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Abstract

Uncertainty quantification (UQ) in its broadest sense aims at quantitatively studying all sources

of uncertainty arising from both computational and real-world applications. Although many subtopics

appear in the UQ field, there are typically two major types of UQ problems: forward and inverse

uncertainty propagation. The present study focuses on the former, which involves assessing the ef-

fects of the input uncertainty in various forms on the output response of a computational model. In

total, this thesis reports nine main developments in the context of forward uncertainty propagation,

with special emphasis on a Bayesian active learning perspective.

The first development is concerned with estimating the extreme value distribution and small

first-passage probabilities of uncertain nonlinear structures under stochastic seismic excitations,

where a moment-generating function-based mixture distribution approach (MGF-MD) is proposed.

As the second development, a triple-engine parallel Bayesian global optimization (T-PBGO) method

is presented for interval uncertainty propagation. The third contribution develops a parallel Bayesian

quadrature optimization (PBQO) method for estimating the response expectation function, its vari-

able importance and bounds when a computational model is subject to hybrid uncertainties in the

form of random variables, parametric probability boxes (p-boxes) and interval models. In the fourth

research, of interest is the failure probability function when the inputs of a performance function

are characterized by parametric p-boxes. To do so, an active learning augmented probabilistic

integration (ALAPI) method is proposed based on offering a partially Bayesian active learning

perspective on failure probability estimation, as well as the use of high-dimensional model repre-

sentation (HDMR) technique. Note that in this work we derive an upper-bound of the posterior

variance of the failure probability, which bounds our epistemic uncertainty about the failure proba-

bility due to a kind of numerical uncertainty, i.e., discretization error. The fifth contribution further

strengthens the previously developed active learning probabilistic integration (ALPI) method in two

ways, i.e., enabling the use of parallel computing and enhancing the capability of assessing small

failure probabilities. The resulting method is called parallel adaptive Bayesian quadrature (PABQ).

The sixth research presents a principled Bayesian failure probability inference (BFPI) framework,
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where the posterior variance of the failure probability is derived (not in closed form). Besides, we

also develop a parallel adaptive-Bayesian failure probability learning (PA-BFPI) method upon the

BFPI framework. For the seventh development, we propose a partially Bayesian active learning line

sampling (PBAL-LS) method for assessing extremely small failure probabilities, where a partially

Bayesian active learning insight is offered for the classical LS method and an upper-bound for the

posterior variance of the failure probability is deduced. Following the PBAL-LS method, the eighth

contribution finally obtains the expression of the posterior variance of the failure probability in the

LS framework, and a Bayesian active learning line sampling (BALLS) method is put forward. The

ninth contribution provides another Bayesian active learning alternative, Bayesian active learning

line sampling with log-normal process (BAL-LS-LP), to the traditional LS. In this method, the

log-normal process prior, instead of a Gaussian process prior, is assumed for the beta function so as

to account for the non-negativity constraint. Besides, the approximation error resulting from the

root-finding procedure is also taken into consideration.

In conclusion, this thesis presents a set of novel computational methods for forward UQ, espe-

cially from a Bayesian active learning perspective. The developed methods are expected to enrich

our toolbox for forward UQ analysis, and the insights gained can stimulate further studies.

Keywords: Uncertainty propagation; Structural reliability analysis; Bayesian active learning;

Bayesian inference; Bayesian quadrature; Bayesian optimization; Active learning; Gaussian pro-

cess; Numerical uncertainty; Line sampling
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Zusammenfassung

Die Unsicherheitsquantifizierung (UQ) dient im weitesten Sinne der quantitativen Untersuchung

von Quellen von Unsicherheiten in rechnergestützten und realen Applikationen. Obwohl das Feld der

UQ in viele Unterthemen gegliedert ist, lassen sich zwei typische Hauptprobleme benennen: vorwärts

und inverse Unsicherheitspropagierung. Im Fokus der vorliegenden Thesis sind Vorwärtsprobleme,

bei denen die Auswirkungen unterschiedlicher Formen von Unsicherheit in Inputparametern auf

den Output von rechnergestützten Modellen untersucht werden. Insgesamt beinhaltet diese Arbeit

neun wesentliche Weiterentwicklungen zur Vorwärts-UQ-Propagierung mit dem Schwerpunkt auf

Methoden des Baysian-active-learnings.

Die erste Entwicklung befasst sich mit der Schätzung von Extremwertverteilung und kleinen

First-Passage Wahrscheinlichkeiten von unsicheren nichtlinearen Strukturen unter stochastischer

seismischer Anregung. Hierfür wird ein momenterzeugender funktionsbasierter Mischverteilungsansatz

(MGF-MD) vorgestellt. Die zweite Entwicklung beinhaltet eine Triple-Engine-Parallel-Baysian-

Global-Optimization-Methode (T-PBGO) zur Propagierung von Intervallunsicherheiten. In dem

dritten Beitrag wird eine Parallel-Baysian-Quadrature-Optimization-Methode (PBQO) beschrieben.

Diese dient zur Schätzung der Erwartungswertfunktion sowie den dazugehörigen signifikantesten

Variablen und Grenzen, unter der Annahme von rechnergestützten Modellen die hybriden Un-

sicherheiten in Form von Zufallsvariablen, parametrischen Probability-Boxes (P-Boxes) und In-

tervallmodelle als Input beinhalten. Die vierte Veröffentlichung behandelt die Funktion der Ver-

sagenswahrscheinlichkeit, wenn Inputparameter der Grenzzustandsfunktion durch parametrische P-

Boxes charakterisiert werden. Zu diesem Zweck wird die Active-learning-augmented-probabilistic-

Integration-Methode (ALAPI) vorgeschlagen. Diese basiert auf einer partiellen Baysian-active-

learning-Perspektive zur Schätzung von Ausfallwahrscheinlichkeit sowie auf der Verwendung der

High-dimensional-Model-Representation (HDMR). Hierzu wird eine Obergrenze für die a posteriori

Varianz der Ausfallwahrscheinlichkeit abgeleitet. Diese erzeugt eine Limitierung der epistemischen

Unsicherheit über die Ausfalwahrscheinlichkeit, aufgrund einer Art numerischer Unsicherheit, d.h.

Diskretisierungsfehler. Der fünfte Beitrag stärkt die zuvor entwickelte ALPI-Methode (Active-
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learning-probabilistic-Integration) in zweierlei Hinsicht: Es wird die Nutzung paralleler Berechnun-

gen ermöglicht und die Fähigkeit verbessert, kleine Ausfallwahrscheinlichkeiten zu bewerten. Die

daraus resultierende Methode wird als Parallel-adaptive-Baysian-Quadrature (PABQ) bezeichnet.

In der sechsten Forschungsarbeit wird eine prinzipientreue Baysian-Failure-Probability-Inference

(BFPI) vorgestellt, bei dem die a posteriori Varianz der Ausfallwahrscheinlichkeit abgeleitet wird

(nicht in geschlossener Form). Außerdem wird auf der Grundlage des BFPI-Frameworks eine

Parallel-adaptive-Baysian-Failure-Probability-learning-Methode (PA-BFPI) entwickelt. Als siebte

Weiterentwicklung wird eine Partially-Baysian-active-learning-Line-Sampling-Methode (PBAL-LS)

für die Bewertung extrem kleiner Ausfallwahrscheinlichkeiten vorgeschlagen. Hierbei wird eine

Partially-Baysian-active-learning-Methode für die klassische LS-Methode eingeführt und eine Ober-

grenze für die a posteriori Varianz der Ausfallwahrscheinlichkeit abgeleitet. Im Anschluss an die

PBAL-LS-Methode liefert die achte Entwicklung den Ausdruck für die a posteriori Varianz der Aus-

fallwahrscheinlichkeit im LS-Framework. Ferner wird eine Bayesian-active-learning-Line-Sampling-

Methode (BALLS) vorgestellt. Der neunte Beitrag bietet eine weitere Alternative zum tradi-

tionellen Line-Sampling: Bayesian-active-learning-Line-Sampling-with-Log-Normal-Process (BAL-

LS-LP). Bei dieser Methode wird anstelle eines Gauß-Prozesses ein logarithmisch normalverteilter a

priori Prozess für die Betafunktion angenommen, um die Nicht-Negativitätsbeschränkung zu berück-

sichtigen. Außerdem wird der Approximationsfehler, resultierend aus dem Verfahren zur Findung

der Nullstelle, berücksichtigt.

Zusammenfassend wird in dieser Arbeit eine Reihe neuartiger Berechnungsmethoden für Vor-

wärtsprobleme in der UQ vorgestellt. Insbesondere aus der Active-Learning-Perspektive nach Bayes.

Die entwickelten Methoden sollen die Verfahren zur Vorwärts-UQ-Analyse ergänzen, wobei die

gewonnenen Erkenntnisse weitere Studien anregen können.

Stichworte: Uncertainty-Propagation; Strukturzuverlässigkeitsanalyse; Bayesian-active-learning;

Bayesian-Inference; Bayesian-Quadrature; Bayesian-Optimization; Active-learning; Gauß-Prozesse;

Numerische Unsicherheiten; Line-Sampling
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CHAPTER 1. INTRODUCTION

1.1 Opening section

Forward uncertainty quantification (UQ) involves quantifying the effects of input uncertainties

on the output responses of a computational model encountered in computational science and en-

gineering. Considerable efforts have been devoted to this area for promoting the development of

versatile techniques over the past several decades. However, it is still highly desired to have more

advanced methods for large-scale science and engineering applications across many diverse fields.

The aim of this thesis is to develop a wide range of methodologies that can contribute to the state-

of-the-art of forward UQ, especially from a Bayesian active learning perspective. This chapter will

provide an introduction to the study by first discussing the research background, followed by the

problem statement, aim and objectives, original contributions and structure of the thesis.

1.2 Research background

UQ in its broadest sense is a large field of science that identifies, characterizes and manages

uncertainties in both computational and real world systems. It can be dated back to the 1950s and

1960s when the need to account for uncertainty in mathematical models used in various fields, such

as engineering and physics, became increasingly recognized. From then on, in order to systemati-

cally account for all relevant uncertainties arising from different situations, UQ has evolved into an

independent but interdisciplinary field of science. As illustrated in Fig. 1.1, such interdisciplinary

nature is resulted by the interaction and collaboration of a number of disciplines, such as applied

mathematics, probability and statistics, computational science and engineering, etc. As an inde-

pendent discipline with distinct characteristics, UQ seeks to integrate multidisciplinary knowledge

into the study of complex models in the face of uncertainty, primarily through computer simulation.

Through many years, UQ has become an important aspect of the development and use of predictive

computational simulation tools.

In a typical UQ problem, there could be a variety of specific tasks depending on the con-

text. In general, the main tasks include but not limited to uncertainty identification, uncertainty

characterization, forward and inverse uncertainty propagation, model calibration and validation,

sensitivity analysis and decision making under uncertainty, as summarized in Fig. 1.2. To better

understand the overall theme of this thesis, only three aspects among them, i.e., sources and types
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Figure 1.1: Illustration of the interdisciplinary nature of UQ.

of uncertainty, mathematical representation of uncertainty and forward uncertainty quantification,

are briefly introduced in the following.

 

Figure 1.2: Typical tasks included in UQ.
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1.2.1 Sources and types of uncertainty

Uncertainty seems to be everywhere, from everyday life to the natural sciences and engineering.

Simply put, it arises whenever there is a lack of certainty. This implies that uncertainty can come

from diverse sources. Therefore, identifying the sources of uncertainty is a relevant task in the

practical application of UQ, and ignoring some important sources may lead to misleading and even

catastrophic results in the subsequent analysis and decision making. Note that such a task in a broad

sense may vary from problem to problem. In the context of predictive model building, some common

sources of uncertainties include, as illustrated in Fig. 1.3, uncertainties in the mathematical forms

of the models (i.e., model bias), uncertainties coming from the model parameters (e.g., model initial

and boundary conditions), uncertainties arising from the experimental data (e.g., sparse data and

measurement error) used to calibrate the models, as well as uncertainties stemming from numerical

solving (e.g., discretization error and approximation error).

 

Figure 1.3: Some common sources of uncertainties in the context of predictive model developing.

In general, uncertainty can be grouped in many different ways, e.g., [1–3]. However, it is more

common to divide uncertainty into two types, i.e., aleatory and epistemic uncertainty [4–6]. Aleatory

uncertainty (also known as statistical, stochastic, objective or irreducible uncertainty) refers to the

inherent randomness of a phenomena. It is thus objective, and cannot in principle be reduced

by acquiring more knowledge or information. Epistemic uncertainty (also known as ignorance,

subjective or reducible uncertainty) relates to the uncertainty caused by any lack of knowledge.

Therefore, it is subjective and likely to be reduced or eliminated if more relevant knowledge or
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information is available. It is worth noting that aleatory uncertainty and epistemic uncertainty do

not always exist independently, but can also occur simultaneously in a single term. We refer to the

latter as mixed aleatory-epistemic uncertainty, and classify uncertainty into three categories in this

study, as shown in Fig. 1.4.

 

Figure 1.4: Three types of uncertainty.

1.2.2 Mathematical representation of uncertainty

The quantitative characterization of uncertainty by mathematical models is recognized as the

basis for most, if not all, of UQ tasks. Many different models have been available for representing

uncertainty in different situations. These models can be broadly grouped into three categories

(as shown in Fig. 1.5): probabilistic models, non-probabilistic models and imprecise probabilistic

models.

1.2.2.1 Probabilistic models

Probabilistic models are the most popular tool in the quantitative mathematical treatment of

uncertainty. They are deeply grounded on the classical probability theory, which is a branch of

mathematics concerned with probability. The term probability has many interpretations, among

which two prevailing are the frequentist and Bayesian perspectives. The frequentist thinks of prob-

ability as the relative frequency of a repeated event, whereas the Bayesian interprets probability as

a measure of the belief or confidence. As a result, both aleatory and epistemic uncertainty can be

modelled by using probabilistic models.

Let (Ω, F ,P) be a probability space, where Ω denotes a sample space containing all possible

outcomes of a random event, F is a σ-algebra of mensurable subsets (events) of Ω, and P is a
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CHAPTER 1. INTRODUCTION

 

Figure 1.5: Some typical uncertainty representation models.

probability measure function that assigns a probability (between 0 and 1) to each event belonging

to F . Note that the probability of an empty set is zero (i.e., P(∅) = 0), while the probability of all

possible outcomes is one (i.e., P(Ω) = 1).

In the above setting, a random variable (denoted as X for convenience) is then introduced to

assign numbers to outcomes in the sample space. More formally, X is defined as a measurable

function X(ω): Ω → X , where ω ∈ Ω represents an elementary event and X ⊆ R is the domain

of X. A realization or sample of X is usually denoted by the corresponding lowercase letter x. A

random variable is said to be discrete (respectively continuous) if it has a countable (respectively

uncountable) number of possible values.

The distribution of a random variable X can be fully characterized by its cumulative distribu-

tion function (CDF) FX : X → [0, 1], which is defined by:

FX(x) = P {ω ∈ Ω|X(ω) ≤ x} . (1.1)
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This is often written as FX(x) = P {X ≤ x}. The probability mass and density functions can also

be used to describe a discrete and a continuous random variable, respectively. The probability mass

function (PMF) of a discrete random variable X is given by:

fX(xi) = P {ω ∈ Ω|X(ω) = xi} . (1.2)

In a more concise notation, fX(xi) = P {X = xi}. For a continuous random variable X, the proba-

bility density function (PDF) is defined as:

fX(x) = dFX(x)
dx

. (1.3)

The aforementioned concepts (i.e., CDF, PMF and PDF) are schematically illustrated in Fig. 1.6.

The summary statistics, such as the expectation and variance, of a random variable are often

of interest. The expectation µ of a random variable X is defined as:

µ = E (X) =


∑

i xifX(xi), X is discrete∫
X xfX(x)dx, X is continuous

. (1.4)

The variance σ2 of a random variable X is given by:

σ2 = Var (X) =


∑

i (xi − µ)2fX(xi), X is discrete∫
X (x − µ)2fX(x)dx, X is continuous

. (1.5)

By definition, the expectation describes the average value and the variance measures the dispersion

around the expectation.

When dealing with multiple random variables, we can define a random vector X = [X1, X2, · · · , Xn]T

on the probability space (Ω, F ,P), where each individual component Xi represents a random vari-

able. The random vector X can be characterized by its joint CDF:

FX(x) = P {X1 ≤ x1, X2 ≤ x2, · · · , Xn ≤ xn} , (1.6)

where x = [x1, x2, · · · , xn]T . In case of n discrete random variables, the joint PMF of X can be

7
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defined as:

fX(x) = P {X1 = x1, X2 = x2, · · · , Xn = xn} . (1.7)

In case of n continuous random variables, the joint PDF of X can be expressed as:

fX(x) = ∂n

∂x1 · · · ∂xn
FX(x), (1.8)

given that FX(x) is differentiable.
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(a) PMF of a discrete random variable
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(c) CDF of a discrete random variable
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(d) CDF of a continuous random variable

Figure 1.6: Examples of probability distributions of discrete and continuous random variables.

Now, we move on to the discussion of a stochastic process (also known as random process),

which is defined as a collection of random variables indexed by some mathematical set. Given the
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same probability space (Ω, F ,P), a stochastic process can be written as:

{X(t, ω) : t ∈ T, ω ∈ Ω} , (1.9)

where T is an arbitrary set, but often totally ordered. A stochastic process {X(t, ω) : t ∈ T, ω ∈ Ω}

is usually denoted as {X(t), t ∈ T} or simply as X(t) omitting its dependence on ω. For a fixed

t ∈ T , X(·, ω) is a random variable, whereas for a given ω ∈ Ω, X(t, ·) is a realization or sample of

the stochastic process (as schematically shown in Fig. 1.7).

0 20 40 60 80 100
9

9.5

10

10.5

11

11.5

12

Figure 1.7: A realization of a stochastic process X(t, ω).

A stochastic process can be fully described by its finite-dimensional distributions, while they

are not given here for the sake of simplicity. Alternatively, we present the more commonly-used

summary statistics, i.e., expectation and covariance functions, which are defined as follows:

µ(t) = EΩ [X(t, ω)] , (1.10)

c(t1, t2) = EΩ [(X(t1, ω) − µ(t1)) (X(t2, ω) − µ(t2))] , (1.11)

where EΩ denotes the expectation taken over the sample space Ω. From the covariance function,

we can obtain a variance function as σ2(t) = c(t, t). It should be noted that these moments are only

partial characterizations for a general stochastic process.

Stochastic processes can be categorized into several types based on their properties and be-

havior. In terms of stationarity, a stochastic process can be classified into either stationary or

non-stationary. A stochastic process is said to be stationary if its statistical properties (such as the

9
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mean and variance) do not change over time, while a non-stationary stochastic process does the

opposite.

1.2.2.2 Non-probabilistic models

In contrast to the probabilistic models, non-probabilistic models typically treat uncertainty

with set-theoretic approaches, rather than precise probability values. Representative examples of

such models include interval models, convex models, fuzzy models.

Interval models [7, 8] represent the most basic type of mathematical models for describing

uncertainty in a non-probabilistic way. In this context, an interval scalar is defined as a bounded

set of real numbers. Depending on whether the set includes its limit points, there exist four types

of intervals (i.e., closed, open, left-closed and right-open, and left-open and right-closed), which are

defined as:

[x] = [x, x] = {x ∈ R : x ≤ x ≤ x} , (1.12)

]x[ = (x, x) = {x ∈ R : x < x < x} , (1.13)

[x[ = [x, x) = {x ∈ R : x ≤ x < x} , (1.14)

]x] = (x, x] = {x ∈ R : x < x ≤ x} , (1.15)

where x ∈ R and x ∈ R denote respectively the left and right endpoints of the set, and x < x. See

Fig. 1.8 for an illustration of a closed interval scalar. In a large body of literature, intervals are

defined by default as closed. For this reason, when it is referred to an interval in the following, we

mean a closed interval.

 

Figure 1.8: Illustration of an interval scalar.
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An interval vector is an array of which each element is an interval, that is:

[x] =



[x]1
[x]2

...

[x]n


= {x ∈ Rn : xi ⩽ xi ⩽ xi} , (1.16)

where xi denotes the i-th interval with lower and upper bounds xi and xi, i = 1, 2, · · · , n. For

illustrating an interval vector in two dimensions, one can refer to Fig. 1.9. An n-dimensional

interval vector describes a hyperrectangle in an n-dimensional Euclidean space.

 

Figure 1.9: Illustration of an interval vector in two dimensions.

Similarly, an interval matrix is a matrix whose entries are intervals, that is:

[X] =



[x]11 [x]12 · · · [x]1n

[x]21 [x]22 · · · [x]2n

...
... . . . ...

[x]m1 [x]m2 · · · [x]mn


=
{

X ∈ Rm×n : xij ≤ xij ≤ xij

}
, (1.17)

where xij represents the (i, j)-th entry with lower and upper bounds xij and xij , i = 1, 2, · · · , m,

j = 1, 2, · · · , n.

In addition, the interval concept can also be extended to interval processes or fields, see for

instance [9, 10]. It should be pointed out that the elements of an interval vector or an interval matrix

are assumed to be mutually independent by definition. However, the validity of this assumption has
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been questioned and some techniques have been developed to account for the dependence between

multiple intervals as in the context of modelling interval processes or fields.

Convex models [11, 12] are another family of non-probabilistic uncertainty models. A convex

model is defined by a convex set, i.e., a collection of points in which the line segment AB connecting

any two points A, B in the set lies completely within the set. Thereby, dependence between multiple

uncertain variables can be considered in convex models and interval models can be seen a special

case of convex models. Various types of convex models have been developed so far, such as the

ellipsoid convex model [11], super ellipsoid convex model [13], multi-ellipsoid convex model [14],

multidimensional parallelepiped convex model [15] and exponential convex model [16]. Among

these models, the ellipsoid convex model is the most classical and widely used model, and it will be

introduced below.

An n-dimensional ellipsoidal convex model is defined as:

Y =
{

y ∈ Rn :
(
y − y0

)T
G
(
y − y0

)
≤ 1

}
, (1.18)

where y0 =
[
y0

1, y0
2, · · · , y0

n

]T denotes the central point of the ellipsoid, hence determining its location;

G is the characteristic matrix of the ellipsoid:

G =



g11 g12 · · · g1n

g21 g22 · · · g2n

...
... . . . ...

gn1 gn2 · · · gnn


, (1.19)

which determines the size and the orientation of the ellipsoid. Fig. 1.10 shows a 2-dimensional

ellipsoidal convex model, where the marginal model of each dimension can be interpreted as an

interval model [y]i.

The convex model theory has also found applications in modeling spatial or temporal uncer-

tainty, see for example [17, 18].

Fuzzy models [19, 20] appear to be a body of non-probabilistic uncertainty models that are

based on the fuzzy set theory. A fuzzy set can be seen as an extension of the classical notation

of set (known as crisp set). In a crisp set, an element is either a member of the set or not, while

a fuzzy set assigns to each element a grade of membership ranging between zero and one. In this
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Figure 1.10: Illustration of an ellipsoidal convex model in two dimensions.

context, a fuzzy variable x̃ is define as:

x̃ = {(x, µ (x)) : x ∈ Dx̃, µ (x) ∈ [0, 1]} , (1.20)

where µ(x) is the membership function (also known as characteristic function); Dx̃ ⊆ R is the

domain of x̃. If µ (x) = 0, x is definitely not a member of x̃. On the contrary, x is definitely a

member of x̃ if µ (x) = 1. In case 0 < µ (x) < 1, the membership is not certain. A fuzzy variable

with a triangular membership function is schematically shown in Fig. 1.11. Given a membership

level α ∈ (0, 1], we can obtain a crisp set from x̃:

x̃α = {x ∈ Dx̃ :, µ (x) ≥ α} , (1.21)

which is called α-level set.

Likewise, an n-dimensional fuzzy vector can be expressed as:

x̃ = {(x, µ (x)) : x ∈ Dx̃, µ (x) ∈ [0, 1]} . (1.22)

where Dx̃ ⊆ Rn is the domain of x̃.

For fuzzy processes and fuzzy fields, one can refer to, e.g., [21].
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Figure 1.11: Illustration of a fuzzy variable with a triangular membership function.

1.2.2.3 Imprecise probabilistic models

Imprecise probabilistic models are another class of uncertainty models that extends and gener-

alizes the classical precise probabilistic models, allowing for partial probability specifications. The

basis for imprecise probabilistic models is the theory of imprecise probability [22, 23]. Rather than

only a single probability measure in probability theory, the core idea of imprecise probability theory

is to represent uncertainty using a set of probability measures. In doing so, an imprecise probabilis-

tic model can admit imprecision in probabilistic uncertainty modeling, allowing for the simultaneous

consideration of aleatory and epistemic uncertainty. This is very useful when the amount of infor-

mation available is not sufficient enough to specify a precise probabilistic model. Among many

imprecise probabilistic models that have been developed so far, the probability box (p-box) models,

evidence theory-based models and fuzzy probability models are briefly described below.

P-box models [24, 25] impose interval-type bounds on admissible CDFs, and hence can be seen

as an expressive generalization of both probabilistic models and interval models. Recall that in the

context of probabilistic models a random variable can be fully characterized by its CDF. However,

this CDF may not be precisely known due to our limited knowledge. P-box models can release the

requirement of an exact CDF. To be specific, the true-but-unknown CDF F (x) of a random variable

X is supposed to lie within some interval such that:

F (x) ≤ F (x) ≤ F (x), (1.23)

where F (x) and F (x) are two admissible CDFs and satisfy F (x) ≤ F (x) for all x ∈ X . Usually,
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we refer to F (x) and F (x) as the lower (or right) and upper (or left) CDF bounds receptively.

Such a pair
[
F (x), F (x)

]
formally defines a p-box model. The difference between F (x) and F (x)

can reflect the amount of our epistemic uncertainty about the true CDF of X, which describes its

aleatory uncertainty. In this regard, a p-box model can account for the mixed aleatory-epistemic

uncertainty to a certain degree. This property can be illustrated by considering two extreme cases.

In an extreme case that the epistemic uncertainty disappears (i.e., F (x) = F (x)) but the aleatory

uncertainty still exists, a p-box model reduces to a single CDF, and hence a probabilistic model.

In another extreme case that the aleatory uncertainty disappears (i.e., X = x⋆, where x⋆ ∈ X is

a constant) but the epistemic uncertainty still exists, the p-box model degenerates into an interval

model.

In general, p-box models can be classified into two types, namely distribution-free p-box models

and distributional p-box models. A distribution-free p-box model does not need to make any

assumption about the distribution type pertaining to the set of possible CDFs. That is to say, any

valid CDF is allowed within the given CDF bounds, even non-smooth one. Fig. 1.12(a) depicts

a distribution-free p-box model, including its upper and lower CDF bounds and four realizations.

On the contrary, a distributional p-box model assumes that the set of possible CDFs comes from a

certain distribution family with interval parameters:

F (x) =
{

F (x|θ) : θ ∈
[
θ, θ

]}
, (1.24)

where θ = [θ1, θ2, · · · , θnθ
] is a vector of nθ interval variables; θ and θ represent the lower and upper

bounds of θ, receptively. In this context, the lower and upper CDF bounds of a distributional p-box

model can be expressed as:

F (x) = min
θ∈[θ,θ]

F (x|θ), (1.25)

F (x) = max
θ∈[θ,θ]

F (x|θ). (1.26)

Fig. 1.12(b) illustrates a distributional p-box model defined by a Gaussian family Φ(x; µ, σ2), where

µ = [−1.0, 1.0] and σ = [0.5, 1.0].

A vector containing multiple p-box variables can be defined without or with considering their

dependency [26, 27]. Besides, it is also possible to define p-box processes (or fields) [28, 29].

Evidence theory-based models are established based on a mathematical theory of evidence, called
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(b) Distributional p-box model

Figure 1.12: Examples of distribution-free and distributional p-box models.

Dempster-Shafer theory [30, 31] (also referred to as evidence theory or theory of belief functions).

Unlike in probability theory, evidence theory introduces a set of two measures of uncertainty, i.e.,

belief and plausibility. Let us consider an evidence space (Ω, S, m), where Ω is the universal set

that contains all possible outcomes, S denotes the countable collection of subsets of Ω (which is

not required to be a σ-algebra as is the case in probability theory), and m represents the basic

probability assignment (BPA). For a given subset A ∈ Ω, the BPA defines a mapping of A onto the

interval [0, 1], i.e., m : A → [0, 1], such that:

m(A) ≥ 0, ∀A ∈ S, (1.27)

m(∅) = 0, (1.28)

∑
A∈S

m(A) = 1. (1.29)

Note that the term BPA does not refer to the probability measure any more, but reflects the degree

of belief that can be assigned to A, but to no subset of A. The belief measure of A is defined as

the sum of all the probabilities of the subsets of A, while the plausibility of A is defined as the sum

of all the probabilities of the sets that intersect the set A:

Bel(A) =
∑

B|B∈A
m(B), (1.30)
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Pl(A) =
∑

B|B∩A≠∅
m(B). (1.31)

It is obvious that Bel(A) ≤ Pl(A). The belief and plausibility measures can be regarded as the

lower and upper bounds of the probability measure of A respectively, i.e., Bel(A) ≤ P(A) ≤ Pl(A).

The belief interval [Bel(A), P l(A)] reflects the amount of epistemic uncertainty about the true

probability P(A). The probability theory can thus be considered as a special case of the evidence

theory when Bel(A) = Pl(A). For an illustration, an evidence theory based model is displayed in

Fig. 1.13.
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Figure 1.13: Illustration of an evidence theory based model.

For more information about the evidence theory, one can refer to, e.g., [32].

Fuzzy probability models [21] are based on the fuzzy probability theory, which can be regarded

as a marriage between fuzzy set theory and probability theory. A fuzzy probability model allows

for the consideration of a fuzzy set of probabilistic models, and hence mixed aleatory-epistemic

uncertainty. The aleatory uncertainty is captured by a probabilistic model, while the epistemic

uncertainty regarding the probabilistic model specification is reflected by a fuzzy set. A formal

definition of a fuzzy random variable entails the construction of a fuzzy probability space. However,

there are many ways to formalize a fuzzy probability space and there is no consensus yet. For this

reason, we only introduce a fuzzy random variable in a less formal but more convenient manner. A

fuzzy random variable X̃ can be defined by its fuzzy CDF F̃ (x) such that:

F̃ (x) = {(F (x), µ(F (x))) : F (x) ∈ F, µ(F (x)) ∈ [0, 1]} , (1.32)
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where F denotes the set of admissible CDFs. See Fig. 1.14 for an illustration of a fuzzy random

variable. An α-level set of F̃ (x) can be expressed as:

F̃α(x) = {F (x) ∈ F : µ(F (x)) ≥ α} , (1.33)

where α ∈ (0, 1]. In fact, each α-level set F̃α(x) can lead to a distribution-free p-box model.

 

Figure 1.14: Illustration of a fuzzy probability model.

1.2.3 Forward uncertainty quantification

As a main task of UQ, forward UQ (also known as uncertainty propagation) aims at quanti-

fying the output uncertainty of a computational model subject to input uncertainty. This can be

conceptually illustrated by Fig. 1.15. A core component lies in a computational model, which is a

mathematical representation of a real system. A computational model can be either deterministic

or stochastic, depending on whether it always produces the same outputs whenever evaluated on

the same inputs. In this thesis, we restrict our focus to only deterministic computational models.

They are represented by an input-output mapping M(·) : Rd1 → Rd2 , where d1 ∈ N1 and d2 ∈ N1

denote the dimensions of the input and output spaces receptively. The model inputs specify some

proprieties of the system under consideration, while the model outputs are constituted by some

quantities of interest. Let us denote the inputs and outputs as X = [X1, X2, · · · , Xd1 ] ∈ Rd1 and

Y = [Y1, Y2, · · · , Yd2 ] ∈ Rd2 respectively. In our context, the inputs of M(·) are not deterministic

values, but subject to uncertainty. Assume that the uncertain model inputs have been well described

by suitable mathematical uncertainty models. The uncertainty in model inputs propagated through

a computational model leads to the uncertainty of the model outputs Y = M(X). The objective
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of forward UQ is to understand how uncertainty in the model inputs X affects the uncertainty in

the model outputs Y .

 

Figure 1.15: Schematic illustration of forward UQ.

The content of UQ is very rich, and it is continuously enriched. This makes it unrealistic to

give a comprehensive overview. In the following, we only give a brief introduction along each class

of input uncertainty models as well as a combination thereof. For the convenience of description, a

scalar model output Y is considered.

1.2.3.1 Propagation of probabilistic uncertainty

In case that the model inputs are fully described by probabilistic uncertainty models (i.e., X

is a vector of d1 random variables), the scalar model output Y should also be a random variable.

The ultimate goal of a forward UQ analysis is to obtain certain statistics of the random variable Y .

Various methods have been developed to obtain different types of statistics:

• Probability distribution of Y . The uncertainty of Y can be fully characterized once its PDF

fY (y) or CDF FY (y) is derived. For this purpose, typical methods include but are not limited

to Monte Carlo simulation (MCS) [33], probability density evolution method [34], probability

transformation method [35, 36], direct probability integral method [37] and maximum entropy

method [38, 39].

• Statistical moments of Y , e.g., mean and variance, which can be defined by:

µY =
∫
Rd1

M(x)fX(x)dx, (1.34)

σ2
Y =

∫
Rd1

[M(x) − µY ]2 fX(x)dx. (1.35)
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In a general setting, the statistical moments of Y can only characterize Y partially. One can

resort to MCS [40], sparse grid integration [41], cubature formula [42], Bayesian quadrature

[43, 44], univariate-dimension reduction method [45], etc.

• Probabilistic reliability analysis. The central task is to compute the complement of the relia-

bility, that is the so-called failure probability. If we assume that a failure occurs whenever Y

exceeds a certain threshold b, then the failure probability Pf can be defined by:

Pf = P {Y > b} =
∫
{x∈Rd1 :M(x)>b}

fX(x)dx. (1.36)

In this context, a considerably large number of methods are available in the literature. Ex-

amples of such methods include MCS and its variants [46, 47], first-/second-order reliability

method [48, 49], AK-MCS [50], high-order moment method [51].

1.2.3.2 Propagation of non-probabilistic uncertainty

When the model inputs are described by non-probabilistic uncertainty models, the quantity

of interest Y should also be non-probabilistic. For instance, if X is a vector of d1 interval (fuzzy)

variables, Y should be a interval (fuzzy) variable as well. Under non-probabilistic inputs, many

research efforts have been devoted to the forward UQ analysis along the following directions:

• Non-probabilistic characterization of Y . This is aimed at giving a full account for the non-

probabilistic content of Y . In case that Y is an interval variable, of interest are its lower and

upper bounds that completely characterize Y . Given that Y is identified as a fuzzy variable, a

full characterization could be its fuzzy set or α-discretization description. One can refer to [52]

for an overview of recent advances in the field of non-probabilistic uncertainty propagation.

• Non-probabilistic reliability analysis. This mainly involves defining non-probabilistic reliabil-

ity measures and developing efficient methods for computing those measures. Existing studies

include, e.g., [53–56].

1.2.3.3 Propagation of imprecise probabilistic uncertainty

Supposing that the model inputs are considered as imprecise probabilistic models, the model

output might be imprecise probabilistic as well. For example, whenever the computational model
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is subject to a vector of d1 p-box variables, the model output should also be a p-box variable.

For propagating imprecise probabilistic uncertainty, the following aspects have received particular

attention:

• Complete characterization of Y . In order to obtain the output p-box when the inputs are

p-boxes, there are several existing methods as documented in [57–60]. In case that one is

interested in the output evidence theory-based model when the inputs are modeled by evidence

theory, the relevant methods can be found in [61–65]. When it comes to propagating the inputs

modeled by fuzzy probability theory to a fuzzy random output, the reader is referred to [21].

• Partial characterization of Y . Like in probabilistic uncertainty propagation, it is also possible

to consider the summary statistics of Y in certain situations. For example, if the inputs are

described by distributional p-box models, the output variable should also be a distributional

p-box variable and we can define its moments, e.g., mean and variance. However, they are not

crisp values but functions with respect to interval distribution parameters of the inputs. In

this context, some research efforts have been made to obtain the response moment functions

and/or their bounds [59, 60, 66].

• Imprecise probabilistic reliability analysis. In contrast to probabilistic reliability analysis, the

likelihood of failure usually cannot be measured by a crisp failure probability in imprecise

probabilistic reliability analysis. For example, assuming that the model inputs are distri-

butional p-boxes, the failure probability turns out to be a function with respect to interval

distribution parameters of the inputs. In order to derive the failure probability bounds, it is

referred to [25] for an overview of existing computational methods. For reliability analysis

under evidence theory, recent progresses can also be found in a review [67]. When it comes to

fuzzy probabilistic reliability analysis, the interested reader is referred to [21].

1.2.3.4 Propagation of polymorphic uncertainties

For a single computational model, it is not always possible or reasonable to describe the model

inputs by the same type of uncertainty models. This promotes the need to take different types

of uncertainty models into consideration, and hence to propagate polymorphic uncertainties. Of

course, various situations may occur due largely to the diversity of uncertainty models. Therefore,
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it is unrealistic for us to provide a comprehensive overview. For this reason, we only discuss the

propagation of probability-interval hybrid uncertainties as a simple illustration. This means that the

model inputs X are assumed to have only random and interval variables. Under this assumption,

the model output Y can be regarded as a p-box variable. A forward UQ analysis in the context of

probability-interval hybrid uncertainties is typically related to the following topics:

• Complete characterization of Y . As Y can be regarded as a p-box variable, a complete

characterization of it involves determining the lower and upper CDF bounds, see for example

[68].

• Partial characterization of Y . A usual practice is to consider the moments (such as mean and

variance) of Y , which are functions with respect to the input interval variables. Thus, efforts

have been made to estimate response moment bounds [68–70].

• Probability-interval hybrid reliability analysis. The failure probability is no longer a crisp

value, but a function of the input interval variables. In view of this, there is increasing

attention paid to deriving the failure probability bounds [71–75].

1.2.4 Bayesian active learning and Bayesian probabilistic numerics

In order to better understand what Bayesian active learning is, let us first introduce active

learning. The term active learning can refer to a method of learning in which students are actively

rather than passively involved in the learning process. Besides, it is more commonly known as a

form of machine learning, and this is exactly what we want to talk about. In the context of machine

learning, active learning refers to any learning algorithm that can interactively query the user (or

some other information source) in order to obtain the desired outputs at new data points. This

allows the learning algorithm to learn more efficiently by focusing on the most informative data

points, rather than just training on a randomly selected subset of the data. Active learning can find

applications in a wide range of fields, including forward UQ. Two pioneering methods that make use

of active learning for probabilistic reliability analysis are efficient global reliability analysis (EGRA)

[76] and AK-MCS [50]. After that, significant progress has been made to develop active learning

methods for forward UQ, especially for probabilistic reliability analysis, see, e.g., [77, 78].

Bayesian active learning is a specific method for active learning that takes advantage of Bayesian

principles. It is typically used in the context of Bayesian models. In a Bayesian model, our prior
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beliefs about the model parameters are represented by prior distributions. Once data is observed,

these prior distributions are updated to posterior distributions, which reflect the updated beliefs

about the model parameters given the observed data. The updating process is typically done by

using Bayes’ theorem. A Bayesian active learning algorithm selects the most informative data points

to label based on the expected improvement of the model’s posterior distribution. This allows one to

incorporate prior knowledge and model uncertainty in the process of selecting the most informative

samples. In contrast, traditional active learning methods more rely on some model-agnostic criteria,

such as uncertainty sampling, query-by-committee, or expected error reduction. Due to its attractive

features, Bayesian active learning has been successfully applied in many fields, e.g., machine learning

[79], natural language processing [80], computer vision [81], robotics [82] and so on.

Along with or even before the Bayesian active learning in machine learning, a branch of numer-

ical analysis, known as Bayesian probabilistic numerics [83, 84], emerged to use Bayesian statistical

techniques to solve numerical problems, e.g., integration, optimization and differential equations.

Compared to deterministic numerics, Bayesian probabilistic numerics allow for developing numerical

methods that have a probabilistic interpretation. Although Bayesian active learning and Bayesian

probabilistic numerics were developed in different fields for different purposes, they share very sim-

ilar ideas (simply being referred as Bayesian active learning in this study). However, these ideas

have only been pursued by few studies [44, 66] in the field of forward UQ.

1.3 Problem statement

Forward UQ plays an important role in understanding the effects of uncertainty in the model

inputs on the model outputs, which in turn enables more informed decision-making, risk man-

agement, and improved predictions or results. As discussed above, numerous efforts have been

dedicated to the development of computational methods for different purposes. However, it can

be still challenging to apply those existing methods to many computational models of real-world

systems, even using today’s supercomputers. This can be due to, e.g., ever-increasing complexity

of computational models and diversity of uncertainty models. The former is to capture the real

behavior of the associated system, while the latter is to account for different kinds of uncertainties.

Furthermore, in addition to the uncertainty in the model inputs, another type of uncertainty, i.e.,

numerical error (e.g., discretization error and approximation error), is largely ignored in the exist-
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ing numerical methods for forward UQ. However, numerical error should be properly treated in the

process of forward UQ analysis because it can lead to inaccurate or unreliable results. Last but not

least, although some machine learning techniques (such as active learning) have been successfully

used for forward UQ, their potential still needs to be fully exploited in a strategic manner.

1.4 Aim and objectives

This thesis aims to develop a wide range of forward UQ methods that can help narrow the

research gap, especially from a Bayesian active learning perspective. The aim is detailed by the

following objectives:

(i) To develop a dynamic reliability analysis method for nonlinear structures with uncertain

parameters under stochastic seismic excitations, where the dimension of model inputs is more

than one thousand;

(ii) To present a method for interval uncertainty propagation based on the use of Bayesian global

optimization, which is able to generate simultaneously the upper and lower bounds of a model

output, and support parallel distributed processing;

(iii) To propose a parallel Bayesian active learning method for propagating hybrid uncertainties

in the form of precise probability models, distributional p-box models and interval models,

where the quantities of interest are the response expectation function, its variable importance

and bounds;

(iv) To provide a Bayesian active learning method for propagating distributional p-box models,

where the failure probability function is of interest and discretization error should be handled

in a proper way;

(v) To establish a parallel Bayesian active learning method for probabilistic reliability analysis

with small failure probabilities;

(vi) To offer a Bayesian perspective, as opposed to the classical frequentist perspective, on the

problem of failure probability integral estimation;

(vii) To treat the traditional line sampling for probabilistic reliability analysis with a Bayesian

active learning perspective, where the numerical error is properly addressed.
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1.5 Original contributions

The main work of this thesis is the development of several innovative approaches for forward

UQ analysis, as well as offering some new perspectives. The main contributions can be summarized

as follows:

(a) For objective (i), we develop a dynamic reliability analysis method, called ‘moment-generating

function based mixture distribution’ (MGF-MD). The main idea lies in estimating the extreme

value distribution from a small number of simulations by using the moment-generating func-

tion and a proposed mixture distribution model. A key advantage of the proposed MGF-MD

method is that it is capable of handling high-dimensional nonlinear stochastic dynamic sys-

tems;

(b) For objective (ii), we present an interval uncertainty propagation method, termed ‘triple-

engine parallel Bayesian global optimization’ (T-PBGO). In contrast to the existing BGO

methods for interval uncertainty propagation, the proposed T-PBGO method can produce

the lower and upper bounds of a model output of interest in a single run. In addition, it can

identify multiple points to query the response function at each iteration, and hence support

parallel distributed processing;

(c) For objective (iii), we propose a parallel Bayesian active learning method, called ‘parallel

Bayesian quadrature optimization’ (PBQO), for propagating hybrid uncertainties in the form

of precise probability models, distributional p-box models and interval models. In this method,

estimation of response expectation function is treated as a Bayesian active learning problem,

and discretization error is regarded as a kind of epistemic uncertainty;

(d) For objective (iv), we provide a Bayesian active learning method, named ‘active learning

augmented probabilistic integration’ (ALAPI), for propagating distributional p-box models.

To do so, an ‘active learning probabilistic integration’ (ALPI) method is first developed for

probabilistic reliability analysis. In ALPI, we seek to treat the estimation of failure probability

integral as a Bayesian active learning problem in which the discretization error is properly

treated. Then, the ALAPI method is built upon a combination of ALPI and high-dimensional

model representation in the augmented space;
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(e) For objective (v), we establish a parallel Bayesian active learning method, termed ‘parallel

adaptive Bayesian quadrature’ (PABQ), for probabilistic reliability analysis with small failure

probabilities. The established method is based on our previously developed ALPI, but with

two important enhancements. The first is to enable the estimation of small failure probabili-

ties, while the second consists in facilitating parallel computing;

(f) For objective (vi), we offer a Bayesian perspective, as opposed to the classical frequentist

perspective, on the problem of failure probability integral estimation. For this purpose, a

principled ‘Bayesian failure probability inference’ (BFPI) framework is advocated based on

assigning a Gaussian process prior over the performance function. In addition, a ‘paral-

lel adaptive-Bayesian failure probability learning’ (PA-BFPL) method is also developed for

probabilistic reliability analysis;

(g) For objective (vii), we put forward a ‘partially Bayesian active learning line sampling’ (PBAL-

LS) method for estimating small failure probabilities. First, estimation of the failure probabil-

ity integral in the classical LS is treated as a Bayesian active learning problem, which allows

to incorporate our prior knowledge and model the discretization error. The proposed method

is called ‘partially’ because we only derive an upper bound of the posterior variance for the

failure probability. In the numerical implementation of PBAL-LS, the important direction is

allowed to be updated on the fly without re-evaluating the beta function;

(h) For objective (vii), in addition to the PBAL-LS method, we also come up with a more com-

plete Bayesian active learning treatment of the traditional LS, leading to the ‘Bayesian active

learning line sampling’ (BAL-LS) method. In this method, the exact posterior variance of the

failure probability is derived in analytic form. Based on the posterior statistics of the failure

probability, a learning function and a stopping criterion are proposed accordingly;

(i) For objective (vii), other than the PBAL-LS and BAL-LS methods, we introduce another

Bayesian active alternative, called ‘Bayesian active learning line sampling with log-normal

process’ (BAL-LS-LP), to the traditional LS. Instead of a Gaussian process prior, we assign a

LP prior over the beta function, which can explicitly express its non-negativity. Besides, the

approximation error introduced by the root-finding procedure is also accounted for.

The above contributions correspond to nine peer-reviewed journal articles, among which the
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first six have been published and the remaining three are under review or to be submitted. A

complete list of these articles is given as follows:

[a] Dang C., Wei P., and Beer M. An approach to evaluation of EVD and small failure probabilities

of uncertain nonlinear structures under stochastic seismic excitations. Mechanical Systems

and Signal Processing 152 (2021): 107468. DOI: https://doi.org/10.1016/j.ymssp.2020.

107468

[b] Dang C., Wei P., Faes M.G., Valdebenito M.A. and Beer M. Interval uncertainty propagation

by a parallel Bayesian global optimization method. Applied Mathematical Modelling 108

(2022): 220-235. DOI: https://doi.org/10.1016/j.apm.2022.03.031

[c] Dang C., Wei P., Faes M.G., and Beer M. Bayesian probabilistic propagation of hybrid un-

certainties: Estimation of response expectation function, its variable importance and bounds.

Computers & Structures 270 (2022): 106860. DOI: https://doi.org/10.1016/j.compstruc.

2022.106860

[d] Dang C., Wei P., Song J., and Michael Beer. Estimation of failure probability function under

imprecise probabilities by active learning–augmented probabilistic integration. ASCE-ASME

Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering 7.4 (2021):

04021054. DOI: https://doi.org/10.1061/AJRUA6.0001179

[e] Dang C., Wei P., Faes M.G., Valdebenito M.A. and Beer M. Parallel adaptive Bayesian quadra-

ture for rare event estimation. Reliability Engineering & System Safety 225 (2022): 108621.

DOI: https://doi.org/10.1016/j.ress.2022.108621

[f] Dang C., Valdebenito M.A., Faes M.G., Wei P., and Beer M. Structural reliability analysis:

A Bayesian perspective. Structural Safety 99 (2022): 102259. DOI: https://doi.org/10.

1016/j.strusafe.2022.102259

[g] Dang C., Valdebenito M.A., Song J., Wei P., and Beer M. Estimation of small failure prob-

abilities by partially Bayesian active learning line sampling: Theory and algorithm. Com-

puter Methods in Applied Mechanics and Engineering 412 (2023): 116068. DOI: https:

//doi.org/10.1016/j.cma.2023.116068
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[h] Dang C., Valdebenito M.A., Faes M.G., Song J., Wei P., and Beer M. Structural reliability

analysis by line sampling: A Bayesian active learning treatment. Structural Safety 104 (2023):

102351. DOI: https://doi.org/10.1016/j.strusafe.2023.102351

[i] Dang C., Valdebenito M.A., Song J., Wei P., and Beer M. Bayesian active learning line

sampling with log-normal process for rare event estimation. Reliability Engineering & System

Safety (Under Review)

1.6 Structure of the thesis

This thesis is organized into eleven chapters in total. Following this introduction, Chapter 2 -

10 report article [a] - [i], respectively. Chapter 11 concludes main findings of the work reported in

this thesis, and provides some future research directions.
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Abstract: Efficient assessment of small first-passage failure probabilities of nonlinear struc-

tures with uncertain parameters under stochastic seismic excitations is an important but still chal-

lenging problem. In principle, the first-passage failure probabilities can be evaluated once the ex-

treme value distribution (EVD) of studied structural response becomes available. With this in mind,

this study presents a novel approach, termed as moment-generating function based mixture distribu-

tion (MGF-MD), for evaluation of the EVD. In this method, the MGF is firstly introduced to char-

acterize the EVD, and the advantages of this characterization are highlighted. To calculate the MGF

defined by a high-dimensional expectation integral, a low-discrepancy sampling technique, named

Latinized partially stratified sampling (LPSS), is employed with a small sample size. Besides, the un-

biasedness of the estimator is proven and the confidence interval is given. Then, a mixture of two gen-

eralized inverse Gaussian distributions (MTGIGD) with a closed-form MGF is proposed to approxi-

mate the EVD from the knowledge of its estimated MGF. The parameter estimation is conducted by

matching the MGF of MTGIGD with seven values of the estimated one. Three numerical examples,

including the EVD of random variables and reliability evaluations of two uncertain nonlinear struc-

tures subjected to fully non-stationary stochastic ground motions, are studied. Results indicate that

the proposed approach can provide reasonable accuracy and efficiency and is applicable to very high-

dimensional systems with small failure probabilities. The source code is readily available at: https:

*Corresponding Author
E-mail address: pengfeiwei@nwpu.edu.cn (P. Wei)

38

https://github.com/Chao-Dang/ Moment-generating-function-based-mixture-distribution
https://github.com/Chao-Dang/ Moment-generating-function-based-mixture-distribution
https://github.com/Chao-Dang/ Moment-generating-function-based-mixture-distribution
https://github.com/Chao-Dang/ Moment-generating-function-based-mixture-distribution


CHAPTER 2. DYNAMIC RELIABILITY ANALYSIS OF NONLINEAR STRUCTURES

//github.com/Chao-Dang/Moment-generating-function-based-mixture-distribution.

Keywords: Extreme value distribution, Small first-passage probability, Moment-generating

function, Mixture distribution, Generalized inverse Gaussian distribution, Nonlinear structure,

Stochastic seismic excitation

2.1 Introduction

Efficient assessment of reliability of engineering structures in the presence of various uncertain-

ties is an important task not only in the entire design process, but also in the whole service life.

In order to ensure the seismic safety, the dynamic reliability analysis of structures under stochastic

seismic excitations is usually formulated as the well-known first-passage failure problem [1, 2]. That

is, the failure occurs once the studied stochastic structural response exceeds the prescribed threshold

during a given time interval. Many efforts have been devoted to evaluating the first-passage proba-

bility of stochastic dynamic systems, such as the out-crossing rate based methods [3, 4], stochastic

averaging [5, 6], path integration [7, 8], etc. The first-passage problem nevertheless still remain one

of the most difficult issues in stochastic dynamics due to the existence of several challenges. First

of all, uncertainties arising from both the earthquake loads and structural properties should be

reasonably addressed simultaneously, which commonly results in high dimensions of the reliability

problem to be solved. The performance functions of structures may also exhibit highly nonlinear be-

havior especially when subjected to strong earthquakes. Besides, as the structural systems become

increasingly complex, the existence of multiple underlying failure modes with dependencies further

increases the complexity of the problem. Apart from those challenges, the failure probabilities are

typically expected to be very small, e.g., the order of magnitude 10−4 or smaller.

The extreme value distribution (EVD) of stochastic structural response has attracted consider-

able attention since the first-passage failure probabilities under different prescribed thresholds can

be obtained equivalently through the associated EVD. Further, with the EVD, the time-dependent

dynamic reliability problem can be conveniently converted into a time-invariant counterpart. In this

setting, some well-known reliability analysis methods could be directly invoked to address the above-

mentioned challenges, e.g., the Monte Carlo simulation (MCS) and Subset Simulation (SS) [9, 10]

owing to their robustness to the dimension and complexity of the problem. However, the MCS is

largely restricted by its computational cost, especially for a expensive-to-evaluate model with a low

39

https://github.com/Chao-Dang/ Moment-generating-function-based-mixture-distribution
https://github.com/Chao-Dang/ Moment-generating-function-based-mixture-distribution
https://github.com/Chao-Dang/ Moment-generating-function-based-mixture-distribution


CHAPTER 2. DYNAMIC RELIABILITY ANALYSIS OF NONLINEAR STRUCTURES

level of failure probability. The SS offers noticeably improved efficiency compared to the MCS, but

is still far away from desirable for real-world applications. The present study particularly focuses

on the evaluation of the entire EVD with efficiency and accuracy. Usually, two kinds of approaches

have been developed for deriving the EVD of a stochastic structural response, i.e., the analytical

approach and approximate approach. The analytical approaches are usually only applicable for

some specific types of stochastic processes [11–14], thus are infeasible for general engineering prob-

lems with the above-mentioned features/challenges. Alternatively, two major types of approximate

approaches are available to capture the EVD: parametric approach and non-parametric approach.

The basic idea of parametric approach is to assume that the extreme value samples coming from a

population can be adequately modeled by a probability distribution with a fixed set of parameters.

Based on the extreme value theory, the Gumbel distribution is used to model the main body and

tail behavior of the EVD [15, 16], followed by the generalized extreme value distribution (GEVD)

and generalized Pareto distribution (GPD) [17]. Among them, the GEVD could be more flexible,

but still restricted by its limitations. Besides, some four-parameter distributions are also developed

to recover the EVD from the knowledge of its first-four moments, e.g., the fourth-moment normal

transformation (FMNT) [18] and shifted generalized lognormal distribution (SGLD) [19]. Although

these two models are generally versatile, the requirement of estimating the response moments with

high accuracy and efficiency is still a challenging task. With the emergence of fractional moments,

the maximum entropy method [20–22], kernel density maximum entropy method [23] and mixture

distribution [24] are proposed. Despite these, other non-standard parametric methods can also be

found in the literature [25–27]. For the non-parametric approach, assumptions on the distribution

type of EVD are not required. The probability density evolution method (PDEM) can be employed

to evaluate the EVD by constructing a virtual stochastic process associated to the extreme value

of the studied stochastic process [28, 29]. Recently, the direct probability integral method (DPIM)

[30] is proposed for stochastic response analysis of static and dynamic structural systems based on

the principle of probability conservation, which could also be used to capture the EVD of stochastic

response process. The PDEM and DPIM are generally applicable to strongly nonlinear systems,

which, however, are not easy to extend for problems with high-dimensional random inputs and small

failure probabilities. In summary, the success of the parametric approach relies on assumptions of

the distributional type and methods for parameter estimation. In other words, a good approxima-

tion can yield desirable results with less computational efforts. On the contrary, the non-parametric
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approach is distribution-free, but still suffers from several drawbacks.

The main objective of the present study is to develop an efficient approach for assessment of the

EVD and small first-passage failure probabilities of nonlinear structures with uncertain parameters

under stochastic seismic excitations. For this purpose, the moment-generating function (MGF) is

firstly introduced to characterize the EVD, instead of the commonly-used integer moments and frac-

tional moments. To calculate the MGF that is defined by a high-dimensional expectation integral,

the latinized partially stratified sampling (LPSS) is employed with a reduced number of samples

due to its simultaneous variance reduction associated with both main effects and variable interac-

tions [31]. Then, a flexible mixture of two generalized inverse Gaussian distributions (MTGIGD) is

proposed to recover the EVD from the knowledge of its estimated MGF, where a MGF-matching

technique is developed for parameter estimation. Once the EVD is reconstructed in the entire

distribution domain with reasonable accuracy, the first-passage failure probabilities under different

thresholds can be obtained without difficulty.

The rest of this paper is arranged as follows. Section 2.2 outlines the EVD-based method for

first-passage failure probabilities evaluation of stochastic dynamic systems. The MGF is introduced

in Section 2.3 to characterize the EVD, the advantages and numerical approximation of which are

also elaborated. In Section 2.4, a mixture distribution is developed to recovered the EVD from its

estimated MGF. Three numerical examples are investigated to validate the proposed approach in

Section 2.5. Some concluding remarks are available in Section 2.6.

