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Abstract

This thesis encompasses three research articles contributing to the fields of time se-
ries analysis and statistical machine learning. Firstly, we develop a peaks-over-threshold
approach, which captures both short- and long-term correlations in the underlying time
series in order to model the clustering behaviour in high-threshold exceedances. The sug-
gested model is motivated by and applied to oceanographic data. Secondly, we propose
an efficient discrepancy-based inference approach for intractable generative models based
on quasi-Monte Carlo methods. We demonstrate that this method substantially reduces
the computational cost of estimating the model parameters in various applications of
academic and practical interest. Thirdly, we suggest training methods for deep sequen-
tial models, which improve the forecast precision when facing structural breaks in the
in-sample period. These mitigation strategies are examined in an extensive simulation
study and utilised to forecast energy data. As the developed theory in this thesis is very
versatile, it is applicable to a broad range of data types as well as research fields, and in
particular to economic time series.

Keywords: Peaks-over-threshold · Extremal clustering · Long-range dependence · In-
tractable generative models · Discrepancy-based inference · Quasi-Monte Carlo · Deep
sequential models · Structural breaks
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Chapter 1

Introduction

This thesis comprises three separate research articles contributing to the realm of time
series analysis and statistical machine learning. While the first two articles solely focus
on classical time series methods and the foundations of statistical machine learning re-
spectively, the third article attempts to bridge the gap between both worlds. None of the
articles appears to be related to econometric problems at first glance, but the developed
theory is very versatile and therefore applicable to various data types and research fields,
notably economics.

The first research article is concerned with classical time series methods in the context
of extreme value theory (EVT): EVT is designed to analyse the occurrence of extreme
events and thus aims at characterising the tail behaviour of a distribution. It addresses
two key problems when estimating the tail of a distribution: (1) the tail distribution may
differ from the distribution of the remaining data, and (2) rare events may not even be
present in the data as a result of limited data availability (McNeil & Frey, 2000). One
fundamental approach to EVT is the peaks-over-threshold (POT) method, which models
extreme observations exceeding a particular high threshold (Ferreira & de Haan, 2015).
The assumption of identically and independently distributed (iid) data underpinning the
classical POT approach, however, is violated in many practical settings leading to high-
threshold exceedances occurring in a clustered fashion. This clustering behaviour can arise
from short- and long-term dependencies in the underlying time series. We develop a POT
approach, which captures both types of serial correlation simultaneously, and thereby
models the clustering behaviour of high-threshold exceedances. We apply our method to
significant wave heights, which are frequently found to not only exhibit short-range but
also long-range dependence (Cabrera & Rodŕıguez, 2011).

Of course, this research article is motivated by the dynamics in oceanographic data,
but its range of possible applications is not restricted to this type of data: POT methods
have also been found to be essential for financial risk management (Chavez-Demoulin et
al., 2005; Herrera & Schipp, 2014) as well as insurance (Lee et al., 2012). Since financial
data such as stock index returns (Bhardwaj & Swanson, 2006) or inflation rates (Durham
et al., 2019) have recurrently been identified as being governed by not only short-term
dynamics but also long-range dependence, our method could prove especially useful for
these data types, as it extends existing approaches by considering short- and long-range
correlations simultaneously instead of focusing on one of these dynamics alone.

The second research article addresses the foundations of statistical machine learning:
statisticians and machine learning researchers develop ever more complex models. The
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model complexity poses a particular challenge for parameter estimation, since standard
tools are no longer adequate. Standard inference approaches such as maximum likelihood
estimation (Rossi, 2018) and Bayesian inference (Box & Tiao, 2011) rely on having access
to a likelihood function representing the model of interest. However, if the modelling
task becomes highly complex, it may no longer be possible to specify the corresponding
likelihood function mathematically or it may be prohibitively expensive to compute it
(Marin et al., 2012). The term intractable generative models refers to a class of statistical
models, for which the likelihood function is unavailable, but it is possible to simulate
new observations from the model given fixed parameter values (Cranmer et al., 2020).
This class of models requires alternative inference approaches, which may be based on
computing a discrepancy between the actual data and the data simulated from the gener-
ative model. In order to be able to handle high-dimensional or large-scale datasets, these
approaches to parameter inference need to be scalable and computationally efficient. In
this article, we develop methods, which are capable of significantly reducing the number
of data points required to estimate the parameters of these generative models resulting
in a substantial reduction in computational cost of the inference procedure. For this, we
make use of quasi-Monte Carlo (QMC) point sets, which allow to generate a more diverse
set of samples from the generative model compared to random sampling. Our theoretical
results are verified in a simulation study and we demonstrate that our inference approach
can efficiently train a variational autoencoder on the MNIST dataset to generate images
of hand-written digits.

My contribution to this joint research project (co-first author) especially encompasses
the conceptualisation and implementation of all numerical experiments required to demon-
strate that our developed theory does not only work but is also relevant for practitioners.
For this, I conceived three categories of experiments: simulations with simple genera-
tive models, for which either (1) all of our assumptions are satisfied or (2) particular
assumptions are violated, as well as (3) the application of a complex generative model to
a relevant dataset, which is of practical interest but still satisfies all assumptions. Since
QMC methods rely on more restrictive assumptions than random sampling, the question
of whether our methodology is robust to assumption violations is crucial for its relevance
in practice. For the first experiment category, a uniform distribution is studied. Of course,
this example does not require inference tools for intractable generative models, but it is
a simple way of studying the sample complexity of QMC point sets in discrepency-based
inference and by that serving as a proof of concept. For the second category of experi-
ments, Gaussian, bivariate Beta and multivariate g-and-k distributions are chosen in order
to cover univariate as well as multivariate (intractable) generative models. The violated
assumptions include unbounded generators and rejection sampling algorithms proving a
wide applicability of discrepancy-based inference using QMC while also complementing
the literature which discusses the usability of QMC methods beyond their assumptions
(see e.g. Owen, 2013). For the final experiment category, a generative neural network is
examined, which is trained as the decoder network of a variational autoencoder constitut-
ing a popular choice for generating realistic looking images. The chosen MNIST dataset
forms a benchmark dataset for deep learning algorithms.
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While this article mainly focuses on academically motivated applications, the devel-
oped methods are not limited to those presented: intractable generative models also play a
large role in econometrics and finance applications. One example is the class of stochastic
volatility models (Kim et al., 1998), which belongs into the standard toolkit for modelling
volatility in stock return time series. A further example are hidden Markov models, fre-
quently used to reproduce the stylised facts of daily return series (Rydén et al., 1998).
Moreover, in operations research, queuing models constitute yet another member of the
class of intractable generative models. For instance, the M/G/1 queue model refers to
a single-server fist come first serve queue with Markovian arrival times and a general
distribution of service times, from which it is easy to sample, but it has an intractable
likelihood (Fearnhead & Prangle, 2012).

The final research article is focusing on bridging the gap between classical time series
analysis and deep learning: forecasting any economic or physical variable builds upon the
assumption that the data generating process (DGP) is governed by constant parameters
over the entire pre-forecast sampling period. Permanent shifts in the parameters of the
GDP are referred to as structural breaks. If they occur in the pre-forecast period they
are well known to lead to biased model parameter estimates causing forecast failure. For
classical time series models such as autoregressive moving average (ARMA) processes, the
consequences of structural breaks in the in-sample period are well-studied (cf. Clements
& Hendry, 2006), so that a range of mitigation strategies were developed in response (e.g.
Gardner, 2006; Pesaran & Pick, 2011). Despite the recent popularity of deep sequential
models such as recurrent neural networks (RNNs), long-short-term-memory (LSTM) and
gated-recurrent unit (GRU) architectures for time series forecasting (c.f. Lim & Zohren,
2021), there is little work addressing the effects of in-sample structural breaks on their
forecast performance. For the particular problem of mean shifts, we therefore discuss the
consequences for the forecast precision of deep sequential models and propose mitigation
strategies to improve their forecast robustness. The mitigation strategies are evaluated in
an extensive simulation study and their practical benefit demonstrated on energy data.

In this article, the developed methodology is applied to forecast the voltage of the
German electric power grid, but the scope of application is not confined to energy data:
since deep sequential architectures are well suited for modelling dependence structures
in large datasets, economic variables sampled at high frequencies constitute a typical
use case. Real interest rates for instance have been found to be subject to structural
breaks (Rapach & Wohar, 2005). Similar results are known for European carbon prices
(Alberola et al., 2008) as well as stock market (Andreou & Ghysels, 2002) and exchange
rate volatilities (Rapach & Strauss, 2008). All of these financial variables are available at
a daily or even higher frequency.

The remaining thesis is structured as follows. Chapter 2 presents the first research
article on modelling short- and long-term dependencies of clustered high-threshold ex-
ceedances in significant wave heights. Chapter 3 is dedicated to the second research ar-
ticle on discrepancy-based inference for intractable generative models using quasi-Monte
Carlo, while Chapter 4 is concerned with the final research article on forecasting facing
structural breaks using deep sequential models.
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Chapter 4

Forecasting Facing Structural
Breaks Using Deep Sequential

Models

4.1 Introduction

Forecasting economic variables relies on the assumption that the parameters of the under-
lying data-generating process (DGP) remain constant over the entire pre-forecast sam-
pling period. Structural breaks can be defined as permanent shifts in the parameters
of the DGP, and if they occur in the pre-forecast period they can lead to biased model
parameter estimates and cause forecast failures. For classical time series models, such
as autoregressive moving average (ARMA) models, the consequences of structural breaks
on parameter estimates and forecasts are well studied (cf. Clements & Hendry, 2006),
and various mitigation strategies have been proposed: estimating the break location and
excluding pre-break observations from estimation (Bai & Perron, 1998, 2003), exponen-
tial smoothing (ExpS) (Gardner, 2006), or forecast combinations (Pesaran & Pick, 2011)
amongst others.

Yet, in recent years, deep sequential models have gained popularity for time series
prediction. Originally developed for sequence modelling, they proved to be just as suitable
for temporal forecasting applications. Even though this class of models is more difficult
to interpret than classical time series models, the ability to capture complex relationships
makes for a useful alternative when prioritising forecasting performance. See Lim and
Zohren (2021) for a recent review on deep learning models for time series. Despite their
popularity, there is little work on mitigating the effects of in-sample structural breaks on
the forecasting performance of deep sequential models.

In the machine learning community, structural breaks fall into the category of distri-
bution shift problems. Distribution shift is a collective term for situations, in which the
statistical properties of the data change over time, i.e. the distribution shifts temporally.
However, the data type is not limited to time series (Duan et al., 2023). The distribution
shift problem is usually approached via domain adaptation (Tzeng et al., 2017) or domain
generalisation (Wang et al., 2022), where the underlying idea is to learn common knowl-
edge, which is transferable between domains in spite of disparities between distributions.
In case of distribution shifts in time series, i.e. non-stationary time series, these methods
are not easily transferable (Kim et al., 2021). The main challenge is that distributions

6



4.1 Introduction 7

may change constantly, but it is unknown how to best characterise the distributions in
order to infer the common knowledge. Complex modelling solutions have been proposed
such as AdaRNN (Du et al., 2021), characterising the worst-case distribution shift in
the time series based on the principle of maximum entropy, or a hypernetwork-based
framework (Duan et al., 2023), which jointly learns the time-varying distributions and
corresponding forecasting models. Alternatively, feature engineering could be deployed
for deep sequential models. This involves identifying time-varying features representing
the factors, which cause the drift in parameters, and use them as exogenous covariates
(Lim & Zohren, 2021). If the covariates carry sufficient information about the distri-
bution shift, this approach allows the model to learn accurate conditional distributions
based on these exogenous signals. All of these approaches have in common that (1) they
are laborious to implement in practice, and (2) they are not specific to the problem of
structural breaks, which imply permanent instead of constant changes of the parameters
in the DGP.

In this work, we want to specifically improve the forecasts of popular deep sequential
models such as recurrent neural networks (RNNs), long short-term memory (LSTM) and
gated recurrent unit (GRU) architectures when facing in-sample structural breaks. When
forecasting in the presence of structural breaks, we most certainly face a bias-variance
trade-off: using a model estimation window including a structural break may lead to
biased out-of-sample forecasts, but may simultaneously reduce the forecast variance due
to the larger sample size (Tian & Anderson, 2014). Therefore, we want to assess how
simple mitigation strategies can help balance the trade-off between forecast bias and
error variance. For this, we focus on forecast failure caused by changes in the previous
unconditional mean in the pre-forecast data, i.e. in-sample mean shifts.

de Boom et al. (2019) identify a loss, which decays at each time step, as a possible
future research track for improving the performance of character-level RNNs in the context
of natural language processing (NLP). We show that this is also a promising direction for
fostering the robustness of deep sequential models when facing structural breaks. We aim
at finding a suitable weighting scheme for the training loss, which reduces the detrimental
effect of mean shifts, while retaining relevant information on the dependence structure
of the underlying DGP. Moreover, we demonstrate that adopting a popular approach
from the classical time series literature, where we estimate the break point and discard
all pre-break observations from the training set, can successfully mitigate the effect of
in-sample mean shifts in certain situations. In order to give recommendations as to when
which approach can provide the largest forecast precision improvements, we conduct an
extensive simulation study. We further illustrate the practical value of the proposed
mitigation strategies using real-world data.

The paper is structured as follows. Section 2 reviews deep sequential architectures.
Section 3 then investigates the robustness of these models against in-sample mean shifts
and proposes mitigation strategies based on weighted loss functions as well as estimates
of the break points. In section 4, we conduct an extensive simulation study, while section
5 applies the proposed methodology to the voltage of the German electric power grid.
Section 6 concludes.
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4.2 Review of Deep Sequential Architectures

Deep sequential models have historically been developed for sequence modelling, achieving
strong results on a wide range of natural language processing tasks (Young et al., 2018).
The class of deep sequential models typically encompasses RNNs and their more complex
extensions. Since time series data has a natural interpretation as sequences of inputs and
targets, various RNN-based architectures have been proposed in the context of temporal
forecasting applications (Lim et al., 2020; Rangapuram et al., 2018; Salinas et al., 2020;
Wang et al., 2019). The core characteristic of these models is an internal memory state
representing a compact summary of past information, which is sequentially updated as
new observations become available.

Generally, a recurrent network takes the input sequence {xt}t≥1 to output the sequence
{zt}t≥1 in order to model the target sequence {yt}t≥1, where xt ∈ Rq, zt ∈ Rp, and yt ∈ Rp

with p, q ∈ Z. We assume that the data-generating process (DGP) is of the following
form:

yt = zt + ut, for t ∈ Z, (4.1)

where {ut}t≥1 is a sequence of p-dimensional independent and identically distributed (iid)
random vectors. This corresponds to the additive error assumption utilised for popular
loss functions measuring the distance between output and target sequences, such as ℓ1,
ℓ2, Huber and quantile loss. Further, we assume that xt = yt, i.e. there is no exogenous
input, which allows to analyse the forecast performance of the models for time series in
their most simple form. Then, the one-step-ahead forecast of a recurrent network takes
the form

zT+1 = f(y1:T ),

where f(·) is the prediction function learnt by the model. This prediction function usually
consists of a series of nonlinear, recurrent layers. For an RNN-based architecture, the
prediction zT+1 is based on the hidden internal state ht ∈ Rq at time T , which captures
past information, so that such a recurrent layer can be formulated as

zt+1 = g(Wzhht + bz), for t ∈ {1, . . . , T},

where g(·) denotes an element-wise output function, and W· ∈ Rp×q and b· ∈ Rp are the
linear weights and biases of the network respectively. The RNN-variants typically differ
in the way the hidden internal state evolves.

