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Zusammenfassung

In der vorliegenden Dissertation wird ein gehörangepasstes Analyseverfahren entworfen,
das Audiosignale blockweise in Teilbandkomponentensätze aus sinusförmigen Träger-
signalen und zugehörigen Amplituden- und Frequenzmodulationen zerlegt. Die Zerle-
gung erfolgt derart, dass die Teilbandkomponenten signaladaptiv an lokalen spektralen
Schwerpunkten ausgerichtet werden. Dadurch kann diesen Komponenten eine direkte In-
terpretation zugeschrieben werden: Die Trägersignale bezeichnen die mittlere Tonhöhe,
die durch den Spektralbeitrag der jeweiligen Komponenten bei einem Hörer hervorge-
rufen wird, die Amplituden- und Frequenz-Modulationen sind bei Frequenzen unter 20
Hz durch die musikalischen Begri�e Tremolo und Vibrato charakterisiert, bei höheren
Frequenzen durch Rauigkeit. Passend zur vorgeschlagenen Modulationsanalyse wird ein
artefaktarmes Syntheseverfahren entwickelt.
Herkömmliche Verfahren zur Teilbandmodulationanalyse verwenden Filterbänke mit

einer, wie in dieser Arbeit gezeigt wird, ungeeigneten festen Bandaufteilung oder lassen
die Frage o�en, wie eine geeignete Bandaufteilung zwecks nachfolgender Modulationszer-
legung bescha�en sein muss, um eine direkt interpretierbare und somit manipulierbare
Modulationsdarstellung zu erhalten. Oftmals ist auch keine Synthesemethode zur Rück-
gewinnung eines Audiosignals angegeben.
Das innovative Potential der signaladaptiven und gehörangepassten Zerlegung wird

aufgezeigt, indem das vorgeschlagene Verfahren dahingehend kon�guriert wird, eine neu-
artige selektive Transponierung einzelner Frequenzbereiche in polyphonen Audiosigna-
len vorzunehmen. Eine solche Anwendung verändert nachträglich das Tongeschlecht von
Audioaufnahmen, beispielsweise von Dur nach Moll.
Die mit dem vorgeschlagenen Verfahren erreichbare und bei der Anwendung des Ver-

fahrens zur selektiven Transponierung von Tonhöhen erzielbare subjektive Audioqualität
wird durch Hörtests evaluiert. Die Audioqualität bei selektiver Tonhöhentransponierung
wird dabei von Testhörern im Bereich �ausreichend� bis �gut� bewertet, während das
reine Analyse/Synthese-Verfahren Audioqualitäten von �gut� bis �sehr gut� erreicht.
Abschliessend wird die vorgeschlagene selektive Transponierung mit den erzielbaren

Resultaten des kommerziellen Computerprogrammes �Melodyne editor� von �Celemony�
verglichen, das gegen Ende der Entstehung dieser Arbeit als Marktneuheit verfügbar
wurde. Das vorgeschlagene Verfahren ist dem Vergleichsverfahren deutlich im Quali-
tätsaspekt �Transponierung von Melodie und Akkorden� überlegen, während das Ver-
gleichsverfahren mehrheitlich unter des Aspekt �Erhaltung der Klangfarbe� bevorzugt
wird.

Stichworte: Audio, Modulation, Transponierung, Polyphonie
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Abstract

In this thesis, a perceptually adapted analysis method is devised which decomposes
audio signals in a block-wise manner into sets of subband components, each of which is
further decomposed into a sinusoidal carrier and its associated amplitude and frequency
modulation. The decomposition is con�gured such that the subband components are
aligned with spectral local centers of gravity. Thereby, the components relate to a
straight forward interpretation: the carrier signals represent the mean pitch sensation
that is perceived by a listener due to the spectral contribution of that component, the
amplitude- and frequency modulation correlate at frequencies below 20 Hz with the
musical terms tremolo and vibrato, or at higher frequencies with the sensation of auditory
roughness. Fittingly, a synthesis method having low artifacts is proposed.
Conventional methods for subband modulation analysis employ �lterbanks with �xed

subband positions which, via this work, will be shown to be inadequate. Other publi-
cations leave an essential question unanswered: how a suitable partitioning into bands
for a subsequent modulation analysis should be done in order to yield a modulation
representation that is interpretable and thus manipulable in a direct way. Also, often
no synthesis method is described that can retrieve an audio signal from a certain given
modulation representation.
The innovative potential of the signal adaptive and perceptually adapted decompo-

sition is demonstrated through the application of the proposed method to a novel fre-
quency selective pitch transposition scheme for polyphonic audio signals. Such an ap-
plication retroactively changes the key mode of audio recordings, e.g. from a major key
to minor key.
The subjective audio quality that can be obtained by said method and its application

to selective pitch transposition is evaluated by listening tests. The audio quality of selec-
tive pitch transposition is scored by the listeners in a range spanning from �satisfactory�
to �good�, whereas the perceptual quality of the pure analysis/synthesis scheme alone
extents from �good� to �excellent�.
Finally, the proposed selective pitch transposition scheme is compared with results

obtained by applying the commercial computer program �Melodyne editor� by �Cele-
mony�, which became newly available on the market close to the time of �nalization of
this thesis. The proposed method is clearly preferred in terms of the perceptual quality
aspect �melody and chords transposition�, while the commercial program is favored by
the majority with regard to the aspect �timbre preservation�.

Keywords: audio, modulation, transposition, polyphony
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1 Introduction

1.1 History and usage of audio e�ects

In modern music productions, audio e�ects are an integral part of the trademark sound of
a certain band, a disc jockey (DJ) or a producer. Historically, the invention of new sound
e�ects was driven by playful or originally unintended use of new technical appliances,
starting with electro-mechanical equipment like ampli�ers, analog disc recorders or tape
recorders and being continued via purely analog to digital signal processing. In the early
days, especially the realization of amplitude and frequency modulation e�ects by post
processing in order to �thicken� the sound of a given electro-mechanical instrument, e.g.
organ, constituted a major challenge [9].
Innovators, like the well known guitarist Lester W. Polsfuss (known as �Les Paul�),

started experimenting in the 1950s with electric guitar pickups and disc recorders, and
often included audio e�ects originating from his inventions in his own music recordings
[9].
In the 1960s, bands like �The Beatles� started to explore the new possibilities that

opened up due to the invention of multi-track tape recording. E�ects like pitch change,
echo, chorus, �anging, backward recording and time reversed echo or reverb could now
be realized by the creative use of these tape recorders.
In the 1970s, electro-mechanical e�ects were substituted or amended by purely elec-

tric analog e�ect circuitry. Now, the intricate studio e�ects were available to almost
everybody and could easily be integrated in live performances.
The 1980s witnessed the emerge of computer hardware based digital e�ects, once more

augmenting the possibilities of sound manipulation. On one hand, the heritage analog
e�ects were now emulated by digital signal processing, on the other hand companies like
Eventide with the �Harmonizer� or MXR introducing the �Pitch Transposer� o�ered
highly sophisticated hardware-based digital e�ects. For example, the well known hit
single �Owner of a lonely heart� by the band �Yes� featured a remarkable guitar solo
which was played through the MXR Pitch Transposer and mixed to the original sound.
In 1990, music production changed from essentially recording onto tape towards digital

hard disk recording. This trend also a�ected the way how music was actually produced.
Increasingly, studio appliances and dedicated hardware e�ect boxes were virtualized and
integrated into computer recording software suites. Even real music instruments were
partly superseded by pre-recorded sampling libraries, mainly for cost cutting reasons,
e.g. for traditionally sumptuous orchestral parts.
Contrary to common belief, most modern classic music recordings are also subjected

to complex post processing in a sense that the �nal recording might be composed of dif-
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ferent outtakes that are cut, adapted and blended during the record production process.
Small musical and technical �aws, like poor timing or intonation are often corrected by
computer based editing tools, unwanted background noise is removed.
At present, audio e�ects are increasingly enhanced by incorporating knowledge about

the (local) semantic content of the music signal to be processed. This implies the appli-
cation of a certain e�ect in a context adaptive and selective manner. For example, con-
temporary pitch shifters transpose the notes according to a predetermined musical scale
(�Auto-Tune� by �Antares� and others), dedicated real-time voice processors generate
harmony choir voices that match the chords of e.g. an underlying guitar accompaniment
(�Vocalist� by �DigiTech� ).
While the use of audio e�ects is most noticeable in modern pop music production,

e�ects are nevertheless applied in some not-so-obvious contexts. For instance, for radio
broadcast commercials, the voice of the speaker is often accelerated arti�cially in order
to cut down expensive broadcast time. Sometimes, the pitch is lowered to make the
speakers voice sound more appealing and pleasant.
As another example, American cinema �lms are usually shot with a frame rate of 24

pictures per second. When converted to the European television format PAL/SECAM,
the �lm is simply played back faster at the rate of 25 frames per second resulting in
a pitch shift of the accompanying audio sound track of approximately 4%. Since this
signi�cantly changes the timbre especially of male voices, often a pitch shifter is applied
to the audio track in order to restore the original quality of the voices.
Also, the voice overdub for movie cartoons is often produced using audio e�ects. In the

past, the �chipmunk� e�ect was achieved by tape recording and subsequent playback at
multiples of the original recording speed, thereby inevitably altering the formant struc-
ture. Since the availability of digital audio e�ect technology, these mechanical tricks
have hardly been used anymore, but substituted by computer based post-processing.
Dedicated voice processing software o�ers e�ects like a mutually independent change
of pitch and speed, optionally preserving the original characteristic formants. More-
over, the gender, subjective age and mood of the speaker or singer can be manipulated.
This considerably lowers the costs of soundtrack production since e.g. one speaker can
record the raw sound material for the voices of di�erent cartoon characters, whereas the
individual voices can be created later by application of di�erent processing settings.
In summary, music recording, editing and production is increasingly handled by com-

puter software in contrast to traditional methods utilizing hardware-only appliances,
like mixing desks and tape recorders. Moreover, modern sound generation itself is often
performed by synthesizers or by manipulation of pre-recorded pieces of audio, so-called
samples, taken from a huge sample database. Consequently, there is an increasing de-
mand to extensively adapt these samples to their intended new musical environment in
a �exible way. In this context, advanced digital signal processing is required for the
realization of audio e�ects like pitch shifting, time stretching, or harmonization [124],
especially their time or frequency selective, signal adaptive variants. All these e�ects
have in common that they substantially alter the musical characteristics of the original
audio material under best possible preservation of subjective sound quality. In other
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words, these edits strongly change the musical content of the audio material but, never-
theless, are required to preserve the naturalness of the processed audio sample and thus
ensure its believability.

1.2 Audio e�ects and polyphony

While selective pitch transposing and time scaling audio e�ects are already commercially
available and well established for the processing of monophonic content, polyphonic
content still poses great challenges to modern signal processing and thus is subject of
current scienti�c investigation activities1.
Essentially, some kind of source separation could be used to decompose the polyphonic

content into monophonic streams, which are then separately processed [81][8]. This usu-
ally includes an initial multiple fundamental frequency (f0) estimation step [122] and a
subsequent grouping of spectral components into several estimated source objects, each
containing a fundamental and its associated harmonic overtones, in order to distinguish
the spectral contributions of each tonal event. The grouping of spectral components is
estimated by e.g. the evaluation of the mutual pitch ratio of the di�erent components
and by common fate criteria, like common onset and comodulation [10][95][110], con-
necting the separation task at hand to computational auditory scene analysis (CASA)
[11][31][68]. A special variant of this principle is sound source modeling (SSM). Also,
the separation approach is closely related to the automatic music transcription problem,
which targets the automatic derivation of an abstract score notation of a given music
recording [67][54]. A precise grouping into source objects is, however, a tedious, im-
practical and error prone method, especially if the degree of polyphony is high. Thus,
the success of the method strongly depends on the musical content of the item to be
processed and on the reliability of the various estimation and classi�cation steps.

1.3 Modulation Vocoder

In contrast to the aforementioned source separation method, this thesis follows a new
approach based on perceptual properties of the human auditory system. In human audi-
tory perception, the di�erent sound contributions contained in a certain spectral region
of a polyphonic mix are fused into a single joint sonic impression given a su�ciently nar-
row spectral distance of these contributions. The fundamental idea is to jointly process
signal components which are also perceived by humans as a sonic entity. Consequently,
in this thesis, it is proposed to decompose polyphonic audio material into signal adap-
tive multiband components prior to a modulation analysis on each component. Most
importantly, these multiband components must be aligned with spectral local centers
of gravity (COG). In this way, the modulation parameters obtained by further analysis

1Throughout this thesis, the term polyphonic denotes the simultaneous presence of two or more tonal
events at one time instant, as opposed to music having just one tonal event at any point in time
(monophonic).
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can be closely related to perceptual parameters. Each of the components is processed
as a unit, since its content is also fused by human auditory perception. More precisely,
the audio signal is decomposed into a set of signal adaptive carrier frequencies and their
associated amplitude modulation (AM) and frequency modulation (FM). Most of all, any
useful decomposition into components should establish a straight forward and intuitive
relationship to audible musical parameters. In case of the decomposition proposed in
this thesis, carrier frequencies are directly related to the pitch sensation of a component,
coarse modulation corresponds to temporal evolution of sound (e.g. onsets, temporal
development or periodic �uctuation of musical events) and, lastly, �ne modulation is
correlated with the human sensation of auditory roughness. Since, for the task of au-
dio signal manipulation, the processed components are required to be reassembled into
a perceptually pleasant, modi�ed audio signal, a suitable synthesis method is also an
important part of this thesis. If only small changes, or no changes at all, are applied
to the components while processing, an acceptable synthesis method is expected to pro-
vide transparent (indistinguishable from the original) or at least near-transparent audio
quality. The method proposed in this thesis is termed modulation vocoder (MODVOC)
and considers analysis, processing and synthesis of audio signals.
Potential �elds of application for modulation based audio processing are primarily

advanced audio production tools for post processing in recording studios, since there is
an increasing demand for rather extreme manipulation of existing audio recordings, be
it for time stretching, pitch transposition, intonation correction, sound morphing, voice
gender change, and so forth.
Further in this thesis, the application of MODVOC processing for selective pitch trans-

position of polyphonic audio material is demonstrated. More precisely, the manipulation
of musical key and scale mode of an entire (polyphonic) audio mix is addressed. For this
task, the proposed decomposition is well suited, since the carrier frequencies directly
correspond to the pitch of the components, while the temporal evolution of each com-
ponent is captured in its AM and FM, thereby decoupling amplitude modulation (e.g.
tremolo) and frequency modulation (e.g. vibrato) nicely. Finally, the subjective audio
quality of the selective pitch transposition application is evaluated by listening tests,
employing high-quality rendered synthetic test signals and also natural recordings.

1.4 Overview of chapters

The thesis is grouped into 7 chapters. In Chapter 2, a comprehensive survey of the main
properties of the human auditory system and human sound perception is provided.
Special focus is put on pitch sensation and temporal modulation perception, since these
are the main prerequisites for the subject of the work described in the following.
Next, in Chapter 3, existing di�erent approaches to audio related modulation decom-

position as well as analysis and associated synthesis methods are brie�y reviewed. This
summarizes the current state of the art technology in the �eld.
Chapter 4 presents the novel MODVOC concept for modulation analysis, modi�cation

and synthesis of arbitrary audio signals. The proposed methods and signal processing
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algorithms are described in detail. Moreover, conceivable basic techniques for signal
modi�cation in the modulation decomposition domain are outlined.
Chapter 5 is involved with the proposal of an advanced application of the MODVOC

that substantially extends the basic signal modi�cation techniques introduced in the
preceding chapter. The application performs a pitch transposition of selected spectral
parts of an audio signal, thereby enabling musical key and scale mode manipulation of
polyphonic audio material. A special case of this class of operation is the conversion of
a music signal from the original key mode of major to minor or vice versa: �rstly, the
implications of such an application scenario are explained from a music theory point of
view and secondly, from the standpoint of digital signal processing.
In Chapter 6, a suitable listening test methodology is proposed that is tailored to assess

the subjective quality of audio material that has been modi�ed by rather extreme manip-
ulations. Subsequently, listening test results for musical key and scale mode manipula-
tion performed by the MODVOC are presented. For comparison, similar manipulations
have been applied to the test material by using a commercial program. Additionally,
results of preference tests on speci�c aspects of subjective audio quality are provided.
Moreover, the analysis and synthesis processing chain itself, without any intermediate
modulation processing, is assessed for its perceptual reproduction quality.
Finally, in Chapter 7, a comprehensive summary of the work presented in this thesis

is given, conclusions are drawn from the results that have been obtained and future
prospects of the research �eld are brie�y touched upon.
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2 The human auditory system

An introduction to the main properties of the human auditory system is provided in this
chapter. The focus is put on the spectral analysis capabilities of the auditory system and
the mechanisms that enable and accompany pitch perception. Examining the resolution
and the limitations of human auditory perception, masking e�ects, critical bands, percep-
tual scales and just-noticeable-di�erences are addressed. Furthermore, human cognition
of pitch and perception of amplitude modulation along with its relation to the sensation
of auditory roughness are discussed.

2.1 Auditory biomechanics

2.1.1 The outer and middle ear

The human auditory system, as depicted in Figure 2.1, consists of the outer ear, the
middle ear and the inner ear and subsequent neural processing in the brainstem [125][16].
The outer ear collects and �lters the airborne sound and directs the sound waves to the
eardrum. In the middle ear, an impedance transduction is performed, adapting the
airborne vibrations inside the outer ear to the �uid vibrations that are excited at the
inner ear inside the cochlea via the ossicles and the oval window (fenestra ovalis) of the
cochlea. A cross section through the coiled cochlea as indicated in Figure 2.1, is shown
in Figure 2.2.

2.1.2 The inner ear

The cochlea cross section part indicated by the dashed box in Figure 2.2 is shown in
further detail in Figure 2.3. It basically consists of three parts, the scala vestibuli, the
scala media (or: ductus cochlearis) and scala tympani. The scala vestibuli and scala
media are separated by Reissner's membrane, and the basilar membrane separates the
scala media from the scala tympani. The scala vestibuli and the scala tympani are �lled
with �uid (perilymph) and connected at the tip of the cochlea, the helicotrema.
In a simpli�ed view, the cochlea can be seen as a passive resonator system with the

sound wave entering at the oval window and traveling along the scala vestibuli. Only
very low frequencies (a few hundred Hertz) further propagate through the helicotrema
at the apex of the cochlea inside the scala tympani towards the round window (fenestra
cochleae), where they are dampened by the other membrane (membrana tympani secun-
daria). This is to prevent overstimulation of the sensory cells following in the processing
chain. In the cochlea, the traveling sound wave excites resonances at distinct locations
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Figure 2.1: Overview of the human auditory system. Reprinted from [125] with kind
permission of Springer Science+Business Media.

