ N if on every directed path from input to output gates
there exist at most i gates of fan-in > 2. The class W[1] is then the class of all
circuits of weft 1. Similarly, a hierarchy of W[]-classes arises. It is known that
FPT ⊆ W[1] ⊆ · · · ⊆ W[P], where W[P] is the set of languages which can be decided
by a NTM in time O(f(κ(x)) · |x|O(1)) with at most O(κ(x) · log |x|) nondeterministic
steps. One can see that W[P] feels like FPT with increased nondeterministic power,
yet it is only known that FPT ⊆ W[P]; for instance, FPT = W[P] implies P = W[P].

2.2 Parametrised Complexity Theory 16

A way to “parametrise” a classical and robust complexity class is given by Flum and
Grohe [FG06] and is utilised in the next definition.

Definition 2.4 (para-NP, [FG06, Def. 2.10]).
Let (Q,κ) with Q ⊆ Σ∗ be a parametrised problem over some alphabet Σ. We have
(Q,κ) ∈ para-NP if there exists a computable function f : N→ N and a nondeterministic
algorithmN such that for all x ∈ Σ∗ N correctly decides x ∈ Q in at most f(κ(x)) ·p(|x|)
steps, where p is a polynomial.

Flum and Grohe present also an alternative characterisation of the class para-NP
via all problems “that are in NP after precomputation on the parameter”.

Proposition 2.5 ([FG06, Prop. 2.12]).
Let (Q,κ) be a parametrised problem over some alphabet Σ. We have (Q,κ) ∈ para-NP
if there exists a computable function π : N→ Σ∗ and a problem Q ′ ⊆ Σ∗ ×Σ∗ such that
Q ′ ∈ NP and the following is true: for all instances x ∈ Σ∗ we have that x ∈ Q if and
only if (x, π(κ(x))) ∈ Q ′.

According to the well-known characterisation of the complexity class NP via a
verifier language, one can easily deduce the following corollary.

Corollary 2.6.
Let (Q,κ) be a parametrised problem over some alphabet Σ and p some polynomial.
We have (Q,κ) ∈ para-NP if there exists a computable function π : N → Σ∗ and a
problem Q ′ ⊆ Σ∗ ×Σ∗ ×Σ∗ such that Q ′ ∈ P and the following is true: for all instances
x ∈ Σ∗ we have that x ∈ Q if and only if there exists a y such that |y| ≤ p(|x|) and
(x, π(κ(x)), y) ∈ Q ′.

2.3 Enumeration
Typically, the set of solutions for a given problem instance is much larger than the
input size, namely, it is exponentially larger. As a consequence, considering polyno-
mial time algorithms is not meaningful while talking about an efficient performance.
That being so, one inspects the uniformity of the flow of output solutions of these
algorithms rather their total runtime. In view of this, one measures the delay be-
tween two consecutive outputs. Johnson et al. laid the cornerstone of this intuition
in a seminal paper [JPY88b] and introduced the necessary tools and complexity
notions. Creignou, Olive, and Schmidt [COS11; Sch09] present recent notions in
this framework, which we aim to follow.

Definition 2.7 (Enumeration problem).
An enumeration problem (over an alphabet Σ) is a tuple E = (Q,Sol), where
(1.) Q ⊆ Σ∗ is the set of instances (recognisable in polynomial time),

(2.) Sol is a computable function such that for all x ∈ Σ∗ the set Sol(x) is the finite
set of solutions of x,

(3.) { (x, y) | y ∈ Sol(x) } ∈ P, and

2.3 Enumeration 17

(4.) there exists a polynomial such that for all x ∈ Q and y ∈ Sol(x) we have
|y| ≤ p(|x|).

Then an enumeration algorithm A for the enumeration problem E = (Q,Sol) is a
deterministic algorithm, which on the input x of E, outputs exactly the elements of
Sol(x) without duplicates, and which terminates after a finite number of steps on
every input.

As mentioned before, the overall runtime of enumeration algorithms often is
exponential (or even worse) in the input size due to the vast number of possible
solutions. As a result, one studies the time elapsed between to consecutive output
solution. If this time can be described generally over all output solutions then we
talk about the delay as the following definition states.

Definition 2.8 (Delay).
Let E = (Q,Sol) be an enumeration problem and A be an enumeration algorithm
for E. For x ∈ Q we define the i-th delay of A as the time between outputting the
i-th and (i + 1)-st solution in Sol(x). Furthermore, we set the 0-th delay to be the
precomputation phase which is the time from the start of the computation to the first
output statement. Analogously, the n-th delay, for n = |Sol(x)|, is the postcomputation
phase which is the time needed after the last output statement until A terminates.

Subsequently, we will use the notion of delay to state the central enumeration
complexity classes.

Definition 2.9.
Let E = (Q,Sol) be an enumeration problem (EP) and A be an enumeration algorithm
for E. Then A is
(1.) an P-enum-algorithm if and only if there exists a polynomial p such that for all

x ∈ Q, algorithm A outputs Sol(x) in time O(p(|x|)).

(2.) a DelayP-algorithm if and only if there exists a polynomial p such that for all
x ∈ Q, algorithm A outputs Sol(x) with delay O(p(|x|)).

(3.) an IncP-algorithm if and only if there exists a polynomial p such that for all
x ∈ Q, algorithm A outputs the Sol(x) with the i-th delay of O(p(|x|, i)) (for
every 0 ≤ i ≤ |Sol(x)|).

(4.) a CapIncPa-algorithm if and only if there exists a polynomial p such that for all
x ∈ Q, algorithm A outputs i elements of Sol(x) in time O(p(|x|, ia)) (for every
0 ≤ i ≤ |Sol(x)|.

(5.) a OutputP-algorithm if and only if there exists a polynomial p such that for all
x ∈ Q, algorithm A outputs Sol(x) in time O(p(|x|, |Sol(x)|)).

Accordingly, we say that E is in P-enum/DelayP/IncP/CapIncPa/OutputP if E ad-
mits an P-enum-/DelayP-/IncP-/CapIncPa-/OutputP-algorithm. Finally, we define
CapIncP :=

⋃
a∈N CapIncPa.

2.3 Enumeration 18

Algorithm 2.1: Enumerate all satisfying assignments of a given Krom-formula
Input: A Krom-formula φ, assignment θ
Output: All satisfying assignments of φ.

1 if φ[θ] ≡ 1 and Vars(θ) = Vars(φ) then output θ
2 if φ[θ] is satisfiable and Vars(θ) 6= Vars(φ) then
3 choose x ∈ Vars(φ[θ])
4 EnumKrom (φ, θ ∪ {x = 0})
5 EnumKrom (φ, θ ∪ {x = 1})

Note that in the diploma thesis of Schmidt [Sch09, Sect. 3.1] the class P-enum is
called TotalP. We avoid this name to prevent possible confusion in the following
section as well as with the work of Capelli and Strozecki [CS17]. Also, we want to
point out that Capelli and Strozecki use the definition of CapIncP for IncP (and use
the name “UsualIncP” for IncP instead). This definitions requires an enumeration
algorithm to enumerate m ≤ Sol(x) solutions in time O(m · |x|). They prove that the
notions of CapIncP and IncP are equivalent up to an exponential space requirement
when using a structured delay. So generally, without any space restrictions, the
following result applies.

Proposition 2.10 (Corollary 13 in [CS17]).
CapIncP = IncP.

Example 2.11. Consider the task of enumerating all satisfying assignments of a
given propositional Krom-formula ENUM-KROM. It is well-known that satisfiability of
propositional Krom-formulas can be decided in polynomial time by merely searching
for cycles containing variables and their negation in the underlying implication graph.
Using this observation, the enumeration algorithm depicted in Algorithm 2.1 has
polynomial delay and correctly enumerates all satisfying assignments of a given Krom
formula after the initial call EnumKrom(φ, ∅).

The correctness can be similarly proven as for the algorithm in the proof of Theo-
rem 4.11.

2.4 Parametrised Enumeration
After we have now introduced the basic principles of parametrised complexity
theory and enumeration complexity theory, following the approach of Johnson
et al. [JPY88b], we will introduce the corresponding parametrised versions of these
previously introduced notions.

Definition 2.12.
A parametrised enumeration problem (PEP) over a finite alphabet Σ is a triple
E = (Q,κ, Sol) such that
(1.) Q ⊆ Σ∗ is the set of instances (recognisable in polynomial time),

(2.) κ is a parametrisation of Σ∗, that is, κ : Σ∗ → N is a polynomial time computable
function,

2.4 Parametrised Enumeration 19

(3.) Sol : Σ∗ → P(Σ∗) is a computable function such that for all x ∈ Σ∗, Sol(x) is a
finite set and Sol(x) 6= ∅ if and only if x ∈ Q,

(4.) { 〈x, y〉 | y ∈ Sol(x) } ∈ P, and

(5.) there exists a polynomial p such that for all x ∈ Q and y ∈ Sol(x) we have
|y| ≤ p(|x|).

Furthermore, we use the shorthand S =
⋃
x∈I Sol(x) to refer to the set of solutions

for every possible instance. If E = (Q,κ, Sol) is a parametrised enumeration problem
over the alphabet Σ, then we call strings x ∈ Σ∗ instances of E, the number κ(x)
the corresponding parameter, and Sol(x) the set of solutions of x. Besides, the
definitions of enumeration algorithms and delays are easily adjusted to the setting
of parametrised enumeration problems.

Observe that the following defined classes are in complete analogy to the non-
parametrised case from the previous section.

Definition 2.13.
Let E = (Q,κ, Sol) be a parametrised enumeration problem and A an enumeration
algorithm for E. Then the algorithm A is
(1.) an FPT-enumeration algorithm if there exist a computable function t : N → N

and a polynomial p such that for every instance x ∈ Σ∗, A outputs all solutions
of Sol(x) in time at most t(κ(x)) · p(|x|),

(2.) a DelayFPT-algorithm if there exist a computable function t : N → N and a
polynomial p such that for every x ∈ Σ∗, A outputs all solutions of Sol(x) with
delay of at most t(κ(x)) · p(|x|),

(3.) an IncFPT-algorithm if there exist a computable function t : N → N and a
polynomial p such that for every x ∈ Σ∗, A outputs all solutions of Sol(x) and
the i-th delay is at most t(κ(x)) · p(|x|+ i), and

(4.) an OutputFPT-algorithm if there exist a computable function t : N → N and a
polynomial p such that for every instance x ∈ Σ∗, A outputs all solutions of
Sol(x) in time at most t(κ(x)) · p(|x|+ |Sol(x)|).

Note that before, the notion of TotalFPT has been used for the class of FPT-
enumerable problems [Cre+13]. We avoid this name as it causes confusion with
respect to an enumeration class TotalP [Sch09, Sect. 3.1] which takes into account
not only the size of the input but also the number of solutions. We call this class
OutputP instead, and accordingly, it is the non-parametrised analogue of the above
class OutputFPT. Now we group these different kinds of algorithms in complexity
classes.

Definition 2.14 (Parametrised Enumeration Complexity Classes).
The class FPT-enum/DelayFPT/IncFPT/OutputFPT is the class of all parametrised
enumeration problems that admit a FPT-enumeration/DelayFPT-/IncFPT-/OutputFPT-
algorithm.

2.4 Parametrised Enumeration 20

In 2002, respectively, 2006, Fernau [Fer02] and Damaschke [Dam06] already
considered the notion of FPT-enumeration algorithms from Definition 2.13 (1.).
They focussed, respectively, in cardinality minimum and inclusion minimal solutions
for problems such as VERTEX-COVER, HITTINGSET, and other subset minimisation
problems. Of course, the existence of such an enumeration algorithm requires that
for every instance x the number of minimal solutions is bounded by f(κ(x)) · p(|x|),
which is quite restrictive. Nevertheless, Fernau was able to show that the problem
MINIMUM-VERTEX-COVER (where we are only interested in vertex covers of minimum
cardinality) is FPT-enumerable. Nonetheless, by the just given cardinality constraint,
ENUM-VERTEX-COVER cannot be in FPT-enum. In Section 4.1 we will show that
ENUM-VERTEX-COVER is in DelayFPT.

In view of this, we propose that DelayFPT should be regarded as the good notion
of tractability for parametrised enumeration complexity.

Note that, due to Flum and Grohe [FG06, Prop. 1.34] the class FPT can be
characterised via runtimes of the form either f(κ(x)) · p(|x|) or f(κ(x)) + p(|x|) (as
a · b ≤ a2 + b2, for all a, b ∈ N). Accordingly, this applies also to the introduced
classes DelayFPT, IncFPT, and OutputFPT.

2.5 Orders
In this section we introduce an ordering relation on the solution set for a given
parametrised enumeration problem. This relation should be a preorder, that is, a
reflexive, transitive, binary relation.

Definition 2.15.
A parametrised enumeration problem with ordering E = (I, κ, Sol,�) is a parame-
trised enumeration problem, where � is a quasiorder (or preorder) on the set of all
solutions S.

Example 2.16. The reachability relation between vertices of a given directed graph is
a quasiorder. The divisibility relation on the set of integers is a quasiorder as well.

Additionally, we have to extend the definition of enumeration algorithms such
that the presented output has to obey the given quasiorder.

Definition 2.17 (Ordered Enumeration Algorithm).
Let E = (I, κ, Sol,�) be a parametrised enumeration problem with ordering. Then
an algorithm A is an ordered enumeration algorithm for E if it is an enumeration
algorithm and additionally for every x ∈ I and y, z ∈ Sol(x), if y � z and z 6� y then
A(x) outputs solution y before solution z.

Again, the definition of delay and the corresponding complexity classes are also
lifted to ordered enumeration algorithms.

Later, in Chapter 5, some of our enumeration algorithms will make use of the
concept of priority queues to enumerate all solutions in the correct order and to
avoid duplicates. This technique builds on the approach of Johnson et al. [JPY88b].

2.5 Orders 21

A priority queue Q stores a potentially exponential number of elements. Now let
x be an instance. Then, the insert operation of Q requires O(|x| · log |Sol(x)|) time.
The extract minimum operation requires O(|x| · log |Sol(x)|) time, too. Importantly,
nonetheless, the computation of the order between two elements takes at mostO(|x|)
time. As pointed out by Johnson et al. the described queue can be implemented with
the help of standard balanced tree schemes [AFL04].

2.5 Orders 22

3Enumeration Complexity
Landscape

“ ”One of the most interesting things about theoret-
ical computer science is how often the universe
plays tricks on us. Our intuition may say things
should be one way, yet the universe is being play-
ful, and something quite different holds.

— Lane A. Hemaspaandra
[Hem16]

In this chapter we will reconsider the precision of the definitions from the previous
chapter. Let us begin with the class DelayFPT. Surprisingly, the FPT delay for the
class DelayFPT need not be continuously maintained. It can be moved into the FPT-
precomputation phase and then is followed by enumeration with polynomial delay.
Formally, the class StrictDelayFPT is the class of all parametrised enumerations
problems that admit a DelayP enumeration algorithm with precomputation phase of
FPT.

Theorem 3.1.
DelayFPT = StrictDelayFPT.

Proof. Let A be a DelayFPT-enumeration algorithm for (Q,κ, Sol). Choose a com-
putable function t and a polynomial p such that on input x the algorithm A outputs
all elements of Sol(x) with delay of at most t(κ(x)) · p(|x|). Define f : N→ N by

f(m) = max
y∈Σ∗,|y|≤m

{ s | s runtime of A on input y }.

Then the following algorithm B is an enumeration algorithm for (Q,κ, Sol) with
polynomial delay (and FPT-precomputation phase). On input x it checks (as part of
the precomputation) whether t(κ(x)) ≤ |x|. If so, then B simulates A on x (delay
≤ |x| · p(|x|)). If t(κ(x)) > |x|, then B (as part of the precomputation) just simulates
A on x thereby computing Sol(x) in time bounded by f(t(κ(x))). Then B outputs the
elements of Sol(x) step by step.

Subsequently, we examine the classes IncFPT and OutputFPT. These have been
defined for enumeration algorithms whose runtime of the i-th delay is O(t(κ(x)) ·
p(|x|+ i)), respectively, the overall runtime is O(t(κ(x)) · p(|x|+ |Sol(x)|)). Note that,
due to Flum and Grohe [FG06, Prop. 1.34] the class FPT can be characterised via
runtimes of the form either f(κ(x)) · p(|x|) or f(κ(x)) + p(|x|) (as a + b ≤ a2 + b2,

23

for all a, b ∈ N). Accordingly, this applies also to the introduced classes DelayFPT,
IncFPT, and OutputFPT.

Similarly as in the classical setting, dropping the verifier-condition for enumera-
tion problems, that is { 〈x, y〉 | y ∈ Sol(x) } ∈ P (Definition 2.12 (4.)), allows for
separating incremental FPT time from output FPT time. Denote this change of the
two classes IncFPT and OutputFPT via IncFPTnv and OutputFPTnv (‘nv’ abbreviates
‘no verifier-condition’).

Theorem 3.2.
IncFPTnv (OutputFPTnv.

Proof. We will follow the ideas from Schmidt [Sch09, Prop. 3.10]. Let Q ⊆ Σ∗ and
H = (Q,κ) be an XP-complete problem w.r.t. ≤fpt-reduction and a runtime bound
of O(|x|f(κ(x))). Now let χH be the characteristic function of H. The enumeration
problem under investigation is

Problem: ENUM-ALL-STRINGS(H)

Input: x ∈ Σ∗, κ(x) ∈ N..
Parameter: κ(x).
Output: The set of strings w ∈ {a1, a2, . . . , a|x|}

f(κ(x)) ◦ χH(x).

To solve ENUM-ALL-STRINGS(H) ∈ OutputFPTnv, we have time of at most t(κ(x)) ·
p(|x| + |Sol(x)|) for input x ∈ Σ∗, where t is a function and p is a polynomial. The
size of |Sol(x)| is |x|f(κ(x)). The computation of χH(x) requires |x|f(κ(x)) time. After
χH(x) has been determined we can generate a solution in time O(f(κ(x))). As a
result, we compute Sol(x) in

O(|x|f(κ(x)) + f(κ(x)) · |Sol(x)|) = O(f(κ(x)) · |Sol(x)|),

as |Sol(x)| = |x|f(κ(x)). However, ENUM-ALL-STRINGS(H) ∈ IncFPTnv implies the
computation of χH(x) in FPT which contradicts FPT (XP ([FG06, Cor. 2.26]).
Accordingly, we deduce that ENUM-ALL-STRINGS(H) /∈ IncFPTnv.

Clearly, one strives for a similar result of the unrestricted classes IncFPT and
OutputFPT, which would imply that P 6= NP ∩ coNP (following from results of
Section 3.2). Unfortunately, it is not clear how to modify the above proof in that
way as it might even imply the collapse of EXP to NP.

Nevertheless, separating (enumeration) complexity classes is an important line of
research, in particular, as there exists no satisfying definition of reductions in this
area. Capelli and Strozecki [CS17] explain that some kinds of reductions where
studied in the process (for instance, parsimonious [CS17, Def. 3], or in the setting of
counting problems [DHK05]). However, reductions for enumeration problems as
in Definition 2.7 or 2.12 yielding complete-problems for enumeration complexity
classes are not known. Creignou et al. [Cre+17a] overcome this defect and introduce

24

different variations of enumeration reductions within a framework of polynomial
hierarchy styled enumeration classes. With this new framework it is possible to
directly state completeness-results. Before, lower bounds were conditionally related
to complexity theoretic assumptions (for instance, of the form “unless P = NP”).

3.1 Incremental FPT
The previous observations raise the question on how DelayFPT relates to IncFPT. In
the classical enumeration world, this question is answered by Capelli and Strozecki
[CS17, Prop. 16] for the capped version of incremental polynomial time: DelayP (
CapIncP is true, only for linear total time and polynomial space it has not been
answered yet. This is the question how DelayP with polynomial space relates to
CapIncP1 with polynomial space [CS17, Open Problem 1, p.10]. In the course of
this chapter, we will realise that the relationship between the classical and the
parametrised world is very close. Capelli and Strozecki approach the separation
mentioned above through the classes CapIncPa and prove a strict hierarchy of these
classes. We lift this to the parametrised setting.

This remark perfectly contrasts to what we will observe in Chapter 5. There,
we will notice that outputting solutions ordered by their size seems to require
exponential space in case one aims for DelayFPT. Also, in Chapter 6, we will observe
how a DelayFPT algorithm with exponential space is transformed into an IncFPT
algorithm with polynomial space. Capelli and Strozecki approach their question
through refining the notion of incremental polynomial time by emphasising on
the exponent of the polynomial in the outputted solutions. More precisely, they
define classes IncPa (for a ∈ N) as the set of enumeration problems solvable by an
algorithm whose i-th delay requires time O(ia · p(n)) where p is a polynomial and
n is the input length and they prove a strict hierarchy of these classes. Subsequently,
we will investigate whether one can observe the same in the parametrised setting.

Definition 3.3 (Sliced Versions of Incremental FPT, extending Def. 2.13).

3’. an CapIncFPTa-algorithm (for a ∈ N) if there exists a computable function
t : N→ N and a polynomial p such that for every x ∈ Σ∗, A outputs i elements
of Sol(x) in time t(κ(x)) · ia · p(|x|) (for every 0 ≤ i ≤ |Sol(x)|).

3”. an IncFPTa-algorithm (for a ∈ N) if there exists a computable function t : N→ N
and a polynomial p such that for every x ∈ Σ∗, A outputs all solutions of Sol(x)
and the i-th delay is at most t(κ(x)) · ia · p(|x|).

Similarly, we define a hierarchy of classes CapIncFPTa for every a ∈ N which
consist of problems that admit an CapIncFPTa-algorithm. Moreover, CapIncFPT :=⋃
a∈N CapIncFPTa.

Clearly,
⋃
a∈N IncFPTa = IncFPT and IncFPT0 = DelayFPT by Definition 2.13 as

the i-th delay then merely is t(κ(x)) · p(|x|), as i0 = 1.

3.1 Incremental FPT 25

Agreeing with Capelli and Strozecki [CS17, Sect. 3], it seems very reasonable to see
the difference of IncFPT1 and DelayFPT anchored in the exponential sized priority
queue. The price of a “regular” (that is, polynomial) delay is paid by requiring
exponential space. Though, relaxing this statement shows that the equivalence
of incremental FPT delay and capped incremental FPT-time is also true in the
parametrised world. Similarly, as in the classical setting [CS17, Prop. 12], the price
of a structured delay is the required exponential space of a priority queue.

Theorem 3.4.
For every a ≥ 0, CapIncFPTa+1 = IncFPTa.

Proof. ’⊇’: Let E = (Q,κ, Sol) be a PEP in IncFPTa via an algorithm A. Let t : N→ N
be a computable function and p : N→ N be a polynomial as in Definition 3.3 (3”.).
For every x ∈ Q algorithm A outputs i solutions with a running time bounded by

i∑
k=0

t(κ(x)) · p(|x|) · ka = t(κ(x)) · p(|x|) ·
i∑
k=0

ka ≤ t(κ(x)) · p(|x|) · (i+ 1) · ia

≤ 2 · t(κ(x)) · p(|x|) · ia+1.

Accordingly, we have that E ∈ CapIncFPTa+1.
’⊆’: Now consider a problem E = (Q,κ, Sol) ∈ CapIncFPTa+1 via A enumerating i

elements of Sol(x) in time < t(κ(x))ia+1 ·p(|x|) for all x ∈ Q, for all 0 ≤ m ≤ |Sol(x)|,
and some computable function t (see Definition 3.3 (3’.)). We will show that
enumerating Sol(x) can be achieved with an i-th delay of O(t(κ(x)) ·p(|x|) ·q(i)+ s)
where q(i) = (i+1)a+1− ia+1 and s bounds the solution sizes (which is polynomially
in the input length; w.l.o.g. let p be an upper bound for this polynomial). To reach
this delay, one uses two counters: one for the steps of A (steps) and one for the
solutions initialised with value 1 (solindex). While simulating A, the solutions are
inserted into a priority queueQ instead of printing them. Eventually the step counter
reaches t(κ(x)) · p(|x|) · solindexa+1. Then the first element of Q is extracted, output
and solindex is incremented by one. In view of this, A computed solindex many
solutions but only one less has been printed (or A already halted). Combining these
observations leads to calculating the i-th delay:

O(t(κ(x)) · p(|x|) · (i+ 1)a+1 − t(κ(x)) · p(|x|) · ia+1 + s)

= O(t(κ(x)) · p(|x|) · q(i) + p(|x|))

= O(t(κ(x)) · p(|x|) · ia) (as q(i) ∈ O(ia))

Clearly, this is a delay of the required form t(κ(x)) · p(|x|) · ia, and thereby E ∈
IncFPTa.

Note that from the previous result one can easily obtain the following corollary.

3.1 Incremental FPT 26

Corollary 3.5.
CapIncFPT1 = DelayFPT and CapIncFPT = IncFPT.

If one drops the restrictions 3. and 4. from Definition 2.7, then Capelli and
Strozecki unconditionally show a strict hierarchy for the cap-classes via utilising the
well-known time hierarchy theorem [HS65]. Of course, this result transfers also
to the parametrised world, that is, to the same generalisation of CapIncFPTa. Yet
it is unknown whether a similar hierarchy can be unconditionally shown for these
classes as well as for IncFPTa. This is a significant question of further research which
is strengthened in the following section via connecting parametrised with classical
enumeration complexity.

3.2 Connections to Classical Enumeration
Capelli and Strozecki [CS17] ask whether a polynomial delay algorithm using
exponential memory can be translated into an output polynomial or even incremental
polynomial algorithm requiring only polynomial space. This question might imply
a time-space-tradeoff, that is, avoiding exponential space for a DelayP-algorithm
will yield the price of an increasing IncP delay. This remark perfectly contrasts
with what has been observed by Creignou et al. [Cre+15]. They noticed that
outputting solutions ordered by their size seems to require exponential space in
case one aims for DelayFPT. As mentioned in the introduction, Meier and Reinbold
[MR18] observed how a DelayFPT algorithm with exponential space or a specific
problem is transformed into an IncFPT algorithm with polynomial space. These
results emphasise why we strive for and why it is valuable to have such a connection
between these two enumeration complexity fields. In this section, we will prove
that a collapse of IncP and OutputP implies OutputFPT collapsing to IncFPT and
vice versa.

Capelli and Strozecki [CS17] investigated connections from enumeration complex-
ity to function complexity classes of a specific type. The classes of interest contain
many notable computational problems such as integer factoring, local optimisation,
or binary linear programming. As we will approach similar classes in the parametri-
sed setting, parametrised variants of these problems are pivotal members of these
classes.

It is well known that function variants of classical complexity classes do not contain
functions as members but relations instead. Accordingly, we formally identify lan-
guages Q ⊆ Σ∗ and their solution-space S ⊆ Σ∗ with relations { (x, y) | y ∈ Sol(x) }
and thereby extend the notation of parametrised problems (pg. 2.2), enumeration
problems (Def. 2.7), and parametrised enumeration problems (Def. 2.12). Never-
theless, it is easy to see how to utilise witness functions for a given language L such
that x ∈ L implies f(x) = y for some y such that A(x, y) is true, and f(x) =“no”
otherwise, in order to match the term “function complexity class” more adequately.

3.2 Connections to Classical Enumeration 27

Definition 3.6.
We say that a relation A ⊆ Σ∗ ×Σ∗ is polynomially balanced if (x, y) ∈ A implies that
|y| ≤ p(|x|) for some polynomial p.

Observe that, for instances of a (parametrised) enumeration problem E over Σ,
the length of its solutions are polynomially bounded. Accordingly, the underlying
relation A ⊆ Σ∗ × Σ∗ is already polynomially balanced.

The following two definitions present four function complexity classes.

Definition 3.7 (FP and FNP).
Let A ⊆ Σ∗ × Σ∗ be a binary and polynomially balanced relation.

• A ∈ FP if there is a deterministic polynomial time algorithm that, given x ∈ Σ∗,
can find some y ∈ Σ∗ such that A(x, y) is true.

• A ∈ FNP if there is a deterministic polynomial time algorithm that can determine
whether A(x, y) is true, given both, x and y.

Definition 3.8 (F(FPT) and F(para-NP)).
Let Let A ⊆ Σ∗ × Σ∗ be a parametrised and polynomially balanced problem with
parametrisation κ.

• A ∈ F(FPT) if there exists a deterministic algorithm that, given x ∈ Σ∗, can find
some y ∈ Σ∗ such that A(x, y) is true and runs in time f(κ(x)) · p(|x|), where f is
a computable function and p is a polynomial.

• A ∈ F(para-NP) if there exists a deterministic algorithm that, given both x and y,
can determine whether A(x, y) is true and runs in time f(κ(x)) · p(|x|), where f
is a computable function and p is a polynomial.

Note that the definition of F(para-NP) follows the verifier characterisation of
“precomputation on the parameter” as observed in Corollary 2.6.

The next definition lifts the class F(NP ∩ coNP) [MP91] to the parameterised
setting.

Definition 3.9 (F(para-NP ∩ para-coNP)).
Given a language L ⊆ Σ∗, we say that L ∈ F(para-NP ∩ para-coNP) if there exist two
parametrised and polynomially balanced problems A ⊆ Σ∗ × Σ∗ and B ⊆ Σ∗ × Σ∗ with
parametrisations κ and κ ′ as well as a nondeterministic algorithm N such that the
following two properties are fulfilled.

• For each x ∈ L either there exists a y with (x, ay) ∈ A, or there is a z with
(x, bz) ∈ B, where a 6= b are two special markers in Σ.

• Given x ∈ Σ∗, N either can find a y with A(x, ay) or a z with B(x, bz) in time
f(κ(x)) ·p(|x|)+g(κ ′(x)) ·q(|x|), or state that such ones doe not exist, where p, q
are polynomials and f, g are computable functions.

The typical problems then ask for finding an appropriate witness with respect to a
given x.

3.2 Connections to Classical Enumeration 28

Class machine runtime constraints

FP det. p(|x|) find y s.t. A(x, y)
FNP nond. p(|x|) guess y s.t. A(x, y)
TF(NP) nond. p(|x|) guess y s.t. A(x, y),

A is total
F(FPT) det. f(κ(x)) · p(|x|) κ parametrisation,

find y s.t. A(x, y)
F(para-NP) nond. f(κ(x)) · p(|x|) κ parametrisation,

guess y s.t. A(x, y)
TF(para-NP) nond. f(κ(x)) · p(|x|) κ parametrisation,

guess y s.t. A(x, y),
A is total

F(para-NP ∩ para-coNP) nond. f(κ(x)) · p(|x|) +
g(κ(x) ′) · q(|x|)

relations A,B with parame-
trisations κ and κ ′, either
find y with A(x, ay) or z
with B(x, bz)

Tab. 3.1: Overview of function complexity classes. In the machine column ‘det.’/‘nond.’
abbreviates ‘deterministic’/‘nondeterministic’. In the runtime column p and q are
polynomials, f and g are two computable functions, κ is the parameter, and x is
the input.

