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Abstract

Repair is a critical step in maintenance of civil structures to ensure safe operation. However, repair can pose
a problem for data-driven approaches of long-term structural health monitoring, because repairs can change the
underlying distributions of the data, which can invalidate models trained on pre-repair data. As a result, models
previously trained on pre-repair information fail to generalise to post-repair data, reducing their performances
and misrepresenting the actual behaviour of structures. This paper suggests a population-based structural
health monitoring approach to address the problem of repair in long-term monitoring of a mast structure,
by exploring domain adaptation techniques developed for transfer learning. A combined approach of normal
condition alignment and Dirichlet process mixture models is adopted here for damage detection, that can operate
unimpeded by post-repair shifts in distributions. The method is able correctly identify 99% of the damage data
with a false positive rate of around 1.6%. Moreover, it is able to detect environmental variations such as stiffening
due to freezing conditions that can adversely affect the dynamic behaviour of structures.
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1 Introduction

On-line, long-term structural health monitoring campaigns aim to continuously monitor structures to identify and
classify damages that may hinder their ability to safely perform, as intended [1]. As time passes, the monitored
structures are expected to age and accumulate damage, that can affect their intended performance. Consequently,
structures are likely to undergo repairs during their lifetimes. Therefore, an intelligent SHM system should be
able to operate continuously, unimpeded by structural repairs [2]. In practice, however, developing data-driven
approaches for continuous, long-term SHM can be challenging, especially when taking the process of repair into
consideration.

When using conventional machine learning methods within SHM systems, the assumption is that training and
testing data are drawn from the same distribution, i.e., the distribution of the data in the healthy state and various
damage states are the same during the training and testing periods of the model. However, this assumption is too
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strong when considering repairs. Repairs can change the local dynamic properties of the structure, leading to shifts
in the distributions of the features used in the SHM models. Subsequently, as structures are repaired, the underlying
distribution of the data within the same damage/healthy state can change (i.e., the pre- and post-repair data in the
same damage state present different distributions), thus invalidating the assumptions made [3–5]. Consequently, the
performance of the trained model can degrade significantly, to the extent that either critical damage is classified as
healthy data – potentially leading to unsafe operation, or healthy data could be misidentified as damage – leading
to unintended downtimes. Considerable costs to the owners and users of the structures are likely following both
aforementioned scenarios.

One expensive and wasteful solution is to discard the data collected before repair and retrain models using new
labelled information post-repair. Not only is this approach time consuming and undesirable, but it also nullifies the
expensive-to-collect pre-repair damage state data – because the damage state data pre-repair may have a different
distribution post-repair.

Another more constructive solution exists in the form of domain adaptation within transfer learning technologies
[6]. The purpose of transfer learning is to make inferences about one domain using information from a related
domain. Domain adaptation aims to find a mapping that aligns domains, such that labelled data from a source
domain can be utilised to learn machine learning models that generalise to a target domain. Within domain
adaptation, the change in the underlying distributions of the data pre- and post-repair can be considered a domain
shift, where a classifier trained on pre-repair data is unlikely to generalise to post-repair data. Domain adaptation
can be used to reduce this domain shift and retain pre-repair information in the model, utilise it to assist future
monitoring, increase the pool of available information beyond normal condition data, thus reducing information
wastage [7].

Reducing the domain shift introduced by repairs to the structure using domain adaptation can be framed
as a population-based SHM (PBSHM) problem; PBSHM aims to make inferences about target structures, using
information from other (similar) source structures [8]. Within the PBSHM framework, the structure pre- and
post-repair can be treated as source and target structures (respectively) in a homogeneous population (where the
structures are nominally identical) with operational and manufacturing variations.

Domain adaptation is prevalent in visual applications [9], in natural language processing [10], fault detec-
tion/condition monitoring [11–15] and PBSHM [7, 16–19]. In SHM, domain adaption was successfully applied to
address domain shifts during repair of the Gnat aircraft wing [3]. The authors mapped post-repair damages to
pre-repair damages by adopting a metric-informed joint distribution adaptation (JDA) approach. JDA aims to
map labelled and unlabelled datasets into a shared latent space where the differences between the marginal and
conditional distributions are minimised [20], thus allowing transfer across the datasets. In [3] the Mahalanobis
squared distance aided pseudo-labelling of the target conditional distribution (the labels are otherwise unknown
in JDA, and usually requires a semi-supervised approach to identify). The methods described in [3, 4, 16] are,
however, not applicable to this paper because the only class that is shared between the source and target domains
in this paper is the normal condition, and as such, it is an open set domain adaptation problem – a challenging
scenario where conventional domain adaptation algorithms suffer from serious performance degradation [21].

In this paper, the assumption is that, during long-term monitoring, labels are available from only a subset of
data within the normal condition pre- and post-repair. This is a sensible assumption as the process of repair requires
on-site physical intervention, and post-repair, the structure should be operating in the normal condition. Therefore,
the only shared state between the source and target domains are the normal condition, and as a result, the effect
of repair is viewed as a partial domain adaptation problem [21] here; in partial domain adaptation, there is also an
assumption that the target domain does not contain any classes that are not in the source domain. For this purpose,
statistical alignment techniques to aid domain adaptation in a population-based setting are explored [5, 22]. In
particular, normal-condition alignment (NCA) [5], is applied in this paper. NCA aims to align the lower order
statistics of the data within the normal condition which can also address issues of class imbalance. The method
outperformed other domain adaptation techniques such as transfer component analysis and domain adversarial
neural networks when classifying damages across domains in [5]. It has also proven useful in a repair scenario
previously in [4], where knowledge across two heterogeneous bridges were transferred in order to identify damage
classes. This approach is well-suited to the repair problem explored in this paper because the normal condition
is the only shared health state across domains. As the typical assumption is that normal condition data have a
Gaussian distribution, beyond aligning the correlations, further adaptation cannot be achieved without other classes
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in the source domain. Also, by only aligning the normal condition data in the source and target domains, the threat
of negative transfer can be minimised, as naively aligning data corresponding to different health-states will cause
negative transfer; negative transfer is the process of leveraging information from the source domain that produces
undesirable performances in the target domain. Therefore, by including engineering knowledge, it is possible to
confidently guarantee that data gathered from similar health states are aligned. Moreover, the alignment method is
physically interpretable compared to other dimensionality reduction methods, for example, which is a major benefit
to this study.

In this paper, the main aim is to develop a long-term damage detection method that is not invalidated by
the domain shift during repair procedures. To that end, statistical alignment techniques developed for domain
adaptation in PBSHM are combined with Dirichlet process mixture models (DPMMs) – an online clustering method
previously utilised for damage detection in SHM [23]. DPMMs do not require a training period or the expected
number of clusters to be set a-priori. As a result, the model is able to automatically form new clusters to capture
domain shifts that materialise as a result of repairs and other environmental and operational variations. These
aforementioned methods are applied to an experimental case study which explores continuous monitoring of a new
benchmark mast structure that includes reversible damage states.

The structure of this paper is as follows. Section 2 provides a mathematical introduction to normal condition
alignment in domain adaptation. Then, a case study of the long-term monitoring of a mast structure is introduced
in Section 3, followed by Section 4 that discusses the domain shift in the mast structure post-repair. Subsequently,
Section 5 explored the novel use of statistical alignment methods developed for domain adaptation to address the
repair problem. Next, Section 6 demonstrates the novel approach of combined Dirichlet process mixture models
and statistical alignment techniques for long-term damage detection of the test structure, within the context of
structural repairs. An exploration of the sensitivity of these methods to the amount of data required, as well as the
type of input features are also conducted. Finally in Section 7 conclusions and future work are presented.

2 Statistical alignment techniques developed for domain adaptation

Transfer learning, that sits under the umbrella of machine learning, is a method developed for transferring knowl-
edge across domains. It has been successfully used in the field of population-based structural health monitoring
(PBSHM) where labelled data from groups of structures are transferred to unlabelled datasets in order to improve
the performance of learned models [7] or facilitate more in-depth diagnostics. Domain adaptation is a branch
of transfer learning that aims to find a mapping that minimise the distance between distributions from different
domains.