Figure 2.2: Cross section through the cochlea. Reprinted from [125] with kind permission
of Springer Science+Business Media.
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Figure 2.3: The cochlea (section). Pictured is the scala vestibuli (SV), the scala me-
dia (SM), the scala tympani (ST), Reissner's membrane (RM), the basilar
membrane (BM) and the tectorial membrane (TM). The organ of Corti con-
sists of sensory cells named outer haircells (OHC) and inner hair cells (IHC)
and various supporting cells. Reprinted from [16] with kind permission of
Springer Science+Business Media.
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Figure 2.4: Frequency-to-place conversion (tonotopy). Traveling wave on the basilar
membrane having graded sti�ness in a 'passive' cochlea (upper panel). Trav-
eling wave on the basilar membrane with a combination of graded sti�ness
and local active ampli�cation producing an 'active' traveling wave, enabling
much higher sensitivity and frequency selectivity (lower panel). Reprinted
from [16] with kind permission of Springer Science+Business Media.

along the basilar membrane. High frequencies resonate near the oval window where the
basilar membrane is rather thick and sti�, and low frequencies near the apex of the
cochlea where the basilar membrane is thinner and more elastic. Thus, the cochlea acts
as a frequency-to-place converter (tonotopy). This is further illustrated in the upper
panel of Figure 2.4.
The scala media, which is not directly connected to the other scalae, is �lled with a

di�erent �uid (endolymph). Inside the scala media, the organ of Corti is situated on the
basilar membrane all along the cochlea. It contains sensory and supporting cells. In the
organ of Corti, outer hair cells (OHCs) locally amplify the excitation, thereby providing
for improved sensitivity and frequency selectivity of the human auditory system. More-
over, the OHCs have a non-linear characteristic in a sense that their positive feedback
depends on the absolute energy, in order to prevent self oscillation of the amplifying sys-
tem [106]. Hence, the auditory system is not a purely passive system, but also contains
active elements. The e�ect is depicted in the lower panel of Figure 2.4.
The transmission of the signal towards the inner hair cells (IHCs) is supported by the

tectorial membrane which covers the apical surface of the sensory cells of the organ of
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Corti. Finally, the inner hair cells convert mechanical vibrations to electrical impulses.
These are transmitted by the auditory nerve to the brainstem.

2.2 Auditory psychophysics

2.2.1 Bandpass �lter model

Auditory biomechanics of the traveling sound wave in the cochlea as sketched in Section
2.1, combined with the concepts of critical bands [36], which will be explained in detail
in Subsection 2.2.2 and the notion of excitation patterns [125] are the foundation of
the place theory of frequency coding in human auditory perception, characterized by
channels tuned to frequency [123]. Figure 2.5 further illustrates this concept. For each
location on the unrolled cochlea (right side), the e�ect of e.g. a sinusoidal burst tone
of 1 kHz (upper side) can be modeled by the output of a bandpass �lter (left side).
Note that di�erent scaling factors have been used to plot the di�erent bandpass �lter
output signals and the occurrence of increasing �lter delays towards the heliocotrema,
which are e�ective for lower frequencies. The parameters of the bandpass �lters that are
utilized to model the tuning of the auditory channels can be aligned to data that has
been obtained from psychoacoustical and physiological experiments and measurements.

2.2.2 Critical bands

Critical bands are closely related to auditory masking phenomena. Masking denotes the
e�ect of a decrease in audibility for a maskee of a given sound level in the presence of a
masker of higher sound level that is located in spectral vicinity of the maskee. Moreover,
the perceptual phenomena of beating tones and auditory roughness indicate the inability
of the auditory system to resolve inputs which are located within the critical bandwidth
of an auditory �lter.
In an experiment �rst published in [36], and subsequently repeated by many re-

searchers [125][123], the threshold for detecting a sinusoidal probe tone (maskee) has
been measured as a function of the bandwidth of a centered bandpass noise masker hav-
ing constant power density. Consequently, with increasing masker bandwidth the abso-
lute power of the noise increases. For small masker bandwidths, the detection threshold
for the maskee also increases proportionally. However, above a certain cuto� bandwidth,
a further increase does not lead to a signi�cant rise of the detection threshold. The e�ect
is exemplary illustrated in Figure 2.6.
This can be seen as evidence of the existence of a bandpass �lter characteristic in the

auditory system that can be envisioned to be dynamically centered around a maskee.
Any further increase of the masker bandwidth does not fall in the local spectral scope
of such a bandpass �lter and hence has no in�uence on the detection threshold.
This led to the notion of auditory �lters that characterize the frequency selectivity of

the human auditory system. The bandwidth of these �lters is assumed to correspond to
the cuto� bandwidth, and is named critical bandwidth (CB). The absolute value of a CB
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Figure 2.5: Place theory of frequency coding. For each location on the unrolled cochlea
(right side), the e�ect of e.g. a sinusoidal burst tone of 1 kHz (upper side)
can be modeled by the output of a bandpass �lter (left side). Note that
di�erent scaling factors have been used to plot the di�erent bandpass �l-
ter output signals and the occurrence of increasing �lter delays towards the
heliocotrema. Reprinted from [125] with kind permission of Springer Sci-
ence+Business Media.
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Figure 2.6: Signal detection threshold of a 2 kHz sinusoid masked by centered bandpass
noise as a function masker bandwidth. Above approx. 300 Hz the curve
�attens o� indicating a saturation in masking. Reprinted from [123] with
kind permission of Springer Science+Business Media.



2.2 Auditory psychophysics 13

on a linear frequency scale depends on the center frequency. Several perceptual scales
have been proposed, mainly di�ering due to the design of the underlying experimental
setup (see Subsection 2.2.5).

2.2.3 Tuning curves

Tuning curves (TCs), as reprinted in Figure 2.7, are obtained by applying a sinusoidal
signal at low level as a maskee and a masker signal being either a sinusoid or preferably a
narrow band noise of varying center frequency [123]. For each masker center frequency,
the level needed to just mask the maskee signal (indicated by dots) is measured and
plotted versus the center frequency (solid curves). The measurement is repeated for
several frequencies of the maskee sinusoidal signal. Figure 2.7 additionally includes a
graph of the so-called threshold-in-quiet as a function of frequency (dashed line). The
threshold-in-quiet (or absolute threshold of hearing) is de�ned to be the sound pressure
level at a certain frequency that is just detectable in silence.
The TCs indicate the masker level required to produce a given excitation of di�erent

auditory �lters as a function of frequency. Assuming linearity, the shape of an associated
hypothetical auditory �lter can be obtained by inverting the TC [123]. Tuning curves can
be determined neurophysiologically, by measuring the neural activity of an anesthetized
subject, or psychoacoustically, by conducting listening tests [125].

2.2.4 Masking e�ects

The simultaneous masking threshold denotes the sound pressure level of a test sound
(maskee) just becoming audible, in spite of the simultaneous presence of an interfering
spectrally proximate sound of �xed level (masker). This type of measurements can be
conducted with sinusoidal tones and narrowband noise stimuli. Figure 2.8 shows the
results of measurements (solid lines) with a probe tone acting as the maskee, and a
narrowband noise masker having critical bandwidth. The lower skirt decreases with
approximately 100 dB/octave or 27 dB/Bark, the decrease in the upper skirt is less
distinct and additionally depends on the level. This is known as the upward spread of
masking. Figure 2.8 also includes a schematic graph of the threshold-in-quiet (dashed
lines).
To some extent, masking threshold curves correspond to excitation patterns that are

evoked by auditive stimuli in the cochlea. Both have essentially the same shape, but
di�er in their level. In other words, wherever there is the masking of a maskee, there
is also excitation by the masker stimulus [123]. Excitation patterns (and hence also
masking curves) are believed to be the combined responses of all auditory �lters to a
stimulus plotted as a function of their center frequency [123]. Figure 2.9 sketches the
(symmetric) responses of �ve auditory �lters to a 1 kHz tone (upper panel). Displayed
as a function of their center frequencies, they form the (asymmetric) excitation pattern
(lower panel).
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Figure 2.7: Psychophysical tuning curves (TC) indicate the masker sound pressure level
Lm required to produce a given excitation of di�erent auditory �lters as
a function of masking frequency fm. For each TC, level and frequency of
the signal to be masked is plotted (dots below the TC). A measurement of
the threshold-in-quiet as a function of frequency (dashed line) is included
for reference. Based on data by [116] and reprinted from [123] with kind
permission of Springer Science+Business Media.
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Figure 2.8: Masking threshold (solid lines) of a sinusoidal test tone with varying fre-
quency masked by di�erent noise maskers centered at 1 kHz having sound
pressure level LCB(dB). The bandwidth of the noise masker corresponds to
the critical bandwidth at the center frequency. Also, the threshold-in-quiet
is shown for reference (dashed). Reprinted from [125] with kind permission
of Springer Science+Business Media.

2.2.5 Perceptual scales

General

Given the bandwidth measurements B (f) of the auditory �lters for all frequencies f ,
perceptual scales z (f) can be constructed through the seamless stacking of numbered
bands [43], starting from frequency of 0 Hz and an associated bandwidth of 0 Hz. The
perceptual scale can be obtained via integration, according to Equations 2.1.

dz =
∆z

∆f
df

dz = (1/B (f)) df

z (f) =

ˆ f

0

df
′ 1

B (f ′)

(2.1)

Bark scale

Masking experiments using �xed frequency probe tones and centered bandpass noise
suggest the existence of critical bands in the human auditory system, as introduced
in Subsection 2.2.2. The bandpass noise has a constant power density and a varying
bandwidth. Hence, the total noise power varies during the experiment.
Figure 2.10 shows the critical bandwidth as a function of frequency. Below a center

frequency of 500 Hz, the critical bandwidth is constant at 100 Hz, followed by a rise of
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Figure 2.9: Relation of auditory �lter shapes and excitation patterns. The responses of
�ve auditory �lters to a 1 kHz probe tone are sketched in the upper panel.
Displayed as a function of their center frequencies in the lower panel, they
form the (asymmetric) excitation pattern. Reprinted from [123] with kind
permission of Springer Science+Business Media.
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Figure 2.10: Critical bandwidth as a function of frequency of a probe tone. Reprinted
from [125] with kind permission of Springer Science+Business Media.

approximately 20 % of the corresponding center frequency. From this, 24 critical bands
have originally been de�ned in a tabulated form that covers the entire human auditory
frequency range [125]. Alternatively, Equation 2.2 describes auditory �lter bandwidths
as a function of frequency.

BG/Hz = 25 + 75
(
1 + 1.4 kHz−2f 2

)0.69
(2.2)

Based on the critical bandwidths, the critical band rate scale has been derived having
the unit Bark. The analytical expression in Equations 2.3, including a post-correction
step, was given by Traunmüller [111].

z
′
/Bark =

26.81f/Hz
1960 + f/Hz

− 0.53

z =


z
′
+ 0.15

(
2.0− z′)

z
′
< 2.0Bark

z
′
+ 0.22

(
z
′ − 20.1

)
z
′
> 20.1Bark

z
′

otherwise

(2.3)

ERB scale

The equivalent rectangular bandwidth (ERB) corresponds to the bandwidth of a hy-
pothetical rectangular brick-wall �lter that passes the same amount of energy as the
corresponding true auditory �lter would do. This approach is closely related to the crit-
ical bandwidth concept, but, as a result of a di�erent experimental setup, the ERB is
widely regarded as being una�ected by certain shortcomings of previous experimental
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setups such as the parasitic detection of beats or inter-modulation products between the
probe signal and masker [72].
In contrast to the critical band measurements that led to the Bark scale, the exper-

imental setup is based on a �xed frequency probe tone located symmetrically at the
center of a broadband noise masker, which exhibits a bandstop or notch centered at
the signal frequency. While maintaining the total power of the noise masker constant,
the signal detection threshold is measured for di�erent widths of the notch. For e.g. a
decreasing notch width, increasingly more noise energy leaks through the skirts of the
auditory �lter and thus rises the detection threshold for the probe tone.
This led to the de�nition of the ERB provided by Equation 2.4

BERB/Hz = 24.7 (1 + 4.37f/kHz) (2.4)

and to the derivation of the ERB rate scale given in Equation 2.5 by using Equations
2.1 and 2.4.

z/ERB = 21.3 log10 (4.37f/kHz + 1) (2.5)

Comparison of perceptual scales

For higher frequencies, both scales match each other su�ciently well, as the main dif-
ferences are at low frequencies. The Bark scale suggests a �xed bandwidth of 100 Hz
for frequencies below 500 Hz, while the ERB scale has a much �ner resolution for low
frequencies. This is because the ERB scale not only re�ects frequency selectivity due
to tonotopy, but also systematically includes the re�nement due to correlation based
mechanisms. The added sensitivity can be explained by the assumption of a preferred
evaluation of temporal cues, performed by a phase locking of the nerve �rings to the
stimulus waveform [123]. Therefore, the ERB scale better resembles the overall human
ability for pitch detection [106]. Figure 2.11 compares the di�erent scales in normalized
units plotted versus frequency.

2.2.6 Just noticeable di�erences for level changes

The just noticeable di�erence (JND) for level variations, often referred to as JNDL, has
been measured as plotted in Figure 2.12. The JNDL strongly depends on the absolute
sound pressure level and amounts up to 2 dB for levels below 20 dB and slowly descends
towards approx. 0.2 dB for high sound pressure levels around 100 dB. If, instead of
sound pressure level, the level above threshold-in-quiet is considered, the JNDL is almost
independent from frequency [125].

2.2.7 Excitation, masking and JND

Excitation pattern, simultaneous masking and the perception of just noticeable di�er-
ences can be related to each other. A signal being unmasked is required to alter the
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Figure 2.11: Normalized scale units of the Bark scale (solid) and the ERB scale (dashed)
as a function of frequency.

Figure 2.12: Just noticeable di�erences for level changes (JNDL) as a function of sound
pressure level measured with 1 kHz tone. Reprinted from [125] with kind
permission of Springer Science+Business Media.
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excitation pattern by a minimum of 1 dB at an arbitrary frequency. This frequency is
not necessarily centered at the signal frequency, but can be located in its vicinity. For
intensity variations, especially at higher sound pressure levels, the upper skirt of the
excitation pattern is most likely to be raised by 1 dB, since its steepness varies strongly
with level (see Figure 2.8). Thus an increase by a fraction of 1 dB (e.g. 0.25 dB) is
already su�cient to raise the excitation level by the necessary 1 dB. This e�ect is often
called o�-center listening.
Remarkably, the JND measured for frequency variations which will be introduced

in Subsection 2.3.1 can also be explained in an analogous way. A frequency shift will
become just audible if this shift causes a variation of 1 dB in the excitation pattern.
The lower skirt is more sensitive to frequency-to-amplitude conversion due to its greater
steepness, as depicted in Figure 2.8. A variation of 1 dB is obtained for a frequency shift
of approx. 1/27 Bark.

2.3 Pitch perception

2.3.1 Just noticeable di�erences for frequency discrimination

Humans can distinguish between roughly 640 di�erent frequencies. The just noticeable
di�erence for frequency (JNDF) is mainly dependent on the absolute frequency, but
also, to a lesser extent, on the duration and intensity of the stimulus. For stationary
pure tones (a duration of more than at least 500 ms), Figure 2.13 displays measurements
obtained by di�erent researchers (symbols) and the plot of an analytical expression that
has been matched to the experimental data (solid line). Equation 2.6 gives the JNDF
for frequency as a function of frequency. Up to 500 Hz the JNDF is constant at approx.
1 Hz. For higher frequencies, the JNDF increases progressively and amounts to approx.
0.2 % of the absolute frequency [106].

∆fD (f) = 1 +

(
f

1414Hz

)2

Hz (2.6)

The e�ect of the stimulus duration on the JNDF is illustrated in Figure 2.14. The
JNDF increases considerably with decreasing duration of the stimulus below 500 ms.
Hence, the human ability for frequency discrimination ceases.

2.3.2 Spectral pitch

For a sinusoidal stimulus (pure tone), the associated human perception is named spec-
tral pitch. The sensation of pitch highly correlates with the frequency of a stimulus.
Nevertheless, similar to the JNDF, spectral pitch perception also depends on duration,
level and global spectral content of the stimulus. For example, Figure 2.15 shows the
in�uence of stimulus intensity on spectral pitch sensation. With increasing level, tones
below 2 kHz drop in spectral pitch, while higher tones above 4 kHz rise.
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Figure 2.13: Just-noticeable-di�erence for frequency (JNDF) discrimination as a func-
tion of frequency. JNDFmeasurements ∆fD obtained by various researchers
using stationary pure tones are displayed as symbols and a graph of an an-
alytic expression that has been �tted to the data (solid line) is plotted.
Reprinted from [106] with kind permission of Springer Science+Business
Media.

Figure 2.14: JNDF as a function of frequency (both on Bark scale) with parameter de-
noting the duration of stimulus. Reprinted from [125] with kind permission
of Springer Science+Business Media.
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Figure 2.15: Pitch as a function of sound pressure level of stimulus. Reprinted from [125]
with kind permission of Springer Science+Business Media.

2.3.3 Virtual pitch

For complex waveforms, the associated human sensation is termed virtual pitch [106],
since the perceived pitch can be very di�erent from the measured frequency content of
the stimulus and can even include components that are not contained physically in the
signal (e.g. missing fundamental). Figure 2.16 shows di�erent stimuli which all elicit
the same pitch sensation albeit with di�erent pitch strength. The stimuli are numbered
according to their decreasing pitch strength. Panels No. 1 - 4 illustrate examples for
stimuli that physically contain the frequency that corresponds to the perceived virtual
pitch, panels No. 5 - 6 show the missing fundamental phenomenon and panels 7 - 11 show
noise signals that also induce a pitch sensation due to their bandpass center frequency
(7, 9), cut-o� fringe (8, 11) or amplitude modulation (10).

2.4 Amplitude modulation perception and auditory

roughness

2.4.1 Amplitude modulation

An arbitrary audio signal can be expressed in terms of amplitude E (t) and frequency
ω (τ) in radians (or f (τ) in Hertz) as denoted in Equations 2.7.

s (t) = <
{
E (t) exp

(
i

[ˆ τ

0

ω (τ) dτ + ϕ0

])}
ω (τ) = 2πf (τ)

(2.7)

If de�ned to be real and positive, E (t) is also termed the envelope of the signal s (t).
The envelope of a signal is of special interest, since under certain circumstances to be
outlined in this section, it directly relates to the auditory perception of relatively slow
temporal level variations of a carrier signal. For this reason, it has its own perceptual
quality and relevance.
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Figure 2.16: Di�erent stimuli that elicit the same pitch, numbered according to decreas-
ing pitch strength. Reprinted from [125] with kind permission of Springer
Science+Business Media.
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2.4.2 Test stimuli

Suitable stimuli have been de�ned for measurements of human perception of amplitude
modulation. A sinusoidally amplitude modulated (SAM) pure tone, which is often re-
ferred to in the literature as SAM stimulus, can be equivalently described as a three-tone
signal which, in a spectral view, has a lower and an upper sideband located symmetri-
cally around a carrier (see Equation 2.8). If ωm denotes the modulation frequency and
ωc the carrier frequency, the lower and the upper sideband are pure tones of frequency
ωc − ωm and ωc + ωm, respectively.

x (t) = (A+ a · cos (ωmt+ φ)) sin (ωct)

= A sin (ωct) +
a

2
sin ((ωc + ωm) t+ φ) +

a

2
sin ((ωc − ωm) t− φ)

(2.8)

If expressed in the form of Equation 2.7, the three-tone signal exhibits a pure sinusoidal
amplitude modulation E (t) with frequency ωm and modulation depth of m ∈ [0....1] as
denoted in Equations 2.9.

E (t) = (A+ a · cos (ωmt))

m =
a

A

(2.9)

Another important test signal is the two-tone signal, which consists of two pure tones
with a spectral distance ∆ω, according to Equation 2.10.

x (t) = cos (ωmt) sin (ωct+ φ)

=
1

2
sin ((ωc + ωm) t+ φ) +

1

2
sin ((ωc − ωm) t+ φ)

:=
1

2
sin ((ω + ∆ω) t+ φ) +

1

2
sin (ωt+ φ)

(2.10)

Expressing the two-tone signal in the form of Equation 2.7, its amplitude modulation
E (t) equals a full-wave recti�ed cosine shape envelope, as expressed in Equation 2.11.