2.2 First-passage probability: an EVD perspective

Without loss of generality, consider a generic stochastic dynamic structural system governed

by the following state equation and initial condition:

Ẋ = A(X, Θ, t), X(t)|t=0 = x0 (2.1)

where X = (X1, X2, . . . , Xd)T is a d-dimensional state vector; A = (A1, A1, . . . , Ad)T is the state

mapping; Θ = (Θ1, Θ2, . . . , Θn)T denotes a n-dimensional random vector with known joint PDF

pΘ(θ), which might arise from both the system properties and external excitations. In general, the

system properties might originally occur as stochastic fields or directly as some random parameters.
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Besides, it is widely recognized that the random seismic excitations should be modelled as non-

stationary stochastic processes or fields [32]. The stochastic fields or processes can usually be

further decomposed to a set of standard random variables, e.g., by K-L expansion [33] and spectral

representation method [34]. Therefore, a large number of random variables could be involved in a

dynamic structural system with uncertain parameters subjected to non-stationary stochastic seismic

excitations, leading to a high-dimensional system to be handled.

For a well-posed dynamical system, it is reasonable to assume that the solution to Eq. (2.1)

exists uniquely as a function of Θ, which is expressed as:

X (t) = H (Θ, t) , Ẋ (t) = h (Θ, t) (2.2)

where H and h = ∂H/∂t are the deterministic operators.

If there are a set of system response quantities of interest Q(t) = (Q1(t), Q2(t), . . . , Qm(t))T

for reliability analysis, such as the inter-story drifts and strains or stresses at some points, then Q

can usually be calculated from its connection with the state vectors. It is convenient to assume that

the relationship takes the form:

Q(t) = Ψ
[
X(t), Ẋ(t)

]
= W (Θ, t) (2.3)

where Ψ is a transfer operator; W denotes a mapping from Θ to Q. Alternatively, Eq. (2.3) can

be expressed as its component form:

Ql(t) = Wl(Θ, t), l = 1, 2, . . . , m (2.4)

For notational simplicity, the subscript l will be omitted hereafter without inducing confusions.

In general, the first-passage reliability is defined as:

Pr = Pr{Q(t) ∈ Ωs, t ∈ [0, T ]} (2.5)

where Pr{·} is the probability operator; Ωs is the safe domain; T is the duration of time. For the

case of symmetric double-boundary safe domain concerned in this study, the first-passage reliability
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can be further written as:

Pr = Pr{|Q(t)|< b, t ∈ [0, T ]} (2.6)

where b is the prescribed threshold. Since Q(t) can be a general stochastic response process, evalu-

ation of Pr remains a non-trivial task, especially for a expensive-to-evaluate model.

Let Z denote the maximum value of |Q(t)|, i.e.

Z = max
t∈[0,T ]

|Q(t)|= max
t∈[0,T ]

|W (Θ, t)|= G(Θ) (2.7)

Note that Z is conveniently assumed to be as a function of Θ and should be a positive random

variable in this form. Then, Eq. (2.6) is equivalent to:

Pr = Pr{Z = G(Θ) < b} (2.8)

That is to say, once the probability distribution of Z is available, which is refer to as the extreme

value distribution (EVD), Pr can be straightforwardly and conveniently obtained. Denote the

probability density function (PDF) and cumulative distribution function (CDF) of Z as fZ(z) and

FZ(z), respectively, and then the first-passage reliability is:

Pr =
∫ b

−∞
fZ(z)dz = FZ(b) (2.9)

and the corresponding failure probability is

Pf =
∫ +∞

b
fZ(z)dz = 1 − FZ(b) (2.10)

The problem of first-passage reliability is now equivalently transformed to evaluation of the

EVD. Despite of the conceptual elegance, it is still not easy to directly derive the analytical PDF

or CDF of the EVD of a general stochastic response process. To address this challenge, an efficient

approach will be developed in the following sections to capture the EVD.
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2.3 Moment-generating function of the EVD

To characterize the EVD, the statistical moments, such as the mean value and variance, are

commonly employed in the literature. However, it is known that the probabilistic information from

the low-order moments is not sufficient to accurately capture an unknown distribution. Additionally,

the high-order moments, e.g., the skewness and kurstosis, containing more information regarding

the tail behavior are considered for a more accurate characterization [18]. Nevertheless, high-

order moments are invariably complicated to analyze and sampling variability of power moments

increases with the order of moment. Recently, the fractional moments with low-order exponents are

introduced primarily due to the fact that even a single low-order fractional moment can contain a

large amount of information on numerous integer moments [24]. Even so, it is worth mentioning

that either a finite sequence of integer moments or fractional moments cannot uniquely determine a

underlying probability distribution. Based on those considerations, the moment-generating function

will be introduced in this work to characterize the EVD.

2.3.1 Definition of the moment-generating function

For the positive random variable Z defined in Eq. (2.7), its moment-generating function (MGF)

can by expressed as:

MZ(τ) = E
[
eτZ

]
=
∫ +∞

0
eτzfZ(z)dz, τ ∈ R (2.11)

where E[·] denotes the expectation operator.

Consider the series expansion of eτZ

eτZ = 1 + τZ + τ2Z2

2! + τ3Z3

3! + · · · + τ rZr

r! + · · · (2.12)

and hence

MZ(τ) = 1 + τE [Z] + τ2E
[
Z2]

2! + τ3E
[
Z3]

3! + · · · + τ rE [Zr]
r! + · · · (2.13)

where E [Zr] is the r-th moment of Z. Eq. (2.13) implies that the MGF at any non-zero τ includes

a bulk of probabilistic information on infinite number of integer moments. This feature is similar

to that of fractional moments, while fractional moments only make sense with positive random

variables.
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Further, the r-th moment of Z can be obtained from its MGF such that:

E [Zr] = M
(r)
Z (0) = drMZ

dτ r

∣∣∣∣
τ=0

(2.14)

Eq. (2.14) implies that only the MGF near the origin already contains all the information for any

order of integer moment. The MGF is so named because all moments of Z can be computed from

its derivative evaluated at τ = 0. However, it is impossible to obtain any order integer moment from

a single fractional moment (not the integer moment itself), even though it includes the information

conceptually.

Besides, the MGF (if it exists) can uniquely determine the underlying distribution (see Section

30 of [35]). In other words, if two random variables have the same MGF, then they must follow the

same distribution. Thus, the MGF characterization of the EVD is more suitable than traditional

integer moments or fractional moments. For more properties concerning the MGF, please refer to,

e.g., [36].

2.3.2 Numerical approximation of the moment-generating function

For the EVD of a general stochastic response process, derivation of closed-form solution of its

MGF is not trivial. Therefore, numerical evaluation is necessary for general applications. For our

purpose, the MGF defined in Eq. (2.11) can be further expressed as:

MZ(τ) =
∫

DΘ

eτG(θ)pΘ(θ)dθ (2.15)

where DΘ is the distribution domain of Θ. As the dimension of Θ could be very large, MZ(τ) is

generally a high-dimensional integral with a complicated integrand.

To evaluate such a integral, a recently developed low-discrepancy sampling technique, named

Latinized partially stratified sampling (LPSS) [31], will be employed. Eq. (2.15) can be estimated

by the following estimator:

M̂Z(τ) = 1
N

N∑
i=1

eτG(θ(i)) (2.16)

where N is the total number of samples; {θ(i)}N
i=1 are a set of samples of Θ. Since LPSS method

is originally designed for generating uniformly distributed samples over the unit hypercube, i.e,

45



CHAPTER 2. DYNAMIC RELIABILITY ANALYSIS OF NONLINEAR STRUCTURES

DU = [0, 1]d, a transformation θ(i) = T (u(i)) should be applied to obtain the sample θ(i) from

u(i) ({u(i)}N
i=1 are a set of samples generated by LPSS). A novel feature of the LPSS is that it can

reduce the variance related to the main effects and variable interactions simultaneously, and hence a

reduced set of samples could be sufficient to accurately evaluate the MGF. Readers may refer to [31]

for technical details and [24, 37] for implementation issues of the LPSS method. The basic algorithm

is presented in Algorithm 1. The Matlab code is readily available at: https://www.mathworks.

com/matlabcentral/fileexchange/54847-latinized-partially-stratified-sampling.

Algorithm 1 Latinized partially stratified sampling
1: Input: Specify the sample size N , number of dimensions d and orthogonal subspaces Sj(j =

1, 2, · · · , L), where Sj1⊥Sj2(j1 ̸= j2) and S1 ⊕ S2 ⊕ · · · ⊕ SL = DU .
2: For each subspace Sj , generate N low-dimensional samples using Latinized stratified sampling

(LSS) [31].
3: Randomly select a sample from each subspace (without replacement) and group the selected

samples to produce a sample in d-dimensional space.
4: Repeat step 3 until N samples are constructed in d-dimensional space.
5: Output: N samples in d-dimensional unit hypercube.

Regardless of the distribution of Z, we have

E
[
M̂Z(τ)

]
= E

[
1
N

N∑
i=1

eτG(θ(i))
]

= 1
N

N∑
i=1

E
[
eτG(θ(i))

]
= 1

N

N∑
i=1

MZ(τ) = MZ(τ) (2.17)

Thus, the MGF estimator in Eq. (2.16) is proven to be unbiased. Further, the estimator will

approximately follow the normal distribution with mean µ̂(τ) = M̂Z(τ) and variance given by:

σ̂2(τ) = 1
N(N − 1)

N∑
i=1

[
eτG(θ(i)) − M̂Z(τ)

]2
(2.18)

Confidence interval can then be obtained accordingly. For example, the 95% confidence interval of

the estimator is as follows:

[µ̂(τ) − 1.96σ̂(τ), µ̂(τ) + 1.96σ̂(τ)] (2.19)

Eq. (2.16) can be used to obtain a point estimate of the MGF. In order to inform the accuracy

of the point estimate, Eq. (2.19) gives a interval estimate of the MGF, which actually reflects the

sampling variability and can be narrowed by increasing the sample size N .
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2.4 Recovering the EVD from its moment-generating function by

a mixture distribution

In this section, the problem of how to find the underlying EVD from the knowledge of its

estimated MGF is studied. Although the MGF can uniquely determine a probability distribution,

it is not easy to deduce the underlying distribution directly. Alternatively, we focus on offering an

efficient and accurate parametric approach to approximate the EVD. For this purpose, a flexible

mixture distribution will be developed on the basis of the generalized inverse Gaussian distribution,

and then the parameter estimation based on the MGF is elaborated.

2.4.1 Generalized inverse Gaussian distribution

The generalized inverse Gaussian distribution (GIGD) is a three-parameter family of continuous

probability distributions, which has a wide variety of applications in many fields. A random variable

has a GIGD if its PDF is given by [38]:

fGIGD(z; α, β, λ) = (α/β)λ/2

2Kλ(
√

αβ)
z(λ−1)e−(αz+β/z)/2, z > 0 (2.20)

where α > 0, β > 0 and λ ∈ R are the three parameters; Kλ is a modified Bessel function of the

second kind with order λ.

The inverse Gaussian distribution (IGD) is a special case of GIGD when λ = −1/2. The special

and limiting cases of the IGD also belong to the GIGD, such as the normal distribution and Lévy

distribution. Besides, other special cases include the hyperbolic distribution for λ = 0, Gamma

distribution for β → 0 and inverse-gamma distribution for α → 0.

The closed-form solution of the MGF of GIGD exists and reads:

MGIGD(τ ; α, β, λ) =
(

α

α − 2τ

)λ
2 Kλ(

√
β(α − 2τ))

Kλ(
√

αβ)
(2.21)

Based on the MGF, the mean and variance can be obtained as:

µGIGD =
√

βKλ+1(
√

αβ)√
αKλ(

√
αβ)

(2.22)
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σ2
GIGD =

(
β

α

)Kλ+2(
√

αβ)
Kλ(

√
αβ)

−
(

Kλ+1(
√

αβ)
Kλ(

√
αβ)

)2
 (2.23)

The reason why we specially select the GIGD as the basis of the proposed parametric distribu-

tion model is mostly based on the two following considerations. First of all, the GIGD is flexible in

shapes and tail properties since several theoretical distributions with distinct features are included

(as mentioned early). It is worthy mentioning that the IGD as a special case of the GIGD is the

exact first-passage time distribution of the Brownian motion (Wiener process) [39]. Second, the

MGF of the GIGD is readily available in a closed form (Eq. (2.21)), which enables the deviation of

the MGF and parameter estimation of the proposed mixture distribution model (see the following

two subsections).

2.4.2 A mixture of two generalized inverse Gaussian distributions

Although the GIGD is more versatile than the IGD by adding an extra free parameter, its

flexibility should be further enhanced to capture the EVD since more emphasis is placed on the tail,

in addition to the main body of the distribution, especially for evaluation of small first-passage failure

probabilities. Finite mixture models allow us to create new distributions with increased number of

free parameters and hence flexibility in a simple, but efficient way [40]. However, identification of

free parameters is an intractable task as the number of mixture components increases, since they

usually cannot be derived explicitly. To this end, a mixture of two generalized inverse Gaussian

distributions (MTGIGD) will be specially developed to capture the EVD in the present work. The

PDF of the MTGIGD is given by:

fMTGIGD(z; Σ) =ϖfGIGD(z; α(1), β(1), λ(1)) + (1 − ϖ)fGIGD(z; α(2), β(2), λ(2))

=ϖ
(α(1)/β(1))λ(1)/2

2Kλ(1)(
√

α(1)β(1))
z(λ(1)−1)e−(α(1)x+β(1)/z)/2

+ (1 − ϖ) (α(2)/β(2))λ(2)/2

2Kλ(2)(
√

α(2)β(2))
z(λ(2)−1)e−(α(2)x+β(2)/z)/2

(2.24)

where 0 < ϖ < 1 and 1 − ϖ are the mixture weights of the first and second mixture compo-

nents, respectively; Σ = [ϖ, α(1), β(1), λ(1), α(2), β(2), λ(2)]T is a set of seven free parameters to be

determined; The superscript distinguishes those parameters from different mixture components.
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The MGF of the MTGIGD can be derived as:

MMTGIGD(τ ; Σ) =
∫ +∞

0
eτzfMTGIGD(z; Σ)dz

=
∫ +∞

0
eτz

(
ϖfGIGD(z; α(1), β(1), λ(1)) + (1 − ϖ)fGIGD(z; α(2), β(2), λ(2))

)
dz

=ϖ

∫ +∞

0
eτzfGIGD(z; α(1), β(1), λ(1))dz + (1 − ϖ)

∫ +∞

0
eτzfGIGD(z; α(2), β(2), λ(2))dz

=ϖMGIGD(τ ; α(1), β(1), λ(1)) + (1 − ϖ)MGIGD(τ ; α(2), β(2), λ(2))

=ϖ

(
α(1)

α(1) − 2τ

)λ(1)
2 Kλ(1)(

√
β(1)(α(1) − 2τ))

Kλ(1)(
√

α(1)β(1))

+ (1 − ϖ)
(

α(2)

α(2) − 2τ

)λ(2)
2 Kλ(2)(

√
β(2)(α(2) − 2τ))

Kλ(2)(
√

α(2)β(2))
(2.25)

If we assume that the EVD follows the MTGIGD, i.e., f̂Z(z) = fMTGIGD(z; Σ), then how to

estimate the unknown parameters collecting in Σ could be another critical task.

2.4.3 Moment-generating function based parameter estimation

The MGF of the EVD is obtained in Section 2.3 and the closed-form expression of MGF of the

MTGIGD exists. A natural idea for estimating parameters is to match the EVD’s MGF with that

of the MTGIGD, and the following equations can be established accordingly:



MMTGIGD(τ1; Σ) = M̂Z(τ1)

MMTGIGD(τ2; Σ) = M̂Z(τ2)

. . .

MMTGIGD(τ7; Σ) = M̂Z(τ7)

(2.26)

where {τj}7
j=1 are seven discrete values of τ . In fact, τ around zero is more concerned due to its

high estimation accuracy and sufficient probabilistic information included. However, M̂Z(τ) could be

sufficient large for τ > 0, since Z is a positive random variable in the context of this article. For this

reason, the discrete values of τ are adopted as {τj}7
j=1 = {−0.1, −0.2, −0.3, −0.4, −0.5, −0.6, −0.7}

in this study. One can use the built-in function “fsolve" in Matlab to solve the above system of

equations.
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As a suggestion, the following estimates can be served as the initial values of the parameters

as a guess:

ϖ = 0.4 (2.27)

α(1) = α(2) = µ̂Z

σ̂2
Z

(2.28)

β(1) = β(2) = µ̂3
Z

σ̂2
Z

(2.29)

λ(1) = λ(2) = −1
2 (2.30)

where the parameters except for ω are estimated by the method of moments in the case that each

mixture component is reduced to the IGD; µ̂Z and σ̂2
Z are the estimated mean and variance of the

EVD, which can be evaluated by:

µ̂Z = 1
N

N∑
i=1

G(θ(i)) (2.31)

σ̂2
Z = 1

N − 1

N∑
i=1

(
G(θ(i)) − µ̂Z

)2
(2.32)

Note that no extra dynamic structural analysis is actually required in this step.

Once the free parameters in the MTGIGD model are identified properly, one can obtain a

point estimate of the EVD, and hence the first-passage failure probabilities under different pre-

scribed thresholds. However, how to measure the accuracy of the results is a non-trivial task since

both the sampling error containing in the MGF estimate and the model assumption error for func-

tional form of the EVD should be addressed simultaneously. This is not attempted in this study,

but we hope that our work will stimulate further studies.

The flowchart of the proposed approach for efficient assessment of EVD and first-passage failure

probabilities of structures with uncertain parameters under stochastic seismic excitations is depicted

in Fig. 2.1.

2.5 Numerical examples

To validate the proposed approach, three numerical examples will be presented in this section.

In the first example, the EVD of random variables is investigated where the analytical solution of the
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Start

Generate N samples in [0, 1]n using LPSS method

Obtain N samples for the uncertain structural parameters Obtain N samples for the stochastic seismic excitations

Repeat dynamic analysis of the structure at hand N times and extract samples of the EVD of interest

Estimate MGF of the EVD

Obtain parameters of the MTGIGD model based on the estimated MGF

Recover PDF of the EVD by the MTGIGD model

Calculate the first-passage failure probability via the recovered PDF

Stop

Figure 2.1: Flowchart of the proposed approach.

EVD is available. The EVD approximated by the proposed method is verified through comparison

with the analytical solution, indicating the accuracy of the proposed method. The EVD of the

response of two nonlinear structures with uncertain parameters subjected to fully non-stationary

stochastic seismic excitations is computed through the proposed approach, and the first-passage

failure probabilities under different prescribed thresholds are obtained in example 2 and 3. In

comparison with Monte Carlo simulation and other state-of-the-art methods, advantages of the

proposed method are demonstrated.
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2.5.1 Example 1: EVD of random variables

Suppose that X = [X1, X2, . . . , Xn] are i.i.d. standard normal random variables. Consider the

maximum absolute value such that:

Z = max(|X1|, |X2|, . . . , |Xn|) (2.33)

where Yi = |Xi| actually follows a folded standard normal distribution. Denote the PDF and CDF of

Yi as fY (y) and FY (y), respectively. According to the probability theory, the closed-form solutions

of the PDF and CDF of Z are available, and given by:

fZ(z) = nfY (z)F n−1
Y (z), FZ(z) = F n

Y (z) (z ≥ 0) (2.34)

The proposed approach can also be employed to approximate the PDF and CDF of Z. Three

cases, i.e., n = 1000, 3000, 5000, will be studied to verify the proposed method. First, the MGFs

of Z are estimated by the LPSS method with a small sample size of N = 625. The estimated MGFs

are compared with those obtained by MCS (with 106 runs), as shown in Fig. 2.2. It is observed that

the confidence intervals are all very narrow, and contain the results given by MCS, indicating the

accuracy of LPSS method. The MTGIGD is then used to recover the PDF and CDF of Z by fitting

seven values of the estimated MGF. The recovered PDF and CDF of those three cases are compared

with the analytical solutions in Figs. 2.3 - 2.5, respectively. Note that the two mixture components

of the proposed MIGIND multiplied by their corresponding mixture weights are also given. As seen,

the recovered PDF and CDF agree well with those analytical solutions. This example demonstrates

the accuracy of the proposed method, as well as the efficiency for such three high-dimensional cases.

2.5.2 Example 2: EVD and first-passage failure probabilities of a nonlinear

shear frame structure

Consider a two-span ten-story nonlinear shear frame structure with uncertain parameters under

stochastic seismic excitations, as shown in Fig. 2.6. The equation of motion of this structure is

given by:

M(Θ)Ẍ(t) + C(Θ)Ẋ(t) + K(Θ) [εX(t) + (1 − ε)Y (t)] = −M(Θ)IÜg(Θ, t) (2.35)
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Figure 2.2: Moment-generating function of the EVD in Example 1.
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Figure 2.3: Comparison of PDF and CDF of the EVD in Example 1 (n = 1000).
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Figure 2.4: Comparison of PDF and CDF of the EVD in Example 1 (n = 3000).
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Figure 2.5: Comparison of PDF and CDF of the EVD in Example 1 (n = 5000).

where M , C and K are the mass, damping and initial stiffness matrices. Rayleigh damping is

adopted such that C = a1M + a2K, where a1 and a2 are obtained by assuming the damping ratio

ξ = 5% for the first two modes. The lumped mass and inter-story stiffness of each story are assumed

to be independent random variables, the probabilistic information of which is summarized in Tabs.

2.1 and 2.2, respectively. That is, d1 = 20 random variables are involved in the uncertain structural

properties. Ẍ(t), Ẋ(t) and X(t) are the acceleration, velocity and displacement vectors. The

parameter ε, that controls the degree of hysteresis, is set to be 0.20. The term Y (t) is characterized

by the Bouc–Wen model [41, 42]:

Ẏ (t) = ρẊ(t) − η|Ẋ(t)||Y (t)|n0−1Y(t) − γẊ(t)|Y (t)|n0 (2.36)

where ρ, η, γ and n0 are dimensionless quantities, which control the behaviour of the model. These

parameters take the following values: ρ = 1, n0 = 3 and η = γ = 1/
(
2un0

y

)
, in which uy = 0.01

m is the yielding displacement. I is the loading inference vector. The seismic excitation Üg(t) is

modeled by a fully non-stationary stochastic process via the spectral representation method [43]:

Üg(t) =
d2∑

i=1

√
2Süg (ωi, t)∆ω (Ai cos(ωit) + Bi sin(ωit)) (2.37)
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where Süg (ω, t) is the evolutionary power spectral density (EPSD) function, which is defined as:

Süg (ω, t) = |f(ω, t)|2G(ω) (2.38)

in which f(ω, t) is the modulation function of time and frequency, given by:

f(ω, t) = exp
(

−δ0
ωt

ωata

)
·
[

t

c
exp

(
1 − t

c

)]k

(2.39)

and G(ω) is the one-sided PSD, assumed to follow the Clough- Penzien spectrum:

G(ω) =
ω4

g + 4ζ2
g ω2

gω2(
ω2

g − ω2
)2

+ (2ζgωgω)2

ω4(
ω2

f − ω2
)2

+ (2ζf ωf ω)2
S0 (2.40)

{Ai, Bi}d2
i=1 in Eq. (2.37) are 2d2 independent standard normal random variables. In this example,

d2 = 800 is adopted, i.e., a total of d = d1 + 2d2 = 1620 random variables are included in Θ. Other

involved parameters are specified as: ∆t = 0.02 s, T = 30 s; ∆ω = 0.15 rad/s, ωl = 0.15 rad/s,

ωu = 240 rad/s; δ0 = 0.15, c = 9.0, k = 2.0; ωg = 5π rad/s, ζg = ζf = 0.60, ωf = 0.1ωg,

S0 = 54.6296 cm2/s3.

 gU t

1k

2k

10k

1m

2m

9m

10m

Figure 2.6: A two-bay ten-story shear frame structure subjected to stochastic seismic excitations.

The LPSS method is firstly employed to generate N = 625 sample points in [0, 1]d (d = 1620),

serving as a basic point set. Then, these samples are transformed to the random-variate space of the
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Table 2.1: Probabilistic information of the lumped mass

Lumped mass m1 m2 m3 m4 m5 m6 m7 m8 m9 m10
Distribution LN LN LN LN LN LN LN LN LN LN

Mean (×105 kg) 6.0 5.9 5.8 5.7 5.6 5.5 5.4 5.3 5.2 5.1
C.O.V. 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10

LN = Lognormal; C.O.V. = coefficient of variation

Table 2.2: Probabilistic information of the initial inter-story stiffness

Stiffness k1 k2 k3 k4 k5 k6 k7 k8 k9 k10
Distribution G G G G G G G G G G

Mean (×107 N/m) 2.50 2.45 2.40 2.35 2.30 2.25 2.20 2.15 2.10 2.05
C.O.V. 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15
G = Gaussian

vector Θ. Integrating the samples of {Ai, Bi}d2
i=1 with the spectral representation, one can have a

set of 625 representative samples of the fully non-stationary stochastic seismic accelerations. Three

representative samples of the seismic acceleration time histories are shown in Fig. 2.7, where the

non-stationary behavior in time domain can be clearly observed. Besides, the mean and standard

deviation (Std.D) of 625 seismic acceleration samples against their targets are depicted in Fig. 2.8.

As seen, the simulated results accord well with the targets, indicating the applicability of the LPSS

based spectral representation.
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Figure 2.7: Representative samples of the fully non-stationary stochastic seismic acceleration.

56



CHAPTER 2. DYNAMIC RELIABILITY ANALYSIS OF NONLINEAR STRUCTURES

0 5 10 15 20 25 30

-1

-0.5

0

0.5

1

(a) Mean

0 5 10 15 20 25 30

0

20

40

60

80

(b) Standard deviation

Figure 2.8: Comparison of the simulated mean and standard deviation with their targets for the
fully non-stationary stochastic seismic excitation.

Once the representative samples of the random structural properties and seismic excitation are

produced, the deterministic dynamic structural analysis is performed repeatedly to extract samples

of the EVD of concern. The ode45 function in Matlab is used to solve Eq. (2.35). Fig. 2.9

shows a typical sample of the restoring force v.s. inter-story drift, indicating a strong hysteretic

behavior of the random structure under the fully non-stationary seismic excitations. In this study,

we are especially interested in the EVDs of the 1-st, 5-th, and 10-th inter-story drift. The MGFs

of interested EVDs computed by the LPSS method are depicted in Fig. 2.10, together with the

reference results given by MCS (with 106 runs). It can be seen that all the three MGFs are accurately

estimated since the 95% confidence intervals are very narrow and contain the corresponding reference

results.
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Figure 2.9: Typical hysteretic behavior for Example 3.

Based on the knowledge of the estimated MGFs, the EVDs can be recovered by the MTGIGD

model. Figs. 2.11 - 2.13 show the recovered PDF, CDF and probability of exceedance (POE) curves,

where the results given by MCS (with 106 runs) are also depicted for comparison. As seen, fairly
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Figure 2.10: Moment-generating function of the EVD in Example 2.

good agreement can be observed between the results computed by the proposed method and those

of MCS, indicating the accuracy of the proposed method for modeling not only the main body, but

also the distribution tail of the EVD. From the POE curves, the first-passage failure probabilities

under different thresholds can be simultaneously obtained. For example, the first-passage failure

probabilities associated with the 1-st inter-story drift are listed in Tab. 2.3. In comparison with

MCS, one can see that the proposed method can yield very accurate results, even for small failure

probability levels less than 10−4. Besides, the proposed method is much more efficient than MCS,

since only N = 625 samples are required in this study. Finally, the EVD of the 10-th inter-story

drift is also approximated by the generalized extreme value distribution (GEVD) [17] with maximum

likelihood estimation, shifted generalized lognormal distribution (SGLD) [44] with the method of

moments (MOM) and maximum entropy method with four sample moments as constraint. Note

that the same set of samples with the proposed method is employed in all these three methods. As

shown in Fig. 2.14, large approximation errors appear, especially for the CDF and POE curves,

raveling the limited flexibility of those parametric distribution models and/or inadequate parameter

estimation methods.

Table 2.3: Comparison of the first-passage failure probabilities under different thresholds for example
2.

Method N
Threshold (mm)

72 80 88 96 104 112 120
MCS 106 0.0181 0.0073 0.0028 1.1020×10−3 4.2000×10−4 1.8000×10−4 5.9000 ×10−5

Proposed 625 0.0194 0.0072 0.0026 9.0353×10−4 3.0960×10−4 1.0450×10−4 3.4841 ×10−5
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Figure 2.11: EVD of the 1-st inter-story drift.
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Figure 2.12: EVD of the 5-th inter-story drift.
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Figure 2.13: EVD of the 10-th inter-story drift.
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Figure 2.14: EVD of the 10-th inter-story drift by other methods.

2.5.3 Example 3: EVD and first-passage failure probabilities of a nonlinear

bridge structure

A simplified two-span bridge structure is taken as the last example, as shown in Fig. 2.15. The

bridge structure is modelled in OpenSees, an open software framework for earthquake engineering

simulation. Since the beam is expected to remain linear elastic under seismic excitation, six elastic

beam-column elements are used. The pier is modelled by four nonlinear beam-column elements,

the cross section of which is discretized into 225 fibers. Constitutive law of the material adopts

the bilinear model, as depicted in the figure. The Rayleigh damping is employed with assuming

the damping ratio of 3% for the first two modes. Eight random variables are considered in the

structural properties, whose information is listed in Tab. 2.4. For convenience, the same stochastic

seismic excitations with example 2 are applied to this model. Therefore, a total of d = 1608 random

variables are actually contained in this example. The EVD of displacement at the pile top is of

particular concern for seismic reliability analysis.

Table 2.4: Random variables for Example 3

Variable Description Distribution Mean C.O.V.
m1 Lumped mass LN 2.00×105 kg 0.10
m2 Lumped mass LN 2.05×105 kg 0.10
m3 Lumped mass LN 1.00×104 kg 0.10
A Cross-sectional area of the beam G 5.00×105 mm2 0.05
IZ Moment of inertia of the beam G 5.00×1012 mm4 0.05
E Young’s modulus G 2.05 ×105 Mpa 0.15
Fy Yield stress G 400 Mpa 0.15
b Strain-hardening ratio G 0.02 0.10
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Figure 2.15: A two-span bridge structure subjected to stochastic seismic excitations.

Using the LPSS method with 625 samples, the MGF of the EVD is computed by repeatedly

performing 625 deterministic dynamic structural analyses. For comparison purposes, the crude

MCS is also carried out to obtain the MGF (with 106 runs). As depicted in Fig. 2.16, it can be

seen that the 95% confidence interval of the MGF is quite narrow and contains the result by MCS,

indicating the accuracy of the estimated MGF.
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Figure 2.16: Moment-generating function of the EVD in Example 3.

The EVD can be recovered by the proposed mixture distribution, from the knowledge of the

estimated MGF. In Fig. 2.17, one can observe that the PDF, CDF and POE in log scale are in good

agreement with those reference results by crude MCS (with 106 runs). Note that we only perform

625 finite-element based structural dynamic analyses in this study. Therefore, the performance of
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the proposed method for recovering the EVD is demonstrated once again in terms of accuracy and

efficiency. From the recovered EVD, the first-passage failure probabilities under different prescribed

thresholds can be obtained. As listed in Tab. 2.5, the results obtained from the proposed method

accord well with those by MCS, even for a low level of failure probability. Further, two recently

developed methods are also implemented in this example, i.e., MIGLD with fractional moments

[24] and mixture of two skew normal distributions (MTSND) with Laplace transform [37]. For

fair comparison, the same EVD samples used for the proposed method are adopted to calculate

the fractional moments and Laplace transform. Different from the original selection, note that the

Laplace transform is evaluated at a new set of points, i.e., {si}7
i=1 = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7},

so as to avoid very large numbers. The results by these two methods are compared with those by

MCS in Fig. 2.18. Even though there are slight differences between the PDF curve and histogram,

the MIGLD model can yield fairly good results concerning the CDF and PDF curves in log scale.

On contrary, the MTSND model is unable to produce a comparative POE curve probably due to

its limited capability for modelling an EVD. However, it would be different to identify which one is

better among the MTGIGD and MIGLD for a general problem, and further research is required.
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Figure 2.17: EVD of displacement at the pile top.

Table 2.5: Comparison of the first-passage failure probabilities under different thresholds for Ex-
ample 3.

Method N
Threshold (mm)

60 68 76 84 92 100 108
MCS 106 0.0535 0.0171 0.0049 0.0014 3.5200×10−4 8.1000×10−5 1.9000 ×10−5

Proposed 625 0.0531 0.0170 0.0050 0.0014 3.6637×10−4 9.3851×10−5 2.3420 ×10−5

62



CHAPTER 2. DYNAMIC RELIABILITY ANALYSIS OF NONLINEAR STRUCTURES

0 20 40 60 80 100 120 140

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

(a) PDF

0 20 40 60 80 100 120 140 160 180

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

(b) CDF

0 20 40 60 80 100 120 140 160 180

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

(c) POE

Figure 2.18: EVD of displacement at the pile top by other methods.

2.6 Conclusions and remarks

In this paper, an efficient approach is proposed for evaluation of the EVD and small first-passage

failure probabilities of nonlinear structures with random parameters under stochastic seismic exci-

tations. Unlike the traditional partial characterization, i.e., integer moments or fractional moments,

the MGF is first introduced to characterize the EVD of a general stochastic response process, which

is usually defined as a high-dimensional expectation integral. The advantages of MGF characteriza-

tion are also demonstrated and discussed. Then, a recently developed variance-reduction sampling

technique, named LPSS, is employed to estimate the MGF with a small sample size. Besides, the

unbiasedness of the estimator is proven and the confidence interval is given. To recover the EVD

from the knowledge of its estimated MGF, a versatile MTGIGD model is proposed. The closed-form

solution of MGF of the MTGIGD is derived, and a novel parameter estimation technique based on

the MGF is developed accordingly. Once the EVD is reconstructed, the first-passage failure prob-

abilities with different thresholds can be simultaneously obtained. Three numerical examples are

investigated to validate the proposed approach. The first example considers the EVD of random

variables, where the close-form solution of the EVD is available. A nonlinear shear frame struc-

ture and a nonlinear bridge structure with random parameters subjected to fully non-stationary

stochastic seismic excitations are studied as another two examples. Results indicate that the pro-

posed method: (1) is able to take both the randomness from structural properties and external

seismic excitations into consideration; (2) can be applied to very high-dimensional stochastic dy-

namic systems; (3) is capable of capturing the EVD with high efficiency, not only the main body,

but also the distribution tail; (4) can yield very accurate estimation of the first-passage failure prob-

63



CHAPTER 2. DYNAMIC RELIABILITY ANALYSIS OF NONLINEAR STRUCTURES

abilities under different prescribed thresholds, even for a small level less than 10−4; (5) is applicable

for evaluation of multiple EVDs in one single run.

Two main types of errors are included in the proposed approach. The first type is caused by

the assumption on parametric form for the EVD, which results in biased estimates and cannot

be eliminated. Another type of error relates to the fact that the MGF of EVD is evaluated by a

sampling method. Since the estimator for the MGF is proven to be unbiased, the latter error can

be reduced by increasing the sample size.
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Abstract: This paper is concerned with approximating the scalar response of a complex com-

putational model subjected to multiple input interval variables. Such task is formulated as finding

both the global minimum and maximum of a computationally expensive black-box function over a

prescribed hyper-rectangle. On this basis, a novel non-intrusive method, called ‘triple-engine paral-

lel Bayesian global optimization’, is proposed. The method begins by assuming a Gaussian process

prior (which can also be interpreted as a surrogate model) over the response function. The main

contribution lies in developing a novel infill sampling criterion, i.e., triple-engine pseudo expected

improvement strategy, to identify multiple promising points for minimization and/or maximization

based on the past obser- vations at each iteration. By doing so, these identified points can be eval-

uated on the real response function in parallel. Besides, another potential benefit is that both the

lower and upper bounds of the model response can be obtained with a single run of the developed

method. Four numerical examples with varying complexity are investigated to demonstrate the pro-

posed method against some existing techniques, and results indicate that significant computational

savings can be achieved by making full use of prior knowledge and parallel computing.
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3.1 Introduction

Along with the rapid development of computation techniques, deterministic numerical analysis

has made great progress in various fields over the past several decades [1]. In this context, all

parameters of a computational model designed to describe underlying structures or systems are

typically treated as precise (crisp) numbers. This kind of numerical analysis, however, is essentially

not suitable for situations where non-determinism has to be properly considered, which is the

common case for a broad range of modern science and engineering disciplines. A typical example of

such situations is the design and analysis of engineering systems at an early stage where many aspects

could be only imprecisely known. Alternatively, non-deterministic numerical analysis is emerging

as an exciting research frontier with new opportunities and also challenges. Such opportunities and

challenges arise throughout the whole analysis, e.g., non-determinism characterization on the input

side and response uncertainty quantification on the output side.

In general, three types of approaches are available for modelling non-determinism: probabilis-

tic approach, imprecise probabilistic approach and non-probabilistic approach [2]. On the basis

of classical probability theory and statistical techniques, the probabilistic approach is most widely

used. Herein, an uncertain parameter is modelled as a random variable with a precisely known

probability distribution. Thus, it is often challenging to apply the probabilistic approach in reality

since a large amount of high-quality data is required to infer an accurate probability distribution.

Against this background, by generalizing traditional probability and statistics concepts, the im-

precise probabilistic approach has evolved as a powerful and elegant framework for quantifying

uncertainty from incomplete information [3, 4]. Within this approach, one needs to assign a pair

of lower and upper probabilities to an event, rather than a single probability. On the other hand,

the non-probabilistic approach, such as interval models and fuzzy sets [5], is also gaining increasing

interest for non-determinism modelling, especially when the available information is limited. With

the interval concept, a non-deterministic parameter is treated as an interval variable specified by a

pair of numbers, i.e., the lower and upper bounds, and potentially a function modelling the auto-

dependencies among multiple interval parameters [6]. Thus, instead of a full probability distribution
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the analyst only needs to determine the bounds and auto-dependency functions, which can be easily

and objectively acquired from a small number of samples. The present study limits its scope to

interval uncertainty.

There have been plenty of methods developed to propagate interval uncertainty via a computa-

tional model, which can be roughly classified into four kinds. The first kind of methods is based on

using the interval arithmetic of Moore, e.g., refer to [7]. Despite its efficiency, the interval calculus

cannot trace parameter dependency by definition (the so-called dependency problem), which there-

fore can lead to a severe overestimation of the size of a response interval. Recent developments are

focused on limiting the overestimation by, e.g., accounting for dependency among interval variables

[8–12] or using interval fields [13, 14], parameterizing intervals via trigonometric functions [15, 16]

and representing intervals by affine arithmetic [17, 18], etc. Although these methods are able to

provide sharp bounds within reasonable computational cost, their applicability is still limited due

to the intrusive nature of interval arithmetic. The approximate analytical methods that rely on

constructing a simplified approximation of true response function falls in the second group. Typical

examples of such methods include, Taylor series expansion methods [19–23] and Chebyshev series

expansion methods [24, 25], which are intrusive and non-intrusive, respectively. However, these Tay-

lor methods tend to lose accuracy when the considered problem involves large uncertainty (i.e.,the

widths of interval variables being large) and/or highly nonlinear behavior. For these Chebyshev

methods, the required number of response function evaluations grows exponentially with the number

of dimensions. As for the third type, the vertex method [26, 27] and interval multilevel quasi-Monte

Carlo (I-MLQMC)) [28, 29] are non-intrusive and can produce accurate response bounds under

certain conditions. The classical vertex method is exact on the premise that the response function

is monotonic with respect to d interval parameters, while at the cost of 2d model evaluations. More

strictly, the I-MLQMC method requires a linearity assumption on the response function. As such,

these two methods suffer from non-linearity and/or dimensionality.

In the last group, global optimization methods are naturally applicable to the topic of interval

numerical analysis. In this context, several studies have been conducted by directly using, e.g.,

genetic algorithm [30, 31]. Generally, global optimization algorithms require a large number of

model evaluations to find the minimum/maximum, and hence can be computationally demanding

especially when each such evaluation is expensive. To alleviate the computation burden, a cheap-to-

evaluate surrogate model can be adopted to substitute the original computational model based on
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some observations. Along this line, Kriging-assisted global optimization (formally called Bayesian

global optimization (BGO)) algorithms are attracting increasing attention due to their high effi-

ciency for optimizing expensive black-box functions. A typical BGO method starts by building an

initial Kriging model for the objective function based on a small number of observations, and then

refines the initial model by sequentially selecting more updating points according to a infill sam-

pling criterion [32]. Existing studies then focus more on developing efficient infill sampling criteria

so as to reduce the total number of function evaluations. On this aspect, representative works in

the context of interval uncertainty propagation include the maximum improvement criterion [33],

expected improvement criterion [34, 35] and a comparison study of several criteria [36]. It is shown

that these methods exhibit encouraging features regarding the computational efficiency and accu-

racy for computationally expensive black-box problems over other existing methods. Despite these

advantages, one of the major limitations of the existing BGO methods is that they are sequential

in nature and hence unsuitable for parallelization, or at least high-level parallelization, hindering

the potential benefits from parallel distributed processing.

In this paper, a parallel Bayesian global optimization (PBGO) method is proposed for esti-

mating the response bounds of a computational model in the presence of interval variables. Our

main objective is to further reduce the computational time of existing BGO methods by making

use of parallelism. For this purpose, a novel infill sampling criterion is developed to select multiple

points at each iteration, and hence corresponding model evaluations can be distributed on multiple

processing cores simultaneously. Such parallelisation is relevant when the model at hand is com-

putationally intensive and parallel computing facilities are available. Besides, in contrast to the

traditional way of searching the lower and upper bounds of a scalar response quantity via two sep-

arate optimization problems, we consider it only as one problem. Following the developed scheme,

the lower and upper bounds can be obtained simultaneously with a single run. Last but not least,

a Matlab implementation of the developed algorithm is also readily available to the public 1.

The remainder of the paper is organized as follows. Section 3.2 describes the interval analysis

problem to be solved in this study. The proposed PBGO method is introduced in Section 3.3,

with its relationship to other PBGO methods also being discussed. Four numerical examples are

studied in Section 3.4 to demonstrate the performance of the developed method. In Section 3.5,

some concluding remarks and perspectives are given to end the paper.
1https://github.com/Chao-Dang/Triple-engine-Bayesian-global-optimization
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3.2 Problem formulation

Let us consider a computational model represented by a deterministic, continuous, and real-

valued function y = g(x) : Rd → R. Here the model response y is a scalar quantity of interest,

the g-function is assumed to be an expensive-to-evaluate black box, and the model input vector x

consists of d variables, i.e., x = [x1, x2, · · · , xd].

Under the assumption that available information on the model inputs is poor or incomplete,

we proceed to treat them with interval models. For identifying intervals from real observations, one

can refer to, e.g., [37, 38]. An interval vector xI = [xI
1, xI

2, · · · , xI
d] ∈ IRd can be defined as:

xI = [x, x] =
{

x ∈ Rd|x ≤ x ≤ x
}

, (3.1)

and its component xI
i satisfies

xI
i = [xi, xi] = {x ∈ R|xi ≤ x ≤ xi} , i = 1, 2, · · · , d, (3.2)

where x = [x1, x2, · · · , xd] and x = [x1, x2, · · · , xd] represent the lower and upper bounds of xI ,

respectively. Further, the midpoint xC and radius xR of xI can be defined as:

xC = x + x

2 , (3.3)

xR = x − x

2 . (3.4)

It follows that the interval vector defined in Eq. (3.1) can also be rewritten in terms of xC and xR

as:

xI = xC + δx, (3.5)

where δx ∈ [−1, 1]xR. For convenience, the interval variables are assumed to be independent. In

fact, for dependent interval variables one can transform them into independent ones by applying a

suitable transformation, e.g., [39].

With the interval vector xI as input, the g-function will also give rise to a interval output yI in

our context, i.e., yI =
{

y ∈ R|y = g(x), x ∈ xI
}

. The resulting interval can be fully characterized

by its lower and upper bounds, which correspond to the worst or best case of yI that we might
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be interested in. Therefore, the main objective is to determine the lower and upper bounds of yI ,

which are naturally defined as the solutions of the following two optimization problems:

y = min
x∈xI

{y|y = g(x)} , (3.6)

y = max
x∈xI

{y|y = g(x)} , (3.7)

where y and y can be interpreted as the global minimum and maximum of y = g(x) subject to

x ∈ xI , respectively.

Although their definitions are rather simple, the analytical solutions to y and y are unavailable

for a general black-box problem. Thus, numerical approximation techniques are necessary and

useful tools for practical applications. Existing numerical methods, however, still suffer from their

respective limitations as discussed in the introduction section. This motivates us to develop a PBGO

method for propagating interval uncertainty in the following section.

3.3 Triple-engine parallel Bayesian global optimization

In this section, the propagation of interval uncertainty via an expensive black-box computa-

tional model is treated by a kind of Bayesian numerical method, i.e., the so-called Bayesian global

optimization (BGO) [32]. Specifically, an efficient method, termed “Triple-engine parallel Bayesian

global optimization" (T-PBGO), is proposed to approximate the lower and upper bounds of the

model output yI (defined in Eqs. (3.6) and (3.7)) when the model input is characterized by a

interval vector xI (defined in Eq. (3.1)). The proposed method makes use of the Gaussian process

model and a newly developed infill sampling criterion, as will be introduced in what follows. For

notational simplicity, the superscripts of xI and yI are omitted when there is no confusion.

3.3.1 Gaussian process model

Under the black-box assumption, no additional knowledge on the inner structure of the g-

function is available and the only possibility for us is to evaluate it at some points. That is, we

know nothing about the behavior of the g-function (e.g., concavity and linearity) before seeing any

observations, let along its minimum and maximum. The lack of knowledge on g(·) is referred to as

a kind of epistemic uncertainty simply because it is numerically unknown until we actually evaluate
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it, and hence reduceable. Following a Bayesian approach, our prior beliefs on the g-function can

be modeled by assigning a Bayesian prior distribution. In this study, we adopt a Gaussian process

(GP) prior over g. In the following, we only give a brief introduction to the GP model, and for

further details the reader can refer to [40]. The GP prior assumes that the g-function is a realization

of a GP indexed by x. To formalize this, we write the GP prior as:

ĝ0(x) ∼ GP(m0(x), k0(x, x′)) = m0(x) + Z(x), (3.8)

where ĝ0 denotes the prior distribution of g; m0(x) is the mean function of the GP prior; Z(x)

is a stationary GP with zero-mean and covariance function k0(x, x′). The GP prior is completely

characterized by its prior mean function m0(x) and covariance function k0(x, x′). The prior mean

function reflects the general trend of the GP model, while the prior covariance function encodes

the key features of the g-function, e.g., stationarity, isotropy, smoothness and periodicity. There

are many kinds of specific functional forms available in literature for the prior mean and covariance

functions [40]. In this paper, without loss of generality, the prior mean function is assumed to

be a constant (i.e., m0(x) = β) and the prior covariance function is of squared exponential form

expressed as:

k0(x, x′) = σ2
g exp

[
−1

2
(
x − x′)Σ−1 (x − x′)T] , (3.9)

where σ2
g is the overall variance with σg > 0; Σ = diag

(
l21, l22, · · · , l2d

)
with li > 0 being the

characteristic length-scale in i-th dimension; and diag(·) denotes a diagonal matrix whose entries

are equal to the argument values. The d + 2 free parameters β, σ2
g and {li}d

i=1 are referred to

hyper-parameters whose values need to be determined, denoted by θ =
{

β, σ2
g , l1, l2, · · · , ld

}
.

Now assume that we have evaluated the g-function at several (e.g., n ∈ Z+) points. We

aggregate the sampled points in an n × d matrix X with its j-th row being the j-th point x(j), and

the corresponding g-function values in an n × 1 vector y with its j-th element being y(j), where

y(j) = g(x(j)). The set of hyper-parameters can then be estimated by minimizing the negative log

marginal likelihood (NLML) [40]:

θ̂ = arg min
θ

(− log [p(y|X, θ)]) , (3.10)
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with

− log [p(y|X, θ)] = 1
2(y − β)TK−1

0 (y − β) + 1
2 log [|K0|] + n

2 log [2π] , (3.11)

where K0 is an n × n covariance matrix with its (i, j)-th entry being [K0]ij = k0(x(i), x(j)). Eq.

(3.10) can be solved by gradient-based optimization schemes since the derivatives of NLML in Eq.

(3.11) with respect to θ are analytically tractable.

Conditioning on the observations (X, y) and GP prior will give rise to a posterior distribution

ĝn of g. This distribution still follows a GP ĝn(x) ∼ GP(mn(x), kn(x, x′)), with the posterior mean

and covariance functions as follows:

mn(x) = m0(x) + k0(x, X)K−1
0 (y − m0(X)), (3.12)

kn(x, x′) = k0(x, x′) − k0(x, X)K−1
0 k0(x′, X)T, (3.13)

where k0(x, X) is a 1 × n covariance vector between x and X, whose j-th element is k0(x, x(j));

k0(x′, X) is similarly defined; m0(X) is a n × 1 mean vector, whose j-th element is m0(x(j)). It

is seen that via a Bayesian treatment a full predictive distribution ĝ(x) ∼ N (mn(x), σ2
n(x)) is now

available, where the posterior mean function mn(x) can be used as a predictor, while the posterior

variance function σ2
n(x) = kn(x, x) can measure the prediction uncertainty.

3.3.2 Proposed triple-engine pseudo expected improvement criterion

In order to make inference about the minimum and maximum of the g-function using as few

function evaluations as possible, our main concern is to design an efficient infill sampling criterion

that can effectively suggest future evaluation points based on the posterior GP (implicitly the

past observations). In particular, we seek to identify a batch of informative and diverse points

at each iteration. Hence, multiple evaluations of the g-function can be distributed on several

cores simultaneously so as to reduce the overall wall-clock time. For convenience of illustration,

we assume that the number of points we would like to select at each iteration is a even number

q in sequel, though it should not to be. Our purposes are achieved by generalizing the pseudo

expected improvement (PEI) criterion [41], which has been recently developed in the field of global

optimization, to an enhanced version, termed ‘triple-engine pseudo expected improvement’ (T-PEI)

criterion. The T-PEI criterion actually involves a set of three infill sampling criteria that we call
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them ‘engines’, as discussed below.

3.3.2.1 Engine 1: PEI for minimum

The first engine is the PEI criterion originally developed in [41] for global minimization problems

(denoted by PEI-MIN for convenience). In the present study, this criterion will be directly used to

select q promising points for the propose of minimizing the g-function wherever applicable.

Let ymin = min1≤j≤n y(j) indicate the minimum value of y observed so far. The improvement

at point x over the current best solution ymin can be defined as [32]:

Imin(x) = max (ymin − ĝn(x), 0) =

 ymin − ĝn(x), if ĝn(x) < ymin

0, otherwise
, (3.14)

which is a random variable at site x. The so-called expected improvement (EI) over the current min-

imum ymin consists of taking expectation of Imin(x), and can be derived in a closed-form expression

as [32]:

EImin(x) = E [Imin(x)] = (ymin − mn(x))Φ
(

ymin − mn(x)
σn(x)

)
+ σn(x)φ

(
ymin − mn(x)

σn(x)

)
, (3.15)

where φ(·) and Φ(·) are the probability density function and cumulative distribution function of the

standard normal variable, respectively. The next best point be acquired within the minimization

process can be selected by maximizing EImin(x), i.e.,

x
(n+1)
min = arg max

x∈xI

EImin(x). (3.16)

This criterion is referred to as EI-MIN for the sake of convenience. Note that the first term of

EImin(x) (see Eq. (3.15)) prefers the point whose prediction mn(x) is small, whereas the second

term prefers the point whose variance σ2
n(x) is large.Thus, the EI-MIN criterion gives an elegant

balance between exploitation (i.e., local search) and exploration (i.e., global search). Despite this,

the EI-MIN criterion can only produce one single point at each iteration, and hence not suitable

for parallelization.

To overcome the limitation, the basic idea of the PEI-MIN criterion is to modify the initial

EI function (Eq. (3.15)) sequentially, by multiplying it by an influence function. That is, the first
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updating point x
(n+1)
min is still generated by using the initial EI-MIN criterion (Eq. (3.16)). Then,

the second one x
(n+2)
min can be identified by maximizing a modified EI function that considers the

possible impact of the first updated point bringing to the EI function. In such a sequential way, a

desired number of points can be obtained at each iteration without evaluating the g-function at any

newly selected points. Thus, a good influence function should capture the real influence of the newly

identified points on the initial EI function as much as possible, while remaining computationally

tractable. The influence function proposed in [41] is motivated by the fact that the EI function

(Eq. (3.15)) is zero at the sampled points, and positive in between. After q − 1 points have been

identified, the synthesized influence function for the q-th point is formulated as [41]:

IF (x; x
(n+1)
min , x

(n+2)
min , · · · , x

(n+q−1)
min ) =

q−1∏
j=1

[
1 − ρ

(
x, x

(n+j)
min

)]

=
q−1∏
j=1

[
1 − exp

[
−1

2
(
x − x

(n+j)
min

)
Σ−1

(
x − x

(n+j)
min

)T
]]

,

(3.17)

where ρ
(
x, x

(n+j)
min

)
is the correlation function between two points x and x

(n+j)
min . It should be noted

that the influence function is zero at the q − 1 newly selected points x
(n+1)
min , x

(n+2)
min , · · · , x

(n+q−1)
min ,

and approaches to one when far away from these points. The PEI function for the q-th point can

be defined as [41]:

PEImin(x; x
(n+1)
min , x

(n+2)
min , · · · , x

(n+q−1)
min ) = EImin(x) × IF (x; x

(n+1)
min , x

(n+2)
min , · · · , x

(n+q−1)
min ). (3.18)

The PEImin function can be interpreted as an approximation of the ‘real’ EImin function because it

is constructed without evaluating the g-function at these q − 1 points and updating the GP model

(i.e., re-evaluating the hyper-parameters). Besides, it reduces to the standard EImin function when

q = 1, and hence the standard EImin function can be seen as a special case of the PEI function.

The q-th point can be selected by maximizing the PEImin function such that:

x
(n+q)
min = arg max

x∈xI

PEImin(x; x
(n+1)
min , x

(n+2)
min , · · · , x

(n+q−1)
min ).
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3.3.2.2 Engine 2: PEI for maximum

Inspired by the PEI-MIN criterion, we can also define a similar criterion to select q promising

points for maximizing the g-function if needed. The resulting criterion is called PEI-MAX, which

is regarded as the second engine.

Let ymax = max1≤j≤n y(j) denote the maximum value of y among the past n observations. In

analogy to Eq. (3.14), the improvement at point x beyond the current best solution ymax can be

defined as:

Imax(x) = max (ĝn(x) − ymax, 0) =

 ĝn(x) − ymax, if ĝn(x) > ymax

0, otherwise
. (3.19)

The EI for the maximum is analytically derived in closed form as follows:

EImax(x) = E [Imax(x)] = (mn(x) − ymax)Φ
(

mn(x) − ymax
σn(x)

)
+ σn(x)φ

(
mn(x) − ymax

σn(x)

)
. (3.20)

However, by maximizing the EImax function (the EI-MAX criterion), only one point for maximiza-

tion is produced. In order to obtain a batch of q points, the the first point x
(n+1)
max can be identified

by x
(n+1)
max = arg maxx∈xI EImax(x). The following q − 1 points should be sequentially selected by

using a modified EImax function. In analogy to the PEImin function (Eq. (3.18)), we can define

the PEImax function for the q-th point such that:

PEImax(x; x(n+1)
max , x(n+2)

max , · · · , x(n+q−1)
max ) = EImax(x) × IF (x; x(n+1)

max , x(n+2)
max , · · · , x(n+q−1)

max ), (3.21)

where the IF (·) function is defined in Eq. (3.17). The q-th point x
(n+q)
max is obtained by:

x(n+q)
max = arg max

x∈xI

PEImax(x; x(n+1)
max , x(n+2)

max , · · · , x(n+q−1)
max ).

3.3.2.3 Engine 3: PEI for both minimum and maximum

As we would like to infer both the minimum and maximum simultaneously, rather than in

a sequential order, promising points for both extrema should be identified within one iteration

until some predefined criteria are satisfied. Based on the PEI-MIN and PEI-MAX criteria, a infill

sampling criterion for both minimizing and maximizing the g-function can be developed. This
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criterion is denoted by PEI-MIN-MAX, and it is served as the third engine.

The proposed PEI-MIN-MAX criterion proceeds as follows. The first updating point is iden-

tified by x
(n+1)
min = arg maxx∈xI EImin(x), which is used for minimization. Likewise, the second

one (the first point for maximization) is computed by maximizing the PEImax(x) function, i.e.,

x
(n+2)
max = arg maxx∈xI PEImax(x; x

(n+1)
min ). The third point (the second for minimization) is pro-

duced by maximizing the PEImin function, i.e., x
(n+3)
min = arg maxx∈xI PEImin(x; x

(n+1)
min , x

(n+2)
max ),

and the fourth one (the second point for maximization) is determined by maximizing the PEImax

function, i.e., x
(n+4)
max = PEImax(x; x

(n+1)
min , x

(n+2)
max , x

(n+3)
min ). As the process goes on, a desired

q (≥ 2) updating points can be obtained sequentially ahead of observing their g-function val-

ues. Note that one can also start the first point with x
(n+1)
max , and then generate a set of q points

(x(n+1)
max , x

(n+2)
min , x

(n+3)
max , · · ·) following a similar procedure.

3.3.3 Proposed T-PBGO algorithm

Based on the GP model and T-PEI infill sampling criterion, we propose a T-PBGO algorithm

for interval analysis. The numerical implementation procedure of the proposed T-PBGO algorithm,

which is also illustrated in Fig. 3.1, includes the following main steps:

Step 1: Define the problem and initialize the optimization

Define the minimization and maximization problem to be solved in terms of its ojective function

g(x) and feasible region xI , as in Eqs. (3.6) and (3.7). Initialize the parameters of the proposed

T-PBQO method, namely, the initial sample size n0, and two thresholds εmin and εmax. Details

about these parameters and possible numerical values for them are discussed below.