Domain adaptation is usually performed across two domains - the source domain and the target domain. A
domain D is defined by its feature space X and a marginal distribution P (X), where X = {xi}Ni=1 ∈ X [24].

The aim here is to improve the performance of the task (Tt) in the target domain Dt by leveraging the knowledge
gained from the source domain Ds and its task Ts. A task is defined as T = {Y, f(.)} where Y is a label space and
f(.) is a predictive function or conditional distribution p(y|X) learnt from training data {xi, yi}Ni=1 (from the source
domain), where y ∈ Y. The assumption in homogeneous domain adaptation is Xs = Xt and Ys = Yt (in this case, for
a shared subset of labels in the source and target domains) but that p(Xs) ̸= p(Xt) and p(Ys|Xs) ̸= p(Yt|Xt) (though
generally assumed to be similar). In this paper, to reduce the distance between the source and target domains,
statistical alignment will be performed in order to achieve p(ϕ(Xs)) ≈ p(ϕ(Xt)) and p(Ys|ϕ(Xs)) ≈ p(Yt|ϕ(Xt)),
where ϕ(.) is some mapping.

2.1 Statistical alignment

Statistical alignment techniques investigated for domain adaptation focuses on directly aligning the lower order
statistics (the mean and the variance/standard deviation, in this case) of the data. As a result, an affine transfor-
mation and scaling will be performed. This method does not require density estimation prior to alignment, reducing
the demand for a large number of datapoints from each health state.

In particular, normal-condition alignment described in [5] is explored in this paper, where the the first two
statistical moments of data under normal operating conditions (when the structure is healthy and working as
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intended) are aligned. This method allows data that corresponds to known shared health-states to be selected,
avoiding naive alignment that can lead to negative transfer. Considering the aforementioned PBSHM approach,
the procedure to achieve normal condition alignment is,

1. Standardise the data from the source domain (P (Xs)) using,

zs =
xs − µs,n

σs,n
(1)

where µs,n and σs,n are the mean and standard deviation of the source in normal condition, respectively.
2. Align the data from each repair state (target structures P (Xt)) individually to the source structure using,

zt =

(
xt − µt,n

σt,n

)
σzs + µzs (2)

where µt,n and σt,n are the means and standard deviations of the target structures in normal condition,
respectively.

The above method is most suitable when the data under normal operating conditions are assumed be Gaussian,
and higher order statistics are already similar across domains. By assuming Gaussianity, further alignment is not
possible at this stage. It is possible to learn a nonlinear mapping to align the normal condition data instead,
though there is a risk that the mapping may not generalise to future unseen states, as this would be comparable to
extrapolation in nonlinear regression, which is known to be challenging.

This statistical alignment method – developed to address domain shifts in PBSHM – may be extremely helpful
when dealing with post-repair data from operational structures undergoing long-term monitoring campaigns; they
address the core issue of selecting a subset of the data that corresponds and do not learn nonlinear mappings that
may not generalise to unseen damage-states. Statistical alignment methods are also more computationally efficient
than inverting large matrices or learning deep neural networks for online solutions.

In the next section, a case study of an operational mast structure equipped with a long-term data collection
system is presented. The naturally excited structure contains a number of repair and damage states that are
challenging to classify using typical SHM methods, as a result of domain shifts.

3 Case study: Long-term monitoring of the LUMO structure

Located in Hannover, Germany, the Leibniz University test structure for monitoring (LUMO) provides a bench-
mark for SHM research [25, 26]. A long-term monitoring campaign is continuously generating a dataset from
the structure that is exposed to natural sources of excitation, and environmental and operational variation. The
structure contains 18 reversible damage mechanisms at various locations that can be introduced and repaired. For
comprehensive documentation and access to the open source measurement data, readers are referred to https:

//data.uni-hannover.de/dataset/lumo.
To date, the LUMO dataset contains data pertaining to six controlled damage states and subsequent repairs,

across multiple locations along the structure. Upon repairs, it was found that the underlying distribution of the
structure was affected, leading to a dataset with domain shifts in the normal condition. It is the aim of this case
study to develop an online, long-term monitoring procedure for damage detection, by using the dynamic response
of the structure from natural excitations as features. The developed system should be unimpeded by domain shifts
post-repair. Additionally, it is the hope that the method will be sensitive to other adverse changes to the structure’s
dynamics behaviour as a consequence of environmental and operational variations (EOV), that can also present as
domain shifts.

As the mast structure was designed to be representative of real civil structures in operation, the developed SHM
system intended for damage detection should also be robust, practical and cost-effective to implement. Consequently,
this study also has the following objectives:

• To develop a method that not only identifies damage, but also environmental and operational variation that
affect civil structures in reality.

• The method should be sensitive to different types of damages in a variety of locations within the structure.
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• Furthermore, the robustness of the techniques developed here to the measurement system is assessed, in order
to identify the best combination of sensors for the task. By doing so, it may be possible to reduce the number
of inputs/features and reduce the costs/efforts associated with installation, equipment, management, storage,
data-processing, etc.

• Given the costs associated with data collection, labelling, storing, processing, and computational efficiency,
the influence of the dataset size on the method’s performance is scrutinized.

In this section, an introduction to the test structure and its reversible damage capabilities is provided, including
explanations on the pre-processing techniques and feature selection procedures undertaken for this work.

3.1 The structure

LUMO is a steel lattice mast structure that stands at a height of 9 m and weighs around 90 kg. Three identical
sections constitute the mast, each containing three tubular legs, seven bracing levels and short connections at the
ends. At six of the bracing levels across the entire structure, there exist mechanisms that allow reversible damages
to be introduced. Figures 1a to 1c presents the LUMO structure and its concrete foundation.

3.2 Reversible damage states

The ability to introduce damages and repair them in a controlled manner is a key advantage of the LUMO test
structure. These reversible local damages are aimed to alter the stiffness (and possibly mass) at specific points
along the mast by removing a section of the bracing supports. Damages can be introduced at six different levels
of the structure (DAM1 - DAM6 in Figure 1b), where at each level, all three bracing support sections or struts

(a) (b)

Leg 1

Leg 2

Leg 3

(c)

Figure 1: (a) Photograph of the LUMO structure, (b) A schematic of the structure highlighting measurement levels
(ML) and damage locations (DAM) with the reference axes, and (c) Damage location 6 (DAM6) displaying the
reversible damage mechanisms. Images reconstructed from [26].
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Table 1: The health states of the structure and the corresponding labels.

Condition of the structure Label
Healthy H
DAM6 - all struts removed D1
Repair state after D1 R1
DAM4 - all struts removed D2
Repair state after D2 R2
DAM3 - all struts removed D3
Repair state after D3 R3
DAM6 - strut between legs 2 and 3 removed D4
Repair state after D4 R4
DAM4 - strut between legs 2 and 3 removed D5
Repair state after D5 R5
DAM3 - strut between legs 2 and 3 removed D6
Repair state after D6 R6

(weighting 55 g each) can be removed. Figure 1c presents the bracing level containing the mechanisms that can
introduce damage at level 6 (DAM6).

The data used in this paper was obtained during a 10-month monitoring campaign of LUMO, during which, six
different damages were introduced. Table 1 details the location and the severity of each damage state and the repair
that followed alongside an assigned label. D1, D2 and D3 introduce severe damages to the structure as the damage
mechanisms in all three bracing legs are removed, leading to a significant reduction in stiffness at that location.
Only one strut is removed during D4 - D6 and therefore represent comparatively smaller damages. Here, the strut
between legs two and three are removed (highlighted in Figure 1c).

3.3 The collected data

A network of sensors measure the response of the structure under natural sources of excitation. At measurement
levels (ML) 1 - 9 (Figure 1b), two uni-axial accelerometers measure the orthogonal deflection directions (x and y),
and captures the motion in the horizontal plane. This results in a total of 18 accelerometers across the structure.
ML10 is equipped with three strain gauges on each leg of the structure close to the foundations. The temperature
of the structure is also measured using a thermocouple at ML10. All measurements acquired are sampled at a rate
of 1651.61 Hz and saved at each 10-minute interval.