E (t) = 2

∣∣∣∣cos

(
∆ω

2
t+

φ

2

)∣∣∣∣ (2.11)

Equation 2.12 describes the Fourier series expansion of a full-wave recti�ed cosine of
frequency ∆ω

2
. ∣∣∣cos

(ω
2
t
)∣∣∣ =

2

π
− 4

π

∞∑
k=1

(−1)k
cos (k∆ωt)

(2k)2 − 1
(2.12)

The fundamental Fourier component k = 1 of the envelope has the frequency ∆ω. This is
illustrated in Figure 2.17, where one cycle of the fundamental Fourier component equals
the duration of one half-wave of the recti�ed signal. These amplitude modulations are
often also referred to as beatings.
A comparison of Equations 2.10 and 2.8 suggests that a two-tone signal can also

be seen as a SAM signal, albeit with a suppressed carrier. A further comparison of
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Figure 2.17: Envelope of a two-tone signal (solid gray) and its �rst two Fourier series
terms, the constant (dashed black) and the fundamental component (solid
black).

Equations 2.11 and 2.9 reveals that for a given spectral bandwidth, the fundamental of
the amplitude modulation associated with the two-tone signal is twice the modulation
frequency of a three-tone complex. Therefore, the two-tone signal can be seen as the
upper limit of the fundamental modulation frequency present in a bandlimited signal of
prede�ned bandwidth.

2.4.3 Modulation perception

Figure 2.18 illustrates the perceptual e�ect of a two-tone stimulus according to Equation
2.10, consisting of a pure tone with frequency f1 and a second pure tone having equal
level, albeit di�erent frequency f2, resulting in a frequency di�erence of ∆f . Three
types of auditory sensations can be distinguished. If the absolute frequency di�erence
of the two tones exceeds a threshold ∆fD, both tones are perceived as separate tones.
If the absolute frequency di�erence of the two tones is smaller than the threshold ∆fD,
both components are perceptually fused into one sound impression of spectral pitch
(f1 + f2) /2. Depending on the frequency o�set ∆f , the fused tone is characterized by
either audible beatings (|∆f | < 20 Hz) or auditory roughness (20 Hz < |∆f | < 300 Hz).
Auditory roughness gradually decreases if ∆f approaches the critical band border ∆fCB.
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Figure 2.18: Perceptual e�ect of a pure tone with frequency f1 and a second pure tone
with frequency f2 having a variable frequency o�set ∆f from the �rst tone.
Three types of auditory sensations can be distinguished. If the absolute
frequency di�erence of the two tones exceeds a threshold ∆fD both tones are
perceived as separate tones. If the absolute frequency di�erence of the two
tones is smaller than the threshold ∆fD, both components are perceptually
fused into one fused tone. Depending on the frequency o�set ∆f , the fused
tone is characterized by either audible beatings (|∆f | < 20 Hz) or auditory
roughness (|∆f | > 20 Hz). Auditory roughness gradually decreases if ∆f
approaches the critical band border ∆fCB. Redrawn after [92].
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Figure 2.19: Auditory roughness as a function of modulation depth for a 1 kHz tone
modulated by 70 Hz (left panel). Auditory roughness as a function of mod-
ulation frequency (right panel). Reprinted from [125] with kind permission
of Springer Science+Business Media.

2.4.4 Auditory roughness

While the amplitude modulation of a carrier signal by a much lower modulation fre-
quency is perceived as intensity �uctuations, the modulation of the same carrier by
higher frequencies (> 20 Hz) is experienced as auditory roughness of the carrier sig-
nal [125]. The degree of auditory roughness depends on the carrier frequency ωc , the
modulation frequency ωm and the modulation depth m of the signal.
In order to quantify the sensation of roughness, a subjective listening test presented

sinusoidally modulated pure tones, according to Equation 2.8, to human subjects. The
dependency on modulation depth was found to obey the proportionality relation R ∼
m1.6. Apart from a weak dependency on presentation level, auditory roughness strongly
depends on modulation frequency. All carrier frequencies > 1 kHz have a maximum
at 70 Hz with modulation depth m = 1, albeit with decreasing absolute value towards
higher carrier frequencies. These �ndings might be explained by the limited temporal
resolution of the human neural system, which can not follow �uctuations above 300 Hz
[106]. For decreasing carrier frequencies below 1 kHz, the maximum is shifted to lower
modulation frequencies and the absolute value decreases. The explanation for this is the
higher frequency selectivity at frequencies below 1 kHz, since only spectral components
that fall into a critical band are perceptually fused, and thus contribute to the sensation
of roughness [106].
The unit measuring auditory roughness is named asper. One asper was de�ned to

denote the perceived roughness corresponding to a 1 kHz carrier, modulated by 70 Hz
with a modulation depth of 1. Zwickers measurements are illustrated in Figure 2.19,
which shows auditory roughness dependent on modulation depth (left panel) and on
modulation frequency for di�erent carrier frequencies (right panel).
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More detailed models for auditory roughness estimation can be found in [6] and, later,
an improved model in [17]. The model according to [17] is based on an spectral analysis
by Discrete Fourier Transform (DFT) of time segments with a duration of 200 ms. Sub-
sequently, the spectrum is mapped to an excitation pattern of the basilar membrane.
The excitation pattern is further decomposed into 47 �xed spectrally overlapped band-
pass signals each having a width of 1 Bark, and transformed back into time domain
using the original phases. From the bandpass signals, the quadratic mean is calculated
and related to the constant component, yielding a generalized modulation depth of each
bandpass signal. These are converted into bandpass roughness by incorporating a cor-
relation measure between adjacent bands, a carrier frequency dependent factor and a
proportionality relation R ∼ m2. Finally, the subband roughness measures are added to
obtain the global roughness estimation.
The model was successfully evaluated through the comparison with subjective test

results for stimuli like two-tone signals, amplitude modulated pure tones (SAM signals),
amplitude modulated bandpass noise and broadband noise. The roughness evoked by
a two-tone signal is very similar to that of a three-tone signal, if both signals have the
same amplitude modulation fundamental frequency [6].

2.5 Summary

In the human auditory system, the inner ear performs a spectral decomposition of the
audio signal. This is accomplished by a frequency-to-place transformation in the cochlea
(tonotopy) and, for the lower frequencies, the additional evaluation of correlation cues.
The frequency resolution of the spectral decomposition is re�ected by so-called critical

bands and by the introduction of auditory scales, like the Bark scale or the equivalent
rectangular bandwidth (ERB) scale. The ERB scale is believed to model both e�ects,
tonotopy and correlation cues, more accurately. The e�ective spectral decomposition
�lters in the human ear are aligned with the actual spectral components of the signal
and are therefore most appropriately modeled by time-variant �lterbanks.
Human pitch perception is a highly abstract process. Therefore, pitch perception is

bene�cially described by two di�erent terms: spectral pitch and virtual pitch. Spec-
tral pitch denotes the ability of the hearing system to perceive the frequency of pure
sinusoidal tones. To quantify this ability, the just noticeable di�erence for frequency
discrimination (JNDF) is an important measure. Moreover, the absolute spectral pitch
depends weakly on the duration and level of the stimulus. Virtual pitch relates to the
pitch sensation for more complex signals. The virtual pitch does not necessarily relate to
components that are contained physically in the audio signal, but can also correspond to
the estimated fundamental of a harmonic signal or the frequency of a bandpass center,
a cut-o� fringe or an amplitude modulation.
The perception of a multi-tone signal also depends on its amplitude modulation (AM)

properties. If the fundamental frequency of the amplitude modulation is below approx.
20 Hz, the signal is experienced as a perceptually fused signal having a single frequency
and, additionally, intensity variations. For the interval of 20 Hz up to 300 Hz, the signal
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elicits the notion of a fused signal exhibiting auditory roughness. Above the upper
frequency of roughness perception, both components are perceived as separate entities.
In this case, their spectral distance exceeds the width of a critical band.
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3 Modulation analysis and synthesis

This chapter presents di�erent approaches to modulation analysis known from literature
and the most salient aspects of the distinct methods are discussed. Additionally, the
feasibility and properties of associated synthesis techniques are addressed.

3.1 Overview

The decomposition of an audio signal into amplitude modulation (AM), frequency modu-
lation (FM) and, where applicable, carrier components is the subject of investigation for
a fairly long time. Due to the ill-posed nature of the problem, there is an in�nite number
of possible decompositions, such that most publications are concerned with proposing a
decomposition that on one hand is unique with respect to certain criteria, and on the
other hand yields results that can be physically interpreted.
To provide a systematical review of the literature in this thesis, it is proposed to

describe any system for modulation analysis and synthesis of audio signals by the mod-
ulation analysis and synthesis (MAS) block diagram depicted in Figure 3.1.
For analysis, �rst the audio input signal is optionally divided by a �lterbank or by

a transform into subbands. Subsequent to any optional preprocessing, the amplitude
modulation and frequency modulation is estimated. Both estimation methods may be
mutually dependent. Additionally, one or more carrier signals may either be determined
or are already implicitly constituted by the design of the preceding �lterbank or trans-
form. For synthesis, there exists a composition stage which is fed by the carriers and
the modulation information. The various publications on modulation decompositions
di�er in various detail aspects of this block diagram. For instance, the initial �lterbank
or transform stage may be constructed employing

• di�erent �lter designs

• uniform or non-uniform band structure

• static or signal adaptive �lters

The preprocessing may consist, for example, of a

• Hilbert transform

• minimum phase and maximum phase or all-phase decomposition

• dynamic compression
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Figure 3.1: Block diagram of modulation analysis and synthesis (MAS).

• auditory model related processing

The parameter extraction stage may be realized by various means. The estimation of
AM may be performed by computation of

• Hilbert envelope of the analytic signal (incoherent demodulation)

• synchronous detection (coherent demodulation)

• full or half-wave recti�cation, lowpass �ltering

• energy operators

The estimation of the FM may depend on

• the phase of the analytic signal

• the phase derivative or instantaneous frequency (IF)

• energy operators

The proposal of an appropriate synthesis scheme is not within the scope of most pub-
lications. If a synthesis method is given, the reconstruction may be dependent on the
invertibility of each of the analysis processing steps

• exact
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• approximate (pseudo invertible)

In the following, di�erent methods that have been published so far are reviewed with
respect to the MAS block diagram.

3.2 Vocoder

3.2.1 Description

A groundbreaking publication was the work of Dudley [25][26], who, for the �rst time,
described a so-called VOCODER (a made-up word from �voice encoder�). The publi-
cations proposed the analog synthesis of speech from carriers and modulators. For the
time being, the vocoder was intended to solely mimic the human voice and attracted
- renamed as VODER (again a made-up word from �voice operation demonstrator�)
- worldwide attention as a demonstration object on the New York's World Fair 1939.
The underlying signal model is illustrated in Figure 3.2. Based on the excitation by
pulse-trains or noise as carrier signals, the time variant AM and FM was applied to
the carriers in the subsequent processing. The vocoder was controlled manually by
intensively trained operators, as depicted in Figure 3.3.
Much later, the vocoder was rediscovered for the purpose of parametric coding of

speech by Flanagan [35], hereby extending the basic idea of a voice synthesizer toward
a completely automatic digital analysis and synthesis system called the phase vocoder.
Again, a considerable time later, in the course of the emergence of digital signal pro-
cessing, the phase vocoder was generalized for subband coding [34], which can be seen
as the �rst disengagement from the limiting source model of solely human speech: in
[34], the relations between amplitude envelope (characterizing AM), phase progression
(specifying FM) or its derivative, the instantaneous frequency (IF), and the short time
fourier transform (STFT) spectra of an audio signal are discussed. It is noted that
the AM and FM of band-limited signals are not limited in their bandwidth, which is
undesirable. Moreover, it is already speculated that a perceptually adapted multiband
processing would be advantageous in terms of reproduction quality, a proposition which
this thesis is also based on. Lastly, some related work by Malah [64] is critically cited:
Malah proposes an enhanced vocoder utilizing pitch tracking, which Flanagan legiti-
mately considered to rely on �fragile operations�, like voiced-unvoiced decisions and f0
pitch estimation.
In later publications, the phase vocoder [35] was further improved in terms of percep-

tual quality e.g. by regions of in�uence based phase locking in order to reduce so-called
phasiness artifacts and poor transient reproduction [57][27][90][91]. Since the modula-
tion components obtained by the phase vocoder are, in general, not band-limited and,
due to the static nature of the �lterbank, their physical interpretation is not straight for-
ward, successive publications concentrate on the requirements of a physically meaningful
decomposition.
Loughlin and Tacer [62] derived desireable properties of any meaningful decomposi-

tion, based on an exemplary two-tone test signal, into AM and FM components: for
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Figure 3.2: The vocoder signal model. Reprinted from [26].

Figure 3.3: The vocoder. Reprinted from [26].
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AM and FM, they demanded bandwidth limitation and mutual independence. More-
over, they claimed that for a stationary signal, the components are also desired to be
stationary. One year later, the authors point out again the inherent contradictions of
the established notion of instantaneous frequency being the �the average frequency at
each time� [63]. Wei and Bovik [119] extended these considerations being made with
respect to two-tone signals to multi-tone signals and concluded the infeasibility of IF
for analysis of multi-tone signals due to the lack of interpretability. As a solution, they
again propose a suitable spectral decomposition prior to AM/FM estimation, thereby
further strengthening the concept of signal adaptive subband �lters.

3.2.2 Relation to MAS diagram

The vocoder [25] broadly initiated the idea of distinguishing between carrier and modu-
lator signals. Sinusoidal tone clusters (�buzz�) and noise (�hiss�) were used as carriers,
which were subsequently amplitude and frequency modulated. So, in a sense, an analy-
sis was performed by humans beforehand, determining suitable carriers and modulation
parameters. Synthesis was accomplished through the interaction of the human operator
controlling these parameters, and the machine synthesizing the output signal.
The phase vocoder [34] automated the process of parameter analysis and synthesis

at the price of a considerable abstraction from the original source model, which had
been designed to be physically meaningful, but limited to human speech reproduction.
Related to the MAS diagram in Figure 3.1, the phase vocoder utilized a discrete Fourier
transform (DFT) as an initial static transform; AM was represented by the magnitude of
the complex DFT coe�cients, FM by the time derivative of the phase for each transform
bin, and carrier frequencies implicitly by the spectral locations of the DFT bin centers.
The synthesis was computed by integrating the phase derivative, the re-combination of
the same with the amplitudes and application of the inverse discrete Fourier transform
(IDFT). Since the absolute phase is lost due to the phase derivation and subsequent
integration, the inversion is only approximate.

3.3 Energy operators

3.3.1 Description

A pioneering publication by Kaiser [53] in 1990 �rst derived an energy operator, the
so-called Teager-Kaiser-operator, from di�erential equations describing a spring-mass
system. The intended purpose was to provide a measure for the energy that is needed
to excite a certain oscillation. The application of this operator to the time signal indeed
yielded the desired measure, yet only for mono-component signals. Given a superposition
of two oscillations, the operator is observed to describe the envelope of the sum signal
[53]. Based on this, Maragos et al. proposed the use of energy operators for performing
an AM/FM decomposition on speech signals [66][65]. In these publications, the authors
also showed that a subband decomposition prior to AM/FM analysis aids to obtain
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meaningful results for multi-component signals. In [42], the rough idea of a speech
formant vocoder based on energy operators was initially published. Later, in [83], an
approach for speech formant tracking was outlined and subsequently integrated into
a complete speech formant vocoder application [84]. For music signals, Sussman and
Kahrs demonstrated how the sound of a guitar string can be analyzed, modelled and
synthesized through the use of energy operators [104].
The AM/FM separation method that has been applied in the above cited publications

is widely known as energy separation algorithm (ESA), or its discrete counterpart, the
discrete-time energy separation algorithm (DESA) [65], and is based on energy operators
like, for example, the Teager-Kaiser-operator. In this publication and, earlier, in [82] it
is further pointed out, that the calculation of instantaneous frequency and amplitude
envelope can be achieved alternatively by Hilbert transform demodulation (HTD). The
authors conclude that HTD is more robust to noise, but much more demanding in
terms of computational complexity. Quadrature operators [4] are a generalization of
the Teager-Kaiser-operator. In [5], for example, an enhanced quadrature operator is
proposed for the estimation of FM.

3.3.2 Relation to MAS diagram

In the MAS diagram in Figure 3.1, energy operators constitute an alternative way of
AM/FM estimation. Energy operators can be combined with any variant of a preceding
�lterbank or preprocessing. In [5], for example, a static �lterbank was used to obtain
subband signals, the FM of which was estimated applying a quadrature operator; the
FM is utilized for the demodulation of the subband signal to further obtain the AM
signal. In [84] energy operators are applied to the output of a signal adaptive �lterbank
which is steered by speech formant locations. Compared to Hilbert transform based
estimation methods, energy operators have much lower computational complexity, but,
according to [65][82], can be expected to be more sensitive to noise. Since the presence
of noise must be assumed in generic music recordings, the work presented in this thesis
relies on Hilbert transform based methods.

3.4 Minimum phase and all-phase decomposition

3.4.1 Description

In 1995, the authors Kumaresan and Rao [55] suggested an alternative method of
AM/FM decomposition, building upon the much earlier �ndings of Voelcker [114][115].
They proposed the decomposition of an analytic signal into a minimum phase and a
maximum phase component prior to AM and FM estimation. Later, in 1998, the pro-
posal was modi�ed to decompose the analytic signal into a minimum phase and an
all-phase component [56]. Subsequently, AM was estimated by the amplitude envelope
of the minimum phase component and FM was shown to be represented by the so-called
positive instantaneous frequency (PIF), which was obtained via the time derivative of
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the phase of the all-phase component. The decomposition into minimum phase and all-
phase component was accomplished through the application of linear prediction in the
spectral domain (LPSD). Following up in 2000, the method was extended by the same
authors to a complete analysis system for human speech [89]. The system additionally
utilized time variant, signal adaptive bandpass �lters, the center frequencies of which
closely followed the speech formants or other prominent local spectral concentrations of
energy. In [109], such a decomposition was applied to a violin tone in order manipulate
its vibrato in depth or in time scale. Thereby, the source model was extended from
solely human speech to musical tones. Recent publications suggest some additional de-
tail improvements, like the application of a generalized phase locked loop, reassembling
the e�ect of the outer hair cells of the human ear, in order to estimate the PIF [118].

3.4.2 Relation to MAS diagram

With respect to the MAS diagram in Figure 3.1, minimum phase and all-phase decompo-
sition is a preprocessing, that can be utilized in order to obtain better suited modulation
parameters. In contrast to IF, the PIF is strictly positive, and therefore is claimed to
have a better physical interpretability [56]. It can be combined with any variant of a
preceding �lterbank. For instance in [89], it was combined with signal adaptive dynamic
tracking �lters (DTF). In particular, the idea of advantageously employing signal adap-
tive �lters centered on local energy concentrations prior to AM/FM decomposition can
be seen as the major in�uential contribution of Rao's publication. Sharing the same
view, this thesis is also based on that conviction.