One of the simplest RNNs for time series prediction is the Elman RNN (Elman, 1990),
for which the hidden internal state is updated according to

ht = λ(Whhht−1 +Whyyt−1 + bh)

where y0 = 0, h0 = 0, and λ(·) is an element-wise activation function.
Considering longer ranging dependence structures, the application scope of simple

RNN-variants can be limited due to drawing on an infinite history of data in the hidden
state (Bengio et al., 1994; Hochreiter et al., 2001), which may give rise to vanishing or
exploding gradients (Goodfellow et al., 2016). LSTMs (Hochreiter & Schmidhuber, 1997)
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improve the gradient flow within the network by introducing a cell state ct ∈ Rq, which
preserves long-term information and is governed by the following gating operations:

ft = σ(Wfhht−1 +Wfyyt−1 + bf ),

it = σ(Wihht−1 +Wiyyt−1 + bi),

ot = σ(Wohht−1 +Woyyt−1 + bo),

with y0 = 0, h0 = 0, ft, it, ot ∈ Rq, and σ(·) denoting an element-wise sigmoid function.
We refer to ft as the forget gate, it as the input gate, ot as the output gate. These gates
alter both the hidden and the cell states as follows:

c̃t = tanh(Wchht−1 +Wcyyt−1 + bc),

ct = it ⊙ c̃t + ft ⊙ ct−1,

ht = ot ⊙ tanh(ct),

where c̃t ∈ Rq denotes the candidate cell state, tanh(·) the element-wise hyperbolic tangent
function, and ⊙ the element-wise (Hadamard) product.

The GRU (Cho et al., 2014) is a successor to LSTMs simplifying the gating mechanics,
while retaining a similar performance. The gating operations controlling the information
flow can be stated as

st = σ(Wshht−1 +Wshyt−1 + bs),

rt = σ(Wrhht−1 +Wryyt−1 + br),

with y0 = 0, h0 = 0, and st, rt ∈ Rq. st and rt are referred to as the update and reset gate
respectively, which modify the hidden state as below

h̃t = tanh (Whr(rt ⊙ ht−1) +Whyyt−1) ,

ht = st ⊙ h̃t + (1− st)⊙ ht−1,

where h̃t ∈ Rq is the candidate hidden state.
To train any of these RNN-variants, we need to select a suitable loss function for the

parameter optimisation. The most popular choice in a regression setting is the mean
squared error (MSE) loss:

lMSE =
1

T
∥yt − zt∥22, for t ∈ {1, . . . , T}. (4.2)

Alternatives such as ℓ1, ℓ2 or Huber loss can also be considered of course. The deep
sequential models can then be trained using backpropagation through time combined
with a suitable optimisation algorithm.

Following this brief review of deep sequential architectures, we will now investigate
the robustness of these models against in-sample mean shifts and propose two different
mitigation strategies.



10 4.3 Fostering Forecast Robustness Facing Mean Shifts

4.3 Fostering Forecast Robustness Facing Mean

Shifts

In this section, we will first specify the considered multiple mean shift model (Section
4.3.1) and then discuss how mean shifts in the training data influence the forecast precision
of deep sequential models (Section 4.3.2). Afterwards, we propose mitigation strategies in
the form of weighted loss functions (Section 4.3.3) and excluding pre-break observations
(Section 4.3.4).

4.3.1 Multiple Mean Shift Model

In order to further discuss how the forecast of deep sequential models is affected by
in-sample structural breaks, we need to specify the type of structural break process we
would like to investigate. We consider a multiple mean shift model, in which the stochastic
process {yt}t≥1 follows

yt = µ+
K∑
k=1

βk1(t
∗
k−1 ≤ t < t∗k) + ϵt. (4.3)

We assume that the sequence of regression means µ +
∑K

k=1 βk1(t
∗
k−1 ≤ t < t∗k) is deter-

ministic and |µt| < ∞ holds. Further, βk is a coefficient determining the magnitude of
the mean shift in regime k, 1(t∗k−1 ≤ t < t∗k) denotes an indicator function, which depends
on the location of the break point t∗k = ⌊τ ∗kT ⌋, where ⌊·⌋ represents the integer part of
its argument. τ ∗k ∈ [0, 1] represents the break fraction, T the sample size, and we define
t∗0 = 0 and t∗K = T , implying τ ∗0 = 0 and τ ∗K = 1. Finally, {ϵt}t≥1 is a sequence of error
terms following some stationary stochastic process. In this notation, a time series with a
single mean shift is characterised by two regimes, i.e. K = 2.

4.3.2 Effect of Mean Shifts on the Forecast Precision

Having specified the type of structural break scenario we want to investigate, we can now
discuss how the forecast performance of deep sequential models is impacted by mean shifts
in the training sample. Generally, deep sequential models are trained by minimising some
defined forecast error. While model selection for traditional time series models, such as
ARMA models, is based on sparsity considerations (e.g. information criteria penalising
the number of parameters), deep sequential models are trained based on the same criterion
used to evaluate the forecast accuracy. This is of course ideal for forecasting applications
as long as the training sample is representative for the forecast period. But what happens
if it is not representative due to the presence of a mean shift?

When using any standard regression loss, every prediction error is assigned an equal
weight. The MSE loss in (4.2), for instance, attaches a weight of 1

T
to each squared

forecast error. Assuming a single structural break in the training set, this means that
pre-break prediction errors and post-break prediction errors are weighted equally during
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training. How robust an out-of-sample forecast is against the presence of a structural
break in the training data, therefore, depends on the ratio of pre-break to post-break
observations. The larger the proportion of post-break observations, the less biased the
out-of-sample forecast will be. This effect will now be illustrated using a toy example.

Toy Example We generate T = 500 data points from a constant DGP of the form

yt = 0.51(t ≥ t∗1) (4.4)

with t∗1 = ⌊τ ∗1T ⌋ and different values of τ ∗1 ∈ [0, 0.95]. We reserve 10% of the data for
out-of-sample prediction. Then, we train simple RNN, GRU, and LSTM architectures,
consisting of a single hidden layer with q = 10 nodes each, for 50 epochs using the
MSE loss and a batch size of 128 on the remaining training data in order to predict
yt+1 from univariate input yt. Since the DGP is constant, the out-of-sample forecast
ŷT+l = f̂(y1:(T+l−1)) is constant as well for all l ≥ 1.

Figure 4.1 reports the results of 1000 repetitions of this toy experiment. Each graphs
depicts the mean of the out-of-sample forecast ŷT+1 over all repetitions, while the standard
deviation of the out-of-sample forecast is represented by error bars. We observe that the
larger τ ∗1 , i.e. the larger the ratio of pre-break to post-break observations in the training
data, the larger is the observed bias of the out-of-sample forecast. Hence, the equal
weighting scheme appears to play a crucial role in the resulting forecast failure. However,
the predictions still improve over the naive forecast ŷT+1 = y1:T = 1

T

∑T
t=1 yt.

Figure 4.1 also reveals subtle differences between the considered deep sequential ar-
chitectures: while RNNs exhibit the smallest bias, they also have the largest variation in
the out-of-sample forecast for growing τ ∗1 . The LSTM model, designed to capture longer
ranging dependencies, is most affected by the mean shift, i.e. has the largest bias in the
out-of-sample forecast for large τ ∗1 . At the same time, the out-of-sample forecast exhibits

0.0 0.2 0.4 0.6 0.8
τ1

0.0

0.1

0.2

0.3

0.4

0.5

ŷ T
+

1

RNN

0.0 0.2 0.4 0.6 0.8
τ1

GRU

yt<t∗1 yt≥t∗1 ŷT+1 = y1:T

0.0 0.2 0.4 0.6 0.8
τ1

LSTM

Figure 4.1: Illustration of the effect of the break location on the prediction of deep sequential
models trained with MSE loss. The graphs depict the (constant) mean prediction over 1000
repetitions and its standard deviation as error bars for RNN (blue), GRU (green), and LSTM
(orange) architectures. The realisations of the DGP before and after the break point are given
as reference as well as the naive prediction ŷt = y1:T .



12 4.3 Fostering Forecast Robustness Facing Mean Shifts

smaller variation, indicating that the use of LSTM cells provides more stability through
controlling the information flow. The GRU model represents the middle ground between
RNN and LSTM models in terms of out-of-sample forecast bias and variance, which can
likely be attributed to a more (less) restrictive information flow compared to the RNN
(LSTM) architecture.

4.3.3 Weighted Loss Functions

Having illustrated how mean shifts affect the forecast performance, we aim at identifying
mitigation strategies for deep sequential models. We propose to move away from an equal
weighting scheme and use a weighted loss function, for which the weight attached to the
error decays at every time step. The final loss is then a linear combination of the weighted
losses at every time step. For some loss function L(·) and decay parameter γ(t), we define
the weighted loss as

l =
T∑
t=1

γ(t)L(yt, zt). (4.5)

The properties of this weighted loss function depend on the choices of L(·) and γ(t).
While L(·) controls how the prediction error magnitude is penalised, γ(t) governs the
rate, at which the influence of previous time steps decays. The linear combination in
(4.5) ensures that the resulting gradient is scaled similarly to the loss function, implying
that the contribution of the first time steps to the final loss is reduced.

Currently, the main interest in reducing the weight on early observations in the training
data lies in improving the action anticipation in applications such as autonomous driving.
Typically, the goal is to infer an action class before the action is fully observed (cf. Chan
et al., 2017). The underlying idea is to create a weighted loss function encouraging
an early action recognition by giving smaller penalties to classification errors based on
partial video sequences, which consist of only few frames as opposed to the full sequence.
Jain et al. (2016) introduced the idea of an exponentially weighted softmax loss, relying
on weights of the form γ(t) = e−(T−t). Aliakbarian et al. (2017) proposed to combine
this weighting scheme with a cross-entropy loss and compared it to the use of linear
weights γ(t) = t

T
. Considering an exponential decay, Tonutti et al. (2019) use a constant

discount factor of 0.9 for an exponentially weighted cross-entropy loss, i.e. weights defined
as γ(t) = e−0.9(T−t), but, thereby, they do not leverage the advantages of tuning this
parameter. For large T , it is necessary to have control over the discount factor, to avoid
pushing the weights to zero too early. A related approach was proposed by Bai et al.
(2018), but focused on dealing with irregularly annotated temporal image sequences.
Instead of choosing a constant discount factor, the weights depend on the distance to the
last annotated image. Thus, there is no attempt to find a weighting scheme for the whole
sequence of training data.

We now propose a range of weighting schemes for the weighted loss function defined
in (4.5), which have different properties and may therefore be suitable for the deployment
in a variety of mean shift scenarios.
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Exponential Weights First, we consider an exponential decay. The decay parameter
in (4.5) is then defined as

γRay(t) = e−α(T−t),

where α ≥ 0. For α = 0, we recover an equal weighting scheme. The discount factor
α controls the strength of the weight reduction over time: a larger α discounts earlier
prediction errors more strongly. Having control over the strength of the discounting
extends the ideas of Aliakbarian et al. (2017), Jain et al. (2016), and Tonutti et al.
(2019).

Rayleigh Weights Further, we consider weights based on the Rayleigh distribution.
The Rayleigh model has previously been employed in epidemiology (Wallinga & Teunis,
2004) and general network diffusion applications (Ding et al., 2015; Gomez-Rodriguez et
al., 2011) for its usability as a time-decaying kernel. For the loss in (4.5), we use Rayleigh
weights expressed as

γRay(t) = e−
1
2
α(T−t)2 ,

with α ≥ 0. For α = 0, we retrieve a loss function with equal weights. Generally, the
larger the value of α, the smaller is the weight on past time steps.

Bartlett Weights Next, we consider weights derived from the Bartlett kernel, which
is popular in the literature concerning heteroskedasticity and autocorrelation consistent
(HAC) covariance matrix estimation (Newey & West, 1987). This choice of weights rep-
resents a linear decay of previous time steps. Therefore, we extend the idea of a linear
weighting scheme proposed in Aliakbarian et al. (2017) to time series data, but add an
additional parameter: for the weighted loss definition in (4.5), the Bartlett weights are
defined using

γBar(t) =

{
1− T−t

α
for T−t

α
≤ 1,

0 otherwise,
(4.6)

where 0 < α ≤ T can be referred to as the lag truncation parameter, since lags of order
T−t
α

> 1 are assigned zero weight. For α = T , no truncation is taking place. This weighting
scheme is different from the previously discussed exponential and Rayleigh weights, since
we do not only control how strongly past observations are down-weighted, but how many
early observations we choose to ignore entirely.

Parzen Weights Moreover, we examine weights based on the Parzen kernel, which has
been considered in the HAC estimation literature (Gallant, 1987, p.533). For the weighted
loss function in (4.5), we define the Parzen weights by

γPar(t) =


1− 6

(
T−t
α

)2
+ 6

(
T−t
α

)3
for 0 ≤ T−t

α
≤ 1

2
,

2
(
1− T−t

α

)3
for 1

2
≤ T−t

α
≤ 1,

0 otherwise,

(4.7)
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where 0 < α ≤ T serves as a lag truncation parameter. For α = T , the weights are not
truncated. Again, this weighting scheme allows to control the strength of the discounting
as well as how many early observations are ignored when calculating the loss.

Tukey-Hanning Weights Lastly, we derive weights from the Tukey-Hanning kernel.
This kernel is frequently used in the HAC covariance estimation literature (Andrews,
1991) as well as in volatility estimation (Barndorff-Nielsen et al., 2008). For the weighted
loss function in (4.5), we define the Tukey-Hanning weights by

γTuk(t) =

{(
1 + cos

(
π T−t

α

))
/2 for T−t

α
≤ 1,

0 otherwise,
(4.8)

where 0 < α ≤ T serves once more as a lag truncation parameter. Choosing α = T ,
results in no truncation. Thus, these weights regulate the strength of the discounting
of past observations and also allow for control over how many early observations are
discarded when calculating the loss.

Weight Comparison Table 4.1 summarises the considered weighting schemes for the
weighted loss functions. Figure 4.2 provides an illustration of the weighting schemes with
different choices of α for a sample size of T = 1000. The characteristics of the different
weights are obvious: while α changes the functional form of the weight decay for the
exponential and Rayleigh weights, it additionally controls how many early observations
obtain a weight of exactly zero in case of Bartlett, Parzen and Tukey-Hanning weights.

Loss Function Choice All weighting schemes could obviously be applied in combina-
tion with any loss function L(·). The choice of the error measure depends on the desired

Table 4.1: Considered weighting schemes for the weighted loss function defined in (4.5).

Weights γ(t)

Exponential (Exp) e−α(T−t)

Rayleigh (Ray) e−
1
2
α(T−t)2

Bartlett (Bar)

{
1− T−t

α

0,

T−t
α

≤ 1

otherwise

Parzen (Par)


1− 6

(
T−t
α

)2
+ 6

(
T−t
α

)3
2
(
1− T−t

α

)3
0

for 0 ≤ T−t
α

≤ 1
2

for 1
2
≤ T−t

α
≤ 1

otherwise

Tukey-Hanning (Tuk)

{(
1 + cos

(
π T−t

α

))
/2

0

for T−t
α

≤ 1

otherwise
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Figure 4.2: Comparison of exponential, Rayleigh, Bartlett, Parzen and Tukey-Hanning weight-
ing schemes with different choices of the parameter α for a sample size of T = 1000.

properties of the loss function. In the following, we will focus on the squared prediction
error, i.e. L(yt, zt) = ∥yt − zt∥22. This is a natural choice if we want to evaluate and com-
pare model performances using the mean squared forecast error (MSFE). By selecting the
squared prediction error, we prioritise penalising large errors more than small errors.

Parameter Choice The favourable effect of using weighted loss functions in the pres-
ence of mean shifts in the training data will largely depend on the choice of the parameter
α for a given weighting scheme. Finding an optimal α analytically is infeasible since the
highly non-linear deep sequential models have no closed form solution. A simple yet effec-
tive way of performing parameter selection is to deploy a validation set approach: using
the model forecasts on the validation set, we can compare the performance of different
choices for α. We select that value for α to obtain predictions on the test data, which
provides the smallest validation loss. Here, it is not desirable to discount the weight of
past observations, so that we replace the weights used for training the deep sequential
model with equal weights, i.e. γ(t) = 1/T , to calculate the validation loss. Thus, as
validation loss, we consider the MSE loss. Assuming that the mean shift does not occur
in the validation set, this approach is superior to other popular routes for hyperparame-
ter tuning: a k-fold cross-validation for example would suffer from biased model forecast
introduced not only by the presence of mean shifts in the data used for training but also
in the held-out data.
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4.3.3.1 Applying Weighted Loss Functions to a Toy Example

Using a simple DGP, we aim at demonstrating that the application of weighted loss
functions can indeed improve the forecast performance of deep sequential models when
facing mean shifts. Therefore, we consider the same setting and DGP as used in Figure
4.1, i.e. the GDP given in Equation (4.4). Figure 4.3 reports the mean prediction of an
RNN which is trained using a weighted square loss based on exponential weights with
α = 0.01, Rayleigh weights with α = 5 × 10−5 as well as Bartlett, Parzen, and Tukey-
Hanning weights with α = T 0.95 respectively. We observe that the forecasts based on the
weighted square loss improve significantly over the predictions with the MSE loss. The
bias-reduction is especially pronounced for the mid-range of considered break fractions
τ1. For the extreme choice of τ1 = 0.95, we can only observe a slight improvement, which
appears sensible given a selection of parameters, that result in moderately discounting
weights. Figures A.2 and A.1 in Appendix A report similar findings for GRU and LSTM
architectures respectively. However, we can additionally note that the usage of a weighted
loss function does increase the forecast variance for GRUs and LSTMs.