Step 2: Generate an initial training dataset

Generate an initial set of n0 samples using Latin hypercube sampling (LHS) over xI , denoted

by a n0 × d matrix X =
{

x(j)
}n0

j=1
. Observations of the g-function at these points can be computed

in parallel, which are denoted by a n0 × 1 vector y =
{

y(j)
}n0

j=1
with y(j) = g(x(j)). The initial

training dataset is defined as D = {X, y}. Set n = n0.

As we seek to enlarge the training dataset sequentially, the initial size n0 should not be chosen

too large and it is usually set as 5-10.

Step 3: Construct a GP model for the g-function

81



CHAPTER 3. INTERVAL UNCERTAINTY PROPAGATION BY BAYESIAN GLOBAL
OPTIMIZATION

Construct a GP model GP(mn(x), kn(x, x′)) for y = g(x) based on the training dataset D.

This step mainly consists of specifying the hyper-parameters by using the maximum likelihood

estimation. All the numerical examples in this study are performed with the fitrgp function in

Matlab Statistics and Machine Learning Toolbox.

Step 4: Check the predefined criteria and select the engine

In this stage, we first need to check whether the GP has achieved reasonable accuracy at both

the minimum and maximum. If not, the GP should be then improved further, and this improvement

means computing additional points. Thus, it should be clear what kind of additional points is

still required, for minimization, maximization or both. Let ymin = min1≤j≤n y(j) and ymax =

max1≤j≤n y(j) denote the minimum and maximum values of y observed so far, respectively. Compute

the maxima of EImin(x) and EImax(x) by: δy1 = maxx∈xI EImin(x) and δy2 = maxx∈xI EImax(x).

In this study, five criteria consisting in judging the ratios of the maximum expected improvements

(i.e., δy1 and δy2) to the best current minimum and maximum (i.e., ymin and ymax) respectively,

are given as follows:

•Criterion 1 (Stopping criterion). If both δy1
|ymin|+δ < εmin and δy2

|ymax|+δ < εmax are satisfied

for two successive iterations, go to Step 7; Else, check Criterion 2.

• Criterion 2 . If δy1
|ymin|+δ ≥ εmin and δy2

|ymax|+δ ≥ εmax, this indicates that the GP could be still

not accurate enough for estimating both the minimum and maximum and one should go to Step

5c; Else, check Criterion 3.

• Criterion 3 . If δy1
|ymin|+δ < εmin and δy2

|ymax|+δ < εmax, this indicates that the GP could be

still not accurate enough for both estimating the minimum and maximum (due to potential fake

convergence) and one should go to Step 5c; Else, check Criterion 4.

• Criterion 4 . If δy1
|ymin|+δ ≥ εmin and δy2

|ymax|+δ < εmax, this indicates that the GP could be still

not accurate for estimating the minimum one should go to Step 5a; Else, check Criterion 5.

• Criterion 5 . If δy1
|ymin|+δ < εmin and δy2

|ymax|+δ ≥ εmax, this indicates that the GP could be still

not accurate enough for estimating the maximum one should go to Step 5b.

In Criteria 1-5, δ is a small number to ensure that the denominators are always greater than

zero, which is specified as 10−6 in this study. It should be noted that these two quantities δy1
|ymin|+δ and

δy2
|ymax|+δ play a pivotal role for our decision-making. The first one represents the ratio of maximum

expected improvement for the minimum to the current absolute minimum, while the second one is

the ratio of maximum expected improvement for the maximum to the current absolute maximum,
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if δ is treated as zero. When the current GP model is relatively accurate for both the minimum

and maximum, it is expected that these two ratios should be very small. Thus, it is appropriate to

judge the convergence of the proposed method by monitoring these two ratios. According to our

experience, εmin and εmax can be set in the order of 0.001.

Step 5a: Identify q updating points for minimization (Engine 1)

Identify q updating points for minimization by using the PEI-MIN criterion. The first point is

selected by x
(n+1)
min = arg maxx∈xI EImin(x), the second one x

(n+2)
min = arg maxx∈xI PEImin(x; x

(n+1)
min ),

and the third one x
(n+3)
min = arg maxx∈xI PEImin(x; x

(n+1)
min , x

(n+2)
min ), etc. The q updating points can

be denoted by Xadd =
{

x
(n+1)
min , x

(n+2)
min , · · · , x

(n+q)
min

}
. Then, go to Step 6.

Step 5b: Identify q updating points for maximization (Engine 2)

Identify q updating points for maximization by using the PEI-MAX criterion. The first point is

selected by x
(n+1)
max = arg maxx∈xI EImax(x), the second one x

(n+2)
max = arg maxx∈xI PEImax(x; x

(n+1)
max ),

and the third one x
(n+3)
max = arg maxx∈xI PEImax(x; x

(n+1)
max , x

(n+2)
max ), etc. The q updating points can

be denoted by Xadd =
{

x
(n+1)
max , x

(n+2)
max , · · · , x

(n+q)
max

}
. Then, go to Step 6.

Step 5c: Identify q updating points for both minimization and maximization (Engine

3)

Identify q updating points for both minimization and maximization by using the PEI-MIN-

MAX criterion. The first point is selected by x
(n+1)
min = arg maxx∈xI EImin(x), the second one

x
(n+2)
max = arg maxx∈xI PEImax(x; x

(n+1)
min ), and the third one x

(n+3)
min = arg maxx∈xI PEImin(x; x

(n+1)
min , x

(n+2)
max ),

etc. The q updating points can be denoted by Xadd =
{

x
(n+1)
min , x

(n+2)
max , · · · , x

(n+q)
max

}
. Then, go to

Step 6.

Step 6: Enrich the training dataset

The q updating points Xadd are evaluated on the g-function in parallel, and the corresponding

observations are denoted by yadd =
{

y(n+1), y(n+2), · · · , y(n+q)
}

. The training dataset D is enriched

by Dadd = {Xadd, yadd}, i.e., D = D ∪ Dadd. Set n = n + q and then go to Step 3.

Step 7: Record results and end the algorithm

Record ymin = min1≤j≤n y(j) and ymax = max1≤j≤n y(j) as approximate solutions to the lower

and upper bounds of yI respectively, and end the algorithm.

In Steps 4 and 5a-5c, the involved optimization problems are solved by a nature-inspired global

optimizer, called Teaching–learning-based optimization (TLBO) [42], as they are usually much more
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Figure 3.1: Flowchart of the proposed T-PBGO method.

cheaper compared to one call of the computational model. As the proposed method is rooted in the

classical BGO method, its theoretical analysis may refer to, e,g., [43], which, however, is beyond

the scope of the present study.

The proposed method has four major advantages. First, the technique often requires relatively

few g-function evaluations. This is possible because one can incorporate prior knowledge to explore

the design space. Second, our method allows a high-level parallelization as the proposed T-PEI

criterion is computationally tractable for selecting multiple informative and diverse points. This

feature further makes the method time-saving when parallel computing is available. Third, the pro-

posed method is derivative-free and directly works with black-boxes, and thus is easy to implement

and widely applicable (e.g., no matter the g-function is linear or non-linear and how large the sup-

ports of the input intervals are). Fourth, accurate approximate solutions to both lower and upper

bounds of model response can be obtained with only one single run of the proposed algorithm.
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3.3.4 Relationship to existing PBGO approaches

With the emergence of the classical BGO (originally called efficient global optimization) [32],

there has been an growing interest to enable its capability of parallel processing. Representative

works of PBGO include the q-EI criterion [44–46], multi-modal EI criterion [47, 48], PEI [41],

Kriging Believer or Constant Liar strategy [45] and multiple surrogate assisted approach [49, 50],

etc. The T-PEI criterion in the proposed T-PBGO method can be regarded as an improved PEI.

The difference between the proposed method and the other PBGO methods is significant. The

objective of the proposed method is to obtain both the minimum and maximum in one single run,

while the other methods are only designed for minimum or maximum, not both.

3.4 Numerical examples

In order to illustrate and verify the proposed method, four numerical examples are studied in

this section. These examples cover a wide range of types, from simple test problems to real-world

applications. In all numerical examples, the proposed method is compared with several existing

methods in terms of efficiency and accuracy. Besides, we propose a non-parallel BGO (N-PBGO)

(given in Appendix 3.5) as a potential competitor for the proposed method, which is also conducted

for comparison.

3.4.1 Example 1: A one-dimensional test function

The first example consists of a test function with one interval:

y = g(x) = (2x − 1)2 sin
(

4πx − π

8

)
,

where x ∈ [0, 1]. As can also be seen in Fig. 3.2, the g-function is multi-modal and has multiple

maxima and minima.

The lower and upper bounds of y are computed by the analytical method, vertex method,

genetic algorithm, N-PBGO and proposed T-PBGO method (n0 = 5 and εmin = εmax = 0.002).

The results are summarized in Table 3.1 together with the total number of function evaluations N ,

and the number of iterations N⋆. Although the vertex method outperforms the other numerical

methods in terms of both N and N⋆, it produces totally wrong estimates for the response bounds.
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The inaccuracy of the interval method is caused by its underlying assumption that y should be

monotonic with respect to x. As a representative of nature-inspired optimization algorithms, the

genetic algorithm is able to yield accurate results, but at the expense of large computation cost.

The N-PBGO method requires a relatively small number of function evaluations (N = 16), while

still providing good results for both the lower and upper bounds. The N-PBGO method, however,

is limited by its non-parallelism. On the contrary, the proposed T-PBGO method can overcome this

limitation by taking advantage of the developed infill sampling criterion (i.e., T-PEI). Compared

to N-PBGO, T-PBGO can significantly reduce the function evaluations in terms of N⋆, while still

maintaining high accuracy. In addition, it also can be found that N⋆ gradually decreases with the

increase of q, and remains the same when q = 8, 10, though N also increases non-monotonously.

Table 3.1: Interval analysis for Example 1 by different methods.

Method Lower bound Upper bound N N⋆ Reference
Exact solution −0.7081 0.5197 - - -
Vertex method (q = 2) −0.3827 −0.3827 2 1 [26]
Genetic algorithm (q = 10) −0.7081 0.5197 520 + 520 = 1040 104 [51]
N-PBGO (q = 1) −0.7081 0.5197 5 + 6 + 5 = 16 16 Appendix 3.5

Proposed T-PBGO

q = 2 −0.7081 0.5197 5 + 8 = 13 7 -
q = 4 −0.7081 0.5197 5 + 16 = 21 6 -
q = 6 −0.7081 0.5197 5 + 24 = 29 5 -
q = 8 −0.7081 0.5197 5 + 24 = 29 4 -
q = 10 −0.7081 0.5197 5 + 30 = 35 4 -

Note: N = the total number of g-function evaluations, and N⋆ = the number of iterations

To visually illustrate the proposed method, one special case is considered here (i.e., q = 4). It

can be observed from Fig. 3.2 that the proposed method gradually approaches to the exact bounds

as the iterative process goes on. Besides, these added points are more densely distributed around

the global minimum and maximum, and thereby informative for our purposes.

3.4.2 Example 2: A two-dimensional test function

The second example takes a test function with two intervals [21]:

y = g (x) = (1.5x1 − 2)2 − (x2 − 3)2 + x1x2 + 10 sin (2πx1) + 10 sin (2πx2) ,

where x1, x2 ∈ [2, 5]. As shown in Fig. 3.3, the test function is highly nonlinear and has several

local optima over the prescribed region.
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Figure 3.2: Illustration of the proposed method (q = 4) in Example 1: (a) True function, initial
points and added points identified by T-PEI criterion; (b) Exact bounds and approximate bounds
after each iteration.

The lower and upper bounds of y are computed by several methods, as listed in Table 3.2.

The exact response bounds of y are obtained as −8.10 and 59.95. The genetic algorithm can yield

accurate results, but at the expense of 4000 g-function evaluations. Although the classical vertex

method requires the minimum number of g-function evaluations among all the numerical methods,

it gives completely wrong estimates for the lower and upper bounds. At the cost of 6912 g-function

calls (the largest among all the numerical methods), the subinterval method is able to produce

acceptable results. The subinterval decomposition analysis method yields close results to these of

the subinterval method, while requires significantly less g-function evaluations. For the N-PGBO

method, fairly good results can be produced using a total number of 74 g-function evaluations, and

65 iterations. The proposed T-PBGO method (n0 = 10, εmin = 0.002 and εmax = 0.001) is capable

of generating quite accurate lower and upper bounds, while reducing the number of iterations down

to 9 when q = 8.

3.4.3 Example 3: A transmission tower subjected to wind loads

This example consists of a transmission tower subjected to wind loads (shown in Fig. 3.4), which

is modified from Ref. [52]. The tower is modelled as a three-dimensional (3D) truss structure with

24 joints and 80 elements in OpenSees. Three kinds of members, i.e., columns, diagonal members

and horizontal members, are included in the model, the cross-sectional area of which are denoted
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Figure 3.3: Plot of the two-dimensional test function in Example 2.

Table 3.2: Interval analysis results for Example 2 by different methods.

Method Lower bound Upper bound N N⋆ Reference
Exact solution -8.10 59.95 - - -
Genetic algorithm -8.10 59.95 4000 - Tab. 7 in [21]
Vertex method (q = 4) 4.00 51.25 4 1 [26]
Subinterval method -8.70 60.39 6912 - Tab. 7 in [21]
Subinterval decomposition analysis -8.55 58.81 97 - Tab. 7 in [21]
N-PBGO (q = 1) -8.01 59.92 10 + 42 + 22 = 74 65 Appendix 3.5

Proposed T-PBGO

q = 2 -8.08 59.94 10 + 58 = 68 30 -
q = 4 -8.08 59.94 10 + 72 = 82 19 -
q = 6 -8.09 59.93 10 + 72 = 82 13 -
q = 8 -8.10 59.94 10 + 80 = 90 9 -
q = 10 -8.10 59.93 10 + 90 = 100 10 -

as A1, A2 and A3, respectively. The geometry of the model is shown in Fig. 3.4(a). The wind effect

acting on the tower is simplified to four equivalent static loads at the top four nodes, and inclined by

θ
◦ relative to the x-axis (Fig. 3.4(b)). The constitutive law of the steel material adopts the bi-linear

model, as depicted in Fig. 3.4(c). Eight interval variables are included in the 3D truss model, which

are descried in Table 3.3. The response of interest is defined as the horizontal displacement of node

A, i.e.,

y = g(P, θ, Fy, E, b, A1, A2, A3) =
√

u2
A,x + u2

A,y,

where uA,x and uA,y denote the displacements of node A in x and y directions, respectively.

The bounds of y are solved by several methods, and the results are summarized in Table

3.4. The particle swarm optimization (PSO) (q = 10) is used to provide reference results for the
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Figure 3.4: A transmission tower subject to wind loads: (a) 3D truss model; (b) loading at the top
of tower; (c) bi-linear constitutive model.

Table 3.3: Interval variables for Example 3.

Variable Description Interval Unit
P Wind load [100, 200] kN
θ Angle between the load direction and the x-axis [−45, 45] ◦

Fy Yield strength of steel [300, 400] MPa
E Young’s modulus of steel [1.8, 2.4] × 105 MPa
b Strain hardening ratio [0.015, 0.025] -
A1 Cross-sectional area of the column members [4000, 5000] mm2

A2 Cross-sectional area of the diagonal members [3000, 4000] mm2

A3 Cross-sectional area of the horizontal members [2000, 3000] mm2

bounds. For the proposed T-PBGO method, we set the user-specified parameters as: n0 = 10,

εmin = 0.002 and εmax = 0.001. The vertex method requires 256 g-function calls, which, however,

greatly underestimates the upper bound. Both N-PBGO and T-PBGO can give close results to
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these of particle swarm optimization. The N-PBGO method is computationally advantageous in

terms of N among all methods, while the proposed T-PBGO can further reduce N⋆ by taking

advantage of its parallelism.

Table 3.4: Interval analysis results for Example 3 by different methods.

Method Lower bound Upper bound
N N⋆ Reference(mm) (mm)

PSO (q = 10) 11.9592 57.2421 1920 + 3840 = 5760 576 [51]
Vertex method (q = 10) 11.9592 44.3887 256 25.60 [26]
N-PBGO (q = 1) 11.9592 57.2421 10 + 9 + 5 = 24 24 Appendix 3.5

Proposed T-PBGO

q = 2 11.9592 57.2403 10 + 22 = 32 16 -
q = 4 11.9592 57.2421 10 + 28 = 38 10 -
q = 6 11.9592 57.2372 10 + 36 = 46 8 -
q = 8 11.9592 57.2421 10 + 40 = 50 7 -
q = 10 11.9760 57.2388 10 + 60 = 70 7 -

3.4.4 Example 4: A spatial frame with viscous dampers subjected to earthquake

The last example considers a spatial frame with viscous dampers subjected to earthquake, as

shown in Fig. 3.5. The 3-D finite element model is developed in OpenSees, the geometry of which

can be found in Fig. 3.5(a). Each beam/column member is modelled with an elastic beam-column

element with cross section IPE270/IPB300 (Fig. 3.5(b)/(c)). For each viscous damper (see Fig.

3.5(d)), a two-node link element is used with the viscous damper material. We only consider the

self weight as the mass source for the columns, while for beams the mass source is determined based

on “self weight + dead load + 0.2 live load". The structure is subjected to a base acceleration

corresponding to the N-S component of the El-Centro 1940 earthquake, as shown in 3.5(e). The

ground motion is applied along the direction with a rotation angle θ
◦ with respect to the y-axis

(Fig. 3.5(a)). As summarized in Table 3.5, eleven interval variables are involved in this example.

Of interest is the maximum horizontal displacement of node A, i.e.,

y = g(θ, AF, DL, LL, KD, CD, α, ρ, E, v, ζ) = max
t

√
u2

A,x(t) + u2
A,y(t),

where uA,x(t) and uA,y(t) denote the displacements of node A in x and y directions, respectively.

The bounds of the model response y are computed by the particle swarm optimization, vertex

method, N-PBGO and T-PBGO (n0 = 10, εmin = 0.002 and εmax = 0.001), and the results are

summarized in Table 3.6. The reference solution is taken from the particle swarm optimization
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Figure 3.5: A spatial frame with viscous dampers subject to earthquake: (a) 3D frame model; (b)
IPE270 for beams; (c) IPB300 for columns; (4) Viscous Damper; (e) N-S component of El Centro
earthquake (1940)

method. The vertex method is able to produce good estimates, but requires a large number of

g-function evaluations (N = 2048 and N⋆ = 204.8) in this example. Compared to the N-PBGO

method and vertex method, the proposed T-PBGO method can significantly reduce the number of

g-function calls per core, though the total number of g-function calls may increase (e.g., q = 4, 8)

relative to the N-PBGO method. Besides, the proposed method still gives desirable results for the

response bounds. It should be emphasized that N⋆ does not decrease monotonically as q increases.

This means that there may be an optimal parallelization level q that minimizes N⋆, e.g., q = 6 in

the example.
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Table 3.5: Interval variables for Example 4.

Variable Description Interval Unit
θ Angle between the earthquake direction and the y-axis [−45, 45] ◦

AF Amplification factor of the earthquake ground motion [0.5, 1.5] -
DL Floor dead load [4, 5] kN/m2

LL Floor live load [2, 3] kN/m2

KD Axial Stiffness of the viscous damper [3, 4] × 104 kN/m
CD Damping coefficient of the viscous damper [20, 30] kN(s/m)ff

α Velocity exponent [0.2, 0.4] -
ρ Density of steel [7.8, 7.9] × 103 kg/m3

E Young’s modulus of steel [1.8, 2.2] × 105 MPa
v Poisson’s ratio [0.25, 0.30] -
ζ Damping ratio [0.02, 0.04] -

Table 3.6: Interval analysis results for Example 4 by different methods.

Method Lower bound Upper bound
N N⋆ Reference(mm) (mm)

PSO (q = 10) 11.9762 137.4651 3000 + 2400 = 5400 540 [51]
Vertex method (q = 10) 12.0084 137.4651 2048 204.8 [26]
N-PBGO (q = 1) 12.0929 137.3746 10 + 14 + 4 = 28 28 Appendix 3.5

Proposed T-PBGO

q = 2 12.0483 137.4651 10 + 14 = 24 12 -
q = 4 12.0084 137.2062 10 + 24 = 34 9 -
q = 6 12.0489 137.4651 10 + 18 = 28 5 -
q = 8 12.0063 137.4651 10 + 32 = 42 6 -

3.4.5 Final remarks

In practical applications, the g-function can be rather expensive-to-evaluate and the computa-

tional budget is limited. In such cases, one may need to prespecify optimal values for the parameters

n0, q, εmin and εmax before running the proposed method in order to save the computational time,

while remaining a desired level of accuracy. As a rule of thumb, the initial sample size n0 can be set

as 10. As observed in the four numerical examples, the number of iterations N⋆ does not decrease

monotonically with q and takes its minimum value when q = 8 in most cases. Therefore, q = 8

is recommended in case that at least 8 cores are available. The two thresholds εmin and εmax not

only influence the efficiency of the proposed method, but also the accuracy, The smaller εmin and

εmax are, the proposed method usually requires more iterations and more accurate results can be

obtained. According to our experience, εmin = 0.002 and εmax = 0.002 can be adopted.
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3.5 Conclusions

In this study, a triple-engine parallel Bayesian global optimization (T-PBGO) method is pro-

posed for efficient interval numerical analysis, especially when the computational model is a expensive-

to-evaluate black box. The advancement of the proposed method lies in utilizing the Gaussian

process (GP, also known as Kriging) prior for the expensive black-box g-function and an acquisition

function (or infill sampling criterion) that can suggest promising points to be evaluated next. In

order to make full use of prior knowledge and parallel computing, the main contribution of this

paper is the development of a multi-points selection strategy, called ‘triple-engine pseudo expected

improvement’ (T-PEI), which can select a batch of informative and diversity points for minimization

and/or maximization at each iteration. Four numerical examples are investigated to demonstrate

the proposed method. The main advantages of T-PBGO can be summarized as follows:

(i) The proposed method usually requires less g-function evaluations to achieve the same accuracy

compared to non-Bayesian methods, due to its ability to exploit prior knowledge;

(ii) Compared to N-PBGO, T-PBGO allows for identifying multiple points at each iteration, and

hence could be more efficient when parallel computing is available;

(iii) The developed method is non-intrusive in nature (directly works with black-box problems),

and therefore easy-to-implement and broadly applicable;

(iv) Both lower and upper bounds can be obtained with one single run of the proposed method.

However, the proposed method still has several major limitations. First, T-PBGO works only

well in low dimensions (typically, d < 20), and for high-dimensional problems new developments are

needed. Second, as the parallelization level q and the size of training dataset increase, optimizing

the T-PEI criterion can be time-consuming. Third, only the bounds of a single model response can

be captured by the proposed method in its current form. Future works can be done along these

directions.
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Appendix A: Non-parallel Bayesian global optimization

The traditional Bayesian global optimization is sequential in nature, which means that only

one update point is identified at each iteration. Therefore, it cannot take advantage of parallelism.

Besides, finding the minimum and maximum of a function is typically treated as two separate opti-

mization problems. However, this is not advisable when computational efficiency is of great concern.

That is because that the observations obtained when searching the minimum can be reused to speed

up searching the maximum, and vice versa. This strategy is adopted in this study as a potential

competitor to the proposed method, and we simply call it non-parallel Bayesian global optimization

(N-PBGO). The main procedure of N-PBGO is summarized as follows:

Step A.1: Generate an initial training dataset

Generate an initial set of n0 samples using LHS over xI , denoted by a n0 × d matrix X ={
x(j)

}n0

j=1
. Observations of the g-function at these points can be computed in parallel, which are

denoted by a n0 × 1 vector y =
{

y(j)
}n0

j=1
with y(j) = g(x(j)). The initial training dataset can be

written as D = {X, y}. Set n = n0.

Step A.2: Construct a GP model

Construct a GP model GP(mn(x), kn(x, x′)) based on the initial training dataset D. This step

mainly consists of choosing the hyper-parameters by using the maximum likelihood estimation. All

the numerical examples in this study are performed with the fitrgp function in Matlab Statistics

and Machine Learning Toolbox.

Step A.3: Compute maximum of EImin(x)
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Let ymin = min1≤j≤n y(j) denote the minimum value of y observed so far, respectively. Compute

the maximum of EImin(x) by δy1 = maxx∈xI EImin(x).

Step A.4: Check stopping criterion for minimization

if δy1
|ymin|+δ < εmin is satisfied for two successive times, go to Step A.7; Otherwise, go to Step

A.5.

Step A.5: Identify one point by EI-MIN criterion

Identify the next point to evaluate by x
(n+1)
min = arg maxx∈xI EImin(x).

Step A.6: Enrich the training dataset

Compute the corresponding g-function value at the identified point at x
(n+1)
min , i.e., y(n+1) =

g(x(n+1)
min ). Enrich the training dataset D with (x(n+1)

min , y(n+1)). Set n = n + 1, and go to Step A.2.

Step A.7: Compute maximum of EImax(x)

Let ymax = max1≤j≤n y(j) denote the maximum value of y observed so far, respectively. Com-

pute the maxima of EImax(x) by δy2 = maxx∈xI EImax(x).

Step A.8: Check stopping criterion for maximization

if µmax
max

|ymax|+δ < εmax is satisfied for two successive times, go to Step A.12; Otherwise, go to Step

A.9.

Step A.9: Identify one point by EI-MAX criterion

Identify the next point to evaluate by x
(n+1)
max = arg maxx∈xI EImax(x).

Step A.10: Enrich the training dataset

Compute the corresponding g-function value at the identified point at x
(n+1)
max , i.e., y(n+1) =

g(x(n+1)
max ). Enrich the training dataset D with (x(n+1)

max , y(n+1)). Set n = n + 1.

Step A.11: Construct a GP model

Construct a GP model GP(mn(x), kn(x, x′)) based on the initial training dataset D, and go

to Step A.7.

Step A.12: End the algorithm

Take ymin = min1≤j≤n y(j) and ymax = max1≤j≤n y(j) as approximate solutions to the lower

and upper bounds of y respectively, and end the algorithm.

In the above steps, TLBO is used for all optimization problems. Besides, for fair comparison

the user-specified parameters (n0, δ, εmin and εmax) are set according to the proposed method in

all numerical examples.
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Abstract: Uncertainties existing in physical and engineering systems can be characterized

by different kinds of mathematical models according to their respective features. However, effi-

cient propagation of hybrid uncertainties via an expensive-to-evaluate computer simulator is still a

computationally challenging task. In this contribution, estimation of response expectation function

(REF), its variable importance and bounds under hybrid uncertainties in the form of precise prob-

ability models, parameterized probability-box models and interval models is investigated through a

Bayesian approach. Specifically, a new method, termed “Parallel Bayesian Quadrature Optimiza-

tion” (PBQO), is developed. The method starts by treating the REF estimation as a Bayesian

probabilistic integration (BPI) problem with a Gaussian process (GP) prior, which in turn implies

a GP posterior for the REF. Then, one acquisition function originally developed in BPI and other

two in Bayesian global optimization are introduced for Bayesian experimental designs. Besides, an

innovative strategy is also proposed to realize multi-point selection at each iteration. Overall, a

novel advantage of PBQO is that it is capable of yielding the REF, its variable importance and

bounds simultaneously via a pure single-loop procedure allowing for parallel computing. Three

numerical examples are studied to demonstrate the performance of the proposed method over some

*Corresponding Author
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existing methods.

Keywords: Hybrid uncertainties, Response expectation function, Bayesian probabilistic inte-

gration, Bayesian global optimization, Bayesian experimental design, Parallel computing

4.1 Introduction

Uncertainty quantification (UQ) is a hot topic and even research frontier in a broad range of

modern science and engineering fields. UQ is primarily aimed at the quantitative characterization

and consequent reduction of uncertainties in both physical and engineering systems. Uncertainties

occur when all or some aspects of the system under consideration are not exactly known. Examples

of such aspects include, e.g., system parameters and operating conditions. These uncertainties gen-

erally originate from a variety of sources such as inherent variation, manufacturing error, modelling

assumptions or a combination hereof. In terms of the origin of uncertainties, they are typically clas-

sified into either aleatory or epistemic types [1, 2]. Aleatory uncertainty refers to the uncertainty

due to the intrinsic randomness or variability, and thus is irreducible in nature. As such, aleatory

uncertainty is an inherent property of the system under consideration. Epistemic uncertainty, on

the other hand, is associated with a lack of knowledge (or information) on the side of the analysts,

and hence can be potentially reduced or even eliminated by acquiring more knowledge. Commonly,

these two types of uncertainties occur together in both science and engineering, and many differ-

ent uncertainty models might appear simultaneously in just one single problem. In addition to

characterizing these uncertainties with appropriate mathematical models, uncertainty propagation

through a computational model has also been of central interest from both academia and industry.

Many approaches have been indeed developed to quantitatively describe uncertain phenomena,

which can be broadly categorized into three major groups: probabilistic approach, non-probabilistic

approach and imprecise probability approach. The probabilistic approach is rooted in classical prob-

ability theory, and is the most traditional way to quantify uncertainties. Following this approach,

non-determinism is modelled by a precise probability distribution on the basis of a set of probability

axioms [3]. Despite its rigor in theory and popularity in practical applications, it is often criticized

that the probabilistic approach indispensably relies on very fine information, e.g., a large amount

of high-quality data, which is not always available. Alternatively, the non-probabilistic approach,

including interval models [4], fuzzy sets [5] and convex models [6], is emerging for characterizing

105



CHAPTER 4. HYBRID UNCERTAINTY PROPAGATION BY BAYESIAN ACTIVE
LEARNING

uncertainty with limited information, where the variation bounds need to be specified, instead of

a precise probability distribution. However, it is argued that these methods are mostly suitable

to deal with epistemic uncertainty. In recent years, the imprecise probability approach has gained

increasing attention as a promising framework to quantify complex uncertainties, particularly when

the available information or data is not sufficient to identify a unique probability distribution [7].

In essence, it is an extension to classical probability theory where the uncertainty is characterised

by a set of probability measures, rather than a single one. Therefore, it allows for modelling both

aleatory uncertainty and epistemic uncertainty separately within a uniform framework. Typically,

the aleatory uncertainty is characterized by the traditional probabilistic models, and the epistemic

uncertainty is handled by the non-probabilistic models. Representative techniques include the prob-

ability box (p-box) [8], evidence theory [9] and fuzzy probability [10] among others.

As for uncertainty propagation, great efforts have been made along each line of uncertainty

characterization over the past several decades. The existing approaches for propagating precise

probabilistic uncertainty can be roughly divided into five categories: stochastic simulation methods

[11–13], approximate analytical methods [14, 15], surrogate-assisted methods [16–18], numerical

integration methods [19–23] and probability conservation-based methods [24, 25]. Differently, the

propagation of non-probabilistic uncertainty follows another district philosophy, more relaying on,

e.g., interval arithmetic [26], optimization methods [27, 28], perturbation methods [29, 30] and etc.

Also advanced sampling approaches for interval analysis have been introduced [31, 32]. One can

refer to [5] for a good review on recent trends in propagation of non-probabilistic uncertainty. For

imprecise probability propagation, however, the above two kinds of methods are not suitable, and

hence new developments are necessary. The most common way to address the problem involves a

double-loop procedure that uses the aforementioned two types of methods in a nested way, such

as optimized parameter sampling [33] and interval Monte Carlo simulation [34], which often suffers

from a heavy computational burden. To improve the computational efficiency, decoupled strate-

gies have recently attracted increasing attention, and representative works include the augmented

subset simulation [35], non-intrusive imprecise stochastic simulation [36, 37], operator norm theory

[38], active learning augmented probabilistic integration [39], non-intrusive imprecise probabilistic

integration (NIPI) [40], and collaborative and adaptive Bayesian optimization (CABO) [41]. For a

review of the computation methods for propagating p-boxes, the reader is referred to [42]. Besides,

some progress has also been made in the context of hybrid uncertainty propagation, e.g., surrogate
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modelling-based methods [43–48], stochastic simulation-based methods [49–51] and others [52, 53].

For propagating probabilistic-interval hybrid uncertainty, one can refer to the review [54]. Over-

all, propagation of hybrid uncertainties poses a more significant computational challenge in UQ

community, and the existing methodologies are far from desirable for general practical applications.

In this paper, a novel method is presented to propagate hybrid uncertainties in the form of

precise probabilistic models, parameterized p-box models and interval models, where the response

expectation function (REF), its variable importance and bounds are of concern. The method

belongs to the class of Bayesian probabilistic numerical methods [55], and can also be seen as an

important extension to the NIPI [40] and CABO [41] methods originally developed for propagating

parameterized p-box models. The main contributions of the present work can be summarized as

follows:

• A general Bayesian framework is presented for propagating hybrid uncertainties, which is

non-intrusive and fully decoupled in nature;

• Posterior means and variances of the REF and its random-sampling high-dimensional model

representation (RS-HDMR) decomposition are analytically derived in closed form;

• Parallelized Bayesian experiment design is realized so as to take advantage of parallel com-

puting at each iteration;

• A Matlab implementation of our methodology is freely available to the public 1.

The remaining of this paper is organized as follows. We start by stating the problem to

be solved in this study in Section 4.2. Section 4.3 presents the theoretical basis and numerical

implementation procedure of the proposed method, with the relationship to the existing NIPI and

CABO methods being discussed. How to extend the proposed method to a relatively more general

case of hybrid uncertainties is briefly explained in Section 4.4. In Section 4.5, three numerical

examples are studied to demonstrate the proposed method. The paper ends with some concluding

remarks and perspectives in Section 4.6.

1https://github.com/Chao-Dang/Hybrid-Uncertainty-Propagation-by-Parallel-Bayesian-Quadrature-Optimization
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4.2 Problem statement

In this work, three kinds of uncertainty characterization models are considered to model non-

deterministic inputs of a computer simulator, i.e., precise probability models, parameterized p-box

models and interval models. The precise probability models that are deeply rooted in probability

theory are assumed to be used for describing pure aleatory uncertainty. As a representative of

imprecise probabilities, the parameterized p-box models are able to account for both aleatory un-

certainty and epistemic uncertainty simultaneously. The interval models serve as a representative of

non-probabilistic models and are useful to model the constant-but-unknown epistemic uncertainty.

As such, the developed method is expected to work in the following four cases:

Case I: Precise probabilistic models and parameterized p-box models coexist in the model

inputs;

Case II: Only parameterized p-box models exist in the model inputs;

Case III: Precise probabilistic models and interval models coexist in the model inputs;

Case IV: Precise probabilistic models, parameterized p-box models and interval models coexist

in the model inputs.

Among the four cases, Case IV constitutes a more general situation of hybrid uncertainties.

For notational clarity, however, we only take Case III as an example to illustrate the proposed

method in the following, and when it comes to the general case (i.e., Case IV) one can refer to

Section 4.4. Let X = [X1, X2, . . . , Xd1 ] ∈ X ⊆ Rd1 and A = [A1, A2, . . . , Ad2 ] ∈ A ⊆ Rd2 denote a

d1-dimensional vector of precise random variables and a d2-dimensional vector of interval variables,

respectively. The random variables are said to be ‘precise’ when their distribution types and dis-

tribution parameters are exactly known, and we assume that the joint probability density function

(PDF) of X exists, denoted as fX(x). The interval variables refer to the uncertain parameters with

limited information, and can only be specified by their lower and upper bounds, i.e., A = [α, α],

where α = [α1, α2, . . . , αd2 ] and α = [α1, α2, · · · , αd2 ]. As such, A represents a d2-dimensional

hyper-rectangle. In this study, these d1 + d2 variables are assumed to be independent just for the

convenience of describing our method. The computer simulator is represented by a deterministic,

continuous and real-valued function g : Rd1+d2 7→ R, {x, α} → z, with Z = g(X, A) being a scalar

quantity of interest. Due to the existence of interval variables, Z is no longer a random variable

unless A is fixed at a value α ∈ A. Thus, the expectation of Z, is not a deterministic values
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anymore, but function of the interval variables. More precisely, it only assume a crisp value for

a realisation of the input intervals. To formalize, the definition of the so-called REF is given as

follows:

m(α) =
∫

X
g(x, α)fX(x)dx, (4.1)

The lower and upper bounds of m(α) can be defined as:

ml = min
α∈[α,α]

m(α) = min
α∈[α,α]

∫
X

g(x, α)fX(x)dx, (4.2)

mu = max
α∈[α,α]

m(α) = max
α∈[α,α]

∫
X

g(x, α)fX(x)dx. (4.3)

The REF can provide complete information about how the response expectation changes with

its argument α, whereas the interval [ml, mu] measures the amount of epistemic uncertainty present

in the response expectation. Besides, the analyst may also concern the variable importance of

the REF. Intuitively, the bounds and variable importance analysis of the REF can be proceeded

straightforwardly once the REF is available. However, it is still a non-trivial task to compute

the REF in an efficient manner since each evaluation of the response function g(x, α) can be

prohibitively expensive for a real-world problem.

4.3 Parallel Bayesian quadrature optimization

As the REF defined in Eq. (4.1) is given in the form of an integral, the Bayesian probabilistic

integration (BPI) [23] can be applied to efficiently obtain an estimate for the REF. If we assign a

Gaussian process (GP) prior for the integrand g(x, α), the induced posterior of the REF is also a GP.

Following this, the lower and upper bounds defined in Eqs. (4.2) and (4.3) may be further solved by

the Bayesian global optimization (BGO) [56]. In this section, a novel Bayesian approach combining

the BPI and BGO, called Parallel Bayesian Quadrature Optimization (PBQO), is presented to

produce the REF, its variable importance and bounds simultaneously in an efficient manner.

4.3.1 Variable transformation

Before introducing our method, a pre-processing step should be performed to transform the

original input variable vector {X, A} to a new one so as to make the proposed method analytically
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tractable. In this study, the random variable vector X is transformed to be a standard normal one

by a certain transformation (e.g., isoprobabilistic transformation), which is denoted as U = T1(X).

In contrast, we consider transforming the interval vector A to be a standard one (i.e., [0, 1]d2) by a

simple linear transformation such that V = T2(A). For convenience, the two transformations can

be written in a uniform form W = T (X, A), where W = {U , V }. The REF with respect to v is

defined as:

M(v) =
∫

U
G(w)fU (u)du, (4.4)

where G(w) = g(T (x, α)), fU (u) is the joint PDF of U . Once M(v) is available, m(α) can be easily

obtained as m(α) = M(T2(α)). Note that the T1 transformation is necessary for the analytical

tractability of the proposed method, while T2 transformation is not. However, we introduce the T2

transformation only for the purpose of producing concise analytical expressions.

4.3.2 Prior Gaussian process

In the proposed PBQO method, we first place a GP prior over the space G of functions:

G : W → R, denoted as Ĝ(w) ∼ GP(µ0(w), k0(w, w′)), where µ0(w) and k0(w, w′) are the prior

mean and covariance functions, respectively. The prior mean function reflects the general trend

of the GP, and can be assumed to be, e.g., zero, constant or a linear polynomial. The covariance

function is a more crucial ingredient of the GP since it encodes our basic assumptions about the

function to be inferred, e.g., smoothness and periodicity. In this study, the prior mean function

adopts a constant, i.e., µ0(w) = β, and the prior covariance function takes the squared exponential

kernel:

k0(w, w′) =s2
0 exp

[
−1

2
(
w − w′)Σ−1 (w − w′)T]

=s2
0 exp

[
−1

2
(
u − u′)Σ−1

u

(
u − u′)T] exp

[
−1

2
(
v − v′)Σ−1

v

(
v − v′)T] ,

(4.5)

where s2
0 is the process variance, Σ = diag

{
l21, l22, · · · , l2d1+d2

}
with li being the characteristic

lengthscale in i-th dimension, Σu = diag
{

l21, l22, · · · , l2d1

}
and Σv = diag

{
l2d1+1, l2d1+2, · · · , l2d1+d2

}
;

Throughout the paper, the symbol diag {·} means to create a square diagonal matrix with the el-

ements of its argument when its argument is a vector or to get a column vector of the diagonal

elements of its argument when its argument is a matrix. The parameters β, s0, l1, l2, · · · , ld1+d2
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are called hyperparameters. Note that the analytical tractability of the proposed method relies on

using the squared exponential kernel.

4.3.3 Bayesian posterior inference

Suppose that we have evaluated the G-function at n points. Let an n × (d1 + d2) matrix

W = (U , V) =
{

w(j)
}n

j=1
denote the n points at which the G-function are evaluated, and an n × 1

vector Z =
{

z(j)
}n

j=1
denote the corresponding G-function values at W . Given D = {W , Z},

the hyperparameters involved in the prior mean and covariance functions can be determined by,

e.g., maximum likelihood estimation [57]. Besides, conditioning on the data D, we can arrive at a

posterior GP over functions G ∈ G , which is denoted as GP(µn(w), kn(w, w′)). According to [57],

the posterior mean µn(w) and posterior covariance function kn(w, w′) can be given by:

µn(w) = µ0 (w) + k0 (w, W)T K−1
0 (Z − µ0 (W)) , (4.6)

kn(w, w′) = k0
(
w, w′)− k0 (w, W)T K−1

0 k0
(
w′, W

)
, (4.7)

where µ0 (W) = [µ0(w(1)), µ0(w(2)), · · · , µ0(w(n))]T is the mean vector at W ; k0 (w, W) = [k0
(
w, w(1)

)
,

k0
(
w, w(2)

)
, · · · , k0

(
w, w(n)

)
]T is the covariance vector between w and W ; k0 (w′, W) = [k0

(
w′, w(1)

)
,

k0
(
w′, w(2)

)
, · · · , k0

(
w′, w(n)

)
]T is the covariance vector between w′ and W ; K0 is the covariance

matrix of W with entry [K0]ij = k0(w(i), w(j)).

4.3.3.1 Bayesian inference of REF

As an extended result of BPI [58], the posterior distribution of REF (denoted as M̂(v)),

i.e., integrating Ĝ(w) with respect to u under the Gaussian weight fU (u), still follows a GP. By

repeated application of Fubini’s theorem, one can derive the analytical expressions of the posterior

mean function µM̂(v) and posterior variance function σ2
M̂(v) such that:

µM̂(v) = ED
[
M̂(v)

]
= Πu [µ0(w)] + Πu

[
k0 (w, W)T

]
K−1

0 (Z − µ0 (W)) , (4.8)

σ2
M̂(v) = VD

[
M̂(v)

]
= ΠuΠu′

[
k0(w,

(
u′, v

)
)
]

− Πu

[
k0 (w, W)T

]
K−1

0 Πu [k0 (w, W)] , (4.9)
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where ED [·] and VD [·] refer to the expectation and variance operators taken with respect to the

posterior distributions of their arguments given data D; Πu[·] denotes the integral operator taken

with respect to u under Gaussian weight fU (u); Πu′ [·] is similarly defined; ΠuΠu′ [·] is the integral

operator taken respect to both u and u′ under Gaussian weights fU (u) and fU (u′); The term

Πu [µ0(w)] can be easily obtained as Πu [µ0(w)] = β; The other terms can be derived as:

Πu [k0 (w, W)] = s2
0

∣∣∣Σ−1
u + I

∣∣∣−1/2
exp

[
−1

2diag
{

U (Σu + I)−1 UT − (v − V) Σ−1
v (v − V)T

}]
,

(4.10)

ΠuΠu′
[
k0(w, w′)

]
= s2

0

∣∣∣2Σ−1
u + I

∣∣∣−1/2
, (4.11)

where |·| means the determinant of its argument; I is a identity matrix of size d1.

Note that the expressions for µM̂(v) and σ2
M̂(v) are similar in form to those of NIPI and

CABO, but essentially different due to the fact that the proposed method is established on the

basis of the joint space of standard normal variables and standard interval variables, while both

NIPI and CABO are cast in the standard normal space. The posterior mean function µM,n(v) can

be used as an estimate of M(v) and the posterior variance function σ2
M̂(v) measures our uncertainty

of the estimate after n observations have been available. By using the linear transformation, one

can easily obtain the posterior mean function µm̂(α) = µM̂(T2(α)) and posterior variance function

σ2
m̂(α) = σ2

M̂(T2(α)) for m̂(α).

4.3.3.2 Bayesian inference of RS-HDMR component functions of REF

In addition to the REF m̂(α), the analyst may also be concerned about, e.g., identifying

key variables among A that are more important for m(α). For this propose, the RS-HDMR is

first employed to express M(v) as the summation of a set of component functions with increasing

dimensions [59]:

M(v) = M0 +
d2∑

i=1
Mi(vi) +

∑
1≤i<j≤d2

Mij(vi, vj) + · · · + Mij...d2(v1, v2, · · · , vd2), (4.12)

where the zeroth-order component function M0 is a constant representing the average value of M(v)

over the entire domain V, the first-order component function Mi(vi) represents the independent

contribution of vi acting alone to M(v), the second-order component function Mij(vi, vj) denotes
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the cooperative effects of vi and vj upon M(v), etc. The last term Mij...d2(v1, v2, · · · , vd2) describes

any residual cooperative effects of all input variables acting together to influence M(v). The

component functions up to the second-order can be defined as:

M0 =
∫

V
M(v)dv =

∫
V

∫
U

G(w)fU (u)dudv, (4.13)

Mi(vi) =
∫

V−i

M(v)dv−i − M0 =
∫

V−i

∫
U

G(w)fU (u)dudv−i − M0, (4.14)

Mij(vi, vj) =
∫

V−ij

M(v)dv−ij−Mi(vi)−Mj(vj)−M0 =
∫

V−ij

∫
U

G(w)fU (u)dudv−ij−Mi(vi)−Mj(vj)−M0,

(4.15)

where V−i and v−i denote the space V and the vector v excluding the i-th dimension, respectively;

V−ij and v−ij are similarly defined.

As high-order component functions have small contributions for many realistic systems, the

second-order truncated RS-HDMR expansion is often considered [36, 40]. For this reason, only the

component functions up to the second-order are provided in the following via Bayesian inference.

If necessary, high-order component functions can also be derived similarly.

Zeroth-order RS-HDMR component As defined in Eq. (4.13), the zeroth-order RS-HDMR

component M0 is actually an integral of G(w) with respect to w. From a Bayesian quadrature

perspective, the posterior distribution of M0 (denoted as M̂0) is Gaussian with posterior mean

µM̂0
and posterior variance σ2

M̂0
being:

µM̂0
= ED

[
M̂0

]
= Πw [µ0(w)] + Πw

[
k0 (w, W)T

]
K−1

0 (Z − µ0 (W)) , (4.16)

σ2
M̂0

= VD
[
M̂0

]
= ΠwΠw′

[
k0(w, w′)

]
− Πw

[
k0 (w, W)T

]
K−1

0 Πw′
[
k0
(
w′, W

)]
, (4.17)

where Πw [µ0(w)] = β, and other terms can be derived as:

Πw [k0 (w, W)] =Πw′
[
k0
(
w′, W

)]
=s2

0

∣∣∣Σ−1
u + I

∣∣∣−1/2
exp

[
−1

2diag
{

U (Σu + I)−1 UT
}]

·
(

π

2

)d2/2
prod2

{[
erf
(
(1 − V) (2Σv)−1/2

)
− erf

(
−V (2Σv)−1/2

)]
Σ1/2

v

}
,

(4.18)
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ΠwΠw′
[
k0(w, w′)

]
=s2

0

∣∣∣2Σ−1
u + I

∣∣∣−1/2

· 2d2prod1

{
diag

{
Σv

[
−1 + exp

[
−(2Σv)−1

]
+ (2π−1Σv)−1/2erf

(
(2Σv)−1/2

)]}}
,

(4.19)

where prod1 {·} means to return the product of the elements of its argument; prod2 {·} is to get

a column vector containing the products of each row of its argument; erf (·) stands for the error

function. Note that in Eq. (4.18) the argument in prod2 {·} is an n-by-d2 matrix, while in Eq.

(4.19) the argument in prod1 {·} is a d2-by-1 vector.

First-order RS-HDMR component The first-order RS-HDMR component function Mi(vi)

defined in Eq. (4.14) is an integral (i.e, integrating G(w) with respect to w excluding vi) minus

M0, and thus its posterior distribution M̂i(vi) should follow a one-dimensional GP.

The posterior mean function µM̂i
(vi) of the first-order RS-HDMR component function M̂i(vi)

can be expressed as:

µM̂i
(vi) = ED

[
M̂i(vi)

]
= Π−vi [µ0(w)] + Π−vi

[
k0 (w, W)T

]
K−1

0 (Z − µ0 (W)) − µM̂0
, (4.20)

where Π−vi [·] denotes the integration of its argument taken over w except vi; it is obvious that

Π−vi [µ0(w)] = β; the term Π−vi [k0 (w, W)] can be derived as:

Π−vi [k0 (w, W)] =s2
0

∣∣∣Σ−1
u + I

∣∣∣−1/2
exp

[
−1

2diag
{

U (Σu + I)−1 UT
}]

·
(

π

2

)(d2−1)/2
prod2

{[
erf
(
(1 − V ,−i)

(
2Σv−i

)−1/2
)

− erf
(
−V ,−i

(
2Σv−i

)−1/2
)]

Σ1/2
v−i

}
· exp

[
−1

2diag
{

− (vi − V ,i) Σ−1
vi

(vi − V ,i)T
}]

,

(4.21)

in which V ,i is the i-th column of V , V ,−i represents the matrix generated by removing V ,i from

V , Σvi denotes the (i, i)-th element of Σv, and Σv−i stands for the matrix generated by removing

the i-th column and i-th row of Σv.

For the posterior variance function σ2
M̂i

(vi) of the first-order RS-HDMR component function

M̂i(vi), one can refer to 4.6.

Second-order RS-HDMR component Similarly, the second-order RS-HDMR component func-

tion Mij(vi, vj) defined in Eq. (4.15) is an integral (i.e., integrating G(w) with respect to w exclud-
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ing vi and vj) diminished by Mi(vi), Mj(vj) and M0, and thus its posterior distribution M̂ij(vi, vj)

should follow a two-dimensional GP.

The posterior mean function µM̂ij
(vi, vj) of the first-order RS-HDMR component function

M̂ij(vi, vj) can be given by:

µM̂ij
(vi, vj) =ED

[
M̂ij(vi, vj)

]
=Π−vij [µ0(w)] + Π−vij

[
k0 (w, W)T

]
K−1

0 (Z − µ0 (W)) − µM̂i
(vi) − µM̂j

(vj) − µM̂0
,

(4.22)

where the term Π−vij [µ0(w)] is equal to β, and the term Π−vij [k0 (w, W)] is derived as:

Π−vij [k0 (w, W)] =s2
0

∣∣∣Σ−1
u + I

∣∣∣−1/2
exp

[
−1

2diag
{

U (Σu + I)−1 UT
}]

·
(

π

2

)(d2−2)/2
prod2

{[
erf
(

(1 − V ,−ij)
(
2Σv−ij

)−1/2
)

− erf
(

−V ,−ij

(
2Σv−ij

)−1/2
)]

Σ1/2
v−ij

}
· exp

[
−1

2diag
{

− (vij − V ,ij) Σ−1
vij

(vij − V ,ij)T
}]

.

(4.23)

For the posterior variance function σ2
M̂ij

(vi, vj) of the second-order RS-HDMR component

function M̂ij(vi, vj), one can refer to 4.6. ■

One should note that the above results are essentially different from those in NIPI. Once these

RS-HDMR component functions of M̂(v) are properly inferred, they can be transformed by a linear

transformation to yield the RS-HDMR component functions for m̂(α).

4.3.3.3 Bayesian inference of extrema of REF

If we stop after obtaining n observations of the G-function, a risk-neutral choice for the minimum

or maximum of the REF would be the minimum or maximum of the posterior mean function µm̂(α).

As µm̂(α) has been derived in a closed-form, the extrema of the REF can be inferred from µm̂(α)

by simply applying a global optimization algorithm such that:

m̂l = min
α∈[α,α]

µm̂(α), (4.24)

m̂u = max
α∈[α,α]

µm̂(α). (4.25)
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Besides, since the posterior variance function σ2
m̂(α) is also available, the prediction errors regarding

the minimum and maximum estimators in Eqs. (4.24) and (4.25) can be measured by the posterior

variances:

Var [m̂l] = σ2
m̂(α−), (4.26)

Var [m̂u] = σ2
m̂(α+), (4.27)

where α− = arg minα∈[α,α] µm̂(α) and α+ = arg maxα∈[α,α] µm̂(α) are the minimum point and

maximum point, respectively.

4.3.4 Parallel Bayesian experimental design

Another significant advantage of the above framework is that it offers the possibility for in-

corporating our prior knowledge and developing a Bayesian experimental design strategy. This

advantage is also realized in both NIPI and CABO. These two methods, however, are in a pure

sequential manner to acquire the G-function. That is, at each iteration only one point is allowed

to be selected and a single G-function evaluation is subsequently performed. The sequential ex-

perimental strategies would be less efficient and flexible when parallel computing architectures are

available. Besides, the one for NIPI is specifically designed for inferring RS-HDMR component

functions, whereas the one for CABO is only developed for inferring the extrema of the REF. Based

on these considerations, a novel contribution here is to present a multi-point selection criterion

that can support parallel evaluations of the G-function and also enable us to estimate the REF, its

RS-HDMR component functions and bounds at the same time. In this study, the preferred number

of CPU cores or workers in a parallel pool is assumed to be an even number, denoted by c.

Stage 1: Global improvement Supposing that we have only obtained a small set of initial

observations, the first stage of our strategy aims to improve the global accuracy of the REF. The

key lies in three main aspects: (1) how can we measure the global accuracy of the REF? (2) how

to select c points at each iteration that are expected to improve the global accuracy of the REF?

(3) when to stop the iteration at this stage?

As the zero-th order RS-HDMR component M0 is defined as an integral of the REF M(v) with

respect to v (called augmented expectation), its accuracy may reflect the global accuracy of the

REF to some extent. Therefore, the accuracy of M̂0 is taken as a global accuracy measure of M̂(v)
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in this study, which can be quantified by the posterior variance σ2
M̂0

. Inspired by [23, 40, 41], a new

acquisition function, called posterior variance contribution to the augmented expectation (denoted

as PVCA), is given by:

PVCA(w) = Πw′
[
kn(w, w′)

]
×fW (w) =

{
Πw′

[
k0(w, w′)

]
− k0 (w, W)T K−1

0 Πw′
[
k0
(
w′, W

)]}
×fW (w),

(4.28)

where the closed-form expression of Πw′ [k0 (w′, W)] has been given in Eq. (4.18); Similarly, the

term Πw′ [k0(w, w′)] can be derived as:

Πw′
[
k0(w, w′)

]
=s2

0

∣∣∣Σ−1
u + I

∣∣∣−1/2
exp

[
−1

2diag
{

u (Σu + I)−1 uT
}]

·
(

π

2

)d2/2
prod2

{[
erf
(
(1 − v) (2Σv)−1/2

)
− erf

(
−v (2Σv)−1/2

)]
Σ1/2

v

}
.

(4.29)

The acquisition function in Eq. (4.28) is said to be ‘new’ because it is essentially not the same as

those in the cited references. It should be noted that σ2
M̂0

=
∫

W PVCA(w)dw holds, which implies

that the PVCA function can measure the contribution of our epistemic uncertainty at w to σ2
M̂0

.

For this reason, by selecting w(n+1) = arg maxw∈W PVCA(w) as the best next point to evaluate the

G-function, it is expected that the posterior variance of the augmented expectation will decrease

the most, and hence the accuracy of the posterior mean of the augmented expectation will be

improved the most. However, adding one single point at a time may waste other useful information

and cannot allow to make use of parallelization, and hence it could be inefficient especially when

parallel evaluations are possible.

In this study, we propose a novel strategy to parallelize the developed PBQO method by

providing c points at each iteration. This strategy is motivated by the fact that the PVCA function

(defined in Eq. (4.28)) only explicitly depends on the sampled locations, not on function values at

these points. For this reason, we can rewrite the PVCA function as PVCA(w, W). Therefore, it

is possible to select c points ahead of observing their G-function values based on the PVCA(w, W)

function. Specifically, each point can be selected sequentially, with the PVCA function modified by

considering the newly selected points at the current iteration. The assumption behind this strategy

is that the hyper-parameters will not change, and hence the PVCA function remains the same

during the process of identifying the next c − 1 points. In fact, the hyper-parameters do change

if we update immediately the GP after each point is chosen and its G-function value is computed,
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which, however, corresponds to the single-point selection strategy. Our idea is expected to work

since the hyper-parameters may not vary too much within the next few steps. The pseudocode of

the proposed multi-point selection strategy is given in Algorithm 2. Until c points are obtained,

evaluating the G-function at these points can be run in parallel, and the GP model can be updated

subsequently. This iteration process is repeated until a stopping criterion is reached, which is defined

as the posterior coefficient of variation (COV) of the augmented expectation less than a pre-specified

tolerance εBPI, i.e.,
σM̂0

|µM̂0
| < εBPI. To avoid possible premature convergence, the stopping criterion

is required to be satisfied several (e.g., two) times in successive iterations. It should be noted that

the proposed multi-point selection strategy is computationally inexpensive and can usually produce

a batch of c diverse points according to our computational experience, which are thus effective and

informative for parallelization.

Algorithm 2 Proposed multi-point selection strategy based on the PVCA(w, W) function
1: Input: c and PVCA(w, W)
2: for i = 1 → c do
3: w(n+i) = arg maxw∈W PVCA(w, W)
4: W = W ∪ w(n+i)

5: end for
6: Output: w(n+1), w(n+2), · · · , w(n+c)

Stage 2: Local improvement After stage 1, it is expected that the general trend of the REF

has been captured. However, the local features of the REF, e.g., minimum and maximum, may

still be inaccurate. In this regard, the second stage of our strategy attempts to further improve the

accuracy of the resulting REF from stage 1, with special emphasis on its extrema.