Alongside the structural measurements, a meteorological mast positioned 20 m away from the LUMO structure
(by the Institute of Meteorology and Climatology (IMUK) of Leibniz University Hannover) measures the air tem-
perature, relative humidity, sum of precipitation, global radiation, average wind speed, maximum wind speed and
wind direction in one-minute mean values.

In this paper, the measurements collected via the 18 uni-axial accelerometers at ML1 - ML9 are used for analysis
as they capture the dynamic response of the structure. From the time series data, the essential information about
the state of the structure are extracted. For this purpose, the eigenfrequencies and mode shapes of the ambiently
excitated structure are identified by assuming a linearly time-invariant (LTI) system. These features are useful
for SHM because they are widely known to be sensitive to the presence of damage. When considering the LUMO
structure, Wernitz et al. [26] demonstrated that the LTI approximation is valid across each 10-minute interval.
Therefore, at each 10-minute interval, the eigenfrequencies and mode shapes are calculated from the time-series
data collected from the LUMO structure. Next, the methods used for identifying eigenfrequencies and mode shapes
through Bayesian operational modal analysis are explained.

3.4 Operational modal analysis for feature extraction

The eigenfrequencies and mode shapes used in this work were identified with frequency domain method Bayesian
operational modal analysis (BAYOMA) [27]. The basis of BAYOMA is the discrete Fourier transform (DFT) of
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a Gaussian distributed signal, which is statistically independent, and also Gaussian distributed for each frequency
base point (given suitably long measurement times and high sampling rates) [28]. When the prior P (Θ) of the
modal parameters of m dominating modes in the considered frequency range is equally distributed, the likelihood
P (D|Θ) is proportional to the posterior P (Θ|D), where D is the measured data. The modal parameters Θ are
eigenfrequencies f , modal dampings ζ, mode shapes ϕ1...ϕm, modal forces S and the model error Se. The likelihood
P (D|Θ) is a multivariate Gaussian distribution of the scaled DFT. The related covariance matrix is the theoretical
power spectral density matrix of the modal parameters Θ,

Ek(Θ) = ΦHk(f , ζ,S)Φ
T + SeIn, (3)

where Φ is the matrix of m mode shapes, Hk is a diagonal matrix containing the m theoretical auto power spectral
densities of equivalent one-mass oscillators and In is the identity matrix.

The most probable value (MPV) of the modal parameters for a specified frequency range, and previously defined
number of dominant modes, is identified by minimising the negative log likelihood function (NLLF). The associated
covariance matrix of the Gaussian approximation of the posterior distribution can be determined using inverse
Hessian matrix of the NLLF at the MPV.

Table 2: Intervals of the hard criteria for the mode tracking used to cluster the eigenfrequencies of the LUMO
structure throughout time.

Criteria Values
eigenfrequencies 0.8 f - 1.1 f
min MAC 0.4

In the LUMO dataset, the largest uncertainties of this method occur when identifying the mode shapes of closely
spaced modes [29]. In symmetric structures such as the LUMO mast, closely spaced modes are common. When
automatically tracking these modes over a long period of time, major changes such as the introduction of damage
can also pose a challenge to cluster the modes correctly, i.e., the presence of damage can shift the modes, making
it difficult to assign the correct mode to a given eigenfrequency. In addition, due to the sensor setups, the torsional

Figure 2: The 12 natural frequencies identified via BAYOMA. The points at which damage occurs is highlighted
for clarity. Each datapoint represents 10 minutes of data.
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modes are very similar to the bending modes in the y-direction, which further complicates the differentiation
between modes. Therefore, the small intervals of the hard criterias for tracking modes across time, as described in
[26], cannot be used here. Instead, large intervals (listed in Table 2) are used to cluster modes throughout time.
The final mode assignment is allocated according to the best possible match of the modal assurance criterion and
the eigenfrequencies. This approach can lead to errors in the mode tracking and must be taken into account in
further evaluation. In future works, the mode tracking approach should be improved. However, this is not the scope
of this work.

Figure 2 shows all identified natural frequencies in the frequency range between 0 to 93 Hz of the LUMO
structure, across the time period used in this work. The corresponding mode shapes can be found in [26]. In Figure
2, the eigenfrequencies associated with bending and torsional modes are represented by BE and TE, respectively,
where the dominating directions are also provided. For example, BE1-y represents the eigenfrequency of the first
bending mode in the y-direction. Each datapoint represents the eigenfrequencies calculated from data across a
10-minute interval. The introduction of the damages described in Table 1 are also highlighted. It is clear that
the natural frequencies of the LUMO structure is sensitive to the introduction of damage. Next, the selection of
features from the dataset used in the long-term damage detection system is described.

3.5 Feature selection procedure

The objective of this work is to identify damage before and after repair whilst remaining sensitive to environmental
and operational variations that significantly impact the normal dynamic behaviour of the structure. As a result,
the eigenfrequencies used in this work should be sensitive to damage, repair and EOVs across time.

The dynamic behaviour of the LUMO structure is prone to closely spaced modes; some eigenfrequencies are
found to be very close to one another, as seen in the top panel of Figure 3, where BE3-x, BE3-y and TE2 occur in
a relatively small frequency range. These closely-spaced modes can be challenging to distinguish from one another,
especially during damage as the eigenfrequencies of the structure shifts. As a result, the clustering technique used to
assign modes to the eigenfrequencies can find it challenging to track these modes throughout time. An example of
this can be seen in Figure 3 (top panel) during D5 where BE3-y and TE2 have been misclassified by the automatic
mode tracking algorithm used in [29]. Large amounts of data scatter can also occur as a result of misclassifications
by the mode tracking method, as observed for TE3 in Figure 3 (bottom panel).

The challenges and inaccuracies of mode tracking affects the feature selection process that follows; abundant
data scatter or incomplete data can negatively impact monitoring algorithms, which expect the difference between
healthy and damage data to be greater than abnormalities within the data in each health state. Otherwise, spurious
effects such as data scatter – as a result of pre-processing – could be misidentified as damage, for example.

The features presented in Table 3 are chosen as the input features in this paper, as they are not significantly
impacted by the drawbacks of the mode tracking method. Here, the first, second, and fourth natural frequencies
(also referred to as bending eigenfrequencies) in both the x- and y-directions (labelled in this paper as BE1-x,

Figure 3: The eigenfrequencies that may have been misclassified by the mode tracking method.

8



Figure 4: Sum of the mode shapes values at each 10-minutes interval.

BE1-y, BE2-x, BE2-y BE4-x, BE4-y) as well as their corresponding mode shapes (MS1-x, MS1-y, MS2-x, MS2-y
MS4-x, MS4-y) are chosen. In order to represent the mode shapes by a single value, the sum of the mode shape is
calculated at each 10-minute interval using,

MSm =

n∑
j=1

[xj ]m (4)

where MSm is the value of the mode shape feature at a given 10-minute interval, m is the bending mode, x is the
normalised modal amplitude evaluated at n measurement levels. In this paper, m = {1-x,1-y,2-x,2-y,4-x,4-y} and
n = 9. Figure 4 presents the mode shapes values MS1-x, MS1-y, MS2-x, MS2-y MS4-x, MS4-y chosen as input
features in this paper.

Consequently, 12 input features are chosen in total for further analysis in this paper. It is advantageous to
utilise the lower modes in analysis as they can be obtained by using fewer sensors in comparison to higher modes;
with the current sensor set-up – specifically, the spatial resolution of the sensors across the measurement levels –
the properties of higher modes cannot be estimated with a high fidelity. The chosen modes are mostly sensitive to
the damage states described in Table 1. The third bending mode is excluded from the input features as BE3-x,
BE3-y and TE3 are negatively impacted by the pre-processing method (Figure 3).

