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Abstract

The paper provides a comprehensive overview of modeling and pricing cyber insurance
and includes clear and easily understandable explanations of the underlying mathemat-
ical concepts. We distinguish three main types of cyber risks: idiosyncratic, systematic,
and systemic cyber risks. While for idiosyncratic and systematic cyber risks, classi-
cal actuarial and financial mathematics appear to be well-suited, systemic cyber risks
require more sophisticated approaches that capture both network and strategic inter-
actions. In the context of pricing cyber insurance policies, issues of interdependence
arise for both systematic and systemic cyber risks; classical actuarial valuation needs
to be extended to include more complex methods, such as concepts of risk-neutral
valuation and (set-valued) monetary risk measures.
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1 Introduction

Cyber risks constitute a major threat to companies worldwide.! In the last years, the
estimated costs of cyber crime have continuously been increasing—from approxi-
mately USD 600 billion in 2018 to more than USD 1 trillion in 2020, cf. CSIS [25].
Consequently, the market for cyber insurance is experiencing strong growth, providing
contracts that mitigate the increasing risk exposure—with significant potential ahead.
However, cyber insurance differs from other lines of business in multiple ways that
pose significant challenges to insurance companies offering cyber coverage:

e Data on cyber events and losses is scarce and typically not available in the desired
amount or granularity.

e Cyber threats are evolving dynamically in a highly non-stationary cyber risk land-
scape.

e Aggregate cyber risks arise due to common IT architectures or complex intercon-
nections that cannot easily be captured.

e The term ‘cyber’ risk itself comprises many different types of risk with different
root causes and types of impact.

Insurance companies cannot solely rely on standard actuarial approaches when mod-
eling and pricing cyber risks. Their traditional methods need to be complemented by
novel and innovative techniques for both underwriting and quantitative risk manage-
ment. The current paper provides the following main contributions:

(i) We present a comprehensive overview of the state of the art of modeling and
pricing cyber insurance. In contrast to other surveys (see, e.g., [39]) that focus
on a high-level review of the literature, we explain the underlying mathematical
concepts and discuss their advantages and drawbacks.?

(i) The second main contribution of the paper is a classification of cyber risks into
three different types: idiosyncratic, systematic, and systemic cyber risks. While
the distinction between idiosyncratic and systemic risks is common in the current
cyber insurance literature (see, e.g., [116]), a further refinement is necessary. The
three risk types can be described as follows:

o Idiosyncratic risks refer to cyber risks at the level of individual policyholders
that are independent from risks of others parties. This might, for example, be
caused by internal errors within the company. Prototypical idiosyncratic risks
are independent risks in large insurance pools that allow to apply classical
actuarial techniques.

! For example, according to the annually published Allianz Risk Barometer (see, e.g., [2]), cyber risk ranges
among the top three global business risks since 2016.

2 Surveys that include detailed conceptual explanations are, e.g., Bohme and Schwartz [19], Marotta et
al. [81], and Bohme et al.[12]. In contrast to our paper, these authors focus exclusively on game-theoretic
models. We discuss this dimension in Section 3.3.
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Modeling and pricing cyber insurance 3

e Systematic risks are cyber risks that result from common vulnerabilities of
entities affecting different firms at the same time, e.g., firms belonging to the
same industry sector or region, or firms that utilize the same software, server,
or computer system. These risks can be modeled via common risk factors. In
classical actuarial and financial mathematics, systematic risks include financial
market risks as well as stochastic fluctuations and evolutions of mortality rates
within a population.

e Systemic risks are cyber risks caused by local or global contagion effects in
interconnected systems or by strategic interaction. Examples are worm-type
malware or supplier attacks. These risks are similar to important feedback
mechanisms observed in financial crises, e.g., contagion in networks of coun-
terparties or fire sales of stressed market participants in illiquid markets.
Models include random processes with feedback, or locally and globally inter-
acting processes. We will also include strategic interactions in this category
which are studied in game theory.

Idiosyncratic and systematic cyber risks can be captured by classical approaches of
actuarial and financial mathematics; systemic cyber risks require different method-
ologies such as epidemic network models which focus on the interconnectedness
of the entities. We suggest pricing techniques that adequately incorporate interde-
pendence for both systematic and systemic cyber risks by combining the concepts
of risk-neutral valuation and risk measures.

The paper is structured as follows. Section 2 reviews classical actuarial approaches.
We begin with an introduction to the frequency-severity approach in the context of
cyber risk and discuss how to model both idiosyncratic and systematic risks in this
framework. We explain how dependence is captured in such models. Systemic cyber
risks are considered in Sect. 3. Three different modeling approaches for intercon-
nectedness, contagion, and interaction between entities are discussed, with a special
focus on their advantages and possible drawbacks. In Sect. 4, we describe pricing
methods for cyber insurance contracts that are applicable in the face of idiosyncratic,
systematic, and systemic risks. Section 5 discusses open questions for future research.

2 Classical actuarial approaches applied to cyber risks

The pricing of cyber insurance contracts as well as quantitative cyber risk management
require sound models for the loss distributions, customized to the application purpose.
While classical actuarial premium principles are essentially related to the expected
claims amount (plus a safety loading), quantitative risk management particularly refers
to extreme losses in the tail of the distribution and their quantification in terms of risk
measures such as Value at Risk or Average Value at Risk, see Sect. 4.

In actuarial mathematics, a standard model for insurance losses—used across all
lines of business— is the frequency-severity approach, also called collective risk
model. For a certain time interval [0, t], # > O (typically + = 1 year), a collective
of policyholders causes a random number of claims N; (frequency) with correspond-
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4 K. Awiszus et al.

ing random loss sizes V1, ), ... (severity) generating the total claim amount
N;
S=Y Y. t>0.
i

Calculations within the frequency-severity approach typically rely on the following
mathematical assumptions (see, e.g., [88]):

(C1) Claims occur at arrival times 0 < 77 < T» < .... The number of claims in the
time interval [0, ¢], ¢ > 0, is defined by

Ne=#{j=1]|T; <t},

i.e.,, N = (N;):>0 constitutes a counting process on [0, 00).

(C2) The jth claim arriving at time 7; causes the claim size ));. It is assumed that
the sequence ();)j>1 of claim sizes consists of independent and identically
distributed random variables.

(C3) Claim sizes and claim numbers are assumed to be independent from each other.

In contrast to classical insurance risks, however, cyber risk is more challenging in dif-
ferent ways. In particular, the standard assumptions of the frequency-severity approach
as well as classical statistical techniques® are no longer applicable:

e Claims data is not available in sufficient quantity or in the required granularity.

e Technology and cyber threats are evolving rapidly, i.e., the cyber environment is
highly non-stationary.

e Cyber incidents* may affect different policyholders at the same time, i.e., the
typical assumption of independence for insurance risks does not hold any longer.
Moreover, there is—in contrast to natural catastrophe risk—no simple geograph-
ical delimitation of dependent risks.

Nonetheless, the frequency-severity approach can be customized to account for cyber
risk—at least as a first approximation and for certain types of non-systemic cyber
risks, which can be subdivided into idiosyncratic and systematic risks (as defined in
Sect. 1). In the frequency-severity approaches presented below, we explicitly distin-
guish between techniques suitable for modeling idiosyncratic or systematic incidents.
In the context of cyber insurance, however, a third class of risks can be identified,
namely systemic risks, i.e., cyber risks resulting from contagion between intercon-
nected entities. Proper modeling of such risks goes beyond the classical framework
of actuarial modeling and requires appropriate models for networks, (cyber) disease
spread, and strategic interaction. Hence, we discuss the modeling of systemic cyber
risks separately in Sect. 3, while the pricing for all types of cyber risks is discussed in
Sect. 4.

3 For details on statistical techniques in classical actuarial models, see Sects. 2.1.3 and 2.2.3.

4 According to NIST [91], a cyber incident can be defined as: “Actions taken through the use of an
information system or network that result in an actual or potentially adverse effect on an information system,
network, and/or the information residing therein.” We will also use the term cyber attacks interchangeably
in this paper.
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Modeling and pricing cyber insurance 5

To present frequency-severity approaches in the context of cyber risk in a unified and
practically applicable way, we use the following notation and definitions. We consider
an insurer’s portfolio of n policyholders (firms) exposed to the considered type of
cyber risk incidents. Each firm admits an individual risk profile characterized by a
vector of covariates, e.g., industry sector, size, IT security level, which are elicitable,
for example, via a questionnaire or from public information. Using the covariates, the
insurer’s portfolio is decomposed into homogeneous groups, labeled {1, ..., K}, with
covariates vector x¥ for group k. We denote by ng, k = 1, ..., K, the number of firms
in group k, i.e., n1 + ... 4+ ng = n. For pricing purposes, these homogeneous groups
can be viewed as tariff cells, i.e., the insurance firm should charge all firms® within
group k the same premium m%. In particular, if ny is large, then the premium of the
idiosyncratic cyber risk can be derived from the law of large numbers as the expected
claims amount per firm of group k plus a suitable safety loading to avoid ruin in the

long run.
Both idiosyncratic and systematic incidents can be grouped into different cyber
risk categories, labeled {1, .. ., C}. Categories may include, for example, data breach,

fraud, and business interruption. Two exemplary actuarial classification approaches
are sketched and discussed in Appendix A. Cyber risk is modeled per risk category
cef{l,...,C}and per group k € {1,..., K}. A pair m := (c, k) is called a cyber
risk module. The total number of modules C - K is a trade-off between homogeneity
and availability of data for statistical estimation.

Within this framework, we model the losses for an insurance company — for each
cyber risk module as well as on an aggregate level. For this purpose, we first focus
on frequency-severity based approaches to modeling cyber risks in the spirit of the
classical collective risk model. Second, we add dependence to our cyber risk model
in order to capture accumulation risks. Note that appropriate dependence modeling is
particularly important for calculating capital requirements in quantitative risk man-
agement, since the underlying risk measures refer to events in the extreme tail of the
loss distribution.

2.1 Frequency and severity

A frequency-severity model may be applied on the level of each cyber risk module
m = (c, k). For simplicity, we describe the losses per risk category of individual firms
by a collective risk model. This can be justified as follows: Since all firms in any group
are (approximately) homogeneous, they will be charged the same premium for any
given risk category. From the point of view of the insurance company, only aggregate
losses are relevant, i.e., an artificial allocation of losses to individual companies for
pricing purposes will produce the correct implications. We thus describe the losses
per risk category at the level of any individual firm by a collective risk model with the
same severity as the corresponding module, but with a suitably reduced frequency.

5 For simplicity, we assume that the firms within a group possess the same types of exposures that are of
the same size. This can be generalized by introducing suitable volume measures that characterize the size
of exposures.
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6 K. Awiszus et al.

Forafirmi in group k and a fixed risk category ¢, i.e., acyberrisk modulem = (c, k),
we consider the frequency and severity model (A", (y;"” )j=1)- Then the total claim
amount of firm i up to time ¢ can easily be obtained by summing up:

RV
myi m,i
S= I

=

In mathematical terms, all quantities correspond to random variables on a suitable
probability space (€2, F, P), where [P plays the role of the statistical measure that
models the relative frequency with which events occur.

As outlined in the introduction of this section, one of the most common assumptions
in the frequency-severity model is assumption (C3), i.e., claim numbers and sizes are
independent of each other. This assumption facilitates and simplifies many calculations
regarding the compound total claim amount process. In particular, the expected total
claim amount and its variance follow from Wald’s formulas:

E[S"'] = BEIN/™]- B[],
Var(S"") = EIN;™ TVar(V)"") 4 Var(V" ) BV )2

However, the independence assumption may not always be reasonable—e.g., if
hidden factors influence both frequency and severity: Sun et al. [106] detect a positive
nonlinear dependence between frequency and severity in hacking breach risks at the
firm level. A firm with a strong cyber self protection is expected to experience both
fewer and weaker hacking attacks than companies with weak self protection mecha-
nisms. In mathematical terms, the authors capture this dependence between frequency
and severity by the Gumbel copula, see also Sect. 2.2.

2.1.1 Frequency

Let Mm’i denote the number of incidents in module m = (c, k) until time ¢ that are
allocated to a firm i in group k, and let (./\/,m”)tzo denote the corresponding counting
process. At the aggregate level,

ng K
N8 = ZN',”” and j\/,(c) = ZJ\/,m’agg, t >0,
k=1

i=1

will count the total number of incidents per module m = (c, k) and the total number
of incidents per cyber risk category c, respectively.

Poisson Process

A simple counting process for incidents—reflecting non-stationarity of cyber risk—is
a time-inhomogeneous Poisson process with intensity function A™ per firm for cyber
risk module m.
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Modeling and pricing cyber insurance 7

Definition 2.1 (Time-inhomogeneous Poisson process) A counting process (N;);>0
is called a time-inhomogeneous Poisson process on (€2, F, IP) with locally integrable
rate (or intensity) function A : [0, o) — [0, 00) if:

1. Nop =0,

2. the process has independent increments,

3. for any time interval (s, z], the number of incidents is Poisson distributed with
mean f; Au)du,ie.,

t
N; — Ny ~ Poiss (/ A(u) du) .

Unless the intensity function is constant, the increments of a time-inhomogeneous
Poisson process are non-stationary. The cumulative rate function fot M(u) du corre-
sponds to the expected number of incidents up to time 7.

