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Abstract

Motivated by huge-scale portfolio problems and by controlling dynamic processes with stochastic

disturbances, this thesis considers specific formulations of tree-structured problems that are

attributed to the class of multistage problems in stochastic optimization. These tree-sparse

problems are large but structured nonlinear optimization problems that are solved in a generic

primal-dual interior-point framework employing a filter line-search globalization. Common

approaches in this algorithmic framework are tailored to the specific problem structures. The

arising KKT systems are solved by a direct structure-exploiting method performed as recursions

over the tree. Dealing with rank-deficiencies and nonconvexities in nonlinear optimization, a

problem-tailored inertia correction heuristic is developed that is incorporated into the KKT

algorithm to avoid expensive refactorizations of the KKT matrix. In a structured quasi-Newton

approach, second-order derivatives are generated based on partially separable Lagrangians.

Numerical results are presented showing that the quasi-Newton approach combined with inertia

corrections can be used to regulate dynamic processes modeled by perturbed ordinary differential

equations and, additionally, is also a competitive alternative to exact second-order evaluations.

Moreover, facing the computational demands of huge-scale problems, this thesis presents a

complete concept of distribution for the tree-sparse problems and the interior-point framework.

The solution procedure is completely distributed based on a static depth-first distribution

of the tree nodes. Theoretical results of the depth-first distributed trees are presented and

used to develop distributed versions of the tree-sparse algorithms with few communication

overhead. Parallel performance results for huge-scale portfolio optimization problems are

presented proving the practicability of the concept of distribution and showing the efficiency of

this approach.

Keywords: stochastic optimization, nonlinear optimization, tree-sparse problems, interior-

point methods, distributed programming

iii





Kurzzusammenfassung

Motiviert durch großzahlige Portfoliooptimierungsprobleme und durch Steuerungen von dynami-

schen Prozessen mit stochastischen Störungen werden in dieser Arbeit spezielle Formulierungen

von baumstrukturierten Problemen betrachtet, die der Klasse der mehrstufigen stochastischen

Optimierungsprobleme zuzuordnen sind. Diese großen aber dünnbesetzten Baumprobleme

werden mit einer generischen primal-dualen Innere-Punkte-Methode gelöst, die eine Filter-Line-

Search-Strategie zur Globalisierung einsetzt. Allgemeine Ansätze in diesem algorithmischen

Rahmen werden auf die speziellen Problemstrukturen zugeschnitten. Die auftretenden KKT-

Systeme werden mit einem direkten strukturausnutzenden Verfahren gelöst, welches durch

Rekursionen über den Baum realisiert wird. Zur Behandlung von Rangdefekten und Nichtkon-

vexitäten wird eine Heuristik zur Signaturkorrektur in den KKT-Algorithmus eingebaut, die

erneute Faktorisierungen der KKT-Matrix vermeidet. In einem strukturierten Quasi-Newton-

Ansatz werden zweite Ableitungen auf Basis von partiell separierbaren Lagrange-Funktionen

erzeugt. Die numerischen Ergebnisse zeigen, dass der Quasi-Newton-Ansatz kombiniert mit der

Signaturkorrektur zum einen eingesetzt werden kann, um dynamische Prozesse zu regulieren,

die durch gestörte gewöhnliche Differentialgleichungen modelliert werden, zum anderen aber

auch eine konkurrenzfähige Alternative zur Verwendung von exakten zweiten Ableitungen sein

kann.

Diese Arbeit präsentiert zudem ein vollständiges Konzept zur Verteilung der Baumprobleme

und zum verteilten Rechnen der Innere-Punkte-Methode. Die Verteilung des Lösungsprozesses

basiert auf einer statischen Aufteilung der Baumknoten nach Tiefensuche. Theoretische Ergeb-

nisse zu den resultierenden tiefensuchenverteilten Bäumen werden bewiesen und genutzt, um

parallele Varianten der problemspezifischen Algorithmen zu entwickeln, die nur einen geringen

Kommunikationsaufwand nach sich ziehen. Anhand von großzahligen Portfoliooptimierungspro-

blemen werden Rechenergebnisse zur parallelen Performanz präsentiert, die die Praktikabilität

des Verteilungskonzepts bestätigen und die Effizienz dieses Ansatzes aufzeigen.

Schlagworte: Stochastische Optimierung, nichtlineare Optimierung, baumstrukturierte

Probleme, Innere-Punkte-Methoden, verteilte Programmierung
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Chapter 1

Introduction

1.1. Stochastic Optimization and Tree-Sparse Problems

Numerical optimization is an area of research in applied mathematics with the goal of providing

solution software that helps finding decisions in real-world applications. In a first step of

developing a solution software, the application needs to be translated into a mathematical

optimization model that simplifies the complexity of the real world and highlights only the

relevant key characteristics of the application. Typically seeking for solutions in infinite

dimensional spaces, the mathematical model then runs through several discretization procedures

to obtain a computationally tractable optimization problem. Finally, this optimization problem

needs to be solved by applying a suitable solution algorithm.

This thesis focuses on the development and implementation of solution approaches for

very specific types of optimization problems that arise in controlling time-continuous dynamic

processes such as managing a portfolio or regulating the cell production of a bioreactor. Decisions

in these applications need to be made on a basis of incomplete information, meaning that some

influencing factors such as the development of the stock prices or the specific reaction rate

of the concentration in the tank are not fully known at the time of a decision. Incorporating

these uncertainties into the mathematical model of an application attributes the optimization

problems to the subfield of stochastic optimization. Discretizing the process in time as well as

explicit modeling of the uncertainties by considering finite many possible events lead to a scenario

tree that represents the development of the dynamic process. The resulting discretized problems

are challenging large-scale nonlinear optimizations problems that may include computationally

expensive evaluations of solutions of ordinary differential equations. However, the problems are

very structured featuring problem data that reflect the topology of the scenario tree. Exploiting

the inherent tree structures is mandatory for solving these tree-sparse problems efficiently in a

reasonable amount of time.

1



2 Chapter 1. Introduction

1.2. Distributed Programming

In scientific computing such as numerical optimization, the solution software typically requires a

lot of processing power and memory resources. Since mainly composed of arithmetic operations,

a computer program is computationally intensive. Moreover, finer discretization used in the

solution procedure leads to larger problem instances and, therefore, more data to be stored.

Now, since the beginning of the 21st Century the development of computers has changed

drastically from increasing the processing power and memory capacities of a single machine

to using distributed computing systems comprising several machines. Hence, facing high

computational demands and memory requirements in scientific computing means making use of

those distributed platforms.

Simply starting a computer program on a distributed platform is not sufficient to exploit the

available computational resources. Prior to this, the solution software needs to be arranged for

distributed computing, beginning with a suitable concept that leads to good parallel performance

while being scalable with respect to the problem size. Aspects of distributed programming such

as dividing the problem data and the computational workload, allocating the respective parts

among the participating working units as well as invoking communication between these units

for data transmission not only become part of the chores of implementation but also play a key

role in the design of the solution approach. In this thesis, the tree-structured problems and the

presented problem-tailored algorithms are stated in a consistent node-wise presentation, and a

concept of distribution is developed that is based on a static distribution of the tree nodes.

1.3. Contributions and Organization

Interior-point methods emerged in the late 1980s and quickly became one of the most popular

algorithm classes for optimization problems for two reasons. First, they are applicable to a

lot of problem classes providing a consistent algorithmic framework for the different classes.

Second, they benefit greatly from exploiting problem-specific structures, which makes them

advantageous for large-scale optimization problems and, thus, well-suitable for the considered

tree-structured problems. This thesis establishes the class of the nonlinear tree-sparse problems

and develops a problem-tailored interior-point approach including a structured quasi-Newton

framework for generating second-order derivatives. Moreover, this thesis provides a complete

concept of distribution allowing to solve these problems on distributed platforms.

After stating the fundamental theory of nonlinear optimization, Chapter 2 introduces the basic

concepts of interior-point methods and outlines algorithmic extensions for nonlinear problems.
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Next, Chapter 3 motivates the tree-sparse problems by the means of stochastic optimization

and reviews the tree-sparse convex problems established by Steinbach. Generalizing these

convex problems, Chapter 4 states the nonlinear tree-sparse problems studied in this thesis and

establishes notation and theoretical foundation for them first. After presenting the complete

recursive direct KKT algorithms for the convex case (Sect. 4.3), these algorithms are then

extended to deal with rank-deficiencies and nonconvexities of nonlinear problems. For this, a

problem-tailored inertia correction is developed and directly incorporated into the KKT solution

procedure (Sect. 4.4). Dealing with problems that do not provide evaluations of second-order

derivatives, Hessian approximations are generated in a structured quasi-Newton approach based

on partially separable functions (Sect. 4.5).

Maintaining a node-wise presentation for problems and algorithms, the concept of distribution

for the tree-sparse problems presented in Chap. 5 is based on a static depth-first distribution of

the tree nodes. After stating the distributed programming model for the tree-sparse problems

(Sect. 5.1), the concept of depth-first distributed trees is established and theoretical results of

these types of trees are presented (Sect. 5.2). Based on these results, distributed versions of the

tree-sparse algorithms with few communication overhead are developed (Sect. 5.3) and, finally,

the distribution of the complete interior-point algorithm is discussed (Sect. 5.4).

The tree-sparse algorithms and the concept of distribution are implemented in two C++

libraries that are developed to solve the tree-sparse problems using a generic interior-point

framework. Chapter 6 discusses the software design of these libraries and outlines their

incorporation into the interior-point solver. In Chap. 7, numerical experiments with examples

from robust model predictive control and financial engineering demonstrate the modeling

possibilities of the tree-sparse formulations and the potentials of the tree-sparse algorithms.

The structured quasi-Newton approach combined with inertia corrections is applied to control

dynamic processes with stochastic disturbances (Sect. 7.1). Parallel performance results are

presented for huge-scale problems in portfolio optimization (Sect. 7.2). Finally, Chapter 8

concludes this thesis and considers some directions for future work.





Chapter 2

Basic Concepts of Nonlinear Optimization

This chapter presents the fundamental concepts of nonlinear optimization that is studied in

this work. Section 2.1 introduces smooth nonlinear optimization problems and states necessary

and sufficient conditions that characterize their solutions. The subsequent section focuses on

algorithmic approaches for computing these solutions.

Notation: Vectors v ∈ Rn are always column vectors, the gradient ∇f of a sufficiently smooth

function f : Rn × R is a column vector and the Jacobian ∇c ∈ Rm×n of a sufficiently smooth

function c : Rn → Rm comprises the transposes of the gradients ∇ci.

2.1. Theory Of Nonlinear Optimization

Consider the continuous nonlinear optimization problem (NLP)

min
x∈Rn

f(x) (2.1a)

s.t. ci(x) = 0, i ∈ E , (2.1b)

ci(x) ≥ 0, i ∈ I, (2.1c)

where the real-valued functions f , ci : Rn → R are sufficiently smooth. The function f is called

the objective. The index sets E for the equality constraints and I for the inequality constraints

are finite and disjoint. With |E| = m and |I| = k, the constraint functions (2.1b) and (2.1c)

read

cE : Rn → Rm with cE(x) = 0 as well as cI : Rn → Rk with cI(x) ≥ 0, (2.2)

where the relations = and ≥ are meant component-wise.

5
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NLP (2.1) is called a linear problem (LP) if the objective and all constraint functions are

linear. A quadratic problem (QP) has linear constraints and an objective of the form

f(x) =
1

2
xTHx+ cTx with H = HT ∈ Rn×n and c ∈ Rn. (2.3)

A point x satisfying the constraints (2.2) is called feasible for the optimization problem (2.1).

The feasible points form the feasible set

F := {x ∈ Rn : cI(x) = 0 and cE(x) ≥ 0}. (2.4)

The following definition characterizes solutions of NLPs.

Definition 1 (Solution). A feasible point x∗ ∈ F is a local solution or simply a solution of

problem (2.1) if there exists a neighborhood N of x∗ such that f(x) ≥ f(x∗) for all x ∈ N ∩ F .
A solution is called a global solution if the relation f(x) ≥ f(x∗) holds for all feasible points

x ∈ F .

Optimality conditions for solutions of problem (2.1) can be stated by means of the so-called

Lagrangian.

Definition 2 (Lagrangian Function). The function

L(x, z, v) := f(x)−
∑
i∈E

zici(x)−
∑
i∈I

vici(x) (2.5)

is called the Lagrangian to optimization problem (2.1). The scalars zi, vi ∈ R are the so-called

Lagrange multipliers or dual variables corresponding to the equality and inequality constraints,

respectively.

Combining the Lagrange multipliers into vectors z = (zi)i∈E and v = (vi)i∈I for the equality

and inequality constraints, respectively, the Lagrangian (2.5) reads

L : Rn × Rm × Rk → R with L(x, z, v) = f(x)− zT cE(x)− vT cI(x). (2.6)

The concept of active and inactive constraints is important for the theoretical concepts as

well as for the algorithmic treatments of NLPs. It is subsumed into the definition of the active

set.
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Definition 3 (Active Set). The active set A(x) ⊆ E ∪ I of a feasible point x contains all

constraint indices i with ci(x) = 0, i.e.

A(x) := E ∪ {i ∈ I : ci(x) = 0}. (2.7)

A constraint i ∈ E ∪ I is said to be active at a feasible point x if i ∈ A(x) and inactive if

i 6∈ A(x).

The subsequent presentation of optimality conditions require the definition of the LICQ.

Definition 4 (Linear Independence Constraint Qualification). At a feasible point x, the linear

independence constraint qualification (LICQ) is said to hold if the set {∇ci(x) : i ∈ A(x)} of
active constraint gradients is linearly independent.

The following theorems express necessary first-order and second-order optimality conditions

for a solution of NLPs by means of the Lagrangian and Lagrange multipliers.

Theorem 1 (First-Order Necessary Conditions). Let x∗ be a solution of problem (2.1) and the

functions f and ci be continuously differentiable. Suppose that the LICQ holds at x∗. Then

there exist Lagrange multipliers z∗ and v∗ such that the following conditions are satisfied:

∇xL(x∗, z∗, v∗) =∇f(x∗)−
∑
i∈E

z∗i∇ci(x∗)−
∑
i∈A∩I

v∗i∇ci(x∗) = 0, (2.8a)

−∇zL(x∗, z∗, v∗) = cE(x
∗) = 0, (2.8b)

−∇vL(x∗, z∗, v∗) = cI(x∗) ≥ 0, (2.8c)

v∗ ≥ 0, (2.8d)

vi · ci(x∗) = 0, i ∈ I. (2.8e)

x∗ is then said to be a stationary point of problem (2.1).

The conditions (2.8) are known as KKT conditions (for Karush, Kuhn and Tucker) and a

stationary point is also called a KKT point. Condition (2.8a) is often called dual feasibility,

conditions (2.8b) and (2.8c) form the primal feasibility, (2.8d) will be addressed as nonnegativity

condition (for the Lagrange multipliers of the inequality constraints), and (2.8e) is called

complementarity condition.
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Theorem 2 (Second-Order Necessary Conditions). Let x∗ be a solution of problem (2.1)

with corresponding Lagrange multipliers z∗ and v∗, and let the functions f and ci be twice

continuously differentiable. Suppose that the LICQ holds at x∗. Then,

pT∇2
xxL(x∗, z∗, v∗)p ≥ 0 (2.9)

holds for all vectors p with

∇ci(x∗)T p = 0, i ∈ E ,

or ∇ci(x∗)T p = 0, i ∈ A(x∗) ∩ I with v∗i > 0,

or ∇ci(x∗)T p ≥ 0, i ∈ A(x∗) ∩ I with v∗i = 0.

(2.10)

For directions that satisfy one of the equations (2.10), first-order derivatives do not give

enough information to determine whether the objective will increase or decrease. Theorem 2

states that at a KKT point (x∗, z∗, v∗), the Hessian of the Lagrangian must have nonnegative

curvature along those directions. Condition (2.9) is even sufficient if strictly satisfied, which is

stated by the next theorem.

Theorem 3 (Second-Order Sufficient Conditions). Let (x∗, z∗, v∗) satisfy the KKT condi-

tions (2.8) and suppose that

pT∇2
xxL(x∗, z∗, v∗)p > 0 (2.11)

holds for all vectors p that satisfy (2.10). x∗ is then a local solution for problem (2.1).

The following convex problems play an important role in nonlinear optimization.

Definition 5 (Convex Problem). Let the set M ⊆ Rn be connected. M is a convex set if for

all x, y ∈M it holds

τx+ (1− τ)y ∈M for all τ ∈ [0, 1]. (2.12)

A real-valued function g : M → R is called a convex function if for all x, y ∈M it is

g(τx+ (1− τ)y) ≤ τg(x) + (1− τ)g(y) for all τ ∈ [0, 1]. (2.13)

The optimization problem (2.1) is said to be a convex problem if the objective function f

in (2.1a) and the feasible set F defined in (2.4) are convex.
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The feasible set is convex if the equality functions cE are (linear-)affine and the functions −cI
are convex. For convex problems it can be shown that each KKT point (x∗, z∗, v∗) satisfies the

sufficient conditions of Thm. 3. Hence, the first-order necessary conditions (2.8) are already

sufficient. Furthermore, any local solution of a convex problem is also a global solution.

A detailed discussion of optimality conditions for NLPs along with proofs for theorems 1 to 3

can be found in the textbook [66]. A comprehensive background on convex optimization is

given, e.g., by Boyd and Vandenberghe [16].

2.2. Solution Algorithms for Nonlinear Problems

The most popular solution techniques for NLPs include sequential quadratic programming1 (SQP)

and interior-point methods (IPM). Both are iterative approaches based on the Newton’s method

that aim for a KKT point, meaning a primal-dual vector (x∗, z∗, v∗) that satisfies the KKT

conditions (2.8). If necessary, so-called globalization strategies are incorporated to enforce

convergence towards a local solution.

Considering optimization problems without inequality constraints, i.e. NLP (2.1) with |I| = 0

and thus I = ∅, the KKT conditions (2.8) reduce to a system of nonlinear equations that can

be solved using the Newton’s method. Inequality constraints complicate system (2.8) by adding

further primal feasibility conditions without reducing the dimensions of the feasibility set F (2.4)

and by causing the nondifferentiable complementarity conditions (2.8e). The phenomenon of

having 2|I| possible combinations of active or inactive constraints is often referred to as the

combinatorial difficulty of NLPs [66].

In each iteration of an SQP method, the original NLP is approximated by a quadratic model

based on the Lagrangian (2.5). So-called active-set strategies are often used to solve these local

quadratic approximations. They address the combinatorial difficulty by systematically guessing

the active set A(x∗), where x∗ is the solution of the local quadratic model. Usually, they solve

a series of equality-constrained quadratic subproblems that include active constraints i ∈ W,

with the working set W being the current guess for A(x∗). For more details on SQP methods

and active-set strategies the interested reader is referred to the textbook [66] and the references

therein.

1For historical reasons, numerical optimization is often referred to as programming. In this thesis, a program is
always a computer program and programming refers to designing such a program.
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IPMs use so-called barrier problems to approximate the NLP (2.1) in each iteration. Such a

barrier problem reads

min
x,s

f(x)− µ
∑
i∈I

ln(si) (2.14a)

s.t. cE(x) = 0, (2.14b)

cI(x)− s = 0. (2.14c)

An IPM solves a series of problems (2.14) while driving the so-called barrier parameter µ to

zero. Rather than guessing the active-set, an IPM deals with the combinatorial difficulty by

relaxing the complementarity conditions (2.8e).

IPMs are in the algorithmic focus of this thesis. Section 2.2.1 introduces the basic concepts of

IPMs by means of the so-called homotopy approach, which is well-known for being equivalent to

the previously described barrier approach [66]. Algorithmic extensions for nonconvex NLPs are

considered in Sect. 2.2.2. Section 2.2.3 outlines the idea of quasi-Newton methods in nonlinear

optimization.

2.2.1. Interior-Point Methods

In the homotopy approach, the basic concept of IPMs is established as follows. By introducing

nonnegative slack variables s ∈ Rk for the inequality constraints (2.1c), problem (2.1) is

reformulated as

min
x,s

f(x) (2.15a)

s.t. cE(x) = 0, (2.15b)

cI(x)− s = 0, (2.15c)

s ≥ 0. (2.15d)

The Lagrangian to this slacked NLP version reads

L(x, s, z, v, ξ) = f(x)− zT cE(x)− vT (cI(x)− s)− ξT s. (2.16)

Using the dual feasibility conditions

∇sL = v − ξ = 0 (2.17)
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Algorithm 1: Basic Interior-Point Method
1 choose an initial point (x, s, z, v)(0) with s(0) > 0 and v(0) > 0;
2 select µ(0) > 0, τ ∈ (0, 1), ε > 0;
3 set k ← 0;
4 while E(x(k), s(k), z(k), v(k);µ(k)) > ε do
5 solve (2.21) to obtain the search direction ∆(x, s, z, v)(k);
6 evaluate αmax,(k)

prim and αmax,(k)
dual from (2.23);

7 set (x, s, z, v)(k+1) using (2.24);
8 choose µ(k+1);
9 set k ← k + 1;

to eliminate the so-called dual slacks ξ, the KKT conditions for (2.15) are written as the

nonlinear equations

∇f(x)−∇cE(x)T z −∇cI(x)T v = 0, (2.18a)

SV e− µe = 0, (2.18b)

cE(x) = 0, (2.18c)

cI(x)− s = 0, (2.18d)

with µ = 0, together with the nonnegativity conditions

s ≥ 0 and v ≥ 0. (2.19)

The capital letters in (2.18b) denote diagonal matrices consisting of the entries of the corre-

sponding vectors, i.e. S = Diag(s) and V = Diag(v), and e = (1, . . . , 1)T is the vector of all

ones of appropriate dimension. Note that by multiplying (2.18b) with S−1, conditions (2.18)

and (2.19) coincide with the KKT conditions of the barrier problem (2.14).

Interior-point methods are iterative algorithms that solve a series of the perturbed sys-

tems (2.18) while driving the barrier parameter µ to zero. The Newton’s method is applied

to (2.18) for a fix µ and a damping strategy is used to remain strictly feasible with respect to

the nonnegativity conditions (2.19). A basic IPM scheme is outlined in Alg. 1. Starting with

a strictly feasibly initial point (x, s, z, v)(0) with respect to (2.19), iteration steps 4 to 7 are

repeated until the KKT error measured by

E(x, s, z, v;µ) = max {‖∇xL(x, s, z, v)‖, ‖SV e− µe‖, ‖cE(x)‖, ‖cI(x)‖} (2.20)

is reduced to a given error tolerance ε > 0. In each iteration, the Newton’s method applied
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to (2.18) leads to the so-called primal-dual system that is transformed into the symmetric form


∇2
xxL 0 ∇cE(x)T ∇cI(x)T

0 S−1V 0 −I
∇cE(x) 0 0 0

∇cI(x) −I 0 0




∆x

∆s

−∆z

−∆v

 = −


∇xL

V e− µS−1e

cE(x)

cI(x)− s

 . (2.21)

Solving (2.21) for ∆(x, s, z, v) provides the direction for the next iterate. If applying the full

step violates the positivity constraints

s > 0 and v > 0, (2.22)

the step is shortened so the next iterate remains feasible with respect to (2.22). The step length

is controlled by the so-called fraction-to-the-boundary rule,

αmax
prim = max {α ∈ (0, 1] : s+ α∆s ≥ (τ − 1)s} , (2.23a)

αmax
dual = max {α ∈ (0, 1] : v + α∆v ≥ (τ − 1)v} , (2.23b)

where τ ∈ (0, 1) is the fraction-to-the-boundary parameter. The new iterate is given by

(x, s)(k+1) = (x, s)(k) + αmax
prim∆(x, s)(k), (2.24a)

(z, v)(k+1) = (z, v)(k) + αmax
dual∆(z, v)(k). (2.24b)

In each iteration, the barrier parameter µ(k) is updated or stays the same. The applied barrier

update strategy has to ensure that the sequence of barrier parameters converges to zero, i.e.

µ(k) → 0.

Comprehensive background on IPMs are given, e.g., in the textbooks [66, 107]. Theoretical

convergence results can be found in these textbooks and, e.g., in [26, 92, 104]. For state-of-the-art

implementation techniques the reader is referred, e.g., to [72, 103, 105].

2.2.2. Algorithmic Extensions for Nonconvex Problems

When dealing with nonconvex optimization problems (see Def. 5), a globalization strategy is

incorporated into Alg. 1 to enforce the convergence towards a local solution. The problems in

this thesis are solved using an IPM that employs a filter line-search approach as globalization

strategy, which is outlined next.

Finding a solution for NLP (2.15) aims for the two goals of minimizing the objective f (2.15a)
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and satisfying the constraints (2.15b) to (2.15d). Measuring the feasibility of a primal point (x, s)

by a real-valued function

h(x, s) =
∑
i∈E
‖ci(x)‖+

∑
i∈I
‖ci(x)− s‖, (2.25)

filter methods treat these two goals separately. A filter comprises pairs (f(x(l)),h(x(l), s(l)))

for some iterates (x, s, z, v)(l). An iterate (x, s, z, v)(k+1) leads to a new element in the filter

if (x, s)(k+1) progresses in f or in h. The following definition of a filter is taken from [66].

Definition 6 (Filter and Acceptance). Let fk = f(x(k)) denote the value of the objective (2.15a)

at the iterate (x, s, z, v)(k) and hk = h(x(k), s(k)) its value of the infeasibility function (2.25).

1. A pair (fk,hk) is said to dominate another pair (fl,hl) if both fk ≤ fl and hk ≤ hl.

2. A filter is a list of pairs (fl,hl) such that no pair dominates any other.

3. An iterate (x, s, z, v)(k) is said to be acceptable to the filter if (fk,hk) is not dominated

by any pair in the filter.

The iterate (2.24) is neglected if the corresponding pair (fk+1,hk+1) is dominated by another

pair in the filter. In that case, a line search is performed along the primal direction ∆(x, s)(k)

searching for a step length α(k)
prim ∈ (0,αmax

prim) such that the resulting new iterate

(x, s)(k+1) = (x, s)(k) + α
(k)
prim∆(x, s)(k) (2.26)

is accepted by the filter. Such a line-search is only worthwhile if the search direction ∆(x, s)(k)

is useful for the optimization algorithm. The concept of such a descent direction, which is

motivated from solving convex problems, is presented next. The presentation requires the

following definition of the inertia for symmetric matrices.

Definition 7 (Inertia). The inertia of a symmetric matrix M ∈ RN×N comprises its numbers

of positive, negative and zero eigenvalues n+, n− and n0, respectively:

inertia(M) = (n+,n−,n0) with n+ + n− + n0 = N . (2.27)
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Eliminating ∆s in (2.21) reduces the primal-dual system to a KKT system of the form

Ω∆ = ω, where the KKT matrix reads

Ω =


∇2
xxL ∇cTE ∇cTI
∇cE 0 0

∇cI 0 −Σ−1

 with Σ = S−1V . (2.28)

Eliminating the dual direction ∆v, the reduced KKT matrix of the resulting system has the

form

Ωr =

 Ĥ ∇cTE
∇cE 0

 with Ĥ = ∇2
xxL+∇cTIΣ∇cI . (2.29)

For convex problems the reduced matrix (2.29) is known to be regular with n positive and m

negative eigenvalues [66].

The inertia of Ωr in the convex case motivates the following definition of a descent direction

for nonconvex optimization.

Definition 8 (Descent Direction). A step ∆(x, s, z, v) obtained from system (2.21) is a descent

direction for problem (2.15) (with respective to a filter) if the reduced KKT matrix (2.28)

satisfies

inertia(Ωr) = (n,m, 0). (2.30)

The subsequent regularity assumptions are sufficient to obtain a descent direction from the

primal-dual system (2.21).

Assumption 1 (Regularity Assumptions for the Reduced KKT Matrix). Let Ω
(k)
r be the

reduced KKT matrix (2.29) for the iterate (x, s, z, v)(k) with Ĥk := Ĥ(x(k), z(k), v(k)) and

Ak := ∇cE(x(k)). The following conditions apply:

(A1) Ak has full row rank.

(A2) Ĥk is positive definite on the null-space of Ak, i.e. Ĥk|N (Ak) > 0.

When the reduced KKT matrix (2.29) does not satisfy As. 1, the search direction obtained

from (2.21) may not be a descent direction. In that case, one can ensure to get a descent

direction by replacing the reduced KKT matrix (2.29) in the step computation by a corrected

version

Ωcorr
r =

 Ĥ + γcI ∇cTE
∇cE −γrI

 . (2.31)



2.2. Solution Algorithms for Nonlinear Problems 15

Any regularization parameter γr > 0 leads to full row rank of the lower row block in Ωcorr
r .

Choosing the convexification parameter γc > 0 sufficiently large ensures Ĥ + γcI to be positive

definite (on the null-space of ∇cE). Applying such an inertia correction strategy implies

computing the step (2.21) with an approximation of the primal-dual matrix rather than using

the exact data.

More details on globalization strategies can be found in [66] and the references therein. Filter

line-search approaches for nonlinear optimization are proposed by Wächter and Biegler [104].

Inertia corrections are discussed, e.g., in [72, 103, 105].

2.2.3. Quasi-Newton Methods in Nonlinear Optimization

Quasi-Newton methods refer to iterative approaches that solve nonlinear systems with the

Newton’s method using approximations of derivatives instead of exact derivatives in the

linearized subsystems.

In unconstrained optimization, i.e. in solving nonlinear problems (2.1) with E ∪ I = ∅,
the nonlinear system under consideration is the first-order necessary condition ∇f(x) = 0.

The resulting Newton’s system reads ∇2f(x)∆x = −∇f(x). Approximations B ≈ ∇2f of

the Hessian of the objective are computed by using update heuristics that include first-order

derivative information of the current iterate.

Given an initial point x(0) and an initial approximation B(0), the subsequent approximations

are obtained by using, for example, one of the symmetric update formulae

(PSB) B(k+1) = B(k) +
r(k)(s(k))T + s(k)(r(k))T

(s(k))T s(k)
−
(
(r(k))T s(k)

)
s(k)(s(k))T(

(s(k))T s(k)
)2 , (2.32a)

(BFGS) B(k+1) = B(k) − B(k)s(k)(s(k))TB(k)

(s(k))TB(k)s(k)
+

g(k)(g(k))T

(g(k))T s(k)
, (2.32b)

(SR1) B(k+1) = B(k) +
r(k)(r(k))T

(r(k))T s(k)
, (2.32c)

where the iteration data are given by

s(k) := x(k+1) − x(k), g(k) := ∇f(x(k+1))−∇f(x(k)), r(k) := g(k) −B(k)s(k). (2.33)

Each of the formulae (2.32) estimates the curvature of f along the direction from x(k) to

x(k+1) and updates the approximation with the new curvature information. The Powell-

symmetric-Broyden formula (2.32a) and the Broyden-Fletcher-Goldfarb-Shanno formula (2.32b)

are rank-two updates that—under certain conditions—guarantee the approximations B(k) to be

positive definite. The symmetric-rank-one update formula (2.32c) uses only one dyadic product
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for updating the Hessian approximation. Approximations using SR1 updates tend to be more

reliable for nonconvex problems since they do not try to avoid indefinite B(k) that reflect the

original curvature of ∇2f(x(k)) 6> 0 more appropriately than enforcing B(k) > 0 [66].

In constrained optimization, i.e. in solving NLPs (2.1) with E ∪ I 6= ∅, the nonlinear systems

under consideration are the KKT conditions (2.8). Applying the Newton’s method to (2.8)—as

it is done in an IPM algorithm (cf. Sect. 2.2.1)—leads to linear systems involving blocks of the

KKT matrix (2.28). Hessian update strategies are then used to approximate the Hessian of

the Lagrangian (2.6) . The approximation B(k+1) ≈ ∇2
xxL(x(k+1), z(k+1), v(k+1)) is obtained

by updating B(k) with an estimation of the curvature of the Lagrangian along the direction

s(k) = x(k+1) − x(k). Recalling from Sect. 2.1 the gradient ∇xL of the Lagrangian (2.6),

∇xL(x, z, v) = ∇f(x)−∇cE(x)T z −∇cI(x)T v, (2.34)

and using the notation

L+(x(k+1)) := L(x(k+1), z(k+1), v(k+1)) and (2.35a)

L−(x(k)) := L(x(k), z(k+1), v(k+1)), (2.35b)

quasi-Newton methods in constrained optimization use formulae like (2.32) where g(k) reads

g(k) := ∇xL+(x(k+1))−∇xL−(x(k)), (2.36)

and s(k) and r(k) are defined as before in (2.33).

Considerations for the choice of an update formula depend on the applied globalization

strategy incorporated into the optimization algorithm. Using filter line-search approaches in

IPMs, the desire to obtain a descent direction (see Def. 8) from (2.21) motivates to use rank-two

update formulae like BFGS or PSB. With some adjustments for the constrained optimization

case such as damping strategies, these formulae generate positive definite approximations

B ≈ ∇2
xxf leading to the desired inertia (2.30) of the reduced KKT matrix (2.29).

An overview of quasi-Newton methods for unconstrained and constrained optimization includ-

ing convergence analysis can be found in [66]. Standard references for quasi-Newton methods

include [51, 21, 25]. A damping strategy for the BFGS update formula in constrained opti-

mization was originally proposed by Powell [69]. Implementations of constrained optimization

algorithms employing quasi-Newton approaches include KNITRO [17, 71] and SNOPT [32, 30].



Chapter 3

Applications of Tree-Sparse Problems

This thesis deals with nonlinear problems (NLPs) that arise in the optimization of dynamic

processes with stochastic disturbances. Explicit modeling of uncertainties represented by a

scenario tree leads to problem formulations that are attributed to the class of multistage

problems in stochastic optimization. The resulting nonlinear tree-sparse problems (TSPs)

are specific NLPs featuring problem data with characteristic structures that arise from the

underlying tree topology. Exploiting the structures is the key to solving the TSPs efficiently.

The formulations of the TSPs and their problem-tailored solution algorithms in Chap. 4 are

based on convex counterparts, the so-called tree-sparse convex problems (TSCP) established by

Steinbach. This chapter reviews the previous research in this field of tree-sparse optimization

and motivates its expansion to the scope of nonconvex problems.

After introducing the multistage stochastic problems in Sect. 3.1, the convex case of tree-

sparse optimization is reviewed in Sect. 3.2 and compared to related approaches developed by

other research groups. Finally, Section 3.3 motivates the nonlinear TSPs by outlining the usage

of nonlinear multistage stochastic problems in the context of model predictive control.

3.1. Stochastic Optimization

Problems in stochastic optimization are characterized by the presence of uncertain problem

data that depend on a random variable ξ. The classical two-stage stochastic problem (SP)

contains a first-stage problem that models the optimal choice of so-called first-stage decisions

based on the expected value of a series of second-stage problems. Each second-stage subproblem

corresponds to a realization of the random variable and models the optimal choice of the

respective second-stage decisions with respect to the specific realization. Extending the two-

stage approach to more than one observation of ξ in time leads to the multistage stochastic

problems (MSPs). Solution approaches for both SPs and MSPs include NLP solvers that are

17
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applied to the deterministic equivalent problems (DEPs). The DEP is either equivalent to

a stochastic problem or it is an approximation resulting from a discrete approximation of a

continuous random variable.

The following overview first introduces the classical two-stage problems (Sect. 3.1.1) and

then extends the approach to the multistage case (Sect. 3.1.2), which is exemplified by the

formulation of a portfolio selection problem (Sect. 3.1.3). Finally, solution approaches for

stochastic problems with the focus on interior-point methods are discussed (Sect. 3.1.4).

Notation: In this overview, the capital letter T is used for the length of the planning horizon

in the future forecast of stochastic problems. Avoiding notational conflicts, the transpose of a

vector v will be denoted by v∗.

3.1.1. Two-Stage Stochastic Problems

The classical linear two-stage stochastic problem consists of the first-stage problem

min
x

c∗x+ Eξ[Q(x, ξ)] (3.1a)

s.t. Ax = b, (3.1b)

x ≥ 0, (3.1c)

and a set of second-stage subproblems

Q(x, ξ) := min
y

q(ξ)∗y(ξ) (3.2a)

s.t. T (ξ)x+W (ξ)y(ξ) = h(ξ), (3.2b)

y(ξ) ≥ 0. (3.2c)

So-called first-stage decisions x ∈ Rn1 of problem (3.1) are made before the realization of the

random variable ξ. The problem data c ∈ Rn1 , A ∈ Rm1×n1 and b ∈ Rm1 are deterministic, i.e.

they are independent of ξ. With Eξ[Q(x, ξ)] in (3.2a), an optimal choice of x takes the expected

optimal value of the second-stage subproblems (3.2) into account. Second-stage decisions

y(ξ) ∈ Rn2 as well as the problem data q(ξ) ∈ Rn2 , T (ξ) ∈ Rm2×n1 , W (ξ) ∈ Rm2×n2 and

h(ξ) ∈ Rm2 are unknown and dependent on the random variable ξ. The second-stage constraint

matrix W (ξ) is called recourse matrix and T (ξ) is referred to as technology matrix. A stochastic

problem (3.1)–(3.2) is said to have fixed recourse if the matrix W is independent of the random

variable, i.e. if W (ξ) ≡ W . The second-stage constraints (3.2b) and (3.2c) are supposed to
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hold almost surely, i.e. for all events except for those with zero probability. Second-stage

decisions y(ξ) are determined after the observation of ξ and can be seen as corrections of the

first-stage decisions x taking into account the additional knowledge from the outcome of the

random experiments.

A compact presentation of problem (3.1)–(3.2) reads

min
x

c∗x+ Eξ[Q(x, ξ)] (3.3a)

s.t. Ax = b, (3.3b)

T (ξ)x+W (ξ)y(ξ) = h(ξ), (3.3c)

x, y(ξ) ≥ 0. (3.3d)

Although called linear, problem (3.3) is actually a nonlinear and possibly nonsmooth optimization

problem. The terminology linear is justified by the so-called deterministic equivalent problem.

In the presence of a continuous random variable, problem (3.3) is computationally intractable.

The continuous random variable ξ needs to be approximated using a discrete representation ξ̄

comprising finite many realizations (ξ̄1, . . . , ξ̄K) with K ∈ N. With yk = y(ξ̄k) denoting

the second-stage decisions y corresponding to the realization ξ̄k and analogously using the

second-stage data qk, Tk, Wk and hk, the DEP reads

min
x,y

c∗x+
∑
k∈K

pkq
∗
kyk (3.4a)

s.t. Ax = b, (3.4b)

Tkx+Wkyk = hk, k = 1, . . .K, (3.4c)

x, y1, . . . , yK ≥ 0. (3.4d)

The DEP (3.4) is an approximation of the linear stochastic problem (3.3). With its linear

objective (3.4a) and its (linear-)affine constraints (3.4b) to (3.4d), the DEP is a standard LP.

For more details on the classical two-stage problem the interested reader is referred to the

textbook of Birge and Louveaux [8] and the references therein.

3.1.2. Multistage Stochastic Problems

Multistage models of stochastic problems are generalizations of the two-stage model described

in Sect. 3.1.1. Several observations of the random experiment are made at different points

in time. With each new observation the previous decisions are corrected. The following

presentation follows the lines of Grothey [41].
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In the multistage case, the uncertainty is described by a stochastic process, i.e. a sequence

of random variables ξ = (ξ1, . . . , ξT ). Subsequently, ξt = (ξ1, . . . , ξt) denotes the information

available at time t. The decisions x = (x1, . . . ,xT ) also form a stochastic process and are

supposed to be nonanticipative, meaning a decision xt = xt(ξ
t) only depends on past observations

and not on future outcomes.

The linear multistage stochastic problem in compact form reads

min
x

c∗1x1 + Eξ2
[
Q2(x1, ξ2) + · · ·+ EξT [QT (xT−1, ξT )] . . .

]
(3.5a)

s.t. Tt−1(ξt)xt−1(ξt−1) +Wt(ξt)xt(ξ
t) = ht(ξt), t = 1, . . . ,T , (3.5b)

xt(ξ
t) ≥ 0, t = 1, . . . ,T , (3.5c)

where the functions Qt(xt−1, ξt) in the objective (3.5a) represent optimal values of the t-stage

subproblems

Qt(xt−1, ξt) := min
xt

ct(ξt)
∗xt(ξ

t) (3.6a)

s.t. Tt−1(ξt)xt−1(ξt−1) +Wt(ξt)xt(ξ
t) = h(ξt), (3.6b)

xt(ξ
t) ≥ 0. (3.6c)

The first observation is deterministic, i.e. ξ1 is a discrete random variable with only one

realization. The decisions x1 ∈ Rn1 correspond to the first-stage decisions in the two-stage

case. The problem data c1 ∈ Rn1 , W1 ∈ Rm1×n1 , h1 ∈ Rm1 are deterministic and correspond

to the first-stage data c,A, b in (3.1), respectively. For the sake of the compact problem

representation (3.5), the undefined values x0 and T0 are formally set to x0 = ∅ and T0 = ∅.
The defined uncertain data ct ∈ Rnt , Tt−1 ∈ Rmt×nt−1 , Wt ∈ Rmt×nt and ht ∈ Rmt depend on

the realization of the current observation ξt. They can be chosen in different ways for each

point of time t as indicated by the time subscript attached to the respective data.

A stochastic process ξ of discrete random variables ξt is represented by a scenario tree

as shown in Fig. 3.1, where V is the numbered set of nodes of the tree. Each node j ∈ V
corresponds to a series of realizations ξ̄t = (ξ̄1, . . . , ξ̄t) up to time t = t(j), which coincides

with the tree level of the node j. The predecessor of node j is denoted by π(j) and its set of

successors by S(j). The root 0 ∈ V represents the current time t(0) = 0 and each leaf l in the

set of leaves L = {l ∈ V : S(l) = ∅} defines a scenario, i.e. a possible state (ξ̄1, . . . , ξ̄T ) of the

process at the end of the planning horizon t(j) = T . A successor k ∈ S(j) represents a possible

future realization of the random variable ξt with an associated transition probability p̄k. All

transition probabilities from a node to its successors sum up to one, i.e.
∑
k∈S(j) p̄k = 1. The
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Figure 3.1.: Scenario tree with planning horizon T = 2 and |V | = 9 nodes

probability pj =
∏
k∈Π(k) p̄k associated with node j is the product of transition probabilities p̄k

on its path Π(j) to the root 0.

Let the realizations corresponding to j ∈ V be given by ξ̄j = ξ̄t(j) = (ξ̄1,j , . . . , ξ̄t(j),j). The

decision variables are denoted by xj = x(ξ̄j). The remaining problem data are mapped as

follows: cj = ct(ξ̄t,j), Tj = Tt−1(ξ̄t,j), Wj = Wt(ξ̄t,j), hj = ht(ξ̄t,j). The deterministic version

of the MSP then reads

min
x

∑
j∈V

pjc
∗
jxj (3.7a)

s.t. Tjxπ(j) +Wjxj = hj , j ∈ V , (3.7b)

xj ≥ 0, j ∈ V . (3.7c)

In the case of discrete random variables, the DEP (3.7) is equivalent to the linear MSP (3.5).