In 1994, Bellare and Goldwasser [BG94] investigated functional versions of NP
problems. They observed that under standard complexity-theoretic assumptions
(deterministic doubly exponential time is different from nondeterministic doubly
exponential time) these problems are not self-reducible. Bellare and Goldwasser
noticed that these functional versions are harder than their corresponding decision
variants.

A binary relation R ⊆ Σ∗ × Σ∗ is said to be total if for every x ∈ Σ∗ there exists a
y ∈ Σ∗ such that (x, y) ∈ R.

Definition 3.10 (Total function complexity classes).
The class TF(NP), resp., TF(para-NP), is the restriction of FNP, resp., F(para-NP), to
total relations.

The two previously defined classes are promise classes in the sense that the ex-
istence of a witness y with A(x, y) is guaranteed. Furthermore, defining a class
TF(P) or TF(FPT) is not meaningful as it is known that FP ⊆ TF(NP) (see, e.g., the
work of Johnson et al. [JPY88a, Lemma 3] showing that FP is contained in PLS,
polynomial local search, which is contained in TF(NP) by Megiddo and Papdimitriou
[MP91, p. 319]). Similar arguments apply to F(FPT) ⊆ TF(para-NP)).

Now, we can define a generic (parametrised) search and a generic (parametrised)
enumeration problem. Note that the parameter is only relevant for the parametrised
counterpart named in brackets.

3.2 Connections to Classical Enumeration 29

Problem: (para-)ANOTHERSOLA, where A ⊆ Σ∗ × Σ∗

Input: x ∈ Σ∗, S ⊆ Σ∗.
Parameter: κ : Σ∗ → N.
Task: output y in Sol(x) \ S, or answer S ⊇ Sol(x).

Problem: (para-)ENUM-A, where A ⊆ Σ∗ × Σ∗

Input: x ∈ Σ∗.
Parameter: κ : Σ∗ → N.
Output: output all y with A(x, y).

The two results of Capelli and Strozecki [CS17, Prop. 7 and 9] which are crucial
in the course of this section are restated in the following.

Proposition 3.11 (Prop. 7 in [CS17]).
Let A ⊆ Σ∗ × Σ∗ be a binary relation such that, given x ∈ Σ∗, one can find a y
with A(x, y) in deterministic polynomial time. ANOTHERSOLA ∈ FP if and only if
ENUM-A ∈ CapIncP.

Proposition 3.12 (Prop. 9 in [CS17]).
TF(NP) = FP if and only if OutputP = CapIncP.

In 1991, Megiddo and Papadimitriou studied the complexity class TF(NP) [MP91].
In a recent investigation, Goldberg and Papadimitriou introduced a rich theory
around this complexity class that features also several aspects of proof theory [GP17].
Megiddo and Papadimitriou prove the following result for the classes F(NP ∩ coNP)
and TF(NP). It is easily lifted to the parametrised setting.

Theorem 3.13.
F(para-NP ∩ para-coNP) = TF(para-NP).

Proof. We restate the classical proofs of Megiddo and Papadimitriou [MP91].
“⊆”: By definition of the class F(para-NP ∩ para-coNP), either there exists a y with

(x, ay) ∈ A, or there is a z with (x, bz) ∈ B. As a result, the mapping (A,B) 7→ A∪B
suffices and A ∪ B is total. So we just need to guess which of A or B to choose.

“⊇”: the mapping A 7→ (A, ∅) is obvious.

For the subsequently proven lemma (which is the parametrised pendant of
Prop. 3.11) and theorem we follow the argumentation in the proofs of the classical
results (Prop. 3.11 and 3.12).

Lemma 3.14.
Let A ⊆ Σ∗ be a param. problem with parametrisation κ. Then, para-ANOTHERSOLA ∈
F(FPT) if and only if para-ENUM-A ∈ CapIncFPT.

Proof. “⇒”: Let para-ANOTHERSOLA ∈ F(FPT) via some algorithm A. Algorithm 3.1
shows that para-ENUM-A ∈ CapIncFPT. The runtime of each step is f(κ(x))·p(|x|, |S|)

3.2 Connections to Classical Enumeration 30

Algorithm 3.1: Algorithm showing para-ENUM-A ∈ CapIncFPT.

1 S← ∅;
2 repeat
3 y← A(x, S);
4 S← S ∪ {y};
5 print y;
6 until S = A(x);

for some polynomial p and some computable function f. Consequently, this shows
that para-ENUM-A ∈ CapIncFPT.

“⇐”: Let para-ENUM-A ∈ CapIncFPT. Then, there exists a parametrised enumera-
tion algorithm A that, given input x ∈ Σ∗, outputs i ≤ Sol(x) elements in a runtime
of f(κ(x)) · ia · p(|x|) for some computable function f, a ∈ N, and polynomial p.

Now, we explain how to compute para-ANOTHERSOLA in fpt-time. Given (x, S),
simulate A for f(κ(x)) · (|S| + 1)a · p(|x|) steps. If the simulation successfully halts
then Sol(x) is completely output. Just search a y ∈ Sol(x) \ S or output “S ⊇ Sol(x)”.
Otherwise, if A did not halt then it did output at least |S| + 1 different elements.
Finally, we just compute A(x) \ S and print a new element.

The next theorem translates the result of Proposition 3.12 from classical enumera-
tion complexity to the parametrised setting.

Theorem 3.15.
TF(para-NP) = F(FPT) if and only if OutputFPT = CapIncFPT.

Proof. “⇐”: Let A(x, y) ∈ TF(para-NP) be a parametrised language over Σ∗ × Σ∗

with parametrisation κ and M be the corresponding nondeterministic algorithm
running in time g(κ(x)) · p(|x|) for a polynomial p, a computable function g, and
input x. Now, define the relation C ⊆ Σ∗ ×

{
y#w | y ∈ Σ∗, w ∈ {0, 1}∗

}
such that

C(x, y#w) if and only if A(x, y) and |w| ≤ p(|x|).

Then for each x there exists y#w such that C(x, y#w) is true by definition of
TF(para-NP). Via padding, for each y, we have |C(x, y#w)| ≥ 2p(|x|) such that
A(x, y) is true. By construction, the trivial brute-force enumeration algorithm
checking all y#w is in fpt-time for every element of Sol(x). Accordingly, this gives
para-ENUM-C ∈ OutputFPT as the runtime for OutputFPT algorithms encompasses
|Sol(x)| as a factor.

Then para-ENUM-C ∈ CapIncFPT and the first y#w is output in fpt-time. Since A
was arbitrary, we conclude with TF(para-NP) = F(FPT) (as F(FPT) ⊆ TF(para-NP)
contains only total relations).

“⇒”: Consider a problem para-ENUM-A ∈ OutputFPT with ENUM-A = (Q,κ, Sol)
andA ⊆ {0, 1}∗×{0, 1}∗. For every x ∈ Q and S ⊆ Sol(x) letD((x, S), y) be true if and
only if either (y ∈ Sol(x) \ S) or (y = # and S ⊇ Sol(x)). Then D ∈ TF(para-NP):

3.2 Connections to Classical Enumeration 31

Language Class Machine Runtime

B TF(para-NP) M nondet. f(κ(x)) · p(|x|)
DB para-NP M(DB) nondet. g(κ(x)) · q(|x|)
D
Q
B NP M(DQB) nondet. r(|π(κ(x))|, |x|)

Tab. 3.2: Machines in the direction ‘⇐’ in the proof of Theorem 3.16. In the runtime
column, p, q, r are polynomials, f, g are computable functions.

(1.) D is total by construction,

(2.) as para-ENUM-A is a parametrised enumeration problem, there exists a polyno-
mial q such that for every solution y ∈ Sol(x) we have |y| ≤ q(|x|), and

(3.) finally, we need to show that D((x, S), y) can be verified in deterministic time
f(κ(x)) · p(|x|, |S|, |y|) for a computable function f and a polynomial p.

Case y 6= #: D((x, S), y) is true if and only if y ∈ Sol(x) \ S. This requires testing
whether y /∈ S and y ∈ Sol(x). Both can be tested in polynomial time:
p(|y|, |S|), respectively, p(|x|) which follows from Def. 2.12 (4.).

Case y = #: D((x, S), y) is true if and only if S ⊇ Sol(x). As para-ENUM-A ∈
OutputFPT there is an algorithm A outputting Sol(x) in f(κ(x)) ·p(|x|, |Sol(x)|)
steps. Now, run A for at most f(κ(x)) · p(|x|, |S|) steps. Then finishing timely
implies that Sol(x) is completely generated and we merely check S ⊇ Sol(x) in
time polynomial in |S|. If A did not halt during its simulation we can deduce
|Sol(x)| > |S|. Accordingly, S 6⊇ Sol(x) follows and D((x, S), y) is not true.

As TF(para-NP) = FPT, given a (x, S), we can compute a y with y ∈ Sol(x) \S or de-
cide there is none (and then set y = #) in fpt-time. Accordingly, para-ANOTHERSOLA

is in F(FPT) and, by applying Lemma 3.14, we get para-ENUM-A is in CapIncFPT.
This settles that OutputFPT = CapIncFPT and concludes the proof.

The next theorem builds on previous statements in order to connect a collapse in
the classical function world to a collapse in the parametrised function world.

Theorem 3.16.
TF(para-NP) = F(FPT) if and only if TF(NP) = FP.

Proof. “⇐”: If TF(NP) = FP then every total relation A ∈ TF(NP) over Σ∗ ×
Σ∗ has a deterministic polynomial time algorithm that, given x ∈ Σ∗, can find
some y ∈ Σ∗ such that A(x, y) is true. Now choose some B ∈ TF(para-NP) =

F(para-NP∩para-coNP) (Theorem 3.13) via machineM running in time f(κ(x))·p(|x|)
for polynomial p, computable function f, parametrisation κ, and input x. The
corresponding parametrised decision variant DB is in para-NP via the machine
M(DB) which simulates M and accepts or rejects depending on having a witness
ay or bz. In particular, by Proposition 2.5, we know that there exists a computable
function π : N → Σ∗ and a problem D

Q
B ⊆ Σ∗ × Σ∗ such that DQB ∈ NP and the

3.2 Connections to Classical Enumeration 32

following is true: for all instances x ∈ Σ∗ we have that x ∈ DB if and only if
(x, π(κ(x))) ∈ DQB . Let M(DQB) be the machine that shows DQB is in NP, and as B is
total, the unparameterised version B ′ of B is in TF(NP) via the same machine M.
By assumption, B ′ is also in FP and then M runs in deterministic polynomial time.
Accordingly, we define a machine M̃ for B which, given input x ∈ Σ∗, computes
π(κ(x)), then simulates M(DQB) on (x, π(κ(x))), and runs in time

fπ(κ(x)) + r(|π(κ(x)|, |x|) (?)

where fπ : Σ∗ → N is a computable function that estimates the runtime of computing
π(κ(x)). Equation (?) clearly is an fpt-runtime showing that we have B ∈ F(FPT).
Accordingly, we can deduce that TF(para-NP) = F(FPT) as B was chosen arbitrarily.

“⇒”: If TF(para-NP) = F(FPT) then every total relation A ∈ TF(para-NP) over
Σ∗ × Σ∗ has a deterministic algorithm that, given x ∈ Σ∗, can find some y ∈ Σ∗

such that A(x, y) is true, and which runs in time f(κ(x)) · p(|x|) for a computable
function f, a polynomial p, and the parametrisation κ of A. Now choose some
B ∈ TF(NP) = F(NP ∩ coNP) [MP91]. The corresponding decision variant DB is
in NP via the machine M which accepts or rejects depending on having a witness
ay or bz. In particular, for every language L ∈ NP, L belongs to para-NP for the
trivial parametrisation κ(x) = 1 for all x ∈ Σ∗. It follows that DB, parametrised in
that specific way, is in FPT with a runtime of f(1) · q(|x|) where q is a polynomial
and f a computable function, so DB ∈ P. Consequently, the machine M from
above then actually runs in polynomial time and even computes the function variant
B. Accordingly, we can deduce that TF(NP) = FP as the language B was chosen
arbitrarily.

Combining Theorem 3.15 with Theorem 3.16 and finally Proposition 3.12, con-
nects the parametrised enumeration world with the classical enumeration world.

Corollary 3.17.
OutputFPT = CapIncFPT if and only if OutputP = CapIncP.

If one does not consider space requirements, we can deduce the following corollary
by applying Corollary 3.5 and Proposition 2.10.

Corollary 3.18.
OutputFPT = IncFPT if and only if OutputP = IncP.

Now, the observations made by Capelli and Strozecki [CS17] have directly been
transferred to our setting. Accordingly, for instance, the existence of one-way func-
tions would separate OutputFPT from IncFPT as well. Also a collapse of OutputFPT
to CapIncFPT would yield a collapse of TF(NP) to FP (Prop. 3.12) and as well as of
P to NP ∩ coNP (due to TF(NP) = F(NP ∩ coNP) [MP91]).

3.2 Connections to Classical Enumeration 33

3.3 CardinalitySAT
In the last section of this chapter, we want to close with some observations on a
variant of SAT where the size of the solution space (that is, all satisfying assignments
of a given formula) is the parameter. The results from this section a rather negative
as they will clearly point out why this problem is not of much help in separating
any of the previously considered classes. Now, we will define the parametrised
enumeration version of the mentioned SAT variant.

Problem: ENUM-CARDINALITYSAT

Input: Propositional formula ϕ, k ∈ N.
Parameter: The integer k.
Output: All sets of assignments Θ such that |Θ| = k and θ |= ϕ

for each θ ∈ Θ.

Observe that we ask for an enumeration of all satisfying assignments if the input
is (ϕ, 1). At the other extremum, namely if the input is (ϕ, 2Vars(ϕ)), then we ask to
output the unique single solution containing all assignments if ϕ is tautological. As
a result, the corresponding decision problem is NP- and coNP-hard.

Definition 3.19 ([BG82]).
The class US (unique solution) is the class of all languages L ⊆ Σ∗ which can be
represented as

L = { x ∈ Σ∗ | there exists exactly one y ∈ ∆∗ s.t. R(x, y) },

for some R ∈ FP and some solution alphabet ∆.

A natural complete problem for US is UNIQUESAT, the set of all propositional
formulas which have exactly one satisfying assignment. As US is closed under
complementation and UNIQUESAT is also coNP-hard it follows coNP ⊆ US ⊆ DP
(the class of differences of NP-languages). It is unknown if NP

?
⊆ US or US ?

= DP is
true. Subsequently we will show that is unlikely that ENUM-CARDINALITYSAT is in
IncFPT.

Theorem 3.20.
ENUM-CARDINALITYSAT ∈ IncFPT implies
(1.) P = NP, and (2.) US = P.

Proof. (1.) If ENUM-CARDINALITYSAT ∈ IncFPT then the instance (ϕ, 1) is solved
with the i-th delay of t(1) · p(|ϕ|, i). That being the case, the first solution is
output in polynomial time.

(2.) If ENUM-CARDINALITYSAT ∈ IncFPT then every formula ϕ having a unique
satisfying assignment can be tested for satisfiability in time t(1) · p(|ϕ|, 1).

3.3 CardinalitySAT 34

Similarly we can see that a membership of ENUM-CARDINALITYSAT in the larger
class OutputFPT is rather unlikely as well. The result is proven similarly to the
previous theorem.

Corollary 3.21.
ENUM-CARDINALITYSAT ∈ OutputFPT implies US = P.

3.3 CardinalitySAT 35

Page left intentionally blank to have matching page numbers with the printed version.

4Principles of Parametrised
Enumeration

“ ”There is no coherent knowledge, i.e. no uniform
comprehensive account of the world and the events
in it. There is no comprehensive truth that goes
beyond an enumeration of details, but there are
many pieces of information, obtained in different
ways from different sources and collected for the
benefit of the curious. The best way of present-
ing such knowledge is the list — and the oldest
scientific works were indeed lists of facts, parts,
coincidences, problems in several specialised do-
mains.

— Paul Karl Feyerabend

Parametrised Enumeration can be seen as joining two significant areas of research:
Parametrised Complexity Theory together with Enumeration Algorithms. In this
chapter, we will focus on two significant paradigms where each single one stems
from either of these areas. From the first, we will investigate the technique of
kernelisation [Cyg+15, Cha. 2 and 9]. This method is utilised to design parameter-
efficient algorithms and can even characterise the class FPT: Having a kernelisation
allows for computing and brute-forcing it; otherwise, having an FPT algorithm
enables us to either output a trivial kernel after solving the instance directly, or the
instance is already a kernel. One will see how this proof idea reassembles in showing
the correctness of Theorem 4.3.

The other mentioned technique is an algorithmic paradigm known as self-reducibili-
ty [Sch76; KV91; Sch09]. Many enumeration algorithms base on this type of strategy
and, in essence, corresponding problems allow for a “search-reduces-to-decision”
algorithm to obtain its solutions. In particular, satisfiability related problems often
enables one for this kind of algorithms. We have already seen a basic example for
this principle in Example 2.11.

In the following sections, we will examine how both principles can be utilised in
the setting of Parametrised Enumeration.

4.1 Kernelisation
Structurally, the task of kernelisation consists of a pre-processing step. Formally,
this step can be seen as a polynomial time many-one reduction of a problem to

37

itself with an additional property: the (size of the) image is bounded in terms of
the parameter of the argument (see [FG06]). More formally, in the usual sense a
kernelisation K of a problem Q is a mapping which preserves membership in Q and
bounds the size of the kernel in some way (which is the following Def. 4.1 (1.)). In
our setting we extend this notion to an enum-kernelization. This should then be seen
as a pre-processing step suitable for efficient enumeration.

Definition 4.1.
Let (Q,κ, Sol) be a parameterized enumeration problem over Σ. A polynomial time
computable function K : Σ∗ → Σ∗ is an enum-kernelization of (Q,κ, Sol) if there exist:
(1.) a computable function h : N→ N such that for all x ∈ Σ∗ we have

(x ∈ Q⇔ K(x) ∈ Q) and |K(x)| ≤ h(κ(x)),

(2.) a computable function f : Σ∗ × Σ∗ → P(Σ∗) which, given a pair (x,w) where
x ∈ Q and w ∈ Sol(K(x)), computes a subset of Sol(x), such that

a) for all w1, w2 ∈ Sol(K(x)), w1 6= w2 ⇒ f(x,w1) ∩ f(x,w2) = ∅,

b)
⊎

w∈Sol(K(x))

f(x,w) = Sol(x), f(x,w) = ∅ if w /∈ Sol(K(x)), and

c) there exists an enumeration algorithm Af, which on input (x,w), where
x ∈ Q and w ∈ Sol(K(x)), outputs all solutions of f(x,w) with delay
p(|x|) · t(κ(x)), where p is a polynomial and t is a computable function.

If K is an enum-kernelization of (Q,κ, Sol), then for every instance x of Q the image
K(x) is called an enum-kernel of x (under K).

Visually, an enum-kernelization can be seen as a reduction K from a parameterised
enumeration problem to itself. Similar to the decision setting it has the property that
the image is bounded in terms of the parameter argument (Def. 4.1 (1.)). For a prob-
lem instance x, K(x) is the kernel of x. Observe that if K is an enum-kernelisation of
the enumeration problem (Q,κ, Sol), then it is also a kernelisation for the associated
decision problem. Additionally, enum-kernelisations have an additional property:
the set of solutions of the original instance x can be rebuilt from the set of solutions
of the image K(x) with DelayFPT (Def. 4.1 (2.) c)). This generalises the notion
of full kernels [Dam06; FSV13]) appearing in the context of what is called subset
minimization problems. A full kernel is a kernel that contains all minimal solutions
since they represent in a certain way all solutions. In Subsection 4.2.2, in the context
of backdoor sets, a loss-free kernel [SS08] is a similar notion. In our definition,
an enum-kernel is a kernel that represents all solutions in the sense that they can
be obtained with FPT delay from the solutions for the kernel. This observation is
visualised in Figure 4.1.

Given an undirected graph G and a positive integer k. VERTEX-COVER then asks
whether there exists ≤ k different vertices in G such that all edges are “covered”
(for each edge at least one endpoint is chosen). In fact, VERTEX-COVER is one of

4.1 Kernelisation 38

Q

x
K(x)

Sol(x)

Sol(K(x))

Fig. 4.1: Enum-kernelisation example. The grey circles in Sol(K(x)) indicate the different
solutions which partition the solution set Sol(x)

the most investigated problems in Parametrised Complexity [Ang+16]. Specifically,
for kernelisation it is the standard example. Further on, we examine it in the light
of our definition of enum-kernelisation. Formally, the parametrised enumeration
version of the problem is defined as follows.

Problem: ENUM-VERTEX-COVER

Input: An undirected graph G and a positive integer k.
Parameter: The integer k.
Output: The set of all vertex covers of G of size ≤ k.

Theorem 4.2.
ENUM-VERTEX-COVER has an enum-kernelization.

Proof. Given a graph G = (V, E) and a positive integer k, we are interested in
enumerating all vertex covers of G of size at most k. We prove that the famous Buss’
kernelisation1 provides an enum-kernelisation. Let us recall that Buss’ algorithm
consists in applying repeatedly the following rules until no more reduction can be
made:
(1.) If v is a vertex of degree greater than k, remove v from the graph and decrease

k by one.

(2.) If v is an isolated vertex, remove it.
As a consequence, in the process the value of k eventually decreases. Let us denote

with k ′ ≤ k the value which is reached after the algorithm terminates. If the rule (1.)
is applied ` times, then k ′ = k − `. Then the kernel K(G, k) is the reduced graph
(VK, EK) so obtained if it has less than (k ′)2 edges, and the complete graph Kk ′+2

otherwise. Consequently, the second part of Def. 4.1 (1.) is fulfilled as the size of
the kernel is bound by some function in k, that is h(k) = (k+ 2)2.

1Jonathan F. Buss and Judy Goldsmith acknowledge Samuel R. Buss for this algorithm via a personal
communication reference [BG93].

4.1 Kernelisation 39

Now we show that the first part of Def. 4.1 (1.) is fulfilled. Whenever in a
certain step rule (1.) is applicable to a vertex v, and v is not removed immediately,
then rule (1.) remains applicable to v also in any further step. This is valid until
it is eventually removed. This is correct because removing another vertex v ′ by
application of rule (1.) instead of v decreases the value of k by one and the degree
of v by at most one. Accordingly, whenever we have a choice during the removal
process, our choice does not influence the finally obtained graph: the kernel is
unique.

Now we turn towards the function f required from Def. 4.1 (2.) which produces the
solutions for the original instance. On that account suppose that K(G, k) = (VK, EK)

is the computed kernel and k ′ is its parameter value. Let VD be the set of vertices (of
large degree) that are removed from G by rule (1.), and VI be the set of (isolated)
vertices that are removed from G by rule (2.). On the one hand, every vertex cover
of size ≤ k of G has to contain VD. On the other hand, no vertex from VI is part
of a minimal vertex cover as no edges are incident. As a consequence, all vertex
covers W of G are obtained by considering all the vertex covers of K(G, k) of size
≤ k ′ = k − |VD|, completing them by VD and by some vertices of VI up to the
cardinality k. That being so we have to consider all subsets of VI of size bounded by
k− (|W|+ |VD|). Given a vertex cover W of K(G, k) we define

f(G,W) = {W] VD] V ′ | V ′ ⊆ VI, |V
′| ≤ k− |W|− |VD| }.

Let W1 6=W2 be two given solution vertex covers such that W1,W2 ∈ Sol(K(G, k)).
Clearly, a) of Def. 4.1 (2.) is fulfilled, that is, f(G,W1) ∩ f(G,W2) = ∅, as W1 6=W2

implies W1] VD] V ′ 6=W2] VD] V ′ for V ′ and VD as above. Also b) is true as

⋃
W∈Sol(K(G,k))

f(G,W) = Sol(G, k)

is the set of all ≤ k-vertex covers of G that emerges from the unique kernel K(G, k).
The reason for that is that each W ∈ Sol(K(G, k)) is associated with a different
combination of the vertices in V ′ ⊆ VI. Finally, with respect to c), given a vertex
cover W of K(G, k), we explain the behaviour of the enumeration algorithm. At
first we have a polynomial time pre-processing of G by Buss’ kernelization in order
to compute VD and VI. Then, the enumeration of f(G,W) comes down to an
enumeration of all subsets of VI of size at most k ′ = k− |W|− |VD|. Enumerating all
subsets of VI of size at most k ′ can be done with delay O(k ′) (and consequently with
FPT-delay) by a standard recursive algorithm outputting the subsets in lexicographic
order.

As in the context of decision problems, enum-kernelisation actually characterises
the class of enumeration problems having a DelayFPT-algorithm, as shown in the
following theorem.

4.1 Kernelisation 40

Theorem 4.3.
For every parameterized enumeration problem (Q,κ, Sol) over Σ, the following are
equivalent:
(1.) (Q,κ, Sol) has an enum-kernelisation.

(2.) (Q,κ, Sol) is in DelayFPT

Proof. “(1.) ⇒ (2.)”: Let K be an enum-kernelisation of (Q,κ, Sol) computable
in time p ′ for some polynomial p ′, and Sol be computable in time g for some
computable function g. W.l.o.g. assume that g is non-decreasing. Furthermore,
let h, f, t be computable functions, Af be an enumeration algorithm, and p be a
polynomial, all given as in Definition 4.1.

Starting with an instance x ∈ Σ∗ the following algorithm enumerates all solutions
in Sol(x) with DelayFPT:
(1.) Compute K(x) in polynomial time p ′(|x|).

(2.) Compute Sol(K(x)) in time g(h(κ(x))) since |K(x)| ≤ h(κ(x)).

(3.) For each w ∈ Sol(K(x)) use Af on the input (x,w) with delay p(|x|) · t(κ(x)).
The delay of this enumeration algorithm is bounded from above by p ′(|x|) +

g(h(κ(x))) + p(|x|) · t(κ(x), which is bounded from above by (p ′(|x|) + p(|x|)) ·
(g(κ(x)) + t(κ(x))), and consequently proves that this is a DelayFPT algorithm. The
correctness of the algorithm follows from the Definition 4.1 of an enum-kernelisation:
Item (2.) a) ensures that there is no repetition, Item (2.) b) that all solutions are
output.

“(2.) ⇒ (1.)”: Let A be an enumeration algorithm for (Q,κ, Sol) that requires
delay p(n) · t(k) where p is a polynomial and t is some computable function. W.l.o.g.
assume that p(n) ≥ n for all positive integers n. If Q = ∅ or Q = Σ∗ then (Q,κ, Sol)
has a trivial kernelisation that maps every x ∈ Σ∗ to the empty string ε.
Case “Q = ∅”: X
Case “Q = Σ∗”: fix wε ∈ Sol(ε) and set for all x, f(x,wε) = Sol(x) and f(x,w) = ∅

for w ∈ Sol(ε) \ {wε}.
Now consider the interesting case, that is, ∅ (Q (Σ∗. In that case fix x0 ∈ Σ∗ \Q,
and x1 ∈ Q with w1 ∈ Sol(x1). The following algorithm A ′ then computes an
enum-kernelisation for (Q,κ, Sol) and given x ∈ Σ∗ with n = |x| and k = κ(x):
(1.) Simulate p(n) · p(n) steps of A.

(2.) If it stops with the answer “no solution”, then set K(x) = x0 (since x0 /∈ Q, the
function f does not need to be defined).

(3.) If a solution is output within this time, then set K(x) = x1, f(x,w1) = Sol(x)
and f(x,w) = ∅ for all w ∈ Sol(x1) \ {w1}.

(4.) If it does not output a solution within this time, then n ≤ p(n) ≤ t(k) (because
of A’s delay of p(n) · t(k)) and then we set K(x) = x, and f(x,w) = {w} for all
w ∈ Sol(x).

4.1 Kernelisation 41

The kernel K(x) can consequently be computed in time p(n)2, |K(x)| ≤ |x0|+ |x1|+

t(k). The membership in Q is preserved: (x ∈ Q⇔ K(x) ∈ Q). Finally, the function
f we have obtained satisfies all the requirements of Definition 4.1. In particular, the
computation of f(x,w) in FPT (1.–4.) completely describes the behaviour of Af. As
a result, K provides indeed an enum-kernelisation for (Q,κ, Sol).

Corollary 4.4.
ENUM-VERTEX-COVER is in DelayFPT.

Observe that in the proof of Theorem 4.2, the enumeration of the sets of solutions
obtained from a solution W of K(G) is enumerable even with polynomial-delay, we
do not need FPT-delay as already has been witnessed by Theorem 3.1.

4.2 Self-Reducibility and Bounded-Search-Trees
Let us recall that satisfiability related problems often allow for applying the technique
of self-reducibility. In view of this, we will first investigate the enumeration of
models of a propositional formula having weight at least k. Afterwards we turn
to the concept of backdoor sets. Informally, with the parameter backdoor size one
tries to overcome a small distance of a formula being tractable. This definition
was first introduced by Golmes, Williams and Selman [WGS03] to model short
distances to efficient subclasses. Until today backdoors gained copious attention
in many different areas: abduction [PRS13], answer set programming [FS15b;
FS15a], argumentation [DOS12], default logic [FMS16], temporal logic [Mei+16],
planning [KOP15], and constraint satisfaction [Gas+17].

In our setting, we will investigate enumeration of strong HORN-backdoor sets of
size k. In the first example, the underlying decision problem can be solved by using
kernelisation (see Kratsch et al. [KMW16]), while in the second it is solved by using
the bounded-search-tree technique.

4.2.1 Enumeration Complexity of Max-Ones-SAT
Previously, self-reducibility has been successfully used to enumerate all satisfying
assignments of a generalised CNF-formula [CH97]. Creignou and Hébrard identified
subclasses of general CNF-formulas which admit efficient enumeration algorithms.
In the parametrised complexity setting a natural problem to study is MAXONES-SAT.
Here, ones has to take the weight of an assignment into account, that is, the number
of variables set to true. In particular, one aims for assignments which have weight at
least k while k is the underlying parameter. Now we want to study the corresponding
enumeration problem and will investigate it with respect to Schaefer’s framework
[Sch78]. Before we can state the problem formally we need to introduce some
further notions.