Zeller and Scherer [116] adopt this approach for idiosyncratic incidents. For each
policyholder i of group k and module m = (c, k), the number of idiosyncratic incidents
(J\/;"” )i>0 is assumed to follow a time-inhomogeneous Poisson process with intensity
A = A&R) Clearly, for each cyber risk category c, the intensity at the level of an
individual firm i depends on the covariates x¥ of group k (but not on the individual
policyholder i), and Zeller and Scherer [116] propose a generalized additive model

)\,(C’k)(t) — exp(fc(xk) + gc(l))

to estimate the intensity rates.® In particular, similarities and deviations of the risk
profiles of the K groups—expressed in terms of the covariate vectors x¥, k =
1,..., K—are reflected by the intensity functions A%,

Since idiosyncratic incidents are independent across firms, the total number of
incidents N;""“%¢, ¢ > 0, permodule m = (c, k) as well as the total number of incidents
/\/,(C), t > 0, per cyber risk category c, respectively, are again time-inhomogeneous
Poisson processes with respective intensities

K
A8 (1) = ma R @), 29w =Y maP @, =0 e
k=1

More delicate, however, is the case of systematic cyber risk incidents. In particular,
frequency distributions of different policyholders might be subject to dependencies
due to joint underlying cyber risk factors R!, ..., R?, representing, for example, the
random discovery of exploits in commonly used software, improvements in cyber
security, or the technological progress of tools for cyber attacks.

Cox Process

Such dependencies between counting processes can be captured in the context of Cox
processes, also called doubly stochastic Poisson processes, extending the notion of a
time-inhomogeneous Poisson process to a random intensity.

6 The auxiliary function f additively maps the covariates, while g captures the time dependence.
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8 K. Awiszus et al.

Definition 2.2 (Cox process) A Cox process (NV;);>¢ is a counting process described
by a random intensity process (A;);>o such that conditional on the specific realization
t = M), w € Q, the process (N;),>0 is a time-inhomogeneous Poisson process
with intensity ¢ — A(f) = A+ (w).

A reasonable assumption could be that the intensity is a function of the current
state of random cyber risk factors, i.e., for an R9-valued stochastic process R; =
(Rl, ...,Rf), t > 0, of cyber risk factors and a function A : R — [0, 00), the
intensity process is defined as

AM(w) =A(Ri(w)), t>0, we.

More generally, the intensity process could be modeled as a function of the whole
history of cyber risk factors, i.e.,

M) =2Ry(w):u<t), t>0, we.

In summary, in the case of systematic cyber risk, a reasonable model for the num-
ber of incidents ./\flm’i up to time ¢ allocated to policyholder i in group k for module
m = (c, k) could be to assume that (./\/tm” )+>0 follows a Cox process with intensity pro-
cess A" = A™(R;),t > 0, defined in terms of a suitable function A" : RY — [0, 00),
such that conditional on the cyber risk factors 1 — R;(w) = (Rzl (w), ..., Rf (w))
the counting processes (N;"');>0, m = (¢,k),c = 1,...,C, k = 1,..., K, are
independent time-inhomogeneous Poisson processes. In particular, conditional inde-
pendence implies that—conditional on the specific realization ¢ = A} (w)—the total
number of incidents ./\/'tm’agg, t > 0, per module m = (c, k) and the total number
of incidents /\/,(C), t > 0, per cyber risk category ¢ are again time-inhomogeneous
Poisson processes with intensities

K
w0 =m0, A =3 AP, =0,
k=1

in analogy to (1).

In contrast to the time-inhomogeneous Poisson process, the increments of a Cox
process (N;),>0 are in general no longer independent, but subject to autocorrelation.
More precisely, for any s < t < u < v, the tower property of conditional expectation
implies

t v
COV(M_NYan_Nu)ZCOV(f )»de,f )»de>,

i.e., the autocorrelation depends on the random intensity process. The statistical anal-
ysis of Bessy—Roland et al. [7] yields empirical evidence for autocorrelation in the
number of attacks, and thus provides an additional rationale for Cox processes when
modeling claims frequency. The specification of an intensity process that reproduces
the empirically observed autocorrelation appears to be challenging.
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Modeling and pricing cyber insurance 9

2.1.2 Severity

Every claim occurring in the frequency-severity model triggers a loss size that is
modeled as a random variable. We let y;"*’ denote the claim size of the jth event

allocated to firm i for module m = (c, k) and assume that (y;"’i)jzl,i =1,...,ng,1s

acollection of non-negative independent’ and identically distributed random variables.
One among many different possible approaches is to assume that the key governing
parameter for the choice of the claim size distribution is the incident category c;
characteristics of group k then determine distributional details, e.g., parameter values.

Due to the limited availability of loss data, empirical research on cyber risk severity
distributions has mostly focused on the category of data breaches. For this category,
open source data bases, such as the Privacy Rights Clearinghouse Chronology of Data
Breaches, are available and regularly updated. Data breach severities are found to fol-
low strongly heavy-tailed distributions such as power-law (see, e.g., [80]), log-normal
(see, e.g., [37]) or generalized Pareto distributions (GPD) (see, e.g., [112] or [106]).
For cyber risk categories different from data breaches, less data is publicly available.
Consequently, fewer papers have appeared that empirically analyze the respective
severity distributions.

An exception is Dacorogna et al. [29] who study a non-public database of the French
Gendarmerie Nationale on cyber complaints and describe a process for cleaning the
data. Their analysis suggests that losses are heavy-tailed. Dacorogna et al. [30] refine
the analysis and provide a tool for classifying attacks based on the fatness of the tail.
Another promising direction are studies based on data on operational risk such as
Biener et al. [9] or Eling and Wirfs [41]. These approaches offer the benefit of being
able to analyze all categories of cyber incidents simultaneously. In particular, Eling
and Wirfs [41] detect distributional differences between small and large claim sizes for
all considered cyber incident categories. The authors propose a composite distribution
approach, where excess losses over a threshold are modeled using a GPD and the
remaining smaller losses are modeled using a simple parametric distribution such as
a gamma or log-normal distribution. In general, composite distribution approaches
constitute a flexible modeling tool to take the empirically observed distributional
differences between body and tail of severity distributions adequately into account. A
composite distribution approach can be formalized as follows.

For each module m, we choose a threshold 6™ distinguishing small from large cyber
claims. Small and large claims, i.e., the body and tail of the severity distribution, are
then modeled separately: The i.i.d. claim sizes follow a composite distribution with
density

Cl - fa (), if —oo<y=<6™,

small

Ch - i e (V) ifo" <y < o0,

arge

fy;" ) =

7 Cyber event claim sizes in a certain time interval may not always be independent, e.g., due to commonly
used cyber security measures. The resulting dependence structures could be captured by alternatively
imposing conditional independence assumptions given a set of joint underlying risk factors—similar to the
conceptual idea underlying Cox processes that we already discussed above.
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10 K. Awiszus et al.

where fiI ., flg"rge are probability density functions modeling the sizes of small and
large claims in module m, respectively, and C{*, C5' are normalizing constants that are
additionally constrained by continuity conditions at the threshold 6. Depending on
the characteristics of the module m, different choices for fs"lgan, ﬁg”rge may be suitable.

Examples include

e Small Claims: PERT, Normal, Gamma, Log-Normal, GPD, Kernel Distribution
e Large Claims: GPD

The composite distribution approach is well-suited for modeling non-life insurance
severity distributions in general, and cyber risks in particular.® As discussed here, the
methodology is independent of time, i.e., it provides only a snapshot of the current
cyber environment. In the light of the fast-evolving, non-stationary cyber landscape,
the suitability of the model must, however, be regularly validated and updated. For
further details and discussions, we refer the interested reader to the excellent summaries
provided by Zeller and Scherer [116], Sect. 2.1, or Eling [39], in particular Tables 4
and 6, and to Cooray and Ananda [23] for an application of composite distributions
in a non-cyber specific context.

2.1.3 On calibration and application

In general, frequency-severity models are well-understood, easy to implement and to
calibrate if a sufficient amount of data is available. They are also straightforward to
explain, for example, to an executive board of an insurance company; this is partly
due to their prevalence in actuarial modeling. For frequency modeling, intensities can,
e.g., be fit to data using generalized additive models (as in Zeller and Scherer [116]
and described above), maximum- or marginal likelihood, or Bayesian methods. Cox
processes are generally more difficult to estimate — the choice of a calibration method
critically depends on the law of the underlying common risk factor processes.’

For the statistical analysis of the severity, there exist well-known estimation tech-
niques including maximum-likelihood, see, e.g., Maillart and Sornette [80] or Edwards
et al. [37] for applications in a cyber severity context, or the peaks-over-threshold
method for fitting a GPD to the tail of a distribution, see, e.g., McNeil et al. [85] and
Embrechts et al. [42]. For a general review on methods for the parameter estimation
of GPDs, including maximum-likelihood, the method of moments, the probability
weighted moments method, and Bayesian approaches, see also de Zea Bermudez and
Kotz [32] and de Zea Bermudez and Kotz [33].

The practical application of frequency-severity models to cyber risk is challenging,
in particular due to the limited amount of available data and its insufficient quality.
Moreover, Poisson and Cox processes do not capture the systemic interaction between
different (groups of) policyholders; see also Reinhart [98] for a discussion of the

8 Sun et al. [106] also suggest a composite distribution approach for modeling malicious hacking data
breach risk. The tail of their distributions follows a GPD, and the distribution body is modeled using a
non-parametric kernel distribution. Due to both its suitability and flexibility, a similar approach is also
incorporated in the cyber risk model of Zeller and Scherer [116].

9 For details on the statistical estimation of point processes and theoretical background see, e.g., Daley and
Vere-Jones [31].
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Modeling and pricing cyber insurance 1

frequency-severity model presented by Zeller and Scherer [116]. An alternative are
Hawkes processes that incorporate systemic self-excitation into frequency models, see
Sect. 3.1. Like Cox processes, Hawkes processes are able to capture autocorrelation
observable in the data.

2.2 Dependence modeling

The distribution of the total claim amount per module and at the portfolio level is
affected by the underlying dependence structures. For cyber risk, dependencies may
be present at different levels including:

e dependence between frequency distributions or between severity distributions of
different policyholders in the same homogeneous group (e.g., due to the random
evolution of common cyber security measures and cyber threats over time),

e dependence between frequency and severity—in contrast to the classical frame-
work of frequency-severity models (e.g., due to unobservable random factors
within a tariff class such as heterogeneous levels of cyber self protection).

One approach to deal with the first type of dependencies are Cox processes as described
in Sect. 2.1.1. In this section, we review further approaches to model dependence in
the context of cyber risk that have been proposed in the literature.

2.2.1 Common risk factors

Common risk factors capture dependence for systematic risks; the factors are random
quantities to which all risks are jointly exposed. Common risk factors appear in static
as well as in dynamic models and have been widely used in the cyber risk modeling
literature. For example, they are key elements of the cyber risk models proposed by
Bohme [10], Bohme and Kataria [11] and Zeller and Scherer [116]. Cox processes, as
introduced in Sect. 2.1.1, are an example of dynamic factor models.

Bohme [10] captures dependence using one common risk factor in a static model.
The factor represents a common vulnerability in a portfolio of » individual risks. The
connection between individual risks and the latent risk factor is studied on the basis
of linear correlation.! Common risk factors also appear in the cyber risk model of
[116]. The authors use marked point processes with two-dimensional marks: the first
component describes the strength of an attack, and the second component represents
the subset of companies affected. Dependence among firms occurs due to the restriction
of incidents to certain industry sectors which is modeled via a common risk factor.
The paper suggests a conceptual framework, but does not yet calibrate the model to
real data.

10 inear correlation, defined as p(X, Y) = Cov(X, Y)/+/Var(X)Var(Y) € [—1, 1], captures a possible
linear relationship between the random variables X and Y. The maximum and minimum values of 1 and
—1 are not always attainable. While often used to impose ad-hoc dependence assumptions in practice (in
a cyber context, see, e.g., [10], [11]), linear correlation suffers from many well-known fallacies, see, e.g.,
[85] for a detailed discussion.
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12 K. Awiszus et al.

2.2.2 Copulas

In actuarial applications, copulas are a standard tool that fully characterizes the
dependence structure of the components of finite-dimensional random vectors. A d-
dimensional copulaC : [0, 114 = [0, 1]is the distribution function of a d-dimensional
random vector with uniform one-dimensional marginal distributions.

Theorem 2.1 (Sklar’s Theorem)

1. For any d-dimensional distribution function F with margins Fy, ..., Fy there
exists a copula C with

F(x1,...,xq) =C(F1(x1), ..., Fg(xg)) forallxy,...,xq5 € [—00,00]. (2)

If all F; are continuous, then C is unique.

2. Conversely, for a given copula C and given one-dimensional distribution functions
Fi,..., Fg, the function F in (2) is a d-dimensional distribution function with
copula C and marginal distribution functions F1y, ..., Fy.

Property 1 states that a copula extracts the dependence structure of a random vector
from its multivariate distribution, while property 2 provides a flexible construction
principle of multivariate models by combing marginal distributions and copulas to
multivariate distributions. Prominent examples of copulas are:

e Gaussian copula: Letting ®~! be the quantile function of the standard normal
distribution and @y the joint cumulative distribution function of a multivariate
normal distribution with covariance matrix ¥, the corresponding Gaussian copula
is given by

CS%uy, ... ug) = @ (® ), ..., 0 ua)) ((uy,...,uq) €0, 1]).

e t-copula: Let #, x signify the distribution function of a d-dimensional ¢-
distribution 74 (v, 0, ¥) for a given correlation matrix X and with v degrees of
freedom, and let #,, denote the distribution function of a univariate 7-distribution
with v degrees of freedom. The corresponding #-copula takes the form

Clsur, ... ug) =ty 5t (), ...t (W) ((ur, ... uq) € [0, 1]).

Like the Gaussian copula, the #-copula is an implicit copula that is extracted from
a given parametric multi-variate distribution.

e Archimedean copulas: Explicit copulas are constructed from given functions;
the prime example are Archimedean copulas. We consider a suitable continu-
ous function ¥ : [0, 00) — [0, 1] with ¥ (0) = 1, limy—co ¥ (x) = 0, and ¥
strictly decreasing on [0, 1//‘1 (0)], where 1//‘1 denotes its generalized inverse.
The Archimedean copula with generator i is given by

CHT @t o) =y W) + o Y w) (i, .. ug) € [0, 1),
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A special case is the Gumbel copula for Yg(s) = (— In(s))?, 0 € [1, c0) that is
applied in the cyber model of Sun et al. [106].

