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1 Introduction 

Geodesy, with its three core areas positioning and reference systems, Earth rotation 
determination, and gravity field modeling, is striving for a relative accuracy of at 
least 10–9 for all relevant quantities, and to a great extent this goal has already 
been reached (10–9 corresponds to about 6 mm relative to the Earth’s radius and 
10–8

 m s–2 = 1 μGal in terms of gravity). Regarding gravity field modeling, the 
highest accuracy demands are from geodesy, especially GNSS (Global Navigation 
Satellite System) positioning, oceanography, and geophysics. In this context, the 
geoid and quasigeoid are of major interest; e.g., these quantities are required for the 
transformation between the purely geometric GNSS (ellipsoidal) heights and grav-
ity field related heights as well as for the modeling of the (mean) dynamic ocean 
topography (DOT), requiring accuracies at the level of about 1 cm or even below. 
In this way, the importance of geoid and quasigeoid modeling has increased con-
siderably – also for economic reasons – and as early as 1982 Torge (1982) postu-
lated a “renaissance of the geoid.” 

Over the past decades, significant progress has been achieved in the collection 
of high-resolution gravity and terrain data, computing and modeling techniques, as 
well as the operational availability of satellite data from several altimetry and grav-
ity field missions. Of special interest are the results from the CHAMP (CHAlleng-
ing Minisatellite Payload, active from 2000 to 2010), GRACE (Gravity Recovery 
And Climate Experiment, operational since 2002), and GOCE (Gravity field and 
steady-state Ocean Circulation Explorer, launched in 2009) missions; while the 
CHAMP and GRACE missions already delivered the long wavelength geoid with 
an accuracy of about 1 cm up to a resolution (half wavelength) of 650 km and 
200 km, respectively, the GOCE mission is targeting at an accuracy of 1–2 cm for 
the geoid and 1 mGal for gravity, both at a resolution of approximately 100 km. In 
addition, the GRACE mission allows the determination of the long wavelength 
geoid (up to about 350 km resolution) with an accuracy of 1 mm on a monthly 
basis, from which time variations of the geoid can be deduced. However, due to the 
required satellite altitudes of at least a few 100 km (below this level, satellite orbits 
become unstable due to air drag, etc.), the pure satellite gravity field solutions 
alone can only provide long wavelength gravity field models associated with an 
omission error (gravity field components not included in the model) of several 
decimeters regarding the geoid. Consequently, even in the future, only a combina-
tion of the satellite gravity fields with high-resolution terrestrial (mainly gravity 
and terrain) data can provide the complete geoid spectrum (all wavelengths) with 
an accuracy of 1 cm or even better. In this context, the satellite and terrestrial data 
ideally complement each other, with the satellite data providing accurately the long 
wavelength gravity field structures, while the terrestrial data sets, with potential 
weaknesses in the large-scale accuracy and coverage, mainly contribute the short 
wavelength features. 

Altogether, there is considerable interest in high-resolution regional gravity field 
modeling, i.e., on a provincial to national and continental scale (several 1000 km), 
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especially with regard to the geoid and quasigeoid. At present, the combination of 
terrestrial data sets with up-to-date satellite gravity field models allows the calcula-
tion of geoid and quasigeoid models with accuracies of a few centimeters, provided 
that high-resolution and high-quality terrestrial and satellite data are utilized; fur-
thermore, in view of the GOCE mission, the accuracy may be improved to the level 
of about 1 cm in the near future, being close to the general accuracy goal of 10–9 in 
geodesy. 

This chapter specifically refers to the experiences gained at the Institut für Erd-
messung (IfE), Leibniz Universität Hannover (LUH), Germany, within the field of 
gravity field modeling, especially the calculation of the geoid and quasigeoid. IfE 
has a long tradition in local and regional geoid and quasigeoid determinations, 
starting even before the (GNSS) Global Positioning System (GPS) era, when at the 
beginning of the 1970s a test network was set up in the Harz mountains in North-
ern Germany, this being the classic geoid research area of Helmert (Torge 1977). 
Then, with the advent of the GPS, studies on geoid and quasigeoid modeling with 
centimeter accuracy were intensified, and in a small test area near Hannover, Ger-
many, it could be shown for the first time that an agreement between gravimetric 
and GPS/leveling results at the centimeter level is in fact possible (Denker and 
Wenzel 1987). These computations were subsequently extended to larger regions, 
covering Lower Saxony, Germany (Denker 1988), and the whole of Germany 
(Denker 1989). Based on these experiences, IfE proposed to perform correspond-
ing computations for the whole of Europe, and this task has been supported by the 
International Association of Geodesy (IAG) since 1990; IfE served as the comput-
ing center within the IAG Geoid Sub-Commission for Europe from 1990 to 2003, 
from 2003 (when the new IAG structure was implemented) to 2011 the work was 
supported in the form of an IAG Commission 2 Project “CP2.1 – European Gravity 
and Geoid Project (EGGP),” and since 2011 this task has continued as IAG Sub-
Commission 2.4a “Gravity and Geoid in Europe.” Major results of this IAG enter-
prise are the high-resolution European geoid and quasigeoid models EGG1997 
(Denker and Torge 1998) and EGG2007/2008 (see Sect. 4). 

After providing the motivation for preparing this chapter, the necessary funda-
mentals of physical geodesy are described in Sect. 2, including reference systems, 
basic gravity field properties, the geoid and height systems, the normal gravity 
field, as well as some remarks about temporal gravity field variations, tidal sys-
tems, and atmospheric effects. The intention of this section is to provide all the 
basics needed for high-precision gravity field modeling with as few approxima-
tions as possible. Section 3 describes the methodology of gravity field modeling, 
where the disturbing potential is the primary quantity of interest. The emphasis is 
on the spatial gravity field description related to quantities defined at the Earth’s 
surface, such as the disturbing potential as well as the height and gravity anoma-
lies, which require no assumptions about the Earth’s interior gravity field (in con-
trast to the geoid). After giving an overview on geodetic boundary value problems, 
the linearization of the boundary conditions (observation equations) is discussed, 
aiming at the rigorous implementation of a high-degree geopotential model as a 
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reference field. Then the spherical and constant radius approximations are intro-
duced, leading to the classical Poisson, Hotine, Stokes, and other integral formulas. 
Afterwards, the solution of Molodensky’s boundary value problem (related to the 
Earth’s surface) and Stokes’s boundary value problem (related to the geoid) are 
outlined. In addition, the spectral combination technique, least-squares collocation, 
and astronomical leveling are mentioned. Although most of these modeling tech-
niques can be utilized globally, they are primarily used at regional (provincial to 
national and continental) scale in connection with the remove–compute–restore 
(RCR) technique and topographic reductions as well as a global geopotential mod-
el, which is described at the end of Sect. 3. Finally, Sect. 4 gives some practical 
results related to the European geoid and quasigeoid calculations carried out at IfE, 
starting with a discussion of the data requirements, then an outline of the European 
gravity and geoid project and the collected gravity and terrain data sets is given, 
followed by an overview on the development and evaluation of the European Grav-
imetric (Quasi)Geoid model EGG2008. 
 

2 Fundamentals of Physical Geodesy 

2.1 Reference Systems 

The definition and realization of reference systems has become a major part of 
geodesy. Length, mass, and time are basic quantities used in geodesy, the units 
being meter (m), kilogram (kg), and second (s), respectively, as defined through 
the International System of Units (SI), see BIPM (2006). Furthermore, fundamen-
tal constants (e.g., the gravitational constant) are regularly updated and recom-
mended by the Committee on Data for Science and Technology (CODATA); the 
latest set of constants originates from 2006 (Mohr et al. 2008). 

For the modeling of the Earth’s gravity field, global and local reference systems 
are needed. In this context, a terrestrial reference system (TRS), also denoted as 
Earth-fixed (global) reference system, is of vital importance. A TRS is a spatial 
reference system co-rotating with the Earth in its diurnal motion in space, in which 
points at the solid Earth’s surface undergo only small variations with time (e.g., 
due to geophysical effects related to tectonics or tides). With regard to the termi-
nology, it is fundamental to distinguish between a “reference system,” which is 
based on theoretical considerations or conventions, and its realization, the “refer-
ence frame,” to which users have access. The International Earth Rotation and 
Reference Systems Service (IERS) is in charge of defining, realizing and promot-
ing the International Terrestrial and Celestial Reference System (ITRS and ICRS, 
respectively), including the necessary transformations; the use of these reference 
systems is recommended by the International Astronomical Union (IAU) and the 
International Union of Geodesy and Geophysics (IUGG). 
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The ITRS origin is at the center of mass of the whole Earth including oceans 
and atmosphere (geocenter), the unit of length is the meter (SI), the orientation is 
equatorial and initially given by the Bureau International de l’Heure (BIH) terres-
trial system at epoch 1984.0, and the time evolution of the orientation is ensured by 
using a no-net-rotation condition with regard to the horizontal tectonic motions 
over the whole Earth. Accordingly, the Z-axis is directed towards the IERS refer-
ence pole (i.e., the mean terrestrial North Pole), the axes X and Y span the equatori-
al plane, with the X-axis being defined by the IERS reference meridian (Green-
wich), such that the coordinate triplet X,Y,Z forms a right-handed Cartesian system. 
The instantaneous North Pole (more precisely, the Celestial Intermediate Pole, 
CIP, which is defined conventionally by the IERS precession and nutation models) 
deviates from the IERS reference pole by the effect of polar motion (described by 
rectangular coordinates xP,yP). The ITRS is materialized by the International Ter-
restrial Reference Frame (ITRF), consisting of the three-dimensional positions and 
velocities of stations observed by space geodetic techniques, where the positions 
are regularized in the sense that high-frequency time variations (mainly geophysi-
cal ones) are removed by conventional corrections. The most recent realization of 
the ITRS is the ITRF2008 with the reference epoch 2005.0. The accuracy of the 
geocentric positions (X,Y,Z) is at the level of 1 cm or better. For further details 
including Earth orientation parameters (EOPs) and transformations see IERS 
(2010), Kovalevsky and Seidelmann (2004), and Angermann et al. (2012). A cor-
responding terrestrial reference system (TRS) is the World Geodetic System 1984 
(WGS84) which is intended to be as closely coincident as possible with the ITRS; 
it is maintained by the National Geospatial-Intelligence Agency (NGA), U.S.A., 
for use with the NAVSTAR Global Positioning System (GPS). The latest realiza-
tion of WGS84 (i.e., the terrestrial reference frame, TRF) is denoted as “Reference 
Frame G1150;” it agrees with the ITRF at the level of 1 cm. Moreover, the WGS84 
definitions also include the parameters of a level ellipsoid (see Sect. 2.5); for fur-
ther details see NIMA (1997 and 2002). 

Customarily, owing to the Earth’s general shape (approximately spherical with a 
slight flattening at the poles), ellipsoidal geographic coordinates (ellipsoidal lati-
tude, longitude, and height, φ, λ, h, also known as geodetic coordinates), based on 
an ellipsoid of revolution (ellipse rotating about its minor (polar) axis), are em-
ployed in many geodetic applications; regarding the ITRF solutions; IERS (2010) 
recommends the Geodetic Reference System 1980 (GRS80) ellipsoid (for further 
details see Sect. 2.5). In addition, spherical coordinates (polar distance or spherical 
colatitude, spherical longitude, radius, θ, λ, r; the spherical and ellipsoidal longi-
tudes are identical) are of great significance in gravity field modeling. After intro-
ducing a reference ellipsoid (e.g., by the geometrical parameters a = semimajor 
axis and e = first eccentricity), the following relation holds: 

 
2

( ) cos cos sin cos
( )cos sin sin sin   .

((1 ) )sin cos

X N h r
Y N h r
Z e N h r

ϕ λ θ λ
ϕ λ θ λ

ϕ θ

+     
     = = + =     
     − +     

X  (1) 

http://www.iers.org/nn_11666/IERS/EN/DataProducts/ITRF/itrf.html?__nnn=true
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N is the prime vertical radius of curvature of the reference ellipsoid, which can be 
computed as 

 
2 2

  .
1 sin

aN
e ϕ

=
−

 (2) 

The inversion of the system (1) is straightforward for the spherical case and can be 
carried out iteratively for the ellipsoidal case (Torge 2001); in addition, formula (1) 
can be used to transform ellipsoidal into spherical coordinates (e.g., needed in 
connection with spherical harmonic expansions; see Sects. 2.2 and 3.3) and vice 
versa. 

In this context, it should be noted that historically many ellipsoidal systems and 
the associated Cartesian systems (i.e., national reference frames) were non-
geocentric. This is mainly due to the orientation of the classical geodetic networks 
by astronomical observations, which provide only direction information, but no 
direct access to the geocenter. In this case, the non-geocentric Xng, Yng, Zng system 
can be transformed to the X, Y, Z system by a three-dimensional similarity trans-
formation (Torge 2001): 

 0 (1 ) ( , , )X Y Z ngng ng ngm ε ε ε= + +X X R X  (3) 

with 

 
0

0 0

0

1
, ( , , ) 1   ,

1

Z Yng ng

X Y Z Z Xng ng ng ng ng

Y Xng ng

X
Y
Z

ε ε
ε ε ε ε ε

ε ε

 − 
  = = −  

   −   

X R  (4) 

where X0 is a translation vector with the coordinates of the origin of the Xng, Yng, Zng 
system with respect to the geocenter, m is a (small) scale correction, R is a rotation 
matrix with three (small) Eulerian angles, and Xng is the coordinate vector in the 
non-geocentric system. It should be noted that the transformation model (3) is a 
linearized formula which is sufficient due to the small size of the rotation angles; 
furthermore, the sign conventions are according to Torge (2001). The geodetic 
datum describes the orientation of any geodetic system with respect to the global 
geocentric system (seven transformation parameters of (3)) and also includes the 
parameters of the reference ellipsoid employed. Numerous examples of national 
(non-geocentric) geodetic datums can be found in NIMA (1997) and Torge (2001); 
the translation parameters can reach several hundreds of meters, the scale correc-
tions may be in the order of 10–5, the rotation angles are usually quite small at the 
level of 1 arc second or below (due to the orientation by astronomical observa-
tions), and miscellaneous reference ellipsoids were employed for national geodetic 
surveys, carried out since the nineteenth century. 



6 │ 2.1  Reference Systems 

 

After introducing ellipsoidal coordinates in the vectors X and Xng in (3), while also 
allowing a change of ellipsoid parameters, the following transformation formula is 
obtained for the ellipsoidal heights: 

 2
0 0 0cos cos cos sin sin sin   ,ngh h X Y Z a a fϕ λ ϕ λ ϕ ϕ= + + + − ∆ + ∆  (5) 

with the ellipsoidal heights h and hng in the geocentric and non-geocentric system, 
respectively, and the changes in the ellipsoid parameters Δa = a – ang (semimajor 
axis) and Δf = f – fng (flattening). The above formula is based on spherical approxi-
mations (terms of the order of the flattening o( f ) are neglected), where the rotation 
angles have no effect. The translation parameters (X0, Y0, Z0) can be converted into 
changes in the ellipsoidal coordinates of a fundamental station, and hence be inter-
preted as height shift and tilts in north–south and east–west direction of the respec-
tive ellipsoid surfaces. Formula (5) is applied, e.g., for the transformation of geoid 
and quasigeoid heights. Corresponding formulas for the transformation of latitudes 
and longitudes (φng, λng → φ, λ) can be found in Torge (2001); in addition, more 
precise transformation formulas without the usual spherical approximations are 
given in Heck (2003). Finally, it is assumed in the following that all coordinates 
refer directly (e.g., through the application of space geodetic techniques) or have 
been converted (from national geodetic datums) consistently to an IERS reference 
frame (e.g., ITRF2008, epoch 2005.0). 

Because most geodetic and astronomical observations refer to the Earth’s gravi-
ty field by orientating observation instruments along the local vertical (through 
levels or plummets), local coordinate systems related to the Earth’s gravity field 
are introduced. These local astronomical (Cartesian) systems have their origin at 
the observation point P, the z-axis points toward the zenith (tangent of the plumb 
line, outer normal of the level surface), while the x-axis (north) and y-axis (east) 
span the horizontal plane, which is tangential to the level surface at P. The local 
astronomical system (x, y, z) is left-handed. As the direction of the plumb line (lo-
cal vertical) with respect to the global geocentric system is given by the astronomi-
cal latitude Φ and longitude Λ (see Fig. 1), the coordinate vector x in the local 
astronomical system can be transformed into a coordinate difference vector ΔX in 
the global geocentric system by 

 xΔX = A x  (6) 

with 

 
sin cos sin cos cos

( , ) sin sin cos cos sin   .
cos 0 sin

− Φ Λ − Λ Φ Λ 
 = Φ Λ = − Φ Λ Λ Φ Λ 
 Φ Φ 

x xA A  (7) 

The transformation matrix Ax is orthogonal, thus 

   .-1 T
x xA = A  (8) 
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Accordingly, local ellipsoidal and spherical (Cartesian) coordinate systems can be 
introduced as needed, for example in connection with the rigorous calculation of 
parameters related to the actual, normal, or anomalous gravity field (see Sects. 2.3, 
2.5, and 3.2). Regarding the local ellipsoidal system (xe, ye, ze), the ze-axis points 
toward the ellipsoidal zenith (ellipsoidal normal), with the xe-axis (north) and ye-
axis (east) being perpendicular to it. On the other hand, in the local spherical sys-
tem (xs, ys, zs), the zs-axis points radially outwards (along the geocentric radius 
vector), with the axes xs, ys (north and east) again being perpendicular to it (see 
Fig. 2). Analogous to (6), the transformation to the global system is given by 

   ,      ( , )  ,ϕ λ=e
e e ex x x

ΔX = A x A A  (9) 

   ,      (90 , )  .θ λ° −s
s s sx x x

ΔX = A x A = A  (10) 

The above transformation matrices ex
A and sx

A  are defined according to (7); the 

only difference is that the parameters Φ, Λ are replaced by φ, λ and 90° – θ, λ, re-
spectively. The transformation matrices also relate to the coordinate basis vectors 
of the corresponding Cartesian coordinate systems, e.g., if eX, eY, eZ are unit vectors 
along the coordinate axes X, Y, Z, and , ,s s sx y z

e e e  are the corresponding vectors 

along the axes xs, ys, zs, the following relation holds (see also Wenzel 1985): 

 
cos cos sin sin cos
cos sin cos sin sin   .

sin 0 cos

θ λ λ θ λ
θ λ λ θ λ
θ θ

   − −            = −                  

s sX x x

Y s s sx y y

Z s sz z

e ee
e = A e e
e e e

 (11) 

Fig. 1  Earth-fixed global 
geocentric and local 
astronomical system 
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Moreover, the transformation formulas can also be combined to transform coordi-
nates and basis vectors from one local system to another. 
 

2.2 Newton’s Law of Gravitation and Potential 

According to Newton’s law of gravitation, two point masses m1 and m2 attract each 
other with gravitational (attractive) force which is directly proportional to the 
product of their masses and inversely proportional to the square of the distance l 
between them. The gravitational force is directed from either point mass to the 
other and applies equally to one mass as the other. The vector form of Newton’s 
law is given by 

 1 2
2    ,m mG

ll
= −b

lF  (12) 

where l/l is a unit vector pointing from m1 to m2, Fb is the gravitational force vector 
attached to m2 and pointing to m1, and G is known as Newton’s gravitational con-
stant. G can be determined by experiment and the current best value (recommend-
ed by CODATA, 2006; Mohr et al. 2008) is 

 11 3 -1 -2(6.67428 0.00067) 10 m kg s    .G −= ± ×  (13) 

The SI unit of force is m kg s–2 with the special name “newton” and symbol “N,” – 
see BIPM (2006). In this context, gravitation is exclusively based on Newton’s 
classical formulation; for a discussion of some aspects related to Einstein’s theory 
of general relativity consult Kovalevsky and Seidelmann (2004), IERS (2010), 
Jekeli (2009), or Müller et al. (2008). 

Fig. 2  Global ellipsoidal, 
local ellipsoidal, and local 
spherical system 
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A gravitational acceleration (also termed gravitation) can be ascribed to the 
gravitational force Fb, which represents the acceleration that one mass undergoes 
due to the gravitational attraction of the other. From (12) it follows, for the attract-
ed point P (after dropping the indices), 

 2    ,mG
ll

= −
lb  (14) 

where m is the attracting mass, l = r−r', with r and r' being the position vectors of 
the attracted point P and the source point P', respectively. By the law of superposi-
tion, the gravitational acceleration of an extended body like the Earth can be com-
puted as the vector sum of the accelerations generated by the individual point 
masses (or mass elements), yielding 

 
Earth Earth

, ( ) ,G dm G dvρ ρ ρ
′ ′− − ′= − = − =
′ ′− −∫∫∫ ∫∫∫3 3

r r r rb = b(r) r
r r r r

 (15) 

where dm is the differential mass element, ρ is the volume density (unit kg m–3), 
and dv is the volume element. The SI unit of acceleration is m s–2 (BIPM 2006). 
However, the non-SI unit gal is still used frequently in geodesy and geophysics, 
and it is also listed in BIPM (2006) under “non-SI units accepted for use with the 
SI, Table 9” (name of unit: gal; symbol of unit: Gal): 

 
2 2 2

5 2 8 2

1 Gal = 1 cm s  = 0.01 m s ,   1 kGal = 10 m s ,
1 mGal = 10  m s ,    1 μGal = 10 m s .

− − −

− − − −
 (16) 

The gravitational acceleration vectors b form a conservative vector field, also 
known as potential field. A conservative vector field is a vector field which is the 
gradient of a scalar potential function. It has the important property that line inte-
grals from one point to another are path independent, and, conversely, path inde-
pendence is equivalent to the vector field being conservative. Conservative vector 
fields are also irrotational or non-vortical, meaning that (in three dimensions) they 
have vanishing curl; the converse of this property (i.e., fields with vanishing curl 
are conservative) is also true if the domain is simply connected (Kellog 1953). 

The gravitational acceleration vector b can be represented as the gradient of the 
gravitational potential V: 

 grad   .V=b  (17) 

The gradient vector has the properties that it points in the direction of greatest 
change of the potential function V, its magnitude equals the rate of change with 
respect to the distance in this direction, and it is everywhere normal to a surface of 
constant potential V. Furthermore, the directional derivative of V with respect to 
the distance in a particular direction (specified by a vector d) is the projection of 
gradV onto that direction. 

http://en.wikipedia.org/wiki/Curl_%28mathematics%29
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For a point mass m, see (14), the gravitational potential is given by 

 , with lim 0  ,
l

GmV V
l →∞

= =  (18) 

and correspondingly for the Earth, see (15), the potential is obtained by 

 
Earth Earth

( ) , with lim 0  ,
l

dm dvV V G G V
l l

ρ
→∞

= = = =∫∫∫ ∫∫∫r  (19) 

where in both cases the latter condition implies that the potential is regular at infin-
ity. It can easily be shown that the acceleration vectors in (14) and (15) result from 
(18) and (19) by applying the gradient operator, respectively. In this context, it 
should be noted that the potential V is defined with a positive sign in geodesy, in 
contrast to physics, where it is usually defined with opposite sign (conceptually 
closer to potential energy; Jekeli 2009). 

According to potential theory, the gravitational effect of concentric homogene-
ous mass shells is equal to the effect of the entire mass being concentrated at the 
center of mass of the object. This property is useful for approximating the effect of 
celestial bodies at larger distances or the computation of atmospheric effects (see 
Sect. 2.6). On the other hand, this relates to the inverse problem of potential theory; 
the inverse problem (determination of the masses from the potential), in contrast to 
the direct problem (determination of the potential from the masses), has no unique 
solution, because, in general, there are infinitely many mass distributions possible, 
which are in accordance with a given exterior potential function. 

The gravitational potential at a point P indicates the work done by gravitation in 
order to move the unit mass from infinity (V = 0) to P (Sigl 1985, Torge 2001). 
The unit of the potential is m2 s–2. If the density structure and geometry of the en-
tire Earth were known, (19) would permit the calculation of the gravitational po-
tential and its functionals. In reality, of course, this information is not available 
with sufficient accuracy, e.g., densities are known with only two or three signifi-
cant digits, and global Earth models merely consider radial density structures. 
Therefore, the determination of the exterior potential field can be solved only by 
measurements performed at or above the Earth’s surface (boundary value prob-
lems; see Sects. 3.1–3.5); for a comprehensive presentation of this and further 
specialized topics of potential theory (e.g., existence and uniqueness theorems, or 
the classical integral theorems of Gauss, Green, and Stokes, which are of great 
importance in physical geodesy), reference should be made to the textbooks of 
Kellogg (1953), MacMillan (1958), and Sigl (1985); furthermore, a concise over-
view is given in Jekeli (2009). 

The gravitational (volume) potential V according to (19) and its first derivatives 
are continuous and bounded everywhere; this holds even in the case that the evalu-
ation point P is on the bounding surface or inside the mass distributions (case l = 0, 
weak singularity; see Jekeli 2009, Torge 2001). The second derivatives of V satisfy 
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under certain conditions on the mass density ρ (so-called Hölder conditions; see 
Kellogg 1953, Heck 1997) the following partial differential equation, known as 
Poisson’s equation: 

 
2 2 2

2 2 2 4   ,xx yy zz
V V VV V V V G

x y z
π ρ∂ ∂ ∂

∆ = + + = + + = −
∂ ∂ ∂

 (20) 

where Δ is the Laplace operator, and x, y, z are coordinates in any Cartesian system. 
Consequently, the second derivatives of V exhibit discontinuities where abrupt 
changes of the mass density ρ occur. A special case of the above equation applies 
for those regions where the density vanishes (i.e., in free space); then Poisson’s 
equation turns into the Laplace equation: 

 0  .V∆ =  (21) 

The Laplace operator Δ may also be defined as the divergence of a gradient field, i.e., 

 div (grad )  .V V∆ =  (22) 

As the divergence operator represents the (gravitational) flux generated per unit 
volume at each point of the field, (22) emphasizes that the sources of the gravita-
tional field are the masses, i.e., the divergence of the field is zero in free space and 
non-zero inside the masses. A vector field with constant zero divergence is also 
called solenoidal (or incompressible). 

The solutions of the Laplace equation are known as harmonic functions, which 
are important in many fields of mathematics and physics, such as potential fields 
related to gravitation, electrostatics, magnetics, etc. For instance, every Newtonian 
potential is a harmonic function in free space, and conversely, every harmonic 
function can be represented as a Newtonian potential of a mass distribution (Jekeli 
2009). Formally, (21) represents a partial differential equation of second order 
for V, which holds in the exterior space of the Earth (the atmosphere, etc., are ne-
glected for the moment). Like any differential equation, a complete solution is 
obtained only with the application of boundary conditions (conditions which the 
solution must satisfy at the boundary of the region, i.e., the Earth’s surface; Jekeli 
2009). 

Laplace’s equation (21) can be solved by introducing an appropriate coordinate 
system. In geodesy, the solution based on spherical polar coordinates (θ, λ, r) is of 
great significance. A solution of ΔV = 0, rewritten in spherical coordinates, can be 
found by the method of separation of variables, where the solution of V is postulat-
ed as V(θ, λ, r) = f (θ) g(λ) h(r). The general solution can be written as 

 ( )
1

0 0
( , , ) cos sin (cos )  ,

n n

nm nm nm
n m

GM aV r C m S m P
a r

θ λ λ λ θ
+∞

= =

 = + 
 

∑ ∑  (23) 

where n,m are integers denoted as degree and order of the expansion, GM is the 
geocentric gravitational constant (gravitational constant G times the mass of the 
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Earth M), a is in the first instance an arbitrary constant, but is typically set equal to 
the semimajor axis of a reference ellipsoid, (cos )nmP θ  are the associated Legendre 
functions of the first kind, and ,nm nmC S  are the spherical harmonic coefficients 
(also denoted as Stokes’s constants). In particular in satellite geodesy, sometimes 
the following conventions are used: 

 
00 00

, , for   0  or  0 ,
1 , for   0  and  0 .

nm nm nm nmJ C K S n m
J C n m

= − = − ≠ ≠
= = = =

 (24) 

For the case m = 0, the index m is usually dropped, leading to the coefficients Jn 
and the Legendre polynomials (cos )nP θ . 

The (unitless) spherical harmonic coefficients ,nm nmC S  represent mass integrals, 
as the spherical harmonic expansion (23) is just another way of expressing the 
volume integral over the Earth’s masses in (19). Furthermore, the low degree coef-
ficients have a simple physical interpretation. The coefficient 00 1C =  leads to the 
zero degree term GM/r of the gravitational potential, which represents the effect of 
a point mass, or equivalently a radially layered spherical Earth. The degree one 
terms are associated with the coordinates of the Earth’s center of mass; they are 
forced to zero if the coordinate system is geocentric. The terms of degree two are 
connected with the moments and products of inertia (see Torge 2001). Regarding 
the magnitude of the harmonic coefficients, 20C  ( 2 20J C= −  is also known as the 
dynamical form factor, characterizing the Earth’s flattening) is more than three 
orders of magnitude smaller than the central term, and the remaining coefficients 
contribute again at least two to three orders of magnitude less than 20C , indicating 
that the bulk of the potential can be described by an ellipsoidal model. 