If the stochastic process is described by continuous random variables, each random variable ξt

needs to be approximated by a discrete one. The resulting DEP is then an approximation of

the original problem (3.5).

The extension of the linear MSP (3.7) to nonlinear multistage stochastic problems is straight-

forward. The objective of a quadratic MSP reads

min
x

∑
j∈V

pj

(
1

2
x∗jHjxj + c∗jxj

)
(3.8)

with positive semidefinite matrices Hj . A simple nonlinear MSP formulation reads

min
x

∑
j∈V

pjφj(xj) (3.9a)

s.t. Tj(xπ(j)) +Wj(xj) = 0, j ∈ V , (3.9b)

xj ≥ 0, j ∈ V . (3.9c)
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The objective function (3.9a) and the recourse (3.9b) are so-called second-order decoupled or

node-separable, which reads

∇2
xkxl

φj(xj) = 0 and ∇2
xkxl

(
Tj(xπ(j)) +Wj(xj)

)
= 0 for k 6= l. (3.10)

3.1.3. A Portfolio Selection Problem

The following example is the multistage extension of the mean-variance approach for portfolio

selection problems as introduced by Frauendorfer [27]. The presentation here follows the lines

of Steinbach [78].

Consider a portfolio of n risky assets with the initial investment at t = 0. The portfolio

is restructured at discrete times t = 1, . . . ,T , and redeemed one period later at time T + 1.

The capitals of the assets at time t are gathered into the vector xt ∈ Rn. The capital already

includes the transactions vt ∈ Rn that are made in the time stage [t, t+ 1). The initial wealth is

normalized and fully invested, i.e. e∗x0 = 1. New investments and partial redemptions within

the period are not included. In the absence of transaction costs, the transaction conditions read

e∗vt = 0 for t > 0. The goal in the presented model is to attain a prescribed expected return

ρ > 1 with minimal risk.

The development of the portfolio is described by a stochastic process ξ = (ξ0, . . . , ξT+1). The

vector of returns in time stage [t− 1, t] is denoted by rt(ξt) ∈ Rn. Let r̄T (ξT ) be the expected

return in the time stage [T ,T+1] conditioned on the history ξT , i.e. r̄T (ξT ) = E(rT+1(ξT+1|ξT )).

The covariance matrix associated with r̄T (ξT ) is given by ΣT (ξT ) ∈ Rn×n. At times t > 0,

the portfolio is rebalanced after the observation of ξt, leading to the nonanticipative policy

xt = rt(ξ
t)xt−1 + vt. The risk is modeled as the variance of the expected return at the end of

the period T + 1, which reads (omitting all stochastic dependencies) as follows:

σ2
ξT+1

(
r∗T+1xT

)
= E (x∗T [ΣT + r̄∗T r̄T ]xT )− ρ2. (3.11)

Assuming the returns rj for j ∈ V are given together with the expected returns r̄k for k ∈ L
and the associated covariance matrices Σk, the DEP of the portfolio selection problem is a
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convex QP and reads

min
x

∑
j∈L

pj
2
x∗j
(
Σj + r̄j r̄

∗
j

)
xj − ρ2 (3.12a)

s.t. e∗x0 = 1, (3.12b)

e∗xj = r∗jxπ(j), j ∈ V \ {0}, (3.12c)∑
j∈L

pj r̄
∗
jxj = ρ. (3.12d)

Extensions to the portfolio selection problem including cash flow, transaction costs and

composition constraints can be found in the review paper [82]. The reviewed mean-variance

approach is based on Markowitz’ ideas on portfolio selection [63] and the utility of wealth [64].

A list of formulations and extensions leading to nonlinear MSPs is given, e.g., by Gondzio

and Grothey [34]. Standard references for portfolio selection (also referred to as asset liability

management) include [74, 110, 108].

3.1.4. Interior-Point Methods for Stochastic Problems

Many solution approaches for problems in stochastic optimization are sophisticated algorithms

designed for solving deterministic equivalent counterparts. When dealing with continuous

random variables, these first need to be approximated using discrete variables. This discretization

process is often referred to as scenario generation and is not in the focus of this thesis.

Both the DEP (3.4) of the two-stage problem (3.3) and the DEP (3.7) of the multistage

problem (3.5) are standard LPs. However, when accounting for many realizations of the

random variables, both problems become very large. The problem sizes of the MSPs even

grow exponentially with each stage. Solution algorithms have to exploit problem-specific

characteristics in the solution process to keep the DEPs computationally tractable.

L-shaped methods for two-stage problems, for example, consider the first-stage problem (3.1)

as so-called master problem and solve it by systematically evaluating second-stage problems (3.2)

for some realizations of the random variable ξ. The second-stage problems to be evaluated

are determined based on Benders decompositions [7] or alternatively Dantzig-Wolfe decomposi-

tions [20]. Extending this solution approach to the multistage case, the resulting so-called nested

L-shaped methods solve each t-stage subproblem (3.6) with the L-shaped method. Informally

speaking, nested L-shaped methods traverse the nodes of the scenario tree (cf. Sect. 3.1.2),

starting with the root 0 ∈ V , and solve the subproblem (3.6) corresponding to the current

node j in the traversal. The branch that starts at j is cut when detecting that investigating

the corresponding subproblem leads to no further progress towards the solution of the overall



24 Chapter 3. Applications of Tree-Sparse Problems

problem, i.e. to the optimal choice of the first-stage decisions. More on (nested) L-shaped

methods can be found, e.g., in [8] and the references therein.

When applying interior-point methods (cf. Sect. 2.2.1) to the DEP of a stochastic problem,

one usually deals with large-scale KKT systems that, however, are very sparse and feature

structured system matrices. The so-called L-shaped structure of the two-stage problem, for

example, is best seen when restating the presentation (3.3) as

min
x,y

c∗x+
∑
k∈K

pkq
∗
kyk (3.13a)

s.t. Ax = b, (3.13b)

T1x+W1y1 = h1, (3.13c)

T2x +W2y2 = h2,

...
. . .

...

TKx +WKyK = hK ,

x, y1, . . . , yK ≥ 0. (3.13d)

In KKT matrices that arise when dealing with MSPs (3.7), the problem-specific structure

reflects the underlying scenario tree. The recourse matrices Wj form a block-diagonal and the

technology matrices Tj are located on the secondary diagonal corresponding to the predecessor

node π(j). For the example tree in Fig. 3.1, the equality constraint block of the KKT matrix

(cf. Chap. 2) has the block structure

∇cE =



W0

T1 W1

T2 W2

T3 W3

T4 W4

T5 W5

T6 W6

T7 W7

T8 W8



. (3.14)

In other words, the matrix (3.14) features a stochastic version of a so-called staircase structure

that occurs in problems of dynamic optimization.

For IPM approaches in stochastic optimization, exploiting the problem-specific KKT structures
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is mandatory to compete with other solution algorithms. Comparing an IPM with a nested

L-shaped method, for example, the latter considers only some subsystems of the KKT system

while one iteration of the IPM requires the solution of the entire system. However, handling

the problem-specific structures properly, the otherwise cubic complexity of direct KKT solution

algorithms can be reduced to linear complexity [82]. Such structure-exploiting direct methods

for tree-structured KKT systems take center stage in tree-sparse optimization and are further

discussed in Sect. 3.2.3.

Interior-point methods for LPs, QPs and NLPs are based on the same concepts [66]. Thus,

IPM approaches for linear MSPs (3.7) are easily extended to the quadratic MSP case with

objective (3.8) and to the nonlinear problem (3.9). Moreover, since the Jacobian of the nonlinear

recourse constraints (3.9b) maintains the structure (3.14) due to the node-separability (3.10),

the same structure-exploiting KKT algorithm can be used in all three cases.

3.2. Tree-Sparse Convex Problems

The tree-sparse convex problems (TSCP) established by Steinbach emphasize the dynamic

nature of multistage stochastic problems (MSPs). The TSCP in implicit form (Sect. 3.2.1) is an

MSP with convex objective and additional linear constraints. Distinguishing between dependent

state variables and free control variables leads to the TSCPs with explicit controls (Sect. 3.2.2),

which can be seen as convex problems in optimal control that take different developments of

the controlled process explicitly into account. Solving large-scale optimization problems using

interior-point methods requires problem-specific treatment of the arising KKT systems. For the

TSCPs, the key to solving those systems efficiently is a hierarchical sparsity exploitation in a

direct approach that is performed recursively over the tree (Sect. 3.2.3). Closely related IPM

approaches of other research groups feature similar recursive KKT algorithms while dealing

with coarser MSP formulations (cf. Sect. 3.2.4). Finally, the TSCPs are suitable for modeling

problems in several applications of finance engineering and robust optimal control (Sect. 3.2.5).
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3.2.1. Implicit Tree-Sparse Problems

The tree-sparse convex problem in implicit form reads

min
y

∑
j∈V

φj(yj) (3.15a)

s.t. Gjyi − Pjyj + hj = 0, j ∈ V , (3.15b)

F rj yj ∈ [rlj , ruj ], j ∈ V , (3.15c)

yj ∈ [blj , buj ], j ∈ V , (3.15d)∑
j∈V

Fjyj + eV = 0, (3.15e)

where i = π(j) denotes the predecessor of node j ∈ V . The problem comprises a convex

quadratic objective (3.15a) and the following linear constraints: dynamic constraints (3.15b),

range constraints (3.15c), simple bounds (3.15d), and global equality constraints (3.15e). For

the root 0 ∈ V it is G0 = ∅. Problem (3.15) is an MSP (3.7) with a nonlinear convex objective

function (3.9a) and additional linear equality and inequality constraints. The convexity of the

objective (3.15a) implies that the Hessians ∇2
yjyjφj are positive semidefinite.

The implicit TSCP (3.15) is a node-separable convex optimization problem of the form

min
y

φ(y) (3.16a)

s.t. Ay = a, (3.16b)

By ∈ [rl, ru], (3.16c)

y ∈ [bl, bu]. (3.16d)

Node-separability in the convex case means that mixed second-order derivatives of the objec-

tive (3.16) vanish, i.e. ∇ykylφ(y) = 0 for k 6= l, and the node variables yj are at most linearly

coupled. More precisely, the following three types of coupling occur in convex tree-sparse

problems:

1. Global linear coupling: The objective (3.15a) and the equality constraints (3.15e) couple

all node variables yj linearly.

2. Path coupling: The dynamic constraints (3.15b) couple the variables of a node j ∈ V
with those of its predecessor i.

3. Decoupled constraints: The remaining constraints are so-called local constraints. They
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involve only local variables, i.e. those node variables corresponding to the same node j as

the constraint.

3.2.2. Tree-Sparse Problems with Explicit Controls

Splitting the node variables yj into dependent state variables xj and free control variables uj , a

first version of a tree-sparse problem with these explicit controls reads

min
x,u

∑
j∈V

φj(xj ,uj) (3.17a)

s.t. Gjxi + Ejui − xj + hj = 0, j ∈ V , (3.17b)

F rj xj +Dr
juj ∈ [rlj , ruj ], j ∈ V , (3.17c)

xj ∈ [bxlj , b
x
uj ], j ∈ V , (3.17d)

uj ∈ [bulj , b
u
uj ], j ∈ V , (3.17e)∑

j∈V
(Fjxj +Djuj) + eV = 0. (3.17f)

The former bounds (3.15d) are refined into simple state bounds (3.17d) and simple control

bounds (3.17e). The remaining constraints and the objective are detailed versions of their

corresponding implicit counterparts in (3.15). The explicit problem formulation (3.17) is

mapped into the implicit problem (3.15) by combining vectors into

yj =

xj

uj

 , blj =

 bxlj

bulj

 , buj =

 bxuj

buuj

 , (3.18)

and by mapping matrix node subblocks by

Ḡj =

Gj
Ej

 , P̄j =

 I
0

 , F̄ rj =

 F rj
Dr
j

 , F̄j =

 Fj
Dj

 , (3.19)

where the barred letters denote the node subblocks of the implicit form (3.15).

In the dynamic constraints (3.17b), the impact of the controls influences the state of the

dynamic system in the next time period, i.e. the controls ui affect the states xj of the succes-

sors j ∈ S(i) in the time interval [t(i), t(j)), where t(v) denotes the point of time corresponding

to v ∈ V . For a successor j ∈ S(i) of i ∈ V , the states xj depend on the controls ui as well

as the preceding states xi, and the applied controls ui are the same for all successors S(i).

In the context of tree-sparse optimization, this control form is referred to as outgoing control
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and problem (3.17) is a tree-sparse problem in outgoing control form or short outgoing control

problem.

The dynamic constraints (3.17b) with so-called incoming controls read

Gjxi + Ejuj − xj + hj = 0, j ∈ V . (3.20)

In (3.20), the controls affect the state of the system in the same time period, meaning the

controls uj are applied at the beginning of the time interval [t(j), t(j) + 1) and affect the current

states xj . Speaking in terms of stochastic optimization, outgoing controls ui and incoming

controls uj both are decisions that are made for the time period [t(j), t(j) + 1). The difference

is that outgoing controls are decisions based on the knowledge up to history ξ̄t(i) while decisions

in incoming control form are made after the realization of ξt(j), i.e. they are based on the

knowledge up to history ξ̄t(j).

For algorithmic reasons, the TSCP formulation with incoming controls requires some adjust-

ments in comparison to the outgoing TSCP (3.17). First, the objective function with incoming

controls reads

min
u,x

φ(u,x) =
∑
j∈V

(φij(xi,uj) + φj(xj)) . (3.21)

Second, the range constraints (3.17c) are replaced by

F rijxi +Dr
juj ∈ [rulj , r

u
uj ], j ∈ V , (3.22a)

F rj xj ∈ [rxlj , r
x
uj ], j ∈ V , (3.22b)

where (3.22a) are mixed ranges and (3.22b) are pure local state ranges. The mixed ranges (3.22a)

bear the same path coupling as the dynamics (3.20). Now, the so-called tree-sparse problem

in incoming control form or short incoming control problem consists of the objective (3.21),

the dynamics (3.20), the ranges (3.22), the bounds (3.17d) and (3.17e) as well as the equality

constraints (3.17f).

With ∇2
xi,ujφ(x,u) 6= 0, the incoming objective (3.21) is no longer node-separable in the

sense of (3.10): the controls uj are coupled nonlinearly with the predecessor’s state variables xi

by the node functions φij . The following motivation justifies to grant φ the property of node-

separability nonetheless. In the outgoing control case, nonlinear couplings only occur between

state-defining node variables, i.e. the states xi and the controls ui define the states xj and

are coupled nonlinearly by the node function φj . This observation still holds in the incoming

control case where xj is defined by the previous states xi and the local controls uj .
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Refinement of Equality Constraints

In the implicit TSCP (3.15), nondynamic equalities are modeled as the globally coupled

constraints (3.15e). A more detailed problem presentation includes so-called local equality

constraints, i.e. decoupled equality constraints

F yj yj + eyj = 0, j ∈ V . (3.23)

For explicit controls, these local equality constraints are refined into pure state constraints,

pure control constraints and mixed equalities including both node variables. The refinement of

the equality constraints for the outgoing TSCP (3.17) reads

F xj xj + exj = 0, j ∈ V , (3.24a)

Du
j uj + euj = 0, j ∈ V , (3.24b)

F cj xj +Dc
juj + ecj = 0, j ∈ V , (3.24c)

with local state equalities (3.24a), local control equalities (3.24b) and mixed equality con-

straints (3.24c). The equalities (3.24) are mapped into (3.23) as follows

F yj =


F xj

Du
j

F cj Dc
j

 and eyj =


exj

euj

ecj

 . (3.25)

In the incoming control case, the mixed equalities (3.24c) are replaced by path coupling equations

of the form

F cijxi +Dc
juj + ecj = 0, j ∈ V . (3.26)

Relations Between the Tree-Sparse Formulations

In [83], Steinbach presents all three tree-sparse convex problems in their most detailed forms

showing that under certain conditions the problems are transformed into each other as illustrated

in Fig. 3.2. An outgoing TSCP is transformed into an implicit problem by combining the states xj

and the controls uj into the node variables yj . In the reverse process, the outgoing TSCP is

obtained from an implicit TSCP by variable splitting. An outgoing TSCP is embedded in the

incoming control formulation and, in the reverse process, the incoming TSCP is transformed

into an outgoing problem by collecting the children. Furthermore, Steinbach proves that the
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incoming outgoing implicit

collect children combine variables

split variablesembed

on chains
⇐⇒

Figure 3.2.: Relations between the three control forms of the tree-sparse problems

explicit problem formulations are equivalent on chains as specific trees, i.e. in the deterministic

case.

3.2.3. Hierarchical Sparsity and Recursive KKT Solution

Exploiting the sparsity in the arising KKT systems is mandatory when solving large-scale

optimization problems. The KKT systems of tree-sparse problems benefit from four sources of

sparsity that induce zero patterns on different levels in the KKT matrix. Hierarchically sorted

from coarse to fine, these four levels of sparsity are as follows:

1. Saddle point structure: The KKT system (2.28) is a so-called saddle point system of the

form

H CT

C −M

x1

x2

 =

 b1

b2

 with C =

A
B

 and A =


G

F y

F

 . (3.27)

The 2× 2 system matrix is symmetric and indefinite, and the lower right block M usually

is of diagonal form. The constraint matrix C comprises the inequality block B and

the equality block A. The latter is further split into a dynamic block G, a block F y

corresponding to the local equality constraints and a global constraint block F .

2. Tree structure: As it is characteristic for multistage stochastic problems, the tree-sparse

matrix blocks in the saddle point system (3.27) reflect the underlying tree topology

(cf. Sect. 3.1.4). The matrix blocks have either block-diagonal form, the stochastic

staircase form as in (3.14), or they are block-dense rows.

3. Control refinement: Compared with the implicit form, using explicit controls provides

further structural information in the node subblocks, i.e. the matrix blocks with node
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subscripts. The mappings (3.19) and (3.25) demonstrate the control refinement for the

outgoing control case.

4. Local sparsity: The node subblocks may have problem-specific entry patterns that result

from the specific optimization model at hand. For example, in a tree-sparse incoming

control formulation of the portfolio selection problem (3.12), the node subblock Gj is of

diagonal form and Ej is made of identity matrices, i.e. Gj = diag(rj) and Ej = [I,−I].

Neglecting the saddle point structure in optimization algorithms more than doubles the

memory requirement for the KKT matrices as well as the computational effort for solving the

KKT system. By definition , a solution algorithm designed for KKT systems takes this first

sparsity level into account. In tree-sparse optimization, the second and the third sparsity level

are addressed in a direct approach iterating recursively over the nodes of the underlying scenario

tree. This approach is outlined subsequently. Finally, exploiting local sparsities requires solution

algorithms that are tailored to the specific tree-sparse model at hand. Analyzing and exploiting

local sparsities is discussed in [80] and [49]. An overview of the tree structures in matrix blocks

and a detailed discussion on the control refinement can be found in [83]. Descriptions of the

second sparsity level for explicit control problems without local equality constraints are also

given in Sect. 4.2 of this thesis.

KKT Solution Algorithm for the Implicit Case

When solving convex problems of the form (3.16) with a primal-dual IPM (cf. Sect. 2.2.1), each

IPM iteration requires one or several solutions of the KKT system
H + Φ AT BT

A

B −Ψ−1




∆y

−∆z

−∆v

 = −


ν

a

ρ

 , (3.28)

where H denotes the Hessian of the Lagrangian corresponding to problem (3.16a), Φ and Ψ are

positive diagonal matrices, z and v are the duals for the equalities (3.16b) and ranges (3.16c),

respectively, and ν and ρ are concentrated right-hand side terms. Using the notation ν = (fj)j∈V

and ρ = (vj)j∈V as well as the Lagrange multipliers λj , µxj and µ for the dynamics (3.15b),

the local equalities (3.23) and the global equality constraints (3.15e), respectively, the KKT

system (3.28) for the implicit TSP (3.15) with local equalities (3.23) can be stated as the
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following set of equations:

(Hj + Φj)yj + PTj λj −
∑

k∈S(j)

GTk λk

−(F xj )Tµxj − (F rj )T vj − FTj µ+ fj = 0, j ∈ V , (3.29a)

Gjyi − Pjyj + hj = 0, j ∈ V , (3.29b)

F xj yj + exj = 0, j ∈ V , (3.29c)

F rj yj + Ψ−1
j vj + rj = 0, j ∈ V , (3.29d)∑

j∈V
Fjyj + eV = 0. (3.29e)

This KKT system is solved efficiently by applying the following three algorithm phases:

1. Local projections: Use the local equality constraints (3.29c) to eliminate as many primal

variables yj as possible. Project the remaining system, i.e. (3.29) without (3.29c), onto

the null-space N (F xj ) of the local equalities (3.29c).

2. Elimination of range duals: Solve (3.29d) for the range duals vj and substitute this

expression into the dual feasibility condition (3.29a).

3. Recursive variable elimination: Eliminate the remaining primal variables and the dynamic

duals λj recursively over the tree.

After the first two steps, the tree-sparse system (3.29) is reduced to

H̄jy
1
j + P̄Tj λj −

∑
k∈S(j)

ḠTk λk − F̄Tj µ+ f̄j = 0, j ∈ V , (3.30a)

Ḡjyi − P̄jy1
j + h̄j = 0, j ∈ V , (3.30b)∑

j∈V
F̄jy

1
j + ēV = 0, (3.30c)

where the barred subblocks are projected modifications of their original counterparts in (3.29)

and y1
j are the remaining primal variables. In the third step, equations (3.30a) and (3.30b) are

used in an inward recursion over the tree to eliminate y1
j and λj , respectively. Substituting the

expressions of the eliminated variables into the global equation (3.30c) leads to a linear system

that is solved for the global multiplier µ. The node variables are evaluated during an outward

recursion over the tree using the expressions obtained during the elimination processes. The

recursive elimination and evaluation procedure of the third algorithm step is referred to as basic

recursion.
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A detailed presentation of the implicit basic recursion for system (3.30) is given in [79], the

local projections of (3.29c) can be found in [80].

Algorithmic Refinements for Explicit Control

Solution algorithms for tree-sparse KKT systems corresponding to problems in explicit control

forms follow the same three phases as in the implicit case. The first algorithm phase for explicit

controls include three local projections: projections for the local state equalities (3.24a), for the

local control equalities (3.24b) as well as for the mixed equalities (3.24c) and (3.26), respectively.

Local projections correpsonding to a node j ∈ V may induce additional local constraints or

dynamic constraints for its predecessor i. Hence, in the explicit case, the projection phase of

the solution algorithm is also performed recursively over the tree.

Tree-sparse problems with outgoing controls are stochastic extensions of the optimal control

problems considered in [77]. There, Steinbach provides a complete discussion of the KKT

solution algorithm for outgoing controls on chains. The extension on trees of the second and the

third phase of this algorithm is supplemented in this thesis (cf. Sect. 4.3.2). For the incoming

control case, the basic recursion is presented in [79] and can also be found in Sect. 4.3.3. A

complete discussion of the local projections are provided in [83]. Detailed presentations of the

second phases of the tree-sparse KKT algorithms cannot be found in the literature. For both

explicit control cases, those elimination phases are discussed in this work (cf. Sect. 4.3). Finally,

regularity conditions for the KKT solution algorithms of all three problem formulations are

discussed in detail in [83].

3.2.4. Related Approaches

In the literature, there are two structured IPM approaches for MSPs that are closely related to the

one for tree-sparse problems and which feature similar recursive KKT solution algorithms. First,

Gondzio and Grothey consider quadratic MSPs with global inequality constraints. They base

their recursive approach on factorizing subblock prototypes that are obtained from reordering

the structured KKT matrix [34, 35]. Their parallel C++-implementation OOPS [1] exploits

this subblock presentation further for scheduling corresponding computations dynamically

in the parallel computational environment. Gondzio and Grothey solve nonlinear extensions

of the quadratic MSPs with a textbook SQP framework using OOPS as the underlying QP

solver [33, 36].

Second, Blomvall and Lindberg consider convex MSPs with explicit controls, which basically

are outgoing TSCPs without global and local equality constraints. They solve these problems

using a Ricatti-based IPM solver [9, 11, 12, 13]. In [10], Blomvall proposes a parallel approach
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for the structured KKT solution algorithm based on a depth-first distribution of the tree nodes

that is also considered in [46, 50] in the context of tree-sparse optimization. Blomvall’s idea

also takes center stage in the distribution of the nonlinear tree-sparse problems in Chap. 5.

In the context of portfolio optimization, Grothey [41] provides a review of IPM approaches for

MSPs (cf. Sect. 3.1.3) together with comparisons of the previously described three approaches

including the tree-sparse optimization.

3.2.5. Applications and Software

In [77], Steinbach establishes solution algorithms for KKT systems that arise in nonlinear

optimization approaches for optimal control problems (OCP). He solves the discretized OCPs in

an SQP framework that employs an IPM approach for the occurring quadratic subproblems. The

considered OCPs arise from controlling industrial robots [76, 87, 88, 86]. Steinbach compares

his Fortran 77 implementations of the sophisticated KKT solution algorithms called MSKKT

with the (at that time) state of the art sparse solvers MA28 [23] and LAPACK’s BAND [3].

Motivated by applications in financial engineering, the TSCPs lead back to stochastic

extensions of Steinbach’s KKT solution algorithms. Tree-sparse formulations of the portfolio

selection problem (3.12) are established in [78, 81]. In [89], Steinbach and Vollbrecht study the

valuation of swing options at energy markets. They present a multistage stochastic model of the

valuation problem formulated as an incoming control problem. Outgoing control formulations

are used in [29] to model the separation of methanol and water in a binary mixture. Related

articles that provide further modeling aspects and additional computational results for this

distillation process include Henrion et al. [44] and Steinbach [84]. Implemented software for

these applications is written in C++.

Research work with the focus on software implementation include the three diploma theses

of Hutanu [49], Hofmann [46] and the author [50]. Hutanu addresses the potential of exploiting

local sparsity (cf. Sect. 3.2.3) and develops a software tool that generates C++-code tailored to

specific node subblock structures. With this code generator, Hutanu provides a fair compromise

between the time-consuming writing of an efficient handcrafted source code and the usage of

an inefficient implementation without local sparsity exploitation [49]. In [46] and [50], first

attempts are made to parallelize the tree-sparse KKT solution algorithms. In this thesis, the

distribution of the complete algorithm for (nonlinear) tree-sparse problems is subject of Chap. 5.

Detailed information on the implementation together with discussions of previous software

development in this context are provided in Chap. 6.
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Figure 3.3.: Closed-loop control system (left) and MPC controller (right)

3.3. Robust Model Predictive Control

The following presentation outlines the basic ideas of model predictive control (MPC) and

sketches a robust MPC approach that incorporates nonlinear MSPs in its procedure. For a

comprehensive background on MPC the interested reader is referred to the textbook [43] and

the references therein.

Researchers in the area of optimal control study dynamic processes and develop controllers

that manipulate these processes in a desired way. The task of such a controller is to bring

a real-world instance of the process called plant into a reference state and keep it there. In

an open-loop control system, the controller forecasts the behavior of the plant over a certain

prediction horizon and generates a control signal such that the dynamic process develops in an

optimal way. However, these predictions are seldom exact or to say it with Moiraine’s1 words,

“The Wheel (of time) weaves as the Wheel wills.” [53]. In a so-called closed-loop control system,

information about the state of the plant is constantly being fed to the controller that in turn

is adjusting its control signal (see Fig. 3.3 on the left-hand side). This signal is then given in

feedback form u(t) = µ(x(t)), where the feedback law µ defined by the controller determines the

control signal u(t) based on the current state x(t).

Now, model predictive control is an optimization-based approach for the feedback law µ [43].

An MPC controller comprises a dynamic model of the plant, an optimal control problem (OCP)

and a solver for the OCP called optimizer (see Fig. 3.3 on the right-hand side). First, the dynamic

model, which is here assumed to be given as a system of ordinary differential equations (ODEs),

is a simplified version of the plant that predicts its change of state with respect to an applied

control signal. Next, the OCP incorporates the dynamic model as constraints and defines an

objective that penalizes deviations of the current state from the reference state as well as costs

caused by the applied control. Finally, the optimizer fills the OCP with current data, solves it

1Moiraine Damodred, daughter of Dalresin Damodred of House Damodred in Cairhien, Aes Sedai of the Blue
Ajah of the White Tower in Tar Valon



36 Chapter 3. Applications of Tree-Sparse Problems

over the prediction horizon T and, this way, determines the control signal that is returned next

to the plant. Thus, an MPC controller in a closed-loop system repeats the following steps:

1. Receive a measurement of the current state x(t = t0) of the plant.

2. Solve the OCP over the prediction horizon t0 + T .

3. Define the feedback law µ(x(t)) = u(t0) and apply this control in the next period.

In this scheme of a so-called moving horizon controller, the length of the prediction horizon T

remains the same in each run. Thus, the prediction horizon is moving forward in time.

Generally, the MPC controller is error-prone with several sources of error. First, model

errors arise due to the simplification of the real-world process that is considered in the OCP.

Second, the state of the plant is observed by taking measurements of only a small number of

characteristics. Additionally to the measurement errors caused by characteristics that are not

observed, also, the taken measurements cannot be expected to be exact but rather feature some

error margins. Finally, the scheme above does not account for the communication times of the

exchanged signals, i.e. the measurements and the control signals. Time delays are, therefore,

another possible source of errors.

By the continuing adjustment of the control signal, a closed-loop control system is already

designed for taking errors into account. In robust MPC, however, errors are in addition

incorporated explicitly into the dynamic model of the plant. Here, it is assumed that model

errors are represented by uncertain parameters with possibly different realizations in time. Then

the dynamic model of the plant reads

ẋ(t) = g(x(t),u(t), ξ(t)), (3.31)

where ξ(t) ≡ ξ is a continuous random variable.

Multistage Stochastic Problems in Robust MPC

The simplest version of a multistage stochastic problem used as OCP in the MPC controller

reads

min
x,u

∑
j∈V

pjφj(xj ,uj) (3.32a)

s.t. xj − gj(xi,ui) = 0, j ∈ V , (3.32b)

where i = π(j) is the predecessor of node j ∈ V (cf. Sect. 3.2). The node functions φj are non-

negative functions representing costs. The node functions gj in the dynamic constraints (3.32b)
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have the form

gj(xi,ui) = xi +

∫ t(j)

t(i)

g(x(t),ui, ξj)dt, (3.33)

where t(j) denotes the point of time corresponding to node j. Thus, in (3.33) the trajectory x

is described as solution of the initial value problem

ẋ(t) = g(x(t),u(t) ≡ ui, ξ(t) ≡ ξj) with x(t(i)) = xi, (3.34)

and gj represents the value of x at time t = t(j).

The MSP (3.32) is obtained by approximating the uncertain parameter ξ by a stochastic

process of discrete random variables and by applying a multiple shooting approach to the

dynamic model (3.31). In more detail, the steps to formulation (3.32) are as follows:

• Discretize the time by using the time grid Γ = {[t0, t1], . . . , [tm−1, tm = T ]}.

• For each point of time tk, approximate the continuous random variable ξ by a discrete

one ξ̄tk . The resulting stochastic process is represented by a scenario tree with tree

nodes V and scenarios L (cf. Sect. 3.1.2).

• For each scenario l ∈ L, approximate the control function u by a piecewise constant

function ūl with ūl(t(j)) = uj for all ancestors j ∈ Π(l) of l.

• For each scenario l ∈ L, approximate the trajectory x by a continuous and piecewise

linear function x̄l with x̄l(t(j)) = xj for all ancestors j ∈ Π(l) of l.

• Include the states xj explicitly as optimization variables into the optimization problem and

ensure the continuity of all functions x̄l by incorporating the dynamic constraints (3.32b).

Now, solving problem (3.32) leads to solution functions ūl and x̄l such that the expected

value of the costs (3.32a) is minimized. This way, the control signal u(t0) = u0 that is sent back

to the plant is optimal with respect to all considered scenarios.





Chapter 4

Algorithms for Nonlinear Tree-Sparse

Problems

The nonlinear tree-sparse problems (TSPs) studied in this work generalize the tree-sparse convex

problems established by Steinbach (cf. Sect. 3.2). They are solved using a primal-dual interior-

point method (IPM) that employs a filter line-search globalization (cf. Sect. 2.2). Common

algorithmic approaches in this optimization framework are tailored to the specific presentation

of the TSPs. The resulting tree-sparse algorithms feature the same node-wise presentation as

the TSPs and, in doing so, preserve the sparsity pattern originating from the underlying tree

topology. Difficulties arising for nonlinear problems as well as for problems that do not provide

evaluations of second-order derivatives are also addressed in this node-wise manner.

This chapter is organized as follows. Section 4.1 introduces the TSPs that are studied in this

work and highlights their key features that are exploited in the subsequent sections. Section 4.2

tailors the general discussions of NLPs in the context of IPMs to the specific case of the TSPs.

The tree-sparse KKT algorithms for convex TSPs are presented in Sect. 4.3. By introducing a

problem-specific inertia correction strategy, Section 4.4 extends these KKT algorithms for their

application in solving nonlinear problems. TSPs that do not provide evaluations of second-order

derivatives are addressed in Sect. 4.5. There, a structured quasi-Newton approach based on

Hessian update strategies for partially separable functions is proposed. Finally, Section 4.6

presents further tree-sparse algorithms and discusses some numerical issues in the context of

tree-sparse optimization.

Notation: Considering tree-sparse problems in the context of interior-point methods, notational

conflicts are entailed by bringing two sets of notation together, i.e. the notation used for nonlinear

optimization and IPMs (cf. Chap. 2) are mixed with the one used for the tree-sparse problems

39
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(cf. Sect. 3.2). Remaining consistent with previous used notation and with the relevant notation

in the referred literature, possible confusions are clarified at the beginning of each section.

4.1. Nonlinear Tree-Sparse Problems

Nonlinear tree-sparse problems are NLPs that originate from optimizing dynamic processes

with stochastic disturbances (cf. Sect. 3.1). They feature an underlying tree topology that

results from a time discretization and an explicit modeling of the uncertainties. Each node

in the tree represents an event with an associated probability. Distinguishing between free

control variables and dependent state variables, the studied TSPs express their dynamic nature

explicitly. TSPs in implicit form are not considered in this thesis (cf. Sect. 3.2.1).

In the following, Section 4.1.1 states the tree notation used to describe the TSPs and their

algorithms. Section 4.1.2 introduces the studied tree-sparse problems, i.e. explicit TSPs in

outgoing and in incoming control form, and maps them into a standard NLP formulation.

Afterwards, Section 4.1.3 highlights the key characteristics of those TSPs.

Notation: The primal variables of an NLP are denoted by y and the objective function by φ

whereas f refers to the global equality constraints of the TSPs. Fixed subscripts are l (lower)

and u (upper) as well as the node subscripts i, j, k. Fixed superscripts are x and u denoting

state-related and control-related dimensions and functions, respectively. Then, uj are always

the control node variables whereas u, ul and uu refer to Lagrange multipliers corresponding to

simple bounds.

4.1.1. Tree Notation

The considered trees have numbered node sets V , are rooted at node 0 ∈ V and have the tree

depth T , which originates from discretizing a time-continuous process. Each node j ∈ V is

associated with a tree level t(j) indicating its distance to the root. Thus, it is t(0) = 0. The

unique predecessor of a node j is given by i = π(j), and for the root it is π(0) = ∅. A node j

has a set of successors S(j), and the leaves L are those nodes without successors, i.e. S(j) = ∅
for j ∈ L. The level set Lt comprises all nodes on level t whereas Vt forms the set of all nodes

up to level t, i.e. Vt =
⋃t
τ=0 Lτ . Figure 4.1 shows a simple example tree with its corresponding

node sets and level sets.
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V0 = {0} L0 = {0}
V1 = {0, 1, 2} L1 = {1, 2}
V2 = {0, . . . , 5} L2 = {3, 4, 5}
V = {0, . . . , 5} L = {3, 4, 5}

Figure 4.1.: Example tree with corresponding node sets and level sets

4.1.2. Nonlinear Tree-Sparse Problems with Explicit Controls

Two formulations of tree-sparse problems with explicit controls are studied in this thesis. Both

TSPs are formulated as NLPs in the presentation

min
y∈Rn

φ(y) (4.1a)

s.t. cE(y) = 0, (4.1b)

cR(y) ∈ [rl, ru], (4.1c)

y ∈ [bl, bu]. (4.1d)

The former inequalities of problem (2.1) are subclassified into range constraints (4.1c) with

|R| = k and rl, ru ∈ Rk as well as bound constraints or simply bounds (4.1d) with bl, bu ∈ Rn.

Problem (4.1) is equivalent to (2.1) with |I| = 2k + 2n using the mapping

cI(y) = (cR(y)− rl,−cR(y) + ru, y − bl,−y + bu)
T

. (4.2)

The nonlinear tree-sparse problem in outgoing control form studied in this thesis reads

min
x,u

∑
j∈V

φj(xj ,uj) (4.3a)

s.t. gj(xi,ui)− xj = 0, j ∈ V , (4.3b)

rj(xj ,uj) ∈ [rlj , ruj ], j ∈ V , (4.3c)

xj ∈ [bxlj , b
x
uj ], j ∈ V , (4.3d)

uj ∈ [bulj , b
u
uj ], j ∈ V , (4.3e)∑

j∈V
fj(xj ,uj) = 0. (4.3f)

The outgoing control problem consists of the objective function (4.3a) and the following

five constraints: dynamics (4.3b), local ranges (4.3c), local state bounds (4.3d), local control

bounds (4.3e) and global equalities (4.3f).
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The nonlinear tree-sparse problem in incoming control form reads

min
u,x

∑
j∈V

φij(xi,uj) +
∑
j∈V

φj(xj) (4.4a)

s.t. gj(xi,uj)− xj = 0, j ∈ V , (4.4b)

rij(xi,uj) ∈ [rulj , r
u
uj ], j ∈ V , (4.4c)

rj(xj) ∈ [rxlj , r
x
uj ], j ∈ V , (4.4d)

uj ∈ [bulj , b
u
uj ], j ∈ V , (4.4e)

xj ∈ [bxlj , b
x
uj ], j ∈ V , (4.4f)∑

j∈V
fij(xi,uj) +

∑
j∈V

fj(xj) = 0. (4.4g)

The incoming control problem includes the objective function (4.4a) and is constrained by

dynamic equations (4.4b), mixed ranges (4.4c), local ranges (4.4d), control bounds (4.4e), state

bounds (4.4f) and global equality constraints (4.4g).

Problem Dimensions

The problem dimensions for the TSPs are denoted as follows. The numbers of state and

control node variables are nxj and nuj , respectively. Their sum forms the number of primal node

variables nvj . In both control cases, mg denotes the number of global equality constraints (4.3f)

and (4.4g), respectively. The number of range constraints (4.3c) for node j ∈ V is denoted by lrj .

In the incoming control case, the number of range constraints is the sum lrj = lruj + lrxj where lruj
denotes the number of mixed ranges (4.4c) and lrxj the number of pure state ranges (4.4d).

Dimensions with a node subscript are referred to as node dimensions and corresponding total

dimensions are obtained by summing up these node dimensions. A total dimension is denoted

by the same letter as the corresponding node dimension without the node subscript of the latter.

Table 4.1 lists all occurring dimensions and their compositions.

NLP Mapping of the Outgoing Control Problem

In the outgoing control case, primal node variables are combined into the variable vector y ∈ Rnv ,

y = ((xj ,uj))j∈V . (4.5)
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Table 4.1.: Node dimensions and total dimensions of tree-sparse problems

Dimension Composition Control form Description

nxj - outgoing and incoming state node variables
nuj - outgoing and incoming control node variables
nvj nxj + nuj outgoing and incoming primal node variables
lrj - outgoing node range constraints
lruj - incoming local node range constraints
lrxj - incoming mixed node range constraints
lrj lruj + lrxj incoming node range constraints
mg - outgoing and incoming global constraints

nx
∑
j∈V n

x
j outgoing and incoming state variables

nu
∑
j∈V n

u
j outgoing and incoming control variables

nv
∑
j∈V n

v
j outgoing and incoming primal variables

lr
∑
j∈V l

r
j outgoing and incoming range constraints

lru
∑
j∈V l

ru
j incoming local range constraints

lrx
∑
j∈V l

rx
j incoming mixed range constraints

n nv outgoing and incoming primal variables
m nx +mg outgoing and incoming equality constraints
k lr outgoing and incoming range constraints

The outgoing control problem (4.3) is an NLP (4.1) with objective φ : Rnv → R,

φ(y) =
∑
j∈V

φj(xj ,uj), (4.6)

equality constraints cE : Rnv → Rnx+mg ,

cE(y) =

(gj(xi,ui)− xj)j∈V ,
∑
j∈V

fj(xj ,uj)

 , (4.7)

and range constraints cR : Rnv → Rlr ,

cR(y) = (rj(xj ,uj))j∈V . (4.8)

The lower and upper bounds bl, bu ∈ Rnv are given by

bl =
(
(bxlj , b

u
lj)
)
j∈V and bu =

(
(bxuj , b

u
uj)
)
j∈V , (4.9)

and the lower and upper range bounds rl, ru ∈ Rlr are defined as

rl = (rlj)j∈V and ru = (ruj)j∈V . (4.10)
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NLP Mapping of the Incoming Control Problem

In the incoming control case, the order of the primal node variables switches and the remaining

mappings are adjusted to this changed order. The vectors y, bl, bu ∈ Rnv read

y = ((uj ,xj))j∈V , bl =
(
(bulj , b

x
lj)
)
j∈V and bu =

(
(buuj , b

x
uj)
)
j∈V . (4.11)

The incoming control problem (4.4) is an NLP (4.1) with objective φ : Rnv → R,

φ(y) =
∑
j∈V

φij(xi,uj) +
∑
j∈V

φj(xj), (4.12)

equality constraints cE : Rnv → Rnx+mg ,

cE(y) =

(gj(xi,uj)− xj)j∈V ,
∑
j∈V

fij(xi,uj) +
∑
j∈V

fj(xj)

 , (4.13)

and range constraints cR : Rnv → Rlr ,

cR(y) = ((rij(xj ,uj), rj(xj)))j∈V . (4.14)

The lower and upper range bounds rl, ru ∈ Rlr are mapped accordingly by

rl =
(
(rulj , r

x
lj)
)
j∈V and ru =

(
(ruuj , r

x
uj)
)
j∈V . (4.15)

4.1.3. Characteristics of Tree-Sparse Problems

TSPs are NLPs (4.1) with the specific forms of problem functions where f , cE and cR consist

of nonlinear node functions and are either sums of the latter or pure node functions themselves.

More precisely, TSPs are sufficiently smooth node-separable optimization problems that couple

node variables in two ways: all variables are coupled linearly and, additionally, state-defining

variables are coupled nonlinearly. In the following, these key characteristics as well as the

stochastic background are explained in more detail.