Definition 4.5 (Relations and constraints).
A logical relation of arity k is a relation R ⊆ {0, 1}k. A constraint, C, is a formula

4.2 Self-Reducibility and Bounded-Search-Trees 42

C = R(x1, . . . , xk), where R is a logical relation of arity k and the xi’s are (not
necessarily distinct) variables. If u and v are two variables, then C[u/v] denotes the
constraint obtained from C in replacing each occurrence of v by u. If V is a set of
variables, then C[u/V] denotes the set of constraints where u is substituted to every
occurrence of every variable of V in C.

Abusing notation we do not differentiate between a relation and its predicate
symbol.

Definition 4.6 (Constraint language).
Let V be a set of variables. An assignment m : V → {0, 1} satisfies a constraint C if(
m(x1), . . . ,m(xk)

)
∈ R. A constraint language Γ is a finite set of logical relations. A

Γ -formula φ, is a conjunction of constraints using only logical relations from Γ . As
a consequence, it is a quantifier-free first order formula. With Vars(φ) we denote
the set of variables appearing in φ. A Γ -formula φ is satisfied by an assignment
m : Vars(φ)→ {0, 1} ifm satisfies all constraints in φ simultaneously (such a satisfying
assignment is also called a model of φ).

The weight of a model is given by the number of variables set to true. Assuming
a canonical order on the variables we can regard models as tuples in the obvious
way- Also, we do not distinguish between a formula φ and the logical relation Rφ
it defines, that is, the relation consisting of all models of φ. We will particularly
consider the following constraints implication→ (x, y) = (x→ y), true >(x) = (x),
false ⊥(x) = (x̄), and not-equal NEQ(x, y) = (x 6= y).

Now we are ready to introduce the parametrised enumeration problem of interest.

Problem: ENUM-MAXONES-SAT(Γ)

Input: A Γ -formula φ and a positive integer k.
Parameter: The integer k.
Output: All assignments satisfying φ of weight ≥ k.

Of course, a compulsory condition for the existence of a DelayFPT algorithm for
ENUM-MAXONES-SAT is that its corresponding decision problem is in FPT. Let us
denote this specific problem by MAXONES-SAT(Γ).

Problem: MAXONES-SAT(Γ)

Input: Γ -formula φ, integer k ∈ N.
Question: Does there exists a satisfying assignment for φ of

weight ≥ k?

Kratsch et al. [KMW16] studied this problem before. They completely classified
the parametrised complexity of this problem in Schaefer’s framework. Before we
can explain their result, we need to introduce some terminology concerning types of
Boolean relations which are well-known from Schaefer’s original paper.

4.2 Self-Reducibility and Bounded-Search-Trees 43

Definition 4.7 (Relational properties).
We say that a Boolean relation R is

• a-valid (for a ∈ {0, 1}) if R(a, . . . , a) = 1,

• Horn (resp., dual Horn) if R can be defined by a CNF formula which is Horn
(resp., dual Horn), that is, every clause contains at most one positive (resp.,
negative) literal,

• bijunctive if R can be defined by a 2-CNF formula,

• affine if it can be defined by an affine formula, that is, conjunctions of ⊕-clauses
(consisting of an ⊕ of some variables plus maybe the constant 1)—such a formula
may also be seen as a system of linear equations over GF[2], and

• complementive if for all m ∈ R we have also ~1⊕m ∈ R.

Kratsch et al. [KMW16] also introduce a new restriction of the class of bijunctive
relations as follows. For this they use the notion of frozen implementation, stemming
from the work of Nordh and Zanuttini [NZ09].

Definition 4.8 (Frozen Implementations).
Let φ be a formula and x ∈ Vars(φ), then x is said to be frozen in φ if it is assigned the
same truth value in all its models. Furthermore, we say that Γ freezingly implements
a given relation R if there is a Γ -formula φ such that R(x1, . . . xn) ≡ ∃Xφ, where φ
uses variables from X ∪ {x1, . . . xn} only, and all variables in X are frozen in φ. For
the sake of readability, we let denote 〈Γ〉fr the set of all relations that can be freezingly
implemented by Γ .

Furthermore, we say that a relation R is strongly bijunctive if it is in

〈{(x∨ y), (x 6= y), (x→ y)}〉fr .

Definition 4.9 (Properties of constraint languages).
A constraint language Γ is dual Horn (resp., affine, strongly bijunctive, a-valid, com-
plementive) if every relation in Γ has the respective property. We say that a constraint
language is Schaefer if Γ is either Horn, dual Horn, bijunctive, or affine.

Now we can restate the announced result of Kratsch, Marx and Wahlström.

Proposition 4.10 ([KMW16, Cor. 3.7]).
If Γ is 1-valid, dual-Horn, affine, or strongly bijunctive, then MAXONES-SAT(Γ) is in
FPT. Otherwise MAXONES-SAT(Γ) is W[1]-hard.

Let us recall that efficient enumeration algorithms obeying DelayFPT can only exist
if the underlying decision problem itself is efficiently solvable in the parametrised
sense. In the following we will prove that in three of the four efficient cases from
Proposition 4.10 this indeed is possible. In particular, the technique used to obtain
these results will follow the paradigm of self-reducibility.

4.2 Self-Reducibility and Bounded-Search-Trees 44

Algorithm 4.1: Enumerate the models of weight at least k
Input: A formula φ with Vars(φ) = {x1, . . . , xn}, an integer k
Output: All satisfying assignments (given as sets of variables) of φ of weight ≥ k.

1 if HasMaxOnes(φ, k) then Generate(φ, ∅, k, n)

Procedure Generate (CNF-Formula φ, Model M, Weight w ∈ N, Variable index p ∈ N):
1 if w = 0 or p = 0 then output M
2 else
3 if HasMaxOnes(φ[xp = 1], w− 1) then Generate(φ[xp = 1],M ∪ {xp}, w− 1, p− 1)
4 if HasMaxOnes(φ[xp = 0], w) then Generate(φ[xp = 0],M,w, p− 1)

Theorem 4.11.
If Γ is dual-Horn, affine, or strongly bijunctive, then there is a DelayFPT algorithm for
ENUM-MAXONES-SAT(Γ).

Proof. Algorithm 4.1 is a canonical algorithm for enumerating all satisfying assign-
ments of weight at least k. Note that Algorithm 4.1 follows the approach of Algo-
rithm A by Creignou and Hébrard [CH97, p. 503]. The function HasMaxOnes(φ, k)
tests if the formula φ has a model of weight at least k. Observe that if Γ is dual-Horn,
affine, or strongly bijunctive, then according to Proposition 4.10 the procedure
HasMaxOnes(φ, k) performs in FPT time. Moreover, essentially, if φ is dual-Horn
(resp., affine, strongly bijunctive) then so are φ[xp = 0] and φ[xp = 1] for any
variable xp. Now let us turn towards the delay estimation.

The precomputation phase of Algorithm 4.1 consists of the time required for
one call to HasMaxOnes and consequently is in FPT for the considered cases. The
procedure Generate then consists of several recursive calls which span a binary tree
T of depth d = max{k, n} as follows. The root r in level 0 of T is the (first) call
Generate(φ, ∅, k, n). Assume w.l.o.g. that in every level of the tree the left child
consists of the call setting corresponding xi to 0 and the right child setting xi to 1. If
j is the corresponding level of the tree then number the vertices lexicographically
from 1 to 2j and denote a specific vertex in that level by v`j where 1 ≤ j ≤ 2j and
0 ≤ ` ≤ d is its level. The existence of a vertex v`j in T for ` > 1 depends on the
return value of the call

HasMaxOnes(φ[xp−`−1 = 1− (j mod 2)], w ′ − 1+ (j mod 2)])

in vertex v`−1dj/2e where w ′ is the weight value of the parent of v`−1dj/2e. If it returns true
then v`j exists. Accordingly, the recursion immediately ends if there does not exist
any further solution in this branch. This observation is now used in the following
claim to prove the DelayFPT-membership of the algorithm.

Claim. The delay of Algorithm 4.1 is FPT.

Proof of Claim. Let p be the polynomial and f be the computable function witnessing
the FPT runtime of HasMaxOnes. Furthermore, let T = (V, E) be the binary tree

4.2 Self-Reducibility and Bounded-Search-Trees 45

depicting the recursive calls of Generate explained as before. In the following we
have to differentiate between two cases.

Let Mi−1,Mi be the sets returned after, resp., before the i-th delay. Moreover,
denote with y = y1 · · ·yn and z = z1 · · · zn with yi, zi ∈ {0, 1} the binary vectors
which describe the (assignments) Mi−1 and Mi (that is, zi = 0 if and only if xi ∈ Mi,
and yi = 0 if and only if xi ∈ Mi−1). The largest possible lexicographical distance
between y and z is 2n − 1. This situation occurs exactly if y = 0 · · · 0 and z = 1 · · · 1
are true. More generally, if z is the lexicographic next assignment after y then the
i-th delay is at most O(n · p(φ) · f(k)). In such a case y = 01 · · · 1 and z = 10 · · · 0
forces the recursive calls have to ripple back to the root (case 1).

Otherwise, in case 2, there are setsN1, . . . , Nm which are exactly them ∈ {1, 2n−2}

lexicographic sets between Mi−1 and Mi such that for all 1 ≤ ` ≤ m we have that
N` is not a valid solution and thus is not output. In the following we consider the
size of the delay and show that it is twofold: the FPT runtime of HasMaxOnes times
a polynomial in |φ|.

If in a recursive call in level i HasMaxOnes denies the existence of further solutions
then this excludes 2n−i sets which are never considered. Accordingly, we can
condense these “bad sets”: let p1 · · ·pr be the common prefix of y and z with
r ∈ {0, . . . , n − 2}, where r = 0 denotes that there is no common prefix, that is,
y1 = 0 and z1 = 1.
(1.) Now repeat the following steps for i = n, . . . , r+ 2:

(1.) If yi = 0, then group 2n−i calls of the form y1 · · ·yi−11e1 · · · en−i with
ej ∈ {0, 1}.

(2.) If yi = 1 then do nothing.

(2.) Now we repeat the following steps for i = r+ 2, . . . , n:
(1.) If zi = 0, then do nothing

(2.) If zi = 1, then group 2n−i calls of the form z1 · · · zi−10e1 · · · en−i with
ej ∈ {0, 1}.

For every of these sets there is always a negatively answered HasMaxOnes call and
thus denies further solutions in this group.

As the union of the “bad sets” in all these groups is exactly N1, . . . , Nm we need
to measure the number of such groups and thereby the runtime of the i-th delay.
The maximum number of groups is created if for (1.) never (b) is fulfilled and for
(2.) never (a) is fulfilled. As a result, there are at most 2 · (n− r− 2) groups with
runtimes of each in O(p(|φ|) · f(k)). As a consequence, together polynomially many
fpt-runtimes which together is again in FPT. (Claim) �

To conclude, the proposed enumeration algorithm is in DelayFPT.

Now from Proposition 4.10 the efficient case for 1-valid relations is remaining.
However the presented algorithm cannot work for this case as φ being 1-valid does
not imply φ[x = 0] is 1-valid. In particular we will show a strong argument against

4.2 Self-Reducibility and Bounded-Search-Trees 46

the possibility that this case can be efficiently solved. In Theorem 4.14 (see page 44)
we will prove that ENUM-MAXONES-SAT(Γ) does not have a DelayFPT algorithm if
Γ is 1-valid but neither dual-Horn nor affine nor strongly bijunctive. This result will
then complete the classification of the parametrised enumeration complexity of the
problem ENUM-MAXONES-SAT.

4.2.2 Enumeration of Strong HORN-Backdoor Sets
In the following we investigate the enumeration of strong backdoor sets. At first we
will introduce relevant terminology which stems from the work of Williams et al.
[WGS03]. Consider a formula φ in conjunctive normal form. Denote by φ[τ] for a
truth assignment τ the result of removing all clauses from φ which contain a literal `
with τ(`) = 1 and removing literals ` with τ(`) = 0 from the remaining clauses.

Definition 4.12 (Strong HORN-Backdoor Sets).
A set V of variables of φ, V ⊆ Vars(φ), is a strong HORN-backdoor set of φ if for all
truth assignments τ : V → {0, 1} we have φ[τ] ∈ HORN.

Observe that equivalently V is a strong HORN-backdoor set of φ if φ[V] is HORN,
where φ[V] denotes the formula obtained from φ in deleting in φ all occurrences of
variables from V.

Now let us consider the following enumeration problem.

Problem: EXACT-STRONG-BACKDOORSET[HORN]

Input: A formula φ in CNF.
Parameter: The integer k.
Output: The set of all strong HORN-backdoor sets of φ of size

exactly k.

From Nishimura, Ragde, and Szeider [NRS04] we know that the detection of
strong HORN-backdoor sets is in FPT (parametrised by the size of the backdoor
set). Nishimura et al. use a variant of bounded-search trees in their FPT-algorithm,
together with self-reducibility. This combination leads to an efficient enumeration of
all strong HORN-backdoor sets of size k.

Theorem 4.13.
EXACT-STRONG-BACKDOORSET[HORN] is in DelayFPT.

Proof. We claim that the procedure GenerateSBDS(φ,B, k, V) depicted in Algo-
rithm 4.2 is the required enumeration algorithm. Within its computation it ac-
cesses a function Exists-SBDS(φ, k, V). This function checks if φ has a strong
HORN-backdoor set of size exactly k consisting of variables from V. Whenever the
procedure GenerateSBDS outputs a set B then this set is a strong HORN-backdoor
set of size k.

The function Exists-SBDS(φ, k, V) is computable in FPT [NRS04]. It uses the
following fact (which is also used by Nishimura et al. to detect the existence of

4.2 Self-Reducibility and Bounded-Search-Trees 47

Algorithm 4.2: Enumerate all strong HORN-backdoor sets of size k
Input: A CNF-formula φ, an integer k
Output: All strong HORN-backdoor sets of size k.

1 if Exists-SBDS(φ, k,Vars(φ)) then GenerateSBDS(φ, ∅, k,Vars(φ))

Procedure GenerateSBDS (Formula φ, Backdoor B ⊆ V, Size k ∈ N, Variables V):
1 if k = 0 or V = ∅ then output B
2 else
3 if Exists-SBDS(φ[B ∪ {min(V)}], k− 1, V \ {min(V)}) then
4 GenerateSBDS(φ,B ∪ {min(V)}, k− 1, V \ {min(V)})

5 if Exists-SBDS(φ[B], k, V \ {min(V)}) then GenerateSBDS(φ,B, k, V \ {min(V)})

Function Exists-SBDS (Formula φ, Size k ∈ N, Variables V):
1 if (k = 0 or V = ∅) and φ[V] ∈ HORN then return true else return false
2 if there is a clause C with two positive literals p1, p2 then
3 if exactly one of p1 and p2 is in V, say p1 ∈ V, p2 /∈ V then
4 if Exists-SBDS(φ[{p1}], k− 1, V \ {p1}) then return true
5 else
6 if p1 ∈ V and p2 ∈ V then
7 if Exists-SBDS(φ[{p1}], k− 1, V \ {p1}) then return true
8 if Exists-SBDS(φ[{p2}], k− 1, V \ {p2}) then return true

9 return false
1111 else return true

strong HORN-backdoors [NRS04]): any non-HORN formula contains at least one
non-HORN clause, that is, a clause containing at least two positive literals. W.l.o.g.
let p1 and p2 be these two positive occurrences. Observe that then either one of
these two variables must belong to any strong backdoor set of the original formula.

The enumeration algorithm is then a standard binary search recursive algorithm:
in case a backdoor of size k exists, it recursively explores the strong backdoors
containing the lexicographically first variable, and then the ones not containing it.
The test made by the call to the function Exists-SBDS avoids exploring a subtree
in which there is no solution to be found. As this function is in FPT, and that the
depth of the binary search tree is bounded by the parameter k ensures that the
enumeration algorithm has delay FPT.

4.3 A Dichotomy for the Enumerability of
Max-Ones-SAT

Conclusively, we return to the problem family ENUM-MAXONES-SAT(Γ). In the
previous section, in Theorem 4.11 we exhibited three classes of logical relations Γ
that allow a DelayFPT algorithm. In this section, we aim to complement this result by
proving corresponding lower bounds for all remaining constraint languages Γ . As a
result, we give a complete dichotomy theorem for the parametrised enumerability of
ENUM-MAXONES-SAT(Γ). Remarkably, the classification of the enumeration problem

4.3 A Dichotomy for the Enumerability of Max-Ones-SAT 48

differs from the one of the decision problem (Proposition 4.10), as we state in the
following theorem.

Theorem 4.14.
If Γ is dual-Horn, affine, or strongly bijunctive, then there is a DelayFPT algorithm for
ENUM-MAXONES-SAT(Γ). Otherwise such an algorithm does not exist unless W[1] =

FPT.

The reason why Γ being dual-Horn, affine, or strongly bijunctive implies existence
of a DelayFPT algorithm for ENUM-MAXONES-SAT(Γ) is the result of Theorem 4.11.
On that account, it only remains to deal with the hard cases. Notice that a DelayFPT
algorithm for ENUM-MAXONES-SAT provides an FPT algorithm for the associated
decision problem MAXONES-SAT. Accordingly, in order to exclude the existence of
a DelayFPT algorithm (unless W[1] = FPT) for ENUM-MAXONES-SAT, it suffices to
show W[1]-hardness of MAXONES-SAT. Correlating with Proposition 4.10, it suffices
thus to show the W[1]-hardness of MAXONES-SAT(Γ) when Γ is 1-valid but neither
dual-Horn, nor affine, nor strongly bijunctive.

To this aim we will use the problem MAXONES-SAT∗(Γ), which, given a formula φ
and an integer k consists in deciding whether φ has a nontrivial (that is, non-all-1)
model of weight at least k. We will implicitly use that this parametrised problem
can also be seen as a usual decision problem when neglecting the fact that k is the
parameter. We will prove that MAXONES-SAT∗(Γ) is either W[1]-hard or NP-hard
otherwise. This implies that if there is a DelayFPT algorithm that enumerates all
models of weight at least k of a Γ -formula, then FPT = W[1] or even, in the second
case, P = NP.

From now on let us suppose that Γ is 1-valid but neither dual-Horn, nor affine, nor
strongly bijunctive. Furthermore, continue proving hardness of MAXONES-SAT∗(Γ).
In the following we will use standard many-one polynomial reductions between
parametrised problems (considering these problems as usual decision problems),
≤p

m, which are a fortiori FPT reductions, ≤fpt. Conveniently, we will make a case
distinction according to whether Γ is complementive or not.

Case 1: Γ is not complementive.
As our proof heavily relies on the notion of frozen implementation let us revisit its
definition.

Definition 4.8 (Frozen Implementations).
Let φ be a formula and x ∈ Vars(φ), then x is said to be frozen in φ if it is assigned the
same truth value in all its models. Furthermore, we say that Γ freezingly implements
a given relation R if there is a Γ -formula φ such that R(x1, . . . xn) ≡ ∃Xφ, where φ
uses variables from X ∪ {x1, . . . xn} only, and all variables in X are frozen in φ. For
the sake of readability, we let denote 〈Γ〉fr the set of all relations that can be freezingly
implemented by Γ .

4.3 A Dichotomy for the Enumerability of Max-Ones-SAT 49

Such implementations are relevant for our purpose and we have the following:

If R ∈ 〈Γ〉fr ,MAXONES-SAT∗({R}) ≤p
m MAXONES-SAT∗(Γ). (4.1)

Truly, the frozen implementation allows us to efficiently translate R-constraints into
satisfiability-equivalent Γ -formulas with existentially quantified variables. “Freezing”
of existentially quantified variables removes the quantifier and preserves the weight
of the solutions. More precisely, R ∈ 〈Γ〉fr implies the existence of a Γ -formula φ
such that R(x1, . . . xn) ≡ ∃Xφ, where φ uses variables from X ∪ {x1, . . . xn} only, and
all variables in X are frozen in φ. Assume that variable p ≤ n variables are frozen
to 1. On that account, given ψ is an {R}-formula, we can construct a satisfiability-
equivalent Γ -formula ψ ′ over the variables of ψ extended by X: we replace every
{R}-constraint by its satisfiability-equivalent Γ -formula and remove the existential
quantifiers. Accordingly, from the pair (ψ, k) where k ∈ N, we can compute the pair
(ψ ′, k+ p) such that ψ has a model of weight ≥ k if and only if ψ ′ has a model of
weight ≥ k+ p.

The following lemma is an immediate consequence of (4.1).

Lemma 4.15.
If there exists a relation R ∈ 〈Γ〉fr such that MAXONES-SAT∗(R) is NP-hard, then
MAXONES-SAT∗(Γ) is NP-hard as well (w.r.t. ≤p

m-reductions).

Lemma 4.16.
If Γ is 1-valid but neither complementive, nor dual-Horn, nor affine, nor strongly
bijunctive and→∈ 〈Γ〉fr, then MAXONES-SAT∗(Γ) is W[1]-hard (w.r.t. ≤fpt-reductions).

Proof. Since ⊥ is not 1-valid, Γ ∪ {⊥} is neither 1-valid, nor dual-Horn, nor affine, nor
strongly bijunctive. As a result, according to Proposition 4.10, MAXONES-SAT(Γ ∪
{⊥}) is W[1]-hard. In view of this, the lemma follows from the following sequence of
reductions.

MAXONES-SAT(Γ ∪ {⊥})
(1)

≤p
m MAXONES-SAT∗(Γ ∪ {→})

(2)

≤p
m MAXONES-SAT∗(Γ).

For (1), given a Γ ∪ {⊥}-formula φ over the set of variables {x1, . . . , xn}, let V⊥ be the
set of variables occurring with the constraint ⊥(x) in φ. Suppose the Γ ∪ {→}-formula
is

φ ′ := φ(f/V⊥)∧
n∧
i=1

(f→ xi),

where f is a fresh variable. Then there is a one-to-one correspondence between the
models of φ and those of φ ′ that set f to 0. Moreover, the only model of φ ′ that sets
f to 1 is the all-1 assignment. This shows that φ has a model of weight at least k if
and only if φ ′ has one nontrivial model of weight at least k.

The reduction (2) is by virtue of (4.1) since by assumption→∈ 〈Γ〉fr.

4.3 A Dichotomy for the Enumerability of Max-Ones-SAT 50

In the following two lemmas we distinguish R between being 0-valid or not. This
approach will show that the preconditions of either Lemma 4.15 or Lemma 4.16
eventuate. On that account we conclude the proof for a non-complementive Γ . The
proof technique consist of finding relevant implementations to meet the precondi-
tions. This is rather technical but also very standard (see Creignou et al. [CKS01]).
The implementations are based on well-known characterisation of respective Horn,
dual Horn, bijunctive, and affine relations that we recall (see Creignou and Vollmer
[CV08] for a detailed description).

Definition 4.17 (Closure Properties).
The operations of conjunction (∧), disjunction (∨), majority (maj), and addition
modulo 2 (⊕) are applied coordinate-wisely on k-ary Boolean vectors m,m ′, m ′′ ∈
{0, 1}k. Given a logical relation R, the following closure properties fully determine the
structure of R:

• R is Horn if and only if m,m ′ ∈ R implies m∧m ′ ∈ R.

• R is dual Horn if and only if m,m ′ ∈ R implies m∨m ′ ∈ R.

• R is bijunctive if and only if m,m ′,m ′′ ∈ R implies maj(m,m ′,m ′′) ∈ R.

• R is affine if and only if m,m ′,m ′′ ∈ R implies m⊕m ′ ⊕m ′′ ∈ R.

• If R is 1-valid, then R is affine if and only if m,m ′ ∈ R implies m ⊕ m ′ ⊕
(1, . . . , 1) ∈ R.

Lemma 4.18.
If Γ is 0- and 1-valid but not complementive then MAXONES-SAT∗(Γ) is W[1]-hard
(w.r.t. ≤fpt-reductions).

Proof. Let R ∈ Γ be a relation of arity m that is non-complementive (such a relation
exists since by assumption Γ is non-complementive).

Consider the constraint C = R(x1, . . . , xm). Since
assignment V0 V1

~1 1 1 ∈ R
~0 0 0 ∈ R
m1 0 1 ∈ R

m1 ⊕~1 1 0 /∈ R

M(x, y) x y

R is non-complementive there exists m1 in R such
that m1 ⊕ (1, . . . , 1) /∈ R. For i ∈ {0, 1}, set Vi = { x ∈
V | m1(x) = i }. Consider the {R}-constraint defined
by: M(x, y) = C[x/V0, y/V1]. This leads to the cases
on the right. The first two rows follow as Γ is 0-
and 1-valid. Then M(x, y) ≡ (x → y) shows that→∈ 〈Γ〉fr and we conclude with Lemma 4.16.

Lemma 4.19.
If Γ is 1-valid but neither 0-valid, nor complementive, nor dual-Horn, nor affine then
either MAXONES-SAT∗(Γ) is W[1]-hard (w.r.t. ≤fpt-reductions) or MAXONES-SAT∗(Γ)

is NP-hard (w.r.t. ≤p
m-reductions).

Proof. As Γ is not 0-valid there exists a relation U which is 1-valid but not 0-valid. We
show that the relation > can be implemented with no existential variable. Suppose

4.3 A Dichotomy for the Enumerability of Max-Ones-SAT 51

that U is of arity m, and consider the constraint C1 = U(x1, . . . , xm). The unary
relation defined by C1[x/{x1, . . . , xm}] contains 1 since U(1, . . . , 1) = 1, but not 0
since U(0, . . . , 0) = 0. As a result, Γ can implement the relation > with no existential
variable. In particular, it can freezingly implement >, that is, > ∈ 〈Γ〉fr.

Now consider a non-dual-Horn relation R ∈ Γ of arity m and the constraint
C = R(x1, . . . , xm). Since R is non-dual-Horn there exist m1 and m2 in R such that
m1 ∨m2 /∈ R. For i, j ∈ {0, 1}, set Vij = { x ∈ V | m1(x) = i∧m2(x) = j }. Consider
the {R}-constraint M(x, y, z, t) = C[x/V00, y/V01, z/V10, t/V11].

This leads to the following cases:

assignment V00 V01 V10 V11

~1 1 1 1 1 ∈ R
m1 0 0 1 1 ∈ R
m2 0 1 0 1 ∈ R

m1 ∨m2 0 1 1 1 /∈ R

M(x, y, z, t) x y z t

Now, let R ′ ∈ Γ be a non-affine relation of arity m ′ and consider the constraint
C ′ = R ′(y1, . . . , ym ′). As R ′ is non-affine and 1-valid there exist m ′

1,m
′
2 ∈ R ′ such

that (m ′
1 ⊕m ′

2 ⊕ (1, . . . , 1)) /∈ R ′2. For i, j ∈ {0, 1}, set

V ′
ij = { x ∈ V | m ′

1(x) = i∧m
′
2(x) = j }.

Consider the {R ′}-constraint M ′(x, y, z, t) = C ′[x/V ′
0,0, y/V

′
0,1, z/V

′
1,0, t/V

′
1,1].

Again, the following cases have to be considered:

assignment V ′
00 V ′

01 V ′
10 V ′

11

~1 1 1 1 1 ∈ R ′

m ′
1 0 0 1 1 ∈ R ′

m ′
2 0 1 0 1 ∈ R ′

m ′
1 ⊕m ′

2 ⊕~1 1 0 0 1 /∈ R ′

M ′(x, y, z, t) x y z t

Finally consider the ternary relation Q defined by

Q(x, y, z) = ∃tM(x, y, z, t)∧M ′(x, y, z, t)∧ >(t)

2Assume this is not true, then ∀m,m ′ ∈ R s.t. m ⊕ m ′ ⊕ (1, . . . , 1) ∈ R ′ and ∃m1,m2,m3 ∈ R ′

s.t. m1 ⊕ m2 ⊕ m3 /∈ R ′. But then (m1 ⊕ m2 ⊕ (1, . . . , 1) ⊕ m2 ⊕ (1, . . . , 1) ∈ R ′ which means
m1 ⊕m2 ⊕m3 ∈ R ′ E.

4.3 A Dichotomy for the Enumerability of Max-Ones-SAT 52

Clearly, Q ∈ 〈Γ〉fr. Moreover, the relation Q contains the following tuples.

x y z tuple ∈ Q ?

0 0 0 ?
0 0 1 X, by construction
0 1 0 X, by construction
0 1 1 ×, /∈ M
1 0 0 ×, /∈ M ′

1 0 1 ?
1 1 0 ?
1 1 1 X, Q is 1-valid

Observe that Q is neither dual-Horn (since 001 and 010 belong to Q, but 011 =

001 ∨ 010 does not), nor affine (since 001, 010 and 111 belong to Q, but 100 =

001⊕ 010⊕ 111 does not). There are three tuples for which we do not know whether
they belong to Q or not, and this makes eight cases to investigate.

• If Q does not contain 000, this means that Q = {001, 010, 111}, or Q =

{001, 010, 111, 110}, orQ = {001, 010, 111, 101}, orQ = {001, 010, 111, 110, 101}.
In these cases it is easy to check that Q is neither Horn (for 001 ∧ 010 =

000 /∈ Q), nor bijunctive (for maj(001, 010, 111) = 011 /∈ Q). As a result
Γ is not Schaefer, and according to [CH97], deciding whether a Γ -formula
has a non-trivial satisfying assignment in that case is NP-hard. Accordingly,
MAXONES-SAT∗(Γ) is NP-hard (deciding whether a formula is satisfiable re-
duces to deciding whether it has a model of weight at least 1), and we can
conclude with Lemma 4.15.

• If Q = {001, 010, 111, 000} or Q = {001, 010, 111, 000, 101} then it is easy to see
that Q(x, x, y) ≡ (x→ y), proving that→∈ 〈Γ〉fr. Consequently, we conclude
with Lemma 4.16.

• If Q = {001, 010, 111, 000, 110} or Q = {001, 010, 111, 000, 110, 101} then it
∃zQ(y, z, x) ∧ >(z) ≡ (x → y) follows again proving that →∈ 〈Γ〉fr. Finally,
we conclude with Lemma 4.16.

Case 2: Γ is complementive
The proof in this case will be follow the argumentation of the previous one. Never-
theless, a symmetric property is induced by this additional property. As a result, we
will use a symmetric version of the implication

Sym-Imp(x, y, z) = (z = 0∧ f→(x, y))∨ (z = 1∧ f→(y, x))).

4.3 A Dichotomy for the Enumerability of Max-Ones-SAT 53

Moreover, frozen implementations do not exist for complementive relations. That
being so we will use a stronger notion of implementations.