2.2.3 On calibration and application

Common risk factor models are able to capture dependence from bottom-up and are
widely used in economics. From a practical perspective, they are particularly useful
when a modeler is confident that random outcomes are influenced by common external
factors. In Cox processes, described in Sect. 2.1.1, the common factors enter the model
via the intensity. Their estimation depends on the specific choice of the distribution
of the underlying risk factors. For the class of linear factor models, a large amount of
statistical estimation methods exist. Important techniques are time series regression,
cross-sectional regression (at each time point), and principal component analysis, see,
e.g., McNeil et al. [85] and the references therein.

Another approach are copulas; these are theoretically able to represent every form
of static dependence. They can be viewed as a top-down approach that imposes a
dependence structure without modeling the underlying mechanisms, as contrasted
with factor models that can be interpreted as a bottom-up approach. Copulas have
already been used in the literature on cyber risk. Herath and Herath [62] model the
loss distribution at a single firm using a copula that captures the dependence structure
between the number of affected computers of the firm and the overall severity of the
loss. In Bohme and Kataria [11] dependence between different firms is captured using
a t-copula with a given linear correlation coefficient.

Another example is an application of copulas in a modified collective risk model
in which the standard independence assumption is relaxed. For the incident category
¢ of hacking data breaches, Sun et al. [106] observe upper tail dependence between
frequency and severity. This may be caused by hidden factors such as the degree of
cyber self protection. They propose to model this dependence for any firm i in module
m up to time ¢ via a Gumbel copula.

Eling and Jung [40] and Liu et al. [79] apply vine copulas in the context of data
breaches. Vine copulas are very flexible, and their calibration is quite tractable, since
high-dimensional dependence structures are decomposed into components of lower
dimension. For detailed information on vine copulas we refer to Czado [26], Czado
and Nagler [27], and an online collection of material on vine copulas, see TU Munich,
Statistics Research Group [107].

In general, the choice of a suitable copula estimation method depends on the struc-
ture of the chosen copula model: parametric, semiparametric or nonparametric. A
good survey on various methods is Hofert et al. [65]. In a fully parametric model, both
the copula and the marginal distributions are completely characterized by (vector)
parameters. The maximum likelihood (ML) method can be applied to the dependence
and the marginal part either jointly or sequentially. The sequential approach is often
referred to as the method of inference functions for margins (IFM), see, e.g., the sur-
veys in ChoroS et al. [22], Sect. 2.1, or McNeil et al. [85], Sect. 7.6. Semiparametric
approaches typically still involve a parametric copula model, but a nonparametric
model for the marginals. Here, classically, the marginal distributions are estimated
via their empirical distribution functions. Estimation of the full model can then be
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14 K. Awiszus et al.

performed using a maximum-pseudo likelihood approach, in which the nonparamet-
ric marginal estimators are inserted, see the seminal paper of Genest et al. [53]. This
approach is considered to be more robust than the parametric ML and IFM methods
in many practical applications, see Kim et al. [70], unless substantial information
is available on a parametric class to which the margins belong to. Nonparametric
copula models may be estimated on the basis of different variations of nonparamet-
ric marginal and joint distribution function estimates, see, e.g., the seminal paper of
Deheuvels [34] using empirical distribution functions or Chen and Huang [21] (and
the references therein) for kernel-based estimators of the copula (or copula density).

3 Systemic cyber risks

Systemic risk generally refers to the possibility that distortions in a system may spread
across many entities and be augmented due to local or global feedback effects. This
is in contrast to systematic risk that introduces dependence via exogenous factors.
Systemic risk refers to the internal mechanism of a system in which the behavior of
the various entities has a sequential impact. It is often associated with a cascading risk
propagation such that

“in case of an adverse local shock (infection) to a system of interconnected enti-
ties, a substantial part of the system, or even the whole system, finally becomes
infected due to contagion effects.”!!

As a consequence of the 2008 financial crisis, systemic risk was intensively studied
in systems of interdependent financial institutions, see, e.g., Staum [105]. This concept
is also important in the context of cyber risk, since agents and organizations in cyber
systems are interconnected, for example within IT networks or via business contacts.!?
The relevance of systemic cyber threats has been emphasized by leading regulatory and
macroprudential institutions, cf. WEF [110] and ESRB [46]. Examples of contagious
threats include the WannaCry and NotPetya cyber attacks where the corresponding
malware spread through networks of interconnected IT devices and firms, causing
tremendous losses to cyber systems worldwide. '3

Modeling systemic cyber risks requires models of feedback effects, local and global
interaction, as well as strategic interaction. We describe three concrete methodologi-
cal approaches (see Fig. 1): Firstly, self-excitation of cyber incidents can be captured
by Hawkes processes on an aggregate level (Sect. 3.1); in this respect, Hawkes pro-
cesses can be interpreted as a top-down approach. Secondly, epidemic network models
(Sect. 3.2) capture the interconnectedness and cascading propagation of risks; this
bottom-up approach may focus on local connections, but can also capture global
interaction via aggregate, mean-field quantities. Both approaches can be viewed as
mechanistic interaction models in which rational or strategic behavior of agents is
typically not mirrored. This is the focus of the third approach, game-theoretic models

1T See [35].
12 See, e.g., the discussion in Sect. 2 of Welburn and Strong [111].
13 For further information and a detailed risk analysis see [46].
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Interaction

mechanistic strategic

Epidemic Network Models

Hawkes Processes Game-Theoretic Models

Fig. 1 Interaction in models of systemic cyber risks

(Sect. 3.3). These study explicitly the strategic interaction of interconnected entities,
usually under strongly simplified connectivity assumptions; notions of equilibria typ-
ically characterize the solutions.

3.1 Hawkes processes

Systematic dependence of cyber incidents can be modeled by Cox processes; these
permit to capture empirical features such as the autocorrelation of cyber attacks. Cox
processes focus on common factors, but they do not model contagion in interconnected
systems. An alternative are Hawkes processes, self-exciting processes, that mirror
feedback effects, a specific form of systemic cyber risk; they also capture the stylized
fact of autocorrelation of the number of events.

Definition 3.1 (Hawkes process) A one-dimensional Hawkes process (NV;),>¢ is a
point process with jump times 77, 7>, ... and with random intensity  — A,, given by

= @)+ ) @t —T,) = () +/0 )<p(t —u)dN,,
1

T,<t [0,

where () is a baseline intensity of jumps, and where ¢ is the excitation function or
kernel function resp. which expresses the positive influence of past incidents at time
T,, on the current value of the intensity.

From a conceptual point of view, Hawkes processes allow to capture—besides auto-
correlation of the number of cyber risk incidents—excitation effects, by coupling the
arrival rate of events with the number of past incidents. In particular, this allows mod-
eling systemic incidents that affect a very large number of counterparties at the same
time, e.g., the spread of worm-type malware.

Self-excitation of cyber incidents for each policyholder as well as the excitation
between policyholders of different groups can be modeled by a multivariate Hawkes
model. More precisely, for all cyber risk modules m = (c, k) and for any policyholder
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i of group k, the intensity of the counting process (J\/,m’i) >0 takes the form

n

)Lt(c,k,i) (c k)(t)"’_zz Z QOCkl Tn(c,l,j))7

I=1 j=1gleli,

where

o 1 (M (1) is the deterministic base intensity function, depending on the cyber
risk module m = (c, k) only,

° ! golc ok, l(t) are self- and mutually-exciting maps (called kernels), depending
on both the cyber risk module m = (c, k), the other group / and the individual
policyholders i, j,

e and T,,(C’I’J ), n € N, are the claims arrival times of policyholder j in group / with
respect to the cyber risk category c.

In this multivariate Hawkes model, the kernels <pf ’lk’k describe the self-excitation for

policyholder i of group k, while the <pc K1 for different policyholders i # j model
contagion between policyholders and across groups.

3.1.1 On calibration and application

Using suitable parametric functions for both the baseline intensity and the kernels of
Hawkes processes can in principle be estimated by maximum-likelihood methods—
provided that data is available in the desired amount and granularity. Data availability
is, of course, still a major challenge in cyber insurance. Model calibration and sta-
tistical parameter estimates in a cyber context are, e.g., presented in Bessy-Roland
et al. [7] focusing on data breaches. Further, Hawkes processes are also used in an
empirical study of cyber risk contagion in Baldwin et al. [4]. In the context of financial
data, maximum-likelihood methods and graphical goodness-of-fit are, e.g., discussed
in Embrechts et al. [43]. Da Fonseca and Zaatour [28] develop an estimation by the
method of moments which is fast compared to likelihood estimation. A general dis-
cussion including Bayesian estimation is presented in Daley and Vere-Jones [31], see
also Giesecke [54], Errais et al. [45], and Ait-Sahalia et al. [1].

Since Hawkes processes can be easily incorporated with a classical actuarial fre-
quency model for systemic cyberrisk, they can be integrated into the standard collective
risk model if complemented by an appropriate severity modeling approach. In prin-
ciple, the severities of systemic events could be chosen as described in Sect. 2.1.2
for idiosyncratic and systematic events. Due to the limited amount of data and uncer-
tainty about the possible impact of future systemic cyber incidents, accurate modeling
of systemic severities is extremely challenging in practice.

Hawkes processes take a top-down approach to modeling systemic cyber risk and
neglect the specific infection processes that underlie risk contagion in interconnected
systems. Important aspects of risk amplification and possible accumulation scenarios
may not be adequately captured. This is the main attractive feature of epidemic network
models; their disadvantage is their increased complexity.
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3.2 Epidemic network models

Interconnectedness constitutes a key characteristic of cyber systems. Systemic cyber
risks may spread and amplify in networks of interconnected companies, economic
actors, or financial institutions. Cyber network models for contagious risk propagation
consist of the following three key components:

1. A network (also called graph) whose nodes represent components or agents.
These entities could be individual corporations, subsystems of computers, or single
devices. The edges of the network correspond to possible transition channels, e.g.,
IT connections or exchange of data/computer code, see Sect. 3.2.1;

2. A spread process on the network that models the propagation of a contagious
cyber risk, like the spread of a computer virus, a Trojan, or ransomware,'* see
Sect. 3.2.2;

3. A loss model which determines the severity of cyber events and the monetary
impact on different agents in the network, see Sect. 3.2.3.

3.2.1 Networks

Definition 3.2 (Network) A network' (or graph) G is an ordered pair of sets G =
WV, &), where V # @ is a countable set of N elements, called nodes (or vertices),
and £ is a set of pairs (7, j), i, j € V, of different nodes, called edges (or links). If
all edges in £ are unordered, formally, (i, j) € £ = (j,i) € &, then G is called an
undirected network. Otherwise, the network G is called directed.

The network structure is encoded in its adjacency matrix A = (a;j)i, je{1,...N} €
{0, 1}V*N which is defined by its entries

. 1, if(,j)eé&
Yo, if G, ) ¢ €.

By definition, G is undirected if and only if A is symmetric. Examples of undirected
network topologies with N = 8 nodes are depicted in Fig. 2.

In applied network analysis, the exact network structure is often unknown. In this
case, random network models enable sampling from a class of networks with given
fixed topological characteristics (such as the overall number of nodes).!®

In the cyber insurance literature, network models are mainly applied to study risk
contagion, e.g., modeling the propagation of malware in IT networks of interconnected
firms or devices. In addition to an underlying network, an appropriate model of the
contagion process that captures epidemic spread is needed.

14 Moreover, contagion can also be interpreted in a broader sense, e.g., considering the propagation of
business interruptions or the breakdown of supply chains as the consequence of cyber attacks on single
entities.

15 This definition refers to unweighted networks. In the context of weighted networks, the notion of undi-
rected networks refers to the symmetry of the weight matrices.

16 Two commonly used models are discussed in Appendix B.
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isolated nodes star-shaped fully connected branching tree

Fig.2 Examples of network topologies with N = 8 nodes

3.2.2 Epidemic spread processes

Models of infectious disease spread dynamics have been studied extensively in mathe-
matical biology and epidemiology, dating back at least to the seminal work of Kermack
and McKendrick [68].!7 In this paper, we focus on epidemic network models for pop-
ulations of entities.

At any point in time, each node is in a particular state, which may change over
time as it interacts with other nodes. According to their state, individuals are divided
into various compartments, e.g., individuals that are susceptible (S) to an infection,
infected (I) individuals, or individuals who have recovered (R) from the infection.
For a network of N nodes, the spread process at time ¢ can be described by a state
vector

X(1) = (X1(0),.... Xn(®) € EY,

where E is the set of compartments. Both Markov and non-Markov processes have
been considered in the context of epidemic spread processes. '8

Markovian Spread Models

In Markovian spread models on networks, the evolution of the state vector X (¢) is
described by a (in many cases: time-homogeneous) continuous-time Markov chain
on the discrete state space EV. The Markov models SIS (Susceptible-Infected-
Susceptible) and SIR (Susceptible-Infected-Recovered) form a class of commonly
used models for epidemic propagation in networks. They are distinguished by the
presence (SIR) or absence (SIS) of immunity: Reinfection events are only possible in
the SIS framework because in the SIR model recovered individuals acquire (perma-
nent) immunity, i.e., the models are based on the two different sets of compartments
E={S,I}and E ={S, I, R}.

In both models, a transition of X from one state in E to another is possible only if
exactly one node changes its state X; in E. State changes may occur through infection
or recovery: It is assumed that each node may be infected by its infected neighbors, but
can be cured independently of all other nodes in the network. Each node is endowed

17 The models typically focus either on an epidemic spread within a population, as, e.g., in Kermack and
McKendrick [68], or on the spread along paths of a predefined network; for a detailed overview, see, e.g.,
Pastor-Satorras et al. [96] and Kiss et al. [72].