For numerical reasons, it is convenient to introduce the so-called fully normal-
ized associated Legendre functions and corresponding spherical harmonic coeffi-
cients: 

 

1(cos ) (cos ) , ,

1  for 0( )!(2 1)    with   .
2  for 0( )!

nm nm
nm nm nm

nmnmnm

nm

C C
P F P

SFS

mn mF k n k
mn m

θ θ
    = =   

   
=−

= + =  ≠+ 

 (25) 

With (25), the spherical harmonic expansion (23) can be written compactly as 

 
1

0
( , , ) ( , )  ,

n n

nmnm
n m n

aV r V Y
r

θ λ θ λ
+∞

= =−

 =  
 

∑ ∑  (26) 

with 
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cos for  0 for  0

( , ) (cos ) ,  .
sin for  0 for  0 

nm
nm n m nm
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m m C mGMY P V
m m a S m

λ
θ λ θ

λ
≥ ≥ = = < < 

 (27) 

The functions ( 1) ( , )n
nmr Y θ λ− +  in (26) are called solid spherical harmonics, 

while ( , )nmY θ λ  are called Laplace’s surface spherical harmonics, fulfilling the 
orthogonality relations 

 
1 for    and  1 ( , ) ( , )    ,
0 otherwise4

nm n m
n n m m

Y Y d
σ

θ λ θ λ σ
π

′ ′
′ ′= =

= 


∫∫  (28) 

where σ is the unit sphere, and dσ is the corresponding surface element. In this 
context, the spherical harmonic expansion may also be regarded as a complete 
system of orthogonal basis functions (eigenfunctions), with the coefficients being 
the corresponding eigenvalues, which can be interpreted as the spectrum on the 
sphere (Jekeli 2009). 

The infinite spherical harmonic series (23), or equivalently (26), converges uni-
formly for all r > Rc, where Rc is the radius of the sphere that encloses all terrestrial 
masses (the so-called Brillouin sphere), while the convergence below this sphere 
down to the Earth’s surface (i.e., in free space) has been a subject of controversy in 
the literature and is still not fully solved. However, due to the theorem of Runge-
Krarup, any regular harmonic function can be approximated arbitrarily well by a 
spherical harmonic series in the mass-free space, and hence convergence of the 
series can be assumed there for all practical applications, including truncated 
spherical harmonic series. For further details on this topic, see, e.g., Moritz (1980) 
or Jekeli (1983, 2009). Besides the spherical harmonic series expansion, which is 
of outstanding importance in geodesy, other solutions of the Laplace equation (21) 
also exist for specific coordinate types. Of some relevance are the ellipsoidal har-
monics, which are based on elliptical coordinates (β, λ, u; β = reduced latitude; λ = 
ellipsoidal longitude; u = semiminor axis of a confocal ellipsoid; see Heiskanen 
and Moritz 1967). Ellipsoidal harmonics are used, e.g., in connection with the 
(ellipsoidal) normal gravity field (Heiskanen and Moritz 1967) or for intermediate 
results within the development of high-degree global geopotential models (Pavlis 
et al. 2008); the elliptical coordinates, β, λ, u, should not be confused with the ellip-
soidal geographic coordinates, φ, λ, h, which do not admit a separation of variables 
solution of the Laplace equation (Grafarend 1988, Jekeli 2009). 
 

2.3 The Earth’s Gravity Field 

A body rotating with the Earth experiences the resultant of the gravitational force, 
Fb, and the centrifugal force, Fc, due to the Earth’s rotation, while an artificial 
satellite, not rotating with the Earth, is affected only by gravitation. Regarding the 
centrifugal force, Fc, again an acceleration (acting on a unit mass) can be ascribed 
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to it, which is directed outwards and perpendicular to the rotation axis. Based on 
the Earth-fixed reference system (X, Y, Z; see Sect. 2.1), the centrifugal acceleration 
is given by 

 ( )2 2 2( ) , 0 , ,X Y p X Yω= = = = = +Tz z p p p p  (29) 

where ω is the angular velocity, and p is the distance vector from the rotation 
axis (Z), with p and z having the same direction. 

The centrifugal acceleration vectors z also form a conservative vector field and 
hence can be represented as the gradient of a potential function Z. With 

 grad ,Z=z  (30) 

the centrifugal potential Z becomes 

 
2

2( )  .
2

Z Z p pω
= =  (31) 

Applying the Laplace operator on Z yields 

 22 ,Z ω∆ =  (32) 

i.e., the centrifugal potential Z is not harmonic, as opposed to V. 
The gravity acceleration (or gravity) vector g is the resultant of the gravitation b 

and the centrifugal acceleration z: 

 .g = b + z  (33) 

The force of gravity Fg is obtained by multiplying g by the mass m of the at-
tracted object, i.e., Fg = m g. The direction of g is the direction of the plumb line 
(vertical), the magnitude g is called the gravity intensity (or often just gravity; see 
Torge 2001). In this context, time variations are not considered here, assuming that 
they are taken into account by appropriate reductions (see Sect. 2.6). 

Finally, with 

 grad grad grad ,W V Z= = = +g b + z  (34) 

the gravity potential W of the Earth is given by 

 
2

2

Earth

( )   .
2

dmW W V Z G p
l

ω
= = + = +∫∫∫r  (35) 

From (20) and (32), the generalized Poisson equation is obtained: 

 24 2 ,W Gπ ρ ω∆ = − +  (36) 

which reduces to the generalized Laplace equation in free space: 
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 22 .W ω∆ =  (37) 

The gravity vector g and accordingly the gradient operator can be expressed in 
various coordinate systems. Regarding the global Cartesian Earth-fixed coordinate 
system X, Y, Z, the following representations are common: 

 [ ]grad  ,X Y Z

X

Y

Z

W
X
W
Y
W
Z

W W W W
W
W
W

∂
∂
∂
∂
∂
∂

 
  
  = = = = = + +        

 

X X Y Zg W e e e  (38) 

where the gradient vector is first defined as a column vector, and second written by 
means of the unit vectors eX, eY, eZ, pointing along the coordinate axes X, Y, Z, 
respectively. In the case where spherical coordinates θ, λ, r are employed (e.g., in 
connection with a spherical harmonic expansion of the gravitational potential V), it 
is convenient to represent g with respect to the local spherical system (xs, ys, zs; see 
Sect. 2.1): 

 grad  ,s s sx y z

sx

sy

sz

W
sx

W
sy

W
sz

W W W W

W
W

W

∂
∂
∂
∂
∂
∂

           = = = = = + +           

s s s sx x y z
g W e e e  (39) 

where , ,s s sx y z
e e e  are again unit vectors pointing along the local coordinate axes 

xs, ys, zs, respectively. The derivatives of W with respect to the local spherical sys-
tem can be obtained by using the chain rule for differentiation (Tscherning 
1976a, b), e.g., 

   ,   and  ,  accordingly,s s s s s s

r
rx x x x y z

θ λ
θ λ

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
= + +

∂ ∂ ∂∂ ∂ ∂ ∂ ∂ ∂
 (40) 

which, given (1) and (10), leads to 

 1 1 ,
sin rW W W

r rθ λθ
   = −    

T

sx
W  (41) 

with Wθ being the derivative with respect to θ, etc. Then with (10) or (11), the 
transformation to the Earth-fixed system yields 

 [ ]  .  X s sx x
W = A W  (42) 
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On the other hand, in the Earth-fixed system, the components of the gravity vector 
g can also be expressed by the astronomical latitude and longitude Φ, Λ (plumb 
line parameters; see Fig. 1): 

 
cos cos
cos sin   ,

sin
g g

Φ Λ 
 = − = − Φ Λ 
 Φ 

g n  (43) 

which together with (38) yields 
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g g
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g W W W
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 (44) 

Φ, Λ, and W(X, Y, Z) form the so-called natural coordinates (Torge 2001). A surface 
of constant gravity potential W is designated as equipotential, level, or geopotential 
surface, and the gravity vector g is everywhere normal to it. 

Following the line of thought used for deriving (41), the second derivatives of 
the gravity potential W with respect to the local spherical system are given by 
(Moritz 1971; Tscherning 1976a) 
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 (45) 

where, e.g., Wθθ is the second derivative with respect to θ, etc. The corresponding 
matrix with respect to the Earth-fixed system (X, Y, Z) is given by 

 [ ]  .  
T

XX s s s sx x x x
W = A W (A )  (46) 

The matrix of the second derivatives of W, e.g., in the form (45) or (46), is also 
denoted as gravity gradient tensor, Eötvös tensor, or Marussi tensor; it can be ex-
pressed by means of curvature parameters, which completely describe the geome-
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try (curvature) of the level surfaces and the plumb lines (Marussi 1985). The gravi-
ty gradient tensor includes only five independent elements; the matrix is symmetric 
(because of curl g = curl grad W = 0, i.e., Wxy = Wyx, etc.) and the trace must fulfil the 
conditions (36) or (37), respectively. 

The approach of computing, in the first instance the (first and second) deriva-
tives with respect to the local spherical system, followed by a transformation to the 
Earth-fixed system, involves no approximations (Wenzel 1985) and is particularly 
suitable in connection with spherical harmonic expansions, e.g., the high-degree 
geopotential model EGM2008 (Pavlis et al. 2008). It should also be noted that (41) 
and (42) for the first derivatives as well as (45) and (46) for the second derivatives 
can be utilized accordingly for each of the components of W, i.e., V and Z; more-
over, they may be used in connection with the disturbing potential and its function-
als (see Sect. 3.2). With regard to the presently active satellite mission GOCE 
(ESA 1999, Rummel et al. 2011), the second derivatives of V are of special inter-
est. Finally, the results in the Earth-fixed system can be further transformed to any 
other Cartesian system of interest. 

At this point it is emphasized that the primary goal of physical geodesy is the 
determination of the gravity potential W as a function of position; if W(r) were 
known, then all parameters of interest could be derived from it, including the gravi-
ty vector g (direction parameters, Φ, Λ, and magnitude, g, see (44)), the curvature 
of the level surfaces and plumb lines (depending on the second derivatives of W, 
e.g., (46)), as well as the form of the equipotential surfaces (by solving the equa-
tion W(X, Y, Z) = const.). However, as mentioned above, the gravity potential W 
cannot be computed directly based on (35) due to the insufficient knowledge about 
the density structure of the entire Earth; instead, the determination of the exterior 
potential field must be solved by measurements performed at or above the Earth’s 
surface (see Sect. 3). 
 

2.4 The Geoid and Heights 

The geoid is of great importance in geodesy, oceanography, geophysics, and other 
Earth sciences, serving as a reference surface for heights over the continents as 
well as for the dynamic ocean topography (DOT). The geoid was introduced by 
C.F. Gauss as an equipotential surface of the Earth’s gravity field, coinciding with 
the mean sea level (MSL) of the idealized oceans (i.e., homogeneous water masses 
at rest, subject only to the time-invariable force of gravity; see Torge 2001). The 
basis of this definition, i.e., the geoid being a selected equipotential surface of the 
Earth’s gravity field (with W = W0), is of fundamental importance and is still useful 
today. Given the gravity potential value W0, the equation of the geoid is 

 0( )   .W W W= =r  (47) 

As discussed in the previous section, the geoid is a closed and continuous surface, 
even inside the Earth; however, inside the masses, the curvature of the geoid may 
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exhibit discontinuities where abrupt density changes occur. The vertical distance 
between the geoid and a given reference ellipsoid is denoted as the geoid height or 
geoid undulation. 

The geoid is conceptionally chosen to approximate (in some mathematical 
sense) the mean ocean surface (Rapp 1995). However, mean sea level (MSL), 
derived by averaging the instantaneous sea surface over a sufficiently long time 
span (e.g., at least 1 year), may also vary over longer time spans (for instance, due 
to the global secular sea level rise of about 1–2 mm/year, observed over the past 
100 years; Torge 2001), and furthermore it does not coincide with a level surface 
due to the forcing of the oceans by winds, atmospheric pressure, and buoyancy (as 
a result of density differences associated with corresponding temperature and salin-
ity differences) in combination with gravity and the Earth’s rotation. The deviation 
of MSL from a best fitting equipotential surface (geoid) is denoted as the (mean) 
dynamic ocean topography (DOT). The DOT reaches maximum values of about 
±2 m (Rapp and Balasubramania 1992; Bosch and Savcenko 2010) and is of vital 
importance for oceanographers, as it allows the derivation of the absolute circula-
tion of the oceans (Wunsch and Gaposchkin 1980; Condi and Wunsch 2004). 

Accordingly, a refined definition of the geoid is needed, which could be based 
on a (global) minimum condition with regard to the deviation of MSL from a best 
fitting level surface, and which should also consider that MSL is not constant in 
time. In principle, two options exist: either the geoid definition has to refer to a 
certain epoch of MSL, or a time-dependent geoid linked to the respective MSL 
could be introduced. However, corresponding to the general geodetic practice of 
reducing time-variable quantities to a quasi-static state (see also Sect. 2.6), mainly 
the first option is feasible (e.g., for employing the geoid as a height reference sur-
face). Nevertheless, the gravity potential of a best fitting level surface of MSL at a 
given point in time may be expressed by the (static) geoid potential W0 (associated 
with a certain reference epoch) and a linear change with time in first approximation 
(e.g., completely corresponding to the ITRF station positions and velocities). Final-
ly, a refined geoid definition must also include specifications regarding the treat-
ment of the notable permanent tide effects (see Sect. 2.6). For further details on the 
definition and realization of the geoid as well as the W0 aspect see Heck (2004) and 
Heck and Rummel (1990). 

The numerical value for the geoid potential W0 can in principle be deduced from 
the MSL spatial positions with respect to the (global) Earth-fixed reference system 
and a geopotential model such as EGM2008 (Pavlis et al. 2008), possibly supple-
mented by an oceanographic or geodetic model of the mean dynamic ocean topog-
raphy; the (absolute) gravity potential W is derived for the MSL (or MSL minus 
MDOT) points from the geopotential model (W = V + Z; (26) and (31), presuppos-
ing that V is regular at infinity), and finally some averaging procedure is applied to 
reduce random effects. The MSL positions can be taken from satellite altimetry 
(available within the latitude band ±86°; see Andersen et al. 2010), providing di-
rectly the sea surface height (SSH), or from tide gauge and GNSS (Global Naviga-
tion Satellite System) observations (see Fig. 3). The first approach based on satel-
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lite altimetry gives access to almost the entire ocean domain and was applied by 
Bursa et al. (2002), while the latter approach is restricted to the existing tide gauge 
stations at the coasts. Furthermore, it is noted that a numerical value for W0 (based 
on the satellite altimetry approach; Bursa et al. 2002) is provided in the IERS con-
ventions (IERS 2010): 

 2 2
0  62,636,856.0 m s   .W −=  (48) 

However, Sanchez (2008) published W0 values, differing by about 2–3 m2 s–2 from 
the above value (corresponds to a vertical distance of about 2–3 dm). 

After defining the geoid by a (conventional) value W0, it is still necessary to re-
alize it, i.e., to find the position of the geoid in space, or equivalently to find for a 
given point P at the Earth’s surface the vertical distance between P and the geoid, 
which corresponds to determining the potential difference W0–WP (see Fig. 3). The 
most promising procedure is to use GNSS stations or networks together with a 
global geopotential model (e.g., EGM2008), ideally supplemented by local gravity 
observations; based on the ITRF positions for the GNSS sites, the corresponding 
(absolute) gravity potential (WP) can be computed (from the global model, possibly 
plus local gravity data), yielding then the potential difference W0–WP and hence the 
position of the geoid. Another option for realizing the geoid is to use tide gauge 
stations (or connected leveling stations) together with a DOT model (see Fig. 3). 
Naturally, several stations should be employed in either approach to average out 
random effects. 

The definition of a world height system and the W0 topic have been discussed 
for more than 25 years; within the International Association of Geodesy (IAG), this 
subject has been treated recently within the Inter-Commission Project 1.2, Vertical 
Reference Frames (Ihde 2009) and is now continued within the GGOS (Global 

 

Fig. 3  Geoid, quasigeoid, heights, continental topography, mean sea level (MSL), and dynamic 
ocean topography (DOT) 
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Geodetic Observing System) project. Corresponding to the IERS approach, most 
likely, there will be an ideal “vertical reference system” (VRS) with corresponding 
conventions (including a conventional W0 value), and a realization, the “vertical 
reference frame” (VRF). In this context, Heck (2004) emphasizes that the absolute 
gravity potential (including W0) is dependent on the assumption of regularity at 
infinity, see (19) and (31), and that the numerical value of the absolute potential W0 
is not needed at all in practice, as only potential differences are relevant for the 
determination and connection of vertical reference systems. Further details on the 
concepts for a world height system and the unification of national systems can be 
found, e.g., in Rapp (1983a, 1995), Rummel and Teunissen (1988), Heck and 
Rummel (1990), Rapp and Balasubramania (1992), Heck (2004), Ihde and Sanchez 
(2005), and Ihde (2009). 

Historically, height systems (vertical datums) were related to mean sea level 
(MSL) through one or more tide gauge stations (the introduction of more than one 
tide gauge may lead to additional network distortions). Therefore, due to the exist-
ence of the dynamic ocean topography (DOT), these systems have different refer-
ence surfaces ( 0

iW W= ), implying inconsistencies up to a level of about ±2 m; 
examples of this kind can be found in Rapp and Balasubramania (1992) and Ihde 
and Sanchez (2005). The existing height systems are almost exclusively based on 
geometric leveling (also called spirit leveling). Geometric leveling is a quasi-
differential technique, providing height differences δn (backsight minus foresight 
reading) with respect to the local astronomical system (see Fig. 1). Over longer 
distances, the non-parallelism of the level surfaces cannot be neglected, as it results 
in a path dependence of the results. This problem can be overcome by introducing 
potential differences, which are path independent because the gravity field is con-
servative (see Sects. 2.2 and 2.3). With  

 grad ,W W WdW dx dy dz W g dn
x y z

∂ ∂ ∂
= + + = = = −

∂ ∂ ∂
ds gds  (49) 

dn being the distance along the outer normal of the level surface (zenith), the geo-
potential number C is defined as 

 0

0 0

,
P P

P
P P

C W W dW g dn= − = − =∫ ∫  (50) 

where P0 is an arbitrary point on the geoid (height reference surface) and P is a 
point on the Earth’s surface. Thus, in addition to the leveling results (dn), gravity 
observations (g) are also needed along the path between P0 and P (with regard to 
the required spacing and accuracy of the gravity points, see Torge 2001). Histori-
cally, the geopotential numbers were referred to local reference surfaces ( 0

iW ), but 

henceforth no distinction is made between 0
iW  (local reference surface) and W0 

(geoid). 
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The geopotential numbers are ideal quantities for describing the direction of wa-
ter flow, i.e., water flows from points with higher geopotential numbers C to points 
with lower values. However, the geopotential numbers have the unit m2 s–2 (or 
10 m2 s–2 = 1 kGal m = 1 gpu), and are thus somewhat inconvenient in disciplines 
like civil engineering, etc. Therefore, a conversion to metric heights is desirable, 
which can be achieved by dividing the C values by an appropriate gravity value. 
Widely used are the orthometric heights (e.g., U.S.A., Canada, Austria, and Swit-
zerland) and normal heights (e.g., Germany, and many other European countries), 
which also play an important role in gravity field modeling due to the strong height 
dependence of various gravity field quantities (Sect. 3). 

The orthometric height H is defined as the distance between the surface point P 
and the geoid, measured along the curved plumb line (see Fig. 3), which explains 
the common understanding as “height above sea level” (Torge 2001). The ortho-
metric height can be derived from (50) by expanding the right side by H and inte-
grating along the plumb line from the geoid to the surface point P: 

 
0

1, ,
HCH g g dH

g H
= = ∫  (51) 

where g  is the mean gravity along the plumb line (inside the Earth). As g  cannot 
be observed directly (besides some stations with borehole gravity data; Strange 
1982), hypotheses about the interior gravity field are necessary, which is one of the 
main drawbacks of the orthometric heights. Assuming a constant density of the 
topographic masses (2670 kg m–3) as well as a flat topography (so-called Poincaré-
Prey reduction) leads to 

 6
-2 -2 [m][ms ] [ms ]

0.424 10 ,Pg g H−= + ×  (52) 

where gP is the gravity value at the surface point P. The heights based on the mean 
gravity estimate (52) are denoted as Helmert-orthometric heights HH (they are 
used, e.g., for the North American Vertical Datum, NAVD88; Zilkoski et al. 1995). 
For a discussion on refined procedures for the computation of g , see Marti and 
Schlatter (2001), Flury and Rummel (2009), or Sjöberg (2010). Lastly, it is noted 
that points with equal orthometric heights are normally associated with slightly 
different level surfaces, which is due to the non-parallelism of the level surfaces. 

In order to avoid the hypotheses about the Earth’s interior gravity field, the 
normal heights HN were introduced by Molodensky (e.g., Molodenskii et al. 1962). 
The normal height is defined as 
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1, ,
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N N
N

CH dH
H

γ γ
γ

= = ∫  (53) 
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where γ  is a mean normal gravity value along the normal plumb line, and γ is the 
magnitude of the normal gravity vector (for further details see next section). Con-
sequently, the normal height HN is measured along the slightly curved normal 
plumb line (Heiskanen and Moritz 1967, Torge 2001); it is in the first instance 
defined as the elevation of the telluroid above the ellipsoid, but can also be consid-
ered as the elevation of the surface point P above the quasigeoid (for details see 
Sect. 3.2 and Fig. 3). The quasigeoid is not a level surface and has no physical 
interpretation. Hence, the concept of the normal height and quasigeoid is less illus-
trative than that of the orthometric height and geoid, respectively, but it has the 
significant advantage that it is exclusively based on quantities of the Earth’s exteri-
or gravity field, avoiding any hypotheses about the interior field. Furthermore, it is 
noted that Heck (2003) defines the normal height in a conceptually different way 
as the ellipsoidal height (measured along the straight ellipsoidal normal) of the 
telluroid; in this case, (53) has to be adapted by computing the corresponding mean 
normal gravity value along the ellipsoidal normal, using the normal gravity com-
ponent in the direction of the ellipsoidal normal instead of the absolute value of 
normal gravity itself. However, due the small length difference between the ellip-
soidal normal and the normal plumb line (see below), the concept from Heck 
(2003) and the classical formulation can be considered as equivalent for all practi-
cal applications. 

Another option is the so-called dynamic height Hdyn, which is defined as 

 45
0

,dyn CH
γ

=  (54) 

where 45
0γ  is a constant normal gravity value, usually at the ellipsoid surface at 45° 

latitude. As the dynamic heights differ from the geopotential numbers only by a 
constant factor, points with the same Hdyn are located on the same level surface. As 
the dynamic heights have no geometric interpretation, and because the corrections 
to the raw leveling are quite large, they are not very widely used in practice. 

Historically, when no gravity values were available for the computation of the 
geopotential numbers C, normal gravity values were used in some cases, resulting 
in the so-called normal-orthometric heights HNO (e.g., still in use in Australia, 
Featherstone et al. 2011, or employed formerly in Germany, Heck 2003); these 
heights can be regarded as an approximation to the normal heights (Wolf 1974), 
but have the significant disadvantage of being path-dependent, in contrast to the 
above defined heights H, HN, and Hdyn. Therefore, the HNO are unsuitable for a 
modern height system. 

It is also worth mentioning that the raw leveling results along lines (Δn) can be 
converted directly into corresponding height differences (ΔH, ΔHN, ΔHdyn) by the 
orthometric, normal, and dynamic corrections, respectively (Torge 2001, Heck 
2003). Moreover, although the precision of geometric leveling is rather high 
(standard deviation for a 1-km traverse about 0.2–1.0 mm), it is important to keep 
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in mind, that geometric leveling is a differential technique and hence susceptible to 
systematic errors; examples are the differences between the second and third geo-
detic leveling in Great Britain (about 0.2 m in north–south direction over about 
1000 km distance; Kelsey 1972), corresponding differences between the old and 
new leveling in France (about 0.25 m from the Mediterranean Sea to the North Sea, 
also mainly in north–south direction, distance about 900 km; Rebischung et al. 
2008), as well as inconsistencies of more than 1 m across Canada and the U.S.A. 
(differences between different levelings and with respect to an accurate geoid; 
Véronneau et al. 2006 and Smith et al. 2010). Regarding Canada and the U.S.A., 
this led to the decision to abandon geometric leveling completely and to use GNSS 
techniques together with a so-called “geoid based vertical datum,” which shall be 
introduced by 2013 (Canada) and 2021 (U.S.A.), respectively (Smith et al. 2010). 

In recent years, some authors (e.g., Steinberg and Papo 1998; Kumar 2005) be-
came proponents of purely (geometric) ellipsoidal height systems, which neglect 
the effect of gravity. However, these are considered as unsuitable for any applica-
tion involving fluid flow, among others (Vaníček 1998). However, the approach of 
using the GNSS technique and a geoid based vertical datum, as initiated in Canada 
and the U.S.A., appears to be a good alternative to avoid the time-consuming and 
expensive geometric leveling, especially in view of the now possible geoid and 
quasigeoid accuracies (see Sect. 4). 

The geoid and quasigeoid serve as the zero height surfaces (vertical datum) for 
the orthometric and normal heights, respectively. With regard to the ellipsoidal 
heights h (from GNSS observations), the following relation holds: 

 ,Nh H N H ζ= + = +  (55) 

where N is the geoid height or geoid undulation, and ζ is the quasigeoid height or 
height anomaly (see also Fig. 3). The above equation neglects that in the strict 
sense the relevant quantities are measured along slightly different lines in space. 
The ellipsoidal height (h) of a point in space is measured along the straight ellip-
soidal normal, while the corresponding normal height (HN) is measured along the 
slightly curved normal plumb line (see Fig. 3); the length difference between both 
paths can be estimated from the curvature of the normal plumb line, yielding less 
than 10–7 m for a point 10 km above the ellipsoid, which can be safely neglected. 
For the orthometric heights, the corresponding length difference can be roughly 
estimated by means of the deflection of the vertical (the angle between the actual 
plumb line and the ellipsoidal normal; see Fig. 3), resulting in an effect of about 
0.4 mm for a station height of 10 km and an extreme deflection of the vertical of 1'. 
Hence, (55) is accurate at the millimeter level for all practical cases; another possi-
bility would be to work with the corresponding potentials instead of the heights. 

A transformation between the orthometric and normal heights, or geoid and 
quasigeoid heights, is possible by combining (51), (53), and (55), giving 
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γ γζ
γ γ
− − ∆

− = − = = ≈  (56) 

The difference HN–H or N–ζ is mainly depending on the station height as well as 
g γ− , which is approximately the (simple) Bouguer anomaly ΔgB (Heiskanen and 
Moritz 1967; Torge 2001). In this context, it is noted that the Bouguer approxima-
tion in (56) is virtually exact in connection with the Helmert-orthometric heights 
(Forsberg and Tscherning 1997). The magnitude of the difference HN–H or N–ζ 
can reach several centimeters to about 1 dm in low mountain ranges, about 3–5 dm 
(or even more) in the high mountains such as the European Alps or Rocky Moun-
tains, and about 3 m in the Himalayan Mountains (Rapp 1997; Marti and Schlatter 
2001; Tenzer et al. 2005; Flury and Rummel 2009). On the oceans, the geoid and 
quasigeoid practically coincide (Torge 2001), as the effect of the DOT is only 
marginal. 

Finally, regarding the orthometric heights, the various procedures in use for the 
computation of the mean gravity value g  (e.g., (52) or more sophisticated meth-
ods) may lead to substantially different results (e.g., Marti and Schlatter 2001; 
Flury and Rummel 2009); therefore, it is essential to ensure that the heights H and 
the corresponding geoid undulations N are consistent such that (55) is satisfied. 
 

2.5 The Normal Gravity Field 

The normal gravity field is introduced as an approximation of the Earth’s gravity 
field. On the one hand it should provide a reasonably good agreement with the real 
field, since it is used for the linearization of the observation equations, and on the 
other hand it should be simple to compute, as well as useful for other disciplines 
(Torge 2001). Based on these considerations, the level ellipsoid (or so-called 
Somigliana-Pizetti normal field) is almost exclusively used; another argument may 
also be the utilization of an ellipsoid for station coordinates (see Sect. 2.1). How-
ever, today, with the availability of very accurate satellite gravity field models 
(e.g., from the GRACE and GOCE missions), it is also worth considering the em-
ployment of a complete spherical harmonic expansion up to some maximum de-
gree nmax. 

Corresponding to the gravity potential W, the normal gravity potential U is in-
troduced as the sum of the normal gravitational potential VN and the normal cen-
trifugal potential ZN: 

 .N NU V Z= +  (57) 

The associated normal gravity vector is given by 

 grad .U=γ  (58) 
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The direction of γ is the direction of the normal plumb line, the magnitude γ is the 
normal gravity (intensity).  

The normal gravity field of the level ellipsoid solely depends on four parame-
ters. These can be two parameters describing the size and shape of the ellipsoid 
(for example, the semimajor axis, aN, and flattening, fN), the Earth’s rotation rate, 
ωN, and the total mass of the Earth, MN. Numerical values for such parameters are 
recommended from time to time by the IUGG, IAG, etc. The latest set of constants 
was recommended by the IUGG and IAG in 1979 at the XVIIth General Assembly 
of the IUGG in Canberra (e.g., Moritz 2000), known as the Geodetic Reference 
System 1980 (GRS80), with the four defining parameters being aN, 2

NJ , ωN, and 
GMN. An updated (current best) set of parameters is also provided in IERS (2010). 
Besides GRS80, the WGS84 level ellipsoid is frequently used (NIMA 1997). It is 
defined by the geometrical parameters aN and fN and the physical parameters GMN 
and ωN; apart from the significantly different GMN values of GRS80 and WGS84, 
the aN and ωN parameters are identical, while the flattening parameters show only 
marginal differences (corresponding to 3×10–5 m with respect to the semiminor 
axis). 