We say that R ∈ 〈Γ〉 6∃ if R can be implemented by a Γ -formula with no existential
variables. Such implementations are relevant for our proof:

If R ∈ 〈Γ〉 6∃ ,MAXONES-SAT∗({R}) ≤p
m MAXONES-SAT∗(Γ). (4.2)

The following two lemmas (where the first directly follows from claim (4.2)) are
used to prove the second case.

Lemma 4.20.
If there exists a relation R ∈ 〈Γ〉6∃ such that MAXONES-SAT∗(R) is NP-hard, then
MAXONES-SAT∗(Γ) is NP-hard as well (w.r.t. ≤p

m-reductions).

Lemma 4.21.
If Γ is complementive and 1-valid but neither dual-Horn, nor affine, nor strongly
bijunctive and Sym-Imp ∈ 〈Γ〉6∃, then MAXONES-SAT∗(Γ) is W[1]-hard (w.r.t. ≤fpt-
reductions).

Proof. Since NEQ is complementive but not 1-valid, Γ ∪ {NEQ} is neither 1-valid, nor
dual-Horn, nor affine, nor strongly bijunctive. Therefore, according to Proposition
4.10, MAXONES-SAT(Γ ∪ { 6=}) is W[1]-hard. Hence, the lemma follows from the
following sequence of reductions.

MAXONES-SAT(Γ ∪ {NEQ})
(1)

≤p
m MAXONES-SAT∗(Γ ∪ {Sym-Imp})

(2)

≤p
m MAXONES-SAT∗(Γ).

For (1), given a Γ ∪ { 6=}-formula φ over the set of variables {x1, . . . , xn}, let V⊥ be the
set of variables occurring with the constraint ⊥(x) in φ. Now consider the Γ ∪ {→}-
formula defined as φ ′ := φ[f/V⊥]∧

∧n
i=1 → (f, xi), where f is a fresh variable. Then

there is a one-to-one correspondence between the models of φ and those of φ ′ that
set f to 0. Moreover, the only model of φ ′ that sets f to 1 is the all-1 assignment.
Accordingly, φ has a model of weight at least k if and only if φ ′ has one nontrivial
model of weight at least k. (2) follows from (4.2) since by assumption→∈ 〈Γ〉6∃.

Lemma 4.22.
If Γ is complementive and 1-valid but neither dual-Horn, nor affine and Sym-Imp ∈ 〈Γ〉6∃,
then MAXONES-SAT∗(Γ) is W[1]-hard (w.r.t. ≤fpt-reductions) or MAXONES-SAT∗(Γ)

is NP-hard (w.r.t. ≤p
m-reductions).

Proof. As every relation in Γ is complementive and 1-valid, it is also 0-valid. By
assumption, there exists R ∈ Γ a non-dual-Horn relation of arity m and consider the
constraint C = R(x1, . . . , xm). As R is non-dual-Horn there existm1 andm2 in R such

4.3 A Dichotomy for the Enumerability of Max-Ones-SAT 54

that m1 ∨m2 /∈ R. For i, j ∈ {0, 1}, define Vij = { x ∈ V | m1(x) = i ∧m2(x) = j }.
Now examine the {R}-constraint: M(x, y, z, t) = C[x/V0,0, y/V0,1, z/V1,0, t/V1,1].

This leads to the following cases:

assignment V00 V01 V10 V11

~1 1 1 1 1 ∈ R, 1-valid
~0 0 0 0 0 ∈ R, 0-valid
m1 0 0 1 1 ∈ R

m1 ⊕~1 1 1 0 0 ∈ R, complementive
m2 0 1 0 1 ∈ R

m2 ⊕~1 1 0 1 0 ∈ R, complementive
m1 ∨m2 0 1 1 1 /∈ R, non-dual-Horn

(m1 ∨m2) ⊕~1 1 0 0 0 /∈ R, complementive

M(x, y, z, t) x y z t

Now, let R ′ ∈ Γ be a non-affine relation of arity m ′ and investigate the constraint
C ′ = R ′(x1, . . . , xm ′). As R ′ is non-affine and 1-valid there existm ′

1 andm ′
2 in R ′ such

that (m ′
1 ⊕m ′

2 ⊕ (1, . . . , 1)) /∈ R (for an explanation see footnote on page 52). For
i, j ∈ {0, 1}, set V ′

ij = { x ∈ V | m ′
1(x) = i∧m

′
2(x) = j }. Examine the {R ′}-constraint:

M ′(x, y, z, t) = C ′[x/V ′
0,0, y/V

′
0,1, z/V

′
1,0, t/V

′
1,1].

Again, the following cases have to be considered.

assignment V ′
00 V ′

01 V ′
10 V ′

11

~1 1 1 1 1 ∈ R ′, 1-valid
~0 0 0 0 0 ∈ R ′, 0-valid
m ′
1 0 0 1 1 ∈ R ′

m ′
1 ⊕~1 1 1 0 0 ∈ R ′, complementive
m ′
2 0 1 0 1 ∈ R ′

m ′
2 ⊕~1 1 0 1 0 ∈ R ′, complementive

m ′
1 ⊕m ′

2 ⊕~1 1 0 0 1 /∈ R ′, non-affine
m ′
1 ⊕m ′

2 0 1 1 0 /∈ R ′, complementive

M ′(x, y, z, t) x y z t

Finally, examine the relation Q of arity four defined by the the following formula
using M and M ′ as follows Q(x, y, z, t) = M(x, y, z, t) ∧ M ′(x, y, z, t). Clearly
Q ∈ 〈Γ〉6∃. Moreover, by construction, the relation Q contains the tuples 0011, 1100,
0101, 1010, 0000 and 1111, and neither contains 0111 nor 1000 (because of the
constraint M), nor 1001, nor 0110 (because of M ′). There are three pairs of tuples
for which the membership in Q is not clear, namely, (0100, 1011), (0010, 1101) and
(0001, 1110), and this makes eight cases to investigate. Observe that Q is neither

4.3 A Dichotomy for the Enumerability of Max-Ones-SAT 55

dual-Horn (0011 and 0101 belong to Q, but 0111 = 0011∨ 0101 does not) nor affine
(0011, 0101 and 0000 but 1000 = 0011⊕ 0101⊕ 0000 does not).

• If Q does not contain 0001 then Q is neither Horn (for 0011∧ 0101 = 0001 /∈
Q), nor bijunctive (for maj(0000, 0011, 0101) = 0001 /∈ Q). As a result Γ is
not Schaefer, and according to [CH97], deciding whether a Γ -formula has
a non-trivial satisfying assignment is NP-hard in that case. Consequently,
MAXONES-SAT∗(Γ) is NP-hard, and we can conclude according to Lemma 4.20.

• Case Q = {0000, 1111, 0011, 1100, 0101, 1010, 0001, 1110} or Q = {0000, 1111,

0011, 1100, 0101, 1010, 0001, 1110, 0010, 1101}. Observe that Q(z, x, z, y) imple-
ments Sym-Imp(x, y, z), and on that account proves Sym-Imp ∈ 〈Γ〉6∃. For this
reason we conclude according to Lemma 4.21.

• Case Q = {0000, 1111, 0011, 1100, 0101, 1010, 0001, 1110, 0100, 1011} or Q =

{0000, 1111, 0011, 1100, 0101, 1010, 0001, 1110, 0010, 1101, 0100, 1011}. Note that
Q(x, z, y, y) implements Sym-Imp(x, y, z) which proves Sym-Imp ∈ 〈Γ〉6∃. As a
result Lemma 4.21 applies.

Finally, we want to restate the main theorem of this chapter which follows from
the previous lemmas, and afterwards close by a final remark.

Theorem 4.14.
If Γ is dual-Horn, affine, or strongly bijunctive, then there is a DelayFPT algorithm for
ENUM-MAXONES-SAT(Γ). Otherwise such an algorithm does not exist unless W[1] =

FPT.

It would be interesting for those cases of Γ that do not admit a DelayFPT algorithm
to determine an upper bound besides the trivial exponential time bound to enumerate
all solutions. In particular, are there such sets Γ for which ENUM-MAXONES-SAT(Γ)
is in OutputFPT?

4.3 A Dichotomy for the Enumerability of Max-Ones-SAT 56

5Parametrised Enumeration
with Orders

“ ”The order that our mind imagines is like a net, or
like a ladder, built to attain something.
But afterward you must throw the ladder away,
because you discover that, even if it was useful, it
was meaningless.

— William of Baskerville
“The Name of the Rose” by Umberto Eco, 1980.

In this chapter we examine how introducing orders on solutions affects the enume-
ration complexity. Obviously, this might increase the waiting time between output
solutions compared to the case where an algorithm must not obey such an order.
Interestingly, these interplays will be very visible with respect to graph modification
problems. For this reason, we will introduce this kind of problem in the following sec-
tion. Then, we will investigate the effects on the ordered parametrised enumeration
complexity. Finally, we will reach an observation that allows reflecting on generic
modification problems. We will obtain a suitable definition of these general problems
and prove that, even in this universal problem notion, DelayFPT algorithms can
be constructed via an elegant strategy. Lastly, we show how this strategy can be
exemplified on string and logic related problems.

5.1 Graph Modification Problems
Graph modification problems have been studied for a long time in computational
complexity theory. Already in the monograph by Garey and Johnson [GJ90], among
the graph-theoretic problems considered, many fall into this problem class. To the
best of our knowledge, graph modification problems were studied in the context of
parametrised complexity for the first time by Cai [Cai96]. A graph property P ⊆ G is
a set of graphs. Given some graph property P and some graph G, we write G |= P if
the graph G obeys the property P, that is, G ∈ P.

In the following, we will define so-called graph operations, e.g., “removing a
vertex”, or “adding/removing an edge”. Furthermore, we need to explicitly say what
“dependence” and “consistency” of such operations means.

Definition 5.1 (Operations, Consistency, Dependency).
A (graph) operation for G is always with respect to a vertex or an edge:

57

• remove a vertex: this operation is a function remv : G → G such that remv(G) is
the graph obtained by removing the vertex v from G (if v is present; otherwise
remv is the identity) and deleting all incident edges to v,

• add/remove an edge: this operation is a function add{u,v}, rem{u,v} : G → G such
that add{u,v}(G), rem{u,v}(G) is the graph obtained by adding/removing the edge
{u, v} to G if u and v are present in G; otherwise both functions are the identity.

Two graph operations o, o ′ are dependent if
• o = remv and o ′ = rem{u,v} (o removes the vertex v and o ′ removes an edge

incident to v), or

• o = rem{u,v} and o ′ = add{u,v} (o removes the edge {u, v} and o ′ adds the same
edge {u, v} again).

A set of graph operations is consistent if it does not contain two dependent operations.
Given such a consistent set of operations S, the graph obtained from G by applying the
operations in S on G is denoted by S(G).

The following definition introduces solutions by speaking about minimality in
terms of the ⊆-relation on such sets.

Definition 5.2 (Solutions).
Given some graph property P, a graph G, k ∈ N, and a set of operations O, we say
that S is a solution for (G, k,O) with respect to P if the following three properties are
fulfilled:
(1.) S ⊆ O is a consistent set of operations.

(2.) |S| ≤ k.

(3.) S(G) |= P.
A solution S is minimal if there is no solution S ′ such that S ′ (S.

Notice that (1.) of the previous definition might be algorithmically very relevant.
Enumeration algorithms that construct solutions iteratively often require to verify
that the consecutive “super”-solution (in the ⊆-sense) stays consistent. As a result,
we will only consider solutions where this check is easy, that is, it can be achieved in
polynomial (or FPT) time.

Cai [Cai96] was interested in the following parametrised graph modification
decision problem w.r.t. some given graph property P:

Problem: MP — the (parametrised) graph modification problem

Input: G undirected graph, k ∈ N, O set of operations on G.
Parameter: The integer k.
Question: Exists a solution for (G, k,O) with respect to P?

Cai examined the parametrised complexity of MP and obtained a positive result.
However, before we can state his result, we have to introduce some graph termi-
nology. Given two graphs G = (V, E) and H = (V ′, E ′), we write H ≤ G if H is an
induced subgraph of G, i. e., V ′ ⊆ V and E ′ = E ∩ (V ′ × V ′).

5.1 Graph Modification Problems 58

Definition 5.3 (Finite Forbidden Set Characterisation).
Let G be a finite set of graphs and P be some graph property. We say that P has a finite
forbidden set characterization G if for any graph G we have that G |= P if and only if
for all H ∈ G we have H 6≤ G.

In his proof, Cai developed an algorithm for the decision problem using a bounded
search tree whose exhaustive exploration produces all minimal solutions.

Proposition 5.4 ([Cai96]).
The problem MP is in FPT for any property P that has a finite forbidden set charac-
terisation.

A selection of significant graph modification problems is presented in the following
paragraphs.

A chord in a graph G = (V, E) is an edge between two vertices of a cycle C in G
which is not part of C. A given graph G = (V, E) is triangular (or chordal) if each of
its induced cycles of 4 or more nodes has a chord.

Problem: TRIANGULATION

Input: undirected Graph G = (V, E), k ∈ N, set of operations
O ⊆ { add{u,v} | u, v ∈ V, {u, v} /∈ E }.

Parameter: The integer k.
Question: Exists a solution of cardinality ≤ k such that S(G) is

triangular?

Proposition 5.5 ([Yan81]).
The decision variant of TRIANGULATION is NP-complete w.r.t. ≤p

m-reductions.

Proposition 5.6 ([Cai96; KST99]).
TRIANGULATION is in FPT.

In the sense of Definition 5.2, a solution of TRIANGULATION then is a set of edges
which have to be added to the graph to make the graph triangular.

Observe that in this special case of the modification problem, the underlying
property P, “to be triangular”, does not have a finite forbidden set characterisation
(since cycles of any length can be problematic). Nevertheless, one can efficiently
enumerate all minimal solutions as we will see later in Corollary 5.11.

A cluster is a graph such that all its connected components are cliques. To transform
(or modify) a graph G we restrict the allowed operations to: adding or removing an
edge.

5.1 Graph Modification Problems 59

Problem: CLUSTER-EDITING

Input: undirected Graph G = (V, E), k ∈ N, set of operations
O ⊆ { add{u,v} | u, v ∈ V } ∪ { rem{u,v} | {u, v} ∈ E }.

Parameter: The integer k.
Question: Exists a solution S of cardinality ≤ k such that S(G) is

a cluster?

For CLUSTER-EDITING the set of forbidden subgraphs are paths of length two.

Proposition 5.7 ([SST04]).
The decision variant of CLUSTER-EDITING is NP-complete w.r.t. ≤p

m-reductions.

Problem: TRIANGLE-DELETION

Input: undirected graph G = (V, E), k ∈ N, set of operations
O ⊆ { remv | v ∈ V }.

Parameter: The integer k.
Question: Exists a solution S of cardinality ≤ k such that S(G) is

triangle-free?

Proposition 5.8 ([Yan78]).
The decision variant of TRIANGLE-DELETION is NP-complete w.r.t. ≤p

m-reductions.

In this case, the forbidden patterns are obviously just triangles. Further ana-
logous problems can be defined for many other classes of graphs such as line graphs,
claw-free graphs, Helly circular-arc graphs, etc., see Brandstädt et al. [BLS88].

In the following, we are interested in the corresponding enumeration problems
with particular orders. Specifically, we will concentrate on two well-known preorders:
lexicographic and by size. Observe that solutions in our setting are subsets of an
ordered set of operations. As a result, they can be encoded as binary strings in
which the ith bit from right indicates whether the ith operation is in the subset.
Furthermore, we define the lexicographic order of solutions as the lexicographic order
of these strings. The size of a solution simply is its cardinality. The two variants of
graph modification enumeration problems are now defined.

Problem: ENUM-MLEX
P

Input: (G, k,O), G undirected graph, k ∈ N, O ordered set of
operations on G.

Parameter: The integer k.
Output: All solutions of (G, k,O) w.r.t. P in lexicographic order.

5.1 Graph Modification Problems 60

Problem: ENUM-MSIZE
P

Input: (G, k,O), G undirected graph, k ∈ N, O set of opera-
tions on G.

Parameter: The integer k.
Output: All solutions of (G, k,O) w.r.t. P in non-decreasing

size.

If ambiguity is impossible we omit the subscript P for the graph modification
problem and simply write M. Analogously, we write SolM(x) for the function
associating solutions to a given instance, and also SM for the set of all solutions of
M.

5.1.1 Lexicographic Order
The first result in this subsection will build on the parametrised complexity of the
corresponding graph modification problem MP . If this problem is fixed-parameter
tractable then there exists an efficient enumeration algorithm for ENUM-MLEX

P .

Theorem 5.9.
Let MP be a graph modification problem. If MP is in FPT then ENUM-MLEX

P ∈
DelayFPT with polynomial space.

Proof. Algorithm 5.1 enumerates all solutions of an instance of a given modification
problem MP by the method of self-reducibility (this is an extension of the flash
light search of Creignou and Hébrard [CH97]). The algorithm uses a function
ExistsSol(G, k,O) that tests if the instance (G, k,O) of the modification problem
MP has a solution. By precondition of the theorem, this test is in FPT. We use calls
to this function to avoid exploration of branches of the recursion tree that do not
lead to any output. Ensuring that the solutions containing op are consistent can be
done in polynomial time for graph operations. From this, we get a search tree of
depth at most k. As a result, for any instance of length n, the time between the
output of any two solutions is bounded by f(k) · p(n) for some polynomial p and an
arbitrary recursive function f.

Recall (see page 59) that TRIANGLE-DELETION and CLUSTER-EDITING possess a
finite forbidden set characterisation whereas TRIANGULATION does not. As problems
with these characterisations are fixed-parameter tractable (Proposition 5.4), by virtue
of Theorem 5.9 there exists a delay- and space-efficient parametrised enumeration
algorithm for the lexicographic order.

Proposition 5.10.
For any graph modification problem MP , if P has a finite forbidden set characterisation
then ENUM-MLEX

P ∈ DelayFPT with polynomial space.

5.1 Graph Modification Problems 61

Algorithm 5.1: Enumerate all solutions of MP in lexicographic order
Input: a graph G, k ∈ N, an ordered set of operations O = {o1, . . . , on}
Output: all consistent sets S ⊆ O s.t. |S| ≤ k, S(G) |= P in lexicographic order

1 if ExistsSol(G, k,O) then Generate(G, k,O, ∅)

Procedure Generate(G, k,O, S):
1 if O = ∅ or k = 0 then return S
2 else
3 let op be the lexicographically last operation in O, let O := O \ {op}
4 if ExistsSol(S(G), k,O) then Generate(S(G), k,O, S)
5 if S ∪ {op} is consistent and ExistsSol((S ∪ {op})(G), k− 1,O) then
6 Generate((S ∪ {op})(G), k− 1,O, S ∪ {op})

Despite of lacking such a fruitful characterisation, the following corollary shows
that enumerating all solutions in lexicographic order is still possible for TRIANGLE-
DELETION.

Corollary 5.11.
ENUM-TRIANGULATIONLEX ∈ DelayFPT with polynomial space.

Proof. From Proposition 5.6 we know that TRIANGULATION ∈ FPT. Now apply
Theorem 5.9 and receive the result.

5.1.2 Order by Size
A neighbourhood function mapping solutions to “close” solutions is a common
routine in enumeration contexts and usually allows to efficiently compute the next
elements [AF96]. Essentially, we will define a specific kind of such a function which
generates from a given seed the initial solutions. These are then used to produce all
remaining solutions. In a sense, initial solutions can be seen as some kind of minimal
solutions. Later in this subsection, we will see that this observation can also be taken
literally.

After introducing the formal definition of neighbourhood functions, we show how
to utilise priority queues leads to a general DelayFPT scheme. In the following O
(the “seed”) is a technical symbol that will be used in order to generate the initial
solutions.

Definition 5.12 (Neighbourhood function).
Let M be some graph modification problem, IM be the set of instances, SM be the
set of all solutions, and SolM : IM → SM be the solution function. A neighbourhood
function for M is a (partial) function

NM : IM × (SM ∪ {O})→ 2SM

such that the following is fulfilled:
(1.) For all x = (G, k,O) ∈ IM and S ∈ SolM(x) ∪ {O}, NM(x, S) is defined.

5.1 Graph Modification Problems 62

N((G, k,O),O)
priority
queue

output current solution S
initial

solutions
extract
head

insert N((G, k,O), S)

Fig. 5.1: General structure of Algorithm 5.2.

(2.) For all x ∈ IM, NM(x,O) = ∅ if SolM(x) = ∅, and NM(x,O) is an arbitrary set
of solutions otherwise.

(3.) For all x ∈ IM and S ∈ SolM(x), if S ′ ∈ NM(x, S) then |S| < |S ′|.

(4.) For all x ∈ IM and all S ∈ SolM(x), there exists p > 0 and S1, . . . , Sp ∈ SolM(x)

such that
(i) S1 ∈ NM(x,O),

(ii) Si+1 ∈ NM(x, Si) for 1 ≤ i < p, and

(iii) Sp = S.
Furthermore, we say that NM is FPT-computable, when NM(x, S) is computable in
time f(k) · poly(|x|) for any x ∈ IM, S ∈ SolM(x), k is the parameter of input x and a
recursive function f.

Crucially, a neighbourhood function for a problem M is a function that provides
from scratch some initial set of solutions (see Definition 5.12 (2.)). In several of the
presented applications below, this initially produced set NM(x,O) will be encompass
all minimal solutions for x. Then, from these solutions one iteratively calculates the
remaining solutions (see condition (3.)), where condition (4.) guarantees that we
do not miss any solution. This scheme is the key procedure in the proof of the next
theorem.

Theorem 5.13.
Let MP be a graph modification problem. If MP admits a neighbourhood function
NMP that is FPT-computable, then ENUM-MSIZE

P ∈ DelayFPT with exponential space.

Proof. We claim that Algorithm 5.2 outputs all solutions in DelayFPT. A graphical
representation of the algorithm is shown in Figure 5.1. Recall that inserting an
element into the priority queue is only executed if this element is not present yet.
Furthermore, the cardinality of elements of NMP ((G, k,O), S) strictly increases
compared to the cardinality of S by Definition 5.12 (3.). As a result, the output
solutions obey the order (solutions with smaller cardinality are output before larger
ones) and no solution is output twice (due to the priority queue combined with the
size argument).

Now we will show that no solution is omitted during the computation. If
S ∈ SolMP (G, k,O) is a valid solution and S1, . . . , Sp associated with S by Defi-
nition 5.12 (4.), we prove by induction that each Si will appear in Q during the
enumeration:
IB: consider i = 1 and the claim follows then from line 2 of the algorithm.

5.1 Graph Modification Problems 63

IS: consider i > 1. Then solution Si−1 is inserted in Q by the induction hypothesis
and accordingly all elements of NMP ((G, k,O), Si−1), and in particular Si ∈
NMP ((G, k,O), Si−1), are added to Q (line 5). As a result, Si, and also S = Sp,
eventually are output at a later step.

Finally, we claim that the delay of Algorithm 5.2 is FPT. Note that between the
output of two consecutive solutions the runtime is bounded by two factors. Firstly,
the time required to compute a neighbourhood of the form NMP ((G, k,O),O) or
NMP ((G, k,O), S). Secondly, the time to insert all its elements in the priority queue.
This is in FPT due to the assumption on NMP being FPT-computable and as there
is only a single extraction and FPT-many insertion operations on the queue.

Algorithm 5.2: DelayFPT algorithm for ENUM-M
Input : (G, k,O), G is an undirected graph, k ∈ N, and O is a set of operations.

1 compute NMP ((G, k,O),O);
2 insert all elements of NM((G, k,O),O) into priority queue Q (ordered by size);
3 while Q is not empty do
4 extract the minimum solution S of Q and output it;
5 insert all elements of NMP ((G, k,O), S) into Q;

Naturally, one can interpret the inclusion minimal solutions of a considered prob-
lem MP as an initial way to define a neighbourhood function. Now we consider the
following problem.

Problem: ENUM-MIN-MP

Input: G undirected graph, k ∈ N, O set of operations on G.
Parameter: The integer k.
Output: All inclusion minimal solutions of MP .

Theorem 5.14.
Let MP be a graph modification problem. If ENUM-MIN-MP is FPT-enumerable then
ENUM-MSIZE

P ∈ DelayFPT with exponential space.

Proof. Let A be an FPT-algorithm for ENUM-MIN-MP . By Theorem 5.13, it suffices
to build an neighbourhood function for MP which is computable in FPT time.
Given an instance (G, k,O) of MP and for S ∈ SolMP (G, k,O) ∪ {O}, we define
NMP ((G, k,O), S) as the result of Algorithm 5.3.

We will show that the function NMP fulfils conditions (2.) and (3.) of Def-
inition 5.12. We prove by induction that it also satisfies condition (4.) (that
is, each solution T of size k comes with a sequence T1, . . . , Tp = T such that
T1 ∈ NM((G, k,O),O) and Ti+1 ∈ NM((G, k,O), Ti) for each i).

If T is a minimal solution for (G, k,O), then T ∈ NMP ((G, k,O),O) and the
expected sequence (Ti) reduces to T1 = T . Otherwise, there is an S ∈ SolMP (G, k,O)

and a non-empty set of transformations, say S ′∪{t}, such that T = S∪S ′∪{t} and there

5.1 Graph Modification Problems 64

Algorithm 5.3: Procedure for computing NMP ((G, k,O), S)

Input : (G, k,O), S G is an undirected graph, k ∈ N, and O, S are sets of operations.
1 if S = O then return A(G, k,O);
2 res := ∅ ;
3 forall the t ∈ O do
4 forall the S ′ ∈ A((S ∪ {t})(G), k− |S|− 1,O \ {t}) do
5 if S ∪ S ′ ∪ {t} is consistent then res := res ∪ {S ∪ S ′ ∪ {t}} ;

6 return res;

is no solution forG between S and S∪S ′∪{t}. This entails that S ′ is a minimal solution
for

(
(S ∪ {t})(G), k− |S|− 1

)
and accordingly T ∈ NMP ((G, k,O), S) (see lines 4–5

of Algorithm 5.3). The conclusion follows from the induction hypothesis that
guarantees the existence of solutions S1, . . . , Sq such that S1 ∈ NMP ((G, k,O),O),
Si+1 ∈ NMP ((G, k,O), Si) and Sq = S. The expected sequence T1, . . . , Tp for T is
nothing but S1, . . . , Sq, T . To conclude, it remains to see that Algorithm 5.3 is in FPT.
This follows from the fact that A is an FPT-algorithm (lines 1 and 4). Of course, as
required before on page 58, the consistency of solutions (line 5) has to be checkable
in polynomial (or FPT) time.

Corollary 5.15.
ENUM-TRIANGULATIONSIZE ∈ DelayFPT with exponential space.

Proof. All inclusion-minimal k-triangulations can be output in time O(24k · |E|) for a
given graph G and k ∈ N [KST99, Thm. 2.4]. This immediately yields the expected
result, by help of Theorem 5.14.

Corollary 5.16.
For any property P that has a finite forbidden set characterisation, the problem
ENUM-MSIZE

P is in DelayFPT.

Proof. The algorithm developed by Cai [Cai96] for the decision problem is based on
a bounded search tree, whose exhaustive examination provides all minimal solutions
in FPT. Theorem 5.14 yields the conclusion.

Corollary 5.17.
ENUM-CLUSTER-EDITINGSIZE and ENUM-TRIANGLE-DELETIONSIZE are in DelayFPT with
exponential space.

Proof. Both properties have a finite forbidden set characterisation, namely, paths of
length two and triangles. Corollary 5.16 then proves the corollary.

5.2 Generalised Modification Problems
In this section we show how the previous approach can be completely generalised
and applied to various other structures than graphs. Subsequently, we demonstrate

5.2 Generalised Modification Problems 65

the new technique for two other kinds of problems whose inputs are on the one
hand strings and on the other formulas.

Definition 5.18 (General Operations).
Let Q ⊆ Σ∗ be some language defined over an alphabet, and x ∈ Σ∗ be an input. A set
of operations Ω = {ωn : Σ

∗ → Σ∗ | n ∈ N } is an infinite set of operations on instances
of Q (for instance, adding some edges, or flipping some bit). An operation ω is valid
with respect to an instance x ∈ Q, ifω(x) ∈ Q. WriteΩ/x for the set of possible (valid)
operations on an instance x.

Two operations ω,ω ′ are dependent with respect to an instance x ∈ Q if
• ω(ω ′(x)) = x, or (ω and ω ′ cancel out)

• ω(ω ′(x)) = ω ′(x) or ω(ω ′(x)) = ω(x). (order of ω,ω ′ is irrelevant)
A set of operations O ⊆ Ω/x is consistent with respect to x if it does not contain two
dependent operations. Similarly, we say that an operation ω is consistent with a set S
if and only if S ∪ {ω} is consistent.

Example 5.19. Let G ⊆ {0, 1}∗ be the language of all undirected graphs encoded
by adjacency matrices. Then Ω(G) is the set of all graph operations in the sense of
Definition 5.1: removing vertices or edges, adding edges. Note that Ω contains all
operations of the kind

remi, rem{i,j}, add{i,j}

for all i, j ∈ N. Furthermore, let G = (V, E) ∈ {0, 1}∗ be a concrete input graph. That
being so, Ω/G then is the restriction of Ω to those i, j ∈ N such that i, j ∈ V encode
vertices in G.

Definition 5.20 (General Solutions).
Let Q ⊆ Σ∗ be a language over Σ. We say that S is a solution (of x) if S is a
consistent set of operations and S(x) ∈ P. If S is a consistent set of operations then we
write S(x) for the application of the operations in S to x. Furthermore, we denote by
SQ :=

⋃
x∈Q{S | S is a solution of x } the set of all solutions for every instance x ∈ Q.

Also Sol(x) is the set of solutions for every instance x ∈ Q.

Example 5.21. Continuing the previous example, if the property P is “to be a cluster”
then a consistent solution S to a given graph just then is a sequence of removing vertices,
adding and deleting of edges where

• there is no edge (i, j) added or deleted such that vertex i or j is removed,

• there is no edge (i, j) added and removed, and (of course)

• S(G) |= P.
Similarly, adding edge (i, j) together with removing vertex i or j or removing edge (i, j)

is an inconsistent set of operations.

5.2 Generalised Modification Problems 66

Now we want to define the corresponding decision and enumeration tasks. On
that account let P be some property, Π = (Q,κ) some parametrised problem with
Q ⊆ Σ∗, and Ω be a set of operations.

Problem: ΠP — parameterised modification problem Π w.r.t. a
property P over Σ

Input: x ∈ Σ∗, k ∈ N, Ω/x set of operations.
Parameter: The integer k ∈ N.
Question: Is there a consistent solution S ⊆ Ω/x and |S| ≤ k?