As the posterior distribution of the REF follows a GP, the expected improvement criterion

originally introduced in BGO [56] could be adopted for our purposes. Let M̂l(v−) denote the

current minimum, and v− the minimum point, i.e., v− = arg minv∈V µM̂(v). The improvement

for the current minimum at the point v can be defined as I(v) = max
(
M̂l(v−) − µM̂(v), 0

)
. The

acquisition function, called expected improvement for the minimization (abbreviated as EIMIN), is

to simple take the expected value of I(v), i.e., EIMIN(v) = E [I(v)]. The closed-form expression of
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EIMIN can be written as [56]:

EIMIN(v) =
(
M̂l(v−) − µM̂(v)

)
Φ

(
M̂l(v−) − µM̂(v)

σM̂(v)

)
+ σM̂(v)φ

(
M̂l(v−) − µM̂(v)

σM̂(v)

)
, (4.30)

where φ (·) and Φ (·) are the PDF and and cumulative distribution function (CDF) of the standard

normal distribution, respectively. The EIMIN function actually measures how much improvement

for the minimum is expected to achieve by sampling at v. Thus, the next best point for v can be

selected by maximizing the EIMIN function, i.e., v⋆ = arg maxv∈V EIMIN(v). The first summation

term in Eq. (4.30) is the exploitation term encouraging to sample where µM̂(v) is small, whereas

the second summation term is the exploration term encouraging to sample where σM̂(v) is large.

At this stage, the associated stopping criterion can be given as [60]:

|maxv∈V EIMIN(v)|
max Z − min Z < εBGO, (4.31)

where εBGO is a user-defined tolerance. Similarly, the stopping criterion also needs to be met for

two times in succession. Once v⋆ is identified, the best next point for u can also be specified. In

order to improve the accuracy of µM̂(v⋆), an acquisition function measuring the posterior variance

contribution to σ2
M̂(v⋆) (abbreviated as PVCMIN), can be defined:

PVCMIN(u) = Πu′
[
kn((u, v⋆) ,

(
u′, v⋆))]× fU (u)

=
{

Πu′
[
k0((u, v⋆) ,

(
u′, v⋆))]− k0 ((u, v⋆) , W)T K−1

0 Πu′
[
k0
((

u′, v⋆) , W
)]}

× fU (u),
(4.32)

where the term Πu′ [k0 ((u′, v⋆) , W)] can be generated as Eq. (4.10) by replacing v by v⋆, and the

term Πu′ [k0((u, v⋆) , (u′, v⋆))] can be derived as:

Πu′
[
k0((u, v⋆) ,

(
u′, v⋆))] = s2

0

∣∣∣Σ−1
u + I

∣∣∣−1/2
exp

[
−1

2diag
{

u (Σu + I)−1 uT
}]

. (4.33)

In analogy to PVCA criterion (see Algorithm 2), c/2 points for u can be selected sequentially by

maximizing the PVCMIN function, denoted as u(n+i) (i = 1, 2, . . . , c/2). The stopping criterion is

defined as σM̂(v⋆)
|µM̂(v⋆)| < εBPI, which should be sissified two times in succession. The identified points

for w can be simply formed as: (u(n+1), v⋆), (u(n+2), v⋆), · · ·, (u(n+c/2), v⋆).

Similar to Eqs. (4.30) and (4.32), the expected improvement and posterior variance contribution
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for maximization can also be defined, which are denoted as EIMAX and PVCMAX, respectively. To

limit the paper length, however, we will not give them in detail. The next point for v can be

determined by maximizing the EIMAX function, i.e., v⋆ = arg maxv∈V EIMAX(v). Then, based

on the PVCMAX function, one can sequentially identify c/2 points for u, denoted as u(n+i) (i =

1, 2, . . . , c/2). The remaining c/2 points for w can be generated as: (u(n+1), v⋆), (u(n+2), v⋆), · · ·,

(u(n+c/2), v⋆)

As a result, a total number of c points for w can be obtained, and the corresponding G-function

values can be computed at the same time by running on c cores simultaneously. After that, the

GP model can be updated based on the past observations. Once pre-defined stopping criteria are

reached, these quantities of interest can be extracted from the finial GP model.

4.3.5 Numerical implementation of PBQO

For numerical implementation of the proposed PBQO method, the basic procedures are sum-

marized as follows, which are also illustrated by Fig. 4.1.

Step 1: Get initial observations

The first step consists of generating a small set of n0 initial samples using Latin hypercube

sampling (LHS), denoted as W = (U , V) =
{

w(j)
}n0

i=1
. The real G-function is then evaluated at

these points to obtain corresponding observations, i.e., Z =
{

z(i) = G
(
w(i)

)}n0

j=1
, which can be

parallelized straightforwardly. The initial training dataset can be constructed: D = {W , Z}. Let

n = n0;

Step 2: Train a GP model

Based on data D, train a new GP model GP(µn(w), kn(w, w′)) for the G-function. In this

study, the fitrgp function in Matlab Statistics and Machine Learning Toolbox is used. The prior

mean function and covariance function are specified as constant and squared exponential kernel,

respectively.

Step 3: Check the stopping criterion

From the trained GP model, one can compute the posterior mean µM̂0
and posterior variance

σ2
M̂0

of the augmented expectation by Eqs. (4.16) and (4.17), respectively. If the stopping criterion
σM̂0

|µM̂0
| < εBPI is satisfied two times in succession, go to Step 5; else, go to Step 4;
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Step 4: Identify new observations by the PVCA criterion

At this stage, one can identify c points for W by sequentially maximizing the PVCA function

(Eq. (4.28)), denoted as W⋆ = {w⋆}c
j=1. Then, these points are evaluated on the real G-function

in parallel to obtain corresponding observations, which are denoted as Z⋆ = {z⋆}c
j=1. At last, the

training dataset D can be enriched with D⋆ = {W⋆, Z⋆}. Let n = n + c and go to Step 2;

Step 5: Select new points by the quadruplet criteria

The next best points v⋆ and v⋆ can be selected by v⋆ = arg maxv∈V EIMIN(v) and v⋆ =

arg maxv∈V EIMAX(v), respectively. Then, one can select c/2 points (u(i) (i = 1, 2, . . . , c/2))

and (u(i) (i = 1, 2, . . . , c/2)) by sequentially maximizing the PVCMIN function and PVCMAX

function, respectively. For convenience, we denote the c/2 points for minimization by W ={(
v⋆, u(1)

)
,
(
v⋆, u(2)

)
, · · · ,

(
v⋆, u(c/2)

)}
, c/2 points for maximization by W = {

(
v⋆, u(1)

)
,
(
v⋆, u(2)

)
,

· · · ,
(
v⋆, u(c/2)

)
}, and W⋆ =

{
W , W

}
;

Step 6: Judge the stopping criteria

In this step, four stopping criteria should be judged, i.e., |maxv∈V EIMIN(v)|
max Z−min Z < εBGO, σM̂(v⋆)

|µM̂(v⋆)| <

εBPI, |maxv∈V EIMAX(v)|
max Z−min Z < εBGO and σM̂(v⋆)

|µM̂(v⋆)| < εBPI. If all these stopping criteria are met two times

in succession, go to Step 9; else, go to Step 7;

Step 7: Obtain new observations by parallel computing

Evaluation of the real G-function at these c points W⋆ from Step 5 can be performed in

parallel, and c observations are obtained Z⋆ = {z⋆}c
j=1. Finally, the training dataset D is updated

with the new data D⋆ = {W⋆, Z⋆}. Let n = n + c;

Step 8: Train a GP model

Train a new GP model GP(µn(w), kn(w, w′)) for the G-function with data D, and go to Step

5:.

Step 9: Return quantities of interest

The posterior means and variances of these quantities of interest, such as REF, its RS-HDMR

component functions and bounds, can be extracted form the trained GP model. The posterior

means can serve as estimates for these quantities, and the posterior variances measure the epistemic

uncertainties (numerical errors) about our estimates.

To initialize the algorithm, there parameters n0, εBPI and εBGO need to be specified. The initial

sample size n0 should not choose too large as we wish to enlarge the sample size sequentially. For the
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Start

Generate an initial training dataset D = {W , Z} of size n0 using LHS
and let n = n0

Train a GP model GP(µn(w), kn(w, w′)) for the G-function with D

Stopping criterion satisfied?
Identify new observations D⋆ = {W⋆, Z⋆} of size c

by the PVCA criterion, and update D by D = D ∪ D⋆;
let n = n + c

Select new points W⋆ of size c by the quadruplet criteria

Stopping criteria satisfied?
Obtain new observations Z⋆ of size c and

update D by D = D ∪ {W⋆, Z⋆};
let n = n + c

Train a GP model GP(µn(w), kn(w, w′))
for the G-function with D

Compute quantities of interest from the trained GP model

Stop

No

Yes

No

Yes

Figure 4.1: Flowchart of the proposed PBQO method.

two thresholds εBPI and εBGO, proper values are also important as they influence the accuracy and

efficiency of the proposed method. According to our experience, n0 can take values between 5 and

20 depending on the complexity of the problem at hand, and εBPI and εBGO can be set in the orders

of 0.01 and 0.001 respectively. Several optimization problems are involved in the implementation

procedures, one can simply use the global optimization algorithms (e.g., genetic algorithm) as the

objective functions are all in closed form.

4.3.6 Relationship to existing NIPI and CABO methods

The proposed PBQO method does share some similarities with the NIPI method and CABO

method. For example, they all rely on the use of the GP model in a Bayesian fashion, and can avoid

nested loops. However, the differences among the three methods are also significant on several main

aspects:
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a) The proposed PBQO method transforms the interval variables (including the interval vari-

ables in p-boxes) into standard interval ones by a linear transformation. On the contrary,

by assuming auxiliary uniform distributions for the interval variables, the NIPI and CABO

methods convert the interval variables to standard normal ones by a nonlinear transformation.

In conjunction with the squared exponential kernel, both of those two strategies can result in

analytically tractable results for the REF and its HS-HDMR. However, the NIPI and CABO

methods introduce an additional assumption and artificially added nonlinearity. More impor-

tantly, the transformation strategy for NIPI and CABO is the cause of poor performance near

the bounds of the interval variables. To mitigate this problem, one needs to relax the support

of the interval variables when applying NIPI and CABO;

b) Due to the differences in a), the posterior means and variances of the REF and its RS-HDMR

component functions are re-derived in the proposed PBQO method, along with some of the

acquisition functions;

c) The proposed PBQO method is able to support parallel distributed processing owing to the

proposed multi-point selection strategy, while both NIPI and CABO cannot. This advantage

is desired when each evaluation of the G-function is costly and parallel computing facilities

are available;

d) The proposed PBQO method is capable of yielding the REF, its variable importance and

bounds simultaneously with a single run. However, the NIPI method and CABO method are

only designed for evaluating the variable importance and bounds, respectively.

4.4 Extending the proposed method to Case IV

The proposed PBQO method is mainly illustrated in case that hybrid uncertainties present

as both random variables and interval variables. When parameterized p-boxes are involved, the

proposed method is also applicable, but needs slight adaptations. In this section, we will show how

to extend the proposed PBQO method established in Section 4.3 to Case IV.

Let Y = [Y1, Y2, · · · , Yd3 ] denote an imprecise random vector containing d3 variables. These

variables are assumed to be characterized by parameterized p-boxes, and their joint PDF is denoted

as fY |Θ(y|θ), which depends on a set of d4 interval variables Θ = [Θ1, Θ2, · · · , Θd4 ] with lower and
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upper bounds θ = [θ1, θ2, · · · , θd4 ] and θ = [θ1, θ2, · · · , θd4 ], respectively. In Case IV, the response

function is represented by Z = g(X, Y , A). In analogy to Case III, an augmented response

function Z = g(X, Y , A, Θ) needs to be artificially constructed to account for Θ like A. Then, we

map the random vector {X, Y } to a standard normal one U , while the interval vector {A, Θ} to

a standard interval one V . Accordingly, the response function is changed to be Z = G(W ), where

W = {U , V }. See, e.g., [39–41], for the details of how to use an augmented response function when

parameterized p-boxes are involved. Note that this does not mean that the original g-function has

to be modified, but only for numerical implementation. By doing so, the remaining procedures are

similar to those given in Section 4.3.

4.5 Numerical examples

In this section, three numerical examples are investigated to demonstrate the proposed method.

For comparison purposes, the NIPI and CABO methods are mainly implemented in all examples.

These methods are used in a similar way as the proposed PBQO method even though they are

originally developed for only propagating parameterized p-boxes. Besides, in both methods the

support of interval variables has been increased by 10% and the stopping tolerances are specified in

accordance with the proposed method.

4.5.1 Example 1: A test function

Consider a test function of the form:

Z = g(X, A1, A2) = X2 + A1 + A3
2, (4.34)

where X, A1 and A2 are three uncertain input variables, as listed in Tab. 4.1.

Table 4.1: Uncertainty characterization of input variables for Example 1.

Notation Type Mathematical model
X Random variable N (0, 12)
A1 Interval variable [1 2]
A2 Interval variable [1 2]

Note: N stands for normal distribution.

We first consider the REF m(α1, α2), the closed-form expression of which is obtained as
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m(α1, α2) = 1 + α1 + α3
2. The proposed PBQO method can be implemented to yield a numer-

ical estimate of m(α1, α2). In this example, we set c = 2, n0 = 5, εBPI = 0.02 and εBGO = 0.002.

Fig. 4.2(a) depicts the REF estimated by PBQO v.s. its analytical solution, which coincide almost

perfectly. Besides, as shown in Fig. 4.2(b) the coefficient of variation (COV) of the PBQO estimate

is quite small, indicting that the estimate is highly reliable. In order to compare with other existing

methods, we also employ the NIPI and CABO methods in this example. It can be seen from Figs.

4.2(c) and 4.2(e) that both NIPI and CABO methods give poor estimates for the ERF, especially in

the boundary area. In addition, Figs. 4.2(d) and 4.2(f) show that the results by these two methods

also process relatively large variability.

Second, the RS-HDMR component functions of the REF are of concern. For limiting the

paper length, we just show the first-order RS-HDMR component functions as an illustration. The

analytical expressions of m1(α1) and m1(α2) can be derived as: m1(α1) = −3
2 + α1 and m2(α2) =

−15
4 + α3

2. From Fig. 4.3, one can observe that for both component functions: (1) the proposed

PBQO method is able to yield very close estimates to analytical solutions; (2) the 99% confidence

intervals (CIs) of PBQO estimates are very narrow; (3) the NIPI and CABO methods are shown to

be less accurate than the proposed method; (4) the 99% CIs of both NIPI and CABO estimates are

obviously wider than these by the proposed method. These observations demonstrate the accuracy

of the proposed method against both NIPI and CABO methods. Besides, through the first-order

RS-HDMR component functions it is easy to know that α2 has significantly larger influence on the

REF than α1. Therefore, if one would like to reduce the epistemic uncertainty in the REF (i.e.,

narrow the interval), a more rational way is to shrink A2 by collecting more data of it.

Third, we discuss the results of the response expectation bounds. The analytical lower and

upper bounds of the REF are 3 and 11, respectively. Tab. 4.2 compares the numerical estimates

given by the PBQO, NIPI and CABO methods to the analytical solutions. It can be seen that

for both lower and upper bounds: (1) PBQO and CABO methods are capable of producing close

estimates to the analytical solutions, and restively small posterior COVs; (2) NIPI method gives

poor estimates with large posterior COV.

At last, the efficiency and accuracy of these three methods should be emphasized. As listed

in Tab. 4.2, the number of response function evaluations for the PBQO, NIPI and CABO is 13, 8

and 22, respectively. However, the PBQO method can support for parallel computing, and hence

its number of calls to the response function for each CPU core is only 6.5 on average. To this end,
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the number of effective response function evaluations required by the proposed PBQO method is

close to that of the NIPI method, but less than the CABO method. Besides, the proposed PBQO

method is able to produce the REF, its RS-HDMR component functions and bound simultaneously

with reasonable accuracy, while the NIPI method may perform worse in all these three aspects and

the CABO method could be reliable only in capturing the REF bounds.

Table 4.2: Response expectation bound for Example 1.

Method m̂l COV[m̂l]/% m̂u COV[m̂u] /% N N
c

Analytical 3 - 11 - - -
PBQO (c = 2) 2.9820 0.22 11.0027 0.00 5+8=13 6.5
NIPI (c = 1) 2.6795 8.11 10.0148 2.26 5+3=8 8

CABO (c = 1) 3.0033 0.08 10.9966 0.00 5+17=22 22
Note: N is the total number of response function evaluations; c is the number
of points selected at each iteration, and hence the number of CPU cores used
in parallel; and N/c is referred to as the number of effective respone function
evaluations.

4.5.2 Example 2: A non-linear oscillator

The second example considers a nonlinear undamped single degree-of-freedom (SDOF) oscil-

lator subjected to a rectangular pulse load (as shown in Fig. 4.4), which was extensively studied

in context of reliability analysis (see, e.g., [39, 61, 62]). The response function is defined as the

maximum displacement of the oscillator:

Z = g(c1, c2, m, F1, t1) =
∣∣∣∣∣ 2F1
c1 + c2

sin
(

t1
2

√
c1 + c2

m

)∣∣∣∣∣ , (4.35)

where c1, c2, m, F1, t1 are five uncertain input variables, detailed description of which can be found

in Tab. 4.3. For notational clarity, we denote the three intervals as A1 = [1 2], A2 = [0.1 0.3] and

A3 = [0.5 1.5] in what follows.

In this example, the REF, its RS-HDMR component functions and bounds are also of our

interest. Due to the complexity of the response function, the corresponding analytical solutions are

not available, and thus we use Monte Carlo simulation (MCS) or double-loop MCS (DL-MCS) [63]

to provide reference results. The initial parameters of the proposed PBQO method are specified

as: c = 4, n0 = 15, εBPI = 0.01 and εBGO = 0.001. It should be noted that the REF is three-

dimensional, and hence we simply set α3 = 1 in order to visualize the results. As can be seen
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Table 4.3: Uncertainty characterization of input variables for Example 2.

Notation Type Mathematical model
c1 Random variable N (1, 0.12)
c2 Random variable N (0.1, 0.012)
m Random variable N (1, 0.12)
F1 P-box variable LN ([1 2], [0.1 0.3]2)
t1 Interval variable [0.5 1.5]

Note: LN stands for Lognormal distribution.

from Fig. 4.5(b), the COV of the MCS estimate is extremely small, indicting that we can take

the MCS estimate as a reference result. From Figs. 4.5(a), 4.5(c) and 4.5(e), it is obvious that

the proposed PBQO method can produce a much better REF estimate than the NIPI and CABO

methods. Besides, the posterior COV of the PBQO estimate is also much smaller than those by

NIPI and CABO methods, as shown in Figs. 4.5(b), 4.5(d) and 4.5(f). As for the RS-HDMR

component functions of the REF, we only give three first-order RS-HDMR component functions

m̂1(α1), m̂2(α2) and m̂3(α3) as an illustration. It can be seen from Fig. 4.6 that for all the three

component functions the proposed PBQO method can produce fairly good results, in comparison

to these given by MCS. However, the NIPI and CABO methods perform much worse than PBQO,

especially for m̂2(α2). Tab. 4.4 compares the lower and upper bounds of the REF by different

methods. As can be seen, the PBQO and CABO methods are able to yield desirable estimates with

relatively small posterior COVs, while the NIPI method does not work well. It should be noted

that the proposed method only requires 7.75 effective response function evaluations to produce the

above results, which are less than those by NIPI and CABO.

Table 4.4: Response expectation bound for Example 2.

Method m̂l COV[m̂l]/% m̂u COV[m̂u] /% N N
c

DL-MCS 0.4953 0.87 2.5766 0.37 106 -
PBQO (c = 4) 0.4583 0.35 2.5935 0.07 15+16=31 7.75
NIPI (c = 1) 0.4160 15.94 2.6343 3.04 15+3=18 18

CABO (c = 1) 0.4721 0.25 2.5866 0.08 15+24=39 38

4.5.3 Example 3: A 56-bar spatial truss structure

The third example consists of a 56-bar spatial truss structure, as shown in Fig. 4.7. Nine

vertical loads are applied to the structure at joints 1-9, which are denoted as P1 ∼ P9. The external
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loads P1 − P9 are assumed to be uncertain, together with the elastic modulus E and cross-sectional

area A. These uncertainties are characterized by three kinds of models, which are summarized in

Tab. 4.5. It can be seen that four intervals are involved and we denote them as A1 = [20 30] kN,

A2 = [30 40] kN, A3 = [200 220] Gpa and A4 = [150 250] mm2. The response of concern is selected

as the vertical displacement of joint 1, which can implicitly expressed as a function of P1 ∼ P9, E

and A, i.e., Z = g(P1 ∼ P9, E, A).

Table 4.5: Uncertainty characterization of input variables for Example 3.

Notation Type Unit Mathematical model
P2 ∼ P9 Random variable kN LN (20, 42)

P1 P-box variable kN LN ([20 30], [30 40]2)
E Interval variable GPa [200 220]
A Interval variable mm2 [150 250]

The proposed PBQO method is initialized with c = 4, n0 = 20, εBPI = 0.02 and εBGO = 0.002.

Fig. 4.8 depicts the REF estimates by three methods and their corresponding posterior COVs, where

we fix α3 and α4 at their midpoints, i.e., α3 = 210 Gpa and α4 = 200 mm2. It is shown that the

posterior COV of the PBQO estimate is much smaller that those by both NIPI and CABO methods,

indicating that the proposed PBQO method is more reliable for capturing the REF. The results of

four first-order HDMR component functions in Fig. 4.9 also imply that the proposed method has

better accuracy than the NIPI and CABO methods. Besides, it is easy to know from Fig. 4.9 that

the four intervals can be ranked as A4 > A1 > A3 > A2 in terms of their first-order importance to

the REF. Through Tab. 4.6, one can find that for both lower and upper bounds of the REF the

PBQO and CABO can yield better estimates than the NIPI, indicating by their posterior COVs. It

should be emphasized that by taking advantage of parallel computing the effective response function

calls required by the proposed PBQO method are much less than that of CABO.

Table 4.6: Response expectation bound for Example 3.

Method m̂l COV[m̂l]/% m̂u COV[m̂u] /% N N
c

DL-MCS 11.1793 2.11 35.2535 1.64 104 -
PBQO (c = 4) 11.8785 0.23 35.4109 0.08 20+12=32 8
NIPI (c = 1) 12.5791 4.74 34.4007 2.36 20+2=22 22

CABO (c = 1) 11.5818 0.12 35.3302 0.07 20+23=43 43
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Figure 4.2: Response expectation function for Example 1 by different methods.
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Figure 4.3: First-order RS-HDMR component functions for Example 1 by different methods.

Figure 4.4: A nonlinear SDOF oscillator subjected to a rectangular pulse load.
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Figure 4.5: Response expectation function for Example 2 by different methods (α3 = 1).
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Figure 4.6: First-order RS-HDMR component functions for Example 2 by different methods.
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Figure 4.7: A 56-bar spatial truss structure.
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Figure 4.8: Response expectation function for Example 3 by different methods (α3 = 210 Gpa and
α4 = 200 mm2).
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Figure 4.9: First-order RS-HDMR component functions for Example 3 by different methods.

135



CHAPTER 4. HYBRID UNCERTAINTY PROPAGATION BY BAYESIAN ACTIVE
LEARNING

4.6 Conclusions and perspectives

In this work, propagation of hybrid uncertainties in the form of precise random variables, pa-

rameterized p-boxes and interval variables is studied via Bayesian numerical analysis. The main

contribution lies in the development of a novel method, termed ‘Parallel Bayesian Quadrature Opti-

mization’, for estimation of response expectation function, its RS-HDMR component functions and

bounds simultaneously. Compared to the state-of-the-art methods for propagating hybrid uncer-

tainties, the proposed method has several significant advantages. First, the proposed method breaks

the double-loop paradigm that typically propagates aleatory and epistemic uncertainty separately

in a nested way. That is, it can propagate both types of uncertainties simultaneously, and is a fully-

decoupled procedure in nature, yielding a major improvement in computational efficiency. Second,

the proposed method is able to exploit prior knowledge thanks to its Bayesian nature, and it also

supports parallel computing, further leading to much higher computational efficiency. Third, the

estimators (i.e., posterior means) of the response moment function and its RS-HDMR component

functions are analytically derived, together with their posterior variances for indicating numerical

errors.

While these advantages are encouraging, there are still some issues that need further study.

For example, one should note that the analytical tractability of the proposed method is based

on using the squared exponential kernel that is appropriate for modelling smooth and moderately

nonlinear functions. This, however, is not always justified for a general practical problem. Besides,

the proposed method relies on a total number of five acquisition functions, which could be reduced

by developing more efficient Bayesian experimental design strategies. The proposed method could

be extended to evaluate the second-order raw moment function, while more research efforts may

still be required.
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Appendix A: Derivation of the posterior variance for the first-order

RS-HDMR component function

The posterior variance function σ2
M̂i

(vi) for the first-order RS-HDMR function M̂i(vi) can be

given by:

σ2
M̂i

(vi) = VD
[
M̂i(vi)

]
= VD [Π−vi [G(w)]] + σ2

M̂0
− 2COVD

[
Π−vi

[
Ĝ(w)

]
, M̂0

]
, (4.36)

where COVD [·, ·] refers to the covariance taken with respect to the posterior distributions of its

arguments given data D; the term σ2
M̂0

has been given in Eq. (4.17).

The term VD [Π−vi [G(w)]] in Eq. (4.36) can be further deduced by applying Fubini’s theorem

such that:

VD [Π−vi [G(w)]] = Π−viΠ−vi

[
k0
(
w,
(
w′

−v′
i
, vi

))]
− Π−vi

[
k0 (w, W)T

]
K−1

0 Π−vi [k0 (w, W)] ,

(4.37)

where the term Π−vi [k0 (w, W)] has been given in Eq. (4.21); the term Π−viΠ−vi

[
k0
(
w,
(
w′

−(d1+i), vi

))]
can be derived as:

Π−viΠ−vi

[
k0
(
w,
(
w′

−(d1+i), vi

))]
=s2

0

∣∣∣2Σ−1
u + I

∣∣∣−1/2

· 2(d2−1)prod1

{
diag

{
Σv−i

[
−1 + exp

[
−(2Σv−i)−1

]
+ (2π−1Σv−i)−1/2erf

((
2Σv−i

)−1/2
)]}}

.

(4.38)

Likewise, the term COVD
[
Π−vi

[
Ĝ(w)

]
, M̂0

]
in Eq. (4.36) can be formulated as:

COVD
[
Π−vi

[
Ĝ(w)

]
, M̂0

]
= Π−viΠ

[
k0
(
w, w′)]− Π−vi

[
k0 (w, W)T

]
K−1

0 Π [k0 (w, W)] , (4.39)
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where

Π−viΠ
[
k0
(
w, w′)]

=s2
0

∣∣∣2Σ−1
u + I

∣∣∣−1/2

· 2(d2−1)prod1

{
diag

{
Σv−i

[
−1 + exp

[
−(2Σv−i)−1

]
+ (2π−1Σv−i)−1/2erf

((
2Σv−i

)−1/2
)]}}

·
(

π

2

)1/2
prod2

{[
erf
(
(1 − vi) (2Σvi)

−1/2
)

− erf
(
−vi (2Σvi)

−1/2
)]

Σ1/2
vi

}
.

(4.40)

Appendix B: Derivation of the posterior variance for the second-

order RS-HDMR component function

The posterior variance function σ2
M̂ij

(vi, vj) for the second-order RS-HDMR component func-

tion M̂ij(vi, vj) can be formulated as:

σ2
M̂ij

(vi, vj) =VD
[
M̂ij(vi, vj)

]
=VD

[
Π−vij [G(w)]

]
+ σ2

M̂i
(vi) + σ2

M̂j
(vj) + σ2

M̂0

− 2COVD
[
Π−vij [G(w)] , Π−vi [G(w)]

]
− 2COVD

[
Π−vij [G(w)] , Π−vj [G(w)]

]
+ 2COVD

[
Π−vij [G(w)] , Π [G(w)]

]
+ 2COVD

[
Π−vi [G(w)] , Π−vj [G(w)]

]
− 2COVD [Π−vi [G(w)] , Π [G(w)]] − 2COVD

[
Π−vj [G(w)] , Π [G(w)]

]
,

(4.41)

where the terms σ2
M̂i

(vi) and σ2
M̂j

(vj) can refer to Eq. (4.36); the term σ2
M̂0

has been derived in Eq.

(4.17); the last two covariance terms COVD [Π−vi [G(w)] , Π [G(w)]] and COVD
[
Π−vj [G(w)] , Π [G(w)]

]
has been given in Eq. (4.39).

The term VD
[
Π−vij [G(w)]

]
in Eq. (4.41) can be derived as:

VD
[
Π−vij [G(w)]

]
= Π−vij Π−vij

[
k0
(
w,
(
w′

−v′
ij

, vij

))]
−Π−vij

[
k0 (w, W)T

]
K−1

0 Π−vij [k0 (w, W)] ,

(4.42)

where the term Π−vij [k0 (w, W)] has been given in Eq. (4.23); the term Π−vij Π−vij

[
k0

(
w,

(
w′

−v′
ij

, vij

))]
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can be derived as:

Π−vij Π−vij

[
k0
(
w,
(
w′

−v′
ij

, vij

))]
=s2

0

∣∣∣2Σ−1
u + I

∣∣∣−1/2

· 2(d2−2)prod1

{
diag

{
Σv−ij

[
−1 + exp

[
−(2Σv−ij )−1

]
+ (2π−1Σv−ij )−1/2erf

((
2Σv−ij

)−1/2
)]}}

.

(4.43)

The term COVD
[
Π−vij [G(w)] , Π−vi [G(w)]

]
in Eq. (4.41) is formulated as:

COVD
[
Π−vij [G(w)] , Π−vi [G(w)]

]
=Π−vij Π−vi

[
k0
(
w,
(
w′

−v′
i
, vi

))]
− Π−vij

[
k0 (w, W)T

]
K−1

0 Π−vi [k0 (w, W)] ,
(4.44)

where the terms Π−vij [k0 (w, W)] and Π−vi [k0 (w, W)] have been given in Eq. (4.23) and Eq.

(4.21) respectively; the term Π−vij Π−vi

[
k0
(
w,
(
w′

−v′
i
, vi

))]
can be derived as:

Π−vij Π−vi

[
k0
(
w,
(
w′

−v′
i
, vi

))]
=s2

0

∣∣∣2Σ−1
u + I

∣∣∣−1/2

· 2(d2−2)prod1

{
diag

{
Σv−ij

[
−1 + exp

[
−(2Σv−ij )−1

]
+ (2π−1Σv−ij )−1/2erf

((
2Σv−ij

)−1/2
)]}}

·
(

π

2

)1/2
prod2

{[
erf
(

(1 − vj)
(
2Σvj

)−1/2
)

− erf
(

−vj

(
2Σvj

)−1/2
)]

Σ1/2
vj

}
.

(4.45)

Note that the term COVD
[
Π−vij [G(w)] , Π−vj [G(w)]

]
in Eq. (4.41) can be similarly derived

as the term Π−vij Π−vi

[
k0
(
w,
(
w′

−(d1+i), vi

))]
given in Eq. (4.44).

The covariance term COVD
[
Π−vij [G(w)] , Π [G(w)]

]
in Eq. (4.41) can be formulated as:

COVD
[
Π−vij [G(w)] , Π [G(w)]

]
= Π−vij Π

[
k0
(
w, w′)]− Π−vij

[
k0 (w, W)T

]
K−1

0 Π [k0 (w, W)] ,

(4.46)

where the terms Π [k0 (w, W)] and Π−vij [k0 (w, W)] have been given in Eq. (4.18) and Eq. 4.23
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respectively; the term Π−vij Π [k0 (w, w′)] can be derived as:

Π−vij Π
[
k0
(
w, w′)]

=s2
0

∣∣∣2Σ−1
u + I

∣∣∣−1/2

· 2(d2−2)prod1

{
diag

{
Σv−ij

[
−1 + exp

[
−(2Σv−ij )−1

]
+ (2π−1Σv−ij )−1/2erf

((
2Σv−ij

)−1/2
)]}}

·
(

π

2

)2/2
prod2

{[
erf
(

(1 − vij)
(
2Σvij

)−1/2
)

− erf
(

−vij

(
2Σvij

)−1/2
)]

Σ1/2
vij

}
.

(4.47)

The covariance term COVD
[
Π−vi [G(w)] , Π−vj [G(w)]

]
in Eq. (4.41) can be formulated as:

COVD
[
Π−vi [G(w)] , Π−vj [G(w)]

]
=Π−viΠ−vj

[
k0
(
w,
(
w′

−v′
j
, vj

))]
− Π−vi

[
k0 (w, W)T

]
K−1

0 Π−vj [k0 (w, W)] ,

(4.48)

where the terms Π−vi [k0 (w, W)] and Π−vj [k0 (w, W)] have been given in Eq. (4.21); the term

Π−viΠ−vj

[
k0

(
w,

(
w′

−v′
j
, vj

))]
is actually equal to Π−vij Π [k0 (w, w′)] as given in Eq. (4.47).
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Abstract: Imprecise probabilities have gained increasing popularity for quantitatively mod-

elling uncertainty under incomplete information, which is usually encountered in engineering analy-

sis. In this contribution, a non-intrusive method, termed as ‘Active Learning Augmented Probabilis-

tic Integration’ (ALAPI), is developed to efficiently estimate the failure probability function (FPF)

in the presence of imprecise probabilities. Specially, the parameterized probability-box models are

of specific concern. By interpreting the failure probability integral from a Bayesian probabilistic

integration perspective, the discretization error can be regarded as a kind of epistemic uncertainty,

allowing it to be properly quantified and propagated through computational pipelines. Accordingly,

an active learning probabilistic integration (ALPI) method is developed for failure probability esti-

mation, in which a new learning function and a new stopping criterion associated with the upper

bound of the posterior variance are proposed. Based on the idea of constructing an augmented un-

certainty space, an imprecise augmented stochastic simulation (IASS) method is devised by using

the RS-HDMR (random sampling high-dimensional representation model) for estimating the failure
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E-mail address: pengfeiwei@nwpu.edu.cn (P. Wei)
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probability function in a pointwise stochastic simulation manner. To further improve the efficiency

of IASS, the ALAPI is formed by an elegant combination of the ALPI and IASS, allowing the

RS-HDMR component functions of the FPF to be properly inferred. Three benchmark examples

are investigated to demonstrate the accuracy and efficiency of the proposed method.

Keywords: Failure probability function, Imprecise probability, Probability box, Gaussian

process regression, Active learning, Bayesian probabilistic integration

5.1 Introduction

Uncertainty quantification and propagation have been essentially important, but still face crit-

ical challenges in many fields of science and engineering. This is because that in the real world,

uncertainty is almost inevitable, and generally arises from a variety of distinct sources, e.g., sta-

tistical variability, measurement errors, instrumental uncertainty, imperfect information, limited

data, abstraction and assumptions among others. Typically, these uncertainties can be categorized

as either aleatory or epistemic according to their intrinsic features and effects on analysis [1, 2].

Aleatory uncertainty is related to the inherent randomness of an event or a parameter, and hence

cannot be reduced even when sufficient information of high quality is available. On the contrary,

epistemic uncertainty is due to a lack of knowledge, which therefore can be reduced by gaining more

knowledge. In real-world applications, both kinds of uncertainties tend to be jointly present and are

often easily confused with each other. As has been concluded by Der Kiureghian and Ditlevsen [1],

without properly distinguishing different types of uncertainties, the results on risk and reliability

analysis can be misleading.

As for the uncertainty representation, a large number of mathematical models have long been

developed for quantitative characterization of uncertain phenomena in engineering practices. Gen-

erally, the existing uncertainty characterization models can be classified under three major frame-

works: precise probability framework, non-probabilistic framework, and imprecise probability frame-

work. The precise probability framework is deeply rooted in the well-established probability theory,

and hence it is an essential tool in the quantitative mathematical treatment of uncertainty, espe-

cially for modelling aleatory uncertainty. A common criticism, however, is that large amounts of

high-quality data are often required for inferring the potential precise probability model with suf-

ficient credibility, which, unfortunately, may be rarely available for most engineering applications
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[1, 2]. Alternatively, some representative models within the non-probabilistic framework, such as

interval model [3], convex model [4], fuzzy set theory [5] among others, have been extensively in-

vestigated to describe the non-probabilistic uncertainty, especially those resulted from limited data

with poor quality. In spite of their popularity, it has been argued that non-probabilistic models

commonly fail to distinguish between the aleatory and epistemic uncertainties [6]. To fill this gap,

the imprecise probability framework, mathematically as a combination of the non-probabilistic and

probability frameworks, and physically making a clear separation of the two types of uncertainties,

has gained increasingly attraction. Typical imprecise probability models include the evidence theory

[7], interval probabilities [8], probability-box (p-box) [9], fuzzy probabilities [10], etc. A novel char-

acter of imprecise probability framework is that it enables the aleatory uncertainty and epistemic

uncertainty to be treated separately within a unified framework, thanks to the hierarchical model

structure. Based on the aforementioned considerations, we are mainly focusing on propagating

uncertainty in the form of imprecise probabilities in the present paper.

In the imprecise probability framework, uncertainty propagation through computer simulators

is a computationally challenging task primarily due to the double-layer structure inherent in im-

precise probability models. To address this challenge, there has been an increasing attention on

developing efficient numerical methods in recent years, which can be divided into two categories

according to whether the method is decoupled or not. Typical coupled method includes the inter-

val (quasi-) Monte Carlo simulation [11, 12], interval importance sampling [13], subset simulation

based method [14], method of moments [15, 16], etc. Very often these coupled methods involve

interval finite element analysis or numerical optimization within a nested loop, which still leads to

high computational cost and limited applicability. For this reason, decoupled methods have drawn

increasingly attention for propagating imprecise probabilities, such as the augmented subset simula-

tion (ASS) [17], extended Monte Carlo simulation [18], non-intrusive imprecise stochastic simulation

(NISS) [6, 19–21], augmented line sampling [22], operator norm theory [23, 24], augmented space

integral [25, 26]. The most attractive feature of these methods is that only one simulation run

is usually required, and hence very computationally efficient. Despite this, there still exist some

respective drawbacks for those methods. For example, the NISS may not work well for problems

with relatively large epistemic uncertainty due to the increasing variations of the NISS estimators;

the application of operator norm theory is still limited to linear models with imprecision presented

only in excitations; the augmented space integral is suffered from dimensionality of the epistemic
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parameters. To tackle the former issue, Wei and his co-workers [27] recently proposed a novel impre-

cise probability propagation framework, termed as non-intrusive imprecise probabilistic integration

(NIPI). In this framework, the estimation of response moment function (RMF) is treated as a

Bayesian inference problem in the augmented space, and estimators for the component functions of

RMF are analytically derived in closed form. Remarkably, it has been shown that the NIPI can be

applied to the problems with large epistemic uncertainty resulted from extreme lack of information.

However, the current NIPI method is only capable of evaluating RMF, and for FPF estimation,

further developments need to be presented as will be shown in this work.

The main objective of this paper is to develop a new non-intrusive method, called ‘Active

Learning Augmented Probabilistic Integration’, for estimation of FPF under imprecise probabili-

ties. The core of the methodology is to interpret the failure probability integral from the perspective

of Bayesian probabilistic integration, and hence the discretization error can be regarded as a kind

of epistemic uncertainty. Through this treatment, the discretization error is propagated via the

computational pipelines simultaneously together with the aleatory uncertainty and epistemic un-

certainty present in the imprecise probability models, which is useful and important for developing

an active learning strategy, and also for facilitating error assessment of the computational results.

Besides, the approach also relies on an augmented idea that artificially constructs an augmented

uncertainty space, enabling the propagation of two kinds of uncertainties to be fully decoupled.

At last, the RS-HDMR (random sampling high-dimensional model representation) is employed to

study the functional form of the FPF by decomposing it as a summation of component functions

of increased orders, through which, the failure probability bounds and sensitivity analysis can also

be obtained as byproducts.

The rest of this paper is arranged as follows. The problem to be solved in this work is briefly

stated in the “Problem Statement” section. The “Active Learning Augmented Probabilistic Integra-

tion” section provides the detailed theoretical background and numerical implementation procedure

of the proposed method. In the “Numerical Examples” section, three numerical examples are stud-

ied to verify the proposed method. The “Conclusions” section gives the findings of the present

study.
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5.2 Problem statement

Let the limit state function (also termed as performance function) of a physical system under

consideration be denoted by a deterministic mapping y = g(x), which is referred to as g-function

hereinafter. Under this setting, the uncertainty in y only results from the uncertainty in x, where

x = [x1, x2, . . . , xn] is the n-dimensional row vector of input random variables that reflects the

aleatory uncertainty of model inputs. In this paper, we only consider the case that each input

random variable is characterized by a parameterized probability-box (p-box). Let f(x|θ) denote the

joint probability density function (PDF) of x, which is conditional on its distribution parameters θ =

[θ1, θ2, . . . , θm]. Due to the epistemic uncertainty, the distribution parameters cannot be precisely

known, but also uncertain. For simplicity, the interval model is employed to characterize the

uncertainty of θ, i.e., θ ∈
[
θ, θ̄

]
, where θ = [θ1, θ2, . . . , θm] and θ̄ = [θ̄1, θ̄2, . . . , θ̄m] are the lower

bound and upper bound, respectively. Besides, it is assumed that all the random variables and the

distribution parameters are mutually independent. The output y is a state variable with y ≤ 0

indicating that the system is failed, and safe otherwise. The FPF is expressed as:

Pf (θ) =
∫

X
IF (x)f(x|θ)dx, (5.1)

where F in the subscript denotes the failure domain defined as F = {x : g(x) ≤ 0}; IF (x) is an

indicator function of failure: if x ∈ F , IF (x) = 1, and IF (x) = 0 otherwise.

The main objective of this work is to evaluate the FPF defined by a integral with θ being its

argument. This is a more general task than calculating the failure probability bounds, since, with it,

the failure probability bounds can be easily obtained without extra g-function evaluations. Besides,

FPF also provides a basis for sensitivity analysis [28] and reliability-based design optimization

[29, 30]. In most practical cases, however, the closed-form solution of the integral is not available

because of the underlying complexity of the problem at hand. Alternatively, numerical techniques

are thus especially desirable for more general applications.

5.3 Active learning augmented probabilistic integration (ALAPI)

In this section, we propose a method, termed as "active learning augmented probabilistic in-

tegration" (ALAPI), for efficiently propagating the p-box models and evaluating the failure prob-
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ability function. The method starts by interpreting the estimation of failure probability integral

with Bayesian inference, instead of a purely frequentist view. This will enable to incorporate our

prior knowledge about the g-function and the possibility of an adaptive experimental design so as

to develop an active learning probabilistic integration (ALPI) framework. Based on the idea of

augmented uncertainty space, an imprecise augmented stochastic simulation (IASS) method is pro-

posed to estimate the FPF in a pointwise stochastic simulation manner by utilizing the RS-HDMR.

At last, the ALAPI is developed by an elegant combination of the ALPI and IASS.

5.3.1 Bayesian failure probability estimation: Active learning probabilistic in-

tegration (ALPI)

For brevity and convenience, let us first consider the case that θ is precisely known and takes a

fixed value θ⋆. That is, f(x|θ⋆) is now reduced to be a precise probability model. Under this setting,

the failure probability should be a constant value from a theoretical standpoint, and expressed as:

P ⋆
f =

∫
X

IF (x)f(x|θ⋆)dx. (5.2)

As mentioned earlier, in most cases analytical derivation of the exact value of P ⋆
f is computationally

intractable and even impossible, and usually we have to resort to numerical integration techniques

for a crude estimate. Therefore, the introduction of error is unavoidable because the discretisation

of the integrand is numerically necessary. Different from the frequentist theory of inference, we seek

to reinterpret the problem of evaluating the failure probability integral in Eq. (5.2) via Bayesian

inference, which is commonly known as Bayesian Quadrature (or Bayesian Probabilistic Integration)

[31–34]. A novel feature of this treatment is that the discretisation error can be characterized as a

kind of epistemic uncertainty, and then propagated through computational pipelines. One should

not be confused with two kinds of epistemic uncertainties mentioned so far. One is the epistemic

uncertainty here in the probabilistic integration, which arises from the computation due to the

discretisation error. This is in contrast to the epistemic uncertainty revealed in the distribution

parameters of input random variables, which comes from the computation setup, rather than the

computation itself. In the framework of probabilistic integration, the integrand IF (x) at any fixed

x is seen as a random variable simply because it is numerically unknown until we actually evaluate

it. This is usually the case since IF (x) is computationally expensive, and we cannot afford to
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compute IF (x) (or equivalently g(x)) at every site. Following a standard Bayesian approach,

one needs to first assign a prior probability measure over the integrand IF (x), which expresses the

investigator’s prior beliefs about the actual function value. Conditioning on the limited observations{
x(i), I

(i)
F (x(i))

}d

i=1
, we can obtain a posterior over IF (x) via Bayes’ rule. This in turn will imply a

posterior distribution over P ⋆
f , which reflects the epistemic uncertainty resulted from the fact that

we can only evaluate the integrand at a finite number of inputs.

The Gaussian process (GP) could be the most popular choice for the prior model, due to its

broad applicability and sound theoretical background. However, we argue that it is inappropriate

to directly specify a GP prior over the failure indicator function IF (x), since we know that it is

discontinuous and actually follows a Bernoulli distribution. Alternatively, we put a GP prior over

the performance function g(x), denoted by

ĝ(x) ∼ GP(µ(x), c(x, x′)), (5.3)

where µ(x) is the prior expectation function and c(x, x′) is the prior covariance function (also called

kernel function). Various kinds of explicit functions with several hyper-parameters to be determined

are available for the expectation function and covariance function in the literature. For more details,

one can refer to [35, 36].

Given the experimental design matrix X = {x(i)}d
i=1 of size d × n and the corresponding

response vector Y = {y(i) = g(x(i))}d
i=1 of size d×1, the hyper-parameters involved in the prior mean

function and covariance function can be specified, e.g., by using maximum likelihood estimation [35].

Conditional on the observed data set D = {X, Y }, the posterior prediction of ĝ(x) at a new

site x follows a Gaussian random variable with expectation and variance being

ED[ĝ(x)] = µ(x) + c(x, X)TC−1(Y − µ(X)), (5.4)

VD[ĝ(x)] = c(x, x) − c(x, X)TC−1c(x, X), (5.5)

where ED[·] and VD[·] denote the posterior expectation and variance operators (a subscript “D”

is used to indicate the posterior), receptively; µ(X) = [µ(x(1)), µ(x(2)), . . . , µ(x(d))]T is the mean

vector; c(x, X) = [c(x, x(1)), c(x, x(2)), . . . , c(x, x(d))]T is the covariance vector between x and X;

C is the covariance matrix of X with entry [C]ij = c(x(i), x(j)).
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Based on the Gaussian posterior of ĝ(x), it is easy to know that the posterior stochastic process

ÎF (x) at site x is a Bernoulli random variable with

PD[ÎF (x) = 1] = PD[ĝ(x) ≤ 0] = Φ

(
−ED[ĝ(x)]√
VD[ĝ(x)]

)
, (5.6)

PD[ÎF (x) = 0] = PD[ĝ(x) > 0] = 1 − Φ

(
0 − ED[ĝ(x)]√

VD[ĝ(x)]

)
= Φ

(
ED[ĝ(x)]√
VD[ĝ(x)]

)
, (5.7)

where PD[·] denotes the posterior probability operator; Φ is the cumulative distribution function

(CDF) of the standard normal variable.

Accordingly, the posterior expectation and variance of ÎF (x) at site x are formulated as:

ED[ÎF (x)] = Φ

(
−ED[ĝ(x)]√
VD[ĝ(x)]

)
, (5.8)

and

VD[ÎF (x)] = Φ

(
−ED[ĝ(x)]√
VD[ĝ(x)]

)
Φ

(
ED[ĝ(x)]√
VD[ĝ(x)]

)
. (5.9)

Rewrite the failure probability integral in Eq. (5.2) as:

P̂ ⋆
f =

∫
X

ÎF (x)f(x|θ⋆)dx. (5.10)

Since the integral above is just a linear projection of ÎF (x), the posterior of P̂ ⋆
f is also random with

expectation and variance being:

ED[P̂ ⋆
f ] = ED

[∫
X

ÎF (x)f(x|θ⋆)dx

]
=
∫

X
ED[ÎF (x)]f(x|θ⋆)dx

=
∫

X
Φ

(
−ED[ĝ(x)]√
VD[ĝ(x)]

)
f(x|θ⋆)dx

= EX

[
Φ

(
−ED[ĝ(x)]√
VD[ĝ(x)]

)]
,

(5.11)
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and

VD[P̂ ⋆
f ] =ED

[(
P̂ ⋆

f − ED[P̂ ⋆
f ]
)2
]

=ED

[(∫
X

ÎF (x)f(x|θ⋆)dx −
∫

X
ED[ÎF (x)]f(x|θ⋆)dx

)2
]

=ED

[(∫
X

(
ÎF (x) − ED[ÎF (x)]

)
f(x|θ⋆)dx

)2
]

=ED

[(∫
X

(
ÎF (x) − ED[ÎF (x)]

)
f(x|θ⋆)dx

)(∫
X

(
ÎF (x

′
) − ED[ÎF (x

′
)]
)

f(x′ |θ⋆)dx
′
)]

=
∫

X

∫
X
ED

[(
ÎF (x) − ED[ÎF (x)]

) (
ÎF (x′) − ED[ÎF (x′)]

)]
f (x|θ⋆) f

(
x

′ |θ⋆
)

dxdx
′

=
∫

X

∫
X
COVD[ÎF (x) , ÎF

(
x

′)]f (x|θ⋆) f
(
x

′ |θ⋆
)

dxdx
′
,

(5.12)

where EX [·] is the expectation operator with respect to x; the term COVD[ÎF (x) , ÎF

(
x

′
)
] is the

posterior covariance between ÎF (x) and ÎF (x′), whose closed-form solution is not available.

It is reasonable to assume that ÎF (x) and ÎF

(
x

′
)

have finite variances, and then the following

inequality holds via the Cauchy-Schwarz inequality:

COVD

[
ÎF (x) , ÎF

(
x

′)] ≤
√
VD[ÎF (x)]

√
VD[ÎF (x′)]. (5.13)

Substituting Eq. (5.13) into Eq. (5.12), gives the upper bound of the posterior variance of P̂ ⋆
f :

VD[P̂ ⋆
f ] =

∫
X

∫
X
COVD[ÎF (x) , ÎF

(
x

′)]f (x|θ⋆) f
(
x

′ |θ⋆
)

dxdx
′

≤
∫

X

∫
X

√
VD[ÎF (x)]

√
VD[ÎF (x′)]f (x|θ⋆) f

(
x

′ |θ⋆
)

dxdx
′

=
(∫

X

√
VD[ÎF (x)]f (x|θ⋆) dx

)2

=

EX


√√√√Φ

(
−ED[ĝ(x)]√
VD[ĝ(x)]

)
Φ

(
ED[ĝ(x)]√
VD[ĝ(x)]

)2

.

(5.14)

Note that similar equations with Eq. (5.11) and (5.14) have been available in the literature

(e.g., [37, 38]), but they are derived from other perspectives, rather than Bayesian probabilistic

integration. The posterior expectation in Eq. (5.11) can be used as the estimator of the failure

probability, and the upper bound of the posterior variance in Eq. (5.14) can measure the epistemic

uncertainty of this estimator induced by the limited number of observations, but roughly since it
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might be magnified to a certain extent.

5.3.2 Adaptive experimental design

In order to accelerate the convergence of GP training process and increase the accuracy of

failure probability predictor, a careful experimental design is required. It has been shown in the

previous studies, e.g., AK-MCS [39], AK-IS [40], AK-MCMC [41] and AGPR-LS [42], an adaptive

experimental design strategy is very useful for building a accurate GP model at less computational

expense. The key is to develop a suitable learning function (or called acquisition function) that can

decide the next evaluation point based on the current GP model. Since the upper bound of the

posterior variance of the failure probability integral has been derived in the previous subsection, it

is hence possible for us to develop an adaptive experimental design so as to reduce the epistemic

uncertainty of the failure probability predictor as much as possible.

For the above purposes, we will define a new learning function, called upper bound posterior

variance contribution (UPVC), which is given as follows:

UPVC(x) = Φ

(
−ED[ĝ(x)]√
VD[ĝ(x)]

)
Φ

(
ED[ĝ(x)]√
VD[ĝ(x)]

)
, (5.15)

which actually reflects the contribution of epistemic uncertainty at any site x to the upper bound

of posterior variance of the failure probability predictor. If the point processing the largest UPVC

value (i.e., x⋆ = arg maxx UPVC(x)) is sequentially added to the training data set D, the upper

bound of posterior variance of failure probability integral is expected to decrease most fastest, and

hence we will obtain a more accurate prediction of failure probability at lower computational cost.

Therefore, the active learning criterion proposed in this work is to find the maximum point of UPVC

function, which is used as the best next point to evaluate on the real g-function.

In addition to the active learning criterion, a stopping criterion for indicating the convergence

of the algorithm should also be presented. In this study, we propose a new stopping criterion,

which is based on the judgment of the posterior coefficient of variation (COV) of failure probability

predictor. In terms of Eqs. (5.11) and (5.14), the upper bound of the posterior COV of failure
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probability can be expressed as:

κ⋆ = COVD[P̂ ⋆
f ] =

EX

[√
Φ

(
−ED[ĝ(x)]√
VD[ĝ(x)]

)
Φ

(
ED[ĝ(x)]√
VD[ĝ(x)]

)]

EX

[
Φ

(
−ED[ĝ(x)]√
VD[ĝ(x)]

)] . (5.16)

Once the GP model becomes enough accurate, κ⋆ should be very small. Herein, the stopping

criterion is defined by κ⋆ < ε, where ε is a user-specified threshold.

5.3.3 Failure probability function estimation by Imprecise Augmented Stochas-

tic Simulation (IASS)

In this subsection, we will consider the case that θ is no longer a fixed value, but a vector of

intervals. Accordingly, P (θ), as defined in Eq. (5.1), is not a deterministic value any more, but a

function of interval variables. For instrumental purposes, all the distribution parameters are treated

as random variables in the following. That is, we assume an auxiliary probability distribution for

each interval variable of θ. Note that this assumption does not imply that θ must be a random

vector in nature, but just serves as an instrumental tool for performing the proposed method. Let

the auxiliary joint PDF and CDF of θ be denoted as φ(θ) = ∏d
j=1 φj(θj) and Φ(θ) = ∏d

j=1 Φj(θj)

respectively, where φj(θj) and Φj(θj) are the marginal PDF and CDF of θj respectively.

The random vector x is called aleatory uncertainty vector as the aleatory uncertainty

of model inputs is represented by means of its probability characterization, and the corresponding

random-variate space X is termed as aleatory uncertainty space. Under the previous assumption,

we shall refer to the random vector θ as epistemic uncertainty vector and the associated support

Θ as epistemic uncertainty space, respectively, since θ characterizes the epistemic uncertainty of

distribution parameters of x due to the lack of information. Consider an augmented uncertainty

vector v = [x, θ], i.e., a composition of aleatory uncertainty vector and epistemic uncertainty

vector, whose joint PDF and augmented uncertainty space are denoted as w(v) = f(x|θ)φ(θ)

and V = X ⊕ Θ respectively. Therefore, the failure probability function defined in Eq. (5.1) can be
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rewritten as:
Pf (θ) =

∫
V

IF (v)w(v′)dv′

=
∫

Θ

∫
X

IF (v)f(x|θ)φ(θ′)dxdθ′

=
∫

X
IF (v)f(x|θ)dx,

(5.17)

where v′ = [x, θ′]; θ′ is i.i.d. with θ; IF (v) is the augmented failure indicator function corresponding

to the augmented g-function g(v). With Eq. (5.17), the failure indicator function is extended to

the augmented uncertainty space, while it is noted that the integral is only with respect to x.

This treatment can bring several benefits, which will be discussed later. However, it is still tricky

to evaluate the functional form of Pf (θ) with respect to the full vector θ due to the underling

complexity.