How does the choice of the weight parameter α influence these results? Figure 4.4
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Figure 4.3: Illustration of the effect of training RNNs with a weighted square loss compared to
a standard MSE loss. The graphs depict the (constant) mean prediction over 1000 repetitions
and its standard deviation as error bars for all weighting schemes. The realisations of the DGP
before and after the break point are given as reference as well as the prediction using an MSE
loss, for which γ(t) = 1/T .
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Figure 4.4: Illustration of the effect of varying the parameter α in the weighted loss when
training RNNs. The graphs depict the (constant) mean prediction over 1000 repetitions and
its standard deviation as error bars for all weighting schemes with different values for α. The
realisations of the DGP before and after the break point are given as reference as well as the
prediction using MSE loss, for which γ(t) = 1/T .

compares different choices of α for the various weighting schemes for the RNN in this toy
setting. For all weighting schemes, the choice of α has a decisive effect. The stronger the
discounting of the weighting scheme, i.e. the larger α, the less biased is the RNN forecast
for τ > 0.25. This improvement comes at the expense of a larger forecast variance and an
increased forecast bias for small break fractions. Similar results can be observed for GRU
and LSTM architectures in the respective Figures A.4 and A.3 in Appendix A. These
findings highlight the importance of a careful weight parameter choice depending on the
data at hand using for instance the proposed validation set approach.

Furthermore, the results above leave room for an alternative approach in situations,
in which the break point appears early in the sample. In that case, we might trade-off re-
ducing the forecast variance by using more samples to capture the underlying dependency
structure in favour of reducing the estimation bias by excluding pre-break observations.

4.3.4 Excluding Pre-Break Observations

As an alternative to the use of weighted loss functions, we consider estimating the break
location and excluding the pre-break observations from the training set to reduce the
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estimation bias. As deep sequential models are generally data-hungry, this mitigation
strategy may increase the forecast variance due to the reduced sample size and is thus
only useful as long as we can retain enough post-break observations to still get a precise
model estimate. Therefore, we aim at developing recommendations on when this strategy
may be beneficial. In the following, we refer to this strategy as the PB strategy, which is
short for post-break sample.

One option to estimate the location of multiple structural changes is the sequential
testing procedure developed by Bai and Perron (1998, 2003). In a multiple linear regres-
sion framework, Bai and Perron (1998, 2003) estimate the break locations for a specified
number of breaks by finding the data partition, which minimises the sum of squared resid-
uals. To determine the correct number of breaks, they sequentially test the null hypothesis
of l breaks against the alternative of l+1 breaks using a sup Wald-type statistic. Building
on the estimated break locations for l and l + 1 breaks, the test statistic is based on de-
termining whether the l+1 break model can provide a significantly smaller minimal sum
of squared residuals than the l break model. This process can be repeated by sequentially
increasing l until the test fails to reject the null hypothesis of no additional breaks. For
technical details, we refer the reader to Bai and Perron (1998, 2003). After identifying
all break locations, all observations before the final break point can be discarded. The
remaining observations are then used to train the deep sequential model of interest.

As of now, we are not aware of any work using this strategy to train deep sequen-
tial architectures. However, Lin and Zhang (2022) apply a related strategy to forecast
the carbon price: the de-noised component of a wavelet transform as well as estimated
break points and lagged observations are used as input for an LSTM network. Here, the
estimated break points are used as exogenous input variables, rather than shortening the
time series based on this information.

4.4 Simulation Study

In this section, we put the proposed mitigation strategies to the test. We investigate how
weighted loss functions and the PB strategy perform under different DGPs and mean shift
scenarios. The simulation study is implemented in Python and builds upon the PyTorch
(Paszke et al., 2019), scikit-learn (Buitinck et al., 2013), and statsmodels (Seabold
& Perktold, 2010) libraries. The code can be found at

https://github.com/johannnamr/
Forecasting-Facing-Structural-Breaks-Using-Deep-Sequential-Models.

4.4.1 Experimental Setup

Before presenting the relevant simulations results, we first discuss all considered experi-
mental setups.

https://github.com/johannnamr/Forecasting-Facing-Structural-Breaks-Using-Deep-Sequential-Models
https://github.com/johannnamr/Forecasting-Facing-Structural-Breaks-Using-Deep-Sequential-Models
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4.4.1.1 Data Generating Processes

Our experimental setup comprises two different situations: we assume that the DGP is
represented by the mean shift model in (4.1), where the stationary stochastic process ϵt
follows either (1) an autoregressive (AR) model (cf. Hamilton, 2020) or (2) an ARMA
model (Box et al., 2016). In Setting 1, we particularly focus on the effect of different
strengths of autocorrelation, while Setting 2 increases the complexity of the DGP by
adding a moving average (MA) component. Thus, we analyse the effect of the proposed
mitigation strategies in a simple yet informative simulation setup.

Setting 1 As DGP, we consider the following stationary AR process of order 1:

(1− ϕL)ϵt = µ+ ut, (4.9)

where L is the lag operator, |ϕ| < 1, µ ∈ R, and ut is standard normal white noise.
We select an AR(1) process with µ = 0 and ϕ ∈ {0.1; 0.4; 0.7;−0.4}. This parameter
choice covers different levels of persistence. We do not consider a situation close to non-
stationarity such as ϕ = 0.99, since we found the deep sequential model forecasts to break
down in that case.

Setting 2 Here, we consider a stationary ARMA model of order (1, 1) as DGP, which
has the following form:

(1− ϕL)ϵt = µ+ (1 + θL)ut, (4.10)

where L is the lag operator, |ϕ| < 1, θ ∈ R, µ ∈ R, and ut is standard normal white
noise. We select an ARMA(1, 1) process with µ = 0, ϕ ∈ {0.4;−0.4} and θ ∈ {0.3;−0.3}.
This parameter choice can illustrate the effect of an the additional MA term compared
to Setting 1.

For every parameter combination, we simulate a sample of 1000 observations and
hold back the most recent 10% of observations for the test set and the previous 5% for
the validation set. Further, we repeat each experiment 500 times. A larger number of
repetitions is infeasible due to the enormous run times of repeated optimisations for model
training. Before introducing any breaks, the entire time series is scaled to values within
the interval [−1, 1] using maximum absolute scaling, i.e. xscaled = x

max(x)
. This scaling

induces no shifts, but allows for the values of error measures to be comparable across
simulation settings, since the time series now have similar magnitudes.

4.4.1.2 Mean Shift Scenarios

For each DGP, our experimental setup considers two different mean shift scenarios: we
assume (1) a single mean shift, and (2) multiple mean shifts. In Scenario 1, we reduce the
challenge of forecasting facing mean shifts in the training sample to the simplest situation
possible. Scenario 2 adds complexity in two different ways: an additional mean shift
either increases the distortion further, or reverts to the original mean.
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Scenario 1 In this scenario, we consider a single mean shift implying two regimes such
that K = 2. For every simulation setting, we investigate combinations of break sizes
β = β1 ∈ {sd(ϵt)/2, sd(ϵt), 2 · sd(ϵt)} and break locations τ ∗ = τ ∗1 ∈ {0.2, 0.5, 0.8}. The
choices of break locations correspond to three interesting situations: for τ ∗1 = 0.2, the
mean shift occurs in the beginning of the training set, whereas for τ ∗1 = 0.8 the mean
shifts towards the end of the training set. If τ ∗1 = 0.5, the mean shift occurs in the middle
of the training sample.

Scenario 2 This scenario investigates the forecast performance of deep sequential mod-
els when facing multiple mean shifts. We consider the Settings 1 and 2 with two mean
breaks, i.e. three regimes implyingK = 3. We focus on the break fractions τ ∗ = (τ ∗1 , τ

∗
2 ) ∈

{(0.2, 0.5), (0.5, 0.8)} and the situation of an increasing break as well as of a mean rever-
sion with break sizes βk ∈ {sd(ϵt)/2, sd(ϵt), 2 · sd(ϵt)}. For an increasing break, we have
β1 = β2 and for a mean reversion β1 = −β2.

4.4.1.3 Model Setups

Based on the simulated time series, we aim at generating one-step-ahead forecasts for
the deep sequential architectures. For training the models, we use the Adam algorithm
(Kingma & Ba, 2017) with learning rate 10−3, weight decay 10−6, and batch size 256 for
optimisation. We stop the optimisation when the loss function drops by less than 10−5

or has been increasing for 100 steps, or when the optimisation procedure has reached
500 steps in total. As our final model, we select the deep sequential model, which was
found to have the smallest loss on the validation set. When training the deep sequential
models using weighted loss functions, we deploy the validation set approach described
in Section 4.3.3 to choose the most suitable parameter α among three pre-determined
options. We use the very same options for α illustrated in Figure 4.2, so that we consider
α ∈ {0.005, 0.01, 0.02} for exponential weights, α ∈ {2 × 10−5, 5 × 10−5, 1 × 10−4} for
Rayleigh weights, and α ∈ {T, T 0.95, T 0.9} for the kernel-based Bartlett, Parzen and Tukey-
Hanning weights. Since we consider a univariate setting, we have p = 1 for all models.
For all deep sequential models, we consider a single-layer architecture with q = 10 nodes
in the hidden layer and train them using some weighted loss function as defined in (4.5),
which we base on the squared prediction error. The reference for evaluating the proposed
mitigation strategies is the MSE loss, for which γ(t) = 1

T
.

4.4.2 Weighted Loss Functions

Having discussed the experimental setup, we now explore the effect on the forecast quality
of utilising weighted loss functions for training the deep sequential models. We experiment
with different weights and choices of the parameter α resulting in various discounting
schemes of past observations.
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4.4.2.1 Setting 1 + Scenario 1

We begin by examining the forecast precision of the deep sequential models trained using
a weighted loss in Setting 1 and Scenario 1, where data is simulated from an AR(1) process
with different choices of ϕ and is subject to a single mean shift. Table 4.2 presents the ratio
between the MSFE for the deep sequential models when trained using an exponentially
weighted loss function (MSFEExp) and the MSFE in case of equal weights (MSFEEqual).
Results are reported for various break sizes β and locations τ ∗. The simulation results for
Rayleigh, Bartlett, Parzen, and Tukey-Hanning weighting schemes can be found in the
respective Tables B.1, B.2, B.3, and B.4 in Appendix B.1.

For the exponential weighting scheme, we find that the benefits depend on the situation
at hand. For all models, we observe that the MSFE increases compared to the MSE loss
for small breaks (β = sd(ϵt)/2) occurring early in the sample (τ ∗ = 0.2). However,
the larger the break and the later it appears, the larger is the improvement in terms
of MSFE. Surprisingly, the benefits diminish with increasing autocorrelation, but are
way larger for situations with negative autocorrelation, i.e. when comparing the cases
ϕ = 0.4 and ϕ = −0.4. A reason for this is possibly that we investigate upward mean
shifts (β > 0) implying that, for equal weights, the modelled negative autocorrelation
is underestimating the true autocorrelation strength when facing a mean shift. Between
the model architectures, only slight differences can be observed: across most parameter
combinations, the RNN benefits slightly more from the exponentially weighted loss than
the LSTM and GRU architectures. This is likely due to the more complex structure of
LSTM and GRU models, which is constructed to retain more of the past information.

Comparing the simulation results between weighting schemes, we note that exponential
and Rayleigh weights perform similarly well with slightly larger MSFE improvements for
the exponential weighting scheme. For mean shifts appearing early or in the middle of
the training set, i.e. τ ∗ = 0.2 and τ ∗ = 0.5, Bartlett, Parzen and Tukey-Hanning weights

Table 4.2: MSFEExp/MSFEEqual reported for Setting 1 and Scenario 1 using a weighted loss
function with exponential weight decay and α ∈ {0.005, 0.01, 0.02}.

β sd(ϵt)/2 sd(ϵt) 2 · sd(ϵt)
ϕ/τ∗ 0.2 0.5 0.8 0.2 0.5 0.8 0.2 0.5 0.8

RNN 0.1 1.0103 0.9918 0.9728 0.9973 0.9515 0.9201 0.9656 0.8992 0.8488
0.4 0.9964 0.9736 0.9546 0.9828 0.9271 0.8854 0.9366 0.8604 0.8239
0.7 1.0071 0.9937 0.9887 0.9994 0.9688 0.9393 0.9748 0.9133 0.8857
-0.4 0.986 0.9137 0.8437 0.9255 0.7963 0.7602 0.8042 0.717 0.7407

LSTM 0.1 1.01 0.9929 0.9765 0.999 0.9574 0.9224 0.9642 0.914 0.8721
0.4 1.0109 0.9884 0.9646 0.9924 0.932 0.8944 0.9551 0.8796 0.842
0.7 1.0052 1.0009 0.9844 1.0005 0.9698 0.957 0.9836 0.9389 0.8974
-0.4 0.9868 0.9117 0.8464 0.9301 0.8066 0.7633 0.8153 0.7347 0.8025

GRU 0.1 1.0067 0.9937 0.9752 0.9992 0.9522 0.9303 0.9646 0.9123 0.8835
0.4 1.0074 0.9884 0.96 0.9907 0.9346 0.8899 0.9597 0.8762 0.833
0.7 1.0093 1.0018 0.9875 0.9971 0.9741 0.9452 0.9804 0.9283 0.8897
-0.4 0.9887 0.9137 0.8492 0.9282 0.8055 0.7673 0.8104 0.7275 0.7906
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provide larger precision gains in terms of MSFE than exponential and Rayleigh weights,
but the picture is reversed for breaks appearing late in the sample (τ ∗ = 0.8). The
differences in MSFE gains between these two groups of weights grow with an increasing
amount of autocorrelation in the data. Further, this difference is largest for Bartlett
weights.

These results can be explained by the shape of the weights as illustrated in Figure 4.2 in
Section 4.3.3. Exponential and Rayleigh weights discount early observations more strongly
than the kernel-inspired Bartlett, Parzen and Tukey-Hanning weights and therefore have
benefits if the mean shift occurs later in the training sample. Compared to Parzen and
Tukey-Hanning weighting schemes, the Bartlett scheme applies larger weights to earlier
observations due to its linearity. Hence, Bartlett weights are best suited for situations
where the break manifests itself early in the training set since it is desirable to not loose too
much information from early data points, especially if the time series is highly correlated.

In general, we can conclude from these simulation results that the use of weighted
loss functions is a suitable mitigation strategy for an autoregressive time series. The
particular choice of the weighting scheme however, strongly depends on the present mean
shift scenario.

4.4.2.2 Setting 1 + Scenario 2

Next, we examine the forecast precision of deep sequential models trained using a weighted
loss in Setting 1 and Scenario 2, where data is simulated from an AR(1) process with
different choices of ϕ and is subject to two either increasing or reverting mean shifts.
Table 4.3 presents the ratio MSFEExp/MSFEEqual for various break sizes β and locations
τ ∗ for an exponential weights. The results for Rayleigh, Bartlett, Parzen, and Tukey-
Hanning weighting schemes can be found in the respective Tables B.5, B.6, B.7, and B.8
in Appendix B.2.

For an increasing break (β1 = β2), we note that the use a weighted loss with expo-
nential weight decay is advantageous for all model architectures in all simulation settings.
Generally, we find that the precision gain when using the exponential weighting scheme
increases with increasing break size and decreasing number of observations after the final
mean shift. In the moderate autocorrelation case, i.e. for ϕ = 0.4, we find larger MSFE
improvements than in the mild (ϕ = 0.1) and strong (ϕ = 0.7) autocorrelation cases. The
most obvious forecast precision gains can be recorded in the negative autocorrelation case
with ϕ = −0.4 for all models, which is likely due to the considered positive mean shifts.
Similar to Scenario 1, we precision benefits of the exponentially weighted loss tend to be
larger for RNN than for LSTM or GRU models.