All torsional modes (eigenfrequencies and mode shapes) are also excluded during the feature selection process in
order to develop an SHM system that is applicable to practical scenarios; although the torsional modes are highly
sensitive to the damages D1 - D6 in the LUMO structure, often in operational civil structures, such a bridges and
wind turbines, torsional modes do not present a high sensitivity to damage. Additionally, some torsional modes are
also negatively affected by the pre-processing method mentioned previously.

3.6 Environmental and operational variations

As previously mentioned, the objective of this paper is to identify damage prior to and post repair. However, a
number of environmental and operational variations (EOVs) influence the behaviour of the structure that must also
be taken into account. These EOVs are explained here and methods of addressing them are explored throughout
the paper.

As the LUMO structure is excited by natural aerodynamic wind excitation, it is exposed to environmental
variations such as temperature cycles that occur daily and seasonally. One of the largest influences of environmental
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Table 3: The bending modes of the structure and the selected features for analysis. The average natural frequencies
of the structure are presented here, which were calculated during normal operating conditions in the healthy state,
H [26]. The corresponding labels for the eigenfrequencies and the mode shapes at each of the vibration modes are
also stated.

Vibration mode
(dominating direction)

Average natural
frequency (Hz)

Eigenfrequency label Mode shape label

1st bending mode (y) 2.76 BE1-y MS1-y
1st bending mode (x) 2.81 BE1-x MS1-x
2nd bending mode (y) 15.94 BE2-y MS2-y
2nd bending mode (x) 16.28 BE2-x MS2-x
4th bending mode (y) 69.15 BE4-y MS4-y
4th bending mode (x) 71.51 BE4-x MS4-x

changes to the dynamics of the structure stems from what is assumed to be stiffness changes during freezing
temperatures. It is worth noting that these ‘stiffening effects’ can also occur in operational engineering structures
such as wind turbines. As the stiffness of the structure is affected by the freezing temperatures, its dynamic
properties change. It is important to distinguish between these ‘stiffening effects’ and damage on the structure as
the type of necessary intervention can vary depending on the cause; ‘stiffening effects’ on a wind turbine, for example,
may cause it to be temporarily shut-down, whereas damage on a wind turbine will require repairs. Consequently,
an SHM method that is sensitive to the start and end of such period can be extremely helpful when managing a
structure’s operation. In this paper, the data collected during the assumed freezing period is manually assigned
the health-state label ‘SE’ (stiffening effect) by identifying freezing conditions from studying the air temperature
and the temperature of the structure. It should be noted that the structure was not examined visually during this
time, and therefore the SE labels are assumed only.

Another significant operational variation that affects the structural dynamics of LUMO are the repairs that are
undertaken after each damage state. Although the repairs are designed to be reversible, in reality, small permanent
changes to the system are to be expected. These changes are considered to be domain shifts in this paper. Next, the
way in which the LUMO dataset is separated into source and target domains are explained, in order to undertake
domain adaptation to reduce the domain shifts.

3.7 Viewing the LUMO dataset as a population

For the LUMO dataset, there are a number of domains (data generated by different marginal distributions) for
each repair (and the original pre-repair); these can be treated as homogeneous structures in a PBSHM framework.
Table 4 presents the new source and target structure designations in the population. Here, the assumption is that
at the start of each repair state, the health status of the structure is known. This is a reasonable assumption, as
a repair would require intervention to the structure and the hope is that the structure is operating under normal
conditions immediately after repair; this is a common assumption used in novelty detection.

Table 4: The separation of the LUMO data into source and target domains. Refer to Table 1 for label definitions.

Source Target 1 Target 2 Target 3 Target 4 Target 5 Target 6
H, D1 R1, D2 R2, D3 R3, D4 R4, D5 R5, D6 R6

In the next section, the repair problem is discussed in detail and methods to address it are explored in Section 5

4 The domain shift in the LUMO structure post-repair

The LUMO structure was designed to allow perfectly reversible damage states in order to introduce and reintroduce
damage in a controlled manner, whilst operating in representative environmental conditions. However, slight varia-
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tions to the structure are likely to be introduced during repair, leading to changes in the underlying distribution of
the collected data post-repair. This effect is also known as a domain shift. Domain shifts as a result of repair can
take place in real-world applications for reasons such as, the repair being conducted with different materials to the
original structure, the repair process changing the mechanical properties of the structure [30–32]. Even perfectly
reversible repair scenarios in controlled, experimental datasets can present domain shifts in the data [3].

Changes in the domain can reduce the effectiveness of standard supervised SHM techniques because domain
shifts can lead to significant disparities between training and testing data, for example. Typical practices such as
novelty detection trained on healthy data may provide misleading results during testing with repair data, as a result
of domain shifts, i.e., repair data could be misdiagnosed as novel. When developing long-term monitoring campaigns,
it is important to ensure that false positive flags are avoided where possible (in order to reduce unnecessary
inspections), and that damage is detected and not misclassified as healthy.

In this paper, to identify the existence of domain shifts within the LUMO dataset, a distance metric named the
maximum mean discrepancy (MMD) is used. The MMD is also used here to demonstrate the reduced effectiveness
of standard SHM techniques such as novelty detection that transpire as a result of domain shifts. The MMD is a
suitable choice here as it provides a measure of difference between data distributions. It is an intuitive metric that
negates the need for density estimation in the presence of incomplete data. The MMD does not assume Gaussianity
within the data, making it a flexible metric when the distribution of the testing data are unknown.

The MMD is a distance metric 1 within the integral probability metrics (IPM) family. A brief introduction to
the MMD is given in this section. For a more comprehensive understanding, the reader is referred to [34, 35].

Using a kernel (otherwise known as a covariance function) to project data into a higher dimensional space
(in this case, the reproducing kernel Hilbert space), the MMD provides a measure of the maximum distance
between the mean embedding of two probability distributions. Consider two random variables with observations
X := {x1, ..., xm} and Y := {y1, ..., yn} (where m and n are the number of data points in X and Y respectively),
that have probability densities p and q, respectively. p and q are defined on a metric space and there exists a class
of functions that map the metric space to the coordinate space over the real numbers. In order to find out if these
distributions are the same, i.e, p = q, the MMD looks for a function in this class of functions that maximises the
difference in means,

MMD[F , p, q] := sup
f∈F

(Ex∼p[f(x)]− Ey∼q[f(y)]) (5)

where Ex∼p[f(x)] is the expectation with respect to p. Here, the class of continuous, smooth functions F is a unit
ball in a reproducing kernel Hilbert space (RKHS); there exists a restriction that the norm of the function should
be less than or equal to 1 (the term smooth indicates that the function is infinitely differentiable everywhere). The
biased estimation of MMD2 – to ensure that the calculated values are always positive – is given by,

MMD2
b[F ,X ,Y ] =

1

m2

m∑
i,j=1

k(xi,xj) +
1

n2

n∑
i,j=1

k(yi,yj)−
2

mn

m,n∑
i,j=1

k(xi,yj) (6)

In equation (6), the term 1
m2

∑m
i,j=1 k(xi,xj) can be considered to be the average similarity of every pair of

samples drawn from distribution p. Term 1
n2

∑n
i,j=1 k(yi,yj) corresponds to the average similarity of every pair of

samples drawn from distribution q. The 2
mn

∑m,n
i,j=1 k(xi,yj) term is the average similarity of points drawn from p

and q. In the case where p and q are dissimilar, i.e. points from p are more similar to each other than they are to
points from q, then the first and second terms would produce a large value compared to the third, giving a large
value for MMD. On the other hand, where p and q are similar, the first and second terms would produce a value
similar to the third, giving a value close to zero for MMD.

The kernel k(· , · ) used here is a Gaussian kernel,

k(a, b) = exp

(
− ∥ a− b ∥2

2σ2

)
(7)

1A distance metric is defined by Dudley [33] (when x, y, z ∈ R : x, y, z ≥ 0) as a function d that follows the set of rules: 1) The
distance between a point and itself is zero, d(x, x) = 0, 2) The distance is symmetric: d(x, y) = d(y, x), 3) The triangular inequality
holds: d(x, z) ≤ d(x, y) + d(y, z), 4) If d(x, y) = 0 then this implies that x = y.