All parameters related to the normal gravity field of the level ellipsoid can be 
computed by closed formulas based on ellipsoidal harmonics (Heiskanen and 
Moritz 1967). However, the normal gravitational potential of the level ellipsoid can 
also be expanded in a rapidly converging spherical harmonic series; due to the 
symmetry with respect to the rotational axis as well as the equator, only the even 
zonal coefficients are non-zero, and an expansion up to degree 10 is fully suffi-
cient. The spherical harmonic series approach, proposed by Tscherning (1976a), is 
well suited for the computation of U and its first and second derivatives, gives 
accurate results everywhere in space (including satellite positions), is easy to use in 
connection with high-degree Earth gravity field models such as EGM2008, and can 
also be generalized to more complicated normal gravity fields, e.g., based on a 
complete spherical harmonic gravitational model up to some degree nmax. 

Considering a complete spherical harmonic expansion of the normal gravita-
tional potential (up to degree nmax) as well as the centrifugal potential (with 
p = sinr θ ) according to (26) and (31), respectively, yields 
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with 
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 (60) 

The first and second derivatives of U with respect to the spherical coordinates 
θ, λ, r can be derived easily from the above equation (require the derivatives of the 
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associated Legendre functions), which can then be used to compute the derivatives 
with respect to the local spherical system (xs, ys, zs) in analogy to (41) and (45). 
Regarding the normal gravity vector, the transformation to the Earth-fixed system 
yields 

 [ ]
cos cos
cos sin  ,
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γ γ

γ γ

γ

ϕ λ
γ ϕ λ

ϕ

 
   = −   
 
 

X s sx x
γ = U = A U  (61) 

where , ,γ γϕ λ  describing the direction of the normal gravity vector (in correspond-
ence with (43)), as well as γ can be computed by applying (44) accordingly. This 
procedure is exact, involves no approximations, and works everywhere in space. In 
the case of the level ellipsoid, φγ, λγ, are identical with the normal latitude and lon-
gitude, φN, λN, with λ = λN (the normal plumb line of the level ellipsoid is only 
slightly curved in the meridian plane). 

The first and second derivatives of U can be expressed as well with respect to a 
local coordinate system oriented at the normal gravity vector. Corresponding to the 
local ellipsoidal system (see Sect. 2.1), a Cartesian system (xγ, yγ, zγ) is introduced, 
where the zγ-axis points in the opposite direction to that of γ, and the axes xγ, yγ are 
pointing north and east, respectively. The local system (xγ, yγ, zγ) and the local ellip-
soidal system (xe, ye, ze) deviate by the curvature of the normal plumb line. In the 
local system (xγ, yγ, zγ), the horizontal components (xγ, yγ) of the normal gravity 
vector are zero and the vertical component (zγ) is equal to the negative value of γ. 
With the transformation matrix ( , )γ γϕ λ=γ γx x

A A , defined analog to (7), the 

second derivatives of U with respect to the local system (xγ, yγ, zγ) are given by 
(Tscherning 1976a) 

  .      
T T

γ γ γ s s s s γx x x x x x x x
U = (A ) A U (A ) A  (62) 

Equations (61) and (62) were programmed and tested for the level ellipsoid (with 
nmax = 10); the agreement with the results from closed formulas on the basis of 
ellipsoidal harmonics (Heiskanen and Moritz 1967) was better than 10–5 m2 s–2 for 
the potential U and 10–11 m s–2 in γ (everywhere in space; the results are based on 
8-byte variables and the remaining differences are mainly due to rounding errors, 
etc.). Regarding the level ellipsoid, further testing is possible, as the components of 
the matrix (62) must fulfil the following conditions (Tscherning 1976a): 
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The first set of conditions results from the fact the plumb lines of the level ellipsoid 
are only curved in the meridian plane, the second condition is based on the general-
ized Laplace equation, and third, at the surface of the level ellipsoid, the second 
derivatives of U in the direction of xγ, yγ are associated with the principal radii of 
curvature of the ellipsoid (M: meridian; N: prime vertical). 

Traditionally, near the Earth’s surface, the normal gravity of the level ellipsoid 
is computed from a Taylor series expansion with respect to the ellipsoidal height: 
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The normal gravity at the level ellipsoid is given by the (rigorous) formula of 
Somigliana (e.g., Torge 2001): 
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where aN, bN are the semimajor and semiminor axes of the ellipsoid, eN is the first 
eccentricity, and γa, γb are the normal gravity values at the equator and pole, respec-
tively. The computation of the partial derivatives in (64) was investigated in detail 
by Wenzel (1989), suggesting that the first derivative be computed from the Bruns 
equation and the higher derivatives be taken from a spherical harmonic expansion 
of U based on 2

NJ  only. This procedure can be slightly improved by also consider-

ing 4
NJ  in the second derivative term, yielding 
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Equations (64)–(66) were also programmed, and the results were compared with 
those from closed formulas based on ellipsoidal harmonics; the differences were 
always below 2×10–9 m s–2 (0.2 μGal) for stations up to h = 10 km, with the fourth 
order term being insignificant (max. 3×10–10 m s–2 = 0.03 μGal). Furthermore, if the 
derivative terms in (64) are computed by expansions with respect to the flattening 
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fN (see Heiskanen and Moritz 1967), terms up to the second order of fN, o( 2
Nf ), are 

needed for the first vertical derivative of γ (or better apply the Bruns equation, 
which is rigorous), terms up to o( fN) should be used for the second derivative, 
while the third derivative can be based on a spherical approximation, yielding an 
accuracy of about 1×10–8 m s–2 = 1 μGal. On the other hand, formulas considering 
only terms up to o( fN) in the first vertical derivative of γ and a spherical approxi-
mation of the second derivative (as found frequently in textbooks, e.g., Heiskanen 
and Moritz 1967; Torge 2001) may result in errors with a magnitude of about 
1×10–6 m s–2 = 100 μGal (again for heights up to 10 km), which is insufficient. 

Finally, the Taylor series (64) opens a simple way to compute the mean normal 
gravity value 
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as needed in connection with normal heights. 
 

2.6 Temporal Gravity Field Variations and the Atmosphere 

The Earth’s body and gravity field undergo changes at different temporal and spa-
tial scales, which has been described in detail, e.g., by Torge (1989). The acquisi-
tion, analysis, description, and interpretation of such changes are treated in the 
field of geodynamics. The largest temporal variations are due to tidal effects 
(mainly moon and sun, but also planets), leading to (mostly) periodical defor-
mations of the Earth’s crust with maximum amplitudes of about 30 cm and corre-
sponding gravity changes with amplitudes up to about 200 μGal (roughly 10–7 g); 
for details see Torge (1989, 2001) and Timmen (2010). Generally, gravimetric 
measurements are reduced for the effect of tides, atmospheric mass redistributions 
(mainly by simple admittance functions), and Earth rotation variations (Torge et al. 
1987; Torge 1989; Timmen 2010). As a matter of principle, the Earth’s gravity 
field varies with time due to mass redistributions in the geosphere, atmosphere, 
hydrosphere (including the cryosphere), and biosphere; selected examples related 
to hydrology (ground water) and postglacial rebound (Fennoscandia) are presented 
in Timmen (2010). According to Torge (2001), gravity changes due to mass redis-
tributions do not exceed the order of 10–9 to 10–8 g. 

Since 2002, the US–German GRACE satellite mission is providing the Earth’s 
time-variable and static gravity field globally with unprecedented temporal and 
spatial resolution, which has greatly improved the understanding of mass redistri-
butions in the atmosphere, oceans, water reservoirs, and cryosphere. An overview 
on the GRACE mission and early results are given in Tapley et al. (2004a, b), 
while reviews of recent GRACE results can be found in Wahr (2009) as well as 
Cazenave and Chen (2010). The GRACE results are mainly provided as monthly 
global spherical harmonic models, which can then be employed for studying peri-
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odic and secular variations of the Earth’s gravity field; for this purpose, the 
GRACE models are usually restricted to a ground resolution of about 300–400 km, 
because the GRACE errors become larger with increasing resolution (e.g., Tapley 
et al. 2004a; Wahr 2009). The largest-amplitude signals are related to water storage 
variability on land (Wahr 2009); they have mainly annual periods with amplitudes 
up to about 10 mm and 10 μGal in terms of geoid and gravity, respectively. Fig-
ure 4 shows the linear (secular) trend of the geoid as derived from a sequence of 
103 monthly GRACE solutions (Release 04) from GFZ (Helmholtz-Centre Pots-
dam – German Research Centre for Geosciences, GFZ); the GRACE data, cover-
ing the time span August 2002 to September 2011, were smoothed by applying a 
Gaussian filter with a radius of 400 km. The largest geoid trends are related to the 
ice losses in Greenland (–2 mm/year), Alaska, and Antarctica, as well as water 
storage changes in the Amazon region, but also the post glacial rebound signals 
over North America (about +1 mm/year) and Fennoscandia (about 0.5 mm/year) 
are clearly visible. 

In the following it is assumed that temporal variations of the Earth’s body and 
gravity field have been taken into account by appropriate reductions or have been 
averaged out over sufficiently long time periods (this includes the station coordi-
nates as realized, e.g., by the ITRF solutions). In this context, the largest variations 
are due to tidal effects, which can be reduced relatively easily with sufficient accu-
racy (e.g., Timmen 2010). On the other hand, effects like ground water changes or 
postglacial rebound are more difficult to handle (e.g., Timmen 2010). In general, 
the reduction of all relevant data sets to a certain epoch is an appropriate solution 

 

Fig. 4  Linear (secular) geoid trends derived from a sequence of 103 monthly GRACE solutions 
(Release 04) from GFZ, covering the time span August 2002 to September 2011, after Gaussian 
filtering with a radius of 400 km 
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to reach a (quasi) static state; considering the postglacial rebound signal in Fen-
noscandia as an example, this can be done by means of models (e.g., the existing 
uplift model of Ågren and Svensson 2007) or observation time series (e.g., from 
GRACE). 

The tidal attraction acts in a direct and indirect way. The direct (or gravitational) 
attraction deforms the elastic Earth, which causes an (additional) indirect change of 
the gravitational potential (deformation potential). While the direct effects can be 
computed easily by astronomical tidal theory, the calculation of the indirect effects 
requires knowledge about the Earth’s elastic parameters (primarily Love and Shida 
numbers). Regarding the tidal reductions of geodetic parameters (e.g., potential, 
gravity, station coordinates, physical heights), both the direct and indirect effects 
contain time-dependent (periodic) parts as well as time-independent (permanent, 
zero frequency) parts; the computation of the latter portion of the indirect (defor-
mation) effects requires the fluid (secular) Love numbers, which differ substantial-
ly from the standard (second degree) elastic values and are unobservable (cannot 
be determined experimentally). In this context, a long-lasting and still ongoing 
discussion relates to the handling of the notable permanent parts of the tidal poten-
tial (see below), e.g., documented by the publication of Ekman (1996) with the title 
“the permanent problem of the permanent tide.” A comprehensive treatise of the 
permanent tide subject is given in Ekman (1989a, b), and further reviews can be 
found, e.g., in Rapp et al. (1991), Ekman (1996), Poutanen et al. (1996), Heck 
(2004), or Mäkinen and Ihde (2009). As a consequence, based on the report from 
Rapp (1983b), the International Association of Geodesy (IAG) adopted at the 
IAG/IUGG General Assembly in Hamburg, 1983, the resolution no. 16, stating that 
“for the uniform treatment of tidal corrections to various geodetic quantities such 
as gravity and station positions, the indirect effect due to the permanent yielding of 
the Earth be not removed” (IAG 1984). 

Altogether, the following cases are to be distinguished: 
• The “zero tide system” is the one recommended by IAG. In this system, the 

direct effects are removed completely, but the indirect deformation effects as-
sociated with the permanent tidal deformation are retained. This implies that 
the masses of the moon, sun, and planets are shifted to infinity, while the per-
manent deformation effects are left untouched, avoiding the problem with the 
fluid Love numbers. Moreover, the zero tide system is also suitable for solving 
boundary value problems (BVPs) in physical geodesy, requiring that no masses 
exist external to the boundary surface (harmonicity condition; see Sect. 3). 

• In the “mean tide system,” only the periodic tidal effects are removed, but the 
permanent parts (both direct and indirect) are retained. Thus, the mean values 
reflect the mean situation (shape) in the presence of the moon, sun, and planets, 
which is the natural system in connection with oceanography and satellite al-
timetry observations as well as station positions, noting that the mean and zero 
crust (station positions) are identical (both include the permanent deformation 
effects). On the other hand, the mean tide system has the disadvantage that it is 
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not free of external masses (i.e., unsuitable for solving BVPs in physical geode-
sy); to overcome this problem, Zeman (1987) suggested modifying the normal 
gravity potential. 

• The “tide-free system” (or non-tidal system) is aiming at the removal of all tidal 
effects (periodic and permanent direct and indirect effects). In this case, the re-
quired (unobservable) fluid Love numbers have to be replaced by conventional 
values; therefore, this system is also denoted sometimes as “conventionally 
tide-free.” 
 

Further discussions on advantages and disadvantages of each of the three con-
cepts can be found in the references mentioned above. IAG has recommended the 
zero tide system, oceanographic applications may require the mean tide system, 
while the positioning domain (including the ITRF solutions; see IERS 2010) main-
ly uses the non-tidal system, thus not following the IAG recommendations.  

Therefore, since different applications are usually associated with particular tid-
al systems, transformation formulas are needed for the conversion from one system 
to another. Considering only the dominating degree two terms of the tidal potential, 
each of the three tidal systems is directly associated with a corresponding 20C  
potential coefficient. Following IERS (2010), a quantity 

 8
20 0 0 20 201.39141 10
perm

C A H k k−∆ = = − ×  (68) 

is introduced; then with the potential Love number k20, the following relations 
hold: 

 20 20 20 ,
nt zt perm

C C C= − ∆  (69) 

 20 20 20 20 ,
mt zt perm

C C C k= + ∆  (70) 

where the superscripts nt, zt, and mt stand for non-tidal (tide-free), zero tide, and 

mean tide system, respectively. Starting with the zero tide coefficient 20
zt

C = 
‒484.16948×10–6 (epoch J2000.0) and k20 = 0.29525 from IERS (2010), the above 

equations give the non-tidal and mean tide coefficients 20
nt

C = –484.16537×10–6 and 

20
mt

C = –484.18339×10–6, respectively. Corresponding transformation formulas for 
geoid undulations can be obtained on the basis of the above coefficients and the 
spherical harmonic expansion (26) with r = a, φ ≈ 90°–θ, and a mean (normal) 
gravity value: 

 2
[ ] [ ] [ ] [ ]0.0879 sin 0.0293 ,nt zt
m m m mN N ϕ= + −  (71) 

 2
[ ] [ ] [ ] [ ]0.2977 sin 0.0992 .mt zt
m m m mN N ϕ= − +  (72) 
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Further transformation formulas for other quantities such as gravity and heights 
can be found, e.g., in Ekman (1989a), or Mäkinen and Ihde (2009); the derivation 
of refined transformation formulas is described in Ihde et al. (2008). 

So far, the atmospheric masses have been neglected, causing a small but not in-
significant gravitational effect. As in conjunction with harmonic functions it is 
generally presupposed that there are no masses exterior to the Earth’s surface, the 
effect of the atmosphere must be removed computationally. Because of the low 
density of the atmosphere (ρA ≈ 1 kg/m3), varying primarily with elevation, a sim-
ple normal atmosphere model can be used to calculate the effect. 

To a first approximation, the atmospheric effect can be computed by using 
spherical approximations and a radially layered spherical density model, ignoring 
the topography. Then for a point P with radius r above the reference sphere (with 
radius R) the gravitational attraction can be split into an exterior and interior part, 
associated with the masses below and above the point P, respectively. Now it is 
well known from potential theory that the potential inside a spherical shell is con-
stant, and thus the attraction is zero. Since the exterior gravitational field of con-
centric homogeneous mass shells is equal to the effect of the entire mass being 
concentrated at the center of mass of the object, the effect of the atmosphere on 
gravity is given by 

 2

( ) ,A G m rg
r

=  (73) 

where m(r) is the mass of all atmospheric layers below P. Introducing the total 
mass of the atmosphere, MA, and m(r) = MA – M(r), yields 

 2 2 2

( ) ,A AA AG M G M r G Mg g
r r r

δ= − = −  (74) 

where M(r) is the atmospheric mass above P. Accordingly, the gravitational poten-
tial of the atmosphere is given by  

 2

( ) ,A AA A

r

G M G M r G MV G dr V
r rr

δ
∞

= + = −∫  (75) 

 2( ) 4 ( ) .A
r

M r r r drπ ρ
∞

= ∫  (76) 

The respective first terms on the right side of (74) and (75) represent the effect of a 
point mass (MA); they are included in the normal potential (GMN includes the mass 
of the solid Earth and atmosphere). On the other hand, the second terms on the 
right side represent the non-harmonic contributions; they are denoted as the atmos-
pheric gravity and potential corrections δgA and δVA, respectively. The sign con-
vention is here in accordance with IAG (1970), and Moritz (2000); the sign is de-
fined such that the corrections have to be added to the observed quantities (i.e., the 
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non-harmonic atmospheric contribution is reduced); then after gravity field model-
ing, the correction terms may be subtracted again from the final results to be con-
sistent with what is being observed within the atmosphere. The correction terms 
can be tabulated easily based on an atmospheric model; examples are the values 
recommended by IAG (1970), which are based on ellipsoidal density models sug-
gested by Ecker and Mittermayer (1969), or those computed by Wenzel (1985), 
using spherical approximations. The potential effect, δVA, has a maximum value of 
only about 0.06 m2/s2 (at the reference sphere with radius R), and is commonly 
neglected. The atmospheric gravity corrections, δgA, can be approximated by the 
following formula derived by Wenzel (1985): 

 5 9 2
[mGal] [m] [m]0.874 9.9 10 3.5625 10 .Ag h hδ − −= − × + ×  (77) 

The above formula is based on spherical theory and applicable for heights up to 
about 8 km; the results differ by not more than 0.005 mGal from the values rec-
ommended by IAG (1970), considering ellipsoidal density models. Both quantities, 
the atmospheric gravity and potential corrections δgA and δVA, depend on the mass-
es above a given station P, and hence go to zero for large radii (elevations); there-
fore, they need not be considered at satellite altitude. Further details on atmospher-
ic effects can be found in Ecker and Mittermayer (1969), Rummel and Rapp 
(1976), Christodoulidis (1979), Moritz (1980), as well as Andersen et al. (1975), 
Andersen (1976), and Sjöberg and Nahavandchi (2000), also considering topo-
graphic information. The accuracy of the atmospheric potential based on the simple 
spherical model without topography may be estimated as about 0.1 m2/s2 (Chris-
todoulidis 1979; Denker 1988). In the future, improvements of the atmospheric 
correction scheme may be necessary (see also Forsberg 2010), as implemented 
already in connection with the GRACE gravity field mission (Flechtner et al. 2010) 
or absolute gravimetry (Gitlein and Timmen 2006). 
 

3 Gravity Field Modeling 

3.1 Geodetic Boundary Value Problems 

In mathematics, within the field of differential equations, a boundary value prob-
lem (BVP) is a differential equation together with a set of additional constraints, 
called the boundary conditions, which the solution to the BVP must satisfy. BVPs 
arise in several branches of physics, engineering, etc., in connection with any dif-
ferential equation (e.g., Morse and Feshbach 1953). To be useful in applications, a 
BVP should be well-posed, i.e., a unique solution should exist with respect to the 
given input. Much theoretical work in the field of partial differential equations is 
devoted to proving that boundary value problems arising from scientific and engi-
neering applications are in fact well-posed. 

http://www.answers.com/topic/well-posed-problem
http://www.answers.com/topic/partial-differential-equation
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Potential theory may be defined as the study of potential functions related to 
conservative vector fields (or potential fields). With regard to gravitation, solutions 
of the Laplace and Poisson differential equations are sought (divergence-free and 
divergence-involving problems). Sometimes, potential theory is also defined exclu-
sively as the study of harmonic functions, i.e., the solution of Laplace’s equation. 
In this context, a BVP consists of finding a harmonic function V in the space out-
side of the closed (star-shaped) boundary surface, which fulfils the boundary con-
ditions and is regular at infinity. Commonly, three types of BVPs are distinguished 
(Sigl 1985; Jekeli 2009): 
• BVP of the first kind, also known as the Dirichlet problem. Solve for the poten-

tial function V in the exterior space, given its values on the boundary surface. 
• BVP of the second kind, also known as the Neumann problem. Solve for V in 

the exterior space, given its normal derivatives on the boundary surface (deriva-
tives in the direction of the surface normal). 

• BVP of the third kind, also known as the mixed BVP or Robin problem. Solve 
for V in the exterior space, given a linear combination of V and its normal de-
rivative on the boundary surface. 
 

In addition, the category of oblique derivative problems can be introduced, re-
lated to the cases where the derivatives of the potential function are not given in 
the direction of the boundary surface normal. Furthermore, interior and exterior 
problems can be distinguished, related to the space interior and exterior to the 
boundary. However, in geodesy, the exterior BVPs are of prime importance. 

Geodetic boundary value problems (GBVPs) may be considered as the com-
bined determination of the Earth’s figure and gravity field from geodetic observa-
tions (at the Earth’s surface or its exterior). Besides the traditional terrestrial geo-
detic observations, such as potential (differences), gravity, and astronomical lati-
tudes and longitudes, new types of boundary data become available from satellite 
techniques, etc., involving new types of GBVPs (e.g., mixed and overdetermined 
GBVPs). A comprehensive overview on GBVPs is given in Sansò (1995) as well 
as Heck (1997), where the latter publication specifically highlights that the primary 
unknown, to be solved in the framework of the GBVPs, is the exterior gravity 
potential W outside the boundary surface. In this connection, W can only be com-
puted indirectly from the boundary data by solving a GBVP, while a direct compu-
tation is not possible, mainly due to insufficient knowledge about the Earth’s den-
sity structures. However, once the potential function W is known, all relevant quan-
tities can be derived from it (see Sect. 2.3). The basic assumptions in the following 
are that the Earth behaves like a rigid and non-deformable body, uniformly rotating 
about a body-fixed axis (Moritz 1980; Heck 1997); i.e., all time-variable effects 
have to be taken into account by appropriate reductions in order to reach a quasi-
static state (e.g., by referring all quantities to a given epoch; see Sect. 2.6). 

Depending on the type of boundary data as well as the type and number of un-
known functions to be solved from geodetic observational data, several GBVP 
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formulations can be distinguished (Heck 1997). At first, a subdivision into fixed 
and free GBVPs is appropriate, involving the assumption of a known or unknown 
boundary surface, respectively. Hence, fixed GBVPs are always associated with a 
completely known boundary surface (e.g., fixed by coordinate vectors X derived 
from GNSS techniques), and therefore the only remaining unknown is the potential 
function W; this leads to the fixed gravimetric GBVP when employing gravity 
observations (provide the magnitude of the gravity vector) as the most important 
boundary data. On the other hand, regarding the free GBVPs, the information on 
the geometry of the boundary is either incomplete or missing entirely. When em-
ploying again gravity observations as boundary data, this results in Molodensky’s 
boundary value problem (Molodenskii et al. 1962), i.e., the classical free gravimet-
ric GBVP, which can be further subdivided into the vectorial free GBVP (astro-
nomical variant of Molodensky’s problem), where the position of the boundary is 
completely unknown (in total four unknowns; i.e., three coordinates in X and the 
potential W), and the scalar free GBVP (geodetic variant of Molodensky’s prob-
lem), where the horizontal positions are known (e.g., gravity points with given 
ellipsoidal latitudes and longitudes), resulting in only two unknowns, one for the 
vertical coordinate (e.g., the ellipsoidal height) and a second one for the poten-
tial W (Heck 1997). The latter case can be considered as quite close to the hitherto 
applied geodetic practice, where, e.g., the horizontal coordinates of gravity stations 
were traditionally based on geodetic networks, mostly allowing a transformation to 
the Earth-fixed system with sufficient accuracy. 
 

3.2 Linearization of the Boundary Conditions 

The most important boundary data are gravity observations, carried out at (or near) 
the Earth’s surface. Two essential cases can be distinguished with respect to the 
available station coordinates. The first case is related to the scalar-free GBVP and 
corresponds to the more traditional geodetic practice, where the vertical coordi-
nates (physical heights) are mainly derived from geometric leveling, while the 
horizontal station coordinates (ellipsoidal latitudes and longitudes) are usually 
based on corresponding national horizontal control networks. In this context, it is 
assumed that the ellipsoidal coordinates are finally referred to the Earth-fixed sys-
tem, either by adequate transformations from the national networks or directly by 
GNSS observations. Hence, in the scalar free GBVP, the horizontal coordinates are 
known, but the vertical spatial positions (ellipsoidal heights) of the observation 
sites (boundary) are unknown. The second case is related to the (scalar) fixed 
GBVP, where the geometry of the boundary is assumed to be completely known. 
This corresponds to the modern geodetic practice, where in many cases GNSS 
techniques are employed, giving directly the entire position vector X of all obser-
vation sites (boundary) with respect to the Earth-fixed system (either coordinates 
X, Y, Z or φ, λ, h). However, also with GNSS techniques, the vertical accuracy is 
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never as good as the horizontal accuracy, and, in addition, some effort is required 
to get an accurate connection to the ITRF. 

The boundary conditions for various geodetic boundary value problem (GBVP) 
formulations are in general nonlinear. This means that the relevant observations 
(boundary data) depend in a nonlinear way on the unknown gravity potential func-
tion W; they can be considered as nonlinear functionals of W, see (44). As no 
mathematical tools exist for solving nonlinear GBVPs (Heck 1997), the boundary 
conditions (observation equations) must be linearized. For this purpose, a known 
reference potential must be introduced, and, in addition, a known reference surface 
has to be adopted in the case of the free GBVPs. Regarding the reference potential, 
traditionally the level ellipsoid is used, but today one of the highly accurate satel-
lite models from the recent satellite missions GRACE and GOCE can also be em-
ployed. The question of the reference surface is related to the definition of tellu-
roid; for details on different telluroid mappings (Molodensky, Hirvonen, isozenith-
al, Marussi, and gravimetric telluroid) see Heck (1986). With respect to both the 
reference potential and the reference surface, it is important that the approximate 
values are sufficiently close to the real situation, such that a one-step solution is 
sufficient, or a convergent iteration process can be constructed (e.g., Rummel 
1988; Heck 1997). 

In the first instance, the normal gravity field of the level ellipsoid is employed 
for approximating the gravity potential. Moreover, it is supposed that at least the 
horizontal positions (ellipsoidal latitudes and longitudes) and in the case of fixed 
GBVPs also the ellipsoidal heights, referring to the Earth-fixed system, are known 
for the observation sites; this is considered as realistic with respect to today’s geo-
detic practice. In addition, without going into detail about different telluroid map-
pings (Grafarend 1978a; Heck 1986), the reference surface or telluroid is defined 
according to Molodensky (Heck 1986, 1997): 

 0 0 0, , ( ) .Q P Q P Q PU U C U W Wϕ ϕ λ λ= = = − = − −  (78) 

The above equations associate each point P at the Earth’s surface with a corre-
sponding telluroid point Q, serving then as a known linearization point. The first 
two conditions fix the horizontal position of the telluroid point Q, requiring that the 
surface point P and the telluroid point Q are located on the same ellipsoidal nor-
mal, while the third condition defines the vertical position of Q based on the (ob-
servable) geopotential number C and the reference potential U0, which is usually 
identified with the constant potential of the surface of the level ellipsoid; in princi-
ple, a known value of W0 could also be employed, but this option is not pursued 
any further here. Regarding most of the existing geopotential numbers, these were 
historically referred to a fundamental datum point 0

iP  with a corresponding local 

reference surface 0
iW  (with the exact numerical value being typically unknown); in 

the following, no distinction is made between a local vertical datum 0( )iW  and the 
global case (with W0 related to the geoid; for further details see Sect. 2.4). Fur-
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thermore, the reference potentials (W0 and 0
iW ) may be considered as additional 

unknowns in the solution of the GBVPs, which must be counterbalanced by addi-
tional observations (GNSS and leveling); for details see Rummel and Teunissen 
(1988) or Heck and Rummel (1990). Finally it is also worth mentioning that the 
above telluroid definition according to Molodensky and the definition from Hirvo-
nen, where the point Q is put on the same normal plumb line as P, are practically 
equivalent (Heck 1986); especially for the vertical component, the difference be-
tween both telluroid definitions is completely negligible due to the very small 
curvature of the normal plumb lines. 

If the normal potential U is associated with the level ellipsoid, then the ellipsoi-
dal height of the telluroid point Q, defined according to (78), is virtually identical 
with the normal height HN (see Fig. 5); this results from (53) with C = U0–UQ and 
the fact that the ellipsoidal height (h) and the normal height (HN) of Q differ by less 
than 10–7 m for heights up to 10 km (see Sect. 2.4). In addition, the position 
anomaly vector, defined as the difference of the position vectors of P and Q, re-
spectively, has zero horizontal components with respect to the local ellipsoidal 
system in Q, while the vertical component is the height anomaly ζP (see Fig. 5). 