Alternatively, the random-sampling high-dimensional model representation (RS-HDMR) [43]

is adopted to decompose the original FPF into a summation of component functions of increasing

orders such that:

Pf,RS(θ) = Pf,RS,0 +
m∑

j=1
Pf,RS,j (θj) +

m∑
j<k

Pf,RS,jk (θj , θk) + · · · + Pf,RS,1,...,m(θ), (5.18)

in which Pf,RS,0 is a zeroth-order (constant) component, Pf,RS,j (θj) is a first-order component

function of the distribution parameter θj , Pf,RS,jk (θj , θk) is a second-order component function of

the distribution parameters θj and θk, etc. According to Eq. (5.17), these RS-HDMR component

functions can be further derived as:

Pf,RS,0 =
∫

Θ
Pf (θ)φ(θ)dθ

=
∫

Θ

∫
X

IF (v)f(x|θ)φ(θ)dxdθ

=
∫

V
IF (v)ω(v)dv

= EV [IF (v)],

(5.19)
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Pf,RS,j (θj) =
∫

Θ−j

Pf (θ)φ(θj , θ−j)dθ−j − Pf,RS,0

=
∫

Θ−j

∫
X

IF (v)f(x|θ)φ(θj , θ−j)dxdθ−j − Pf,RS,0

=
∫

V−Θj

IF (v)ω(θj , v−θj
)dv−θj

− Pf,RS,0

= EV−Θj
[IF (v|θj , v−θj

)] − Pf,RS,0,

(5.20)

Pf,RS,jk (θj , θk) =
∫

Θ−jk

Pf (θ)φ(θj , θk, θ−jk)dθ−jk − Pf,RS,j (θj) − Pf,RS,k (θk) − Pf,RS,0

=
∫

Θ−jk

∫
X

IF (v)f(x|θ)φ(θj , θk, θ−jk)dxdθ−jk − Pf,RS,j (θj) − Pf,RS,k (θk) − Pf,RS,0

=
∫

V−Θjk

IF (v)ω(θj , θk, v−(θj ,θk))dv−(θj ,θk) − Pf,RS,j (θj) − Pf,RS,k (θk) − Pf,RS,0

= EV−Θjk

[
IF (v|θj , θk, v−(θj ,θk))

]
− Pf,RS,j (θj) − Pf,RS,k (θk) − Pf,RS,0,

(5.21)

where θ−j denotes the epistemic uncertainty vector excluding θj , v−θj
denotes the augmented un-

certainty vector excluding θj , θ−jk denotes the epistemic uncertainty vector excluding θj and θk,

v−(θj ,θk) denotes the augmented uncertainty vector excluding θj and θk. Previous studies indicate

that the high-order terms in the expansion often are negligible for many realistic problems [6, 19],

and only the truncation up to the second order is considered in this work, but any higher-order

RS-HDMR component function can be similarly derived if necessary. Within the RS-HDMR frame-

work, one can notice that the main task now is to evaluate the low-order component functions for

approximating the FPF. By using Eq. (5.17), the RS-HDMR component functions are further con-

verted to the integrals with respect to the augmented uncertainty vector of decreasing dimensions.

This conversation is useful since the two-fold integrals are equivalently transformed to be one-fold

ones, which will reduce the computational complexity substantially. Besides, the computational ef-

ficiency for inferring these component functions is also improved if we apply the proposed ALPI by

making full use of the correlation information revealed in both aleatory and epistemic uncertainty

spaces.

For convenience, we can reformulate the second-order truncated RS-HDMR decomposition as:

Pf,RS(θ) ≈ (m − 1)(m − 2)
2 Pf,RS,0 − (m − 2)

m∑
j=1

Pf,RS,j(θj) +
m∑

j<k

Pf,RS,jk(θj , θk), (5.22)
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where Pf,RS,0 = Pf,RS,0 = EV [IF (v)], Pf,RS,j(θj) = EV−Θj
[IF (v|θj , v−θj

)] and Pf,RS,jk(θj , θk) =

EV−Θjk

[
IF (v|θj , θk, v−(θj ,θk))

]
. The constant component Pf,RS,0 or Pf,RS,0 is also referred to as

augmented failure probability since it integrates over the augmented uncertainty vector (see Eq.

(5.19)). This reformulation is useful since one can easily derive the upper bound variance of the

first-order and second-order component functions when implementing the ALAPI method (see Eqs.

(5.36)-(5.37)). In this setting, the main focus is to evaluate the component functions in Eq. (5.22),

and one should not be confused with the component functions defined in Eq. (5.18). Obviously, the

crude Monte Carlo simulation (MCS) can be directly used to estimate those RS-HDMR components

both in Eqs. (5.18) and (5.22). For example, the estimators for those components in Eq. (5.22) can

be given by:

P̂f,RS,0 = 1
N

N∑
s=1

IF (v(s)), (5.23)

P̂f,RS,j (θj) = 1
N

N∑
s=1

IF ((v|θj , θ−j)(s)), (5.24)

P̂f,RS,jk (θj , θk) = 1
N

N∑
s=1

IF ((v|θj , θk, θ−jk)(s)), (5.25)

where {v(s)}N
s=1, {(v|θj , θ−j)(s)}N

s=1 and {(v|θj , θk, θ−jk)(s)}N
s=1 given fixed θj and θk are three sets

of N simple random samples generated from w(v), w(v|θj , θ−j) and w(v|θj , θk, θ−jk), respectively.

It is easy to prove that the above estimators are all unbiased, so we simply omit the proofs. Their

variances can also be derived as:

VV
[
P̂f,RS,0

]
= 1

(N − 1)N

N∑
s=1

[
IF (v(s)) − P̂f,RS,0

]2
, (5.26)

VV−Θj

[
P̂f,RS,j (θj)

]
= 1

(N − 1)N

N∑
s=1

[
IF ((v|θj , θ−j)(s)) − P̂f,RS,j (θj)

]2
, (5.27)

VV−Θjk

[
P̂f,RS,jk (θj , θk)

]
= 1

(N − 1)N

N∑
s=1

[
IF ((v|θj , θk, θ−jk)(s)) − P̂f,RS,jk (θj , θk)

]2
. (5.28)

When the sample size is large, the central limit theorem indicates that the sampling distributions of

P̂f,RS,0, P̂f,RS,j (θj) and P̂f,RS,jk (θj , θk) approximately follow normal distributions. Therefore, their

confidence intervals (CIs) can be derived by using the t interval. For example, the (1 − α)100% CI
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of P̂f,RS,0 can be given by:

[
P̂f,RS,0 − tN−1(α/2)

√
VV

[
P̂f,RS,0

]
, P̂f,RS,0 + tN−1(α/2)

√
VV

[
P̂f,RS,0

]]
, (5.29)

where tN−1(α/2) denotes the (1−α/2)-th percentile of a Student’s t-distribution with N −1 degrees

of freedom. It should be noted that the proposed RS-HDMR based technique for estimating the

FPF is actually a double-loop procedure, which is termed as Imprecise Augmented Stochastic

Simulation (IASS) in this work. The computational efficiency of the IASS still depends on the

sample size N and the grid size of θ, and hence it can be merely used as a reference method

for verifying other newly-developed methods. For further reducing the computational burden, the

proposed ALPI method will be incorporated into the IASS framework in next subsection.

5.3.4 Numerical implementation procedure of ALAPI

By combining the ALPI with IASS, a novel method, namely ALAPI, is proposed to efficiently

estimate the FPF. The basic procedure for numerical implementation of the proposed method in-

cludes the following steps, which is also illustrated in Fig. 5.1.

Step 1: Generate a set of N simple random samples V = {v}N
s=1 according to the augmented

PDF w(v), which serves as a sample pool for training a GP model for the augmented g-function

g(v). For this purpose, the auxiliary PDF φ(θ) for θ should be specified in advance. In order to

enable those points within the intervals to have the same chance of being sampled, we assume a

uniform auxiliary PDF over its support for each θj in this work;

Step 2: Randomly select N0 (e.g., N0 = 12) samples among V and compute the corresponding

augmented g-function values. An initial training sample set is then constructed by the N0 input-

output pairs, which is denoted as T ;

Step 3: Train or update a GP model, denoted as ĝ(v), for the augmented g-function g(v)

based on T . The Gaussian Process Regression toolbox in Matlab is used, and the mean function

and covariance function are specified as the linear function and squared exponential kernel function

respectively in this study;

Step 4: Compute the upper bound of posterior COV of augmented failure probability based
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on the trained GP model such that:

κ =

∑N
s=1

√
Φ

(
−ET [ĝ(v(s))]√
VT [ĝ(v(s))]

)
Φ

(
ET [ĝ(v(s))]√
VT [ĝ(v(s))]

)
∑N

s=1 Φ

(
−ET [ĝ(v(s))]√
VT [ĝ(v(s))]

) . (5.30)

If the stopping condition κ < ε is satisfied, go to Step 5; otherwise, identify the point possessing

maximum UPVC value among the sample pool V by

v⋆ = arg max
v∈V

UPVC(v) = arg max
v∈V

Φ

−ET [ĝ(v(s))]√
VT [ĝ(v(s))]

Φ

 ET [ĝ(v(s))]√
VT [ĝ(v(s))]

 , (5.31)

evaluate the corresponding g-function value y⋆ = g(v⋆), add {v⋆, y⋆} to the training sample set T ,

and go to Step 3;

Step 5: Based on the well-trained GP model ĝ(v), perform the IASS method to obtain a

estimate P̂f (θ) for the FPF. As defined in Eq. (5.22), each component function of RS-HDMR can

also be inferred from the GP predictor. According to the ALPI method, the unbiased estimators

for RS-HDMR component functions can be given by:

P̂f,RS,0 = 1
N

N∑
s=1

Φ

−ET [ĝ(v(s))]√
VT [ĝ(v(s))]

 , (5.32)

P̂f,RS,j (θj) = 1
N

N∑
s=1

Φ

−ET [ĝ((v|θj)(s))]√
VT [ĝ((v|θj)(s))]

 , (5.33)

P̂f,RS,jk (θj , θk) = 1
N

N∑
s=1

Φ

−ET [ĝ((v|θj , θk)(s))]√
VT [ĝ((v|θj , θk)(s))]

 . (5.34)

The upper bound of posterior variances of the component functions, which reflects the upper bound

of the epistemic uncertainty due to the discretization error by using the ALAPI, can also be esti-

mated by:

VT
[
P̂f,RS,0

]
=

 1
N

N∑
s=1

√√√√√Φ

−ET [ĝ(v(s))]√
VT [ĝ(v(s))]

Φ

 ET [ĝ(v(s))]√
VT [ĝ(v(s))]




2

, (5.35)

163



CHAPTER 5. DISTRIBUTIONAL P-BOXES PROPAGATION BY BAYESIAN ACTIVE
LEARNING

VT
[
P̂f,RS,j (θj)

]
=

 1
N

N∑
s=1

√√√√√Φ

−ET [ĝ((v|θj)(s))]√
VT [ĝ((v|θj)(s))]

Φ

 ET [ĝ((v|θj)(s))]√
VT [ĝ((v|θj)(s))]




2

, (5.36)

VT
[
P̂f,RS,jk (θj , θk)

]
=

 1
N

N∑
s=1

√√√√√Φ

−ET [ĝ((v|θj , θk)(s))]√
VT [ĝ((v|θj , θk)(s))]

Φ

 ET [ĝ((v|θj , θk)(s))]√
VT [ĝ((v|θj , θk)(s))]




2

.

(5.37)

Note that this step does not require to evaluate on the original g-function, and then the com-

putational burden can be alleviated significantly, especially for an expensive-to-evaluate computer

simulator involved.

In the above steps, it should be emphasized that the user-specified threshold ε can affect the

accuracy of resultant GP model, as well as the efficiency of the active learning process. Besides,

there is a possibility that the stopping condition is satisfied even though the GP model is indeed

not accurate enough, e.g., at the early stage of training. To avoid this situation, one can simply use

a delay judgment strategy, which means that the active learning process is stopped only when the

stopping condition is satisfied for several times in succession (e.g., three). Besides, the estimators

in Eqs. (5.32)-(5.34) are only unbiased for the GP model, but biased for the real g-function.

The proposed ALAPI method has three main attractive features, making it very efficient for

estimating the FPF. First, by assuming an auxiliary PDF for the distribution parameter θ, the GP

model is built in the joint aleatory and epistemic uncertainty space (i.e., the augmented uncertainty

space). The spatial correlation information in the augmented uncertainty space is shown to be

quite useful for the active learning process. Second, the discretization error is regarded as a kind

of epistemic uncertainty via interpreting the failure probability integral from Bayesian inference,

which enables to derive the upper bounds of posterior variances of the ALAPI estimators. Third,

the proposed method is essentially a decoupled procedure through an elegant combination of the

ALPI and IASS, yielding a major improvement in computational efficiency.

5.4 Numerical examples

In this section, three numerical examples are studied to verify the proposed method. Among

the available state-of-the-art techniques for estimating the FPF, the active learning NISS developed
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Start

Define a sample pool V = {v}N
s=1 by:

generating a set of N simple random samples from the augmented PDF w(v)

Define an initial training sample set T by:
(1) randomly selecting N0 samples from V ;

and (2) computing the corresponding augmented g-function values

Train or update the GP model ĝ(v) for the augmented g-function based on T

Calculate the upper bound of posterior COV of augmented failure probability κ (by Eq. (5.30))

κ < ε ?
Identify the next best point v⋆ by Eq. (5.31),

compute the corresponding g-function value y⋆ = g(v⋆),
and add {v⋆, y⋆} to the training sample set T

Based on the well-trained GP model ĝ(v),
estimate the RS-HDMR component functions by Eqs. (5.32)-(5.34)

Synthesize P̂f,RS(θ) by Eq. (5.22)

Stop

No

Yes

Figure 5.1: Flowchart of the proposed ALAPI method.
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in [19] could be a potential competitor to the proposed method. Therefore, we mainly compare our

method with this method by using the first numerical example. For notational clarity, we will denote

this method simply as "NISS" below. One can refer to Appendix 5.7 for more detailed description

of the NISS method used. In the third example, the ASS [17] is also implemented to evaluate the

augmented failure probability (or constant RS-HDMR component). Besides, the developed IASS

method is mainly adopted to provide reference results in all three numerical examples.

5.4.1 Example 1: a series system with four branches

The first example considers a series system with four branches, which has been extensively

investigated in the context of precise probabilities [39, 44]. The performance function is given by:

y = g (x1, x2) = min



3 + (x1−x2)2

10 − (x1+x2)√
2

3 + (x1−x2)2

10 + (x1+x2)√
2

(x1 − x2) + b√
2

(x2 − x1) + b√
2

, (5.38)

where b is a constant, specified as 4; The random variables x1 and x2 are normally distributed,

denoted as N
(
µ1, σ2

1
)

and N
(
µ2, σ2

2
)

respectively. Due to the epistemic uncertainty, the distribution

parameters (i.e., θ = [µ1, σ1, µ2, σ2]) are not deterministic, but uncertain. In this example, two cases

by varying bounds of the distribution parameters are considered, as given in Tab. 5.1.

Table 5.1: Distribution parameters for Example 1.

Case µ1 σ1 µ2 σ2
I [−0.5, 0.5] [0.8, 1.2] [−0.5, 0.5] [0.8, 1.2]
II [−0.8, 0.8] [0.5, 1.5] [−0.8, 0.8] [0.5, 1.5]

In the following, three methods, i.e., the proposed ALAPI, NISS and IASS, are employed to

estimate the FPF. For both cases, the sample pool is constructed by 105 simple random samples for

ALAPI and NISS, while the sample size for IASS is set to be 106. Besides, the threshold regarding

the stopping condition is specified as ε = 0.02 for ALAPI.
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5.4.1.1 Case I

For illustrating the active learning process of ALAPI, the upper bound of posterior COV of

the augmented failure probability P̂f,RS,0 (denoted as κ) against the number of adaptively added

samples is plotted in Fig. 5.2(a). It can be seen that as more samples are sequentially added into

the initial training data set, the general trend of κ tends to decrease. Until the initial training

sample set is enriched by a total number of 81 samples, the stopping condition of the active learning

procedure is satisfied. Thus, this implies that only 93 performance function evaluations are required

by the proposed ALAPI method, which are much less than the NISS method, say 164. The constant

RS-HDMR calculated by the three methods are listed in the second to fourth rows of Tab. 5.2. As

seen, the estimate given by IASS has a relatively small COV, and hence we are highly confident

that this reference result should be very close to the true value. Compared to the reference result,

both ALAPI and NISS are capable of yielding very desirable estimates for the constant-HDMR

component in this case. Note that the accuracy of the proposed method can also be revealed by the

upper bound of posterior COV of P̂f,RS,0 itself, given that the sampling variability for estimating

COVT [P̂f,RS,0] is negligible. On the contrary, the COV (i.e., COV[P̂f,RS,0]) provided by the NISS

method only accounts for the sampling variability. From Fig. 5.3(a), one can also conclude that all

the three methods are able to produce very accurate estimates for the four first-order RS-HDMR

component functions. For limited space, only one second-order RS-HDMR component function

computed by ALAPI and IASS is depicted in Fig. 5.4(a). Remarkably, it is shown that the

estimate by the proposed method accords well with that by the IASS, with the upper bound of

posterior COV and COV being small.

In short, the proposed ALAPI method can offer comparable results against the NISS method,

but requires less g-function evaluations in such a case with smaller epistemic uncertainty presented

in the distribution parameters compared with case II.

5.4.1.2 Case II

In this case, the intervals for those distribution parameters are enlarged a little bit compared

to case I, as shown in Tab. 5.1. The active learning process of the proposed ALAPI method is

illustrated by the upper bound of posterior COV of the augmented failure probability against the

number of adaptively added samples, as depicted in Fig. 5.2(b). It is shown that the active learning
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process is convergent after the initial training sample set is enriched with 123 samples. That is, the

proposed ALAPI only requires 135 g-function evaluations. As a comparison, 352 g-function calls

are needed by the NISS method, which is about 2.6 times more than the proposed method. The

constant RS-HDMR component computed by the three methods is listed in the fifth to seventh rows

of Tab. 5.2. The estimate from IASS method can be taken as the "exact" value because its COV

is extremely small. Clearly, the proposed method can produce a more close estimate to the "exact"

value than the NISS method in this case. For the first-order RS-HDMR component functions shown

in Fig. 5.3(b), it can also be observed that the estimates P̂RS,2(σ1) and P̂RS,4(σ2) from the NISS

method have larger errors than those by the proposed ALAPI method, by taking the results by

IASS as reference. As shown in Fig. 5.4(b), the proposed method can still offer a very accurate

estimate of P̂f,RS,13 (µ1, µ2) with a small upper bound of posterior COV.

To sum up, the proposed method still requires far less g-function calls than the NISS method,

but the accuracy of the NISS method becomes worse as the intervals of the distribution parameters

are enlarged in this case. Such phenomenon is consistent with what is reported in Ref. [27].
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Figure 5.2: Upper bound of the posterior COV of P̂f,RS,0 against the number of adaptively added
samples for Example 1.
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Table 5.2: Constant RS-HDMR component by different methods for Example 1.

Case Method P̂f,RS,0 COVT [P̂f,RS,0] or COV[P̂f,RS,0]

I
ALAPI 0.0594 0.0172
NISS 0.0589 0.0126
IASS 0.0593 0.0040

II
ALAPI 0.0860 0.0186
NISS 0.0855 0.0103
IASS 0.0861 0.0033

5.4.2 Example 2: a nonlinear oscillator

An undamped single-degree-of-freedom oscillator with nonlinear restoring force subject to rect-

angular pulse load [45] is adapted for the case of imprecise probability, which is shown in Fig. 5.5.

The corresponding limit state function reads:

y = g (m, c1, c2, r, F1, t1) = 3r −
∣∣∣∣∣ 2F1
m(c1 + c2) sin

(
t1
2

√
c1 + c2

m

)∣∣∣∣∣ , (5.39)

As listed in Tab. 5.3, six random variables are included in this example. Due to different levels

of knowledge, the mean values are assumed to be deterministic, but the standard deviations are

characterized by interval models.

Table 5.3: Statistical information of the random variables for Example 2.

Variable Description Distribution Mean Standard deviation
m Mass Normal 1.0 σ1 ∈ [0.02, 0.08]
c1 Stiffness of the first spring Normal 1.0 σ2 ∈ [0.05, 0.15]
c2 Stiffness of the second spring Normal 0.1 σ3 ∈ [0.005, 0.015]
r Yield displacement Normal 0.5 σ4 ∈ [0.02, 0.08]

F1 Load amplitude Lognormal 1.0 σ5 ∈ [0.10, 0.30]
t1 Load duration Normal 1.0 σ6 ∈ [0.15, 0.25]

For the ALAPI method, the sample pool is constructed with a set of 106 samples, and the

threshold ε for the stopping condition is set to be 0.01. A number of 106 samples are used for IASS

method. As shown in Fig. 5.6, the stopping condition indicates that the GP model is well-trained

after a total number of 29 samples are adaptively added into the initial training data set. Therefore,

the ALAPI method only requires 41 performance function evaluations in this example, even though

the stopping criteria is somehow strict. Tab. 5.4 lists the constant RS-HDMR component estimated

by ALAPI and IASS, where it is found that the results of both methods are in good agreement
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with each other, and process a quite small upper bound of posterior COV or COV. Thus, we can

conclude that both methods offer fairly good estimates for P̂f,RS,0. As shown in Figs. 5.7 and 5.8,

the first- and second-order RS-HDMR components are also computed with high accuracy by ALAPI

and IASS. Note that the higher-order component functions can also be computed on the basis of

the trained GP model if necessary.

Table 5.4: Constant RS-HDMR component by ALAPI and IASS for Example 2.

Method P̂f,RS,0 COVT [P̂f,RS,0] or COV[P̂f,RS,0]
ALAPI 0.0356 0.0100
IASS 0.0359 0.0052

5.4.3 Example 3: a 120-bar space truss structure

As shown in Fig. 5.9, the third example consists of a 120-bar space truss structure, which

has been extensively used as a benchmark in the context of design optimization of structures. In

this case study, we would like to estimate the failure probability function when the structure is

subjected to some uncertainties characterized by probability boxes, i.e., the Young’s modulus of the

material E, cross-sectional area A and applied load P . The detailed description of these variables

is summarized in Tab. 5.5. The limit state function is defined as:

y = g(E, A, P ) = ∆ − V (E, A, P ), (5.40)

where ∆ is a threshold, specified as 55 mm; V (E, A, P ) is the vertical displacement of the top node,

which is solved by a finite-element software, OpenSees.

The proposed ALAPI method is implemented to obtain the failure probability function P̂f (θ).

The number of samples used to construct the sample pool and the threshold of the stopping criterion

are set as 105 and 0.01, respectively. From Fig. 5.10, it can be found that the stopping criterion is

reached after a total of 21 samples are added in the initial training data set. Therefore, the proposed

method only needs 33 limit state function evaluations to train a GP model. From the GP model,

the RS-HDMR component functions of the FPF can be inferred. For the constant RS-HDMR

component, the proposed method is compared to the ASS and IASS. As summarized in Tab. 5.6,

the proposed method is computationally much more saving compared to the other two methods in

terms of the number of calls to the limit state function, but can still yield fairly good estimate.
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Fig. 5.11 shows the six first-order RS-HDMR component functions and their corresponding upper

bound COVs. For limiting the length of our paper, only one second-order RS-HDMR component

functions is given, as depicted in Fig. 5.12. From these RS-HDMR component functions, one can

perform sensitivity analysis to determine the contribution of each single variable or variable pairs.

These information is extremely useful for directing the future information collection so as to further

reduce the epistemic uncertainty of the failure probability.

Table 5.5: Statistical information of the random variables for Example 3.

Variable Distribution Mean Standard deviation
E/Mpa Normal µE ∈ [2.10 × 105, 2.20 × 105] σE ∈ [2.10 × 104, 2.20 × 104]
A/mm Normal µA ∈ [1000, 1100] σA ∈ [100, 110]
P/kN Lognormal µP ∈ [500, 600] σP ∈ [50, 60]

Table 5.6: Constant RS-HDMR component by ALAPI, ASS and IASS for Example 3.

Method P̂f,RS,0 COVT [P̂f,RS,0] or COV[P̂f,RS,0] N

ALAPI 0.0782 0.0004 33
ASS 0.0803 0.0938 3800
IASS 0.0754 0.0111 105
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Figure 5.3: Four first-order RS-HDMR component functions for Example 1.
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Figure 5.4: A second-order RS-HDMR component function for Example 1.
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Figure 5.5: An undamped SDOF oscillator with nonlinear restoring force subject to pulse load for
Example 2.
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Figure 5.6: Upper bound of the posterior COV of P̂f,RS,0 against the number of adaptively added
samples for Example 2.

174



CHAPTER 5. DISTRIBUTIONAL P-BOXES PROPAGATION BY BAYESIAN ACTIVE
LEARNING

0.02 0.06

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.05 0.1 0.15

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.01

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.02 0.06

0.025

0.03

0.035

0.04

0.045

0.05

0.055

0.1 0.2 0.3

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.15 0.2 0.25

0.025

0.03

0.035

0.04

0.045

0.02 0.06

4

6

8

10

12
10

-3

0.05 0.1 0.15

4

6

8

10

12
10

-3

0.01

5

6

7

8

9

10

11
10

-3

0.02 0.06

4

6

8

10

12
10

-3

0.1 0.2 0.3

0

0.005

0.01

0.015

0.02

0.15 0.2 0.25

4

6

8

10

12
10

-3

Figure 5.7: Six first-order RS-HDMR component functions for Example 2.
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Figure 5.8: Two second-order RS-HDMR component functions for Example 2.
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Figure 5.9: A 120-bar space truss structure.
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Figure 5.10: Upper bound of the posterior COV of P̂f,RS,0 against the number of adaptively added
samples for Example 3.
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Figure 5.11: Six first-order RS-HDMR component functions for Example 3.
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Figure 5.12: One second-order RS-HDMR component function for Example 3.
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5.5 Conclusions

The main contribution of this work is to present a novel non-intrusive method, termed as

Active Learning Augmented Probabilistic Integration (ALAPI), for efficiently estimating the failure

probability function in the presence of imprecise probability models. Specifically, the probability-box

models are taken as an example for characterizing aleatory uncertainty and epistemic uncertainty

by a hierarchical structure. However, all the developments can be conveniently extended to the

case with other imprecise probability models. For our purposes, an active learning probabilistic

integration (ALPI) method is firstly presented by interpreting the failure probability integral with

Bayesian inference, rather than a frequentist view. Further, a imprecise augmented stochastic

simulation (IASS) method is proposed based on the ideas of RS-HDMR and augmented uncertainty

space. Finally, the ALAPI is formed by a elegant combination of ALPI and IASS. The main feature

of ALAPI is that the epistemic uncertainty resulted from discretization error is properly quantified

and propagated from the computational pipelines, allowing properly qualifying the accuracy of

RS-HDMR component functions of the FPF.

Three numerical examples are investigated to exemplify and validate the proposed method. It is

shown that the proposed method can produce very accurate estimates of the RS-HDMR components

up to a second order with a small number of g-function calls when the failure probability is relatively

larger (typically, with P̂f,RS,0 > 10−3). Besides, as revealed by Example 1 the proposed method

could be not very sensitive to the level of epistemic uncertainty, which is in contrast to the NISS

method. To make the paper concise, only the component functions are presented in the examples,

but one can also easily compute the failure probability bounds or sensitivity indices based on the

proposed method if interested [6, 19].

While the findings are encouraging, the proposed method is still suffered from some limitations,

e.g., small failure probabilities and high dimensions (in terms of the augmented uncertainty vector).

These problems will be addressed in the future work.
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Appendix A: Active learning non-intrusive imprecise stochastic sim-

ulation

According to [19], the active learning procedure can be injected into the general NISS frame-

work so as to further reduce the computational burden. Depending on the HDMR used, two kinds

of active learning NISS methods, i.e., AK-LEMCS-cut-HDMR and AK-GEMCS-RS-HDMR, have

been developed. In the present study, we only compare AK-GEMCS-RS-HDMR with the proposed

method, and hence only this method is revisited. Since the RS-HDMR component functions that

need to be estimated in the proposed method are somewhat different from those in [19], the original

AK-GEMCS-RS-HDMR should be slightly modified for our purposes, and the revised procedures

are briefly given as follows.

Step I.1: Generate a set of N simple random samples V = {X, S} = {x(s), θ(i)}N
i=1 from the

augmented PDF w(v), which serves as a sample pool for training a GP model for the g-function

g(x).

Step I.2: Randomly select N0 (e.g., N0 = 12) samples from X, and compute the corresponding

g-function values. Attribute these N0 samples to the training sample set Q.

Step I.3: Train or update the GP model, denoted as ĝ(x), for the g-function g(x) based on

Q.

Step I.4: Compute the GP predictions EQ[ĝ(x)] and VQ[ĝ(x)] based on the trained GP model

ĝ(x) for all the samples in X, and judge whether the stopping condition is satisfied with the principle

that minN
i=1 U(x(i)) ≥ 2, where U(x) = |EQ[ĝ(x)]|√

VQ[ĝ(x)]
. If the inequality is satisfied, go to Step I.4;

otherwise, find the sample x⋆ with the smallest U value among X, compute the corresponding
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g-function value y⋆ = g(x⋆), add {x⋆, y⋆} to the training sample set Q, and go to Step I.3;

Step I.4: Based on the well-trained GP model ĝ(x), obtain a estimate P̂f (θ) for the FPF. The

estimators for the RS-HDMR component functions defined in Eq. (5.22) are given by:

P̂f,RS,0 = 1
N

N∑
i=1

ÎF (x(i)), (5.41)

P̂f,RS,j (θj) = 1
N

N∑
i=1

ÎF (x(i))
f(x(i)|θj , θ

(i)
−j)

f(x(i)|θ(i))
, (5.42)

P̂f,RS,jk (θj , θk) = 1
N

N∑
i=1

ÎF (x(i))
f(x(i)|θj , θk, θ

(i)
−jk)

f(x(i)|θ(i))
. (5.43)

The sampling variability contained in the above estimators can be measured by the following vari-

ances:

V
[
P̂f,RS,0

]
= 1

(N − 1)N

N∑
i=1

[
IF (x(i)) − P̂f,RS,0

]2
, (5.44)

V
[
P̂f,RS,j (θj)

]
= 1

(N − 1)N

N∑
i=1

ÎF (x(i))
f(x(i)|θj , θ

(i)
−j)

f(x(i)|θ(i))
− P̂f,RS,j (θj)

2

, (5.45)

V
[
P̂f,RS,jk (θj , θk)

]
= 1

(N − 1)N

N∑
i=1

ÎF (x(i))
f(x(i)|θj , θk, θ

(i)
−jk)

f(x(i)|θ(i))
− P̂f,RS,jk (θj , θk)

2

. (5.46)
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Abstract: Various numerical methods have been extensively studied and used for reliabil-

ity analysis over the past several decades. However, how to understand the effect of numerical

uncertainty (i.e., numerical errors due to the discretization of the performance function) on the

failure probability is still a challenging issue. The active learning probabilistic integration (ALPI)

method offers a principled approach to quantify, propagate and reduce the numerical uncertainty

via computation within a Bayesian framework, which has not been fully investigated in context of

probabilistic reliability analysis. In this study, a novel method termed ‘Parallel Adaptive Bayesian

Quadrature’ (PABQ) is proposed on the theoretical basis of ALPI, and is aimed at broadening its

scope of application. First, the Monte Carlo method used in ALPI is replaced with an importance

ball sampling technique so as to reduce the sample size that is needed for rare failure event estima-

tion. Second, a multi-point selection criterion is proposed to enable parallel distributed processing.

Four numerical examples are studied to demonstrate the effectiveness and efficiency of the proposed

method. It is shown that PABQ can effectively assess small failure probabilities (e.g., as low as

10−7) with a minimum number of iterations by taking advantage of parallel computing.

*Corresponding Author
E-mail address: chao.dang@irz.uni-hannover.de (C. Dang)
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6.1 Introduction

In many fields, reliability analysis has manifested itself as an essential tool to study the per-

formance of a physical or an engineering system in the presence of uncertainties. A fundamental

task in reliability analysis is to compute the probability of a predefined failure event, which is re-

ferred as failure probability. Let X = [X1, X2, · · · , Xd] ∈ X ⊆ Rd denote a vector of d random

variables with known joint probability density function (PDF) fX(x). The performance function

(also known as limit state function) is given as y = g(x) : X 7→ Y, by which the failure event

F = {x ∈ X : g(x) ≤ 0} is defined. The associated failure probability Pf is defined by the following

multi-dimensional integral:

Pf =
∫

X
I(x)fX(x)dx, (6.1)

where I(x) is the failure indicator function, which is defined as:

I(x) =

 1, if g(x) ≤ 0

0, otherwise
. (6.2)

To assess the failure probability defined in Eq. (6.1), a variety of numerical methods have been

extensively studied and applied by researchers and engineers over the past several decades. In

general, the existing methods can be roughly classified into five categories:

1. Stochastic simulation methods, e.g., Monte Carlo simulation (MCS) and its variants (e.g.,

Subset Simulation (SS) [1] and Importance Sampling (IS) [2, 3]). Despite of their relative

robustness to the dimension and complexity of the problem at hand, most of the stochastic

simulation methods involve a considerable number of deterministic simulations, and hence are

still very computationally demanding, especially for an expensive computational model with

a small failure probability;

2. Asymptotic approximation methods, such as first-order reliability method (FORM) [4, 5] and

second-order reliability method (SORM) [6, 7]. This kind of methods relies on the first- or

second-order Taylor expansion of the limit state surface at the most probable point (MPP).
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Hence, its application is challenging whenever one must deal with multiple MPPs and highly

nonlinear problems. Besides, FORM and SORM only yield approximate results in general

cases, and provide no measure of the error introduced by the expansion;

3. Moment methods, for instance, integer moment based methods [8–10], fractional moment

based methods [11–13], moment-generating function (or Laplace transform) based methods

[14–16]. The basic idea of these methods is to fit a proper probability distribution to the

output variable of a performance function based on the knowledge of its estimated moments

of certain type, which, however, typically leads to an ill-posed inverse problem (i.e., the so-

called classical moment problem). Moreover, the estimation errors arising from both the

estimated moments and assumed probability distribution model could be intractable to assess

and handle;

4. Probability-conservation based methods, including, e.g., probability density evolution method

[17–20] and direct probability integral method [21–24]. These methods are established on

rigorous theoretical fundamentals, but may still suffer from numerical difficulty especially for

problems with high-dimensional inputs and/or rare failure events;

5. Surrogate assisted methods. This type of methods is of special interest in the present paper

since the proposed method also falls in this category in some sense.

Surrogate assisted methods aim at constructing an inexpensive-to-evaluate surrogate model

in place of the original expensive-to-evaluate performance function based on a limited number of

its observations. Then, for example, stochastic simulation methods can be directly applied in

conjunction with the surrogate model to produce a failure probability estimate. Typical surrogate

models for reliability analysis include response surface methods [25–27], support vector machines

[28–30], polynomial chaos expansions [31, 32], Gaussian process regression (GPR, also known as

Kriging) [33–35], etc. In addition to developing new surrogate models, there has been growing

attention paid to adaptive (optimal) design of experiments for training these surrogates. In this line,

the GPR model is of particular interest for constructing an adaptive meta-model due to its attractive

features, especially for active learning sampling strategies. Representative learning functions consist

of the expected feasibility [36], U [37], expected risk [38], H [39], least improvement [40], reliability-

based expected improvement [41], folded normal based expected improvement [42], upper-bound
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posterior variance contribution (UPVC) [43] and so forth. Besides, the following three aspects have

also been paid special attention to in recent publications:

1. assessing small failure probabilities. In addition to MCS, other stochastic simulation methods

requiring less samples are combined with active learning Kriging (AK) to evaluate small failure

probabilities.

Representative works include, e.g., AK-IS [44], meta-IS [34], AK-SS [45] and AK-MCMC

(Markov chain Monte Carlo) [46], etc;

2. addressing high-dimensional problems. This aspect is mainly tackled by using some dimension-

reduction techniques, e.g., active subspace methods [47, 48], principal component analysis

[49–51], sufficient dimension reduction [52] and sliced inverse regression [53], etc;

3. enabling parallel computing. Most existing learning functions can only identify one point at

each iteration, hindering the use of ever-increasing parallel-computing facilities. To overcome

this obstacle, tailored strategies have been proposed, which are mainly based on applying clus-

tering algorithms, such as k-means clustering [34], density clustering [54], spectral clustering

[55] and k-medoids clustering [56].

The interested reader can refer to [57] for a comprehensive review. Despite great efforts, most

existing Kriging assisted methods still possess respective limitations, and leave room for further

improvement in terms of applicability, efficiency and accuracy.

In fact, Gaussian process model can be used in a different way, instead of a pure surrogate model.

The first author and his co-workers proposed an active learning probabilistic integration (ALPI)

method in a recent paper [43]. In this method, a Bayesian perspective is advocated to reinterpret

failure probability integral estimation. By placing a prior distribution (i.e., Gaussian process) over

the performance function, we finally arrive at a posterior distribution over the failure probability

conditional on some observations of the performance function. The induced posterior distribution

of the failure probability reflects the fact that the performance function has been discretised, and

hence numerical uncertainty arises due to discretization error. A novel feature of ALPI is that the

numerical uncertainty can be properly quantified, propagated and reduced via computation, which

distinguishes it from other existing methods. Unfortunately, the idea is only investigated in the

context of imprecise probabilities, and lacks of comprehensive studies for probabilistic reliability
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analysis.

In this paper, the ALPI method is specially studied under the framework of precise probabil-

ities. The basic idea is explained in a detailed way, and some limitations existing in the previous

numerical algorithm are identified. Most importantly, we propose a new method called ‘Parallel

Adaptive Bayesian Quadrature’ (PABQ) on the theoretical basis of the original ALPI method, while

alleviating its main limitations. Compared to ALPI, PABQ has two significant advantages. First,

PABQ can select multiple points at each iteration, and as such supports parallel distributed pro-

cessing. Second, PABQ can assess very small failure probabilities without generating a prohibitively

large number of candidate samples. Additionally, the Matlab code of the developed method is freely

available to the public 1.

The outline of the remaining paper is as follows. The original ALPI method is revisited in Sec-

tion 6.2 and the theoretical foundations are deepened. Section 6.3 gives the newly developed PABQ

method. Four numerical examples are investigated in Section 6.4 to illustrate the performance of

the PABQ method. Section 6.5 gives some concluding remarks of the present study.

6.2 Active learning probabilistic integration

This section gives a review of the ALPI method. In comparison to [43], we will explain the

basic idea of ALPI in a more detailed and rigorous way, and provide its numerical algorithm that

was omitted in [43]. Besides, the advantages and disadvantages of the method will be discussed.

6.2.1 Theoretical background

The ALPI method offers a Bayesian approach to approximating the intractable failure prob-

ability integral, which is defined in Eq. (6.1). The method is strongly motivated by Bayesian

(probabilistic) integration (also well known as Bayesian quadrature or cubature) [58–60]. To be

specific, the ALPI method turns the task of failure probability estimation into a Bayesian inference

problem from limited data, as opposed to classical frequentist inference. To do so, we think of the

g-function as being random. This is understandable in the Bayesian sense that the numerical value

of g(x) is always unknown until we actually evaluate g(·) at some point x, though the g-function

is said to be deterministic. Such interpretation is justified since we can not afford to compute g(·)
1https://github.com/Chao-Dang/Rare-Event-Estimation-by-Parallel-Adaptive-Bayesian-Quadrature
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at every possible location. In this regard, epistemic uncertainty due to discretisation error arises

where the g-function is not evaluated. This kind of uncertainty will propagate into the failure in-

dicator function I(x) and will therefore affect the failure probability estimate. Consequently, the

epistemic uncertainty should be properly treated within our computational framework, because it

is not always negligible, especially when the available observations are scarce. Following a standard

Bayesian approach, the ALPI method is intended to quantify, propagate and reduce the epistemic

uncertainty. Specifically, ALPI first assigns a prior distribution over the g-function. Then, condi-

tioning on some observations D = {X ,Y } (X =
{

x(i)
}n

i=1
with x(i) being the i-th row of X and

Y =
{

y(i)
}n

i=1
with y(i) = g(x(i)) being the i-th row of Y ), gives arise to a posterior distribution of

g according to Bayes’ rule. This will in turn imply a posterior distribution over I(x), and so does

over Pf . Technical details of ALPI will be discussed below.

ALPI starts by placing a Gaussian process (GP) prior over the g-function, which is written as:

ĝ0 ∼ GP(mĝ0(x), kĝ0(x, x′)), (6.3)

where ĝ0 denotes the prior distribution of g before seeing any observations; mĝ0(x) and kĝ0(x, x′)

are the prior mean and covariance functions respectively, by which the GP model can be completely

characterized. Among many options for mĝ0(x) and kĝ0(x, x′) in the literature, without loss of

generality the constant prior mean is adopted (i.e., mĝ0(x) = β), and the prior covariance function

takes the squared exponential kernel:

kĝ0(x, x′) = σ2 exp
(

−1
2
(
x − x′)Σ−1 (x − x′)⊤) , (6.4)

where σ2 with σ > 0 denotes the process variance; Σ = diag(l21, l22, · · · , l2d) with li > 0 being the

length scale in the i-th dimension, and diag(·) forms a diagonal matrix whose diagonal elements

are its arguments. The d + 2 parameters collected in ϑ = {β, σ, l1, l2, · · · , ld} are referred to hyper-

parameters to be determined. In a fully Bayesian fashion, those hyper-parameters should also be

specified by Bayesian inference (see, e.g., [61]). However, this will render the posterior distribution

of g analytically intractable. For this reason, it was not explored in ALPI.

Alternatively, given the data D, the hyper-parameters are fitted by minimizing the negative
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log marginal likelihood (NLML) L(ϑ):

ϑ̂ = arg min
ϑ

L(ϑ), (6.5)

with the NLML L(ϑ) being:

L(ϑ) = − log [p(Y |X , ϑ)] = 1
2(Y − β)⊤K−1

ĝ0
(Y − β) + 1

2 log [|Kĝ0 |] + n

2 log[2π], (6.6)

where p(Y |X , ϑ) is the marginal likelihood following a normal distribution; Kĝ0 is the covariance

matrix with (i, j)-th entry [Kĝ0 ]i,j = kĝ0(x(i), x(j)).

Once the point estimate hyper-parameters ϑ̂ are obtained, it turns out that the posterior

distribution of g can be derived in closed form, i.e., another GP:

ĝn ∼ GP(mĝn(x), kĝn(x, x′)), (6.7)

where ĝn denotes the posterior distribution of g conditional on D; mĝn(x) and kĝn(x, x′) are the

posterior mean and covariance functions respectively, which are analytically available:

mĝn(x) = mĝ0(x) + kĝ0(x,X )⊤K−1
ĝ0

(Y − mĝ0(X )) , (6.8)

kĝn

(
x, x′) = kĝ0

(
x, x′)− kĝ0(x,X )⊤K−1

ĝ0
kĝ0(x′,X ), (6.9)

where mĝ0(X ) is an n × 1 mean vector with i-th element being mĝ0(x(i)); kĝ0(x,X ) is an n × 1

covariance vector with i-th entry being kĝ0

(
x, x(i)

)
; kĝ0(x′,X ) is defined in a way similar to

kĝ0(x,X ). Note that in Eqs. (6.8) and (6.9) ϑ should be updated with ϑ̂.

It can be deduced that the posterior distribution of failure indicator function I follows a gen-

eralized Bernoulli process 2 (GBP):

În ∼ GBP(mÎn
(x), kÎn

(
x, x′)), (6.10)

where În denotes the posterior distribution of I conditional on D; mÎn
(x) and kÎn

(x, x′) are the

posterior mean and covariance functions respectively. The posterior mean of I can be derived in
2‘generalized’ indicates that the Bernoulli process considered here is location-dependent, in contrast to not consid-

ering the dependence in conventional definition of a Bernoulli process.
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closed form [43]:

mÎn
(x) = Φ

(
−mĝn(x)

σĝn (x)

)
, (6.11)

where Φ is the cumulative distribution function of the standard normal distribution; σĝn (x) is

the posterior standard derivation (STD) function of g, i.e., σĝn (x) =
√

kĝn (x, x). The posterior

covariance function of I, however, is not analytically tractable. Only closed-form expression for its

posterior variance function σ2
În

(x) is available [43]:

σ2
În

(x) = Φ

(
−mĝn(x)

σĝn (x)

)
Φ

(
mĝn(x)
σĝn (x)

)
. (6.12)

The posterior distribution P̂f,n of failure probability Pf conditional on the data D should thus

follow a random variable, which reflects our epistemic uncertainty about Pf , due to the limited

number of observations. Note that the exact posterior distribution of Pf , however, is not known.

Instead, the posterior mean and variance of Pf should be more of interest, where the posterior mean

corresponds to the failure probability predictor and the posterior variance measures the prediction

uncertainty. By applying Fubini’s theorem, the posterior mean and variance of Pf can be derived

as [43]:
mP̂f,n

= EÎn

[
P̂f,n

]
= EÎn

[∫
X

În(x)fX(x)dx

]
=
∫

X
EÎn

[
În(x)

]
fX(x)dx

=
∫

X
mÎn

(x)fX(x)dx

=
∫

X
Φ

(
−mĝn(x)

σĝn (x)

)
fX(x)dx,

(6.13)
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σ2
P̂f,n

= VÎn

[
P̂f,n

]
= EÎn

[(
P̂f,n − EÎn

[
P̂f,n

])2
]

= EÎn

[(∫
X

În(x)fX(x)dx −
∫

X
EÎn

[
În(x)

]
fX(x)dx

)2
]

= EÎn

[(∫
X

(
În(x) − EÎn

[
În(x)

])
fX(x)dx

)2
]

= EÎn

[(∫
X

(
În(x) − EÎn

[
În(x)

])
fX(x)dx

)
×
(∫

X

(
În(x′) − EÎn

[
În(x′)

])
fX(x′)dx′

)]
= EÎn

[∫
X

∫
X

(
În(x) − EÎn

[
În(x)

]) (
În(x′) − EÎn

[
În(x′)

])
fX(x)fX(x′)dxdx′

]
=
∫

X

∫
X
EÎn

[(
În(x) − EÎn

[
În(x)

]) (
În(x′) − EÎn

[
În(x′)

])]
fX(x)fX(x′)dxdx′

=
∫

X

∫
X

kÎn

(
x, x′) fX(x)fX(x′)dxdx′,

(6.14)

where EÎn
[·] and VÎn

[·] denote expectation and variance operators taken over În respectively. For

computational purposes, Eq. (6.14) is further simplified by considering its upper bound. According

to the Cauchy- Schwarz inequality (kÎn
(x, x′) ≤ σÎn

(x) σÎn
(x′)), an upper-bound of the posterior

variance (UPV) σ2
P̂f,n

is given as [43]:

σ2
P̂f,n

≤ σ2
P̂f,n

=

∫
X

√√√√Φ

(
−mĝn(x)

σĝn (x)

)
Φ

(
mĝn(x)
σĝn (x)

)
fX(x)dx

2

, (6.15)

where the equality holds when the correlation of În between any two locations (x, x′) is always

equal to 1, and σ2
P̂f,n

denotes the upper-bound of the posterior variance.

At the theoretical level, ALPI provides two important benefits. First, it offers a principled

approach to the quantification and propagation of numerical uncertainty via computation within

the Bayesian framework. Second, it gives the possibility to reduce the numerical uncertainty by

using an active learning strategy (see next subsection).

6.2.2 Numerical algorithm

For practical reliability analysis, the failure probability estimate should be inferred using as

few observations as possible, with the premise of limiting its numerical uncertainty within a pre-

specified tolerance. Besides, as the posterior mean and UPV of failure probability (Eqs. (6.13)
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and (6.15)) lack of closed-form solutions, a numerical integrator is necessary to make the method

practically feasible. The numerical algorithm of the ALPI method for failure probability estimation

is summarized in 6.5.

When it comes to numerical implementation, ALPI shows two main limitations. First, it is not

applicable to problems with extremely small failure probabilities (typically, less than 10−4) as a large

number of Monte Carlo (MC) samples (typically, more than 106) are required, making each iteration

computationally cumbersome and even infeasible. Second, it is not suitable for parallel computing

since only one point is identified at each iteration, resulting in a waste of useful information and

computational resources for engineering applications.

6.3 Parallel adaptive Bayesian quadrature

The major limitations of ALPI at implementation level will be addressed in this section. Fur-

ther, a novel method, called ‘Parallel Adaptive Bayesian Quadrature’ (PABQ), is presented on the

theoretical basis of ALPI. As its name indicates, the proposed PABQ method can support parallel

distributed processing. Most importantly, PABQ is able to estimate very small failure probabilities

(e.g., 10−7).

6.3.1 General remarks

As we did not imply any distribution types for X when making Bayesian inference about the

failure probability in the last section, it means that the ALPI framework is naturally applicable

in the standard normal space. In view of this, let us transform g(x) from the physical space X

to the standard normal space U , i.e., g(x) = g(T −1(u)) = G(u), where u is a realization of the

standard normal vector U = [U1, U2, · · · , Ud] ∈ U ⊆ Rd and T −1 is the inverse transformation (e.g.,

iso-probabilistic, Nataf, and Rosenblatt transformation, etc.). For clarification, the transformed

performance function is denoted as Z = G(U). Different from ALPI, the proposed PABQ method

will be implemented with the G = g ◦ T −1-function.

6.3.2 Importance ball sampling

In this subsection, we propose an importance ball sampling (IBS) technique to replace the MC

method used in the conventional ALPI method. Let us first introduce a ball, a region enclosed by
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a sphere or hypersphere. The d-ball of radius r > 0 in the standard normal space U can be defined

as Bd(r) =
{

u ∈ Rd : ||u||2≤ r
}

, where ||·||2 denotes the 2-norm. The ball is said to be ‘important’

when it can cover the standard normal space with relatively large probability content (in case that

r is appropriately chosen). The uniform PDF over Bd(r) takes the form:

fB (u) =


1

Vd(r) , if ||u||2≤ r;

0, otherwise
, (6.16)

where Vd (r) = πd/2

Γ( d
2 +1)rd is the volume of Bd(r), Γ (·) is Euler’s gamma function. To generate

random points uniformly distributed within the d-ball, there are many methods available in the

literature. In this study, one algorithm reported in [62] is adopted, as summarized in Algorithm 3.

Algorithm 3 Generate uniform samples within the d-ball [62]
1: Input: dimension d, radius r and sample size Nibs

2: for i = 1, 2, · · · , Nibs do
3: Generate d normally distributed samples, w = [w(1), w(2), · · · , w(d)], w(i) ∼ N (0, 1)
4: Generate a uniformly distributed sample v from the interval [0, 1]
5: Return the i-th vector u(i) = rv1/dw

||w||2
6: end for
7: Output: U =

{
u(i)

}Nibs

i=1
: Nibs uniform samples in Bd(r)

Then, consider an auxiliary PDF constructed as follows:

f0 (u) =

 (1 − ∆) fB (u) , ||u||2⩽ r

fU (u) , otherwise
, (6.17)

where fU (u) is the joint PDF of U ; ∆ is a normalizing constant that ensures that the PDF

f0 (u) integrates to one, which is actually equal to the probability of fU (u) outside Bd(r), i.e.,

∆ =
∫

U\B fU (u) du. The posterior mean mP̂f,n
and upper-bound of posterior standard deviation
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(UPSTD) σP̂f,n
with respect to the G-function can be reformulated respectively as:

mP̂f,n
=
∫

U
Φ

(
−

mĜn
(u)

σĜn
(u)

)
fU (u)du

=
∫

U
Φ

(
−

mĜn
(u)

σĜn
(u)

)
fU (u)
f0 (u) f0 (u) du

=
∫

B
Φ

(
−

mĜn
(u)

σĜn
(u)

)
fU (u)

(1 − ∆) fB (u) (1 − ∆) fB (u) du

+
∫

U\B
Φ

(
−

mĜn
(u)

σĜn
(u)

)
fU (u)
fU (u)fU (u) du

=Vd (r)
∫

B
Φ

(
−

mĜn
(u)

σĜn
(u)

)
fU (u)fB (u) du

+
∫

U\B
Φ

(
−

mĜn
(u)

σĜn
(u)

)
fU (u) du,

(6.18)

σP̂f,n
=
∫

U

√√√√Φ

(
−

mĜn
(u)

σĜn
(u)

)
Φ

(
mĜn

(u)
σĜn

(u)

)
fU (u)du

=
∫

U

√√√√Φ

(
−

mĜn
(u)

σĜn
(u)

)
Φ

(
mĜn

(u)
σĜn

(u)

)
fU (u)
f0 (u) f0 (u) du

=
∫

B

√√√√Φ

(
−

mĜn
(u)

σĜn
(u)

)
Φ

(
mĜn

(u)
σĜn

(u)

)
fU (u)

(1 − ∆)fB (u)(1 − ∆)fB (u) du

+
∫

U\B

√√√√Φ

(
−

mĜn
(u)

σĜn
(u)

)
Φ

(
mĜn

(u)
σĜn

(u)

)
fU (u)
fU (u)fU (u) du

=Vd (r)
∫

B

√√√√Φ

(
−

mĜn
(u)

σĜn
(u)

)
Φ

(
mĜn

(u)
σĜn

(u)

)
fU (u)fB (u) du

+
∫

U\B

√√√√Φ

(
−

mĜn
(u)

σĜn
(u)

)
Φ

(
mĜn

(u)
σĜn

(u)

)
fU (u) du,

(6.19)

where mĜn
(u) and σĜn

(u) are the posterior mean and STD functions of G conditional on n obser-

vations. Note that if one chooses a sufficiently small ∆ (i.e., r is sufficiently large), fU (u) over U\B

will approach to zero. In this case, the last terms in both Eqs. (6.18) and (6.19) can be neglected,

and hence mP̂f,n
and σP̂f,n

are approximately equal to:

mP̂f,n
≈ Vd (r)

∫
B

Φ

(
−

mĜn
(u)

σĜn
(u)

)
fU (u)fB (u) du, (6.20)
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σP̂f,n
≈ Vd (r)

∫
B

√√√√Φ

(
−

mĜn
(u)

σĜn
(u)

)
Φ

(
mĜn

(u)
σĜn

(u)

)
fU (u)fB (u) du. (6.21)

The above two equations are the basic of the proposed IBS method, and fB(u) is regarded as the

importance sampling density. The IBS estimators of Eqs. (6.20) and (6.21) are given as:

m̃P̂f,n
= Vd (r)

Nibs

Nibs∑
i=1

Φ

−
mĜn

(u(i))
σĜn

(
u(i)

)
 fU (u(i)), (6.22)

σ̃P̂f,n
= Vd (r)

Nibs

Nibs∑
i=1

√√√√√Φ

−
mĜn

(u(i))
σĜn

(
u(i)

)
Φ

mĜn
(u(i))

σĜn

(
u(i)

)
fU (u(i)), (6.23)

where u(i) ∼ fB (u). The variances of the estimators are formulated as follows:

V
[
m̃P̂f,n

]
= V 2

d (r)
(Nibs − 1)Nibs

Nibs∑
i=1

Φ

−
mĜn

(u(i))
σĜn

(
u(i)

)
 fU (u(i)) − m̃P̂f,n

2

, (6.24)

V
[
σ̃P̂f,n

]
= V 2

d (r)
(Nibs − 1)Nibs

Nibs∑
i=1


√√√√√Φ

−
mĜn

(u(i))
σĜn

(
u(i)

)
Φ

mĜn
(u(i))

σĜn

(
u(i)

)
fU (u(i)) − σ̃P̂f,n


2

. (6.25)

Similar to the MC population in ALPI, the population generated from fB (u) also plays two

roles. First, the posterior mean and UPSTD of the failure probability should be evaluated numeri-

cally based on those samples at each iteration, as shown in Eqs. (6.22) and (6.23). Second, it will

be used as a candidate sample pool by which multiple promising points can be identified at each

iteration (see next subsection).

Given dimension d, the IBS method has two parameters to be specified appropriately, i.e.,

radius r and simple size Nibs. As we have mentioned, r should be large enough to ensure that ∆

is small enough. By doing so, (1) the bias between Eqs. (6.20) and (6.18), and also Eqs. (6.21)

and (6.19) can be neglected; (2) candidate samples can reach the failure domain characterized by

a small probability. The probability of fU (u) within the d-ball can be given as (see Appendix E of

[63]):

F (d, r) = 1
Γ (d/2)

∫ r2/2

0
xd/2−1 exp(−x)dx. (6.26)
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Based on this, r can be determined as the solution to:

F (d, r) = 1 − ∆, (6.27)

It should be noted that given a fixed ∆, r increases with d. For example, if we set ∆ as 10−8,

r ≈ 6.07 for d = 2, and r ≈ 6.77 for d = 5. As for Nibs, it cannot be too small otherwise the

estimators of mP̂f,n
and σP̂f,n

will process relatively large variances, and also cannot fill the d-ball

well. On the contrary, a too large Nibs can lead to numerical difficulty and memory problems.

As an illustration, Fig. 6.1 shows two populations generated respectively by MC and IBS in

two dimensions with the same sample size 105. Obviously, the IBS method can produce a better

space-filling population and cover a larger area than that of MC method. If one would like the MC

population to cover as large space as the IBS population, the sample size should be increased many

times (> 103).

(a) MC method (Nmc = 105) (b) IBS method (Nibs = 105)

Figure 6.1: Comparison between MC and IBS methods in two dimensions.

6.3.3 Multi-point UPVC criterion

In order to enable parallel processing, a batch of informative points should be identified to

evaluate on the G-function at each iteration, rather than only one single point. For this purpose, we

propose a multi-point UPVC criterion, which leverages the advantages of both the UPVC function
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[43] and k-means clustering [64].

Suppose that we have inferred a GP posterior Ĝn ∼ GP(mĜn
(u), kĜn

(u, u′)) of G at a certain

step of the proposed PABQ method. Analogous to Eq. (6.35), the corresponding UPVC function

can be defined as:

UPVC(u) =

√√√√Φ

(
−

mĜn
(u)

σĜn
(u)

)
Φ

(
mĜn

(u)
σĜn

(u)

)
× fU (u), (6.28)

where σĜn
(u) =

√
kĜn

(u, u) is the posterior STD function of G. Note that σ2
P̂f,n

= [
∫

U UPVC(u)du]2

holds, and hence the UPVC function is a measure of the contribution of numerical uncertainty at

the point u to the UPV of the failure probability. The traditional UPVC criterion, however, only

selects the point among a MC population that has the maximum UPVC value as the best next point

to evaluate on the G-function. As such, other information provided by the UPVC function that

might be still useful is discarded at each iteration. This drawback can be alleviated by identifying

multiple points. The conventional k-means clustering technique can be used to partition U into k

clusters, but it cannot take the UPVC measure into account. In this study, a weighted clustering

algorithm is proposed by combining the UPVC function with k-means clustering, which is referred

as ‘UPVC-weighted k-means clustering’. Suppose that we wish to select q points among U at each

iteration, and hence evaluation of the G-function at these q points can be distributed on q processors

simultaneously. The number of points q also corresponds to the number of clusters. A compact

pseudocode of the proposed algorithm is given in Algorithm 4. The selected q points correspond to

the q centroids produced by the proposed UPVC-weighted k-means clustering. It should be pointed

out that the identified points usually do not belong to U any more due to the weighted averaging

operator embedded in the proposed algorithm.