18 The Markov property captures that a process is “memoryless”, i.e., that the conditional distribution of
future values X;45, s > 0, of the process does only depend on the present value of the process X; and not
additionally on past values X,,, u < t.
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Fig.3 Infection and recovery for the SIS and SIR network model

with an independent exponential clock and changes its state when the exponential
clock rings. Letting T > 0 and y > 0, the rates of these transitions are illustrated in
Fig. 3 and given as follows (i = 1,..., N):

N
X;:S— 1 withrate t Za,-j]l{xj(t)zl}
j=1

(3)
Xi: I - Z withrate vy,

where Z = S, for the SIS, and Z = R for the SIR model, respectively.

The exponential transition times enable an intuitive stochastic simulation algorithm:
the well-known Gillespie algorithm, first introduced in Gillespie [55] and Gillespie
[56]; see Appendix C for details.

For practical purposes such as the pricing of cyber insurance contracts, we often
do not need the full information provided by the Markov chain evolution, but only
the dynamics of specific quantities such as moments or (infection) probabilities. Of
particular interest are the dynamics of the state probabilities of individual nodes
P(X;(t) = x;), t = 0. They can be derived from Kolmogorov’s forward equation and
written in general formas (i = 1,..., N)

dP(X;(t) = x;)
— = ) Y [PX(®) =gy —PX(O) =gyl ()

ViVi=Xi z#£y

where ¢, denotes the transition rate of the entire process X from z — y. In natural
sciences, this equation is also known under the term master equation. For the SIS and
SIR models, using Bernoulli random variables S; (t) := Lx,;)=s}, 1i (t) := Lix, (=1
and (for SIR) R;(t) := 1(x,)=r}, the dynamics of state probabilities of individual
nodes (4) can conveniently be written via moments:

e SIS model:'? Since E = {I, S}, we have S;(r) = 1 — I; (1), i.e., the evolution of
X is fully described by the evolution of the vector /(¢) = (I1(¢), ..., In(?)), and

19 In the cyber insurance literature, the SIS Markov model was used by Fahrenwaldt et al. [47]. Also, a
brief application was studied in Xu and Hua [114] with a modified ¢-SIS model, originally proposed in Van
Mieghem and Cator [86]. Here, an infectious threat for node i from outside the network is included with a
rate &;.
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the single node infection dynamics fori =1, ..., N are given by
N N
dE[1;(1)]
— = ~VELO]+ 7Y ayBIL (0] =7 ) ayBIL0O1;0), ()

j=1 =1

since P(X;(t) = I) = P(I;(t) = 1) = E[I;(¢))]. This system of N equations
is not closed as second order moments [E[/; (¢)/;(?)], i.e., second order infection
probabilities, appear.

e SIR model: The dynamics of the recovery Bernoulli random variable R; () result
from the dynamics of I;(¢) and S; (¢) due to E[R; ()] = 1 — E[S; (#)] — E[Z; (1)].
Equation (4) corresponds to:

N
d]E[S o1 _
Z aifBLS; (1) 1;(1)],
N ©)
dlE[I o1 _
Z aij BLS: (1) 1;(1)] — yELL; (1],
fori =1,2,..., N. Again, the system is not closed due to the presence of second

order moments.

The main problem with systems (5) and (6) is the fact that they are not closed: They
depend on second order moments, which, in turn, depend on third order moments, etc.
For example, the fully closed SIS model yields "7, () = 2 — 1 moment (i.c.,
infection probability) equations. Solving these systems exactly becomes intractable
for networks of realistic size. To deal with this issue, the following two approximation
approaches have been proposed:

1. Monte Carlo simulation: Monte Carlo simulation using the Gillespie algorithm
(see Appendix C) constitutes a powerful tool to obtain various quantity estimates
related to the evolution of the epidemic spread. In particular, this includes the state
probability dynamics of individual nodes (4).%°

2. Moment closures: If asetof nodes J C Visinfected, this increases the probability
of other nodes in the network (that are connected to the set J via an existing path)
to become infected as well. Node states do not evolve independently and are to
some extent correlated. To break the cascade of equations and to make ODE
systems tractable, the moment closure approach consists in factorizing moments
beyond a certain order k, substituting all higher-order moments. This is done by
considering the exact moment equations up to this order k and closing the system
by approximating moments of order k + 1 in terms of products of lower-order
moments using a mean-field function. A detailed description of two different types
of moment closures is provided in Appendix D. However, a major problem with

20" pseudocode and further explanations of the Gillespie algorithm applied to the SIS and SIR epidemic
network models is, e.g., given in Appendix A.1.1 of Kiss et al. [72].

@ Springer



Modeling and pricing cyber insurance 21

moment closures is that only little is known about rigorous error estimates.>! This
presents an important avenue for future research.

Non-Markovian Spread Models

Non-Markovian models possess conditional distributions that may depend on the past
and on further random factors. In contrast to the Markovian setup, where transition
times are necessarily exponential, non-Markovian models might allow additional flex-
ibility to freely choose the distributions of infection and recovery times. In addition,
dependence among the infection times may be included. This generality may improve
the quality of a fit to real-world data. However, the extended generality in comparison
to Markov models is typically associated with reduced tractability. For this reason,
non-Markovian models are less commonly considered. In addition, a similar scope of
flexibility can also be achieved within the class of Markovian models by extending the
dimension of the state space; but this comes again at the price of increased complexity
and possibly reduced tractability.

A simple example of a non-Markovian model for the spread of cyber risks has
been proposed by Xu and Hua [114]. The model does not include immunity, i.e.,
the underlying compartment set is the same as for the Markovian SIS model. The
considered waiting times in the model are:

e The individual recovery times 7 ““°" of infected nodes.

e For nodes i which are in the susceptible state, two different types of infections are
considered, internal infections from within the network and external infections
coming from outside:

1. Internal infection times: Let the random variable K; () = Z?’:] ajjl(t)
denote the number of infected neighbors of node i at time ¢. Infectious trans-
missions tonode i are given with waiting times 7;,, . . . , T, . These times share
the same marginal distribution F;. Their underlying depéndence structure is
captured by a prespecified copula.

2. External infection times: A random variable Ti"’” with distribution G; models
the arrival time of threats from outside the network to node i. 7.°*' is assumed
to be independent of times T;,, ..., T; K-

To simulate the process, the waiting times for all nodes are generated according to
their current state (i.e., recovery times for all infected nodes, and internal and exter-
nal infection times for all susceptible nodes). The minimum of these waiting times
determines the next event (infection or recovery). After this change, all quantities are
recomputed and the process is repeated until a prespecified stopping criterion is met.>>

Finally, note that a Markovian SIS model with outside infections>} can be obtained
as a special case by choosing exponentially distributed infection and recovery times
and assuming independence between all waiting times.

21 This problem has also been highlighted in the epidemic literature, see, e.g., Kiss et al. [72], p.115.
22 pseudocode for stochastic simulations is provided in Algorithm 1 of Xu and Hua [114].

23 To be precise, the so-called e-SIS model, originally proposed in Van Mieghem and Cator [86], arises.
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3.2.3 Loss models

Given the underlying network, and the epidemic spread process X on it, the third and
final ingredient of a cyber risk network model is given by a suitable loss model Y; ;
for each node i = 1,..., N, where j describes the number of loss events. In the
existing literature, loss models are kept rather simple as the focus lies on modeling
the cyber-epidemic spread. We give two examples:

1. In Fahrenwaldt et al. [47], cyber attacks are launched in a two-step procedure:
First, using a random process, times of attacks on the entire network (loss events)
11,1, ... are generated. Second, for each node i, a possible random loss L; ; is
modeled, where j describes the index of the corresponding attack time. The loss,
however, only materializes if node i is infected at the attack time. This is captured
by the loss model

Yi,j =Li,j . ]lxi([/.):], = 1,...N, j= 1,2,....
2. In Xu and Hua [114], the loss model Y; ; is given by
Yiyj = ni(Di,j) + Ci(Tif;cov), i=1,...N, j=1,2,...

with a legal cost function 7n;, the number D; ; of data damaged in the infection
J» and a cost function C; depending on the recovery time 7;%°*? of node i for
infection event j. Here, the recovery time 7;° ?C"” for each event Jj is obtained from
the infection dynamics, while the data loss sizes D; ; are assumed to follow a beta
distribution.

3.2.4 On calibration and application

Epidemic network models in the cyber insurance literature mostly focus on a gen-
eral assessment of the underlying structure of systemic cyber risks: aspects of risk
contagion and propagation are characterized in a qualitative sense. For example,
Fahrenwaldt et al. [47] study the effect of homogeneous, star-shaped, and clustered
topologies on the resulting overall insurance losses in regular networks, demonstrat-
ing the strong impact of the network topology on risk propagation. Further, epidemic
network models could also be applied to identify critical initial infection locations or
critical network links that may augment cyber losses. The models are thus particularly
useful for counterfactual simulations and have not yet been calibrated to real-world
data.

More applications of epidemic network models to cyber risk contagion can be
found in the engineering literature. However, these works do not study risk emer-
gence on a global level. Instead, they analyze cyber risks which are building from
the microstructure of interconnected IT devices in local environments. For example,
Powell [97] focuses on local IT authentication procedures, where the corresponding
vectors of lateral movements within a network can be interpreted as edges of a directed
mathematical graph. Possible attack vectors are evaluated using classical metrics from

@ Springer



Modeling and pricing cyber insurance 23

network theory and epidemic spreading models of SIR type. More technical and I'T-
related aspects of cyber security issues in smart grids, i.e., networked power systems
for energy production, distribution, and consumption, are surveyed and discussed in
Wang and Lu [108].

However, for the quantitative assessment of systemic cyber risk from a regulatory
or actuarial perspective, contagion among different companies needs to be studied on a
global scale. A major challenge for accurate modeling is the estimation of the exact net-
work structure and the epidemic parameters of past and future incidents—particularly
due to data limitations and the speed of technological evolution. In Appendix E, we
provide a brief overview and classification of existing estimation approaches for epi-
demic network models that are not necessarily related to cyber; in our view, however, it
is conceivable that such approaches could also be implemented and further developed
in a cyber context in future cyber risk research.

To overcome the estimation challenge, top-down approaches have been proposed
in the literature. In Hillairet and Lopez [63], the impact of massive global-scale cyber-
incidents, like the WannaCry scenario, on insurance losses and assistance services is
determined. While network contagion is implicitly considered, it is not modeled within
an actual network framework; instead, the authors choose the original population-
based SIR model of Kermack and McKendrick [68] which describes deterministic
dynamics of the total numbers of susceptible, infected, and recovered individuals
within the global population of IT devices. The corresponding ODE system is given
by

ds@)
= —S)I (1)
dl(t)
—2 =1SHOI) —yI@)
dR(1)
= y1()

with constant global population size N = S(¢) + 1(¢) + R(t). Parameters N, t, and
y are estimated from data of the WannaCry cyber incident.

Given this global spread, the focus of the paper lies on the stochastic evolution of the
insurer’s local portfolio consisting of n << N policyholders and their corresponding
losses. The influence of the global cyber epidemic on the local portfolio is captured

infec,

by the hazard rate 2 .insec Of the policyholders” infection times 7; :

1 . .
Apinfec (1) i= dtlin(1)+ d—tIP’(Tl.’"f “elt, t+di]| Tl.”'f “ > =1l(),

i.e., the local hazard rates are assumed to be proportional to the number of infected
individuals in the global population.

Most recently, this model has further been extended by replacing the homogeneous
global population model with a network scenario of interconnected industry sectors,
see Hillairet et al. [64]. The underlying directed and weighted network structure is
derived from OECD data that measures the economic flow between different industries,
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and this data is interpreted as a reasonable estimate of the digital dependence between
these sectors. Contagion between sectors is modeled using a deterministic multi-group
SIR model for the total numbers of susceptible, infected, and recovered companies in
the sectors. Due to the scarcity of data currently available, such top-down approaches
present promising avenues for risk management and actuarial modeling.

Additionally, future research should analyze the implementation of more realistic
loss models, that, e.g., contain different types of cyber events and capture their charac-
teristic severity distributions (see also the discussion on classical frequency-severity
approaches in Sect. 2.1.2). This would further strengthen the applicability of network
models in practice.

3.3 Game-theoretic models and strategic interaction effects

In addition to contagion due to the interconnectedness of entities in cyber networks,
potentially different objectives of the actors and their strategic interaction constitute
a key characteristic of systemic cyber risk. The risk exposure of individuals is often
interdependent, since it is influenced by the behavior of other actors. Game theory
provides a suitable framework to study this dimension in the cyber ecosystem.

In the first part of this section, we briefly review and provide a short mathematical
introduction to game theoretic approaches applied to study cyber risk and cyber insur-
ance (Sect. 3.3.1). For an exhaustive review of the corresponding literature, we refer
to the surveys Bohme and Schartz [19], Bohme et al. [12], and Marotta et al. [81]. We
will adopt the notation from Marotta et al. [81]. Sect. 3.3.2 evaluates the considered
models.

3.3.1 Game theoretic modeling approaches

The majority of game theoretic contributions focuses on self protection of interde-
pendent actors in the presence or the absence of cyber insurance. A key question is
whether and under which conditions cyber insurance provides incentives for self pro-
tection and improves global IT security. In this section, we present®* the main ideas
and characteristics of such models.

Three Different Types of Actors in the Game
We consider three types of strategic players with different objectives: potential buyers
of insurance (for simplicity, called agents), insurance companies, and the regulator.
1. Agents are the potential cyber insurance policyholders. To capture interdepen-
dence, most models assume that agents form a network. Agent i aims to maximize
her expected utility
max E[U; (W;)],

where

e U; denotes the utility function of agent i. Various types of utility functions are
considered in the literature; most of them satisfy the classical von-Neumann-
Morgenstern axioms. While some papers, such as Naghizadeh and Liu [90],

24 We refer to Marotta et al. [81] for an in-depth overview of the topic.
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Pal [93], and Pal et al. [94], allow for heterogeneous preferences, the majority
of models assumes homogeneous preferences, i.e., U; = U across all agents.

e W; is the financial position of agent i at the end of the insurance period. The
value W; depends on whether the agent has bought an insurance contract or
not, on her investment C; in cyber security, and on potential losses L; in case
the agent is affected by a cyber attack.