11



as it is universal, and continuous in the RKHS [34]. The width or length scale of the kernel is a hyperparameter,
denoted here as σ. There is no universal method of choosing the length scale for the Gaussian kernel. Gretton et.
al. uses the median heuristic, as explained in [34], and defined in [36]. The same method is used in this paper.

The MMD has been implemented in the past for attribute and graph matching [34], in the field of verification
and validation [37], for domain adaptation [7, 38], in computer sciences to distinguish malicious users and honest
users [39], for training generative adversarial networks [40] and finding similar wear mechanisms in machining tools
[41], to name a few. In this paper, the MMD provides a measure of the domain shift observed as a result of damage,
repair, and EOVs (stiffening effects) of the LUMO structure in Figure 5. In Figure 5 the MMD values shown are
calculated between the healthy (H) state (from the source domain) and the following damage (D), repair (R) (from
Table 1) and SE states. This method is equivalent to training a novelty detector on healthy training data and
testing it on all data (damage, SE, and repair) that follows.

In order to evaluate whether domain shifts exist within the training and testing data, a threshold is calculated
to compare the MMD values. Any data that crosses the threshold can also be considered as novel, i.e., data that
crosses the threshold is sufficiently different to the healthy data used for training, suggesting that the structure is
no longer similar to the original healthy state. The Monte Carlo (MC) threshold approach for the MMD introduced
in this paper closely follows the method used for MC threshold calculation for the MSD described in [42]. Here, the
threshold (corresponding to 95% confidence interval determined by MC approach with 1000 samples) is calculated
empirically using the witness function f∗ of the MMD,

f∗ ∝ 1

m

m∑
i=1

k(xi, t)−
1

n

n∑
i=1

k(yi, t) (8)

across a variable t, where x and y are matrices with m and n observations, respectively. The witness function allows
the behaviour of the MMD to be visualised. For the MC approach, in step one, a matrix t comprising the number
of observations and the number of dimensions of the dataset is randomly generated from a normal distribution
with zero mean and unit variance, i.e., N (0, 1). Then in step two, two other matrices of the same size (x and
y) are generated. x is generated by sampling from a normal distribution, N (0, 1); this distribution represents the
normal condition data (healthy and repair in this case). y is sampled from a Student’s t distribution with a degree
of freedom (ν) of 1 and represents the damage states; the Student’s t distribution is a sensible choice here as it
contains heavier tails to encompass the spread of damage data. In step three, f∗ is calculated using the t, x and y
matrices following equation (8), where the largest value of f∗ is stored. Steps 2 and 3 are then repeated 1000 times
and the stored largest values of f∗ are sorted in order of magnitude and the value at 95% is used as the threshold,
giving a 95% confidence limit. The threshold calculated by MC simulation is included as a horizontal red line in
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Figure 5: The maximum mean discrepancy between the first heath state and the following states of the LUMO
structure. Here, PSH state represent the post stiffness effected healthy state.

12



Figure 5.
The possible ineffectiveness of standard SHM models (such as novelty detectors) trained on pre-repair data to

only detect damage post-repair is evident in Figure 5 – although the damage and SE states have been identified
as novel, so have data from the repair states; all post-repair data crosses the pre-determined threshold and will be
considered novel. This is a misleading finding because the structure is behaving under normal operating conditions
in the repair states, and therefore should not be considered as novel in comparison to the healthy data. Misclassi-
fications such as these can cause unnecessary downtimes which can be extremely costly. In Appendix A, the effect
of domain shift on outlier analysis (trained on 30 days of data from healthy state H) is presented to provide an
example of novelty detection of the LUMO structure throughout time.

To improve these results, it is possible to retrain this procedure at each new repair state. The approach of
retraining models are, however, time consuming, computationally expensive, and discards any damage state labels
collected pre-repair (owing to domain shift). Furthermore, the model prior to retraining now becomes irrelevant,
leading to waste of information and resources.

Recent techniques developed for transfer learning has proven to be successful in addressing the domain shift
post-repair. In the next section, statistically aligning data to improve performance of SHM procedures on the
LUMO dataset is explored.

5 Addressing the problem of repair via statistical alignment

It is clear from the previous section that standard novelty detection methods are insufficient post-repair as a result
of domain shifts in the data; the classifier used is unable to generalise across the healthy data and the repair data.
In this section, a novel approach to addressing the domain shifts caused by structural repairs is proposed by using
the statistical alignment methods explained in Section 2.

The repair scenario of the long-term monitoring campaign of the LUMO structure is treated as a partial domain
adaptation here, as the assumption is that the only shared class between the source and target domains is the
normal condition state, and that the target domain does not contain any classes that are not in the source domain,
i.e., Yt ⊂ Ys [21]. Therefore, a subset of normal-condition data pre- and post-repair are needed to align the data
to reduce the domain shifts that exist within the dataset. In this work, data from the first 30 days of operation
in the healthy state H is used to obtain the normal condition statistics of the source structure. Then, the normal
condition alignment detailed in Section 2 is applied to the data where the source structure (detailed in Table 4) is
first normalised using Equation (1). Next, the data from the first 7 days of operation in each repair state (target
structure) is used to obtain the lower order statistics in order to calculate Equation (2). As damage state labels
are presumed to be unavailable, the assumption is that the structure is in normal operating conditions immediately
after each repair and for the following 7 days. No assumptions regarding the state of the structure or the underlying
distributions are made following day 7. As environmental variations may affect the structure adversely during this
period, it is advisable to monitor EOVs and only use data collected during normal environmental conditions. This
approach of using engineering expertise to select data subsets for alignment is suitable here, as naively aligning data
corresponding to different health states can cause negative transfer. Also, this approach will ensure that only data
from similar states are aligned.

5.1 Effect of statistical alignment on the LUMO dataset

Once the data are aligned, the healthy and repair states are expected to occupy the same space. This effect can
be observed in Figure 6, which presents the relationship between normal-condition aligned eigenfrequencies in the
y-direction from Table 3. In this figure, three further observations of interest can be made. Firstly, the SE state
(in pink) which represents a ‘stiffening affect’ across the structure, moves the data in a different direction to the
local damages D1-D6 that is a result of reduction in stiffness. Secondly, two sets of groupings are formed; clusters
that represent severe damage states (D1 - D3) are grouped close together and clusters D4 - D6 are also grouped
together. Thirdly, the patterns that have formed within each group according to damage location are also similar;
for example, between BE2-y and BE4-y where damage states D1 and D4 (from location DAM6) are found below the
other damage states within that group, then D2 and D5 (from location DAM4) are found slightly above them and
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Figure 6: The normal-condition aligned natural frequencies in the y-direction from Table 3 plotted against each
other.

finally D3 and D6 (from location DAM3) are found to the left. These results show that statistical alignment has
provided physical interpretability of the damage states. The physical interpretability of the classes obtained from
statistical alignment can be extremely helpful when validating models, as labels are unavailable in unsupervised
domain adaptation. This is a major benefit over nonlinear methods where physical interpretability is not expected.

To highlight the effect of data alignment, Figure 7 presents the MMD values between the healthy state H and
the following damage, repair and SE states. Here, Figure 7a presents the results when using non-aligned data
(for comparison) and Figure 7b presents the statistically aligned data, following methods described in Section 2.1.
These figures were obtained by using every 10th datapoint from each health state to save computational time. As
discussed previously, in the non-aligned case, all repair states surpass the predetermined damage threshold owing
to the domain shift; a larger distance is found between the healthy and repair states compared to the repair and
damage states. As the data are statistically aligned, however, the MMD (the mean embedding) of the repair states
drop below the threshold while the SE and damaged states remain above the threshold. These results show that
statistical alignment has significantly reduced the distance between the repair and healthy states and increased the
distance between repair and damaged states.