A test example is considered here to illustrate the proposed multi-point UPVC criterion. The

performance function is given as Z = G(U) = U2
1 − U2 + 2, where U1 and U2 are two independent

standard normal variables. For reproducibility, we specify the initial observed locations as U ={
(−

√
5, 0), (0, 0), (

√
5, 0), (0, −

√
5), (0,

√
5)
}

. Based on these five initial observations, we can obtain

a posterior GP over the G-function and also the UPVC function. Additional q = 5 points are then

identified by the proposed UPVC-weighted k-means clustering algorithm from 105 uniform samples

within the 2-ball of r = 6. As shown in Fig. 6.2, the newly selected points are sparsely located

in areas where the UPVC values are not very small. Therefore, the total information gained from

those 5 points could be more than that of the one with the maximum UPVC value.
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Algorithm 4 UPVC-weighted k-means clustering algorithm
Input: the number of clusters q, UPVC(u) and U
1. Initialization. Randomly select q points among U as the initial centroids , denoted by
E(1) =

{
e(i)

}q

i=1
;

2. Assignment step. Each point among U is assigned to a cluster for which the squared
Euclidean distance between the point and the cluster centroid is shortest. The i-th cluster is
denoted as C(i) =

{
c

(i)
j

}Ni

j=1
, where c

(i)
j is the j-th point in the i-th cluster (j = 1, 2, · · · , Ni);

3. Update step. Each centroid is then updated by UPVC-weighted mean of the cluster:

e(i) =
∑Ni

j=1 UPVC(c(i)
j ) × c

(i)
j∑Ni

j=1 UPVC(c(i)
j )

4. Iteration. Repeat the assignment step and update step until the centroids do not change or
the predefined number of iterations is reached.
Output: q centroids

-6 -4 -2 0 2 4 6

-6

-4

-2

0

2

4

6

Figure 6.2: Illustration of the proposed multi-points UPVC criterion by a test example.

6.3.4 Summary of the proposed method

The numerical implementation procedure of the proposed PABQ method for reliability analy-

sis, which is also shown in Fig. 6.3, consists of the following main steps:

Step B.1: Generate uniformly distributed samples within the d-ball

Generate Nibs uniform samples within the d-ball of radius r, using Algorithm 3, denoted as

U =
{

u(i)
}Nibs

i=1
.

Step B.2: Get initial observations

Randomly select N0 samples among U , denoted by U =
{

u(i)
}N0

i=1
. These samples are eval-

203



CHAPTER 6. PARALLEL BAYESIAN ACTIVE LEARNING FOR RARE EVENT
ESTIMATION

uated on the G-function in parallel to obtain the corresponding observations Z =
{

z(i)
}N0

i=1
(

z(i) = G(u(i))). The initial dataset is constructed by D = {U ,Z}. Let n = N0.

Step B.3: Make Bayesian inference about the failure probability

By assigning a GP prior for the G-function, we finally arrive at the posterior mean and UP-

STD of the failure probability conditional on D. In this study, the prior mean and covariance of

Ĝ0 ∼ GP(mĜ0
(x), kĜ0

(x, x′)) are assumed to be a constant and the squared exponential kernel re-

spectively. The involved hyper-parameters are tuned by using the maximum likelihood estimation,

and this stage is implemented with the fitrgp function in Statistics and Machine Learning Toolbox

of Matlab. The posterior mean and UPSTD of the failure probability are then evaluated based on

Eqs. (6.22) and (6.23).

Step B.4: Check the stopping criterion

If
σ̃P̂f,n

m̃P̂f,n

< ϵ is satisfied, go to Step B.6; Else, go to Step B.5. Here
σ̃P̂f,n

m̃P̂f,n

denotes the

estimated upper-bound of the posterior COV of the failure probability, and ϵ is a user-specified

threshold.

Step B.5: Enrich the previous dataset

Identify additional q points by using the proposed multi-point UPVC criterion (see Algorithm

4), denoted by U+ =
{

u
(i)
+

}q

i=1
. Then, the corresponding observations of the G-function at those q

identified points U+ should be obtained using parallel computing, denoted by Z+ =
{

z
(i)
+

}q

i=1
with

z
(i)
+ = G(u(i)

+ ). The previous dataset D is enriched with D+ = {U+,Z+}, i.e., D = D ∪ D+. Let

n = n + q, and go to Step B.3.

Step B.6: End the algorithm

Return m̃P̂f,n
as the estimated failure probability and end the algorithm.

For practical implementation, it is necessary to set proper values for constants Nibs, r, N0,

ϵ and q. The selection of these parameters is problem-dependent. However, according to our expe-

rience some general guidelines for selecting them are the following: Nibs = 5 × 105 ∼ 1 × 106, r = 6,

N0 = 10, ϵ = 5% ∼ 10% and q = the number of available processors for parallel computing.
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Start

Generate Nibs uniformly distributed samples
U =

{
u(i)

}Nibs

i=1
within the d-ball

Construct an initial dataset D = {U ,Z} by
randomly selecting N0 samples U =

{
u(i)}N0

i=1 among U and
observing the corresponding G-function values Z =

{
z(i)}N0

i=1; Let n = N0

Make Bayesian inference about the failure probability
(i.e., m̃P̂f,n

and σ̃P̂f,n
) conditional on D

σ̃P̂f,n

m̃P̂f,n

< ϵ ?

Identify additional q points U+ =
{

u
(i)
+

}q

i=1
using

the proposed multi-point UPVC criterion and
observe the correspoding G-fucntion values Z+ =

{
z

(i)
+

}q

i=1
.

The previous dataset D is enriched with D+ = {U+,Z+}.
Let n = n + q

Return m̃P̂f,n
as the estimated failure probability

Stop

No

Yes

Figure 6.3: Flowchart of the proposed PABQ method.

6.4 Numerical examples

The performance of the proposed PABQ method is investigated by means of four numerical

examples with varying complexity in this section. Several different parameter settings of PABQ

are experimented in each example to study their effect on the results. For comparison, several

state-of-the-art methods, i.e., FORM [65], SORM [65], AK-MCS [37], ALPI [43], AK-MCMC [46]

and Polynomial-Chaos Kriging (PC-Kriging) [66], are also implemented when applicable.
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6.4.1 Example 1: A series system with four branches

The first numerical example consists of a series system with four branches, which has been a

classical benchmark example in structural reliability analysis (see, e.g., [37, 67, 68]). The perfor-

mance function is given by:

Y = g (X1, X2) = min



a + (X1−X2)2

10 − (X1+X2)√
2 ;

a + (X1−X2)2

10 + (X1+X2)√
2 ;

(X1 − X2) + b√
2 ;

(X2 − X1) + b√
2

, (6.29)

where X1 and X2 are two i.i.d. standard normal variables; a and b are two constant parameters.

In this example, two cases by varying those two constant parameters are considered, where a = 3,

b = 6 for the first case, and a = 5, b = 10 for the second case.

6.4.1.1 Results of Case I

In this case, the proposed PABQ method is compared to several other methods, i.e., AK-

MCS+U [37], ALPI [43] and PC-Kriging [66]. Table 6.1 summarizes the results given as the num-

ber of iterations Niter, the total number of performance function calls Ncall, the estimated failure

probability P̂f , and the COV of P̂f (i.e., COV[P̂f ]). As seen, the proposed method with different

q only takes a very few iterations in average to converge, which are less than that of PC-Kriging,

and far less than that of AK-MCS+U and ALPI. This indicates that the proposed method could

offer significant time savings when parallel computing is available. Furthermore, the computational

advantage may still exist even in case of non-parallel computing since the average number of per-

formance function calls is also reduced a lot by using the proposed method, especially when q is

small (e.g., q = 6). The results of P̂f and COV[P̂f ] also imply that the proposed method has an

accuracy similar to other methods being compared. By increasing Nibs from 5 × 105 to 1 × 106 and

decreasing ϵ from 10% to 8%, the PABQ method can slightly reduce the COVs of failure probability

estimates, at the cost of marginally increased computation in an average sense.

To illustrate the proposed method visually, Fig. 6.4(a) depicts the points selected at two stages

of an exemplary run, as well as the true limit state curve. It is shown that most of the added points

are sparsely located, and some of them are close to the four important parts of the limit state curve
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that are crucial for accurate failure probability estimation. These results indicate the effectiveness

of the proposed multi-point selection strategy.

Table 6.1: Reliability results for Example 1 (Case I).

Method Niter Ncall P̂f COV[P̂f ]/%
MCS - 108 4.46 × 10−3 0.15
AK-MCS+U 1 + 96.55 = 97.55 12 + 96.55 = 108.55 4.44 × 10−3 1.54
ALPI 1 + 72.95 = 73.95 12 + 72.95 = 84.95 4.44 × 10−3 1.79
PC-Kriging [66] q = 6 1 + 14.40 = 15.40 12 + 86.40 = 98.40 4.46 × 10−3 1.50

Proposed PABQ
q = 6 1 + 5.60 = 6.60 10 + 33.60 = 43.60 4.44 × 10−3 2.53
q = 10 1 + 4.20 = 5.20 10 + 42.00 = 52.00 4.40 × 10−3 2.22

(Nibs = 5 × 105, ϵ = 10%) q = 15 1 + 3.65 = 4.65 10 + 54.75 = 64.75 4.44 × 10−3 1.35
q = 20 1 + 3.05 = 4.05 10 + 61.00 = 71.00 4.44 × 10−3 1.29

Proposed PABQ
q = 6 1 + 8.64 = 9.64 10 + 43.20 = 53.20 4.43 × 10−3 2.17
q = 10 1 + 4.55 = 5.55 10 + 45.50 = 55.50 4.40 × 10−3 1.25

(Nibs = 1 × 106, ϵ = 8%) q = 15 1 + 3.70 = 4.70 10 + 55.50 = 65.50 4.43 × 10−3 1.02
q = 20 1 + 3.45 = 4.45 10 + 69.00 = 79.00 4.45 × 10−3 0.91

Note: For AK-MCS+U and ALPI, the MC population size is set as 106. AK-MCS+U, ALPI and PABQ are
performed 20 independent runs. PC-Kriging was performed 50 independent runs. Thus, for those methods,
average results are reported for Niter, Ncall, and P̂f . Besides, COV[P̂f ] is also approximated accordingly.

6.4.1.2 Results of Case II

The failure probability is quite small (in the order of 10−7) in Case II, and hence some methods,

like AK-MCS and ALPI, are not applicable anymore. For this reason, the proposed method is mainly

compared with AK-MCMC [46], which is capable of assessing extremely small failure probabilities.

As can be seen from Table 6.2, the proposed method can not only reduce the average number of

iterations greatly (especially when q is large, e.g., q = 20), but also the total number of calls to

the performance function (especially when q is small, e.g., q = 5), in comparison to AK-MCMC.

Besides, the proposed PABQ method is also able to yield fairly good average results for the failure

probability. It is noted that the COVs of the failure probability estimates can be reduced by a more

strict parameter setting (i.e., Nibs = 1 × 106, ϵ = 8%). This case study demonstrates the efficiency

and accuracy of the proposed method for such a case with an extremely rare failure event.

Fig. 6.4(b) depicts the points selected at two stages of the proposed method (q = 10) via an

exemplary run, along with the real limit state curve. It is encouraging to see that the added points

are relatively sparsely distributed, and most of them are located in the vicinity of true limit state

curve.
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Table 6.2: Reliability results for Example 1 (Case II).

Method Niter Ncall P̂f COV[P̂f ]/%
MCS - 109 8.84 × 10−7 3.36
AK-MCMC 1 + 134.00 = 135.00 12 + 134.00 = 146.00 8.85 × 10−7 1.62

Proposed PABQ
q = 5 1 + 8.80 = 9.80 10 + 44.00 = 54.00 8.82 × 10−7 2.14
q = 10 1 + 5.45 = 6.45 10 + 54.50 = 64.50 8.84 × 10−7 2.06

(Nibs = 5 × 105, ϵ = 10%) q = 15 1 + 4.75 = 5.75 10 + 71.25 = 81.25 8.83 × 10−7 1.24
q = 20 1 + 4.40 = 5.40 10 + 88.00 = 98.00 8.88 × 10−7 1.24

Proposed PABQ
q = 5 1 + 8.80 = 9.80 10 + 44.00 = 54.00 8.80 × 10−7 1.63
q = 10 1 + 5.95 = 6.95 10 + 59.50 = 69.50 8.83 × 10−7 0.89

(Nibs = 1 × 106, ϵ = 8%) q = 15 1 + 4.95 = 5.95 10 + 74.25 = 84.25 8.86 × 10−7 0.89
q = 20 1 + 4.80 = 5.80 10 + 96.00 = 106.00 8.86 × 10−7 0.66

Note: AK-MCMC and PABQ are performed 20 independent runs. Thus, for those methods, average results are
reported for Niter, Ncall, and P̂f . Besides, COV[P̂f ] is also approximated accordingly.
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(a) Case I (q = 10)
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(b) Case II (q = 10)

Figure 6.4: Points selected at different stages by the proposed PABQ method for Example 2.

6.4.2 Example 2: A nonlinear oscillator

A nonlinear undamped single-degree-of-freedom (SDOF) oscillator subjected to a rectangular

pulse load [43] is adopted as the second example, as shown in Fig. 6.5. The performance function

is defined as:

Y = g (m, c1, c2, r, F1, t1) = 3r −
∣∣∣∣∣ 2F1
c1 + c2

sin
(

t1
2

√
c1 + c2

m

)∣∣∣∣∣ , (6.30)

where m, c1, c2, r, F1, t1 are six random variables, as described in Table 6.3.

The reference value of the failure probability is 5.17×10−6 (with COV being small, i.e., 1.39%),

provided by MCS with 109 samples. As the failure probability is quite small, the proposed method
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Figure 6.5: A nonlinear undamped SDOF oscillator subjected to pulse load.

Table 6.3: Random variables for Example 2.

Variable Distribution Mean STD
m Normal 1.0 0.05
c1 Lognormal 1.0 0.10
c2 Lognormal 0.1 0.01
r Normal 0.5 0.05

F1 Lognormal 0.5 0.10
t1 Normal 1.0 0.20

is only compared to FORM [65], SORM [65] and AK-MCMC [46]. As can be seen from Table 6.4,

the required average number of iterations by the proposed method is less than all the methods

being compared, especially for AK-MCMC. This implies the parallel computing advantage of the

proposed method. Besides, the proposed method is still more advantageous than FORM, SORM

and AK-MCMC in computational efficiency in case of non-parallel computing, since the average

number of performance function evaluations can also be reduced a lot (especially when q is small,

e.g., q = 5). Although COV[P̂f ] given by the proposed method (Nibs = 5 × 105, ϵ = 10%) is around

5%, it can still be acceptable in practical applications. If one would like to reduce COV[P̂f ], one

can increase Nibs and decrease ϵ. For example, the last four rows of Table 6.4 give the results by

of PABQ (Nibs = 1 × 106, ϵ = 5%). It can be seen that COV[P̂f ] is reduced to about 3% at the

expense of increased Niter and Ncall in some cases (q = 5, 10, 20), while still much less than those

of FORM, SORM and AK-MCMC.

6.4.3 Example 3: A simple bracket model

A simple bracket model that is available in the Partial Differential Equation Toolbox of Matlab

is considered as the third example. The schematic diagram of the bracket is shown in Figs. 6.6(a)

and 6.6(b), and more details of the model can be found in the description in the toolbox. The bracket
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Table 6.4: Reliability results for Example 2.

Method Niter Ncall P̂f COV[P̂f ]/%
MCS - 109 5.17 × 10−6 1.39
FORM 10 80 5.45 × 10−6 -
SORM 10 160 5.25 × 10−6 -
AK-MCMC 1 + 109.20 = 110.20 12 + 109.20 = 121.20 5.23 × 10−6 0.69

Proposed PABQ
q = 5 1 + 3.15 = 4.15 10 + 15.75 = 25.75 5.19 × 10−6 5.68
q = 10 1 + 2.05 = 3.05 10 + 20.50 = 30.50 5.21 × 10−6 4.30

(Nibs = 5 × 105, ϵ = 10%) q = 15 1 + 1.65 = 2.65 10 + 24.75 = 34.75 5.17 × 10−6 4.30
q = 20 1 + 1.70 = 2.70 10 + 34.00 = 44.00 5.21 × 10−6 4.79

Proposed PABQ
q = 5 1 + 4.05 = 5.05 10 + 20.25 = 30.25 5.15 × 10−6 3.08
q = 10 1 + 2.40 = 3.40 10 + 24.00 = 34.00 5.15 × 10−6 2.41

(Nibs = 1 × 106, ϵ = 5%) q = 15 1 + 2.00 = 3.00 10 + 30.00 = 40.00 5.15 × 10−6 3.53
q = 20 1 + 1.95 = 2.95 10 + 39.00 = 49.00 5.20 × 10−6 3.44

Note: AK-MCMC and PABQ are performed 20 independent runs. Thus, for those methods, average results are
reported for Niter, Ncall, and P̂f . Besides, COV[P̂f ] is also approximated accordingly.

is fixed at the back face (face 4) and subjected to a distributed load in the negative z-direction in the

front face (face 8). It is assumed that the Young’s modulus E, Poisson’s ratio µ, distributed load q

and thickness h of the horizontal plate with hole are characterized as independent random variables,

whose statistical information is summarized in Table. 6.5. The 10-node tetrahedral element is used

to discretize the model, as shown in Figs. 6.6(c) and 6.6(d). The maximal deflection of the bracket

in the z direction is of concern in this example. The limit state function is defined as:

Y = G(E, µ, q, h) = ∆ − V̄ (E, µ, q, h), (6.31)

where ∆ is the deterministic threshold, which is specified as ∆ = 140 µm; V̄ denotes the maximum

displacement of the bracket in the z-direction.

Table 6.5: Random variables for Example 3.

Variable Distribution Mean COV
E (Gpa) Lognormal 200 0.15
µ Uniform 0.3 0.10
q (Pa) Lognormal 104 0.20
h (mm) Lognormal 10 0.10

We implement several methods to assess the failure probability corresponding to the limit state

function defined in Eq. (6.31). The results are reported in Table 6.6. FORM does not converge

within 100 iterations, so its results are not included. The reference value of the failure probability is
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Figure 6.6: A simple bracket model: Geometry and finite-element mesh.

taken as the average result of AK-MCMC, i.e., 1.90 × 10−6 (with a COV of 1.15%). It can be seen

from Table 6.6 that the proposed PABQ method can significantly reduce the number of iterations

Niter compared to AK-MCMC, while maintaining reasonable accuracy. This indicates that our

method could greatly outperform AK-MCMC in terms of computational efficiency when parallel

computing is available. One can also notice that the proposed method requires less performance

function calls in average than AK-MCMC. Therefore, the proposed method could be still more

efficient than AK-MCMC in case that parallel computing is unavailable. The variability of the

failure probability estimate given by the proposed method can be reduced to a certain level by

setting a large Nibs and a small ϵ.
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Table 6.6: Reliability results for Example 3.

Method Niter Ncall P̂f COV[P̂f ]/%
FORM - - - -
AK-MCMC 1 + 44.60 = 45.60 12 + 44.60 = 56.60 1.90 × 10−6 1.15

Proposed PABQ
q = 2 1 + 1.85 = 2.85 10 + 3.70 = 13.70 1.93 × 10−6 4.99
q = 3 1 + 1.45 = 2.45 10 + 4.35 = 14.35 1.88 × 10−6 6.19

(Nibs = 5 × 105, ϵ = 10%) q = 4 1 + 1.40 = 2.40 10 + 5.60 = 15.60 1.93 × 10−6 5.89
q = 5 1 + 1.35 = 2.35 10 + 6.75 = 16.75 1.91 × 10−6 8.99

Proposed PABQ
q = 2 1 + 2.45 = 3.45 10 + 4.90 = 14.90 1.91 × 10−6 3.74
q = 3 1 + 1.95 = 2.95 10 + 5.85 = 15.85 1.90 × 10−6 2.19

(Nibs = 1 × 106, ϵ = 5%) q = 4 1 + 1.65 = 2.65 10 + 6.60 = 16.60 1.89 × 10−6 3.70
q = 5 1 + 1.55 = 2.55 10 + 7.75 = 17.75 1.93 × 10−6 3.16

Note: AK-MCMC and PABQ are performed 20 independent runs. Thus, for those methods, average
results are reported for Niter, Ncall, and P̂f . Besides, COV[P̂f ] is also approximated accordingly.

6.4.4 Example 4: A 120-bar space truss structure

A 120-bar space truss structure [43], as shown in Fig. 6.7, is investigated in the last example to

further demonstrate the proposed method. The structure is modelled as a three-dimensional (3D)

finite-element model with 49 nodes and 120 elements in OpenSees. Nodes 0, 1, 4, 7 and 10 withstand

concentrated loads along the negative z-axis, denoted as P0, P1, P4, P7 and P10 respectively. All

elements are assumed to have the same cross-sectional area A and Young’s modulus E. The structure

is expected to be in a linear elastic state, so we simply employ linear finite element analysis. The

performance function is defined as:

Y = g(P0, P1, P4, P7, A, E) = ∆ − V0,z, (6.32)

where V0,z denotes the vertical displacement of node 0; and ∆ is the threshold, specified as 90 mm.

The random variables considered in this examples are summarized in Table 6.7.

Table 6.7: Random variables for Example 4.

Variable Distribution Mean COV
P0 Lognormal 500 kN 0.20
P1 Lognormal 200 kN 0.20
P4 Lognormal 200 kN 0.20
P7 Lognormal 200 kN 0.20
P10 Lognormal 200 kN 0.20
A Normal 2000 mm2 0.15
E Normal 2.00 × 105 MPa 0.15
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 Figure 6.7: A 120-bar space truss structure.

In this example, several methods, i.e., MCS, FORM [65], SORM [65], AK-MCS+U [37], ALPI

[43], AK-MCMC [46] and PABQ, are implemented to assess the failure probability. The results

are listed in Table 6.8. The reference value for the failure probability is 5.08 × 10−4 with COV

being 4.44, provied by MCS with 106 samples. The results of AK-MCMC are not reported because

it fails to converge in multiple trials. FORM only requires 7 iterations and a total number of 65

performance function calls, which, however, results in an inaccurate result. SORM can provide more

accurate failure probability estimate than FORM at the expense of 172 calls to the performance

function (hence the finite-element model). Compared to AK-MCS+U and ALPI, the proposed

PABQ method performs better in terms of Ncall (especially when q is small, e.g., q = 5), and
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much better in terms of Niter (especially when q is large, e.g., q = 20). This implies that PABQ

can be much more efficient than AK-MCS+U and ALPI in cases of both parallel and non-parallel

computing. Besides, the proposed method still has a acceptable accuracy, as indicated by P̂f and

COV[P̂f ]. As shown in the last four rows of Table 6.8, COV[P̂f ] can be further reduced by increasing

Nibs and decreasing ϵ at the cost of slightly increased Niter and Ncall.

Table 6.8: Reliability results for Example 4.

Method Niter Ncall P̂f COV[P̂f ]/%
MCS - 106 5.08 × 10−4 4.44
FORM 7 65 3.16 × 10−4 -
SORM 7 172 5.23 × 10−4 -
AK-MCS+U 1 + 60.75 = 61.75 12 + 60.75 = 72.75 5.16 × 10−4 4.84
ALPI 1 + 47.45 = 48.45 12 + 47.45 = 59.45 5.10 × 10−4 3.54
AK-MCMC - - - -

Proposed PABQ
q = 5 1 + 5.90 = 6.90 10 + 29.50 = 39.50 4.93 × 10−4 4.74
q = 10 1 + 3.80 = 4.80 10 + 38.00 = 48.00 4.98 × 10−4 3.31

(Nibs = 5 × 105, ϵ = 10%) q = 15 1 + 2.65 = 3.65 10 + 39.75 = 49.75 4.99 × 10−4 4.68
q = 20 1 + 2.40 = 3.40 10 + 48.00 = 58.00 4.98 × 10−4 6.22

Proposed PABQ
q = 5 1 + 8.65 = 9.65 10 + 43.25 = 53.25 5.04 × 10−4 3.41
q = 10 1 + 4.80 = 5.80 10 + 48.00 = 58.00 5.06 × 10−4 2.40

(Nibs = 1 × 106, ϵ = 5%) q = 15 1 + 3.70 = 4.70 10 + 55.50 = 65.50 5.07 × 10−4 2.15
q = 20 1 + 2.90 = 3.90 10 + 58.00 = 68.00 5.02 × 10−4 4.27

Note: For AK-MCS+U and ALPI, the MC population size is set as 106. AK-MCS+U, ALPI and PABQ
are performed 20 independent runs. Thus, for those methods, average results are reported for Niter, Ncall,
and P̂f . Besides, COV[P̂f ] is also approximated accordingly.

6.5 Conclusions

This paper presents a ‘Parallel Adaptive Bayesian Quadrature’ (PABQ) method for rare failure

event estimation. As it is rooted in ALPI, PABQ offers an alternative framework to the quan-

tification, propagation and reduction of numerical uncertainty for assessing failure probabilities.

Besides, compared to ALPI, two important improvements are made in PABQ to enable the use

of ever-increasing parallel computing facilities and enhance the capability of assessing small failure

probabilities. The parallelism of PABQ is achieved by developing a multi-point selection strategy,

while the capableness for rare failure event estimation is realized by proposing an importance ball

sampling technique. The performance of the proposed method is illustrated by means of four nu-

merical examples. In most studied cases, it is found that PABQ can not only significantly reduce

the average number of iterations (especially when q is large), but also lower the average total num-
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ber of performance function calls (especially when q is small) compared to several selected existing

methods. This indicates the computational efficiency advantage of PABQ in both parallel and

non-parallel computing. In addition, PABQ is able to produce accurate estimates for small failure

probabilities (e.g., in the order of 10−7).

The proposed method, in its current form, is not applicable to high-dimensional and/or strongly

non-linear problems. The former, one one hand, is due to the challenges of implementing GP models

in high dimensions. On the other hand, IBS should not lead to significant improvement for a high-

dimensional case. The latter is caused by the fact that the GP model is typically suitable for

modelling smooth or moderately nonlinear functions. These drawbacks will be addressed in future

work.
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Appendix A: Numerical algorithm of the active learning probabilis-

tic integration

The procedure for numerical implementation of the ALPI method includes the following steps:

Step A.1: Generate a Monte Carlo population
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Generate a MC population comprising Nmc samples according to fX(x), denoted by X ={
x(i)

}Nmc

i=1
. This population has two functions: (1) It serves as a candidate sample pool among

which the next best point is identified to evaluate on the g-function; and (2) It is used to evaluate

the posterior mean and UPV of the failure probability (Eqs. (6.13) and (6.15)).

Step A.2: Get initial observations

Randomly select N0 (e.g., 12) samples among X , denoted by X . Those points are then

evaluated on the g-function to get N0 observations, denoted by Y . As such, an initial dataset can

be constructed, i.e., D = {X ,Y }. Let n = N0.

Step A.3: Infer the posterior failure probability

The prior mean and variance functions of ĝ0 ∼ GP(mĝ0(x), kĝ0(x, x′)) are assumed to be a

constant and the squared exponential kernel in this study, respectively. Based on D, a posterior

GP ĝn ∼ GP(mĝn(x), kĝn(x, x′)) for the g-function can be obtained. This step mainly consists of

tuning the hyper-parameters via maximum likelihood estimation. For convenience, one can use the

fitrgp function in Statistics and Machine Learning Toolbox of Matlab. Afterwards, the posterior

mean of failure probability can be estimated by:

m̃P̂f,n
= 1

Nmc

Nmc∑
i=1

Φ

− mĝn(x(i))
σĝn

(
x(i)

)
 , (6.33)

and the upper-bound of posterior standard deviation (UPSTD):

σ̃P̂f,n
= 1

Nmc

Nmc∑
i=1

√√√√√Φ

− mĝn(x(i))
σĝn

(
x(i)

)
Φ

mĝn(x(i))
σĝn

(
x(i)

)
. (6.34)

Step A.4: Check the stopping criterion

Only if the posterior failure probability processes a sufficiently low level of epistemic uncertainty,

its mean can be used to predict the failure probability. To this end, we propose to examine the

estimated upper bound of posterior COV of the failure probability as described next. If
σ̃P̂f,n

m̃P̂f,n

< ϵ

is satisfied, go to Step A.6; Else, go to Step A.5. Here ϵ is a user-specified threshold, which takes

the value of 0.02 in all numerical examples.

Step A.5: Enrich the previous dataset

At this stage, the best next point to evaluate on the g-function should be identified by a learning
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function. By exploring the structure of UPV of failure probability (Eq. (6.15)), the so-called upper-

bound posterior variance contribution (UPVC) function is introduced [43]:

UPVC(x) =

√√√√Φ

(
−mĝn(x)

σĝn (x)

)
Φ

(
mĝn(x)
σĝn (x)

)
× fX(x), (6.35)

where σ2
P̂f,n

= [
∫

X UPVC(x)dx]2 holds. The best next point x⋆ is selected by:

x⋆ = arg max
x∈X

UPVC(x). (6.36)

The g-function is then evaluated at the point x⋆, i.e., y⋆ = g(x⋆). The dataset D is enriched by

D = D ∪ (x⋆, y⋆). Let n = n + 1, and go to Step A.3.

Step A.6: End the algorithm

Return m̃P̂f,n
as the estimated failure probability and end the algorithm.
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Abstract: Numerical methods play a dominant role in structural reliability analysis, and

the goal has long been to produce a failure probability estimate with a desired level of accuracy

using a minimum number of performance function evaluations. In the present study, we attempt to

offer a Bayesian perspective on the failure probability integral estimation, as opposed to the classical

frequentist perspective. For this purpose, a principled Bayesian Failure Probability Inference (BFPI)

framework is first developed, which allows to quantify, propagate and reduce numerical uncertainty

behind the failure probability due to discretization error. Especially, the posterior variance of the

failure probability is derived in a semi-analytical form, and the Gaussianity of the posterior failure

probability distribution is investigated numerically. Then, a Parallel Adaptive-Bayesian Failure

Probability Learning (PA-BFPL) method is proposed within the Bayesian framework. In the PA-

BFPL method, a variance-amplified importance sampling technique is presented to evaluate the

posterior mean and variance of the failure probability, and an adaptive parallel active learning

strategy is proposed to identify multiple updating points at each iteration. Thus, a novel advantage

of PA-BFPL is that both prior knowledge and parallel computing can be used to make inference

about the failure probability. Four numerical examples are investigated, indicating the potential
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benefits by advocating a Bayesian approach to failure probability estimation.

Keywords: Failure probability, Bayesian inference, Gaussian process, Numerical uncertainty,

Parallel computing

7.1 Introduction

A fundamental problem in structural reliability analysis is to assess the likelihood that a struc-

ture attains an unsatisfactory performance in the presence of uncertainties. Within a probabilistic

framework, the primary objective is to compute the so-called failure probability Pf , defined by the

following multifold integral:

Pf = Prob [g(X) ≤ 0] =
∫

X
I(x)fX(x)dx, (7.1)

where Prob [·] denotes the probability operator; X = [X1, X2, · · · , Xd] ∈ X ⊆ Rd is a vector of d

random variables with known joint probability density function (PDF) fX(x); Y = g(X) : Rd → R

is the performance function (or limit state function) with y = g(x) ≤ 0 indicating a failure state

and a safe state otherwise; I(x) is the failure indicator function such that:

I (x) =

 1, g (x) ⩽ 0

0, otherwise
. (7.2)

Except for some special cases, it is impossible to derive the analytical solution to the failure proba-

bility (defined by Eq. (7.1)). Besides, the g-function in practical applications is typically dependent

on a simulation model (e.g., a finite element model) so that each evaluation can be computationally

demanding. Therefore, numerical methods that minimize the number of g-function evaluations are

highly desirable to approximate the failure probability. Even though various methods following

different paradigms have been developed over the past several decades (e.g., as summarized in [1]),

it seems that they never reach the end of being efficient while accurate and generally applicable.

The present paper is also concerned with developing a new reliability analysis method, but putting

more emphasis on how to interpret the problem of failure probability estimation.

In fact, the problem of evaluating the failure probability integral (Eq. (7.1)) can be treated

as a statistical problem, though it does not mean that all methods must follow this perspective.
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Specifically, the failure probability Pf is an unknown quantity of interest, about which we wish to

make inference using a set of g-function observations (equivalently, I-function observations), say

g(x(1)), g(x(2)), · · · , g(x(n)). Further, a statistical inference rule approximates Pf as a function of

those observations.

In the classical frequentist viewpoint, the sample x(1), x(2), · · · , x(n) might be supposed to draw

at random from a population distributed according to fX(x). Taking the Monte Carlo simulation

(MCS) method as an example, the MCS estimator for the failure probability is given by the sample

mean:

P̂ MCS
f = 1

n

n∑
i=1

I(x(i)). (7.3)

The law of large numbers implies that P̂ MCS
f converges to Pf with probability 1 as n → ∞. The

estimator is viewed as a random variable since x(i) is random. Besides, by the central limit theorem,

P̂ MCS
f asymptotically follows a normal distribution for a large n. In practical applications, one can

only afford a finite sample size to approximate the failure probability. Hence, the uncertainty

associated with P̂ MCS
f due to the sampling variability may not be neglected. Such uncertainty can

be measured by the variance of the estimator [2]:

V
[
P̂ MCS

f

]
=

P̂ MCS
f (1 − P̂ MCS

f )
n

, (7.4)

where V [·] denotes the variance operator. Despite its conceptual and algorithmic simplicity, the

MCS method is often criticized by many authors for its unreasonable effectiveness and theoretical

unsoundness [3, 4]. In addition, some variants of the MCS method, e.g., subset simulation [5, 6],

importance sampling [7–10], have been developed and are able to offer improved efficiency. These

methods, however, can still be regarded as more advanced frequentist approaches, and hence may

be subject to the same criticism as MCS.

In contrast to the classical frequentist perspective, we seek to interpret the problem of failure

probability integral estimation as a Bayesian inference problem. For this context, a central role is

played by numerical integration (also known as quadrature) that is widely encountered in scientific

computing. The study of numerical integration from a point of view of Bayesian dates back to at

least the work of Diaconis [11] and has led to the commonly known Bayesian quadrature, Bayesian

cubature or probabilistic integration [12–15]. In such methods, our uncertainty about the true in-
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tegral value resulted from a limited number of integrand observations (i.e., discretization error) is

regarded as a kind of epistemic uncertainty, which can be modelled following a Bayesian approach.

The Bayesian approach to numerical integration has demonstrated many promising advantages with

respect to the classical approach (e.g., see [11, 16]). However, only a few studies have investigated

the Bayesian approach to failure probability estimation, which requires a slightly different treat-

ment compared to a common quadrature problem. Loosely speaking, the popular active learning

reliability methods [17, 18], e.g., efficient global reliability analysis [19] and AK-MCS [20], have

almost reached the idea of being Bayesian. That is, the surrogate models (e.g., Kriging) used in

those methods allow a Bayesian interpretation. In spite of that, the existing methods do not count

as fully Bayesian in the strict sense because they provide no probabilistic uncertainty measure over

the failure probability. A truly Bayesian interpretation was, to the best of our knowledge, first

clearly reported in the work [21], where the Bayesian Monte Carlo method developed in [13] was

applied. However, it is challenging to directly place a Gaussian process (GP) prior over the failure

indicator function with a large discontinuity. The first author and his co-workers continued the

idea of re-interpreting the failure probability integral estimation with Bayesian inference in a recent

work [22], and then it was further improved in [1]. In [22], the posterior mean and an upper-bound

of the posterior variance of the failure probability were derived, given that a GP prior was assigned

to the performance function. Nevertheless, the posterior variance and posterior distribution of the

failure probability are still not available, which are undoubtedly of interest and importance in a

Bayesian framework.

This paper aims to present a fully Bayesian perspective on failure probability estimation, com-

plementing the work in [1, 22]. The main contributions of this work are summarized as follows.

First, to the best of the authors’ knowledge, a complete and principled Bayesian framework for

failure probability estimation is developed for the first time. The framework is termed ‘Bayesian

Failure Probability Inference’ (BFPI), in which the posterior variance of the failure probability is

derived in a semi-analytical form. Besides, the posterior distribution of the failure probability is

also empirically investigated by several numerical examples. Second, we illustrate how the BFPI

framework can be used to make inference about the failure probability in an adaptive scheme. The

resulting method is called ‘Parallel Adaptive-Bayesian Failure Probability Learning’ (PA-BFPL).

In the PA-BFPL method, a variance-amplified importance sampling (VAIS) method is proposed

to approximate the posterior mean and variance of the failure probability and an adaptive paral-
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lel learning strategy based on the concepts of expected misclassification probability contribution

(EMPC) and k-means clustering is presented to enable multipoint selection (hence parallel dis-

tributed processing). In addition, we also suggest a new stopping criterion in order to achieve a

desired level of accuracy for the failure probability estimate.

The rest of this paper is organized as follows. The proposed BFPI framework is introduced

in Section 7.2. Section 7.3 presents the proposed PA-BFPL method. Four numerical examples are

investigated in Section 7.4 to demonstrate the proposed method. The Gaussianity of the posterior

failure probability is numerically studied in Section 7.5. The paper is closed with some concluding

remarks in Section 7.6.

7.2 Bayesian failure probability inference

In this section, the problem of failure probability estimation is interpreted as a Bayesian infer-

ence problem, leading to a framework of Bayesian failure probability inference (BFPI). As shown

in Fig. 7.1, the proposed BFPI framework begins with a prior distribution over the g-function.

Conditional on the observations that arise from evaluating the g-function at some points, we arrive

at a posterior distribution over g. This in turn implies a posterior distribution over the failure

indicator function I, as well as the failure probability Pf .

 

Figure 7.1: A schematic illustration of the proposed BFPI framework.

7.2.1 Prior distributions

A convenient way of putting a prior over the g-function is through GP. A GP can be viewed

as a collection of random variables indexed by time or space, any finite number of which have a
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multivariate Gaussian distribution.

Let (Ω, F ,P) be a probability space, where Ω is a sample space, F is a set of events equipped

with σ-algebra and P is a probability measure. A GP can be defined as Z(ϖ, x): Ω × X → R.

For a fixed location x ∈ X , Z(ϖ, ·) is Gaussian. Conversely, for every fixed elementary event

ϖ ∈ Ω, Z(·, x) is a realization of the GP. As a GP can be completely characterized by its mean and

covariance functions, our prior assumption is thus rewritten as follows:

ĝ0(ϖ, x) ∼ GP(mĝ0(x), cĝ0(x, x′)), (7.5)

where ĝ0 denotes the prior distribution of g before any observations are obtained; the prior mean

function mĝ0(x) : X → Z and prior covariance function cĝ0(x, x′) : X × X → Z are respectively

defined as:

mĝ0(x) = Eϖ [ĝ0(ϖ, x)] , (7.6)

cĝ0(x, x′) = Eϖ
[
(ĝ0(ϖ, x) − m(x))

(
ĝ0(ϖ, x′) − m(x′)

)]
, (7.7)

in which Eϖ [·] denotes the expectation operation taken over Ω. The prior mean function reflects

the general trend of the GP prior, whereas the prior covariance function encodes our key beliefs on

the similarity of the g-function between two points. Among many options available in the literature,

this study adopts the commonly used constant mean and squared exponential kernel functions:

mĝ0(x) = β, (7.8)

cĝ0(x, x′) = s2 exp
[
−1

2
(
x − x′)Σ−1 (x − x′)T] , (7.9)

where β is a constant; s2 denote the process variance; Σ = diag(l21, l22, ..., l2d) is a diagonal matrix,

whose i-th diagonal entry is l2i with li > 0 being the length scale in the i-th dimension. Note that

the choice of the prior and covariance functions does not affect the generality of our developments,

and other forms can also be employed. In Eqs. (7.8) and (7.9), there exist d + 2 hyper-parameters

to be determined (collected in ϑ = [β, s, l1, l2, · · · , ld]) in total.

Remark 1. Corresponding to the GP prior for g, this also implies implicitly prior distributions

for the failure indicator function I, and the failure probability Pf . They are not given here because

our main concern is their posterior distributions. However, one still can easily obtain these prior

231



CHAPTER 7. BAYESIAN PERSPECTIVE FOR STRUCTURAL RELIABILITY ANALYSIS

distributions referring to Subsection 7.2.3.

7.2.2 Learning the hyper-parameters

Suppose that now we observe the g-function at some locations. Let XXX =
{

x(i)
}n

i=1
denote an

n × d matrix containing n design points. The corresponding g-function values at XXX are collected

in an n × 1 vector YYY =
{

y(i)
}n

i=1
with y(i) = g(x(i)). The hyper-parameters should be learned

from the given data DDD = {XXX ,YYY }, and three approaches are typically considered [23]: (1) maxi-

mum likelihood estimation (MLE); (2) maximum a posteriori (MAP) estimation; (3) fully Bayesian

approach. In this study, we use the MLE method as follows.

Under the GP prior, the marginal likelihood of YYY is a multivariate normal density:

p(YYY |XXX , ϑ) = 1√
(2π)n|Cĝ0 |

exp
[
−1

2(YYY − β)C−1
ĝ0

(YYY − β)T
]

, (7.10)

where Cĝ0 is an n-by-n covariance matrix, whose (i, j)-th entry is [Cĝ0 ]ij = cĝ0(x(i), x(j)); |·| is the

determinant operator. The hyper-parameters are tuned by minimizing the negative log marginal

likelihood:

ϑ̂ = arg min
ϑ

− log [p(YYY |XXX , ϑ)] , (7.11)

where

log [p(YYY |XXX , ϑ)] = −1
2
[
(YYY − β)C−1

ĝ0
(YYY − β)T + log|Cĝ0 |+n log 2π

]
. (7.12)

7.2.3 Posterior distributions

Conditional on the data DDD , the induced posterior distribution of g is also a GP:

ĝn(ϖ, x) ∼ GP(mĝn(x), cĝn(x, x′)), (7.13)

where ĝn denotes the posterior distribution of g given n observations; mĝn(x) and cĝn(x, x′) are the

posterior mean and covariance functions respectively, which can be analytically derived as:

mĝn(x) = mĝ0(x) + cĝ0(x,XXX )C−1
ĝ0

(YYY − mĝ0(XXX )), (7.14)

cĝn(x, x′) = cĝ0(x, x′) − cĝ0(x,XXX )C−1
ĝ0

cĝ0(XXX , x′), (7.15)
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where mĝ0(XXX ) is an n-by-1 vector with i-th element being mĝ0(x(i)); cĝ0(x,XXX ) is a 1-by-n covari-

ance vector with i-th element being cĝ0(x, x(i)); cĝ0(XXX , x′) is an n-by-1 covariance vector with i-th

element being cĝ0(x(i), x′). It should be pointed out that: (1) For any x(i) ∈ XXX , the posterior GP

is an exact predictor. This means that if a prediction is carried out at an observed point x(i), the

posterior mean is exactly equal to the corresponding observation (i.e., mĝn(x(i)) = y(i)) and the

posterior variance is equal to zero (i.e., σ2
ĝn

(x(i)) = cĝn(x(i), x(i)) = 0). (2) For any x /∈ XXX , the

posterior GP at x is Gaussian. In this case, the posterior mean mĝn(x) is a natural estimate of the

g-function value, whereas the posterior variance σ2
ĝn

(x) = cĝn(x, x) can measure our uncertainty of

the estimate.

The posterior distribution of the failure indicator function I has the following relationship with

ĝn:

În(ϖ, x) =

 1, ĝn (ϖ, x) ⩽ 0

0, otherwise
, (7.16)

where În denote the posterior distribution of I conditional on DDD . Based on Eqs. (7.13) and (7.16),

the induced posterior distribution În should follow a generalized Bernoulli process 1 (GBP):

În(ϖ, x) ∼ GBP(mÎn
(x), cÎn

(x, x′)), (7.17)

where mÎn
(x) and cÎn

(x, x′) are the posterior mean and covariance functions, respectively. They

can be derived as follows:
mÎn

(x) = Eϖ

[
În(ϖ, x)

]
= P [ĝn(ϖ, x) ≤ 0]

= Φ

(
−mĝn(x)
σĝn(x)

)
,

(7.18)

1In the conventional way, a Bernoulli process is defined as a finite or infinite sequence of binary random variables
that are independently and identically distributed. Here we use ‘generalized’ to indicate that the possible correlation
among the sequence is considered. For more information on this topic, one can refer to, e.g., [24].
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cÎn
(x, x′) =Eϖ

[(
În(ϖ, x) − mÎn

(x)
) (

În(ϖ, x′) − mÎn
(x′)

)]
=Eϖ

[
În(ϖ, x)În(ϖ, x′)

]
− Eϖ

[
În(ϖ, x)

]
Eϖ

[
În(ϖ, x′)

]
=P

[
ĝn(ϖ, x) ≤ 0, ĝn(ϖ, x′) ≤ 0

]
− mÎn

(x)mÎn
(x′)

=F
(
[0 0]; mĝn(x, x′), Cĝn(x, x′)

)
− Φ

(
−mĝn(x)
σĝn(x)

)
Φ

(
−mĝn(x′)
σĝn(x′)

)
,

(7.19)

where Φ is the cumulative distribution function (CDF) of the standard normal distribution; F is the

joint CDF of a bivariate normal distribution; The terms mĝn(x, x′) and Cĝn(x, x′) are expressed

as:

mĝn(x, x′) = [mĝn(x), mĝn(x′)] (7.20)

Cĝn(x, x′) =

cĝn(x, x) cĝn(x, x′)

cĝn(x′, x) cĝn(x′, x′)

 =

 σ2
ĝn

(x) cĝn(x, x′)

cĝn(x′, x) σ2
ĝn

(x′)

 . (7.21)

Note that though no closed form is available for F , there are a number of software packages that

evaluate it numerically.

The posterior distribution of the failure probability Pf is defined as:

P̂f,n(ϖ) =
∫

X
În(ϖ, x)fX(x)dx, (7.22)

where P̂f,n denotes the posterior distribution of Pf,n conditional on DDD . Eq. (7.22) implies that

P̂f is a random variable, whose exact distribution is not known yet. To this end, we investigate

empirically the posterior failure probability distribution by several numerical examples in Section

7.5. By applying Fubini’s theorem, the posterior mean and variance of Pf can be derived as:

mP̂f,n
=Eϖ

[
P̂f,n(ϖ)

]
=
∫

Ω

∫
X

În(ϖ, x)fX(x)dxP (dϖ)

=
∫

X

∫
Ω

În(ϖ, x)fX(x)P (dϖ) dx

=
∫

X
Eϖ

[
În(ϖ, x)

]
fX(x)dx

=
∫

X
Φ

(
−mĝn(x)
σĝn(x)

)
fX(x)dx,

(7.23)
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σ2
P̂f,n

=Vϖ

[
P̂f,n(ϖ)

]
=Eϖ

[(
P̂f (ϖ) − Eϖ

[
P̂f (ϖ)

])2
]

=Eϖ

[(∫
X

În(ϖ, x)fX(x)dx −
∫

X
Eϖ

[
În(ϖ, x)

]
fX(x)dx

)2
]

=
∫

Ω

(∫
X

(
În(ϖ, x) − Eϖ

[
În(ϖ, x)

])
fX(x)dx

)2
P (dϖ)

=
∫

Ω

∫
X

∫
X

(
În(ϖ, x) − Eϖ

[
În(ϖ, x)

]) (
În(ϖ, x′) − Eϖ

[
În(ϖ, x′)

])
fX(x)fX(x′)dxdx′P (dϖ)

=
∫

X

∫
X

∫
Ω

(
În(ϖ, x) − Eϖ

[
În(ϖ, x)

]) (
În(ϖ, x′) − Eϖ

[
În(ϖ, x′)

])
fX(x)fX(x′)P (dϖ) dxdx′

=
∫

X

∫
X
Eϖ

[(
În(ϖ, x) − mÎn

(x)
) (

În(ϖ, x′) − mÎn
(x′)

)]
fX(x)fX(x′)dxdx′

=
∫

X

∫
X

cÎn
(x, x′)fX(x)fX(x′)dxdx′

=
∫

X

∫
X

[
F
(
[0 0]; mĝn(x, x′), Cĝn(x, x′)

)
− Φ

(
−mĝn(x)
σĝn(x)

)
Φ

(
−mĝn(x′)
σĝn(x′)

)]
fX(x)fX(x′)dxdx′

=
∫

X

∫
X

F
(
[0 0]; mĝn(x, x′), Cĝn(x, x′)

)
fX(x)fX(x′)dxdx′ −

(∫
X

Φ

(
−mĝn(x)
σĝn(x)

)
fX(x)dx

)2

=
∫

X

∫
X

F
(
[0 0]; mĝn(x, x′), Cĝn(x, x′)

)
fX(x)fX(x′)dxdx′ − m2

P̂f,n
,

(7.24)

where Vϖ [·] denotes the variance operation taken over Ω. The posterior distribution P̂f reflects

our uncertainty about Pf , which arises from the discretization error resulting from the fact that

the g-function is only observed at a finite number of discrete locations. From this perspective,

the proposed BFPI framework offers a principled approach to quantifying and propagating the

numerical uncertainty behind the failure probability. Once given the data DDD , the posterior mean

mP̂f,n
is a natural estimate for the failure probability Pf , while the posterior variance σ2

P̂f,n
can

measure our uncertainty about the estimate.

Remark 2. The posterior mean function mÎn
(x) of the failure indicator function I (defined

in Eq. (7.18)) is the same as that given in our recent work [22]. In that work, we also derived the

closed-form expressions of the posterior variance function of I and an upper bound of the posterior

covariance cÎn
(x, x′) (Eq. (7.19)) by using Cauchy-Schwarz inequality.

Remark 3. The posterior mean mP̂f,n
of the failure probability Pf (defined in Eq. (7.23)) was

previously given in [22]. In additional, an upper bound of the posterior variance σ2
P̂f,n

(Eq. (7.24))

was derived based on the upper bound of cÎn
(x, x′).
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Remark 4. Numerical integration techniques are required to evaluate mP̂f,n
and σ2

P̂f,n
due to

their analytical intractability. It is interesting that in our context the failure probability estimate

mP̂f,n
(Eq. (7.23)) is a integral over the whole domain X (both failure and safe domains), which is

in contrast to the classical definition of failure probability (Eq. (7.1)) that is essentially a integral

over the failure domain only. The former could be explained by the fact that Eq. (7.23) accounts

for the numerical uncertainty at any x ∈ X no matter where it is. Besides, if we assume that the

numerical uncertainty approaches to zero (i.e., σ2
P̂f,n

(x) → 0+ and mP̂f,n
(x) → g(x)), then there

exits Φ
(−mĝn (x)

σĝn (x)

)
→ I(x). In this regard, Eq. (7.1) can be seen as a limiting case of Eq. (7.23)

when the numerical uncertainty disappears.

Remark 5. From the Bayesian perspective, the computation of failure probability estimate

can be interpreted as a process aiming at reducing the numerical uncertainty that prevents us

from inferring the true value. Therefore, an optimal inference about the failure probability requires

an optimal decision on where to observe the g-function that leads to maximum reduction of the

numerical uncertainty on the failure probability with as less g-function evaluations as possible.

7.3 Parallel adaptive-Bayesian failure probability learning

This section presents a novel method, termed ‘parallel adaptive–Bayesian failure probability

learning’ (PA-BFPL), to make inference about the failure probability. The proposed method builds

upon the BFPI framework, and aims at producing a reasonably accurate failure probability estimate

using a limited number of observations from the g-function. This objective is achieved mainly by

developing a variance-amplified importance sampling (VAIS) method and an adaptive parallel active

learning (APAL) strategy, as described in what follows.

7.3.1 Variance-amplified importance sampling

In the BFPI framework, one open task consists of approximating the analytically intractable

integrals (mP̂f,n
in Eq. (7.23) and σ2

P̂f,n
in Eq. (7.24)). The most straightforward solution would

be to use the crude MCS due to its broad applicability. However, a considerably large number of

samples are needed to achieve a reasonable accuracy in certain conditions, which can make each

iteration of our method time-consuming and even cause the problem of computer memory loss.

Taking mP̂f,n
as an example, Φ

(−mĝn (x)
σĝn (x)

)
might be small where fX(x) is large and vice versa. In
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these cases, directly sampling according to fX(x) could be less efficient. If we turn to importance

sampling, the optimal sampling density should be proportional to Φ
(−mĝn (x)

σĝn (x)

)
fX(x), but is not

practically achievable since it requires knowledge of the quantity we are trying to estimate. Similar

problems also exist for σ2
P̂f,n

, and we will not repeat too much herein.

The present study proposes a VAIS technique to assess mP̂f,n
and σ2

P̂f,n
. Let us reformulate

mP̂f,n
and σ2

P̂f,n
as follows:

mP̂f,n
=
∫

X
Φ

(
−mĝn(x)
σĝn(x)

)
fX(x)dx

=
∫

X
Φ

(
−mĝn(x)
σĝn(x)

)
fX(x)
hX(x)hX(x)dx,

(7.25)

σ2
P̂f,n

=
∫

X

∫
X

[
F
(
[0 0]; mĝn(x, x′), Cĝn(x, x′)

)
− Φ

(
−mĝn(x)
σĝn(x)

)
Φ

(
−mĝn(x′)
σĝn(x′)

)]
fX(x)fX(x′)dxdx′

=
∫

X

∫
X

[
F
(
[0 0]; mĝn(x, x′), Cĝn(x, x′)

)
− Φ

(
−mĝn(x)
σĝn(x)

)
Φ

(
−mĝn(x′)
σĝn(x′)

)]
fX(x)fX(x′)
hX(x)hX(x′)hX(x)hX(x′)dxdx′,

(7.26)

where hX(x) is the so-called ‘importance sampling density’ (ISD). In this study, we do not intend to

approach a nearly optimal ISD (whose formulation may be challenging), yet a simple but effective

one. The concept of increasing the variances of random variables has been used in the different

contexts, such as [25–28]. In particular, it has been reported in [29] that such an approach was used

within Importance Sampling as early as 1983. Following those ideas, the ISD hX(x) is simply con-

structed by amplifying the standard deviations σX (or equivalently variances σ2
X ) of fX(x) (keep

the mean mX unchanged), i.e., hX(x) = fX(x; mX , ασX), where α ≥ 1 denotes the amplification

factor of standard deviation. Note that for any Xi that follows a uniform distribution, its standard

deviation does not need to be enlarged. Besides, one can use different amplification factors for

different random variables, but for the sake of convenience we just consider a single amplification

factor in this work. The unbiased VAIS estimators of mP̂f,n
and σ2

P̂f,n
are simply given as their

sample means:

m̂P̂f,n
= 1

N1

N1∑
i=1

[
Φ

(
−mĝn(x(i))
σĝn(x(i))

)
fX(x(i))
hX(x(i))

]
, (7.27)
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σ̂2
P̂f,n

= 1
N2

N2∑
j=1

[
F
(
[0 0]; mĝn(x(j), x′,(j)), Cĝn(x(j), x′,(j))

)
− Φ

(
−mĝn(x(j))
σĝn(x(j))

)
Φ

(
−mĝn(x′,(j))
σĝn(x′,(j))

)]

× fX(x(j))fX(x′,(j))
hX(x(j))hX(x′,(j))

,

(7.28)

where
{

x(i)
}N1

i=1
is a set of N1 random samples generated according to hX(x);

{
x(j)

}N2

j=1
and{

x′,(j)
}N2

j=1
are two sets of N2 random samples generated according to hX(x) and hX(x′) respec-

tively. The variances of the VAIS estimators m̂P̂f,n
and σ̂2

P̂f,n
are given by:

Var
[
m̂P̂f,n

]
= 1

N1(N1 − 1)

N1∑
i=1

[
Φ

(
−mĝn(x(i))
σĝn(x(i))

)
fX(x(i))
hX(x(i))

− m̂P̂f,n

]2

, (7.29)

Var
[
σ̂2

P̂f,n

]
= 1

N2(N2 − 1)

N2∑
j=1

{[
F
(
[0 0]; mĝn(x(j), x′,(j)), Cĝn(x(j), x′,(j))

)
− Φ

(
−mĝn(x(j))
σĝn(x(j))

)
Φ

(
−mĝn(x′,(j))
σĝn(x′,(j))

)]

× fX(x(j))fX(x′,(j))
hX(x(j))hX(x′,(j))

− σ̂2
P̂f,n

}2

,

(7.30)

where Var [·] means to take variance of its argument.

When α = 1, the proposed VAIS method reduces to crude MCS. In case that α > 1, hX(x)

can be viewed as an auxiliary sampling density formed by redistributing the density of fX(x).