The agent’s self protection level x; is a crucial model component when studying
interdependence.>> Most of the existing literature falls into either of the following
two distinct categories: Some assume that only two security states are possible,
secured or not, with the corresponding constant cost C or 0. Others propose a
continuous scale of security levels, e.g., x; € [0, 1]. The value of x; affects

e the cost of self protection Cj:
For a continuous spectrum of security levels, i.e., x; € [0, 1], C; = C(x;) is
typically assumed to be an increasing convex function of x;, reflecting that
user costs rapidly increase when improving security.

e agent i’s probability of becoming infected p; .= P(I; = 1):
Obviously, this probability depends on the individual security level x; of the
agent i, but—due to interdependence—it may also be influenced by the indi-
vidual security levels of other network participants.

Within this framework, agent i’s expected utility can be computed

(a) without insurance:
E[U;(Wp)] = (1 — pi) - Ui(W — C) + pi - Ui(W — L — Cy)
(b) with insurance:
E[U: (W)= — pi)-Uy(W = i —Ci)+pi- U (W — L — Ci — mi+L;)

where

° W[.0 denotes the initial wealth of agent i.

e 7; is the insurance premium of agent i set by the insurer. This premium depends
on the type of insurance market; we will discuss different models below.

e L; is the potential loss of agent i that is governed by a binary distribution:
only two possible scenarios are considered. Either the agent experiences a
cyber attack with a fixed loss size, or she is not attacked which corresponds
to no loss. This particular setting excludes the possibility of different types of
cyber attacks. Multiple attacks are also not considered.?® The majority of game
theoretic models relies on the assumption of constant homogeneous losses for
all agents, i.e., L; = L.

25 Only few papers, e.g. Bohme [10], Bohme and Kataria [11], Johnson et al. [67] and Johnson et al. [66],
do not include self protection in the model.

26 We will discuss the scope of the existing models in Sect. 3.3.2.
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e L; is the cover in case of loss which is specified in the insurance contract. Most
papers assume full coverage, i.e., f,i = L;, but some consider alternatively par-
tial coverage, e.g., in order to mitigate the impact of information asymmetries,
cf. Mazzoccoli and Naldi [84], Pal [93], Pal et al. [94].

2. Insurance Companies: The insurer sets the cyber insurance premiums and spec-
ifies the insurance cover L;. Insurance premiums depend on the market structure:

o Competitive market: This is the prevailing model in the literature. The profits
of the insurers are zero in this case; customers pay fair premiums. Competitive
markets are a boundary case that almost surely leads to the insurer’s ruin in
the long run.

o Monopolistic market / Representative insurer: Another extreme is a market
with only one insurance company. In these models, the impact of a monopoly
can be studied. An alternative consists in studying objective functions that
are different from the insurer’s profit. This situation is mostly studied in the
context of regulation: The insurer represents a regulatory authority and is not
aiming for profit maximization, but focuses on the wealth distribution in order
to incentivize a certain standard of IT protection.?’

e Immature market/Oligopoly: Instead of a monopoly, imperfect competition
is studied with multiple insurers that may earn profits. The increments between
the fair price and the insurance premium is determined by the markets struc-
ture.?8

3. Regulator: Market inefficiencies and a lack of cyber security may be mitigated
by regulatory policies. Regulatory instruments include mandatory insurance, fines
and rebates, liability for contagion, etc. The choice of policies and their impact
can be studied®” by introducing a third party, the regulator. The objective of the
regulator is to maximize a social welfare function. This could, for example, be
chosen as the sum of the expected utilities of the agents

> E[U;(W)).

Interdependent Self Protection in IT Networks

The strategic interaction of the three types of players introduced above is modeled as a
game. The agents form an interconnected network and optimize their expected utility.
Their individual security level and the amount of cyber insurance coverage serve as
their controls. The insurance companies are provider of risk management solutions. In
some models, a regulator is included as a third party with the aim to improve welfare,
e.g., by implementing standards of protection in cyber systems.

27 Market models of this type are studied in Naghizadeh and Liu [90] with a zero-profit insurer. Profits are
still possible in Pal [93], Pal et al. [94] and Pal et al. [95], and maximized in Khalili et al. [69].

28 Immature markets are considered, e.g., in Martinelli et al. [82], Martinelli and Yautsiukhin [83], Ogut
et al. [92].

29 The effects of such regulatory instruments were, e.g., studied in Bolot and Lelarge [15], Naghizadeh
and Liu [90], Pal [93], Pal et al. [94].
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The network topologies are, typically, quite stylized to guarantee tractability. For
example, two-agent models are considered in Ogut et al. [92]. Most papers investigate
complete graphs, e.g., Ogut et al. [92], Schwartz and Sastry [100] and Pal et al. [94].
Bolot and Lelarge [15] and Yang and Lui [115], in contrast, investigate networks with
degree heterogeneity, but restrict their analysis to Erdés-Rényi random graphs.

Agents are interdependent in the network, since the infection probability p;
depends on the local security level x; and levels of the other nodes y; :=
(X1, .+vy Xi—1, Xit1, - - -, Xn) (or atleast of i’s neighbors). In some cases, p; is assumed
to depend on an overall network security level as well.>® However, in contrast to the
models from Sect. 3.2, attacks do not result from a dynamic contagion process; instead,
the infection is assumed to be static and the values p; are derived from ad hoc schemes.
The most common one>! assumes a continuous spectrum of security levels and com-
putes p; as the complementary probability of the case that neither a direct nor an
indirect attack occurs:

pi(xi, yi) =1— (1= pf"y(1 — pfo)
=1 (=) x [ ] = hi jvrj ()

J#
where
° pldi " = ¥ (x;) denotes the probability of direct infection of i through threats from
outside the network. It is interpreted as a function of the individual security level
Xi.
o it =1- Hi;éi (1 —=h; j¥j(x})) is the probability for node i to become infected

through contagion. The probability for i to be infected via node j is given by 4; ;,
i.e., h; j # Oonlyifi and j are adjacent. This is where the underlying network
topology comes into play.

In the absence of information asymmetries, the game between agents and the

insurer(s) involves three perspectives:>

1. Alegal framework is set by the regulator (if a regulator is present).

2. Agents specify their levels of self protection and insurance protection and select
from the available contract types to maximize their expected profits.

3. Insurance companies compute the corresponding contract details, i.e., premiums
mr; and indemnities L i- In absence of information asymmetries between agents and
the insurer(s), the protection levels of policyholders can be observed by the insurer
and are reflected by the contract.

The model may be augmented to incorporate information asymmetries:

30 This is the case in Shetty et al. [103], Shetty et al. [102] and Schwartz and Sastry [100].

31 An alternative approach using a simplified two-state scenario of security investments is analyzed in
Bolot and Lelarge [13], Bolot and Lelarge [14], and Yang and Lui [115]. Infection probabilities are derived
from a recursive branching process.

32 Variations of the game design are possible; e.g., in Laszka et al. [77] the authors use a signaling game
instead of a game model to study the adverse selection problem, allowing insurers to audit the agents’
security. A similar game is considered in Khalili et al. [69] who introduce a pre-screening procedure.
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e Moral hazard: A dishonest policyholder may behave in a way that increases the
risk, if the insurer cannot properly monitor the policyholder’s behavior. In the game,
this is represented by the possibility for agents to modify their self protection®3
levels.

e Adverse selection: Agents with larger risks have a higher demand for insurance
than safer ones. The degree of the policyholders’ risk tolerances cannot be observed
by the insurer. The self protection levels of policyholders is not precisely known
by the insurer when the contract details are computed.

In most papers, cyber insurance is not associated with additional incentives to
enhance self protection. In contrast, agents may prefer to buy insurance instead of
investments in self protection, i.e., from a welfare perspective, they underinvest in
security. These observations may be interpreted as an indication that regulatory inter-
ventions are necessary, such as fines and rebates, mandatory cyber insurance, or
minimal investment levels.>*

3.3.2 On calibration and application

Many questions remain to be answered in future research, since the existing game
theoretic models of cyber insurance and cyber security are oversimplified—thus, not
yet fully applicable to real-world data:

o Simplified network topologies: In the vast majority of the discussed literature,
networks are assumed to be homogeneous. However, agents are typically het-
erogeneous in reality which substantially alters the cyber ecosystem. Network
contagion and cyber loss accumulation are highly sensitive to the topological net-
work arrangement; for example, important determinants are the presence (or the
absence) of central hub nodes or clustering effects, see, e.g., Fahrenwaldt et al.
[47]. For appropriate risk measurement and management these aspects need to be
taken into account explicitly.

e Static contagion: A key feature of cyber risk in networks is the systemic ampli-
fication of disturbances. From the insurer’s perspective, the contagion dynamics
will clearly influence tail risks; an example are catastrophic incidents that affect a
large fraction of its portfolio. Such events may be critical in terms of the insurer’s
solvency. An understanding of cyber losses and an evaluation of countermeasures
requires dynamic models of contagion processes.

33 Some authors distinguish between self insurance—areduction in the size of a loss—and self protection—
a reduction in the probability of a loss, as suggested by Ehrlich and Becker [38]. While such a distinction
may be intuitive in models with simple loss distributions or in frequency-severity models, it is sometimes
more appropriate to model loss exposure by random variables or distributions and analyze action on that
level. Safety measures often influence loss sizes and probabilities together. How useful the distinction of
Ehrlich and Becker [38] is, depends on the modeling framework chosen and the particular application. The
term self protection in this paper refers to any activity to reduce physical risk—including both the size of
losses and their probabilities.

34 The effect of fines and rebates was studied in papers [15], [90], [93], and [94]. In the presence of
information asymmetries, fines and rebates cannot easily be applied. An alternative regulatory instrument
are requirements on minimal investment levels for IT security. However, Shetty et al. [103], Shetty et al.
[102] and Schwartz et al. [101] argue against such requirements.
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e Constant losses: In all considered game-theoretic models, the agent’s losses are
assumed to be constant, i.e., modeled as binary random variables. However, in
reality we observe that the severity of instances varies substantially due to the het-
erogeneity of cyber events, ranging from mild losses (e.g. malfunctioning of email
accounts) to very large losses (e.g. attacks on production facilities, or breakdowns
of systems).

Cyber insurance and instruments to control cyber risk depend on the structures of
networks, the dynamics of epidemic spread processes, as well as loss models—and
vice versa. These feedback loops need to be properly incorporated in future research.
Key ingredients of systemic cyber risks—the interconnectedness captured by epidemic
network models, and strategic interaction described in game-theoretic models—must
be combined.

4 Pricing cyber insurance

Cyber risk comprises both non-systemic risk, further subdivided into idiosyncratic
and systematic cyber risk, cf. Sect. 2, and systemic risk, cf. Sect. 3. Classical actuarial
pricing, however, relies on the principle of pooling, and it is thus applicable for idiosyn-
cratic cyber risks only. For systematic and systemic cyber risk, the appropriate pricing
of insurance contracts requires more sophisticated concepts and techniques. A discus-
sion of current industry practice for pricing cyber risks can be found in Romanosky
et al. [99]. However, the described approaches do not yet cover the full complexity of
cyber risk such that further (scientific) efforts are necessary. In this section, we explain
and suggest suitable pricing techniques>> tailored to the three different components
of cyber risk.

4.1 Pricing of non-systemic cyber risks

In non-life insurance, contracts are usually signed for 1 year. At renewal time, the
insurer may adjust premium charges as well as terms and conditions, while the poli-
cyholder can decide whether or not to continue the contract. Premium calculation thus
typically refers to loss distributions on a one-year time horizon. In this section, we
adopt this market convention and consider premiums payable annually in advance.3¢

In this chapter, we are concerned with a general pricing approach, and we do not
restrict ourselves to frequency-severity models. We do, however, adopt some of the
notations presented earlier. As introduced in Sect. 2, losses and associated premiums

35 Another challenge is the insurability of (systemic) cyber risks. Many insurers report that they limit their
exposure to this line of business due to a lack of data and models. At the same time, a comparison of rough
estimates of supply and potential demand reveals a significant gap in cyber insurance. This is detrimental to
agents who are exposed to the risk and do not receive insurance coverage. But insurance companies are also
missing out on potentially large business opportunities. In addition to the problems with data and models,
however, there is also a fundamental question about the insurability of cyber risk in light of systemic risk.
A structured pricing methodology can provide a realistic assessment.

36 For simplicity, we assume that interest rates are zero, or alternatively that insurance claims are already
discounted.

@ Springer



30 K. Awiszus et al.

are considered in the granularity of cyber risk categories ¢ € {1, ..., C} and homoge-
neous groups k € {1, ..., K} of policyholders. Each pair m = (c, k) is called a cyber
risk module. In terms of a modular system, the premium per risk category serves as a
component for the overall premium. Homogeneous groups—specified for example in
terms of covariates—correspond to tariff cells, i.e., any policyholder in group & should
pay the same premium 7™"°"YS per risk category c. We denote by ny the number of
policyholders in group k and assume that volumes and distributions of risks within a
group are identical. Although adopting the previously introduced notation, we do not
necessarily consider a frequency-severity approach, but discuss pricing strategies that
may also be applied in a more general framework. The methodology is inspired by
Wiithrich et al. [113] and Knispel et al. [74].