Problem: ENUM-MIN-ΠP — parameterised minimum enumera-
tion modification problem w.r.t. a property P over Σ

Input: x ∈ Σ∗, k ∈ N, Ω/x set of operations.
Parameter: The integer k ∈ N.
Output: All minimal (w.r.t. some order) solutions S ⊆ Ω/x with

|S| ≤ k.

The enumeration modification problem where we want to output all possible sets
of transformations on a given instance x (and not only the minimum ones) then is
ENUM-ΠP .

Next, we present the generalised notion of neighbourhood functions. Utilising this
will yield generalisations of the results for graph modification problems afterwards.

Definition 5.22.
Let Σ be an alphabet, P ⊆ Σ∗ be a property and ΠP be a parameterised modification
problem over Σ. A neighbourhood function for ΠP is a (partial) function NΠP : Σ∗ ×
(SΠP ∪ {O})→ 2SΠP such that the following four properties are fulfilled.
(1.) For all x ∈ Σ∗ and S ∈ SolΠP (x) ∪ {O}, NΠP (x, S) is defined.

(2.) For all x ∈ Σ∗, NΠP (x,O) = ∅ if SolΠP (x) = ∅, and NΠP (x,O) is an arbitrary
set of solutions otherwise.

(3.) For all x ∈ Σ∗ and S ∈ SolΠP (x), if S ′ ∈ NΠP (x, S) then |S| < |S ′|.

(4.) For all x ∈ Σ∗ and all S ∈ SolΠP (x), there exists p > 0 and S1, . . . , Sp ∈ SolΠP (x)

such that
(i) S1 ∈ NΠP (x,O),

(ii) Si+1 ∈ NΠP (x, Si) for 1 ≤ i < p, and

(iii) Sp = S.
Furthermore, we say that NΠP is FPT-computable, when NΠP (x, S) is computable in
time f(k) · poly(|x|) for any x ∈ Σ∗ and S ∈ SolΠP (x).

Finally, we are able to state generalised versions of Theorems 5.13 and 5.14.

Corollary 5.23.
Let P be some property, Π ⊆ Σ∗ × N be some parameterised modification problem,

5.2 Generalised Modification Problems 67

and Ω be a set of operations such that Ω/x is finite for all x ∈ Σ∗. If ΠP admits a
neighbourhood function that is FPT-computable then ENUM-ΠP ∈ DelayFPT and

• polynomial space for lexicographic order, and

• exponential space for size order.

Corollary 5.24.
Let P be some property, Π ⊆ Σ∗ × N be some parameterised modification problem, and
Ω be a set of operations such that Ω/x is finite for all x ∈ Σ∗. If ENUM-MIN-ΠP is
FPT-enumerable and consistency of solutions can be checked in FPT then ENUM-ΠP ∈
DelayFPT and

• polynomial space for lexicographic order, and

• exponential space for size order.

5.2.1 Closest String
In the following we consider a significant problem in coding theory [FL97]. Given a
set of binary strings I we want to find a string s whose maximum Hamming distance
max{dH(s, s ′) | s ′ ∈ I } ≤ d for some d ∈ N. This problem is NP-complete with
respect to ≤p

m-reductions.

Definition 5.25 (Bit-flip operation).
Given a string w = w1 · · ·wn with wi ∈ {0, 1}, n ∈ N, and a set S ⊆ {1, . . . , n}, S(w)
denotes the string obtained from w in flipping the bits indicated by S, more formally
S(w) := S(w1) · · ·S(wn), where S(wi) = 1−wi if i ∈ S and S(wi) = wi otherwise.

The corresponding parametrised version is the following.

Problem: CLOSEST-STRING

Input: (s1, . . . , sk, n, d), where s1, . . . , sk is a sequence of
strings over {0, 1} of length n ∈ N, d ∈ N.

Parameter: The integer d.
Question: Does there exist S ⊆ {1, . . . , n} such that

dH(S(s1), si) ≤ d for all 1 ≤ i ≤ k??

Proposition 5.26 ([GNR03]).
CLOSEST-STRING is in FPT.

Moreover, an exhaustive examination of a bounded search tree constructed from
the idea of Gramm et al. [GNR03, Fig. 1] allows to produce all minimal solutions of
this problem in FPT. Accordingly, we get the following result for the corresponding
enumeration problems.

Theorem 5.27.

• ENUM-CLOSEST-STRINGLEX ∈ DelayFPT with polynomial space.

• ENUM-CLOSEST-STRINGSIZE ∈ DelayFPT with exponential space.

5.2 Generalised Modification Problems 68

Proof. Ω is just the set of operations which flip the i-th bit for every i ∈ N. Then use
Proposition 5.26 and Corollary 5.24.

5.2.2 Backdoors
In this section we return to the concept of backdoors (for an introduction see
Section 4.2 and 4.2.2 on page 42 and 47). Furthermore, to the already known strong
backdoor sets, we will introduce weak backdoor sets.

If φ is a formula and V ⊆ Vars(φ) is a set of variables then Θ(V) is the set of all
assignments θ : V → {0, 1}.

Definition 5.28 (Weak Backdoor Sets).
Denote with C some class of CNF-formulas, and φ be a propositional CNF formula. A
set V ⊆ Vars(φ) of variables from φ is a weak C-backdoor set of φ if there exists an
assignment θ ∈ Θ(V) such that φ[θ] ∈ C and φ[θ] is satisfiable.

Let us recall the definition of strong backdoor sets, be repeating the definition for
C = HORN.

Definition 4.12 (Strong HORN-Backdoor Sets).
A set V of variables of φ, V ⊆ Vars(φ), is a strong HORN-backdoor set of φ if for all
truth assignments τ : V → {0, 1} we have φ[τ] ∈ HORN.

Generally, we want to explicitly define the parametrised version of both backdoor
set variants which have been examined here.

Problem: Weak/Strong-C-Backdoors

Input: A formula φ in 3CNF, k ∈ N.
Parameter: The integer k.
Question: Exists a weak/strong C-backdoor set of size ≤ k?

Note that the existence of a weak C-backdoor set can be seen as a modification
problem where solutions are sequences of variable assignments. The target property
then simply is the type of CNF formulas C.

Definition 5.29 (Base Class,[GS12]).
The class C is a base class if it can be recognised in P, satisfiability of its formulas is in
P, and the class is closed under isomorphisms w.r.t. variable names. We say that C is
clause defined if for every CNF-formula φ we have: φ ∈ C if and only if {C} ∈ C for all
clauses C from φ.

Proposition 5.30 ([GS12, Prop. 2]).
For every clause-defined base class C, detection of weak C-backdoor sets is in FPT for
input formulas in 3CNF.

In their proof, they describe how utilising a bounded search tree allows to solve
the detection of weak C-backdoors in FPT time. Interestingly to note, this technique

5.2 Generalised Modification Problems 69

results in obtaining all minimal solutions in FPT time. This observation results in the
following theorem.

Theorem 5.31.
For every clause-defined base class C and input formulas in 3CNF

• ENUM-WEAK-C-BACKDOORSLEX ∈ DelayFPT with polynomial space, and

• ENUM-WEAK-C-BACKDOORSSIZE ∈ DelayFPT with exponential space.

Proof. The set of operationsΩ is then “assignTruthValueToVariable(t, i)” for t ∈ {0, 1}

and i ∈ N. A solution then encodes the chosen backdoor sets together with the
required assignment. Then use Proposition 5.26 and Corollary 5.24.

Definition 5.32 ([NRS07; Sze09]).
Let C be a class of CNF-formulas and φ be a CNF-formula. A set V ⊆ Vars(φ) of
variables of φ is a C-deletion backdoor set of φ if φ[V] is in C, where φ[V] denotes the
formula obtained from φ by deleting in φ all occurrences of variables from V.

In the following result we will examine the parametrised enumeration complexity
of the task to enumerate all strong C-backdoor sets of a given 3CNF formula for
some clause-defined base class C. Crucially, every strong backdoor set has to contain
at least one variable from a clause that is not in C which relates to ’hitting all bad
clauses’ like in the definition of deletion backdoors (see Def. 5.32).

Crucially, strong backdoor sets resemble deletion backdoor sets for this kind of
base class. A set of variables V ⊆ Vars(φ) is a deletion backdoor set if and only if
φ− V ∈ C where φ− V denotes the formula that is obtained by deleting all literals
over V from clauses in φ.

Theorem 5.33.
For every clause-defined base class C and input formulas in 3CNF

• ENUM-STRONG-C-BACKDOORSLEX ∈ DelayFPT with polynomial space, and

• ENUM-STRONG-C-BACKDOORSSIZE ∈ DelayFPT with exponential space.

Proof. We show that for every clause-defined base class C and input formulas in 3CNF,
the problem MIN-STRONG-C-BACKDOORS is FPT-enumerable. Indeed, we only need
to branch on the variables from a clause C /∈ C and remove the corresponding literals
over the considered variable from φ. The size of the branching tree is at most 3k.
As for base classes the satisfiability test is in P, this yields an FPT-algorithm. The
neighbourhood function N(x, S) for x = (φ, k) is defined to be the set of the pairwise
unions of all minimal strong C-backdoors of (φ − (S ∪ {xi}), k − |S| − 1) together
with S ∪ {xi} for all variables xi 6∈ S. If Vars(φ) = {x1, . . . , xn}, then the operations
are ωi : φ 7→ φ(0/xi)∧ φ(1/xi). One can see, that applying solutions to an instance
increases its size by an exponential factor in the parameter which accordingly leads
to FPT.

5.2 Generalised Modification Problems 70

5.2.3 Weighted Satisfiability Problems
Finally, we reconsider formulas in the Schaefer framework which have been classified
without emphasising any order (see Section 4.2 and Section 4.3). As opposed to the
previous section where we examine maximum satisfiability questions, we now focus
on the problem MINONES-SAT(Γ) defined below.

Definition 5.34 (Minimality).
Given a propositional formula φ and an assignment θ over the variables in φ with
θ |= φ, we say that θ is minimal if there does not exist an assignment θ ′ ⊂ θ which
sets strictly less variables to true than θ and θ ′ |= φ. The size |θ| of θ is the number of
variables it sets to true.

Formally, the problems from above are defined as follows:

Problem: MIN-MINONES-SATSIZE(Γ)

Input: (φ, k), a propositional Γ -formula φ, k ∈ N.
Parameter: The integer k.
Output: Generate all inclusion-minimal satisfying assignments

θ of φ with |θ| ≤ k by non-decreasing size.

Similarly, the problem ENUM-MINONES-SAT(Γ) asks for all satisfying assignments
θ of φ with |θ| ≤ k. In this context, the operations in Ω are “setVariableToTrue(i)”
for i ∈ N.

Theorem 5.35.
For all constraint languages Γ , we have: MIN-MINONES-SATSIZE(Γ) is FPT-enumerable
and ENUM-MINONES-SATSIZE(Γ) ∈ DelayFPT with exponential space.

Proof. For the first claim we can simply compute the minimal assignments by a
straight forward branching algorithm: initially, begin with the all 0-assignment, then
consider all unsatisfied clauses in turn and flip one of the occurring variables to true.
The second claim follows by a direct application of Corollary 5.24.

In the following last result of this section, we consider the parametrised enume-
ration problem ENUM-MAXONES-SATSIZE(Γ) (resp., MIN-MAXONES-SATSIZE(Γ)) asks
for the set of all (resp., minimal) satisfying assignments θ of given φ with |θ| ≥ k

by non-decreasing size. The classification employs a result of Marx [Mar05]. He
considers the problem EXACTONES-SAT(Γ), where one asks if for a given Γ -formula
φ and k ∈ N there exists a satisfying assignment θ of φ with |θ| = k. The problem is
shown to be in FPT if and only if Γ has a property called “weakly separable”. Further
cases which show when this problem is FPT, or even in P, have been considered by
Creignou and Vollmer [CV15] in the context of Boolean clones under the aspect of
Post’s lattice [Pos41].

5.2 Generalised Modification Problems 71

Theorem 5.36.
For all constraint languages Γ we have that ENUM-MAXONES-SATSIZE(Γ) ∈ DelayFPT
with exponential space implies EXACTONES-SAT(Γ) ∈ FPT.

Proof. If ENUM-MAXONES-SAT(Γ) ∈ DelayFPT then we simply check if the first
output solution has weight exactly k. If this is true then we accept otherwise we
reject. Consequently, we deduce EXACTONES-SAT(Γ) ∈ FPT.

5.2 Generalised Modification Problems 72

6Enumeration in Poor Man’s
Propositional Dependence Logic

“ ”Dependence manifests itself in the presence of mul-
titude. A single event cannot manifest dependence,
as it may have occurred as a matter of chance.

— Jouko Väänänen
[Vää07, p. 1]

Dependencies are an omnipresent utensil which express a specific relation between
phenomena. Such expressions happen in everyday language:“depending on the
weekday I will go to work.” Physics use them:“the amplitudes of reflection depend
on radiation resistance and polarisation.” In databases they occur as functional
dependencies:“the date functionally depends on the order number.” Also medicine
uses them to express connections between diseases. For mathematics we know them
from algebra to express linear dependencies between vectors. Geneticists determined
that the biological sex is depending on the allosomes. In social choice theory, one of
the significant conditions to design a social welfare function is the independence of
irrelevant alternatives. In game theory, strategies can require moves depending on
what the opponent does.

Jouko Väänänen is the founding father of Dependence Logic (DL) [Vää07] and
introduced the notion of dependence to First-Order (FO) Logic. Later, this formalism
has been ported to Modal Logic [Vää08] as well. Formally, the semantics of this
logic has to be build on sets of assignments which historically have been named
teams. The notion of teams can be traced back to its origins in the work of Hodges
[Hod97a]. We consider a very basic version of DL, namely, the propositional variant:
propositional dependence logic. In the following, we investigate the enumeration
complexity only of a fragment of this logic, because satisfiability and model-checking
in the full logic is NP-complete [EL12; LV13].

Remarkably, DL and its variants connect a vast range of different disciplines result-
ing in a tremendously growing community [Abr+13]. Many different extensions of
these logics have been related to several other areas of research to model phenomena
within these. A very recent overview of the area of Dependence Logics is given by
Abramsky et al. [Abr+16]. A historical view on this area is presented in Figure 6.1

73

1960

Bran
ch

ing
Qua

nti
fie

rs
Hen

kin

1990

IF-
log

ic
Hint

ikk
a,

Sa
nd

u

2000 2005 2010 2015

Com
po

sit
ion

al
Se

man
tic

s for
IF

Hod
ges

IF
mod

al
log

ic Tule
nh

eim
o

Dep
en

de
nc

e Lo
gic

Vää
nä

ne
n

Mod
al

Dep
en

de
nc

e Lo
gic

Vää
nä

ne
n

Inc
lus

ion
&

Excl
usi

on
Lo

gic
Gall

ian
i

Ind
ep

en
de

nc
e Lo

gic
Gräd

el,
Vää

nä
ne

n

Mod
al

Team
Lo

gic

Müll
er

Mult
ite

am
Se

man
tic

s Dura
nd

et
al.

Prop
. Team

Lo
gic

Yan
g,

Vää
nä

ne
n Poly

tea
m

Se
man

tic
s

Han
nu

la
et

al.

Fig. 6.1: Excerpt from the historical picture of the evolution of Dependence Logic.

6.1 Team-based Propositional Logic
Let V be a (countably infinite) set of variables. The class of all Poor Man’s Propositi-
onal formulas PL− is derived via the grammar

ϕ ::= x | ¬x | 0 | 1 | ϕ∧ϕ,

where x ∈ V . Note that the negation ¬ symbol only occurs in front of a variable, that
is, we only consider formulas in negation normal form.

Now we will specify the notion of teams and its interpretation on propositional
formulas. An assignment over V is a mapping s : V → {0, 1}. Denote with Θ(V) :=

{ s | s assignment over V }. A team T over V is a subset T ⊆ Θ(V) of the set of all
assignments. Consequently, the set of all teams over V is denoted by P(Θ(V))
the set of all sets of assignments. If X ⊆ V is a subset of the variables, we set
T
∣∣
X
:=
{
s
∣∣
X
| s ∈ T

}
, where s

∣∣
X

is the restriction of s on X. If T has cardinality
k ∈ N, we say that T is a k-Team. If ϕ is a formula, then a team (assignment) over
Vars(ϕ) is called a team (assignment) for ϕ.

The set of formulas of Poor Man’s Propositional Dependence Logic PDL− is con-
structed by the rule set of PL− with the extension

ϕ ::= =(P,Q),

where P,Q are sets of arbitrary variables. We write =(x1, x2, . . . , xn) as a shorthand
for =({x1, x2, . . . , xn−1}, {xn}).

6.1 Team-based Propositional Logic 74

Definition 6.1 (Satisfaction).
Let ϕ be a team-based propositional formula and T be a team for ϕ. We define T |= ϕ

inductively by

T |= x :⇔ s(x) = 1 ∀s ∈ T, T |= ¬x :⇔ s(x) = 0 ∀s ∈ T,

T |= 1 :⇔ true, T |= 0 :⇔ T = ∅,

T |= ϕ∧ψ :⇔ T |= ϕ and T |= ψ,

T |= =(P,Q) :⇔ ∀s, t ∈ T : s
∣∣
P
= t

∣∣
P
⇒ s

∣∣
Q
= t

∣∣
Q
.

We say that T satisfies ϕ if and only if T |= ϕ is true.

Note that we have T |= (x∧ ¬x) if and only if T = ∅. This observation motivates
the definition for T |= 0. Observe that the evaluation in classical propositional logic
occurs as the special case of evaluating singletons in team-based propositional logic.
Note that many other team-based operators and atoms exist in literature [DKV16].

Definition 6.2 (Downward closure).
A team-based propositional formula ϕ is called downward closed, if for every team T

we have that T |= ϕ⇒ ∀S ⊆ T : S |= ϕ. An operator ◦ of arity k is called downward
closed, if ◦(ϕ1, . . . , ϕk) is downward closed for all downward closed formulas ϕi,
i = 1, . . . , k. A class φ of team-based propositional formulas is called downward
closed, if all formulas in φ are downward closed.

Lemma 6.3.
All atoms and operators in PDL− are downward closed. In particular, PDL− is
downward closed.

Proof. It is easy to see that the atoms x, ¬x, 0, 1, =(·) are downward closed. Let ϕ,
ψ be two downward closed formulas and T be a team with T |= ϕ ∧ ψ. Then we
have T |= ϕ and T |= ψ and by induction hypothesis S |= ϕ and S |= ψ for every
subset S ⊆ T . It follows that S |= ϕ∧ψ. For this reason ∧ is downward closed.

6.2 Group Theory
The following section provides a compact introduction in group actions on sets. For a
deeper introduction see, for instance, Rotman’s textbook [Rot95] whose notation we
will employ. We require these definitions for the enumeration algorithm presented
in the following section.

Definition 6.4 (Group action).
Let G be a group with identity element e and X be a set. A group action of G on X,
denoted by G 	 X, is a mapping G× X→ X, (g, x) 7→ gx, with
(1.) ex = x ∀x ∈ X
(2.) (gh)x = g(hx) ∀g, h ∈ G, x ∈ X.

6.2 Group Theory 75

If G is a group and X is a set then the mapping (g, h) 7→ gh for g, h ∈ G defines
a group action of G on itself. A group action G 	 X induces a group action of G
on P(X) by gS := {gs | s ∈ S } for all g ∈ G, S ⊆ X. Note that this group action
preserves the cardinality of sets.

Example 6.5. Let G = S4 be the group of permutations on the set S = {1, 2, 3, 4}. Then
the group action of G on S can be illustrated as follows (we use cycle notation for
permutations):

(1 2 3)(2 3 4)3 = 4

((2 3)(3 4))4 = 2 = (2 3)((3 4)4) = (2 3)3

(1 2 3 4)2 = 3

Definition 6.6 (Orbit).
Let G 	 X be a group action and x ∈ X. Then the orbit of x is given by

Gx := {gx | g ∈ G } ⊆ X.

Proposition 6.7 ([Rot95, p. 56]).
Let G 	 X be a group action and x, y ∈ X. Then either Gx = Gy or Gx ∩ Gy = ∅.
Consequently the orbits of G 	 X partition the set X.

Definition 6.8 (Stabiliser).
Let G 	 X be a group action and x ∈ X. The stabilizer subgroup of x is given by
Gx := {g ∈ G | gx = x } and indeed is a subgroup of G.

Proposition 6.9 (Orbit-Stabiliser theorem, [Rot95, Theorem 3.19]).
Let G be a finite group acting on a set X. Let x ∈ X. Then the mapping gGx 7→ gx is a
bijection from G/Gx to Gx. In particular, |Gx| · |Gx| = |G|.

The following result has been also discussed in a recent blog post of Lipton and
Regan [LR18]. They explain that this result can also be used as a tool to show
membership of function problems in #P (sharp-P, or number-P). We will later use it
in the context of enumerating teams.

Proposition 6.10 (Cauchy-Frobenius Lemma, [Rot95, Theorem 3.22]).
Let G be a finite group acting on a set X. Then the amount of orbits is given by
1
|G|

∑
g∈G |{ x ∈ X | gx = x }|.

6.3 Enumeration Complexity
In this section, we will examine the parametrised enumeration complexity of out-
putting all satisfying teams, that is, the complexity of P-ENUMTEAM. In what follows,
we develop two enumeration algorithms for PDL−, either guaranteeing FPT delay
with exponential space or IncFPT delay with polynomial space.

6.3 Enumeration Complexity 76

Let Φ be a class of team-based propositional formulas. We are interested in
non-empty teams as solutions, we excluded the ∅ from the set of all solutions.
Nevertheless, formally by the empty team property, it is always true that ∅ |= ϕ.

Problem: P-ENUMTEAM(Φ)

Input: A team-based propositional formula φ ∈ Φ, k ∈ N.
Parameter: The integer k.
Output: All non-empty teams T ∈ P(Θ(Vars(ϕ))) with |T | ≤ k

s.t. T |= ϕ.

Later we will see that the order in which the teams are outputted is significant.
We consider two natural orders on teams.

Definition 6.11 (Order of cardinality).
Let R, S be two teams. Then we define a partial order on the set of all teams by
R ≤size S :⇔ |R| < |S| or R = S.

Given a formulaϕ, we consider a total order ≤ onΘ(Vars(ϕ)) such that comparing
two elements is possible in O(|Vars(ϕ)|) and iterating over the set of all assignments
is feasible with delay O(|Vars(ϕ)|). By interpreting assignments as a binary encoded
integer, we obtain an appropriate order on Θ(Vars(ϕ)) by translating the order on
N0. If necessary, one could demand that adjacent assignments differ in only one
place by using the order induced by the Gray code. Now we are able to define the
second order.

Definition 6.12 (Lexicographic order).
Let R = {r1, . . . , rn}, S = {s1, . . . , sm} be two teams such that r1 < · · · < rn and s1 <
· · · < sm. Let i be the maximum of { j ≤ min(n,m) | r` = s` for all ` ∈ {1, . . . , j} } ∩ N.
Then we define the lexicographic order as the a partial order on P(Θ(Vars(ϕ))) by

R ≤lex S :⇔
n ≤ m, i = min(n,m)

ri+1 < si+1, else.

Note that the lexicographic order is a total order that does not extend the order
of cardinality. For example, we have {00, 01, 10} <lex {00, 10} when assignments are
ordered according to their integer representation.

Let us define the ordered parametrised enumeration problem with respect to ≤size.

Problem: P-ENUMTEAMSIZE(Φ)

Input: A team-based propositional formula φ ∈ Φ, k ∈ N.
Parameter: The integer k.
Output: All non-empty teams T ∈ P(Θ(Vars(ϕ))) with |T | ≤ k

s.t. T |= ϕ ordered by ≤size.

6.3 Enumeration Complexity 77

In the following, we will see that the delay of the constructed algorithm is polyno-
mial in the size of input and the maximal size of an outputted team. Consequently,
the parameter being the size of the outputted teams perfectly makes sense to achieve
an FPT delay (Theorem 6.35). The sorting of produced solutions, however, is
an inherent characteristic of our algorithm as satisfying teams of cardinality k are
constructed by analysing those of cardinality k−1. As a result, we will notice that enu-
meration in polynomial space for the more general problem, P-ENUMTEAM(PDL−),
is not possible (Corollary 6.38). Despite of that, we will prove that avoiding expo-
nential space is feasible for P-ENUMTEAMSIZE(PDL−) while suffering an increasing
delay, that is, IncFPT with polynomial space (Theorem 6.43).

At first we need to introduce some notation before we can construct the algorithm.
Let ϕ ∈ PDL− be fixed, k ∈ N0,

n := |Vars(ϕ)|,

Tk := { T ∈ P(Θ(Vars(ϕ))) | T |= ϕ, |T | = k } ,

T 0
k := { T ∈ Tk | (∀x ∈ Vars(ϕ) 7→ 0) ∈ T } ,

tk := |Tk|,

t0k := |T 0
k |.

An assignment s ∈ Θ(Vars(ϕ)) is depicted as a sequence of 0 and 1, precisely:
s = s(x1)s(x2) . . . s(xn).

Example 6.13. For ϕ := =(x1, x2) we have: n = 2 and consequently

T2 = {{00, 10}, {00, 11}, {01, 10}, {01, 11}},

T 0
2 = {{00, 10}, {00, 11}},

T3 = T 0
3 = ∅.

In essence, team-based propositional formulas of the form

ϕ ≡

∧
x∈I
x

∧

∧
x∈J

¬x

∧

∧
`∈L

=(P`, Q`)


can be simplified w.l.o.g. to

ϕ ′ :=
∧
`∈L

=(P ′
` , Q

′
`) with P ′

` := P` \ (I ∪ J), Q ′
` := Q` \ (I ∪ J). (?)

Then all satisfying teams for ϕ can be recovered by extending those for ϕ ′.

Example 6.14. The formula x4 ∧ =(x1, x3) ∧ =({x2}, {x3, x4}) may be reduced to
=(x1, x3)∧=(x2, x3). The team {000, 010} satisfies the latter formula and is extended
to {0001, 0101} in order to satisfy the former one.

6.3 Enumeration Complexity 78

6.3.1 The Group Action of Flipping Bits
Flipping a bit at a fixed position in all assignments of a team T is an invariant for
T |= =(P,Q) for sets of propositional symbols P and Q.

Example 6.15. Consider the four possible 2-teams (teams of cardinality 2) which
satisfy =(x1, x2):

{00, 10} {00, 11} {01, 11} {01, 10}

Observe that flipping the second bit of {00, 10} and {00, 11} leads to {01, 11} and {01, 10}.
As a result, it suffices to compute the satisfying teams {00, 10} and {00, 11} and con-
structing the other 2-teams by flipping bits.

The main concept of the constructed algorithm for ensuring FPT-delay is com-
puting a minor set of satisfying k-Teams and constructing the remaining ones by
flipping bits. Identifying each assignment s with the vector (s(x1), . . . , s(xn)) lets us
obtain a bijection of sets

Fn2 ↔ Θ(Vars(ϕ)).

Accordingly, we will switch between interpreting an element as an assignment or an
F2-vector as necessary, leading to expressions like s+t for assignments s and t. Those
expressions may seem confusing at first, but become obvious when interpreting s
and t as vectors. Vice versa, F2-vectors are considered as assignments that may be
contained in a team. Whenever we need to utilise both notations, we indicate this
by using s ∈ Fn2 ∼= Θ(Vars(ϕ)) instead of simply writing s ∈ Fn2 or s ∈ Θ(Vars(ϕ)).

By the observation after Definition 6.4 the group action of (Fn2 ,+) on itself induces
a group action of Fn2 on P(Fn2).

Definition 6.16 (Group action of flipping bits).
The group action Fn2 	 P(Θ(Vars(ϕ))) is called group action of flipping bits.

Let ei be the i-th standard vector of Fn2 . Then the operation of ei on the power
set of assignments for ϕ, P(Θ(Vars(ϕ))), corresponds to flipping the value for xi in
each assignment of a team.

Theorem 6.17.
Let k ∈ N. The restriction of Fn2 	 P(Fn2) on Tk yields a group action Fn2 	 Tk.

Proof. As the axioms of group actions are still true on a subset of P(Fn2), it remains to
show that zT ∈ Tk for all z ∈ Fn2 and T ∈ Tk. Let z ∈ Fn2 and T ∈ Tk. By Definition 6.4
and as group actions preserve cardinality, we have |zT | = k. Let P ⊆ Vars(ϕ) and
s, t ∈ Θ(Vars(ϕ)). If s ′, t ′ ∈ Θ(Vars(ϕ)) arise from s, t by flipping the value for a
variable xi, then obviously

s
∣∣
P
= t

∣∣
P
⇐⇒ s ′∣∣

P
= t ′∣∣

P
.

6.3 Enumeration Complexity 79

It follows that

T |= =(P,Q)⇐⇒ zT |= =(P,Q) for all P,Q ⊆ Vars(ϕ).

If ϕ has the form of (?) then zT |= ϕ as T |= ϕ proving zT ∈ Tk.

Lemma 6.18.
Let T ∈ Tk, k ∈ N. Then Fn2 T ∩ T 0

k 6= ∅. For this reason T 0
k contains a representative

systems for the orbits of Fn2 	 Tk.

Proof. Take s ∈ T ⊆ Θ(Vars(ϕ)) ∼= Fn2 . Then sT ∈ T 0
k as z+ z = ~0 for all z ∈ Fn2 .

By the previous lemma we can compute Tk from T 0
k via generating orbits. In the

next step, we present and analyse an algorithm for enumerating those orbits. The
results culminate in Theorem 6.22.

Definition 6.19.
Let ~0 6= s = (s1, . . . , sn) ∈ Fn2 and B ⊆ Fn2 \ {~0}. Then we define

last(s) := max
{
i ∈ {1, . . . , n} | si = 1

}
,

last(B) := { last(s) | s ∈ B }.

Definition 6.20.
Let B be a subset of Fn2 . Then the subspace generated by B is defined by

span(B) :=
{
b1 + · · · + br | r ∈ N0, bi ∈ B for all i ∈ {1, . . . , r}

}
.

Lemma 6.21.
Let U be a subspace of the F2-vector space Fn2 . Let B ⊆ U \ {~0} be a maximal subset
such that for all b, b ′ ∈ B

b 6= b ′ ⇒ last(b) 6= last(b ′) (6.1)

Then B is a basis for U.

Proof. We show by induction on |A| that any set A ⊆ U\{~0} satisfying (6.1) is linearly
independent.
IB: If |A| = 1 then the claim is obvious.