It should be noted that given this is a partial domain adaptation problem that only contains the normal
condition data as the only shared state between the source and target domains, further adaptation is not possible
beyond aligning the correlations, because the normal-condition data are assumed to be Gaussian. Even if the
normal conditions are not Gaussian, learning a nonlinear transformation to properly align them may lead to worse
generalisation to unseen health-states such as damages (as this is essentially extrapolation of a nonlinear regression
function). The non-zero distances between the repair states and the healthy states Figure 7b suggests that the
normal-condition data are not entirely Gaussian here. However, it is clear that normal condition alignment has, in
this instance, reduced the effect of domain shift significantly, therefore alleviating any need for further adaptation.

The MMD has proved to be a fast and easy procedure to obtain an indication of the similarity of measured data
and the effect of domain adaptation methods, post-repair. However, the MMD is a summary metric that represents
all datapoints within each class, and does not indicate the novelty of each individual datapoint. For long-term,
online monitoring applications, a continuous method of damage detection is, therefore, required. In the next section,
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Figure 7: The maximum mean discrepancy between the first heath state and the following states of the LUMO
structure when using normal condition aligned data is presented in (b). For comparison purposes, (a) presents the
MMD values when using non-aligned data (Figure 5). Here, PSH state represent the post ‘stiffening effect’ healthy
state.

the use of Dirichlet process mixture models (DPMMs) [43] is used to cluster the data in an unsupervised manner,
as a method of long-term monitoring of the LUMO structure.

6 Dirichlet process mixture models for damage detection

Dirichlet process mixture models (DPMMs) is a technique that clusters unlabelled data according to similarity.
Unlike the novelty detection procedure discussed previously, a major benefit here is that it does not require a
training phase based on healthy normal condition data that may not be representative of future observations.

A simplified explanation of the DPMM theory is provided in this section. For a comprehensive understanding
the reader is referred to [23] and [43].

The DPMM uses mixture of Gaussian distributions to cluster Gaussian and non-Gaussian data, i.e., it can use
an unlimited number of independent Gaussian distributions to represent data of any shape. An explanation of
the infinite Gaussian mixture model is given in [23]. The DPMM learns information about the probability of each
data point belonging to each cluster. As the LUMO dataset is affected by EOVs, such as stiffening due to freezing
temperatures, that influences the shape of the data (as evidenced by the elongated cluster in Figure 6), the ability
of the DPMM to cluster Gaussian and non-Gaussian data is valuable.

A collapsed Gibbs sampler is used to make inferences over the DPMM online [44]. The Gibbs sampler can
initiate new clusters if new data is sufficiently different to previous clusters, avoiding the need to set the number of
expected clusters a-priori. The Gibbs sampler therefore allows for an online implementation of the DPMM which
is well-suited for long-term monitoring of the LUMO structure, as new damage states are introduced.

A visual explanation of the DPMM and Gibbs sampling is provided using Figures 8a to 8c in sequential order.
In these figures, the Gibbs sampler is clustering dataset x. The number of possible clusters is K, where k = 1, ...,K.

1. Suppose in Figure 8a, that the model has already seen data that is sufficiently different, and has established
two Gaussian clusters (green and orange), i.e, k = 2.

2. A new datapoint (black square) is then introduced. There is a prior belief that the new datapoint will belong
to the prior Gaussian cluster (purple with no data). Therefore, the observations xi (conditioned on the class
label ci) – where i = 1, ..., N , and N is the number of data points – have a Gaussian distribution with mean µci

and covariance Σci . Here, conjugate priors are placed over the mean (Normal distribution) and the covariance
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(a) (b) (c)

Figure 8: A visual explanation of the DPMM and Gibbs sampling process where in (a) a new datapoint (black
square) is introduced to a model that has two existing classes (green and orange). Then in (b) the square datapoint
is assigned to the green cluster based on the likelihood. In (c) new data (pink) forms a new cluster to which the
square datapoint is assigned.

(Inverse-Wishart distribution) – with a number of hyperparameters – to achieve a closed form solution,

xi | ci ∼ N (xi |µci , Σci) (9a)

µci |Σci , ci ∼ N
(
µci |µ0,

Σci

κ0

)
(9b)

Σci | ci ∼ IW(Σci |Σ0 , ν0) (9c)

In this work, the prior distribution has a zero mean and unit variance Gaussian.
3. The likelihood of the current datapoint (in black) belonging to each existing cluster is calculated by assessing

their data and shape.
4. A sample label is then assigned to the datapoint based on the calculated likelihoods. In this example, the

datapoint is assigned to the green cluster in Figure 8b. The cluster labels ci are sampled from a multinomial
distribution with the mixing proportion, π, the probability of data belonging to each cluster. In order to
calculate these probabilities, the Dirichlet distribution is used as it is the conjugate prior to the multinomial
distribution,

ci |π ∼ Mult(π) (10a)

π ∼ Dir(α) (10b)

where π is controlled by the strength parameter α, the Dirichlet process prior. The number of clusters
identified by the DPMM increases with the value of α. However, if the clusters are well-separated, the
number of clusters can become insensitive to α.

5. The Gibbs sampler now re-evaluates all the data in the model by following the process described in Figure 9.
6. Over time, new data arrives (pink) in Figure 8c, which are assigned to a new cluster (so that k = K + 1) by

the Gibbs sampler. The number of clusters are now updated, k = 3.
7. The square datapoint is re-evaluated again by the Gibbs sampler and is assigned a new cluster label (pink)

according to the calculated likelihoods.
8. The parameters of all clusters are updated.
9. The entire process is continued until all data are sampled.
The aim of this process is to find the posterior distribution over the cluster labels and parameters, to chose the

most likely label. To this end, the collapsed Gibbs sampler sequentially samples new sets of cluster parameters
based on samples of labels, and new sets of labels based on parameters. It is a valid Markov chain Monte Carlo
method that finds the distribution over the cluster labels and the distribution over the cluster parameters. The
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Figure 9: The process of Gibbs sampling. Image reconstructed from [23].

collapsed Gibbs sampler is performed over a window of data in this work, the length of which is specified according
to available computation power.

The three main benefits of using this model on an ever-evolving dataset from a test structure such as LUMO
are:

• Knowledge of the number of clusters is not required a-priori and, therefore, any number of damage states can
be included in the model.

• Threshold tuning, and calibration is not required.
• DPMMs permits the covariance function to change with the input data [43], resulting in a model that may
be able to handle dissimilarity in the healthy and repair states.

The results presented in Figure 10 show the DPMM clustering of the natural frequencies and their corresponding
mode shapes from Table 3. Only the results for the first four input features (BE1-y, BE1-x, MS1-y and MS1-x)
are presented for visual clarity. The data is downsampled here to increase computational efficiency; 150 datapoints
from each condition described in Table 1 is used in the formulation. Here an α = 1 is used (reader is referred to
Section 6.2 for parameter choice explanation) to limit the number of clusters formed. For the Gibbs sampler, a
window length of 200 is used to save on computational burden as observed for a dataset of similar size [23].

Out of the six clusters identified in Figure 10, five correspond to damage states and one corresponds to the
healthy and repair state data. This is a promising start as the DPMM does not find the difference between the
repair states and the healthy states to be large in comparison to the damaged states. The DPMM is, however,
unable to separate the damage state five and the shift in the features as a result of freezing conditions (Figure 11),
because their underlying distributions are similar to the healthy and repair states, i.e., these clusters are not well
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Figure 10: DPMM clustering of features in Table 3. Results for bending mode 1 is displayed here for clarity (F1 =
BE1-y, F2 = MS1-y, F3 = BE1-x and F4 = MS1-x) . Each colour represents a cluster. Six clusters are identified
by the DPMM.
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Figure 11: The confusion matrix showing the target class and the resulting predicted class of the DPMM when
using 150 datapoints in each class (except for the SE class which contains 95 datapoints). Here, the SE and D5
classes are misclassified to class 1.

separated. Consequently, the true positive rate (TPR) of the DPMM process is 0.75 when using non-aligned data.
The TPR is calculated by,

TPR =
TP

(TP + FN)
(11)

where TP is the number of damage data that are classified as such, and FN are the number of incorrectly classified
damage state data. The DPMM has, however, achieved a FPR of 0. The false positive rate (FPR) is calculated
here by,

FPR =
FP

(FP + TN)
(12)

where FP is the number of normal condition data that are misclassified, and TN are the number of correctly
classified normal condition data.