Smoothness

For a TSP to be smooth, all node functions are assumed to be twice continuously differentiable,

φj ,φij , gj , rj , rij , fj , fij ∈ C2. (4.16)
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To approximate the tree-sparse Hessians of the Lagrangians in the context of a quasi-Newton

approach (cf. Sect. 4.5), it is assumed that at least first-order derivatives of the functions (4.16)

are available.

Node-Separability

A partially separable function ζ : RN → R is a sum of contributions ζκ : RN → R that depend

only on a small subset of the variables y ∈ RN , i.e.

ζ(y) =

M∑
κ=1

ζκ ((yι)ι∈Jκ) with Jκ ⊆ {1, . . . ,N} for κ = 1, . . . ,M . (4.17)

Node-separabilities—as defined by (3.10) and further discussed in Sect. 3.2.1—are special forms

of partial separability. In the outgoing control case, the objective function (4.3a) and the global

constraint functions (4.3f) are partially separable functions of the form

ζ(y) =
∑
j∈V

ζj
(
(yι)ι∈Jj

)
, (4.18)

where Jj comprises the indices of (xjτ )τ=1,...,nxj
and (ujτ )τ=1,...,nuj

in the primal vector y ∈ Rn.

In the incoming control case, the objective (4.4a) and the global constraints (4.4g) have the

form

ζ(y) =
∑
j∈V

ζij
(
(yι)ι∈Jij

)
+
∑
j∈V

ζj
(
(yι)ι∈Jj

)
. (4.19)

The index set Jij consists of the indices of (xiτ )τ=1,...,nxi
and (ujτ )τ=1,...,nuj

in y, whereas Jj
comprises those of (xjτ )τ=1,...,nxj

. The forms (4.18) and (4.19) take center stage in designing

tree-sparse Hessian update strategies in Sect. 4.5.

Coupling of Variables

Let vj1 and wj2 be two (vectors of) node variables corresponding to the nodes j1, j2 ∈ V . A

function ζ is said to couple vj1 and wj2 if ζ depends on both variables. The variables are

coupled linearly by ζ if mixed second-order derivatives vanish, i.e. if ∇2
vj1wj2

ζ = 0, and they

are coupled nonlinearly if ∇2
vj1wj2

ζ 6= 0. In the TSPs, only state-defining variables are coupled

nonlinearly, that is the node variables xj and uj by the node functions φ, gj , rj , fj in the

outgoing control problem (4.3) as well as the node variables xi and uj by the node functions

φij , gj , rij , fij in the incoming control problem (4.4). The objectives (4.3a) and (4.4a) as well

as the global constraints (4.3f) and (4.4g) couple all node variables linearly. Additionally, the
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dynamics (4.3b) and (4.4b) also couple the states xj linearly with the state-defining variables

(see global linear coupling and path coupling in Sect. 3.2.2).

Stochastic Background

Motivated by nonlinear multistage stochastic problems (cf. Sect. 3.1.2), each node j ∈ V of the

tree corresponding to a TSP represents an event with an associated probability pj , and the

objective as well as the global constraint functions of the TSP are expected values. For the

node probabilities it holds

pj =
∑

k∈S(j)

pk for j ∈ V and 1 =
∑
j∈Lt

pj for t = 0, . . . ,T . (4.20)

Node functions in expected values consume the node probabilities. Hence, the objectives (4.3a)

and (4.3f) read

φ(y) =
∑
j∈V

pj φ̃j(xj ,uj) and φ(y) =
∑
j∈V

pj

(
φ̃ij(xi,uj) + φ̃j(xj)

)
(4.21)

with φj = pj φ̃j and φij = pj φ̃ij , and the global constraints (4.4a) and (4.4g) read

f(y) =
∑
j∈V

pj f̃j(xj ,uj) and f(y) =
∑
j∈V

pj

(
f̃ij(xi,uj) + f̃j(xj)

)
(4.22)

with fj = pj f̃j and fij = pj f̃ij .

4.2. Perturbed KKT Conditions and the Primal-Dual

System

The TSPs are solved by a primal-dual interior-point method that uses a filter line-search

approach as globalization strategy (cf. Sect. 2.2.2). In each iteration of the IPM, the search

direction is obtained from the primal-dual system (2.21). By slacking the inequalities of a

TSP and perturbing the KKT conditions corresponding to this reformulation, the primal-dual

system results from applying the Newton’s methods to the perturbed nonlinear system (see

homotopy approach in Sect. 2.2.1).

Next, the tree-sparse primal-dual systems for the TSPs are stated for both explicit control

cases. Section 4.2.1 follows the lines of Sect. 2.2.1 and applies the homotopy approach to the

general NLP (4.1). Using the NLP mappings in Sect. 4.1.2, the tree-sparse primal-dual systems
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are presented by means of the previous considerations. Section 4.2.2 states the perturbed KKT

conditions and the primal-dual system for the outgoing control TSP. The incoming control case

is discussed in Sect. 4.2.3.

Notation: In the following, the letter φ is used with node subscripts (i, j, k) to denote objective

node functions (φi, φj , φk) as well as with the fixed subscripts u and l to denote right-hand

side barrier terms (φl and φu). The letter µ is used as Lagrange multiplier whereas µbp refers

to the barrier parameter in IPMs.

4.2.1. The General NLP Case

The difference between the NLP (2.1) introduced in Chap. 2 and the formulation (4.1) used in

this chapter is that the latter incorporates inequality constraints in a more detailed presentation.

However, both NLP formulations are equivalent (cf. Sect. 4.1.2). Thus, only the presentation

of the primal-dual system becomes more cumbersome for (4.1) while the homotopy approach

presented in Sect. 2.2.1 is the same for both NLPs and consists of the following four steps:

1. Restate the considered NLP with slacks for the inequality constraints, i.e. for the ranges

and the simple bounds in (4.1).

2. Derive the KKT conditions from the Lagrangian corresponding to the slacked NLP.

3. Perturb the KKT conditions by relaxing the complementarity conditions.

4. Apply the Newton’s method to the perturbed KKT conditions.

Following this guideline, the NLP with slacked ranges and bounds, the corresponding per-

turbed KKT conditions and, finally, the resulting primal-dual system are described next.
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NLP with Slacks and the Lagrangian

Introducing slack variables tl, tu ∈ Rk for the range constraints (4.1c) as well as sl, su ∈ Rn for

the bounds (4.1d), the slacked reformulation of problem (4.1) reads

min
y

φ(y) (4.23a)

s.t. cE(y) = 0, (4.23b)

cR(y)− tl − rl = 0, (4.23c)

−cR(y)− tu + ru = 0, (4.23d)

y − sl − bl = 0, (4.23e)

−y − su + bu = 0, (4.23f)

tl, tu, sl, su ≥ 0. (4.23g)

The Lagrange multipliers for the equality constraints (4.23b) are denoted by z ∈ Rm,

(vl, vu) ∈ R2k are the duals corresponding to the range constraints (4.23c) and (4.23d), and

(ul,uu) ∈ R2n are the associated duals to the bounds (4.23e) and (4.23f). Combining the primal

slacks into s = (sl, su, tl, tu) and using ξ ∈ R2k+2n to denote the corresponding dual slacks, the

Lagrangian to (4.23) reads

L(y, η) = f(y)− zT cE(y)− ξT s

− vTl (cR(y)− tl − rl)− vTu (−cR(y)− tu + ru) (4.24)

− uTl (y − sl − bl)− uTu (−y − su + bu) ,

where the vector η contains the primal slacks s and all dual variables, i.e.

η = (z, s, vl, vu,ul,uu, ξ). (4.25)

Hence, η subsumes all variables except for the primal variables y. This notation is frequently

used in this section and in the context of the quasi-Newton approach in Sect. 4.5 to avoid

cumbersome specifications of variable dependencies.
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Perturbed KKT Conditions

The µbp-perturbed KKT conditions for NLP (4.23) are derived from its corresponding La-

grangian (4.24). They comprise the dual feasibility conditions

∇yL(y, η) = ∇yφ(y)−∇cE(y)T z −∇cR(y)T (vl − vu)− (ul − uu)= 0, (4.26)

the primal feasibility conditions (4.23b) to (4.23g), the µbp-perturbed complementarity condi-

tions

SlVle = SuVue = TlUle = TuUue = µbpe, (4.27)

and the nonnegativity conditions

ul,uu, vl, vu ≥ 0. (4.28)

The capital letters S,T ,U ,V denote diagonal matrices to the corresponding vectors s, t,u, v,

and e is the vector of ones in appropriate dimension. The dual slacks ξ are already eliminated

from the conditions above (cf. Sect. 2.2.1).

Primal-Dual System

The primal infeasibilities from (4.23b) to (4.23f) are denoted as follows:

α(y) := cE(y), (4.29a)

ρl(y, tl) := cR(y)− tl − rl, (4.29b)

ρu(y, tu) := −cR(y)− tu + ru, (4.29c)

βl(y, sl) := y − sl − bl, (4.29d)

βu(y, su) := y − su + bu. (4.29e)

The so-called barrier diagonal matrices are given by

Φl := S−1
l Ul, Φu := S−1

u Uu, (4.30a)

Ψl := T−1
l Vl, Ψu := T−1

u Vu, (4.30b)
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and the corresponding barrier right-hand side terms read

φl := ul − µbpS−1
l e, φu := uu − µbpS−1

u e, (4.31a)

ψl := vl − µbpT−1
l e, ψu := vu − µbpT−1

u e. (4.31b)

Omitting the variable dependencies, the primal-dual system (2.21) resulting from problem (4.23)

takes the form

Ωpdωpd = −wpd, (4.32)

where the system matrix reads

Ωpd =



H ∇cTE I −I ∇cTR −∇cTR
Φl −I

Φu −I
Ψl −I

Ψu −I
∇cE
I −I
−I −I
∇cR −I
−∇cR −I



, (4.33)

the right-hand side is given by

wTpd = (∇yL,φl,φu,ψl,ψu,α,βl,βu, ρl, ρu) , (4.34)

and the search direction reads

ωTpd = (∆y, ∆sl, ∆su, ∆tl, ∆tu,−∆z,−∆ul,−∆uu,−∆vl,−∆vu) . (4.35)

The block H in the upper left of Ωpd (4.33) denotes the Hessian of the Lagrangian (4.24), i.e.

H := ∇2
yyL(y, η) = ∇2

yyφ(y)−
∑
τ∈E

zτ∇2
yycτ (y)−

∑
τ∈R

(vlτ − vuτ )∇2
yycτ (y). (4.36)
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4.2.2. The Outgoing Control Case

The TSPs are NLPs of the form (4.1), making the previous discussions in Sect. 4.2.1 for the

general NLP case also applicable to the TSPs. Hence, from a global point of view the tree-sparse

primal-dual matrices Ωpd take the form (4.33). For solving the primal-dual system efficiently, a

more detailed presentation of (4.33) is of interest that highlights the characteristic structures

of the TSPs. These tree-sparse presentations, which are based on the mappings introduced

in Sect. 4.1.2, are established in the following three steps:

1. Supplementing mappings for slack variables and Lagrange multipliers.

2. Introducing a presentation of the Lagrangian based on node functions and notation for

the node subblocks in the tree-sparse primal-dual system.

3. Presenting the specific tree structures in the Hessian of the Lagrangian and the Jacobians

of the constraints.

The TSP in the outgoing control form (4.3) is considered first, the incoming TSP is discussed

in Sect. 4.3.3. For the outgoing control case, recall the mappings (4.6) to (4.10) as well as the

order of primal node variables (xj ,uj) in the variable vector y (4.5).

Mapping of Slacks and Duals

Slack variables are denoted by tlj , tuj ∈ Rl
r
j for the range constraints (4.3c) as well as by

sxlj , s
x
uj ∈ Rn

x
j and sulj , s

u
uj ∈ Rn

u
j for the simple bounds (4.3d) and (4.3e), respectively. The

node variables are mapped into the vectors sl, su, tl, tu by

sl =
(
(sxlj , s

u
lj)
)
j∈V , su =

(
(sxuj , s

u
uj)
)
j∈V , tl = (tlj)j∈V , tu = (tuj)j∈V . (4.37)

The duals corresponding to the equality constraints are denoted by λj ∈ Rn
x
j for the dynam-

ics (4.3b) and by µ ∈ Rmg for the global constraints (4.3f), hence

z =
(

(λj)j∈V ,µ
)
∈ Rn

x+mg . (4.38)

The Lagrange multipliers for the slacked range constraints and bounds are vlj , vuj ∈ Rl
r
j ,

uxlj ,u
x
uj ∈ Rn

x
j as well as uulj ,u

u
uj ∈ Rn

u
j . They are mapped by

ul =
(
(uxlj ,u

u
lj)
)
j∈V , uu =

(
(uxuj ,u

u
uj)
)
j∈V , vl = (vlj)j∈V , vu = (vuj)j∈V . (4.39)
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Table 4.2.: Matrix node subblock dimensions – Outgoing control case

Subblock Hj Kj Jj Gj Ej F rj Dr
j Fj Dj

Number of rows nxj nuj nuj nxj nxj lrj lrj mg mg

Number of columns nxj nuj nxj nxi nui nxj nuj nxj nuj

Lagrangian and Derivatives

In the outgoing control case, the Lagrangian (4.24) reads

L =
∑
j∈V
Lj − ξT s, (4.40)

where for each node j ∈ V the introduced node functions Lj are defined by

Lj(xj ,uj , η) := φj(xj ,uj) + λTj xj −
∑

k∈S(j)

λTk gk(xj ,uj)− µT fj(xj ,uj)

− vTlj (rj(xj ,uj)− tlj − rlj)− vTuj (−rj(xj ,uj)− tuj + ruj)

−
(
uxlj
)T (

xj − sxlj − bxlj
)
−
(
uxuj
)T (−xj − sxuj + bxuj

)
−
(
uulj
)T (

uj − sulj − bulj
)
−
(
uuuj
)T (−uj − suuj + buuj

)
, (4.41)

with η = (z, s, vl, vu,ul,uu, ξ) as defined in (4.25). The Jacobians of the constraint node

functions, which dimensions are listed in Table 4.2, read

Gj := ∇xigj(xi,ui), F rj := ∇xjrj(xj ,uj), Fj := ∇xjfj(xj ,uj), (4.42a)

Ej := ∇uigj(xi,ui), Dr
j := ∇ujrj(xj ,uj), Dj := ∇ujfj(xj ,uj). (4.42b)

The gradient of the Lagrangian (4.40) with respect to the primal variables y reads

∇yL =
(
(∇xjL,∇ujL)

)
j∈V =

(
(∇xjLj ,∇ujLj)

)
j∈V , (4.43)

where the partial derivatives of the node functions are given by

∇xjLj = ∇xjφj + λj −
∑

k∈S(j)

λTkGk − FTj µ−
(
F rj
)T

(vlj − vuj)−
(
uxlj − uxuj

)
, (4.44a)

∇ujLj = ∇ujφj −
∑

k∈S(j)

λTkEk −DT
j µ−

(
Dr
j

)T
(vlj − vuj)−

(
uulj − uuuj

)
. (4.44b)
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To state the Hessian of the Lagrangian (4.40) with respect to the primal variables y, the

following three matrix node subblocks are introduced:

Hj := ∇2
xjxjLj , Kj := ∇2

ujujLj , Jj := ∇2
ujxjLj . (4.45)

Omitting the variable dependencies, the Hessian node subblocks (4.45) are explicitly given by

Hj = ∇2
xjxjφj −

mg∑
τ=1

µτ∇2
xjxjfjτ −

∑
k∈S(j)

nxj∑
τ=1

λkτ∇2
xjxjgkτ −

lrj∑
τ=1

(vlj − vuj)τ ∇
2
xjxj rjτ , (4.46a)

Kj = ∇2
ujujφj −

mg∑
τ=1

µτ∇2
ujujfjτ −

∑
k∈S(j)

nxj∑
τ=1

λkτ∇2
ujujgkτ −

lrj∑
τ=1

(vlj − vuj)τ ∇
2
ujuj rjτ , (4.46b)

Jj = ∇2
xjujφj −

mg∑
τ=1

µτ∇2
xjujfjτ −

∑
k∈S(j)

nxj∑
τ=1

λkτ∇2
xjujgkτ −

lrj∑
τ=1

(vlj − vuj)τ ∇
2
xjuj rjτ , (4.46c)

The dimensions of the Hessian node subblocks are also listed in Table 4.2.

Tree-Structured Block Matrices

The KKT matrix blocks resulting from tree-sparse problems reflect the underlying tree topology

(cf. Sect. 3.2.3). In the following, the tree structures of the KKT matrix blocks are demonstrated

with respect to the tree in Fig. 4.1.

The Hessian of the Lagrangian (4.40) and the Jacobian of the range constraints (4.3c) are

block-diagonal matrices. With the node subblock notation (4.45), the Hessian of the Lagrangian

takes the form

∇2
yyL =



H0 JT0

J0 K0

H1 JT1

J1 K1

H2 JT2

J2 K2

H3 JT3

J3 K3

H4 JT4

J4 K4

H5 JT5

J5 K5



. (4.47)
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The Hessian ∇2
yyf of the objective function (4.6) has the same block-diagonal structure as the

Hessian of the Lagrangian. By means of the node subblocks (4.42), the Jacobian ∇cR of the

range constraints (4.8) reads

∇cR =



F r0 Dr
0

F r1 Dr
1

F r2 Dr
2

F r3 Dr
3

F r4 Dr
4

F r5 Dr
5


. (4.48)

The Jacobian ∇cTE = [GT FT ] of the equality constraints (4.7) comprises a dynamic block

G ∈ Rnx×nv corresponding to the dynamic constraints (4.3b) and a global constraint block

F ∈ Rmg×nv corresponding to the global equalities (4.3f). The global constraint part is a

block-dense row with node subblocks [Fj Dj ],

F =
[
F0 D0 F1 D1 F2 D2 F3 D3 F4 D4 F5 D5

]
. (4.49)

The dynamic part of ∇cE features the stochastic staircase structure (cf. Sect. 3.2.3) with node

subblocks [−I 0] on the diagonal and [Gj Ej ] on the secondary diagonal corresponding to the

predecessor i. For the tree in Fig. 4.1, the dynamic part reads

G =



−I
G1 E1 −I
G2 E2 −I

G3 E3 −I
G4 E4 −I

G5 E5 −I


. (4.50)

4.2.3. The Incoming Control Case

For the TSP in the incoming control form (4.4), the tree-sparse presentation of the primal-dual

system (4.32) proceeds analogously to the outgoing control TSP in Sect. 4.2.2. However, a

separate discussion is necessary since the nonlinear coupling of node variables is different. In

the incoming control case, the controls uj are coupled nonlinearly with the states xi of the

predecessor i = π(j) instead of being coupled nonlinearly with the states xj of the same node j.
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For the subsequent discussions, recall the mappings (4.12) to (4.15) and the changed order of

primal node variables (uj ,xj) in the vector y (4.11).

Mapping of Slacks and Duals

The slacks for the bounds (4.4e) and (4.4f) are sulj , s
u
uj ∈ Rn

u
j and sxlj , s

x
uj ∈ Rn

x
j , respectively.

Slacks for mixed ranges (4.4c) and local ranges (4.4d) are denoted by tulj , t
u
uj ∈ Rl

ru
j and

txlj , t
x
uj ∈ Rl

rx
j , respectively. The aggregation of the slacks is based on (4.11) and reads

sl =
(
(sulj , s

x
lj)
)
j∈V , su =

(
(suuj , s

x
uj)
)
j∈V , (4.51a)

tl =
(
(tulj , t

x
lj)
)
j∈V , tu =

(
(tuuj , t

x
uj)
)
j∈V . (4.51b)

Dual variables are denoted the same way as in the outgoing control case: λj corresponds to the

dynamics (4.4b), µ to the global constraints (4.4g), vulj , v
u
uj and vxlj , v

x
uj to the slacked range

constraints (4.4c) and (4.4d), respectively, and uulj ,u
u
uj and uxlj ,u

x
uj to the slacked versions of

the simple bounds (4.4e) and (4.4f), respectively. Dual slacks are combined analogously to their

primal counterparts in (4.51), i.e.

ul =
(
(uulj ,u

x
lj)
)
j∈V , uu =

(
(uuuj ,u

x
uj)
)
j∈V , (4.52a)

vl =
(
(vulj , v

x
lj)
)
j∈V , vu =

(
(vuuj , v

x
uj)
)
j∈V . (4.52b)

Lagrangian and Derivatives

In the incoming control case, the Lagrangian (4.24) is stated as

L =
∑
j∈V
Lij +

∑
j∈V
Lj − ξT s, (4.53)

where Lij includes all nonlinear node functions that couple xi and uj ,

Lij(xi,uj , η) := φij(xi,uj)− λTj gj(xi,uj)− µT fij(xi,uj)

−
(
vulj
)T (

rij(xi,uj)− tulj − rulj
)
−
(
vuuj
)T (−rij(xi,uj)− tuuj + ruuj

)
−
(
uulj
)T (

uj − sulj − bulj
)
−
(
uuuj
)T (−uj − suuj + buuj

)
, (4.54)
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Table 4.3.: Matrix node subblock dimensions – Incoming control case

Subblock Kj Hj Jj Gj Ej F rij Dr
j F rj Fij Dj F̄j

Number of rows nuj nxj nuj nxj nxj lruj lruj lrxj mg mg mg

Number of columns nuj nxj nxj nxi nuj nxi nuj nxj nxi nuj nxj

and the node function Lj comprises the decoupled terms,

Lj(xj , η) := φj(xj) + λTj xj − µT fj(xj)

−
(
vxlj
)T (

rj(xj)− txlj − rxlj
)
−
(
vxuj
)T (−rj(xj)− txuj + rxuj

)
−
(
uxlj
)T (

uj − sxlj − bxlj
)
−
(
uxuj
)T (−uj − sxuj + bxuj

)
. (4.55)

The Jacobian node subblocks of the dynamics (4.4b) are given by

Gj := ∇xigj(xi,uj) and Ej := ∇ujgj(xi,uj). (4.56)

The Jacobian node subblocks of the ranges (4.4c) and (4.4d) as well as of the global con-

straints (4.4g) read

F rij := ∇xirij(xi,uj), Dr
j := ∇ujrij(xi,uj), F rj := ∇xjrj(xj), (4.57a)

Fij := ∇xifij(xi,uj), Dj := ∇ujfij(xi,uj), F̄j := ∇xjfj(xj). (4.57b)

The respective numbers of rows and columns can be taken from Table 4.3. The gradient of the

Lagrangian (4.53) with respect to the primal variables y reads

∇yL =
(
(∇ujL,∇xjL)

)
j∈V =

(∇ujLij ,∇xjLj +
∑

k∈S(j)

∇xjLjk)


j∈V

(4.58)

with the three explicit expressions

∇xiLij =∇xiφij −GTj λj − (Fij)
T
µ−

(
F rij
)T (

vulj − vuuj
)

, (4.59a)

∇ujLij =∇ujφij − ETj λj − (Dj)
T
µ−

(
Dr
j

)T (
vulj − vuuj

)
, (4.59b)

∇xjLj =∇xjφj + λj −
(
F̄j
)T
µ−

(
F rj
)T (

vxlj − vxuj
)

. (4.59c)
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To state the Hessian of the Lagrangian (4.53) with respect to y, the following four matrix node

subblocks are introduced:

Hij := ∇2
xixiLij , Kj := ∇2

ujujLij , Jj := ∇2
ujxiLij , H̄j := ∇2

xjxjLj . (4.60)

Omitting the variable dependencies, these four node subblocks are given explicitly by

Hij =∇2
xixiφij −

mg∑
τ=1

µτ∇2
xixifijτ −

nxj∑
τ=1

λjτ∇2
xixigjτ −

lruj∑
τ=1

(
vuljτ − v

u
ujτ

)
∇2
xixirijτ , (4.61a)

Kj =∇2
ujujφij −

mg∑
τ=1

µτ∇2
ujujfijτ −

nxj∑
τ=1

λjτ∇2
ujujgjτ −

lruj∑
τ=1

(
vuljτ − v

u
ujτ

)
∇2
ujujrijτ , (4.61b)

Jj =∇2
ujxiφij −

mg∑
τ=1

µτ∇2
ujxifijτ −

nxj∑
τ=1

λjτ∇2
ujxigjτ −

lruj∑
τ=1

(
vuljτ − v

u
ujτ

)
∇2
ujxirijτ , (4.61c)

H̄j =∇2
xjxjφj −

mg∑
τ=1

µτ∇2
xjxjfjτ −

lrxj∑
τ=1

(
vxljτ − v

x
ujτ

)
∇2
xjxjrjτ . (4.61d)

The corresponding dimensions are listed in Table 4.3.

Tree-Structured Block Matrices

In the incoming control case, most of the KKT matrix blocks feature stochastic staircase

structures. The Hessian ∇2
yyL even takes a symmetric form of this structure. It consists of

node subblocks Kj and Jj as defined in (4.61) as well as the accumulations

Hj = H̄j +
∑

k∈S(j)

Hjk, j ∈ V . (4.62)

The symmetric node subblocks Kj and Hj are located on the diagonal, the node subblocks Jj

are located on the secondary diagonals corresponding to the predecessor node i. For the tree
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in Fig. 4.1, the Hessian of the Lagrangian (4.53) reads

∇2
yyL =



K0

H0 JT1 JT2

J1 K1

H1 JT3 JT4

J2 K2

H2 JT5

J3 K3

H3

J4 K4

H4

J5 K5

H5



. (4.63)

Using the node subblock notation (4.57a), the Jacobian ∇cR of the range constraints (4.14)

has node subblocks [Dr
j F

r
j ] on the diagonal and [0 F rij ] on the secondary diagonals. For the

tree in Fig. 4.1, the tree-sparse Jacobian ∇cR reads

∇cR =



Dr
0

F r0

F r01 Dr
1

F r1

F r02 Dr
2

F r2

F r13 Dr
3

F r3

F r14 Dr
4

F r4

F r25 Dr
5

F r5



. (4.64)

The dynamic block G of the equality Jacobian ∇cTE = [GT FT ] features the same tree structure

as the range block (4.64). The diagonal node subblocks have the form [Ej − I] and the node

subblocks on the secondary diagonals are [0 Gj ]. The global constraint block F is a block-dense

row with node subblocks [Dj Fj ]. For the tree in Fig. 4.1, the blocks G and F of the tree-sparse
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Jacobian ∇cE read

G =



E0 −I
G1 E1 −I
G2 E2 −I

G3 E3 −I
G4 E4 −I

G5 E5 −I


, (4.65)

and

F =
[
D0 F0 D1 F1 D2 F2 D3 F3 D4 F4 D5 F5

]
. (4.66)

4.3. Tree-Sparse KKT Algorithms

The step computation in IPMs is based on solving a series of KKT systems (cf. Sect. 2.2.1).

In this thesis, direct approaches for the KKT systems are considered, i.e. the solutions are

determined by factorizing the KKT matrix first and then solving two linear systems with the

resulting factors in respective substitutions. Solving KKT systems by a direct approach is

dominated by the complexity of the factorization, which is of cubic order with respect to the

problem dimensions when neglecting any sparsities. Hence, exploiting problem-specific sparsity

patterns in the KKT matrix is mandatory to improve the efficiency of the solution procedure.

The KKT solution algorithms for the tree-sparse problems exploit the underlying tree topology,

which manifests itself into the structures of the KKT matrix blocks (cf. Sect. 4.2). Benefiting

from the node-wise presentations of TSPs and the resulting KKT data, these tree-sparse KKT

algorithms are designed as traversals of tree nodes that fulfill their overall tasks by performing

a series of node operations. This way, the KKT solution is evaluated with linear complexity [83].

Moreover, the node-wise presentations of tree-sparse problems and algorithms are conducive to

distributing them (cf. Chap. 5).

The tree-sparse KKT solution procedure is divided into phases and stages. The stages refer

to the three steps of the direct approach: the factorization stage, the inward substitution and

the outward substitution. Each of these stages is composed of two phases. First, by eliminating

the duals corresponding to the range constraints in the elimination phase, the KKT system is

transformed into so-called basic form, which corresponds to the KKT system of a TSP only

consisting of the objective, the dynamics and the global constraints. This basic KKT system is

then solved in the second phase of the KKT solution procedure referred to as basic recursion.
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Extending the tree-sparse KKT algorithms by inertia corrections in the subsequent section,

the basic recursions are presented here for the sake of completeness. Detailed presentations of

the elimination phases for both control cases are—to the best of the author’s knowledge—not

provided in the literature and, therefore, supplemented here.

In the following, Section 4.3.1 provides a global point of view on the tree-sparse KKT solution

procedure. That section covers the reduction of the primal-dual system to the KKT system and,

moreover, provides refined regularity assumptions for the reduced KKT system (cf. Sect. 2.2.2).

In the subsequent sections, the tree-sparse KKT algorithms are presented for the outgoing

control case and the incoming control case, respectively.

4.3.1. Global Point of View

The KKT system Ωw = −ω that is solved by means of the tree-sparse KKT algorithms reads
H + Φ ∇cTE ∇cTR
∇cE
∇cR −Ψ−1




∆y

−∆z

−∆v

 = −


ν

α

ρ

 , (4.67)

where α represents the vector of infeasibilities of the equality constraints (4.29a), and the dual

vector v is the difference vl−vu of the duals corresponding to the lower and upper ranges (4.23c)

and (4.23d), respectively. The KKT system (4.67) is obtained from the primal-dual system (4.32)

by eliminating the bound slacks sl, su and the range slacks tl, tu. The concentrated matrix

barrier terms Φ and Ψ are given by

Φ := Φl + Φu and Ψ := Ψl + Ψu. (4.68)

The right-hand side barrier terms of the bounds are concentrated into

ν := ∇yL+ Φlβl + φl − Φuβu − φu, (4.69)

and the right-hand side barrier terms of the ranges read

ρ := ρl + Ψ−1 (ψl −Ψu (ρl + ρu) + ψu) . (4.70)

Detailed listings of the elimination steps are given in [72].
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In the first phase of the presented KKT algorithms, the range duals v in (4.67) are eliminated

by using

∆v = −Ψ (ρ+∇cR∆y) . (4.71)

The reduced KKT system Ωrwr = −ωr without range duals reads Ĥ ∇cTE
∇cE

 ∆y

−∆z

 = −

 ν̂

α

 , (4.72)

where the concentrated data are given by

Ĥ := H + Φ +∇cTRΨ∇cR and ν̂ := ν +∇cTRΨρ. (4.73)

In the second phase of the KKT algorithms, which is referred to as basic recursion, the KKT

system (4.72) is projected onto the null-space of the dynamics, and then the Schur-Complement

method is applied to the projected system. For this, the dynamic part G of the Jacobian ∇cE is

required to have full rank, i.e. rank(G) = nx, which is, however, already ensured by the explicit

formulation of the dynamics. To apply the Schur-Complement method, the global equality

part F of the Jacobian ∇cE is required to have full rank, and, additionally, the projection of

the Hessian Ĥ must be positive definite. These requirements for the tree-sparse KKT solution

procedure are subsumed into the following assumptions.

Assumption 2 (Regularity Assumptions for the Reduced KKT System). Consider the system

matrix of (4.72) with Ĥ as defined in (4.73). Let G ∈ Rnx×nv be the dynamic block and

F ∈ Rmg×nv the global constraint block of the tree-sparse Jacobian ∇cE . The following conditions
apply:

(A1) F has full row rank on the null-space of G, i.e. rank(F|N (G)) = mg.

(A2) Ĥ is positive definite on the null-space of ∇cE , i.e. Ĥ|N (G)∩N (F ) > 0.

Note that As. 2 is a refined version of As. 1 introduced to guarantee descent directions in the

IPM framework (cf. Sect. 2.2.2).
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4.3.2. Solution of the Tree-Sparse KKT System - Outgoing Control

The tree-sparse KKT algorithms are established in two steps. First, the KKT system (4.67) is

restated in a node-wise presentation, i.e. as a set of node-wise defined conditions as well as an

additional equation representing the linearized global constraints. Afterwards, the elimination

of the range duals as presented in Sect. 4.3.1 is tailored to the TSP in the considered control

form. The presentation of the basic recursions first covers the dual feasibility conditions and the

dynamics. Treating the global constraint equation is supplemented afterwards. The order of

evaluating the primal and dual node variables in the outward substitution is discussed separately.

Dynamic algorithm tables are introduced for each phase of the tree-sparse solution procedure.

Their reading is discussed at the end of this section.

Node-Wise Presentation of the KKT System

Using the right-hand side notation

ν = ((fj , dj))j∈V , α =
(

(hj)j∈V , eV

)
, ρ = (rj)j∈V , (4.74)

and dropping ∆ from all step variables, the node-wise presentation of KKT system (4.67) reads

(
Hj + Φxj

)
xj + JTj uj + λj −

∑
k∈S(j)

GTk λk −
(
F rj
)T
vj − FTj µ+ fj = 0, j ∈ V , (4.75a)

Jjxj +
(
Kj + Φuj

)
uj −

∑
k∈S(j)

ETk λk −
(
Dr
j

)T
vj −DT

j µ+ dj = 0, j ∈ V , (4.75b)

Gjxi + Ejui − xj + hj = 0, j ∈ V , (4.75c)

F rj xj +Dr
juj + Ψ−1

j vj + rj = 0, j ∈ V , (4.75d)∑
j∈V

Fjxj +
∑
j∈V

Djuj + eV = 0. (4.75e)

Elimination of the Dual Ranges

The dual range variables are eliminated from (4.75) by solving (4.75d) for vj , i.e.

−vj = Ψj

(
F rj xj +Dr

juj + rj
)

. (4.76)
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Table 4.4.: Elimination of range duals – Outgoing control case

Factorization ↓ Inward Subst. ↓ Outward Subst. ↑
1: −vj ← Ψj(−vj)
2: Hj += F rj

TΨjF
r
j + Φxj fj += F rj

TΨjrj −vj += F rj xj

3: Kj += Dr
j
TΨjD

r
j + Φuj dj += Dr

j
TΨjrj −vj += Dr

juj

4: Jj += Dr
j
TΨjF

r
j

Using the node subblock notation

Ĥj := Hj + Φxj +
(
F rj
)T

ΨjF
r
j , f̂j := fj +

(
F rj
)T

Ψjrj , (4.77a)

K̂j := Kj + Φuj +
(
Dr
j

)T
ΨjD

r
j , d̂j := dj +

(
Dr
j

)T
Ψjrj , (4.77b)

Ĵj := Jj +
(
F rj
)T

ΨjD
r
j , (4.77c)

and substituting (4.76) into (4.75a) and (4.75b), the latter equations read

Ĥjxj + ĴTj uj + λj −
∑

k∈S(j)

GTk λk − FTj µ+ f̂j = 0, j ∈ V , (4.78a)

Ĵjxj + K̂juj −
∑

k∈S(j)

ETk λk −DT
j µ+ d̂j = 0, j ∈ V . (4.78b)

The steps for the described elimination process are listed in Table 4.4, the reading of this table

is described at the end of this section.

Basic Recursion

The presentation of the basic recursion in the outgoing control case extends the presentation

in [77] from the deterministic case on chains to the stochastic case on trees. First, consider

equations (4.78) and (4.75c) at a leaf j ∈ L. Dropping all previous used mathematical accents,

these equations read

Hjxj + JTj uj + λj − FTj µ+ fj = 0, (4.79a)

Jjxj +Kjuj −DT
j µ+ dj = 0, (4.79b)

Gjxi + Ejui − xj + hj = 0. (4.79c)

In the first step of the basic recursion, equation (4.79b) is solved for the controls uj , i.e.

uj = −K−1
j

(
Jjxj +DT

j (−µ) + dj
)

. (4.80)
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Assumption 2 implies that the symmetric node subblock Kj is positive definite. Hence, its

inverse exists and the Cholesky factorization can be applied, i.e.

Kj = LjL
T
j . (4.81)

Using (4.80) to eliminate uj from (4.79a) leads to

−λj = H̄jxj + F̄Tj (−µ) + f̄j , (4.82)

where the modified matrix and vector node subblocks are defined as

J̄j := L−1
j Jj , D̄j := L−1

j Dj , d̄j := L−1
j dj , (4.83a)

H̄j := Hj − J̄Tj J̄j , F̄j := Fj − D̄j J̄j , f̄j := fj + J̄Tj d̄j . (4.83b)

With the modified node subblocks (4.83), equation (4.80) reads

uj = −L−Tj
(
J̄jxj + D̄T

j (−µ) + d̄j
)

. (4.84)

Solving the linearized dynamics (4.79c) for the local states xj ,

xj = Gjxi + Ejui + hj , (4.85)

the resulting expression is substituted into (4.82), which then reads

−λj = H̄jGjxi + H̄jEjui + F̄j(−µ) + f̄j + H̄jhj . (4.86)

In (4.86), the local dynamic duals λj depend only on state and control variables of the

predecessor i = π(j) as well as the dual multiplier µ for the global constraints (4.3f).

Now, considering (4.78) for a node j ∈ V that has only leaves as successors (S(j) ⊆ L),

using (4.86) to eliminate the successor’s dynamic duals λk and dropping the mathematical

accents used during the elimination of the range duals, equations (4.86) transform into

H̃jxj + J̃Tj uj + λj − F̃Tj µ+ f̃j = 0, (4.87a)

J̃jxj + K̃juj − D̃T
j µ+ d̃j = 0, (4.87b)
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where the modified matrix and vector node subblocks are given by

H̃j := Hj +
∑

k∈S(j)

GTk H̄kGk, f̃j := fj +
∑

k∈S(j)

GTk
(
f̄k + H̄khk

)
, (4.88a)

K̃j := Kj +
∑

k∈S(j)

ETk H̄kEk, d̃j := dj +
∑

k∈S(j)

ETk
(
f̄k + H̄khk

)
, (4.88b)

J̃j := Jj +
∑

k∈S(j)

ETk H̄kGk, (4.88c)

F̃j := Fj +
∑

k∈S(j)

F̄kGk, D̃j := Dj +
∑

k∈S(j)

F̄kEk. (4.88d)

In (4.87), all variables corresponding to the successors S(j) are eliminated. These equations read

the same as the former leaf equations (4.79a) and (4.79b). The previous elimination steps are

now applied to (4.87) and (4.79c) for the predecessor i. Proceeding this way in an inward sweep

over the tree, variables uj , xj and λj are eliminated recursively from the linearized dual feasibil-

ity conditions (4.75a) and (4.75b) as well as the dynamics (4.75c) of the tree-sparse KKT system.

In the presence of global equality constraints (4.3f), the corresponding linearization (4.75e) is

rewritten as

∑
j∈VT−1

Fjxj +
∑

j∈VT−1

Djuj +
∑
j∈LT

Fjxj +
∑
j∈LT

Djuj +XVT µ+ eVT = 0 (4.89)

with a fill-in matrix XVT := 0. Using (4.84) to eliminate uj corresponding to the nodes j ∈ LT ,
equation (4.89) reads

∑
j∈VT−1

Fjxj +
∑

j∈VT−1

Djuj +
∑
j∈LT

F̄jxj +XVT−1
µ+ ēVT = 0. (4.90)

The modified node subblocks are defined as

XVT−1
:= XVT +

∑
j∈LT

D̄jD̄
T
j and ēVT−1

:= eVT −
∑
j∈LT

D̄j d̄j . (4.91)

Next, expression (4.85) is used to eliminate xj for j ∈ LT from (4.90). Defining

eVT−1
:= ēVT−1

+
∑
j∈LT

F̄jhj , (4.92)
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Table 4.5.: Basic KKT recursion – Outgoing control case

Factorization ↓ Inward Subst. ↓ Outward Subst. ↑
1: Kj ← LjL

T
j

2: Dj ← L−1
j Dj dj ← L−1

j dj uj ← −L−Tj uj

3: Jj ← L−1
j Jj uj += Jjxj

4: Hj -= JTj Jj fj += JTj dj −λj += Hjxj

5: Fj -= DjJj

6: X += DjD
T
j e -= Djdj

7: Hi += GTj HjGj fi += GTj (fj +Hjhj) xj += Gjxi

8: Ki += ETj HjEj di += ETj (fj +Hjhj) xj += Ejui

9: Ji += ETj HjGj

10: Fi += FjGj e += Fjhj −λj += FTj (−µ)

11: Di += FjEj hj ↔ fj uj += DT
j (−µ)

12: X ← LLT e ← L−1e −µ ← L−T (−µ)

the resulting expression reads

∑
j∈VT−2

Fjxj +
∑

j∈VT−2

Djuj +
∑

j∈LT−1

F̃jxj +
∑

j∈LT−1

D̃juj +XVT−1
µ+ eVT−1

= 0. (4.93)

Equation (4.93) has the same form as (4.89) but with level T eliminated. Repeating the

elimination of uj and xj from (4.93) inwardly to the root, the global constraints reduce to

X∅(−µ) = e∅, (4.94)

where X∅ is as sum of symmetric products D̄jD̄
T
j also symmetric itself and at least positive

semidefinite. With As. 2 satisfied, X∅ is also positive definite and the Cholesky factorization is

applied, i.e.

X∅ = L∅L
T
∅ . (4.95)

The steps of the basic recursion are listed in Table 4.5.

Outward Substitution

The subblock modifications (4.77), (4.83), (4.88) and (4.95) described above correspond to the

factorization and the inward substitution stages of the tree-sparse KKT algorithms. Those

steps can be performed during one single inward recursion over the tree or in two separate
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recursions. In the latter case, the matrix subblock modifications are applied in the factorization

stage and the vector subblock modifications in the inward substitution stage.

The variables of the KKT system (4.67) are computed in the outward substitution stage of the

tree-sparse KKT algorithm, and that node-wise in an outward sweep over the tree from its root 0

to its leaves L. The global multiplier µ is obtained from (4.94) using the Cholesky factors (4.95).

The node variables xj , uj and λj are computed in this very order using expressions (4.85),

(4.84) and (4.82), respectively. The range duals vj are evaluated afterwards using (4.76).

Dynamic Algorithm Tables

In the introduced dynamic algorithm tables for the tree-sparse KKT algorithms, i.e. tables 4.5

and 4.4 in this section and tables 4.7 and 4.6 in Sect. 4.3.3, the mathematical accents used in

the discussions are omitted. Instead, these tables make use of the following dynamic operations:

+= Add the right-hand side result to the left-hand side value.

-= Subtract the right-hand side result from the left-hand side value.

← Overwrite the left-hand side value with the right-hand side result.

↔ Swap values of the left-hand side and the right-hand side.

In Chap. 5, the operations and data in the algorithm tables are described and classified in

more detail. For now, the following terminology is provided beforehand to explain the reading

of the specific KKT algorithm tables. First, the involved data are subsumed in sets DA(j) for

each node j ∈ V . There are common node data labeled with a node subscript (e.g. Kj , dj)

that exist for each node and can be found in each set DA(j). There are also specific global

data that exist only once and are attributed to the set DA(0) of the tree root 0. In algorithm

tables, global data have no subscripts, e.g. X∅ and e∅ read X and e in Table 4.5. Second,

the respective operations of each stage are subsumed in sets OP(j) for each node j. Common

node operations are performed for each node in the tree, i.e. these are listed in each set OP(j).