3.5 Subband amplitude modulation spectra

3.5.1 Description

In 2001, Vinton and Atlas [113] proposed a two-stage transform as a key component of a
�ne grain scalable audio coder that converted audio signals into a spectral decomposition
of its subband envelopes. The basic scheme of this transform is depicted in Figure 3.4.
For consecutive time blocks of an input signal, an initial time-frequency transform pro-
vides sets of complex spectral subband coe�cients (rows). A group of successive spectral
coe�cient sets is stored in a two-dimensional bu�er. For each spectral subband, a frame
of temporally successive coe�cients is assembled (column). This frame is incoherently
demodulated, taking the magnitude of each coe�cient, and is further analyzed in its
spectral content by a second transform. The procedure is repeated for all spectral sub-
bands of the set, �nally yielding the subband amplitude modulation spectrum (SB-AMS).
The phase of the spectral subband coe�cients, stored in a second two-dimensional bu�er
(not shown in Figure 3.4), is retained without any further processing. For the synthesis
operation, the processing is reverted. In addition to the SB-AMS data, the phase data
is also needed for exact invertability.
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The time-frequency transforms, that were originally proposed for the processing, were
time domain aliasing cancellation (TDAC) transforms due to their critical sampling
property. This was in�uenced by the context of bitrate e�cient audio coding, in or-
der to keep the quantity of information to be coded already as low as possible in the
preprocessing stages. In 2003, Thompson and Atlas published a modi�ed variant of the
transform, applying a non-uniform decomposition in the second stage and it was claimed
to achieve a better reproduction quality of transients at limited bitrates [108].
From the viewpoint of perceptual and physical meaningfulness, this approach is ques-

tionable, since

1. already the �rst stage does not deliver physical interpretable subband amplitude
envelopes due to its critical sampling property

2. the static spectral location of the subbands of the �rst stage promote mutual AM
and FM conversion

3. the content of the phase matrix is barely related to the physical properties of the
signal, and thus hard to interpret and modify

4. high quality synthesis of modulation �ltered signals is not possible due to the
utilization of original, unmodi�ed phase data

The application of oversampled transforms, like overlapping DFT, might be a straight
forward measure to successfully address issue number 1. Hence, in the following, problem
number 2, AM/FM conversion, will be explained in more detail, since this e�ect is
considered to be an important issue with respect to the physical interpretability of a
modulation decomposition.
An illustrative example of such AM/FM conversion is depicted in Figure 3.5. A

sinusoidal carrier modulated in its amplitude by a low frequency sinusoid results in
a three tone signal, which is symmetric in its magnitude, with respect to the carrier,
as sketched in the left top panel. If the carrier frequency coincides with the center
frequency of a bin of the initial transform, the subband signal in this bin remains purely
amplitude modulated. This is con�rmed by the graphical addition of the three phasors
in the upper middle panel. The result is a phasor of varying length (pure AM) depicted
in upper right panel. If there is an o�set frequency between the carrier and center
frequency, as outlined in the left bottom panel, the subband signal is asymmetrically
damped by the subband �lter transfer function and thus appears to also have FM, as
sketched in the lower middle and lower right panels. Here, the resulting phasor draws an
ellipse, indicating the presence of AM and FM. Similar e�ects exist for purely frequency
modulated signals which, due to the static nature of the �lterbank, seemingly exhibit
an AM part also.
To remedy issues number 3 and 4, one approach is to restrict the SB-AMS synthesis to

AM only and estimate matching phase values using a magnitude-only synthesis approach
[88][78][41] based on the principle of projection on convex sets (POCS). An application
based on this principle is, for example, described in [107].
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Figure 3.4: Signal processing to obtain subband amplitude modulation spectra (SB-AMS).
For consecutive time blocks of an input signal, an initial time-frequency
transform provides sets of complex spectral subband coe�cients (rows). A
group of successive spectral coe�cient sets is stored in a two-dimensional
bu�er. For each spectral subband, a frame of temporally successive coe�-
cients is assembled (column). This frame is incoherently demodulated and
is further analyzed in its spectral content by a second transform. The proce-
dure is repeated for all spectral subbands of the set, �nally yielding SB-AMS
data. Redrawn after [113].
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Figure 3.5: Example for demonstration of the mechanism of AM/FM and FM/AM con-
version. A sinusoidal carrier ωc modulated in its amplitude by a low fre-
quency sinusoid ωm results in a three tone signal, which is symmetric in its
magnitude with respect to the carrier, as sketched in the left (a) top panel.
If the carrier frequency coincides with the center frequency ωb of a bin of the
initial transform, the subband signal in this bin remains purely amplitude
modulated, hence ϕ = const. This is con�rmed by the graphical addition
of the three phasors in the upper middle (b) panel. The result is a phasor
of varying length denoting pure AM as depicted in upper right (c) panel.
If there is a frequency o�set ∆ω between carrier and center frequency, as
outlined in the left (a) bottom panel, the subband signal is asymmetrically
damped by the subband �lter transfer function and thus appears to also ex-
hibit FM indicated by ϕ = F (t), as sketched in the lower middle (b) and
lower right (c) panel. Here, the resulting phasor draws an ellipse, indicating
the presence of AM and FM.
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Extended SB-AMS methods, which all have the fact that they use static bandpass
�lters in common, are published in [96], [99] and [98]. However, the central �aw of static
decomposition into subbands is not addressed. In [97], Schimmel outlines a formalized
framework for modulation �ltering, comparing incoherent and coherent demodulation.
In coherent demodulation, the estimation of AM is dependent on the estimated FM. As
a main result, it is claimed that coherent demodulation is to be preferred over incoherent
demodulation. Most importantly, however, are the initial thoughts to depart from the
assumption of �xed carriers towards signal adaptive carriers: a novel approach is pro-
posed which uses frequency tracking in order to adapt the initial subband decomposition
�lters. In�uenced from the preceding publications on the matter, Li [61] later focused
on signal adaptive coherent demodulation, thereby addressing the AM/FM conversion
issue. His method, however, required a-priori knowledge of certain audio signal proper-
ties: the fundamental frequency f0 and the total number of carriers had to be known
beforehand. Furthermore, the method was limited to the source model of voiced speech.

3.5.2 Relation to MAS diagram

SB-AMS denotes a system for modulation analysis and synthesis. Viewed in relation to
the MAS diagram in Figure 3.1, it consists of an initial static uniform �lterbank and
subsequent AM estimation through the application of incoherent demodulation. The
�nal AM estimate is represented in the modulation spectral domain. FM is not explicitly
estimated, but is contained unresolved in the phase matrices. SB-AMS provides exact
invertibility, but, due to the static �lterbank and the lack of FM estimation, no means
for perceptually adapted signal manipulation. An investigation of the shortcomings of
this particular SB-AMS led to the approach presented in this thesis, of using a signal
adaptive transform followed by both AM and FM estimation.

3.6 Centers of gravity

3.6.1 Description

Initially, Feth et al. [33] developed a model intended to describe the human ability to
discriminate between the elements of a two tone complex that is applied as a stimulus.
He referred to the observation �rst published by von Helmholtz [117], that the perceived
pitch of a two tone complex is dependent on the amplitude relation of both components
and is increasingly shifted towards the pitch of the component with dominating am-
plitude. This model was named envelope weighted average of instantaneous frequency
(EWAIF). Equation 3.1 de�nes the EWAIF from the analytic signal s(t) + iŝ(t) as the
integral of its IF, denoted by f (t), weighted by its Hilbert envelope e (t) and normalized
by the integral of the Hilbert envelope. It is apparent that this integrating measure
assigns the most weight on those points in time where the IF corresponds to a high
amplitude of the associated temporal envelope. In contrast, spikes in the IF, e.g. of
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a two-tone signal [63], at points in time where the envelope is approximately zero, are
suppressed in the EWAIF result.

EWAIF [s (t)] =

´ T
0
e (t) f(t)dt´ T
0
e (t) dt

(3.1)

Feth demonstrated that the discrimination ability can be predicted by calculating the
EWAIF di�erence between two complementary stimuli. Later, Anantharaman et al. [1]
proposed a slightly modi�ed measure named intensity weighted average instantaneous
frequency (IWAIF), which is closely related to the original EWAIF concept. The main
advantage is a lower computational complexity and a better accuracy [1]. In contrast to
EWAIF, the new measure can be calculated directly from the Fourier transform S (f)
of the signal s (t), as de�ned by Equation 3.2

IWAIF [s (t)] =

´∞
0
f |S (f)|2 df´∞

0
|S (f)|2 df

(3.2)

Besides the interpretation analogous to EWAIF, substituting �amplitude� by �inten-
sity�, the authors provided another straight forward interpretation of their measure:
describes the COG of the power spectrum. The COG corresponds to the �mean� fre-
quency that is perceived by a human listener. In [120], this de�nition is used to determine
the bandwidth of the so-called COG e�ect in vowel-like sounds. In [80], the authors sug-
gest a modulation decomposition for application in cochlea implants and justify the
proposed AM/FM decomposition strategy along the lines of that COG interpretation.
They conclude that the incorporation of slowly varying FM into the signal processing
signi�cantly improves vowel intelligibility.

3.6.2 Relation to MAS diagram

The notion of the COG/IWAIF concept is, in general, useful for the estimation and
interpretation of IF. It can be applied simply as an FM estimation technique, like in
[80], where it was combined with a static �lter bank. On the contrary, in this thesis
the COG calculation is utilized as a method for the signal adaptive design of a �lter
bank that separates distinct spectral regions prior to AM/FM estimation, to obtain
modulation estimates that are physically interpretable and that minimize the e�ect of
AM/FM conversion (also see Subchapter 3.5.1).

3.7 Multiresolution spectro-temporal analysis

3.7.1 Description

Shamma et al. [121] developed an advanced model of the human auditory perception. In
1990 they published a model describing the nature of the outer stages (cochlea to middle
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brain) of the auditory system of mammals. The output of the model results in a percep-
tually adapted spectrogram. Additionally, a method is given how this non-linear model
can be approximately reverted. The synthesis employs an iterative magnitude-only re-
construction method based on POCS. Following up, the model was amended by a second
stage, modeling the functionality of the auditory cortex. The second stage implements
a further decomposition into temporal-spectral modulation components [29][30]. Some
applications based on this new model are proposed: the automatic detection of speech
signals [71] and the improvement of speech intelligibility using modulation �ltering [70].
Since the second processing stage is invertible, the entire model remains approximately
invertible [70].

3.7.2 Relation to MAS diagram

Multiresolution spectro-temporal analysis aims at mimicking the human auditory sys-
tem. For the initial spectral decomposition, a static �lter bank is applied. The pre-
processing consists of perceptually adapted dynamic compression and incorporates a
hair-cell model. Since only magnitude information is further processed within the higher
stages, the method only has approximate invertibility and relies on an iterative synthesis
method. Modeling the human auditory system, including the cortical stages, already
leads to a rather abstract representation of the audio signal. Thus, in this thesis, the
view of [28] is shared, that multiresolution spectro-temporal analysis could be most ben-
e�cially applied within highly semantic scenarios like e.g. computational auditory scene
analysis (CASA). The MODVOC described in this thesis presupposes a much lower se-
mantic level of human auditory modeling since it predominantly relies on a physically
motivated perceptual fusion premise.

3.8 Parametric coders with AM model

3.8.1 Description

Parametric audio coding schemes rely on a decomposition of the audio signal into short-
term stationary sinusoids and, optionally, spectrally weighted and shaped noise. Such
analysis/synthesis schemes were published, for example, in [69], [101] and [39]. In [13],
such traditional sinusoidal modelling techniques are labeled by the term constant am-
plitude (CA). The necessary parameters are estimated for (overlapping) time blocks
spanning approximately twenty milliseconds. Sinusoidal components are linked between
adjacent blocks via parameter matching to ensure phase continuation. Since the abso-
lute number of sinusoidal parameters varies from block to block, the linking of these
components is usually subjected to a birth, continuation and death scheme [100]. An
extended model named harmonic and individual lines plus noise (HILN) was proposed
by Purnhagen and others [87][86], and standardized within the Moving Pictures Expert
Group (MPEG). All CA methods have the fact that they approximate the tonal com-
ponents of the signal by short term stationary sinusoids, or harmonic clusters thereof,
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in common.
Other publications extend the CA approach through the inclusion of amplitude mod-

ulated sinusoids in the model. In [40], a method is proposed that iteratively decomposes
an audio signal into modulated sinusoidal components. As an approximation, these AM
components are parametrized by truncated power series. The coe�cients of the power
series are estimated, minimizing a mean square error (MSE) criterion. In 2004, Chris-
tensen et al. [15] also outlined a coder based on the decomposition of audio signals
into a sum of otherwise stationary sinusoids, but having a common temporal envelope.
Optionally, this coder included an initial non-uniform multiband analysis. Through lis-
tening test results, the authors veri�ed the bene�t of a multiband analysis prior to AM
modeling, especially for complex music mixtures originating from di�erent sources. In
[14], another coder having a similar con�guration was proposed, that incorporated an
initial signal decomposition into uniformly spaced subbands. The authors reported an
improved perceptual reproduction quality for transient signals.
In [13], Christensen et al. published a method that extends parametric audio coding,

based on sinusoids, by optionally allowing for amplitude modulation (AM) of each of
the individual sinusoids. Compared to the traditional CA approach, they reported a
signi�cant listener preference for their AM/CA coder.

3.8.2 Relation to MAS diagram

Parametric coders having an AM model mainly aim at incorporating the short-term
variability of sinusoidal components into their underlying model for e.g. improved re-
production of transient portions of the signal. Therefore, they can not be regarded as
genuine modulation analysis/synthesis systems and do not �t well in the MAS diagram.
At most, the approach of [15] can be interpreted within the MAS diagram. The method
comprised an initial �lter bank and an AM estimator in each subband. The weighted
sum of stationary sinusoids in each subband can be viewed as a composite carrier. Thus,
FM is not estimated explicitly, but modeled by the superposition of individual sinusoids.
Nevertheless, these techniques were introduced, since for the MODVOC system pre-

sented in Chapter 4 certain elements of such systems were adopted. Speci�cally, this
applies for the idea of block-wise processing, along with component linkage by parameter
matching and the application of a birth, continuation and death scheme.

3.9 Summary

In this chapter a modulation analysis and synthesis (MAS) scheme was proposed in or-
der to conveniently range the di�erent contributions to this research �eld that can be
found in the literature. The MAS scheme consists of a (multiple) component carrier
frequency estimation, a front-end �lterbank to obtain multiband components, a compo-
nent preprocessing and an amplitude modulation (AM) and frequency modulation (FM)
estimation followed by a synthesis stage.
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Secondly, publications that share a common history or have a similar approach were
pooled into groups. Each group of publications was discussed, pointing out the un-
derlying main ideas. These groups comprise vocoder related schemes, energy opera-
tors, minimum phase/all-phase decomposition, subband amplitude modulation spectrum
(SB-AMS) approaches, center of gravity (COG) based methods, multiresolution spectro-
temporal analysis and parametric coders with an AM model. Using the MAS diagram,
the salient aspects of the di�erent groups of publications were related to the novel MOD-
VOC method proposed in this thesis. Said method adopts the multiband approach from
vocoder schemes and combines it with the idea of signal adaptivity postulated in the
minimum phase/all-phase decomposition group of publications. The need for signal
adaptivity in multiband modulation decomposition is further supported by a descrip-
tion of the shortcomings that are immanent in SB-AMS schemes. To incorporate signal
adaptivity into modulation decomposition in a perceptually meaningful way, the COG
approach is adopted for the MODVOC and extended to a simultaneous estimation of
multiple carrier frequencies. The AM/FM estimation of the MODVOC is based on
Hilbert transform processing, rather than energy operator techniques, due to the supe-
rior stability under noisy conditions. Finally, the MODVOC synthesis method utilizes a
parameter matching reminiscent of techniques found in parametric coders.
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4 Modulation vocoder

The novel modulation vocoder that has been developed as the central contribution of this
thesis is presented in this chapter. The MODVOC consists of an analysis, a modi�cation
and a synthesis procedure, based on multiband modulation components. Firstly, the basics
of the approach are described. In the following, the analysis and synthesis are described in
detail and di�erent possibilities of signal processing in the modulation parameter domain
are proposed. Finally, an additional technique is presented that addresses the processing
of transient signal portions in the audio signal.

4.1 Introduction

The MODVOC denotes a system for modulation based multiband signal analysis, pro-
cessing and synthesis [19]. Referring to the MAS diagram of Chapter 3, the analysis
consists of a bank of bandpass �lters that separate the broadband input signal into
multiband components. These bandpass �lters are designed signal adaptively to be
aligned with spectral local centers of gravity (COG). The estimated COG, at the same
time, correspond to the carrier frequencies of the multiband components. For each
component, a preprocessing employs the Hilbert transform to obtain the analytic band-
pass signal. The AM estimation is achieved by computing the absolute amplitude of
the analytic signal (Hilbert envelope). The FM estimate is yielded by calculation of
the instantaneous frequency (IF) derived from the phase of the analytic signal that is
heterodyned by the carrier.
The synthesis consists of a block-wise reassembly of the multiband components. For

each time block, the carrier is modulated in its frequency by the associated FM and sub-
sequently integrated to obtain the signal phase by which a sinusoidal oscillator is loaded.
The resulting signal is modulated in its amplitude by the associated AM. Finally, the
contributions of all components are accumulated in order to synthesize the broadband
output signal. To ensure continuity between successive blocks, the components of con-
secutive blocks are bonded by parameter matching and blending.

4.2 MODVOC analysis

4.2.1 Principle

Modulation analysis/synthesis schemes which decompose a broadband signal into a set of
components, each comprising of a carrier, AM and FM information have several degrees



46 4 Modulation vocoder

of freedom, since this task is, in general, an ill-posed problem. To arrive at a meaningful
modulation representation, additional requirements must be met. The approach of this
thesis is to satisfy the condition that the extracted information is perceptually meaning-
ful and interpretable, in a sense that modulation processing applied on the modulation
information should produce perceptually smooth results, avoiding undesired artifacts
introduced by the limitations of the modulation representation itself. The extracted
carrier information alone must allow for a coarse, but perceptually pleasant and rep-
resentative �sketch� reconstruction of the audio signal, and any successive application
of AM and FM related information must re�ne this representation towards full detail,
�nally reaching perceptual transparency. The SB-AMS methods introduced in Chap-
ter 3, for example, do not satisfy this constraint. The proposed multiband modulation
analysis of this thesis is subject to the following requirements

• interpretability of the parameters

• scalability towards perceptual transparency

• high perceptual quality

These criteria are considered by the following processing paradigms

• incorporation of signal adaptivity

• provision of seamless spectral coverage

• utilization of a perceptually adapted representation

Signal adaptive front-end �lters ensure that each component contains a spectral segment
that can be regarded as a sonic entity. The carrier frequency of such a component
represents the mean pitch elicited in a human listener by this spectral contribution. A
seamless spectral coverage by the set of bandpass �lters allows for scalability towards
perceptual transparency. The properties of the human auditory perception is accounted
for by designing the �lters on a perceptually adapted ERB scale [73] representation of
the spectrum.
In detail, the multiband modulation analysis dissects the audio signal into a signal

adaptive set of analytic bandpass signals, each of which is further divided into a station-
ary sinusoidal carrier and its time-varying AM and FM. The set of bandpass �lters is
computed such that the full-band spectrum is covered seamlessly and the �lters are each
aligned with local COG. Accordingly, the carrier frequencies are de�ned to correspond
to the local COG. In a sense, the bands aligned with local COG positions are equiva-
lent to the classic regions of in�uence based phase locking of standard phase vocoders
[57][27][90][91]. The bandpass signal envelope representation and the traditional region
of in�uence phase locking both preserve the temporal envelope of a bandpass signal: ei-
ther intrinsically or, in the latter case, by ensuring local spectral phase coherence during
synthesis.
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Figure 4.1: Modulation analysis.