To decouple the pricing of idiosyncratic and systematic cyber losses in the absence
of systemic risk, one possible approach is to construct a decomposition of the total
non-systemic claims amount S;"’non_sys on a 1-year time horizon. This decomposition

takes the form

71,10N-SyS ,idio m,systematic
SO = gpidio 4 gt (7)

where the total systematic claims equal S;"’Symmauc and the term S’ o denotes the

total idiosyncratic fluctuations around the systematic claims. We explain below how
a premium can be computed per risk group. Finally, a smoothing algorithm might be
helpful in order to avoid structural breaks between the premiums of risk groups with
similar covariates. The terms SI"’ldlo and ST’SyS[emam are unique only up to a constant
that may be subtracted of one of the terms and added to the other.

In order to obtain a decomposition (7), we consider the o-algebra F that encodes
the systematic information. This is, for example, the information that is generated by
observing the underlying exogenous stochastic factors. The full information at the
time horizon of one year is jointly generated by the o-algebra F and idiosyncratic
fluctuations, also called technical risks, sometimes explicitly encoded by another o-
algebra 7. A decomposition (7) can be obtained by setting

,Syst ti s =
Slln systematic — E]}D [Sin,non sys|]_-] _ COnSt,

idi ,NON-SYyS ,systematic
S{"’ldlo = S;" s _ S;n Y ' 4 const,

where conditional expectations are computed under the statistical measure P and
where the constant const can freely be chosen. If Si"’mm'sys is square-integrable and
const = 0, Eq. (7) corresponds to an orthogonal decomposition in the Hilbert space of
square-integrable random variables. An adjustment of the constant might be desirable

for allocating the total premium for non-systemic risk to its two components.

Pricing Idiosyncratic Risk

As a special case, we consider the case that idiosyncratic cyber risks in a portfolio of
individual claims are conditionally independent given . For homogeneous groups
of policyholders, defined in terms of covariates vectors x* ke {1,..., K}, this type
of risk is thus subject to pooling of risk, and hence a conditional version of classical
actuarial pricing is still applicable. A valuation based on F-conditional means with
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respect to the statistical or real-world measure P is mathematically justified by a
conditional version of the strong law of large numbers.

More precisely, for each firm i with cyber risk module m = (c, k), annual losses
31” "', i € N, are identically distributed given F, and we suppose that the increments

37

g™ =S — Ep[S]|F], i €N,

are conditionally independent given . Then the average claims amount tends asymp-
totically®® to the conditionally expected claims amount per policyholder:

ng
lim L Z‘SA’{"’ = EIP’[ST’IL}—] P-a.s.

ny oo Mk 4
i=1

When setting const = 0, this is exactly the systematic claims amount for any firm i
according to decomposition (7), suggesting that any premiums per policyholder for
idiosyncratic cyber fluctuations should—for a large number of policyholders nj in
group k—be equal to zero and only®” the systematic part should be priced. This is
analogous to the net risk premium in the unconditional setting. But the net risk premium
is known to be insufficient! Indeed, in a multi-period model, ruin theory states that ruin
of the insurer occurs—no matter of the initial capital—in the long run P-a.s. if only
the net risk premium is charged, see, e.g., Mikosch [88] and the references therein.

A related result already holds in the one-period setting: Suppose that the pre-
mium charged from each firm admits the perfect replication of the systematic part
Ep [Si"’1 |F1 (e.g., in a complete financial market). Letting the number of policyhold-
ers ny tend to infinity, the F-conditional one-period loss probability

~ "k ~ . "k Sm,i am, 1
P(nkEp[S{”"m — ZS{”" <0 ’ ]-") = p(Z SPM-EelS 1N ‘ f)

P ,/Var]p[glm‘llf]

converges to 50%, due to the central limit theorem. To stay on the safe side, a safety
loading is necessary in addition to the net risk premium.

In our specific construction, the idiosyncratic part S;"’ld“’ for firm i in (7) equals
&' possessing expectation zero; but in alternative decompositions, a non-zero expec-
tation corresponding to a non-zero net risk premium for the idiosyncratic part would
also be admissible. This is an issue of premium allocation between idiosyncratic and
systematic cyber risk only, but does not affect the total premium for non-systemic
cyber risk, if cash-additive premium principles are used to price idiosyncratic risks.

Classical actuarial premium principles provide explicit safety loadings in a trans-
parent manner, based on the first two moments of the loss distribution:

i=1

37 Since we are not assuming a frequency-severity model as in Sect. 2.1, we introduce a slightly different
notation to indicate that we are not generally referring to the specific setting discussed in Sect. 2.1.

38 We recall that ny denotes the number of policyholders in group k.

39 This relies on the specific choice const = 0. When setting const = 0, idiosyncratic fluctuations will be
both positive and negative. From a technical point of view, this does not cause any complications. However,

if one needs to require that SI"’ldlo > 0, the constant should be suitably adjusted.
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e Variance principle: 74 — E[Si"’idio] +a Var(S{"’idio) witha > 0,

e Standard deviation principle: 74 — E[S;”’idio] +a,/ Var(Sf"’idiO) witha >
0.

The safety loading parameter a can be chosen for each cyber risk module m = (c, k)
separately, for example, depending on the specific loss distribution and the number of
contracts ny in tariff cell k. In addition to these simple explicit premium principles,
the safety loading can be imposed implicitly, e.g., in terms of convex principles of pre-
mium calculation including the well-known exponential principle or Wang’s premium
principle as special cases, cf. Example 4.1.

Pricing Systematic Risk

Systematic cyber incidents affect different firms at the same time—in contrast to
idiosyncratic cyber incidents. Thus, (perfect) pooling of risk is no longer applicable
and classical actuarial valuation has to be replaced by a more complex analysis. In the
insurance context, systematic risk is not limited to cyber risk only, but also plays a
prominent role in the valuation of unit-linked policies or the calculation of the market-
consistent embedded value (MCEV) of an insurance portfolio, whereby idiosyncratic
actuarial risk and systematic financial market risks must be evaluated together. For an
overview on financial pricing methods in insurance we refer to Bauer et al. [6].

In this section, we propose a valuation of systematic cyber risk in terms of mod-
ern financial mathematics, combining the principle of risk-neutral valuation with the
theory of monetary risk measures, see Knispel et al. [74] for a similar discussion
related to the Market-Consistent Embedded Value (MCEV) of insurance portfolios.
This comprehensive approach requires two different probability measures: While the
assessment of risk in terms of a monetary risk measure is based on the real-world
measure PP that models the relative frequency with which events occur, valuation of
contingent claims in financial mathematics relies on a technical measure Q, called
risk-neutral measure or martingale measure. In concrete application, tractable mod-
els may be obtained by assuming that the systematic one-year losses Sin’syswmauc in
Eq. (7) is triggered by common risk factors to which all policyholders are jointly
exposed. The total claim amount may be viewed as a contingent claim, depending on
the evolution of these common factors.

Generally speaking, contingent claims are contracts between two or more parties
which determine future payments to be exchanged between the parties conditional or
contingent on future events. Formally, a contingent claim with payoff at terminal time
t = 1 is described as a random variable. In financial mathematics, the valuation of
contingent claims relies on a financial market model on a filtered probability space
(2, F, (Fieo,17, P) with a number, say d + 1, of liquidly traded primary products
with price processes (P);c(0.1], (Prefo.1)s - - - » (P )iejo.17. The underlying price
processes can be modeled either as stochastic processes in discrete time or in contin-
uous time. The asset ‘0’ plays the role of a numéraire, i.e., it is used for discounting
purposes. A contingent claim Hj maturing at time ¢ = 1 is called replicable or hedge-
able if there exists a self-financing trading strategy®® » = 2,9/}, ..., 9%),c0.1]

40 Intuitively, the self-financing condition means that the portfolio is always rearranged such that on the
one hand no additional capital is required and on the other hand no capital is withdrawn.

@ Springer



Modeling and pricing cyber insurance 33

(specifying the number of shares ¥/ of primary products in the portfolio at time )
whose terminal wealth Vlﬂ coincides with the payoff H; for almost all scenarios. In
absence of arbitrage, the price Hy of a replicable contingent claim H; is unique and
equals the cost of perfect replication. The calculation of this price can, however, be
decoupled from the calculation of the replication strategy itself by the principle of
risk-neutral valuation. Formally, risk-neutral valuation resembles the classical actuar-
ial valuation in the sense that prices are computed as expectation of future discounted
payments. The real-world measure IP must, however, be replaced by a technical proba-
bility measure Q, called risk-neutral measure or martingale measure. The latter name
is motivated by the fact that discounted prices (P,i / P,O)ze[o,l], i=0,1,...,d, must
be martingales with respect to Q, i.e., the current discounted price at some time ¢ is
the best prognosis of the expected discounted price at a future date s > ¢ given the
available information F;:

: .E:|=;;’:) forO<t<s<1,i=0,1,...,d.

The risk-neutral valuation formula transfers this martingale property to the discounted
prices of contingent claims. In particular,

Ho = PJEqg [;’—{g} :

i.e., the cost of replication can be obtained as expectation of the discounted payoff
with respect to any arbitrary (equivalent) martingale measure Q.*!

Markets are, however, typically incomplete*? in the sense that not every contingent
claim can be replicated in terms of liquidly traded primary products. In particular,
contingent claims arising from cyber risks cannot be hedged perfectly in the financial
market. For non-replicable contingent claims, risk-neutral valuation is still applicable,
but now provides—depending on a whole class of martingale measures—an interval
of prices which are consistent with the absence of arbitrage. Our evaluation of non-
replicable contingent claims, however, is based on monetary risk measures and capital
requirements.

Let us denote by X the set of financial positions with maturity + = 1 whose
risk needs to be assessed. Mathematically, the family X" is a vector space of real-
valued mappings X1 on (€2, F, IP) that contains the constants. By sign-convention,

. . . m,systematic
negative values of X correspond to debt or losses, i.e., the claims amount S; Y

. .. ,systematic .
corresponds to the financial position X| = —SI" Y . A monetary risk measure

p : X — R quantifies the risk of a contingent claim that cannot be priced by the cost

43

41 The martingale measure Q is said to be equivalent to the underlying real-world measure P if both
measures have the same null sets, i.e., for any A € F we have Q[A] = 0 if and only if P[A] = 0.
Conceptually, this means that market events that are not relevant with respect to the real-world measure
also play no role for the evaluation of contingent claims under @ and vice versa.

42 In absence of arbitrage, incomplete financial market models are characterized by the existence of a whole
class of equivalent martingale measures.

43 Fora rigorous introduction to the theory of risk measures we refer to Follmer and Schied [51].
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of perfect replication. Intuitively, a monetary risk measure can be viewed as a capital
requirement: o (X ) is the minimal capital that has to be added to the position X to
make it acceptable, e.g., from the perspective of a financial supervisory authority, a
rating agency, or the board of management. To capture the idea that homogeneous risks
are assessed in the same way, we assume that p is distribution-based, i.e., p(X) = p(Y)
whenever the distributions of X and Y under P are equal. Prominent examples of
distribution-based monetary risk measures are Value at Risk (VaR) and Average Value
at Risk (AVaR).*

Combining these two approaches, an algorithm for the calculation of the premium

/M- SYStematic can be summarized as follows (see also [74]):

. . . . ,systemati
1. Consider a decomposition of the financial position —S;" systematie: — H" + R,
where

e H{" is a replicable contingent claim with respect to the underlying market
model,
e and R{" denotes the residual term.

2. Calculate the premium s/-S¥stematic — _ g 4 5 (R™™), where

e H' equals the cost of perfect replication of H{", and the insurance needs to
charge its customer the amount — H)" for setting up™® the offsetting position;
o p(R") is the premium for RY".

The decomposition and the premium derived from it may not be unique. From the
insurer’s perspective, the goal of the decomposition into the summands (H", RY") is
the minimization of the theoretical premium 7" $$tematc — — i + 5 (R") which
provides a lower bound*® for the actual premium charge. The minimization problem
apparently involves a trade-off between the cost of replication and the risk of the
residual. In practice, it might be reasonable to impose constraints on the decomposition
such as upper bounds for —Hy" and p (R!"), respectively. Indeed, since the risk of the
hedgeable part H{" can be completely eliminated for the price — H,)", the specification

of a bound p(R{") < pmax would already control the overall risk of the systematic

,systematic . . y
cyber losses S;"'Sys €M in accordance with the company’s risk strategy. Conversely,

if the insurer’s risk budget has not yet been exhausted, it might be helpful to limit

44 For a financial position X1, its Value at Risk at level A € (0, 1) is the smallest monetary amount that
needs to be added to X such that the probability of a loss does not exceed A:

VaR; (X1) = inf{m € RIP[X] +m < 0] < A}.

In particular, VaR, (X1) = 7q;('1 (1), where q;('l is the upper quantile function of X. The Average Value
at Risk, also called Expected Shortfall, at level A € (0, 1] is defined by

1 A
AVaR, (X1) = X/ VaRy (X1) da.
0

45 Observe that Hy" is typically negative, thus —H" positive.

46 This lower bound could also directly be computed via a modified risk measure that is constructed
according to Follmer and Schied [50], see also Chapter 4.8 in Follmer and Schied [51].
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the hedging expenses by a bound —H" < Hpax and to accept the remaining risk
p(R.Y

This concept can be applied for each cyber risk module standalone, but provides
additional benefits at portfolio level. If the underlying risk measure p is even subad-
ditive (and thus provides incentives for diversification), then the lower bound for the
actual premium charge can be further reduced. More precisely, for any given decom-
position —Ep [SA';"J |F]= Hlm’i + RT’i of the systematic term in Eq. (7) per cyber risk
module m = (c, k) and policyholder i = 1, ..., ng in group k into a hedgeable part
H{"'" and a residual summand R""', the risk of the residual term of the aggregated
systematic risk satisfies

C K ng ) C K n
PIPIPIL EDBPIP IS
c=1k=1i=1 c=1k=1i=1
while the costs of perfect replication are additive. Thus, the total premium required at
portfolio level is in fact lower than the aggregated premiums:

K ng

C K ng ‘ cC K m . c | |
3030 ERTY 30 30 9] D 99 39 DS IRWEOH

c=1k=1i=1 c=1k=1i=1 c=1k=1i=1

The diversification effect can be allocated—according to the insurer’s business
strategy—to the cyber risk modules, yielding a reduction of the lower bound for the
actual premium charge per module.