The disturbing (or anomalous) potential is defined for an arbitrary point P in 
space by 

 .P P PT W U= −  (79) 

Assuming that the centrifugal parts in W and U are identical, the disturbing poten-
tial T may also be expressed as, see (35) and (57), 

 ,N
P P PT V V= −  (80) 

and hence T is harmonic outside the Earth’s surface and regular at infinity, see (19) 
and (21): 

Fig. 5  Earth’s surface, 
telluroid, ellipsoid, actual and 
normal gravity, deflection of 
the vertical according to 
Molodensky 
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 0, lim 0  .
l

T T
→∞

∆ = =  (81) 

With regard to the solution of the free GBVPs, the domain of harmonicity of T has 
to be extended down to the surface of the (known) telluroid, which causes a small 
problem from the theoretical side (Heck 1997). 

Corresponding to the disturbing potential T, the gravity disturbance vector is de-
fined as 

 grad grad grad ,P P P P P PW U T= − = − =δg g γ  (82) 

while the scalar gravity disturbance is given by 

 ,P P Pg gδ γ= −  (83) 

noting that the term disturbance is always used for one-point functions related to 
the same point in space (Grafarend 1978a; Heck 1997). Besides the observations in 
gP (Φ, Λ, g), the computation of the gravity disturbance vector δgP requires the 
spatial coordinates of P with respect to the Earth-fixed system (e.g., from GNSS) 
in order to be able to compute γP. 

Corresponding to (79) and (82) or (83), the potential anomaly 

 ( ) ,P P Q P P QW W U T U U∆ = − = + −  (84) 

and the gravity anomaly vector 

 ( ) grad (grad grad ) ,P P Q P P Q P P QT U U= − = + − = + −Δg g γ δg γ γ  (85) 

are introduced. Thus the “anomalies” are two-point functions related to the surface 
point P and the telluroid point Q (Grafarend 1978a; Heck 1997). The computation 
of the normal gravity vector γQ requires the spatial position vector of Q, e.g., its 
ellipsoidal latitude, longitude, and height, the latter being virtually identical with 
the normal height HN (see above and Sect. 2.4), derived from geometric leveling 
through the geopotential number C. 

Moreover, the gravity anomaly vector, ΔgP, according to (85), can be expressed 
by the scalar equations (Heck 1997) 

 

,

/ cos ,
,

M
P P PQ

M
P P PQ Q

P P Qg g

γ γ

γ γ γ

ϕ ϕ ξ

λ λ η ϕ

γ

∆ = Φ − =

∆ = Λ − =

∆ = −

 (86) 

where ,M M
P Pξ η  are the deflections of the vertical in north–south and east–west 

direction according to the definition of Molodensky (angles between the gravity 
vector at P and the normal gravity vector at Q), and ΔgP is the scalar gravity anom-
aly, also denoted as the surface free-air gravity anomaly. 
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In this context, the height anomaly is also a two-point function, given by 

 .P P Qh hζ = −  (87) 

Considering now the Molodensky telluroid, the combination of (78) and (84) 
yields ΔWP = W0–U0, while a Taylor development of the normal potential U around 
the telluroid point Q gives 

 .P Q P Q Q P
Q

UU U U
h

ζ γ ζ∂ = + + = − + ∂ 
   (88) 

Finally, by inserting both expressions into (84), Bruns’s formula is obtained as 

 0 0 .P
P

Q Q

T W Uζ
γ γ

−
= −  (89) 

In the above formula, the second term is neglected in many cases, thus assuming 
that the condition W0 = U0 holds. Furthermore, (89) is based only on the first term 
of the series expansion (88), i.e., a linear approximation, neglecting the nonlinear 
terms. In addition, it is noted that within the framework of linear approximations, 
e.g., the quantities T, ζ, δg, Δg, etc., are considered as small of first order, while 
products of such terms are small, of second order, and thus negligible, leading to 
TQ ≈ TP, gradTQ ≈ gradTP, etc. (Moritz 1980). Consequently, if the point P is un-
known, which applies to the free GBVPs, TP cannot be evaluated and has to be 
replaced by TQ in (89). However, if the position of the point P in space is known, 
e.g., associated with the fixed GBVPs, a virtually rigorous version of formula (89), 
neglecting only the slightly different directions of the ellipsoidal normal and the 
normal plumb line, can be derived by expressing P Q QP PU U γ ζ− = − , correspond-
ing to (53), where QPγ  is the mean normal gravity value along the line from Q to P 
(e.g., Wenzel 1985), giving 

 0 0 1     with     .
hP

P
P QP

QP QP P Q hQ

T W U dh
h h

ζ γ γ
γ γ

−
= − =

− ∫  (90) 

Given the point P in space, the use of (89) instead of (90) leads to maximum errors 
in the height anomalies of about a few millimeters (see also Wenzel 1985), and 
hence, as the mean normal gravity value QPγ  is easy to compute, in the simplest 
case as ½(γQ+ γP), (90) should be preferred (noting that it is not consistent with the 
concept of linear approximations explained above). 

The linearization of the nonlinear boundary conditions (observation equations) 
related to the scalar fixed (δgP), the vectorial free (ΔgP), and the scalar free GBVP 
(ΔgP) is treated in detail in Heck (1997) and Seitz (1997), also investigating the 
nonlinear terms and the resulting linearization errors (the nonlinearities arise from 
the free boundary as well as the use of the norm operator to compute the vector 
lengths, e.g., (83) and (86)). A rigorous linearization of the boundary conditions is 
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not intended here. Therefore, considering only linear approximations (see above) 
of (89), (83), and (86), results in 

 0 0 ,P
T W Uζ
γ γ

−
= −  (91) 
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Tg T W U
h h h

γ γ
γ γ

∂ ∂ ∂
∆ = − + − −

∂ ∂ ∂
 (95) 

where the right sides of the above formulas have to be evaluated at the boundary 
surface, i.e., the telluroid in the case of the free GBVPs. The negative sign in the 
vertical deflection components follows from the sign conventions for the height 
anomalies and the vertical deflections (Torge 2001). For the derivation of (95), a 
Taylor series expansion of γP–γQ, analogous to (88), is used; the equation is also 
denoted as the fundamental equation of physical geodesy. Furthermore, the intro-
duction of spherical approximations in the above formula system, i.e., the omission 
of terms of the order o( f ) with f ≈ 1/300 (often called ellipsoidal effects), not af-
fecting (91), gives 
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∆ = − − + −

∂
 (99) 

where ∂γ/∂h = ∂γ/∂r = –2γ/r (spherical approximation) is utilized. Moreover, the 
subscripts P and Q are dropped on the right sides of (91) to (99), noting again that 
the linearized boundary conditions hold on the (known) boundary surface, which is 
the Earth’s surface for the fixed GBVPs and the telluroid for the free GBVPs, re-
spectively; hence, the linearization process is associated with a transformation of 
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the free GBVPs into fixed ones, with the telluroid then serving as the (known) 
boundary. In this context, it has to be stressed that the boundary conditions in 
spherical approximation also still relate to the Earth’s surface (fixed GBVPs) or the 
telluroid (free GBVPs); in other words, spherical approximations include only the 
omission of ellipsoidal terms, but do not imply that the boundary is replaced by a 
sphere (see also Moritz 1980 and Heck 1997). In addition, planar approximations, 
also neglecting terms of the order o(h/R) associated with a mean Earth radius R, 
may be used for very local applications (e.g., Moritz 1980), but are not discussed 
here. Considering the linearized boundary conditions (91)–(99), it is clear that the 
derivatives of T are in general not normal to the (known) boundary surface (Earth’s 
surface or telluroid, respectively), leading to the so-called oblique derivative BVPs 
(Heck 1997; Sideris 2011a). Furthermore, in the boundary condition for the gravity 
disturbance the radial derivative of T appears, while in the corresponding equation 
for the gravity anomaly a linear combination of the radial derivative of T and T 
itself occurs, similar to the second (Neumann) and third (Robin) BVP of potential 
theory, involving normal derivatives. 

So far it has been assumed that the level ellipsoid is used for the linearization of 
the observation equations, implying that the height anomalies, i.e., the separation 
between the Earth’s surface and the telluroid, following closely the Earth’s surface, 
reach maximum values of about 100 m with an RMS (root-mean-square) value of 
roughly 30 m. Thus the use of spherical approximations, i.e., the omission of terms 
of the order o( f ) with f ≈ 1/300, may in certain cases lead to significant errors at 
the milligal and decimeter level in the derived gravity and height anomalies, re-
spectively (Heck 1997; Hipkin 2004). Obviously, the non-spherical and nonlinear 
terms cannot be neglected in precise gravity field modeling, and thus have to be 
considered by appropriate reductions (see, e.g., Heck 1991), especially in view of 
the present accuracy requirements for regional and global computations (e.g., the 
GRACE and GOCE satellite missions), aiming at accuracies at the millimeter to 
centimeter level for height anomalies. 

On the other hand, the effect of the linearization and spherical approximation er-
rors can be substantially reduced by introducing a higher degree reference field, 
e.g., a complete spherical harmonic model derived from the satellite missions 
GRACE (e.g., Mayer-Gürr et al. 2010; Kurtenbach et al. 2009) and GOCE (e.g., 
Pail et al. 2011) or the combined model EGM2008 (Pavlis et al. 2008), extended 
by a centrifugal component. In this context, it is important to stress that the satel-
lite-only models are inherently unaffected by any spherical approximations, etc., 
while EGM2008 is derived on the basis of ellipsoidal harmonics and thus also 
hardly affected by such effects. In addition, it is essential that the gravity field 
parameters derived from the high-degree models are computed rigorously without 
any (spherical, etc.) approximations, as outlined in Sect. 2.3, such that the residuals 
with respect to the global model are virtually exact. Now, if the normal gravity 
field of the level ellipsoid is replaced by a global geopotential model complete to 
degree and order 100, 200, and 360, the residual height anomalies reduce to about 
1.0, 0.4, and 0.2 m RMS, with corresponding maximum values of about 18, 11, and 
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4 m, respectively. Hence, a high-degree reference field leads to a much better ap-
proximation of the real situation, with the separation between the Earth’s surface 
and the corresponding telluroid reducing by about one to two orders of magnitude, 
as compared to the linearization with respect to the level ellipsoid. Accordingly, 
the effect of linear and spherical approximations decreases in the modeling of the 
(rigorously derived) residual gravity field parameters, such that height anomalies 
may be deduced with accuracies at the centimeter to a few millimeters level; this is 
also supported by the numerical investigations in Heck (1997) and Seitz (1997). 
Further insight into this problem can be gained as well through closed-loop simula-
tions with synthetic data (see, e.g., Wolf 2008). 

The rigorous implementation of a high-degree geopotential model as a reference 
field in the linearization process must strictly follow the procedure described above 
for the level ellipsoid; the geopotential model is associated with a gravity potential 

 ,M M MW V Z= +  (100) 

based on a spherical harmonic expansion of the gravitational part VM as well as a 
centrifugal component ZM. Correspondingly, the gravity vector is defined as 

 grad grad grad .M M M MW V Z= = +g  (101) 

The notation is chosen here in line with the real gravity potential of the Earth and 
its functionals, because the currently available high-degree geopotential models 
allow a quite good approximation of the real gravity field. Now, within the lineari-
zation process, WM and gM have to take the place of U and γ, respectively. Hence, 
the disturbance quantities related to a single point P in space with given coordi-
nates can be computed directly, while the anomaly quantities require the definition 
of a telluroid associated with the geopotential model. In accordance with (78) it 
follows that 

 * * * 0 0 0, , ( ) ,M
Q P Q P Q Q PW U U C U W Wϕ ϕ λ λ= = = = − = − −  (102) 

where Q* is the telluroid point in conjunction with the geopotential model. The 
advantage of employing a high-degree reference field instead of the level ellipsoid 
is that the point Q* is much closer to P than Q (see above as well as Fig. 6). Again 
it is assumed that the ellipsoidal latitude and longitude of P and thus Q* are given, 
while the ellipsoidal height of P is unknown and that of Q* can in principle be 
computed iteratively, starting with * (0)

N
Q Qh h H= =  and * (0) * * * (0)( , , )M

Q Q Q QW hϕ λ , 
while then the equation 

 ( )
* ( 1)

* ( ) * ( 1) * ( 1) * * * ( 1) *
1 ( , , ) , 1, , ,

M
Q i

M M
Q i Q i Q i Q Q Q i Q

g
h h W h W iϕ λ

−

− − −= + − = ∞  (103) 
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has to be iterated until convergence, with the nominal potential value being *
M

QW  = 
UQ = U0 – C, which is deduced from leveling and a conventional U0 value. The 
time-consuming part in this iteration process is the calculation of the potential 
values WM, requiring the evaluation of the spherical harmonic expansion; however, 
the convergence of (103) is very good, e.g., regarding a geopotential model com-
plete to degree and order 360, the maximum error of *Qh  was found to be less than 
1×10–5 m after only two iterations (i = 2). Furthermore, it is noted that the geopo-
tential model gravity value * ( 1)

M
Q ig −  in (103) can be replaced by practically any 

constant (normal) gravity value γ, as the term in parentheses on the right side of 
(103) goes to zero within the iteration process. 

After all, it is convenient to express also WM as the sum of the potential of the 
level ellipsoid U and a corresponding disturbing potential TM. Considering (79), 
this leads directly to the disturbing potential, associated with the high-degree geo-
potential model 

 * ( ) ( ) ,M M M
P P P P P P P P PT W W U T U T T T= − = + − + = −  (104) 

and the corresponding height anomaly (of P with respect to Q*; see Fig. 6) 

 *
* * *( ) ( ) ,M

P P Q P Q Q Q P Qh h h h h hζ ζ ζ= − = − − − = −  (105) 

which, following the line of thought used to derive (89), can be expressed in linear 
approximation as 

 
*

0 0*

* *
,P

P M M
Q Q

T W U
g g

ζ −
= −  (106) 

and accordingly *
M
Qζ  is given by 

Fig. 6  Telluroid associated 
with level ellipsoid and high-
degree reference geopotential 
model 
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 *
* ,

M
QM

Q
Q

T
ζ

γ
=  (107) 

noting that more rigorous versions of the above two equations can be obtained 
analogous to (90) by introducing corresponding mean gravity values *

M
Q Pg  and 

*QQγ , respectively. 

In the same way, the gravity disturbance and anomaly vectors with respect to 
the geopotential model are given by 

 * ( ) ( ) ,M M M
P P P P P P P P P= − = + − + = −δg g g γ δg γ δg δg δg  (108) 

 *
* * *( ) ( ) .M M M

P P Q Q P Q Q P Q= − = + − + = −Δg g g γ Δg γ Δg Δg Δg  (109) 

Consequently, the rigorous linearization with respect to a high-degree geopoten-
tial model leads to residual quantities, which closely correspond to those used in 
the well-known remove–compute–restore technique, in which topographic (or 
mass) information is additionally taken into account (see Sect. 3.9). In this context, 
it is pointed out again that the parameters from the geopotential model should be 
derived without (spherical, etc.) approximations at the appropriate positions in 
space, and it is also noted that the concepts introduced in Sect. 2.3, computing first 
the potential derivatives with respect to a local spherical system, followed by a 
transformation to the desired target system, can be applied as well for the anoma-
lous gravity field quantities. Now for the case that only normal heights exist, the 
telluroid point Q* can be computed with sufficient accuracy (see above) after only 
two iterations of (103); in practice this means that the geopotential model has to be 
evaluated only at the two heights hQ* (0) = hQ = HN and hQ* (1) = HN +ζQ* (0), yielding 
TQ and TQ* ≈ TQ* (1) in Q and Q*, respectively. With regard to a geopotential model 
complete to degree and order 360, the maximum differences between TQ and TQ* 

reach about 0.25 m2 s–2, while TQ* (1) is accurate to better than 1×10–4 m2 s–2, corre-
sponding to about 0.025 m and 1×10–5 m in terms of height anomalies. The maxi-
mum differences between TQ and TQ* are considered as significant, and hence the 
geopotential model should be evaluated at the appropriate positions in space. This 
was also pointed out by Tscherning (2004), mentioning that in this way “it is pos-
sible to come close to making no approximation at all.” 
 

3.3 The Constant Radius Approximation  

The geodetic boundary value problems (GBVPs) aim at the determination of the 
exterior gravity potential W from boundary data, as a direct computation is impos-
sible due to insufficient knowledge of the Earth’s density structure. Within the 
linearization process, described in the previous section, the task of computing W is 
reduced to the determination of the disturbing potential T, which is a harmonic 
function outside the masses and regular at infinity, see (81). 
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Now harmonic solutions for T are sought, which satisfy the boundary conditions 
(observations), e.g., (91)–(99). In this context, it is pointed out again that the line-
arized boundary conditions refer to the known boundary surface (i.e., the Earth’s 
surface for the fixed GBVPs, and the telluroid for the free GBVPs), and the deriva-
tives of T, appearing in the boundary conditions, are generally not normal to the 
boundary surface (oblique derivative GBVPs). 

However, even the linearized GBVPs based on spherical approximations, e.g., 
(96)–(99), do not permit rigorous analytical solutions in closed form as long as the 
boundary is not spherically shaped (Heck 1997). Therefore, Rummel (1988) and 
Heck (1997) discuss iterative solutions, where terms due to the Earth’s flattening 
and topography of order o( f ) and o(h/a) are involved, respectively. The omission 
of all non-spherical terms (i.e., assuming a spherical boundary) leads to the so-
called constant radius approximations, which also contribute the dominating terms 
in iterative GBVP solution schemes. 

In the following, several well-known formulas are derived on the basis of the 
constant radius approximation. In the first instance, as the disturbing potential T is 
a harmonic function, it may be expanded in spherical harmonics based on (80), 
(26), and (59), resulting in 
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 (111) 

where the different GM and a values in V and VN lead to a rescaling of the coeffi-
cients of the normal potential, noting that (110) and (111) may also be expressed 
with respect to aN and GMN, whatever is more convenient. The summation in the 
above equation starts at degree n = 0 to account for possible differences in the GM 
and GMN quantities related to V and VN, respectively. Another option would be to 
compute T directly as the difference of V and VN, requiring no rescaling of any 
coefficients. Furthermore, Tn (θ, λ, a) are the Laplace surface harmonics of de-
gree n, referring to the radius r = a. 

Assuming now that T is given on a sphere with radius r = a, (110) can be invert-
ed easily by applying the orthogonality relations (28), yielding 

 1 ( , , ) ( , )   .
4

nm nmT T a Y d
σ

θ λ θ λ σ
π

′ ′ ′ ′= ∫∫  (112) 

Utilizing this result as well as the decomposition formula for the Legendre poly-
nomials gives directly 
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 2 1( , , ) ( , , ) (cos ) ,
4n n
nT a T a P d

σ

θ λ θ λ ψ σ
π
+ ′ ′= ∫∫  (113) 

where ψ is the spherical distance between the two points P (θ, λ, a) and P' (θ', λ', a) 
with 

 cos cos cos sin sin cos( ) .ψ θ θ θ θ λ λ′ ′ ′= + −  (114) 

Correspondingly, the gravity disturbance may be expressed in spherical approxi-
mation according to (96) as 

 
2 2
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n n
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n n

T a n ag r T a g a
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∑ ∑  (115) 

The above approach can be applied to other gravity field parameters as well and 
leads to the so-called Meissl scheme, which in its extended form, based on tensor 
spherical harmonics, is also applicable to the first and second horizontal derivatives 
of T (Rummel and van Gelderen 1995; Rummel 1997). Thus in spherical approxi-
mation, the following simple spectral relations (eigenvalue expressions) hold: 

 1( , , ) ( , , ) ,n n
ng a T a

a
δ θ λ θ λ+

=  (116) 

 
0 0 0

1 2( , , ) ( ) for  0
( , , ) ,

1 ( , , ) for  0
n

n

T a W U n
a ag a

n T a n
a

θ λ
θ λ

θ λ

− + − =∆ =  − >


 (117) 

 
1

( , , ) ( , , ) ,
n

n n
aT r T a
r

θ λ θ λ
+

 =  
 

 (118) 

 
2

( , , ) ( , , ) ,
n

n n
ag r g a
r

δ θ λ δ θ λ
+

 =  
 

 (119) 

 
2

( , , ) ( , , ) .
n

n n
ag r g a
r

θ λ θ λ
+

 ∆ = ∆ 
 

 (120) 

Basically, the spherical harmonic expansion (110) together with (112) repre-
sents a solution to the Dirichlet BVP for a spherical boundary. Now, the spherical 
harmonic series has its advantages mainly in global analyses and the spectral inter-
pretation, while integral formulas (Green’s function representations) are better 
suited for local applications; this is easily recognized by the fact that a change in 
one boundary value leads to changes in all spherical harmonic coefficients, while a 
change in a remote boundary value affects the local field computed by integral 
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formulas only marginally, as the integration kernels essentially depend on the in-
verse distance or higher powers thereof (Jekeli 2009). 

Combining (110) and (113) and assuming that the disturbing potential T is given 
on a sphere with radius r = R (instead of r = a used above) leads to the well-known 
Poisson integral (Heiskanen and Moritz 1967; Jekeli 2009) 

 1( , , ) ( , , ) ( , )
4

T r T R U r d
σ

θ λ θ λ ψ σ
π

′ ′= ∫∫  (121) 

with the Poisson kernel 
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and the spatial distance 

 2 2 2 cos .l r R rR ψ= + −  (123) 

The above equations allow the upward continuation of any harmonic function from 
a sphere with radius R to another sphere with radius r > R, e.g., they can be directly 
applied to the (spatial) function r Δg, which is harmonic, while Δg itself is not a 
harmonic function (for details see Heiskanen and Moritz 1967). 

Furthermore, utilizing (113) correspondingly for the derivation of the gravity 
disturbance surface harmonics and inserting this result into (116) and (110) yields 
the Hotine integral (Hotine 1969; Heck 1997) 

 ( , , ) ( , , ) ( , )
4
RT r g R H r d

σ

θ λ δ θ λ ψ σ
π

′ ′= ∫∫  (124) 

with the Hotine kernel 
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 (125) 

It should be noted that the summation in (122) and (125) starts at degree n = 0, 
and thus the complete spectrum including the degrees zero and one can be deter-
mined from the boundary data. However, with regard to gravity anomalies, the 
situation is different, as (117) has to be employed accordingly, where the factor 
(n–1) appears; i.e., the gravity anomalies have no first degree harmonics and hence 
the corresponding disturbing potential harmonics cannot be determined from gravi-
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ty anomalies. This leads to a non-unique solution of the BVP, and therefore addi-
tional constraints are necessary to achieve a unique solution for T. The first-degree 
harmonic coefficients are proportional to the center-of-mass coordinates and can be 
enforced to zero with an appropriate definition of the coordinate system (for further 
details see Rummel 1995 and Heck 1997). Corresponding to (124) and (125), the 
complete solution for the disturbing potential based on gravity anomalies is given 
by 
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with the (extended) Stokes kernel 
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In the above equations, the zero-degree and first-degree terms of T are handled 
separately, because the Stokes integral, the right term in (126), conventionally 
excludes these components (e.g., Heiskanen and Moritz 1967; Jekeli 2009); this is 
also evident from the Stokes kernel (127), where the summation only starts at de-
gree n = 2. Furthermore, according to (110) and (111), the zero-degree term of T in 
(126) can be expressed as 

 0 ( , , ) ,NGM GMT R
R

θ λ −
=  (128) 

and the corresponding zero-degree term of ζ follows from Bruns’s formula as 

 0 0 0 0
0 0

1 1( , , ) ( , , ) ( ) .R T R W Uζ θ λ θ λ
γ γ

= − −  (129) 

In addition, it is noted that (124) and (125) solve the Neumann BVP, while 
(126)–(128) solve the Robin BVP, provided the boundary is a sphere. Furthermore, 
all integral kernels (Green’s functions) introduced above, have singularities at 
ψ = 0, when the computation point is on the sphere with radius R. Therefore, the 
inner zone contributions have to be evaluated separately by expanding the bounda-
ry data in a Taylor series and performing the integration term by term (Heiskanen 
and Moritz 1967; Bian 1997, Torge 2001). 

For the Stokes integral (with r = R), the inner zone contribution can be computed 
by approximating S(ψ) = S(ψ, R) = 2/ψ = 2 R/s, with s being the planar distance (the 
first term in (127) dominates for ψ → 0); then integration over a spherical cap with 
radius s0 gives the inner zone contribution 
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 0 ,i PT g s= ∆ +  (130) 

while an integration over a rectangular area (see also Haagmans et al. 1993) results 
in 
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 (131) 

where Δx, Δy are the side lengths (in meters) of the rectangle in x (north–south) 
and y (east–west) direction, respectively. If the area sizes of the spherical cap and 
the rectangle are chosen to be identical (π s0

2 = Δx Δy), (131) always gives slightly 
larger inner zone contributions than (130); the differences are at the few per-
cent level, depending on the ratio of Δx / Δy (for further details see Haagmans et al. 
1993). 

Finally, based on the spherical and constant radius approximations, virtually any 
gravity field quantity can be obtained in space from any other quantity on a spheri-
cal boundary (Jekeli 2009). Further examples are the Vening-Meinesz integral 
formulas, which allow the computation of deflections of the vertical from gravity 
anomalies by applying (97) and (98) to the Stokes integral, as well as the inverse 
Stokes, Hotine, and Vening-Meinesz integral formulas, which are all presented, 
e.g., in Jekeli (2009). 
 

3.4 Solutions to Molodensky’s Boundary Value Problem 

In the previous section, different GBVP solutions are derived based on the spheri-
cal and constant radius approximation, assuming that the boundary is a sphere. 
Now, more complicated boundaries require additional corrections or iterative solu-
tion schemes. The scalar free GBVP, formulated first by Molodensky (e.g., Mo-
lodenskii et al. 1962), is based on gravity observations at the Earth’s surface. With-
in the linearization process, the scalar free GBVP is transformed into a fixed one 
by approximating the Earth’s surface by means of the telluroid, serving then as the 
(known) boundary surface, to which the boundary conditions as well as the bound-
ary data (i.e., the gravity anomalies) refer (see Sect. 3.2). Furthermore, the scalar 
free GBVP in linear and spherical approximation is often called the simple Mo-
lodensky problem (Moritz 1980; Heck 1997). 

Molodensky’s problem can be solved in various ways; detailed derivations can 
be found in Moritz (1980). An efficient solution, avoiding integral equations, is 
provided by the method of analytical continuation (Moritz 1980;, Sideris 1987, 
2011a). In this method, the gravity anomalies Δg (at any point on the telluroid) are 
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reduced to the normal level surface passing through the given computation point P 
(point level); the resulting anomalies are denoted as Δg' and can be obtained by 
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Thus the gn terms are evaluated recursively based on the vertical derivative opera-
tor Lj with 
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In the above equation, the abbreviation L = L1 is introduced, and in planar approxi-
mation (R → ∞) L becomes the surface operator  
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Now, the analytically continued gravity anomalies Δg' refer to the normal level 
surface passing through the computation point P, and hence the disturbing poten-
tial T at P can be obtained by applying Stokes’s integral operator S (right term of 
(126)) to Δg', yielding 
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Thus, the main contribution to the Molodensky solution is provided by the 
Stokes term, while the further so-called Molodensky terms consider that the data 
are not given on a level surface. Moreover, the zero-degree and first-degree terms 
of T are omitted in the above equation, but the notes given for the Stokes integral 
apply to the Molodensky solution as well (see previous section). Finally, it should 
be noted that the Molodensky terms Tn and the Laplace surface harmonics of T 
have nothing in common. 

Regarding the above computation procedure, it is important to realize that the gn 
terms depend on the computation point P, which is rather impractical, as a new set 
of gn values has to be computed for every new computation point. This difficulty 
can be overcome, e.g., by performing the analytical continuation in two steps, 
where the surface gravity anomalies are first analytically continued to zero level 
(giving Δg0'), then the Stokes operator is applied to compute the harmonically con-
tinued disturbing potential T0', and finally T0' is analytically continued back to the 
telluroid (Sideris 1987; Forsberg and Tscherning 1997), yielding 
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The two-step formulas are much better suited for numerical computations and 
allow the application of Fast Fourier Transform (FFT) techniques (Sideris 1987). 

Furthermore, the first order solution of (135) is known as the gradient solution 
(Moritz 1980), which can be expressed as 

 ( )1 ( ) .N N
P

gT g g g H H
h

∂∆ ≈ ∆ + = ∆ − − ∂ 
S S  (137) 

Regarding the gradient solution, it is also worth mentioning that  

 ( ) ( )1g c≈S S  (138) 

holds in linear approximation for gravity anomalies Δg linearly dependent on the 
elevations, where c is the classical terrain correction (Moritz 1980). Besides this, 
the gravity anomalies ΔgFaye = Δg + c are denoted as Faye anomalies, giving 

 ( ) ( )Faye .T g c g≈ ∆ + = ∆S S  (139) 

For the two-step procedure based on (135) and (136), the gradient solution leads to 
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Considering the relations (92), (91), and (95), yielding 
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the gradient solution results in a very simple scheme for the computation of the 
height anomalies (Forsberg and Tscherning 1997): 

 

1. Predict vertical gradient ∂Δg/∂h ≈ – Tzz from Δg. 
2. Continue Δg downward, giving Δg0' ≈ Δg – (∂Δg/∂h) HN. 

3. Apply Stokes operator, yielding ζ  0' = S(Δg0' ). 
4. Continue the height anomalies upward to obtain ζ = ζ 0' – (Δg0'/γ) HN. 