4.2.2 Block diagram

A block diagram of signal decomposition into carrier signals and their associated modu-
lation components is depicted in Figure 4.1. In this diagram, the schematic signal �ow
for the extraction of one of the multiband components is shown. All other components
are obtained in a similar fashion. First, a broadband input signal x is fed into a bandpass
�lter that has been designed to signal adaptively yield an output signal, x̃. Next, the
analytic signal is derived via the Hilbert transform, according to Equation 4.1.

x̂ (t) = x̃ (t) + jH (x̃ (t)) (4.1)

The AM is given by the amplitude envelope of x̂ (Equation 4.2)

AM (t) = |x̂ (t)| (4.2)

while the FM is obtained through the phase derivative of the analytic signal heterodyned
by a stationary sinusoidal carrier with angular frequency ωc (Equations 4.3). The carrier
frequency is determined to be an estimate of the local COG. Hence, the FM can be
interpreted as the IF variation at the carrier frequency fc.

x̀ (t) = x̂ (t) · exp (−jωct)

FM (t) =
1

2π
· d
dt
∠ (x̀ (t))

(4.3)

Since the estimation of local COG and the signal adaptive design of the front-end
�lterbank is one of the key parts of the proposed modulation analysis, it it described in
Section 4.3.
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Figure 4.2: Implementation - Modulation analysis.

4.2.3 Implementation

Practically, in a discrete time system the component extraction is carried out jointly for
all components, as illustrated in Figure 4.2. The proposed processing scheme supports
real-time computation. The processing of a certain time block is only dependent on the
parameters of previous blocks. Hence, no look-ahead is required in order to keep the
overall processing delay as low as possible. The processing is computed on a block-by-
block basis, using e.g. 75 % analysis block overlap and the application of a discrete
fourier transform (DFT) on each windowed signal block. The window is a �at top
window, according to Equation 4.4. This ensures that the centered N/2 samples that are
passed on for the subsequent modulation synthesis utilizing 50 % overlap are una�ected
by the skirts of the analysis window. A higher degree of overlap may be used for improved
accuracy at the cost of increased computational complexity.

window (i)analysis =


sin2

(
2iπ
N

)
0 < i < N

4

1 N
4
≤ i < 3N

4

sin2
(

2iπ
N

)
3N
4
≤ i < N

(4.4)

Given the spectral representation, a set of signal adaptive spectral bandpass weighting
functions that is aligned with local COG positions is calculated. After applying the
bandpass weighting to the spectrum, the signal is transferred into the time domain and
the analytic signal is derived using Hilbert transform. These two processing steps can be
e�ciently combined by calculating a single-sided IDFT on each bandpass signal. Given
the discrete time bandpass signal, the estimation of the IF (Equation 4.3) is implemented
by phase di�erencing, as de�ned in Equation 4.5, where ? denotes the complex conjugate.
This expression is convenient, since it avoids phase ambiguities and, therefore, the need
for phase unwrapping.

FM (n) = ∠ (x̀ (n) x̀ (n− 1)?) (4.5)
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4.3 Center of gravity estimation

4.3.1 Principle

The COG estimation and bandpass segmentation algorithm recently proposed in [20],
extends the single COG model introduced in Section 3.6 towards the estimation of
multiple local COG that are distributed in the frequency domain. The algorithm consists
of an initial COG spectral position candidate list that is iteratively updated through
re�ned estimates. In the re�nement process, adding, deleting or fusing of candidates is
incorporated, thus the method does not require a-priori knowledge of the total number
of �nal COG estimates. The iteration is implemented by two loops. All necessary
operations are performed on a spectral representation of the signal. The details are
outlined in the following.

4.3.2 Preprocessing

For each signal block, a power spectral density (psd) estimate is obtained by computing
the DFT spectral energy. Next, a mapping of the psd is performed onto a perceptual scale
prior to COG calculation and segmentation, in order to facilitate the task of segmenting
a spectrum into perceptually adapted non-uniform and, simultaneously, COG aligned
bands. Thereby the problem is simpli�ed to aligning a set of approximately uniform
segments with the estimated local COG positions of the signal. As a perceptual scale, the
ERB scale [73], is applied, which provides better spectral resolution at lower frequencies
than e.g. the BARK scale. The mapped spectrum is calculated by interpolating the
uniformly sampled spectrum towards spectral samples that are spaced following the
ERB scale (Equation 4.6).

ERB (f) = 21.4 log10 (0.00437f + 1) (4.6)

Subsequently, in order to remove the global trend inherent in real-world audio signal
spectra, the mapped psd is normalized on its trend, which is calculated by linear regres-
sion, minimizing a least squares criterion. An example of an ERB mapped psd (gray)
and its linear trend (black) is depicted in Figure 4.3.
Prior to division, both quantities are temporally smoothed by applying �rst order in-

�nite impulse response (IIR) �lters H (z), each having a time constant of approximately
τ = 200ms, as de�ned by Equations 4.7, where T is the DFT subband sample period
given by the input sample period times the temporal stride of the DFT.

H (z) =
1

1− a1z−1

a1 = exp

(
−T
τ

) (4.7)

These preprocessing steps prevent a global bias towards low frequencies in the sub-
sequent COG position iteration and stabilize the estimated positions for temporally
successive blocks, respectively.
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Figure 4.3: Mapped psd (gray) and linear trend (black).

4.3.3 Iterative center of gravity estimation

The iterative COG estimation �owchart is depicted in Figure 4.4. For each time block
k, a sorted position candidate list c is initialized with a uniformly spaced grid of N
candidate positions c(n), having a spacing S (Equation 4.8). Most importantly, the
parameter S sets the spectral resolution of the estimates obtained in the course of the
iteration process. In other words, the parameter S determines what is considered to be
the local scope of the COG estimation.

c (n) = nS

n ∈ [1, 2..., N ]
(4.8)

The iteration process consists of two loops. The �rst loop calculates the position
o�set posOff (n) of the candidate position c (n) from the true local COG, by applying
a negative-to-positive linear slope function of size 2S, weighted by the weights g (i), to
each candidate position n on the preprocessed psd estimate of a signal block (Equations
4.9).
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Figure 4.4: Flowchart of iterative COG estimation.
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posOff (n) = round

(∑
i (wn (i) · idxOff (i))∑

iwn (i)

)
wn (i) = psd (c (n) + idx (i)) · g (i)

idxOff (i) = i− S + 0.5

idx (i) = round (idxOff (i))

i ∈ [0, 1, 2..., 2S − 1]

(4.9)

In Figure 4.5, the candidate position o�set posOff (n) procedure is visualized. The stem
plots correspond to the local psd samples psd (c (n) + idx (i)), centered at the candidate
position c (n). The window function is represented by values g (i) and the linear slope
function is denoted by idxOff (n).
Next, all candidate positions from the list are updated by their o�set position (Equa-

tion 4.10).

c (n) := c (n) + posOff (n) (4.10)

Each candidate position that violates the border limitations is removed from the list,
as indicated by Equations 4.11, and the number of remaining candidate positions N is
decremented by 1.
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if (c (n) < S) ∨ (c (n) > NS) →
c (x) := c (x+ 1) ∀x ∈ [n+ 1, ..., N − 1]

N := N − 1

(4.11)

If the absolute value of the sum of the actual and the previous position o�sets of
a candidate, as de�ned in Equation 4.12, is smaller than a prede�ned threshold, this
candidate position c (n) is not updated in further iterations, but remains in the list and
is, thus, subjected to the subsequent candidate fusion mechanism.

sumOff (n) = posOffk (n) + posOffk−1 (n) (4.12)

If the |sumOff (n)| of all candidates is smaller than a prede�ned threshold (Equation
4.13), the �rst iteration loop is exited, hereby terminating the iteration process. All
remaining candidates from the list constitute the �nal set of COG position estimates.
Note that using this type of condition also ends the iteration if the position o�set toggles
back and forth between two values, hereby always ensuring proper termination.

max (|sumOff (n)|) < thres1 (4.13)

The second loop iteratively fuses the closest (according to a certain proximity measure)
two position candidates that violate a prede�ned proximity restriction due to the position
update provided by the �rst loop, into one single new candidate, thereby accounting for
perceptual fusion. The proximity measure prox2 is the spectral distance of the two
candidates (Equations 4.14).

prox2 < thres2

prox2 = |c (n)− c (n+ 1)|
thres2 := S

(4.14)

Each newly calculated joint candidate is initialized to occupy the energy weighted
mean position of the two former candidates (Equations 4.15).

c (n) := round

(
w (n) c (n) + w (n+ 1) c (n+ 1)

w (n) + w (n+ 1)

)
w (n) =

∑
i

wn (i) =
∑
i

(psd (c (n) + idx (i)) · g (i))

c (x) := c (x+ 1) ∀x ∈ [n+ 1, ..., N − 1]

N := N − 1

(4.15)

Both former candidates are deleted from the list and the new joint candidate is added
to the list. Consequently, the number of remaining candidate positions N is decremented
by 1. The inner loop iteration terminates if no more candidates violate the proximity
restriction.
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4.3.4 Improved initialization

To speed up the iteration process, the initialization of each new block can advantageously
be done using the COG position estimate of the previous block, since it is already a fairly
good estimate of the current positions. This applies due to the block overlap in the
analysis and the temporal smoothing in the preprocessing, and, hence, the assumption
of a limited change rate in temporal evolution of COG positions is well justi�ed.
Still, it has to be ensured that a su�ciently large number of initial position candidates

exist to capture the possible emergence of new COGs. Therefore, position candidate gaps
in the estimate spanning a distance greater than 2S are �lled by new COG position
candidates (Equations 4.16), thus warranting that potential new COGs are within the
scope of the position update function. Figure 4.6 shows a �ow chart of this extension to
the algorithm.
The apposition of additional candidates to the list is accomplished with a loop that

terminates if no more gaps larger than 2S are found.
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if prox1 > 2S →
prox1 = c (n+ 1)− c (n)

c (x+ 1) := c (x) ∀x ∈ [N,N − 1, ..., n+ 1]

c (n+ 1) := round

(
c (n) + c (n+ 1)

2

)
N := N + 1

(4.16)

4.3.5 Design of bandpass �lter set

After having the COG estimates in the ERB adapted domain determined, a set of N
bandpass �lters is calculated in the form of a spectral weighting functions weightsn, of
length M , according to Equations 4.17. The bandpass �lters are designed to have a
pre-de�ned roll-o� of length 2 · rollOff , with sine-squared characteristics. To achieve
the desired alignment with the estimated COG positions, the design procedure described
in the following is applied.
Firstly, the middle positions between adjacent COG position estimates are calculated,

where mL (n) denotes the lower midpoint, and mU (n) the upper midpoint of a COG
position c (n) relative to its neighbors. Then, at these transition points, the roll-o� parts
of the spectral weights are centered such that the roll-o� parts of neighboring �lters sum
up to one. The middle section of the bandpass weighting function is chosen to be �at-
top equal to one, the remaining sample points are set to zero. The �lters for n = 0
and n = N only have one roll-o� part and exhibit lowpass or highpass characteristics,
respectively.

weightsn (m) =


sin2 (kL (m)) mL (n)− rollOff < m < mL (n) + rollOff

1 mL (n) + rollOff ≤ m ≤ mU (n)− rollOff
sin2 (kU (m)) mU (n)− rollOff < m < mU (n) + rollOff

0 otherwise

m ∈ [0, 1...,M − 1]

mL (n) = round

(
c (n)− c (n− 1)

2

)
mU (n)= round

(
c (n+ 1)− c (n)

2

)
kL (m) = (m−mL (n) + rollOff)

π

4 · rollOff
kU (m) = (m−mU (n)− rollOff)

π

4 · rollOff
+
π

2

(4.17)

In designing the roll-o� part, a trade-o� has to be made with respect to spectral selec-
tivity and temporal resolution. Also, allowing multiple �lters to spectrally overlap may
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Figure 4.7: Two separate tones - Local centers of gravity (black, stem plot) vs. mapped
spectrum (gray, line plot).

add an additional degree of freedom to the design restrictions. The trade-o� may be
chosen in a signal adaptive fashion for e.g. improving on the reproduction of transients.
Lastly, the COG positions and the spectral weighting functions are mapped back to

the linear domain by solving Equation 4.6 for f , obtaining Equation 4.18. Finally, the
spectral weights on a linear scale are yielded, which are to be applied to the original
DFT spectrum of the broadband signal.

f (ERB) =
1

0.00437

(
10

ERB
21.4 − 1

)
(4.18)

4.3.6 Examples of carrier estimation and spectral segmentation

Figures 4.7, 4.8, 4.9 and 4.10 visualize results obtained by the proposed iterative local
COG estimation algorithm of Subsection 4.3.3 that has been applied to di�erent test
items.
The test items are two spectrally well separated pure tones, two closely spaced tones

that cause beat e�ects, plucked strings (�MPEG Test Set - sm03�) and orchestral music
(�Vivaldi - Four Seasons, Spring, Allegro�). In these �gures, the perceptually mapped,
smoothed and globally detrended spectrum is displayed (gray, line plot) along with the
COG estimates (black, stem plot). The COG estimates are numbered in ascending order.
The estimates no.22, no.26 of Figure 4.7 and estimates no.18 and no.19 of Figure 4.9
correspond to sinusoidal signal components. Other than that, estimate no.22 of Figure
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Figure 4.8: Two beating tones - Local centers of gravity (black, stem plot) vs. mapped
spectrum (gray, line plot).
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Figure 4.9: Plucked strings - Local centers of gravity (black, stem plot) vs. mapped
spectrum (gray, line plot).
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Figure 4.10: Orchestral music - Local centers of gravity (black, stem plot) vs. mapped
spectrum (gray, line plot).

4.8, estimates no.23 and no.25 of Figure 4.9 and most estimates of Figure 4.10 capture
spectrally broadened or beating components. These spectrally broadened components
were nevertheless well handled through the proposed algorithm since they were also
grouped into perceptual units.

In Figures 4.11 and 4.12, the original non preprocessed psd of the signal block is
depicted (gray) and a set of bandpass �lters (black) is sketched as outlined in Subsection
4.3.5. It is clearly visible that each �lter is aligned with a COG estimate and pairwise
smoothly overlaps with its adjacent subband �lters.

4.4 MODVOC synthesis

4.4.1 Principle

Like the analysis, the synthesis is performed on a block-by-block basis. Since only
the centered N/2 portion of each analysis block is evaluated for synthesis, it results
in a synthesis overlap factor of 50%. A blending of successive blocks is applied in
the parameter domain rather than on the readily synthesized signal, in order to avoid
phase cancellation e�ects between adjacent time blocks. The blending is controlled by
a component bonding mechanism.
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Figure 4.11: Plucked strings - Bandpass �lters (black) aligned with local centers of grav-
ity vs. power spectrum (gray).
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Figure 4.12: Orchestral music - Bandpass �lters (black) aligned with local centers of
gravity vs. power spectrum (gray).
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Figure 4.13: Modulation synthesis.

4.4.2 Block diagram

The signal is synthesized on an additive basis of all components. Successive blocks are
blended by overlap-add (OLA), which is controlled by the bonding mechanism. The
processing chain for one component is shown in Figure 4.13. First, the FM signal is
added to the stationary carrier frequency and the resulting signal is passed on to an
OLA stage, the output of which is subsequently temporally integrated. A sinusoidal
oscillator is fed by the resulting phase signal. The AM signal is processed by a second
OLA stage. Next, the output of the oscillator is modulated in its amplitude by the
AM signal to obtain the additive contribution of the component to the output signal.
Finally, the contributions of all components are summed to obtain the output signal y.

4.4.3 Component bonding

The component bonding ensures a smooth transition between the borders of adjacent
blocks, even if the components are substantially altered by a modulation domain pro-
cessing. The bonding performs a pair-wise match of the components of the actual block
to their predecessors in the previous block. Additionally, the bonding aligns the absolute
component phases of the actual block to the ones of the previous block. If no modulation
processing is intended, the OLA controlled by the bonding may be disabled and only the
absolute phase of each component has to be adjusted to reassemble the original phase
in order to obtain perfect reconstruction.
The bonding is determined by an iterative algorithm steered by the spectral vicinity

of component carriers measured on an ERB scale. A �owchart is depicted in Figure
4.14. For each element of a list containing the actual component carriers, the spectral
distances to all predecessor candidates are calculated. The predecessor of an actual com-
ponent is chosen to be the component having minimum spectral distance of component
carriers, if this minimum distance is below a pre-de�ned bonding threshold. Subse-
quently, the bonded component pair is removed from the list. The iteration terminates
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Figure 4.14: Flowchart of bonding algorithm.
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if all distances of non-bonded actual components to predecessor candidates are above the
bonding threshold. Components of the previous block without an associated successor
are terminated via fade-out within that block. Components of the actual block without
an assigned predecessor are faded-in. Bonded component pairs are linked by OLA. This
principle is reminiscent of the birth, continuation and death scheme common to standard
parametric coders, as described in Section 3.8.

4.4.4 Examples of component bonding

In the following, component bonding is visualized using excerpts of two items contain-
ing plucked strings and classical orchestral music, respectively. Figures 4.15 and 4.18
show the spectrograms of two di�erent input signals. From the spectrogram, it is clearly
visible that the orchestral item is harmonically much more complex and dense than the
single instrument item. Nevertheless, the COG aligned carriers can be reliably tracked
for both items. Figures 4.16 and 4.19 sketch the carriers of the modulation components
that are linked by the bonding algorithm, as described in Subsection 4.4.3. For each
time block, the components are numbered in ascending spectral order. The block num-
bers correspond to the numbers of the carrier estimation examples given in Subsection
4.3.6. Solid lines indicate components that are linked together through bonding, while
dotted lines indicate components that are faded-in or faded-out, due to the lack of an
adequate bonding partner. Figures 4.17 and 4.20 display, again, the same input signal
spectrograms, but superimposed by the component bonding data. It can be seen that
the carrier locations indicated by line plots coincide with local energy concentrations
visualized by light color in the spectrogram.