So-called global operations are performed only once and are supplemented to the set OP(0).

Global are those operations that involve only global data, e.g. item 12 in Table 4.5.

Now, the KKT algorithm tables read as follows. For each algorithm, the operations in

a set OP(jj) are performed one after another without performing operations of another

node j2 6= j1 in between. In the factorization stage and the inward substitution, the

operations in one set OP(j) are performed from top to bottom as listed in the table (↓). Item 12

of the basic recursion in Table 4.5 is as global operation only applied at the root 0. The nodes

of the tree are processed in an inward sweep, meaning that the operations OP(j) for a node j

are executed only after those of all its successors k ∈ S(j) were performed. The outward
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substitution proceeds completely opposite to the other two stages. The nodes are processed in

an outward sweep, i.e. the operations OP(j) are executed not until completing OP(i) of the

predecessor i, and the operations in one set are performed from bottom to top as listed in the

respective column of the table (↑).
In the implementation, the respective stages of the two phases of the tree-sparse KKT

algorithms are performed in one single traversal over the tree. In doing so, the items of the

tables for the range eliminations are placed on top of the items of the respective basic recursions,

e.g. items 1 to 4 in Table 4.4 are placed on top of item 1 of Table 4.5. Alternatively, the two

phases can be performed one after another in two separate traversals. Doing the latter and in

the absence of range constraints, one needs to account for the remaining barrier diagonal terms

within the basic recursion, i.e. in the outgoing control case one needs to add Φxj and Φuj to Hj

and Kj , respectively.
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4.3.3. Solution of the Tree-Sparse KKT System - Incoming Control

In the incoming control case, the tree-sparse KKT algorithms are established analogously to the

outgoing control case. The presentation here follows the guideline at the beginning of Sect. 4.3.2.

The reading of the subsequently introduced dynamic algorithm tables is already explained at

the end of Sect. 4.3.2.

Node-wise Presentation of the KKT System

The right-hand side of the primal-dual system (4.32) is divided into

ν := ((dj , fj))j∈V , α :=
(

(hj)j∈V , eV

)
, ρ :=

(
(ruj , rxj )

)
j∈V . (4.96)

Dropping ∆ from all step variables, the node-wise presentation of KKT system (4.67) reads

Jjxi +
(
Kj + Φuj

)
uj − ETj λj −

(
Dr
j

)T
vuj −DT

j µ+ dj = 0, j ∈ V , (4.97a)(
Hj + Φxj

)
xj +

∑
k∈S(j)

JTj uk + λj −
∑

k∈S(j)

GTj λk

−
∑

k∈S(j)

(
F rij
)T
vuk −

(
F rj
)T
vxj − FTj µ+ fj = 0, j ∈ V , (4.97b)

Gjxi + Ejuj − xj + hj = 0, j ∈ V , (4.97c)

F rijxi +Dr
juj +

(
Ψu
j

)−1
vuj + ruj = 0, j ∈ V , (4.97d)

F rj xj +
(
Ψx
j

)−1
vxj + rxj = 0, j ∈ V , (4.97e)∑

j∈V
Djuj +

∑
j∈V

Fjxj + eV = 0. (4.97f)

Elimination of the Dual Ranges

Solving (4.97d) for vuj as well as (4.97e) for vxj lead to

−vuj = Ψu
j

(
F rijxi +Dr

juj + ruj
)

, (4.98a)

−vxj = Ψx
j

(
F rj xj + rxj

)
. (4.98b)

Equations (4.97a) and (4.97b) in reduced forms then read

Ĵjxi + K̂juj − ETj λj −DT
j µ+ d̂j = 0, j ∈ V , (4.99a)

Ĥjxj +
∑

k∈S(j)

ĴTk uk + λj −
∑

k∈S(j)

GTk λk − FTj µ+ f̂j = 0, j ∈ V , (4.99b)
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Table 4.6.: Elimination of range duals – Incoming control case

Factorization ↓ Inward Subst. ↓ Outward Subst. ↑
1: −vuj ← Ψu

j (−vuj )

2: −vxj ← Ψx
j (−vxj )

3: Kj += Dr
j
TΨu

jD
r
j + Φuj dj += Dr

j
TΨu

j r
u
j −vuj += Dr

juj

4: Jj += Dr
j
TΨu

jF
r
ij

5: Hi += F rij
TΨu

jF
r
ij fi += F rij

TΨu
j r
u
j −vuj += F rijxi

6: Hj += F rj
TΨx

jF
r
j + Φxj fj += F rj

TΨx
j r
x
j −vxj += F rj xj

where the modified node subblocks are given by

K̂j := Kj +
(
Dr
j

)T
Ψu
jD

r
j , d̂j := dj +

(
Dr
j

)T
Ψu
j r
u
j (4.100a)

Ĵj := Jj +
(
Dr
j

)T
Ψu
jF

r
ij , (4.100b)

and

Ĥj := Hj +
(
F rj
)T

Ψx
jF

r
j +

∑
k∈S(j)

(
F rjk
)T

Ψu
jF

r
jk, (4.101a)

f̂j := fj +
(
F rj
)T

Ψx
j r
x
j +

∑
k∈S(j)

(
F rjk
)T

Ψu
j r
x
k . (4.101b)

The computation steps presented above are listed in Table 4.6, the reading of this table is

described at the end of Sect. 4.3.2.

Basic Recursion

The presentation of the basic recursion in the incoming control case follows the lines of

Steinbach [79]. At a leaf j ∈ L, the equations (4.99) and (4.97c) read

Jjxi +Kjuj + ETj (−λj) +DT
j (−µ) + dj = 0, (4.102a)

Hjxj + λj + FTj (−µ) + fj = 0, (4.102b)

Gjxi + Ejuj − xj + hj = 0. (4.102c)

For the sake of clarity, the mathematical accents used during the first elimination process are

dropped. Equations (4.102b) and (4.102c) are solved for λj and xj , respectively, then reading

−λj = Hjxj + FTj (−µ) + fj , (4.103a)

xj = Gjxi + Ejuj + hj . (4.103b)
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Substituting (4.103b) into (4.103a) leads to

−λj = HjGjxi +HjEjuj +Hjhj + FTj (−µ) + fj . (4.104)

Using (4.104) to eliminate λj from (4.102a), the latter equation reads

J̄jxi + K̄juj + D̄T
j (−µ) + d̄j = 0, (4.105)

where the modified node subblocks are defined as

K̄j := Kj + ETj HjEj , d̄j := dj + ETj (Hjhj + fj) , (4.106a)

J̄j := Jj + ETj HjGj , D̄j := Dj + FjEj . (4.106b)

Due to As. 2, the node subblocks K̄j are symmetric and positive definite and the Cholesky

factorization K̄j = LjL
T
j is applied. In doing so and solving (4.105) for the local controls uj ,

expression (4.105) is further transformed into

uj = −L−Tj
(
J̌jxi + ĎT

j (−µ) + ďj
)

, (4.107)

where the merged KKT node subblocks read

J̌j := L−1
j J̄j , Ďj := D̄jL

−T
j , ďj := L−1

j d̄j . (4.108)

In (4.107), the local control variables uj depend only on the state variables xi of the predecessor i

as well as the global multiplier µ. Therefore, consider (4.99b) for a node j with S(j) ∈ L.
Using (4.104) to eliminate the dynamic duals λk of the successors k ∈ S(j) and dropping the

accents used during the elimination of the range duals, equation (4.99b) reduces to

H̄jxj +
∑

k∈S(j)

J̄Tk uk + λj + F̄Tj (−µ) + f̄j = 0 (4.109)

where the modified node subblocks are given by

H̄j :=Hj +
∑

k∈S(j)

GTkHkGk, f̄j := fj +
∑

k∈S(j)

GTk (Hkhk + fk) , (4.110a)

F̄j :=Fj +
∑

k∈S(j)

FkGk. (4.110b)
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The controls uk of the successors k ∈ S(j) are eliminated using (4.107). Defining

H̃j := H̄j −
∑

k∈S(j)

J̌Tk J̌k, f̃j := f̄j −
∑

k∈S(j)

J̌Tk ďk, (4.111a)

F̃j := F̄j −
∑

k∈S(j)

ĎkJ̌k, (4.111b)

the modified equation (4.109) reads

H̃jxj + λj + F̃Tj (−µ) + f̃j = 0. (4.112)

With the last step the nodes S(j) are eliminated from the tree. The equations (4.99a), (4.112)

and (4.97c) now have the same form as the former leaf equations (4.102). Therefore, the

elimination process can be repeated in an inward recursion over the tree.

For computing the global multiplier µ, the global equations (4.97f) are restated as

∑
j∈VT−1

Djuj +
∑

j∈VT−1

Fjxj +
∑
j∈LT

Djuj +
∑
j∈LT

Fjxj +XVT µ+ eVT = 0 (4.113)

with the fill-in block XVT := 0. Using expression (4.103b) to eliminate xj for j ∈ LT leads to

∑
j∈VT−2

Fjxj +
∑

j∈VT−1

Djuj +
∑

j∈LT−1

F̄jxj +
∑
j∈LT

D̄juj +XVT µ+ ēVT = 0, (4.114)

where the modified right-hand side subblock is defined as

ēVT := eVT +
∑
j∈LT

Fjhj . (4.115)

Next, equation (4.107) is used to eliminate uj of the same nodes j ∈ LT . Defining

XVT−1
:= XVT +

∑
j∈LT

ĎjĎ
T
j and eVT−1

:= ēVT −
∑
j∈LT

Ďj ďj , (4.116)

the global constraints then read

∑
j∈VT−2

Djuj +
∑

j∈VT−2

Fjxj +
∑

j∈LT−1

D̄juj +
∑

j∈VT−1

F̃jxj +XVT−1
µ+ eVT−1

= 0. (4.117)
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Table 4.7.: Basic KKT recursion – Incoming control case

Factorization ↓ Inward Subst. ↓ Outward Subst. ↑
1: Kj += ETj HjEj dj += ETj (Hjhj + fj) −λj += Hjxj

2: Kj ← LjL
T
j

3: Jj += ETj HjGj xj += Ejuj

4: Hi += GTj HjGj fi += GTj (Hjhj + fj) xj += Gjxi

5: Fi += FjGj e += Fjhj −λj += FTj (−µ)

6: Dj += FjEj

7: Dj ← DjL
−T
j hj ↔ fj

8: Jj ← L−1
j Jj dj ← L−1

j dj uj ← −L−Tj uj

9: Hi -= JTj Jj fi -= JTj dj uj += Jjxi

10: Fi -= DjJj

11: X += DjD
T
j e -= Djdj uj += DT

j (−µ)

12: X ← LLT e ← L−1e −µ ← L−T (−µ)

Repeating the eliminations of uj and xj inwardly to the root leads to

X∅(−µ) = e∅. (4.118)

With As. 2 satisfied, X∅ is symmetric positive definite and can be factorized (X∅ = L∅LT∅ ). The

steps of the basic recursion above are listed in Table 4.7.

Outward Substitution

As in the outgoing control case, the global Lagrange multiplier µ is computed first from (4.118)

using the factors of X∅. The computation order for the node variables is then uj , xj , λj , vxj
and vuj , using the equations (4.107), (4.103b), (4.103a) and (4.98), respectively.

4.4. Tree-Sparse Inertia Correction

The TSPs are solved by an interior-point method that incorporates a filter line-search approach

as globalization strategy (cf. Sect. 2.2.2). In this algorithmic framework, obtaining a descent

direction (Def. 8) from the primal-dual system (2.21) requires the reduced KKT Matrix,

Ωr =

 Ĥ ∇cTE
∇cE 0

 with Ĥ ∈ Rn×n and ∇cE ∈ Rm×n, (4.119)
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to be regular with m positive and n negative eigenvalues. This inertia condition, i.e.

inertia(Ωr) = (m,n, 0), is satisfied if the Jacobian ∇cE has full row rank m and the Hes-

sian of the Lagrangian Ĥ projected onto the null-space N (∇cE) is positive definite (As. 1).

For well-formulated convex problems, i.e. for convex problems (Def. 5) with {∇ci(x) : i ∈ E}
being linearly independent, Assumption 1 is always satisfied [66]. Nonlinear problems, however,

lack the benefit of convex problems. Using inertia corrections to overcome the drawback of an

undesired inertia, the reduced KKT matrix (4.119) is replaced by a corrected version

Ωcorr
r =

 Ĥ + Γc ∇cTE
∇cE −Γr

 with Γc, Γr ≥ 0, (4.120)

which satisfies the condition inertia(Ωcorr
r ) = (n,m, 0). Typically, the correction terms Γc and

Γr are multiples of the identity and determined in a trial-and-error approach based on attempts

at factorizing Ωcorr
r [72, 103, 105]. When solving tree-sparse problems, such correction terms

are not suitable for two reasons. First, a regularization of the form Γr = γrI destroys the

sparsity pattern of the tree-sparse KKT matrix for which the solution algorithms in Sect. 4.3

are designed. Second, adjusting the parameters γr and γc requires expensive refactorizations of

the entire KKT matrix.

Addressing both drawbacks of the typical approach, a problem-tailored inertia correction

heuristic for the TSPs is developed that is directly incorporated into the tree-sparse KKT

solution procedure. This way, the tree-sparse KKT algorithms in Sect. 4.3 are extended to deal

with rank-deficiencies and nonconvexities in the arising KKT systems. The proposed tree-sparse

inertia correction is—to the best of the author’s knowledge—not considered in the literature.

Also, for nonlinear multistage stochastic problems fitting into the formulations of the TSPs,

problem-tailored inertia corrections are—again, to the best of the author’s knowledge—not

considered in the literature.

Subsequently, Section 4.4.1 outlines the basic idea of the tree-sparse inertia correction.

Afterwards, the regularization heuristic is discussed in Sect. 4.4.2 and Sect. 4.4.3 presents the

problem-tailored convexification heuristic.

4.4.1. Extension of the Tree-Sparse KKT Algorithms

The tree-sparse KKT algorithms discussed in Sect. 4.3 are originally designed for well-formulated

tree-sparse convex problems (cf. Sect. 3.2). For these problems, the required regularity assump-

tions (As. 2) are always satisfied guaranteeing that the tree-sparse factorization succeeds. This

success depends on the successes of the Cholesky factorizations that are performed during the
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tree-sparse factorization, i.e. the factorizations of the Hessian subblocks Kj and the fill-in

block X∅. The main idea of the inertia correction is to ensure that these Cholesky factorizations

are still performed even if the regularity assumptions are not satisfied. This is achieved by

replacing the corresponding operations, i.e. items 1 and 12 in Table 4.5 as well as items 2

and 12 in Table 4.7, with the modifications

(X∅ + γrI) = L∅L
T
∅ and (Kj + γcj I) = LjL

T
j for j ∈ V . (4.121)

Setting the parameters γr, γcj ≥ 0 sufficiently large ensures that the respective Cholesky factors

are evaluated successfully.

Basically, the parameters γr and γcj are set when the respective Cholesky factorizations

fail. In doing so, the correction terms are directly incorporated into the factorization stage of

the tree-sparse KKT algorithms. This way, the tree-sparse KKT algorithms are extended to

modifying solution approaches for KKT systems, i.e. the KKT matrix may be modified during

the solution procedure.

4.4.2. Regularization Strategy

The regularization term Γr in (4.120) is used to clear out the zero eigenvalues in the inertia

of Ωcorr
r that are caused by a rank-deficiency in the Jacobian ∇cE of the equality constraints.

Using a multiple of the identity as regularizing term, i.e. Γr = γrI, any regularization

parameter γr > 0 leads to full row rank in the lower block row of Ωcorr
r [105]. However, this

common approach is incompatible with the tree-sparse KKT algorithms. Recall, for example,

the linearized dynamics (4.75c) of the outgoing control TSP (4.3) and consider the following

modification that accounts for the regularization:

Gjxi + Ejui − xj + γrλj + hj = 0, j ∈ V . (4.122)

The regularization causes fill-in with the dynamic duals λj for which the tree-sparse KKT

algorithms are not designed (cf. Sect. 4.3). In fact, the incorporated regularizing term in (4.122)

is uncalled-for since the dynamic block G of the Jacobian ∇cE is already regular (cf. Sect. 4.3.1).

More precisely, (A1) of As. 2 implies that only the global block F may cause a rank-deficiency in

the tree-sparse Jacobian ∇cE . Hence, regularizing the corresponding block row in Ωcorr
r (4.120)

is sufficient to clear out the resulting zero eigenvalues in the inertia, i.e. the corrected version
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of the reduced tree-sparse KKT matrix reads

Ωcorr
r =


Ĥ + Γc GT FT

G

F −γrI

 with Γc ≥ 0 and γr ≥ 0. (4.123)

In the tree-sparse KKT algorithms, a rank-deficiency in ∇cE is detected at the attempt of

factorizing the fill-in subblock X∅. In both control cases, the subblock X∅ is as sum of symmetric

products at least positive semidefinite (see (4.91) and (4.116)), but it may be singular if (A1)

of As. 2 is unsatisfied. Then, any parameter γr > 0 regularizes the subblock X∅ such that the

Cholesky factorization

(X∅ + γrI) = L∅L
T
∅ (4.124)

exists. The operation (4.124) is performed at the very end of the factorization stage (see

tables 4.5 and 4.7). Adjusting the regularization parameter γr does not affect previous performed

operations and, therefore, does not require a refactorization of the entire matrix Ωcorr
r (4.123).

4.4.3. Convexification Strategy

In Sect. 4.4.1, the node subblocks Kj are modified using a node convexification parameter γcj > 0

if the Cholesky factorization Kj = LjL
T
j fails. This way, the correction term Γc in (4.119) is of

diagonal form, which reads in the outgoing control case as follows:

Γc = Diag (Γcj)j∈V with Γcj =


γcj I

 . (4.125)

Hence, compared to the typical approach described in Sect. 2.2.2, the convexification Γc (4.125)

is no longer a multiple of the identity. Moreover, Γc does not convexify the entire Hessian Ĥ

but only its projection onto the null-space N (G) of the dynamic part G of the tree-sparse

Jacobian∇cE (cf. Sect. 4.2). The key advantage of this convexification strategy is that the inertia

of the Hessian Ĥ can be adjusted without needing to refactorize the entire KKT matrix Ωcorr
r .

For a node j ∈ V , a modification of Kj affects only the node subblocks of its ancestors and not

those of its descendants. Hence, the node convexification parameter γcj can be determined at

the attempt of factorizing the node subblock Kj during the factorization stage of the tree-sparse

KKT algorithm (see item 1 in Table 4.5 as well as item 2 in Table 4.7).

Thus, convexifying the KKT matrix Ωcorr
r (4.119) using Γc (4.125) avoids expensive refac-
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torizations of the KKT matrix in one iteration of the IPM algorithm. However, since the

KKT matrix is modified the resulting primal-dual search direction ωpd (4.35) might not be

useful. On the other hand, using a multiple of the identity as correction term in (4.119)

requires refactorizing Ωcorr
r each time the parameter γc is adjusted but is successfully applied in

the literature [72, 103, 105]. Both arguments motivate the flexible convexification framework

presented next, which allows correcting Ωcorr
r in either one of the two ways or to find a fair

comprise between the both of them.

Convexification Framework

The convexification framework for the tree-sparse KKT system comprises an outer convexification

as well as local convexifications for each node j ∈ V . The outer convexification initiates the

factorization of the KKT matrix Ωcorr
r with γcj ≡ γ̄c for all j ∈ V . Starting with γ̄c = 0, the

factorization of Ωcorr
r is tried for increasing values of γ̄c. Additionally, the inertia of Ωcorr

r can be

adjusted by the local convexifications. Those try to apply the Cholesky factorizationsKj+γcj I =

LjL
T
j for increasing node convexification parameters

γcj = κlcγ̄c with κc > 1 and l = 0, . . . ,nmax
c . (4.126)

It is also possible to apply the local convexifications in a uniform way for each node. Activating

this uniform node convexification means that the state node subblocks Hj of the tree-sparse

Hessian are corrected with the same terms as the control node subblocks Kj , i.e. Hj + γcj I.

This way, for each node j the convexification term Γcj becomes a multiple of the identity.

Now, in this convexification framework, setting nmax
c = ∞ means disabling the outer con-

vexification and use only local convexifications. On the other hand, returning to the typical

approach of using a multiple of the identity Γc = γcI is achieved by setting nmax
c = 0 and

activating the uniform node convexification.

4.5. Quasi-Newton Methods for Tree-Sparse Problems

Motivated from optimizing dynamic processes modeled by ordinary differential equations (ODEs)

(cf. Sect. 3.3), this section considers TSPs without using explicit evaluations of second-

order derivatives. In a quasi-Newton approach, approximations of the Hessian of the La-

grangian L (4.24) are generated using Hessian update strategies (cf. Sect. 2.2.3). Without

accounting for the sparsity pattern of the problem at hand, quasi-Newton methods lead to

block-dense systems. The sparsity pattern of the problem is destroyed, making standard sparse
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solvers highly inefficient and problem-tailored ones like the tree-sparse KKT algorithms inappli-

cable. In the following, a problem-tailored quasi-Newton approach for tree-sparse problems

is proposed. Update formulae are applied node-wise to the Hessian of the Lagrangian, i.e. to

each set of node subblocks that belong together, instead of applying the formulae to the entire

Hessian at once.

Quasi-Newton methods for tree-sparse problems are—to the best of the author’s knowledge—

not considered in the literature. Also, for nonlinear multistage stochastic problems that are

covered in the formulation of the TSPs (cf. Chap. 3), problem-tailored quasi-Newton approaches

are—again, to the best of the author’s knowledge—not considered in the literature. Reports

of quasi-Newton approaches for deterministic optimal control problems (OCPs) are given, for

example, by Culver and Shoemaker [19] and by Asprion, Chinellato and Guzzella [52, 4]. The

latter consider dynamic processes modeled by ODEs and formulate OCPs featuring discretized

dynamics in outgoing control form.

The TSPs are solved using an IPM framework that employs a line-search approach as

globalization strategy [72]. To obtain descent directions from the reduced KKT systems

(cf. Sect. 2.2.2), update formulae such as SR1 leading to indefinite approximations are usually

dismissed. In [52], for example, the authors apply a BFGS-based update strategy to solve

the considered OCPs using Ipopt [104, 105]. Indefinite rank-one updates, on the other hand,

are indeed used in [19], but the authors avoid indefinite Hessian approximations by skipping

updates that cause indefiniteness. However, undesired indefinite approximations can actually be

considered in a line-search IPM framework by using the inertia corrections at hand (cf. Sect. 4.4).

Relying on the tree-sparse inertia corrections, the proposed quasi-Newton approach explicitly

do include indefinite Hessian approximations in general and the SR1 update rule in specific.

In the following, Sect. 4.5.1 provides a short overview of quasi-Newton approaches for

sparse problems in general and reviews Hessian update strategies for partially separable

functions (cf. Sect. 4.1.3) in specific. Based on the discussions on partially separable functions,

sections 4.5.2 and 4.5.3 present tree-sparse Hessian update strategies tailored to the problems

in their respective control forms.

4.5.1. Hessian Updates for Partially Separable Functions

To maintain the computational tractability of a problem, quasi-Newton methods in large-scale

optimization must not alter its sparsity pattern too much, i.e. the applied Hessian update

strategy keeps additional fill-in at a minimum. Such sparse quasi-Newton approaches for

unconstrained and constrained optimization are considered repeatedly in the literature, e.g.

in [91, 68, 58, 31, 57, 24]. General aspects of derivative approximations in the context of
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optimization are given, for example, by Polak [67]. Griewank and Toint establish partitioned

quasi-Newton methods for specific functions they call partially separable [37, 38, 39, 40]. The

special case of unconstrained optimization problems arising from discretized time-continuous

models is considered, for example, by Malmedy and Toint [62].

Griewank and Toint observe that many functions in finite-dimensional optimization problems

resulting from discretizing an infinite-dimensional counterpart are stated as sums [37],

ζ(y) =

M∑
i=1

ζi(y) with ζi : RN → R, i = 1, . . . ,M . (4.127)

Each contribution ζi corresponds to an element of the discretization grid, e.g. a decomposition

of a time interval, a mesh approximating a geometric domain, or—as it is in this work—a tree

representing the stochastic process. The contributions ζi only depend on a small number of the

optimization variables y, i.e. ζ is a partially separable function of the form (4.17).

Two key ingredients lead to computationally efficient Hessian update strategies for (4.127)

preserving the specific structure of the Hessian ∇2ζ. First, with ζ being a sum of contributions,

its derivatives ∇ζ and ∇2ζ feature the same characteristic, i.e. those read

∇ζ(y) =

M∑
i=1

∇ζi(y) and ∇2ζ(y) =

M∑
i=1

∇2ζi(y). (4.128)

Rather than approximating the overall Hessian ∇2ζ directly, the idea is to approximate each

contribution ∇2ζi separately [37]. Monitoring these approximations and accumulating them to

the overall Hessian approximation leads to the update strategy

B(k) =

M∑
i=1

B
(k)
i with B(k) ≈ ∇2ζ(y(k)) and B

(k)
i ≈ ∇2ζi(y

(k)). (4.129)

Thereby, the update strategy (4.129) preserves the specific structure of the Hessian of the

function ζ resulting from its presentation as a sum (4.127). The matrices B(k)
i are obtained by

applying one of the formulae (2.32), and the same one to all contributions, using

s
(k)
i = s(k), g

(k)
i = ∇ζi(y(k+1))−∇ζi(y(k)) and r

(k)
i = s

(k)
i −B

(k)
i g

(k)
i . (4.130)

The second ingredient for approximating the Hessian ∇2ζ allows to compute its contributions

efficiently: evaluate B
(k)
i only on the domain of the contribution ζi instead of doing the same

on the entire domain of the overall function ζ. More precisely, evaluate only the nontrivial

entries of B(k)
i and contribute these to the overall approximation B(k).
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In the following, functions Pi are introduced that first map the derivatives ∇ζi and ∇2ζi

onto the domain of the respective contribution ζi and then reverse the respective processes.

These mappings are used to establish Hessian update strategies operating only on the domains

of the contributions.

Gradients of Partially Separable Functions

Recall from Sect. 4.1.3 the definition of a partially separable function,

ζ(y) =

M∑
i=1

ζi ((yj)j∈Ji) with Ji ⊆ {1, . . . ,N} for i = 1, . . . ,M , (4.131)

and let P1
i be the mapping of the vector y onto the domain of the contribution ζi, i.e.

P1
i : RN → R|Ji| with P1

i (y) = (yj)j∈Ji . (4.132)

The reverse mapping P−1
i is expressed by means of the characteristic function χ and reads

P−1
i : R|Ji| → RN with P−1

i (P1
i (y)) = (χ(j ∈ Ji)yj)j=1,...,N . (4.133)

Note that P−1
i is not the inverse of P1

i since mapping a vector y back and forth leads to yj = 0

for j 6∈ Ji. Now, the gradient of a partially separable function (4.131) by means of these

mappings reads

∇ζ(y) =

M∑
i=1

P−1
i

(
∇P1

i (y)ζi
(
P1
i (y)

))
. (4.134)

Hessian Updates for Partially Separable Functions

The Hessian ∇2ζ is stated the same way as the gradient ∇ζ (4.134). First, a contribution ∇2ζi

is mapped based on

P2
i : Rn×n → R|Ji|×|Ji| with P2

i (Y ) = [Ykl]k,l∈Ji . (4.135)

Afterwards, the mapping P2
i is reversed by using its counterpart

P−2
i : R|Ji|×|Ji| → RN×N with P−2

i (P2
i (Y )) = [χ(k ∈ Ji)χ(l ∈ Ji)Ykl]k,l=1,...,N . (4.136)
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The mapping P2
i is not used explicitly but expressed by means of the mapping P1

i (4.132).

Therefore, the Hessian of a partially separable functions reads

∇2ζ(y) =

M∑
i=1

P−2
i

(
∇2
P1
i (y)P1

i (y)ζi
(
P1
i (y)

))
. (4.137)

Applying the presentation (4.137) to the update strategy (4.129) leads to

B(k) =

M∑
i=1

P−2
i

(
B̂

(k)
i

)
with B̂

(k)
i ≈ ∇2

P1
i (y)P1

i (y)ζi(P1
i (y)). (4.138)

The local approximation B̂
(k)
i is composed of the vectors (4.130) on the domain of the respective

contribution, i.e.

ŝ
(k)
i = P1

i (s(k)), ĝ
(k)
i = P1

i (g
(k)
i ) and r̂

(k)
i = ŝ

(k)
i − B̂

(k)
i ĝ

(k)
i . (4.139)

Completely Separable Functions

Specific forms of partially separable functions (4.131) comprise contributions ζi without over-

lapping derivatives, i.e. the mappings of ∇ζi and ∇2ζi coincide with partial derivatives of ζ

with respect to the corresponding mapping of y.

Two variables yj1 and yj2 are said to be joint variables if there exists an index set Ji containing
both indices j1 and j2, i.e. it is j1, j2 ∈ Ji for at least one i ∈ {1, . . . ,M}. Completely separable

functions are partially separable functions (4.127) without joint variables, i.e. the partial

separability is described by pairwise disjoint index sets Ji1 ∩Ji2 = ∅ for i1 6= i2. For completely

separable functions, a partial derivative with respect to joint variables coincide with the

respective derivative of one of its contributions, i.e. a partial gradient reads

∇P1
i (y)ζ(y) = ∇P1

i (y)ζi(P1
i (y)), (4.140)

and a partial Hessian satisfies

∇2
P1
i (y)P1

i (y)ζ(y) = ∇2
P1
i (y)P1

i (y)ζi(P1
i (y)). (4.141)

Applying P2
i to ∇2ζ (4.137) and using (4.141) leads to the relation

P2
i (∇2ζ(y)) = ∇2

P1
i (y)P1

i (y)ζi
(
P1
i (y)

)
. (4.142)
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4.5.2. Tree-Sparse Hessian Update Strategies – Outgoing Control

In the following, the Hessian update strategy for partially separable functions discussed

in Sect. 4.5.1 is applied to approximate the Hessians of the Lagrangian for the TSP in outgoing

control form (4.3). For this, recall the formulation of the Lagrangian (4.40) corresponding to

the outgoing TSP (4.3) reading

L(y, η) =
∑
j∈V
Lj(xj ,uj , η)− ξT s (4.143)

with the Lagrangian node functions Lj (4.41) as well as the vector η (4.25) subsuming all

variables but the primal variables y. The Lagrangian (4.143) is completely separable with

respect to the node variables yj = (xj ,uj). Therefore, let P1
j map the primal vector y onto the

node variables yj , i.e.

P1
j : Rn

v → Rn
v
j with P1

j (y) = yj =

xj

uj

 . (4.144)

The remaining mappings

P−1
j : Rn

v
j → Rn

v

, P2
j : Rn

v×nv → Rn
v
j×nvj and P−2

j : Rn
v
j×nvj → Rn

v×nv (4.145)

are defined appropriately following the lines in Sect. 4.5.1. With the Lagrangian (4.143) being

completely separable, it holds that

∇2
P1
j (y)P1

j (y)L(y, η) = ∇2
P1
j (y)P1

j (y)Lj(P1
j (y), η) = ∇2

yjyjLj(yj , η). (4.146)

Now, each Hessian (4.146) is approximated by a node subblock B̂j using the same update

formula for each node j ∈ V with

s
(k)
j = y

(k+1)
j − y(k)

j , g
(k)
j = ∇yjL+

j (y
(k+1)
j )−∇yjL−j (y

(k)
j ), r

(k)
j = s

(k)
j − B̂

(k)
j g

(k)
j , (4.147)

where the functions L+
j and L−j are defined by

L+
j (y

(k+1)
j ) := Lj(y(k+1)

j , η(k)) and L−j (y
(k)
j ) := Lj(y(k)

j , η(k)). (4.148)
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The approximation B̂
(k)
j of the Hessian of the node function Lj in (4.143) reads

B̂
(k)
j ≈ ∇2

yjyjLj(y
(k)
j , η(k)) =

H(k)
j (J

(k)
j )T

J
(k)
j K

(k)
j

 , (4.149)

where the node subblocks Hj , Kj and Jj are given by (4.45). Finally, the mapping P−2
j

places the block B̂
(k)
j onto the diagonal block of ∇2

yyL corresponding to node j. The overall

approximation of the Hessian in the outgoing control case reads

∇2
yyL(y(k), η(k)) ≈

∑
j∈V
P−2
j (B̂

(k)
j ). (4.150)

4.5.3. Tree-Sparse Hessian Update Strategies – Incoming Control

The Lagrangian corresponding to the TSP in the incoming control form (4.4) is composed of

the two types of node functions Lij (4.54) and Lj (4.55) reading

L(y, η) =
∑
j∈V
Lij(xi,uj , η) +

∑
j∈V
Lj(xj , η)− ξT s, (4.151)

where η is again the vector of all variables but the primal variables y. Note that in contrast

to the outgoing control case discussed in Sect. 4.5.2, the Lagrangian (4.151) is not completely

separable.

Now, the overall Hessian ∇2
yyL of the Lagrangian (4.151) is approximated by means of

approximations Bij ≈ ∇2
yyLij and Bj ≈ ∇2

yyLj for the respective node functions. For this, the

two mappings

P1
ij : Rn → Rn

v
j , P1

ij(y) =

 xi

uj

 and P1
j : Rn → Rn

x
j , P1

j (y) = xj (4.152)

are introduced and the corresponding mappings P−1
ij , P2

ij , P−2
ij and P−1

j , P2
j , P−2

j are defined

following the lines in Sect. 4.5.1. Then, the projected approximations of the Hessians of the

node functions Lij read

B̂
(k)
ij ≈ ∇2

P1
ij(y)P1

ij(y)Lij(x
(k)
i ,u

(k)
j , η(k)) =

H(k)
ij (J

(k)
j )T

J
(k)
j K

(k)
j

 (4.153)

with Hij , Kj and Jj as defined in (4.61a) to (4.61c). The projected approximations of the
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Hessians of the node functions Lj are

B̂
(k)
j ≈ ∇2

xjxjLj(x
(k)
j , η(k)) = H̄

(k)
j , (4.154)

where H̄j is given by (4.61d). Using the definitions

L+
ij(x

(k+1)
i ,u

(k+1)
j ) := Lij(x(k+1)

i ,u
(k+1)
j , η(k)), L+

j (x
(k+1)
j ) := Lj(x(k+1)

j , η(k)) (4.155a)

L−ij(x
(k)
i ,u

(k)
j ) := Lij(x(k)

i ,u
(k)
j , η(k)), L−j (x

(k)
j ) := Lj(x(k)

j , η(k)), (4.155b)

the approximations B̂ij and B̂j are updated by applying one of the formulae (2.32), where the

respective differences of the iterates are given by

s
(k)
ij =

x
(k+1)
i − x(k)

i

u
(k+1)
j − u(k)

j

 and s
(k)
j = x

(k+1)
j − x(k)

j , (4.156)

the corresponding differences of the gradients of the Lagrangian read

g
(k)
ij =

∇xiL+
ij(x

(k+1)
i ,u

(k+1)
j )−∇xiL−ij(x

(k)
i ,u

(k)
j )

∇ujL+
ij(x

(k+1)
i ,u

(k+1)
j )−∇ujL−ij(x

(k)
i ,u

(k)
j )

 , (4.157a)

g
(k)
j = ∇xjL+

j (x
(k+1)
j )−∇xjL−j (x

(k)
j ). (4.157b)

and, finally, it is r(k)
ij = g

(k)
ij − B̂

(k)
ij s

(k+1)
ij and r

(k)
j = g

(k)
j − B̂

(k)
j s

(k)
j , respectively.

Considering a simple tree comprising the root 0 and the successors S(0) = {1, 2}, the Hessian

of the Lagrangian (4.151) has the form

∇2
yyL(y(k), η(k)) =



K
(k)
0

H
(k)
0 (J

(k)
1 )T (J

(k)
2 )T

J
(k)
1 K

(k)
1

H
(k)
1

J
(k)
2 K

(k)
2

H
(k)
2


(4.158)

with

H
(k)
0 = H̄

(k)
0 +H

(k)
01 +H

(k)
02 , H

(k)
1 = H̄

(k)
1 and H

(k)
2 = H̄

(k)
2 . (4.159)
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The overall approximation of the Hessian of the Lagrangian (4.151) reads

∇2
yyL(y(k), η(k)) ≈

∑
j∈V
P−2
ij (B̂

(k)
ij ) +

∑
j∈V
P−2
j (B̂

(k)
j ). (4.160)

Hence, the mappings P−2
ij and P−2

j place the node subblocks Kj and H̄j onto the diagonal

corresponding to node j. Additionally, P−2
ij places the node subblock Hij onto the diagonal as

well as Jj and JTj onto secondary diagonals corresponding to the predecessor i.

4.6. Numerical Issues

Subsequently, some numerical issues are outlined concerning the treatment of the TSPs. First of

all, Section 4.6.1 presents further tree-sparse algorithms in the context of tree-sparse optimization.

All tree-sparse algorithms except for the outward substitutions are considered as so-called inward

algorithms, meaning the respective node operations are performed in an inward sweep over

the tree nodes (cf. Chap. 5). The reason for this is the specific concern for accumulating a

large amount of data in a numerically stable way, which is discussed in Sect. 4.6.2. Finally,

Section 4.6.3 provides some remarks on problem scaling for the TSPs.

4.6.1. Other Tree-Sparse Algorithms

In the following, two additional tree-sparse algorithms are presented that are, besides the

tree-sparse KKT algorithms, most important in the context of tree-sparse optimization. First,

the matrix-vector product (MVP) with parts of the KKT matrix Ω (4.67) takes center stage in

both evaluating the gradient of the Lagrangian ∇yL (4.26) and evaluating the constraints cE

and cI for tree-sparse QPs. Second, evaluating the problem data of TSPs are also realized by

tree-sparse algorithms.

Tree-Sparse Matrix-Vector Products

Consider the following MVP with the KKT matrix,
ν

α

ρ

+=


H A B

AT

BT



y

z

v

 , (4.161)
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Table 4.8.: Tree-sparse MVP algorithm – Outgoing control case

H-Block A-Block AT -Block B-Block BT -Block

1: fj +=Hjxj hj +=Gjxi fj -=λj rj +=F rj xj fj +=F rj
T vj

2: fj += JTj uj hj +=Ejui fi +=GTj λj rj +=Dr
juj dj +=Dr

j
T vj

3: dj +=Kjuj hj -=xj di +=ETj λj
4: dj += Jjxj e +=Fjxj fj +=FTj µ

5: e +=Djuj dj +=DT
j µ

Table 4.9.: Tree-sparse MVP algorithm – Incoming control case

H-Block A-Block AT -Block B-Block BT -Block

1: dj +=Kjuj hj +=Ejuj dj +=ETj λj ruj +=F rijxi fi +=F rij
T vuj

2: fj +=Hjxj hj -=xj dj +=DT
j µ ruj +=Dr

juj dj +=Dr
j
T vuj

3: fi += JTj uj e +=Djuj fj -=λj rxj +=F rj xj fj +=F rj
T vxj

4: dj += Jjxi e +=Fjxj fj +=FTj µ

5: hj +=Gjxi fi +=GTj λj

and recall the tree-sparse node subblock notation from the previous sections, i.e. the matrix

node subblocks (4.42) and (4.45), the right-hand side notation

ν = ((fj , dj))j∈V , α =
(

(hj)j∈V , eV

)
, ρ = (rj)j∈V , (4.162)

and the argument vector node subblocks

y = ((xj ,uj))j∈V , z =
(

(λj)j∈V ,µ
)

and v = (vj)j∈V . (4.163)

Table 4.8 lists the node operations for performing the MVP (4.161) in the outgoing control

case. The reading of this table is the same as those of the tree-sparse KKT algorithms. All

operations in one column are performed from top to bottom1.

The incoming control version of the tree-sparse MVP (4.161) listed in Table 4.9 is based

on the notation (4.56) to (4.58) for the matrix node subblocks as well as the right-hand side

notation

ν := ((dj , fj))j∈V , α :=
(

(hj)j∈V , eV

)
, ρ :=

(
(ruj , rxj )

)
j∈V , (4.164)

1The order of performing the node operations does not affect the outcome of the overall operations.
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Table 4.10.: Evaluation of zero-order and first-order problem data – Outgoing control case

Objective Constraints Gradient Derivatives

1: ν +=φj(xj ,uj) hj ← gj(xi,ui) fj ← ∇xjφj(xj ,uj) Gj ← ∇xigj(xi,ui)
2: hj -=xj dj ← ∇ujφj(xj ,uj) Ej ← ∇uigj(xi,ui)
3: rj ← rj(xj ,uj) F rj ← ∇xjrj(xj ,uj)
4: e+= fj(xj ,uj) Dr

j ← ∇ujrj(xj ,uj)
5: Fj ← ∇xjfj(xj ,uj)
6: Dj ← ∇ujfj(xj ,uj)

and the argument vector subblocks

y = ((uj ,xj))j∈V , z =
(

(λj)j∈V ,µ
)

and v =
(
(vuj , vxj )

)
j∈V . (4.165)

Evaluation of Tree-Sparse Problem Data

Evaluating an NLP (4.1) includes the evaluation of the problem functions f , cE and cR as well

as their respective first-order and second-order derivatives. For smooth NLPs, evaluating the

problem data can be divided into the following five tasks:

1. the objective value f(y),

2. the values cE(y) and cI(y) of the constraint functions,

3. the gradient of the objective,

4. the Jacobians or first-order derivatives of the constraints and

5. the Hessian of the Lagrangian (4.24).

The operations for evaluating the outgoing TSP (4.3) are listed in tables 4.10 and 4.11 whereas

tables 4.12 and 4.13 list the respective operations for evaluating the incoming TSP (4.4).