IS: From (6.1) it follows that there exists an element a0 ∈ A with last(a0) > last(a)
for all a0 6= a ∈ A. For the last(a0)-th component, clearly, the equation

a0 =
∑

a0 6=a∈A
λaa, λa ∈ F2

has no solution. A \ {a0} is linearly independent by induction hypothesis, then
it follows that A is linearly independent.

6.3 Enumeration Complexity 80

Now assume for contradiction that B does not generate U. Choose an s ∈
U \ span(B) with minimal last(s). As B is a maximal subset fulfilling (6.1), for a
suitable element b ∈ B we have last(b) = last(s). But this implies s−b ∈ U\span(B)
with last(s− b) < last(s) and contradicts the minimality of s.

Theorem 6.22.
Let T ∈ Tk, k ∈ N. Then Fn2 T can be enumerated with delay O(k3 · n).

Proof. Without loss of generality, let T ∈ T 0
k . Otherwise, consider the team zT

with an arbitrary z ∈ T . Notice that T may have a nontrivial stabiliser subgroup
allowing for duplicates when simply applying each z ∈ Fn2 to T . Despite of that, by
Proposition 6.9, we can enumerate the orbit of T without duplicates when applying
a representative system for Fn2 /(Fn2)T .

Considering Fn2 as a vector space over F2, the subspaces of Fn2 correspond to the
subgroups of (Fn2 ,+). In view of this, any basis for a complement of the stabiliser
subgroup (Fn2)T of T in Fn2 generates a representative system for Fn2 /(Fn2)T .

Select a basis B of (Fn2)T as in Lemma 6.21 and set

C := { ei | i ∈ {1, . . . , n} \ last(B) },

where ei denotes the i-th standard vector of Fn2 . By construction of C, we can arrange
the elements of B ∪ C such that the matrix containing these elements as columns has
triangular shape with 1-entries on its diagonal. Accordingly, B ∪ C is a basis for Fn2
and then C is a basis for a complement of (Fn2)T . We explain how to construct B. For
s ∈ Θ(Vars(ϕ)) ∼= Fn2 we have

s ∈ (Fn2)T ⇒ sT = T ⇒ s = s+~0 ∈ T.

As a result, we can compute (Fn2)T by checking sT = T for |T | = k elements in
Fn2 . In fact, it is enough to check sT ⊆ T as we have |sT | = |T |. Then, we derive
B by inserting each element of (Fn2)T \ {~0} preserving (6.1) into B. This shows
that Algorithm 6.1 outputs Fn2 T without duplicates. The delay is dominated by the
precomputation phase (lines 1 to 8), which is O(k3 · n). Observe that we sort the k
assignments of each team in ascending order before printing them.

Example 6.23. Let n = 3 and T = {000, 100, 010, 110}. Note that T satisfies the
reduced formula =(x1, x3)∧=(x2, x3) from Example 6.14 on page 78. We compute the
orbit F32T of T by Algorithm 6.1. We check sT = T for all nonzero assignments s in T :

100 · T = {100, 000, 110, 010} = {000, 100, 010, 110} = T,

010 · T = {010, 110, 000, 100} = {000, 100, 010, 110} = T,

110 · T = {110, 010, 100, 000} = {000, 100, 010, 110} = T.

6.3 Enumeration Complexity 81

Algorithm 6.1: Enumerating orbits

Input: A team T with ~0 ∈ T and k = |T |
Output: The orbit Fn

2 T of T where each outputted team is sorted
1 Blast ← ∅; /* Assume that Blast is sorted */

2 for ~0 6= s ∈ T do /* < k iterations */
3 if last(s) ∈ Blast then continue; /* O(n) */
4 failed ← false;
5 for t ∈ T do /* ≤ k iterations */
6 if s+ t /∈ T then failed ← true; /* O(k · n) */

7 if not failed then Blast ← Blast ∪ {last(s)}; /* O(n) */

8 Clast ← {1, . . . , n} \ Blast; /* O(n) */
9 for s ∈ span({ ei | i ∈ Clast }) do

10 Compute sT ; /* O(k · n) */
11 Sort sT ; /* O(k · n log k) */
12 output sT ;

On that account we obtain

Blast = {last(100), last(010), last(110)} = {1, 2},

Clast = {3},

span({ ei | i ∈ Clast }) = {000, 001}.

Then the orbit of T is given by

000 · T = {000, 100, 010, 110} and 001 · T = {001, 101, 011, 111}.

Finally, we link tk to t0k. The larger the quotient tk/t0k is, the more computation
costs are saved by generating orbits instead of computing Tk directly.

Theorem 6.24.
Let k ∈ N with tk 6= 0. Then we have that tk/t0k = 2

n/k.

Proof. Lemma 6.18 and tk 6= 0 imply t0k 6= 0. As a result, we can choose T ∈ T 0
k .

Now we claim
|Fn2 T ∩ T 0

k | =
k

|(Fn2)T |
. (6.2)

For any s ∈ Θ(Vars(ϕ)) ∼= Fn2 we have that

sT ∈ T 0
k ⇐⇒ ∃t ∈ T such that s+ t = ~0⇐⇒ ∃t ∈ T such that s = t⇐⇒ s ∈ T.

(6.3)

Consequently, we have Fn2 T ∩ T 0
k = { sT |∈ T } =: TT. Let r, s ∈ T be two elements in

T . Then both yield the same team rT = sT if and only if s ∈ r(Fn2)T . Accordingly, for
any fixed r ∈ T , we find exactly |r(Fn2)T | = |(Fn2)T | ways of expressing rT in the form
of sT , where s ∈ T by (6.3). While iterating over the k elements sT , s ∈ T , each

6.3 Enumeration Complexity 82

team in TT is counted |(Fn2)T | many times. As a result |TT | = k
|(Fn

2
)T |
, which in turn

proves (6.2).
By Lemma 6.18, there is a representative system R ⊆ T 0

k for the orbits of Fn2 	 Tk.
Equation (6.2) and the Orbit-Stabiliser Theorem (see Prop. 6.9) implicate

tk =
∑
T∈R

|Fn2 T | (by Proposition 6.7)

=
∑
T∈T 0

k

|Fn2 T |
|Fn2 T ∩ T 0

k |

=
∑
T∈T 0

k

|(Fn2)T |
k

· |Fn2 T | (by (6.2))

=
∑
T∈T 0

k

|(Fn2)T |
k

· 2n

|(Fn2)T |
(by Proposition 6.9)

=
2n

k

∑
T∈T 0

k

1

=
2n

k
t0k.

Example 6.25. Consider again the reduced formula ϕ := =(x1, x3)∧=(x2, x3) from
Example 6.14 on page 78. Then the orbits of Tk, for k ∈ N, and their corresponding
stabiliser subgroups are given in Figure 6.2. Teams located in T 0

k are coloured red.
Observe that the number of red teams in each orbit of Tk matches k divided by the
cardinality of the stabiliser subgroup:

t1

t01
=
8

1
=
23

1
,

t2

t02
=
16

4
=
23

2
,

t3

t03
=
8

3
=
23

3
,

t4

t04
=
2

1
=
23

4
.

We have seen how to construct all satisfying k-teams from a representative system.
Subsequently, we need to construct T 0

k . Concerning this, we need to introduce the
concept and two results of coherence first.

Definition 6.26 ([Kon13, Def. 3.1]).
Let φ be a team-based propositional formula. Then φ is k-coherent if and only if for
all teams T we have that

T |= φ ⇐⇒ ∀R ⊆ T with |R| = k we have R |= φ

Proposition 6.27 ([Kon13, Prop. 3.3]).
The atom =(·) is 2-coherent.

Proposition 6.28 ([Kon13, Prop. 3.4]).
If φ, ψ are k-coherent then φ∧ψ is k-coherent.

6.3 Enumeration Complexity 83

T1 T4

T2

T3

(F32)T = {{000}}

{000}
{100}

{010}

{110}
{001}

{101}

{011}

{111}

(F32)T = {{000}, {100}}

{000, 100}

{010, 110}

{001, 101}

{011, 111}

(F32)T = {{000}, {010}}

{000, 010}

{100, 110}

{001, 011}

{101, 111}

(F32)T = {{000}, {110}}

{000, 110}

{100, 010}

{001, 111}

{101, 011}

(F32)T = {{000}, {111}}

{000, 111}

{100, 001}

{010, 101}

{110, 001}

(F32)T = {{000}}

{000, 100, 010}

{100, 000, 110}

{010, 110, 000}

{110, 010, 100}

{001, 101, 011}

{101, 001, 111}

{011, 111, 001}

{111, 011, 101}

(F32)T = {{000, 100, 010, 110}}

{000, 100, 010, 110}

{001, 101, 011, 111}

Fig. 6.2: Orbits of Tk with ϕ := =(x1, x3)∧=(x2, x3).

6.3 Enumeration Complexity 84

Let T = {s1, . . . , sk} be a team with s1 < · · · < sk, k ≥ 2. Then write

T 1red := {s1, . . . , sk−1}, T
2
red := {s1, . . . , sk−2, sk}, max(T) := sk.

Later we will see that the following lemma is a powerful tool for constructing the
sets T 0

k . In the following proofs we will use the notation Tred for some team T as the
set of the teams located in T 0

k .

Lemma 6.29.
Let T be as above and k := |T | ≥ 3. Then the following are equivalent:
(1.) T ∈ T 0

k ,

(2.) T 1red, T
2
red ∈ T 0

k−1 and {~0, sk−1 + sk} ∈ T 0
2 .

Proof. After simplifying ϕ we may assume that ϕ is a conjunction of dependence
atoms. In particular, ϕ is then 2-coherent by Proposition 6.27 and 6.28.
(1.) ⇒⇒⇒ (2.): Start with T ∈ Tk. Note that any subset of cardinality 2 contained

in T 1red or T 2red is a subset of T . The 2-coherence of ϕ yields T ired |= ϕ for
i ∈ {1, 2}. Furthermore, ~0 = s1 ∈ T ired and |T ired| = k−1 are true. This implicates
T 1red, T

2
red ∈ T 0

k−1. Again, by the 2-coherence ofϕ, we deduce that {sk−1, sk} ∈ T2.
Applying the group action Fn2 	 T2 shows that {~0, sk−1 + sk} ∈ T 0

2 .

(2.) ⇒⇒⇒ (1.): First, note that ~0 ∈ T 1red ⊂ T and |T | = |T 1red| + 1 = k. Now wrongly
suppose T 6|= ϕ. Then, by 2-coherence, there exists a subset R ⊆ T with |R| = 2

and R 6|= ϕ. In particular, R 6⊆ T 1red, T
2
red is true implying R = {sk−1, sk}. This

contradicts sk−1R = {~0, sk−1 + sk} ∈ T 0
2 .

Now, Algorithm 6.2 computes the sets T 0
k by utilising Lemma 6.29. To ensure

fast list operations, we sort teams by lexicographic order as given in Definition 6.12.
When the assignments of each team are saved in ascending order—which is easy
to guarantee—the cost of comparing two k-teams is O(k · n). We do not store
duplicates, restricting the size of lists containing teams to

|P(Θ(Vars(ϕ)))| =

(
2n

k

)
≤ (2n)k = 2k·n. (6.4)

Managing those lists in tries [Knu98, chapter 6.3]. Since any team of cardinality k
may be described by kn bits, the standard list operations as searching, insertion and
deletion are realised in O(kn). Organise in a way such that all teams of cardinality
k differing in their maximal assignment are described by a list Dk[T

′], where T ′ is
the team containing the common k− 1 smaller assignments. It suffices storing the
maximal assignment of each T described in Dk[T

′] since T is recoverable by T ′ and
max(T). Accordingly, Dk becomes a collection of lists indexed by teams of cardinality
k− 1.

6.3 Enumeration Complexity 85

Algorithm 6.2: Iteratively constructing T 0
k

Input: k ∈ N, k ≥ 2
Dependencies: If k > 2: D2[{~0}], Dk−1 of the previous iteration
Result: T 0

k

1 T 0
k ← ∅ Dk ← new Map(Team, List(Assignment));

2 if k = 2 then
3 D2[{~0}]← ∅;
4 for ~0 6= s ∈ Θ(Vars(ϕ)) do /* ≤ 2n iterations */
5 if {~0, s} |= ϕ then /* O(|ϕ|) */
6 D2[{~0}]← D2[{~0}] ∪ {s}; /* O(n) */

7 T 0
2 ← T 0

2 ∪ {~0, s}; /* O(n) */

8 else
9 for (T, L) ∈ Dk−1 do

10 for r ∈ L do /* t0k−1 iterations */
11 T ′ ← T ∪ {r}, Dk[T

′]← ∅;
12 for s ∈ L with s > r do /* ≤ 2n iterations */
13 if r+ s ∈ D2[{~0}] then /* O(n) */
14 Dk[T

′]← Dk[T
′] ∪ {s}; /* O(k · n) */

15 T 0
k ← T 0

k ∪ {T ′ ∪ {s}}; /* O(k · n) */

With these considerations in mind, we will prove the correctness (Lemma 6.30
and Corollary 6.31) and performance (Corollary 6.32) of the algorithm now.

Lemma 6.30.
Let k ≥ 2. For T ∈ T 0

k we have that max(T) ∈ Dk[T
1
red]. Vice versa, if s ∈ Dk[T], then

it follows that T ∪ {s} ∈ T 0
k and s > max(T).

Proof. We prove the result via an induction over k.
IB: (k = 2), let T ∈ T 0

2 . It follows that T 1red = {~0}. As we have {~0,max(T)} |= ϕ,
in line 6 max(T) is inserted into D2[T

1
red]. Now let s ∈ Θ(Vars(ϕ)) and T ∈

P(Θ(Vars(ϕ))) such that s ∈ D2[T]. The only team occurring in D2 is T = {~0}.
We have s ∈ D2[T] if and only if T ∪ {s} = {~0, s} |= ϕ and s 6= ~0. The claim
follows.

IS: (k − 1 → k), let T = {s1, . . . , sk} ∈ T 0
k , s1 < · · · < sk. By induction hypothesis

and Lemma 6.29 we have that sk−1 ∈ Dk−1[T
1
red \ {sk−1}]. Accordingly, the

loop body of line 10 is invoked with T =̂ T 1red \ {sk−1}, r =̂ sk−1, T ′ =̂ T 1red.
Furthermore by Lemma 6.29 the loop body of line 12 is invoked with s =̂ sk,
passing the check in line 13. As a result, sk = max(T) is inserted into Dk[T

1
red].

Now let s ∈ Θ(Vars(ϕ)) and T ∈ P(Θ(Vars(ϕ))) such that s ∈ Dk[T]. Then by the
construction of Dk there exist a team T ′ and r ∈ Dk−1[T

′] with r < s, s ∈ Dk−1[T
′],

T ′∪{r} = T and {~0, r+s} ∈ T 0
2 . The induction hypothesis yields T ′∪{r}, T ′∪{s} ∈ T 0

k−1

and r > max(T ′), implying s > r = max(T). As s and r are the largest elements of

6.3 Enumeration Complexity 86

T ∪ {s}, it follows that (T ∪ {s})1red = T ′ ∪ {r} and (T ∪ {s})2red = T ′ ∪ {s}. By Lemma
6.29 we obtain T ∪ {s} ∈ T 0

k .

Corollary 6.31.
Algorithm 6.2 constructs the sets T 0

k correctly.

Proof. Every team T inserted into T 0
k by Algorithm 6.2 is of the form T ′ ∪ {s} with

s ∈ Dk[T
′]. Then by Lemma 6.30 it follows that s > max(T) and T ∈ T 0

k . Observe
that the decomposition of T is unique due to s > max(T). As a result, T is inserted
only once and duplicates cannot occur.

Now consider the case T ∈ T 0
k . Lemma 6.30 claims max(T) ∈ Dk[T

1
red]. After

adding max(T) into Dk[T
1
red], Algorithm 6.2 inserts T 1red ∪ max(T) = T into T 0

k .

Corollary 6.32.
Algorithm 6.2 requires t0k−1 · 2n ·O(k|ϕ|) time on input k ∈ N.

Proof. Note that for all ~0 6= s ∈ Θ(Vars(ϕ)) we have

{~0, s} |= =(P,Q) ⇐⇒ {s} |=

∨
x∈P

x

∨

∧
y∈Q

¬y

 .
As a consequence, {~0, s} |= ϕ can be accomplished in linear time by evaluating a
PL-formula of length O(|ϕ|) (where ∨ has the classical propositional disjunction
semantics). Accessing the list Dk[T] for a team T is in O(k · n) if Dk is implemented
as a trie. If Dk[T] is realised in the same way then its operations are in O(log 2n) =
O(n) ⊆ O(k · n).

As the decomposition for T ∈ T 0
k−1 into T ′ and s with s > max(T ′) is unique,

applying Lemma 6.30 yields that the loop body of line 10 is invoked t0k−1 times.
Taking into account that n ≤ |ϕ|, we obtain the claim by adding up all costs.

Example 6.33. We construct the sets T 0
k for the reduced formula ϕ := =(x1, x3) ∧

=(x2, x3) from Example 6.14. Trivially, we have that T 0
1 = {{000}}. When computing

T 0
2 , we have to identify all nonzero assignments that satisfy (x1 ∨ ¬x3)∧ (x2 ∨ ¬x3).

Obviously, the satisfying assignments are 100, 010, 110 and 111. We obtain D2[{000}] =

{100, 010, 110, 111}. Figure 6.3 illustrates the construction of the remaining lists and
the resulting sets T 0

k . We are able to verify that the orbits presented in Example 6.25
are exactly those of Tk, k ∈ N. Each orbit contains at least one element of T 0

k and every
team in T 0

k can be recovered in one orbit of Figure 6.2.

Although by Corollary 6.32 Algorithm 6.2 does not perform in FPT time on input
k ∈ N, we can ensure FPT delay when distributing its execution over the process of
outputting all satisfying teams of cardinality k − 1. For this reason we investigate
the costs of computing T 0

k divided by tk−1. With Corollary 6.32 and

k− 1 =
t0k−1 · 2n

tk−1
,

6.3 Enumeration Complexity 87

D := D2[{000}]

D3[{000, 100}]

D3[{000, 010}] D3[{000,
110}]

D4[{000, 100, 010}]

100 010 110 111

010 110 110

110

110 ∈ D 010 ∈ D 100 ∈ D

100 ∈ D

011 /∈ D 101 /∈ D 001 /∈ D

D2[{000}]

D3[{000, 100}]

D3[{000, 010}]

D4[{000, 100, 010}]

{000, 100} {000, 010} {000, 110} {000, 111}

{000, 100, 010} {000, 100, 110}

{000, 010, 110}

{000, 100, 010, 110}

T 0
2

T 0
3

T 0
4

T 0
k = ∅ ∀k > 4

Fig. 6.3: Construction of T 0
k with ϕ := =(x1, x3)∧=(x2, x3).

6.3 Enumeration Complexity 88

Algorithm 6.3: Enumerating satisfying teams in PDL−, ordered by cardinality
Input: A team-based propositional formula ϕ as in Equation (?), k ∈ N
Output: All teams T for ϕ with T |= ϕ, 1 ≤ |T | ≤ k

1 T 0
1 ← {{~0}};

2 for ` = 2, . . . , k+ 1 do
3 simultaneously
4 while T 0

`−1 6= ∅ do
5 Choose T ∈ T 0

`−1;
6 for T ′ ∈ Fn

2 T (Algorithm 6.1) do
7 output T ′;
8 T 0

`−1 ← T 0
`−1 \ {T

′};

9 simultaneously Compute T 0
` by Algorithm 6.2;

10 if T 0
` = ∅ then break;

which is a transformation of the equation in Theorem 6.24, we obtain

computationCosts(T 0
k)

tk−1
=
t0k−1 · 2n ·O(k|ϕ|)

tk−1
= (k− 1) ·O(k|ϕ|) = O(k2|ϕ|).

Consequently, the delay of Algorithm 6.3 is bounded by O(k3|ϕ|) (as the delay
of generating Fn2 T is O(k3n) by Theorem 6.22). Note that the cost of removing
elements in T 0

k , which is O(k · n) is contained in O(k3|ϕ|). Practically, we need to
interleave both computation strands by executing k iterations of the loop at line 12
in Algorithm 6.2 whenever a team is outputted.

Lemma 6.34.
Algorithm 6.3 enumerates all satisfying teams T for ϕ with 1 ≤ |T | ≤ k without
duplicates.

Proof. It is easy to see that all dependencies in Algorithm 6.2 and 6.3 are resolved in
time. By Proposition 6.7 and Lemma 6.18 every satisfying team is outputted at least
once. By removing every outputted element in line 8 no orbit is outputted twice,
preventing duplicates.

Finally, we can conclude.

Theorem 6.35.
P-ENUMTEAMSIZE(PDL−) ∈ DelayFPT with exponential space.

6.3.2 Limiting Memory Space
In this subsection, we examine the memory requirements of Algorithm 6.3. Through-
out the execution, D2[{~0}], Dk and T 0

k have to be saved. However, the size of those
lists increases exponentially when raising the size of the outputted teams or the
amount of variables occurring in the formula ϕ. By Equation (6.4) from page 85 Al-
gorithm 6.3 requires O(2n) when fixing the parameter κ. In fact, any algorithm that
saves a representative system for the orbits of Fn2 	 Tk cannot perform in polynomial

6.3 Enumeration Complexity 89

space by the following theorem. For this reason, we have to discard the group action
of flipping bits when limiting memory space to polynomial sizes.

Lemma 6.36.
Let k > 1 and n ∈ N. We set ϕ := =(x1, x2, . . . , xn). Then the amount of orbits of
Fn2 	 Tk is not polynomial in n.

Proof. Note that each orbit of Fn−12 on the set of all k-teams over n − 1 variables
maps to an orbit of Fn2 	 Tk by extending all assignments of a team so that xn is
assigned to the same value. As we have

f(n) ∈ nO(1) ⇔ f(n− 1) ∈ nO(1)

for any function f : N→ N, we may assume that ϕ is equivalent to 1 with |Vars(ϕ)| =
n.

By the Cauchy-Frobenius Lemma (see Proposition 6.10 on page 76) the amount of
orbits is at least

|{ T ∈ P(Θ(Vars(ϕ))) | |T | = k }|
2n

when neglecting all summands except the one for ~0 ∈ Fn2 . That is why the number
of orbits in Tk has to be larger than

(2n
k

)
/2n, which already increases exponentially

in n.

In the previous subsection, we indirectly limited the cardinality of outputted
teams by considering it as the parameter to show membership in DelayFPT. As
the following theorem shows, this measure is also necessary when demanding
polynomial space.

Theorem 6.37.
Let Φ be any fragment of team-based propositional logic s.t. and κ be a parametrisation
with κ /∈ nO(1) such that for any n ∈ N there exists a formula ϕn ∈ Φ in n variables
with at least 2κ(n) satisfying teams. Then it follows that P-ENUMTEAM(Φ) cannot be
enumerated with polynomial space.

Proof. Any enumeration algorithm enumerating Sol(ϕn) has to output 2κ(n) different
teams and the same amount of configurations have to be adopted. To distinguish
these, the configurations are encoded by at least κ(n) bits. However, considering
a RAM performing in polynomial space requires the contents of all registers to be
encoded by a polynomial amount of bits. For this reason, a RAM enumerating
Sol(ϕn) cannot perform in polynomial space.

Corollary 6.38.
The problem P-ENUMTEAM(PDL−) cannot be enumerated in polynomial space.

Proof. Use Lemma 6.36 in combination with Theorem 6.37.

6.3 Enumeration Complexity 90

Algorithm 6.4: Enumerating satisfying teams in polynomial space, ordered by
cardinality
Input: A team-based propositional formula ϕ as in Equation (?)
Output: All teams T for ϕ with T |= ϕ, 1 ≤ |T | ≤ κ(ϕ)

1 for k = 1, . . . , κ(ϕ) do
2 T ← {sfirst};
3 while true do
4 if |T | = k and T |= ϕ then output T ;
5 s← max(T);
6 if |T | < k and T |= ϕ and s ∈ hasNext then T ← T ∪ {next(s)};
7 else if s ∈ hasNext then T ← T \ {s} ∪ {next(s)};
8 else if |T| > 1 then
9 T ← T \ {s};

10 s← max(T);
11 T ← (T \ {s}) ∪ {next(s)};
12 else break;

We now present an algorithm enumerating P-ENUMTEAMSIZE(PDL−). Compared
to Algorithm 6.3, it saves memory space by recomputing the satisfying teams of
lower cardinality instead of storing them in a list. As a downside we have to allow
incremental delays.

Let us define a unary relation hasNext on Θ(Vars(ϕ)) by s ∈ hasNext if and only
if ∃t ∈ Θ(Vars(ϕ)) s.t. s < t. For any s ∈ hasNext let next(s) be the unambiguous
assignment such that we have s < next(s) but s < t < next(s) is not true for any
assignment t. Let sfirst denote the smallest element in Θ(Vars(ϕ)) and slast denote
the largest one. As already mentioned when defining the lexicographical order, we
assume that hasNext, next and sfirst may be determined in O(n) time.

Lemma 6.39.
Let T be a team with cardinality k. Then T |= ϕ can be checked in O(k2|ϕ|) time.

Proof. Because of the 2-coherence of ϕ it is enough to check all 2-subteams of T . By
the proof of Corollary 6.32 checking a 2-team requires O(|ϕ|) time. As T has O(k2)
2-subteams, the claim follows.

Let k ∈ N and write Mk for the set of teams T that is assigned to during the k-th
iteration of the outer loop of Algorithm 6.4.

Lemma 6.40.
Let S ∈ Mk be a nonempty set such that s := max(S) ∈ hasNext. Then it follows
that (S \ {s}) ∪ {next(s)} ∈ Mk. In particular, we have (S \ {s}) ∪ {t} ∈ Mk for all
t ∈ Θ(Vars(ϕ)) with t ≥ s.

Proof. We prove the result by an induction over k− |S|.
IB: (|S| = k), as we have |S| ≮ k and s ∈ hasNext, line 7 is executed and T is

assigned to (S \ {s}) ∪ {next(s)}. X

6.3 Enumeration Complexity 91

IS: (|S|+ 1→ |S|, 1 ≤ |S| < k), if S 6|= ϕ, line 7 is executed and the claim follows. If
S |= ϕ, line 6 follows and then S ∪ {next(s)} ∈ Mk. By induction hypothesis,
S ∪ {slast} ∈ Mk. When executing the body of the while loop with T assigned
to S∪ {slast}, the block beginning at line 9 is executed, assigning T to (S \ {s})∪
{next(s)}.

Lemma 6.41.
Let k ∈ N and S be a team with S |= ϕ and |S| ≤ k. Then it follows that S ∈ Mk.

Proof. We prove the result by an induction over |S|.
IB: (|S| = 1), clearly {sfirst} ∈ Mk. By Lemma 6.40 every 1-team is contained in Mk.

IS: (|S|− 1→ |S|, 1 < |S| ≤ k), start with s = max(S). Since ϕ is downward closed,
we have that S \ {s} |= ϕ. The induction hypothesis then yields S \ {s} ∈ Mk.
Consequently, the while loop is executed with T assigned to S\ {s}. Then, line 7
is executed, assigning T to a team (S \ {s}) ∪ {t}, where t is an appropriate
assignment with t ≤ s. Finally, Lemma 6.40 yields S ∈ Mk.

Lemma 6.42.
There exists a polynomial p and a recursive function f such that the i-th delay of
Algorithm 6.4 is bounded by f(κ(ϕ)) · i2p(|ϕ|).

Proof. Note that the delay is constant when outputting the 2n singletons that satisfy
ϕ trivially. As a result, we assume that i ≥ 2n. It is easy to verify that any team T is
assigned to is lexicographically larger than the previous value for T . For this reason
the number of iterations of the inner while loop is bounded by |Mk|.

As T is not assigned to teams with greater cardinality when the current value for
T does not satisfy ϕ, it follows that S \ {max(S)} |= ϕ for any S ∈ Mk with |S| > 1.
Consequently, it follows

|Mk| ≤ 2n
k−1∑
l=0

tl ≤ i

k−1∑
l=0

tl.

Let S be the (i + 1)-th outputted element and set k = |S|. As S ∈ Mk and
|S| > 1, by outputting teams of lower cardinality first we guarantee that i ≥

∑k−1
l=1 tl.

Furthermore, S is outputted in the k-th iteration of the outer loop. Consequently, the
inner while loop has been executed at most k · i2 times before outputting S. Since
k is bounded by a κ(ϕ), by Lemma 6.39 it follows that the body of the inner while
loop can be executed in FPT time. As one loop iteration adds a faktor of κ(ϕ)2 · |ϕ|)
(see Lemma 6.39), we conclude that the i-th delay is bounded by κ(ϕ)3 · i2 · p(|ϕ|),
where p is an appropriate polynomial.

6.3 Enumeration Complexity 92

Now let i be the total amount of outputted teams. Then the number of iterations
of the inner while loop is bounded by

κ(ϕ)∑
k=1

|Mk| ≤ κ(ϕ) · |Mκ(ϕ)| ≤ κ(ϕ) · 2n
κ(ϕ)∑
`=0

t` ≤ κ(ϕ) · i2.

Accordingly, we have an IncFPT-delay.

Theorem 6.43.
Algorithm 6.4 is an IncFPT-algorithm for P-ENUMTEAMSIZE(PDL−) which performs
in polynomial space.

Proof. The algorithm saves only one team of cardinality ≤ κ(ϕ) and one assignment
for which (κ(ϕ) + 1) registers are required. By Lemma 6.41 it is clear that the
algorithm outputs the satisfying teams ordered by cardinality. Lemma 6.42 states
that the delays conform to the definition of IncFPT.

6.3 Enumeration Complexity 93

Page left intentionally blank to have matching page numbers with the printed version.

7Conclusion

“ ”Nihil est sine ratione.
There is nothing without a reason.

— Gottfried Wilhelm Leibniz

In this thesis, we made the first step of developing a computational complexity
theory for parametrised enumeration problems. It has been shown that the notion
of the parametrised enumeration complexity class DelayFPT is useful to classify
several problems with similar enumeration procedures. Similarly as in the classical
setting, we show that IncFPT relates to DelayFPT as IncP relates to DelayP. We
further underlined this observation later in Chapter 5 while studying trade-offs
between delay and space. In Section 3.2 we proved the first connections to clas-
sical enumeration complexity by showing that a collapse of OutputFPT to IncFPT
implies collapsing OutputP to CapIncP and vice versa. While proving this result,
we showed equivalences of collapses of parametrised function classes developed in
this paper to collapses of classical function classes. In particular, we proved that
TF(para-NP) = F(FPT) if and only if TF(NP) = FP. The function complexity class
TF(NP), which has TF(para-NP) as its parametrised counterpart, contains signifi-
cant cryptography-related problems such as factoring. Furthermore, we studied a
parametrised incremental FPT time enumeration hierarchy on the level of exponent
slices (Def. 3.3) and observed that CapIncFPT1 = DelayFPT. Also, an interleaving
of the two hierarchies, IncFPTa and CapIncFPTa, has been shown. These results
underline that parametrised enumeration complexity is an area worthwhile to study
as there are deep connections to the classical field.