4.5 MODVOC processing

Having interpretable modulation components at hand, new and interesting processing
methods become feasible. A great advantage of the modulation decomposition presented
in this thesis is that the proposed analysis/synthesis method implicitly assures that the
result of any manipulation - to a large extent independent from the exact nature of
the processing - will be perceptually smooth, e.g. free from clicks and repetitions of
transients. In the following, two main examples of modulation processing possibilities
are suggested

• manipulation of auditory roughness

• alteration of musical pitch

By smoothing or �ltering the AM and FM modulation components, the auditory rough-
ness [125][105] of a signal can be altered. In the AM signal, there is a coarse structure
related to onset and o�set of musical events etc. and a �ne structure related to faster
modulation frequencies of approx. 30 - 300 Hz. Since for carriers up to 2 kHz this �ne
structure is strongly correlated to the roughness properties of an audio signal [105][17],



4.5 MODVOC processing 63

time/block no.

fr
eq

ue
nc

y/
H

z

Spectrogram of MODVOC analysis input (excerpt)
in |X|2/dB Item: sm03

5 6 7 8 9
200

300

400

500

600

700

800

900

0

10

20

30

40

50

60

70

80

Figure 4.15: Plucked Strings - Spectrogram of MODVOC analysis input.
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Figure 4.16: Plucked Strings - Component bonding in MODVOC synthesis: bonded car-
riers (solid lines), fade-in or fade-out carriers (dotted lines).
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Figure 4.17: Plucked Strings - Spectrogram of MODVOC analysis input superimposed
by bonding data.
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Figure 4.18: Orchestral music - Spectrogram of MODVOC analysis input.
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Figure 4.19: Orchestral music - Component bonding in MODVOC synthesis: bonded
carriers (solid lines), fade-in or fade-out carriers (dotted lines).
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Figure 4.20: Orchestral music - Spectrogram of MODVOC analysis input superimposed
by bonding data.
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Figure 4.21: Auditory roughness manipulation - Modulation processing.

auditory roughness can conversely be modi�ed by removing the �ne structure and main-
taining the coarse structure. A processing scenario for roughness manipulation is shown
in Figure 4.21. In order to decompose the AM into coarse and �ne structure, linear
�lters or, alternatively, nonlinear methods can be utilized. For example, to capture the
coarse AM one can apply a piecewise �t of a low order polynomial. The �ne structure is
represented in the residual signal and can be obtained as the di�erence of original AM
and the coarse AM. Note that if any modi�cations are applied to the AM signal, it is
advisable to restrict the FM signal to only be slowly varying, since the unprocessed FM
may contain sudden peaks, due to beating e�ects inside one bandpass region [63][119].
These peaks appear in FM at the proximity of zero [60] of the related AM signal. These
undesired peaks can be removed by e.g. constrained polynomial �tting on the FM, where
the original AM signal acts as weights for the desired goodness of the �t. Thus, spikes
in the FM can be removed without introducing an undesired bias. This approach may
be additionally justi�ed by the same considerations as the EWAIF method [33][1], in-
troduced in Section 3.6. Both methods apply weights derived from the AM envelope to
the FM signal in order to obtain a physically interpretable frequency variation measure.

A prominent audio e�ect is the transposition [74][58][124] of audio signals, while main-
taining original playback speed. The necessary MODVOC processing is depicted in Fig-
ure 4.22. The e�ect is achieved through the multiplication of the carriers with a constant
transposition factor. By also multiplying the FM with the same factor it is ensured that,
for each component, the relative FM modulation depth is preserved. Since the temporal
structure of the input signal is solely captured by the AM signals, it is una�ected by the
processing. In Chapter 5, it will be shown that - beyond the possibilities of existing pitch
transposition schemes - the MODVOC can perform a frequency selective transposition
of music signals.

Another well-known e�ect is time stretching [32][41][93][112][57], which can be seen
as the dual operation to transposition. Time stretching denotes the e�ect of temporal
dilatation or compression of a signal while preserving its original pitch. A transposition
of a signal by a certain factor can always be converted into a time stretching e�ect by
subsequent resampling of the processed signal [124].
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4.6 Envelope shaping

As stated in Subsection 4.2.1, the MODVOC processing preserves spectral coherence
in the passband area surrounding the carrier locations. However, the broadband global
spectral coherence is not preserved. For quasi-stationary signals this has only minor im-
pact on the perceptual quality of the synthesized signal. If the signal contains prominent
transients like drum beats or castanets, the preservation of global coherence by temporal
envelope shaping (ES) can greatly improve the reproduction quality of these signals [22].
The preservation of global coherence can be addressed by linear prediction in the spec-

tral domain. For quite a while, similar approaches have been utilized in audio codecs,
for instance by the temporal noise shaping (TNS) tool [46][48][47][45] in MPEG 2/4
advanced audio coding (AAC). Figure 4.23 outlines the integration of this technique
into the MODVOC processing scheme. In the analysis, subsequent to the initial DFT
of the input signal x, linear prediction coe�cients (LPC) of a forward predictor along
frequency direction having the impulse response h (ω) are derived by e.g. the autocor-
relation method minimizing the prediction error in a least squares sense. Subsequently,
the �lter is applied to the spectral values, and the residual signal is further processed by
the MODVOC algorithm. The �lter coe�cients, representing the global envelope, are
conveyed to the synthesis stage. In the synthesis, the global envelope, derived by eval-
uation of the prediction �lter on the unit circle |H (ejt)|, is restored by a multiplicative
application of the same to the sum signal yielding the envelope shaped output signal y,
as illustrated in Figure 4.24. The engagement of envelope shaping can be switched on or
o� signal adaptively depending on the prediction gain, which is de�ned to be the energy
ratio of the signal and prediction error.

4.7 Summary

In this chapter, the MODVOC is proposed, denoting a multiband modulation analysis,
processing and synthesis system for arbitrary audio signals. The MODVOC operates
on successive, overlapping time blocks of an input signal. The multiband decomposition
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front-end of the MODVOC analysis is based on the estimation of spectral local COG.
A design scheme for a set of bandpass �lters aligned to the estimated COG positions
has been outlined. These �lters are subsequently utilized to separate the broadband
signal into signal dependent perceptually adapted multiband components. Due to the
alignment with spectral local COG on the perceptually adapted ERB scale, it is claimed
that meaningful and intuitively interpretable AM and FM parameters can be derived
from the subband signals. This claim will be veri�ed through listening tests in Chapter
6.
The MODVOC synthesis generates the output signal on an additive basis of all com-

ponents. Successive synthesis blocks are linked by a component bonding mechanism
using a parameter matching of the associated component carrier frequencies. In order
to improve the perceptual quality of transients in audio signals processed by the pro-
posed system, envelope shaping (ES) by linear prediction in the spectral domain can be
incorporated in the MODVOC scheme.
Lastly, two exemplary modulation processing methods have been presented, one tar-

geting auditory roughness manipulation and the other implementing means for global
or even frequency selective pitch transposition of audio signals.
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5 Application of MODVOC to

frequency selective pitch

transposition

In this chapter, the application of the proposed MODVOC to frequency selective pitch
transposition of polyphonic audio signals is presented, o�ering the possibility to alter
the key and the musical scale mode of chords, arpeggios or even complex sound mixes.
Firstly, a brief introduction into music theory is given. Subsequently, suitable MODVOC
operation parameter settings are derived from music theory and psychoacoustics. Lastly,
an adapted MODVOC processing scheme is described, which implements the task at
hand.

5.1 Music theory primer

5.1.1 Scales, tones and intervals

Almost every musical composition is based on certain scales. A scale is an ordered series
of intervals between tones that provide the material for composing melodies and chord
sequences. An interval denotes the distance between two tones. The smallest interval
spans a semitone. Common names for musical intervals are listed in Table 5.1. The
tones of the basic scale are aligned in ascending order and have been named by the �rst
seven Latin letters (�A�, �B�, �C�, �D�, �E�, �F� and �G�). The intervals between
the notes amount to full tones, except for two semi-tone intervals located between the
tones B and C, and E and F. The �rst note of a scale (corresponding to the interval
�perfect unison�) speci�es the key of a piece of music.
Tones can be be modi�ed by accidentals. A sharp sign �]� raises a note by a semitone,

and a �at sign �[� lowers a note by the same amount. Thus, in summary, twelve tones
form the basis of western music which is called chromatic scale. Above the interval of
an octave, the tones of a scale are repeated in a higher pitch class, which is denoted by
Arabic numerals in the modern scienti�c system. Another commonly used notation is the
traditional (�von Helmholtz�) system, which is centered on the great octave denoted by
capital letters and the small octave having lower case letters. Lower octaves are labeled
by primes before the letter, while higher octaves are marked with primes after the letter.
The standard pitch is de�ned by the tone �A0� (a') and is usually tuned to a frequency
of 440 Hz. A semitone is further subdivided into 100 cents, which cannot be expressed in
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Table 5.1: Musical interval names.

Semitones Interval name

0 perfect unison (P1)

1 minor second (m2)

2 major second (M2)

3 minor third (m3)

4 major third (M3)

5 perfect fourth (P4)

6 tritone

7 perfect �fth (P5)

8 minor sixth (m6)

9 major sixth (M6)

10 minor seventh (m7)

11 major seventh (M7)

12 perfect octave (P8)

the music score directly, but, nevertheless, this subdivision is important for exact tuning
to e.g. standard pitch. An octave interval equals a pitch ratio of two.
The Musical Instrument Digital Interface (MIDI) system, which is based on a proposal

by Salani and Smith in 1981 [94] and which is standardized since 1993 [44], is designed
for the usage in electronic musical instruments and computers. For the description of
musical pitch, it assigns numbers to the notes starting with note number 0 for �C-1�
or (�C) at 8.1758 Hz up to note 127 for �G9� (or G��� ) at 12544 Hz. The MIDI note
numbers are given in Table 5.2.

5.1.2 Scale mode

For every key, a multitude of di�erent scales exist that represent musical modes. A
commonly used modal system is the church mode (or ecclesiastical mode) system. A
rough classi�cation of the di�erent modes is the division by the mode attributes major
and minor. Two scales of the same key but di�erent modes only di�er in selected notes.
For example, in Figure 5.1, a major scale (Ionian mode in the ecclesiastical mode system)
in the key C is displayed. In Figure 5.2, the natural minor scale (Aeolian mode in the
ecclesiastical mode system) of the same key C is pictured.
A direct comparison reveals their di�erence in the three tones E[, A[, B[. The

generalized di�erence between major and natural minor, expressed in terms of musical
intervals, is hence the substitution of the major third, the major sixth and the major
seventh by a minor third, a minor sixth and a minor seventh, respectively. For any
musical key, the tones to be mapped can be derived from the circle of �fth, as depicted
in Figure 5.3. A major to natural minor conversion is obtained by a leap of three
steps counterclockwise, whereas a minor to major change is accomplished by three steps
clockwise.
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Table 5.2: Musical tones and their MIDI note numbers.

MIDI Note Number

Octave C C#/ D D#/ E F F#/ G G#/ A A#/ B

Db Eb Gb Ab Bb

-1 0 1 2 3 4 5 6 7 8 9 10 11

0 12 13 14 15 16 17 18 19 20 21 22 23

1 24 25 26 27 28 29 30 31 32 33 34 35

2 36 37 38 39 40 41 42 43 44 45 46 47

3 48 49 50 51 52 53 54 55 56 57 58 59

4 60 61 62 63 64 65 66 67 68 69 70 71

5 72 73 74 75 76 77 78 79 80 81 82 83

6 84 85 86 87 88 89 90 91 92 93 94 95

7 96 97 98 99 100 101 102 103 104 105 106 107

8 108 109 110 111 112 113 114 115 116 117 118 119

9 120 121 122 123 124 125 126 127

 

��� �� � � � � �
Figure 5.1: C major scale (Ionian mode). 

����� ������� �
Figure 5.2: C natural minor scale (Aeolian mode).
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Figure 5.3: Circle of �fth illustrating the relationship between the twelve tones of western
music and their corresponding major and minor keys.
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5.2 MODVOC operation parameters

5.2.1 Global spectral resolution

For a frequency selective transposition of audio signals by the MODVOC, suitable param-
eter settings must be chosen. Primarily, the spectral resolution of the underlying DFT
transform is set, such that the global frequency resolution for the COG estimation is still
appropriate in a �worst case scenario�. Since DFT spectra, as utilized in the MODVOC
analysis implementation, described in Subsection 4.2.3, have a linear frequency scale,
the worst case scenario relates to the low audio frequencies. These low frequencies are
required to be resolved within an interval spanned by the thresholds of human spectral
pitch discrimination, as introduced in Subsection 2.3.1, and the emergence of an �out-of-
tune� sensation which manifests itself above an o�set of approximately a quarter-tone.
For a 100 Hz tone, the just noticeable di�erence for frequency discrimination (JNDF), as
explained in Subsection 2.13, is 1 Hz and �out-of-tune� sensation corresponds to a shift
of approximately 1.4 Hz. Hence, considering Equation 5.1, and assuming the sample
frequency to be Fs = 48 kHz, a DFT length of 215 = 32768 is a well justi�ed choice, in
terms of global frequency resolution [102].

fres =
Fs

NDFT

NDFT =
Fs
fres

=
48000 Hz

1.2 Hz
≈ 215

(5.1)

5.2.2 Perceptual scale

Also, the mapping of the frequency scale towards a perceptual scale prior to COG
estimation and thus the de�nition of the local scope within the COG estimation have
to be adjusted. In this work, the ERB scale has been adopted for the mapping, since it
provides a �ner resolution in the lower bands than e.g. the Bark scale, as discussed in
Subsection 2.2.5.

5.2.3 Local subband component resolution

For de�ning the local scope of the COG estimation, a value of approximately 1/3 ERB
has been chosen. Figure 5.4 details the underlying reasoning of this choice based on
psychoacoustic and music theoretical considerations. In this graph, the 1/3 ERB curve
is depicted (solid black), along with two straight lines that mark the intervals of a semi-
tone, which corresponds to a musical interval of a minor second, and a quarter-tone for
a given center frequency (solid and dash-dotted gray, respectively). Additionally, the
JNDF is plotted (dashed gray).
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Figure 5.4: 1/3 ERB (solid black) graph and intervals of a semi-tone (solid gray) and a
quarter-tone (dash-dotted gray) as a function of frequency. Additionally the
JNDF is plotted (dashed gray).

For the task of selective music transposition, the COG local scope is required to
separate simultaneous tones which are spaced by a semi-tone interval, since, for western
music, this is the smallest interval quantity existent in musical scales. In addition, closely
adjacent tones are fused in human perception and are perceived as one tone having an
associated envelope �uctuation, as discussed in Section 2.4. Fluctuation frequencies
below 20 Hz are perceived as temporal level variations (Subsection 2.4.3), �uctuation
frequencies above 20 Hz are perceived as auditory roughness (Subsection 2.4.4). A
schematic plot of the phenomenon was given in Figure 2.19.

The highest �uctuation fundamental frequency originated by a band limited signal
of bandwidth ∆f amounts to |∆f | and stems from the beatings inherent in a two-tone
complex, as explained in Subsection 2.4.2. Below approx. 300 Hz, the frequency of
envelope �uctuation associated with a two-tone complex spaced in semi-tone distance
falls below 20 Hz, and is thus perceived as a repeated temporal event. Consequently, the
local scope for COG is required to fuse these intervals notwithstanding the violation of
the semi-tone interval border. Moreover, in musical compositions, at lower pitches even
musical intervals larger than a semi-tone like e.g. three or four semitones (corresponding
to musical intervals of minor and major thirds) are usually avoided due to their associated
roughness and hence, a �ne separation as mandatory at medium pitches is not needed.
Above 300 Hz, the 1/3 ERB line is located between quarter-tone and semi-tone interval
line. This indicates the feasibility of a separation of intervals equal or greater than a
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Figure 5.5: Modulation frequency (black) of sinusoidally modulated tones (SAM) tones
and degree of roughness (numbers) for a maximum roughness sensation at
a given center frequency. Additionally, the 1 ERB (dashed gray) graph and
intervals of a semi-tone (solid gray) and a quarter-tone (dash-dotted gray)
as a function of center frequency are pictured. Roughness data according to
[125] based on Figure 2.19.

semi-tone distance and the fusion of intervals equal or below a quarter-tone distance.

For a pleasant sounding pitch variation in natural tones (e.g. singing voice, �nger
vibrato of violin or guitar tones) a mean tonal variation of approx. 50 cents can be
assumed [85]. This amounts to a quarter tone interval and is thus also captured well
in one component of the MODVOC. Moreover, for tones exhibiting vibrato, the COG
represents the e�ective spectral pitch perceived by listeners, as has been veri�ed for
stringed instruments in [12].

Figure 5.5 further illustrates the relation of perceptual scale, musical intervals and
auditory roughness sensation. The ERB scale is plotted (dashed gray) together with
two straight lines that mark the intervals of a semi-tone and a quarter-tone for a given
center frequency (solid and dash-dotted gray, respectively). Additionally, data points
indicate the modulation frequency (black) and the degree of roughness (numbers) for
a maximum roughness sensation that can be obtained for a given center frequency by
excitation with sinusoidally amplitude modulated (SAM) tones.

On the double logarithmic plot illustrated in Figure 5.5, it can be seen that for center
frequencies below 1 kHz the modulation frequency that evokes maximum roughness
increases linearly, starting from 30 Hz, a value close to the ERB interval associated
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with this center frequency, towards frequencies up to 70 Hz, which, however, correspond
to increasingly smaller musical intervals. At 1 kHz, the modulation frequency that
maximizes roughness amounts to 70 Hz resembling a semi-tone interval. The maximum
roughness level that can be elicited also increases. For 1 kHz, the degree of roughness is
globally maximum. Above 1 kHz, the frequency exciting maximum roughness remains
static at 70 Hz, while the level decreases rapidly.

In the MODVOC, in the spectral region of fundamental tones (< 1 kHz), spectral
segments that contain signal parts corresponding to low modulation frequencies that are
perceived as temporal level variations are fused, while segments that elicit roughness are
still separated according to western-scale musical requirements. In the overtone spectral
regions (> 1 kHz), segments are again fused into a rough sounding tonal compound.

5.3 MODVOC selective pitch transformation

5.3.1 Objective

In Section 4.5, the application of the MODVOC to pitch transposition has been shown.
This global transposition changes the original key of a music signal towards a target key
(e.g. from C major to G major), while preserving the original tempo. However, due
to the signal adaptive nature of the proposed modulation analysis, the MODVOC has
the potential to go beyond this task. Even the transposition of selected components
of polyphonic music becomes feasible, enabling a novel audio e�ect which retroactively
alters the key mode (e.g. from C major to C minor) of a given music signal [21]. This is
possible due to the fact that each component carrier closely corresponds to the perceived
pitch in its spectral region. If only carriers that relate to certain original pitches are
mapped towards new target values, the overall musical character that is determined by
the key mode can be manipulated.

5.3.2 Processing scheme

The necessary processing on the MODVOC components is depicted in Figure 5.6. Within
the MODVOC decomposition domain, the carrier frequencies are quantized to MIDI
notes which are subsequently mapped onto appropriate corresponding target MIDI notes.
For a meaningful reassignment of MIDI notes/pitches, a-priori knowledge of mode and
key of the original music item is required. The AM of all components is not acted upon,
since these contain no pitch information.

Speci�cally, the component carrier frequencies f , which represent the component
pitch, are converted to MIDI pitch values m, according to Equation 5.2, where fstd
denotes the standard pitch which corresponds to MIDI pitch 69, the note �A0�.
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Figure 5.6: Selective transposition on MODVOC components. Carrier frequencies are
quantized to MIDI notes which are mapped onto appropriate correspond-
ing MIDI notes. Preservation of relative FM modulation depth is achieved
via multiplication of the mapped components by the ratio of original and
modi�ed carrier frequency.

m (f) = 69 + 12 · log2

|f |
fstd

n (f) = round(m (f))

o (f) = m (f)− n (f)

(5.2)

n→ n′

f ′ = fstd · 2(n′+o(f)−69)/12
(5.3)

Subsequently, MIDI pitches are quantized to MIDI notes n (f) and, additionally, the
pitch o�set o (f) of each note is determined. Through the utilization of a MIDI note
mapping table which is dependent on key, original mode and target mode, these MIDI
notes are transformed to appropriate target values n′. In Table 5.3, an exemplary map-
ping is given for key of C from major to natural minor. Lastly, the mapped MIDI notes
including their pitch o�sets are converted back to frequency f ′ in order to obtain the
modi�ed carrier frequencies that are used for synthesis (Equation 5.3). Additionally, in
order to preserve the relative FM modulation depth, the FM of a mapped component is
multiplied by the individual pitch transposition factor, which is obtained as the ratio of
original and modi�ed carrier frequency. A dedicated MIDI note onset/o�set detection
is not required, since the temporal characteristics are predominantly represented by the
unmodi�ed AM and thus are preserved.
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Table 5.3: MIDI note mapping table for a scale mode transformation from C major to
C natural minor. The mapping applies for the notes of all octaves.