 

The above procedure is preferable over (139), as it contains fewer approximations, 
avoiding the assumption that the gravity anomalies are linearly dependent on the 
elevations. 

Finally, it is noted that ζ  0', ζ, and the geoid undulation N (as well as the corre-
sponding disturbing potentials T0', T, and T0) are fundamentally different quanti-
ties. Initially, T0' is a disturbing potential obtained by harmonic continuation (to 
zero level), which is identical to T outside the Earth’s surface; e.g., this is also the 
quantity obtained from a global geopotential model or least-squares collocation 
applied spatially. On the other hand, T0 relates to the geoid (see next section), 
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which is in general located inside the topography on the continents and hence not 
an equipotential surface of a harmonic function (because T0 is not harmonic inside 
the topography). The differences between ζ and ζ  0' depend on the free-air gravity 
anomaly, see (141), while the differences between ζ and N depend on the Bouguer 
gravity anomaly, see (56). In typical mountainous areas with, e.g., 1 km changes in 
elevation, the differences between ζ  0', ζ, and N are at the level of 10 cm (Forsberg 
and Tscherning 1997). 
 

3.5 Solutions to Stokes’s Boundary Value Problem 

Stokes’s classical geodetic boundary value problem (GBVP) aims at the determina-
tion of the geoid from gravimetric data. The calculation of the geoid within the 
GBVP framework has two important consequences: first, the gravity values must 
refer to the geoid, which initially serves as the boundary surface, and second, there 
must be no masses outside the geoid. The latter requirement results from the 
boundary value problem approach of potential theory, which always involves har-
monic functions satisfying the Laplace equation. Consequently, since no masses 
are allowed outside the geoid, the topography of the Earth must be eliminated 
mathematically by appropriate reductions. 

Stokes’s as well as Molodensky’s GBVP may both be considered as scalar free 
problems (see above), the main difference being that Molodensky’s problem is 
based on gravity data at the Earth’s surface, while Stokes’s problem involves 
gravity data at the geoid. Accordingly, Stokes problem is in principle easier to 
solve than Molodensky’s problem, because the initial boundary surface, i.e., the 
geoid, is a level surface with the gravity vectors perpendicular to it; this corre-
sponds to a BVP of the third kind (Robin problem) of potential theory, see bounda-
ry condition (95) or (99). However, the main drawback of Stokes’s problem is that 
complicated topographic reductions are necessary. 

For the solution of Stokes’s GBVP, the geoid is approximated by an ellipsoid, 
and then after spherical and constant radius approximation the general solution is 
given by (126) with r = R, the right term being the Stokes integral (for further de-
tails see above). Now, in order to get the boundary values (gravity anomalies) at 
the geoid, the external masses outside the geoid must be either removed completely 
or moved inside the geoid. This so-called regularization obviously also changes the 
shape of the level surfaces and hence the geoid, leading to the cogeoid. In this 
context, it is advantageous to preserve the total mass of the Earth. Therefore, usual-
ly Helmert’s second condensation reduction is applied, where the masses above the 
geoid are condensed onto a layer on the geoid (e.g., Sideris 1994, 2011a). 

Accordingly, the entire procedure for the computation of the geoid may be de-
scribed as follows (Heiskanen and Moritz 1967; Sideris 2011a): 

 

1. The masses above the geoid are removed computationally, i.e., the attraction 
effect (AP) is subtracted from the gravity value at the surface point P. 
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2. The gravity station is lowered from P to P0 on the geoid using the free-air re-
duction (F) or harmonic downward continuation. 

3. The topographic masses are condensed on the geoid, and the attraction effect at 
P0 is restored ( 0

c
PA ). 

4. The indirect effect (for details see Wichiencharoen 1982) on the potential 
(δTind) due to the shifting of the topographic masses is computed at P0. 

5. The indirect effect on gravity (δgind), which reduces gravity from the geoid to 
the cogeoid, is taken into account, finally yielding the gravity anomalies on the 
cogeoid as 00

c c
P P P indg g A F A gδ γ∆ = − + + + − . 

6. The disturbing potential for the cogeoid (T0c) is computed by applying Stokes’s 
operator to cg∆ . 

7. The disturbing potential for the geoid (T0) is computed by adding the indirect 
effect to the Stokes contribution, yielding  

 0 ( ) .c
indT g Tδ= ∆ +S  (142) 

8. Finally, the geoid undulation (omitting the zero-degree term) is obtained from 
Bruns’s formula as 

 
0

0 0 0

1 1( )c
ind

TN g Tδ
γ γ γ

= = ∆ +S . (143) 

 

In addition, with the quantity 0
c
P PA A A cδ = − ≈  and 0indgδ ≈ , the gravity 

anomaly at the cogeoid becomes 0 Faye
c

P Pg g F c g c gγ∆ ≈ + − + ≈ ∆ + = ∆  (Fors-
berg and Tscherning 1997). Thus, the Faye anomalies play a role in the first order 
solutions of Stokes’s as well as Molodensky’s problem, see (139); further relation-
ships and discussions on this matter can be found in Sideris (1994) and Forsberg 
and Tscherning (1997). Practical examples of large-scale geoid computations are 
the models derived for the United States (e.g., Smith and Roman 2001; Wang et al. 
2011) and Canada (Véronneau and Huang 2007). 

In conclusion, the computation of the geoid is in the details quite complicated 
and requires several approximations as well as assumptions about the density of the 
topographic masses above the geoid, which is the classical dilemma in determining 
the geoid as well as the orthometric heights. Furthermore, it is not an easy task to 
ensure that the orthometric heights and the corresponding geoid undulations are 
consistent, such that the equation h = H + N is satisfied. This is also pointed out 
clearly by Forsberg and Tscherning (1997), mentioning that “if refined expansions 
are used for the downward continuation, consistency is lost with the conventional 
Helmert orthometric heights;” therefore, they suggest one works with height 
anomalies (or the disturbing potential) related to the Earth’s surface as far as possi-
ble, and only at the end of the computation chain to shift back to the geoid if neces-
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sary, e.g., by using (56). In addition, this proposal is in accordance with the strate-
gy applied for the modeling of the quasigeoid and geoid in Europe, performed at 
the Institut für Erdmessung (IfE), Leibniz Universität Hannover (e.g., Denker and 
Torge 1998; Denker et al. 2009). 
 

3.6 The Spectral Combination Technique 

The spectral combination technique encompasses all procedures to combine hetero-
geneous data by spectral weights (depending on spherical harmonic degree n); it 
was initially developed to combine terrestrial gravity data and a global geopotential 
model in an optimal way for the purpose of calculating the geoid or quasigeoid. 
The spectral combination approach is based on the Laplace surface harmonics 
derived from different data sets, which are then combined by employing spectral 
weights. The method was promoted mainly by Sjöberg (1980, 1981, 2003) and 
Wenzel (1981, 1982), with the basic idea of the procedure already being outlined 
in Moritz (1976). 

The development of the basic formulas is based on the spherical harmonic ex-
pansion of the disturbing potential (110) as well as the spectral relations given in 
(116)–(120). The following derivations are consistently based on the spherical and 
constant radius approximation (see also previous sections), assuming that the ob-
servations are given on a sphere with radius r = R. The first data set to be consid-
ered is the global geopotential model, giving the disturbing potential Laplace sur-
face harmonics referring to r = R in the form 

 
1 1

( , , ) ( , , ) ( , ) ,
n n n MM M

nm nmn n
m n

a aT R T a T Y
R R

θ λ θ λ θ λ
+ + +

=−

   = =   
   

∑  (144) 

which can be evaluated by means of the given coefficients 
M
nmT . 

On the other hand, corresponding surface harmonics can also be deduced from 
gravity anomalies in the form 

 2 1( , , ) ( , , ) ( , , ) (cos ) ,
1 4 1

G G
n n n

R R nT R g R g R P d
n n σ

θ λ θ λ θ λ ψ σ
π

+ ′ ′= ∆ = ∆
− − ∫∫  (145) 

where ( , , )G
ng Rθ λ∆  is derived analogous to (113). 

The combined disturbing potential surface harmonic can now be computed as 
the weighted mean in the form 

 ˆ ( , , ) ( , , ) ( , , ) ,M M G G
n n n n nT R w T R w T Rθ λ θ λ θ λ= +  (146) 

where wn
M and wn

G are the spectral weights related to the geopotential model and 
the terrestrial gravity data, respectively. The spectral weights can either be deter-
mined empirically, e.g., as filter coefficients (Haagmans et al. 2003), or within the 
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framework of a least-squares adjustment or a least-squares collocation solution (see 
also Kern 2004). The least-squares methods allow the taking into account of the 
error estimates of the spectral components Tn

M and Tn
G, which are represented by 

the corresponding error degree variances (referring to the radius r = R) 

 
2( 1)

2 2 2( , ) { ( , , )}
n n

n M M MT T T nmm n

aR M R
R

σ ε ε θ λ σ
+ +

=−
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∑  (147) 

for the global geopotential model, and 

 

2
2 2

2

0

( , ) ( , )
1

2 1 ( , , , ) (cos )sin
1 2

n G n GT g

G G ng g

RR R
n

R n Cov R P d
n

π

σ ε σ ε

ε ε ψ ψ ψ ψ

∆

∆ ∆

 =  − 

+  ′=  −  ∫
 (148) 

for the terrestrial gravity data; M{·} is a homogeneous and isotropic averaging 
(mean value) operator for the sphere (for details see Moritz 1980), and 

2 ( , )n Gg
Rσ ε

∆
 are the gravity anomaly error degree variances. For the evaluation of 

the above two equations, the standard deviations MT nm
σ  of the corresponding coeffi-

cients 
M
nmT , see (144), and an (isotropic) error covariance function of the terrestrial 

gravity data are required. In this context, the degree variance approach neglects 
possibly existing error correlations between individual geopotential model coeffi-
cients, and, in addition, error correlations between different data sets (here geopo-
tential model and terrestrial gravity observations) are usually disregarded due to 
lacking information. 

In principle, the above scheme can also be extended to employ further data sets 
(e.g., satellite altimetry; Wenzel 1982) for the derivation of corresponding disturb-
ing potential surface harmonics and error degree variances. The general least-
squares adjustment and collocation solutions with N components can be found, 
e.g., in Wenzel (1982) and Denker (1988), respectively. Furthermore, the trunca-
tion error due to a limited integration cap size may be considered (e.g., Sjöberg 
2003), but is omitted here, as it can be made negligibly small (see Sect. 4.4). Re-
turning to the case of only two different data sources, the least-squares adjustment 
solution gives the following spectral weights for the gravity components: 

 
2

2 2

( , )
.

( , ) ( , )
n MG T

n
n M n GT T

R
w

R R
σ ε

σ ε σ ε
=

+
 (149) 

Correspondingly, the weights wn
M can be derived, and the sum of both weights may 

be expressed as 

 ,M G
n n ns w w= +  (150) 
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yielding sn = 1.0 for the least squares adjustment solution (as well as the case of 
empirically determined weights; e.g., Haagmans et al. 2003), and sn ≤ 1.0 for the 
collocation solution due to the smoothing property inherent in this method. 

Combining (146) and (150) in the form M G
n n nw s w= −  gives the following result 

for the combined disturbing potential surface harmonics: 

 
( )ˆ ( , , ) ( , , ) ( , , ) ( , , )

ˆ ˆ( , , ) ( , , ) .

M G G M
n n n n n n

M G
n n

T R s T R w T R T R

T R T R

θ λ θ λ θ λ θ λ

θ λ θ λ

= + −

= +
 (151) 

The major advantage of rewriting the surface harmonics terms in the above 
equation is, that this basically results in a remove–compute–restore procedure, i.e., 
the first part of (151) is the usual geopotential model component (for sn = 1.0), and 
the second part is related to the difference between the terrestrial gravity anomalies 
and the corresponding global model values. This yields significant advantages in 
the numerical evaluation, because the difference quantities are small and average 
out at larger distances (see also below). Now, summing up all combined surface 
harmonics ˆ ( , , )nT Rθ λ  from degrees 2 to ∞, and considering (144) and (145), yields 
the final computation formulas for the disturbing potential: 

 ˆ ˆ ˆ( , , ) ( , , ) ( , , ) ,M GT r T r T rθ λ θ λ θ λ= +  (152) 

with the contribution from the global geopotential model 
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and the terrestrial gravity data 

 ( )ˆ ( , , ) ( , , ) ( , , ) ( , ) ,
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associated with the (modified Stokes) kernel 
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In (154), ΔgM are the gravity anomalies related to the global geopotential model. 
The global model is used in a remove–compute–restore fashion, i.e., the residual 
anomalies are used to compute the residual disturbing potential, and finally the 
disturbing potential contribution from the global model is added. However, this 
procedure can be applied to Stokes’s formula as well. Hence, the only difference 
between the spectral combination approach and Stokes’s formula relates to the 
spectral weights wn

G in (155); thus Stokes’s formula results as a special case of the 
above formulas by setting all weights wn

G
 = 1.0 for degrees n equal 2 to ∞. There-
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fore, while the Stokes formula always extracts all degrees from 2 to ∞ from the 
terrestrial gravity data, the spectral weights allow control of which degrees are 
taken from the terrestrial gravity data; e.g., only the short wavelengths should be 
computed from the gravity data, while the long wavelength structures should be 
defined mainly by a global geopotential model (e.g., from GRACE, GOCE, etc.). 
Another important feature of the (modified Stokes) kernel in (155) is that the ker-
nel function remains finite if the weights go to zero for very high degrees or the 
summation is limited to some maximum degree (e.g., because mean gravity 
anomalies are utilized); hence, in principle, no special consideration of the inner 
zone contribution is required, but due to the rapid change of the integration kernel 
near ψ = 0° it is recommended to integrate numerically the kernel function within 
the innermost zone (see also Sect. 4.4). Lastly, the zero-degree and first-degree 
terms of T are omitted again in the above equations (see notes related to the Stokes 
integral in Sect. 3.3). 

In addition, the spectral combination technique also permits the derivation of er-
ror estimates for the results based on the degree variance approach. Based on (151) 
and (152), the error estimates for the combined disturbing potential T̂  can be de-
rived by straightforward error propagation. The error covariance function (related 
to points P and P') is given by 
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with the error degree variances of the combined disturbing potential 
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where nmax is the maximum degree of the global geopotential model employed. 
The spectral combination approach results in integral formulas, which initially 

have to be evaluated over the entire unit sphere σ. However, as residual anomalies 
Δg–ΔgM are employed in (154), a limited integration to some maximum distance 
ψmax (spherical cap σ0) should lead to only a small truncation error. This truncation 
error (also denoted as omission error) may be estimated based on Molodensky’s 
truncation coefficients (e.g., Sjöberg 2003) or by means of the frequency transfer 
function (Wenzel 1982). The latter approach is outlined in the following. Assum-
ing that a limited integration of (154) over a spherical cap σ0 results in GT  (instead 
of ˆGT ), which may be expressed by corresponding Laplace surface harmonics G

nT  
(related to r = R), the truncation error can be expressed as 
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where the relation (151) is considered with the independent variables being 
dropped for the sake of simplicity. After some mathematical manipulations, the 
frequency transfer function, known from signal processing, follows as 

 
max

0

1 ( , ) (cos )sin ,
2n n

nFTF W R P d
ψ

ψ

ψ ψ ψ ψ
=

−
= ∫  (159) 

and, corresponding to (156), the covariance function of the truncation error is given 
by 
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with 
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where 2 ( , )n T Rσ  are the disturbing potential (signal) degree variances, which have 
to be derived from a given model, e.g., the degree variance model of Tscherning 
and Rapp (1974). Finally, the spectral combination approach can be extended to 
other input and output gravity field parameters; examples can be found in Wenzel 
(1982), Denker (2003), and Wolf (2007). Moreover, an extension of the spectral 
combination technique by a heterogeneous error model, with several accuracy 
classes for the gravity data, was investigated by Behrend (1999), while the use of a 
full error covariance matrix for the geopotential model has not yet been attempted. 
In addition, numerical results are provided in Sect. 4. 
 

3.7 Least-Squares Collocation 

Within the framework of physical geodesy, least-squares collocation (LSC) is a 
method for determining the anomalous gravity field by a combination of geodetic 
observations of different kinds (Moritz 1980). LSC allows the calculation of un-
known deterministic parameters (e.g., station coordinates), and besides being able 
to propagate the input data noise into the results, it can utilize as input as well as 
predict (output) heterogeneous signals related to the anomalous gravity field; 
hence, LSC can be considered as a method, combining least-squares adjustment, 
filtering, and prediction (Moritz 1980). The mathematical foundation of LSC is 
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related to the fields of statistics and functional analysis, in particular the theory of 
reproducing kernel Hilbert spaces. The method was introduced in geodesy by 
Moritz (1962), while Krarup (1969) succeeded in unifying the functional analytic 
and statistical viewpoints. Further information on the mathematical foundation of 
LSC can be found, e.g., in the articles from Tscherning (1985, 1986, 1994), Sansò 
(1986), and the textbooks from Meschkowski (1962) and Moritz (1980). 

The simultaneous determination of station coordinates and gravity field quanti-
ties is denoted as “integrated” or “operational geodesy” (e.g., Eeg and Krarup 
1973; Grafarend 1978b; Hein 1986); however, this approach has not gained much 
acceptance in practice because it is extremely computation-intensive. Therefore, 
only the parameter-less case of LSC (least-squares prediction) is discussed briefly 
in the following. The basic formula for the prediction of signals in unsurveyed 
points is 

 1 1ˆ ( ) , ,− −= + = = +st tt nn st tt nns C C C l C C l C C C  (162) 

where Ctt and Cst are the auto and cross covariance matrices related to the signals t 
at the observation sites and s at the unsurveyed stations, l is the observation vector, 
consisting of a signal and noise component (i.e., l = s + n), and Cnn is the noise 
covariance matrix. The LSC solution is based on a least-squares hybrid minimum 
condition on the weighted quadratic sum of the signal and noise parts, or equiva-
lently, the prediction results satisfy the least error variance condition (Moritz 
1980). The input and output signals may be heterogeneous (e.g., T, Δg, ξ, η, etc.), 
but as all these quantities depend on the (harmonic) disturbing potential T, corre-
sponding relations must also be considered for the calculation of the signal covari-
ances in the matrices Ctt and Cst. In this context, the covariance function of the 
disturbing potential, K(P,P'), is typically chosen as the basic covariance function, 
from which all other required covariances are derived by covariance propagation, 
considering the harmonicity of T and the analytical relations between T and its 
functionals. Moreover, it is assumed that the signal and noise quantities have an 
expected (or mean) value equal to zero; regarding the disturbing potential T, this 
condition is fulfilled at the global scale if T does not contain a zero-degree har-
monic. 

The (spatial) homogeneous and isotropic covariance function of the disturbing 
potential is given by 
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with the disturbing potential degree variances 

 { }2 2( , ) ( , , ) ,n nT R M T Rσ θ λ=  (164) 
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where M{·} is the homogeneous and isotropic averaging (mean value) operator. In 
principle, the covariance function cannot be exactly determined empirically, as this 
would require a complete knowledge of the disturbing potential function. There-
fore, an empirical covariance function has to be used, which is typically obtained 
by fitting an analytical expression to the given data within the area of interest (local 
covariance function; for details see Goad et al. 1984). In this context, the degree 
variance model of Tscherning and Rapp (1974), resulting in closed formulas for all 
covariance expressions, is widely used, and a corresponding planar model was 
derived by Forsberg (1987). Furthermore, for the residual disturbing potential with 
respect to a global geopotential model, the degree variances in (163) have to be 
replaced by corresponding error degree variances of the global model up to the 
maximum degree nmax of the global model. Finally, it is noted that the LSC esti-
mates have the minimum variance property if the kernel function is identified with 
the empirical covariance function, while this property is lost if arbitrary kernel 
functions are employed according to the analytical aspect of collocation (Moritz 
1980). 

LSC also allows the computation of error estimates, e.g., the error covariance 
matrix for the signals estimated by (162) is given by 

 1( ) .−= − +ss ss st tt nn tsE C C C C C  (165) 

The main advantage of LSC is its flexibility, being able to handle all quantities 
related to the disturbing potential as input and output data, including the associated 
error estimates. The data may be located at arbitrary (discrete) points in space, and 
hence no additional gridding is necessary. Furthermore, the varying heights of the 
observation and prediction sites are taken into account if LSC is applied spatially; 
the method inherently includes the harmonic continuation, and therefore the non-
level surface corrections (Molodensky terms) are irrelevant in this case (Forsberg 
and Tscherning 1997). Usually, the spatial covariance functions, e.g., (163), are 
based on spherical approximations, but this is not considered as a serious problem 
when residuals with respect to a global geopotential model are processed (for fur-
ther discussions see Tscherning 2004). 

The main drawback of LSC is, however, that a system of equations as large as 
the number of observations has to be solved, see (162). In addition, numerical 
problems may arise from identical points or points at a short distance, when, de-
pending on the input data noise, the matrix C  may become nearly singular; there-
fore, such duplicate points should be excluded from the input data. Today, with 
modern computers, several thousands of observations can be handled without prob-
lems. Moreover, the computational effort can be significantly reduced for the sim-
ple case of interpolating a single gravity field quantity (typically gravity anoma-
lies), as then the input data can be restricted to several points near the prediction 
site. Furthermore, the fast collocation method can be applied, requiring gridded 
data sets (Sansò and Tscherning 2003). 
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Finally, the LSC method may be considered as data-driven, starting from dis-
crete data and information about their noise and signal covariances, while the 
GBVP solutions by integral formulas may be characterized as model-driven (Sider-
is 2011a). For the limiting case of homogeneous and continuous data, least-squares 
collocation transforms into integral formulas such as Stokes’s integral, etc. (Moritz 
1976). 
 

3.8 Astronomical Leveling 

More recently, the method of astronomical leveling has again attracted some inter-
est within the framework of special projects, including the high-precision geoid 
and quasigeoid determination along selected lines as well as the independent vali-
dation of corresponding regional gravimetric models and global geopotential mod-
els (e.g., Hirt and Flury 2008; Hirt et al. 2008; Ihde et al. 2010). The efficiency of 
astronomical latitude and longitude observations could be substantially improved 
by using transportable zenith cameras together with CCD technology, precise elec-
tronic tilt meters, and GNSS for timing and positioning, associated with automated 
processing of the digital images. At present, two such systems exist, one at the 
Institut für Erdmessung (IfE), Leibniz Universität Hannover, and the other at the 
ETH (Eidgenössische Technische Hochschule), Zurich, Switzerland (Bürki et al. 
2004; Hirt 2004). Besides the enhanced observation efficiency, allowing the occu-
pation of 10–20 stations per night, the accuracy could also be substantially im-
proved; while the new digital zenith camera systems reach an observation accuracy 
of 0.05″ (1 h observation time) to 0.08″ (20 min observation time; see Hirt and 
Seeber 2008), the standard classical analog zenith camera, astrolabe, and theodolite 
systems attained an accuracy of at most 0.5″ (e.g., Wildermann 1988), often ac-
companied by systematic errors, in particular in the longitudes (Bäumker 1984). 

The astronomical latitude and longitude provide the direction of the gravity vec-
tor and hence the inclination of the corresponding level surface. The deflection of 
the vertical describes the angle between the actual plumb line and a reference di-
rection; the deflection of the vertical is a vectorial quantity and usually expressed 
by its components in north–south and east–west direction. Besides the deflection of 
the vertical according to Molodensky (see Sect. 3.2), the deflection of the vertical 
at the Earth’s surface with respect to the ellipsoidal normal at P (Helmert’s defini-
tion) and the corresponding quantity at the geoid (Pizzetti’s definition) are to be 
distinguished (e.g., Torge 2001). Thus the components of the deflection of the 
vertical according to Helmert are given by 

 , ( ) cos .H H
P P P P P P Pξ ϕ η λ ϕ= Φ − = Λ −  (166) 

Integrating the deflections of the vertical along a path on the geoid or the 
Earth’s surface yields the geoid undulation difference 
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where ε0 and εH are the azimuthal deflection components (in the azimuth α) accord-
ing to Pizetti and Helmert at the geoid and Earth’s surface, respectively, e.g., 

 cos sin ,H H Hε ξ α η α= +  (168) 

δε is the correction for the curvature of the plumb line, and E12 is the orthometric 
height reduction known from geometric leveling (for further details see Torge 
2001). 

Regarding the height anomalies, the relation 

 d dd ds dh
ds dh
ζ ζζ = +  (169) 

has to be utilized (Molodenskii et al. 1962), which considers that the height anoma-
lies are not related to a level surface, in contrast to the geoid undulations treated 
above (i.e., dN = (dN/ds) ds = ε0 ds can be considered as a special case of (169)). 
Considering that dζ/ds is the azimuthal deflection component according to Mo-
lodensky, while taking dζ/dh from (141), leads to 

 
2 2

12 2 1
1 1

.M gds dh
γ

ζ ζ ζ ε ∆
∆ = − = − −∫ ∫  (170) 

Alternatively, utilizing the deflections of the vertical according to Helmert, the 
above equation can be expressed as 

 
2

12 2 1 12
1

,H Nds Eζ ζ ζ ε∆ = − = − −∫  (171) 

where 12
NE  is the normal height reduction; for a detailed derivation of the equations 

for the height anomalies see Campbell (1971) and Torge (2001). The negative sign 
of the ε components in (167), (170), and (171) follows from the sign conventions 
for the geoid/quasigeoid heights and the deflections of the vertical. 

The accuracy of astronomical leveling mainly depends on the accuracy of the 
vertical deflections as well as the quality of the interpolation between the observa-
tion sites. The latter component, i.e., the interpolation error, arises from the approx-
imation of the line integrals by discrete observations; it can be substantially re-
duced by considering topographic information. The purely random observation 
errors propagate with the square root of the number of individual set-ups. 
The standard deviation of ΔNi or Δζi from a single set-up is given by 

[mm] [ ] [km]4.8N "i Sεσ σ∆ = ∆ , where σε[″] is the vertical deflection standard deviation 
in arc seconds, and ΔS is the station distance in kilometers. Hence, for a line 
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of length S with n segments (n = S/ΔS), the standard deviation is given by 
[mm] [ ] [km]4.8N " S nεσ σ∆ = ∆ , assuming uncorrelated errors; on the other hand, 

errors with a correlation of r = 1.0 and systematic errors propagate linearly with n 
or the distance S, resulting in [mm] [ ] [km]4.8N " Sεσ σ∆ = . Regarding the correlation 
due to anomalous refraction, Hirt and Seeber (2008) mention values of r ≈ 0.05 
between single observations. 

Regarding the digital zenith camera results, an accuracy of about 0.1″ can be 
safely assumed for a standard observation period of 20 min (Hirt and Seeber 2008), 
which leads to a formal accuracy of the ΔN or Δζ quantities at the few millimeters 
level for shorter lines up to about 100 km, depending on the station distance. Ac-
cordingly, for longer lines of 500–1,000 km, the random errors accumulate to a 
level of about 1–3 cm, and systematic errors become more critical, e.g., a systemat-
ic error of only 0.01″ transforms into a corresponding ΔN or Δζ error of 2.4 cm (S = 

500 km) and 4.8 cm (S = 1,000 km), respectively. Thus, on long traverses of several 
100 km, the astrogeodetic results are getting into competition with the combined 
satellite (e.g., GOCE) and gravimetric solutions, as indicated by the practical re-
sults for two 500 km long traverses in Germany (e.g., Ihde et al. 2010). On the 
other hand, an independent verification of the astrogeodetic results at the millime-
ter level for spatial scales of a few 100 m to several 10 km is extremely difficult, as 
practically no other comparable data exists. While geometric leveling is accurate at 
the millimeter level, the GNSS techniques usually give worse results due to station 
dependent effects, etc.; however, based on 48-h GPS observations and sophisticat-
ed new approaches to reduce station dependent effects, Hirt et al. (2010) quote an 
RMS difference between GPS/leveling and astrogeodetic results of about 2–3 mm 
(max. 5 mm). In addition, considering the spectral relation between gravity anoma-
lies and vertical deflection components with a conversion factor of 6.7 mGal/″ for 
higher degrees n, it should also be possible to verify at least the fine structures of 
the astrogeodetic calculations, provided that the local and regional gravity anomaly 
field is reasonably represented by observations, while the far-zone is modeled by a 
global geopotential model; in principle, an accuracy of 0.1″ for the astronomical 
observations corresponds to an accuracy of about 0.7 mGal in terms of gravity, 
which is easily achieved by regional gravimetric surveys, being in most instances 
more accurate by at least one order of magnitude. To the best knowledge of the 
author, such an experiment is still lacking, and therefore would be an interesting 
topic for the future. 