Typically, hX(x)(α > 1) is more dispersedly distributed than fX(x) over X . As an illustration,

Fig. 7.2 compares the density change of a standard normal density φ(x) before and after its variance

is amplified, where two amplification factors are considered, i.e., α = 1.5, 2.0. It is shown that as α

increases, hX(x) becomes more flatter than φ(x), and hence enlarges density where φ(x) is small,

while lowers the density where φ(x) is large. Consequently, the variance amplification will have

an effect on random sampling. To be specific, the random samples generated from hX(x)(α > 1)

are more dispersedly distributed than those of fX(x) over X . If we take fX(x) ∼ φ(x1)φ(x2) as

an example, the random samples generated before and after variance amplification are depicted

in Fig. 7.3, where two cases (i.e., α = 1.5, 2.0) are also considered. As can been seen, as the

amplification factor increases, the random samples will reach the area where fX(x) is relatively

small. Thus, sampling from hX(x) instead of fX(x) could alleviate some of limitations discussed

at the beginning of this subsection. The effect of variance amplification on random sampling is

also useful for our APAL strategy (see next subsection). The optimal α values for m̂P̂f,n
and σ̂2

P̂f,n
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could be determined by minimizing their corresponding variances (Eqs. (7.29) and (7.30)), which,

however, is still a tricky task. To determine the appropriate sample sizes N1 and N2 for m̂P̂f,n
and

σ̂2
P̂f,n

, one can first assign them two small values, and then gradually increase the sample sizes until

Var
[
m̂P̂f,n

]
and Var

[
σ̂2

P̂f,n

]
are acceptable.
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Figure 7.2: Illustration the effects of variance amplification from density change.

(a) (b) (c)

Figure 7.3: Illustration the effects of variance amplification from random sampling: (a) 106 random
samples drawn from fX(x) ∼ φ(x1)φ(x2) ; (b) 106 random samples drawn from hX(x) (α = 1.5);
(c) 106 random samples drawn from hX(x) (α = 2.0).

Remark 6. As a common limitation in Importance Sampling [30], the proposed VAIS method

could not be directly applied to high-dimensional problems (e.g., larger than 20). Besides, a premise

of the proposed VAIS method is that all random variables process variances. In case that there

exist a random variable without variance (e.g., Cauchy distribution), some pre-processing steps are

needed in order to apply the VAIS method, e.g., transforming it to a random variable with variance

if possible.
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Remark 7. In [1], the authors developed a importance ball sampling (IBS) method to ap-

proximate mP̂f,n
and an upper bound of σ2

P̂f,n
. However, the method is biased in nature and has to

work in the standard normal space.

Remark 8. It is interesting to note that VAIS itself is a purely frequentist approach. As in

many Bayesian methodologies, the frequentist methods also play a significant role [31].

7.3.2 Adaptive parallel active learning strategy

Another issue to be solved in the BFPI framework is how to select design points XXX , which is

commonly known as design of experiments (DOE). Although the BFPI framework itself does not

impose any restrictions on the DOE, an optimal DOE can yield an accurate estimate for the failure

probability with a minimum number of g-function evaluations. In view of this, we propose an APAL

strategy to sequentially select a batch of points, which attempts to make the fullest possible use of

all previous g-function evaluations and parallel computing simultaneously. The core of the APAL

strategy is a weighted clustering technique.

Considering the posterior distribution ĝn defined in Eq. (7.13), the probability of making a

wrong prediction on the sign of g at x is given by [20]:

π(x) = Φ

(
−|mĝn(x)|

σĝn(x)

)
. (7.31)

For simplicity, we refer to π(x) as the probability of misclassification (POM). The well known U

function [20] (i.e., U(x) = |mĝn (x)|
σĝn (x) ) is proposed based on the concept of POM, and the best next

point to evaluate on the g-function is identified by minimizing the U function (equivalently maximiz-

ing the POM). However, only the misclassification probability at a single point that minimizes the

U function is considered, without taking other points and the probability distribution information

of X into account. This may lead to underutilization of useful information and is not suitable for

parallel distributed processing.

To overcome these limitations, a new concept, called ‘expected misclassification probability’

(EMP), is first introduced as follows:

Π = EX [π(X)] =
∫

X
Φ

(
−|mĝn(x)|

σĝn(x)

)
fX(x)dx, (7.32)
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which is actually defined as an expectation of the POM π(x) under the density fX(x). Hence, the

EMP can be interpreted as the posterior expected probability that ĝn makes a mistake on the sign

of g. In order to have an accurate failure probability estimate, an alternative way is to reduce Π

instead of the maximum value of π(x).

Let us rewrite Π with respect to hX(x) as:

Π =
∫

X
Φ

(
−|mĝn(x)|

σĝn(x)

)
fX(x)
hX(x)hX(x)dx. (7.33)

To reduce Π defined in Eq. (7.33), one potential solution is to find out the locations that contribute

the most to Π. Here, we introduce a measure (i.e., the proposed learning function), called ‘expected

misclassification probability contribution’ (EMPC), as follows:

EMPC(x) = Φ

(
−|mĝn(x)|

σĝn(x)

)
fX(x)
hX(x) . (7.34)

It is straightforward to observe that the EMPC function provides a natural measure of the contri-

bution of the misclassification probability at x to Π, where x ∼ hX(x). Besides, one should note

that the probability density fX(x) is properly included in the EMPC function.

Now, we consider the problem of how to identify a batch of informative points among a set of

points generated from hX(x), e.g.,
{

x(l)
}N3

l=1
. This objective is realized by developing a weighted

clustering algorithm, called ‘EMPC-weighted k-means clustering’. As its name indicates, the pro-

posed algorithm actually combines EMPC with k-means clustering [32]. As mentioned before, the

EMPC function can measure the contribution of the misclassification probability at x(l) to Π.

On the other hand, the k-means clustering algorithm can partition a dataset into k clusters that

are represented by k centroids. However, the conventional k-means clustering algorithm does not

account for the weight information of data. The proposed EMPC-weighted k-means clustering en-

ables to identify k centroids by using the data
{

x(l)
}N3

l=1
while considering their EMPC values as

weights. The k centroids correspond to the batch of points we wish to select. Once the k points are

obtained, computation of the corresponding g-function values can be distributed on k CPU cores

simultaneously. A compact pseudocode of the proposed algorithm is given in Algorithm 5.

The reason why we introduce the ISD hX(x) to Eq. (7.33) (and hence in Eq. (7.34)) is because

with the same sample size hX(x) can generate much more dispersed samples than fX(x), making it
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Algorithm 5 Proposed EMPC-weighted k-means clustering algorithm

Input: The EMPC function, number of clusters k and dataset
{

x(l)
}N3

l=1

1. Initialization. Randomly choose k points from the dataset
{

x(l)
}N3

l=1
as the initial centroids,

denoted by S =
{

s(i)
}k

i=1
;

2. Assignment step. Assign each point among the dataset
{

x(l)
}N3

l=1
to the nearest cluster:

that with the least squared Euclidean distance. The i-th cluster is denoted as R(i) =
{

r
(i)
j

}N(i)

j=1
,

where r
(i)
j is the j-th point in the i-th cluster and N (i) is the number of points in the i-th cluster;

3. Update step. The i-th centroid is updated by the EMPC-weighted mean of the points
belonging to i-th cluster:

s(i) =
∑N(i)

j=1 EMPC(r(i)
j ) × r

(i)
j∑N(i)

j=1 EMPC(r(i)
j )

4. Iteration. Repeat steps 2 and 3 until the centroids do not change or the pre-specified number
of iterations is reached.
Output: k centroids

possible to reach the failure domain characterized with a small failure probability. Besides, by doing

so, the random samples generated for evaluating, e.g., m̂P̂f,n
, can be reused in the proposed weighted

clustering algorithm. To illustrate the proposed weighted clustering method, let us consider the case

that: EMPC(x) = Φ
(
−
(
x2

1 + x4
2 − 4

)2) fX(x)
hX(x) , fX(x) ∼ φ(x1)φ(x2), α = 1.5, N3 = 106 and k = 5.

As shown in Fig. 7.4, the identified points are sparsely located in the region with relatively large

EMPC values, and hence informative in our context.
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Figure 7.4: Five points identified by the proposed weighted clustering algorithm: the colormap
represents the EMPC values and the pentagrams denote the identified centroids.
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Remark 9. For reducing the numerical uncertainty of P̂f,n(ϖ), one obvious way is to minimize

its variance σ2
P̂f,n

. However, the variance itself is analytically intractable, in contrast to the proposed

EMPC function.

Remark 10. The basic idea of proposed APAL is similar to the one in [1], while different

learning functions are used.

7.3.3 Numerical implementation procedure

The numerical implementation procedure of the proposed PA-BFPL consists of the following

main steps:

Step 1: Generate samples according to the ISD hX(x)

In order to approximate mP̂f,n
and σ2

P̂f,n
by the proposed VAIS method, random samples need

to be generated according to the ISD hX(x). First, draw a set of N1 random samples from h
(1)
X (x)

(that corresponds to α1), denoted by
{

x(i)
}N1

i=1
. Then, draw two sets of N2 random samples from

h
(2)
X (x) and h

(2)
X (x′) (that correspond to α2) respectively, denoted by

{
x(j)

}N2

j=1
and

{
x′,(j)

}N2

j=1
.

The reason why we introduce two amplification factors α1 and α2 is because σ2
P̂f,n

is much more

time consuming to evaluate than mP̂f,n
. By doing so, we can use a larger α2 and hence a smaller

N2 for σ2
P̂f,n

in order to save computational time. Once α1 and α2 are properly chosen, one can

specify N1 and N2 either adaptively or as large as possible.

Step 2: Obtain an initial dataset DDD from the g-function

To perform the proposed PA-BFPL method, an initial dataset observed from the g-function is

required. First, generate a set of n0 samples from fX(x) by using Latin hypercube sampling (LHS),

which is denoted by XXX =
{

x(l)
}n0

l=1
. Then, these points are evaluated on the g-function in parallel,

and the corresponding observations are denoted by YYY =
{

y(l)
}n0

l=1
with y(l) = g(x(l)). At last, the

initial dataset is constructed by DDD = {XXX ,YYY }. Let n = n0.

Step 3: Compute the posterior mean and variance of Pf

The posterior distribution of g conditional on DDD can be inferred as Eq. (7.13), which mainly

involves learning the hyper-parameters using maximum likelihood estimation. This in turn implies

posterior distributions over I and Pf . The posterior mean mP̂f,n
and variance σ2

P̂f,n
are approximated

by the proposed VAIS method (Eqs. (7.27) and (7.28)) using samples
{

x(i)
}N1

i=1
,
{

x(j)
}N2

j=1
and
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{
x′,(j)

}N2

j=1
, respectively.

Step 4: Check the stopping criterion

A stopping criterion that determines when to stop the iteration is needed. In this study, we

present a hybrid convergence measure consisting of two indices. The first index is defined as the

relative error of m̂P̂f,n
between two consecutive iterations:

e1 =
|m̂(q)

P̂f,n
− m̂

(q−1)
P̂f,n−k

|

m̂
(q−1)
P̂f,n−k

, (7.35)

where m̂
(q−1)
P̂f,n−k

and m̂
(q)
P̂f,n

are the estimated failure probabilities at the (q −1)-th and q-th iterations,

respectively. The first index e1 can measure the stability of the estimated failure probability. The

estimated posterior coefficient of variation (COV) of the failure probability is considered as the

second index such that:

e2 =
σ̂

(q)
P̂f,n

m̂
(q)
P̂f,n

, (7.36)

where m̂
(q)
P̂f,n

and σ̂
(q)
P̂f,n

represent the estimated posterior mean and standard deviation of the failure

probability at the q-th iteration. The second index e2 implies the level of epistemic uncertainty of

the failure probability estimate. Based on these two indices, this step proceeds as follows:

If both e1 < ϵ1 and e2 < ϵ2 are satisfied twice in succession, go to Step 6; Else, go Step

5. Here ϵ1 and ϵ2 are two user-specified thresholds. ‘Twice in succession’ is adopted here to avoid

possible fake convergence.

Step 5: Enrich the dataset by the proposed APAL

This stage consists of identifying k new points XXX + =
{

x+,(i)
}k

i=1
from

{
x(i)

}N1

i=1
using the

proposed APAL (i.e., EMPC-weighted k-means clustering). Then, the g-function is evaluated in

parallel at XXX + to produce the corresponding observations YYY + =
{

y+,(i)
}k

i=1
with y+,(i) = g(x+,(i)).

Finally, the previous dataset is enriched by DDD+ =
{
XXX +,YYY +

}
, i.e., DDD = DDD ∪ DDD+. Let n = n + k,

and go to Step 3.

Step 6: End the algorithm

The proposed method stops and the last failure probability estimate is considered as the result

of the method.
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There remain several parameters in the proposed algorithm to be specified. In all numer-

ical examples of this study, unless otherwise specified these parameters except for k are set to:

N1 = 106, N2 = 5 × 104, α1 = 1.6, α2 = 2.1, n0 = 10, ϵ1 = 15% and ϵ2 = 5%. The parameter k will

be varied to test the performance of the proposed method.

7.4 Numerical examples

The performance of the proposed PA-BFPL method will be illustrated in this section by means

of four numerical examples. These examples cover a variety of problems with varying dimensions,

non-linearity and failure probabilities, etc. The reference results for the target failure probabilities

are provided by MCS when there is no (semi-) analytical solution. For comparison, AK-MCS

[20], Active Learning Probabilistic Integration (ALPI) [22], Active learning Kriging Markov Chain

Monte Carlo (AK-MCMC) [33] and other methods are also considered if applicable. In particular,

the active learning reliability (ALR) method in UQLab (version 2.0.0) [34], denoted as ALR in

UQLab 2.0.0, is compared to the proposed method in all four numerical examples. If not further

specified, the ALR method runs with its default setting [35]. The efficiency of these methods is

measured by the number of iterations Niter, the total number of g-function calls Ncall, while the

accuracy is measured by the failure probability estimate P̂f and its COV denoted by COV
[
P̂f

]
.

Except for MCS and the (semi-) analytical method, these performance measures are estimated from

the average results over 10 independent runs unless otherwise specified.

7.4.1 Example 1: A test problem with four beta points

The first example considers a test problem with multiple beta points, which is modified from

[36]. The performance function is given by:

Y = g (X1, X2) = β2 − |X1 · X2|, (7.37)

where β is a constant parameter, specified as 3; X1 and X2 are two standard normal variables. It

is easy to know that the limit state surface g (x1, x2) = 0 has four beta points: (β, β), (−β, β),

(β, −β) and (−β, −β). Another characteristic of the problem is that the semi-analytic formula of
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the failure probability can be derived as:

Pf = 1 − 2
π

∫ β2

0
K0 (u) du, (7.38)

where K0(·) is the modified Bessel function of the second kind of order zero. By applying some

numerical integration techniques, it is trivial to obtain the result of Eq. (7.38) with sufficient

accuracy.

The proposed method with different k is implemented to assess the failure probability, together

with several other existing methods. The results are summarized in Table. 7.1. It can be seen

that the failure probability provided by the the semi-analytic formula accords well with that of

MCS, and hence we take 3.09 × 10−5 as the reference result. The proposed method is able to yield

unbiased estimates with COVs less than 3%. The two AK-MCS methods are less accurate than

the proposed method in terms of the average failure probabilities and their COVs. On the other

hand, the proposed method greatly outperforms the non-parallel counterparts (i.e., AK-MCS+U

[20], AK-MCS+EFF [20] and AK-MCMC [33]) in terms of Niter, especially compared with AK-

MCMC. This implies that the proposed method can be much more efficient than those non-parallel

counterparts when parallel computing is available. When it comes to the parallel counterpart, i.e.,

ALR in UQLab 2.0.0 [35], the proposed method needs slightly more computational efforts than it,

regarding both Niter and Ncall. However, the ALR method produces obvious biases for the failure

probabilities for all three cases (i.e., k = 5, 10, 15). For k = 10, 15, the COVs of the ALR method

even reach up to 38.32% and 34.06% respectively. The reason for why the biased results are yielded

could be due to the limitation of subset simulation used in ALR, as has been revealed in [36]. In

view of these, the proposed method also shows better overall performance than the ALR method

in this example.

For illustration purposes, Fig. 7.5 depicts the identified points resulted from an exemplary run

of the proposed method (k = 10), along with the true limit state. It is shown that as the iteration

goes on, the points identified by the proposed method gradually move towards the vicinity of the

true limit state. Moreover, the selected points, at least most of them, are sparsely distributed in

the design space, but slightly denser around the true beta points. These results imply that the

proposed APAL strategy are informative for accurately inferring the failure probability.
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Table 7.1: Results for Example 1 by different methods.

Method Niter Ncall P̂f COV[P̂f ]/%
Semi-analytic - - 3.09 × 10−5 -
MCS - 109 3.09 × 10−5 0.57
AK-MCS+U 1 + 41.50 = 42.50 12 + 41.50 = 53.50 3.13 × 10−5 7.15
AK-MCS+EFF 1 + 45.90 = 46.90 12 + 45.90 = 57.90 3.03 × 10−5 6.65
AK-MCMC 1 + 100.90 = 101.90 12 + 100.90 = 112.90 3.09 × 10−5 0.72

ALR in UQLab 2.0.0
k = 5 1 + 5.20 = 6.20 10 + 26.00 = 36.00 1.64 × 10−5 3.80
k = 10 1 + 4.30 = 5.30 10 + 43.00 = 53.00 2.16 × 10−5 38.32
k = 15 1 + 3.70 = 4.70 10 + 55.50 = 65.50 2.19 × 10−5 34.16

Proposed PA-BFPL
k = 5 1 + 7.40 = 8.40 10 + 37.00 = 47.00 3.07 × 10−5 2.55
k = 10 1 + 5.20 = 6.20 10 + 52.00 = 62.00 3.08 × 10−5 1.41
k = 15 1 + 4.80 = 5.80 10 + 72.00 = 82.00 3.07 × 10−5 0.97
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Figure 7.5: Selected points by the proposed method (k = 10) for Example 1.

7.4.2 Example 2: A series system with four branches

The second example consists of a series system with four branches, which has been extensively

studied as a benchmark [9, 20, 22]. The performance function is given by:

Y = g (X1, X2) = min



a + (X1−X2)2

10 − (X1+X2)√
2 ,

a + (X1−X2)2

10 + (X1+X2)√
2 ,

(X1 − X2) + b√
2 ,

(X2 − X1) + b√
2

, (7.39)

where a and b are two constant parameters, which can be used to adjust the failure probability; X1

and X2 are normally distributed with zero means and unit variances. In the following, two cases

247



CHAPTER 7. BAYESIAN PERSPECTIVE FOR STRUCTURAL RELIABILITY ANALYSIS

are considered.

Case I: a = 3 and b = 7

In this case, the target failure probability is in the order of magnitude 10−3, as indicated by the

reference result from MCS (i.e., P̂f = 2.22 × 10−3 with COV
[
P̂f

]
= 0.21%). The proposed method

is also compared with several other methods, as listed in Table 7.2. It is found that all methods can

give close average failure probabilities to the reference result with COVs less than 5%, except for

ALR that processes COVs larger than 10%. The latter is due to the fact that ALR cannot always

identify all failure domains. As for Niter, the proposed method is significantly advantageous against

these non-parallel methods (i.e., AK-MCS+U [20], AK-MCS+EFF [20] and ALPI [22]), and still

fairly better than these parallel methods (i.e., ISKRA (KB) [37], ISKRA (k-means) [37] and ALR

[35]). In addition, the average number of g-function calls required by the proposed method is also

less than the other methods, especially when k is small, say k = 5. These results demonstrate the

accuracy and efficiency of the proposed method in this case.

Table 7.2: Results of Example 2 (Case I) by different methods.

Method Niter Ncall P̂f COV[P̂f ]/%
MCS - 108 2.22 × 10−3 0.21
AK-MCS+U 1 + 82.20 = 83.20 12 + 82.20 = 94.20 2.22 × 10−3 1.35
AK-MCS+EFF 1 + 103.20 = 104.20 12 + 103.20 = 115.20 2.21 × 10−3 1.20
ALPI 1 + 70.70 = 71.70 12 + 70.70 = 72.70 2.22 × 10−3 2.25
ISKRA (KB) [37] k = 12 1 + 6.68 = 7.68 12 + 80.16 = 92.16 2.23 × 10−3 1.50
ISKRA (k-means) [37] k = 12 1 + 8.62 = 9.62 12 + 103.44 = 115.44 2.22 × 10−3 1.50

ALR in UQLab 2.0.0
k = 5 1 + 10.90 = 11.90 10 + 54.50 = 64.50 2.05 × 10−3 11.95
k = 12 1 + 6.40 = 7.40 10 + 76.80 = 86.80 2.07 × 10−3 18.55
k = 15 1 + 5.20 = 6.20 10 + 78.00 = 88.00 1.94 × 10−3 17.92

Proposed PA-BFPL
k = 5 1 + 6.50 = 7.50 10 + 32.50 = 42.50 2.13 × 10−3 3.07
k = 12 1 + 4.30 = 5.30 10 + 51.60 = 61.60 2.24 × 10−3 1.59
k = 15 1 + 3.40 = 4.40 10 + 51.00 = 61.00 2.22 × 10−3 1.08

Note: The results of ISKRA (KB) and ISKRA (k-means) are directly taken from [37], and they were averaged
over 50 independent runs.

Fig. 7.6(a) shows the points selected by the proposed method (k = 10) with an exemplary run.

It is observed that most of the points identified from iterations 1-5 are scattered in the vicinity of

true limit state, indicating the effectiveness of the proposed APAL strategy.

Case II: a = 5 and b = 9

The second case is more challenging than the first one since the target failure probability is

relatively small, i.e., in the order of 10−6 as provided by MCS with 1010 samples. Table 7.3 compares
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the results from MCS, AK-MCMC [33], ALR [35] and the proposed method. As can be seen, fairly

accurate results for such a small failure probability can still be produced by the proposed method

with different k. Besides, the proposed method requires far less Niter and Ncall than those of AK-

MCMC, especially for Niter. The ALR method still produces biased results with considerably large

COVs in this case, though it requires similar Niter and Ncall to those the proposed method. The

results indicate that the proposed method is accurate and efficient in such a case.

Table 7.3: Results of Example 2 (Case II) by different methods.

Method Niter Ncall P̂f COV[P̂f ]/%
MCS - 1010 7.09 × 10−6 0.38
AK-MCMC 1 + 127.50 = 128.50 12 + 127.50 = 139.50 7.10 × 10−6 1.37

ALR in UQLab 2.0.0
k = 5 1 + 9.90 = 10.90 10 + 49.50 = 59.50 4.82 × 10−6 79.59
k = 10 1 + 6.70 = 7.70 10 + 67.00 = 77.00 4.42 × 10−6 81.79
k = 15 1 + 5.30 = 6.30 10 + 79.50 = 89.50 6.50 × 10−6 49.85

Proposed PA-BFPL
k = 5 1 + 10.00 = 11.00 10 + 50.00 = 60.00 7.04 × 10−6 2.17
k = 10 1 + 5.80 = 6.80 10 + 58.00 = 68.00 7.13 × 10−6 2.01
k = 15 1 + 5.10 = 6.10 10 + 76.50 = 86.50 7.06 × 10−6 1.20

Once again, we depict the points selected at different stages of the proposed method (k = 10)

via an exemplary run in Fig. 7.6(b). One can see that the identified points gradually approach to

the four important parts of the true limit state that are relatively important for failure probability

estimation. This demonstrates the effectiveness of the proposed method.
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Figure 7.6: Selected points by the proposed method (k = 10) for Example 1: (a) Case I; (b) Case
II.
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7.4.3 Example 3: A slender column

The third example considers a sufficiently slender column subject to an axial compressive force

[38], as shown in Fig. 7.7. The performance function corresponding to the buckling failure is given

by:

Z = g(X) = π2E

L2

{
π

64
[
(D + T )4 − D4

]}
− P, (7.40)

where X = [E, D, T, L, P ], as listed in Table 7.4.

A A

A-A

T

F

Figure 7.7: A slender column subject to an axial compressive force.

Table 7.4: Random variables of Example 3.

Variable Description Distribution Mean Standard deviation
E/Gpa Young’s modulus Normal 203 30.45
D/mm Dimension of the section Normal 23.5 2.0
T/mm Dimension of the section Normal 4 1
L/mm Height of the column Normal 2500 50
P/N Axial load Lognormal 1000 200

The proposed method is compared in Table 7.5 with several other methods, i.e., MCS, AK-

MCS+U [20], ALPI [22] and ALR [35]. The MCS with 107 samples can produce a failure probability

estimate with a very small COV, and hence it is taken as a reference. The results of P̂f and COV[P̂f ]

show that AK-MCS+U, ALPI, ALR and the proposed method have similar accuracy. However, the

proposed method is much more efficient than AK-MCS+U, ALPI and ALR in terms of Niter.

Besides, when k = 5 the proposed method also requires less calls to the g-function in average than
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all those methods being compared. Overall, this example demonstrates the potential high-efficiency

advantage of PA-BFPL when parallel computing facilities are available.

Table 7.5: Reliability results of Example 3 by different methods.

Method Niter Ncall P̂f COV[P̂f ]/%
MCS - 107 5.80 × 10−3 0.41
AK-MCS+U 1 + 68.00 = 69.00 12 + 68.00 = 80.00 5.76 × 10−3 1.74
ALPI 1 + 40.50 = 41.50 12 + 40.50 = 42.50 5.71 × 10−3 1.56

ALR in UQLab 2.0.0
k = 5 1 + 17.10 = 18.10 10 + 85.50 = 95.50 5.97 × 10−3 1.79
k = 10 1 + 10.20 = 11.20 10 + 102.00 = 112.00 5.90 × 10−3 3.08
k = 15 1 + 6.90 = 7.90 10 + 103.50 = 113.50 5.94 × 10−3 2.08

Proposed PA-BFPL
k = 5 1 + 5.40 = 6.40 10 + 27.00 = 37.00 5.71 × 10−3 1.05
k = 10 1 + 3.70 = 4.70 10 + 37.00 = 47.00 5.74 × 10−3 1.50
k = 15 1 + 3.00 = 4.00 10 + 45.00 = 55.00 5.77 × 10−3 0.97

7.4.4 Example 4: A transmission tower

To illustrate the practical applicability of the proposed method, a transmission tower structure

subject to horizontal loads (Fig. 7.8) is considered as the last example, which is modified from

[39]. The structure is modelled as a three-dimensional (3-D) truss using the finite element software

OpenSees. The finite element model consists of 24 joints and 80 truss members. As schematized

in Fig. 7.8(c), the constitute law of the material adopts the bi-linear model. Ten horizontal forces

along the x-axis are applied to the structure, which are shown in Fig. 7.8(a) and 7.8(b). The

performance function is defined as:

Y = g(X) = ∆ − U(P1, P2, P3, P4, P5, E, A, b, Fy), (7.41)

where U(·) denotes the horizontal displacement at the top of the structure along the x-axis, which

is a function of nine random variables (see Table 7.6); ∆ is the threshold of U , specified as 50 mm

in this study.

In this example, the reference failure probability is 6.25 × 10−4 with COV being 1.26%, which

given by MCS with 107 samples. As summarized in Table 7.7, the proposed method is compared

with several other methods, i.e., AK-MCS+U [20], ALPI [22], and ALR [35]. One can see that

AK-MCS+U, ALPI and the proposed method can produce fairly good average failure probability

estimates with small COVs (say less than 4%). However, the ALR method produces biased results

for k = 5, 10, 15. When it comes to the computational efficiency, the proposed method outperforms
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Figure 7.8: A transmission tower subject to horizontal loads: (a) 3-D finite element model; (b)
Schematic diagram of load direction; (c) Schematic diagram of bi-linear constitute law.

other methods in terms of the average number of iterations Niter. In addition, when k is small (e.g.,

5), the average total number of calls Ncall required by PA-BFPL is also slightly less than that of

ALPI, and far less than those of AK-MCS+U and ALR.

7.4.5 Final remarks

As can be seen from the above numerical studies, the parameter k greatly affects the perfor-

mance of the proposed PA-BFPL method, especially for efficiency. Typically, the average number

of iterations decreases, while the average number of g-function evaluations when k increases from

5 to 15. However, this should not be regarded as a general conclusion because we only investigated

three cases for k in each example. As a rule of thumb, one can choose a small k for non-parallel

computing, whereas a large k when parallel computing is available.
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Table 7.6: Random variables of Example 4.

Variable Description Distribution Mean COV
P1/kN Horizontal load Lognormal 100 0.20
P2/kN Horizontal load Lognormal 80 0.20
P3/kN Horizontal load Lognormal 60 0.20
P4/kN Horizontal load Lognormal 40 0.20
P5/kN Horizontal load Lognormal 20 0.20
E/GPa Young’s modulus Normal 200 0.15
A/mm2 Cross-sectional area Normal 5000 0.15
Fy/MPa Yield stress Normal 400 0.15
b Strain-hardening ratio Normal 0.02 0.10

Table 7.7: Reliability results of Example 4 by different methods.

Method Niter Ncall P̂f COV[P̂f ]/%
MCS - 107 6.25 × 10−4 1.26
AK-MCS+U 1 + 68.00 = 69.00 12 + 113.80 = 125.80 6.17 × 10−4 1.83
ALPI 1 + 46.60 = 47.60 12 + 46.60 = 58.60 6.12 × 10−4 4.28

ALR in UQLab 2.0.0
k = 5 1 + 37.30 = 38.30 10 + 186.50 = 196.50 2.27 × 10−3 225.88
k = 10 1 + 18.80 = 19.80 10 + 188.00 = 198.00 2.50 × 10−2 215.52
k = 15 1 + 12.50 = 13.50 10 + 187.50 = 197.50 7.20 × 10−4 25.03

Proposed PA-BFPL
k = 5 1 + 6.80 = 7.80 10 + 34.00 = 44.00 6.32 × 10−4 3.34
k = 10 1 + 4.90 = 5.90 10 + 49.00 = 59.00 6.30 × 10−4 2.09
k = 15 1 + 4.70 = 5.70 10 + 70.50 = 80.50 6.25 × 10−4 1.78

Note: For most runs, the ALR method cannot converge even for Ncall > 200. For this reason, the
maximum value of Ncall is set to be 200 for k = 5, 10, while 205 for k = 15.

7.5 Numerical investigation on the posterior distribution of failure

probability

In addition to the posterior mean and variance, the posterior distribution of failure probability

could be of interest for a complete Bayesian framework. For example, one can offer a confidence

interval for the failure probability when the posterior distribution is available. However, it cannot

be obtained analytically according to its definition (Eq. (7.22)). In this section, we attempt to

numerically investigate the posterior distribution of failure probability through the four numerical

examples given in the preceding section.

According to the proposed VAIS method, Eq. (7.22) can be rewritten as follows:

P̂f,n(ϖ) =
∫

X
În(ϖ, x) fX(x)

hX(x)hX(x)dx. (7.42)
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The reformulation actually allows us to evaluate the above integral numerically as:

P̂f,n(ϖ) ≈ 1
N4

N4∑
i=1

În(ϖ, x(i)) fX(x(i))
hX(x(i))

hX(x(i)), (7.43)

where
{

x(i)
}N4

i=1
is a set of N4 random samples generated according to hX(x). Given that N4 is

sufficiently large, we can approximately generate random numbers for the posterior failure prob-

ability P̂f (ϖ) via Eq. (7.43). The key is to sample from correlated Bernoulli random variables{
În(ϖ, x(1)), În(ϖ, x(2)), · · · , În(ϖ, x(N4))

}
defined by Eq. (7.17). Nevertheless, this task is still

challenging, especially when N4 is large. For simplicity, the Bernoulli random variables are assumed

to be independent and it is shown from some numerical experiments that this assumption does

not affect our finial conclusion. Under these settings, posterior failure probability samples can be

generated at each step of the proposed PA-BFPL method. To limit the length of the paper, only

the results from the last step of the proposed method (an exemplary run, k = 10) are reported for

those four numerical examples. The number of posterior failure probability samples is set to be 103.

Other parameters are specified as: α = 2 and N4 = 5 × 105.

The results of the normality tests for the simulated data of the posterior failure probabilities are

depicted in Fig. 7.9. It is shown that the posterior failure probability samples can be well-modelled

by normal distributions for all the cases studied. The results indicate that the posterior distribution

of the failure probability might be approximated by a Gaussian distribution N (mP̂f,n
, σ2

P̂f,n
).

7.6 Concluding remarks

In the present paper, the task of failure probability estimation is interpreted from a perspective

of Bayesian inference, in contrast to the classical frequentist inference. The proposed Bayesian fail-

ure probability inference (BFPI) framework regards the discretization error as a kind of epistemic

uncertainty, and allows it to be properly modelled. To be specific, a prior Gaussian process is

assumed for the performance function, a posterior distribution is then derived for the performance

function, failure indicator function and failure probability conditional on observations arising from

evaluating the performance function at a set of points. Numerical investigation indicates that the

posterior failure probability could be approximated by a normal distribution. In addition, the paral-

lel adaptive Bayesian failure probability learning (PA-BFPL) method is developed to make inference
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(a) Example 1 (b) Case I of Example 2

(c) Case II of Example 2 (d) Example 3 (e) Example 4

Figure 7.9: Normality tests of the simulated data from the posterior failure probabilities: (a)
Example 1; (b) Case I of Example 2; (c) Case II of Example 2; (d) Example 3; (e) Example 4.

about the failure probability within the Bayesian framework in a parallel adaptive scheme. The

proposed PA-BFPL enables to make the fullest possible use of prior evaluations on the performance

function evaluation, and can take advantage of parallel computing. Compared to several existing

methods, the proposed method shows improved performance for structural reliability analysis re-

garding robustness, accuracy and efficiency. The advantage in computational efficiency is significant

especially when parallel computing facilities are available.

The proposed PA-BFPL method is supposed to work well in linear, weakly nonlinear and mod-

erately nonlinear problems with up to medium-dimensional random variables. For highly nonlinear

and/or high-dimensional problems, additional research efforts are still needed in the future.
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Abstract: Line sampling (LS) has proved to be a highly promising advanced simulation tech-

nique for assessing small failure probabilities. Despite the great interest in practical engineering

applications, many efforts from the research community have been devoted to improving the stan-

dard LS. This paper aims at offering some new insights into the LS method, leading to an inno-

vative method, termed ‘partially Bayesian active learning line sampling’ (PBAL-LS). The problem

of evaluating the failure probability integral in the LS method is treated as a Bayesian, rather

than frequentist, inference problem, which allows to incorporate our prior knowledge and model the

discretization error. The Gaussian process model is used as the prior distribution for the distance

function, and the posterior mean, and an upper bound of the posterior variance of the failure prob-

ability are derived. Based on the posterior statistics of the failure probability, we also put forward

a learning function and a stopping criterion, which enable us to use active learning. Besides, an

efficient algorithm is also designed to implement the PBAL-LS method, with the ability to automat-
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ically adjust the important direction and efficiently process the lines. Five numerical examples are

studied to demonstrate the performance of the proposed PBAL-LS method against several existing

methods.

Keywords: Line sampling; Failure probability; Bayesian inference; Active learning; Gaussian

process

8.1 Introduction

Structural reliability analysis has been recognized as a central task for the design and analysis

of safety-critical engineering systems in the presence of uncertainties, since the pioneering work of

Freudenthal [1] in 1956. For more than half a century, great efforts have been devoted to developing

suitable methods to assess the so-called failure probability. Since most engineering systems are

expected to be highly reliable, failure should be a rare event, and therefore the probability of

failure should be sufficiently small. Besides, very often the failure probability analysis involves

evaluating a computationally intensive model multiple times. Among various numerical methods

proposed in literature to address the computational challenges, stochastic simulation techniques hold

a prominent position. Examples of such techniques include the direct Monte Carlo simulation (MCS)

method [2], Importance Sampling [3, 4], Directional Sampling [5], Subset Simulation (SubSim) [6, 7],

Line Sampling (LS) [8, 9], etc. However, it is usually computationally expensive to directly apply

these stochastic simulation methods. This promotes the development of surrogate-assisted stochastic

simulation, e.g., efficient global reliability analysis [10] and AK-MCS (active learning Kriging-MCS)

[11]. In this study, we will restrict ourselves to the LS method and its variants.

As a stand-alone simulation technique, the preliminary idea of LS appeared in a talk [12], and

then evolved into an expanded version that is normally known to us in [8]. Note that a similar but

not quite the same method, known as axis orthogonal sampling, was introduced earlier in [13]. The

underlying idea behind LS is to employ lines, instead of random points, to probe the failure domain.

At implementation level, a so-called ‘important direction’ that points towards the failure domain

is first required to be identified, and then one has to solve a number of one-dimensional reliability

problems conditional on the random line samples parallel to the important direction. The failure

probability is finally obtained as an average of the failure probabilities along all the lines. The LS

method has proved to be a highly promising approach to evaluating small failure probabilities of
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weakly or moderately nonlinear problems, which can be found in a number of practical cases. It

has been successfully applied to various areas of engineering, such as aerospace [14, 15], automotive

[16], nuclear [17, 18] and civil engineering [19, 20], etc. Besides, the standard LS method is also

available in a general-purpose software suite for uncertainty quantification and risk management,

called COSSAN [21].

In recent years, increasing attention from the research community has been devoted to expand-

ing the application scope of the original LS method and further improving its performance. As

far as the first aspect is concerned, the standard LS method with possible modifications has been

used for non-original purposes, such as sensitivity analysis [22–25], estimation of failure probability

function or its bounds in the context of reliability-based design optimization [26] and polymorphic

uncertainty propagation [27–30]. The second aspect consists of, e.g., adapting the important di-

rection [27, 31], reformulating the LS estimator [31, 32], processing the lines sequentially [27] and

introducing multiple important directions [33]. To reduce the computational burden for expensive

reliability analysis, surrogate models, such as artificial neural network [18] and Gaussian process

(also known as Kriging) [34–36], have also been combined with LS. As a representative, the adaptive

Gaussian process regression - line sampling (APGR-LS) method [36] has shown to be capable of

assessing very small failure probabilities with a reduced number of performance function evalua-

tions. However, the practical performance of APGR-LS is dependent on a good important direction

that is determined by the first-order reliability method, which may suffer from non-convergence

and unnecessary computational demands. Besides, it also has a hard-to-tune parameter that is

closely related to the learning function and stopping criterion. One can refer to [37] for the recent

advancements of the LS method.

The objective of this work is to provide some new insights into the LS method mainly from the

perspective of Bayesian active learning, at least partially. More specifically, we develop an inno-

vative LS method, called ‘partially Bayesian active learning line sampling’ (PBAL-LS). The main

contributions of the present work can be summarized as follows. First, the problem of evaluating the

failure probability integral in the LS method is reinterpreted by a Bayesian, rather than frequentist,

inference problem for the first time. This will enable to incorporate our prior knowledge about

the function we wish to learn, which is not allowed for frequentist inference. Second, we present

a principled Bayesian approach that is able to reflect our epistemic uncertainty about the failure

probability stemming from the discretization error. In this context, the Gaussian process is used as
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a prior distribution. The induced posterior statistics of the failure probability is derived. Third, the

Bayesian approach is further cast in an active learning setting. Two essential components, namely

learning function and stopping criterion, are proposed based on the uncertainty representation of

the failure probability. Fourth, we also offer a tailored algorithm for implementing the PBAL-LS

in a strategic manner. Two novel features of the algorithm are the adaption of important direction

and efficient line processing.

The rest of the paper is structured as follows. Section 8.2 briefly reviews the standard LS

method, followed by a discussion on its limitations. Theoretical aspects of the proposed PBAL-LS

method are given in Section 8.3. In Section 8.4, we present the proposed PBAL-LS algorithm in a

step-by-step manner. Five benchmark examples are investigated in Section 8.5 to demonstrate the

developed method. The paper ends with some concluding remarks in Section 8.6.

8.2 Brief review of the standard line sampling

In this section, we revisit the standard LS method after introducing the failure probability

definition in the standard normal space. Besides, the key factors affecting the practical performance

of the standard LS method are also identified and discussed, as they motivate us to offer a partially

Bayesian active learning counterpart in Section 8.3 and its algorithm in Section 8.4.

8.2.1 Failure probability definition in standard normal space

Let X = X1, X2, · · · , Xd] ∈ X ⊆ Rd denote a vector of d physical random variables, which

are used to model the uncertain inputs of a performance function g : X → Y associated with the

behavior of a system. It is assumed that these physical random variables have a known jointed

probability density function (PDF), which is denoted as fX(x). In addition, a failure event occurs

whenever the performance function takes a value smaller than zero, i.e., y = g(x) < 0. It is

important to note that for most cases of practical interest the performance function is an expensive-

to-evaluate black box, and non-Gaussian inputs might be encountered. Due to the latter, without

loss of generality we further assume that X is a vector containing d non-Gaussian random variables.

As the LS method typically operates in the standard normal space, it is of necessity to transform the

vector X into a standard normal one U = [U1, U2, · · · , Ud] ∈ U ⊆ Rd using an appropriate method

(e.g., iso-probabilistic transformation, Nataf transformation and Rosenblatt transformation, etc.).
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Such transformation is denoted by U = T (X) : X → U , and hence the transformed performance

function with respect to U is given by Z = G(U) : U → Z such that G = g◦T −1, where T −1 : U → X

represents the inverse transformation. Under these settings, the failure probability PF can be defined

as:

PF =
∫
Rd

IG(u)φU (u)du, (8.1)

where IG(u) is the failure indicator function corresponding to G: IG(u) = 1 if G(u) < 0 and IG(u) =

0 otherwise; φU (u) is the joint PDF of U , i.e., φU (u) = ∏d
i=1 φUi (ui) = 1

(2π)d/2 exp
(
−uuT

2

)
, where

(·)T denotes transpose.

8.2.2 Failure probability estimation by line sampling

The basic idea of LS is to reformulate the d-dimensional failure probability integral defined in

Eq. (8.1) into a nested integral, with the inner being a one-dimensional integral along an important

direction α, and the outer being a (d − 1)-dimensional integral over a hyperplane orthogonal to α

[8, 12]. The so-called important direction α is a unit vector that points towards the failure domain

F = {u ∈ U : G(u) < 0}. In practical implementation, several strategies have been suggested to

choose an important direction, e.g., the normalized gradient vector of the G-function at a certain

point [14] and the unit vector pointing towards the design point [38]. Once α is given, the original

standard normal vector U can be expressed in a new orthogonal coordinate system such that:

U = U∥α + U⊥r, (8.2)

where r is a (d − 1) × d matrix consisting of d − 1 orthogonal basis vectors of the hyperplane

perpendicular to α; U∥ is a standard normal variable and U⊥ is a (d − 1)-dimensional standard

normal vector because of the rotational invariance of the standard normal vector. In the new

orthogonal coordinate system, the failure probability defined in Eq. (8.1) can be rewritten as:

PF =
∫
Rd−1

∫
R

IG(u∥α + u⊥r)φU∥(u∥)φU⊥(u⊥)du∥du⊥

=
∫
Rd−1

(∫
R

IG(u∥α + u⊥r)φU∥(u∥)du∥
)

φU⊥(u⊥)du⊥,
(8.3)

where φU∥(u∥) and φU⊥(u⊥) are the (joint) PDF of U∥ and U⊥, respectively. Under the assumption

that the failure domain is simply a half-open region (see Fig. 8.1), the inner integral in Eq. (8.3) is
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equal to Φ(−β(u⊥)), where β(u⊥) denotes the Euclidean distance between the limit state surface

G = 0 and a point u⊥ on the orthogonal hyperplane along the direction α. In this case, Eq. (8.3)

can be further simplified as:

PF =
∫
Rd−1

Φ(−β(u⊥))φU⊥(u⊥)du⊥. (8.4)

Note that in Eq. (8.4) PF is actually defined as an expectation of Φ(−β(U⊥)) with respect to the

standard normal vector U⊥. In addition, since the previous presumption is often the case for most

component reliability problems with linear, weakly nonlinear or moderately nonlinear performance

functions, Eq. (8.4) rather than Eq. (8.3) is commonly used in literature. Thereafter, we also refer

to Eq. (8.4) when mentioning LS, unless otherwise specified.

Figure 8.1: Schematic illustration of the standard LS in two dimensions.

In the standard LS method, the failure probability integral defined in Eq. (8.4) is solved by

mainly using a purely frequentist procedure – MCS method. The MCS estimator of PF is given by:

P̂F = 1
N

N∑
i=1

Φ(−β(u⊥,(i))), (8.5)

where
{

u⊥,(i)
}N

i=1
is a set of N random samples drawn from φU⊥(u⊥); β(u⊥,(i)) is the distance

between u⊥,(i) and the limit state surface G = 0 along the important direction α, as illustrated

in Fig. 8.1. To avoid the specification of r, a convenient way is to directly obtain u⊥,(i)r rather

than u⊥,(i) by u⊥,(i)r = u(i) − (α · u(i))α, where u(i) is a random sample generated according to
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φU (u). The term β(u⊥,(i)) can be solved by means of any appropriate root-finding algorithms, such

as polynomial interpolation [14] and Newton’s method [27]. Note that for each u⊥,(i) finding the

value β(u⊥,(i)) usually requires a handful of G-function evaluations. The variance associated with

the MCS estimator is:

σ2
P̂F

= 1
N(N − 1)

n∑
i=1

(
Φ(−β(u⊥,(i))) − P̂F

)2
. (8.6)

In general, the practical performance of the standard LS method is affected by three main

aspects. The first aspect consists in the choice of the important direction α. A good choice will

lead to a fast convergence rate of the subsequent MCS procedure, and hence reduces the sample

size N . However, this in turn requires a good knowledge of the limit state surface, which is usually

at the expense of many additional G-function evaluations. Another aspect is associated with the

MCS method used to solve Eq. (8.4). In case that a poor important direction is chosen and/or

the variance of Φ(−β(U⊥)) is significant, a large size N is required for the MCS method to achieve

a desirable level of accuracy. What is more, the MCS method as a typical frequentist approach

suffers from several major limitations, e.g., brute force feature and inability to incorporate prior

knowledge, though it has many undeniable advantages. As for the last aspect, the accuracy and

efficiency related to searching each β(u⊥,(i)) may also influence the overall performance of the

standard LS method.

8.3 Partially Bayesian active learning line sampling: Theory

In view of the limitations of the standard LS method, especially when examined from frequentist

interpretation, we offer a Bayesian active learning treatment in this section, at least partially. The

resulting methodology is termed ‘partially Bayesian active learning line sampling’ (PBAL-LS). Our

objective here is to approximate the intractable integral in Eq. (8.4) from a Bayesian active learning

perspective, under the premise that a suitable important direction has been determined. However,

the premise is only for convenience and not necessary in practice, as shown in Section 8.4. The key to

achieving the objective relies on approaching the problem of evaluating the integral in Eq. (8.4) using

Bayesian inference, as opposed to frequentist inference. By doing so, it is possible to incorporate

our prior knowledge and model the discretization error. Such a Bayesian idea is actually consistent

with the spirit of a class of Bayesian probabilistic numerical methods, i.e., Bayesian probabilistic
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numerical integration [39, 40]. Further, the Bayesian treatment makes it possible to address the

underlying problem in an active learning manner.

8.3.1 Prior distribution

Recall that the class of reliability problems we are interested in the present study involves

only weakly to mildly nonlinear behavior. In other words, the limit state surface G(u) = 0 is not

expected to be extremely rough, and hence the distance function β(u⊥) exhibits a smooth behavior.

Our prior beliefs about β(u⊥) can thus be reflected by defining a proper prior distribution over it.

A popular choice for a prior distribution over functions is a Gaussian process (GP) due to its

conjugate properties and modelling power. In this study, we also assume a GP prior for β(u⊥),

which is expressed as:

β̂0(u⊥) ∼ GP(mβ̂0
(u⊥), kβ̂0

(u⊥, u⊥′)), (8.7)

where β̂0 denotes the prior distribution of β; mβ̂0
(u⊥) and kβ̂0

(u⊥, u⊥′) denote respectively the

prior mean and covariance functions, by which the GP model is completely specified. The prior

mean function reflects our expected value of β(u⊥), while the prior covariance function encodes our

key assumptions about β(u⊥), such as smoothness or periodicity. For convenience and without loss

of generality, in this study the prior mean function is chosen as a constant denoted as b and the

prior covariance function is assumed to be the squared exponential kernel:

mβ̂0
(u⊥) = b, (8.8)

kβ̂0
(u⊥, u⊥′) = σ2

f exp
(

−1
2(u⊥ − u⊥′)Σ−1(u⊥ − u⊥′)T

)
, (8.9)

where σf > 0 is the process standard deviation; Σ = diag {l1, l2, · · · , ld} with li > 0 being the

characteristic length scale in i-th dimension; diag {·} means to form a square diagonal matrix

with its arguments on the main diagonal. All these parameters {b, σf , l1, l2, · · · , ld} are collectively

referred to as hyperparameters.

8.3.2 Hyperparameters tuning and posterior statistics

Given a observation dataset D =
{

U⊥, H
}

, where U⊥ =
{

u⊥,(i)
}n

i=1
is an n-by-(d − 1) matrix

with u⊥,(i) being the i-th observing location and H =
[
h(1), h(2), · · · , h(n)

]T
is an n-by-1 vector with
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i-th element being h(i) = β(u⊥,(i)). The hyper-parameters can be learned from the observed data

D by some suitable methods, e.g., maximum likelihood estimation [41].

The posterior distribution of β conditioning the GP prior in Eq. (8.7) on D is again a GP:

β̂n(u⊥) ∼ GP(mβ̂n
(u⊥), kβ̂n

(u⊥, u⊥′)), (8.10)

where β̂n denotes the posterior distribution of β conditioned on D; mβ̂n
(u⊥) and kβ̂n

(u⊥, u⊥′) are

the posterior mean and covariance functions of β, which can be given by:

mβ̂n
(u⊥) = mβ̂0

(u⊥) + kβ0(u⊥, U⊥)TKβ0(U⊥, U⊥)−1(H − mβ̂0
(U⊥)), (8.11)

kβ̂n
(u⊥, u⊥′) = kβ̂0

(u⊥, u⊥′) − kβ0(u⊥, U⊥)TKβ0(U⊥, U⊥)−1kβ0(U⊥, u⊥′), (8.12)

where mβ̂0
(U⊥) is an n-by-1 mean vector with i-th element being mβ̂0

(u⊥,(i)); kβ0(u⊥, U⊥) is an n-

by-1 covariance vector with i-th element being kβ̂0
(u⊥, u⊥,(i)); kβ0(U⊥, u⊥′) is an n-by-1 covariance

vector with i-th element being kβ0(u⊥,(i), u⊥′); Kβ0(U⊥, U⊥) is an n-by-n covariance matrix with

(i, j)-th entry being kβ0(u⊥,(i), u⊥,(j)).

The GP posterior of β as shown in Eq. (8.10) can be employed together with the normal

cumulative distribution function to produce a posterior on Φ(−β). However, the induced posterior

distribution Φ̂n(−β̂) of Φ(−β) is not exactly known in closed form. Fortunately, the posterior mean

and variance functions that are needed in the present work can be derived as follows:

mΦ̂n(−β̂)

(
u⊥
)

=Eβ̂n

[
Φ̂
(
−β̂n

(
u⊥
))]

=EU

[
Φ̂
(
−
(
mβ̂n

(
u⊥
)

+ σβ̂n

(
u⊥
)

U
))]

=Φ

 −mβ̂n

(
u⊥
)

√
1 + σ2

β̂n
(u⊥)

 ,

(8.13)
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σ2
Φ̂n(−β̂)

(
u⊥
)

=Vβ̂n

[
Φ̂
(
−β̂n

(
u⊥
))]

=Eβ̂n

[
Φ̂2
(
−β̂n

(
u⊥
))]

− Eβ̂n

[
Φ̂
(
−β̂n

(
u⊥
))]2

=EU

[
Φ̂2
(
−
(
mβ̂n

(
u⊥
)

+ σβ̂n

(
u⊥
)

U
))]

− Φ2

 −mβ̂n

(
u⊥
)

√
1 + σ2

β̂n
(u⊥)


=Φ

 −mβ̂n

(
u⊥
)

√
1 + σ2

β̂n
(u⊥)

− 2T

 −mβ̂n

(
u⊥
)

√
1 + σ2

β̂n
(u⊥)

,
1√

1 + 2σ2
β̂n

(u⊥)

− Φ2

 −mβ̂n

(
u⊥
)

√
1 + σ2

β̂n
(u⊥)


=Φ

 −mβ̂n

(
u⊥
)

√
1 + σ2

β̂n
(u⊥)

Φ

 mβ̂n

(
u⊥
)

√
1 + σ2

β̂n
(u⊥)

− 2T

 −mβ̂n

(
u⊥
)

√
1 + σ2

β̂n
(u⊥)

,
1√

1 + 2σ2
β̂n

(u⊥)

 ,

(8.14)

where Eβ̂n
[·] and Vβ̂n

[·] denote the expectation and variance operators taken with respect to β̂n;

EU [·] denotes the expectation operator taken with respect to the standard normal variable U ;

σβ̂n

(
u⊥
)

is the posterior standard function of β, i.e., σβ̂n

(
u⊥
)

=
√

kβ̂n
(u⊥, u⊥); T (·, ·) is the

Owen’s T function, which is defined by an analytically intractable integral. Note that the above

derivation makes partial use of the results in [42].

The posterior distribution of Φ(−β) will give arise to a posterior distribution of PF via the

integral operator. Since Φ̂n(−β̂) is not known in closed form, we cannot arrive at the exact posterior

distribution P̂F,n. This, however, does not impose significant restrictions on the proposed method

because the low-order moments other than the exact distribution could be more useful. Analogous

to the results of previous studies (e.g., [43]), the posterior mean and variance of PF turn out to be:

mP̂F,n
=EU⊥

[
mΦ̂n(−β̂)

(
U⊥

)]
=
∫
Rd−1

Φ

 −mβ̂n

(
u⊥
)

√
1 + σ2

β̂n
(u⊥)

φU⊥(u⊥)du⊥,
(8.15)

σ2
P̂F,n

=EU⊥,U⊥′

[
kΦ̂n(−β̂)(U

⊥, U⊥′)
]

=
∫
Rd−1

∫
Rd−1

kΦ̂n(−β̂)(u
⊥, u⊥′)φU⊥(u⊥)φU⊥′(u⊥′)du⊥du⊥′,

(8.16)

where EU⊥ [·] means to take expectation of its argument with respect to U⊥; EU⊥,U⊥′ [·] denotes

the expectation taken with respect to U⊥ and U⊥′ (U⊥ and U⊥′ are independent and identically

distributed); kΦ̂n(−β̂)(u
⊥, u⊥′) is the posterior covariance function of Φ(−β). Eq. (8.15) implies

that the posterior mean of PF is the expectation of the posterior mean function of Φ(−β) taken
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with respect to U⊥, while Eq. (8.16) suggests that the posterior variance of PF is the expectation

of the posterior covariance function of Φ(−β) taken with respect to U⊥ and U⊥′. However, as the

posterior covariance function of Φ(−β) is unknown, we cannot arrive at the solution to the posterior

variance of PF . To circumvent this issue, our proposal is to consider an upper-bound of σ2
P̂F,n

. Using

the Cauchy–Schwarz inequality (i.e., kΦ̂n(−β̂)(u
⊥, u⊥′) ≤ σΦ̂n(−β̂)

(
u⊥
)

σΦ̂n(−β̂)

(
u⊥′

)
), we have

σ2
P̂F,n

≤ σ2
P̂F,n

=
∫
Rd−1

∫
Rd−1

σΦ̂n(−β̂)

(
u⊥
)

σΦ̂n(−β̂)

(
u⊥′

)
φU⊥(u⊥)φU⊥′(u⊥′)du⊥du⊥′

=
(∫

Rd−1

√√√√√Φ

 −mβ̂n
(u⊥)√

1 + σ2
β̂n

(u⊥)

Φ

 mβ̂n
(u⊥)√

1 + σ2
β̂n

(u⊥)

− 2T

 −mβ̂n
(u⊥)√

1 + σ2
β̂n

(u⊥)
,

1√
1 + 2σ2

β̂n
(u⊥)


×φU⊥(u⊥)du⊥

)2

,

(8.17)

where σ2
P̂F,n

denotes the resulting upper bound of σ2
P̂F,n

and the equality holds if and only if Φ̂n(−β̂)

between any two locations is linearly dependent. The posterior mean mP̂F,n
in Eq. (8.15) can be

used as a natural estimate for PF , whereas σ2
P̂F,n

in Eq. (8.17) can measure our maximum possible

epistemic uncertainty about the estimate. The epistemic uncertainty is related to the numerical

uncertainty arising from the fact that the β-function is only observed at a number of discrete

points. As we only offer an upper bound for quantifying the numerical uncertainty (as revealed by

Eq. (8.17)), the proposed approach is termed as partially Bayesian.

8.3.3 Learning function and stopping criterion

Our general goal with the PBAL-LS method is to produce a failure probability estimate with

a desired degree of accuracy using as few β-function evaluations as possible. To achieve such goal,

one potential strategy is to implement the Bayesian approach sequentially. Specifically, an active

learning procedure can be readily used in conjunction with the Bayesian framework. An essential

ingredient for an active learning procedure is a so-called learning (acquisition) function that can

suggest the best next observation point based on our prior knowledge. In this work, a new learning

function that is extracted from σP̂F,n
, called upper-bound posterior standard deviation contribution
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(UPSDC), is proposed as follows:

UPSDC
(
u⊥
)

=

√√√√√Φ

 −mβ̂n
(u⊥)√

1 + σ2
β̂n

(u⊥)

Φ

 mβ̂n
(u⊥)√

1 + σ2
β̂n

(u⊥)

− 2T

 −mβ̂n
(u⊥)√

1 + σ2
β̂n

(u⊥)
,

1√
1 + 2σ2

β̂n
(u⊥)


× φU⊥(u⊥).