4.2 Pricing of systemic cyber risks

Systemic risk is an important issue in cyber insurance. If entities are interconnected,
risks may spread and amplify in cyber networks. In addition, this process depends
on investments in cyber security and self protection of the agents in the network.
Insurance premiums may, in turn, influence investment decisions and thereby modify
the safety of the system, cf. Sect. 3. How to deal with complex cyber systems and the
computation of systemic cyber insurance premiums is a topic of current research.

In this section, we develop some new ideas and introduce a preliminary, stylized
approach that builds a bridge between the pricing of cyber insurance contracts and sys-
temic risk measures. We consider N interconnected insurance customers in a cyber
network that are also subject to idiosyncratic and systematic risk. For simplicity,
we suppose that there exists only a single insurance company that offers J types of
contracts. There are two dates, r = 0 and ¢t = 1. The initial prices of the insurance con-
tracts, represented by a matrix 7 = (7 ;); ; € RV*/ are 7; j wherei = 1,2,..., N
denotes the insurance customer and j = 1, 2, ..., J the contract type. Each customer

47 To ensure the existence of a decomposition under constraints, the bounds on risk pmax and hedging

expenses Hmax must satisfy the lower bounds pmax > inf{p (RT3 (H]", RT") : —S'ln’symmam =H{"+

R} and Hmax > inf(—HY'[3(H[", RT") :

m systematic -y 1" 4 R}, respectively.
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i chooses a contract type j; from this menu and is charged a premium 7;_j;. Cus-
tomers decide simultaneously about insurance contracts and their investments into
cyber security resulting in random losses Yo = (Yin),-zl,zw y atdate t = 1, the end
of the considered period.

In this setting, we discuss the notion of systemic premium principles. Suppose
that—excluding the considered cyber business—the random net asset value of the
insurance firm at date + = 1 is given by E. Including the cyber contracts, the net asset
value*® of the insurance firm is

N N
E" = E + Z?Ti,ji - ZYiH. 3

i=1 i=1

The computation of the net asset value implicitly considers network effects that influ-
ence losses and the underlying investment decisions of the insurance customers, i.e.,
the systemic risk inherent in the network.

Systemic premium principles*” refer to the family of premium matrices IT that are
consistent with solvency requirements or risk limits and admissibility requirements
of the insurance company. These can, for example, be formalized in terms of two
acceptance sets>” AE and A" of monetary risk measures. The solvency condition or
risk limit is satisfied, if ET' € AF. An admissibility requirement is that the stand-alone

business is viable, i.e.,
N N
Yomig = Yy vl e AV 9)
i=1 i=1
Conditions (8) and (9) characterize the systemic premiums, i.e., the family M of
admissible premium matrices IT.

Idiosyncratic risk and systematic risk can also be priced within this framework.
Idiosyncratic risk can be priced by classical actuarial premium principles. This was
discussed in Sect. 4.1. Many premium principles correspond to monetary risk measures
that can be encoded by acceptance sets, leading to a framework that is consistent with
our suggested approach for pricing systemic risk. The same applies to the residual part
of systematic risks that is not replicated. If the insurance firm has access to a financial
market that is itself not exposed to systemic risk, it may use this market to partially
hedge its exposure. In the absence of systemic risk, this was outlined in Sect. 4.1. In
the current setting, the impact on insurance pricing of trading in financial markets can
be included by adjusting the acceptance sets .AF and A" according to Follmer and
Schied [50], see also Chapter 4.8 in Follmer and Schied [51].

Example 4.1 Solvency regulation varies in different regions of the world. Solvency II
in the European Union and the Swiss Solvency Test in Switzerland are based! on

48 The interest rate over the considered period is set to 0 in this example.

49 The suggested concept of systemic premium principles parallels the notion of systemic risk measures
of Feinstein et al. [48], see also Biagini et al. [8].

50 See [52] and [51] for reviews on monetary risk measures.

51 To be more precise, the implementation of the regulatory rules are based on Mean-VaR and Mean-AVaR.
Details are, e.g., discussed in Weber [109], Hamm et al. [60].
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the risk measures VaR and AVaR, respectively. These risk measures would define the
acceptance set AF in our setting.

The acceptance set .AY, in contrast, corresponds to a classical premium principle.
Indeed, important actuarial premium principles are based on convex risk measures
o (defined w.r.t. financial positions) and their acceptance sets A, respectively,’” by
choosing

p(=L) =inf{r € Rjx — L € A}

as a premium for a loss position L € X € LY (2, F).> Examples®* of risk measures
p corresponding to well-known actuarial premium principles are:

e The family of entropic risk measures:

1
py(X) := sup {Eq[—X]— —H(@QIP)}, y € (0,00).
QeM, 14

Here, M is the set of all probability measures on (€2, F), and

H(QIP) = Egllog 421, if Q < P,
00, else,

is the relative entropy of @ with respect to a reference measure PP, for example,

the real-world measure. Using a variational principle for the relative entropy, the

entropic risk measure p,, takes the explicit form p, (X) = 1 log Eplexp(—y X)]

and thus corresponds to the exponential premium principle f{)r the claims amount

Y = —X. Note that p, (X) is increasing in y and satisfies

lim p,, (X) = Ep[—-X] and lim p,(X) = esssup(—X),
710 y oo

i.e., the limiting cases are the negative expected value p(X) = Ep[—X] (net risk
premium) as a lower bound and the maximum loss as an upper bound for premium
charges.

e Distortion risk measures: For any increasing function ¢ : [0, 1] — [0, 1] with
¥ (0) =0and (1) = 1 the map ' (A) = v (P(A)), A € F,iscalled a distortion
of a probability measure P. The Choquet integral

00 0
oV (X) = /(—X)dc‘/’ =/ VI-X > x]dx +/ (=X > x]— 1) dx
0

—00

52 A monetary risk measure can be recovered from its acceptance set A via p(X) = inf{m € R|X+m € A},
i.e., p(X) is the smallest capital amount that has to be added such that the financial position becomes
acceptable, see, e.g., Follmer and Schied [51].

53 For details, see Section 8 in Follmer and Knispel [49] and the references therein.

54 We include these examples only for the purpose of illustrating the tractability of the suggested approach
that may build on well-known premium principles. Of course, the acceptance set of any other monetary risk
measure can also be used. A decision should be made on the basis of what properties are desired.
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defines a distortion risk measure, a comonotonic risk measure. If the distortion
function is concave, the distortion risk measure corresponds to Wang’s premium
principle

o]

oV (X) = foo Y(P(—X > x))dx > / P(—X > x)dx = Ep[—X]
0 0

that guarantees a non-negative loading for any loss position ¥ = —X > 0. In
particular, the limiting case ¢ = id again corresponds to the negative expected
value which provides a lower bound for the actuarial premium.

If we introduce a weak partial order < on the space of real-valued (N x J)-matrices
RN*/ by component-wise <-comparison, the smallest admissible premiums M in
the family M of admissible premium matrices may be characterized. Although we
are dealing only with one insurance firm in our specific construction, the heuristic argu-
ment of competitiveness might motivate to focus on premiums in M only. Typically,
the admissible premium allocations will not be unique.

A remaining question is the choice of a specific premium allocation. Further criteria
or objectives need to be specified for this purpose. We briefly discuss three options:

e Competition: The heuristic argument of competitiveness might also be used to
argue that total premium payments should be as small as possible. This would lead
to those allocations where ZlN: | i, j; s minimal.

o Competitive segments: If some insurance customers are more price-sensitive
and more important than other, one might introduce positive weights v;, i =
1,2,..., N, and focus on allocations with minimal Z,N:1 VT i -

e Performance optimization: If insurance customers were willing to accept any
premium allocation in M, one could formulate an objective function of the insur-
ance company that determines specific premium allocations. This could be a utility
functional or a performance ratio such as RoRaC.

A detailed analysis of systemic premium principles in specific models and their sta-
tistical and algorithmic implementation are challenging and important questions for
future research.

5 Conclusion and future research

In this paper, we provided a comprehensive overview of the current literature on
modeling and pricing cyber insurance. For this purpose, we introduced a basic dis-
tinction between three different types of cyber risks: idiosyncratic, systematic and
systemic cyber risks. Models for both non-systemic risk types were discussed within
the classical actuarial framework of collective risk models. The (separate) discus-
sion of modeling systemic cyber risks then focused on risk contagion among network
users in interconnected environments as well as on their strategic interaction effects.
Finally, we presented concepts for an appropriate pricing of cyber insurance contracts
that crucially relies on the specific characteristics of each of the three risk types.
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For both practitioners and academic researchers, modeling and pricing cyber insur-
ance constitutes a relatively new topic. Due to its relevance, the area of research is
growing rapidly, but modeling and pricing approaches are still in their infancy. In
the introduction, we highlighted four important challenges: data, non-stationarity,
aggregate cyber risks, and different types of risk.

Classical actuarial approaches rely heavily on claims data. To date, for cyber
insurance this data is sparse and often inaccessible in the actuarial context due to
confidentiality issues. As more data becomes available, different modeling approaches
could be more easily tested and evaluated. Therefore, the development of (freely acces-
sible) data collections for cyber risks is an important topic for future research. This
requires collaboration between researchers, insurance companies, I T firms, and regula-
tors. However, due to the evolutionary nature of cyber risks and their non-stationarity,
the evaluation of data needs to be adaptive, and the relevance of historical information
will most likely decrease over time. For this reason, it is important to combine expert
opinions supported by advanced modeling techniques with the statistical evaluation
of data.

Our systematic differentiation of risk types—idiosyncratic, systematic and systemic—
structures the development of models and the evaluation of data. This facilitates an
appropriate consideration of different types of risks. We advocate a pluralism of models
that provides multiple perspectives in an evolving environment where issues of data
availability and data quality remain unresolved. Aggregate cyber risks represent an
important challenge that needs to be addressed at the systematic and systemic level.
In this regard, we have identified the following promising avenues for future research:

e Data on contagion. Epidemic network and contagion models require a special
kind of data, namely connectivity data for designing realistic network topologies
and epidemic spread data for determining epidemic parameter values. The non-
stationarity of the cyber environment remains a challenge that must be addressed
in this area as well.

e Networks and contagion processes. The analysis of large-scale network models
and epidemic processes is a difficult task. Developing and improving models and
assessment methods is an important research task. Monte Carlo simulations are
computationally intensive, and moment closures in mean-field approaches lack
estimates of the resulting approximation error. Implementation procedures need to
be refined and validated. In addition, realistic loss models are needed for assessing
contagious cyber risks.

e Top-down approaches. To capture contagion effects in digital networks without
rendering the models impossible to handle, a number of top-down approaches
has already been developed. These employ population-based models that omit the
detailed structure of the underlying networks and processes. However, network
topology, e.g., centrality or cluster effects, has a significant role to play. Existing
models should therefore be improved via more elaborate refinements that bridge
the gap between bottom-up network modeling and population-based top-down
approaches.

e Dynamic strategic interaction. The analysis of strategic interaction effects in cyber
models has focused almost exclusively on static frameworks. Such an oversimpli-
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fication may be inappropriate in environments where systemic spread processes
are present. Studying the strategic interaction of network participants in dynamic
environments could improve our understanding of the effects of cyber insurance
contracts on policyholder behavior and vice versa.

e Multi-layer networks. Both manufacturing industries and financial operations are
now highly dependent on digital technology. Cyber attacks on critical infrastruc-
ture pose a systemic threat to modern societies. Such hierarchical systems are
characterized by a high degree of interdependence. To understand cyber risks in
these structures, analyzing multilayered networks offers a promising approach.

e Pricing systemic cyber risks. In Sect. 4.1, we outline an approach for pricing
systemic cyber risks. It integrates classical valuation concepts and systemic risk
measures as a basis for systemic premium principles. Future research must extend
the theoretical methodology and apply systemic premium principles in specific
models. In addition, statistical and algorithmic techniques need to be developed.

The list of research tasks that we provide here is not exhaustive. Many further
challenges exist. Addressing them will contribute to a more resilient and safer cyber
landscape in the future. The evolutionary nature of cyber risk, however, precludes all
challenges from ever being finally resolved.
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Appendix A Classification of cyber risks

In this section, we present two exemplary classification approaches of cyber risks from
an actuarial perspective: CRO Forum [24] and Zeller and Scherer [116]. For general
cyber classification approaches without a specific focus on insurance, we refer to the
information security literature, see, e.g., Harry and Gallagher [61] and the references
therein.

CRO Forum [24]

suggests a classification by manifold factors summarized in Table 1. However, due
to its granularity, it does not seem very suitable for modeling purposes. Indeed, the
classification rather intents to provide a “ starting point for discussion” ( [24], p. 24)
on a unifying framework for data-gathering purposes.

Zeller and Scherer [116]

provides a more model-oriented classification of cyber incidents, see Table 2. The
paper distinguishes between idiosyncratic and systemic incidents. However, the latter
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category should, in our view, be further divided into systematic and systemic incidents,
see the discussion in Sect. 2.

Appendix B Random network models

Two standard classes of undirected random networks are Erd6s—Rényi networks and
scale-free networks:

e Erdés—Rényi networks. The simplest random network model was introduced by
Erdds—-Rényi [44]: The Erd6s—Rényi network G, (N) is constructed from a set of
N nodes in which each of the possible N (N — 1)/2 edges is present independently
with equal probability p. The resulting degree distribution, i.e., the distribution
of the number of neighbors of any node in the network, is binomial, since the
probability to create a node of degree & (i.e., with k neighbors) P(k) is equal to the
probability that this node is connected to exactly k other nodes and not connected
to the remaining N — 1 — k nodes of the network:

P(k) = (Nk_ 1)p"(l — pNIK,

For large N and in the limit of constant average degree (N — 1)p &~ Np =: c, the
binomial distribution can be approximated by a Poisson distribution

k
Pk) = <.
k!

e Scale-free networks. Empirical analysis in various research areas suggests that
real-world networks exhibit much more heterogeneous degrees than Poisson dis-
tributions would suggest. Often a hierarchy of nodes is observable—with a few
nodes of high degree (called hubs), and a vast majority of less connected nodes
having a relatively low degree. Typically, the degree distribution is approximately
scale-free, i.e., we have

P(k) ~ akf)‘, a>0, A>0.