The main advantage of the astrogeodetic method is its independence from any 
data outside the area of calculation, in contrast to the gravimetric method where 
basically global data coverage is needed. Therefore, the main applications for the 
astrogeodetic method are seen in local geoid and quasigeoid calculations (especial-
ly for the case that gravity field observations in the surrounding areas are lacking 
or inaccessible for political reasons) as well as the independent validation of corre-
sponding gravimetric results and global geopotential models up to distances of a 
few 100 km. A regional gravity field survey, particularly for larger areas, can be 



64 │ 3.9  The Remove–Compute–Restore Technique 
and Topographic Effects 

 

performed more effectively by land, sea, and airborne gravimetry than by astro-
nomical observations, which require more time per station occupation and have to 
be done during the night outside normal working hours. 
 

3.9 The Remove–Compute–Restore Technique 
and Topographic Effects 

In practice, local and regional gravity field modeling is usually based on discrete 
data covering the area of interest and the immediate surroundings. This leads to 
two difficulties. First, the very short wavelength gravity field information is not 
properly represented by the discrete observations, leading to aliasing effects; this 
problem is counteracted by employing digital elevation models to obtain the high-
frequency gravity field signals. Second, as the observation data cover only a certain 
region, the long wavelength gravity field information (i.e., longer than the extent of 
the region) must be computed in another way; this problem is remedied by using a 
state-of-the-art global geopotential model. Hence, the short and long wavelength 
gravity field structures are obtained from digital elevation models and a global 
geopotential model, respectively, while the medium wavelength field structures are 
derived from the regional discrete gravity field observations. This leads directly to 
the remove–compute–restore (RCR) technique, in which the short and long wave-
length information is first removed from the observations, then the residual quanti-
ties are used for gravity field modeling (e.g., transformation from residual gravity 
to height anomalies), while finally the short and long wavelength contributions are 
restored again. 

The general scheme of the RCR technique is based on a residual disturbing po-
tential given by 

 ,res M TT T T T= − −  (172) 

where TM and TT are the contributions from the global geopotential model and the 
topographic information (or more generally the anomalous masses; see below). 
Correspondingly, all observations, described as linear functionals L of T, are con-
sistently reduced by 

 ( ) ( ) ( ) ( ) ,res M T
obs obs obs obsL T L T L T L T= − −  (173) 

where the global geopotential model should be utilized rigorously as a high-degree 
reference field (see Sect. 3.2). Then, after applying the gravity field modeling tech-
niques, the effects of the global geopotential model and the topography are re-
stored, leading to the final predictions 

 ˆ ˆ( ) ( ) ( ) ( ) .res M T
pred pred pred predL T L T L T L T= + +  (174) 
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The removal of the short and long wavelength gravity field information corre-
sponds to a spectral (low-pass and high-pass) filtering; this leads to residual quanti-
ties which are typically much smaller and smoother (as well as statistically more 
homogeneous and isotropic) than the original ones, facilitating, e.g., the tasks of 
interpolation, gridding, as well as field transformations by integral formulas or 
LSC, with the additional side effect that the collection of observational data can be 
restricted to the region of interest plus a narrow edge zone around it. The RCR 
technique has become a standard procedure for local and regional gravity field 
modeling as documented in textbooks (e.g., Torge 2001) and numerous journal 
articles (e.g., Sideris 2011b; Forsberg 2010; Denker et al. 2009; Tscherning 2004; 
Smith and Roman 2001). 

Until recently, high-degree geopotential models were mainly developed up to 
degree and order nmax = 360 from satellite and terrestrial data, corresponding to a 
resolution of 0.5° or about 55 km; examples are the EGM1996 (Lemoine et al. 
1998) as well as the EIGEN (e.g., Förste et al. 2008a, b) and GGM (e.g., Tapley et 
al. 2007) models. However, the situation changed considerably with the advent of 
the EGM2008 model (Pavlis et al. 2008), which includes coefficients up to spheri-
cal harmonic degree nmax = 2,190, corresponding to a resolution of 5' or about 9 km. 
Hence, regarding areas with high-quality data included in EGM2008, it should 
only be necessary to add the very short wavelength gravity field structures (about 
2–3 cm RMS for the geoid/quasigeoid) by means of local gravity and terrain data, 
but the situation may be quite different in areas where only poor data were availa-
ble for EGM2008. At present, there is not very much practical experience on how 
to make optimal use of the ultra-high-degree EGM2008 model in regional gravity 
field modeling, and certainly more investigations on this topic are needed (e.g., 
according to Forsberg 2010). Further discussions in this direction, e.g., related to 
the impact on topographic reductions, follow below and in Sect. 4.4. 

In mountainous regions, the gravity field is strongly correlated with the local to-
pography; the gravitational attraction of the topographic masses causes a strong 
signal, which dominates at shorter wavelengths. Therefore, topographic infor-
mation can be used to smooth the gravity field prior to any modeling process in 
order to avoid aliasing effects. For example, gravity stations are by tendency locat-
ed in valleys along roads, and thus the observations are related to a level which is 
systematically below the average topography. Such aliasing errors can be very big 
and devastating for gravity field modeling (Forsberg and Tscherning 1997). Be-
sides the direct gravitational effect, the topography implies that the observations 
are related to a non-level surface, which can be considered by LSC, but requires 
additional corrections (Molodensky terms) for the integral formula approaches (see 
Sect. 3.4). 

In addition to the topography, other information about local density anomalies, 
e.g., due to salt domes, etc., may also be taken into account (Denker 1988). This 
leads to a so-called mass model, which may be considered as “source information” 
(the masses are the sources of the gravitational field), in contrast to the “effect 
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information” from a global geopotential model (Sünkel 1983). The effect of the 
anomalous masses can be computed by Newton’s law according to (19), giving 

 1( ) ,T
obs obs

V

L T G L dv
l

ρ  = ∆  
 ∫∫∫  (175) 

where Δρ are (appropriately defined) density anomalies (see Forsberg 1984; 
Forsberg and Tscherning 1997). In this context, it is important to note that the 
topographic (or mass) potential TT has to be a harmonic function, because other-
wise the above RCR scheme is not valid (Forsberg and Tscherning 1997). This 
condition is fulfilled if either a fixed area is taken into account (e.g., specified by 
latitude and longitude limits), or if the reductions are – at least in principle – com-
puted globally. The classical terrain reduction as well as reductions based on fixed 
spherical cap sizes do not fit into this scheme, as for every new station another area 
of the mass model is evaluated. 

Different terrain reduction schemes and the associated advantages and disad-
vantages are discussed in detail in Forsberg and Tscherning (1981, 1997) as well as 
Forsberg (1984). The complete topographic (or Bouguer) reduction is not suited for 
gravity field modeling because it causes a very large change of the potential func-
tion due to the complete removal of all topographic masses (ideally shifted to infin-
ity). The topographic-isostatic reduction is useful for gravity field modeling as it 
provides a smooth residual field; however, it has the disadvantage of generating 
long wavelength signals, and thus also the potential coefficients of a global model 
need to be reduced accordingly, which is a costly and time-consuming procedure. 
Furthermore, as a global high-degree spherical harmonic reference expansion is 
used within the RCR procedure, which obviously also includes the effect of the 
global topography, preferably only short wavelength topographic effects should be 
considered, leading to the so-called residual terrain model (RTM) reduction, intro-
duced by Forsberg and Tscherning (1981). 

The RTM procedure is based on a smooth reference topography surface, usually 
obtained by applying a moving average or other filter (e.g., a Gaussian filter; see 
Forsberg 2010) to the existing high-resolution digital elevation model (DEM), and 
then only the differences between the actual topography and the reference topogra-
phy are taken into account within the reduction process; this leads to balanced 
positive and negative density anomalies, representing areas where the topography 
is either above or below the reference topography, and hence the RTM effects will 
cancel out for zones at larger distances (Forsberg and Tscherning 1997). Thus, the 
remote contributions become negligibly small, and the RTM reduction computa-
tions can be limited to a distance of about two to three times the resolution of the 
reference topography (Forsberg and Tscherning 1997). In summary, the RTM 
reduction has the advantage that only short wavelength gravity field structures are 
considered (without changing the long wavelengths), and in addition the reductions 
can be limited to some distance ψmax, while still satisfying the harmonicity condi-
tion for the topography potential function TT. Furthermore, the RTM reduced grav-
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ity anomalies based on a mean elevation surface of about 100 km resolution will 
typically be quite similar in magnitude to the isostatic anomalies (Forsberg and 
Tscherning 1997). 

The mass displacements associated with the RTM technique (also denoted as 
regularization) lead to the situation that stations above the mean elevation surface 
are left in the mass-free domain, whereas the gravity field quantities at stations in 
valleys with hP < href are transformed into corresponding quantities inside the mass-
es, where the associated potential function is not harmonic. The latter problem is 
usually remedied by a simple “harmonic correction”, which is based on downward 
continuation through a Bouguer plate, being valid only if the reference topography 
is sufficiently long-wavelength (Forsberg and Tscherning 1997; Forsberg 2010). 
The non-harmonicity of the reduced potential below the reference height surface is 
considered today as a major theoretical problem with the RTM method (Forsberg 
and Tscherning 1997), and some attention was given to it recently by Elhabiby et 
al. (2009), Omang et al. (2011), and Forsberg (2010). In principle, the quantities 
related to a harmonically continued topography potential function TT are needed, 
which may be obtained by first removing the effect of the entire topography, fol-
lowed by a harmonic continuation of the observations to the reference elevation 
surface, plus finally the restoration of the effect of the reference topography. An-
other option would be to condense the masses of the reference topography at a 
lower level. For further details on this topic, requiring additional investigations, see 
the references mentioned above. 

The RTM concept is widely applied in practice, employing a mean elevation 
surface (reference topography) with a resolution ranging typically from 100 km to 
50 km, but also smaller values have been applied (e.g., Forsberg and Tscherning 
1997; Denker 1988; Forsberg 2010). In this context, Forsberg (2010) describes 
quasigeoid computations based on local gravity and terrain data in connection with 
the full EGM2008 model (nmax = 2,190) and RTM reductions associated with a 5' 
and 30' reference topography, as well as a computation based on EGM2008 with 
nmax = 360 and RTM 30' reductions. In comparison to GPS/leveling data, the two 
solutions based on the RTM 30' reductions and EGM2008 to nmax = 360 and 2,190 
showed the best performance (with a slight advantage for the results using 
EGM2008 to nmax = 2,190), while the solution with the RTM 5' reductions and 
EGM2008 (nmax = 2,190) fitted less well, which was attributed to the approximation 
errors in the harmonic correction (as discussed above). Interestingly enough, the 
solution based on EGM2008 to nmax = 2,190 and the RTM 30' reductions showed 
the best performance, and Forsberg (2010) mentions that this is “indicating that the 
‘double accounting’ of the topography does not matter in practice (which it should 
not, since the remove–restore principle will account for this).” 

The practical computation of terrain effects requires high-resolution DEMs and 
is mostly based on prism integration in the space domain, augmented by the much 
faster (but sometimes more approximate) FFT methods (e.g., Forsberg 1984; 
Schwarz et al. 1990; Forsberg and Tscherning 1997; Sideris 2011b). Regarding a 
rectangular prism of constant density Δρ, closed formulas exist for the gravitational 
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potential and its derivatives (MacMillan 1958; Forsberg 1984; Denker 1988), e.g., 
the potential at a point P, located at the origin of a local Cartesian coordinate sys-
tem (x, y, z), is given by 

 
2 2 2

2 2 2

22 2
1 1 1

ln( ) ln( ) ln( )

arctan arctan arctan ,
2 2 2

with       .

|||

| | |

prism

yx z
x y z

T G xy z d xz y d yz x d
x yz y xz z xy

xd yd zd

d x y z

ρ= ∆ + + + + +

− − −

= + +

 (176) 

The computation of terrain effects related to other gravity field parameters is de-
scribed in detail in Forsberg (1984), including a computer program (TC) for the 
efficient evaluation of large terrain grids with sophisticated features such as an 
inner zone densification, the consideration of the given station elevations, a simple 
Earth curvature correction, as well as the use of a detailed and coarse grid for the 
inner and outer zones, respectively, associated with an automatic switching be-
tween different computation formulas in order to save computing time and to ob-
tain stable results. The use of the rectangular prisms is considered as sufficiently 
accurate in connection with the RTM method, as the differences between rectangu-
lar and spherical bodies will also cancel out to some extent within the RCR proce-
dure. However, further studies on this topic are necessary, such as that presented 
by Heck and Seitz (2007), using the so-called tesseroids based on spherical coordi-
nates. 

Finally, it should be noted that the RCR technique can be applied in combina-
tion with all gravity field modeling procedures described in the previous sections, 
ranging from the computation of spherical harmonic models, over the integral 
formula approaches, least-squares collocation, astronomical leveling, to the appli-
cation of Molodensky’s theory. The whole Molodensky theory may in principle be 
applied to the original surface free-air data as well as to terrain-reduced data, yield-
ing much smaller correction terms gn associated with a more stable solution 
scheme (e.g., Forsberg and Tscherning 1997; Denker and Tziavos 1999). 
 

4 Practical Results 

4.1 Data Requirements 

Today’s demands for accuracy within the scope of regional gravity field modeling 
are at the level of about 0.01–0.001 m for the geoid/quasigeoid, 1 mGal for gravity 
anomalies, and 1″ for vertical deflection components, e.g., regarding applications 
such as height determination by GNSS or dynamic ocean topography (DOT) mod-
eling, interpolation of gravity data (for leveling stations, etc.), and local geodetic 
networks. In this context, terrestrial surface free-air gravity anomalies form one of 
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the most important input data sets because they exist in many regions of the world 
with good quality and coverage. Regarding the input data requirements with re-
spect to accuracy and resolution, theoretical as well as numerical investigations, 
including spectral analysis can be utilized. An easy way to gain an idea about the 
necessary data quality is provided by the degree variance approach, based on the 
spectral decomposition of the anomalous gravity field. The root mean square 
(RMS) omission error, describing the gravity field signals above a certain harmon-
ic degree nmax (i.e., the terms neglected in a spherical harmonic expansion complete 
up to degree and order nmax), can be computed simply as the square root of the sum 
of the corresponding degree variances for degrees nmax + 1 to infinity. The degree 
variance model of Tscherning and Rapp (1974) with nmax = 10,000 (corresponding 
to a spatial resolution of 2 km) yields an omission error of about 0.001 m for ge-
oid/quasigeoid heights, 1.4 mGal for gravity anomalies, and 0.2″ for vertical de-
flection components, while the corresponding values for nmax = 5,000 (correspond-
ing to a spatial resolution of 4 km) are about 0.005 m, 4.8 mGal, and 0.7″, respec-
tively. Regarding high-degree geopotential models, the omission errors for nmax = 

360 (standard over the past decades) and nmax = 2,190 (related to EGM2008; Pavlis 
et al. 2008) are of interest; for the latter case, the omission error is 0.023 m for 
geoid/quasigeoid heights, 11.1 mGal for gravity anomalies, and 1.7″ for vertical 
deflection components, while the corresponding values for nmax = 360 are 0.227 m, 
25.2 mGal and 3.8″, respectively. The latter figures also document that the combi-
nation of a global geopotential model with local terrestrial data is important for 
modeling the complete gravity field spectrum; otherwise, for example, ge-
oid/quasigeoid signals with a magnitude of about 2–4 cm for nmax = 2,190 (see also 
Jekeli et al. 2009) or a few decimeters for nmax = 360 are lacking. 

The omission error for different gravity field parameters is depicted in Fig. 7, 
which also gives some insight into the spectral sensitivity of the quantities, the 
geoid/quasigeoid (or disturbing potential T) signal being concentrated mainly at the 
longer wavelengths, while for the first and second derivatives of T (Δg, ξ, η, and 
Tzz, respectively; 1 Eötvös (E) = 10–9 s–2 = 0.1 mGal/km) the signals are progres-
sively focused at the shorter wavelengths. Another useful formula for estimating 
the omission error for geoid/quasigeoid heights can be deduced from Kaula’s rule 
of thumb (a simple degree variance model, based on the assumption that the stand-
ard deviation of a single fully normalized coefficient of the gravitational potential 
is 5 2{ , } 10 /nm nmC S nσ −≈ ; Kaula 1966), resulting in (see also Forsberg 1993) 
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The above formula gives an omission error of 0.006 m for nmax = 10,000, 
0.013 m for nmax = 5,000, 0.029 m for nmax = 2,190, and 0.18 m for nmax = 360, which 
is in reasonable agreement with the results based on the Tscherning and Rapp 
(1974) model. Aiming at the computation of the geoid or quasigeoid with an accu-
racy of 0.01 m or better, the preceding simple and straightforward considerations 
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suggest that corresponding harmonics up to degree and order 5,000–10,000 have to 
be modeled, requiring input data with a spatial resolution of roughly 2–4 km, 
while, e.g., the accuracy demands for gravity data are only at the level of about 
1 mGal and hence not very severe. However, it has to be noted that these simple 
thoughts consider only random errors, and, furthermore, the omission and observa-
tion errors superimpose each other in the calculations. 

On the other hand, small systematic gravity errors, affecting large regions, may 
also integrate up to significant geoid or quasigeoid errors. A rough estimation of 
such effects is possible on the basis of the formula for the inner zone ge-
oid/quasigeoid contribution (130). For example, considering a systematic gravity 
error of 0.1 mGal over a circular cap with radius 100 km or 0.02 mGal over a 
500 km cap, respectively, leads in each case to a systematic geoid/quasigeoid error 
of 0.01 m. With regard to the combination of terrestrial data with GOCE and 
GRACE geopotential models, the chosen radii approximately correspond to the 
resolutions where terrestrial data come into play. Therefore, it is desirable to con-
nect at least the gravity base network to modern absolute gravity stations (with an 
accuracy of 0.01–0.02 mGal or better), while the requirements for regional detail 
surveys can be relaxed (with acceptable random errors up to about 1 mGal). 

Another view on the data requirements is possible by looking at the gravitation-
al effects of typical disturbing density anomalies. For example, in the north Ger-
man lowlands, many saltdomes exist, which cause quite local gravity field struc-
tures. Figure 8 depicts the gravitational effect of a typical salt dome with an exten-
sion of 4 × 4 × 4 km3 and a density contrast of Δρ = 300 kg/m3, with the density of 
salt usually being lower than that of the surrounding rocks. Therefore, salt domes 
are frequently connected with (negative) gravity anomalies of about 20–30 mGal, 
associated with geoid/quasigeoid and vertical deflection effects of 5–6 cm and 2″, 
respectively. Hence, in order to capture such significant local gravity field varia-

Fig. 7  Omission error for 
geoid/quasigeoid heights 
(N, ζ), gravity anomalies 
(Δg), single vertical 
deflection components (ε), 
and vertical gravity 
gradients (Tzz) 
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tions, corresponding observations with a sufficient spatial resolution are needed, 
again leading to data spacings at the few kilometer level. 

Besides the gravity observations themselves, the horizontal and vertical coordi-
nates (either gravity field related heights from leveling or ellipsoidal heights from 
GNSS techniques) of the gravity sites must be known with sufficient accuracy. The 
station positions are required for the calculation of the normal gravity field parame-
ters and the corresponding anomalous gravity field quantities (regarding the level 
ellipsoid, only the latitudes and heights are needed), as well as for the determina-
tion of the global geopotential model and terrain contributions within the frame-
work of the remove–compute–restore (RCR) procedure. The horizontal and verti-
cal position requirements should roughly conform with the gravity accuracy; con-
sidering, e.g., gravity observations with an accuracy of 0.01, 0.1, and 1.0 mGal, an 
actual gravity gradient of about 0.3 mGal/m for the vertical and 10 mGal/km (max-
imum) for the horizontal direction, respectively, results in position requirements of 
about 0.03, 0.3, and 3.0 m (vertically), and 1 m, 10 m, and 100 m (horizontally). 

In addition, within the framework of the RCR technique, the digital elevation 
models (DEMs) must also have a sufficient spatial resolution and accuracy. In this 
context, comprehensive numerical investigations are presented, e.g., in Li et al. 
(1995) and Grote (1996); in summary, regarding the targeted modeling accuracies 
(see above), the DEMs should have a spatial resolution of about 100–1,000 m for 
alpine to flat areas, while an accuracy of approximately 10 m is sufficient, provid-

 

Fig. 8  Gravitational effect of a typical salt dome on height anomalies (ζ,), gravity disturbances 
(δg) and vertical deflections (ε) 
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ed that, especially for the gravity sites, the available station heights are employed 
in the computation of the terrain effects, as suggested by Forsberg (1984). 

Furthermore, a comprehensive study on the effect of systematic gravity anomaly 
errors due to gravity, horizontal, and vertical datum inconsistencies is given in 
Heck (1990), with a similar investigation (for Europe) being presented by Denker 
(2001). The effect of such small but systematic gravity anomaly errors on the ge-
oid/quasigeoid is predominantly of long wavelength nature, and hence it can be 
kept small (below the level of 0.01 m) by using a global high-degree satellite geo-
potential model (from the GRACE or GOCE mission) as a reference (e.g., in con-
nection with the spectral combination approach), while the pure terrestrial solu-
tions based on Stokes’s integral may lead to errors at the decimeter level (for fur-
ther details see Heck 1990 and Denker 2001). 

In summary, gravity surveys should preferably be connected to a high-precision 
gravity base network (relying on absolute gravity observations) in order to avoid 
large-scale systematic errors; the corresponding accuracies should be about 
0.01 mGal for gravity, 0.03 m for the heights, and 1.0 m for the horizontal coordi-
nates, or better, respectively. On the other hand, the accuracy requirements for 
detail surveys may be relaxed to the level of about 1 mGal and accordingly for the 
vertical and horizontal positions (see above), provided that the errors are purely 
random. These figures are also supported by simulation studies based on least-
squares collocation, etc. (examples can be found, e.g., in Denker 1988 and 
Forsberg 1993). 
 

4.2 The European Gravity and Geoid Project 

The historical development of geoid and quasigeoid modeling in Europe has been 
described, e.g., in Torge and Denker (1998). Since the beginning of the 1980s, the 
Institut für Erdmessung (IfE), Leibniz Universität Hannover (LUH), has been in-
volved in such computations. The first important result was the “European Gravi-
metric Geoid Number One” (EGG1; Torge et al. 1982); it was based on mean grav-
ity anomalies and had an accuracy at the level of several decimeters. Then, with the 
advent of the Global Positioning System (GPS), the accuracy demands for the 
geoid/quasigeoid increased to the centimeter level, which can be achieved only by 
combining high-resolution point gravity field data with corresponding topographic 
information and a global geopotential model. In this context, several investigations 
were carried out initially for very local areas, and regarding a small test network 
near Hannover, Germany, it was proven for the first time that an agreement be-
tween gravimetric and GPS/leveling results at the centimeter level is in fact possi-
ble (Denker and Wenzel 1987). These computations were subsequently extended to 
larger regions and lead to a new quasigeoid model for the whole of Germany 
(Denker 1989). Based on these experiences, IfE proposed to perform correspond-
ing computations for the whole of Europe; finally, this task was supported by the 
International Association of Geodesy (IAG), Geoid Sub-Commission for Europe, 
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and IfE served as the computing center in the period 1990–2003. A major result of 
this IAG enterprise was the high-resolution European geoid and quasigeoid model 
EGG1997 (Denker and Torge 1998), based on the global geopotential model 
EGM1996 (Lemoine et al. 1998) and high-resolution gravity and terrain data avail-
able at that time. The evaluation of EGG1997 by GPS and leveling data revealed 
the existence of long wavelength errors at the level of 0.1–1 ppm, while the agree-
ment over shorter distances up to about 100 km was at the level of 0.01–0.02 m in 
many areas with good quality and coverage of the input data (Denker and Torge 
1998; Denker 1998). 

However, after a while, several advancements appeared to be possible, including 
strongly improved global satellite gravity fields (from the CHAMP, GRACE, 
GOCE missions), new or updated high-resolution data sets (gravity, terrain, satel-
lite altimetry, GPS/leveling), as well as refined modeling techniques. Thus, a com-
plete re-computation of the European geoid and quasigeoid was considered appro-
priate and promised significant accuracy improvements, especially at the longer 
wavelengths. As a result, after the IUGG General Assembly in Sapporo, 2003, 
when the new structure of the IAG was implemented, it was decided to support the 
development of an improved European geoid/quasigeoid model in the form of an 
IAG Commission 2 Project, named “CP2.1 – European Gravity and Geoid Project 
(EGGP),” and since 2011 this task has continued as IAG Sub-Commission 2.4a 
“Gravity and Geoid in Europe.” The European geoid and gravity project has strong 
connections to the IAG International Gravity Field Service (IGFS) and its centers, 
as well as to several other IAG bodies, e.g., EUREF (IAG Reference Frame Sub-
Commission for Europe). The project is chaired by H. Denker, IfE, and has about 
50 national delegates (project members) from most of the countries in Europe. Due 
to the confidentiality of many data sets, only one data and computation center ex-
ists at IfE, Hannover. Further details on the project can be found, e.g., in Denker et 
al. (2009). Interim results and status reports of the project were presented roughly 
on an annual basis. 

While the initial test computations within the framework of the EGGP were lim-
ited to central Europe, the first complete re-computation was finished in 2007 and 
is denoted as EGG2007 (European Gravimetric (Quasi)Geoid 2007). After that, the 
new global geopotential model EGM2008 (Pavlis et al. 2008) became available. As 
the comparisons of EGM2008 with the European gravity data sets revealed some 
systematic differences for a few gravity sources, these problem areas were correct-
ed, and, besides a few other improvements, lead to a new computation, which was 
finished at the end of 2008 and is denoted as EGG2008. At present, investigations 
about the inclusion of a GOCE geopotential model and some further refinements 
are still going on. More details about the EGGP data and results are provided in the 
following sections. 
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4.3 The European Gravity and Terrain Data 

Since the start of the European geoid project, significant improvements of the land 
gravity data base were made, including new or revised data sets for nearly all Eu-
ropean countries. New gravity data sets became available for Austria, Belgium, 
Bulgaria, Croatia, Cyprus, Denmark, Estonia, Finland, France, Germany, Greece, 
Italy, Latvia, Luxemburg, the Netherlands, Norway, Portugal, Serbia, Slovenia, 
Spain, Sweden, Switzerland, and Turkey. 

Significant progress was also made in the collection and reprocessing of marine 
gravity data. All marine gravity data collected until 2003 were edited and crossover 
adjusted (see Denker and Roland 2005), which led to significant data improve-
ments. The comparisons with independent altimetric gravity anomalies from, e.g., 
the KMS2002 model (Andersen et al. 2005), showed an RMS difference of 
18.0 mGal for the original data set, 10.2 mGal for the edited data set, and 7.8 mGal 
for the edited and crossover adjusted data set, respectively, which proves the effec-
tiveness of the entire processing scheme (see Denker and Roland 2005). 

In addition, after 2003, significant new marine gravity data sets became avail-
able, originating mainly from the authorities of the Scandinavian countries (cov-
erage: Baltic Sea, North Sea, North Atlantic), France (coverage: western parts of 
the Mediterranean Sea, Atlantic), as well as the National Geospatial-Intelligence 
Agency (NGA), U.S.A. (coverage: central and eastern parts of the Mediterranean 
Sea). Moreover, some airborne data sets were also provided by the Scandinavian 
authorities, covering the Baltic Sea as well as parts of the North Atlantic and 
Greenland coastal waters. The aforementioned new gravity data sets were thus far 
not crossover adjusted together with the other marine gravity data sources, mainly 
because all of them are of high quality without the need for a crossover adjustment 
and also due to a lack of time. 

In addition to this, the public domain data from the Arctic Gravity Project 
ArcGP (Forsberg and Kenyon 2004) were integrated in the project data base. Final-
ly, data from the EGG1997 data base were utilized for some areas (e.g., Eastern 
Europe and Africa). Furthermore, in order to fill the remaining data voids in the 
marine gravity data, altimetric gravity anomalies were employed. Until 2007 (re-
garding the EGG2007 computation), the altimetric data set KMS2002 (Andersen et 
al. 2005) was used. 

After that, when the global geopotential model EGM2008 (Pavlis et al. 2008) 
became available, some problem areas with systematic differences between the 
European gravity data sets and EGM2008 showed up. This led to the following 
updates of the gravity sources being carried out until September 2008 (related to 
the EGG2008 computation): 

 

• The Greek and Turkish gravity values were corrected in absolute level (the 
errors were caused by imperfect gravity reference system information). 

• A few minor new sources (nine) were added. 
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• The KMS2002 altimetric anomalies were replaced by a merger of the 1' × 1' 
DNSC2008GRA (Andersen et al. 2010) and V18.1 (Sandwell and Smith 2009) 
data sets; the merging procedure was done in accordance with the EGM2008 
approach (Pavlis et al. 2008), where the DNSC2008GRA data were used near 
the coast (out to 200 km distance) and the Sandwell and Smith data were em-
ployed over the open ocean; in addition, the altimetric data were completely ed-
ited out within a distance of 10 km from the shore line, as comparisons with 
some high-quality ship data within a 10 km wide coastal zone showed an RMS 
difference twice as high as on the open ocean (approximately 8 mGal vs 
4 mGal). 

• The ship gravity data editing was improved and some sources with very poor 
quality were completely excluded (mainly older sources with RMS differences 
to the altimetric data exceeding about 10 mGal). 

• Fill-in gravity anomalies were derived from the EGM2008 geopotential model 
for some 5' × 5' cells in Africa, the Caucasus region, and parts of Asia, where 
no gravity observations were available within a distance of 15 km; this ap-
proach was selected to stay close to EGM2008, even in regions with large grav-
ity data voids outside the main area of interest, being Europe and the surround-
ing waters. 
 