4.6.2. Stable Accumulation

In tree-sparse optimization, one has to deal with very large vectors and needs to address

the effects of rounding errors and cancellation that might occur while creating accumulated

information [45]. In the presented tree-sparse algorithms, i.e. the KKT algorithms in Sect. 4.3 as

well as the algorithms for evaluating MVPs or the problem data of the TSPs in Sect. 4.6.1, such

accumulations arise in context with the objective function and the global equality constraints.
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Table 4.11.: Evaluation of the Hessian of the Lagrangian – Outgoing control case

H-Block K-Block J-Block

1: Hj +=∇2
xjxjφj(xj ,uj) Kj +=∇2

ujujφj(xj ,uj) Jj +=∇2
ujxjφj(xj ,uj)

for τ : m do for τ : m do for τ : m do
2: Hj -=µτ∇2

xjxjfjτ (xj ,uj) Kj -=∇2
ujujfjτ (xj ,uj) Jj -=∇2

ujxjfjτ (xj ,uj)

for τ : lrj do for τ : lrj do for τ : lrj do
3: Hj -= vjτ∇2

xjxjrjτ (xj ,uj) Kj -= vjτ∇2
ujujrjτ (xj ,uj) Jj -= vjτ∇2

ujxjrjτ (xj ,uj)

for τ : nxj do for τ : nxj do for τ : nxj do
4: Hi -=λjτ∇2

xixigjτ (xi,ui) Ki -=λjτ∇2
uiuigjτ (xi,ui) Ji -=λjτ∇2

uixigjτ (xi,ui)

Table 4.12.: Evaluation of zero-order and first-order problem data – Incoming control case

Objective Constraints Gradient Derivatives

1: ν +=φij(xi,uj) hj ← gj(xi,uj) dj ← ∇ujφij(xi,uj) Gj ← ∇xigj(xi,ui)
2: ν +=φj(xj) hj -=xj fj +=∇xjφj(xj) Ej ← ∇uigj(xi,ui)
3: ruj ← rij(xi,uj) F rij ← ∇xirij(xi,uj)
4: rxj ← rj(xj) Dr

j ← ∇ujrij(xi,uj)
5: e+= fij(xi,uj) F rj ← ∇xjrj(xj)
6: e+= fj(xj) Fj +=∇xjfj(xj)
7: Dj ← ∇ujfij(xi,uj)
8: fi +=∇xiφij(xi,uj) Fi +=∇xifij(xi,uj)

Table 4.13.: Evaluation of the Hessian of the Lagrangian – Incoming control case

H-Block K-Block J-Block

1: Hi +=∇2
xixiφij(xi,uj) Kj +=∇2

ujujφij(xi,uj) Ji +=∇2
ujxiφij(xi,uj)

2: Hj +=∇2
xjxjφj(xj)

for τ : m do for τ : m do for τ : m do
3: Hi -=µτ∇2

xixifijτ (xi,uj) Kj -=µτ∇2
ujujfijτ (xi,uj) Ji -=µτ∇2

ujxifijτ (xi,uj)

4: Hj -=µτ∇2
xjxjfjτ (xj)

for τ : nxj do for τ : nxj do for τ : nxj do
5: Hi -=λjτ∇2

xixigjτ (xi,uj) Kj -=λjτ∇2
ujujgjτ (xi,uj) Ji -=λjτ∇2

ujxigjτ (xi,uj)

for τ : lruj do for τ : lruj do for τ : lruj do
6: Hi -= vujτ∇2

xixirijτ (xi,uj) Kj -= vujτ∇2
ujujrijτ (xi,uj) Ji -= vujτ∇2

ujxirijτ (xi,uj)

for τ : lrxj do for τ : lrxj do for τ : lrxj do
7: Hj -= vxjτ∇2

xjxjrjτ (xj) − −
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Figure 4.2.: Grouping of tree nodes for stable accumulation

More precisely, accumulated information are generated when

• evaluating the fill-in block X as well as modifying the right-hand side e in the basic

recursions (cf. tables 4.5 and 4.7),

• evaluating the right-hand side e in the tree-sparse MVP (cf. tables 4.8 and 4.9)

• evaluating the values ν and e of the objective φ and the global constraints f of a TSP,

respectively (cf. tables 4.10 and 4.12).

The approach presented next corresponds to an insertion method where the data are ordered

with respect to the node probabilities. The way this is done is illustrated by means of the

vector sum s of a tree-sparse primal variable vector y = (yj)j∈V ,

s =
∑
j∈V

sj with sj :=

nxj∑
l=1

xjl +

nuj∑
l=1

ujl. (4.166)

Recall from the stochastic background that each node j ∈ V represents an event with an

associated probability pj and that the objective and global constraint node functions consume

these probabilities (cf. Sect. 4.1.3). For each tree level, the probabilities add up to one (cf.

(4.20)), leading to smaller probabilities with increasing tree levels. The tree-sparse problem

data usually are scaled with the node probabilities and inherit their magnitude.

Now, evaluating the vector sum (4.166) is done as follows. In a first step, the node sums sj

are evaluated for each node j ∈ V . Afterwards, the successors k ∈ S(j) of node j are grouped

as shown in Fig. 4.2. Second, the intermediate sums sk are added to the value sj in an inward

sweep over the tree, that is sj +=
∑
k∈S(j) sk.

4.6.3. Problem Scaling

IPMs are significantly affected by scaling of the optimization problem. Some IPM implemen-

tations such as Clean::IPM [72] and Ipopt [105] provide for automatic problem scaling that
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can be plugged in to improve the efficiency and robustness of the optimization algorithm.

However, these general approaches are not tailored to specific optimization models such as the

TSPs. Moreover, in the tree-sparse case, the specific approach of automatic row-scaling is even

incompatible with the KKT solution algorithms (see discussion below).

Fortunately, tree-sparse problems are already well-scaled with the node probabilities pj

(cf. Sect. 4.1.3). The tree-sparse objective φ (4.21) and the global equality constraint func-

tion f (4.22), for example, are expected values, and the same applies to the Lagrangian L of

TSPs as well. Therefore, the Hessian H of the Lagrangian and the global constraint block F

of the tree-sparse Jacobian ∇cE experience a probability-based column-scaling. The same

column-scaling can be achieved for the Jacobian ∇cR of the range constraints by multiplying

the respective node-wise presentation of cR with the node probabilities. For unscaled node

functions, i.e. the dynamics as well the simple bounds, the node probabilities are consumed by

the corresponding Lagrange multipliers.

Automatic Row-Scaling and Tree-Sparse KKT Solution

In Clean::IPM, the problem functions f , cE and cI are scaled such that all components of scaled

gradients are less than or equal to a constant κg > 0 [72]. The scaled functions read

f ← σff , cE ← ΣEcE and cI ← ΣIcI (4.167)

with diagonal matrices ΣE ∈ Rm×m and ΣI ∈ Rk×k. The scaling factors are

σf = min

{
1,

κg

‖∇f
(
x(0)

)
‖∞

}
and σi = min

{
1,

κg

‖∇ci
(
x(0)

)
‖∞

}
for i ∈ E ∪ I.

(4.168)

Now, consider a scaled outgoing problem (4.3) where all scaling factors are consumed by the

node functions. With the scaling matrices Σj ∈ Rn
x
j×nxj , the scaling

{gj(xi,ui)− xj} ← {Σjgj(xi,ui)− Σjxj} (4.169)

of the dynamics (4.3b) affect their linearized versions (4.75c) in the KKT system (4.75) the

following way:

Σjxj = Gjxi + Ejui + hj , j ∈ V . (4.170)

The basic KKT recursion (cf. Table 4.5) is not designed for the scaled states Σjxj in (4.170).
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However, altering the basic recursion, the scaling factors can be accounted for by replacing (4.88a)

to (4.88c) with

H̃j := Hj +
∑

k∈S(j)

GTk H̄kΣ−1
k Gk, f̃j := fj +

∑
k∈S(j)

GTk
(
f̄k + H̄kΣ−1

k hk
)

, (4.171a)

K̃j := Kj +
∑

k∈S(j)

ETk H̄kΣ−1
k Ek, d̃j := dj +

∑
k∈S(j)

ETk
(
f̄k + H̄kΣ−1

k hk
)

, (4.171b)

J̃j := Jj +
∑

k∈S(j)

ETk H̄kΣ−1
k Gk. (4.171c)

Hence, the scaling effect of Σj is reversed, which arises doubts about scaling the dynamics in

the first place.





Chapter 5

Distributed Tree-Sparse Optimization

This chapter deals with the distribution of the tree-sparse problems and algorithms. It provides

the theoretical foundation for running computer programs using tree-sparse optimization in

parallel computational environments and presents the distribution of the complete interior-point

algorithm used for solving the TSPs. Parts of the presentations in this chapter are also about

to be published in [48].

The approach of distribution exploits the node-wise formulations of problems and algorithms

and is based on a static distribution of the tree nodes. Blomvall proposes to distribute

these nodes in a natural order by applying a depth-first search (DFS) [10]. Thereby and by

using reasonable computation orders for processing the distributed tree nodes, good parallel

performance can be achieved. Following Blomvall’s idea, this chapter formalizes the concept

of depth-first distributed trees and presents theoretical results that are used to develop fitting

iteration rules for them. Some of those results are already postulated by the author [50]. Now,

the missing proofs are supplemented using the framework established around the distributed

trees. Additionally, distributed DFS-based tree algorithms are introduced serving as models for

distributing the tree-sparse algorithms.

This chapter is organized as follows. Section 5.1 motivates the approach of distribution and

states the resulting distributed programming model. The concept of depth-first distributed

trees and their theoretical results are presented in Sect. 5.2. Afterwards, Section 5.3 establishes

the distributed DFS-based tree algorithms and concretizes the general discussions for these

models to the tree-sparse KKT algorithms. Finally, Section 5.4 discusses the distribution of the

complete IPM algorithm used for solving the TSPs. The terminology of graph theory and the

respective notation used in this chapter is provided on demand, i.e. it is stated when it is used

for the first time. For a comprehensive background on graph theory the reader is referred to

standard textbooks such as [22].

93
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5.1. Distributed Programming Model

The optimization problems studied in this work are stated with respect to the nodes of an

underlying scenario tree. The dynamic constraints (4.3b) and (4.4b) of the TSPs (4.3) and (4.4),

for example, are defined for each node j ∈ V , where each node constraint comprises a nonlinear

node function (gj) that depends on node variables (xi,uj ,xj). The same applies to the range

constraints (4.3c)–(4.4c), (4.4d) and to the simple bounds (4.3d)–(4.3e), (4.4e)–(4.4f). Moreover,

in the tree-sparse objectives (4.3a) and (4.4a) as well as in the global equality constraints (4.3f)

and (4.4g), each node contributes nonlinear terms (φij ,φj , fij , fj) to the respective accumulated

values.

The tree-sparse algorithms are formulated in the same node-related way as the TSPs. Each

algorithm is described by a set of so-called node operations that are applied in a certain

order during a sweep of the tree nodes. For instance, evaluating the problem data of a TSP

(see Sect. 4.6.1 and especially tables 4.10 to 4.13) includes evaluating the function values as well

as respective first-order and second-order derivatives of all problem-defining node functions.

Furthermore, Section 4.3 discusses the node operations for the tree-sparse KKT algorithms and

arranges those in the dynamic algorithm tables 4.4 to 4.7.

In the following, let DA(j) denote the set of data that is associated with a node j ∈ V , and

let OP(j) denote an algorithm-specific set of node operations. The items in a set DA(j) are the

node data for node j. Usually, those node data are labeled with a respective node subscript

(e.g. xj ,uj) and exist for each node in the tree. Some data exists only once, e.g. the value ν

of a tree-sparse objective and the fill-in matrix subblock XV in the tree-sparse factorization.

These global data are attributed to the tree root 0 ∈ V and supplemented to the set DA(0).

In the dynamic algorithm tables, global data are always listed without any subscript (e.g. X

instead of XV ). Then, node operations are usually performed for each node j in the tree,

i.e. one type of node operation is listed in each set OP(j). So-called global operations form

the exceptions. They involve only global data, are performed only once during a tree-sparse

algorithm and are supplemented to the set OP(0) of the root. For instance, the Cholesky

factorization XV = L∅LT∅ (X ← LLT in tables 4.5 and 4.7) is a global operation.

Now, the distributed programming model for tree-sparse optimization is as follows. In the

parallel run of a computer program, the nodes of the tree are assigned to the participating

working units (e.g. processes). Each working unit holds the data DA(j) of its assigned nodes

and is responsible for performing the operations in the sets OP(j). All working units cooperate

in a so-called single-program-multiple-data (SPMD) framework, i.e. they work asynchronously
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in the same program on different parts of the program data, and they communicate with each

other whenever data transmissions are necessary (see, e.g., [70]).

The distributed programming model is completely static. First, a given tree is split only

one time and the nodes of the tree are distributed statically and uniquely among the working

units. This way, the respective shares of the overall computational workload are fixed and the

applied node distribution defines a partitioning of the program data. To save additional memory

overhead and communication, dynamic rescheduling of data and workload are excluded, i.e.

the nodes of a split tree are not reassigned to other working units. Thus, a working unit idles

whenever it has completed its share of the workload and other working units are still working on

theirs. Second, for each working unit, the order of processing the assigned nodes is also static,

i.e. the order of performing the respective operations OP(j) is fixed. Therefore, a working unit

also idles when it is working on OP(j1) and waits for transmission of data from DA(j2) of a

node j2 that is assigned to another working unit.

In this static programming model, the choice of the node distribution and the computation

orders for the working units are mandatory for the parallel performance of the program. In this

thesis, these are based on the depth-first strategy as proposed by Blomvall [10]. Section 5.2

discusses the node distribution, and Sect. 5.3 develops fitting computation orders. Moreover, a

balanced distribution of the workload avoids the working units to idle due to lack in occupation.

The tree-sparse models considered in this thesis feature corresponding tree-sparse algorithms

that are well-balanced, i.e. for each algorithm, the amounts of work in the respective sets OP(j)

are all about the same. Thus, in these cases, a uniform node distribution leads to a well-balanced

distribution of the workload.

5.2. Depth-First Distributed Trees

Distributed trees result from splitting trees in several parts and distributing these parts among

the working units. Basically, the parts of a split tree are glued together to form the distributed

tree, which then comprises the respective tree parts and the information on how these fit together.

In the following, Section 5.2.1 first clarifies basic graph terminology and states the used graph

notation. It then introduces terminology for specific nodes and edges in distributed trees and

concludes with the definition of depth-first distributed trees. Subsequently, Section 5.2.2 states

and proves the theoretical results for this kind of trees. The concept of depth-first distributed

trees are—to the best of the author’s knowledge—not considered in the literature before1.

1The concept of depth-first distributed trees are also going to be published in [48].
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5.2.1. Distributed Trees

In graph theory, a graph comprises a set V of nodes or vertices and a set E of edges that

contains pairs of then to be said adjacent nodes. Each of two adjacent nodes a, b ∈ V is incident

on the edge (a, b) ∈ E, and the edge (a, b) is also said to be incident on both nodes a and b. The

edges (a, b) and (b, a) coincide in undirected graphs and they do not in directed graphs. Paths

of length l are sequences (a1, . . . , al) of adjacent nodes (ak−1, ak) ∈ E for k = 2, . . . , l, which

connect the comprising nodes ak. In a connected graph, all nodes in the set V are connected

with each other. The connected parts of a graph are called components. Hence, a connected

graph comprises a single component. Cycles are specific paths (a1, . . . , al) that have coinciding

endpoints a1 = al, and a graph without cycles is called acyclic. Now, a forest is an acyclic

undirected graph and a tree is a connected forest. For each two nodes a and b in a tree, there is

a unique path (a, . . . , b) connecting those nodes. Its length defines the distance between its two

endpoints a and b.

The trees T = (V ,E) that are about to be split have numbered sets of nodes V = {0, . . . ,n}
and are so-called rooted out-trees with root 0. In a rooted tree one node is dedicated as the

root, which then induces a direction on the tree edges. For a node j ∈ V of a rooted tree T ,

the level t(j) refers to the distance between this node and the root, i.e. the level is the length

of the path Π(j) = (j, ..., 0) from node j to root 0. The ancestors of node j are those nodes

on the path Π(j) that feature a lower tree level. The immediate ancestor π(j) is called the

predecessor, i.e. the predecessor is the node π(j) ∈ Π(j) with t(π(j)) = t(j)− 1. Only the root

has no predecessor, meaning it is the only node with π(0) = ∅. Being an ancestor for one node

means having the same node as descendant. Immediate descendants of a node j are called

successors and are gathered in its set of successors S(j). Nodes l ∈ L have no successors and

form the leaves of the tree T , i.e. L = {l ∈ V : S(l) = ∅}.
The direction of the tree edges induced by the root is here chosen to point from the root

to the leaves. Hence, the set E of such an out-tree T comprises only those edges (a, b) with

t(a) = t(b)− 1, i.e. node a is the predecessor π(b) of the adjacent endpoint b. The edge (a, b)

is an inedge for node b and an outedge for its predecessor a. Thus, for a node j ∈ V , the set

of edges E contains the inedge (π(j), j) incident on its predecessor π(j), and E contains the

outedges (j, k) incident on its successors k ∈ S(j).

The set of nodes V (T ) = {0, . . . ,n} of tree T is numbered so that T is said to be post-ordered.

For this, let Tv be the subtree of T rooted at v ∈ V (T ), i.e. Tv is the subgraph that is induced

by node v and all its descendants in V (T ). More generally, a subgraph Ḡ of a graph G = (V ,E)

induced by the set of nodes V̄ ⊆ V contains all edges (a, b) ∈ E of adjacent nodes a, b in the
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Figure 5.1.: A post-ordered out-tree

subset V̄ , i.e. (a, b) ∈ Ē. Now, the tree T is post-ordered if for any node v ∈ V (T ) the set of

nodes of the subtree Tv is V (Tv) = {v, v+ 1, . . . , v+nv − 1}, where nv = |V (Tv)| is the number

of nodes of the subtree.

In the following, a post-ordered out-tree T with numbered node set V (T ) = {0, . . . ,n} and
root 0 (see Fig. 5.1) is split and distributed among q working units. For this, let the set of

nodes V (T ) be partitioned into q parts, i.e. V (T ) =
⋃q
p=1 Vp with nonempty and pairwise

disjoint subsets Vp ⊆ V (T ). The subgraph induced by the set of nodes Vp is a forest and will

be denoted by Fp = (Vp,Ep). The components of a forest are again trees. To distinguish the

split tree T from the components of a forest, the latter will henceforth be denoted using the

calligraphic letter T.
For a node v ∈ Vp, the path Π(v) remains the path to the root 0 of the tree T and t(v) still

refers to its level in T . The subtrees T pr in the forest Fp are rooted in the canonical way induced

by the tree T , meaning that the root r is the unique node with lowest tree level t(r) in T pr . The
roots in the forest Fp are gathered in the set of roots Rp and the union R =

⋃q
p=1Rp denotes

the set of all roots.

If the tree T is distributed among more than one working unit, i.e. if q > 1, the union of

all forest edges Ep is a strict subset of the set of tree edges E. Loose edges are those edges

in E that do not belong to any set Ep. They are denoted by E , i.e. E = E \⋃qp=1Ep. For a

forest Fp, the subset Ep ⊆ E comprises those loose edges that are incident on a node in Vp. Any

loose edge (s, r) ∈ E is an inedge for a root r ∈ R \ {0}. The node s adjacent to root r is called

a sender, i.e. a sender is incident on at least one loose outedge (s, ·) ∈ E . For a forest Fp, the
set Sp denotes the respective set of senders and the union S =

⋃q
p=1 Sp is the set of all senders.
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Figure 5.2.: A depth-first distributed tree consisting of four equally sized parts P1 to P4 with
the respective roots (red nodes), the senders (yellow nodes) as well as those nodes
that are both (orange nodes)

The definition of a distributed tree combines the established terminology.

Definition 9 (Distributed Tree). Let T = (V ,E) be an out-tree with the numbered node set

V = {0, . . . ,n}. Furthermore, let V =
⋃q
p=1 Vp be a node partitioning of the tree nodes. A

distributed tree is then the collection

D = {T ,P1, . . . ,Pq, E ,R,S} with Pp = {Fp, Ep,Rp,Sp} for p = 1, . . . , q, (5.1)

where each part Pp consists of the node-induced subgraph Fp and the corresponding loose

edges Ep, roots Rp and senders Sp. The collection D is said to be a distribution of the tree T .

Finally, the following definition introduces the specific distributed tree type that is studied in

this thesis. The name of this kind of distributed tree is motivated by the depth-first search,

which, when properly used for numbering the nodes V (T ), induces a post-order on the tree T

(cf. Sect. 5.3.1).

Definition 10 (Depth-First Distributed Tree). Let T = (V ,E) be a post-ordered out-tree with

numbered node set V = {0, . . . ,n}. A depth-first distributed tree is a distribution of T resulting

from an ascending node partitioning with respect to the node numbering, i.e.

V =

q⋃
p=1

Vp with Vp =

{
p−1∑
k=1

|Vp| , . . .
p∑
k=1

|Vp| − 1

}
. (5.2)

Figure 5.2 shows a depth-first distributed tree consisting of four equally sized parts, and

Table 5.1 lists the respective sets of roots, senders and loose edges. Note that for a part Pp,
the sets of roots and senders are not necessarily disjoint, i.e. a node v ∈ Vp can be incident
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Table 5.1.: Data of the depth-first distributed tree in Fig. 5.2

p Rp Sp Ep
1 0 0,1,6 (0, 11), (0, 20), (1, 9), (6, 7), (6, 8)
2 7,8,9,11 11,12 (6, 7), (6, 8), (1, 9), (0, 11), (11, 15), (11, 17), (12, 14)
3 14,15,17,20 20 (0, 20), (11, 15), (11, 17), (12, 14), (20, 21), (20, 24)
4 21,24 — (20, 21), (20, 24)

on both a loose inedge (·, v) ∈ Ep and a loose outedge (v, ·) ∈ Ep. In Fig. 5.2, for example,

node 11 ∈ V2 is both a root and a sender.

5.2.2. Properties of Depth-First Distributed Trees

After distributing a tree T , the loose edges in its distribution D connect the distributed tree

parts Pp beyond the scopes of the respective working units. In terms of distributed programming,

communication is taking place along the loose edges E . The roots R\{0} as well as the senders S
are those nodes that possibly cause idle times. Studying the loose edges and their incident

nodes in depth-first distributed trees is the basis for developing iteration rules for the respective

tree parts (cf. Sect. 5.3.2). In the following, four theorems make conclusions about the locations

of senders and roots in depth-first distributed tree parts and about how the senders of one

part and the roots of a second part are related to each other. These theorems require some

preparations, starting with properties that hold for any post-ordered tree.

The first proposition results directly from the notation introduced in Sect. 5.2.1. It is stated

here for later reference.

Proposition 1. For any two nodes v1, v2 in a tree T with v1 6= v2 it holds:

(a) v1 ∈ Π(v2) if and only if v2 ∈ V (Tv1).

(b) t(v1) = t(v2) implies v1 /∈ V (Tv2) and v1 /∈ Π(v2).

The subsequent propositions and the first lemma state general properties of post-ordered

trees with the first one of them resulting directly from their definition. These properties are

used frequently to prove the theoretical results of depth-first distributed trees.

Proposition 2. For each node v in a post-ordered tree T it holds:

(a) v < j for all nodes j in the node set V (Tv) \ {v}.

(b) j < v for all nodes j on the path Π(v) \ {v}.

Proof. The first claim follows with j ∈ V (Tv) = {v+1, . . . , v+nv−1} and from the definition of

the post-order. The second claim follows from (a) by applying Prop. 1(a), that is v ∈ V (Tj).
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Proposition 3. Let v1, v2 be two nodes in a post-ordered tree T with v1 < v2 and v2 /∈ V (Tv1).

Then j < v2 holds for all nodes j ∈ V (Tv1).

Proof. Since T is post-ordered, the node set of Tv1 is given by

V (Tv1) = {v1, . . . , v1 + nv1 − 1}.

With v2 > v1 and v2 6∈ V (Tv1) it follows that v2 ≥ v1 + nv1 > j for all j ∈ V (Tv1).

Lemma 1. Let v1, v2 be two nodes in a post-ordered tree T with the predecessors π1 = π(v1)

and π2 = π(v2). Also, let the nodes have the order v1 < v2. If π1 6= π2 holds, exactly one of the

following two statements is true:

(a) π2 ∈ Π(π1) or

(b) the predecessors have the same order π1 < π2.

Proof. Suppose (a) holds. Then Prop. 2(b) implies the order π2 < π1 and, hence, (b) cannot

be true. Thus, it is sufficient to verify that π2 6∈ Π(π1) implies (b). This can be shown by

contradiction. Assuming π2 6∈ Π(π1) and π2 < π1, Proposition 2(a) provides π1 6∈ V (Tπ2
) and

from Prop. 3 it can be concluded that j < π1 < v1 for all nodes j ∈ V (Tπ2
). With v2 ∈ V (Tπ2

)

this implies the order of v2 < v1 which contradicts the assumption v1 < v2. Hence, π2 6∈ Π(π1)

implies π1 < π2.

In the following, the results of depth-first distributed trees are established. For this, the

function P (v) = p is used to map a node v ∈ V on its distributed tree part Pp. The first

proposition results directly from the definitions of roots and senders.

Proposition 4. For a depth-first distributed tree D the following three statements are true:

(a) P (v1) ≤ P (v2) for any two nodes v1, v2 ∈ V with v1 < v2.

(b) P (π(r)) < P (r) for any root r ∈ R \ {0}.

(c) There is a node j ∈ S(s) with P (s) < P (j) for any sender s ∈ S.

Proof. Claim (a) is true by definition. For a root r ∈ R \ {0} it is that π(r) < r due to

the post-order. Hence, P (π(r)) ≤ P (r) follows from (a). Moreover, it is P (π(r)) 6= P (r) or

otherwise r would be as descendant of π(j) in V (T P (r)
π(r) ), which contradicts to r being a root.

Hence, (b) is true. For any sender s ∈ S there is by definition at least one root r ∈ R \ {0}
such that π(r) = s. Thus, r ∈ S(s). Therefore, (c) follows from (b).
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The following two lemmata concentrate on the mapping P (·) of senders and their descendants

in the distributed tree.

Lemma 2. Let D be a depth-first distributed tree and s ∈ Sp. For any node v /∈ V (Ts) with

v > s it holds P (v) > P (s).

Proof. According to Prop. 4(c) there is a node j1 ∈ S(s) ⊆ V (Ts) with P (j1) > P (s). With

v 6∈ V (Ts) Prop. 3 provides v > j for all nodes j in the subtree Ts. With Prop. 4(a) it is

P (v) ≥ P (j1) > P (s).

Lemma 3. Let D be a depth-first distributed tree. Let the node v be on the part Pp and s ∈ Sp
with s 6= v and t(v) = t(s). Then the nodes v and s suffice the order v < s and it is v /∈ Sp.

Proof. The level assumption t(v) = t(s) yields v /∈ V (Ts) with Prop. 1(b). Applying Lemma 2,

the order v > s implies P (v) > P (s), which contradicts the assumption P (v) = P (s). Hence,

v < s must hold. The same argumentation leads to the contradiction P (v) < P (s) if v ∈ Sp.

Now, the first theorem states that all senders of the same part of a distributed tree lie on the

same path to the root 0 of the tree T .

Theorem 4 (Sender-Path). Let D be a depth-first distributed tree and s1, s2 ∈ Sp with s1 < s2.

Then s1 lies on the path from s2 to the root, i.e. s1 ∈ Π(s2).

Proof. Let s1, s2 ∈ Sp with s1 < s2. Assume that s1 /∈ Π(s2) holds, which is equivalent

to s2 /∈ V (Ts1) according to Prop. 1(a). Lemma 2 states P (s2) > P (s1), contradicting

P (s2) = P (s1). Hence, s1 ∈ Π(s2) holds.

This theorem leads to the following definitions.

Definition 11 (Sender-Path, Sender-Subtree and Sender-Root). Let D = (T ,P1, . . . ,Pq,R,S)

be a depth-first distributed tree. The sender-path of part Pp = (Fp, Ep,Rp,Sp) is given by

Πp
S := {v ∈ Vp : it exists s ∈ Sp with v ∈ Π(s)} . (5.3)

The sender-root rpS is the start of the sender-path, i.e. the sender-root is characterized by the

property

t(rpS) = min {t(v) : v ∈ Πp
S} . (5.4)

The sender-subtree T pS is the subtree in the forest Fp that roots at the sender-root.

Clearly, the sender-root is indeed a root, i.e. rpS ∈ Rp, or otherwise its predecessor π(rpS)

would be on the same part and take over the pole position in the sender-path Πp
S .
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The second theorem considers two roots on the same part of the distributed tree that are

also on the same tree level. It states that they share a common predecessor.

Theorem 5 (Root’s Predecessors). Let D be a depth-first distributed tree. Any two roots

r1, r2 ∈ Rp on the same tree level t(r1) = t(r2) have a common predecessor π(r1) = π(r2).

Proof. For r1 = r2 nothing is to show. Thus, consider the case r1 6= r2 and set π1 = π(r1)

and π2 = π(r2). Assume that π1 6= π2 and without loss of generality let r1 < r2. The relation

t(r1) = t(r2) implies t(π1) = t(π2) and with Prop. 1(b) it can be concluded that π2 neither

lies on the path Π(π1) nor is in the subtree Tπ1 . Applying Lemma 1 gives π1 < π2 and with

Prop. 3 it holds j < π2 for all j ∈ V (Tπ1
). Since r1 ∈ V (Tπ1

), Prop. 4 leads to the order

P (π1) < P (r1) ≤ P (π2) < P (r2), contradicting the assumption of P (r1) = P (r2). Hence,

π1 = π2 holds.

The next theorems state relations between the root levels and node numbers on the distributed

tree parts and highlight the special case of the sender-root.

Theorem 6 (Descending Root Levels). Let D be a depth-first distributed tree. For any two

roots r1, r2 ∈ Rp with r1 ≤ r2 it is t(r1) ≥ t(r2).

Proof. The claim is true for r1 = r2. Therefore, consider the case r1 < r2 and assume

t(r1) < t(r2). With π1 = π(r1) and π2 = π(r2) the order t(π1) < t(π2) holds and, thus,

π2 /∈ Π(π1). Analogously to the proof of Thm. 5, Lemma 1 can be used to obtain π1 < π2,

and Prop. 3 together with Prop. 4 leads to the order P (π1) < P (r1) ≤ P (π2) < P (r2) that

again contradicts P (r1) = P (r2). Hence, t(r1) ≥ t(r2) holds.

Theorem 7 (Sender-Root Level). Let D be a depth-first distributed tree. The sender-root has

(if defined) the lowest tree level on Pp, that is

t(rpS) = min {t(v) : v ∈ Vp} (5.5)

Proof. It is sufficient to show that rpS has the minimum tree level among the roots Rp since for

v /∈ Rp it is π(v) ∈ Vp and t(π(v)) < t(v). For |Rp| = 1 there is nothing to show. For |Rp| > 1

consider a root r ∈ Rp with r 6= rpS and assume that t(r) < t(rpS). From Thm. 6 it can be

concluded that r > rpS . Since r is a root it is r /∈ V (T pS ) ⊆ V (TrpS ). With V (Ts) ⊆ V (TrpS ) for

any sender s ∈ Sp, Lemma 2 can be applied to obtain the contradiction P (r) > P (rpS). Hence,

t(r) ≥ t(rpS) is true.

Corollary 1. Let D be a depth-first distributed tree, assume that the sender-root rpS exists and

suppose that there is another root r ∈ Rp with r 6= rpS and t(r) = t(rpS). Then r < rpS holds.



5.3. Distributed DFS-Based Tree Algorithms 103

Proof. The argument for this proof is already presented in the proof of Thm. 7. Since r ∈ Rp
is a root it cannot be in the subtree TrpS . With the help of Prop. 3 and Prop. 4, the assumption

of r > rpS leads to the contradiction P (r) > P (rpS). Hence, r < rpS holds.

5.3. Distributed DFS-Based Tree Algorithms

In this section, algorithms are developed that iterate over each part of a depth-first distributed

tree such that the idle times are minimized. First, the tree-sparse algorithms are abstracted to

the so-called DFS-based tree algorithms (Sect. 5.3.1). Afterwards, the properties of depth-first

distributed trees are used to conclude the iteration rules for their distributed counterparts

(Sect. 5.3.2). These properties are further exploited to save communication overhead in the

distributed performance of a DFS-based tree algorithm by performing the post-distribution

communication reduction (PDCR) (Sect. 5.3.3). Finally, the previous general discussions for the

distributed DFS-based tree algorithms are concretized by returning to the tree-sparse algorithms

and presenting distributed versions of the tree-sparse KKT algorithms (Sect. 5.3.4). The models

of the distributed DFS-based tree algorithms, the PDCR as well as the distributed tree-sparse

algorithms are—to the best of the author’s knowledge—not considered in the literature2.

5.3.1. DFS-Based Tree Algorithms

In the following, two algorithms based on the depth-first strategy are considered serving as

models for the tree-sparse algorithms. The first one of these DFS-based tree algorithms processes

the nodes of the tree in an inward sweep from treetop to the root. In opposition to this inward

algorithm, the second so-called outward algorithm processes the nodes in an outward sweep

by starting at the root and then going up in the tree. These two types of tree algorithms are

motivated by the KKT algorithms (cf. Sect. 4.3), which take center stage in generalizing the

tree-sparse algorithms. In contrast to the other tree-sparse algorithms (cf. Sect. 4.6.1), the

KKT algorithms require certain orders of node processing and performing the operations for

each node in the tree. For stability reasons, those requirements are also applied to the other

tree-sparse algorithms. Moreover, every algorithm but the outward substitution is treated as

an inward algorithm (cf. Sect. 4.6.2).

Subsequently, the characteristics of the tree-sparse KKT algorithms are highlighted by classi-

fying the operations as well as the involved data, and by reviewing the prescribed computation

orders. Terminology in the context of processing the nodes of a tree is given next. Finally, this

section concludes with the definition of the DFS-based tree algorithms.

2Parts of these concepts and algorithms are going to be published in [48].
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Classification of Data and Operations

In the context of distributed tree-sparse optimization, a second useful classification of operations

and data—besides common and global (cf. Sect. 5.1)—is necessary. For a node j1 ∈ V , the

node data in the corresponding set DA(j1) is referred to as local data. Nonlocal data subsume

the data in the sets DA(j2) of other nodes j2 6= j1. Global data are local for operations in the

set OP(0) and nonlocal for the operations in any other set OP(j) with j ∈ V \ {0}. Accordingly,
a node operation is said to be local if it involves only local data in its performance. Nonlocal

operations are then those in a set OP(j1) that also involve nonlocal data from a set DA(j2) of

at least one other node j2 6= j1. Global operations count as local operations in the set OP(0).

By taking a closer a look at the nonlocal operations, e.g. by examining item 9 of the incoming

control version of the basic recursion in Table 4.5,

Hi -= JTj Jj , fi -= JTj dj and uj += Jjxi, (5.6)

the classification of nonlocal operations is refined as follows. Operations that use local data

to modify nonlocal data (Hi -= JTj Jj , fi -= JTj dj) are called nonlocal write operations. Nonlocal

read operations refer to the operations that modify local data and involve nonlocal data in the

performance (uj += Jjxi). Note that due to the way the dynamic algorithm tables are designed,

the nonlocal operations in a set OP(j) involve aside from local data only nonlocal data from

the set DA(0) of the tree root 0 or nonlocal data from the set DA(i) of its predecessor i = π(j).

Computation Orders for Nodes and Operations

Each tree-sparse KKT algorithm prescribes a certain computation order on the node operations

to ensure a correct overall performance of the respective algorithm. First and independent of the

specific KKT algorithm, each set of operations is completed at once, i.e. the node operations in

one set OP(j1) are executed one after another without applying operations of another set OP(j2)

in between. Second, the factorization as well as the inward substitution require the nodes to be

processed in an inward sweep over the tree, i.e. these algorithms start at the leaves L and end

with processing the root 0. This means that the operations in one set OP(j) for a node j ∈ V
are performed only after the sets OP(k) of all its successors k ∈ S(j) are completed. The

outward substitution processes the nodes in an outward sweep over the tree, meaning node j is

processed only after the set OP(π(j)) of its predecessor π(j) is completed. Finally, the order of

the node operations in one set OP(j) is also prescribed by the KKT algorithms. In an inward

sweep over the tree, the operations in one set OP(j) are performed from top to bottom (↓) as
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listed in the respective tables whereas, in an outward sweep, they are performed from bottom

to top (↑).

Traversals and Event Points

A node iteration over a tree T = (V ,E) defines a finite sequence {vl}l=1,...,K of nodes within

which the nodes are visited. An iteration over T is said to be complete if each node v ∈ V is

visited at least once. Traversals are methods for traversing the nodes of a tree. They induce

complete node iterations for which any two consecutive nodes are adjacent. By convention,

traversals of rooted out-trees always start and end at the root 0 ∈ V . During such a tree

traversal, a node v ∈ V \ {0} is said to be discovered when it is visited through its inedge for

the first time. The node is finished after all its successors are discovered and v is then left for

the first time through its inedge again. Now, the root 0 is discovered at the start of the tree

traversal and the root is finished when it is visited the next time after all successors S(0) are

discovered. Finally, the tree T is said to be finished when all its nodes are finished and the root

is visited for the last time.

The depth-first search is a specific tree traversal. It discovers all nodes on a path Π(l) from

the root 0 to a leaf l ∈ L first, and then finishes these nodes on its way back to the root.

After discovery, a node v ∈ V is finished only after finishing all its successors S(v). Hence, the

depth-first search completes one branch of the tree before it it turns towards the next. These

DFS-traversals are also used to constitute an order on a tree. For example, a post-order is

established by assigning numbers to the tree nodes when finishing them.

For distributions D of the tree T , the events of discovery and finishing are extended the

following way. A node v ∈ Vp1 is still discovered when it is visited for the first time. The node v

is finished after discovering all its successors k ∈ S(v) including those in other sets of nodes Vp2
and v is then left through its inedge again. A subtree Tr is discovered with the discovery of the

root r, and it is finished when all nodes v ∈ V (Tr) are finished and r is visited for the last time.

The forest Fp is discovered with the discovery of the first root in Rp and finished with finishing

the last subtree T pr . Finally, the distribution D is said to be finished when the same applies for

the tree T .

DFS-Based Tree Algorithms

Now returning to the tree-sparse algorithms, the requirements regarding the order of processing

the tree nodes are realized using depth-first traversals over rooted out-trees as follows. For

processing the nodes in an outward sweep, the operations in the set OP(j) are performed upon

discovery of the node j ∈ V . Hence, the node operations are applied in direction of the tree
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edges. In realizing an inward sweep, on the other hand, the operations in OP(j) are performed

when finishing node j, which means that node operations are applied in opposite direction of

the tree. This leads to the following definition of models for the tree-sparse algorithms.

Definition 12 (DFS-Based Tree Algorithms). Let T = (V ,E) be post-ordered out-tree. A

DFS-based tree algorithm for the tree T consists of a set OP(j) of local and nonlocal operations

for each node j ∈ V and a depth-first traversal over T . In an outward algorithm, the operations

in OP(j) are applied upon discovery of node j. In an inward algorithm, the operations in OP(j)

are applied when finishing the node j.

5.3.2. Distributed Tree Algorithms

Distributed tree algorithms, in general, refer to algorithms that iterate over the parts of a

distributed tree (cf. Sect. 5.2.1). Distributed DFS-based tree algorithms, in specific, iterate over

the parts of a depth-first distributed tree D keeping the occurring idle times at a minimum.

They avoid idle times by priorizing those roots and senders in D that generate data for other

working units while postponing the processing of those nodes in R∪S to the latest possible time

that require data from other working units. The priorities of roots and senders in depth-first

distributed trees are identified based on the theoretical results presented in Sect. 5.2.2.

Basically, a distributed DFS-based tree algorithm is a distributed extension of a sequential

counterpart. Each working unit p iterates over the subtrees in the forest of its part Pp and

applies the underlying outward or inward algorithm to each subtree T pr in Fp, i.e. each subtree

is traversed in a depth-first manner and the operations in OP(j) are executed either upon

discovery or when finishing the node j, respectively. In doing so, the overall node computation

order requirements are guaranteed. Clearly, communication routines are invoked whenever data

need to be transmitted via loose edges.

Now, there are two flexibilities in the local computation order of a working unit p. First, the

iteration order over the subtrees in the forest Fp does not affect the proper performance of the

tree algorithm. Second, there are several equivalent depth-first traversals leading to different

node orders. For example, each subtree Tr inherits a post-order from the depth-first traversal

used to number the nodes and, hence, to distribute the tree T . This order will be called the

induced order. Furthermore, any order of the tree T induces an order l1 < . . . l|L| on its leaves

lk ∈ L. The unique order that leads to the reverse leaf order l|L| < · · · < l1 will be referred to

as the reverse order. Note that reverse orders of post-orders are again post-orders. The choice

of the depth-first traversal for each subtree is also free.

Both flexibilities are used to reduce the idle times in the distributed performance of a DFS-
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based tree algorithm. First, for the inward algorithm, the basic rule is to process the senders

s ∈ S at the latest possible time since they require nonlocal data from roots assigned to other

working units for their execution. Therefore, the sender-subtree T pS is processed at last from

the respective working unit p. Lemma 3 provides that nodes with a lower number have a higher

priority. This is realized by applying the induced computation order to the sender-subtree. For

the remaining subtrees, the computation order does not affect the idle times. Hence, there is

no harm in using the induced order as well. Applying the node operations in opposite direction

to the rooted out-tree T implies that for two senders s1, s2 ∈ Sp with t(s1) < t(s2) the node s2

is processed first and, therefore, the nonlocal data in the sets DA(r) from the adjacent roots

r ∈ S(s2)∩R are required earlier. Theorems 6 and 7 together with Prop. 1 allow the conclusion

that the subtrees Tr with lower root numbers have higher priorities.

For the outward algorithm, the computation order criteria are exactly opposite, i.e. the

senders are processed at the earliest possible time and the subtrees with lower tree level are

priorized since the nonlocal data they require is sooner available. This leads to the following

models for the distributed tree-sparse algorithms.

Definition 13 (Distributed DFS-Based Tree Algorithms). Let D be a depth-first distributed

tree. A distributed DFS-based tree algorithm consists of an iteration rule over the subtrees T pr
in Fp for each part Pp and a DFS-based tree algorithm that is applied to each subtree Tr. An
inward algorithm iterates over the subtrees in ascending order with respect to the root number

and the nodes of each subtree are processed in the order induced by the tree distribution. An

outward algorithm iterates over the subtrees in descending order with respect to the root number

and the nodes of each subtree are processed in the reverse of the induced order.

5.3.3. Post-Distribution Communication Reduction

Consider the distribution D of a rooted out-tree T . After node distribution, the sets of roots R
and senders S are fixed, i.e. the node distribution determines the set of loose edges E and,

in doing so, it also determines the information that is transmitted between the working units

during the run of a distributed tree algorithm. However, while the information to be exchanged

is fixed, the number of invoked communication routines to realize the data exchange is not.

Each invocation of a communication routine causes overhead in the computational costs of the

program.