These results show that when using non-aligned data, even with a sophisticated model such as the DPMM,
damage can be misclassified as healthy, which could lead to unsafe operation. Next, the normal condition aligned
data are used as inputs to the DPMM in an attempt to reduce the distance between the healthy and repair states,
and hopefully further separate the damage and SE states, and in turn, increase the TPR of the model.

6.1 Statistical alignment prior to DPMM clustering

Figures 12 and 13 presents the DPMM results and the confusion matrix (respectively) when using normal condition
aligned data as input features. Eight clusters are formed in this case, where all damage states, as well as the SE
state, are identified as separate clusters, and the repair and healthy states have been clustered together in a single
cluster. The TPR has increased from 75% (non-aligned) to 99% (aligned). The FPR rate has, however, slightly
increased from 0% to 1.6% as a result of normal condition alignment.

Normal condition alignment has proved to be a vital step in the unsupervised DPMM clustering procedure
for damage detection in the presence of domain shifts. This is especially advantageous to long-term monitoring
campaigns, as expensive-to-collect damage state labels are not required to achieve these high classification accu-
racies. Arguably, more information has been provided to the DPMM by conducting statistical alignment prior to
clustering, as some knowledge of the repair states have been included in the data. This alignment approach can
be extremely helpful for industrial applications where valuable engineering knowledge should be included in the
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Figure 12: DPMM clustering of normal condition aligned features from Table 3. Results for bending moment 1 is
displayed here for clarity (F1 = BE1-y, F2 = MS1-y, F3 = BE1-x and F4 = MS1-x) . Each colour represents a
cluster. Eight clusters are identified by the DPMM.
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Figure 13: The confusion matrix showing the target class and the resulting predicted class of the DPMM when
using statistically aligned data. Here, all damage and SE classes have been identified.

process. Nevertheless, a technique such as active learning could also be used alongside the DPMM to facilitate the
inclusion of damage labels, bringing physical meaning to the clusters [45]. Importantly, as the repair and healthy
state data are represented by a single cluster, the number of potential false alarms can be reduced and historic data
can be retained in the model. It is clear that normal condition alignment has effectively addressed the problem of
domain shift post repair.

Figure 12 demonstrates that even relatively small damages can be identified by a combination of DPMMs and
normal condition alignment, when using the features described in Table 3. This is a significant advantage because
these features represent the bending modes that are widely used in industry, suggesting that this method may be
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applicable to other civil structure that collect features which are sensitive to damage.
The method suggested in this paper for long-term online monitoring – using damage sensitive features collected

from the structure – is,
1. Initiate the DPMM using suitable hyperparameters. The first cluster will be formed automatically
2. After a suitable period of time, standardise the data in the normal condition (first healthy state in the source

domain)
3. Standardise each new datapoint using the parameters of the healthy state
4. If a new cluster is formed, investigate the structure for damages
5. If damage has occurred, repair the damage
6. Take a subset of data immediately after each repair
7. Statistically align the subset post-repair to the healthy state
8. Align each new datapoint to the healthy state
9. Repeat steps 5 to 9
Following brief discussions on the effect of hyperparameters used in the DPMM in the next section, the sensitivity

of data to normal condition alignment is then explored.

6.2 The effect of altering parameters of the DPMM

Figures 14a and 14b present the true positive rate (TPR) and true negative rate (TNR) of the DPMM respectively,
with varying hyperparameter α and the percentage of datapoints included in the formulation, when using statistically
aligned data. The box plots here present the median values (the red line), the 25th and 75th percentiles (the top and
bottom of each blue box, respectively), as well as the maximum and minimum values (whiskers) and any outliers
(red +) after 100 repeats of each combination. The TNR is given by,

TNR =
TN

(TN + FP)
(13)

where FP is the number of normal condition data that are misclassified, and TN are the number of correctly
classified normal condition data.

It is clear that both the TPR and TNR do not change significantly (the rate averages do not drop below 96%) as
the variables are altered, suggesting that the current formulation of the DPMM is well suited to the repair problem
explored in this paper. The figures show that the number of datapoints in the model has a larger influence on the
results in compassion to the value of α, which does not have a significant affect. The insensitivity to α is a sign
that the healthy and repair states are well separated from the damage states when using normal-condition aligned
data. Increasing the number of datapoints in the model increases the average TPR whilst reducing the variance.
The opposite effect is observed when considering the average TNR. This result suggests that as the number of
datapoints is increased, the model gets better at detecting damage but simultaneously misclassifies more healthy
data. A closer inspection finds that the healthy and repair data is grouped into the cluster containing the SE state
data more readily, as the number of datapoints in the model are increased. Given there is some overlap between
these classes as seen in Figure 6, this result is not surprising.

The parameters tested here do, however, affect the number of clusters initiated by the DPMM as seen in Figure
15. Consequently, the number of health states that exist does not always directly correspond to the number of
clusters initiated by the algorithm. However, from Figures 14a and 14b, it is clear that the model is able to
distinguish the difference between healthy/repair states and damage. Given the false positive rates are low, this
suggests that some damage states initiate more than one cluster or that some clusters contain data from more than
one damage state. For the purpose of damage detection when considering the repair problem, the number of cluster
initiations is, therefore, not as important as the rate of true positives and negatives. On the other hand, if the
cluster initiations are used as a detection threshold as suggested in [23], using small values of alpha in practice can
limit the number of clusters initiated.
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Figure 14: The effect altering the value of α and the percentage of datapoints included in the model on the (a) true
positive rate and the (b) true negative rate of the DPMM when using normal-condition aligned data. Here, the
results represent 100 repeats conducted in each state.
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Figure 15: The effect altering the value of α and the percentage of datapoints included in the DPMM model on the
number of initiated clusters.
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6.3 Sensitivity of normal condition alignment to number of data points

Normal condition alignment has allowed the TPR of Dirchlet process clustering results to improve significantly. In
this section, the sensitivity of the normal condition alignment to the number of data points required will be assessed.
By doing so, it is possible to evaluate how many data points are required to obtain a sufficient classification accuracy
for the LUMO dataset. Consequently, a time window within each repair state can be established for normal condition
alignment.
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Figure 16: The performance of the DPMM clustering method with respect to the number datapoints used in the
normal-condition alignment.

Figure 16 presents the FPR and TPR results of the Dirichlet process mixture model. Here, the number of days
used for aligning the normal condition is increased from one to eight. The largest window was set to eight days
as that is the duration of the smallest repair state. For comparison, day zero presents the FPR and TPR when
using non-aligned data. In Figure 16, the FPR and TPR are affected as the data are aligned using the normal
condition. As the number of days are increased from one to two, the lower order statistical alignment allows the
damage state data to move further away from the repair states, compared to the distance between the repair states
to the healthy state. Increasing the number of days for alignment does not significantly impact the FPR as the
lower order statistics are relatively consistent throughout.

These results not only show that the combination of statistical alignment and DPMM clustering are well suited
for the long-term monitoring of the mast structure, but also that the amount of data required for alignment is very
small. However, as discussed previously, care must be taken when choosing the data for alignment as they should
represent only the normal condition without anomalous behaviours.

In the next section, the effect of further reducing the number of input features is investigated in order to minimise
the costs associated with sensor installation, data collection and storage.