For a reverting break(β1 = −β2), we find mixed results when using the exponential
weighting scheme: while we observe benefits in the negative autocorrelation case across
all settings and models, we only note more precise forecasts for medium (β = sd(ϵt)) and
large (β = 2 · sd(ϵt)) break sizes in mildly or moderately autocorrelated observations. For
small break sizes, the bias induced by the data section, which is subject to a shifted mean,
is not large enough to require the use of a weighted loss function. In the case of a highly
correlated time series, the exponential weight decay discards too much information from
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Table 4.3: MSFEExp/MSFEEqual reported for Setting 1 and Scenario 2 using a weighted loss
function with exponential weight decay and α ∈ {0.005, 0.01, 0.02}.

β sd(ϵt)/2 sd(ϵt) 2 · sd(ϵt)
ϕ/τ∗ (0.2,0.5) (0.5,0.8) (0.2,0.5) (0.5,0.8) (0.2,0.5) (0.5,0.8)

β1 = β2

RNN 0.1 0.9779 0.9327 0.9181 0.8798 0.8738 0.8336
0.4 0.9597 0.9093 0.8945 0.838 0.8345 0.8147
0.7 0.9851 0.9637 0.9446 0.9049 0.8793 0.8355
-0.4 0.8552 0.7747 0.7563 0.7039 0.6852 0.7327

LSTM 0.1 0.9783 0.9466 0.9279 0.8872 0.9178 0.8703
0.4 0.9681 0.9134 0.9036 0.8473 0.8773 0.8437
0.7 0.994 0.9615 0.9559 0.9104 0.9473 0.916
-0.4 0.8532 0.7927 0.7653 0.737 0.7282 0.7828

GRU 0.1 0.9771 0.9397 0.9325 0.8634 0.9013 0.8721
0.4 0.9673 0.9187 0.9085 0.8568 0.8682 0.8388
0.7 0.9892 0.961 0.9573 0.9162 0.9277 0.8847
-0.4 0.8541 0.7778 0.7652 0.7174 0.7225 0.7716

β1 = −β2

RNN 0.1 1.0053 1.0099 0.9866 0.9889 0.9353 0.9396
0.4 0.9915 0.999 0.9662 0.981 0.9066 0.9246
0.7 1.0032 1.0101 0.9905 1.0051 0.9571 0.9739
-0.4 0.9647 0.9784 0.8757 0.8945 0.7657 0.854

LSTM 0.1 1.0034 1.0086 0.9835 0.9866 0.9457 0.9502
0.4 1.0036 1.0071 0.9758 0.9922 0.9252 0.9451
0.7 1.0035 1.0146 0.997 1.0057 0.9661 0.9846
-0.4 0.9688 0.9829 0.8732 0.9002 0.7838 0.8706

GRU 0.1 1.0061 1.0072 0.9835 0.9828 0.9452 0.9476
0.4 1.0071 1.0039 0.9761 0.9902 0.925 0.9483
0.7 1.0055 1.0075 0.9961 1.013 0.9647 0.9881
-0.4 0.9693 0.9827 0.8732 0.9004 0.7781 0.8713

the observations prior to the first mean shift, so that for τ ∗ = (0.5, 0.8), the section with
a shifted mean still highly affects the forecast precision. This diminishes the advantages
of using an exponentially weighted loss function unless the break size is large.

When comparing the different weighting schemes, we note that exponential, Rayleigh
and Parzen weights provide the largest MSFE improvements in the increasing break
case. For τ ∗ = (0.2, 0.5), Rayleigh weights have advantages over Parzen and expo-
nential weights, whereas for τ ∗ = (0.5, 0.8), an exponential weighting scheme outper-
forms Rayleigh and Parzen weights. These results can likely be explained by exponential,
Rayleigh and Parzen weights dropping off more quickly than Bartlett and Tukey-Hanning
weights, which appears to be advantageous if we have two mean shifts pointing into the
same direction. Since the Parzen weighting scheme preserves slightly more information
from earlier data points than exponential and Rayleigh weights, it is less well suited to
situations where the final break occurs late in the training sample implying that the pe-
riod with the deviating mean obtains too much weight during model training. In case of
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a reverting break, exponential and Rayleigh weights can yield larger precision gains than
the Parzen weighting scheme, while all three are superior to Bartlett and Tukey-Hanning
weights. The difference between weighted loss functions based on Parzen and exponen-
tial or Rayleigh weights can again be explained by Parzen weights keeping slighlty more
information from earlier data points.

These simulation results indicate that a weighted loss function with a strong weight
decay such as exponential, Rayleigh or Parzen weights is a suitable mitigation strategy
when we have multiple mean shifts pointing into the same direction, i.e. they deviate
further and further from the original mean. When considering mean shifts, which revert
their direction, picture is less clear-cut. Here, the size of the mean shift appears to have
the largest impact, such that the use of a weighted loss function is most beneficial for
large break sizes.

4.4.2.3 Setting 2 + Scenario 1

We now shift to Setting 2, where the time series is simulated from an ARMA(1, 1) process
with different values for the parameters ϕ and θ and is subject to a single mean shift.
Table 4.4 reports the ratio MSFEExp/MSFEEqual for various break sizes β and locations τ ∗

in case of an exponential weighting scheme. The simulation results for Rayleigh, Bartlett,
Parzen, and Tukey-Hanning weighting schemes can be found in the respective Tables B.9,
B.10, B.11, and B.12 in Appendix B.3.

For the exponential weighting scheme, we find general patterns which are similar to
the Scenario 1 results when the DGP is an AR(1) process, i.e. Setting 1: the forecast
precision gains increase with increasing break size and a later break location as well as
for negative autocorrelation. However, the effectiveness of deploying an exponentially
weighted loss function differs between Setting 1 and 2. For ϕ = 0.4, adding an MA
component, regardless of whether the MA parameter has a positive or negative sign,

Table 4.4: MSFEExp/MSFEEqual reported for Setting 2 and Scenario 1 using a weighted loss
function with exponential weight decay and α ∈ {0.005, 0.01, 0.02}.

β sd(ϵt)/2 sd(ϵt) 2 · sd(ϵt)
(ϕ, θ)/τ∗ 0.2 0.5 0.8 0.2 0.5 0.8 0.2 0.5 0.8

RNN (0.4,0.3) 1.0074 0.9943 0.9846 0.9983 0.9639 0.9126 0.9746 0.874 0.8154
(0.4,-0.3) 1.0106 0.9907 0.9644 0.9981 0.9426 0.9088 0.9658 0.8979 0.8637
(-0.4,0.3) 0.999 0.976 0.9475 0.981 0.9241 0.8681 0.9327 0.8473 0.8121
(-0.4,-0.3) 0.9736 0.8537 0.7209 0.8766 0.6476 0.5679 0.6322 0.5426 0.5147

LSTM (0.4,0.3) 1.005 0.9942 0.9811 0.9955 0.9649 0.9095 0.972 0.8984 0.8235
(0.4,-0.3) 1.0083 0.9893 0.9677 0.996 0.9507 0.9075 0.9649 0.9048 0.8662
(-0.4,0.3) 1.0033 0.9781 0.9488 0.9828 0.931 0.8978 0.9483 0.878 0.8404
(-0.4,-0.3) 0.9742 0.8502 0.7148 0.8856 0.6414 0.5844 0.6602 0.5583 0.5504

GRU (0.4,0.3) 1.0035 0.9919 0.9786 0.994 0.9594 0.9159 0.9682 0.8903 0.8212
(0.4,-0.3) 1.0079 0.9882 0.9692 0.9987 0.949 0.9159 0.964 0.8976 0.8648
(-0.4,0.3) 1.001 0.977 0.9544 0.981 0.9274 0.8837 0.9369 0.8801 0.8278
(-0.4,-0.3) 0.9733 0.8496 0.719 0.8816 0.6437 0.5786 0.6557 0.5503 0.5473
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reduces the MSFE improvements obtained from using exponential weights compared to
Setting 1. For ϕ = −0.4, we note the same result for a positive MA component (θ = 0.3),
but in case of a negative MA coefficient (θ = −0.3), we observe large forecast precision
gains especially for large break sizes. The effectiveness reduction is likely due to the
increased complexity of the DGP, which requires more information in order for the deep
sequential models to produce adequate forecasts. If both AR and MA components have
negative coefficients, the enlarged MSFE improvements can be traced back to the positive
direction of the mean shift resulting in more severely biased forecasts when using an
equally weighted loss. All of these observations are stable across the different model
architectures.

Comparing the different considered weighting schemes, we find that Tukey-Hanning
weights provide the largest MSFE gains for an early break (τ ∗ = 0.2) followed by Bartlett
weights. Both types of weights represent different types of decay (nonlinear and linear
respectively), but the have in common that they perform the weakest discounting of
past observations compared to the other considered weights (see Figure 4.2). This is
beneficial here since the more complex dependence structure in the simulated time series
requires more data to appropriately train the deep sequential models. For a middle break
(τ ∗ = 0.5), Rayleigh and Parzen weighting schemes yield the biggest forecast precision
improvements indicating that they provide the best balance between down-weighting pre-
break observations and retaining most post-break information. In case of a late break
(τ ∗ = 0.8), an exponentially weighted loss achieves the largest MSFE improvements as in
this setup, most of the information from earlier observations is rendered irrelevant. From
these results, it becomes clear that the choice of a suitable weighting scheme strongly
depends on composition of the time series under investigation.

4.4.2.4 Setting 2 + Scenario 2

Lastly, we consider Setting 2 with a double mean shift. Table 4.5 records the ratio
MSFEExp/MSFEEqual for various break sizes β and locations τ ∗ in case of an exponen-
tial weighting scheme. The results for Rayleigh, Bartlett, Parzen, and Tukey-Hanning
weighting schemes can be found in the respective Tables B.13, B.14, B.15, and B.16 in
Appendix B.4.

For an exponentially weighted loss, we again find similar patterns as for Scenario 2
when the DGP is represented by an AR(1) process (Setting 1): we observe no benefit in
terms of MSFE improvement for an early final break and a small break size, while there
are growing forecast precision gains for a late final break point and increasing break size as
well as for the negative autocorrelation cases. Yet the effectiveness of utilising exponential
weights is reduced by adding an MA component in both increasing and reverting break
situations since the added complexity in the DGP demands for more data to generate pre-
cise forecasts with deep sequential models. An exception is the combination of a negative
AR and MA coefficient where we observe much larger forecast precision improvements in
the increasing and reverting break cases, again possibly reasoned by the positive mean
shift direction. These simulation results appear to be stable across the different model
architectures.
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Table 4.5: MSFEExp/MSFEEqual reported for Setting 2 and Scenario 2 using a weighted loss
function with exponential weight decay and α ∈ {0.005, 0.01, 0.02}

β sd(ϵt)/2 sd(ϵt) 2 · sd(ϵt)
(ϕ, θ)/τ∗ (0.2,0.5) (0.5,0.8) (0.2,0.5) (0.5,0.8) (0.2,0.5) (0.5,0.8)

β2 = β2

RNN (0.4,0.3) 0.9828 0.9387 0.9234 0.8618 0.8445 0.798
(0.4,-0.3) 0.9712 0.9329 0.9206 0.8812 0.861 0.8252
(-0.4,0.3) 0.9558 0.9002 0.8854 0.8274 0.8343 0.8167
(-0.4,-0.3) 0.7529 0.605 0.5871 0.5323 0.532 0.6065

LSTM (0.4,0.3) 0.9759 0.942 0.9369 0.8663 0.9142 0.8593
(0.4,-0.3) 0.9768 0.9377 0.9311 0.8943 0.9145 0.8715
(-0.4,0.3) 0.9594 0.9156 0.9062 0.8591 0.8917 0.8495
(-0.4,-0.3) 0.7501 0.6101 0.5934 0.5788 0.5708 0.6341

GRU (0.4,0.3) 0.9776 0.9392 0.9358 0.868 0.8881 0.8358
(0.4,-0.3) 0.979 0.9343 0.9299 0.8717 0.9028 0.8623
(-0.4,0.3) 0.9578 0.9101 0.9038 0.8465 0.8766 0.8481
(-0.4,-0.3) 0.7503 0.6088 0.5873 0.5557 0.5524 0.6441

β1 = −β2

RNN (0.4,0.3) 1.0034 1.0113 0.9899 0.9989 0.9449 0.9526
(0.4,-0.3) 1.0029 1.0091 0.9784 0.9866 0.9315 0.9346
(-0.4,0.3) 0.9948 0.9997 0.9627 0.9728 0.907 0.9212
(-0.4,-0.3) 0.9404 0.9533 0.7824 0.8095 0.5923 0.7445

LSTM (0.4,0.3) 0.9999 1.0068 0.9891 0.9971 0.9521 0.9631
(0.4,-0.3) 1.0026 1.0051 0.9806 0.9836 0.9475 0.9443
(-0.4,0.3) 0.9947 0.9997 0.968 0.9767 0.9252 0.9357
(-0.4,-0.3) 0.9434 0.9543 0.79 0.8177 0.6138 0.7178

GRU (0.4,0.3) 0.999 1.0096 0.9891 0.9997 0.9469 0.9623
(0.4,-0.3) 1.0027 1.003 0.982 0.9871 0.9522 0.945
(-0.4,0.3) 0.9937 0.9989 0.9633 0.9745 0.9118 0.9268
(-0.4,-0.3) 0.9428 0.9544 0.7885 0.8162 0.6079 0.7261

When comparing the different weighting schemes, we note for both an increasing and
a reverting break that if τ = (0.2, 0.5), i.e. in case of an early final break, Tukey-Hanning
and exponential weights give the smallest benefits in terms of MSFE, while Rayleigh and
Parzen provide the largest forecast precision improvements. In this situation, Tukey-
Hanning weights include too much information from the observations prior to the final
break, whereas the exponential weighting scheme does not keep track of a long enough
information history by discounting the observations too strongly (see Figure 4.2). In
contrast, Rayleigh and Parzen weights strike an appropriate balance in this situation.
For τ = (0.5, 0.8), Bartlett and Tukey-Hanning weights provide the smallest MSFE gains
since too much information prior to the final break point is conserved, while the weight-
ing schemes with the strongest discounting of past observations, exponential and Rayleigh
weights, achieve the largest forecast precision improvements. From these simulation re-
sults, we can once more conclude that there is not one best weight type, but the choice is
very much dependent on the mean shift scenario at hand.
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4.4.3 Excluding Pre-break Observations

We investigate whether excluding the pre-break observations from the training data can
improve the forecast performance of deep sequential models. Since the data is simulated,
the break points are known for all simulation setups. To purely analyse the effect of
using a reduced dataset, we use this knowledge instead of applying the sequential testing
procedure of Bai and Perron (1998, 2003), thereby excluding the uncertainty associated
with estimating break points. Additionally, we do not distinguish between single and
multiple mean shifts: we simply reduce the dataset to the observations after the most
recent break location, regardless of how many mean shifts occurred before.

4.4.3.1 Setting 1

We begin by considering Setting 1, i.e. an AR(1) process with different values for ϕ. Table
4.6 reports the ratio between the MSFE using the PB strategy and the MSFE when the
models are trained on the whole dataset using the MSE loss for various break points τ ∗

and break sizes β in Scenario 1.
We observe that the MSFE improves over the reference in all cases apart from the

GRU architecture if ϕ = 0.4 and we have a small and early occurring mean shift. The
larger the break size β, and the later the break appears, the more beneficial it is to use the
PB strategy. For an increasing autocorrelation, the reported MSFE ratio decreases and
when comparing the ϕ = 0.4 and the ϕ = −0.4 cases, we find additional improvements
for the negative autocorrelation setting. From these results, we conclude that the PB
strategy is a useful way of dealing with in-sample structural breaks when training deep
sequential models.

However, it is important to note that when investigating the MSFEPB of RNN, LSTM
and GRU models instead of the reported ratio (results not reported here), we find that the
MSFEPB decreases with stronger autocorrelation in the simulated time series and increases
with a more recent break point. This indicates that the deep sequential architectures are

Table 4.6: MSFEPB/MSFEEqual reported for Setting 1 combined with Scenario 1.