Original note Target note

C C

D D

E Eb

F F

G G

A Ab

B Bb

5.3.3 Fundamentals and harmonics

Most instruments excite harmonic sounds consisting of a fundamental frequency (f0) part
and its harmonics being approximately integer multiples of the fundamental frequency.
As the ratio between harmonics and fundamental can deviate from integer values by
an inharmonicity factor [37][7], it is sometimes preferred to use the term overtones.
Since musical intervals obey a logarithmic scale, each harmonic or overtone resembles a
di�erent musical interval, with respect to the fundamental (and its octaves). Table 5.4
lists the correspondence of harmonic numbers and musical intervals for the �rst seven
harmonics.
Consequently, in the task of selective transposition of polyphonic music content, an

inherent ambiguity with respect to the musical function of a MODVOC component exists
[22]. If the component originates from a fundamental it has to be transposed according to
the desired scale mapping; if it is dominated by a harmonic to be attributed to another
fundamental it has to be transposed together with this fundamental in order to best
preserve the original timbre of the tone. This applies especially for single instrument
solo parts, since the human auditory system tends to perceive prominent tones as a
musical event having a certain timbre which is closely related to the overtone structure.
Thus, there emerges the need for an assignment of each MODVOC component, whether
it is independent or a harmonic, in order to select the most appropriate transposition.
To achieve this, the simple processing scheme, introduced in Subsection 5.3.2, has to be
extended by a harmonic locking (HL) functionality [22].

5.3.4 Harmonic locking

The harmonic locking examines all MODVOC components prior to transposition whether
a component is to be attributed to a fundamental or is to be regarded as an independent
entity. This is performed by an iterative algorithm. The �owchart of this algorithm
is depicted in Figure 5.7. The algorithm evaluates frequency ratios, energy ratios and
envelope cross correlations of a test component with respect to all other components.
The succession of test components is determined by their A-weighted energy, such that
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Table 5.4: Harmonic numbers and related musical intervals with respect to the funda-
mental and its octaves for the �rst ten harmonics.

Harmonic number Interval name

1, 2, 4, 8 perfect unison (P1)

minor second (m2)

9 major second (M2)

minor third (m3)

5, 10 major third (M3)

perfect fourth (P4)

tritone

3, 6 perfect �fth (P5)

minor sixth (m6)

major sixth (M6)

7 minor seventh (m7)

major seventh (M7)

the evaluation order is in sequence of decreasing energy. The A-weighting [2][3] is applied
to model the perceptual prominence of each component in terms of its loudness [38].
The following features are examined in a comparison to thresholds

• harmonic carrier frequency match

• harmonic carrier frequency missmatch

• component energy

• normalized amplitude envelope correlation at zero-lag

The frequency match and missmatch are de�ned according to Equations 5.4, with
ft being the test component carrier frequency, and fi being the component with index
i. For the frequency match, all multiples greater than 1 are potential harmonics. A
suitable threshold value for the frequency missmatch allowable for a potential harmonic
is e.g. 22 Hz.

matchi = round

(
fi
ft

)
missmatchi = |fi − (matchi · ft)|

(5.4)

The A-weighted component energy ratio (Equation 5.5) of harmonics versus funda-
mental is required to be smaller than a prede�ned threshold, re�ecting the fact that for
the vast majority of instruments the harmonics exhibit lower energy than the fundamen-
tal. A suitable threshold value, for instance, is the ratio of 0.6.

nrgRatioi =
nrgi
nrgt

(5.5)



5.4 Summary 81

The normalized zero-lag cross correlation of the envelope of the test component envt,
and the envelope envi of the component with index i, is de�ned by Equation 5.6. This
measure exploits the fact that a fundamental and its harmonics share a rather similar
temporal envelope within the block lengthM . A suitable threshold value was determined
to be 0.4 through informal experiments.

xcorri =

M−1∑
m=0

envi (m) · envt (m)√√√√M−1∑
m=0

env2
i (m)

M−1∑
m=0

env2
t (m)

(5.6)

After being examined, all components i that meet all of the four threshold conditions
are labeled as harmonics to be locked with respect to the test component and are subse-
quently removed from the search. Next, the test component is also excluded from further
iterations by setting its energy to zero. The algorithm is repeated until all components
have been assigned, indicated by the maximum component energy being zero.
Figure 5.8 shows the enhanced processing scheme of selective transposition by the

MODVOC, incorporating harmonic locking. As opposed to the processing depicted in
Figure 5.6, only non-locked components enter the MIDI note-based transposition stage,
while locked components are directly modi�ed by the same transposition factor that has
been applied to their attributed fundamentals.

5.4 Summary

Beyond the possibilities of existing pitch transposition schemes, the MODVOC is capable
of performing a frequency selective pitch transposition. For this task, the MODVOC
must be con�gured with suitable parameters. The global frequency resolution is set
such that it complies with the just noticeable di�erence for frequency discrimination
and operates within the limits of �in-tune� sound perception. The spectral local scope
of the COG computation is adjusted in accordance with the fusion of spectrally adjacent
tones into modulated sounds in the human auditory system, and also with regard to the
separation requirement set by an interval of one semi-tone. One semi-tone is the smallest
interval quantity commonly used in western musical scales.
The MODVOC, if con�gured accordingly, can be utilized to transform the original

key mode of a pre-recorded piece of music into a di�erent key mode. The original
MODVOC components can be individually mapped to appropriate target components
using dedicated transposition factors obtained by conversion of their carrier frequencies
to Musical Instrument Digital Interface (MIDI) notes and a subsequent table based
MIDI note mapping. The table content is dependent on the original key, original mode
and target mode.
To obtain a musically satisfying result especially for single instruments, such as a

solo piano or violin, where overtones are explicitly linked to their fundamental by the
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data and are removed from the search space of further iterations.
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Figure 5.8: Enhanced selective transposition on MODVOC components using harmonic
locking. Locked carrier frequencies are transposed via multiplication by the
ratio of original and modi�ed carrier frequency of their attributed fundamen-
tal. Non-locked carrier frequencies are quantized to MIDI notes which are
mapped onto appropriate corresponding MIDI notes.

human auditory system, this thesis further proposes harmonic locking (HL), which ties
the individual transposition factors of detected overtones to the factor applied to their
estimated fundamentals.
Albeit, being a dedicated novel audio e�ect, this application also demonstrates the

meaningfulness of the MODVOC decomposition components and hence the ability of
the MODVOC to provide a general basis for new powerful music modi�cation tools.
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6 Results

In this chapter, the audio quality that can be obtained by application of the MODVOC
and its enhancements to the task of frequency selective pitch transposition of polyphonic
audio material is evaluated through listening tests. A test methodology capable to assess
the subjective perceptual quality of such extreme manipulations of the original audio
stimuli is proposed. Results obtained by said subjective perceptual quality assessment and
further results originating from preference tests on selected aspects of perceptual quality
are presented. Therefore, test items have been converted between minor and major key
mode by the MODVOC and by a commercially available software con�gured to handle
this task. Moreover, test results on perceptual quality of the MODVOC synthesis on
unaltered components are presented.

6.1 Frequency selective pitch transposition

6.1.1 Scope

To evaluate the overall subjective audio quality of the MODVOC for frequency selective
pitch transposition application and, moreover, the merit of the proposed enhancements
to the basic MODVOC principle, a set of exemplary synthetic audio �les has been
assembled and processed accordingly. Additionally, the MODVOC is compared to a
commercial audio software for polyphonic audio manipulation, �Melodyne editor� by
�Celemony�. Lastly, two main perceptual aspects - melody and chords transposition
and timbre preservation - of the total subjective quality rating are assessed separately
in detail, using preference tests for both synthetic and natural sound recordings.

6.1.2 Commercial reference

Melodyne editor became newly available on the market at a point of time close to �nal-
ization of this thesis (autumn 2009). Therefore, it was included in the evaluation of the
MODVOC perceptual quality, since it is to be regarded as a pioneering and yet com-
mercially unrivaled application with respect to its capability to manipulate polyphonic
sound material.
Melodyne editor contains a technology which has been branded and marketed by

Celemony by the term direct note access (DNA). Unfortunately, there have been no
scienti�c publications by Celemony related to the underlying technology of DNA pro-
cessing. However, a patent has been �led, presumably covering and thus disclosing the
essential functionality of DNA [79]. It can be assumed from this patent application text,
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that, most of all, the DNA processing included in Melodyne editor relies on heuristic ob-
ject based classi�cation algorithms. The patent states1 that �rstly �an identi�cation of
event objects and note objects� is performed in a Short Time Fourier Transform (STFT)
domain environment and a subsequent �linking of event objects to note objects� takes
place. Hereby, also the �plausibility of such a mapping� is considered. Next, the di�erent
(weighted) spectral proportions to be attributed to each note object are estimated and
subtracted from the residual signal by an iterative algorithm. Again, these proportions
are subject to a �plausibility check� or, optionally, to a �template matching procedure�,
in order to �avoid unmotivated jumps in overtone characteristics�. To calculate these
plausibility checks, the �temporal context spanning several seconds of a note object�
must be considered. Note objects usually comprise several time blocks in the STFT
domain. Again, the assembly of note objects spanning several time blocks is computed
by an iterative algorithm, and is subject to further �plausibility checks�. Finally, a
post-correction step is mentioned, that relies on the �musical probability� of a detected
note event. For example, the sudden occurrence of a single isolated high-pitched note
object is very unusual in common musical compositions and can therefore be discarded
or fused with another note object.

6.1.3 Synthetic signals

Methodology

Since frequency selective pitch transposition drastically alters the audio content of a
signal, a direct comparison of original and processed signal - usually an inherent part in
standard listening tests - is apparently not expedient in this case. In order to measure
the subjective audio quality in a meaningful way, a special listening test procedure has
been applied [22]: the listening test set originates from symbolic MIDI data that is
rendered into waveforms using a high quality MIDI expander. This approach enables
a direct comparison of similarly altered audio �les within the test and allows for the
investigation of the e�ect of the selective pitch processing in isolation. The procedure for
generating the test set is summarized in Figure 6.1. The original test signals are prepared
in symbolic MIDI data representation (upper left). A second version of these signals is
generated by a symbolic MIDI processing, which resembles the target processing under
test on the waveform rendered original audio (upper right). Subsequently, these signal
pairs are rendered by a high quality MIDI expander into waveform (WAV) �les (lower
left and right). In the listening test, the waveform rendered from the processed MIDI
�le and several MODVOC processed versions of the rendered original MIDI �le are
compared (lower right). Additionally, the output of the MODVOC is compared to the
output of Melodyne editor. Melodyne editor initially performs an automatic analysis of
the entire audio �le. After the initialization phase, Melodyne suggests a decomposition
of the audio �le. Through user interaction, this decomposition can be further re�ned.
For the sake of a fair comparison to the MODVOC processing results, we chose to base

1All citations have been translated into English from the original German text.
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Figure 6.1: Procedure of generating the test set for evaluation of the subjective quality
of MODVOC processing for selective pitch transposition.

our evaluation on the outcome of this automatic initial analysis, since, apart from the
a-priori knownledge of key and standard pitch, the MODVOC decomposition is fully
automatic as well.

The listening test setup was based on a standard MUltiple Stimuli with Hidden Refer-
ence and Anchor (MUSHRA) test according to the ITU recommendation BS.1534 [52].
First of all, MUSHRA is a blind listening test. For each item, the test presents the
labeled reference and all test conditions, along with the hidden reference and a hidden
lowpass �ltered anchor to the listener in a time-aligned fashion. Hidden reference and
lower anchor are included, in order to check the listeners reliability. Only one person
at a time is subject to the test. Individual switching between conditions while listening
is permitted and so is setting a loop on arbitrarily selected partitions of the item, as
suggested in the BS.1116-1 [51] and applicable to MUSHRA tests as well. There is no
limit of the number of repetitions the test subjects could listen to before rating the test
item and proceeding to the next. This allows for a very close comparison and thorough
examination of the di�erent conditions. The perceptual quality of the items is rated on
a scale ranging from �excellent� (100 points) via �good�, �fair�, �bad� and down to
�poor� (0 points). The sequence of test items is randomly ordered and the order of the
conditions of each item is randomized as well.
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Table 6.1: MIDI items for MUSHRA test on synthetic signals.

name description instruments key mode

A Violin Concerto, Orchestra Amin

J. S. Bach, BWV1041

B Eine kleine Nachtmusik, String Quartet Gmaj

W. A. Mozart, KV525 Mv1

C Berceuse, Flute Emaj

G. Fauré, Op56 and Guitar

D Nocturno, Horn Dbmaj

F. Strauss, Op7 and Piano

E Waltz, Guitar Cmaj

F. Carulli, Op241 No1

F Ein Musikalischer Spass, Horns, Violin, Fmaj

W. A. Mozart, KV522 Mv1 Viola, Cello

G Ode an die Freude, Piano Gmaj

L. V. Beethoven

H Piano Trio, Clarinet, Cello Bbmaj

L. V. Beethoven, Op11 Mv3 and Piano

Test items and conditions

The eight test items listed in Table 6.1 have been sourced from the MUTOPIA project2,
which provides free sheet music for public use. Suitable excerpts having an approximate
duration of twenty seconds at maximum have been extracted from various pieces of
classical music, containing both single instruments (e.g. G, E) and dense full orchestra
parts (e.g. F). Moreover, dominant instrumental solo melodies accompanied by other
instruments (for example C) are included in the test set. Besides the short-term quasi-
stationary tonal parts, percussive elements are also contained in several items (onsets
of plucked guitar in C and piano in G), which pose a special challenge on the transient
response of the system. The items were further chosen to result in a su�ciently musically
pleasant outcome if subjected to the intended key mode change by selective transposition.
The MIDI processing for obtaining the original transposed signals has been done in

�Sonar 8� manufactured by Cakewalk. The high quality waveform rendering has been
performed using �Bandstand� from Native Instruments in sound library version 1.0.1
R3. The MODVOC processing was evaluated in three di�erent combinations with the
two enhancement processing steps being harmonic locking (see Subsection 5.3.4) and
envelope shaping, as introduced in Section 4.6. The MODVOC parameters were set as
described in detail in Section 5.2, the envelope shaping was signal dependently switched
on and o� as a function of the prediction gain. For comparison to Celemony's Melodyne
editor, version 1.0.11 was utilized. All conditions are listed in Table 6.2.

2http://www.mutopiaproject.org/
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Table 6.2: Conditions for MUSHRA test on synthetic signals.

condition name description

1 *_reference MIDI transposed

original

2 *_3k5Hz_reference 3.5 kHz lowpass

�ltered original (anchor)

3 *_MODVOC MODVOC

4 *_MODVOC_hl MODVOC with

harmonic locking

5 *_MODVOC_hl_es MODVOC with

harmonic locking and envelope sharping

6 *_dna Melodyne editor (DNA)

fully automatic mode

Test setup

The subjective listening tests were conducted at the Fraunhofer IIS facility in an acous-
tically isolated listening lab that is designed to permit high-quality listening tests in an
environment similar to an �ideal� living room. The listeners were equipped with STAX
electrostatic headphones that were driven from an Edirol USB sound interface connected
to an Apple MAC mini. The listening test software was �wavswitch� by Fraunhofer IIS,
operated in MUSHRA mode. A snapshot of the graphical user interface (GUI) of the
test software is depicted in Figure 6.2. The listeners could switch between the reference
(1) and the di�erent conditions (2-7) during playout. Each listener could decide indi-
vidually how long to listen to each item and condition. During the actual switching, the
sound playout was muted. The horizontal bars visualize the rating attributed to each
condition.
Only experienced listeners that are familiar with audio coding but as well have a

musical background were invited for the test in order to obtain an educated judgment
on typical processing artifacts (e.g. pre- and post-echoes or dispersion of transients),
and on musical parameters (e.g. pitch, melody, chords and timbre).

Absolute scores

In total, �fteen subjects contributed to the test result, where one listener had to be
post-screened due to obviously failing to successfully identify the hidden original (by
giving it a grade of 64 points). Figure 6.3 summarizes the results of the listening test.
The perceptual quality for the items processed by selective pitch transposition ranges
from �fair� to �good�. The lower anchor was rated between �poor� and �bad� so that
the distance from the processed items and the anchor amounts to approx. 40 points.
Absolute scores provide information quantifying the perceptual quality of each item

(in each of the test conditions) and thereby implicitly rate the quality di�erence between
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Figure 6.2: GUI of wavswitch MUSHRA. The test conditions are organized in lines, the
rating is visualized by stylized horizontal bars.

the items in the testset, but are unsuitable to compare the di�erent conditions within
the listening test, since the ratings of these conditions are not independent [103][77].
As suggested in [77], for a direct comparison of the conditions originating from the
di�erent selective transposition processing schemes, score di�erences are considered in
the following.

Di�erence scores for MODVOC enhancements

Figure 6.4 depicts the outcome based on score di�erences of the enhanced MODVOC
variants (conditions 4 and 5), with respect to the plain MODVOC (condition 3) results.
Here, all enhanced MODVOC variants score considerably better than the plain MOD-
VOC processing (all mean scores are well located above zero). There is signi�cance
in the 95% con�dence sense for all items and conditions, except for the application of
harmonic locking only in item A and C.

Di�erence scores for comparison MODVOC vs. Melodyne editor

Figure 6.5 displays the test scores as score di�erences with respect to condition 6 (Melo-
dyne editor). For item C, the MODVOC in condition 5 scores signi�cantly better than
Melodyne editor, while condition 4, albeit being slightly positive, and condition 3 are in-
conclusive in a 95% con�dence interval sense (con�dence intervals overlap with 0). Also,
no signi�cant conclusion can be drawn for items B (condition 2), F, and G (condition 5),
but rather a tendency for better performance of the MODVOC can also be seen for item
C in condition 4 and item F in conditions 4 and 5. In all other cases, the MODVOC
scores signi�cantly worse than Melodyne editor.
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Figure 6.3: Absolute MUSHRA scores and 95% con�dence intervals of listening test ad-
dressing selective pitch transposition. Condition 3 was processed by the
MODVOC, condition 4 with additional harmonic locking (MODVOC_hl),
condition 5 with additional harmonic locking and envelope shaping (MOD-
VOC_hl_es) and condition 6 by manipulation using Melodyne editor
(DNA).
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Figure 6.4: Di�erence MUSHRA scores with respect to condition 3 (MODVOC) and 95%
con�dence intervals of listening test addressing selective pitch transposition.
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con�dence intervals of listening test addressing selective pitch transposition.
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Discussion

The score re�ects overall quality judgment comprising aspects, like unnaturally sounding
artifacts, such as the degradation of transients by pre- or post-echoes, pitch accuracy,
correctness of melody and chords, and the preservation of timbre. In order to interpret
the results in more detail, the listeners were asked to note their informal observations
alongside with noting the actual score. From these observations, it can be concluded that
the preservation of the timbre and absence of unnatural sounding artifacts contributed to
the overall score to a higher degree than the performance in terms of melody and chord
transposition. If a certain melody and chord progression was previously unknown to the
listeners, it seemed that the test persons were not able to memorize the reference melody
and chord progression on short notice during the test and thus were unsure about the true
melody and underlying chords. This can be an explanation of the higher overall rating
of the Melodyne editor processed items, since these usually have a higher �delity with
respect to preservation of timbre (see Subsection 6.1.4), especially of sounds originating
from single instruments that exhibit many strong overtones. However, this comes at the
price of severe accidentally occurring melody and chord errors that happen presumably
due to misclassi�cation. In contrast, the MODVOC is less prone to the occurrence of such
errors, since it does not predominantly rely on feature based classi�cation techniques.