Then, Chapter 4 translated the techniques of kernelisation and self-reducibility
to our new framework. In particular, we defined an enum-kernelisation as a pre-
processing step suitable for efficient enumeration and even characterised with it
the class DelayFPT. Subsequently, we exemplified this technique at the problem
ENUM-VERTEX-COVER. Furthermore, we observed that every problem in DelayFPT
can be enumerated with an FPT preprocessing time followed by only (classical)
polynomial delay proving how effective a single FPT precomputation phase is.
Subsequently, we used self-reducibility for satisfiability related problems to obtain
efficient parametrised enumeration algorithms for exact strong backdoor sets and
maximum weighted satisfiability. While it is clear that obtaining such an efficient
enumeration requires the corresponding decision problem to be in FPT, we proved
that for ENUM-MAXONES-SAT this is not enough. More precisely, we showed that
ENUM-MAXONES-SAT obeys a dichotomy which, surprisingly, is different from its
decision variant MAXONES-SAT.

95

In the second part of this thesis, we extended our framework to comply with
mathematical orders on the solution space, and demonstrate the meaningfulness of
our framework for a large variety of problems: cluster editing, chordal completion,
closest-string, weak and strong backdoors, minimum and maximum satisfiability.
An important point of our research is proposing a very general strategy for efficient
enumeration. This is particularly rather rare in the literature where usually algo-
rithms are devised individually for specific problems. Most notably, our scheme
not only yields DelayFPT algorithms for all graph modification problems that are
characterised by a finite set of forbidden patterns, but it also provides results for gen-
eral modification problems. Here we validated our definitions by diversely encoded
problems: problems over strings, formulas, and constraints.

Significant to note, all results of problems with respect to the order size require
exponential space due to the inherent use of the priority queues to achieve ordered
enumeration. An interesting question is whether there exists a method which
requires less space but uses a comparable delay between the output of solutions and
still obeys the underlying order on solutions.

The third part considered enumerating satisfying teams for a fragment of proposi-
tional dependence logic. It turned out that this is a difficult task when sorting the
output by its cardinality. We achieved that the problem is in DelayFPT when the
parameter is chosen to be the team size. If one focusses the space requirements
of this algorithmic task, we established that any algorithm saving a representative
system for the orbits of Fn2 	 Tk cannot perform in polynomial space. As another
negative remark, we want to point out that allowing for split junction (and accord-
ingly talking about full PDL) will not yield any DelayFPT or DelayP algorithms in
our setting unless P = NP.

Lastly, we would like to mention that the algorithms enumerating orbits and the
satisfying teams, respectively, can be modified such that satisfying teams for formulas
of the form ϕ1 6ϕ2 6 · · · 6ϕr with r ∈ N, ϕi ∈ PDL− can be enumerated, where
6 is the classical disjunction. The idea is to merge the outputs Sol(ϕi), i ∈ {1, . . . , r},
which is possible in polynomial delay if the output for each ϕi is pre-sorted according
to a total order.

As a future aspect for further research, it remains open to identify the (para-
metrised) enumeration complexity of Poor Man’s Propositional Dependence Logic
when other orders such as the lexicographical order, are considered. Besides, the
conjunction free fragment of PDL permitting the split junction operator remained
unclassified.

Finally, all classified problems with the corresponding pointer to the result in this
thesis are depicted in Table 7.1.

96

Problem Class Space Reference

ENUM-KROM DelayP pol. Ex. 2.11
ENUM-VERTEX-COVER DelayFPT exp. Cor. 4.4
EXACT-STRONG-BACKDOORSET[HORN] DelayFPT exp. Thm. 4.13
ENUM-MLEX

P DelayFPT♥ pol. Thm. 5.9
ENUM-TRIANGULATIONLEX DelayFPT pol. Cor. 5.11
ENUM-MSIZE

P DelayFPT♣ exp. Thm. 5.13
ENUM-TRIANGULATIONSIZE DelayFPT exp. Cor. 5.15
ENUM-CLUSTER-EDITINGSIZE DelayFPT exp. Cor. 5.17
ENUM-TRIANGLE-DELETIONSIZE DelayFPT exp. Cor. 5.17
ENUM-CLOSEST-STRINGLEX DelayFPT pol. Thm. 5.27
ENUM-CLOSEST-STRINGSIZE DelayFPT exp. Thm. 5.27
ENUM-WEAK-C-BACKDOORSLEX DelayFPT† pol. Thm. 5.31
ENUM-WEAK-C-BACKDOORSSIZE DelayFPT† exp. Thm. 5.31
ENUM-STRONG-C-BACKDOORSLEX DelayFPT† pol. Thm. 5.33
ENUM-STRONG-C-BACKDOORSSIZE DelayFPT† pol. Thm. 5.33
MIN-MINONES-SATSIZE(Γ) FPT-enum. exp. Thm. 5.35
ENUM-MINONES-SAT(Γ)SIZE DelayFPT exp. Thm. 5.35
P-ENUMTEAMSIZE(PDL−) DelayFPT exp. Thm. 6.35
P-ENUMTEAMSIZE(PDL−) IncFPT pol. Thm. 6.43

Tab. 7.1: Overview of considered problems in chronological order.
♥: if MP ∈ FPT.
♣: if NMP ∈ FPT.
†: for clause-defined base class C.

97

Page left intentionally blank to have matching page numbers with the printed version.

8Outlook

“ ”We can only see a short distance ahead, but we
can see plenty there that needs to be done.

— Alan Turing

Very recently, Creignou et al. proposed new enumeration complexity classes for hard
problems [Cre+17a]. Intuitively, these classes embody the idea of the polynomial
hierarchy on the enumeration complexity level. Formally, the authors present oracle
classes of the form DelayPC by RAMs which have access to oracles from the class
C but still obey an overall polynomial delay. Additionally, a subtle but meaningful
restriction is made by introducing the class DelayPC

p, that is, the input size of the
oracle calls have to be bounded by a polynomial in the original input size. Besides,
the authors discuss relations between variants of incremental time and polynomial
delay. It would be engaging to study this approach in the framework of parametrised
enumeration problems. Are there problems which can be pinned to a class as, for
instance, “DelayW[1]”? Or what insights might bring studying classes of the form
DelayFPTW[1]? Furthermore, Creignou et al. provide tools for reductions in this
context. Such a technique for translating a parametrised enumeration problem
into another is still missing and would improve understanding the interplay of
parametrised enumeration problems significantly.

As we explained in Chapter 3, currently, the understanding of the class IncFPT
is still in its infancy. In Chapter 6, we made some fascinating results on trading
space with time: We avoided exponential space (and reached polynomial space)
while paying with IncFPT instead of DelayFPT as before. At the current stage, it
is not clear if this is a general phenomenon, that is, every problem in DelayFPT
with exponential space can be solved in IncFPT with polynomial space. One puzzle
piece might be constructing solution search trees on the fly (see Theorems 6.35 and
6.43), though we cannot say if this suffices alone. It is worth to mention that the
analogue of this question on the classical enumeration side, that is, understanding
the relation between IncP and DelayP is as well not completely settled. Yet, the
results from Section 3.2 established valuable connections between the classical and
the parametrised world which might prove themselves utilisable in this context.

From the opposite side, comparing IncFPT to OutputFPT, the following sensible
first step might focus their relation more sharply. Are there natural problems
in OutputFPT which do not allow for IncFPT enumeration? For this question,
there might exist some candidates in the area of dependence logic which has been
investigated in Chapter 6. In particular, some problems of this logic are of high
complexity, and, accordingly, are good contenders for this complexity class. For

99

instance, validity in propositional dependence logic (PD) might be such a problem
worth to study. Virtema proved the problem to be complete for nondeterministic
exponential time [Vir17]. It is well-known that validity (or the tautology problem)
in plain propositional logic is coNP-complete [Coo71; Lev73]. However, under team
semantics, the complexity of this problem severely increases as one requires all teams
(of which generally 22

n
many exist for n variables) to satisfy the given formula.

Concluding, further investigating the class incremental FPT time, IncFPT, might
even yield transferable results to incremental polynomial time, IncP, as we have
seen how the classical and parametrised world relate in Chapter 3. Also, it would
be engaging to study connections from parametrised enumeration to proof theory
via the work of Goldberg and Papadimitriou [GP17]. It is important to search for
intermediate natural problems between F(FPT) and TF(para-NP) which are relevant
in some area beyond the trivial parametrisation κone(x) = 1.

Last to mention, in 2017, Grohe and Schweikhardt [GS17] consider FO-query
evaluation with cardinality conditions. In their investigations, they mention the com-
plexity class FPL, that is defined as fixed-parameter linear encompassing algorithms
with a runtime of f(κ(x)) · |x|. For instance, model-checking and counting for FO is in
FPL for classes of bounded tree-width [ALS91; Cou90], of bounded degree [Fri04;
See96] or bounded expansion [DKT10; KS13], and also for planar graphs [FG01].
We want to close with the question whether some of these problems might allow for
DelayFPL algorithms?

100

Bibliography

[Abr+13] S. Abramsky, J. Kontinen, J. A. Väänänen, and H. Vollmer. “Dependence Logic:
Theory and Applications (Dagstuhl Seminar 13071)”. In: Dagstuhl Reports 3.2
(2013), pp. 45–54. DOI: 10.4230/DagRep.3.2.45 (cit. on pp. 10, 73).

[Abr+16] S. Abramsky, J. Kontinen, J. Väänänen, and H. Vollmer, eds. Dependence Logic,
Theory and Applications. Springer, 2016. DOI: 10.1007/978-3-319-31803-5
(cit. on p. 73).

[AF96] D. Avis and K. Fukuda. “Reverse Search for Enumeration”. In: Discrete Applied
Mathematics 65.1-3 (1996), pp. 21–46. DOI: 10.1016/0166-218X(95)00026-N
(cit. on pp. 6, 62).

[AFL04] A. Andersson, R. Fagerberg, and K. S. Larsen. “Balanced Binary Search Trees”. In:
Handbook of Data Structures and Applications. Ed. by D. P. Mehta and S. Sahni.
Chapman and Hall/CRC, 2004. DOI: 10.1201/9781420035179.ch10 (cit. on
p. 22).

[AFN04] J. Alber, H. Fernau, and R. Niedermeier. “Parameterized complexity: exponential
speed-up for planar graph problems”. In: J. Algorithms 52.1 (2004), pp. 26–56.
DOI: 10.1016/j.jalgor.2004.03.005 (cit. on p. 4).

[ALS91] S. Arnborg, J. Lagergren, and D. Seese. “Easy Problems for Tree-Decomposable
Graphs”. In: J. Algorithms 12.2 (1991), pp. 308–340. DOI: 10.1016/0196-
6774(91)90006-K (cit. on p. 100).

[Ang+16] E. Angel, E. Bampis, B. Escoffier, and M. Lampis. “Parameterized Power Vertex
Cover”. In: Graph-Theoretic Concepts in Computer Science - 42nd International
Workshop, WG 2016, Istanbul, Turkey, June 22-24, 2016, Revised Selected Papers.
Ed. by P. Heggernes. Vol. 9941. Lecture Notes in Computer Science. 2016,
pp. 97–108. DOI: 10.1007/978-3-662-53536-3_9 (cit. on p. 39).

[AYZ95] N. Alon, R. Yuster, and U. Zwick. “Color-coding”. In: J. ACM 42.4 (July 1995),
pp. 844–856. DOI: 10.1145/210332.210337 (cit. on p. 4).

[Bea65] E. M. L. Beale. “Survey of Integer Programming”. In: Journal of the Operational
Research Society 16.2 (June 1965), pp. 219–228. DOI: 10.1057/jors.1965.31
(cit. on p. 2).

[BG82] A. Blass and Y. Gurevich. “On the Unique Satisfiability Problem”. In: Information
and Control 55.1-3 (1982), pp. 80–88. DOI: 10.1016/S0019-9958(82)90439-9
(cit. on p. 34).

[BG93] J. F. Buss and J. Goldsmith. “Nondeterminism Within P”. In: SIAM J. Comput.
22.3 (1993), pp. 560–572. DOI: 10.1137/0222038 (cit. on pp. 6, 39).

101

https://doi.org/10.4230/DagRep.3.2.45
https://doi.org/10.1007/978-3-319-31803-5
https://doi.org/10.1016/0166-218X(95)00026-N
https://doi.org/10.1201/9781420035179.ch10
https://doi.org/10.1016/j.jalgor.2004.03.005
https://doi.org/10.1016/0196-6774(91)90006-K
https://doi.org/10.1016/0196-6774(91)90006-K
https://doi.org/10.1007/978-3-662-53536-3_9
https://doi.org/10.1145/210332.210337
https://doi.org/10.1057/jors.1965.31
https://doi.org/10.1016/S0019-9958(82)90439-9
https://doi.org/10.1137/0222038

[BG94] M. Bellare and S. Goldwasser. “The Complexity of Decision Versus Search”. In:
SIAM J. Comput. 23.1 (1994), pp. 97–119. DOI: 10.1137/S0097539792228289
(cit. on p. 29).

[BHJ16] T. Balyo, M. J. H. Heule, and M. J. Järvisalo, eds. Proceedings of SAT Competition
2016: Solver and Benchmark Descriptions. University of Helsinki, Department of
Computer Science. Department of Computer Science Series of Publications B,
2016 (cit. on p. 7).

[BHJ17] T. Balyo, M. J. H. Heule, and M. Järvisalo. “SAT Competition 2016: Recent
Developments”. In: Proceedings of the Thirty-First AAAI Conference on Artificial
Intelligence, February 4-9, 2017, San Francisco, California, USA. Ed. by S. P. Singh
and S. Markovitch. AAAI Press, 2017, pp. 5061–5063 (cit. on p. 7).

[BHL14] H. L. Bodlaender, P. Heggernes, and D. Lokshtanov. “Graph Modification Prob-
lems (Dagstuhl Seminar 14071)”. In: Dagstuhl Reports 4.2 (2014), pp. 38–59.
DOI: 10.4230/DagRep.4.2.38 (cit. on p. 13).

[BK08] H. L. Bodlaender and A. M. C. A. Koster. “Combinatorial Optimization on Graphs
of Bounded Treewidth”. In: Comput. J. 51.3 (2008), pp. 255–269. DOI: 10.1093/
comjnl/bxm037 (cit. on p. 4).

[BLS88] A. Brandtstädt, V. B. Le, and J. P. Spinrad. Graph Classes: A Survey. Monographs
on Discrete Applied Mathematics. Philadelphia: SIAM, 1988. DOI: 10.1137/1.
9780898719796 (cit. on p. 60).

[Bra15] J. Bradfield. “On the structure of events in Boolean games”. In: Logics for
Dependence and Independence. Dagstuhl Reports, 2015 (cit. on p. 10).

[Bus+92] S. R. Buss, S. A. Cook, A. Gupta, and V. Ramachandran. “An Optimal Parallel
Algorithm for Formula Evaluation”. In: SIAM J. Comput. 21.4 (1992), pp. 755–
780. DOI: 10.1137/0221046 (cit. on p. 9).

[Cai96] L. Cai. “Fixed-parameter tractability of graph modification problems for hered-
itary properties”. In: Information Processing Letters 58.4 (1996), pp. 171–176.
DOI: https://doi.org/10.1016/0020-0190(96)00050-6 (cit. on pp. 57–59,
65).

[CB16] N. Creignou and D. Le Berre, eds. Theory and Applications of Satisfiability Testing
- SAT 2016 - 19th International Conference, Bordeaux, France, July 5-8, 2016,
Proceedings. Vol. 9710. Lecture Notes in Computer Science. Springer, 2016. DOI:
10.1007/978-3-319-40970-2.

[CF12] A. Del Centina and A. Fiocca. “The correspondence between Sophie Germain
and Carl Friedrich Gauss”. In: Archive for History of Exact Sciences 66.6 (2012),
pp. 585–700. DOI: 10.1007/s00407-012-0105-x (cit. on p. 1).

[CH97] N. Creignou and J.-J. Hébrard. “On generating all solutions of generalized
satisfiability problems”. In: Theoretical Informatics and Applications 31.6 (1997),
pp. 499–511 (cit. on pp. 7, 10, 42, 45, 53, 56, 61).

[Chr76] N. Christofides. Worst-case analysis of a new heuristic for the travelling salesman
problem. Report 388. Graduate School of Industrial Administration, Carnegie
Mellon University (CMU), 1976 (cit. on p. 3).

Bibliography 102

https://doi.org/10.1137/S0097539792228289
https://doi.org/10.4230/DagRep.4.2.38
https://doi.org/10.1093/comjnl/bxm037
https://doi.org/10.1093/comjnl/bxm037
https://doi.org/10.1137/1.9780898719796
https://doi.org/10.1137/1.9780898719796
https://doi.org/10.1137/0221046
https://doi.org/https://doi.org/10.1016/0020-0190(96)00050-6
https://doi.org/10.1007/978-3-319-40970-2
https://doi.org/10.1007/s00407-012-0105-x

[CKS01] N. Creignou, S. Khanna, and M. Sudan. Complexity Classifications of Boolean
Constraint Satisfaction Problems. Monographs on Discrete Applied Mathemat-
ics. SIAM Discrete Mathematics and Applications, 2001. DOI: 10 . 1137 / 1 .
9780898718546 (cit. on p. 51).

[Cla] Clay Mathematics Institute. Millenium Prize Problems. http://www.claymath.
org/millennium-problems, last checked 20.03.2018. (cit. on p. 2).

[Coo71] S. A. Cook. “The Complexity of Theorem-Proving Procedures”. In: Proceedings of
the 3rd Annual ACM Symposium on Theory of Computing, May 3-5, 1971, Shaker
Heights, Ohio, USA. Ed. by Michael A. Harrison, Ranan B. Banerji, and Jeffrey D.
Ullman. ACM, 1971, pp. 151–158. DOI: 10.1145/800157.805047 (cit. on pp. 7,
100).

[COS11] N. Creignou, F. Olive, and J. Schmidt. “Enumerating All Solutions of a Boolean
CSP by Non-decreasing Weight”. In: Theory and Applications of Satisfiability
Testing - SAT 2011 - 14th International Conference, SAT 2011, Ann Arbor, MI, USA,
June 19-22, 2011. Proceedings. Ed. by K. A. Sakallah and L. Simon. Vol. 6695.
Lecture Notes in Computer Science. Springer, 2011, pp. 120–133. DOI: 10.1007/
978-3-642-21581-0_11 (cit. on pp. 6, 17).

[Cou90] B. Courcelle. “The Monadic Second-Order Logic of Graphs. I. Recognizable Sets
of Finite Graphs”. In: Inf. Comput. 85.1 (1990), pp. 12–75. DOI: 10.1016/0890-
5401(90)90043-H (cit. on p. 100).

[Cre+13] N. Creignou, A. Meier, J.-S. Müller, J. Schmidt, and H. Vollmer. “Paradigms for
Parameterized Enumeration”. In: Mathematical Foundations of Computer Science
2013 - 38th International Symposium, MFCS 2013, Klosterneuburg, Austria,
August 26-30, 2013. Proceedings. Ed. by K. Chatterjee and J. Sgall. Vol. 8087.
Lecture Notes in Computer Science. Springer, 2013, pp. 290–301. DOI: 10.1007/
978-3-642-40313-2_27 (cit. on pp. 9, 14, 20).

[Cre+15] N. Creignou, R. Ktari, A. Meier, J.-S. Müller, F. Olive, and H. Vollmer. “Param-
eterized Enumeration for Modification Problems”. In: Language and Automata
Theory and Applications - 9th International Conference, LATA 2015, Nice, France,
March 2-6, 2015, Proceedings. Ed. by A.-H. Dediu, E. Formenti, C. Martın-Vide,
and B. Truthe. Vol. 8977. Lecture Notes in Computer Science. Springer, 2015,
pp. 524–536. DOI: 10.1007/978-3-319-15579-1_41 (cit. on pp. 9, 14, 27).

[Cre+17a] N. Creignou, M. Kröll, R. Pichler, S. Skritek, and H. Vollmer. “On the Complexity
of Hard Enumeration Problems”. In: Language and Automata Theory and Appli-
cations - 11th International Conference, LATA 2017, Umeå, Sweden, March 6-9,
2017, Proceedings. Ed. by F. Drewes, C. Martın-Vide, and B. Truthe. Vol. 10168.
Lecture Notes in Computer Science. 2017, pp. 183–195. DOI: 10.1007/978-3-
319-53733-7_13 (cit. on pp. 15, 24, 99).

[Cre+17b] N. Creignou, A. Meier, J.-S. Müller, J. Schmidt, and H. Vollmer. “Paradigms for
Parameterized Enumeration”. In: Theory Comput. Syst. 60.4 (2017), pp. 737–
758. DOI: 10.1007/s00224-016-9702-4 (cit. on pp. 9, 14).

[Cre+19] Nadia Creignou, Raıda Ktari, Arne Meier, Julian-Steffen Müller, Frédéric Olive,
and Heribert Vollmer. “Parameterised Enumeration for Modification Problems”.
In: Algorithms 12.9 (2019), p. 189. DOI: 10.3390/a12090189 (cit. on pp. 9, 14).

[CS17] F. Capelli and Y. Strozecki. “On The Complexity of Enumeration”. In: CoRR
1703.01928v2 (2017) (cit. on pp. 19, 24–27, 30, 33).

Bibliography 103

https://doi.org/10.1137/1.9780898718546
https://doi.org/10.1137/1.9780898718546
http://www.claymath.org/millennium-problems
http://www.claymath.org/millennium-problems
https://doi.org/10.1145/800157.805047
https://doi.org/10.1007/978-3-642-21581-0_11
https://doi.org/10.1007/978-3-642-21581-0_11
https://doi.org/10.1016/0890-5401(90)90043-H
https://doi.org/10.1016/0890-5401(90)90043-H
https://doi.org/10.1007/978-3-642-40313-2_27
https://doi.org/10.1007/978-3-642-40313-2_27
https://doi.org/10.1007/978-3-319-15579-1_41
https://doi.org/10.1007/978-3-319-53733-7_13
https://doi.org/10.1007/978-3-319-53733-7_13
https://doi.org/10.1007/s00224-016-9702-4
https://doi.org/10.3390/a12090189

[CV08] N. Creignou and H. Vollmer. “Boolean Constraint Satisfaction Problems: When
Does Post’s Lattice Help?” In: Complexity of Constraints - An Overview of Current
Research Themes [Result of a Dagstuhl Seminar]. Ed. by N. Creignou, P. G. Kolaitis,
and H. Vollmer. Vol. 5250. Lecture Notes in Computer Science. Springer, 2008,
pp. 3–37. DOI: 10.1007/978-3-540-92800-3_2 (cit. on p. 51).

[CV15] N. Creignou and H. Vollmer. “Parameterized Complexity of Weighted Satisfia-
bility Problems: Decision, Enumeration, Counting”. In: Fundam. Inform. 136.4
(2015), pp. 297–316. DOI: 10.3233/FI-2015-1159 (cit. on p. 71).

[CW16a] G. Charwat and S. Woltran. BDD-based Dynamic Programming on Tree Decompo-
sitions. Report DBAI-TR-2016-95. DBAI, Fakultät für Informatik an der Technis-
chen Universität Wien, 2016 (cit. on p. 4).

[CW16b] G. Charwat and S. Woltran. “Dynamic Programming-based QBF Solving”. In:
Proceedings of the 4th International Workshop on Quantified Boolean Formulas
(QBF 2016) co-located with 19th International Conference on Theory and Applica-
tions of Satisfiability Testing (SAT 2016), Bordeaux, France, July 4, 2016. Ed. by
F. Lonsing and M. Seidl. Vol. 1719. CEUR Workshop Proceedings. CEUR-WS.org,
2016, pp. 27–40 (cit. on p. 4).

[Cyg+15] M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M.
Pilipczuk, and S. Saurabh. Parameterized Algorithms. Springer, 2015. DOI: 10.
1007/978-3-319-21275-3 (cit. on pp. 4, 37).

[Dam06] P. Damaschke. “Parameterized enumeration, transversals, and imperfect phy-
logeny reconstruction”. In: Theor. Comput. Sci. 351.3 (2006), pp. 337–350. DOI:
10.1016/j.tcs.2005.10.004 (cit. on pp. 9, 10, 21, 38).

[DF13] Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized
Complexity. Texts in Computer Science. London, UK, 2013. DOI: 10.1007/978-
1-4471-5559-1 (cit. on pp. 3, 6, 15).

[DF99] Rodney G. Downey and Michael R. Fellows. Parameterized Complexity. New York,
NY, USA, 1999. DOI: 10.1007/978-1-4612-0515-9 (cit. on pp. 3, 4, 112).

[DHK05] A. Durand, M. Hermann, and P. G. Kolaitis. “Subtractive reductions and complete
problems for counting complexity classes”. In: Theor. Comput. Sci. 340.3 (2005),
pp. 496–513. DOI: 10.1016/j.tcs.2005.03.012 (cit. on p. 24).

[DKT10] Z. Dvorak, D. Kral, and R. Thomas. “Deciding First-Order Properties for Sparse
Graphs”. In: Proceedings of the 2010 IEEE 51st Annual Symposium on Foundations
of Computer Science. FOCS ’10. Washington, DC, USA: IEEE Computer Society,
2010, pp. 133–142. DOI: 10.1109/FOCS.2010.20 (cit. on p. 100).

[DKV16] A. Durand, J. Kontinen, and H. Vollmer. “Expressivity and complexity of depen-
dence logic”. In: Dependence Logic: Theory and Applications. Birkhäuser, 2016,
pp. 5–32 (cit. on p. 75).

[DOS12] W. Dvořák, S. Ordyniak, and S. Szeider. “Augmenting tractable fragments of
abstract argumentation”. In: 186 (2012), pp. 157–173. DOI: 10.1016/j.artint.
2012.03.002 (cit. on p. 42).

Bibliography 104

https://doi.org/10.1007/978-3-540-92800-3_2
https://doi.org/10.3233/FI-2015-1159
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1016/j.tcs.2005.10.004
https://doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.1007/978-1-4612-0515-9
https://doi.org/10.1016/j.tcs.2005.03.012
https://doi.org/10.1109/FOCS.2010.20
https://doi.org/10.1016/j.artint.2012.03.002
https://doi.org/10.1016/j.artint.2012.03.002

[DS11] A. Durand and Y. Strozecki. “Enumeration Complexity of Logical Query Problems
with Second-order Variables”. In: Computer Science Logic, 25th International
Workshop / 20th Annual Conference of the EACSL, CSL 2011, September 12-15,
2011, Bergen, Norway, Proceedings. Ed. by M. Bezem. Vol. 12. LIPIcs. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2011, pp. 189–202. DOI: 10.4230/
LIPIcs.CSL.2011.189 (cit. on p. 7).

[EL12] J. Ebbing and P. Lohmann. “Complexity of Model Checking for Modal Depen-
dence Logic”. In: SOFSEM 2012: Theory and Practice of Computer Science -
38th Conference on Current Trends in Theory and Practice of Computer Science,
Špindlerův Mlýn, Czech Republic, January 21-27, 2012. Proceedings. Ed. by M.
Bieliková, G. Friedrich, G. Gottlob, S. Katzenbeisser, and G. Turán. Vol. 7147.
Lecture Notes in Computer Science. Springer, 2012, pp. 226–237. DOI: 10.1007/
978-3-642-27660-6_19 (cit. on p. 73).

[Elf+16] J. Elffers, J. Johannsen, M. Lauria, T. Magnard, J. Nordström, and M. Vinyals.
“Trade-offs Between Time and Memory in a Tighter Model of CDCL SAT Solvers”.
In: Theory and Applications of Satisfiability Testing - SAT 2016 - 19th International
Conference, Bordeaux, France, July 5-8, 2016, Proceedings. Ed. by N. Creignou
and D. Le Berre. Vol. 9710. Lecture Notes in Computer Science. Springer, 2016,
pp. 160–176. DOI: 10.1007/978-3-319-40970-2_11 (cit. on p. 7).

[Enc17] C. Enchelmaier. Route planning: using algorithms to make the most of data.
https://binando.com/blog/route-planning-using-algorithms-to-make-
the-most-of-data, last checked 21.03.2018. 2017 (cit. on p. 3).

[Fer02] H. Fernau. “On Parameterized Enumeration”. In: Computing and Combinatorics,
8th Annual International Conference, COCOON 2002, Singapore, August 15-17,
2002, Proceedings. Ed. by O. H. Ibarra and L. Zhang. Vol. 2387. Lecture Notes in
Computer Science. Springer, 2002, pp. 564–573. DOI: 10.1007/3-540-45655-
4_60 (cit. on pp. 9, 21).

[FG01] M. Frick and M. Grohe. “Deciding First-order Properties of Locally Tree-decom-
posable Structures”. In: J. ACM 48.6 (Nov. 2001), pp. 1184–1206. DOI: 10.1145/
504794.504798 (cit. on p. 100).

[FG06] J. Flum and M. Grohe. Parameterized Complexity Theory. Texts in Theoretical
Computer Science. An EATCS Series. Springer, 2006. DOI: 10.1007/3-540-
29953-X (cit. on pp. 6, 15, 17, 21, 23, 24, 38).

[Fic+17] J. K. Fichte, M. Hecher, M. Morak, and S. Woltran. “Answer Set Solving with
Bounded Treewidth Revisited”. In: Logic Programming and Nonmonotonic Rea-
soning - 14th International Conference, LPNMR 2017, Espoo, Finland, July 3-6,
2017, Proceedings. Ed. by M. Balduccini and T. Janhunen. Vol. 10377. Lecture
Notes in Computer Science. Springer, 2017, pp. 132–145. DOI: 10.1007/978-3-
319-61660-5_13 (cit. on p. 4).

[FL97] M. Frances and A. Litman. “On covering problems of codes”. In: Theory Comput.
Syst. 30.2 (1997), pp. 113–119. DOI: 10.1007/s002240000044 (cit. on p. 68).

[FMS16] J. K. Fichte, A. Meier, and I. Schindler. “Strong Backdoors for Default Logic”. In:
Theory and Applications of Satisfiability Testing - SAT 2016 - 19th International
Conference, Bordeaux, France, July 5-8, 2016, Proceedings. Ed. by N. Creignou
and D. Le Berre. Vol. 9710. Lecture Notes in Computer Science. Springer, 2016,
pp. 45–59. DOI: 10.1007/978-3-319-40970-2_4 (cit. on p. 42).