β sd(ϵt)/2 sd(ϵt) 2 · sd(ϵt)
ϕ/τ∗ 0.2 0.5 0.8 0.2 0.5 0.8 0.2 0.5 0.8

RNN 0.1 0.9967 0.9813 0.9634 0.9843 0.9407 0.9085 0.9527 0.8857 0.8378
0.4 0.9945 0.9783 0.9576 0.9824 0.9314 0.882 0.936 0.8588 0.8156
0.7 0.9951 0.9883 0.9909 0.9905 0.9592 0.9266 0.9692 0.899 0.8731
-0.4 0.9807 0.9086 0.8369 0.9199 0.7885 0.7427 0.7977 0.709 0.6699

LSTM 0.1 0.9981 0.9822 0.966 0.9877 0.9468 0.9114 0.9546 0.9002 0.861
0.4 0.9953 0.9817 0.9592 0.9823 0.9284 0.8805 0.9454 0.8684 0.8209
0.7 0.9936 0.9898 0.9803 0.9882 0.9587 0.934 0.9694 0.9228 0.8783
-0.4 0.9805 0.9049 0.8356 0.9231 0.7973 0.7435 0.808 0.7245 0.7246

GRU 0.1 0.9958 0.9821 0.9653 0.9877 0.9406 0.919 0.9535 0.8976 0.8733
0.4 1.0001 0.9766 0.9528 0.9827 0.9247 0.8772 0.9497 0.8602 0.8125
0.7 0.9979 0.9926 0.9843 0.9886 0.9644 0.9314 0.9692 0.9139 0.8742
-0.4 0.9833 0.9071 0.8386 0.9219 0.7964 0.7477 0.803 0.7179 0.7131
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more data-hungry than traditional time series models and it could be detrimental for the
forecast performance to disregard large proportions of the training data entirely. The use
of weighted loss functions could therefore be a promising alternative strategy in particular
settings.

Table B.17 in Appendix B.5 reports the ratio MSFEPB/MSFEEqual for Scenario 2. As
expected, we observe similar results to Scenario 1 in case of an increasing double mean
shift. For a reverting mean shift, we only find advantages if the break is large or if the
final break occurs earlier in the sample. In this case, it is obvious that the success of the
PB strategy strongly depends on how much data is left post-break.

Compared to the use of weighted loss functions as mitigating strategy for in-sample
mean shifts, the PB strategy provides larger MSFE improvements in both Scenario 1
and 2 if the (final) mean shift occurs earlier in the sample. This is clearly related to the
fact that deep sequential models need a relatively large dataset to generate precise fore-
casts. Deploying weighted loss functions caters to this requirement better than discarding
considerable chunks of the time series entirely.

4.4.3.2 Setting 2

We now investigate how the PB strategy performs if additional complexity is added to
the underlying DGP. We therefore present the simulation results for Setting 2, where the
data is generated by an ARMA(1,1) process with different parameter values for the AR
and MA components for Scenarios 1 (Table 4.7) and 2 (Table B.18 in Appendix B.5).
Again, all results are presented as the ratio between MSFEPB and the MSFEEqual.

For Scenario 1, we find for all model architectures that the forecast precision improves
in all cases apart from the (ϕ, θ) = (0.4, 0.3) situation with a small and early occurring
mean shift. Generally, we observe similar results for this scenario as in Setting 1, where
the DGP is an AR(1) process: adding an MA component reduces the effectiveness of
the PB strategy due to the added complexity demanding more data to train the deep

Table 4.7: MSFEPB/MSFEEqual reported for Setting 2 combined with Scenario 1.

β sd(ϵt)/2 sd(ϵt) 2 · sd(ϵt)
(ϕ, θ)/τ∗ 0.2 0.5 0.8 0.2 0.5 0.8 0.2 0.5 0.8

RNN (0.4,0.3) 1.0005 0.9876 0.9812 0.9915 0.9574 0.9094 0.968 0.8681 0.8126
(0.4,-0.3) 0.9963 0.981 0.9558 0.984 0.9333 0.9008 0.9521 0.8891 0.856
(-0.4,0.3) 0.9893 0.9658 0.9401 0.9714 0.9144 0.8613 0.9236 0.8384 0.8058
(-0.4,-0.3) 0.9702 0.8485 0.712 0.8735 0.6436 0.5609 0.63 0.5393 0.5083

LSTM (0.4,0.3) 1.0013 0.9895 0.9781 0.9918 0.9604 0.9067 0.9684 0.8942 0.8209
(0.4,-0.3) 0.9981 0.9793 0.9588 0.9859 0.941 0.8992 0.9552 0.8956 0.8582
(-0.4,0.3) 0.9936 0.9701 0.9399 0.9732 0.9234 0.8893 0.9391 0.8708 0.8325
(-0.4,-0.3) 0.9703 0.8443 0.7062 0.8821 0.6369 0.5775 0.6575 0.5544 0.5439

GRU (0.4,0.3) 1.0003 0.9871 0.9729 0.9908 0.9547 0.9105 0.9651 0.8859 0.8164
(0.4,-0.3) 0.9962 0.9787 0.963 0.9871 0.9399 0.9101 0.9528 0.889 0.8593
(-0.4,0.3) 0.9905 0.9688 0.9475 0.9708 0.9196 0.8774 0.9272 0.8727 0.8218
(-0.4,-0.3) 0.9695 0.8443 0.7104 0.8781 0.6397 0.5717 0.6532 0.5469 0.5408
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sequential models. Again, an exception is constituted by augmenting the negative auto-
correlation case with a negative MA coefficient due to the positive direction of the mean
shift. These observations similarly hold for RNN, LSTM and GRU architectures. Com-
pared to deploying the mitigating strategy of weighted loss functions, the PB strategy
provides more forecast precision gains across all simulation settings of Scenario 1.

For Scenario 2, we observe general result patterns for the PB strategy, which are simi-
lar to the ones in Setting 1. Across all model architectures, the additional MA component
has the same effect as described for Scenario 1. Compared to the use of weighted loss
functions, we once more find advantages in terms of larger MSFE improvements for the
PB strategy if the final mean shift occurs early in the sample, while we detect disadvan-
tages for late final breaks. Therefore, we can summarise that the usefulness of the PB
strategy strongly depends on the location of the (final) mean shift and even more so if
the complexity of the dependency structure in the time series of interest increases.

4.5 Application to the Voltage of the German

Electric Power Grid

We now aim at forecasting real-world data, which are subject to mean shifts. This appli-
cation is implemented in R and Python using the strucchange (Zeileis et al., 2002) and
PyTorch (Paszke et al., 2019) libraries. The code can also be found at

https://github.com/johannnamr/
Forecasting-Facing-Structural-Breaks-Using-Deep-Sequential-Models.

4.5.1 Data and Experimental Setup

We aim at forecasting the voltage of the electric power grid measured every second over
the course of a day at Zinkmattenstraße in Freiburg, Germany. We consider four different
dates and aggregate the data to measurements every minute by averaging in order to
obtain four datasets with 1440 observations each. All data is provided by the Fraunhofer
Institute for Solar Energy Systems via their online platform Energy Charts (Fraunhofer
Institute for Solar Energy Systems, 2023).

For the dynamic operation of electric power grids, it is crucial to be able to accurately
forecast parameters relevant to a smart grid such as power supply and demand as well as
technical information on the stability of the system (Schäfer et al., 2015). The voltage of
the power grid is one of the parameters providing indications for its stability. Fluctuations
in the voltage occur due to local changes in power supply and demand, which may be large
enough to shift the mean of the time series: Figure 4.5 illustrates the four time series and
highlights the observations, at which the sequential procedure of Bai and Perron (1998,
2003) identifies a mean shift, and indicates the corresponding 95% confidence intervals.
Table 4.8 summarises the results of the Bai and Perron (1998, 2003) procedure. We find
that each of the four datasets contains four mean shifts at different points in time. Apart
from the third break point in the datasets of the 18/09/2022 and 08/01/2023, all break

https://github.com/johannnamr/Forecasting-Facing-Structural-Breaks-Using-Deep-Sequential-Models
https://github.com/johannnamr/Forecasting-Facing-Structural-Breaks-Using-Deep-Sequential-Models
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point estimates exhibit narrow confidence intervals. Additional augmented Dickey-Fuller
tests (Dickey & Fuller, 1979) on the resulting sections between the break points reject the
null hypothesis of non-stationarity on a 10% level in most cases. Most importantly, the
null is rejected for the final sections of all datasets. Therefore, the four voltage time series
are well suited for the application of our developed mitigation strategies for the training
of deep sequential models in the presence of mean shifts in the training data.

Figure 4.5: Voltage of the electric power grid measured every second in volt over the course of
a day at Zinkmattenstraße in Freiburg, Germany. Data is aggregated to measurements every
minute by averaging. The dashed vertical lines represent the estimated break points and the
red horizontal bars the 95% confidence intervals.

Table 4.8: Break points and corresponding 95% confidence intervals estimated using the Bai
and Perron (1998, 2003) procedure.

Data Estimate 95%-CI

18/09/2022 04:10 04:09 , 04:11
07:52 07:42 , 07:55
13:00 12:40 , 13:29
17:43 17:42 , 17:44

01/10/2022 05:29 05:28 , 05:30
09:14 09:13 , 09:15
14:02 14:01 , 14:03
19:07 19:06 , 19:08

Data Estimate 95%-CI

08/10/2022 03:58 03:52 , 04:17
08:02 08:01 , 08:03
15:03 15:02 , 15:04
20:10 20:08 , 20:13

08/01/2023 04:16 04:05 , 04:25
10:46 10:45 , 10:47
14:22 13:32 , 15:26
18:36 18:35 , 18:37
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For the application, we split the voltage time series into training, validation, and test
data: 90% of the data (1295 observations) are reserved for training, while the remaining
10% are split into 1/3 validation (48 observations) and 2/3 test data (96 observations).
The final observation in the training set corresponds to a time stamp of 21:34, which is
located beyond the final estimated break point for all time series. For model training,
all time series are scaled to values within the interval [0, 1] using min-max-scaling, i.e.

xscaled = x–min(x)
max(x)– min(x)

. Further, we consider a univariate setting, i.e. p = 1, in which we
generate one-step ahead forecasts from the input of previous observations.

For the optimisation, we choose the same parameters as in the simulations of Section
4.4: to train the deep sequential models, we use the Adam algorithm (Kingma & Ba,
2017) with learning rate 10−3, weight decay 10−6, and batch size 256 for optimisation.
We stop the optimisation when the loss function drops by less than 10−5 or has been
increasing for 100 steps, or when the optimisation procedure has reached 500 steps in
total. The learned model is chosen to be the one with the smallest loss on the validation
set. For all deep sequential models, we consider a single-layer architecture with q = 10
nodes in the hidden layer and train them using the MSE loss unless stated otherwise.

Since we are now working with real-life data instead of being in a well-controlled
simulation setting, we make adjustments to our forecast evaluation methodology. This
is to ensure that we provide the best possible voltage forecast given the class of deep
sequential models: due to the non-convexity of the optimisation problem, we initialise
with 100 different random seeds, resulting in 100 different trained models for each model
architecture. While every single trained model represents a locally optimal model, the
best trained model is close to a globally optimal model. We therefore report the overall
performance of all 100 models, i.e. the distribution of their forecast metrics on the test
set, as well as the best performance coming from the model with the most precise forecast
on the validation set. When using weighted loss functions, we choose the most suitable
value for the parameter α based on the validation MSE loss and repeat this process 100
times in order to evaluate best and overall performances. For exponential and Rayleigh
weights, we use α ∈ {0.005, 0.01, 0.002} and α ∈ {2×10−5, 5×10−5, 1×10−4} respectively,
while for the kernel-based weights, i.e. Bartlett, Parzen and Tukey-Hanning weights, we
choose α ∈ {T, T 0.95, T 0.9}. To deploy the PB strategy, we cut off the training set at the
final estimated break point for each dataset as reported in Table 4.8.

4.5.2 Results

4.5.2.1 Best Performance

Table 4.9 reports the best performance of all proposed mitigation strategies for all datasets
and model architectures. Considering the dataset 18/09/2022, we find that all mitigation
strategies improve over the equal weights training in terms of MSFE. An explanation can
be derived from the illustration of this dataset in Figure 4.5: the first estimated mean
shifts appear to be very small in size compared to the final break resulting in strongly
biased weight estimates for models trained with a standard MSE loss.
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Table 4.9: Best performance - MSFEi/MSFEEqual reported for the model with the smallest
validation loss of all 100 trained models.

Weighted Loss

Data Model Exp Ray Bar Par Tuk PB

18/09/2022 RNN 0.9561 0.9602 0.9556 0.9555 0.9584 0.9505
LSTM 0.9968 0.9793 0.9926 0.9907 0.9855 0.9696
GRU 0.9747 0.9638 0.969 0.9736 0.9733 0.9551

01/10/2022 RNN 1.0 0.9721 0.9559 1.0086 0.9974 1.1744
LSTM 1.0224 0.9992 1.0243 1.0198 1.0075 1.1839
GRU 1.025 0.9825 1.0021 1.018 1.0095 1.1653

08/10/2022 RNN 1.0037 0.9533 0.914 0.9564 0.9153 1.0508
LSTM 0.9364 0.9625 0.941 0.953 0.9533 1.3051
GRU 0.9703 0.9522 0.9278 0.9982 0.9252 1.2049

08/01/2023 RNN 0.9002 0.7989 0.7811 0.7766 0.8461 0.7957
LSTM 1.0162 0.9791 0.9172 0.9958 0.9921 0.9588
GRU 0.9887 0.9261 0.8964 0.9939 0.9923 0.921

For dataset 01/10/2022, using Rayleigh weights slightly improves the MSFE over equal
weights for all considered models. Exponential, Bartlett, Parzen, and Tukey-Hanning
weighting schemes perform similarly to standard MSE loss training with MSFE records
marginally below or above the reference. When using only post-break observations, the
MSFE is up to 18% larger than when using equal weights. Referring to Figure 4.5, we
observe that the mean in this dataset alternates between two largely different levels posing
a setting which is very difficult to depict by any of the considered model architectures
regardless of how the models were trained.

Focusing on dataset 08/10/2022, we find that the weighted loss strategy can provide
MSFE improvements of up to 8.5% over the standard MSE loss (RNN architecture trained
with Bartlett or Tukey-Hanning weights). However, the MSFE when using only post-
break observations is reported as being up to 30.5% larger (LSTM architecture) than
the equal weights reference. Examining Figure 4.5, we can conclude that down-weighting
observations between the time stamps 06:02 and 15:03 exhibiting a much higher level than
all others, confers an advantage to models trained with weighted loss functions. Further,
there appear to be too few observations left after the final estimated break point at time
stamp 20:10 to get precise weight estimates for models trained using the PB strategy.

For the last dataset, i.e. 08/01/2023, we observe that all mitigation strategies pro-
vide smaller MSFEs than the equal weights approach apart from the LSTM architecture
trained with exponential weights. For RNNs, a MSFE reduction of over 20% is recorded
(Rayleigh, Bartlett, and Parzen weighting schemes as well as PB strategy). Reflecting on
the time series plot of the data in Figure 4.5, we note a similar situation to the previous
dataset with the period between time stamps 10:46 and 18:36 being characterised by a
much larger mean than the remaining observations.

Overall, we find that we are never worse off when choosing a weighted loss function
over a standard MSE loss. Rayleigh weights emerge as being particularly recommendable
since the MSFE is smaller compared to equal weights for all considered datasets and
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model architectures. Using only post-break observations turns out to be a viable strategy
only if there is enough data left in the training set to learn the dependence structure.

4.5.2.2 Overall Performance

Figure 4.6 reports the overall performance for the RNN architecture. Overall datasets,
the Rayleigh weighting scheme showcases the most consistent results of all mitigation
strategies by having the smallest median root MSFE (RMSFE) of all considered model
setups.

Considering dataset 18/09/2022 in particular, we find that all mitigation strategies
outperform the standard MSE loss in the median. Approaches using a weighted loss,
show an elevated variation in their RMSFE compared to equal weights, but even their
largest RMSFE is still smaller than the smallest RMSFE recorded for the standard MSE
loss training. When using only post-break observations, we note a large upward variation
in the RMSFE.