6.1.4 Perceptual quality aspects

Test items and conditions

To investigate how speci�c perceptual quality aspects may in�uence the overall rating of
listeners, two main aspects denoted by �melody and chords transposition� and �timbre
preservation� were evaluated separately in a preference test [23]. This test considers
items which have already been transposed in the MIDI domain and subsequently ren-
dered into waveforms. These waveformes were �nally transposed back into their original
key mode by both MODVOC and Melodyne editor. This procedure has been chosen to
exclude any e�ect of listener failure to memorize melodies and chord progressions which
otherwise would have sounded unfamiliar due to their changed key mode (see Subsec-
tion 6.1.3). The items of this test are listed in Table 6.3. Table 6.4 speci�es the two
alternative processing methods (conditions) that were tested.

Test setup

For conducting the preference test, a dedicated GUI has been prepared, which is depicted
in Figure 6.6. In the left box, the original items were also available for supporting
the actual decision process. Since synthetic items were tested, these non-transposed
originals could be used as a ground truth with respect to both aspects, melody and chords
transposition and timbre preservation. The randomized test conditions are located in
the middle box. The listeners were asked to indicate their exclusive preference for one
of these conditions, A or B, by setting tickmarks in the appropriate boxes on the right.
Listeners were allowed to listen as often as desired to each of the test items. To force
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Table 6.3: MIDI items for preference test on synthetic signals.

name description instruments key mode

1 Violin Concerto, Orchestra Amin

J. S. Bach, BWV1041

2 Berceuse, Flute and Emaj

G. Fauré, Op56 Guitar

3 Ode an die Freude, Piano Gmaj

L. V. Beethoven

4 Concerto for Violin and Orchestra Violin and Dmaj

L. V. Beethoven, Op61 Orchestra

Table 6.4: Preference test conditions.

condition description

MODVOC MODVOC with

harmonic locking and envelope sharping

DNA Melodyne editor (DNA)

fully automatic mode

listeners into listening to the entire item before making their choice, no functionality
for setting loops or interrupting playout was provided and listening was restriced to full
playout of the entire length of the items. The listeners were instructed to focus on the
following phenomena and associated questions

• quality of melody and chords transposition; do the melody and chords consistently
sound as if originally played in that key throughout the item or are there �wrong
notes� or bad intonations audible?

• believability of timbre; is the timbre consistent throughout the item and is it
plausible for every instrument contained the mix?

Results

Twelve subjects participated in this test. All subjects were expert listeners and, at the
same time, musicians capable of playing at least one instrument. Playout was from
a notebook via Edirol UA-25 USB audio interface into Beyerdynamic DT-770 closed
headphones. Figure 6.7 and Figure 6.8 illustrate the listeners preference choice with
respect to melody and chords transposition, and timbre preservation, respectively.
For three out of four items, the MODVOC was preferred by the majority of listeners

over Melodyne editor in terms of melody and chords transposition, for one item the
preferences were on par. In contrast, in three out of four items Melodyne editor was
preferred with regard to timbre preservation and for one item (solo piano), the MODVOC
was clearly preferred.
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Figure 6.6: GUI of preference test. The original is provided as informal reference (left
box). The test conditions (A-B) and items (1-4) are organized in a matrix
(middle box). The preference choice is indicated by setting tickmarks (right
boxes).
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Figure 6.7: Preferences with respect to melody and chords transposition for synthetic
signals.
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Figure 6.8: Preferences with respect to timbre preservation for synthetic signals.
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Table 6.5: Items for preference test on natural signals.

name description instruments key mode

1 Violin Concerto, Harpsichord Amin

J. S. Bach, BWV1041 Orchestra

2 Quintetto 2 (maestoso assai) Guitar Emaj

L. Boccherini Orchestra

3 Etude, Piano Emaj

F. Chopin, Op10, No3

4 Four seasons, spring allegro Orchestra Emaj

A. Vivaldi

Discussion

The outcome of the preference test strongly supports the viewpoint already stated in
the discussion of the MUSHRA test, based on the informal comments of the listeners
(see Subsection 6.1.3). Since for item no.3 the MODVOC processing was preferred in
terms of both melody/chords and timbre, it can be concluded that the harmonic locking
performs well for sparse polyphonic mixtures of harmonic instruments, such as the piano.

6.1.5 Natural recording signals

Test items, conditions and setup

Additionally, the perceptual quality of the MODVOC and Melodyne editor for the fre-
quency selective pitch transposition application has been investigated for natural audio
recordings. The aim of this test is to compare the stability and performance of both
algorithms when applied to real-world signals. Such signals may exhibit natural inac-
curacies in tuning or intonation due to the �human factor�, and disturbing components
originating from room reverb, ambience or tape hiss.
Since no direct ground truth is available in this test, a preference test, as described

in Subsection 6.1.4, was conducted and the listeners were instructed to consider the
originals as an informal reference only for the timbre preservation property. A similar
test setup as outlined in detail in Subsection 6.1.4 was employed. Table 6.5 displays the
set of test items.

Results

The same twelve persons that participated in the previously described synthetic items
test also attended the natural items test. The results are depicted in Figures 6.9 and
6.10. In terms of melody and chords transposition, three of the MODVOC processed
items are preferred, while item no.2 (Guitar/Orchestra) is equally preferred in both
processing versions. The timbre preservation properties are consistently preferred in the
Melodyne editor processed items.
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Figure 6.9: Preferences with respect to melody and chords transposition for natural sig-
nals.
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Figure 6.10: Preferences with respect to timbre preservation for natural signals.
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Table 6.6: Test set of critical items for MUSHRA transparency test on natural signals.

name description

si01 harpsichord

si02 castanets

si03 pitch pipe

sm01 bag pipe

sm02 glockenspiel

sm03 plucked strings

6.2 Transparency of MODVOC analysis and synthesis

6.2.1 Scope

The perceptual transparency (indistinguishability from the original) of the MODVOC
output in case of unaltered components has been assessed using a standard MUSHRA
test, in order to be able to judge the basic quality of the analysis-synthesis processing
chain. This gives an indication on the maximum subjective quality that can be obtained
by any intermediate MODVOC processing on the modulation components. Moreover, a
condition comprising the application of envelope shaping has been included in order to
additionally evaluate the bene�t of this technique separate from a selective transposition
application.

6.2.2 Test items and conditions

The six test items have been selected from a well known set originating from MPEG
perceptual audio coding standardization. The set consists of the most critical music
material and is thus well suited for the evaluation of perceptual transparency. Table 6.6
lists all items of the set.
Apart from the original and lowpass �ltered anchor, a MODVOC processed version of

the stimuli and a MODVOC processed version applying envelope shaping (Section 4.6)
has been included in the test. The MODVOC parameters were set as described in detail
in Section 5.2. Naturally, no intermediate modulation processing has been included
between analysis and synthesis. All test conditions are listed in Table 6.7.

6.2.3 Absolute scores

In total, twelve listeners contributed to the test and eleven subjects produced valid
results (one subject graded two hidden references with 87 and 75 points, respectively).
In Figure 6.11, the absolute MUSHRA scores for the test items are depicted. For the
test set consisting of most critical items, the gradings on �ve out of six items ranged
from a perceptual quality labled �good� to �excellent�. One item, however, containing
a solo castanet (�si02�) only scored �fair�, which indicates that pure transient signals
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Table 6.7: Test conditions for MUSHRA transparency test on natural signals.

condition name description

1 *_reference original

2 *_3k5Hz_reference 3.5 kHz lowpass

�ltered original (anchor)

3 *_MODVOC MODVOC

4 *_MODVOC_es MODVOC with

envelope sharping

do not �t the MODVOC signal model. Nevertheless, predominantly tonal signals even
if they contain transient onsets are handled very well by the MODVOC processing.

6.2.4 Di�erence scores

To assess the e�ect of an added envelope shaping functionality, di�erence scores with
respect to plain MODVOC processing have been evaluated and are depicted in Figure
6.12. Five out of a total of six items indicate an improvement, while items �si02�
�sm02� and �sm03� are signi�cantly better in the 95% sense. Item �sm01�, which was
rated �excellent� in absolute scores (see Subsection 6.2.3), shows no change in subjective
quality. The highest improvement, amounting to more than 10 points, is obtained for
�si02� which, in absolute scores, has a �fair� quality (see Subsection 6.2.3).

6.2.5 Discussion

The above results show that a �good� to �excellent� perceptual quality can be expected
from MODVOC processed critical items containing mostly tonal audio material, while
a purely transient item was only rated �fair�. Nonetheless, the usage of envelope shap-
ing proved to be bene�cial, especially for this transient item, and also for other items
containing pronounced onsets of tones (e.g. plucking of strings, hits on a glockenspiel
plates). This further substantiates the statement of Section 4.6 that the envelope shap-
ing improves exactly on the limits of the MODVOC signal model, speci�cally the loss of
global spectral coherence.

6.3 Summary

The listening test results obtained for frequency selective transposition of pitch of syn-
thetic audio signals lead to the conclusion that the plain MODVOC is indeed enhanced
by envelope shaping (ES) and harmonic locking (HL). Further, a comparison of the
MODVOC with frequency selective transposition results achieved by a commercially
newly available software (Melodyne editor) revealed that for the majority of items the
processing by Melodyne editor is rated with higher scores than the MODVOC process-
ing. This is to be attributed to a better preservation of timbre by Melodyne editor.
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Figure 6.11: Absolute MUSHRA scores and 95% con�dence intervals of listening test
addressing transparency.
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Nonetheless, the MODVOC proved to be more robust to missinterpretation of melody
and chord progressions since unlike the commercial system it essentially does not rely
on classi�cation decisions.
Additional preference tests on the detailed quality aspects, �melody and chords trans-

position�, and �timbre preservation� con�rmed that for the majority of test items the
MODVOC was preferred in terms of melody and chords transposition whereas Melodyne
editor was chosen most often as the preference in terms of timbre preservation.
It can be further speculated that the quality of melody and chords transposition,

and the accuracy of timbre preservation possibly constitute opposing quality tradeo�
aspects of any selective transposition scheme, at least for audio material containing
complex polyphonic mixtures.
Melodyne editor essentially performs a multi-pass analysis on the entire audio �le,

whereas the MODVOC is based on a single-pass blockwise processing. Thus, in contrast
to Melodyne editor, the application of the MODVOC allows for a streaming or realtime
operation scenario. The restrictions posed on the MODOVC hereby can be seen as
another reason for the quality di�erence of both methods.
The MODVOC transparency test results, assessing an analysis and synthesis sce-

nario without intermediate processing, showed that the MODVOC can provide near-
transparent �good� to �excellent� perceptual quality. This applies for predominantly
tonal items, and especially, if the MODVOC is enhanced by ES.
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7 Conclusions

There is an increasing demand for digital signal processing techniques which enable
extreme retroactive signal manipulations. Such manipulations are a prerequisite to �t
already existing audio recordings, e.g. so-called �samples� taken from a database, into
a new musical context of other pre-recorded audio material. Therefore, original high
level semantic signal properties like tempo, pitch, musical key and scale mode need
to be adapted to di�erent target values. This requires signal processing methods that
are broadly applicable to di�erent classes of signals, including polyphonic mixed music
content. In the past, the selective transposition of pitch, being the underlying processing
for musical key and scale mode change, had been restricted to monophonic signal content.
Thus, in this thesis, for the �rst time, a system is proposed, capable of selective pitch
transposition of polyphonic signals. In contrast to other approaches, this method relies
on psychoacoustic �ndings, with regard to modulation perception rather than source
separation techniques motivated by auditory scene analysis.
More precisely, the general approach of this thesis to audio signal manipulation is

based on a signal adaptive decomposition of these signals into perceptually adapted
subband components and associated parameters motivated by psychophysical �ndings.
These parameters being subband carrier, amplitude modulation (AM) and frequency
modulation (FM) can thus be directly interpreted in a perceptual sense. The carrier
frequency describes the pitch sensation elicited by the signal contained in the component.
Amplitude modulations by frequencies lower than approximately 20 Hz capture the
temporal level variation of the carrier perceived as tremolo, while frequency modulations
by low frequencies represent pitch variations of the carrier perceived as vibrato. Both
amplitude and frequency modulation by higher frequencies introduce auditory roughness
into the signal.
The newly proposed method is termed modulation vocoder (MODVOC) and it is ap-

plied for analysis, manipulation and synthesis of audio signals. The fundamental idea
of this approach is to decompose polyphonic mixtures into subband components that
are perceived by humans as sonic entities. All signal elements contained in each com-
ponent can then be jointly manipulated in subsequent processing stages. Therefore, the
signal is analyzed in successive temporal blocks. In each time block, subbands having
bandpass characteristics are signal adaptively aligned with spectral local centers of grav-
ity (COG). In their bandwidth, these subband �lters follow the perceptual equivalent
rectangular bandwidth (ERB) scale. Finally, a Hilbert based AM/FM decomposition
is applied on each subband component. To ensure global spectral coherence for high
quality transient reproduction, it is proposed to apply envelope shaping (ES) by linear
prediction in the spectral domain. Additionally, a synthesis method is introduced that
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renders a smooth and perceptually pleasant, yet - depending on the type of manipula-
tion applied - drastically modi�ed output signal from the AM/FM decomposed subband
signals. In detail, the synthesis method performs a parameter matching on successive
time blocks, based on the spectral distance of the carrier frequencies and interpolates
between matched pairs of carrier frequencies and their associated AM and FM contours
applying overlap-add. The output signal is obtained as the sum of all components.

An application of the MODVOC to frequency selective pitch transposition for poly-
phonic music signals is proposed, and a suitable parametrization of the MODVOC is
provided, based on psychoacoustic and musical criteria for this dedicated application. It
is pointed out that a musically meaningful selective transposition operation is inevitably
tied to the ambiguity, whether a MODVOC component is dominated by a fundamental
tone or an overtone of a certain musical instrument contained in the signal mix. In the
�rst case, the component can be manipulated appropriately on its own, while in the lat-
ter case, the component must be manipulated according to its estimated fundamental.
Therefore, an additional technique is introduced, called harmonic locking (HL), which
locks components dominated by overtones to their estimated respective fundamental
component by applying a common transposition factor. HL can improve the subjective
quality of the frequency selective transposition result. It is demonstrated that a selective
pitch change opens up possibilities for advanced audio e�ects, such as musical key and
scale mode change of readily recorded and mixed audio tracks.

To assess the perceptual quality of the MODVOC application to selective pitch trans-
position, a dedicated listening test methodology is introduced, which is adapted to ac-
commodate rather incisive changes of the original audio items. The test items have been
rendered from MIDI �les and were subsequently subjected to selective pitch transposi-
tion by the MODVOC in several con�gurations. These are compared to a target ground
truth. A su�ciently well-de�ned ground truth can be obtained from the original MIDI
�le by performing an equivalent symbolic MIDI based manipulation prior to rendering.
Following this methodology, a MUSHRA based listening test evaluating the quality of
items which have been altered in their key mode by MODVOC processing has been
carried out.

During the term of the thesis work, a �rst commercial software named �Melodyne
editor� by �Celemony� had become available in late 2009, which also supports a selective
transposition of pitch for arbitrary signals. However, due to the strictly commercial
background of this software, no scienti�c papers have been published related to its
functional principle. For a comparison to the MODVOC, a similar manipulation has
been performed within the Melodyne editor program environment on the test set and
included in the test.

In listening tests, the subjective perceptual quality of the test items is usually rated by
a single value, albeit many quality aspects contribute to the overall listening impression.
For instance, in the case of selective transposition of pitch, the aspects �artifact inser-
tion�, �pitch stability�, �melody and chords transposition� or �timbre preservation� are
implicitly summed up with individually unknown weights to arrive at a global rating
number.
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The listening test clearly proved the bene�ts of HL for MODVOC processing in terms
of an improved timbre. Moreover, listeners informally reported a musically convinc-
ing transposition result in terms of melody and chords transposition by the MODVOC
processing. In contrast, since Melodyne editor supposedly applies many heuristic clas-
si�cations that can fail at some selected spots of the test signal, it was prone to severe
melody and chord errors, albeit at a constantly good preservation of timbre. However,
from the listeners informal comments, it was concluded that the preservation of timbre
had a greater in�uence on their overall rating than the correct interpretation of melody
and chords. In their overall rating, the listeners therefore mostly preferred the pro-
cessing by Melodyne editor over the MODVOC. To further investigate this assumption,
preference tests assessing the two main perceptual quality aspects �melody and chords
transposition� and �timbre preservation� have been conducted. The outcome of these
tests con�rmed that the application of MODOVOC processing indeed yields a melody
and chords transposition that is clearly preferred by the majority of listeners for the
majority of test items while, in turn, Melodyne editor was preferred in terms of timbre
preservation for most test items.

To improve the timbre of the MODVOC processed items, further work might be nec-
essary on HL functionality. The potential for improvement is motivated by the obser-
vation that in the preference test results for synthetic solo piano MODVOC processing
was clearly preferred in terms of timbre preservation, while scoring on par with regard
to melody and chords transposition. This already indicates a good �t of the current
HL functionality for selected classes of signals. It is conceived that a more advanced
psychoacoustic model within HL, e .g. rating the perceptual importance of overtones,
would enhance the timbre preservation characteristics of the MODVOC based selective
pitch transposition for a broader range of signal classes.

Additionally, a listening test assessing perceptual quality in the case of synthesis of
unaltered MODVOC components has been performed on so-called critical test items,
which are known to pose special challenges on any audio processing system. This test
can be regarded as an upper bound for the perceptual quality that can be obtained
by applying the MODVOC to arbitrary audio signals. The test results con�rm that for
predominantly tonal signals near-transparent audio quality ranging between �good� and
�excellent� is achieved.

In summary, the newly introduced MODVOC processing scheme has been shown to
take the human auditory perception su�ciently well into account, in order to deliver
modi�cation and reproduction results that have been rated by listeners in a range span-
ning from �fair� to �good�, even for well-known critical test items.

Apart from the application of selective pitch transposition presented in this thesis,
modulation processing can also be a promising basis for other application �elds, e.g.
e�cient perceptual coding of audio signals. In audio coding, it is common practice to
apply waveform coding only to a lowpass �ltered base band signal and synthesize an
approximation of the original high band content by transposition of the baseband sig-
nal and subsequent application of a parameter driven post-processing for shaping the
transposed signal [18][59][50]. Contemporary implementations of this so-called band-
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width extension (BWE) often su�er from unpleasant roughness artifacts [75][76]. Since
modulation based audio processing provides a handle to both pitch transposition via
manipulation of the estimated carrier frequencies, and, at the same time, to auditory
roughness, which is related to the modulation �ne structure, future bandwidth extension
techniques could also bene�t from the use of the technology developed and discussed in
this thesis.
Another �eld of application is audio watermarking. Audio watermarking denotes a

technique for inaudibly embedding an additional information signal into an audio sig-
nal. Audio watermarks are used for copyright protection purposes, automatic broadcast
monitoring or conveyance of side information over existing (analog) channels, where a
dedicated side information channel is not available. Typically, watermark embedding
technologies exploit auditory masking or threshold-in-quiet e�ects of human auditory
perception. Since, in the modulation domain, such masking e�ects also exist [49], these
could be very well utilized [24] for data hiding purposes through the application of the
MODVOC.
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