In the following, the post-distribution communication reduction (PDCR) aims for saving

communication calls during the distributed run of a DFS-based tree algorithm without producing

additional idle time in the performance. The PDCR exploits common properties shared by
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the nonlocal operations in a set OP(j). Therefore, recall from Sect. 5.3.1 the classification

of operations and the involved data into local and nonlocal ones as well as the refinement of

nonlocal operations into nonlocal read and nonlocal write operations. Considering item 4 of the

outward substitution of the basic recursion in Table 4.7, for example, this item has as nonlocal

read operation the form

xj1 +=Gj1xi, xj2 +=Gj2xi for j1, j2 ∈ V with π(j1) = π(j2) = i. (5.7)

Two nodes j1 and j2 with the same predecessor i need the same nonlocal data in DA(i) for their

operations. On the other hand, nonlocal write operations of the same two nodes modify the

same nonlocal data in DA(i) additively. Item 4 of the factorization in Table 4.7, for example,

has the form

Hi +=GTj1Hj1Gj1 , Hi +=GTj2Hj2Gj2 for j1, j2 ∈ V with π(j1) = π(j2) = i, (5.8)

and item 9 can be written as

Hi +=−
(
JTj1Jj1

)
, Hi +=−

(
JTj2Jj2

)
for j1, j2 ∈ V with π(j1) = π(j2) = i. (5.9)

These properties of nonlocal operations are exploited by the PDCR the following way. Consider

two roots r1, r2 ∈ Rp1 of a working unit p1 with the same predecessor π(r1) = π(r2) = s ∈ Sp2 .
For the nonlocal read operation (5.7), the data xs in the set DA(s) is transmitted from working

unit p1 to unit p2. Since the nonlocal operations in OP(r1) and OP(r2) need the same data, it

is sufficient to send xs only once to p1. For the nonlocal write operations (5.8), the working

unit p1 first accumulates the data to

H̄s = GTr1Hr1Gr1 +GTr2Hr2Gr2 , (5.10)

and then sends the accumulation H̄s to the unit p2. This way, the PDCR reduces the

communication calls to one. Informally speaking, the loose edges (s, r1), (s, r2) ∈ E are

merged to one. The reduction of the PDCR is expandable to k > 2 roots in Rp with the same

predecessor.

The PDCR causes no additional idle time by reducing the number of communication calls. In

the nonlocal write operation (5.8), for example, the sender s needs the data from the roots r1

and r2 at the same time. Hence, waiting for the data of one or both of the roots or waiting

for the accumulation H̄s is all the same for node s. For the nonlocal read operation (5.7), the
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PDCR even reduces the idle time. When the working unit p1 processes the second of the both

roots r1 and r2, the required data xs is already available. Thus, p1 does not idle while waiting

for completion of a communication routine.

Now, considering distributed DFS-based tree algorithms and depth-first distributed trees

again, the properties of the latter (cf. Sect. 5.2.2) even abet the PDCR. Theorem 5 provides

that two roots r1, r2 ∈ Rp have the same predecessor whenever they are on the same tree level.

Together with the root level order provided by Thm. 6, the communication between two working

units during a distributed DFS-based tree algorithm is limited to at most one communication

call per tree level.

5.3.4. Distributed Tree-Sparse KKT Algorithms

This section returns to the tree-sparse algorithms and applies the models of the distributed

DFS-based tree algorithms (cf. Sect. 5.3.2) to the tree-sparse KKT algorithms (cf. Sect. 4.3).

For both control cases, distributed versions of the complete KKT algorithms are presented.

Additionally, a distributed version of the matrix-vector product (MVP) with the tree-sparse

KKT matrix in outgoing control form is discussed (cf. Sect. 4.6.1). Distributing a tree-sparse

MVP features an additional aspect of communication that does not arise in the distribution of

the tree-sparse KKT algorithms.

Distributed Versions of the Tree-Sparse KKT Algorithms

For the distributed versions of the tree-sparse KKT algorithms, the first phase of eliminating

the range duals is now placed on top of the respective basic recursion. The complete distributed

tree-sparse KKT algorithm in the outgoing control form is listed in the single Table 5.2. This

algorithm table subsumes tables 4.4 and 4.5 and includes new operations for the incurrent

communication. It maintains the prior numbering of the items and labels those of the first

KKT phase with a prime (items 1′ to 4′). The new operations of communication are numbered

with small Roman numerals (items i to iv).

The following description of the communication in Table 5.2 takes the PDCR (cf. Sect. 5.3.3)

already into account. For this, recall the events of discovering and finishing nodes, subtrees and

forests in a distribution D of an out-tree T (cf. Sect. 5.3.1). In each stage of the KKT solution,

the communication of items i and ii are invoked for each sender in S whereas the items iii

and iv are only performed for some of the roots in R\{0}. During the inward algorithms of the

KKT solution procedure, i.e. the factorization and the inward substitution, each sender j ∈ S
first receives data (e.g. Hp

j , f
p
j ) from one or several other working units (.) when finishing j.



110 Chapter 5. Distributed Tree-Sparse Optimization

Table 5.2.: Distributed tree-sparse KKT algorithm – Outgoing control case

Factorization ↓ Inward Subst. ↓ Outward Subst. ↑
i: . Hp

j ,Kp
j , Jpj

ii: . F pj ,Dp
j ,Xp

j . fpj , dpj , e
p
j � xj ,uj ,µ

1′: −vj ← Ψj(−vj)
2′: Hj += F rj

TΨjF
r
j + Φxj fj += F rj

TΨjrj −vj += F rj xj

3′: Kj += Dr
j
TΨjD

r
j + Φuj dj += Dr

j
TΨjrj −vj += Dr

juj

4′: Jj += Dr
j
TΨjF

r
j

1: Kj ← LjL
T
j

2: Dj ← L−1
j Dj dj ← L−1

j dj uj ← −L−Tj uj

3: Jj ← L−1
j Jj uj += Jjxj

4: Hj -= JTj Jj fj += JTj dj −λj += Hjxj

5: Fj -= DjJj

6: X += DjD
T
j e -= Djdj

7: Hi += GTj HjGj fi += GTj (fj +Hjhj) xj += Gjxi

8: Ki += ETj HjEj di += ETj (fj +Hjhj) xj += Ejui

9: Ji += ETj HjGj

10: Fi += FjGj e += Fjhj −λj += FTj (−µ)

11: Di += FjEj hj ↔ fj uj += DT
j (−µ)

iii: ↓ Hi,Ki, Ji ↓ fi, di, e ↑ xi,ui,−µ
iv: ↓ Fi,Di,X

12: X ← LLT e ← L−1e −µ ← L−T (−µ)

The received data is accumulated to the respective local data in DA(j) (e.g. Hj +=
∑
pH

p
j ,

fj +=
∑
p f

p
j ) before continuing with the node operations in OP(j). Second, after finishing all

roots r ∈ Rp \{0} with i = π(r), the nonlocal modifications (e.g. Hi) are ready for transmission

(items iii and iv). When finishing the last subtree T pr with i = π(r), these data are sent in

inward direction (↓) to the predecessor i. Hence, communication invoked during an inward

KKT algorithm is directed opposite to the direction of the tree edges. On the other hand,

communication invoked during an outward KKT algorithm is carried out in direction of the

out-tree T . Upon discovery of a subtree T pr , the working unit p checks whether the required

nonlocal data (xi,ui,µ) are already available. If not, these data are received (↑) from the

predecessor i = π(r) (item iii). After completing the operations OP(j) for a sender j ∈ Sp,
the working unit p initiates the transmission of data to the other working units (item ii). The

respective data (xj ,uj ,µ) are sent upon discovery of j in outward direction (�) to each working

unit requiring them. To accumulate the global data (X, e,µ) in a numerically stable way as

described in Sect. 4.6.2, they are communicated the same way as common node data. That is
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Table 5.3.: Distributed tree-sparse KKT algorithm – Incoming control case

Factorization ↓ Inward Subst. ↓ Outward Subst. ↑
i: . Hp

j ,F pj ,Xp
j . fpj , epj � xj ,µ

1′: −vuj ← Ψu
j (−vuj )

2′: −vxj ← Ψx
j (−vxj )

3′: Kj += Dr
j
TΨu

jD
r
j + Φuj dj += Dr

j
TΨu

j r
u
j −vuj += Dr

juj

4′: Jj += Dr
j
TΨu

jF
r
ij

5′: Hi += F rij
TΨu

jF
r
ij fi += F rij

TΨu
j r
u
j −vuj += F rijxi

6′: Hj += F rj
TΨx

jF
r
j + Φxj fj += F rj

TΨx
j r
x
j −vxj += F rj xj

1: Kj += ETj HjEj dj += ETj (Hjhj + fj) −λj += Hjxj

2: Kj ← LjL
T
j

3: Jj += ETj HjGj xj += Ejuj

4: Hi += GTj HjGj fi += GTj (Hjhj + fj) xj += Gjxi

5: Fi += FjGj e += Fjhj −λj += FTj (−µ)

6: Dj += FjEj

7: Dj ← DjL
−T
j hj ↔ fj

8: Jj ← L−1
j Jj dj ← L−1

j dj uj ← −L−Tj uj

9: Hi -= JTj Jj fi -= JTj dj uj += Jjxi

10: Fi -= DjJj

11: X += DjD
T
j e -= Djdj uj += DT

j (−µ)

ii: ↓ Hi,Fi,X ↓ fi, e ↑ xi,−µ
12: X ← LLT e ← L−1e −µ ← L−T (−µ)

although eventually destined for the tree root 0, the data Xp and ep (item ii) run through the

entire communication process of the inward algorithm.

Distributing the tree-sparse KKT algorithm in the incoming control form proceeds completely

analogously to the outgoing control form (cf. Sect. 5.3.4). The distributed version of the incoming

control case is listed in Table 5.3 and subsumes the range elimination phase in Table 4.6 as well

as the basic recursion in Table 4.7.

Distributed Version of the MVP Algorithm in Outgoing Control Form

Unlike the factorization and the substitution of the tree-sparse KKT algorithms, computing

the MVP with a tree-sparse KKT matrix as well as evaluating the problem data for a TSP

are realized by inward algorithms that also include nonlocal read operations (cf. Sect. 4.6.1).

The distributed version of the tree-sparse MVP in the outgoing control case, listed in Table 5.4,

exemplifies the distribution of these inward algorithms. For a node j ∈ V , items 1 and 2 of

the equality constraint block A are nonlocal read operations requiring the state variables xi
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Table 5.4.: Distributed tree-sparse MVP algorithm – Outgoing control case

H-Block A-Block AT -Block B-Block BT -Block

i: � xj ,uj � µ

iii: . ep . fpj , dpj

1: fj +=Hjxj hj +=Gjxi fj -=λj rj +=F rj xj fj +=F rj
T vj

2: fj += JTj uj hj +=Ejui fi +=GTj λj rj +=Dr
juj dj +=Dr

j
T vj

3: dj +=Kjuj hj -=xj di +=ETj λj
4: dj += Jjxj e +=Fjxj fj +=FTj µ

5: e +=Djuj dj +=DT
j µ

iii: ↓ e ↓ fi, di

as well as the control variables ui of the predecessor i = π(j) to modify the local data hj .

Furthermore, items 4 and 5 of the transpose AT modify local data using the global multiplier µ.

Therefore, the distributed performance of this inward algorithm requires communication that is

in direction of the tree and directed opposite to the algorithm.

For communicating in outward direction during an inward algorithm (�), it would be ill-

advised to initiate the respective communication calls (item i in Table 5.4) at the events of

nodes, i.e. upon discovery of a sender s ∈ S or when finishing s. This communication strategy

would lead to unnecessary idle times since the inward algorithm dictates processing the senders

at the latest possible time. Instead, to provide the required nonlocal data (xi, ui, µ) as soon as

possible, each working unit p initiates the data transmission upon discovery of the forest Fp.
With appropriate designed loops over the roots Rp and over the senders Sp, the working units

complete the outward communication before starting with the respective inward algorithm,

which then proceeds analogously to the incoming KKT algorithms.

5.4. Distributed Solver for Tree-Sparse Problems

This section presents the distribution of the complete interior-point algorithm used for solving

the TSPs. For this, recall from Sect. 2.2 the discussion of solution algorithms for NLPs in general

and the one of IPMs in specific. The primal-dual filter line-search interior-point algorithm is

composed of the following four types of operations.

Problem-specific operations: These operations depend on the problem-specific structures of the

optimization problem. Computing (2.21) of the primal-dual search direction ∆(x, s, z, v)(k),

i.e. evaluating the solution of a KKT system, is the most obvious operation of this type.

Further examples are matrix-vector products with parts of the KKT matrix as well
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as evaluations of the optimization model at hand. Each of these three operations is

problem-specific since their performance depends on the structure of the KKT matrix.

Vector-valued vector operations: These operations use input arguments such as vectors or

scalars to generate the resulting vector in an element-wise manner. The addition of two

vectors, for example, is a vector-valued vector operation of the form Rn × Rn → Rn.

Others such as the scalar multiplication feature the form R × Rn → Rn. In the IPM

algorithm, for example, the updates (2.24) of the iterates (x, s) and (z, v) are composed

of the previous two vector-valued vector operations.

Collective operations: These operations generate a single information from one or several

vectors. First, logical-valued collective operations answer questions that are either true

or false, e.g. a check of the element-wise relation v ≥ 0 for a vector v is answered this

way. Scalar-valued vector operations generate a single scalar from one or several vectors.

Examples for scalar-valued vector operations are norms and the scalar product. The

evaluation of the KKT error (2.20) is based on vector norms.

Scalar operations: These operations generate a single scalar from one or several other scalars.

For example, the update heuristic for the barrier parameter µbp in the IPM algorithm

is a scalar operation. However, updates rules for µbp such as the rule of Mehrotra’s

predictor-corrector heuristic [65] may be based on more complex operations.

Additionally to those four types of operations, the IPM algorithm contains loops and junction

points based on logical decisions (if-clauses). In an SPMD programming model, all working

units cooperate in one single program, which means that there is an instance of the same

program for each working unit. The SPMD model dictates that each working unit runs through

the same loops in its respective instance and takes the same branching at each junction point.

Clearly, this is achieved if the decisions in all program instances are based on the same values.

Now, the IPM algorithm is distributed by distributing each of the four operation types. For

this, problem-specific operations are performed by tree-sparse algorithms realized as distributed

DFS-based tree algorithms (cf. Sect. 5.3). Second, scalar operations are simply duplicated

in each instance of the program. Furthermore, unit-specific shares of vector-valued vector

operations are independent of each other and, therefore, performed asynchronously by each

working unit. Finally, the collective operations require a collaboration of the working units

for the single information they generate. In the distributed case, each working unit typically

creates a scalar or a logical value of its assigned vector part on its own and all these values

are finally combined into a single information. Collective operations usually involve a so-called

reduce-and-scatter communication routine. The values of the working units are first brought
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together on one dedicated instance of the program and the merged result is then sent back to the

other working units. In tree-sparse optimization, this dedicated program instance corresponds to

the working unit that is responsible for the tree root 0. However, for accumulating scalar-valued

collective operations such as the scalar product, this reduce-and-scatter procedure does not

apply. For stability reasons these accumulations are also realized by distributed DFS-based

tree algorithms (cf. Sect. 4.6.2).

When dealing with NLPs, the distribution of the IPM extends the following way. First, the

filter line-search globalization (cf. Sect. 2.2.2) is a scalar operation that is based on several

collective operations. The filter (Def. 8) comprising pairs of scalars to keep track of the progress

of the IPM algorithm is duplicated for each program instance. The SPMD programming

model ensures that each instance establishes the same filter without additional synchronization

beyond the one that is carried out by the collective operations. Second, the tree-sparse inertia

correction is already distributed since it is incorporated into the tree-sparse KKT solution

algorithms (cf. Sect. 4.4). Finally, the tree-sparse Hessian update strategies in the proposed

quasi-Newton approach (cf. Sect. 4.5) are highly problem-specific and, therefore, realized by

tree-sparse algorithms.
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Software Design

This chapter presents the design of the software that is used to solve the tree-sparse problems.

Sophisticated data structures are designed and plugged in the interior-point solver Clean::IPM

developed by Schmidt [72]. The interior-point framework Clean::IPM is part of Clean (short for

A C++ Library for Efficient Algorithms in Numerics) that is developed in the working group

Algorithmic Optimization of Steinbach at the Leibniz Universität Hannover. The software

framework Clean, which is intended to become public domain when it is considered to be

sufficiently mature [72], is a generic C++ library that contains flexible algorithms primarily

for optimization and the solution of linear systems. The provided algorithms feature a generic

design based on C++ templates that makes them independent of the used data objects. Those

data objects implement operations on the behalf of the algorithm and, in doing so, mask the

specific implementation of the problem data they hold. This allows the instantiation of a

problem-tailored setup of an algorithm achieving runtime efficiency by compile-time decisions

based on the used data objects.

Taking advantage of the flexible algorithm design in Clean, sophisticated data objects tailored

to the tree-sparse problems are developed and then used in Clean::IPM. These tree-sparse objects

are banded together in a C++ library that will be referred to as the Tree-Sparse Library (TSL).

The tree-sparse objects and tree-sparse operations are based on the concepts of distributed

trees and distributed DFS-based tree algorithms (cf. Chap. 5) that are implemented in the

Distributed Tree Environment1. The latter C++ library is intended to become part of Clean

and will be referred to as Clean::DTE.

Fundamental software concepts applied in Clean set an software framework that is of vital

importance for the TSL. Outlines of the most important concepts, i.e. those that are crucial

for design choices made by the author, are given in the first two sections of this chapter. The

1The name of the library is inspired by the software framework Parallel Tree Environment developed by
Hofmann [46].
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author wants to emphasize that the concepts in Clean go back to Steinbach and the outlines

given here are neither complete nor final, i.e. they may vary upon publication of Clean.

Now, this chapter is organized as follows. Section 6.1 sets the software framework for

Clean::DTE and the TSL. The subsequent section focuses on the distribution of data objects

and algorithms in Clean in general and in Clean::IPM in specific. The design of Clean::DTE is

introduced in Sect. 6.3 and Sect. 6.4 discusses the design of the TSL.

6.1. Software Framework

This section sets the software framework for the designs of Clean::DTE (cf. Sect. 6.3) and the

TSL (cf. Sect. 6.4). The framework includes the programming language and the use of external

libraries (Sect. 6.1.1), the most used generic programming techniques (Sect. 6.1.2), basic ideas

of Clean (Sect. 6.1.3) and details on the IPM solver Clean::IPM (Sect. 6.1.4).

6.1.1. C++ and External Libraries

The software is written in C++ satisfying mostly the C++11 standard but also employing some

features of the current C++14 standard [95]. The software implementation requires the C++

standard library and the Boost C++ libraries (version 1.56.0 or higher) [94]. Mathematical

operations are based on BLAS [55] and LAPACK [3]. Communication is based on the Message

Passing Interface (MPI) [96]. The communication routines are called through the Boost.MPI

C++ interface and carried out by the MPI implementation Open MPI (version 1.65.0) [97].

6.1.2. Generic Programming Techniques

The three subsequently described generic C++ techniques using templates are used extensively

in the design of Clean::DTE and the TSL.

Policies and Traits

Many classes are implemented following a policy-based class design pattern and use type traits

to define the set of relevant types for the class.

The policy-based class design pattern is introduced by Alexandrescu [2] and can be seen as a

compile-time variant of the Strategy Pattern [28]. A policy defines the template interface for a

class and the selection of a specific policy determines its behavior. Type traits are programming

techniques that allow compile-time decisions based on types instead of making runtime decisions
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Listing 6.1: Example for the policy-traits design
1 template<class Widget_Policy>
2 struct Widget_Traits
3 {
4 using A = typename Widget_Policy : :A;
5 using B = std : : ostream ;
6 using C = typename A: : Tra i t s : : C;
7 using D = E<Widget_Policy >;
8 } ;
9

10 template<class Widget_Policy>
11 class Widget
12 {
13 using Tra i t s = Widget_Traits<Widget_Policy >;
14 using A = typename Tra i t s : :A;
15 using B = typename Tra i t s : : B;
16 using C = typename Tra i t s : :C;
17 using D = typename Tra i t s : :D;
18 } ;

based on values. Type traits are used extensively in some generic libraries, e.g. Boost [94] and

the C++ Standard Template Library (STL) [90, 99].

In the developed software, the policy-traits design is defined as follows. A policy class

encapsulates the free type choices for a policy-based class. The policy-based class uses a traits

class to obtain all types required in its scope. The traits class used by a policy-based class

shares the same template interface, i.e. it is instantiated by the same policy. An example of the

policy-traits design is shown in Lst. 6.1.

Types defined in policies and traits classes are complete, i.e. they are fully instantiated.

Incomplete types may be passed as additional template parameters to policy-based classes

and, thus, form extensions to the template interfaces of the latter. An incomplete template

parameter usually requires the full instantiation of the parameterized policy-based class or its

traits class.

Template Base Classes and CRTP

To avoid code duplication, common groups of functionalities are encapsulated in their own

classes labeled with the suffix _Base. Inheriting from a class X_Base provides the derived class

with the functionalities of X_Base. The X_Base class is not parameterized by a policy but by

the traits of the inheriting class. Hence, the traits class of the derived class must also define

all types that are required by the X_Base class. To allow more flexibility in the class designs,

deriving classes may also be parameterized by the X_Base class through a template parameter.

Some of the base classes employ the Curiously Recurring Template Pattern (CRTP) [18],

which is similar to the Barton-Nackmann-Trick [6]. The CRTP design combines templates and

inheritance in such a way that the template hierarchy is directed opposite to the inheritance
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Figure 6.1.: Inheritance diagrams for non-CRTP class X_Base (left) and CRTP class Y_Base
(right) with the template parameters Policy (P), Traits (T), X_Base (XB), Y_Base
(YB) and the class Y

Listing 6.2: Tag dispatching in function overloading
1 struct Valuable {} ;
2 struct Trash {} ;
3 struct New_Car { using Tag = Valuable ; } ;
4 struct Accident_Car { using Tag = Trash ; } ;
5
6 template<class X>
7 void give_away (X& x) { give_away (x , typename X: : Tag ( ) ) ; }
8
9 template<class X>

10 void give_away (X& x , Valuable tag ) { s e l l ( x ) ; }
11
12 template<class X>
13 void give_away (X& x , Trash tag ) { dump(x ) ; }

hierarchy. A class Y inherits the CRTP class Y_Base and passes itself in complete instantiation

as template parameter to Y_Base. In this design, the Y_Base is not allowed to have its own

data members. Again, the Y_Base class may also be a template parameter for the derived class.

Figure 6.1 shows Unified Modeling Language (UML) [100] diagrams for deriving classes that

inherit from CRTP and non-CRTP base classes.

Tag Dispatching

Tag dispatching is a generic programming technique used for function overloading to dispatch

based on properties of a type [15]. A tag is an empty structure that is attached as type definition

to a class X and used by a function to delegate the instance x of the class X to the proper

function overload. An example of tag dispatching is outlined in Lst. 6.2.
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6.1.3. Basic Ideas of Clean

The guiding idea of Clean is to provide numerical algorithms that are independent of specific

data types. The user of such a numerical algorithm (e.g. the author) may replace standard

data types by problem-tailored ones without affecting the logic of the numerical scheme and,

therefore, without the need to reimplement the algorithm. This independency of data types

requires a strict separation of responsibilities, which is in Clean as follows.

An algorithm implements the logic of a numerical scheme and employs data objects to carry

out mathematical operations. A data object represents a mathematical object such as a vector or

a matrix, and it provides a set of mathematical operations. The interaction between algorithms

and data objects is defined by fixed interfaces. Algorithms use these interfaces to instruct the

data objects with the required operations. The latter are then responsible for performing the

operations.

Clearly, an algorithm runs only then correctly, i.e. it performs the logic of the implemented

numerical scheme as intended, if the used data objects harmonize with each other. For example,

operations requiring two or more different kinds of objects are defined by only one of these.

The operation-defining object and the others must have common agreements to interact with

each other, e.g. member methods, memory management and interfaces. Definitions of data

objects that are required to harmonize with each other are grouped in servers. Basically, each

algorithm has one server that defines the data objects in use. Furthermore, the server—and not

necessarily the objects—provides the required interfaces for its corresponding algorithm.

An example for an algorithm in Clean is the interior-point framework Clean::IPM, which is

discussed in Sect. 6.1.4.

Vectors

Vectors are specific data objects in Clean and take center stage in the design of distributed

algorithms (cf. Sect. 6.2). In the vector design, the data of a vector, i.e. its content, is strictly

separated from its structural information such as the vector length. The data elements of a

vector are numerical values, e.g. real numbers, and the data is stored in a single data array, i.e.

a contiguous memory block. The vector interface provides typical vector operations like the

vector addition and the scalar product as well as direct element access through the subscript

operator ([]).
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Figure 6.2.: Basic design of Clean::IPM (left) and refined design showing the incorporation of
the KKT server (right)

6.1.4. The Interior-Point Solver Clean::IPM

Clean::IPM is a flexible interior-point framework for different classes of problems which flexibility

is realized by two key features. First, in a modular design using building blocks, the user has

free choices of some sublogics of the IPM algorithm. Second, as an algorithm in Clean, the IPM

framework separates strictly between algorithm logics and data objects, and it dictates the

interaction between those through fixed interfaces (cf. Sect. 6.1.3).

The basic design of Clean::IPM is shown on the left-hand side in Fig. 6.2. It comprises the

main algorithm, the subalgorithms and the server. The main algorithm implements the overall

algorithmic logic, which is an infeasible primal-dual interior-point method. A subalgorithm

implements a sublogic of the IPM such as the update rule for the barrier parameter or the

solution of the KKT system. The server provides the interfaces to the data objects used in the

main algorithm and the subalgorithms. For a more detailed depiction of the software design of

Clean::IPM the reader is referred to [72].

Clean::IPM is developed to solve different classes of problems. Its modular design allows

an user to assemble an algorithm that works best for her problem at hand. In this thesis,

Clean::IPM is used to solve smooth nonlinear nonconvex optimization problems. In [73], for

example, Schmidt employs his IPM framework to solve optimization problems with locatable

and separable nonsmooth aspects.

To solve the nonlinear tree-sparse problems efficiently, highly sophisticated data objects ex-

ploiting the specific structures of the tree-sparse problems are plugged in Clean::IPM (cf. Chap. 4

and Sect. 3.2). The designs of these problem-tailored tree-sparse objects are presented in Sect. 6.4.

For knowing the requirements on them and the way how to plug them in, one needs a closer

look at the design of Clean::IPM and the occurring interfaces therein.
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Specific Servers and Interfaces

Generally, the IPM main algorithm and its subalgorithms have the same server, i.e. the IPM

server. Two subalgorithms form exceptions to this design. First, the KKT solver handling the

solution of the KKT system has its own server. This KKT server is a member of the IPM server

and provides the KKT solver interface and a KKT matrix interface for operations with the

KKT matrix such as a matrix-vector product. The second exception is the implementation of

the optimization problem, which is responsible for evaluating the required optimization problem

data including first-order and second-order derivatives. It provides the problem interface for

evaluation requests and does not have an own server but, instead, it gains access to the KKT

server. Evaluated problem data are stored directly into the KKT server without using a fixed

interface. For this, the KKT server is passed to the problem through its problem interface.

This direct data access couples the problem implementation to the KKT server in use. In a

refined design, the diagram on the right-hand side in Fig. 6.2 shows the incorporation of the

KKT server.

Besides the three specific interfaces for the KKT solver, the KKT matrix as well as the

problem, two additional types of interfaces are used in Clean::IPM. The first type is formed by

the interfaces of the IPM server for all subalgorithms except the ones for the KKT solver and

the problem. Details about these interfaces are not relevant for the design of the tree-sparse

objects. The second type are vector interfaces (cf. Sect. 6.1.3) that are provided by each vector.

Clean::IPM accesses any vector consistently through its interface, which is a key feature for

distributing the algorithm (cf. Sect. 6.2.3).

KKT Objects and IPM Objects

A server is responsible for defining the used data objects that are required to harmonize with

each other (cf. Sect. 6.1.3). In Clean::IPM, there are basically two kinds of data objects defined

by the respective servers, i.e. the KKT objects and the IPM objects. Examples for KKT objects

are the KKT matrix, a factorization of the KKT matrix called KKT inverse and the KKT

vector, which implements the variable vector and the right-hand side of the KKT system (4.67).

While a KKT matrix or its inverse are optional types the programmer can decide on whether

and how to implement them, the KKT vector is needed by the IPM server and its design

must meet two requirements. First, the KKT vector comprises three subvectors, i.e. a vector

of the primal variables (Var_Vector), a vector of Lagrange multipliers corresponding to the

equality constraints (Equ_Vector) and a vector of duals corresponding to the range constraints

(Rng_Vector). Second, the KKT vector and all its subvectors are Clean vectors as described
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Figure 6.3.: Composition of IPM objects in Clean::IPM

in Sect. 6.1.3. The KKT server determines the vector data management of the KKT vector

and its subvectors. This means, the KKT server is responsible for the way the vector data are

stored in the memory block, i.e. the order of the data elements in the data array.

IPM objects are those objects that are introduced specifically for the implementation of the

IPM. They are either vectors or diagonal matrices. Each object defined by the IPM server is

composed of one or several KKT subvectors. In doing so, the IPM server adopts the vector

data management of the KKT server for its objects and, hence, there is no need for a data

mapping between the two servers. This way, IPM objects harmonize generically with KKT

objects. Thus, all objects of the IPM server harmonize with each other as required. The design

of the IPM objects is shown in Fig. 6.3.

Using Tree-Sparse Objects in Clean::IPM

Taking all previous described aspects into account (all interfaces, the responsibilities xof the

KKT server as well as the coupling between this server and the problem), problem-tailored

data objects are used in Clean::IPM the following way:

1. Implementing a KKT server that provides the KKT solver and the KKT matrix interfaces

and which defines the KKT vector and its subvectors.

2. Providing the vector interface for each vector type.

3. Implementing a problem subalgorithm fitting to the KKT server that provides the problem

interface.

6.2. Distributed Objects and Algorithms

The distribution of algorithms in Clean is motivated by the topic of this thesis. The design of

distribution and its application in Clean::IPM is a joint work of Marc Steinbach, Martin Schmidt
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as developer of Clean::IPM [72] and the author as developer of problem-tailored data objects

for distributed problems (cf. Sect. 6.4). In Clean, the distribution of an algorithm is based

on the distribution of the used data objects. More precisely, Clean algorithms are completely

independent of the used computational environment that is kept hidden within the objects.

This way, Clean algorithms are distributed algorithms by design.

The key ingredient for distributing an algorithm is the fundamental concept of the communi-

cator, which is outlined in Sect. 6.2.1. The communicator hides the computational environment

in use and provides a set of prescribed communication routines. This concept is motivated by

the MPI standard [96]. A second important ingredient is a specific design of the data objects

that are used by an algorithm. This design benefits from a distributed vector (Sect. 6.2.2), which

extends a Clean vector (cf. Sect. 6.1.3) by including its distribution in its defining structure.

The objects in Clean::IPM feature this specific design that is explained in Sect. 6.2.3.

6.2.1. Communicators

The entire structure of the network topology of the used computational environment—no

matter if it is a parallel system (e.g. a shared-memory system or a distributed-memory

system) or a sequential system—is encapsulated within a communicator. The communicator

masks the specific environment in use and provides a fixed interface that consists of three

types of routines, namely getter methods for some structure information, point-to-point (P2P)

communication routines and collective communication routines. P2P methods allow direct

data transmissions between two computational units (e.g. processes or threads) and collective

communications involve all computational units in the computational environment. The routines

of the communicator interface are listed in Table 6.1.

6.2.2. Distributed Vectors

A distributed vector is a vector split into distributed vector parts, which are distributed among

the working units of the computational environment. This includes a single-split vector on a

sequential system. The design of a distributed vector extends the design of an undistributed

vector (cf. Sect. 6.1.3) as follows. The distribution of a vector becomes an aspect of its defining

structure. The structural information of a distributed vector contains its total length, the

length of the local vector part and the communicator. Each part of the distributed vector is

stored in a single data array, i.e. a contiguous memory block, and the contents of the vector

parts form a partition of the content of the distributed vector. Finally, the vector interface

remains the same.
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Table 6.1.: Communicator interface in Clean

Name Type Functionality

process_id structure Returns ID (rank) of the calling process.
n_processes structure Returns number of processes in communicator.
send P2P Sends some data to specified process.

Blocks process until endpoint received data.
send_asynch P2P Sends some data to specified process.

Process is not blocked.
recv P2P Receive some data from specified process.

Blocks process until data is received.
broadcast collective Broadcasts some data.
all_reduce collective Reduces some data by a specified operation

and scatters the result to all processes.
synchronize collective Synchronizes all processes.
all_add_and_scatter collective all_reduce with addition
all_mult_and_scatter collective all_reduce with multiplication
all_min_and_scatter collective all_reduce with min
all_max_and_scatter collective all_reduce with max
all_and_and_scatter collective all_reduce with logical and
all_or_and_scatter collective all_reduce with logical or

A distributed vector is responsible for performing a vector operation appropriately in the

computational environment. The maximum norm of a distributed vector, for example, may be

performed the following way. First, on each computational unit, the maximum norm of the

assigned vector part is evaluated locally. Afterwards, the maximum over all vector parts is

evaluated using the all_max_and_scatter routine of the communicator.

6.2.3. Distributed Data Objects in Clean::IPM

Algorithms in Clean are by now completely distributed:

1. An algorithm is independent of the used data objects by parameterization.

2. An algorithm delegates its distribution to these objects.

3. Assembling an algorithm with distributed data objects leads to a distributed setup of the

algorithm.

An algorithm not only features distribution by design, the distribution can additionally be

abetted by the used data objects. Employing data objects that are in a way generic with respect

to the distribution allows their reuse in combination with problem-tailored objects. The way

this is done in Clean::IPM is outlined next.

The second item in the listing above essentially means that an algorithm delegates its distribu-

tion to its server that in turn defines data objects harmonizing with each other (cf. Sect. 6.1.3).
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The distribution becomes a key aspect of harmonization, which the programmer of the server

has to keep in mind. In Clean::IPM, the server of the algorithm, i.e. the IPM server, delegates

this responsibility further to the KKT server. The IPM objects are composed of KKT subvectors

(cf. Sect. 6.1.4), which are possibly distributed vectors (cf. Sect. 6.2.2). Hence, the IPM server

adopts the distribution of the KKT server for the IPM objects. In doing so, the distributed

IPM objects harmonize generically with the KKT objects and with each other.

6.3. The Distributed Tree Environment

The Distributed Tree Environment (Clean::DTE) is a C++ library that provides distributed

trees and an infrastructure for distributed tree algorithms in the TSL (see Chap. 5). Clean::DTE

is developed to support the implementation of tree-sparse problems and their problem-tailored

data objects (cf. Sect. 6.4). The design of Clean::DTE is influenced by the Boost Graph Library

(BGL) [75] as well as by previous software that has been developed under supervision of Steinbach

in the context of tree-sparse problems. The name of Clean::DTE is inspired by Hofmann’s

Parallel Tree Environment (PTE) [46].

Instead of writing a new library, two existing ones could have been employed to realize the

features of Clean::DTE. With the BGL, Boost provides a generic library for describing and

iterating over graphs, and there is even a distributed version called the Parallel Boost Graph

Library (PBGL) [98]. But trees are very specific graphs and the BGL has been considered as

too general by the author to fit the desired functionalities into its framework. The PTE library,

on the other hand, is a generic library for distributed trees. Unfortunately, the PTE dictates a

specific design for distributing objects on trees to fit into its framework. The prescribed object

design has been considered as unfitting and too restrictive for the objects in the TSL.

Clean::DTE is not only developed to provide distributed trees but also to support the

distribution of trees, i.e. the way from the tree to the distributed tree. Two considerations for

the distribution of trees affect the design of the library. First, the DFS-based distribution rule

(cf. Sect. 5.2.1) is one way to split a tree. Although it is currently the only distribution rule,

other rules are not excluded by design. Second, the distribution of a tree among the working

units may involve transmission of some data between these units. Clean::DTE supports data

transmission by the serialization of data types using the Boost.Serialization library [94].

6.3.1. Main Design

The Clean::DTE library consists of containers that contain elements and provide specific

functionalities. Distributed tree algorithms are realized by the interaction of traversals and
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visitors. The concept of containers and elements in Clean::DTE is geared to the concept of

generic containers2 in the STL [90, 99]. A generic container in the STL is a template container

class that can be instantiated to contain any type of object. Two restrictions to this arbitrary

choice of objects make the containers in Clean::DTE less generic. First, the objects stored in the

container must meet some requirements on its design that are described in Sect. 6.3.3. Objects

that meet these requirements are called elements. Second, a container may use its elements to

define its structure, e.g. to describe the topology of a tree.

There are currently three types of containers in Clean::DTE, i.e. two graph data structures

implementing a tree and a distributed tree as well as an object type called splitter that supports

the distribution of a tree. Details about these three containers are given in Sect. 6.3.2.

The interoperability between graph data structures and graph algorithms is similar to the one

in the BGL [75]. A traversal defines the algorithm pattern outside of the containers and uses an

interface masking the details of the graph implementation. A graph algorithm is extended by

visitors providing certain event points that are invoked during the traversal [28]. The traversals

and visitor types in Clean::DTE are presented in Sect. 6.3.4.

There are two major differences between the graph data structures and graph algorithms

in the BGL and the ones in Clean::DTE. First, the graphs in Clean::DTE are distributed trees

and undistributed trees as special cases of distributed trees. The traversals and their interfaces

are tailored to these specific graphs and do not support arbitrary graphs like the BGL. Second,

the graph data structures in Clean::DTE, i.e. the tree and distributed tree containers, comprise

only nodes and no graph edges. Graph algorithms are always traversals of all nodes, and the

event points of visitors are only invoked at nodes and not on edges.

6.3.2. Containers

The containers in Clean::DTE and their relations to each other are shown in Fig. 6.4. A

distributed tree container type implements the topology of a distributed tree (cf. Sect. 5.2.1).

It contains elements representing the nodes, levels, roots and senders of a distributed tree

part and it provides an interface for the traversals. A tree container type implements the

topology of an undistributed tree. It contains elements representing the nodes and levels of

the tree and provides an interface for a splitter as well as the same traversal interfaces as

the distributed tree container type. A splitter container type implements a distribution rule.

Given an undistributed tree, the number of participating working units (np) as well as relevant

system information (w1, . . . ,wnp) as input, the splitter produces construction arguments for

2The generic containers of the STL are included in the C++ language and are part of the C++ standard library.
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Figure 6.4.: Container types in Clean::DTE with template policies (P(...)) containing types
for nodes (N), levels (L), roots (R) and senders (S)

the resulting distributed tree parts including the respective shapes of the parts as well as their

incorporation in the distributed tree

Currently, Clean::DTE provides the following implementations of container types. The Tree

container implements an arbitrary tree, although the considered trees are specific ones: they

are symmetric and all leaves are on the same level. The DFS_Splitter defines the DFS-based

distribution rule and produces construction arguments for the DFS_Distributed_Tree, which

implements the distributed tree type arising from that specific distribution rule.

6.3.3. Elements

Elements are considered as basic types that must meet three requirements. First, any element

must provide an empty constructor, i.e. the element can be built without passing any arguments

upon its construction. Second, any element must be transmittable in the used computational

environment, i.e. the element must be serializable to a data stream that can be transferred using

the communication routines of a communicator (cf. Sect. 6.2.1). The third requirement allows

the assembling of new elements from existing ones: except for the Empty_Element, any element

X must be combinable with any other element Y but itself. The concentration of two elements is

realized by inheritance from a template parameter. The Empty_Element is the endpoint in the

inheritance hierarchy, i.e. it is the supreme base class. In Fig. 6.5, for example, the element X is

concentrated with the element Y by passing Y as template parameter to X that in turn derives

itself from the template Y. The element Y is then derived from the Empty_Element.

The elements provided and used by Clean::DTE are shown in Fig. 6.6. As basic types, they

are not realized by the policy-traits design. There are nodes, levels, roots and senders for the

(distributed) trees as well as the Empty_Element and the Data_Element that allows to attach
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Table 6.2.: Traversals in Clean::DTE

Name Traversal

linear_forward Linear iteration over node array from first to last element.
linear_backward Linear iteration over node array from last to first element.
depth_first Traversal of all nodes in depth-first order.
depth_first_reverse Traversal of all nodes in reverse depth-first order.

Table 6.3.: Event points in Clean::DTE

Name Invocation

Event Points for Linear Traversals

start At the begin of the iteration before the first node is visited.
start_node At the visit of each node in the node array.
end At the end of the iteration after the last node has been visited.

Event Points for Depth-First Traversals

start_forest At the begin of the traversal before the first node is discovered.
start_tree At the discovery of each root in the distributed tree part.
start_node At the discovery of each node in the distributed tree part.
finish_node At finishing of each node in the distributed tree part.
finish_tree At finishing of each root in the distributed tree part.
finish_forest At the end of the traversal after the last node has been finished.

arbitrary data to an assembled element. In Fig. 6.6, the Element_Base represents any element

but the Empty_Element and the inheritance loop arrow illustrates the assembling of arbitrary

many elements stopping with the Empty_Element. Elements subsumed in boxes in Fig. 6.6

are used by the Tree and DFS_Distributed_Tree containers to define their respective graph

structures.

6.3.4. Traversals and Visitors

Currently, there are two types of traversals listed in Table 6.2. First, linear traversals iterate

over the nodes of a distributed tree part from begin to end of the node array or vice versa.

Second, depth-first traversal traverse the nodes of a distributed tree part in depth-first or

reversed depth-first order (cf. Sect. 5.3.2). Each traversal type defines its own event points.

Table 6.3 lists the event points of linear and depth-first traversals and, furthermore, specifies

the events of their respective invocations.
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6.4. The Tree-Sparse Library

The Tree-Sparse Library subsumes the implementation of the TSPs and the tree-sparse al-

gorithms (see Chap. 4). This library is developed by the author to solve the tree-sparse

problems using the interior-point framework Clean::IPM, and it requires Clean as well as the

Clean::DTE library (see Sect. 6.3). The design of the TSL is greatly influenced by the designs of

Clean (cf. Sect. 6.1.3) and Clean::IPM. Furthermore, some aspects of its design are inspired by

Hutanu [49], by previous work of the author [50] as well as by further software development in

the context of tree-sparse optimization under supervision of Steinbach.

6.4.1. Main Design

The TSL contains tree-sparse objects such as problem-tailored KKT objects (cf. Sect. 6.1.4) and

implementations of the tree-sparse optimization problems. Furthermore, the library facilitates

the implementation of tree-sparse algorithms such as evaluating the problem data of a TSP

and performing the three stages of the KKT solution. In this context, these algorithms are

referred to as tree-sparse operations. The TSL is developed simultaneously with the Clean::DTE

library and the latter is designed to support the first one. Hence, the design of the TSL is

based on Clean::DTE and strongly coupled to its design. The tree-sparse objects use distributed

tree containers (cf. Sect. 6.3.2) to manage their data and to execute the tree-sparse operations.

Each tree-sparse operation involves a traversal over the distributed tree and the performance

of the operation is managed by an algorithm visitor (cf. Sect. 6.3.4). Managing an operation

includes invoking its corresponding node operations (cf. Sect. 5.1).

The guiding idea for the design of the TSL is an easy support for the exploitation of local

sparsities in the hierarchical sparsity of tree-sparse problems (cf. Sect. 3.2.3). This is realized

by a specific modular design of the tree-sparse objects that reflects the tree-sparse sparsity

hierarchy as well as by a close cooperation between those objects and the algorithm visitors.

The latter feature a design that is independent of the local sparsity layer in the hierarchy. This

way, the management of a tree-sparse operation is decoupled from the implementation of its

problem-tailored node operations. Details on the algorithm visitors are given in Sect. 6.4.2.