For the dataset 01/10/2022, only exponential and Rayleigh weighting schemes can,
on average, outperform a training using equal weights. The RMSFE of the PB strategy
is always larger than for a standard MSE loss, which can certainly be explained by a
training set, which is too short for the model to learn the dependence structure in the
data.

When investigating dataset 08/10/2022, all weighted loss approaches apart from Tukey-
Hanning weights report smaller RMSFE in mean and median than the standard MSE
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Figure 4.6: Overall performance - distribution of the RMSE on the test set for 100 trained
RNN architectures. The red bars provide the sample median and the orange triangles the
sample mean. The grey dashed horizontal line corresponds to the median RMSFE when using
equal weights.
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loss. For exponential, Rayleigh and Parzen weighting schemes, all recorded RMSFEs are
smaller than the average MSFE for equal weights. Training the RNN using only post-
break observations leads to a larger RMSFE on average than when using the full dataset
and an increased variation. Again, this is likely a result of a training data set, which is
too small for the model to learn the relevant dependencies.

For the final dataset, i.e. 08/01/2023, we find that all mitigation strategies have a
smaller RMSFE in mean and median than using the standard MSE loss. Notably, the
RMSFE is particularly small for exponential and Rayleigh weighting schemes as well as
the PB strategy.

Appendix C reports the overall performance for LSTM and GRU architectures in
Figures C.1 and C.2 respectively. Generally, the observations coincide with the RNN
results. The only exception occurs for the 01/10/2022 dataset when training LSTM
models. Here, the standard MSE loss outperforms all mitigation strategies.

In summary, we note that in almost all settings it is sensible to consider one of the
proposed mitigation strategies when the training data is found to contain mean shifts.
Especially, exponential and Rayleigh weighting schemes can be recommended to forecast
the voltage in the German electric power grid. Whether using only post-break observations
is a viable option heavily depends on how much data remains after the final estimated
break point in relation to how difficult it is to learn the underlying dependence structure.

4.6 Conclusion

In this work, we investigated the forecasting performance of deep sequential models in the
presence of mean shifts in the training data. First, we reviewed RNN, LSTM and GRU
architectures. Then, we presented the considered mean shift model, and discussed how
the forecasts of deep sequential models are affected by mean shifts. Further, we proposed
different strategies for fostering the forecast robustness of deep sequential models when
facing mean shifts such as the deployment of weighted loss functions or estimating the
break points and excluding pre-break observations from the training set. In an extensive
simulation study, we evaluated the proposed mitigation strategies. Finally, this compar-
ison was extended to a real-world application, in which we predicted the voltage of the
German electric power grid.

We found that different mitigation strategies work better under different conditions:
if there is enough data left after the final estimated break point such that the underlying
DGP can be successfully characterised, discarding all previous observations in the training
set can produce good forecasts. If the the final estimated mean shift occurs later in the
training sample, however, the use of weighted loss functions to train the deep sequential
models can be an appropriate mitigating strategy. The magnitude of the forecast preci-
sion improvements mostly depends on the size of the mean shift. Further, the choice of
particular weights revolves around the particular structure of the time series of interest
and is therefore difficult to generalise. In the application, we observed that, on average,
we were never worse off when deploying weighted losses with exponential or Rayleigh
weight decay than when using no mitigation strategy at all. Additionally, training the
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deep sequential architectures using these weighting schemes provided the possibility of
large improvements in the forecast precision.

In our analyses, we only considered a fixed sequence of weight decay parameters for the
weighted loss functions. A natural next step would be to develop suitable tuning strategies
for selecting the most beneficial parameter value for a given time series. Furthermore,
deep sequential architectures naturally lend themselves to multivariate settings, so that
the proposed mitigation strategies could be investigated for multivariate forecasts. Having
examined the impact of mean shifts in the training data, further investigations are required
in order to analyse and possibly mitigate the effect of mean shifts in the validation or test
set.

Appendix

Appendix A Additional Results: Models

This section reports additional results for section 4.2.
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Figure A.1: Illustration of the effect of training LSTMs with a weighted square loss compared
to a standard MSE loss. The graphs depict the (constant) mean prediction over 1000 repetitions
and its standard deviation as error bars for all weighting schemes. The realisations of the DGP
before and after the break point are given as reference as well as the prediction using an MSE
loss, for which γ(t) = 1/T .
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Figure A.2: Illustration of the effect of training GRUs with a weighted square loss compared to
a standard MSE loss. The graphs depict the (constant) mean prediction over 1000 repetitions
and its standard deviation as error bars for all weighting schemes. The realisations of the DGP
before and after the break point are given as reference as well as the prediction using an MSE
loss, for which γ(t) = 1/T .
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Figure A.3: Illustration of the effect of varying the parameter α in the weighted loss when
training LSTMs. The graphs depict the (constant) mean prediction over 1000 repetitions and
its standard deviation as error bars for all weighting schemes with different values for α. The
realisations of the DGP before and after the break point are given as reference as well as the
prediction using an MSE loss, for which γ(t) = 1/T .
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Figure A.4: Illustration of the effect of varying the parameter α in the weighted loss when
training GRUs. The graphs depict the (constant) mean prediction over 1000 repetitions and
its standard deviation as error bars for all weighting schemes with different values for α. The
realisations of the DGP before and after the break point are given as reference as well as the
prediction using an MSE loss, for which γ(t) = 1/T .

Appendix B Additional Results: Simulation Study

This section reports additional results for section 4.4.

B.1 Weighted Loss Functions: Setting 1 + Scenario 1

Table B.1: MSFERay/MSFEEqual reported for Setting 1 and Scenario 1 using a weighted loss
function with Rayleigh weight decay and α ∈ {2× 10−5, 5× 10−5, 1× 10−4}.

β sd(ϵt)/2 sd(ϵt) 2 · sd(ϵt)
ϕ/τ∗ 0.2 0.5 0.8 0.2 0.5 0.8 0.2 0.5 0.8

RNN 0.1 1.0099 0.9924 0.9734 0.9982 0.9503 0.9213 0.9657 0.8973 0.8586
0.4 0.9932 0.9759 0.9548 0.982 0.9252 0.8916 0.936 0.8574 0.8513
0.7 1.0021 0.9941 0.9897 0.9971 0.9671 0.9375 0.9762 0.9068 0.901
-0.4 0.9841 0.9121 0.8558 0.9244 0.7926 0.8098 0.8015 0.713 0.7872

LSTM 0.1 1.0082 0.9936 0.9754 0.9986 0.9548 0.9225 0.9655 0.9116 0.8796
0.4 1.0109 0.9878 0.9689 0.9942 0.9322 0.9037 0.9561 0.8759 0.8712
0.7 1.0024 0.9926 0.9821 1.0012 0.966 0.9502 0.9803 0.9358 0.905
-0.4 0.9856 0.9089 0.8575 0.9272 0.8014 0.8186 0.8126 0.7309 0.861

GRU 0.1 1.0063 0.9929 0.9755 0.9998 0.9498 0.9314 0.9639 0.9096 0.8883
0.4 1.0081 0.9864 0.9634 0.9909 0.9361 0.8985 0.9592 0.875 0.8597
0.7 1.0049 0.9922 0.99 0.9948 0.9672 0.9481 0.9805 0.9206 0.9006
-0.4 0.9887 0.9112 0.8602 0.9256 0.8011 0.8248 0.8071 0.7226 0.8455
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Table B.2: MSFEBar/MSFEEqual reported for Setting 1 and Scenario 1 using a weighted loss
function with Bartlett weight decay and α ∈ {T, T 0.95, T 0.9}.

β sd(ϵt)/2 sd(ϵt) 2 · sd(ϵt)
ϕ/τ∗ 0.2 0.5 0.8 0.2 0.5 0.8 0.2 0.5 0.8

RNN 0.1 1.0082 0.9925 0.981 0.9963 0.9527 0.9306 0.9678 0.9004 0.8617
0.4 0.9926 0.9725 0.9742 0.9798 0.9318 0.9389 0.9344 0.8622 0.9053
0.7 0.9964 0.9929 1.0032 0.9914 0.9669 0.9729 0.9773 0.9139 0.9839
-0.4 0.9841 0.9136 0.9268 0.9237 0.7939 0.8733 0.8012 0.7156 0.7981

LSTM 0.1 1.0081 0.9921 0.9787 0.9971 0.9585 0.9295 0.9669 0.9129 0.8809
0.4 1.0072 0.9859 0.9902 0.9918 0.9354 0.9581 0.9542 0.8846 0.9346
0.7 0.9962 0.9973 0.9899 0.9942 0.9719 0.98 0.9803 0.9436 0.9548
-0.4 0.9825 0.9107 0.9373 0.9253 0.8019 0.8823 0.813 0.7311 0.8678

GRU 0.1 1.0052 0.9919 0.9798 0.9991 0.9529 0.939 0.9663 0.9113 0.8917
0.4 1.0084 0.9863 0.9823 0.9882 0.9391 0.9482 0.9587 0.8817 0.9117
0.7 1.0034 0.9954 1.003 0.9967 0.9753 0.9778 0.977 0.9356 0.9762
-0.4 0.9856 0.9135 0.9379 0.9243 0.8019 0.8879 0.8062 0.7229 0.852

Table B.3: MSFEPar/MSFEEqual reported for Setting 1 and Scenario 1 using a weighted loss
function with Parzen weight decay and α ∈ {T, T 0.95, T 0.9}.

β sd(ϵt)/2 sd(ϵt) 2 · sd(ϵt)
ϕ/τ∗ 0.2 0.5 0.8 0.2 0.5 0.8 0.2 0.5 0.8

RNN 0.1 1.0093 0.991 0.9761 0.9966 0.95 0.9283 0.9644 0.8983 0.8629
0.4 0.9948 0.9716 0.9627 0.9826 0.9272 0.912 0.9347 0.8587 0.8885
0.7 1.002 0.9925 0.9924 0.9952 0.9656 0.9486 0.9713 0.9101 0.9332
-0.4 0.9862 0.9115 0.8849 0.9249 0.7927 0.8592 0.8015 0.7129 0.7935

LSTM 0.1 1.0087 0.9914 0.9773 0.9978 0.9554 0.929 0.964 0.9127 0.8833
0.4 1.0116 0.9857 0.9767 0.9937 0.9315 0.9257 0.9544 0.8761 0.9133
0.7 0.9992 0.9935 0.9846 0.9931 0.9675 0.9607 0.977 0.9361 0.9263
-0.4 0.9838 0.9091 0.8885 0.9268 0.802 0.8778 0.8109 0.7294 0.8659

GRU 0.1 1.0062 0.9927 0.9769 0.9988 0.9508 0.9334 0.9638 0.9099 0.8939
0.4 1.0074 0.99 0.9691 0.9951 0.9355 0.9211 0.9572 0.8776 0.8955
0.7 1.0057 0.9944 0.9897 0.9926 0.9668 0.9628 0.977 0.9226 0.9326
-0.4 0.987 0.9118 0.8914 0.9247 0.8013 0.8768 0.8059 0.7218 0.858
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Table B.4: MSFETuk/MSFEEqual reported for Setting 1 and Scenario 1 using a weighted loss
function with Tukey-Hanning weight decay and α ∈ {T, T 0.95, T 0.9}.

β sd(ϵt)/2 sd(ϵt) 2 · sd(ϵt)
ϕ/τ∗ 0.2 0.5 0.8 0.2 0.5 0.8 0.2 0.5 0.8

RNN 0.1 1.0096 0.9921 0.9777 0.9967 0.9529 0.9312 0.9676 0.898 0.8659
0.4 0.9919 0.9726 0.972 0.9826 0.9258 0.9361 0.9335 0.8595 0.904
0.7 0.9975 0.9973 0.9966 0.9942 0.9669 0.9694 0.971 0.9143 0.9735
-0.4 0.9841 0.9132 0.9162 0.9225 0.7931 0.8755 0.8017 0.712 0.8

LSTM 0.1 1.0086 0.9909 0.9804 0.999 0.9577 0.9276 0.9644 0.9129 0.879
0.4 1.0089 0.9869 0.9878 0.9902 0.936 0.9526 0.9563 0.8813 0.9303
0.7 1.0013 0.9974 0.9931 0.9915 0.9693 0.9791 0.9783 0.9437 0.9575
-0.4 0.9834 0.9094 0.9255 0.925 0.8011 0.886 0.8122 0.7284 0.867

GRU 0.1 1.0052 0.9913 0.9782 0.9984 0.9526 0.9368 0.9644 0.9107 0.8924
0.4 1.0063 0.9891 0.9773 0.9895 0.9388 0.9389 0.9562 0.8763 0.9092
0.7 1.0026 0.9976 0.9985 0.9922 0.9724 0.9771 0.9701 0.931 0.9571
-0.4 0.9857 0.9123 0.9246 0.9246 0.8006 0.8887 0.806 0.7205 0.85
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B.2 Weighted Loss Functions: Setting 1 + Scenario 2

Table B.5: MSFERay/MSFEEqual reported for Setting 1 and Scenario 2 using a weighted loss
function with Rayleigh weight decay and α ∈ {2× 10−5, 5× 10−5, 1× 10−4}.

β sd(ϵt)/2 sd(ϵt) 2 · sd(ϵt)
ϕ/τ∗ (0.2,0.5) (0.5,0.8) (0.2,0.5) (0.5,0.8) (0.2,0.5) (0.5,0.8)

β1 = β2

RNN 0.1 0.977 0.9335 0.9165 0.8834 0.8711 0.8421
0.4 0.9589 0.9125 0.8919 0.8459 0.8288 0.838
0.7 0.9797 0.9578 0.9382 0.9023 0.8715 0.8464
-0.4 0.8528 0.7832 0.7541 0.7509 0.6811 0.7782

LSTM 0.1 0.9776 0.9449 0.9251 0.8912 0.9148 0.877
0.4 0.9684 0.9132 0.9027 0.8538 0.8682 0.8703
0.7 0.9873 0.9661 0.9523 0.914 0.938 0.9197
-0.4 0.8496 0.8032 0.7604 0.7903 0.7229 0.838

GRU 0.1 0.9768 0.9385 0.9295 0.8657 0.8999 0.8804
0.4 0.967 0.9226 0.909 0.8626 0.862 0.8697
0.7 0.9826 0.9593 0.9539 0.916 0.9184 0.8871
-0.4 0.8511 0.7864 0.7606 0.768 0.7187 0.8274

β1 = −β2

RNN 0.1 1.0061 1.013 0.9866 0.9929 0.9347 0.9505
0.4 0.9942 1.0003 0.9664 0.9889 0.9058 0.9556
0.7 1.0011 1.0073 0.9875 1.0095 0.9479 0.9849
-0.4 0.9633 0.9899 0.8726 0.9534 0.762 0.9051

LSTM 0.1 1.0031 1.0078 0.984 0.9879 0.9427 0.9596
0.4 1.0044 1.0116 0.9758 1.0021 0.9223 0.9777
0.7 0.9985 1.0087 0.9924 1.0097 0.9619 0.9897
-0.4 0.9655 0.9968 0.8695 0.9626 0.7796 0.9322

GRU 0.1 1.0047 1.0082 0.9833 0.9867 0.9433 0.9535
0.4 1.0063 1.01 0.9729 1.0017 0.924 0.9781
0.7 1.0103 1.0053 0.9897 1.0159 0.9588 0.9936
-0.4 0.9667 0.9952 0.8677 0.9634 0.7735 0.9278
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Table B.6: MSFEBar/MSFEEqual reported for Setting 1 and Scenario 2 using a weighted loss
function with Bartlett weight decay and α ∈ {T, T 0.95, T 0.9}.