Bibliography 105

https://doi.org/10.4230/LIPIcs.CSL.2011.189
https://doi.org/10.4230/LIPIcs.CSL.2011.189
https://doi.org/10.1007/978-3-642-27660-6_19
https://doi.org/10.1007/978-3-642-27660-6_19
https://doi.org/10.1007/978-3-319-40970-2_11
https://binando.com/blog/route-planning-using-algorithms-to-make-the-most-of-data
https://binando.com/blog/route-planning-using-algorithms-to-make-the-most-of-data
https://doi.org/10.1007/3-540-45655-4_60
https://doi.org/10.1007/3-540-45655-4_60
https://doi.org/10.1145/504794.504798
https://doi.org/10.1145/504794.504798
https://doi.org/10.1007/3-540-29953-X
https://doi.org/10.1007/3-540-29953-X
https://doi.org/10.1007/978-3-319-61660-5_13
https://doi.org/10.1007/978-3-319-61660-5_13
https://doi.org/10.1007/s002240000044
https://doi.org/10.1007/978-3-319-40970-2_4

[Fri04] M. Frick. “Generalized Model-Checking over Locally Tree-Decomposable Classes”.
In: Theory Comput. Syst. 37.1 (2004), pp. 157–191. DOI: 10.1007/s00224-003-
1111-9 (cit. on p. 100).

[FS15a] J. K. Fichte and S. Szeider. “Backdoors to Normality for Disjunctive Logic Pro-
grams”. In: ACM Trans. Comput. Log. 17.1 (2015), 7:1–7:23. DOI: 10.1145/
2818646 (cit. on p. 42).

[FS15b] J. K. Fichte and S. Szeider. “Backdoors to tractable answer set programming”.
In: Artif. Intell. 220 (2015), pp. 64–103. DOI: 10.1016/j.artint.2014.12.001
(cit. on p. 42).

[FSV13] F. V. Fomin, S. Saurabh, and Y. Villanger. “A Polynomial Kernel for Proper
Interval Vertex Deletion”. In: SIAM Journal Discrete Mathematics 27.4 (2013),
pp. 1964–1976. DOI: 10.1137/12089051X (cit. on pp. 10, 38).

[Gal12] P. Galliani. “Inclusion and exclusion dependencies in team semantics - On some
logics of imperfect information”. In: Ann. Pure Appl. Logic 163.1 (2012), pp. 68–
84. DOI: 10.1016/j.apal.2011.08.005 (cit. on p. 11).

[Gas+17] S. Gaspers, N. Misra, S. Ordyniak, S. Szeider, and S. Zivny. “Backdoors into
heterogeneous classes of SAT and CSP”. In: J. Comput. Syst. Sci. 85 (2017),
pp. 38–56. DOI: 10.1016/j.jcss.2016.10.007 (cit. on p. 42).

[GJ90] M. R. Garey and D. S. Johnson. Computers and Intractability; A Guide to the
Theory of NP-Completeness. New York, NY, USA: W. H. Freeman & Co., 1990
(cit. on p. 57).

[GNR03] J. Gramm, R. Niedermeier, and P. Rossmanith. “Fixed-Parameter Algorithms
for CLOSEST STRING and Related Problems”. In: Algorithmica 37.1 (2003),
pp. 25–42. DOI: 10.1007/s00453-003-1028-3 (cit. on p. 68).

[GP17] P. W. Goldberg and C. H. Papadimitriou. “Towards a Unified Complexity Theory
of Total Functions”. In: Electronic Colloquium on Computational Complexity
(ECCC) 24 (2017), p. 56 (cit. on pp. 30, 100).

[GS12] S. Gaspers and S. Szeider. “Backdoors to Satisfaction”. In: The Multivariate
Algorithmic Revolution and Beyond - Essays Dedicated to Michael R. Fellows on the
Occasion of His 60th Birthday. Ed. by H. L. Bodlaender, R. Downey, F. V. Fomin,
and D. Marx. Vol. 7370. Lecture Notes in Computer Science. Springer, 2012,
pp. 287–317. DOI: 10.1007/978-3-642-30891-8_15 (cit. on p. 69).

[GS17] M. Grohe and N. Schweikardt. “First-Order Query Evaluation with Cardinality
Conditions”. In: CoRR abs/1707.05945 (2017). arXiv: 1707 . 05945 (cit. on
p. 100).

[GSS02] G. Gottlob, F. Scarcello, and M. Sideri. “Fixed-parameter complexity in AI and
nonmonotonic reasoning”. In: Artif. Intell. 138.1-2 (2002), pp. 55–86. DOI:
10.1016/S0004-3702(02)00182-0 (cit. on p. 4).

[GV13] E. Grädel and J. A. Väänänen. “Dependence and Independence”. In: Studia
Logica 101.2 (2013), pp. 399–410. DOI: 10.1007/s11225-013-9479-2 (cit. on
p. 11).

[Ham53] W. R. Hamilton. “Account of the Icosian Game”. In: Proc. Roy. Irish. Acad. 6
(1853), pp. 415–416 (cit. on p. 1).

Bibliography 106

https://doi.org/10.1007/s00224-003-1111-9
https://doi.org/10.1007/s00224-003-1111-9
https://doi.org/10.1145/2818646
https://doi.org/10.1145/2818646
https://doi.org/10.1016/j.artint.2014.12.001
https://doi.org/10.1137/12089051X
https://doi.org/10.1016/j.apal.2011.08.005
https://doi.org/10.1016/j.jcss.2016.10.007
https://doi.org/10.1007/s00453-003-1028-3
https://doi.org/10.1007/978-3-642-30891-8_15
https://arxiv.org/abs/1707.05945
https://doi.org/10.1016/S0004-3702(02)00182-0
https://doi.org/10.1007/s11225-013-9479-2

[Hem16] Lane A. Hemaspaandra. “SIGACT News Complexity Theory Column 90: Intro-
duction to Complexity Theory Column 90”. In: SIGACT News 47.1 (Mar. 2016),
pp. 41–41. DOI: 10.1145/2902945.2902956 (cit. on p. 23).

[Hen59] L. Henkin. “Some remarks on infinitely long formulas”. In: Infinitistic meth-
ods, Proceedings of the Symposium on Foundations of Mathematics. Państwowe
Wydawnictwo Naukowe, Warsaw, and Pergamon Press, Oxford-London-New
York-Paris, 1959, pp. 167–183 (cit. on p. 10).

[HNW08] F. Hüffner, R. Niedermeier, and S. Wernicke. “Techniques for Practical Fixed-
Parameter Algorithms”. In: The Computer Journal 51.1 (2008), pp. 7–25. DOI:
10.1093/comjnl/bxm040 (cit. on p. 4).

[Hod97a] W Hodges. “Compositional Semantics for a Language of Imperfect Information”.
In: Logic Journal of the IGPL 5.4 (1997), pp. 539–563. DOI: 10.1093/jigpal/5.
4.539 (cit. on pp. 10, 73).

[Hod97b] W. Hodges. “Some Strange Quantifiers”. In: Structures in Logic and Computer
Science, A Selection of Essays in Honor of Andrzej Ehrenfeucht. London, UK, UK:
Springer-Verlag, 1997, pp. 51–65 (cit. on p. 10).

[HS65] J. Hartmanis and R. E. Stearns. “On the computational complexity of algorithms”.
In: Trans. Amer. Math. Soc. 117 (1965), pp. 285–306. DOI: 10.1090/S0002-
9947-1965-0170805-7 (cit. on p. 27).

[HS89] J. Hintikka and G. Sandu. “Informational Independence as a Semantical Phe-
nomenon”. In: Logic, Methodology and Philosophy of Science VIII. Ed. by Jens Erik
Fenstad, Ivan T. Frolov, and Risto Hilpinen. Vol. 126. Studies in Logic and the
Foundations of Mathematics Supplement C. Elsevier, 1989, pp. 571–589. DOI:
https://doi.org/10.1016/S0049-237X(08)70066-1 (cit. on p. 10).

[JPY88a] D. S. Johnson, C. H. Papadimitriou, and M. Yannakakis. “How Easy is Local
Search?” In: J. Comput. Syst. Sci. 37.1 (1988), pp. 79–100. DOI: 10.1016/0022-
0000(88)90046-3 (cit. on p. 29).

[JPY88b] D. S. Johnson, C. H. Papadimitriou, and M. Yannakakis. “On Generating All
Maximal Independent Sets”. In: Inf. Process. Lett. 27.3 (1988), pp. 119–123. DOI:
10.1016/0020-0190(88)90065-8 (cit. on pp. 6, 17, 19, 21).

[Kar72] R. M. Karp. “Reducibility Among Combinatorial Problems”. In: Proceedings of a
symposium on the Complexity of Computer Computations, held March 20-22, 1972,
at the IBM Thomas J. Watson Research Center, Yorktown Heights, New York. Ed. by
R. E. Miller and J. W. Thatcher. The IBM Research Symposia Series. Plenum
Press, New York, 1972, pp. 85–103 (cit. on pp. 2, 5).

[Kha+05] L. G. Khachiyan, E. Boros, K. M. Elbassioni, V. Gurvich, and K. Makino. “On the
Complexity of Some Enumeration Problems for Matroids”. In: SIAM J. Discrete
Math. 19.4 (2005), pp. 966–984. DOI: 10.1137/S0895480103428338 (cit. on
p. 9).

[KMW16] S. Kratsch, D. Marx, and M. Wahlström. “Parameterized Complexity and Kernel-
izability of Max Ones and Exact Ones Problems”. In: vol. 8. 1. 2016, 1:1–1:28.
DOI: 10.1145/2858787 (cit. on pp. 42–44).

[Knu98] Donald E. Knuth. The Art of Computer Programming, Volume III: Sorting and
Searching. 2nd. Addison-Wesley, 1998 (cit. on p. 85).

Bibliography 107

https://doi.org/10.1145/2902945.2902956
https://doi.org/10.1093/comjnl/bxm040
https://doi.org/10.1093/jigpal/5.4.539
https://doi.org/10.1093/jigpal/5.4.539
https://doi.org/10.1090/S0002-9947-1965-0170805-7
https://doi.org/10.1090/S0002-9947-1965-0170805-7
https://doi.org/https://doi.org/10.1016/S0049-237X(08)70066-1
https://doi.org/10.1016/0022-0000(88)90046-3
https://doi.org/10.1016/0022-0000(88)90046-3
https://doi.org/10.1016/0020-0190(88)90065-8
https://doi.org/10.1137/S0895480103428338
https://doi.org/10.1145/2858787

[Kon13] J. Kontinen. “Coherence and Computational Complexity of Quantifier-free De-
pendence Logic Formulas”. In: Studia Logica 101.2 (Apr. 2013), pp. 267–291.
DOI: 10.1007/s11225-013-9481-8 (cit. on p. 83).

[KOP15] M. Kronegger, S. Ordyniak, and A. Pfandler. “Variable-Deletion Backdoors to
Planning”. In: Proceedings of the Twenty-Ninth AAAI Conference on Artificial
Intelligence, January 25-30, 2015, Austin, Texas, USA. Ed. by B. Bonet and S.
Koenig. AAAI Press, 2015, pp. 3305–3312 (cit. on p. 42).

[KS13] W. Kazana and L. Segoufin. “Enumeration of First-order Queries on Classes of
Structures with Bounded Expansion”. In: Proceedings of the 32Nd ACM SIGMOD-
SIGACT-SIGAI Symposium on Principles of Database Systems. PODS ’13. New York,
New York, USA: ACM, 2013, pp. 297–308. DOI: 10.1145/2463664.2463667
(cit. on p. 100).

[KST99] H. Kaplan, R. Shamir, and R. E. Tarjan. “Tractability of Parameterized Completion
Problems on Chordal, Strongly Chordal, and Proper Interval Graphs”. In: SIAM
J. Comput. 28.5 (1999), pp. 1906–1922. DOI: 10.1137/S0097539796303044
(cit. on pp. 59, 65).

[KV91] S. Khuller and V. V. Vazirani. “Planar Graph Coloring is not Self-Reducible,
Assuming P 6= NP”. In: Theor. Comput. Sci. 88.1 (1991), pp. 183–189. DOI:
10.1016/0304-3975(91)90081-C (cit. on pp. 10, 37).

[Lev73] L. A. Levin. “Universal sorting problems”. In: Problems of Information Transmis-
sion 9 (1973), pp. 265–266 (cit. on pp. 7, 100).

[Lip+78] R. J. Lipton, W. A. Burkhard, W. J. Savitch, E. P. Friedman, and A. V. Aho, eds.
Proceedings of the 10th Annual ACM Symposium on Theory of Computing, May
1-3, 1978, San Diego, California, USA. ACM, 1978.

[Loh12] P. Lohmann. “Computational Aspects of Dependence Logic”. PhD thesis. Leibniz
Universität Hannover, Institut für Theoretische Informatik, 2012. arXiv: 1206.
4564 (cit. on p. 11).

[LR18] R. J. Lipton and K. W. Regan. The Lemma Cited From Burnside. https : / /
rjlipton.wordpress.com/2018/03/03/the-lemma-cited-from-burnside/,
last checked 10.04.2018. 2018 (cit. on p. 76).

[LV13] P. Lohmann and H. Vollmer. “Complexity Results for Modal Dependence Logic”.
In: Studia Logica 101.2 (2013), pp. 343–366. DOI: 10.1007/s11225-013-9483-
6 (cit. on p. 73).

[Mar+02] H. Marchand, A. Martin, R. Weismantel, and L. Wolsey. “Cutting planes in integer
and mixed integer programming”. In: Discrete Applied Mathematics 123.1 (2002),
pp. 397–446. DOI: https://doi.org/10.1016/S0166-218X(01)00348-1 (cit.
on p. 2).

[Mar05] D. Marx. “Parameterized complexity of constraint satisfaction problems”. In:
Computational Complexity 14.2 (2005), pp. 153–183. DOI: 10.1007/s00037-
005-0195-9 (cit. on p. 71).

Bibliography 108

https://doi.org/10.1007/s11225-013-9481-8
https://doi.org/10.1145/2463664.2463667
https://doi.org/10.1137/S0097539796303044
https://doi.org/10.1016/0304-3975(91)90081-C
https://arxiv.org/abs/1206.4564
https://arxiv.org/abs/1206.4564
https://rjlipton.wordpress.com/2018/03/03/the-lemma-cited-from-burnside/
https://rjlipton.wordpress.com/2018/03/03/the-lemma-cited-from-burnside/
https://doi.org/10.1007/s11225-013-9483-6
https://doi.org/10.1007/s11225-013-9483-6
https://doi.org/https://doi.org/10.1016/S0166-218X(01)00348-1
https://doi.org/10.1007/s00037-005-0195-9
https://doi.org/10.1007/s00037-005-0195-9

[Mei+16] A. Meier, S. Ordyniak, R. Sridharan, and I. Schindler. “Backdoors for Linear
Temporal Logic”. In: 11th International Symposium on Parameterized and Exact
Computation, IPEC 2016, August 24-26, 2016, Aarhus, Denmark. Ed. by J. Guo
and D. Hermelin. Vol. 63. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum fuer In-
formatik, 2016, 23:1–23:17. DOI: 10.4230/LIPIcs.IPEC.2016.23 (cit. on
p. 42).

[Mei18] A. Meier. “Enumeration in Incremental FPT-Time”. In: CoRR abs/1804.07799
(2018). arXiv: 1804.07799 (cit. on p. 14).

[Men87] E. Mendelson. Introduction to Mathematical Logic. Springer, Boston, MA, 1987.
DOI: 10.1007/978-1-4615-7288-6 (cit. on p. 15).

[MP91] N. Megiddo and C. H. Papadimitriou. “On Total Functions, Existence Theorems
and Computational Complexity”. In: Theor. Comput. Sci. 81.2 (1991), pp. 317–
324. DOI: 10.1016/0304-3975(91)90200-L (cit. on pp. 14, 28–30, 33).

[MR17] A. Meier and C. Reinbold. “Enumeration Complexity of Poor Man’s Propositional
Dependence Logic”. In: CoRR abs/1704.03292 (2017) (cit. on p. 14).

[MR18] A. Meier and C. Reinbold. “Enumeration Complexity of Poor Man’s Propositional
Dependence Logic”. In: Foundations of Information and Knowledge Systems - 10th
International Symposium, FoIKS 2018, Budapest, Hungary, May 14-18, 2018.
Proceedings. Ed. by F. Ferrarotti and S. Woltran. Lecture Notes in Computer
Science. Springer, 2018 (cit. on pp. 14, 27).

[Nie06] R. Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford University Press,
2006 (cit. on pp. 6, 15).

[Nor15] J. Nordström. “On the interplay between proof complexity and SAT solving”. In:
SIGLOG News 2.3 (2015), pp. 19–44. DOI: 10.1145/2815493.2815497 (cit. on
p. 7).

[NRS04] N. Nishimura, P. Ragde, and S. Szeider. “Detecting Backdoor Sets with Respect
to Horn and Binary Clauses”. In: SAT 2004 - The Seventh International Conference
on Theory and Applications of Satisfiability Testing, 10-13 May 2004, Vancouver,
BC, Canada, Online Proceedings. 2004 (cit. on pp. 47, 48).

[NRS07] Naomi Nishimura, Prabhakar Ragde, and Stefan Szeider. “Solving #SAT using
vertex covers”. In: Acta Informatica 44.7-8 (2007), pp. 509–523. DOI: 10.1007/
s00236-007-0056-x (cit. on p. 70).

[NT75] G. L. Nemhauser and L. E. Trotter Jr. “Vertex packings: Structural properties
and algorithms”. In: Math. Program. 8.1 (1975), pp. 232–248. DOI: 10.1007/
BF01580444 (cit. on p. 6).

[NZ09] G. Nordh and B. Zanuttini. “Frozen Boolean Partial Co-clones”. In: ISMVL 2009,
39th International Symposium on Multiple-Valued Logic, 21-23 May 2009, Naha,
Okinawaw, Japan. IEEE Computer Society, 2009, pp. 120–125. DOI: 10.1109/
ISMVL.2009.10 (cit. on p. 44).

[OC03] R. O’Callahan and J.-D. Choi. “Hybrid dynamic data race detection”. In: Pro-
ceedings of the ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, PPOPP 2003, June 11-13, 2003, San Diego, CA, USA. Ed. by R.
Eigenmann and M. C. Rinard. ACM, 2003, pp. 167–178. DOI: 10.1145/781498.
781528 (cit. on p. 6).

Bibliography 109

https://doi.org/10.4230/LIPIcs.IPEC.2016.23
https://arxiv.org/abs/1804.07799
https://doi.org/10.1007/978-1-4615-7288-6
https://doi.org/10.1016/0304-3975(91)90200-L
https://doi.org/10.1145/2815493.2815497
https://doi.org/10.1007/s00236-007-0056-x
https://doi.org/10.1007/s00236-007-0056-x
https://doi.org/10.1007/BF01580444
https://doi.org/10.1007/BF01580444
https://doi.org/10.1109/ISMVL.2009.10
https://doi.org/10.1109/ISMVL.2009.10
https://doi.org/10.1145/781498.781528
https://doi.org/10.1145/781498.781528

[Per03] G. Perelman. “Ricci flow with surgery on three-manifolds”. In: CoRR (2003).
arXiv: math/0303109 (cit. on p. 2).

[Pos41] E. Post. “The two-valued iterative systems of mathematical logic”. In: Annals of
Mathematical Studies 5 (1941), pp. 1–122 (cit. on p. 71).

[PRS13] A. Pfandler, S. Rümmele, and S. Szeider. “Backdoors to Abduction”. In: Proceed-
ings of the 23rd International Joint Conference on Artificial Intelligence (IJCAI’13).
Ed. by Francesca Rossi. Beijing, China, Aug. 2013, pp. 1046–1052 (cit. on p. 42).

[PV06] G. Pan and M. Y. Vardi. “Fixed-Parameter Hierarchies inside PSPACE”. In: 21th
IEEE Symposium on Logic in Computer Science (LICS 2006), 12-15 August 2006,
Seattle, WA, USA, Proceedings. IEEE Computer Society, 2006, pp. 27–36. DOI:
10.1109/LICS.2006.25 (cit. on p. 4).

[Rot95] J. J. Rotman. An Introduction to the Theory of Groups. Vol. 148. Graduate Texts
in Mathematics. Springer, 1995 (cit. on pp. 75, 76).

[RSV04] B. Reed, K. Smith, and A. Vetta. “Finding odd cycle transversals”. In: Operations
Research Letters 32.4 (2004), pp. 299–301. DOI: https://doi.org/10.1016/j.
orl.2003.10.009 (cit. on p. 4).

[RT75] R. C. Read and R. E. Tarjan. “Bounds on backtrack algorithms for listing cycles,
paths, and spanning trees”. In: Networks 5.3 (1975), pp. 237–252 (cit. on p. 7).

[SAT] SAT Association. Website of the SAT association. https://satassociation.org,
last checked 09.01.2018. (cit. on p. 7).

[Sch09] J. Schmidt. “Enumeration: Algorithms and Complexity”. Online at https://www.
thi.uni-hannover.de/fileadmin/forschung/arbeiten/schmidt-da.pdf.
MA thesis. Leibniz Universität Hannover, 2009 (cit. on pp. 10, 17, 19, 20, 24,
37).

[Sch76] C.-P. Schnorr. “Optimal Algorithms for Self-Reducible Problems”. In: Proceedings
International Colloquium on Automata, Languages, and Programming. 1976,
pp. 322–337 (cit. on pp. 10, 37).

[Sch78] T. J. Schaefer. “The Complexity of Satisfiability Problems”. In: Proceedings of the
10th Annual ACM Symposium on Theory of Computing, May 1-3, 1978, San Diego,
California, USA. Ed. by R. J. Lipton, W. A. Burkhard, W. J. Savitch, E. P. Friedman,
and A. V. Aho. ACM, 1978, pp. 216–226. DOI: 10.1145/800133.804350 (cit. on
p. 42).

[See96] D. Seese. “Linear Time Computable Problems and First-Order Descriptions”. In:
Mathematical Structures in Computer Science 6.6 (1996), pp. 505–526 (cit. on
p. 100).

[Shp15] I. Shpitser. “Causal Inference and Logics of Dependence and Independence”. In:
Logics for Dependence and Independence. Dagstuhl Reports, 2015 (cit. on p. 10).

[Sip12] Michael Sipser. Introduction to the Theory of Computation. 3rd. Cengage Learning,
2012 (cit. on p. 15).

[SS08] M. Samer and S. Szeider. “Backdoor Trees”. In: Proceedings of the Twenty-Third
AAAI Conference on Artificial Intelligence, AAAI 2008, Chicago, Illinois, USA, July
13-17, 2008. Ed. by D. Fox and C. P. Gomes. AAAI Press, 2008, pp. 363–368
(cit. on p. 38).

Bibliography 110

https://arxiv.org/abs/math/0303109
https://doi.org/10.1109/LICS.2006.25
https://doi.org/https://doi.org/10.1016/j.orl.2003.10.009
https://doi.org/https://doi.org/10.1016/j.orl.2003.10.009
https://satassociation.org
https://www.thi.uni-hannover.de/fileadmin/forschung/arbeiten/schmidt-da.pdf
https://www.thi.uni-hannover.de/fileadmin/forschung/arbeiten/schmidt-da.pdf
https://doi.org/10.1145/800133.804350

[SS09] M. Samer and S. Szeider. “Fixed-Parameter Tractability”. In: Handbook of Sat-
isfiability. Ed. by A. Biere, M. Heule, H. van Maaren, and T. Walsh. Vol. 185.
Frontiers in Artificial Intelligence and Applications. IOS Press, 2009, pp. 425–
454. DOI: 10.3233/978-1-58603-929-5-425 (cit. on p. 4).

[SST04] R. Shamir, R. Sharan, and D. Tsur. “Cluster graph modification problems”. In:
Discrete Applied Mathematics 144.1-2 (2004), pp. 173–182. DOI: 10.1016/j.
dam.2004.01.007 (cit. on p. 60).

[ST08] C. Sloper and J. A. Telle. “An Overview of Techniques for Designing Parame-
terized Algorithms”. In: Comput. J. 51.1 (2008), pp. 122–136. DOI: 10.1093/
comjnl/bxm038 (cit. on p. 4).

[SV14] A. Sebö and J. Vygen. “Shorter tours by nicer ears: 7/5-Approximation for the
graph-TSP, 3/2 for the path version, and 4/3 for two-edge-connected subgraphs”.
In: Combinatorica 34.5 (2014), pp. 597–629. DOI: 10.1007/s00493-014-2960-
3 (cit. on p. 3).

[Sze09] Stefan Szeider. “Matched Formulas and Backdoor Sets”. In: Journal on Satis-
fiability, Boolean Modeling and Computation 6.1-3 (2009), pp. 1–12 (cit. on
p. 70).

[Tul04] T. Tulenheimo. “Independence-Friendly Modal Logic: Studies in its Expressive
Power and Theoretical Relevance”. PhD thesis. Philosophical Studies from the
University of Helsinki 4, 2004 (cit. on p. 10).

[Vää07] J. Väänänen. Dependence Logic - A New Approach to Independence Friendly Logic.
Vol. 70. London Mathematical Society student texts. Cambridge University Press,
2007 (cit. on pp. 11, 73).

[Vää08] J. Väänänen. “Modal Dependence Logic”. In: New Perspectives on Games and
Interaction. Ed. by K. Apt and R. van Rooij. Amsterdam University Press, 2008,
pp. 237–254 (cit. on pp. 11, 73).

[Vir17] Jonni Virtema. “Complexity of validity for propositional dependence logics”.
In: Inf. Comput. 253 (2017), pp. 224–236. DOI: 10.1016/j.ic.2016.07.008
(cit. on p. 100).

[WGS03] R. Williams, C. P. Gomes, and B. Selman. “Backdoors To Typical Case Complex-
ity”. In: IJCAI-03, Proceedings of the Eighteenth International Joint Conference on
Artificial Intelligence, Acapulco, Mexico, August 9-15, 2003. Ed. by G. Gottlob and
T. Walsh. Morgan Kaufmann, 2003, pp. 1173–1178 (cit. on pp. 42, 47).

[Yan78] M. Yannakakis. “Node- and Edge-Deletion NP-Complete Problems”. In: Pro-
ceedings of the 10th Annual ACM Symposium on Theory of Computing, May
1-3, 1978, San Diego, California, USA. Ed. by R. J. Lipton, W. A. Burkhard,
W. J. Savitch, E. P. Friedman, and A. V. Aho. ACM, 1978, pp. 253–264. DOI:
10.1145/800133.804355 (cit. on p. 60).

[Yan81] M. Yannakakis. “Computing the minimum fill-in is NP-complete”. In: SIAM
Journal on Algebraic Discrete Methods 2.1 (1981), pp. 77–79. DOI: 10.1137/
0602010 (cit. on p. 59).

Bibliography 111

https://doi.org/10.3233/978-1-58603-929-5-425
https://doi.org/10.1016/j.dam.2004.01.007
https://doi.org/10.1016/j.dam.2004.01.007
https://doi.org/10.1093/comjnl/bxm038
https://doi.org/10.1093/comjnl/bxm038
https://doi.org/10.1007/s00493-014-2960-3
https://doi.org/10.1007/s00493-014-2960-3
https://doi.org/10.1016/j.ic.2016.07.008
https://doi.org/10.1145/800133.804355
https://doi.org/10.1137/0602010
https://doi.org/10.1137/0602010

“ ”Parameterized complexity is based on a deal with
the devil of intractability.

— Rod G. Downey and Michael R. Fellows
[DF99, p. 7]

Colophon
This thesis was typeset with LuaLATEX. It uses a modification of the Clean Thesis style
developed by Ricardo Langner. The design of the Clean Thesis style is inspired by
user guide documents from Apple Inc.
Download the Clean Thesis style at http://cleanthesis.der-ric.de/.

http://cleanthesis.der-ric.de/

Erklärung

Ich erkläre an Eides statt, dass ich die Arbeit selbstständig und ohne fremde Hilfe
verfasst, keine anderen als die von mir angegebenen Quellen und Hilfsmittel benutzt
und die den benutzten Werken wörtlich oder inhaltlich entnommenen Stellen als
solche kenntlich gemacht habe. Darüber hinaus erkläre ich, dass bei der Anfertigung
kein wissenschaftliches Fehlverhalten im Sinne der Richtlinie der Gottfried Wilhelm
Leibniz Universität Hannover zur Sicherung guter wissenschaftlicher Praxis vorliegt.

I declare under penalty of perjury that this thesis is my own work entirely and has
been written without any help from other people. I used only the sources mentioned
and included all the citations correctly both in word or content. Furthermore, I
declare that no academic misconduct in accordance with the regulations of the
Gottfried Wilhelm Leibniz Universität Hannover exists.

Hannover, 20.11.2019

Arne Meier

	Cover
	Titlepage
	Abstract
	Acknowledgement
	1 Introduction
	1.1 Parametrised Complexity
	1.2 Enumeration
	1.3 Team Logics
	1.4 Results
	1.5 Publications

	2 Preliminaries
	2.1 Complexity Theory
	2.2 Parametrised Complexity Theory
	2.3 Enumeration
	2.4 Parametrised Enumeration
	2.5 Orders

	3 Enumeration Complexity Landscape
	3.1 Incremental FPT
	3.2 Connections to Classical Enumeration
	3.3 CardinalitySAT

	4 Principles of Parametrised Enumeration
	4.1 Kernelisation
	4.2 Self-Reducibility and Bounded-Search-Trees
	4.2.1 Enumeration Complexity of Max-Ones-SAT
	4.2.2 Enumeration of Strong HORN-Backdoor Sets

	4.3 A Dichotomy for the Enumerability of Max-Ones-SAT

	5 Parametrised Enumeration with Orders
	5.1 Graph Modification Problems
	5.1.1 Lexicographic Order
	5.1.2 Order by Size

	5.2 Generalised Modification Problems
	5.2.1 Closest String
	5.2.2 Backdoors
	5.2.3 Weighted Satisfiability Problems

	6 Enumeration in Poor Man's Propositional Dependence Logic
	6.1 Team-based Propositional Logic
	6.2 Group Theory
	6.3 Enumeration Complexity
	6.3.1 The Group Action of Flipping Bits
	6.3.2 Limiting Memory Space

	7 Conclusion
	8 Outlook
	Bibliography
	Colophon
	Declaration