The updates described above were taken into account for the EGG2008 compu-
tation, but not for EGG2007. Further information on the different data sets is in-
cluded in Table 1. The final EGG2007 gravity data set consisted of 5,354,653 
observations from 709 sources, plus 195,840 gravity values from the ArcGP pro-
ject and 951,251 altimetric anomalies from the KMS2002 data set. On the other 
hand, the corresponding EGG2008 data set consists of 5,355,206 gravity observa-
tions from 718 sources, plus 195,840 ArcGP, 13,222,260 (1' × 1') altimetric, as 
well as 120,747 EGM2008 fill-in values; thus, in comparison to the previous 
EGG1997 computation, the land and marine data from the project data base ap-
proximately doubled, while the total amount of data increased about sixfold. 

The progress in the collection of gravity data is also documented for selected 
examples in Fig. 9. The left part of the figure shows the old status in 1997 
(EGG1997; Denker and Torge 1998) and the right part shows the new status as of 
September 2008 (EGG2008) for the whole of Europe (top), Scandinavia (middle), 
and the Mediterranean Sea (bottom; ship data from Morelli et al. 1975 excluded). 
In this context, it should be noted that within the EGGP, the Morelli ship gravity 
data for the Mediterranean Sea were completely excluded, as comparisons with 
newer data sources revealed significant systematic discrepancies in several areas. 

Finally, it is important to mention that all EGGP gravity sources were carefully 
checked regarding the underlying horizontal and vertical position as well as the 
gravity reference systems, and, if necessary, transformations were done to the tar-
get systems, being ETRS1989 (European Terrestrial Reference System 1989, coin-
ciding with ITRS at epoch 1989.0, and co-moving with the stable part of the Eura-
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sian tectonic plate; for further details see http://www.euref.eu/), EVRS (European 
Vertical Reference System, based on the zero tide system; see Ihde et al. 2008), 
and a gravity datum based on absolute gravity observations. In the merging process 
of the various data sources, emphasis was placed on a thorough check with respect 
to systematic and gross errors, which was one of the most time-consuming steps. 

Apart from the improved gravity data, comparable progress was also made in 
the collection of high-resolution digital elevation models (DEMs). For the 
EGG1997 computation, digital elevation models (DEMs) with a resolution of 
about 200 m were only available for Central and Western Europe, while coarser 
grids with a resolution of 0.5–10 km had to be used for the remaining parts of Eu-
rope. As of 1997, only Germany had released a very high-resolution DEM with a 
grid size of 1" × 1" (approx. 30 m), but meanwhile Switzerland and Austria also 
provided 1" × 1" DEMs for the EGGP. At present, high-resolution national DEMs 
do not exist or are confidential for large parts of Eastern Europe. Hence, in all 
areas not covered by high-resolution national DEMs, fill-ins from public domain 
data sets had to be utilized. However, compared to EGG1997, significantly im-
proved fill-ins are available now, e.g., from the Shuttle Radar Topography Mission 
(SRTM) with a resolution of 3" × 3" (SRTM3; JPL 2007) or the global public 
domain model GTOPO30 with a resolution of 30" × 30" (USGS 2007). As the 

Table 1  Main characteristics of EGG1997/2007/2008 

EGG1997 EGG2007 EGG2008 

Gravity data 
Project data base 
2,684,133   (744 sources) 5,354,653   (709 sources) 5,355,206   (718 sources) 
Other data sources 

–  195,840   (ArcGP) 195,840   (ArcGP) 
335,124   (KMS1996) 951,251   (KMS2002) 13,222,260   (1' × 1' altimetry) 

–  –  120,747   (EGM2008 fill-ins) 
3,019,257   (Total) 6,501,744   (Total) 18,894,053   (Total) 
Terrain data 
7.5" … 5'  grids 1" … 30"  grids 1" … 30"  grids 
700 million elevations 8.3 billion elevations 8.3 billion elevations 
15' × 20' RTM 30' × 45' RTM 15' × 20' RTM 
Global geopotential model 
EGM1996  (nmax = 360) EIGEN-GL04C  (nmax = 360) EGM2008  (nmax = 360/2190) 
Computation procedure 
Remove-restore technique, spectral combination (1D FFT) 
GRS80 normal potential, zero-tide system 
Computation grid 
25° – 77°N, 35°W – 67.4°E 25° – 85°N, 50°W – 70°E 25° – 85°N, 50°W – 70°E 
1.0' × 1.5' 1.0' × 1.0' 1.0' × 1.0' 
3,120 × 4,096 points 3,600 × 7,200 points 3,600 × 7,200 points 
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SRTM3 model covers only the latitudes between 60°N and 54°S, the GTOPO30 
model had to be used for the regions in the far North. 

All available DEMs were merged into a new European DEM with a common 
grid size of 3" × 3", covering the area 25°N–85°N and 50°W–70°E. Furthermore, 
for the area of Germany, Austria, and Switzerland, a corresponding 1" × 1" DEM 

  

  

  

Fig. 9  Locations of terrestrial gravity data for entire Europe (top), Scandinavia (middle) and the 
Mediterranean Sea (bottom), excluding the Morelli data; the left part shows the status in 1997 
(EGG1997) and the right part shows the status of September 2008 (EGG2008) with the ArcGP 
and altimetric data shown in grey and blue, respectively 
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was created. The 3" × 3" and 1" × 1" DEMs comprise about 6.6 and 1.7 billion 
elevations, respectively. In the merging process, the highest priority was given to 
the national DEMs, followed by the SRTM3 and GTOPO30 data. For testing pur-
poses, a second 3" × 3" European DEM was created using only the public domain 
data sets SRTM3 and GTOPO30. Depth models were not considered so far, i.e., 
elevations for ocean cells were set equal to zero. 

Within the merging process, the SRTM3 and GTOPO30 DEMs were also eval-
uated by comparisons with the high-resolution national DEMs. In Germany, the 
differences between the national and the SRTM3 DEMs showed a standard devia-
tion of 7.9 m with maximum differences up to about 300 m. The largest differences 
were located in opencast mining areas and resulted from the different epochs of the 
data. Histograms of the differences showed a clear deviation from the normal dis-
tribution with a long tail towards too high SRTM3 elevations, which is expected 
due to the fact that SRTM is a “first return system,” providing elevations of what-
ever the radar has bounced off from, and in many instances this is above the actual 
ground level (Denker 2005). 

The evaluation of the GTOPO30 model by national and SRTM3 DEMs demon-
strated that in large parts of Europe the longitudes of GTOPO30 should be in-
creased by 30" (one block). In Central Europe, the longitude shift reduced the 
standard deviation of the differences to the national and SRTM3 models by rough-
ly 75% to about 10 m. Altogether, the national DEMs augmented by the SRTM3 
and GTOPO30 data provide a significantly improved European DEM, as compared 
to EGG1997. The DEMs were not updated between 2007 and 2008, and hence 
both the EGG2007 and EGG2008 computations rely on the same DEM for Europe, 
which is depicted in Fig. 10. 
 

4.4 Development of the European Quasigeoid Model EGG2008 

The general computation strategy is based on the spatial gravity field modeling 
approach, aiming at the determination of the disturbing potential at the Earth’s 
surface and the associated height anomalies or quasigeoid undulations (e.g., 
Denker et al. 2005). This concept has the advantage that only gravity field observa-
tions at the Earth’s surface and in its exterior enter into the calculations, avoiding 
assumptions about the Earth’s interior gravity field (as needed in connection with 
the orthometric heights and the geoid). A conversion of the height anomalies to 
geoid undulations can then be performed afterwards by introducing a density hy-
pothesis, which should be consistent with that used for deriving the corresponding 
orthometric heights (e.g., the so-called Helmert heights based on (52); for further 
discussions see Sects. 2.4 and 3.5). 

The remove–compute–restore (RCR) technique is utilized for combining the 
high-resolution terrestrial gravity and terrain data with a state-of-the-art global 
geopotential model. Terrain reductions are performed according to the residual 
terrain model (RTM) technique to smooth the data and to avoid aliasing effects 
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(see Sect. 3.9). The transformation of the gravity anomalies into corresponding 
disturbing potential and height anomaly values is done by the spectral combination 
technique with integral formulas (see Sect. 3.6). In principle, the following steps 
are carried out: 

 

1. Computation of surface free-air gravity anomalies based on (86), including the 
atmospheric correction (77), yielding 

 A
P P Qg g gδ γ∆ = + − . (178) 

2. Computation of residual gravity anomalies (remove step) for all stations ac-
cording to equation (173), giving 

 * ,res M T
P P Q Pg g g g∆ = ∆ − ∆ −∆  (179) 

where *
M
Qg∆  and T

Pg∆ are the contributions from the global geopotential model 
and the topography, respectively (see Sects. 3.2 and 3.9). 

3. Gridding of the irregularly distributed residual gravity anomalies, which are 
still referring to the actual observation positions, by least-squares collocation, 
taking into account the given standard deviations of the observations. 

 

Fig. 10  Final digital elevation model (DEM) for Europe with a resolution of 3″ × 3″ 
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4. Transformation of the residual gravity anomaly grid into a corresponding dis-
turbing potential grid (compute step) based on the spectral combination ap-
proach (154), resulting in 

 ˆ ( , , ) ( , )
4

res res
P P

RT r g W r d
σ

θ λ ψ σ
π ′= ∆∫∫ . (180) 

5. Computation of the final disturbing potential by restoring the contributions 
from the geopotential model and the topography (restore step), yielding 

 ˆ ˆ res M T
P P P PT T T T= + + . (181) 

6. Conversion of the disturbing potential to height anomalies by means of (90). 
7. Derivation of geoid undulations by introducing a density hypothesis, e.g., based 

on (56) and (52). 
 

Regarding the details of the practical implementation of the above steps, the fol-
lowing more general notes are given: 

 

• It is assumed that all station coordinates are based on the ETRS1989 reference 
system, the physical heights are normal heights based on the EVRS (zero tide 
system), and the gravity values are referring to an absolute gravity datum; re-
garding the accuracy requirements for the station coordinates, gravity values, 
etc.; see Sect. 4.1. 

• The geodetic reference system GRS80 (e.g., Moritz 2000) is used as the normal 
gravity field in all computations, being the latest system recommended by 
IUGG and IAG; in addition, the GRS80 ellipsoid is recommended by IERS 
(2010) for use with the ITRF solutions, and it is also mostly utilized for GNSS 
ellipsoidal coordinates. 

• Atmospheric corrections for the observed gravity values are computed accord-
ing to (77); the restore part δVA (see (75), Sect. 2.6) is neglected due to its in-
significant magnitude (of a few millimeters). 

• The degree two zonal coefficient of the global geopotential model is always 
converted to the zero tide system, and hence the resulting height anomalies and 
geoid undulations also refer to the zero tide system. 

• The different values of the constants GM (geocentric gravitational constant) 
and a (semimajor axis) in the global geopotential models and the GRS80 nor-
mal gravity field are handled rigorously throughout all computation steps; the 
resulting degree zero terms in the spherical harmonic expansions are taken into 
account in all calculations, see (110) and (111). 

• The geopotential model parameters are so far not computed rigorously based on 
coordinate transformations of the relevant vectors and matrices (see Sects. 2.3 
and 2.5), but instead ellipsoidal approximations based on Wenzel (1985) are 
employed, which also provide sufficiently accurate results. Furthermore, the 
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geopotential model values were until now only computed utilizing the normal 
heights HN, and not HN +ζQ* , as required within a rigorous linearization process 
with respect to a high-degree geopotential model (see Sect. 3.2). However, for 
future calculations the rigorous approach will be implemented, and it remains 
to be seen whether this also leads to improved results. 

• Topographic reductions are computed based on the RTM technique (see 
Sect. 3.9), which results in a significant smoothing of the relevant gravity field 
quantities and reduces aliasing effects. The required reference topography was 
always computed by a moving average filter from the available DEMs; this en-
sures the consistency between the high-resolution DEMs and the reference to-
pography, without creating undesirable long wavelength signals. The reference 
topography had a resolution (size of the moving average filter) of 30' × 45' for 
EGG2007, and 15' × 20' for EGG2008 (see also Table 1). The resolution of the 
reference topography was reduced for EGG2008, because even the RTM tech-
nique creates some small long wavelength signals, which lead to an incon-
sistency within the RCR procedure, as these signals are suppressed in the com-
pute step (by the spectral combination approach), but are fully considered in the 
restore step on the other hand. All computations were done with the program 
TC based on prism integration; regarding the gravity stations, the DEM was 
forced to reproduce the given station elevations (see Sect. 3.9; Forsberg 1984). 
Figure 11 shows an example for the surface free-air gravity anomalies and the 
corresponding RTM reduced values; the figure clearly documents that the RTM 
reductions lead to a significant smoothing of the anomaly field, while preserv-
ing the long wavelength features. 

• The spectral combination technique was employed so far for the compute step, 
because it allows an optimal combination of the terrestrial data with a global 
geopotential model based on the error characteristics of both data sets, and fur-
thermore the resulting integral formulas can be evaluated rigorously and very 
effectively by 1D FFT techniques (Haagmans et al. 1993). In this context, the 
regional terrestrial data, with possibly existing (small) long wavelength system-
atic errors, and a global geopotential model, being highly accurate at the very 
long wavelengths, complement each other in an optimal way; hence, within the 
combination process, the very accurate long wavelength gravity field structures 
of the present global geopotential models (based on the GRACE and GOCE 
missions) should be retained, while the terrestrial data should mainly contribute 
the shorter wavelength components. In addition, previous investigations clearly 
showed that the application of the original Stokes formula, implying that the 
complete disturbing potential spectrum (from degree 2 to ∞) is computed from 
the terrestrial gravity data plus the geopotential model in the outer zone, leads 
to unreasonable long wavelength distortions of the results, and therefore it is 
not well suited in this context. Further specific details on the implementation of 
the spectral combination procedure are given below. 
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• The computation area for the EGG2007 and EGG2008 models is 25°N–85°N 
and 50°W–70°E. The grid spacing is 1' × 1', yielding 3,600 × 7,200 = 
25,920,000 grid points (see also Table 1). 
 

The key ingredients within the spectral combination approach are the spectral 
weights according to (149), which depend on the error degree variances associated 
with the terrestrial gravity data and the geopotential model. Regarding the terrestri-
al gravity data, the starting point was the following error covariance function: 

 4 [ ]
2[mGal ]( , , , ) 1 .G Gg g

Cov R e ψε ε ψ
∆ ∆

− °′ =  (182) 

This covariance model considers correlated noise and was originally suggested and 
applied by Weber (1984). Then, based on (148), corresponding error degree vari-
ances can be computed, and, together with the error degree variances for the geo-
potential model according to (147), the spectral weights can be estimated from 
(149). 

For the computation of EGG2007, the geopotential model EIGEN-GL04C 
(Förste et al. 2008a) was employed, because at that time it was the latest available 
high-degree model based on GRACE and terrestrial data. The spectral weights, 
computed as described above, are shown in Fig. 12 together with corresponding 
values related to a recent CHAMP model and the EGM1996 model (used for the 
EGG1997 computation). In addition, Fig. 12 also depicts the modified integral 
kernels associated with the corresponding spectral weights as well as the original 
Stokes kernel. With respect to EGG2007, it was decided to do the combination 
only up to degree 120, while between degrees 120 and 10,000 (corresponding to 
the used grid size) full weight (wn

G = 1.0) was given to the terrestrial gravity data in 

  

Fig. 11  Surface free-air gravity anomalies (left) and corresponding RTM 15' × 20' reduced values 
(right) for the area of the Harz mountains, Germany 
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order to exploit fully the collected European gravity sources. However, this does 
not imply that the global model is completely disregarded above degree and order 
120, as, e.g., in areas with larger data gaps the high-degree gravity information of 
the model is considered in the gridding process and thus practically taken over in 
the final combined solution. In this context, it is also worth mentioning that previ-
ous studies revealed that it is advantageous to use a high-degree model up to de-
gree nmax = 360, as this leads to smaller residual quantities accompanied with re-
duced effects of (e.g., linear) approximation errors in the mathematical modeling. 
In addition, a cosine tapering window was applied between degrees 10,000 and 
30,000 in order to prevent oscillations of the integral kernel. As already mentioned 
in Sect. 3.6, the resulting modified integral kernels W(ψ) remain finite if the 
weights go to zero for very high degrees or the summation is limited to some max-
imum degree; therefore, in principle, no special consideration of the inner zone 
contribution is required, but due to the rapid change of the integration kernel near 
ψ = 0° (see Fig. 12) it is recommended to integrate numerically the kernel function 
within the innermost zone (see also Sect. 3.6). Consequently, a numerical kernel 
integration was implemented using 21 × 21 points for the innermost (central) grid 
cell and 11 × 11 points out to a distance of ψ = 0.5°; outside this distance, the ker-
nel value is simply calculated based on the distance to the cell center. Moreover, to 
speed up the computations, internally a coarse grid is computed and employed for 
the remote zones, and in addition, kernel tabulation and interpolation are imple-
mented. 

 

Fig. 12  Spectral weights and corresponding integral kernels related to a GRACE based geopo-
tential model (red; used for EGG2007 and EGG2008), a recent CHAMP model (green), and 
EGM1996 (black; used for EGG1997), along with the classical Stokes kernel (blue) 
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In spring 2008, the new global geopotential model EGM2008 became available, 
given as spherical harmonic coefficients complete to degree and order 2,159, with 
additional coefficients going up to degree 2,190 and order 2,159 (Pavlis et al. 
2008). The EGM2008 model is based on a corresponding GRACE-only model 
(ITG-GRACE03, nmax = 180, including GRACE data from September 2002 to April 
2007, computation method described in Mayer-Gürr 2006), along with its complete 
covariance matrix, and a new and comprehensive worldwide 5' × 5' terrestrial grav-
ity anomaly data set, combined by a least-squares adjustment, using internally 
ellipsoidal harmonic coefficients (Pavlis et al. 2008). At first the EGM2008 model 
was compared with corresponding GRACE static gravity field solutions. Figure 13 
depicts the signal and error spectra related to EGM2008, along with the error spec-
tra of the recent GRACE based models EIGEN-GL04C (Förste et al. 2008a; uti-
lized for the EGG2007 calculation), EIGEN-5S (Förste et al. 2008b), and ITG-
GRACE2010 (Mayer-Gürr et al. 2010; formal standard deviations scaled by fac-
tor 8), as well as the corresponding spectra of the differences to EGM2008, respec-
tively. Now, regarding roughly the degree range 20–90, the EGM2008 error esti-
mates are about five to six times higher than those from the more recent EIGEN-5S 
and ITG-GRACE2010 models, and about three times higher than those from 
the EIGEN-GL04C model. On the other hand, the depicted difference spectra 
are all very similar and show a reasonable agreement with the error spectra of 
the EIGEN-5S, ITG-GRACE2010 and EIGEN-GL04C models until about degrees 
60–70, but the difference spectra significantly exceed the latter error curves in the 
degree range 60–100, while still being compatible with the EGM2008 error esti-
mates; it is also worth mentioning that the same features show up with reference to 
the GGM03S/C models (Tapley et al. 2007), not shown in Fig. 13. Based on these 
findings, it appears that the EGM2008 error estimates are perhaps too pessimistic 
for the low degrees (degrees less than 60–70), while the bump in the difference 
signals (degrees 60–100) is probably related to the EGM2008 weighting procedure. 

As a result, the spectral weights computed from (149) on the basis of the (per-
haps too pessimistic) EGM2008 error estimates and the error covariance function 
for the terrestrial gravity data (1 mGal correlated noise; see (182)) turned out to be 
somewhat unrealistic, with too much weight given to the terrestrial data, dominat-
ing the combination solution (i.e., wn

G > 0.5) already below degree 70. In principle, 
this could be counteracted by increasing the error estimates for the terrestrial data 
or decreasing the EGM2008 error estimates, as only the relative weighting matters. 
However, this was not attempted, but instead the spectral weights from the 
EGG2007 calculation were also adopted for EGG2008 in connection with the 
EGM2008 model, as these weights appear to be quite reasonable (with wn

G > 0.5 at 
about degree 85; see Fig. 12); in addition, this weighting scheme is in very good 
agreement with the studies from Forsberg (2010), who found empirically from 
GPS/leveling comparisons that linearly increasing weights between degrees 80 
(wn

G = 0.0) and 90 (wn
G = 1.0) are optimal. Furthermore, it is also noted that the 

combination solutions based on the original EGM2008 spectral weights, in contrast 
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to those shown in Fig. 12, performed slightly worse in some of the GPS/leveling 
comparisons. 

Another issue relates to the maximum degree of the employed geopotential 
model in conjunction with the reference topography used for the RTM reductions. 
This item, mainly concerning the ultra-high-degree model EGM2008, has been 
discussed already in Sect. 3.9 with reference to the studies in Forsberg (2010), 
showing “some inherent problems in implementing the RTM method for a highly 
varying reference topography” with “best results obtained for a relatively low-
resolution (30') reference height, irrespective of whether EGM2008 is used at a 
corresponding resolution (nmax = 360) or to full resolution (nmax = 2,190).” With 
respect to the European calculations, RTM reductions based on a 30' × 45' 
(EGG2007) and 15' × 20' (EGG2008) reference topography were tested and used in 
combination with the full resolution EGM2008 model (nmax = 2,190); however, the 
GPS/leveling comparisons indicated a slight deterioration in a few but not all cases 
as compared to the solutions based on EGM2008 with nmax = 360, and further stud-
ies are needed to understand fully this matter. Possible reasons may be related to 
the “double consideration” of the short wavelength topographic signals in the RTM 
reductions and the EGM2008 model, the non-rigorous linearization with respect to 
the geopotential model (i.e., the use of heights HN instead of HN +ζQ*; see above 
and Sect. 3.2), as well as due to the RTM reductions themselves. Therefore, it was 
ultimately decided to employ the EGM2008 model only with nmax = 360 in the 
EGG2008 calculation, accompanied by some fill-ins over large data voids (see 

 

Fig. 13  Signal and error spectra for EGM2008 (red thick and dashed lines, respectively), along 
with the error spectra (dashed lines) for EIGEN-GL04C (green), EIGEN-5S (black), and 
ITG-GRACE2010 (blue; formal standard deviations scaled by factor 8), as well as the corre-
sponding difference spectra with respect to EGM2008 (thick lines) 
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above) to ensure that the full resolution EGM2008 model and the EGG2008 quasi-
geoid stay reasonably close together even there. 

In principle, the Molodensky corrections terms, considering data on a non-level 
surface, also have to be taken into account in connection with the spectral combi-
nation approach (because the employed residual gravity anomalies are still refer-
ring to the actual observation positions). In this context, Molodensky’s theory (see 
Sect. 3.4) and terrain reductions (see Sect. 3.9) are complementary, because the 
application of terrain reductions results in a significant smoothing of the gravity 
field observations, associated with a corresponding reduction of the Molodensky 
correction terms and a more stable computing scheme (Forsberg and Tscherning 
1997). The magnitude of the Molodensky terms was studied in Denker and Tziavos 
(1999) in conjunction with different terrain reduction techniques, indicating that 
the maximum values associated with the RTM technique may reach about 5–10 cm 
in extremely rugged areas of the European Alps (≈ 1 cm RMS) and about 1 cm in 
low mountain ranges (≈ 1 mm RMS). However, utilizing the so-called gradient 
solution (see Sect. 3.4) for Switzerland and Austria did not lead to any improve-
ments in the GPS/leveling comparisons, with similar findings reported by Forsberg 
(2010). Therefore, the Molodensky terms have been neglected so far in the 
EGG2007 and EGG2008 calculations. 

One final item concerns the European Vertical Reference System (EVRS), 
where the vertical datum (zero level surface) is defined as the (zero tide) equipo-
tential surface of the Earth’s gravity field, which passes through the “Normaal 
Amsterdams Peil” (NAP; fundamental tide gauge in Amsterdam, the Netherlands) 
and which has the (constant) gravity potential EVRS

0W  (see Ihde et al. 2008). The 
latest EVRS realization is the EVRF2007 (European Vertical Reference Frame 
2007), consisting of a set of points with precisely determined geopotential numbers 
and normal heights relative to the aforementioned zero level surface through the 
NAP at epoch 2000.0 (Ihde et al. 2008); EVRF2007 is the recommended reference 
frame for all pan-European applications. However, to remain general, the nota-
tion 0

iW  is used for the potential of the zero level surface of a local vertical da-

tum (i). Now 0
iW , being initially unknown, will in general differ from U0, which 

has to be considered accordingly in (89) as well as (95) or (99) for the height and 
gravity anomalies, respectively. While the (small) constant term in the gravity 
anomaly equations has practically no effect on the computed disturbing potential T 
(because it is of long wavelength nature, and such signals are almost entirely de-
fined by the global geopotential model; see above), and the zero-degree term of T 
(i.e., T0 due to the different GM values; see (128)) is already taken into account 
within the calculation process (see above), Bruns’s formula (89) together with (87) 
results in 

 0 0 ( )
0 ,

i
P Pi N i i

P P
Q Q Q

T W U Th Hζ ζ
γ γ γ

−
= − = − = +  (183) 
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where TP is the disturbing potential (including the zero-degree term, as obtained 
directly from the above described computations) relative to the (GRS80) normal 
potential (UP, U0, respectively), HN (i) is the normal height based on the vertical 
datum (i), and 0

iζ  is a virtually constant term to account for the potential difference 

0 0
iW U− . Regarding the EVRF2007, the latter constant was determined by compar-

isons with GPS and leveling data (i.e., hP – HN (EVRF2007)) from the European 
EUVN_DA data set (Kenyeres et al. 2010; see Sect. 4.5) as +0.302 m. As a result, 
a slightly rounded value for 0

iζ  (based also on an earlier EUVN_DA release) was 
employed for the computation of the final EGG2008 height anomalies (quasigeoid 
heights), yielding 

 2008 EVRF2007 EVRF2007
0 0, with 0.300 m  .PEGG

P
Q

Tζ ζ ζ
γ

= + = +  (184) 

The above correction ensures the compatibility between the European GPS 
(ETRS1989) and leveling data (EVRS, normal heights, zero tide system, etc.) on 
the one hand, and the EGG2008 height anomalies on the other hand. 

Table 2 shows the statistics of the 18,154,254 irregularly distributed gravity 
anomalies without an error flag, which were used as input for the computation of 
the EGG2008 residual gravity anomaly grid; the number of points is smaller than 
that given in Table 1, because Table 2 excludes the stations which received an 

Table 2  Statistics of 18,154,254 irregularly distributed gravity anomalies (without error flag) that 
were used as input for EGG2008; units are mGal 

Parameter Mean Std. dev. Minimum Maximum 

∆g +6.59 34.11 –333.36 +498.88 
∆gM (EGM2008, nmax = 360) +7.49 31.27 –226.32 +236.25 
∆gT (RTM 15' × 20') –0.34 4.98 –215.21 +182.72 
∆g – ∆gM –0.90 14.95 –268.74 +290.52 
∆g – ∆gM – ∆gT = ∆gres –0.57 13.90 –163.43 +263.23 

Std. dev.: standard deviation 
 
 
Table 3  Statistics of 3,600 × 7,200 = 25,920,000 quasigeoid heights of the EGG2008 grid; 
units are m 

Parameter Mean Std. dev. Minimum Maximum 

ζ  res = S(∆gres) 0.000 0.161 –1.657 +2.361 
ζ  T (RTM 15' × 20') 0.000 0.036 –0.493 +0.934 
ζ  M (EGM2008, nmax = 360) +26.498 24.257 –48.665 +67.551 
ζ 0EVRF2007 +0.300 0.000 +0.300 +0.300 
ζ  (EGG2008) +26.798 24.258 –48.858 +68.104 

Std. dev.: standard deviation 
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error flag (mainly edited altimetry data near the coast as well as some very bad and 
duplicate marine gravity sources; see Sect. 4.3). The standard deviation (std. dev.) 
of the original gravity anomalies is 34.11 mGal, which reduces to 14.95 mGal after 
subtracting EGM2008 (nmax = 360) and 13.90 mGal after also subtracting the RTM 
contributions. The minimum and maximum values also reduce accordingly, and the 
mean value of the final residual anomalies is –0.57 mGal and thus reasonably close 
to zero (as it should be). 

The statistics of the corresponding quasigeoid height or height anomaly terms 
for EGG2008 are given in Table 3. The major contribution to the final quasigeoid 
comes from the global geopotential model EGM2008 (nmax = 360) with values 
ranging from –48.655 m to +67.551 m and a standard deviation of 24.257 m. The 
standard deviations of the contributions from the topography and the terrestrial 
gravity data are 0.036 m and 0.161 m, respectively. However, the maximum RTM 
effects are about 0.9 m, while the maximum effects of terrestrial gravity data are 
about 2.4 m (all large values are located in Asia or Africa). In addition, the final 
EGG2008 quasigeoid is depicted in Fig. 14. 