β sd(ϵt)/2 sd(ϵt) 2 · sd(ϵt)
ϕ/τ∗ (0.2,0.5) (0.5,0.8) (0.2,0.5) (0.5,0.8) (0.2,0.5) (0.5,0.8)

β1 = β2

RNN 0.1 0.9778 0.9402 0.9176 0.897 0.8732 0.8495
0.4 0.9594 0.9321 0.897 0.8883 0.8344 0.8939
0.7 0.9865 0.9757 0.9496 0.9342 0.8831 0.9277
-0.4 0.854 0.8572 0.7545 0.8147 0.684 0.7902

LSTM 0.1 0.9779 0.9485 0.9272 0.8976 0.9144 0.8757
0.4 0.969 0.9356 0.9079 0.9078 0.8772 0.9384
0.7 0.9927 0.9775 0.9652 0.9379 0.9495 0.978
-0.4 0.8513 0.8868 0.7604 0.8543 0.7233 0.8464

GRU 0.1 0.9769 0.9424 0.9324 0.8729 0.8997 0.8791
0.4 0.9682 0.9441 0.9106 0.9138 0.8678 0.9195
0.7 0.983 0.9692 0.96 0.9423 0.9282 0.9504
-0.4 0.8525 0.8635 0.7606 0.8364 0.7185 0.8335

β1 = −β2

RNN 0.1 1.0053 1.014 0.9889 1.0012 0.9361 0.9518
0.4 0.9915 1.01 0.9696 1.0272 0.9105 1.009
0.7 1.0032 1.0065 0.9918 1.028 0.9583 1.0634
-0.4 0.9648 1.0453 0.8737 1.0125 0.7642 0.9129

LSTM 0.1 1.0018 1.0113 0.9853 0.9938 0.9458 0.9589
0.4 0.9996 1.0212 0.9774 1.0507 0.9287 1.045
0.7 0.9993 1.0077 0.9972 1.0203 0.9719 1.0379
-0.4 0.9674 1.0567 0.8698 1.0344 0.7802 0.9372

GRU 0.1 1.005 1.0088 0.9837 0.9919 0.945 0.9553
0.4 1.002 1.0227 0.9792 1.0424 0.9327 1.0367
0.7 1.001 1.0097 0.9931 1.0286 0.9691 1.0463
-0.4 0.9678 1.051 0.8692 1.0281 0.773 0.9368
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Table B.7: MSFEPar/MSFEEqual reported for Setting 1 and Scenario 2 using a weighted loss
function with Parzen weight decay and α ∈ {T, T 0.95, T 0.9}.

β sd(ϵt)/2 sd(ϵt) 2 · sd(ϵt)
ϕ/τ∗ (0.2,0.5) (0.5,0.8) (0.2,0.5) (0.5,0.8) (0.2,0.5) (0.5,0.8)

β1 = β2

RNN 0.1 0.9761 0.9365 0.917 0.8877 0.8719 0.8464
0.4 0.9565 0.9207 0.8934 0.8626 0.8314 0.872
0.7 0.9815 0.9673 0.9438 0.9135 0.8745 0.8809
-0.4 0.8527 0.8107 0.754 0.7968 0.6814 0.7894

LSTM 0.1 0.9768 0.9471 0.9257 0.8944 0.9147 0.8794
0.4 0.9677 0.9195 0.9031 0.8742 0.8734 0.9163
0.7 0.9882 0.9705 0.954 0.9265 0.9415 0.9426
-0.4 0.8498 0.8339 0.7607 0.8517 0.7224 0.8495

GRU 0.1 0.9758 0.9408 0.9302 0.8698 0.8995 0.8807
0.4 0.9702 0.9253 0.9099 0.885 0.8647 0.9007
0.7 0.9833 0.9628 0.9549 0.9235 0.9208 0.9271
-0.4 0.8509 0.8183 0.7607 0.8247 0.7169 0.8336

β1 = −β2

RNN 0.1 1.0063 1.0137 0.987 0.9976 0.9348 0.9523
0.4 0.9902 1.0071 0.9683 1.0138 0.9061 0.9942
0.7 0.9997 1.0123 0.9914 1.0159 0.9507 1.0294
-0.4 0.9636 1.0251 0.8724 1.0119 0.7618 0.9154

LSTM 0.1 1.0025 1.0093 0.9836 0.9933 0.9442 0.9614
0.4 1.0009 1.0179 0.9729 1.0286 0.923 1.021
0.7 1.0021 1.0149 0.9916 1.0235 0.9648 1.0238
-0.4 0.9651 1.0331 0.8695 1.0332 0.7782 0.9412

GRU 0.1 1.0042 1.007 0.9819 0.9917 0.9438 0.9549
0.4 1.0037 1.0143 0.9765 1.0254 0.93 1.0205
0.7 1.0065 1.0049 0.9927 1.0247 0.9641 1.0288
-0.4 0.9663 1.0286 0.869 1.0261 0.7718 0.9323
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Table B.8: MSFETuk/MSFEEqual reported for Setting 1 and Scenario 2 using a weighted loss
function with Tukey-Hanning weight decay and α ∈ {T, T 0.95, T 0.9}.

β sd(ϵt)/2 sd(ϵt) 2 · sd(ϵt)
ϕ/τ∗ (0.2,0.5) (0.5,0.8) (0.2,0.5) (0.5,0.8) (0.2,0.5) (0.5,0.8)

β1 = β2

RNN 0.1 0.9777 0.9391 0.9174 0.8924 0.872 0.846
0.4 0.9604 0.9297 0.8947 0.8854 0.8316 0.8854
0.7 0.9825 0.9729 0.9456 0.9286 0.8825 0.9162
-0.4 0.8544 0.8432 0.7536 0.8139 0.68 0.7908

LSTM 0.1 0.9772 0.9489 0.9283 0.896 0.915 0.8751
0.4 0.9673 0.9333 0.9052 0.8958 0.8746 0.9341
0.7 0.9889 0.9733 0.9573 0.9339 0.9498 0.9675
-0.4 0.8502 0.8677 0.7595 0.8526 0.7208 0.8435

GRU 0.1 0.9765 0.9435 0.9331 0.8716 0.8998 0.8794
0.4 0.9682 0.9392 0.913 0.9044 0.8661 0.9208
0.7 0.9824 0.9699 0.9564 0.9328 0.9303 0.9387
-0.4 0.8518 0.8518 0.7602 0.8317 0.7153 0.84

β1 = −β2

RNN 0.1 1.0048 1.0159 0.9885 1.0002 0.9357 0.9544
0.4 0.9891 1.0109 0.9679 1.0326 0.9068 1.0173
0.7 0.9985 1.0121 0.9893 1.0272 0.9555 1.0651
-0.4 0.9641 1.0543 0.8718 1.0188 0.7611 0.9207

LSTM 0.1 1.0016 1.0134 0.9859 0.9933 0.945 0.9604
0.4 1.0015 1.0248 0.976 1.0544 0.9265 1.0476
0.7 1.0015 1.0141 0.9968 1.0275 0.9714 1.0453
-0.4 0.9662 1.0689 0.8683 1.0384 0.7774 0.9388

GRU 0.1 1.0051 1.0111 0.9838 0.9946 0.9453 0.9592
0.4 1.0038 1.021 0.9766 1.048 0.9293 1.042
0.7 1.0019 1.0126 0.991 1.0391 0.9719 1.0553
-0.4 0.9677 1.0609 0.8687 1.0345 0.7697 0.9381
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B.3 Weighted Loss Functions: Setting 2 + Scenario 1

Table B.9: MSFERay/MSFEEqual reported for Setting 2 and Scenario 1 using a weighted loss
function with Rayleigh weight decay and α ∈ {2× 10−5, 5× 10−5, 1× 10−4}.

β sd(ϵt)/2 sd(ϵt) 2 · sd(ϵt)
(ϕ, θ)/τ∗ 0.2 0.5 0.8 0.2 0.5 0.8 0.2 0.5 0.8

RNN (0.4,0.3) 1.0065 0.9933 0.987 0.9974 0.963 0.9148 0.9737 0.8731 0.8174
(0.4,-0.3) 1.0095 0.989 0.963 0.997 0.9409 0.9076 0.9647 0.8964 0.8625
(-0.4,0.3) 1.0 0.9742 0.9503 0.982 0.9224 0.8707 0.9337 0.8458 0.8145
(-0.4,-0.3) 0.9724 0.8507 0.7396 0.8755 0.6453 0.5827 0.6315 0.5407 0.528

LSTM (0.4,0.3) 1.0038 0.9924 0.9809 0.9943 0.9632 0.9094 0.9709 0.8967 0.8233
(0.4,-0.3) 1.0066 0.9898 0.9678 0.9943 0.9511 0.9076 0.9633 0.9052 0.8663
(-0.4,0.3) 1.0022 0.9737 0.9513 0.9816 0.9268 0.9001 0.9472 0.8741 0.8426
(-0.4,-0.3) 0.9735 0.847 0.7319 0.885 0.639 0.5984 0.6597 0.5562 0.5636

GRU (0.4,0.3) 1.0035 0.9929 0.9759 0.994 0.9603 0.9133 0.9682 0.8911 0.8188
(0.4,-0.3) 1.0069 0.9878 0.9692 0.9977 0.9487 0.9159 0.9631 0.8973 0.8648
(-0.4,0.3) 0.9999 0.9747 0.9557 0.98 0.9252 0.885 0.9359 0.878 0.8289
(-0.4,-0.3) 0.9724 0.8468 0.7386 0.8808 0.6415 0.5944 0.6552 0.5485 0.5622

Table B.10: MSFEBar/MSFEEqual reported for Setting 2 and Scenario 1 using a weighted loss
function with Bartlett weight decay and α ∈ {T, T 0.95, T 0.9}.

β sd(ϵt)/2 sd(ϵt) 2 · sd(ϵt)
(ϕ, θ)/τ∗ 0.2 0.5 0.8 0.2 0.5 0.8 0.2 0.5 0.8

RNN (0.4,0.3) 1.0045 0.9958 0.9993 0.9954 0.9654 0.9262 0.9718 0.8753 0.8276
(0.4,-0.3) 1.0072 0.9876 0.9697 0.9948 0.9397 0.9138 0.9626 0.8951 0.8684
(-0.4,0.3) 0.9989 0.9736 0.9608 0.981 0.9219 0.8802 0.9326 0.8452 0.8235
(-0.4,-0.3) 0.972 0.8515 0.8845 0.8751 0.6459 0.6969 0.6312 0.5412 0.6315

LSTM (0.4,0.3) 1.0028 0.9941 0.993 0.9933 0.9649 0.9206 0.9699 0.8983 0.8335
(0.4,-0.3) 1.007 0.9891 0.9716 0.9947 0.9504 0.9112 0.9637 0.9046 0.8697
(-0.4,0.3) 1.0003 0.9758 0.9595 0.9798 0.9288 0.9079 0.9455 0.876 0.8499
(-0.4,-0.3) 0.9723 0.8478 0.8815 0.8839 0.6396 0.7208 0.6589 0.5567 0.6789

GRU (0.4,0.3) 1.0016 0.9926 0.9908 0.9922 0.9601 0.9273 0.9664 0.8909 0.8314
(0.4,-0.3) 1.0048 0.9884 0.9717 0.9956 0.9492 0.9183 0.9611 0.8978 0.867
(-0.4,0.3) 0.9984 0.9755 0.9652 0.9785 0.926 0.8937 0.9345 0.8788 0.8371
(-0.4,-0.3) 0.9708 0.8475 0.8836 0.8793 0.6421 0.7111 0.6541 0.549 0.6726
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Table B.11: MSFEPar/MSFEEqual reported for Setting 2 and Scenario 1 using a weighted loss
function with Parzen weight decay and α ∈ {T, T 0.95, T 0.9}.

β sd(ϵt)/2 sd(ϵt) 2 · sd(ϵt)
(ϕ, θ)/τ∗ 0.2 0.5 0.8 0.2 0.5 0.8 0.2 0.5 0.8

RNN (0.4,0.3) 1.0048 0.9918 0.9885 0.9957 0.9615 0.9162 0.9721 0.8718 0.8186
(0.4,-0.3) 1.0101 0.9876 0.9677 0.9977 0.9397 0.912 0.9653 0.8951 0.8667
(-0.4,0.3) 0.9968 0.9756 0.9556 0.9789 0.9237 0.8755 0.9307 0.8469 0.819
(-0.4,-0.3) 0.9715 0.851 0.7918 0.8747 0.6455 0.6238 0.6309 0.5409 0.5653

LSTM (0.4,0.3) 1.0031 0.9922 0.9874 0.9936 0.963 0.9154 0.9701 0.8966 0.8288
(0.4,-0.3) 1.0067 0.9895 0.9688 0.9944 0.9508 0.9085 0.9634 0.9049 0.8671
(-0.4,0.3) 1.0001 0.9768 0.9551 0.9797 0.9297 0.9037 0.9453 0.8768 0.8459
(-0.4,-0.3) 0.9726 0.8477 0.7849 0.8841 0.6395 0.6418 0.659 0.5566 0.6044

GRU (0.4,0.3) 1.001 0.9896 0.9815 0.9916 0.9572 0.9186 0.9658 0.8882 0.8236
(0.4,-0.3) 1.0067 0.9857 0.9726 0.9975 0.9466 0.9191 0.9629 0.8953 0.8678
(-0.4,0.3) 0.9989 0.9738 0.9605 0.979 0.9244 0.8894 0.935 0.8772 0.8331
(-0.4,-0.3) 0.9717 0.847 0.7926 0.8801 0.6418 0.6379 0.6546 0.5487 0.6034

Table B.12: MSFETuk/MSFEEqual reported for Setting 2 and Scenario 1 using a weighted loss
function with Tukey-Hanning weight decay and α ∈ {T, T 0.95, T 0.9}.

β sd(ϵt)/2 sd(ϵt) 2 · sd(ϵt)
(ϕ, θ)/τ∗ 0.2 0.5 0.8 0.2 0.5 0.8 0.2 0.5 0.8

RNN (0.4,0.3) 1.0029 0.9935 1.001 0.9938 0.9632 0.9277 0.9703 0.8733 0.8289
(0.4,-0.3) 1.006 0.9917 0.9704 0.9936 0.9436 0.9145 0.9614 0.8989 0.869
(-0.4,0.3) 0.9982 0.9733 0.9596 0.9802 0.9215 0.8791 0.932 0.8449 0.8224
(-0.4,-0.3) 0.9712 0.8513 0.8584 0.8744 0.6458 0.6763 0.6307 0.5411 0.6129

LSTM (0.4,0.3) 1.0024 0.9942 0.9928 0.9929 0.9649 0.9204 0.9695 0.8984 0.8333
(0.4,-0.3) 1.0038 0.9888 0.9722 0.9915 0.9502 0.9117 0.9606 0.9044 0.8702
(-0.4,0.3) 0.9996 0.9767 0.9598 0.9792 0.9297 0.9082 0.9448 0.8768 0.8501
(-0.4,-0.3) 0.9716 0.8474 0.8532 0.8833 0.6393 0.6976 0.6584 0.5564 0.657

GRU (0.4,0.3) 1.0017 0.9923 0.9901 0.9923 0.9598 0.9266 0.9665 0.8907 0.8308
(0.4,-0.3) 1.0064 0.987 0.9716 0.9972 0.9478 0.9182 0.9626 0.8965 0.8669
(-0.4,0.3) 0.9984 0.9757 0.9657 0.9785 0.9261 0.8942 0.9345 0.8789 0.8376
(-0.4,-0.3) 0.9713 0.8476 0.8577 0.8797 0.6422 0.6903 0.6544 0.549 0.6529
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B.4 Weighted Loss Functions: Setting 2 + Scenario 2

Table B.13: MSFERay/MSFEEqual reported for Setting 2 and Scenario 2 using a weighted loss
function with Rayleigh weight decay and α ∈ {2× 10−5, 5× 10−5, 1× 10−4}

β sd(ϵt)/2 sd(ϵt) 2 · sd(ϵt)
(ϕ, θ)/τ∗ (0.2,0.5) (0.5,0.8) (0.2,0.5) (0.5,0.8) (0.2,0.5) (0.5,0.8)

β1 = β2

RNN (0.4,0.3) 0.9816 0.9397 0.9219 0.8654 0.8397 0.8239
(0.4,-0.3) 0.9738 0.9321 0.9176 0.8858 0.861 0.8332
(-0.4,0.3) 0.9545 0.9029 0.8836 0.8317 0.8323 0.8246
(-0.4,-0.3) 0.7498 0.6213 0.5861 0.6052 0.5294 0.7312

LSTM (0.4,0.3) 0.9747 0.9399 0.9327 0.8684 0.9076 0.8805
(0.4,-0.3) 0.9747 0.9374 0.9263 0.8969 0.911 0.8772
(-0.4,0.3) 0.956 0.917 0.9031 0.8649 0.8884 0.8562
(-0.4,-0.3) 0.7467 0.6257 0.5917 0.6519 0.5672 0.8188