A special case with A = 3 is given by the Barabdsi-Albert model where a growing
network is generated following a preferential attachment rule, see [5] for details.

Appendix C Gillespie Algorithm

Algorithm C.1 (Gillespie). Input: Initial state of the system xo € EV and initial time
to > 0.

1. (Initialization) Set the current state x — xo and current time t — fg.
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2. (Rate Calculation) For the current state of the system x, calculate the sum of rates
for all possible transitions g, = Z,N= | 4x;» Where gy, denotes the rate for a state
change of node i according to (3).

3. (Generate Next Event Time) Sample the next event time ey, from an exponential
distribution with parameter g, .

4. (Choose Next Event) Sample the node inew at which the next transition occurs:
Eachnodei =1, ..., N is chosen with probability g, /qy.

Change the state x; ., — yi,., according to (3).

5. Sett = t+thew, X = (X1, ..., Xipoy—15 Vigews Xinew+1- - - - » XN) and return to Step

2 until a prespecified stopping criterion is met.

Appendix D Moment closures

This section provides details on moment closures as a measure to solve the Markovian
master equation problems (5) and (6).

For node i, we let B; be a representative of the Bernoulli random variables /;, S;, or
R; ata certain time . The product Bj, -.. .- Bj,,,, with pairwise different and ordered
indices j; < ... < jky1 < N, is denoted by By, J = {ji, ..., jk+1}. For example,
By with J = {1, j2, j3} may denote a triple 1, S;,1j,, or §;, S, 1}, etc.

A moment closure now approximates the moment E[B;] by

E[B;1 ~ H(E[By],....E[By, D, Ji,...dn CJ, |il,.... [Inl = k.

Assuming that the single variables B; are independent leads to the simplest possible
moment closure, the first order independent approximation, also known as NIMFA in
the epidemic literature®>. It is given by

E[B; Bj] = E[B;]E[B;] + Cov(B;, B;) ~ E[B;|E[B,].

Under this assumption, the full SIS and SIR dynamics are given by the ODE systems
of Egs. (5) and (6), respectively, when replacing second-order moments with the
corresponding product of means. The resulting systems can easily be analyzed by
standard techniques from ODE theory.*°
However, in certain network structures, the first order independent approximation
may yield a large approximation error, see, e.g., Fahrenwaldt et al. [47]. Hence, more
complex approaches to moment closures have been derived. Examples include:
1. Split closures: These closures are considered by Fahrenwaldt et al. [47]. The main
idea of split closures consists in splitting a set J of k + 1 nodes into two disjoint
and non-empty subsets Ji, J> of order < k:

H(E[B, ], E[B,]) = F(E[B]) - F(E[By,]),

55 NIMFA is short for “N-intertwined mean-field approximation”, see [87] for details.
56 For the SIS model, the linear stability condition Ry = % < i for the infection-free state of the network

can be obtained, where i denotes the spectral radius, i.e., the largest absolute eigenvalue, of the adjacency
matrix A.
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with JiNJ =0, J1UJr=J, |Jil,|)2] <k and a mean-field function F :
[0, 1] — [O, 1]. Different mean-field functions lead to different approximations,
e.g.:

e Independent approximation: Using the identity as mean-field function,
F(y) =y, the factorization of the moment of order k + 1 is done as if the split
components were independent:

E[B,;] ~ E[By, ]E[By,].

For the special case k = 1, this equals the first order independent approximation
derived above.
In the SIS model, since

E[l;] =E[1;,1E[I},]+ Cov(ly,, 1},)

and Cov(ly,, I1,) > 0, cf. Cator and Mieghem [20], the independent approxi-
mation leads to an upper bound of infection probabilities.

e Hilbert approximation: The space of square-integrable random variables
forms a Hilbert space with scalar product (Y, Z) := E[Y - Z] and correspond-
ing norm [|Y|| := /(Y,Y) = VE[Y2]. For Y, Z € L?, the scalar product
defines an angle ¢ between the elements:

(Y. Z) =Y - I Z] - cos ¢. (D1)

Hence, taking the mean-field function F (y) = ,/y, and using the idempotence
of Bernoulli random variables, a moment of order k + 1 can be split into:

E[B;] ~ yE[Bj]yVE[By].

Due to (D1), the resulting approximation error is low, if the angle ¢ is close to
0° or 180°. This observation may be used to determine an optimal split (J1, J2)
of a given index set J.

In the SIS model, the Cauchy-Schwarz inequality implies that the first order
Hilbert approximation leads to a lower bound of infection probabilities.

To apply these approximations, an appropriate partition scheme (J1, J) for index
sets J of order k + 1 needs to be found. For the SIS model, a first optimal split
procedure for both approximation types is suggested in Fahrenwaldt et al. [47],
Algorithm 3.13.

2. Kirkwood closures: These closures constitute the main approach used in the epi-
demic literature. The underlying idea originates from statistical physics, precisely
from the so-called BBGKY hierarchy, which describes the evolution dynamics of
an interacting N -particle system, originally proposed by Kirkwood [71]: Consid-
ering a set J C V of k + 1 nodes and the corresponding moment E[B;], we only
take correlations into account which are stemming from infectious transmissions
over paths of length at most k — 1, i.e., passing through a maximum of k nodes.
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This idea reflects the original statistical physics approach that particle states may
be assumed to be independent, if their distance exceeds a certain critical threshold.
Now, assuming the independence of node states which are sufficiently far apart,
the Kirkwood approximation estimates the moment E[B;] of Bernoulli random
variables with J = {ji, ..., jk+1} through

k m;

_lkfi
H(]E[BJ11],...,IE[BJ’}”],...,E[BJ];(],...,E[BJ@])=1_!1_[1E[BJ£]( s
i=1{=

where Jei C J denotes a subset of size i, i < k,and £ € {1,...,m;}, ie.,
m; denotes the number of such subsets. A detailed derivation can be found, e.g,
in Sect. V of Singer [104]. The Kirkwood approximation can be interpreted as
generalization of the following scheme:

For k = 1, states of any two nodes are assumed to be independent, i.e., the
approximation equals the first order independent approximation described above.
For k£ = 2, we obtain a so-called pair-based model. Here, the system is closed
on the level of triplets and correlations over edges are considered. In this case, the
closure reads

E[le sz]E[le Bj3]E[Bj2 Bj]

E[Bj B}, Bj;] = E[B;,1E[B,]E[B),]

Two different cases for the node triplet {ji, j», j3} may be considered: For closed
triplets, i.e., triplets in which edges exist between all pairs of nodes (triangles),
node states are pairwise correlated, and hence, the closure cannot be reduced. In
contrast, for an open triplet only consisting of edges (j1, j2) and (j2, j3), the states
of nodes j; and j3 are assumed to be independent, and therefore, the closure may

be reduced to EIB. B \EIB. B
E[le szBj3] = [ 2 IEJZZ[]B[] 2 ”].
J2)

This equals the exact result for E[ B, B}, B j;] under the independence assumption,
using Bayes’ theorem.

Thus, in the SIR Markov model, exact closures can be derived when considering
cut-verticesi,i.e.,nodes connecting two otherwise disconnected subgraphs G| and
G, of the network: If i is in the susceptible state of the SIR model, the infection has
not yet passed through this node. Hence, the infection processes in the subgraphs
G1 and G», that are connected solely through i, are independent of each other,
see, e.g., Kiss et al. [73]. This result in particular applies to tree graphs, where, by
definition, all nodes with degree higher than one are cut-vertices and all triplets are
open with B, = §,. For tree networks, the SIR pair-based model is thus exact.
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Appendix E Estimation of (cyber) epidemic network models

Statistical estimation relies first on an underlying statistical model that specifies a
range of probabilistic mechanisms that might have generated the data, and second
on the observable data. Both components, the model framework and the available
data, define the statistical challenge that needs to be addressed. We briefly review
some work that focuses on inference for SIS, SIR, or related models. In all cases, the
resulting propagation process is simply denoted by (X (f));>0, although we consider
different models. The specification of the interaction between entities in the underlying
probabilistic mechanisms in the statistical model can be interpreted as a graph G in
this framework. The graph G may simply be encoded by an adjacency matrix in
some models; in other, heterogeneous models, it might be described as a weighted
graph corresponding to a matrix with entries different from 0 and 1 that encodes the
interaction in the underlying statistical model.

In the context of statistical inference, some parameters of the interaction dynamics
are unknown, such as overall infection and recovery rates, but in some problems the
interaction graph G might still be known a priori, while in others the graph must
be inferred on the basis of available data. We classify the estimation approaches for
(cyber) epidemic network models of SIS-, SIR- or related type roughly in the following
way:

First, we distinguish if on the level of the underlying statistical model the interaction
graph G is known; second, on the level of the data, we differentiate two situations, i.e.,
the realization of the infection process X might be directly observable or, alternatively,
only some related data might be observable, while the spread process itself is hidden.
We refer to Sects. 3.2.1 and 3.2.2 for background on spread models. In this section, we
provide a brief review of some papers that belong to the following possible categories:

—— G unknown & (X (¢))>0o not directly observable:
In a cyber epidemic network context, Antonio et al. [3] propose a graph
mining approach in a generalized SIS network model (in which infection
rates are heterogeneous and self-infection is possible) where the process X
isnotdirectly observable, but only auxiliary communication data is available.
A filtering mechanism is applied that deletes low-weighted edges below a
minimum weight threshold. However, the model is not yet calibrated with
real-world data. For readers interested in more general (inverse) problems,
we refer to the book by Kolaczyk [75].

++4 G known & (X(#));>0 observable:
If G is known and the realization of X is observable, the statistical problem
boils down to inference of the epidemic parameters t and y of the epidemic
spread model in the case of a Markovian SIR network model. This is dis-
cussed in Sect. 6.1 of Britton [16]; the estimation can be implemented using
a maximum-likelihood approach.

+(—) G known & only terminal individual information on (X (¢));>0 observable:

Britton [16], Sect. 6.1., discusses the case that G possesses fully connected
subgraphs in the case of a Markovian SIR network model, i.e., a so-called
household structure. In this case, a maximum-likelihood approach to esti-
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mate the epidemic parameters is still feasible, if only the realization of
X at a final date is observable, but not its whole evolution. However, the
author emphasizes that, without making this specific structural assumption,
epidemic parameter estimation is not straight-forward for arbitrary known
graphs, if e.g. only the realization of the final number of infections is observ-
able. One approach to overcome this difficulty could thus be to gather some
additional time-dependent spread data.

(+)(+) G unknown, but network model class fixed & only individual recovery infor-
mation on (X (¢));>0 observable:
Another example are random graph models. For example, Britton [17]
develop a Bayesian approach in a Markovian SIR model to estimate the
epidemic parameters T and y jointly with the connection probability p in
Erd6s-Rényi type networks, if the spread process (X (¢));>0 or only the indi-
vidual recovery processes (R;(t));>0 = (Lx,;1)=Rr)i=0,1 = 1,..., N, are
observable (see also [59] for a generalization to the SEIR model and Gamma-
distributed infection arrival times). Samples from the posterior distribution
can be generated using MCMC methods.

(=)(—) G unknown, but set of possible network model classes fixed & only aggregate
infection information on (X (¢));>0 observable:
Often the individual time-dependent spread data is not observable, but only
the evolution of the aggregate number of infections over time is known. To
overcome this issue, for example, in a Markovian SIS framework, Lauro
et al. [78] suggest a so-called birth-death process approximation (see also
[117] for an extension of this approach to the question of forecasting an
ongoing epidemic). Such birth-death processes keep track of the number
of infected nodes at population level and thus present an approximation of
the original Markovian spread processes in a reduced dimension. Lauro et
al. [78] provide a Bayesian estimation framework in which the epidemic
and network parameters for certain random network classes can jointly be
estimated; in particular, the method is able to identify the most likely network
class out of a regular, Erd6s—Rényi, or Barabdsi-Albert model.

—+ G unknown & (X (¢))>o observable:

In the previously discussed approaches with an observable epidemic pro-
cess, the network G is (partially) known—at least it belongs to a set of
random network classes. How can one proceed if no prior information is
available on the network on the level of the statistical model, but the real-
ization of the infection spread process is observable? One suggestion is
a cascade approach in (possibly non-Markovian) SI-models (also: activa-
tion/information diffusion models). The goal is to infer the network structure
under the assumption that the cascades of infections are fully observable
using a likelihood approach. The proposed methods in the literature mostly
differ in their assumptions on the spread process. For example, Myers and
Leskovec [89] and Gomez-Rodriguez et al. [58] assume homogeneous para-
metric infection arrival distributions (see also [57] for dynamically evolving
networks), while Du et al. [36] do not impose distributional assumptions,
but propose a kernel estimation method to estimate the network structure.

@ Springer



Modeling and pricing cyber insurance 49

Our overview is not meant to be exhaustive, but intends to highlight different per-
spectives possibly implied by the structure of a specific application. We also refer to
the surveys Brugere et al. [18] or Kolaczyk and Csardi [76]. The current literature
on (epidemic) network estimation is fragmented with each approach tackling only a
specific problem at a time. A unifying methodology does not yet exist—and is maybe
also not realistic to expect. Many questions remain open, see, e.g., the discussion in
Britton [16]. Statistics for (cyber) epidemic network models will most likely continue
to be a very active field of research in the future.
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