 

Fig. 14  Final EGG2008 quasigeoid referring to GRS80 (see text; units are m) 
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The spectral combination technique also permits the derivation of error esti-
mates for the computed quasigeoid heights on the basis of corresponding error 
degree variances. According to (156) and (157) the error degree variances related 
to the terrestrial gravity data and the global geopotential model are required. 
Table 4 shows the results based on 1 mGal correlated noise for the terrestrial gravi-
ty data, see (182), and the error degree variances from different geopotential mod-
els; as the EGM2008 error estimates may be a little too pessimistic (see the discus-
sion above), corresponding estimates from the EIGEN-GL04S1/GL04C and 
EIGEN-5S/5C models were also taken into consideration. In this context, the re-
sults based on the error estimates of the “S” (satellite-only) and “C” (combined) 
models do not differ significantly, because due to the selected weighting scheme 
(see Fig. 12), the error degree variances of the global model come into play only up 
to degree nmax = 120, see (157), where the “S” and “C” values do not differ signifi-
cantly. Table 4 gives a standard deviation for the quasigeoid heights of 3.1 cm 
related to the EGM2008 model and about 2.5 cm related to the EIGEN models, 
which can be viewed as the pessimistic and optimistic case, respectively. Table 4 
also shows that the major error contributions are coming from the spectral band 
with n = 50–360, while today the very long wavelengths (n < 50) are accurately 
known from the GRACE mission and the short wavelengths (n > 360) can be ob-
tained from high-quality terrestrial data. However, once GOCE can deliver the 
quasigeoid up to a resolution of 100 km (n ≈ 200) with an accuracy of about 1 cm, 
the total error (complete spectrum) will reduce to 1.7 cm (for a corresponding 
study related to EGG1997, see Denker 1998). In addition to this, an error covari-
ance function was derived for the quasigeoid heights based on (156), utilizing the 
more optimistic EIGEN-5S/5C error estimates; the result is depicted in Fig. 15, 
showing significant error correlations up to distances of about 300 km. Finally, it 
should be noted that the aforementioned error estimates apply only to those regions 
in Europe, where high-quality terrestrial gravity data exists, while in other areas 
(mainly Eastern Europe) less accurate results have to be expected. In the end, the 
future perspectives for calculating gravimetric geoid/quasigeoid models with an 
accuracy of 1 cm are quite good with respect to well-surveyed regions, where such 

Table 4  Standard deviations for quasigeoid heights based on 1 mGal correlated noise for the 
terrestrial gravity data and error degree variances from different geopotential models; units are m 

Degree range EGM2008 EIGEN-GL04S1/C EIGEN-5S/5C 
2 – 50 0.0028 0.0012 0.0007 
51 – 100 0.0213 0.0114 0.0097 
101 – 200 0.0184 0.0184 0.0184 
201 – 360 0.0115 0.0115 0.0115 
361 – 2,000 0.0071 0.0071 0.0071 
2,001 – ∞ 0.0006 0.0006 0.0006 
2 – ∞ 0.0314 0.0256 0.0248 
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models can then replace geometric leveling and serve as a vertical datum, e.g., as 
planned in Canada and the U.S.A. (see Sect. 2.4). 

Besides the commission error, the truncation error, resulting from the truncation 
of the kernel function (or integration) at some distance ψmax, is also of interest. The 
truncation error can be derived from (160) and (161) by means of the frequency 
transfer function FTFn, see (159). For ψmax = 10°, 7.5°, and 5.0°, the truncation 
error is estimated as 0.7 mm, 1.6 mm, and 3.5 mm, respectively. Moreover, the 
truncation error remains below 1 cm for ψmax larger than about 3°, while truncation 
errors of about 18 mm and 25 mm are obtained for ψmax = 2° and 1° (all figures 
given in terms of standard deviation). In addition, the frequency transfer function 
(FTFn) and the spectral weights differ by no more than about 1.5% for ψmax = 10°. 
Finally, it is noted that in the practical computations, kernel truncation is not used 
at all, i.e., for every computation point the complete input grid is employed; this 
was done because kernel truncation offers no computational advantages and previ-
ous studies showed that kernel truncation may lead to unfavorable results, as for 
every computation point another input data field is utilized (which does not con-
form with the harmonicity condition, see the corresponding discussion on the com-
putation of terrain reductions in Sect. 3.9 as well as Wolf 2008). 
 

4.5 Evaluation of the European Quasigeoid Model EGG2008 

The EGG2008 quasigeoid model and all other interim solutions as well as the 
previous EGG1997 release were evaluated by independent national and European 
GPS and leveling data sets. The ellipsoidal GPS heights as well as the leveled 
heights (all given as normal heights) were converted to the zero tide system based 
on the transformation formulas published by Ihde et al. (2008). Regarding the GPS 
heights, it was generally assumed that they refer to the (conventional) tide-free 
system, as this is common practice and standard for the ITRF products (see 
Sect. 2.1); the transformation to the zero-tide system decreases the ellipsoidal 

Fig. 15  Error covariance 
function for quasigeoid 
heights based on 1 mGal 
correlated noise for the 
terrestrial gravity data and 
error degree variances 
from the EIGEN-5S/5C 
models 
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heights by approximately 4.5 cm on average over the European continent. The 
leveling heights were usually treated as mean tide quantities, as this is a reasonable 
approximation for the typical case of not applying any tidal reductions to the 
leveling; the conversion from the mean tide system to the zero tide system was 
carried out relative to the central latitude of the GPS/leveling data set, which does 
not change the average height level of all stations, but in principle the corrections 
should be calculated relative to the fundamental datum point. 

Table 5 shows the statistics of the differences between a German GPS/leveling 
data set, consisting of 907 stations (data from Bundesamt für Kartographie und 
Geodäsie, BKG, Frankfurt; e.g., Liebsch et al. 2006), and various quasigeoid 
calculations based on different terrestrial data sets (1997, 2007, 2008) and 
geopotential models; the differences were always computed in the sense 
GPS/leveling minus gravimetric quasigeoid. All quasigeoid models were computed 
by the spectral combination technique based on 1 mGal correlated noise for the 
gravity data, see (182), and the error estimates for the geopotential model, where 
the spectral weights related to the EGM2008 geopotential model are a special case, 
as described in Sect. 4.4. As a result, the long wavelength components of the 
regional quasigeoid models and the underlying global geopotential model match to 
a great extent, and hence the comparisons of such regional quasigeoids with 
GPS/leveling data can also be considered as a validation tool for the respective 
global geopotential model. Table 5 provides the mean values of the raw differences 
without applying the constant 0

iζ , while the other statistical parameters (RMS, 
Minimum, Maximum) are related to the centered differences (i.e., after subtracting 
the corresponding mean value). The results in Table 5 clearly demonstrate the 

Table 5  Comparison of 907 GPS and leveling stations in Germany with quasigeoid models based 
on different terrestrial data sets and geopotential models; the GPS/leveling data were converted to 
the zero tide system; the differences are defined in the sense GPS/leveling minus gravimetric 
quasigeoid; the mean values refer to the raw differences without applying the constant ζ0EVRF2007; 
the other statistical parameters are calculated after subtracting the mean value; units are m 

Terrestrial data Geopotential model Mean RMS Minimum Maximum 
1997 (EGG1997) EGM1996 +0.431 0.096 –0.188 +0.331 
1997 EGM2008 +0.302 0.029 –0.095 +0.089 
2007 (EGG2007) EIGEN-GL04C +0.298 0.036 –0.159 +0.075 
2008 EGM1996 +0.416 0.074 –0.132 +0.300 
2008 EIGEN-CHAMP03S +0.288 0.050 –0.116 +0.262 
2008 EIGEN-GRACE01S +0.290 0.038 –0.111 +0.152 
2008 EIGEN-GRACE02S +0.295 0.037 –0.080 +0.123 
2008 EIGEN-GL04S1 +0.299 0.029 –0.097 +0.086 
2008 EIGEN-GL04C +0.300 0.028 –0.093 +0.082 
2008 EIGEN-5S +0.300 0.027 –0.097 +0.073 
2008 EIGEN-5C +0.298 0.028 –0.098 +0.073 
2008 (EGG2008) EGM2008 +0.297 0.027 –0.091 +0.078 
– EGM2008 (nmax = 2190) +0.302 0.031 –0.110 +0.148 
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enormous progress resulting from improved gravity and terrain data on the one 
hand and the global geopotential models based on the satellite missions CHAMP 
and GRACE on the other, with the RMS differences reducing by about a factor of 
3.5 from 9.6 cm for EGG1997 to 2.7 cm for EGG2008. In detail, the combination 
of the older EGM1996 model with the terrestrial data sets from 1997 and 2008 
leads to RMS differences of 9.6 cm and 7.4 cm, respectively, corresponding to an 
improvement of about 23% (related to the updated terrestrial data), but, on the 
other hand, the combination of the 1997 terrestrial data with the EGM2008 model 
results in an RMS difference of only 2.9 cm (improvement 70%); thus, most of the 
total improvement is due to the better satellite data in this case. Furthermore, 
considering the different EIGEN models from GFZ, the RMS differences improve 
in the course of time, where the newer models, associated with longer observation 
series, yield the best results; for example, the combination of the 2008 terrestrial 
data with EGM1996 gives an RMS difference of 7.4 cm, which reduces to 5.0 cm 
related to the CHAMP model (EIGEN-CHAMP03S), about 3.8 cm for the early 
GRACE models (EIGEN-GRACE01S/02S), and finally 2.7 cm for the recent 
GRACE based models (EIGEN-5S/C, EGM2008). Consequently, the new satellite 
mission data (CHAMP, GRACE) have a significant impact on the accuracy of 
regional quasigeoid models, and further improvements down to the level of about 
1 cm are anticipated from the GOCE mission. In addition, the mean values 
associated with the CHAMP and GRACE based geopotential models are 
remarkably stable, differing by no more than about 1 cm. Besides the results given 
in Table 5, the differences between the German GPS/leveling data and EGG1997 
as well as EGG2008 are illustrated in Fig. 16, showing again the progress from the 
1997 to the 2008 quasigeoid models, especially with regard to the long wave-
lengths. 

The statistics from further comparisons of national GPS and leveling data sets as 
well as the European EUVN_DA enterprise (Kenyeres et al. 2010) with selected 
quasigeoid solutions are presented in Tables 6 and 7. The comparisons were 
carried out in conformity with the German GPS/leveling data set (i.e., zero tide 
system, normal heights, no 0

iζ  constant considered, etc.), with the normal heights 
referring to the respective national vertical datums. Again, several combinations of 
the terrestrial data and geopotential models were utilized to assess the progress 
associated with the improved input data sets; besides the quasigeoid model 
EGG1997 (1997 terrestrial data, geopotential model EGM1996, denoted as 
EGG1997/EGM1996), the solutions EGG1997/EGM2008 (1997 gravity and 
terrain data, EGM2008 geopotential model), EGG2008 (2008 terrestrial data, 
EGM2008 geopotential model, denoted as EGG2008/EGM2008), as well as the 
pure EGM2008 model with nmax = 2,190 are addressed in Tables 6 and 7. Besides a 
summary of the comparisons with the German GPS/leveling data, Table 6 includes 
corresponding results for the Netherlands, Belgium, a French traverse from 
Marseille to Dunkerque (1,100 km long) with new leveling data (NIREF; 
Duquenne et al. 2007), a French national data set (based on the older leveling 
network IGN69), Switzerland, Austria, and Russia (Demianov and Majorov 2004), 
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while the results relating to the EUVN_DA project (Kenyeres et al. 2010) are listed 
in Table 7. The EUVN_DA project aimed at a densification of the previous EUVN 
campaign (Ihde et al. 2000) by collecting high-quality GPS and leveling data from 
participating European countries. At present, about 1,400 points are available with 
interstation distances ranging from about 50 to 100 km. The EUVN_DA data set is 
based on the reference systems ETRS1989 (GPS) and EVRS (leveling data, present 
realization EVRF2007; see Ihde et al. 2008), with the zero tide system implement-
ed for both GPS and leveling data; the normal heights were derived in part directly 
from geopotential numbers as well as by simple transformations with up to three 
parameters (Kenyeres et al. 2010). 

In addition to the numerical results given in Tables 6 and 7, the differences of 
the EUVN_DA as well as the Russian GPS/leveling campaign with respect to 
EGG1997 and EGG2008 are illustrated in Fig. 17. On the whole, the EGG2008 
model performs significantly better than EGG1997. The improvements result from 
the updated gravity and terrain data as well as from the utilization of better geopo-
tential models (based on the GRACE mission). Tables 6 and 7 show that solely 
through the introduction of the (GRACE based) EGM2008 geopotential model 
(i.e., EGG1997/EGM1996 vs EGG1997/EGM2008), the RMS differences reduce 
by between 28% (Switzerland) and 70% (Germany). However, the update and re-
processing of the gravity and terrain data also leads to substantial improvements in 
  

  

Fig. 16  Comparison of 907 GPS and leveling stations in Germany with the quasigeoid solutions 
EGG1997 (left part) and EGG2008 (right part); a constant bias is subtracted; stations (dots) and 
differences (positive: up in red; negative: down in blue) are depicted 
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Table 6  Comparison of different GPS and leveling campaigns with quasigeoid models based on 
different terrestrial data sets and geopotential models; the GPS/leveling data were converted to the 
zero tide system; the differences are defined in the sense GPS/leveling minus gravimetric 
quasigeoid; the mean values refer to the raw differences without applying the constant ζ0EVRF2007; 
the other statistical parameters are calculated after subtracting the mean value; units are m 

Quasigeoid 
(Δg / geopotential model) 

# Mean RMS Minimum Maximum Improvement 
vs EGG1997 

Germany 
EGG1997/EGM1996 907 +0.431 0.096 –0.188 +0.331 –  
EGG1997/EGM2008 907 +0.302 0.029 –0.095 +0.089 70 % 
EGG2008/EGM2008 907 +0.297 0.027 –0.091 +0.078 72 % 
EGM2008 (nmax = 2,190) 907 +0.302 0.031 –0.110 +0.148 –  
The Netherlands 
EGG1997/EGM1996 84 +0.244 0.034 –0.061 +0.118 –  
EGG1997/EGM2008 84 +0.234 0.021 –0.047 +0.050 38 % 
EGG2008/EGM2008 84 +0.255 0.010 –0.040 +0.027 71 % 
EGM2008 (nmax = 2,190) 84 +0.263 0.030 –0.135 +0.036 –  
Belgium 
EGG1997/EGM1996 31 –2.005 0.061 –0.103 +0.102 –  
EGG1997/EGM2008 31 –2.054 0.031 –0.055 +0.046 49 % 
EGG2008/EGM2008 31 –2.065 0.028 –0.053 +0.048 54 % 
EGM2008 (nmax = 2,190) 31 –2.060 0.019 –0.047 +0.037 –  
France (North-South traverse with new leveling) 
EGG1997/EGM1996 16 –0.027 0.086 –0.188 +0.124 –  
EGG1997/EGM2008 16 –0.088 0.032 –0.051 +0.068 63 % 
EGG2008/EGM2008 16 –0.097 0.026 –0.024 +0.059 70 % 
EGM2008 (nmax = 2,190) 16 –0.100 0.038 –0.066 +0.082 –  
France (Nationwide campaign) 
EGG1997/EGM1996 965 –0.132 0.125 –0.295 +0.351 –  
EGG1997/EGM2008 965 –0.180 0.080 –0.227 +0.258 36 % 
EGG2008/EGM2008 965 –0.188 0.076 –0.221 +0.191 39 % 
EGM2008 (nmax = 2,190) 965 –0.181 0.084 –0.271 +0.346 –  
Switzerland 
EGG1997/EGM1996 188 +0.535 0.080 –0.129 +0.258 –  
EGG1997/EGM2008 188 +0.117 0.058 –0.201 +0.282 28 % 
EGG2008/EGM2008 188 +0.174 0.052 –0.157 +0.230 35 % 
EGM2008 (nmax = 2,190) 188 +0.141 0.056 –0.170 +0.170 –  
Austria 
EGG1997/EGM1996 170 +0.660 0.108 –0.202 +0.248 –  
EGG1997/EGM2008 170 +0.356 0.064 –0.129 +0.197 41 % 
EGG2008/EGM2008 170 +0.361 0.037 –0.098 +0.100 66 % 
EGM2008 (nmax = 2,190) 170 +0.338 0.071 –0.212 +0.171 –  
Russia 
EGG1997/EGM1996 48 +0.574 0.256 –0.776 +0.707 –  
EGG1997/EGM2008 48 +0.560 0.124 –0.261 +0.300 52 % 
EGG2008/EGM2008 48 +0.555 0.076 –0.134 +0.163 70 % 
EGM2008 (nmax = 2,190) 48 +0.555 0.072 –0.120 +0.141 –  
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the GPS and leveling comparisons in all cases. The additional improvements from 
the upgraded terrestrial data (EGG1997/EGM2008 vs EGG2008/EGM2008) range 
from 2% (Germany), 18% (Russia; see Fig. 17, bottom), 20% (EUVN_DA, exclud-
ing Great Britain and Italy, see below), 25% (Austria), to about 33% (the Nether-
lands); the improvements are particularly high in those areas where the data basis 
was significantly extended, e.g., in the Netherlands, Austria, Russia, as well as 
other regions of Europe. The overall improvement of EGG2008 over EGG1997 
ranges from about 35% to 72%, and also the long wavelength discrepancies are 
significantly reduced from 0.1–1.0 ppm for the EGG1997 model to typically below 
0.1 ppm for all GRACE based solutions (see also Denker et al. 2009). Therefore, 
the consideration of additional tilt parameters in north–south and west–east direc-
tions between the respective quasigeoid heights from GPS/leveling and EGG2008 
(see Sect. 2.1, formula (5)) leads to only marginal improvements of the RMS dif-
ferences in most cases, the only two exceptions being the French nationwide data 
set of 965 stations (as well as the corresponding French data set within 
EUVN_DA) and the British data set within EUVN_DA (see discussion below). 
Regarding the French nationwide data set, the RMS difference reduces from 
7.6 cm (see Table 6) to 4.1 cm when considering additional tilt parameters; the tilt 
acts mainly in the north–south direction (about 0.25 m per 1,000 km distance) and 
is related to the older leveling network (IGN69), as almost no tilt exists in the 
comparisons with the new leveling data (NIREF) available for the French traverse. 
For the latter data set, the RMS is 2.6 cm for the centered differences and 2.5 cm 
after considering additional tilt parameters, while the corresponding RMS value 
based on the older IGN69 heights is 8.0 cm for the centered differences, which 

Table 7  Comparison of the EUVN_DA GPS and leveling data set with quasigeoid models based 
on different terrestrial data sets and geopotential models; the GPS/leveling data were converted to 
the zero tide system; the differences are defined in the sense GPS/leveling minus gravimetric 
quasigeoid; the mean values refer to the raw differences without applying the constant ζ0EVRF2007; 
the other statistical parameters are calculated after subtracting the mean value; units are m 

Quasigeoid 
(Δg / geopotential model) 

# Mean RMS Minimum Maximum Improvement 
vs EGG1997 

EUVN_DA (all) 
EGG1997/EGM1996 1,395 +0.287 0.243 –0.899 +0.708 –  
EGG1997/EGM2008 1,395 +0.253 0.188 –0.693 +0.527 23 % 
EGG2008/EGM2008 1,395 +0.250 0.173 –0.688 +0.443 29 % 
EGM2008 (nmax = 2,190) 1,395 +0.254 0.171 –0.643 +0.481 –  
EUVN_DA (excuding Great Britain and Italy) 
EGG1997/EGM1996 1,139 +0.359 0.161 –0.599 +0.636 –  
EGG1997/EGM2008 1,139 +0.300 0.108 –0.607 +0.428 33 % 
EGG2008/EGM2008 1,139 +0.302 0.076 –0.302 +0.391 53 % 
EGM2008 (nmax = 2,190) 1,139 +0.305 0.077 –0.250 +0.430 –  
 
 



96 │ 4.5  Evaluation of the European Quasigeoid Model EGG2008 

 

clearly proves that the new French leveling is better than the old one (see also 
Sect. 2.4; Rebischung et al. 2008). 

Of special interest are the results from the comparisons with the European 
EUVN_DA GPS/leveling data set, because it is based on common reference sys-
tems for GPS and leveling (see above). Table 7 and Fig. 17 (top) show that the 
EGG2008 model performs quite well over most parts of Europe, the main excep-
tion being Great Britain, but also over Italy and France (see previous paragraph) 
some systematic differences appear. Regarding Great Britain, the so-called second 
and third geodetic leveling differ by about 0.2 m in the north–south direction over 

  

  

Fig. 17  Comparison of the EUVN_DA (top) and Russian (bottom) GPS and leveling data with 
the quasigeoid solutions EGG1997 (left part) and EGG2008 (right part); a constant bias is 
subtracted; stations (dots) and differences (positive: up in red; negative: down in blue) are 
depicted 
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1,000 km distance (e.g., Kelsey 1972), and therefore the results from the third 
leveling were never used alone in practice; instead the results from the second 
leveling were held fixed and the third leveling was adjusted to it, leading to the 
“official ODN heights” from Ordnance Survey (Christie 1994). In addition, more 
recent studies suggest that the systematic error is mainly related to the third level-
ing (Hipkin et al. 2004; Ziebart et al. 2008), and as the EUVN_DA data set is most 
probably based exclusively on the third leveling, significant systematic differences 
show up (see Fig. 17); thus for Great Britain, the RMS of the centered differences 
with respect to EGG2008 is 11.9 cm, which reduces to 3.8 cm after considering 
additional tilt parameters. The situation over Italy has improved with respect to 
earlier results (e.g., Denker et al. 2009) due to a recently performed update (re-
placement) of the entire Italian data set (Kenyeres et al. 2010), but some systematic 
differences remain (see Fig. 17), requiring further investigations. For the entire 
EUVN_DA data set (excluding Great Britain and Italy), the RMS difference re-
duces from 16.1 cm for EGG1997 to 7.6 cm for EGG2008; this means an im-
provement of about 53% (Table 7). Furthermore, the comparisons on a country by 
country basis of the EUVN_DA data with EGG2008 give RMS values for the 
centered differences of less than 3 cm for Belgium, Denmark, Finland, Germany, 
Hungary, the Netherlands, Poland, Slovakia and Sweden, 3–6 cm for Austria, Cro-
atia, the Czech Republic, Estonia, Lithuania, Norway and Switzerland, while the 
largest value is found for Romania (12.1 cm), which is certainly due to the low 
quality of the terrestrial data available for the EGG2008 development. Overall, the 
EUVN_DA comparison results are considered as quite satisfactory, in particular 
with regard to the very large area size (from the Iberian Peninsula to Northern 
Scandinavia, the Baltic States, Poland and Bulgaria) and the fairly small remaining 
systematic differences at the level of only about 1 dm (see also below). 

Of significant importance is also the mean value between the EUVN_DA data 
(excluding Great Britain and Italy) and EGG2008 of +0.302 m, as it can be used to 
derive the potential value for the EVRF2007 zero level surface; formula (183) 
leads to 

 EVRF2007 EVRF2007
0 0 0 0 ,W U γ ζ= −  (185) 

where U0 is the normal potential of the GRS80 level ellipsoid. Another option is to 
work with potential quantities only (a more strict approach), resulting in 

 EVRF2007
0 ,P P PW W C U T C= + = + +  (186) 

followed by an averaging over all stations. Both procedures lead to the same result 
(within the specified significant digits) of 

 EVRF2007 2 -2
0 62,636,857.89 0.02 m s ,W = ±  (187) 

where the latter figure is the empirical standard deviation of the mean value. The 
above potential value differs from that published by Denker et al. (2005) based on 
the earlier EUVN GPS/leveling data set (Ihde et al. 2000), and upon closer exami-
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nation it turned out that the tide correction for the GPS heights had a sign error in 
the 2005 computations; after correcting this error, the data sets used in Denker et 
al. (2005), i.e., EUVN GPS/leveling data, EGG2004 quasigeoid, lead to a zero 
potential of 62,636,857.94 ± 0.16 m2 s–2, while the EUVN data together with 
EGG2008 yield a value of 62,636,858.03 ± 0.12 m2 s–2, both being in good agree-
ment with the result given in (187). Furthermore, a good agreement exists with the 
values given in Bursa et al. (2001) for Germany (62,636,857.51 ± 0.54 m2 s–2) and 
the Netherlands (62,636,857.35 ± 0.70 m2 s–2), both based on the NAP (however, 
no information exists about the tidal systems for GPS and leveling). Hence, the 
NAP zero level surface is about 2 dm below the level surface defined by the global 
W0 value of IERS (2010); see (48). Accordingly, the potential of the zero level 
surfaces can be derived for all other (national) vertical datums involved in Table 6. 

Furthermore, the mean values of the differences between the EUVN_DA and 
EGG2008 data are quite consistent on a country by country basis, ranging from 
+0.241 m to +0.377 m (excluding Great Britain and Italy). This suggests that sys-
tematic leveling errors over Europe are not very pronounced, besides the known 
problems in Great Britain, France and perhaps Italy (see above). This is also sup-
ported by Fig. 17 (right), showing only small long wavelength structures. In addi-
tion to this, the mean values listed in Tables 6 and 7 can also be employed to trans-
form heights from one national or European height system to another one. For 
example, the largest mean value is found for Belgium (–2.065 m for EGG2008), 
which is due to the fact that the Belgian heights are referred to mean low water, 
while most other countries use MSL. Hence, in combination with the mean value 
for EVRF2007 of +0.302 m (EGG2008) it follows that the zero level surface of the 
Belgian heights is 2.363 m below the EVRF2007 zero level surface. This figure is 
in reasonable agreement with the results based exclusively on leveling, where the 
national heights are compared with the EVRF2007 (adjusted) leveling network, 
yielding a difference of 2.317 m (see http://www.crs-geo.eu); however, regarding 
the (small) difference between both figures, it should also be noticed that this is 
related to error contributions and time-variable effects from different epochs of all 
data sets involved, i.e., GPS, leveling, and gravimetric quasigeoid. The good 
agreement of the mean values related to EGG2008 for Germany (+0.297 m) and 
EUVN_DA (+0.302 m) is also remarkable, but both data sets rely on the Amster-
dam tide gauge (NAP). On the other hand, the mean value for the Dutch data set is 
somewhat lower (+0.255 m), which is perhaps partly related to a subsidence of the 
area as well as different epochs of the involved data sets (see Ihde et al. 2008). 

Finally, Tables 6 and 7 also include the comparison results with the complete 
EGM2008 model (nmax = 2,190). The results show that EGM2008 is performing 
very well in all the comparisons, in the case of Belgium and Russia even better 
than EGG2008. On the other hand, EGG2008 is performing a little better than 
EGM2008 in the other cases, with the largest improvements seen for the Nether-
lands and Austria, the latter being probably related to the higher resolution of 
EGG2008. 
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4.6 Summary and Outlook 

Significant progress was made within the framework of the European gravity and 
geoid project regarding the collection and homogenization of high-resolution 
gravity and terrain data, which was then utilized in combination with the global 
geopotential model EGM2008 to develop the completely updated European Grav-
imetric (Quasi)Geoid EGG2008, covering the whole of Europe and the surround-
ing marine areas. The evaluation of this model by independent GPS and leveling 
data showed that the new GRACE based geopotential models as well as the up-
graded terrestrial gravity and terrain data both lead to substantial improvements 
compared to the previous model EGG1997 (in total by 35–72%), and long wave-
length errors, being the basic weakness of EGG1997, are virtually non-existent in 
the EGG2008 model. The RMS of the centered differences between national 
GPS/leveling data sets and EGG2008 range from about 1 cm to 5 cm for areas with 
a good data quality and coverage; the higher values are associated with Switzerland 
and Austria (high mountain regions), which is likely a consequence of both an 
insufficient gravity coverage and leveling quality in some local areas as well as 
theoretical shortcomings. On the other hand, the corresponding RMS differences 
exceed 10 cm for countries with a less favorable data quality (e.g., South-Eastern 
Europe). However, in this context it is also important to note that the differences 
from the GPS/leveling evaluation include error contributions and time-variable 
effects from different epochs of all data sets involved, i.e., GPS, leveling, and grav-
imetric quasigeoid. Taking this into account, the evaluation results indicate an 
accuracy potential of the gravimetric quasigeoid model EGG2008 in the order of 
1–3 cm on a national basis, and 2–5 cm on continental scales, provided that high 
quality and resolution input data are available within the area of interest. These 
figures also conform to the internal error estimates of about 2–3 cm for the 
GRACE based calculations. In the end, the results obtained for large parts of Eu-
rope are about the optimum one can expect at present with up-to-date gravity, ter-
rain, and GRACE data; further improvements are mainly anticipated from the 
GOCE and other future gravity field missions, as the terrestrial data can hardly be 
improved for the greater part of Europe, apart from a few exceptions (e.g., Eastern 
Europe). 

Furthermore, a potential value for the EVRF2007 zero level surface was derived 
from the EGG2008 model as 62,636,857.89 ± 0.02 m2 s–2, and the connection be-
tween national vertical datums was investigated by using GPS/leveling data and 
the EGG2008 model. In the future, the control and replacement of the costly geo-
metric leveling, a differential technique susceptible to systematic errors, as well as 
the so-called “geoid based vertical datum” (implemented soon in Canada and the 
U.S.A.) will be interesting study topics. Finally, regional gravity field modeling on 
the basis of terrestrial and satellite data will certainly retain its importance in the 
future, as short wavelength gravity field structures (e.g., of the geoid and quasi-
geoid) with a resolution of a few kilometers can never be recovered from satellite 
data alone due to the necessary orbit heights of a few hundred kilometers. 
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