Tree-sparse objects are composed of several classes, each of which is associated with a specific

layer in the sparsity hierarchy. The classes corresponding to the local sparsity layer provide

the implementation of the node operations. Assembling a tree-sparse object requires the

selection of a representative for each layer. This way, the implementation of problem-tailored

objects is narrowed down to implementing problem-tailored representatives for the local sparsity

layer. The design of the tree-sparse objects is discussed in detail in Sect. 6.4.3. That section
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Table 6.4.: Algorithm visitors in the TSL

Algorithm Visitor Tree-Sparse Object Contr.-Spec. Type

NLP_Eval Problem yes inward
Vector_Norm_1 KKT Vector and Sub-Vectors no inward
Vector_Scalar_Product KKT Vector and Sub-Vectors no inward
Vector_Sum KKT Vector and Sub-Vectors no inward
Linear_Map KKT Matrix yes inward
Hessian_Quadratic_Form KKT Matrix yes inward
Factorize KKT Inverse yes inward
Substitute_Inward KKT Inverse yes inward
Substitute_Outward KKT Inverse yes outward

also describes the close cooperation of the objects and the algorithm visitors in performing a

tree-sparse operation.

The TSL provides default implementations for the node operations of KKT matrices and

their inverses. These default operations are based on BLAS and do not exploit local sparsities.

Section 6.4.4 gives some details on this feature and, additionally, describes an infrastructure

that allows to solve tree-sparse KKT systems using sparse routines of state-of-the-art sparse

libraries such as the HSL Mathematical Software Library [47].

6.4.2. Algorithm Visitors for Tree-Sparse Operations

Tree-sparse operations are realized by distributed DFS-based tree algorithms (cf. Sect. 5.3.2).

An operation is carried out by a depth-first traversal over the distributed tree as well as an

operation-specific algorithm visitor that manages the operations using the event points that

are invoked by the traversal (cf. Sect. 6.3.4). Usually, there are differences in the management

between the incoming and the outgoing control version of the operation, leading to control-

specific implementations of the algorithm visitors. Table 6.4 lists the algorithm visitors in

the TSL and specifies the objects that define the corresponding node operations. For stability

reasons, most tree-sparse operations are performed as inward algorithms (cf. Sect. 4.6.2).

Managing a tree-sparse operation includes three responsibilities that are in the following

illustrated by means of the factorization of the tree-sparse KKT matrix. For this, Lst. 6.3

presents a simplified version of the algorithm visitor that manages the incoming control version

of the distributed factorization (see Sect. 5.3.4). The first job of an algorithm visitor is to

invoke the algorithm-specific operations OP(j) on the operation-defining object. Furthermore,

the visitor has the responsibility to provide access to data that are required for the node

operation but are inaccessible within the scope of the operation-defining object, i.e. data of

other tree-sparse objects and data of the same object that are in other sets DA(j2) of other nodes
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Listing 6.3: Simplified factorize algorithm
1 template<... >
2 class Factorize_Algorithm
3 : public Inward_Communication_Skeleton <... >
4 {
5 public :
6 using IW_Base = Inward_Communication_Skeleton <. . . >;
7
8 void
9 s t a r t_ f o r e s t ( )

10 {
11 // communication
12 IW_Base : : c l e a r_bu f f e r ( ) ;
13 }
14
15 void
16 f in i sh_node ( )
17 {
18 // communication
19 IW_Base : : receive_and_add_pred_write_data_from_outer_nodes ( ) ;
20 M_add_received_data ( ) ;
21
22 // node operat ion
23 M_inverse . f ac tor i ze_node (Hi ( ) , Fi ( ) , . . . ) ;
24 }
25
26 void
27 f i n i s h_t r e e ( )
28 {
29 // communication
30 M_fill_send_data ( ) ;
31 IW_Base : : send_additive_pred_write_data_inward ( ) ;
32 }
33
34 void
35 f i n i s h_ f o r e s t ( )
36 {
37 // node operat ion
38 M_inverse . f a c t o r i z e_ f o r e s t ( . . . ) ;
39 }
40
41 } ; // c l a s s Factorize_Algorithm <...>
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Table 6.5.: Skeletons in the TSL

Skeleton Visitor Algorithm Type Purpose

Stable_Cumulation inward Stable data accumulation.
Collective_Sum inward Stable accumulation of a scalar.
Inward_Communication inward Communication buffer management

and communication routines.
Outward_Communication outward Communication buffer management

and communication routines.

j2 6= j. In Lst. 6.3, for example, the tree-sparse factorization is formed by the node operations

factorize_node (line 23) implementing items 1 to 11 in Table 5.3 as well as factorize_forest

(line 41) realizing item 12 in the same table. Both node operations are defined by the KKT

inverse object. The data Hi and Fi in the set DA(i) of the predecessor i = π(j) are passed

through this node operation to the KKT inverse. As the third of its responsibilities, an algorithm

visitor manages the communication that is involved in the performance of the distributed tree-

sparse operation. During the tree-sparse factorization in Table 5.3, for example, the factorization

visitor initiates the receiving (.) before the node operation factorize_node is invoked for a

sender as well as the sending (↓) after factorize_node is invoked for a root.

For each inward algorithm, the kinds of communication are the same and only the lengths of

the transmitted data differ from each other. This common communication feature of inward

algorithms is implemented by the Inward_Communication_Skeleton. Other so-called skeleton

visitors implement, for example, the communication during an outward algorithm or the stable

data accumulation (cf. Sect. 4.6.2). Table 6.5 lists the skeleton visitors in the TSL and their

respective purposes.

The factorization visitor in Lst. 6.3 employs the Inward_Communication_Skeleton to manage

the communications in Table 5.3. It first initiates the receiving of data from successors on other

distributed tree parts (line 19) and then accumulates the received data (line 20). Before sending

data from a root to its predecessor on another distributed tree part (line 31), the algorithm

visitor first fills the respective data into the communication buffer of the skeleton (line 30).

6.4.3. Tree-Sparse Objects

The tree-sparse objects (illustrated in Fig. 6.7) include

1. all vector types (i.e. the limits vector of bounds, the limits vector of ranges and the KKT

vector types),

2. all KKT objects (i.e. the matrix, the inverse, the KKT vector and its subvectors),
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Figure 6.7.: Objects in the TSL

3. implementations of tree-sparse problems and

4. the KKT server.

All tree-sparse objects share common data members that are encapsulated into the tree-sparse

core. These common data members include the problem dimensions, the distributed tree, a

buffer for communication routines and a workspace for node operations. Coming along with

the common data members are common features (i.e. getter methods, interfaces and other

routines) that are gathered in an Object_Base-class. Each tree-sparse object inherits from the

Object_Base. Additionally, there are object-specific base classes that summarize object-specific

features for the KKT matrix, the KKT inverse and the optimization problem, respectively.

Figure 6.8 depicts the inheritance hierarchy and the common and object-specific features for

the tree-sparse objects Matrix, Inverse and Problem.

Figure 6.8 shows the coarse design of base classes in the TSL. Any tree-sparse object is actually

derived from three Object_Base-classes, each of which represents a layer in the sparsity hierarchy

of tree-sparse problems, i.e. the common tree-sparse layer, the control-specific layer and the

problem-specific layer (cf. Sect. 6.4.1). The same design applies to the object-specific base

classes and the assembling of a tree-sparse core. Figure 6.9 illustrates the detailed inheritance

hierarchies for the Matrix, any tree-sparse Vector, the KKT Server and the tree-sparse Core.

The interfaces required by Clean::IPM are implemented in master classes (e.g. Matrix,

Inverse, Problem or Server) that inherit from the several base classes (see Fig. 6.8 and Fig. 6.9).

While being the most basic base classes in an standard object-oriented class design, these master

classes form the endpoint in the inheritance hierarchy of the tree-sparse objects, i.e. they are

the most specialized classes.

Performing a tree-sparse operation is a close cooperation between a tree-sparse object and an

algorithm visitor (cf. Sect. 6.4.1 and 6.4.2). Using tag dispatching, a master class delegates
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Figure 6.8.: Inheritance and template hierarchy for the tree-sparse objects Matrix, Inverse
and Problem with template parameters Policy (P), Traits (T), Matrix_Base (MB),
Inverse_Base (IB), NLP_Base (NB) and Object_Base (OB)
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Figure 6.9.: Detailed inheritance and template hierarchy for the tree-sparse Matrix, a tree-
sparse Vector and the tree-sparse Core with template parameters Policy (P),
Traits (T), Matrix_Base (MB) and Object_Base (OB)
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Table 6.6.: Elements in the TSL extending Clean::DTE

Name Purpose

Probability_Node Attaches a probability to an element.
Offset_Node Memory management of data of tree-sparse objects.
TS_Offset_Node Triplet-sparse export for the tree-sparse KKT matrix.

the management of a tree-sparse operation to the respective control-specific algorithm visitor.

Furthermore, the algorithm visitor gets granted access to the otherwise private node operations

of the tree-sparse object.3 The control flow for the factorization of the tree-sparse KKT matrix,

for example, is as follows:

1. A client calls the routine factorize on the master class Inverse.

2. The Inverse uses tag dispatching to delegate the task to its control-specific overload of

the factorize routine.

3. The Inverse creates an instance of the control-specific Factorize_Algorithm visitor

and passes itself to this instance.

4. The Inverse initiates a depth_first traversal with the Factorize_Algorithm instance.

5. The visitor manages the factorization of the KKT matrix and invokes the node operations

factorize_node and factorize_forest defined by the problem-specific Inverse_Base.

6.4.4. Features of the Tree-Sparse Library

First, the TSL makes use of the element design in Clean::DTE (cf. Sect. 6.3.3) and provides further

element types that are useful in the context of tree-sparse optimization. The new introduced

elements are listed in Table 6.6. Second, the TSL provides for both control cases standard

implementations of the KKT matrix as well as its inverse that do not exploit problem-specific

local sparsities. The Dense_Core defines the problem structure without local sparsities and

the base classes Dense_Matrix_Base as well as Dense_Inverse_Base provide the respective

node operations. These Dense_-classes are representatives of the problem-specific layer of

the inheritance hierarchy in Fig. 6.9. This way, implementing a new tree-sparse optimization

problem without exploiting local sparsities is reduced to implementing a new problem-specific

Problem_Base that provides the node operations for the NLP_Eval_Algorithm visitor.

3To be more precise in terms of C++: the node operations are protected members of the object-specific
problem-specific base class (e.g. Inverse_Base) and the algorithm visitor (e.g. Factorize_Algorithm) is a
friend class of the corresponding object class (e.g. Inverse).
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Finally, the TSL comes with an infrastructure for exporting the tree-sparse KKT matrix

into triplet sparse format. Clean::IPM provides a default KKT library in triplet sparse format

including the triplet sparse KKT server [72]. The tree-sparse object TS_Problem evaluates a

tree-sparse optimization problem and stores the evaluated data into the triplet sparse KKT

server.



Chapter 7

Numerical Results

The main goal of this chapter is to demonstrate the performance of the problem-tailored

algorithms for the tree-sparse problems (TSPs) dealing with nonconvexities and missing second-

order evaluations in nonlinear optimization as well as facing the computational demands of

huge-scale problems. All optimization problems are solved using the interior-point solver

Clean::IPM [72] employing the tree-sparse KKT solver for the problem-specific linear algebra.

The TSPs are implemented in the framework of the Tree-Sparse Library (TSL) (cf. Sect. 6.4).

First, Section 7.1 presents examples that are modeled by means of the nonlinear tree-sparse

problems and this way demonstrates the potentials of the modeling framework of the tree-sparse

formulations. The resulting TSPs are nonconvex and some do not provide explicit evaluations

of second-order derivatives, i.e. the Hessian of the Lagrangian is not available. As a remedy,

Hessian approximations are evaluated in a quasi-Newton approach based on tree-sparse Hessian

updates (cf. Sect. 4.5). The KKT solver incorporates the proposed inertia correction heuristic

(cf. Sect. 4.4) to deal with nonconvexities in the arising KKT systems. Both the Hessian

updates and the inertia correction are successfully combined to solve the optimization problems

that arise in the control of the bioreactor in Sect. 7.1.3. Moreover, the results in Sect. 7.1.2

demonstrate that the tree-sparse Hessian updates are a competitive alternative even if explicit

evaluations of second-order derivatives are available.

Second, Section 7.2 presents computational results that prove the practicability of the

concept of distribution for the tree-sparse problems (cf. Sect. 5) and show the efficiency of the

implementation. For this, huge-scale portfolio selection problems are solved in parallel and

the parallel performance is analyzed. The very good performance results of the tree-sparse

algorithms conform with reports of similar approaches in the literature [10, 34]. The complete

IPM algorithm also features good performance results that are shaped by the performance of

the tree-sparse algorithms and benefit from the latter. Moreover, even the largest considered

139
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problems are solved in a few iterations and less than three minutes showing the scalability of

the distribution.

In Sect. 7.2.4, results are presented that demonstrate the efficiency of the post-distribution

communication reduction (cf. Sect. 5.3.3) for the trees that correspond to the portfolio selection

problems. Applying the reduction heuristic often leads to an actual number of communication

calls that is close to its lower bound. Finally, the results in Sect. 7.2.5 confirm the potentials of

exploiting local sparsities in tree-sparse problems and demonstrate the flexibility of the design

of the TSL.

7.1. Examples for Nonlinear Tree-Sparse Problems

The examples in this section are dynamic processes that are manipulated by optimization-based

controllers leading to nonlinear tree-sparse problems that are used to analyze the performance

of the tree-sparse algorithms. Most of the computations except for those in Sect. 7.1.2 are done

in sequential on a workstation with 16GB of RAM and an Intel(R) Core i7-3770 comprising

4 cores running at 3.40GHz. First, the motion of the magnetic levitation vehicle considered

in Sect. 7.1 is described by a simple deterministic ordinary differential equation (ODE). This

allows to compare two formulations of TSPs with one using analytical solutions of initial value

problems and the other using numerical approximations. Second, the dynamics of the perturbed

nonlinear double integrator examined in Sect. 7.1.2 is already given in time-discretized form,

leading to TSPs that provide explicit evaluations of second-order derivatives. This allows

comparing the performance of the structured quasi-Newton approach with the performance

of the IPM using explicit second-order evaluations. Finally, the nonlinear bioreactor studied

in Sect. 7.1.3 is modeled by ODEs with uncertain parameters that lead to challenging TSPs

including numerical evaluations of initial value problems. These problems are solved by means

of the structured quasi-Newton approach using SR1 updates and relying on inertia corrections.

Clean::IPM is configured as shown in Table 7.1. The algorithm terminates with an optimal

solution if the KKT error (cf. Sect. 2.2.1) is reduced to the prescribed optimality tolerance, and

it terminates with an almost optimal solution if the KKT error is reduced to the respective

tolerance and there is no significant progress in the subsequent IPM iterations. The progress

towards a solution is monitored and enforced by a filter line-search approach (cf. Sect. 2.2.2).

The update rule for the barrier parameter can be varied between the following three variants

that are implemented in Clean::IPM: the LOQO rule proposed by Vanderbei and Shanno [103]

and originally implemented in [102], the Ipopt rule proposed by Wächter and Biegler [105] and

originally implemented in [106], and the rule of Mehrotra’s predictor-corrector (MPC) algo-
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Table 7.1.: Default configuration of Clean::IPM

IPM Building Blocks

NLP globalization strategy: filter line-search
BP globalization strategy: filter line-search
Barrier update strategy: LOQO, Ipopt, MPC

Convergence Criteria Algorithmic Extensions

Maximum iterations: 3000 Starting point strategy: enabled
Optimality tolerance: 10−6 Automatic scaling: disabled
Almost optimal tolerance: 10−4 Slack shifting: enabled
Almost optimal iterations: 15 Emergency mode: enabled

rithm [65, 66]. Moreover, the framework of Clean::IPM provides several algorithmic extensions

such as the modification of a user-defined starting point, the shifting of jamming slack variables,

and an automatic problem scaling. Only the automatic problem scaling is disabled for reasons

discussed in Sect. 4.6.3. Details about the used extensions and heuristics including default

values for the parameters can be taken from [72].

In the quasi-Newton framework, the tree-sparse Hessian update strategy is based either on

the SR1 formula or on the PSB formula given in (2.32). The implementation features typical

heuristics such as a skip of the update if denominators become too small as well as an automatic

reset of the Hessian approximation [66]. The latter is enabled by default and the approximation

is reset after 30 iterations. The heuristic for skipping an update is applied individually for each

node, the default skip tolerance is set to 10−8.

Numerical solutions of initial value problems are computed with the integrator Metanb [5] that

also provides approximations of first-order derivatives via internal numerical differentiation [14].

7.1.1. High-Velocity Magnetic Levitation Vehicle

The first example models the one-dimensional frictionless motion of a high velocity magnetic

levitation vehicle, which is in the literature better known as the example of the rocket car [61].

The motion of the vehicle follows Newton’s third law of motion s̈(t) = v̇(t) = F/m where s

denotes the position of the vehicle, v its velocity, F the driving power and m its mass. Starting

at s(0) = s0 and v(0) = v0, the task is to stop the vehicle in minimal time T at position

s(T ) = se = 0 with zero velocity v(T ) = ve = 0. For this, it can be controlled by adjusting

its acceleration u = s̈ within the bounds u = F/m ∈ [−û, +û]. Writing the initial value
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problem (IVP) for the equation of motion as first-order system yields

 ṡ(t)

v̇(t)

 =

 v(t)

u(t)

 with

 s(0)

v(0)

 =

 s0

v0

 . (7.1)

Assuming a constant acceleration ū, the analytical solution of the IVP (7.1) is easy to compute

and leads to a polynomial of the second degree describing the position s of the vehicle, i.e.

s(t; ū, s0, v0) =
ū

2
t2 + v0t+ s0 and v(t; ū, v0) = ūt+ v0. (7.2)

The optimal control for the magnetic levitation vehicle with the objective of minimizing T is

well-known and follows a so-called bang-bang control strategy for the acceleration u. In this

strategy, the vehicle first accelerates with maximum power |û| in one direction until reaching

the switching point 0 ≤ t̃ ≤ T . After that, the vehicle brakes with maximum power, i.e. it

accelerates with maximum power |û| in the opposite direction. The analytical solution of the

levitation vehicle example with optimal times T and switching points t̃ in dependence on the

initial states (s0, v0) can be found, e.g., in [85].

Tree-Sparse Problem Formulation

In a multiple shooting approach, the time interval [0,T ] is split into N − 1 subintervals [tj , tj+1]

with tj = j−1
N−1 for j > 0 and N > 1. The state and control variables for j ∈ {1, . . . ,N}

are xj = (s(tj), v(tj),T )T and uj = u(tj), respectively. The root is a dangling node with

x0 = (s0, v0, 0) and u0 = T . This way, the tree-sparse formulation of the magnetic levitation

vehicle problem becomes an outgoing control problem (4.3) with the objective

φN (xN ,uN ) = xN ,3 and φj(xj ,uj) = 0 for j < N , (7.3)

and the dynamics

g1(x0,u0) =


x0,1

x0,2

x0,3 + u0

 and gj(xi,ui) =


gj,1(xi,ui)

gj,2(xi,ui)

xi,3

 for j > 1, (7.4)

where the dynamic node functions gj,1 and gj,2 represent the solutions of the IVP (7.2), i.e.

gj,1(xi,ui) = s(tj ;ui,xi,1,xi,2) and gj,2(xi,ui) = v(tj ;ui,xi,2). (7.5)
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The physical bound |u| ≤ û for the acceleration leads to the simple bounds

[bul0, buu0] = [0,∞) and [bulj , b
u
uj ] = [−û, û] for j > 0. (7.6)

The initial conditions s(0) = s0 and v(0) = v0 as well as the terminal conditions s(T ) = 0 and

v(T ) = 0 are incorporated into the dynamics and the global constraints by setting

g0 ≡ (s0, v0, 0)T and fN (xN ,uN ) = (xN ,1,xN ,2)T , respectively. (7.7)

Note that this example does not consider uncertainties, i.e. the resulting optimization problem

is deterministic and the corresponding scenario tree is a chain.

Test Run

The magnetic levitation vehicle problem is solved for a fixed setup, i.e. the initial position

is s0 = −4.0, the initial velocity is v0 = 0.0 and the time interval is split into 100 equidistant

subintervals. Moreover, two variants of the tree-sparse problem (7.3)–(7.7) are considered.

In the first variant VI, the analytical solution (7.2) of the IVP is used to compute the next

states xj,1 and xj,2 from (7.5). In the second variant VII these states are obtained from solving

the IVP (7.1) numerically using the integrator Metanb.

Both variants VI and VII are solved using the IPM with different configurations of the

algorithm, and the respective solution times and numbers of iterations are compared to each

other. Each IPM configuration comprises the selection of the barrier update rule (Ipopt or

LOQO), the way the Hessians of the Lagrangian are computed and, finally, the choice of the

KKT solver (tree-sparse or triplet sparse). The Hessians are either computed using explicit

expressions for second-order derivatives or they are approximated in a quasi-Newton framework

using tree-sparse Hessian updates (SR1 or PSB). The arising KKT systems are solved in three

different ways, i.e. by the tree-sparse KKT solver using only local convexifications, or by the

tree-sparse KKT solver using only the outer convexification, or by a triplet sparse KKT solver

based on the HSL library [47]. The triplet sparse KKT solver uses the same convexification

strategy as the outer convexification of the tree-sparse solver [72].

The performance results for all IPM configurations and both tree-sparse problem variants

VI and VII are presented in Table 7.2. For each case, the table lists the number of required

IPM iterations, the KKT solution time accumulated over all iterations as well as the complete

solution time of the IPM solver. In all cases, the optimal solution found by the IPM solver

coincides with the analytical solution of the magnetic levitation vehicle problem [85]. The upper

half in Table 7.2 shows the results for the Ipopt barrier update rule and the lower half those for
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Table 7.2.: Performance results for the magnetic levitation vehicle problem – Number of itera-
tions, KKT solution time (s) and IPM solution time (s) for all algorithm configura-
tions and both tree-sparse problem variants VI and VII

Exact Hessian SR1 updates PSB updates
KKT Solver Iter. KKT IPM Iter. KKT IPM Iter. KKT IPM

Tree-sparse (local) 11 0.003 0.005 no convergence ∗34 0.007 0.016
Tree-sparse (outer) 21 0.008 0.012 84 0.024 0.045 ∗34 0.007 0.016
Triplet sparse ∗11 0.022 0.024 58 0.233 0.249 ∗34 0.065 0.074

VI (analytical IVP solutions) ↑ VII (numerical IVP solutions) ↓
Tree-sparse (local) no convergence ∗30 0.007 0.034
Tree-sparse (outer) 82 0.024 0.096 ∗30 0.007 0.034
Triplet sparse 58 0.250 0.303 ∗30 0.064 0.098

Ipopt barrier update rule

Exact Hessian SR1 updates PSB updates
KKT Solver Iter. KKT IPM Iter. KKT IPM Iter. KKT IPM

Tree-sparse (local) 18 0.004 0.009 no convergence 32 0.007 0.015
Tree-sparse (outer) 16 0.006 0.009 71 0.022 0.038 48 0.015 0.028
Triplet sparse ∗12 0.024 0.024 74 0.319 0.340 ∗43 0.160 0.171

VI (analytical IVP solutions) ↑ VII (numerical IVP solutions) ↓
Tree-sparse (local) no convergence 37 0.008 0.039
Tree-sparse (outer) 53 0.016 0.078 47 0.016 0.061
Triplet sparse 80 0.367 0.439 43 0.171 0.211

LOQO barrier update rule

the LOQO update rule. Each of these halves first lists the results for problem variant VI using

the analytical IVP solutions in the dynamic node functions (7.5) and then those results for the

second variant VII using numerical integration. In some test cases, the optimal solution of the

problem is found without modifying any KKT system, i.e. without using convexification during

the run of the IPM algorithm. In Table 7.2, these cases feature iteration numbers labeled by a

star (∗).

First of all, in almost all test cases, except for those configurations that combine the SR1

Hessian updates with the tree-sparse KKT solver using only local convexifications, the optimal

solution of the problem is found by the IPM solver showing that the different aspects of the

solution approach are successfully combined. First, the incorporated inertia correction extends

the tree-sparse KKT solver to deal with KKT systems arising in nonconvex optimization.

Second, the structure-preserving tree-sparse Hessian update strategies in the quasi-Newton

approach generate useful approximations of the Hessians of the Lagrangian.



7.1. Examples for Nonlinear Tree-Sparse Problems 145

The subsequent observations and conclusions are made from Table 7.2 by comparing the test

cases with respect to one aspect of the algorithm.

Tree-Sparse (outer) vs. Tree-Sparse (local): Using only the outer convexification means that

the KKT system is convexified uniformly, i.e. in the standard way by adding a multiple

of the identity to the Hessian of the Lagrangian (cf. Sect. 2.2.2). This strategy leads

for all configurations to the optimal solution. On the other hand, using only local

convexifications, the IPM algorithm diverges for those configurations where the Hessians

are approximated based on the SR1 update formula. Comparing the configurations where

both convexification strategies succeed, local convexifications lead to smaller KKT solution

times per iteration, e.g. 0.22ms against 0.31ms for VI using the LOQO rule and PSB

updates. Moreover, in all configurations but the one combining the LOQO rule with exact

Hessians, the IPM requires fewer iterations and less computing time to find the solutions.

Tree-Sparse (outer) vs. Triplet Sparse: First, there are IPM configurations (e.g. for exact

Hessians) for which the tree-sparse KKT solver requires convexification to solve the arising

KKT systems whereas the triplet sparse KKT solver provides KKT solutions in all IPM

iterations without modifying the KKT matrices. Hence, in some IPM iterations, the

regularity assumptions ensuring the success of the tree-sparse KKT solution procedure

(cf. As. 2) are not satisfied, which then affects the tree-sparse but not the triplet sparse KKT

solver. Second, as expected, the problem-tailored tree-sparse KKT solver is significantly

faster than the triplet sparse KKT solver, which more than compensates for a possibly

higher number of required IPM iterations (see Ipopt test cases in Table 7.2).

Exact Hessians vs Hessian Updates: As can be expected, replacing exact Hessians of the

Lagrangians with approximations based on tree-sparse Hessian updates results in a higher

number of IPM iterations required to attain the solution, which consequently implies a

larger IPM solution time.

SR1 vs. PSB: In all cases in Table 7.2, the tree-sparse Hessian updates based on the PSB

formula perform better compared to the SR1 formula, i.e. using PSB updates leads

to less IPM iterations in the solution procedure in comparison to using SR1 updates.

Moreover, using the Ipopt barrier update rule, the PSB updates lead to approximations

of the Hessian of the Lagrangian such that the corresponding KKT systems are solved

without convexification, which results in a lower KKT solution time per iteration. For

example, considering the solution times when employing the tree-sparse KKT solver using

the outer convexification, the PSB updates lead to 0.21ms per iteration whereas the SR1

updates lead to 0.28ms.
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Ipopt vs. LOQO: In most cases, using the Ipopt rule to update the barrier parameter (upper

half in Table 7.2) leads to better performance results than using the LOQO barrier update

rule (lower half in Table 7.2). However, the LOQO update rule performs better for Hessian

approximations based on the SR1 formula when solved with the tree-sparse KKT solver

using the outer convexification.

Analytical IVP Solutions vs. Numerical Integration: Replacing the analytical IVP solutions

in the dynamic node functions (7.5) with approximations based on numerical integration

affects the complete IPM solution time for the worse since evaluating the dynamics (7.4)

and the respective first-order derivatives becomes more expensive. However, most test

cases feature only minor discrepancies in the number of required IPM iterations, showing

the IVP solutions and first-order derivatives obtained from the integrator are reliable.

7.1.2. Nonlinear Double Integrator

In the following example, a moving horizon controller (MHC) regulates a perturbed nonlinear

double integrator to keep the considered system in a position of rest. For this, the plant

representing the double integrator uses the already time-discretized dynamic model proposed

by Lazar et. al [56],

x1(k + 1) =x1(k) + x2(k) +
1

40

(
x2

1(k) + x2
2(k)

)
+

1

2
u(k) + d(k), (7.8a)

x2(k + 1) =x2(k) +
1

40

(
x2

1(k) + x2
2(k)

)
+ u(k). (7.8b)

In this model, the state (x1,x2) of the system is manipulated by the control signal u ∈ [−2, 2],

and the first state variable x1 is perturbed additively by the disturbance d with the nominal

value dnom = 0. The task is to bring the system into the position of rest (x∗1,x∗2) = (0, 0) and

keep it there. In the absence of the disturbance, the reference state (x∗1,x∗2) is a fixed point of

the dynamics (7.8), i.e. the double integrator remains in the reference state without the need

to regulate it.

The considered uncertainties and the applied cost function are chosen in the same way as

by Lucia and Engell [59]. The disturbance is assumed to take the values d ∈ {−0.05, 0, 0.05}
with the respective probabilities {0.2, 0.4, 0.4}. Note that with d̄ = 0.01, the expected value d̄

of the disturbance does not coincide with the nominal value dnom. The costs are measured by a

standard quadratic cost function that penalizes the deviation from the reference state as well
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Figure 7.1.: Process control of the double integrator (left) and scenario tree considered in the
optimization problem with prediction horizon T = 3 and number of branching
levels Tb = 2 (right)

as the necessity to apply a control signal, i.e.

L(x,u) = (x− x∗)TQ(x− x∗) + uTRu with Q = I and R = 0.15. (7.9)

In each sampling time, the double integrator receives the control signal u from the MHC, and

the disturbance is determined in a random experiment varying between the specified values

with the corresponding probabilities. The resulting new state (x1,x2) of the plant is then sent

back to the controller (see Fig. 7.1).

Tree-Sparse Problem Formulation

The optimization problem that is solved for each sampling time to determine the new control

signal u includes the costs (7.9) and the same dynamic model (7.8) as the plant. The problem

is formulated as an outgoing control TSP (4.3) with the objective

φj(xj ,uj) = pj
(
xTj Qxj + uTj Ruj

)
for j ∈ V , (7.10)

the dynamics

gj(xi,ui) =
1

40

xTi xi

xTi xi

+

 1 1

0 1

xi +
1

2

 ui

2ui

+

 dj

0

 for j ∈ V , (7.11)
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Figure 7.2.: Progress of the perturbed double integrator for different initial states

and the simple bounds

xj ∈ (−∞,∞) as well as uj ∈ [−2, 2] for j ∈ V . (7.12)

The current state of the plant is incorporated as initial condition into the dynamics, i.e. by

setting g0 ≡ (x
(0)
1 ,x

(0)
2 ). The scenario tree of the tree-sparse problem has the form shown

in Fig. 7.1 and is characterized by its depth (T ) as well as the number of levels with tree

branching (Tb). The tree depth corresponds to the prediction horizon, i.e. the number of time

steps the problem forecasts into the future. For a node j with t(j) ≤ Tb, it is |S(j)| = 3, hence

all three possible outcomes for d are considered in the next time period. For a node j with

|S(j)| = 1, the disturbance in the following time period is assumed to take the nominal value

dnom = 0.

Control into Position of Rest

In a first test, the performance of the controller is checked for bringing the perturbed double

integrator from its initial state (x
(0)
1 ,x

(0)
2 ) close to the position of rest (x∗1,x∗2). For this, the

MHC uses a deterministic optimization problem (Tb = 0) with prediction horizon T = 3 to

regulate the plant. The optimization problems are solved using the Ipopt barrier update rule

and explicit evaluations of second-order derivatives, i.e. exact Hessians of the Lagrangian. Each

test of the series is run 50 times for different outcomes of the random experiment to determine

the realization of the disturbance d at each sampling time. Figure 7.2 illustrates the means of

the states in the progress of the double integrator for the first 10 time steps (x-axes). For each

considered initial state, the double integrator is controlled within the first 5 time steps close to

the position of rest (x∗1,x∗2) showing the proper operation of the controller.
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Hold the Position of Rest with Minimal Costs

In the second test series, the performance of the controller is tested for keeping the perturbed

double integrator in the position of rest. For this, the MHC uses tree-sparse optimization

problems with prediction horizons T ∈ {3, 10} and different numbers of branching levels Tb.

Again, the problems are solved using the Ipopt rule and exact Hessians of the Lagrangians, and

each test is run 50 times for different outcomes of the random experiment at each sampling

time.

Figure 7.3 illustrates the resulting average accumulate costs, the means of the states x1 and x2

as well as the average control signal u for 20 time steps (x-axes). As first striking observation,

the graphs in Fig. 7.3 show that, in each considered case, the controller requires 5 time steps to

adjust the control signal to the occurring disturbances. After that, the control signal is for all

cases the same, resulting in the same development of the second state x2 and a similar course

of the first state x1. Therefore, the first 5 time steps are crucial for the development of x1.

Secondly, the length of the prediction horizon has no significant influence on the performance

of the controller. Using the prediction horizon T = 3 (left-hand side diagrams in Fig. 7.3)

features the same progress of the double integrator as using the larger prediction horizon T = 10

(right-hand side diagrams in Fig. 7.3).

Now, the average accumulated costs (diagrams at the top of Fig. 7.3) demonstrate that

the performance of the controller improves if including the uncertainties in the optimization

problem. Considering uncertainties in the first time step of the controller, i.e. setting Tb from 0

to 1, the incurred costs at the final time step 20 are reduced by approximately 9%. Increasing

the number of branching levels to Tb = 2 leads to a further cost reduction of approximately 3%.

Then, larger numbers of branching levels (Tb > 2) have no significant affect on the costs. The

saved costs are obtained by balancing the disturbances in the first 5 time steps of the process.

The control signal is adjusted to reduce the deviation of x1 from the reference state x∗1 = 0.

This results in lower costs caused by deviations of x1 and comes with higher costs caused by

deviations of x2 and by applying nontrivial control signals. Figuratively speaking, in the critical

first 5 time steps, the incurred costs are moved from state x1 to state x2 and the control u.

This strategy then pays off in the further development of the double integrator where the costs

caused by u and x2 are the same for all considered numbers of branching levels Tb while the

costs caused by x1 depends on its state at time step 5.
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Figure 7.3.: Progress of the double integrator – Average accumulated costs, means of the states
x1, x2 and average control u for prediction horizons T = 3 (left) and T = 10 (right)
and an increasing number of branching levels Tb
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Table 7.3.: Double integrator – Problem sizes and IPM solution times (s) using the Ipopt barrier
update rule and exact Hessians of the Lagrangians

Tb Nodes Scenarios Variables Equalities Bounds Solution time

1 37 3 111 74 222 0.00
2 103 9 309 206 618 0.01
3 283 27 849 566 1 698 0.01
4 769 81 2 307 1 538 4 614 0.04
5 2 065 243 6 195 4 130 12 390 0.09
6 5 467 729 16 401 10 934 32 802 0.24
7 14 215 2 187 42 645 28 430 85 290 0.62
8 36 085 6 561 108 255 72 170 216 510 1.63
9 88 573 19 683 265 719 177 146 531 438 4.14

10 206 671 59 049 620 013 413 342 1 240 026 9.56
11 442 867 177 147 1 328 601 885 734 2 657 202 22.07
12 797 161 531 441 2 391 483 1 594 322 4 782 966 39.50

Exact Hessians vs. Hessian Approximations

In the previous tests, the IPM solver is configured to use the Ipopt barrier update rule and

exact Hessians of the Lagrangians. Exchanging the Ipopt rule with the LOQO rule or replacing

exact Hessians with approximated ones using SR1 or PSB updates, the IPM solver finds the

same optimal solutions leading to the same developments of the double integrator. In the

following, these six configurations of the IPM solver (Ipopt or LOQO combined with exact or

SR1 or PSB) are compared to each other. For this, the tree-sparse problem (7.10)–(7.12) is

considered for a fixed prediction horizon T = 12 and increasing numbers of branching levels

0 ≤ Tb ≤ 12. Each problem is solved measuring the complete IPM solution time as well as the

accumulated time to evaluate the NLP data, which includes evaluating the Hessian updates

in the quasi-Newton approach. Each test is run 50 times for different initial states, and the

averages of the IPM solution time, the NLP evaluation time and the numbers of iterations

are computed. The resulting problems sizes are listed in Table 7.3, the stated solution times

are the complete runtimes of the IPM in seconds in the standard configuration, i.e. using the

Ipopt barrier update rule and exact Hessians. The computations are done in sequential on a

workstation comprising 12 X5675 cores running at 3.07GHz and 48GB of RAM.

Figure 7.4 illustrates the performance results for the different configurations. In all diagrams,

the x-axes indicate the number of branching levels Tb. First, fixing the evaluation of the Hessian

of the Lagrangian and comparing both barrier update rules with each other, the Ipopt rule

usually performs better than the LOQO rule. In most cases, the resulting number of required

IPM iterations (lower left diagram in Fig. 7.3) as well as the NLP evaluation time per iteration



152 Chapter 7. Numerical Results

2 4 6 8 10 12

0

20

40

60

80

sec IPM solution time

Ipopt and exact
Ipopt and SR1
Ipopt and PSB
LOQO and exact
LOQO and SR1
LOQO and PSB

2 4 6 8 10 12

5

10

15

20

25

30

iter Number of iterations

2 4 6 8 10 12

0.0

0.5

1.0

sec NLP evaluation time per iteration

Figure 7.4.: Double Integrator – IPM performance results for different algorithm configurations
and an increasing number of branching levels Tb (x-axes)

(lower right diagram) are less for the Ipopt rule. Now, fixing the barrier update rule, the

following observations and conclusion can be made from the graphs in Fig. 7.4.

Exact Hessians of the Lagrangian: First, the number of required IPM iterations remains

almost constant showing the scalability of the solution approach. Second, the NLP

evaluation time per iteration is the lowest compared to the IPM configurations using

Hessian updates. Hence, for the double integrator, evaluating exact Hessians is cheaper

than approximating them in the quasi-Newton framework. Finally, let it be noted that

in each IPM run, all arising KKT systems remain unmodified, i.e. no convexification is

needed.

SR1 Hessian Updates: The quasi-Newton approach using the SR1 update formula starts with

a low number of IPM iterations for small problems but this number increases together

with the size of the problem. Compared to exact Hessians and PSB updates, SR1 updates

feature the lowest numbers of iterations for small problems (Tb < 8) and the highest

numbers for large problems (Tb > 9). Analogously to the case of using exact Hessians
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of the Lagrangian, the arising KKT systems are solved without using convexifications

indicating that the tree-sparse SR1 updates provide good approximations reflecting the

curvature of the Hessian of the Lagrangian.

PSB Hessian Updates: Using the PSB formula to generate Hessian updates, the number of

IPM iterations fluctuates but is in all cases significantly less than those computations

using exact Hessians. This reasons the best performance results for the PSB updates on

large problems (Tb > 9) although the evaluation of the NLP data is significantly higher

than those for exact Hessians. Surprisingly, in most test runs, convexification is required

to solve the corresponding optimization problems, i.e. there is at least one IPM iteration

in which the KKT system is modified. The convexification parameters are determined

uniformly, i.e. only the outer convexification is used (cf. Sect. 4.4.3).

7.1.3. Nonlinear Bioreactor

In the following example, a moving horizon controller regulates a bioreactor to keep the plant

in a steady state of production. The considered system models a continuous flow stirred tank

reactor that is proposed as a nonlinear bioreactor benchmark by Ungar [93] and studied in the

context of robust model predictive control, e.g., by Lucia and Engell [59] and Lucia et al. [60].

The plant consists of a tank containing a mixture of water and cells that consume nutrients

and produce (desired and undesired) products and more cells. The volume of the mixture is

constant, and its composition is adjusted by a water stream that at the inlet feeds new nutrients

into the tank and at the outlet contains nutrients and cells.

The dynamic model of the bioreactor is given by a set of ODEs reading

ẋ1 = −x1u+ x1 (1− x2) e
x2
γ , (7.13a)

ẋ2 = −x2u+ x1 (1− x2) e
x2
γ

1 + β

1 + β − x2
, (7.13b)

where x1 is the dimensionless cell mass, x2 the nutrient conversion and u the flow rate of the

water stream with the respective physical bounds

x1(t) ∈ [0, 1], x2(t) ∈ [0, 1] and u(t) ∈ [0, 2]. (7.14)

The equations (7.13) describe the rates of changes in the amounts of cells x1 and nutrients x2,

respectively, that result from the respective amounts −x1u and −x2u carried out of the tank as

well as the metabolism of the cells. The cell growth is represented by x1 (1− x2) e
x2
γ , which

includes the uncertain nutrient consumption parameter γ with nominal value γnom = 0.48.
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The rate of cell growth β depends on the composition of the mixture in the tank and is also

represented by an uncertain parameter with nominal value βnom = 0.02.

Feeding nutrients to the bioreactor with a constant flow rate u, the mixture has a Hopf

bifurcation at a certain flow rate uH that depends on the values for the parameters γ and β.

For flow rates u < uH , system (7.13) stabilizes at a unique fixed point (x∗1,x∗2), and for u ≥ uH ,

the system becomes unstable. For the nominal parameter values, the Hopf bifurcation occurs

at the flow rate uH = 0.829. This value decreases with an increasing value for γ or a decreasing

value for β as shown in Fig. 7.5.
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Figure 7.5.: Hopf bifurcations of the bioreactor for varying parameters γ and β

Now, the task of the controller is to keep the bioreactor in a steady state of production under

perturbation of the parameters. The desired reference state (x∗1,x∗2) ≈ (0.1236477, 0.8760318)

is close to the Hopf bifurcation and obtained for the constant flow rate u∗ = 0.769 in case of

the nominal parameter values. The perturbations in the parameters are assumed to be normal

distributed with the respective nominal values as expected values and small variances, i.e. 0.005

for the distribution of γ and 0.001 for the distribution of β. Standard quadratic costs are

applied that penalizes deviations from the reference state x∗1 with the factor 200 and changes in

the flow rate with the factor 75 [59].
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Tree-Sparse Problem Formulation

The optimization problem of the bioreactor is formulated as a TSP with incoming controls (4.4).

For this, the state variables xj ∈ R3 comprise the two states of the ODE (7.13) as well as the

flow rate, and the tree-sparse controls uj ∈ R are the changes in the flow rate, i.e.

xj = (x1(t(j)),x2(t(j)),u(t(j)))T and uj = ∆u(t(j)), (7.15)

where t(j) denotes the time corresponding to node j ∈ V . The resulting objective function

incorporating the applied costs then reads

φij(xi,uj) =
pj
2
uTj Ruj and φj(xj) =

pj
2

(xj − xref)TQ(xj − xref) (7.16)

with R = 75, Q = Diag(200, 0, 0) and xref = (x∗1,x∗2, 0)T . The dynamics of the problem has the

form gj(xi,uj) = (Ψj(xi,uj),xi,2 + uj)
T with Ψj(xi,uj) representing the solution of the initial

value problem in integral form,

Ψj(xi,uj) =

∫ tej

tsj

 −x1(t)(xi,2 + uj) + x1(t)(1− x2(t))e
x2(t)
γj

−x2(t)(xi,2 + uj) + x1(t)(1− x2(t))e
x2(t)
γj

1+βj
1+βj−x2(t) ,

 dt, (7.17)

where (x1(tsj),x2(tsj)) = (xi,0,xi,1). The start time tsj is the time t(j) for node j ∈ V , and the

end time is tej = t(k) for the successor k ∈ S(j). The physical bounds (7.14) are incorporated

as simple bounds by setting bxlj = (0, 0, 0)T and bxuj = (1, 1, 2)T . The scenario tree of the

tree-sparse problem is a fan as shown in Fig. 7.6 and is characterized by its depth (T ) as well

as the number of branchings at the root (nrc) coinciding with the number of scenarios. Hence,

uncertainties are only considered in the first time period of the optimization problem.