6.4 The effect of reducing the features of the DPMM

In SHM campaigns, the cost, labour, and storage capacity requirements associated with measurement sensors can
be substantial to owners. Unfortunately, for fault analysis (and other techniques such as modal analysis), a network
of sensors is often necessary. For instance, the analysis conducted in the previous sections uses data from all 18
uni-axial accelerometers in the form of mode shapes and natural frequencies. In this section, the performance of the
DPMM is assessed against the number of input features to the model, as the number of input features is correlated
to the number of sensors required for analysis. For example, removing the mode shapes from the input features
reduces the spacial resolution required from the sensor network (to determine the mode shapes), hence reducing the
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Figure 17: The DPMM performance as the number of features are reduced from analysis. (a) The true positive
rate showing the amount of correctly labelled damaged and SE data and (b) The false positive rate showing the
amount of mislabelled healthy and repair data. The input features that are included in the model are described in
Table 5.

number of necessary sensors required for analysis. By studying the true positive rate and the false positive rate of
the DPMM, this section explored the optimal feature requirements necessary for a classifier to detect damage (and
EOVs such as SE) whist remaining insensitive to healthy and repair data.

The performance of the DPMM as the number of input features (described in Table 5) are reduced is studied
in Figure 17. Here Figure 17a shows the behaviour of the true positive rate of the DPMM as the input features
are reduced. This plot is, therefore, an indication of how well the model is able to detect data related to damage
or EOVs such as SE. It is clear that as the input features are removed from analysis – specifically, as the higher
eigenfrequencies and mode shapes are removed – the model’s ability to detect damage and SE data reduces. This
is not a surprising result because smaller damages are usually more sensitive to higher modes. It should be noted,

Table 5: The input features included in the DPMM and the corresponding performance of the model. The labels of
each input feature combination used in Figure 17 is also presented. Here, each bending eigenfrequency and mode
shape contains components in the x and y directions.

Number of input
features

Bending
eigenfrequencies (BE)

Mode shapes (MS)
included

Label TPR FPR

12 1, 2 and 4 Yes BE & MS 1, 2, 4 0.99 0.016
6 1, 2 and 4 No BE 1, 2, 4 0.84 0.009
8 1 and 2 Yes BE & MS 1, 2 0.84 0.029
4 1 and 2 No BE 1, 2 0.69 0.024
4 1 Yes BE & MS 1 0.66 0.168
2 1 No BE 1 0.45 0.026
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however, that the first two bending eigenfrequencies and mode shapes (BE & MS 1, 2) capture all damages and the
SE state except for D6, leading to a TPR of 0.84 (and a small FPR of 0.029). As the first two bending modes occurs
at low frequencies, this result shows that the sampling frequencies and the number of accelerometers can be reduced
from the LUMO structure, whilst achieving a relatively well separated healthy and damage states, when using
statistically aligned data. This result is a helpful argument for lowering installation, storage and computational
costs associated with sensors.

Interestingly, removing the mode shapes within a given combination has a similar effect to removing a higher
bending eigenfrequency altogether (for example, the TPR of combination BE 1, 2, 4 is the same as the combination
BE & MS 1, 2). Given, technically, the eigenfrequencies of a structure can be calculated with fewer sensors than
the mode shapes (calculating mode shapes require a network of well placed sensors, whereas a single sensor can
be used to calculate the eigenfrequencies with a high resolution), this may be a helpful finding, as costs of sensor
installation could be reduced by focusing solely on bending eigenfrequencies for input features. In the LUMO
structure, however, the sensor resolution is not sufficient to determine the higher modes with adequate fidelity, and
as a result, it is not possible to assess whether the input feature combination BE 1, 2, 4, 5 would give a similar
TPR as using features BE & MS 1, 2, 4.

Figure 17b presents the false positive rate of the DPMM as the input features are reduced. The number
of misclassified normal condition healthy or repair data does not seem to vary with the input features in any
meaningful way, i.e., there is no indication of a clear correlation. In general, however, reducing the number of
features does not negatively impact the FPR, which remains relatively small.

7 Conclusions and Future work

During their lifetimes, the behaviour of civil structures can be affected by environmental and operational variations
(such as freezing conditions), defects and damages, and subsequent structural repairs, that makes long-term data-
driven monitoring challenging. These variables often change the underlying distributions of the data collected from
the structure, thus introducing domain shifts between the healthy data the model was trained on, and the testing
data where the structure is in operation. Disparities between training and testing data can significantly reduce the
model performance or even invalidate the model entirely.

This paper proposed a method for long-term damage detection of a mast structure under natural excitation, that
can adapt to domain shifts caused by structural repairs, or environmental variations such as stiffening effects. A
novel method was proposed here that combines domain adaptation techniques and fully-online clustering methods
(DPMM) that do not require a training phase or damage labels. First, the domain shifts within the normal condition
data were reduced using normal condition alignment by considering a partial domain adaptation approach – where
the target domain is a subspace of the source domain, and the only shared class between the two domains are the
normal condition. Then, Dirichlet process mixture models were used to cluster the data online, because they can
automatically increase the number of clusters as new data affected by structural changes – due to damage and EOVs
such as stiffening effects – are introduced. By using this novel combination of methods, this paper demonstrated
that it is possible to achieve a true positive rate of 0.99 and false positive rates of 0.016 when detecting damage on
a dataset from a mast structure.

As the statistical alignment has provided good physical interpretability of the damage information, the next
steps of this work is to apply these findings in a population-based framework via domain adaptation in order to
achieve tasks in level two of the Rytter’s hierarchy: damage location.
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A Outlier analysis of the LUMO dataset

In order to demonstrate the ineffectiveness of conventional long-term SHM methods when considering repair, outlier
analysis (first introduced for damage detection in [46]) is used in this appendix as a demonstration. Here, the
eigenfrequencies of the LUMO dataset (Table 3) are used as input features. To perform multivariate outlier analysis,
first the Mahalanobis squared distance (MSD) is calculated on a sample of the data (training set). Then, during the
testing procedure, the MSD of each new datapoint is assessed using a threshold corresponding to 95% confidence
interval determined by Monte Carlo (MC) simulation with 1000 samples [46]. The data that crosses the threshold
are presumed to be novel in comparison to the data used to train the model.

The MSD is a distance metric and is defined as,

Dζ = (xζ − x̄)TS−1(xζ − x̄) (A.1)

where xζ is the current data point (dimension 1× n), x̄ is the mean vector of the training data (dimension 1× n)
and S is the covariance matrix (dimension n× n), where n is the number of features.

The results of the multivariate outlier analysis performed on the features in Table 3 are presented in Figure A.1.
The data used for training is displayed in blue whilst the remaining healthy and repair (H&R) data is presented
in green. The model is trained using data from the first month of operation where a healthy, normal condition
is assumed. This assumption is sensible as damage is unlikely to prevail during the first month. In real-world
applications, the validity of the assumed normal condition can be ensured by inspection of the structure. The
damage states (D1 - D6) and the SE state are also highlighted manually in this figure for clarity. The threshold
calculated by MC simulation is included as a horizontal red line. The ineffectiveness of standard SHM models
trained on pre-repair data to only detect damage post-repair is clearly evident in Figure A.1 – although the damage
and SE states have been identified as outliers, so have data from the repair states. As a result, this model is
insufficient in practice, as it is prone to false positives at a rate of 0.55.

To assess the effect of harmonising lower order statistics according to normal condition, the outlier analysis
procedure is repeated. As the MSD is defined completely by the correlation (Equation (A.1)), by using statistical
alignment, the correlations can be aligned directly, leading to a higher confidence in the ability of the model to
generalise. The results of the outlier analysis following statistical alignment are presented in Figure A.2. Data
alignment has enabled the majority of repair state data to move below the threshold whilst the SE and damage
state data remain above it. The FPR has dropped from 0.55 pre-alignment to 0.22 post alignment, demonstrating
that data alignment has helped improve the outlier analysis results. This method does not involve retraining the
outlier analysis model at each repair state, and allows the model to retain all the information collected up to the
current date. However the FPR is still high because there are drifts in the data during the testing period as a result
of environmental and operational variations.

These results express the need for a more robust method of damage detection when considering repair, which
has been demonstrated by the combination of Dirichlet process mixture models and statistical alignment techniques
in Section 6.1.
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Figure A.1: Outlier analysis results when using the first month of data for training.
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Figure A.2: Outlier analysis on the harmonised data when using the first month of data for training.
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