GRU (0.4,0.3) 0.9758 0.941 0.9312 0.8705 0.8828 0.8557
(0.4,-0.3) 0.9791 0.9347 0.9262 0.8737 0.8979 0.8654
(-0.4,0.3) 0.9558 0.9139 0.9008 0.854 0.8729 0.8558
(-0.4,-0.3) 0.747 0.6241 0.5856 0.6264 0.55 0.8201

β1 = −β2

RNN (0.4,0.3) 1.0025 1.0117 0.9867 1.0049 0.9421 0.9787
(0.4,-0.3) 1.0042 1.0068 0.9777 0.9897 0.9302 0.9394
(-0.4,0.3) 0.9923 1.0038 0.9609 0.9793 0.9055 0.9322
(-0.4,-0.3) 0.9377 0.979 0.78 0.9202 0.5896 0.8988

LSTM (0.4,0.3) 0.9992 1.0087 0.9852 1.0019 0.9491 0.9833
(0.4,-0.3) 1.0018 1.0053 0.9799 0.9854 0.9458 0.9508
(-0.4,0.3) 0.9934 1.0017 0.9653 0.9813 0.9215 0.9393
(-0.4,-0.3) 0.941 0.9785 0.7872 0.9222 0.6115 0.9252

GRU (0.4,0.3) 0.9987 1.0123 0.9875 1.0034 0.9425 0.9865
(0.4,-0.3) 1.0042 1.0042 0.9807 0.9923 0.9505 0.9481
(-0.4,0.3) 0.9916 1.0008 0.9604 0.9811 0.9094 0.9295
(-0.4,-0.3) 0.9397 0.9785 0.7858 0.9239 0.6055 0.919
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Table B.14: MSFEBar/MSFEEqual reported for Setting 2 and Scenario 2 using a weighted loss
function with Bartlett weight decay and α ∈ {T, T 0.95, T 0.9}

β sd(ϵt)/2 sd(ϵt) 2 · sd(ϵt)
(ϕ, θ)/τ∗ (0.2,0.5) (0.5,0.8) (0.2,0.5) (0.5,0.8) (0.2,0.5) (0.5,0.8)

β1 = β2

RNN (0.4,0.3) 0.9833 0.9519 0.9253 0.9134 0.8425 0.9297
(0.4,-0.3) 0.9708 0.9417 0.9216 0.8916 0.86 0.8386
(-0.4,0.3) 0.9546 0.9154 0.8844 0.8405 0.8337 0.8352
(-0.4,-0.3) 0.7513 0.75 0.5854 0.7717 0.534 0.757

LSTM (0.4,0.3) 0.9778 0.9527 0.9388 0.9178 0.9125 0.9677
(0.4,-0.3) 0.9748 0.944 0.9314 0.9001 0.9111 0.8739
(-0.4,0.3) 0.9569 0.9264 0.9036 0.8687 0.8891 0.8579
(-0.4,-0.3) 0.7468 0.7609 0.591 0.8654 0.5698 0.8337

GRU (0.4,0.3) 0.9776 0.9586 0.9403 0.9183 0.8873 0.9576
(0.4,-0.3) 0.9787 0.94 0.9315 0.8798 0.9007 0.8721
(-0.4,0.3) 0.9561 0.9223 0.9039 0.8612 0.8741 0.8654
(-0.4,-0.3) 0.748 0.7576 0.5851 0.818 0.5531 0.8409

β1 = −β2

RNN (0.4,0.3) 1.0024 1.0135 0.991 1.0366 0.9487 1.0735
(0.4,-0.3) 1.0022 1.0099 0.9781 0.9982 0.936 0.9452
(-0.4,0.3) 0.9927 1.01 0.9632 0.9879 0.9075 0.9354
(-0.4,-0.3) 0.9394 1.0999 0.7796 1.1254 0.5947 0.9089

LSTM (0.4,0.3) 0.9975 1.0126 0.9909 1.0307 0.9545 1.0611
(0.4,-0.3) 1.0 1.0068 0.9835 0.9931 0.9498 0.9472
(-0.4,0.3) 0.9926 1.0102 0.9684 0.9867 0.9229 0.9409
(-0.4,-0.3) 0.9428 1.102 0.7861 1.1868 0.6148 0.9406

GRU (0.4,0.3) 0.998 1.0175 0.9919 1.0379 0.9503 1.0665
(0.4,-0.3) 1.004 1.0099 0.9835 0.9966 0.9514 0.9521
(-0.4,0.3) 0.9921 1.0086 0.9633 0.9875 0.9107 0.9375
(-0.4,-0.3) 0.9415 1.1039 0.7848 1.1685 0.6086 0.9401



48 B Additional Results: Simulation Study

Table B.15: MSFEPar/MSFEEqual reported for Setting 2 and Scenario 2 using a weighted loss
function with Parzen weight decay and α ∈ {T, T 0.95, T 0.9}

β sd(ϵt)/2 sd(ϵt) 2 · sd(ϵt)
(ϕ, θ)/τ∗ (0.2,0.5) (0.5,0.8) (0.2,0.5) (0.5,0.8) (0.2,0.5) (0.5,0.8)

β1 = β2

RNN (0.4,0.3) 0.9809 0.9449 0.9224 0.8809 0.8432 0.8772
(0.4,-0.3) 0.9698 0.9357 0.9202 0.8888 0.8601 0.8328
(-0.4,0.3) 0.955 0.9072 0.8839 0.8394 0.8317 0.8302
(-0.4,-0.3) 0.7501 0.6663 0.585 0.7145 0.5295 0.7477

LSTM (0.4,0.3) 0.9741 0.9485 0.9323 0.8822 0.9117 0.9179
(0.4,-0.3) 0.9747 0.9404 0.9251 0.8997 0.91 0.8744
(-0.4,0.3) 0.9558 0.922 0.9038 0.8666 0.8885 0.8547
(-0.4,-0.3) 0.7468 0.6694 0.5904 0.7907 0.5667 0.8315

GRU (0.4,0.3) 0.9758 0.9438 0.9312 0.8892 0.8843 0.9045
(0.4,-0.3) 0.9777 0.9358 0.9289 0.8766 0.9009 0.869
(-0.4,0.3) 0.9567 0.9172 0.8999 0.855 0.8719 0.8592
(-0.4,-0.3) 0.7473 0.6686 0.5846 0.7576 0.55 0.8387

β1 = −β2

RNN (0.4,0.3) 1.0012 1.0161 0.9835 1.023 0.9451 1.032
(0.4,-0.3) 1.0034 1.0102 0.9787 0.9941 0.9315 0.9414
(-0.4,0.3) 0.9965 1.0066 0.9632 0.9869 0.906 0.9299
(-0.4,-0.3) 0.9381 1.0494 0.7789 1.0783 0.5894 0.9083

LSTM (0.4,0.3) 0.999 1.0128 0.9878 1.0191 0.9502 1.0273
(0.4,-0.3) 0.9994 1.0074 0.982 0.9904 0.9475 0.9522
(-0.4,0.3) 0.9917 1.0068 0.9658 0.9854 0.922 0.9415
(-0.4,-0.3) 0.9415 1.0459 0.7862 1.1176 0.6111 0.9395

GRU (0.4,0.3) 1.0001 1.0167 0.9882 1.0208 0.9469 1.0375
(0.4,-0.3) 1.0036 1.0079 0.9825 0.9931 0.9502 0.9497
(-0.4,0.3) 0.9926 1.0077 0.9616 0.988 0.9085 0.9365
(-0.4,-0.3) 0.9405 1.0512 0.7845 1.1109 0.605 0.9327
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Table B.16: MSFETuk/MSFEEqual reported for Setting 2 and Scenario 2 using a weighted loss
function with Tukey-Hanning weight decay and α ∈ {T, T 0.95, T 0.9}

β sd(ϵt)/2 sd(ϵt) 2 · sd(ϵt)
(ϕ, θ)/τ∗ (0.2,0.5) (0.5,0.8) (0.2,0.5) (0.5,0.8) (0.2,0.5) (0.5,0.8)

β1 = β2

RNN (0.4,0.3) 0.9826 0.9538 0.9233 0.9044 0.8451 0.9163
(0.4,-0.3) 0.9714 0.9375 0.9216 0.8943 0.8604 0.8378
(-0.4,0.3) 0.9561 0.9135 0.8835 0.8406 0.832 0.8358
(-0.4,-0.3) 0.7505 0.7217 0.5855 0.7698 0.5286 0.7509

LSTM (0.4,0.3) 0.9763 0.9532 0.9372 0.9062 0.9141 0.9566
(0.4,-0.3) 0.9751 0.9401 0.9312 0.9001 0.911 0.8756
(-0.4,0.3) 0.9571 0.9251 0.9041 0.8686 0.8886 0.8648
(-0.4,-0.3) 0.7468 0.7299 0.5905 0.8603 0.5652 0.843

GRU (0.4,0.3) 0.9764 0.9522 0.9361 0.9087 0.8894 0.9484
(0.4,-0.3) 0.9774 0.936 0.9321 0.8793 0.8984 0.8705
(-0.4,0.3) 0.9578 0.9216 0.9025 0.8632 0.8727 0.8584
(-0.4,-0.3) 0.7475 0.7286 0.5848 0.821 0.549 0.8402

β1 = −β2

RNN (0.4,0.3) 1.0044 1.0192 0.9916 1.0404 0.9488 1.0795
(0.4,-0.3) 1.0035 1.0123 0.9803 1.001 0.9339 0.9423
(-0.4,0.3) 0.9921 1.0118 0.9616 0.9894 0.9057 0.9287
(-0.4,-0.3) 0.9388 1.1233 0.779 1.1466 0.5884 0.9101

LSTM (0.4,0.3) 0.9975 1.0157 0.9901 1.0365 0.9541 1.0663
(0.4,-0.3) 0.9995 1.0083 0.9846 0.9916 0.948 0.9458
(-0.4,0.3) 0.9933 1.0111 0.9667 0.9858 0.9225 0.9444
(-0.4,-0.3) 0.9421 1.134 0.7865 1.1972 0.6103 0.9392

GRU (0.4,0.3) 0.9992 1.0211 0.9914 1.044 0.9492 1.0797
(0.4,-0.3) 1.0042 1.0109 0.9832 0.9944 0.9523 0.9535
(-0.4,0.3) 0.9925 1.0099 0.9632 0.9893 0.9086 0.9349
(-0.4,-0.3) 0.9415 1.1299 0.7845 1.1794 0.6038 0.9289
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B.5 Excluding pre-break observations

Table B.17: MSFEPB/MSFEEqual reported for Setting 1 combined with Scenario 2.

β sd(ϵt)/2 sd(ϵt) 2 · sd(ϵt)
ϕ\τ∗ (0.2,0.5) (0.5,0.8) (0.2,0.5) (0.5,0.8) (0.2,0.5) (0.5,0.8)

β1 = β2

RNN 0.1 0.9649 0.9427 0.904 0.8888 0.858 0.8393
0.4 0.9619 0.9344 0.8955 0.8535 0.8297 0.8227
0.7 0.9773 0.9607 0.9357 0.8926 0.8637 0.8235
-0.4 0.8507 0.8747 0.7509 0.7842 0.6784 0.7542

LSTM 0.1 0.969 0.9567 0.9175 0.8979 0.9033 0.8772
0.4 0.9555 0.9254 0.8916 0.8521 0.8557 0.8446
0.7 0.9794 0.9582 0.9434 0.8948 0.926 0.8939
-0.4 0.8473 0.8962 0.7569 0.8217 0.7182 0.8082

GRU 0.1 0.9674 0.952 0.9207 0.875 0.8861 0.8819
0.4 0.9625 0.9323 0.9024 0.8622 0.8528 0.8412
0.7 0.9824 0.9567 0.951 0.9038 0.914 0.8648
-0.4 0.8477 0.8798 0.7562 0.8002 0.7126 0.7972

β1 = −β2

RNN 0.1 0.9931 1.0216 0.9738 0.9968 0.9199 0.9453
0.4 0.9934 1.0247 0.969 1.0011 0.9042 0.9359
0.7 0.994 1.0103 0.9825 0.9973 0.9407 0.9602
-0.4 0.9611 1.1066 0.8686 0.9977 0.7588 0.8836

LSTM 0.1 0.9937 1.0214 0.9752 0.9986 0.9326 0.9592
0.4 0.9912 1.0261 0.9628 1.0025 0.9071 0.9428
0.7 0.9917 1.0106 0.9818 0.9947 0.9503 0.9637
-0.4 0.963 1.1116 0.8657 1.0024 0.7744 0.9025

GRU 0.1 0.9941 1.0225 0.9723 0.9984 0.9312 0.9577
0.4 0.9989 1.0247 0.9694 1.0031 0.9174 0.948
0.7 1.0017 1.0084 0.9887 1.0021 0.9565 0.9681
-0.4 0.9627 1.1118 0.8642 1.0041 0.7671 0.9002
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Table B.18: MSFEPB/MSFEEqual reported for Setting 2 combined with Scenario 2.

β sd(ϵt)/2 sd(ϵt) 2 · sd(ϵt)
(ϕ, θ)/τ∗ (0.2,0.5) (0.5,0.8) (0.2,0.5) (0.5,0.8) (0.2,0.5) (0.5,0.8)

β1 = β2

RNN (0.4,0.3) 0.9781 0.9445 0.918 0.862 0.8336 0.7966
(0.4,-0.3) 0.9615 0.9509 0.9102 0.8956 0.8484 0.8361
(-0.4,0.3) 0.9465 0.9315 0.8749 0.8515 0.8217 0.8338
(-0.4,-0.3) 0.748 0.7653 0.5835 0.6557 0.5276 0.6292

LSTM (0.4,0.3) 0.9717 0.9459 0.9281 0.8667 0.9001 0.854
(0.4,-0.3) 0.9667 0.953 0.9192 0.9063 0.8964 0.8789
(-0.4,0.3) 0.9512 0.9418 0.8971 0.8798 0.8788 0.8642
(-0.4,-0.3) 0.7436 0.7646 0.5882 0.7085 0.5633 0.6859

GRU (0.4,0.3) 0.975 0.9443 0.9298 0.8665 0.8757 0.8304
(0.4,-0.3) 0.9681 0.9492 0.9188 0.8825 0.8849 0.8695
(-0.4,0.3) 0.9502 0.941 0.8936 0.8711 0.8629 0.866
(-0.4,-0.3) 0.7447 0.7649 0.5827 0.6807 0.5471 0.689

β1 = −β2

RNN (0.4,0.3) 0.9995 1.0178 0.9829 1.0004 0.9363 0.9453
(0.4,-0.3) 0.9937 1.0268 0.9684 1.0024 0.9194 0.946
(-0.4,0.3) 0.9849 1.035 0.9525 1.0021 0.8943 0.9398
(-0.4,-0.3) 0.9353 1.2049 0.7766 0.9968 0.5874 0.7761

LSTM (0.4,0.3) 0.9947 1.0158 0.981 0.999 0.9404 0.9584
(0.4,-0.3) 0.9929 1.0204 0.9723 0.9973 0.9318 0.9514
(-0.4,0.3) 0.9872 1.031 0.959 1.0013 0.912 0.9532
(-0.4,-0.3) 0.9379 1.1962 0.7827 1.0014 0.6077 0.7772

GRU (0.4,0.3) 0.996 1.0168 0.9841 0.9987 0.9368 0.9552
(0.4,-0.3) 0.9941 1.0214 0.9714 1.001 0.9369 0.9527
(-0.4,0.3) 0.9856 1.034 0.9543 1.0041 0.8992 0.9468
(-0.4,-0.3) 0.9372 1.1992 0.7815 1.0013 0.6022 0.7787
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Appendix C Additional Results: Application

This section reports additional results for section 4.5. In particular, we show the overall
performance of LSTM and GRU architectures on the voltage measurements in the electric
power grid in Germany.
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Figure C.1: Overall performance - distribution of the RMSE on the test set for 100 trained
LSTM architectures. The red bars provide the sample median and the orange triangles the
sample mean. The grey dashed horizontal line corresponds to the median RMSFE when using
equal weights.
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Figure C.2: Overall performance - distribution of the RMSE on the test set for 100 trained
GRU architectures. The red bars provide the sample median and the orange triangles the
sample mean. The grey dashed horizontal line corresponds to the median RMSFE when using
equal weights.
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