Keep a Steady State of Production

In the following, the bioreactor is run for a fixed setup and regulated by the MHC using different

optimization problems varying in the length of the prediction horizon T and in the discretization

of the uncertainty, i.e. in the number of scenarios nrc . In total, 13 cases of different optimization

problems are considered and the performance of the MHC with respect to the incorporated

optimization problem is analyzed.

The fixed setup of the bioreactor is as follows. First, small perturbations in the parameter γ

lead to larger deviations from the reference state x1, and, thus, to higher costs than small

perturbations in β. For the subsequent tests, only the parameter γ is assumed to be uncertain

while β is fixed to its nominal value. Second, starting in the reference state (x∗1,x∗2), the
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Bioreactor

γ | β

MHC

(x1,x2)u

Figure 7.6.: Process control of the bioreactor (left) and scenario tree considered in the optimiza-
tion problem with prediction horizon T = 3 and number of branchings at the root
nrc = 7 (right)

bioreactor is run for 40 s and samples are taken every 0.1 s. At each sampling time, the plant

receives a new control signal from the MHC and the value of the parameter γ is determined

from a random experiment (see Fig. 7.6). Thus, each test run of the bioreactor includes solving

400 optimization problems. Third, each test is run 50 times for different outcomes of the random

experiment, and the average accumulated costs, the means and variances of the cell mass (x1)

as well as the average flow rates (u) are computed.

The tree-sparse problems in the MHC are solved using the IPM solver with the Ipopt barrier

update rule. Solutions of the IVP (7.17) are computed with the integrator Metanb and Hessian

approximations are generated with tree-sparse Hessian updates based on the SR1 formula,

which turned out to be more reliable for these problems than the PSB update formula. The

tree-sparse KKT solver uses only the outer convexification to modify the arising KKT systems

(cf. Sect. 4.4.3)

In some test runs, the MHC fails to regulate the bioreactor because the IPM solver does not

find a solution for all 400 optimization problems showing that these problems are difficult to

solve. To keep the results comparable, all test runs are excluded from the results that do not

succeed in all 13 cases of the considered optimization problems. In the end, the means and

variances are computed for 28 different outcomes of the random experiment.

Now, the performance results of the bioreactor are presented in figures 7.7 and 7.8. The

diagrams in these figures illustrate the average accumulated costs (upper left), the mean of

the cell mess x1 (upper right), the variance of x1 (lower left) and the average flow rates (lower

right) with respect to the time (x-axes). Two situations are shown in these figures. First, for

the results in Fig. 7.7, the bioreactor is regulated by the MHC using deterministic optimization

problems (nrc = 1) and an increasing prediction horizon T . Second, for the results in Fig. 7.8,
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Figure 7.7.: Performance of the bioreactor for deterministic problems (nrc = 1) in the MHC
with increasing predictions horizons (T )
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Figure 7.8.: Performance of the bioreactor for stochastic problems in the MHC with fixed
prediction horizon T = 5 and increasing number of scenarios (nrc)
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Table 7.4.: Problem sizes, IPM solution times (ms) and NLP evaluation times (ms) corresponding
to the problems in Fig. 7.9

No. T nrc Var. Equ. Bnd. Iter. IPM NLP IPM/Iter. NLP/Iter.

1 100 1 404 303 606 8 15.475 11.365 1.753 1.298
2 5 51 1024 768 1536 9 37.178 28.155 4.113 3.118
3 10 3 124 93 186 6 4.925 3.042 0.709 0.438

the MHC uses stochastic optimization problems fixating the prediction horizon (T = 5) and

varying the number of considered scenarios nrc .

In both situations, increasing the free tree parameter (T or nrc) improves the performance of

the bioreactor. The average accumulated costs decrease monotonously, which is achieved by

damping the effect of the perturbation on the cell mass x1. After experiencing disturbances,

x1 oscillates around the reference state x∗1. The amplitude of this oscillation is reduced by

adjusting the flow rate u leading to fewer costs caused by the deviations of x1.

Now, the results in Fig. 7.7 show that a minimal length of the prediction horizon is required to

affect the performance significantly. Using the horizon T = 5 reduces the costs by less than 5%

whereas the prediction horizon T = 10 leads to a reduction of costs of more than 60% with

respect to T = 1. Doubling the length of the prediction horizon, i.e. setting T = 20, reduces

the costs by 65% in total. Hence, additional 5% are saved. After that, increasing the length of

the horizon has no significant affect on the performance of the bioreactor.

Next, the results in Fig. 7.8 show that including uncertainties in the optimization problem

leads to better performance results of the bioreactor. Moreover, an increasing number of

scenarios (nrc) also improves the performance. The total costs are reduced by 7% for nrc = 3

considered scenarios, and considering nrc = 81 scenarios reduces the costs by 70%. However,

each additional scenario causes higher computational costs for solving the optimization problem

while the relative reduction of costs per scenario decreases, e.g. it is 3.5% reduction of cost per

scenario for nrc = 3 and 0.8% per scenario for nrc = 81.

Comparing the results in figures 7.7 and 7.8, the goal of reducing the costs is achieved in

both situations. However, saving costs by increasing the number of scenarios nrc in the second

situation is computationally more expensive than enlarging the prediction horizon T in the

first situation as it is shown in Table 7.4. The optimization problems corresponding to item 1

(T = 100 and nrc = 1) are significantly smaller and solved faster than those corresponding to

item 2 (T = 5 and nrc = 51), while both problems lead to almost the same performance results

shown in Fig. 7.9. Finally, item 3 in Table 7.4 represents a fair comprise between the length of

the prediction horizon (T = 10) and the incorporation of uncertainties (nrc = 3). Comparing

the accumulated costs in Fig. 7.9, this compromise performance best. Moreover, this problem is
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Figure 7.9.: Performance of the bioreactor – Large prediction horizon vs. large number of
scenarios

smallest of those listed in Table 7.4 and is solved 3 times faster than item 1 as well as 9 times

faster than item 2.

7.2. Parallel Performance of Distributed Algorithms

This section presents computational results for the approach of distribution discussed in Chap. 5.

For this, huge-scale portfolio selection problems are solved using Clean::IPM, and the parallel

performance of the tree-sparse algorithms and the interior-point solver is analyzed. Parts of the

presented results are also going to be published in [48].

7.2.1. Test Environment

Parallel Platform

All subsequent computations are done on the compute cluster milet of the Institute of Applied

Mathematics at the Leibniz Universität Hannover. The cluster consists of 8 compute nodes

with 48GB of RAM each. Four compute nodes comprise 8 Intel(R) Xeon(R) X5570 cores

running at 2.93GHz, the other four nodes consists of 12 of the newer X5675 cores running at

3.07GHz. In total, the cluster comes with 80 cores and 384GB of RAM and has an InfiniBand

interconnect. One core is already working at full capacity on one process. Hence, for the

subsequent computations, no more processes are used than available cores.
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Measures of Parallel Performance

The performance of parallel algorithms is measured by means of speedup Snp and efficiency Enp ,

Snp :=
tseq
tnp

and Enp :=
Snp
np

, (7.18)

where tseq is the runtime of the sequential algorithm and tnp is the runtime of the parallel

algorithm on np processes. Neglecting inaccuracies in measuring computing time, the speedup is

bounded by the number of used processes and considered as perfect if it is linear, i.e. Snp = np.

Hence, perfect efficiency is attained at Enp = 1. For more details on performance analysis of

parallel programs the reader is referred to standard textbooks such as [70].

For the numerical results, the wall-clock times twc
np and the accumulated CPU times tcpu

np of

the respective algorithms are monitored. The algorithm is executed several times and the best

result is taken for each setting to determine the speedups and efficiencies. The speedup is

computed with respect to the wall-clock time by

Snp =
twc
ref

twc
np

with twc
ref = min

np
{np · twc

np}, (7.19)

and the efficiency is computed with respect to the CPU time by

Enp =
tcpu
ref

tcpu
np

with tcpu
ref = min

np
tcpu
np . (7.20)

The wall-clock reference time twc
ref is not the runtime of the sequential algorithm but the best

result when scaling the runtimes twc
np with the corresponding numbers of processes np. This

way, computing the speedup remains consistent for test cases where sequential runtimes are not

available and, moreover, superlinear speedup is avoided.

Configuration of the IPM Algorithm

Clean::IPM is configured in a standard way to solve the convex quadratic problems in portfolio

optimization, meaning that no globalization strategy is applied, the MPC barrier update rule is

used and the emergency mode is disabled (cf. Table 7.1).

7.2.2. Huge-Scale Portfolio Optimization Problems

The problems solved in this section are portfolio optimization problems as outlined in Sect. 3.1.3.

For this, artificial portfolios are considered that comprise na different assets of risks classified

into the three categories low, medium and high. It is assumed that the development of the
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stock prices is characterized by an na-dimensional geometric Brownian motion, and this process

is discretized in time following the lines of [54]. In doing so, at each time step t of the planning

horizon, the return of the portfolio is multidimensional lognormal distributed with µt and Σt as

first and second moments, respectively. For each node j in the scenario tree, the corresponding

moments are perturbed randomly, i.e. µj = µt(j) + δµj and Σj = Σt(j) + δΣj , and the perturbed

distributions are approximated by discrete ones. Obtaining a discrete approximation with the

same first and second moments of the distribution, i.e. an approximation satisfying

µj =
∑

k∈S(j)

rk and Σj =
∑

k∈S(j)

(rk − µj)(rk − µj)T for all j ∈ V , (7.21)

one needs to consider at least na + 1 events of returns.

The tree-sparse formulation of the portfolio selection problem reads [78]:

min
u,x

∑
j∈L

pjx
T
j Σjxj (7.22a)

s.t. xj = Diag(rj)xi + u+
j − u−j , j ∈ V , (7.22b)

Bjxj ∈ [blj , buj ], j ∈ V , (7.22c)

u+
j ,u−j ≥ 0, j ∈ V , (7.22d)

xj ≥ 0, j ∈ V , (7.22e)∑
j∈L

pj µ̄
T
j xj = ρ. (7.22f)

The state variables xj ∈ Rna represent the amount of money invested in the respective assets.

Money transfers between the assets are modeled as controls uj ∈ R2na split into buys u+
j and

sells u−j . The portfolio selection problem includes several composition constraints, e.g. at least

30% of the money should be invested in assets with low risk. These composition constraints

lead to the linear inequalities (7.22c) that are required to hold at each node j ∈ V . The portfolio

selection problem (7.22) is a convex tree-sparse QP in incoming control form with the matrix

node subblocks (cf. Sect. 4.2.3)

Gj = Diag(rj), Ej =
[
I −I

]
and F rj = Bj for j ∈ V (7.23)

as well as

Hj = 2pjΣj and Fj = pj µ̄
T
j for j ∈ L. (7.24)
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Table 7.5.: Portfolio test collections PT1 and PT2

No. d na Nodes Scenarios Variables Equalities Inequalities

PT1

1 11 3 5.59 · 106 4.19 · 106 5.03 · 107 1.68 · 107 1.68 · 107

2 9 4 2.44 · 106 1.95 · 106 2.93 · 107 9.77 · 106 1.22 · 107

3 8 5 2.02 · 106 1.68 · 106 3.02 · 107 1.01 · 107 1.21 · 107

4 7 7 2.40 · 106 2.10 · 106 5.03 · 107 1.68 · 107 1.68 · 107

5 6 9 1.11 · 106 1.00 · 106 3.00 · 107 1.00 · 107 1.00 · 107

6 5 14 8.14 · 105 7.59 · 105 3.42 · 107 1.14 · 107 1.06 · 107

7 4 23 3.46 · 105 3.32 · 105 2.39 · 107 7.96 · 106 6.58 · 106

PT2

1 12 3 2.24 · 107 1.68 · 107 2.01 · 108 6.71 · 107 6.71 · 107

2 10 4 1.22 · 107 9.77 · 106 1.46 · 108 4.88 · 107 6.10 · 107

3 8 7 1.92 · 107 1.68 · 107 4.03 · 108 1.34 · 108 1.34 · 108

4 7 9 1.11 · 107 1.00 · 107 3.00 · 108 1.00 · 108 1.00 · 108

5 6 12 5.23 · 106 4.83 · 106 1.88 · 108 6.27 · 107 5.75 · 107

6 5 19 3.37 · 106 3.20 · 106 1.92 · 108 6.40 · 107 5.39 · 107

7 4 33 1.38 · 106 1.34 · 106 1.36 · 108 4.54 · 107 3.44 · 107

Portfolio Test Collections

The scenario trees corresponding to the tree-sparse portfolio problems (7.22) are specific ones

featuring the same branching na + 1 at each node j ∈ V \ L. Thus, the size of a problem (7.22)

is characterized by the number of assets (na) as well as by the depth of the scenario tree (d)

corresponding to the time discretization of the planning horizon. In the following, two portfolio

test collections PT1 and PT2 (shown in Table 7.5) are considered that are designed for one and

eight compute nodes, respectively.

In the implementation used here, no local sparsities are exploited. The matrix node sub-

blocks (7.23) and (7.24) are stored in dense storage format (cf. Sect. 6.4.4), and each entry in

these subblocks is considered as a nonzero. The resulting numbers of nonzero entries in the

tree-sparse KKT matrices and the corresponding matrix factors are listed in Table 7.6. In the

implementation, the identity block for the states xj in the dynamics (7.22b) is not stored, hence

there are more nonzero entries in total than stored. Furthermore, since storing only those node

subblocks that are modified during the factorization, the factors require less memory than the

corresponding KKT matrices; the node subblocks (7.23) are not duplicated for the factors.

All tests are chosen such that they are the largest of their kind, i.e. increasing one of the

parameters na or d lead to problems that do not fit into the provided memory resources any

longer. The tests in Table 7.5 are sorted decreasingly with respect to the tree depth d, which
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Table 7.6.: PT1 and PT2 – Nonzero entries in KKT matrices and their factors

No. Nodes Scenarios Nnz Matrix Nnz Matrix Nnz Factors
(total) (stored) (stored)

PT1

1 5.59 · 106 4.19 · 106 5.20 · 108 5.03 · 108 3.02 · 108

2 2.44 · 106 1.95 · 106 3.96 · 108 3.86 · 108 2.20 · 108

3 2.02 · 106 1.68 · 106 4.94 · 108 4.84 · 108 2.72 · 108

4 2.40 · 106 2.10 · 106 1.09 · 109 1.07 · 109 6.04 · 108

5 1.11 · 106 1.00 · 106 8.20 · 108 8.10 · 108 4.50 · 108

6 8.14 · 105 7.59 · 105 1.41 · 109 1.40 · 109 7.69 · 108

7 3.46 · 105 3.32 · 105 1.57 · 109 1.56 · 109 8.60 · 108

PT2

1 2.24 · 107 1.68 · 107 2.08 · 109 2.01 · 109 1.21 · 109

2 1.22 · 107 9.77 · 106 1.98 · 109 1.93 · 109 1.10 · 109

3 1.92 · 107 1.68 · 107 8.72 · 109 8.59 · 109 4.83 · 109

4 1.11 · 107 1.00 · 107 8.20 · 109 8.10 · 109 4.50 · 109

5 5.23 · 106 4.83 · 106 6.68 · 109 6.62 · 109 3.67 · 109

6 3.37 · 106 3.20 · 106 1.05 · 1010 1.04 · 1010 5.76 · 109

7 1.38 · 106 1.34 · 106 1.26 · 1010 1.26 · 1010 6.95 · 109

implies an increasing order with respect to the number of assets na and, thus, the computational

workload per node.

7.2.3. Parallel Performance of the Tree-Sparse Algorithms and the

IPM

For the sake of a cheap scenario generation, the requisites of the second moments in (7.21) are

neglected1. The numerical results here are based on scenario generations that only preserve

the means of the distributions. Same results are obtained when using approximations for the

distributions that also preserve the second moments (see sections A.2 and A.3).

The IPM solves the respective problems in the collections PT1 and PT2 upon optimality. Time

measurements are taken for the complete runtime the algorithm spends in its iterative stage,

i.e. the overall runtime without the initialization stage, and for the runtimes of the tree-sparse

algorithms, i.e. the three stages of the KKT solution procedure and the matrix-vector product.

The remaining operations of the iterative stage, e.g. vector operations and scalar operations,

are summarized into the iteration time. Table 7.7 lists the resulting wall-clock reference times

for the four tree-sparse algorithms and the iteration.

As designed, the computations for the problems in PT1 are done on one compute node of the

1Discretizations of the continuous distributions with the same second moments are obtained, for example, by
solving a suitable feasibility problem for each node in the tree. For the problems in the test collection PT2,
this approach of scenario generation takes up to several days.
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Table 7.7.: PT1 and PT2 – Wall-lock reference times (twc
ref in s) for the factorization (Fact.), in-

ward substitution (In), outward substitution (Out), the matrix-vector product (MVP)
and the iteration time (Iter.)

PT1 PT2
No. Fact. In Out MVP Iter. Fact. In Out MVP Iter.

1 12.95 3.60 3.49 1.37 29.91 56.88 13.23 15.71 5.78 126.97
2 8.90 1.87 2.43 0.75 17.59 45.42 9.58 10.73 3.83 91.23
3 10.67 1.98 1.99 0.72 18.32 215.82 29.70 27.60 9.15 246.95
4 24.32 3.63 3.32 1.12 29.97 196.74 21.94 21.21 6.37 180.43
5 19.32 2.14 2.10 0.63 17.75 195.80 14.17 15.35 3.80 114.91
6 42.90 2.59 2.76 0.68 20.56 414.33 16.71 17.58 4.15 123.49
7 64.38 2.27 2.39 0.55 15.53 756.12 17.42 17.89 4.60 103.72

Table 7.8.: PT1 and PT2 – Number of iterations and IPM solution times (twc
np in s) using one

compute node (1) and eight compute nodes (8) of the cluster as well as various
numbers of processes np ∈ {1, 2, 8, 12, 16, 64}

PT1 (1) PT1 (8) PT2 (8)
No. Iter. 1 2 8 12 Iter. 8 16 64 Iter. 16 64

1 13 912 447 150 120 13 117 66 23 13 241 86
2 13 544 270 92 79 13 71 38 14 14 188 72
3 11 495 248 85 70 11 64 33 12 10 426 177
4 9 809 375 126 102 9 98 53 23 9 319 119
5 6 351 172 59 49 6 45 23 10 7 188 73
6 8 766 358 117 96 8 93 47 17 6 361 119
7 6 716 341 106 80 6 90 45 14 8 552 178

cluster and those for the problems in PT2 on all eight compute nodes, respectively. Additionally,

the problems in PT1 are also solved using the available resources of all eight computes nodes.

The required numbers of iterations as well as the resulting solution times, which also include

the initialization phase of the IPM, are listed in Table 7.8. Using all available resources, the

smaller problems in PT1 with 107 variables and constraints are solved in 23 seconds or less.

The huge problems in PT2 with 108 variables and constraints are solved in less than three

minutes. Moreover, solving problems with a heavy workload per tree node tends to require less

iterations than solving those with a smaller workload.

The data in Table 7.8 show the scalability of the approach of distribution in three ways. First,

with more resources available larger, problems can be solved. Second, with more resources

available, the same problems can be solved in less time. Third, the number of required

IPM iterations does not depend on the amount of resources used to solve the problem. The

numbers are the same when solving PT1 on one compute as well as on all eight compute nodes.

Furthermore, the number of required iterations does not depend on the size of the problem

but mostly on the workload per node. The numbers are approximately the same when solving
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problems in the PT collections with a similar workload, e.g. for portfolios comprising a similar

number of assets na.

Finally, the solution times in Table 7.8 for PT1 using 8 processes are significantly better when

employing eight compute nodes for the computations instead of one. Running 8 processes on

the same compute node, these share common hardware components such as memory accesses

as well as network and communication resources, which they do not when each process runs on

another compute node.

In the following, the parallel performance of the tree-sparse algorithms is analyzed first,

the complete optimization solver is investigated afterwards. Multistage stochastic problems

are known to be well-suitable for parallelization [109] and good performance results of similar

approaches, i.e. direct methods for solving the KKT systems arising in stochastic optimization,

are reported, e.g., by Gondzio and Grothey [34] and by Blomvall [10]. Hence, it can be expected

that the tree-sparse algorithms perform well and best results are obtained for the factorization

with an almost linear speedup. The performance of the IPM is expected to be dominated by

the KKT solution but may feature worse performance results since the optimization algorithm

includes several synchronization points and sequential parts.

Parallel Performance of the Tree-Sparse Algorithms

Figure 7.10 shows the parallel performance results of the tree-sparse algorithms for the problems

in the test collection PT22. In all diagrams, the x-axes indicate the number of used processes

and the first angle bisectors in the speedup plots represent the linear speedup.

As expected, the tree-sparse factorization achieves the best performance results with almost

linear speedup and efficiencies in the range from 90% to 100%. This is consistent with the

reports in [34] and [10]. With one Cholesky factorization and several level 3 BLAS operations

(matrix-matrix products) performed for each node in the tree, the factorization features a heavy

workload, letting the communication times and the idle times become relatively small.

The performance of the substitutions is significantly worse compared to the factorization but

still good with most of the efficiencies in the range from 70% to 100%. This also conforms with

the reports in [34]. In contrast to the factorization, the workload of a tree-sparse substitution

is small and consists only of level 1 and level 2 BLAS operations (vector and matrix-vector

operations). Comparing the two substitutions with each other, the outward substitution shows

2The tests in collection PT2 start with two processes per compute node instead of one. This is not due to too
less memory resources or higher memory requirement when using less processes, but because the lengths of
the data arrays for the KKT matrices and its factors exceed the integer range used in BLAS and LAPACK
routines.
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Figure 7.10.: PT2 – Speedups (left) and efficiencies (right) of the tree-sparse algorithms
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better performance results than the inward substitution. Both substitutions have approximately

the same amount of workload per node, hence this performance discrepancy is reasoned in the

underlying distributed DFS-based tree algorithm (cf. Sect. 5.3).

The matrix-vector product (MVP) offers the worst performance results of the four tree-sparse

algorithms in Fig. 7.10 with efficiencies decreasing below the mark of 60%. The development

of the performance is the same as the one of the inward substitution but the efficiencies of the

latter are up to 10% higher. Both tree-sparse algorithms are inward algorithms but the MVP

features less workload per node than the substitution. However, with reports of efficiencies that

go down to 23% in [34], the performance of the tree-sparse MVP is still good.

In all diagrams of Fig. 7.10, the parallel performance decreases monotonously with an

increasing number of used processes except for several peaks when using an even number

of processes per compute node. These bumps occur not only for the tree-sparse algorithm

but also for the remaining parts of the IPM algorithms (as later shown in Fig. 7.12). Also,

the investigation of the post-distribution communication reduction (cf. Sect. 7.2.4) offers no

conclusion to this effect. On the used parallel platform, the cores seem to work best in pairs.

Now, Figure 7.11 shows the parallel performance results of the tree-sparse algorithms for the

problems in the test collections PT1. The computations are done on one compute node of the

cluster using numbers of processes in the range from 1 to 12, and also on eight compute nodes

with numbers of processes in the range from 8 to 64. In Fig. 7.11, the inward substitution

represents the tree-sparse algorithms with small workload per node. The performance results

for the outward substitution and the MVP are supplemented in App. A.1.

First of all, the performance diagrams for PT1 in Fig. 7.11 show the same development with

increasing number of used processes per compute node as the diagrams for PT2 in Fig. 7.10. The

efficiencies of the factorization are still in the range from 90% to 100% and the performance of

the inward substitution decreases monotonously when neglecting the peaks for the even number

of processes per compute node. Furthermore, tree-sparse algorithms with heavy workload per

node such as the factorization tend to perform better on less deep but broad trees whereas

algorithms with small workload per node (the substitutions) show better results on deep trees

with small branchings.

The parallel performance of the inward substitution is significantly better when employing

eight compute nodes for the computations instead of one. In the latter case, the efficiencies

decrease down to almost 50% instead of 70% when using eight compute nodes. Again, employing

one compute node instead of eight means sharing common hardware resources, which could
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Table 7.9.: PT1 and PT2 – IPM statistics with numbers of state variables (nxj ), control variables
(nuj ) and inequalities (lrxj ) per tree node, the number of IPM iterations (It.), the
runtime (twc

ref in s) of the iterative stage and the respective shares in runtime for the
factorization (F), inward substitution (I), outward substitution (O) and matrix-vector
product (M) as well as the remaining operations (IPM)

No. nxj nuj lrxj It. Runtime F (1) I (2) O (2) M (6) IPM

PT1

1 3 6 3 13 834 20.18% 9.54% 10.89% 12.77% 46.62%
2 4 8 5 13 505 22.91% 9.65% 10.52% 11.62% 45.29%
3 5 10 6 11 454 25.88% 9.62% 9.65% 10.41% 44.45%
4 7 14 7 9 674 32.46% 9.69% 8.87% 8.98% 40.01%
5 9 18 9 6 297 39.15% 8.70% 8.52% 7.65% 35.98%
6 14 28 13 8 626 54.83% 6.63% 7.05% 5.21% 26.28%
7 23 46 19 6 574 70.54% 4.75% 5.01% 3.44% 16.26%

PT2

1 3 6 3 13 3,576 20.68% 9.62% 10.96% 12.60% 46.15%
2 4 8 5 14 2,804 22.68% 9.57% 10.72% 11.47% 45.56%
3 7 14 7 10 6,323 34.13% 9.39% 8.73% 8.69% 39.06%
4 9 18 9 9 2,743 39.22% 8.75% 8.46% 7.62% 35.97%
5 12 24 11 7 4,515 49.79% 7.23% 7.83% 5.81% 29.33%
6 19 38 16 8 5,050 65.63% 5.29% 5.57% 3.94% 19.56%
7 33 66 25 8 7,639 79.19% 3.65% 3.75% 2.55% 10.86%

reason this effect. However, the factorization as a tree-sparse algorithm with heavy workload

per tree node is not affected by this.

Parallel Performance of the IPM Algorithm

In the following, the parallel performance of the interior-point solver is analyzed. For this,

Table 7.9 provides the solver statistics for both portfolio test collections. Each IPM iteration

consists of one factorization, two of each of the substitutions and six matrix-vector products3.

Table 7.9 lists the number of required IPM iterations together with the corresponding runtime

in seconds as wall-clock reference time (twc
ref), i.e. the time the algorithm would spend in the

iterative stage when using one process for the computations. For each tree-sparse algorithm

and the remaining IPM operations, the table also lists the respective shares in that runtime of

the iterative stage.

First, Table 7.9 shows that the shares of the factorization in the runtime increase with

an increasing workload per node whereas the shares of the other tree-sparse algorithms and

the remaining operations decrease. This reflects that the complexity of the IPM algorithm

is strongly affected by the complexity of the factorization of the KKT matrix. For those
3Matrix-vector products are used to evaluate the function values of the linear constraint functions and the
gradient of the Lagrangian.
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problems in the PT collections with heavy workload per node, i.e. tests 5 to 7 in PT1 and 4

to 7 in PT2, the runtime is dominated by the tree-sparse factorization with shares in the range

from 39% to 79%. For the other tests, the remaining IPM operations feature the biggest

shares in the range from 39% to 46%, which then again also implies that the tree-sparse

algorithms account for more than 50% of the runtime in each considered test. Hence, it

can be expected that the parallel performance of the IPM is shaped by the tree-sparse algorithms.

Now, Figure 7.12 illustrates the parallel performance of the IPM algorithm for the problems

in the collection PT2. The results for the collection PT1 feature similar developments and are

supplemented in App. A.1. The graphics in Figure 7.12 show the speedups and the efficiencies

of the complete iterative stage of the IPM algorithm, the iteration without the tree-sparse

algorithms and the tree-sparse KKT solver, which comprises the factorization and the four

substitutions of each IPM iteration.

The performance of the KKT solver is usually dominated by the performance of the fac-

torization. Best results are achieved for the problems with a heavy workload per node, e.g.

PT2.6 and PT2.7, where the share of the factorization overrules by far the shares of both of

the substitutions. However, the worst performance results are not obtained for those problems

with the smallest workload per node. For PT2.1, for example, the KKT solver spends as much

time in the substitutions as in the factorization, and the substitutions achieve their best results

compared to the other problems in PT2.

Analogously to the tree-sparse algorithms, the performance of the remaining operations of

the IPM iteration (shown in the diagram in the middle of Fig. 7.12) decreases monotonously

with increasing number of used processes while showing performance peaks when using an even

number of processes per compute node. However, the performance of the iteration is significantly

worse than each of the tree-sparse algorithms with efficiencies going down to almost 50%. This

is expected since the remaining operations include synchronization points and sequential parts,

hence their performance suffers from Ahmdahl’s law [70]. Furthermore, there are no striking

discrepancies in the performance of the IPM iteration between the problems in one collection

since those results are not affected by a workload per tree node.

The performance of the complete iterative stage of the IPM algorithm (shown in the upper

diagram of Fig. 7.12) results from the performance of the tree-sparse algorithms and the

remaining operations. The speedups and the efficiencies of the iterative stage develops the same

way as the ones of the KKT solver but the performance of the iterative stage is worse with

efficiencies about 10% less than those of the KKT solver. Hence, as expected the performance
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Table 7.10.: Tree collections TC1 and TC2

No. d b Nodes Scenarios

1 11 3 265 720 177 147
2 9 4 349 525 262 144
3 8 5 488 281 390 625
4 7 8 2 396 745 2 097 152
5 6 10 1 111 111 1 000 000
6 5 15 813 616 759 375
7 4 24 346 201 331 776

No. d b Nodes Scenarios

1 12 4 22 369 621 16 777 216
2 10 5 12 207 031 9 765 625
3 8 8 19 173 961 16 777 216
4 7 10 11 111 111 10 000 000
5 6 13 5 229 043 4 826 809
6 5 20 3 368 421 3 200 000
7 4 34 1 376 831 1 336 336

of the IPM is shaped by the performance of the tree-sparse algorithms but changed for the

worse due to the remaining IPM operations.

7.2.4. Effect of the Post-Distribution Communication Reduction

This section analyzes the effect of the post-distribution communication (PDCR) (cf. Sect. 5.3.3)

for the trees corresponding to the portfolio selection problems in Table 7.5, i.e. it investigates

the number of communication calls that can be saved during one run of a distributed DFS-based

tree algorithm by merging data for the same destination or by sending the same data to one

process only once. After tree distribution, the numbers of senders (|S|) and roots (|R|) of the
resulting distributed tree are counted and compared to the number of communication calls (nc)

after applying the PDCR. By definition, there is at least one communication call per sender and,

without reducing the communication, each root r ∈ R \ {0} causes exactly one communication

call. Hence, the number of communication calls satisfies

|S| ≤ nc ≤ |R| − 1. (7.25)

Additionally, the number of communication calls are counted for each process separately.

The communications for a single process p are distinguished between ingoing and outgoing

communications. Informally speaking, an ingoing communication is carried out from process p

in direction to the tree root. Formally, a loose edge e ∈ Ep adjacent to the communicating

root r ∈ Rp is an ingoing edge (e = (·, r)). Outgoing communications occur along outgoing loose

edges e = (s, ·) ∈ Ep adjacent to senders s ∈ Sp. For both ingoing and outgoing communications,

the respective maxima over all processes (nin
max and nout

max) are computed.

The trees corresponding to the problems in the portfolio test collections PT1 and PT2

(cf. Sect. 7.2.2) feature the same branching b at each node j ∈ V \L, and they are characterized

by this branching and the tree depth (d). These trees are now arranged in the tree collections TC1

and TC2, respectively, and listed in Table 7.10. Figure 7.13 shows the results of three selected
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trees, which represent three typical cases when distributing the trees in TC1 and in TC2 among

an increasing number of processes (x-axes). The results for the remaining trees are supplemented

in App. B. The diagrams on the left-hand side in Fig. 7.13 visualize the effect of the PDCR and

the ones on the right-hand side indicate how the overall number of communication calls (nc)

are distributed among the participating processes.

First, the results for tree TC2.5 exemplify an optimal exploitation of the PDCR. There is

a large discrepancy between the numbers of roots |R| and senders |S|, and the number of

communication calls nc is close to its lower bound |S|. Moreover, the maximum communication

numbers nin
max and nout

max are only small fractions of the overall number nc implying that the

communication calls are well-distributed among the participating processes.

The second diagrams in Fig. 7.13 show the results when distributing tree TC1.1 on eight

compute nodes. The PDCR is less effective since the numbers |R| and |S| are relatively close

to each other. This is reasoned by the small branching (b = 3) in comparison to the large depth

of the tree (d = 11). Each part Pp but P0 of the resulting distributed tree D consists of many

small subtrees T p ∈ Fp. However, the communication calls are again well-distributed among

the participating processes.

Tree TC1.7 demonstrates the distribution of a tree that is flat (d = 4) and widespread (b = 24).

The PDCR is effective but a relative large number of outgoing communications are concentrated

on one process. Many successors S(0) of the tree root 0 are on different processes. Hence, the

root 0 is involved in many of the outgoing communications.

Furthermore, the results of TC1.7 in Fig. 7.13 show that the number of communication calls

is low if the tree branching b coincide with the number of participating processes np. The tree

is only split at the root 0, the overall number of roots is |R| = np. A similar effect also occurs

several times in the collections TC1 and TC2 when the number of processes np is a multiple of

the branching b.

7.2.5. Exploitation of Local Sparsities

The implementation of the portfolio selection problem (7.22) used for the parallel performance

results in Sect. 7.2.3 neglects local sparsities (cf. Sect. 3.2.3), i.e. the KKT systems are solved

employing the standard implementation of the tree-sparse KKT solution algorithm, which

uses dense storage formats for the node subblocks (cf. Sect. 6.4.4). Subsequently, a second

implementation exploiting the local sparsity patterns of the node subblocks (7.23) is tested on

the test set PT2. First, the state node subblocks Gj of the dynamics (7.22b) are of diagonal

form and stored as vectors. Second, the control node subblocks Ej of the dynamics (7.22b)

are not stored since they only consist of identities. Third, the node subblock Fj of the range
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Table 7.11.: PT2 – Number of nonzero entries in the KKT matrices without and with local
sparsity exploitation

Problem and Tree Sizes Nnz KKT Matrix
No. d na Nodes Scenarios Variables Node Dense Node Sparse Saved

1 12 3 2.24 · 107 1.68 · 107 2.01 · 108 2.01 · 109 2.18 · 108 89%
2 10 4 1.22 · 107 9.77 · 106 1.46 · 108 1.93 · 109 1.86 · 108 90%
3 8 7 1.92 · 107 1.68 · 107 4.03 · 108 8.59 · 109 7.21 · 108 92%
4 7 9 1.11 · 107 1.00 · 107 3.00 · 108 8.10 · 109 6.40 · 108 92%
5 6 12 5.23 · 106 4.83 · 106 1.88 · 108 6.62 · 109 4.97 · 108 93%
6 5 19 3.37 · 106 3.20 · 106 1.92 · 108 1.04 · 1010 7.33 · 108 93%
7 4 33 1.38 · 106 1.34 · 106 1.36 · 108 1.26 · 1010 8.39 · 108 93%

Table 7.12.: PT2 – Number of iterations, complete runtimes of the IPM and the computing
times per iteration for both implementations of the portfolio selection problem

Dense Node Blocks Sparse Node Blocks
No. Iterations Runtime (s) Time/Iter. Iterations Runtime (s) Time/Iter.

1 13 + 1 90.149 6.439 8 + 1 40.995 3.727
2 14 + 1 77.203 5.147 10 + 1 41.483 3.771
3 10 + 1 149.649 13.604 8 + 1 88.269 9.808
4 9 + 1 124.185 12.419 3 + 1 28.795 7.199
5 7 + 1 74.817 9.352 3 + 1 19.419 4.855
6 8 + 1 123.283 13.698 4 + 1 37.206 7.441
7 8 + 1 170.944 18.994 4 + 1 44.536 8.907

constraints (7.22c) is the same for each node and is stored only once (for each process). This

way, the numbers of stored nonzero entries in the KKT matrices are reduced by 89% to 93%

as shown in Table 7.11.

In the following, the performance of the second implementation with sparse node subblocks is

compared to the performance of the standard implementation with dense node subblocks. For

this, the tests in PT2 are run using 64 processes and measuring the complete runtime (wall-clock)

of the IPM algorithm. This complete runtime also includes the initialization stage requiring

approximately the same computing time as one iteration of the algorithm. The performance

results for both implementations are presented in Table 7.12. This table lists for each test

in PT2 the number of required IPM iterations including the initialization stage (+1) as well as

the complete runtime of the IPM and the computing time per IPM iteration. Exploiting local

sparsities means requiring less floating point operations and avoiding unnecessary rounding

errors for computations involving the KKT matrix. The results in Table 7.12 show that this

has great impact on the performance of the algorithm. First, the number of required IPM

iterations is significantly less when using the second implementation with sparse node subblocks

and, second, the computing time per iteration is reduced by 26% for PT2.2 to 53% for PT2.7.

Altogether, the complete runtime of the IPM algorithm is reduced by 41% for PT2.3 to 73%

for PT2.7.





Chapter 8

Conclusions and Outlook

In this thesis, a structure-exploiting and distributed algorithmic framework for tree-structured

nonlinear optimization problems is presented. The developed algorithms and concepts are

realized in a flexible software framework and their performance is demonstrated by numerical

results.

Motivated by stochastic optimization, two formulations of nonlinear tree-sparse problems are

introduced that express the dynamic nature of multistage stochastic problems and it is discussed

how these problems can be solved efficiently in the generic framework of an interior-point solver.

Existing recursive KKT solution algorithms are stated in complete forms for both formulations

and then extended to deal with rank-deficiencies and nonconvexities of nonlinear problems. For

this, a problem-specific inertia correction strategy is developed enabling local convexifications

to avoid refactorizations of the KKT matrix. Also, to deal with problems that do not provide

second-order derivatives, a structured quasi-Newton approach is discussed. Tree-sparse Hessian

update strategies based on partially separable functions are designed that approximate the

tree-sparse Hessians of the Lagrangian in an efficient and structure-preserving way. Numerical

results are presented that demonstrate the performance of the developed algorithms. Only in the

example of the magnetic levitation vehicle the local convexifications of the inertia correction are

successfully used. However, the tree-sparse Hessian update strategies combined with standard

convexifications are successfully applied to solve tree-sparse problems in the robust model

predictive control of a perturbed nonlinear bioreactor modeled by ordinary differential equations

with stochastic disturbances. Moreover, in the control of the nonlinear double integrator, the

structured quasi-Newton approach turns out to be a competitive alternative even if explicit

second-order evaluations are available.

Also, this thesis presents a complete concept of distribution to solve the tree-sparse problems

in parallel on distributed memory systems. Maintaining a consistent node-wise presentation of

problems and algorithms, a distributed programming model is developed that is built on a static
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depth-first distribution of the tree nodes. After introducing the concept of depth-first distributed

trees, theoretical results are shown that are then used to develop prototypes for distributed

tree algorithms with few idle times and communication overhead. Distributed versions of the

tree-sparse KKT algorithms are provided and it is demonstrated how the theoretical results

of the distributed trees can be used to save communication in the parallel performance of

the algorithms using the post-distribution communication reduction. It is discussed how the

distribution of the tree-sparse problems fits into the generic framework of an interior-point

method and, finally, the programming model of a completely distributed interior-point solver

is presented. Very good performance results that are comparable with others reported in the

literature not only confirm the practicability of the concept of distribution but also show the

efficiency of this approach. Moreover, numerical results are presented showing that applying the

post-distribution communication reduction to trees in the context of the portfolio optimization

problems is efficient and saves a lot of communication.

The infrastructure of the Tree-Sparse Library together with the modular design of the

interior-point solver Clean::IPM provide a flexible and efficient solution framework for tree-sparse

problems with many algorithmic options and configurations, and it is believed that it could be

of great use to solve tree-structured optimization problems. Thus, for future directions this

framework should prove its value by using it in further applications. For example, it is thinkable

to solve huge-scale nonlinear portfolio optimization problems including skewness or logarithmic

utility functions. In robust model predictive control, it is possible to regulate further dynamic

processes such as the Chylla-Haase benchmark reactor including larger dynamic models and

more uncertainties. Investigating further examples may also help to improve the solution

approaches and, additionally, may provide more conclusions about the practicability of local

convexifications in the proposed inertia correction strategy.

The realization of further applications could be motivated by facilitating the implementation of

new optimization problems. Supporting the formulation of tree-sparse problems by a specifically

designed modeling language, cumbersome chores of implementation could be automated using

code generating techniques. Since already incorporated into the design of the Tree-Sparse

Library, code generation could also be used to improve computational efficiencies and memory

requirements of the solution algorithms by writing problem-specific source code exploiting local

sparsities. Finally, extensions and modifications of the algorithmic approaches are also thinkable.

Alternatively to the structured quasi-Newton approach, algorithmic differentiation could be

used to generate first- and second-order derivatives. Also, the performance of the interior-

point method could be improved by incorporating problem-tailored initial value strategies, e.g.

warmstart strategies for tree-structured problems that operate on a reduced tree.
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Chapter A

Parallel Performance Results

A.1. Supplemented Results for PT1 and PT2 Using

Mean-Preserving Approximations

The following graphics supplements the parallel performance results in Sect. 7.2.3 for the

portfolio test collections PT1 and PT2 using only mean-preserving approximations of the

random variables.
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A.2. Results for PT1 Using Second-Moment-Conforming

Approximations

The following graphics demonstrate the parallel performance results for some of the test cases

in the portfolio test collection PT1 (see Table 7.5) using approximations of the random variables

that satisfy both conditions for the first and second moments (7.21), respectively.
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A.3. Results for PT2 Using Second-Moment-Conforming

Approximations

The following graphics demonstrate the parallel performance results for some of the test cases

in the portfolio test collection PT2 (see Table 7.5) using approximations of the random variables

that satisfy both conditions for the first and second moments (7.21), respectively.
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Chapter B

Results of the Post-Distribution

Communication Reduction

B.1. Effect of the PDCR for Tree Collection 1

The following graphics show the effect of the PDCR for the remaining trees in the tree collection

TC1 listed in Table 7.10. Those trees coincide with the trees in the portfolio test collection PT1

(see Table 7.5).
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B.2. Effect of the PDCR for Tree Collection 2

The following graphics show the effect of the PDCR of the remaining trees in the tree collection

TC2 listed in Table 7.10. Those trees coincide with the trees in the portfolio test collection PT2

(see Table 7.5).
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