(8.18)

It is easy to check that σP̂F,n
=
∫
Rd−1 UPSDC

(
u⊥
)

du⊥ holds. Therefore, the UPSDC function

can be seen as a measure of the contribution of epistemic uncertainty at the site u⊥ to the upper

bound of the posterior standard deviation of PF . The best next point u⊥,(n+1) where to query

the β-function can be selected as the point maximizing the UPSDC function (i.e., u⊥,(n+1) =

arg maxu⊥∈U⊥ UPSDC
(
u⊥
)
), which is expected to reduce σP̂F,n+1

the most. Another key ingredient

for an active learning procedure is associated with a stopping criterion that can determine when to

stop the iteration. In this study, the stopping criterion is defined as whether the upper-bound of

the posterior COV of the failure probability COVP̂F,n
is less than a tolerance ϵ:

COVP̂F,n
=

σP̂F,n

mP̂F,n

< ϵ, (8.19)

where ϵ is user-specified. A smaller ϵ typically implies a higher accuracy of mP̂F,n
, but with increased

computational cost, and vice versa.

8.4 Partially Bayesian active learning line sampling: Algorithm

In this section, we present an efficient algorithm for applying the proposed PBAL-LS method

to practical reliability analysis problems, where several important implementation issues are ad-

dressed. The first issue is related to the choice of the important direction α that is assumed to

be already known before the Bayesian treatment in the preceding section, which, however, should

be appropriately specified in practice. Instead of a fixed and initially determined one, an adaptive

strategy is proposed to adjust the important direction on the fly throughout the simulation. As for

the second issue, searching for the distance between a given sample u⊥ and the limit state surface

G = 0 along the important direction, is tackled in a strategic manner. The third issue arising from

coping with mP̂F,n
, σ2

P̂F,n
and UPSDC

(
u⊥
)

is also properly processed from a numerical point of
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view.

The proposed algorithm for the PBAL-LS method is illustrated with the flowchart in Fig. 8.3,

and it consists of six main steps described as below. Note that for clarity the core tasks of each

step are listed in the blue box, followed by detailed descriptions when necessary.

Step 1: Selection of an initial important direction

An initial important direction α(0) must be chosen in this step, and then one has to specify

the corresponding matrix r(0) for the hyperplane orthogonal to α(0).

The important direction will be designed to be updated automatically as soon as a more

probable one is found, and hence the proposed algorithm does not need to start with an optimal

important direction. As a rough guess, the initial important direction can be selected as the negative

normalized gradient of the G-function at the origin:

α(0) = − ∇uG(0)
||∇uG(0)|| , (8.20)

where ∇uG(0) =
[

∂G(0)
∂u1

, ∂G(0)
∂u2

, · · · , ∂G(0)
∂ud

]
; ||·|| denotes the Euclidean norm. Note that α(0) corre-

sponds to the direction of steepest descent of the G-function at the origin, and is expected to point

towards the failure domain for those cases we are interested in. As the G-function is assumed to

be known only implicitly with respect to u, forward difference is used to estimate ∇uG(0) at the

expense of (d + 1) G-function evaluations.

The matrix r(0) is theoretically not unique given α(0). In practice, however, it needs to be

specified from numerical point of view. To do so, one can resort to, e.g., the Gram–Schmidt

process, which is also used in the following steps whenever needed.

Step 2: Generation of an initial observation dataset

This step involves generating a small initial observation dataset D =
{

U⊥, H
}

and updating

the important direction if possible at the same time.

First, an auxiliary line is deployed from the origin along the direction α(0) (denoted as u∥α(0)),

and we have to find the solution to the equation G(u∥α(0)) = 0. Note that since this line is
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only designed for providing a rough reference for the following procedure, an accurate solution to

G(u∥α(0)) = 0 is not necessary. To this end, it is suggested to use a simple interpolation method, e.g.,

piecewise cubic Hermite interpolating polynomial (PCHIP). The PCHIP method requires evaluating

the G-function at three discrete points of u∥. In this study, the three points are specified as c1 = 3,

c2 = 6 and c3 = 8. The interpolated value of u∥ is denoted as β(0). The interpolation procedure is

illustrated in Fig. 8.2(a).

Second, the β-function should be observed at several locations so as to form an initial obser-

vation dataset and update the important direction if possible. A small number, n0, of samples{
u⊥,(j)

}n0

j=1
are generated from φU⊥(u⊥) by using, e.g., Sobol sequence. In this study, n0 is set

to be 5. Here, the Newton’s method is used to identify the root of G(u∥,(j)α(l) + u⊥,(j)r(l)) = 0.

Instead of processing
{

u⊥,(j)
}n0

j=1
in the order as they are generated, we rearrange them according

to the distance from the origin in ascending order, denoted as
{

ũ⊥,(j)
}n0

j=1
. By doing so, one can

make use of β(0) as the starting point when searching h̃(1), and h̃(j) for h̃(j+1) (j = 1, 2, · · · , n0). The

intersection point for the line ũ∥,(j)α(l) + ũ⊥,(j)r(l) with the limit state surface G(u) = 0 is recorded

as ũ(j) = h̃(j)α(l) + ũ⊥,(j)r(l). Whenever a nearest intersection point from the origin is found,

e.g., ||ũ(j)||= minj
j=1||ũ(j)|| (j ≥ 2), the important direction should be immediately updated as

α(l+1) = ũ(j)

||ũ(j)|| , together with r(l+1). One can refer to Figs. 8.2(b) and 8.2(c) for a schematic illus-

tration. Once all the lines have been processed, U⊥ can be obtained by projecting the intersection

points
{

ũ(j)
}n0

j=1
onto the last orthogonal hyperplane, and H contains the corresponding distances

between
{

ũ(j)
}n0

j=1
and the last orthogonal hyperplane along the last importance direction.

Step 3: Computation of posterior statistics of the failure probability

Conditional on the observation dataset D, the posterior mean and upper bound on the pos-

terior standard deviation of the failure probability are evaluated.

The GP posterior of β conditional on D can be obtained analytically as defined in Eq. (8.10).

This process can be done with the help of existing software packages, e.g., fitrgp function in Statistics

and Machine Learning Toolbox of Matlab.

As can be seen in Eqs. (8.15) and (8.17), the posterior mean and upper bound of the posterior

standard deviation of the failure probability are not analytically tractable. In view of that, the

MCS method is used here. According to Eq. (8.15), an unbiased estimator for the posterior mean
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(a) The auxiliary line (b) The first two lines

(c) The third line

Figure 8.2: Illustration of Step 2 of the proposed PBAL-LS algorithm in two dimensions (n0 = 3).

of the failure probability is given by:

m̂P̂F,n
= 1

N

N∑
i=1

Φ

 −mβ̂n

(
u⊥,(i)

)
√

1 + σ2
β̂n

(
u⊥,(i))

 , (8.21)

where
{

u⊥,(i)
}N

i=1
is a set of N random samples generated from φU⊥(u⊥). The variance of the

estimator can be expressed as:

V
[
m̂P̂F,n

]
= 1

N(N − 1)

N∑
i=1

Φ

 −mβ̂n

(
u⊥,(i)

)
√

1 + σ2
β̂n

(
u⊥,(i))

− m̂P̂F,n

2

. (8.22)
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The estimator for the upper bound on the posterior standard deviation of the failure probability is

formulated as:

σ̂P̂F,n
= 1

N

N∑
i=1

√√√√√EU

[
Φ̂2
(
−
(
mβ̂n

(
u⊥,(i))+ σβ̂n

(
u⊥,(i))U

))]
− Φ2

 −mβ̂n

(
u⊥,(i))√

1 + σ2
β̂n

(
u⊥,(i))

. (8.23)

It should be pointed out that we do not make use of the final result of σ2
Φ̂n(−β̂)

(
u⊥
)

(but the

intermediate result) to formulate σ̂P̂F,n
because the involved Owen’s T function is not easy to

handle numerically. Instead, the expectation term in Eq. (8.23) can be readily approximated by

some well-known quadrature rules available in a number of software packages, e.g., the integral

function in Matlab. The variance of the estimator in Eq. (8.23) is written as:

V
[
σ̂P̂F,n

]
= 1

N(N − 1)

N∑
i=1


√√√√√EU

[
Φ̂2
(
−
(
mβ̂n

(
u⊥,(i))+ σβ̂n

(
u⊥,(i))U

))]
− Φ2

 −mβ̂n

(
u⊥,(i))√

1 + σ2
β̂n

(
u⊥,(i))

− σ̂P̂F,n


2

.

(8.24)

To ensure the accuracy of m̂P̂F,n
and σ̂P̂F,n

, the sample size N should be large enough. However,

a too large sample size may lead to low efficiency and even memory loss when evaluating m̂P̂F,n

and σ̂P̂F,n
. For this reason, it is suggested to increase the sample size progressively until a stopping

criterion is satisfied. A convenient stopping criterion is defined as the maximum value of two COVs (√
V
[
m̂P̂F,n

]/
m̂P̂F,n

and
√
V
[
σ̂P̂F,n

]/
σ̂P̂F,n

), i.e., max
(√

V
[
m̂P̂F,n

]/
m̂P̂F,n

,

√
V
[
σ̂P̂F,n

]/
σ̂P̂F,n

)
<

δ, where δ is the tolerance. In this study, δ is set to be 2%.

Step 4: Judgment of the stopping condition on learning

The stopping criterion for active learning should be examined and then decide whether to

continue or stop the algorithm.

If ˆCOVP̂F,n
= σ̂P̂F,n

/m̂P̂F,n
< ϵ is satisfied twice in a row, go to Step 6; otherwise, go to Step

5. The tolerance ϵ can take a value between 5% − 10%.

Step 5: Active updating of the observation dataset
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The β-function is observed at a new point identified by our learning function. Then, the

important direction can be modified if possible and the previous observation dataset can be

updated.

The next best point to query the β-function is identified by maximizing the proposed UPSDC

function such that:

u⊥,(n+1) = arg max
u⊥∈U⊥

√√√√√EU

[
Φ̂2
(
−
(
mβ̂n

(u⊥) + σβ̂n
(u⊥) U

))]
− Φ2

 −mβ̂n
(u⊥)√

1 + σ2
β̂n

(u⊥)

× φU⊥(u⊥).

(8.25)

It is worth mentioning that the UPSDC function is used in the form given by Eq. (8.25) rather

than Eq. (8.18) in order to avoid directly dealing with the Owen’s T function. The expectation

term on the right-hand side of Eq. (8.25) can be approximated by a suitable quadrature rule, while

Eq. (8.25) can be solved by some nature-inspired optimization algorithms.

The distance h̃(n+1) between u⊥,(n+1) and the limit state surface G = 0 along the latest impor-

tant direction is searched by the Newton’s method. To accelerate the search process, mβ̂n
(u⊥,(n+1))

can be taken as a good starting point. Once h̃(n+1) is available, it is trivial to obtain the correspond-

ing intersection point ũ(n+1). If ||ũ(n+1)||≠ minn+1
j=1 ||ũ(j)||, the previous training dataset is enriched

with
{

u⊥,(n+1), h̃(n+1)
}

; otherwise, the important direction is updated as the normalized ũ(n+1)

||ũ(n+1)||

(as well as the matrix r), and the observation dataset should be renewed by projecting these n + 1

intersection points onto the latest orthogonal hyperplane. Go to Step 3.

Step 6: End of the proposed PBAL-LS algorithm

Return the last estimate of the posterior mean of the failure probability and end the proposed

PBAL-LS algorithm.

Note that the important direction might be adapted in both Step 2 and Step 5, which do not

require any additional evaluations of the G-function. Similar ideas can be found in several improved

LS methods [27, 31, 32]. This feature proves to be useful as one does not need to waste extra

effort on specifying an optimal important direction. In the active learning process the next location

to observe the β-function is chosen in terms of the learning function rather than randomly, which
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Start

Specify an initial important direction α(0) and the matrix r(0)

Construct an initial observation dataset D =
{

U⊥, H
}

and update the important direction if possible

Compute the posterior statistics of the failure probability
conditional on D, i.e., m̂P̂F,n

and σ̂P̂F,n
, according to Eq. (8.21) and Eq. (8.23)

Stopping criterion?

Identify the best next point u⊥,(n+1) according to Eq. (8.25),
observe the correspoding β-fucntion value h̃(n+1).

Update the important direction if possible
and update the training dataset D.

Let n = n + 1

Return m̂P̂F,n
as the estimated failure probability

Stop

No

Yes

Figure 8.3: Flowchart of the proposed PBAL-LS algorithm.

makes the fullest possible use of our prior knowledge about the β-function, and hence can reduce

the number of lines required. In addition, the root-finding procedure in Step 2 is also tailored

as information can be reused to accelerate convergence and reduce the number of G-function calls.

The authors of [27] adopted a similar but slightly different strategy. In Step 5, the starting point

of the root-finding algorithm is provided by the GP prediction, and hence incorporating our prior

knowledge. It is also worth mentioning that the final result of Eq. (8.14) and Eq. (8.18) can be

directly used in the PBAL-LS algorithm once an appropriate quadrature rule is available to deal

with the Owen’s T function.

8.5 Numerical examples

In this section, the performance of the proposed PBAL-LS method for assessing small failure

probabilities is demonstrated against several existing methods by means of five numerical examples.
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These selected methods include the standard LS [8], combination line sampling (CLS) [32], active

learning Kriging - importance sampling (AK-IS) [44] and AGPR-LS [36]. The (initial) important

direction is specified by the negative normalized gradient of the g-function at the origin for LS and

CLS, while by first-order reliability method using Hasofer-Lind-Rackwitz-Fiessler [45] for and AK-IS

and AGPR-LS. The studied numerical examples represent a class of moderately nonlinear problems

with varying complexity where those LS methods are expected to be applicable.The common feature

of these examples is that they are designed to have very small failure probabilities. In all numerical

examples, the MCS method with a sufficiently large sample size is employed to provide the reference

failure probability if applicable.

8.5.1 Example 1: An illustrative problem

The first example involves an illustrative problem with the performance function:

Y = g(X) = a − X2 + bX3
1 + c sin (dX1) , (8.26)

where X1 and X2 are two independent standard normal variables; a, b, c and d are four constant

parameters, which are specified as: a = 5.0, b = 0.01, c = 1.0 and d = 1.0.

The proposed PBAL-LS method is compared in Table 8.1 with several other methods, including

MCS, standard LS, CLS, AK-IS and AGPR-LS. The reference value of the failure probability is

obtained as 5.87×10−6 (with a COV being 0.41%), provided by the MCS method with 1010 samples.

It is clear that the LS methods without using the GP model (i.e., standard LS and CLS) require a

large number of lines and performance function evaluations in order to produce failure probability

estimates with small COVs. AK-IS and AGPR-LS can significantly reduce the number of calls to

the performance function, while yielding acceptable failure probability estimates. The performance

of the AGPR-LS method, however, is highly dependent upon the parameter ϵ, which is not easy to

tune. The proposed method gives the same failure probability as the AGPR-LS method. However,

it requires fewer performance function evaluations than the AGPR-LS method.

For the sake of illustration, Fig. 8.4 depicts the initial and final important directions, and

the intersection points identified by the proposed PBAL-LS method (ϵ = 10%), along with the

true limit state curve. It is shown that the initial important direction chosen by Eq. (8.20) is far

from optimal, but the final one is nearly optimal. Besides, the approximate intersection points are
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located on the true limit state curve, indicating the accuracy of the root-finding algorithm.

Table 8.1: Reliability results for Example 1 obtained from several methods.

Method P̂f COV[P̂f ] or COV[P̂f ] Nline Ntotal

MCS 5.87 × 10−6 0.41% - 1010

Standard LS 6.68 × 10−6 47.72% 100 721
6.00 × 10−6 13.46% 1000 7079

CLS 6.18 × 10−6 7.68% 100 524
5.92 × 10−6 2.36% 1000 5103

AK-IS 5.68 × 10−6 3.46% - 62
AGPR-LS 5.85 × 10−6 1.81% 11 64
Proposed PBAL-LS (ϵ = 10%) 5.85 × 10−6 2.28% 10 38

Note: The parameter ϵ in the AGPR-LS method is set to be 0.001.

-6 -4 -2 0 2 4 6
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Figure 8.4: Illustration of the proposed PBAL-LS method (ϵ = 10%) in Example 1.

8.5.2 Example 2: A quadratic function

The second example considers a quadratic performance function of the form [46]:

Y = g(X) = a − Xd + b
d−1∑
i=1

X2
i , (8.27)

where X = [X1, X2, · · · , Xd] is a vector of d independent log-normal variables with a mean of 1 and

a standard deviation of 0.2. In this example, the dimension is set to be d = 21, while the other two

parameters are a = 2.5 and b = 0.02.

The results of several reliability analysis methods are summarized in Table 8.2. The reference

value of the failure probability is 2.00 × 10−8 with a COV being 2.23%, provided by MCS with 1011
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samples. In order to produce a failure probability estimate with a small COV, both standard LS

and CLS requires a large number of lines, as well as G-function calls. The results of AK-IS and

AGPR-LS are empty because FORM-HLRF fails in this example. The proposed PBAL-LS is able

to produce an accurate failure probability estimate with only 39 additional lines and a total of 137

performance function evaluations.

Table 8.2: Reliability results for Example 2 obtained from several methods.

Method P̂f COV[P̂f ] or COV[P̂f ] Nline Ntotal

MCS 2.00 × 10−8 2.23% - 1011

Standard LS 2.01 × 10−8 7.64% 100 422
2.04 × 10−8 4.88% 200 822

CLS 1.94 × 10−8 7.31% 100 486
2.17 × 10−8 4.82% 200 918

AK-IS - - - -
AGPR-LS - - - -
Proposed PBAL-LS (ϵ = 10%) 1.95 × 10−8 8.38% 39 137

8.5.3 Example 3: A nonlinear oscillator

As a third example, we consider a nonlinear single-degree-of-freedom (SDOF) oscillator under

a rectangular-pulse load [47], which is shown in Fig. 8.5. The limit state function is defined by:

Y = g (m, c1, c2, r, F1, t1) = 3r −
∣∣∣∣∣ 2F1
c1 + c2

sin
(

t1
2

√
c1 + c2

m

)∣∣∣∣∣ , (8.28)

where m, c1, c2, r, F1, t1 are six random variables, which are specified according to Table 8.3.

The reference failure probability of this example is taken as 1.15×10−7 with COV being 2.94%,

provided by the MCS method with 1010 samples. Table 8.4 summarizes the results by several other

LS methods, along those of MCS. It is seen that with the same number of lines the CLS method is

able to give much more better failure probability estimate with a smaller COV than the standard

LS method, but at the expense of sightly increased G-function evaluations. Note that both the two

methods require considerably more calls to the G-function than AK-IS, AGPR-LS and PBAL-LS

in order to achieve a desired level of accuracy, especially for the standard LS method. AK-IS and

AGPR-LS method are still much less efficient than the proposed PBAL-LS method in terms of

Ntotal, even though they give very similar estimates for the failure probability.
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Figure 8.5: A nonlinear SDOF oscillator subject to pulse load.

Table 8.3: Random variables for Example 3.

Variable Distribution Mean COV
m Mass Normal 1.0 0.10
c1 Stiffness Lognormal 1.0 0.10
c2 Stiffness Lognormal 0.1 0.10
r Yield displacement Normal 0.5 0.10

F1 Load amplitude Lognormal 0.4 0.20
t1 Load duration Normal 1.0 0.20

8.5.4 Example 4: A cantilever tube

The third example consists of a cantilever tube subject to three forces and one torque [48], as

shown in Fig. 8.6. The performance function is defined as

Y = Sy − σmax, (8.29)

Table 8.4: Reliability results for Example 3 obtained from several methods.

Method P̂f COV[P̂f ] or COV[P̂f ] Nline Ntotal

MCS 1.15 × 10−7 2.94% - 1010

Standard LS 6.57 × 10−8 17.14% 500 1969
9.29 × 10−8 13.54% 1000 3909

CLS 1.17 × 10−7 5.89% 500 2084
1.14 × 10−7 2.76% 1000 4113

AK-IS 1.12 × 10−7 2.61% - 156
AGPR-LS 1.14 × 10−7 0.86% 46 103
Proposed PBAL-LS (ϵ = 10%) 1.17 × 10−7 7.62% 17 62

Note: The parameter ϵ in the AGPR-LS method is set to be 0.005.
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where Sy is the yield stress of the material; σmax denotes the maximum von Mises tress on the top

surface of the tube at the origin, which is given by:

σmax =
√

σ2
x + 3τ2

zx (8.30)

where σx and τzx read:

σx = P + F1 sin θ1 + F2 sin θ2
A

+ d (F1L1 cos θ1 + F2L2 cos θ2)
2I

(8.31)

τzx = Td

2J
(8.32)

with

A = π

4
[
d2 − (d − 2t)2

]
, (8.33)

I = π

64
[
d4 − (d − 2t)4

]
, (8.34)

J = 2I. (8.35)

There are a total number of 11 random variables involved in this example, as listed in Table 8.5.
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Figure 8.6: A cantilever tube subject to three forces and one torsion.

Table 8.6 compares the results of several reliability analysis methods. The reference value of

the failure probability is 5.99×10−8 with COV being 1.29%, which is provided by the MCS method

with 1011 samples. Both standard LS and CLS results in large COVs even using 1000 lines in

this example. The number of G-function calls can be significantly reduced by applying AK-IS and
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AGPR-LS and PBAL-LS. Among them, the proposed method performs much better in terms of

Ntobal.

Table 8.5: Random variables for Example 4.

Variable Distribution Mean COV
t Normal 5 mm 0.05
d Normal 40 mm 0.05
L1 Normal 120 mm 0.05
L2 Normal 60 mm 0.05
F1 Lognormal 2.0 kN 0.15
F2 Lognormal 1.5 kN 0.15
P Lognormal 10 kN 0.20
T Lognormal 0.2 N·m 0.15
Sy Normal 300 MPa 0.10
θ1 Normal 10◦ 0.05
θ2 Normal 10◦ 0.05

Table 8.6: Reliability results for Example 4 obtained from several methods.

Method P̂f COV[P̂f ] or COV[P̂f ] Nline Ntotal

MCS 5.99 × 10−8 1.29% - 1011

Standard LS 6.62 × 10−8 15.71% 500 1960
4.71 × 10−8 11.72% 1000 3944

CLS 4.47 × 10−8 10.31% 500 2342
5.59 × 10−8 11.22% 1000 4882

AK-IS 5.91 × 10−8 2.80% - 481
AGPR-LS 5.88 × 10−8 1.18% 107 211
Proposed PBAL-LS (ϵ = 10%) 5.92 × 10−8 9.16% 60 175

Note: The parameter ϵ in the AGPR-LS method is set to be 1.

8.5.5 Example 5: A transmission tower

The last example involves a transmission tower subjected to lateral loads (as shown in Fig.

8.7), which is modified from [43, 49]. With the aid of a finite-element software called OpenSees, the

tower is modelled as a three-dimensional nonlinear truss structure consisting of 24 nodes and 80 truss

members. The geometric dimensions of the finite element model are shown in Fig. 8.7(a). For each

member, the cross-sectional area is the same, denoted by A. The uniaxial Giuffrè-Menegotto-Pinto

material law (Steel02 in OpenSees) is adopted, as schematically depicted in Fig. 8.7(c). At least

six parameters are needed for the Steel02 model, i.e., Fy, E0, b, R0, CR1 and CR2. The detailed
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description of these parameters can be found in the command manual of OpenSees. In this study,

the last three parameters are specified as: R0 = 10, CR1 = 0.925 and CR2 = 0.15. Ten lateral

loads, P1-P10, are applied to the structure along the x-axis (see Fig. 8.7(a)). The performance

function is defined as follows:

Y = g(P1-P10, A, E0, Fy, b) = ∆ − u1,x + u2,x

2 , (8.36)

where ∆ is a threshold, specified as 100 mm; u1,x and u2,x represent the horizontal displacements of

nodes 1 and 2 (see Fig. 8.7(b)), respectively. u1,x is a function of the 14 random variables described

in Table 8.7, and so is u2,x.
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Figure 8.7: A transmission tower subject to horizontal loads.
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Table 8.7: Random variables for Example 5.

Variable Distribution Mean COV
P1, P2 Lognormal 10 kN 0.20
P3, P4 Lognormal 8 kN 0.20
P5, P6 Lognormal 6 kN 0.20
P7, P8 Lognormal 4 kN 0.20
P9, P10 Lognormal 2 kN 0.20
A Normal 5000 mm2 0.05
E0 Normal 200 GPa 0.15
Fy Normal 400 Mpa 0.15
b Uniform 0.02 0.05

In this example, we cannot afford to perform the MCS method for providing a reference solution.

Alternatively, the IS method provided in UQLab [50] is used due to its improved efficiency for an

expensive reliability analysis. The failure probability estimate from IS is 5.56 × 10−8 with a COV

being 1.00%. The results of IS are reported in Table 8.8, along with those of some other methods.

The standard LS, CLS, AK-IS, and AGPR-LS methods produce errors or fail to converge on multiple

trivals, so their results are not available. On the contrary, the proposed PBAL-LS method can still

work and produce reasonable results with only 112 G-function evaluations.

Table 8.8: Reliability results for Example 5 obtained from several methods.

Method P̂f COV[P̂f ] or COV[P̂f ] Nline Ntotal

IS 5.56 × 10−8 1.00% - 61,430
Standard LS - - - -
CLS - - - -
AK-IS - - - -
AGPR-LS - - - -
Proposed PBAL-LS (ϵ = 10%) 5.57 × 10−8 9.36% 40 112
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8.6 Conclusions

This paper presents a ‘partially Bayesian active learning line sampling ’ (PBAL-LS) method for

structural reliability analysis, especially when involving small failure probabilities. The proposed

method is derived from the Bayesian interpretation of the failure probability integral in the LS

method, in which the discretization error is regarded as a kind of epistemic uncertainty that can

be modeled explicitly. By assigning a Gaussian process prior over the β-function, the induced

posterior statistics of the failure probability conditional on observations is then obtained. Two

essential components for active learning, i.e., learning function and stopping criterion, are proposed

by taking advantage of the uncertainty representation of the failure probability. In addition to these

theoretical developments, we also design a tailored algorithm for the PBAL-LS method, which allows

updating the important direction on the fly and efficiently processing the lines. Five numerical

studies indicate that the proposed method outperforms several existing LS methods in one or more

aspects of efficiency, accuracy and robustness when assessing extremely small failure probabilities

in the order of 10−6 − 10−8.

While the application scope of the proposed method is large, it is mostly suitable for assessing

(small) failure probabilities of weakly or moderately nonlinear problems in low-to-medium dimen-

sions, where a single main failure domain exits. The proposed method might also be extended to

cases with multiple failure domains if multiple initial important directions can be identified and

updated. This will be investigated in the future work.
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Abstract: Line sampling has been demonstrated to be a promising simulation method for

structural reliability analysis, especially for assessing small failure probabilities. However, its prac-

tical performance can still be significantly improved by taking advantage of, for example, Bayesian

active learning. Along this direction, a recently proposed ‘partially Bayesian active learning line

sampling’ (PBAL-LS) method has shown to be successful. This paper aims at offering a more com-

plete Bayesian active learning treatment of line sampling, resulting in a new method called ‘Bayesian

active learning line sampling’ (BAL-LS). Specifically, we derive the exact posterior variance of the

failure probability, which can measure our epistemic uncertainty about the failure probability more

precisely than the upper bound given in PBAL-LS. Further, two essential components (i.e., learning

function and stopping criterion) are proposed to facilitate Bayesian active learning, based on the

uncertainty representation of the failure probability. In addition, the important direction can be

automatically updated throughout the simulation, as one advantage directly inherited from PBAL-

*Corresponding Author
E-mail address: chao.dang@irz.uni-hannover.de (C. Dang)
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LS. The performance of BAL-LS is illustrated by four numerical examples. It is shown that the

proposed method is capable of evaluating extremely small failure probabilities with desired efficiency

and accuracy.

Keywords: Structural reliability analysis; Line sampling; Bayesian active learning; Bayesian

inference; Gaussian process

9.1 Introduction

Structural reliability analysis usually involves calculating the complement of the so-called re-

liability of a structure or component, that is the failure probability Pf , which is formulated as a

multiple integral:

Pf =
∫

X
I(g(x))fX(x)dx, (9.1)

where X = [X1, X2, · · · , Xd]T ∈ X ⊆ Rd denotes a set of d basic random variables with known

joint probability density function (PDF) fX(x); x = [x1, x2, · · · , xd]T represents a realization of X;

g(·) is the limit state function (also known as performance function), which takes a value less than

zero when a failure occurs; I(·) refers to the failure indicator function: I(g(x)) = 1 if g(x) < 0 and

I(g(x)) = 0 otherwise.

Except for some special cases, the failure probability integral, as defined in Eq. (9.1), is unlikely

to be analytically solvable due largely to the underlying complexity of the limit state function (usu-

ally in an implicit form) in practice. Therefore, the development of efficient and accurate numerical

methods to provide approximate solutions is of central interest from researchers and practitioners.

Existing numerical methods for structural reliability analysis can be roughly divided into five cate-

gories [1]: stochastic simulation methods, asymptotic approximation methods, methods of moments,

probability-conservation based methods and surrogate assisted methods. Among these categories,

a prominent position is held by stochastic simulation techniques. They typically involve randomly

simulating a large number of independent performance function values and then computing a failure

probability estimate via an appropriate estimator. A non-exhaustive list of such techniques includes

Monte Carlo simulation (MCS) [2], importance sampling [3, 4], directional sampling [5, 6], subset

simulation [7, 8] and line sampling (LS) [9, 10]. As the most classic class of structural reliability

analysis approaches, asymptotic approximation methods attempt to derive approximate solutions
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to the failure probability integral by using, e.g., Taylor series expansion. The most representative

methods in this category are the first- and second order reliability methods (FORM, SORM) [11, 12].

The third category consists of methods of moments, in which the failure probability estimate is ob-

tained by estimating the probability distribution of the state variable (i.e., output variable of the

performance function) or structural response of interest from the knowledge of its moments. In this

context, the integer moments-based methods [13, 14] and fractional moments-based methods [15–17]

are prevalent. As the fourth category, probability-conservation based methods also aim at capturing

the probability distribution of the state variable or structural response, but build upon the principle

of probability conservation. The probability density evolution method [18, 19] and direct probability

integral method [20, 21] are two typical examples under this category. The search for more efficient

and accurate methods for structural reliability analysis also promotes the development of surrogate

assisted methods, especially combined with active learning. Examples of such methods include (but

not limited to) efficient global reliability analysis [22] and active learning method combining Kriging

and MCS (AK-MCS) [23]. For more information about surrogate assisted methods, one can refer

to, e.g. [24, 25] and references therein. Despite those great efforts over the past several decades, no

agreement has been reached so far on which method or kind of methods is better than others. In

fact, each method has its own advantages and disadvantages. For practical applications, one should

choose the most appropriate method considering the characteristics of both the problem at hand

and the candidate reliability analysis methods.

In this study, we shall restrict our attention to LS. As a standard-alone stochastic simulation

method, LS was originally developed by Koutsourelakis et al. [9]. The basic idea of it is to probe

the failure domain using lines, rather than random points. Specifically, the failure probability is

estimated by an average of the conditional failure probabilities corresponding to a set of random

lines parallel to an important direction, which points towards the failure domain. LS has been

demonstrated to be a promising stochastic simulation technique that is suitable for assessing small

failure probabilities of weakly or moderately nonlinear reliability problems [26–29]. However, its

performance strongly depends on three main aspects [30]:

(1) The important direction. A poor important direction will lead to a slow convergence rate

of the subsequent MCS procedure, and hence unnecessary computational costs in order to achieve

an acceptable result. On the contrary, an optimal importance direction is always desirable, which

in turn requires a good knowledge about the limit state surface or many additional g-function
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evaluations.

(2) The numerical integrator. As a representative frequentist approach, the MCS method used

in LS cannot make use of our prior knowledge on the limit state surface. Besides, it also shows

a low convergence rate when an improper important direction is adopted and/or the limit surface

around the important region is rough.

(3) The line search algorithm. To obtain each conditional failure probability, a root-finding

algorithm is usually implemented. Therefore, the accuracy and efficiency of the selected root-finding

algorithm also affect the overall performance of LS.

The traditional version of LS has been improved by several studies e.g., [31–33]. However,

they still rely on the direct use of MCS, which can be less efficient, as discussed earlier. To further

reduce the computational costs, there have been some research efforts to develop surrogate-assisted

LS methods, e.g., metamodel LS [34] and adaptive Gaussian process regression-LS (AGPR-LS) [35].

More recently, the first author and his co-workers also proposed a partially Bayesian active learn-

ing LS (PBAL-LS) [30]. In PBAL-LS, estimation of the failure probability integral in LS is first

interpreted as a Bayesian inference problem, where the posterior mean and an upper bound of the

posterior variance for the failure probability are derived. Based on the uncertainty representation

of the failure probability, a learning function and a stopping criterion that constitute two critical

ingredients of active learning are then proposed to form the PBAL-LS method. Besides, the im-

portant direction in PBAL-LS can be updated on the fly throughout the simulation. To the best

of knowledge of the authors, PBAL-LS is the first work that explores the Bayesian active learning

(a concept originates from machine learning), at least partially, in the context of LS for structural

reliability analysis.

The main objective of this work is to present a more complete Bayesian active learning treat-

ment of LS. Specially, a full expression of the posterior variance of the failure probability in LS is

deduced, which can measure our uncertainty about the failure probability more precisely than the

upper bound given in [30]. The variance amplified importance sampling (VAIS) originally devel-

oped in [36] is introduced to approximate the posterior mean and variance of the failure probability,

due to their analytical intractability. Based on the posterior statistics of the failure probability, we

further propose a stopping criterion and a learning function to enable active learning. Besides, some

advantages of PBAL-LS are also inherited, e.g., the adaption of importance direction. We shall refer

to this new development as Bayesian active learning LS (BAL-LS). It is expected that the proposed
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BAL-LS method can address the challenge of assessing (extremely) small failure probabilities for a

class of weakly to moderately nonlinear problems in low to moderate dimensions.

The remaining of this paper is structured as follows. In Section 9.2, a general overview of

several existing LS methods is given, among which two methods, i.e., standard LS and PBAL-LS,

are briefly introduced. Section 9.3 presents the proposed BAL-LS method in detail. Four numerical

examples are investigated in Section 9.4 to demonstrate the proposed method. Some concluding

remarks are given in Section 9.5.

9.2 Literature review

This section first provides a general overview of several existing LS methods in the literature.

Then, two of them, which are closely related to the proposed method, are briefly introduced.

9.2.1 General overview

LS has received a lot of attention from the structural reliability analysis community since its

inception. This has led to the development of many variants of the traditional LS. We will not

cover all of them, but only select some of the most important developments. The selected methods

include the traditional LS [9], slime mold algorithm-assisted LS (LS-SMA) [37], advanced LS [31],

adaptive LS [32], combination LS [33], multidomain LS [38], optimized LS [39], metamodel LS

[34], AGPR-LS [35] and PBAL-LS [30]. They are compared in Table 9.1 regarding the important

direction, numerical integrator and line search algorithm. Several aspects are worth mentioning:

• Multidomain LS allows for several important directions, while it is only applicable to a special

class of series systems involving components whose response is linear with respect to a set of

Gaussian random variables;

• Optimized LS adopts the ANN regression model as a surrogate of the original system model

code, which is used only at the stage of determining the important direction. The failure

probability is finally obtained by using the direct MCS (LHS);

• Metamodel LS formulates the failure probability estimate as a product of a metamodel-based

failure probability and a correction coefficient. The former is computed from a properly-
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trained Kriging model, while the latter is obtained from both the Kriging model and the

original performance function;

• Overall, existing LS methods are only suitable or advantageous for a certain kind of problems

with weak to moderate non-linearity.
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9.2.2 Brief review of two related methods

9.2.2.1 Traditional line sampling

The failure probability integral defined in Eq. (9.1) can be reformulated in the standard normal

space such that:

Pf =
∫

U
I(G(u))φU (u)du, (9.2)

where U = [U1, U2, · · · , Ud]T ∈ U ⊆ Rd is a vector of d i.i.d. standard normal variables with joint

PDF φU (u) = (2π)−d/2 exp(−uTu/2); u = [u1, u2, · · · , ud]T denotes a random realization of U ;

G = g ◦ T −1 can be called a transformed limit state function; T : X → U represents an appropriate

operator that can transform X to U , e.g., an isoprobabilistic transformation.

The formulation of the traditional LS method relies on the assumption that an important

direction α can be identified, which is a unit vector pointing towards the failure domain F =

{u ∈ U : G(u) < 0}, as shown in Fig. 9.1. Once α is given, the d-dimensional standard normal

vector U can be expressed in a rotated coordinate system such that:

U = RU ′ = αU∥ + QU⊥, (9.3)

where R is a d × d rotational matrix with its first row being αT and the rest rows being QT; Q is

a d × (d − 1) matrix containing d − 1 orthogonal basis vectors of the hyperplane perpendicular to

α; U ′ = [U∥, U⊥T]T ∈ U ′ ⊆ Rd is a d-dimensional rotated standard normal vector of U , due to the

rotational invariance of standard normal vector; U∥ ∈ U∥ ⊆ R is a standard normal variable, while

U⊥ = [U⊥
1 , U⊥

2 , · · · , U⊥
d−1]T ∈ U⊥ ⊆ Rd−1 is a (d − 1)-dimensional standard normal vector.

It follows that the failure probability integral defined in Eq. (9.2) can be reformulated as:

Pf =
∫

U ′
I(G(Ru′))φU ′(u′)du′

=
∫

U⊥

∫
U∥

I(G(αu∥ + Qu⊥))φU∥(u∥)φU⊥(u⊥)du∥du⊥

=
∫

U⊥

(∫
U∥

I(G(αu∥ + Qu⊥))φU∥(u∥)du∥
)

φU⊥(u⊥)du⊥

=
∫

U⊥
p(u⊥)φU⊥(u⊥)du⊥,

(9.4)

where φU∥(u∥) and φU⊥(u⊥) are the (joint) PDF of U∥ and U⊥; p(u⊥) =
∫

U∥ I(G(αu∥+Qu⊥))φU∥(u∥)du∥
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can be interpreted as a conditional failure probability given U⊥ = u⊥, which is associated with

a one-dimensional reliability problem with performance function G(αU∥ + Qu⊥). In case that

the failure domain F is a simple half-open domain (as shown in Fig. 9.1), the conditional failure

probability p(u⊥) is equal to:

p(u⊥) = Φ(−β(u⊥)), (9.5)

where Φ denotes the cumulative distribution function of the standard normal variable; β(u⊥) is the

Euclidean distance between u⊥ and the limit state surface G(u) = 0 along the direction α. Using

Eq. (9.5), Eq. (9.4) is simplified as:

Pf =
∫

U⊥
Φ(−β(u⊥))φU⊥(u⊥)du⊥, (9.6)

Note that Eq. (9.6) rather than Eq. (9.4) is commonly considered in the traditional LS method,

and also other improved LS methods.

 

Figure 9.1: Schematic illustration of traditional LS in two dimensions.

In the traditional LS method, the failure probability integral defined in Eq. (9.6) is solved by

the MCS method in conjunction with a root-finding technique. A MCS estimator of Pf is given by:

P̂f = 1
N

N∑
i=1

Φ(−β(u⊥,(i))), (9.7)
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where
{

u⊥,(i)
}N

i=1
is a set of N random samples generated according to φU⊥(u⊥). For each sample

u⊥,(i), β(u⊥,(i)) is considered as the solution of u∥ subject to G(αu∥ + Qu⊥,(i)) = 0 (as illustrated

in Fig. 9.1), which can be solved by a suitable root-finding algorithm. The variance associated with

P̂f can be estimated by:

Var
[
P̂f

]
= 1

N(N − 1)

N∑
i=1

(
Φ(−β(u⊥,(i))) − P̂f

)2
. (9.8)

9.2.2.2 Partially Bayesian active learning line sampling

PBAL-LS [30] offers a Bayesian active learning alternative to the traditional LS method and

its variants. Specifically, the task of estimating the failure probability integral defined in Eq. (9.6)

is first interpreted as a Bayesian inference problem. Then, such a task is further framed in an active

learning setting based on the posterior statistics of the failure probability. Besides, another notable

feature of PBAL-LS is that the importance direction needs not to be optimal at the very beginning,

and it can be updated on the fly through the simulation.

PBAL-LS begins by modeling our uncertainty over the β-function with a Gaussian process

(GP):

β̃0(u⊥) ∼ GP(mβ̃0
(u⊥), kβ̃0

(u⊥, u⊥′)), (9.9)

where β̃0 represents the prior distribution of β before seeing any observations; mβ̃0
(u⊥) and

kβ̃0
(u⊥, u⊥′) are the prior mean and covariance functions, which are specified as a constant value

and square exponential kernel [30], respectively.

Suppose that now we have an observation matrix D =
{

U⊥, Y
}

, where U⊥ =
{

u⊥,(i)
}n

i=1
is a

(d−1)×n matrix consisting of n observed locations on the hyperplane orthogonal to the important

direction, and Y =
{

y(i)
}n

i=1
is an n × 1 vector with y(i) = β(u⊥,(i)). Conditioning on data D, the

posterior distribution of β turns out to be another GP of the form:

β̃n(u⊥) ∼ GP(mβ̃n
(u⊥), kβ̃n

(u⊥, u⊥′)), (9.10)

where β̃n denotes the posterior distribution of β conditional on n observations; mβ̃n
(u⊥) and

kβ̃n
(u⊥, u⊥′) are respectively the posterior mean and covariance functions, which can be expressed
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in closed form [40]:

mβ̃n
(u⊥) = mβ̃0

(u⊥) + kβ0(u⊥, U⊥)TKβ0(U⊥, U⊥)−1(Y − mβ̃0
(U⊥)), (9.11)

kβ̃n
(u⊥, u⊥′) = kβ̃0

(u⊥, u⊥′) − kβ0(u⊥, U⊥)TKβ0(U⊥, U⊥)−1kβ0(U⊥, u⊥′), (9.12)

where mβ̃0
(U⊥) is an n-by-1 mean vector whose i-th element is mβ̃0

(u⊥,(i)); kβ0(u⊥, U⊥) is an n-by-

1 covariance vector whose i-th entry is kβ̃0
(u⊥, u⊥,(i)); kβ0(U⊥, u⊥′) is an n-by-1 covariance vector

whose i-th entry is kβ0(u⊥,(i), u⊥′); Kβ0(U⊥, U⊥) is an n-by-n covariance matrix with (i, j)-th entry

being kβ0(u⊥,(i), u⊥,(j)).

Through some mathematical derivations, we can arrive at the posterior mean and an upper

bound of posterior variance for the failure probability [30]:

mP̃f,n
=
∫
Rd−1

Φ

 −mβ̃n

(
u⊥
)

√
1 + σ2

β̃n
(u⊥)

φU⊥(u⊥)du⊥, (9.13)

σ2
P̃f,n

=
(∫

Rd−1

√√√√√Φ

 −mβ̃n
(u⊥)√

1 + σ2
β̃n

(u⊥)

Φ

 mβ̃n
(u⊥)√

1 + σ2
β̃n

(u⊥)

− 2T

 −mβ̃n
(u⊥)√

1 + σ2
β̃n

(u⊥)
,

1√
1 + 2σ2

β̃n
(u⊥)


×φU⊥(u⊥)du⊥

)2

,

(9.14)

where σ2
β̃n

(
u⊥
)

is the posterior variance function of β, i.e., σ2
β̃n

(
u⊥
)

= kβ̃n
(u⊥, u⊥); T (·, ·) is

the Owen’s T function. The posterior mean mP̃f,n
can be used naturally as the failure probability

estimate, while the upper bound of posterior variance σ2
P̃f,n

measures our maximum uncertainty

about the estimate.

On the basis of Eq. (9.14), a learning function, called ‘upper-bound posterior standard deviation

contribution’ (UPSDC), is proposed in [30]:

UPSDC
(
u⊥
)

=

√√√√√Φ

 −mβ̃n
(u⊥)√

1 + σ2
β̃n

(u⊥)

Φ

 mβ̃n
(u⊥)√

1 + σ2
β̃n

(u⊥)

− 2T

 −mβ̃n
(u⊥)√

1 + σ2
β̃n

(u⊥)
,

1√
1 + 2σ2

β̃n
(u⊥)


× φU⊥(u⊥).

(9.15)

Note that σP̃F,n
=
∫
Rd−1 UPSDC

(
u⊥
)

du⊥ holds. In case that the prescribed stopping criterion
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is not satisfied, the best next point is then selected by maximizing the UPSDC function, i.e.,

u⊥,(n+1) = arg maxu⊥∈U⊥ UPSDC
(
u⊥
)
. In PBAL-LS, the stopping criterion is defined based on

judging the upper bound of the posterior coefficient of variation of the failure probability [30]:

COVP̃f,n
=

σP̃f,n

mP̃f,n

< ϵ, (9.16)

where ϵ is a user-specified tolerance.

The interested reader is referred to [30] for theoretical and algorithmic details of PBAL-LS.

It is shown that PBAL-LS outperforms most, if not all, of the existing LS methods for several

benchmark problems. Despite this, PBAL-LS still belongs to a kind of PBAL method largely due

to unavailability of the posterior variance for the failure probability, and a complete Bayesian active

learning treatment is worth studying. The main reasons are the following. First, the upper bound

of the posterior variance for the failure probability (Eq. (9.14)) might be too loose to reflect our

real epistemic uncertainty about the failure probability estimate. In addition, it is difficult and even

impossible for us to know to what extent the real epistemic uncertainty is magnified when using Eq.

(9.14). Second, the learning function (i.e., the UPSDC function defined in Eq. (9.15)) could be less

effective because it comes from the upper bound of the posterior variance of the failure probability

(Eq. (9.14)), which is the result of a very strict assumption. Third, it is difficult to specify a proper

tolerance ϵ (that is related to the true posterior COV of the failure probability) for the stopping

criterion. A conservative choice is to set a small ϵ, which may lead to an accurate estimate for the

failure probability, but usually causes unnecessary computational costs.

9.3 Bayesian active learning line sampling

In the present section, BAL-LS as an enhanced version of the previously developed PBAL-

LS is introduced. First, the posterior mean and variance of the failure probability defined in Eq.

(9.6) are devised so as to offer a more complete Bayesian interpretation of the standard LS. The

approximate solutions for the posterior mean and variance are also given, due to their analytical

intractability. Based on the posterior statistics of the failure probability, two principal elements, i.e.,

learning function and stopping criterion, are proposed, which enables us to offer a new Bayesian

active learning treatment for the standard LS. Finally, the numerical implementation procedure
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of BAL-LS is summarized, where how to adapt the important direction and process each line are

explained.

9.3.1 Posterior mean and variance of the failure probability

Proposition 1. If a GP prior is assigned to the β-function (i.e., Eq. (9.9)), the posterior mean

and variance of the failure probability defined in Eq. (9.6) can be expressed as:

mP̃f,n
=
∫

U⊥
mΦ̃n(−β̃)

(
u⊥
)

φU⊥(u⊥)du⊥, (9.17)

σ2
P̃f,n

=
∫

U⊥

∫
U⊥

kΦ̃n(−β̃)(u
⊥, u⊥′)φU⊥(u⊥)φU⊥′(u⊥′)du⊥du⊥′ (9.18)

where mΦ̃n(−β̃)

(
u⊥
)

and kΦ̃n(−β̃)(u⊥, u⊥′) are the posterior mean and covariance functions of

Φ(−β).

Proof. Analogy to our previous results (see Eqs. (23) and (24) in [36]), the above proposition is

easy to be proved by using the Fubini’s theorem. Therefore, the detailed proof is omitted here.

9.3.1.1 Posterior mean of the failure probability

Proposition 2. If a GP prior is placed over the β-function (i.e., Eq. (9.9)), the posterior mean

function of Φ(−β) takes the form:

mΦ̃n(−β̃)

(
u⊥
)

= Φ

 −mβ̃n

(
u⊥
)

√
1 + σ2

β̃n
(u⊥)

 . (9.19)

Proof. The posterior mean function mΦ̃n(−β̃)

(
u⊥
)

can be further written as:

mΦ̃n(−β̃)

(
u⊥
)

=Eβ̃n

[
Φ(−β̃n

(
u⊥
)
)
]

=1 −
∫ ∞

∞
Φ (−z) 1

σβ̃n
(u⊥)φ

z − mβ̃n

(
u⊥
)

σβ̃n
(u⊥)

dz

=1 −
∫ ∞

−∞
Φ
(
mβ̃n

(
u⊥
)

+ σβ̃n

(
u⊥
)

v
)

φ (v) dv.

(9.20)
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Note that the following equation holds

∫ ∞

−∞
Φ
(
mβ̃n

(
u⊥
)

+ σβ̃n

(
u⊥
)

v
)

φ (v) dv = Φ

 mβ̃n

(
u⊥
)

√
1 + σ2

β̃n
(u⊥)

 , (9.21)

which has been given repeatedly in the literature, with or without proof. One can refer to, e.g.,

[41], for a proof. Substituting Eq. (9.21) into Eq. (9.20), Eq. (9.19) can be proved.

Substituting Eq. (9.19) into Eq. (9.17), the posterior mean of the failure probability can be

obtained as in Eq. (9.13).

9.3.1.2 Posterior variance of the failure probability

Proposition 3. If a GP prior is assumed for the β-function (i.e., Eq. (9.9)), the posterior covari-

ance function of Φ(−β) is formulated as:

kΦ̃n(−β̃)(u
⊥, u⊥′) =F


 mβ̃n

(
u⊥
)

mβ̃n

(
u⊥′

)
 ;

 0

0

 ,

σ2
β̃n

(
u⊥
)

+ 1 kβ̃n
(u⊥, u⊥′)

kβ̃n
(u⊥′, u⊥) σ2

β̃n

(
u⊥′

)
+ 1




− Φ

 mβ̃n

(
u⊥
)

√
1 + σ2

β̃n
(u⊥)

Φ

 mβ̃n

(
u⊥′

)
√

1 + σ2
β̃n

(u⊥′)

 ,

(9.22)

where F denotes the bivariate Gaussian CDF, which does not have a closed form. Alternatively, it

can be approximated by several existing numerical methods, e.g., [42].
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Proof. The posterior covariance function kΦ̃n(−β̃)(u⊥, u⊥′) is further expressed as:

kΦ̃n(−β̃)(u
⊥, u⊥′) =Eβ̃n

[(
Φ
(
−β̃n

(
u⊥
))

− Eβ̃n

[
Φ
(
−β̃n

(
u⊥
))]) (

Φ
(
−β̃n

(
u⊥′

))
− Eβ̃n

[
Φ
(
−β̃n

(
u⊥′

))])]
=Eβ̃n

[
Φ
(
−β̃n

(
u⊥
))

Φ
(
−β̃n

(
u⊥′

))]
− Eβ̃n

[
Φ
(
−β̃n

(
u⊥
))]

Eβ̃n

[
Φ
(
−β̃n

(
u⊥′

))]
=Eβ̃n

[(
1 − Φ

(
β̃n

(
u⊥
))) (

1 − Φ
(
β̃n

(
u⊥′

)))]
− Eβ̃n

[
1 − Φ

(
β̃n

(
u⊥
))]

Eβ̃n

[
1 − Φ

(
β̃n

(
u⊥′

))]
=Eβ̃n

[
Φ
(
β̃n

(
u⊥
))

Φ
(
β̃n

(
u⊥′

))]
− Eβ̃n

[
Φ
(
β̃n

(
u⊥
))]

Eβ̃n

[
Φ
(
β̃n

(
u⊥′

))]
=
∫ ∞

−∞
Φ
(
mβ̃n

(
u⊥
)

+ σβ̃n

(
u⊥
)

v
)

Φ
(
mβ̃n

(
u⊥′

)
+ σβ̃n

(
u⊥′

)
w
)

φ (v) φ (w) dvdw

− Φ

 mβ̃n

(
u⊥
)

√
1 + σ2

β̃n
(u⊥)

Φ

 mβ̃n

(
u⊥′

)
√

1 + σ2
β̃n

(u⊥′)

 ,

(9.23)

By making use of the result in [43], we have

∫ ∞

−∞
Φ
(
mβ̃n

(
u⊥
)

+ σβ̃n

(
u⊥
)

v
)

Φ
(
mβ̃n

(
u⊥′

)
+ σβ̃n

(
u⊥′

)
w
)

φ (v) φ (w) dvdw

=F


 mβ̃n

(
u⊥
)

mβ̃n

(
u⊥′

)
 ;

 0

0

 ,

σ2
β̃n

(
u⊥
)

+ 1 kβ̃n
(u⊥, u⊥′)

kβ̃n
(u⊥′, u⊥) σ2

β̃n

(
u⊥′

)
+ 1


 .

(9.24)

The proof of Eq. (9.24) is referred to the supplementary materials for [43]. Substituting Eq. (9.24)

into Eq. (9.23), Eq. (9.22) can be proved.

The posterior variance of the failure probability can be obtained by substituting Eq. (9.22) into

Eq. (9.18). It is worth mentioning that the upper bound of the posterior variance given in Eq. (9.14)

can be obtained from Eq. (9.18) by using the Cauchy–Schwarz inequality for kΦ̃n(−β̃)(u⊥, u⊥′).

Thus, the upper bound is achieved only when the posterior distribution of Φ(−β) between any

two locations is linearly dependent. This condition is very strict and hence in most practical cases

σ2
P̃f,n

< σ2
P̃f,n

holds true. For this reason, σ2
P̃f,n

can be considered as a more appropriate measure of

the numerical uncertainty behind the failure probability.

9.3.1.3 Approximation of the posterior mean and variance of the failure probability

The posterior mean and variance of the failure probability involves two analytically intractable

integrals, as defined in Eqs. (9.17) and (9.18). In PBAL-LS [30], the posterior mean and upper
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bound of the posterior variance (Eqs. (9.13) and (9.14)) are evaluated by the crude MCS in a

sequential manner. Aside from the algorithmic simplicity and wide applicability, one disadvantage

of the crude MCS technique is its poor sampling efficiency. In order to partially alleviate the

problem, this study employs the variance-amplified importance sampling (VAIS) developed in [36]

to numerically approximate the posterior mean and variance of the failure probability. Hereafter,

the VAIS method is referred to as standard deviation-amplified importance sampling (SDA-IS) to

avoid possible misunderstanding.

The unbiased SDA-IS estimators for mP̃f,n
and σ2

P̃f,n
can be given by:

m̂P̃f,n
= 1

N

N∑
j=1

Φ

 −mβ̂n

(
u⊥,(j)

)
√

1 + σ2
β̂n

(
u⊥,(j))

 φU⊥(u⊥,(j))
φU⊥,λ(u⊥,(j))

, (9.25)

σ̂2
P̃f,n

= 1
N

N∑
j=1

kΦ̃n(−β̃)(u
⊥,(j), u⊥′,(j)) φU⊥(u⊥,(j))φU⊥(u⊥′,(j))

φU⊥,λ(u⊥,(j))φU⊥,λ(u⊥′,(j))
, (9.26)

where
{

u⊥,(j)
}N

j=1
and

{
u⊥′,(j)

}N

j=1
are two sets of N random samples drawn from φU⊥,λ(u⊥) and

φU⊥,λ(u⊥′), respectively; φU⊥,λ(u⊥) is the IS density of the form φU⊥,λ(u⊥) = ∏d−1
i=1 φU⊥

i ,λ(u⊥
i ), in

which

φU⊥
i ,λ(u⊥

i ) = 1
λ

√
2π

exp
(

−u⊥,2
i

2λ2

)
, (9.27)

where λ > 1 is the SDA factor.

The variances associated with the above two estimators are expressed as:

V
[
m̂P̃f,n

]
= 1

N(N − 1)

N∑
j=1

Φ

 −mβ̂n

(
u⊥,(j)

)
√

1 + σ2
β̂n

(
u⊥,(j))

 φU⊥(u⊥,(j))
φU⊥,λ(u⊥,(j))

− m̂P̃f,n

2

, (9.28)

V
[
σ̂2

P̃f,n

]
= 1

N(N − 1)

N∑
j=1

[
kΦ̃n(−β̃)(u

⊥,(j), u⊥′,(j)) φU⊥(u⊥,(j))φU⊥(u⊥′,(j))
φU⊥,λ(u⊥,(j))φU⊥,λ(u⊥′,(j))

− σ̂2
P̃f,n

]2

. (9.29)

Note that even though the SDA-IS method only works with the GP posterior, rather than

the typically expensive-to-evaluate β function, it can be relatively time-consuming, especially when

approximating the posterior variance due to the necessity of numerically evaluating the bivariate

Gaussian CDF. To guarantee the accuracy and efficiency, it is suggested to implement the SDA-IS

method in a sequential way. That is, we can sequentially increase the sample size (e.g., 1 × 104,
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2 × 104, ...) until the two COVs of the estimators are respectively smaller than the prescribed

tolerances δ1 and δ2, i.e.,
√
V
[
m̂P̃f,n

]
/m̂P̃f,n

< δ1 and
√
V
[
σ̂2

P̃f,n

]
/σ̂2

P̃f,n
< δ2.

9.3.2 Stopping criterion and learning function

In terms of the second-order statistics, we have so far completed a Bayesian treatment of the

failure probability integral defined in Eq. (9.6). That is, once given data D =
{

U⊥, Y
}

, we can

make Bayesian inference about the failure probability, including the posterior mean and variance.

It is noted that U⊥ can be arbitrarily chosen without specified restrictions in theory. The Bayesian

interpretation also allows us to frame the failure probability integral estimation in a Bayesian active

learning setting, based on the full exploitation of the posterior statistics of the failure probability.

This framework consists mainly of a stopping criterion and a learning function.

9.3.2.1 Stopping criterion

The stopping criterion can be naturally defined based on the estimated posterior COV of the

failure probability such that:

ĈOVP̃f,n
=

σ̂P̃f,n

m̂P̃f,n

< η, (9.30)

where η is a user-defined threshold. As both σ̂P̃f,n
and m̂P̃f,n

may process some approximation

errors to some extent, Eq. (9.30) is required to satisfy twice in a row in order to avoid possible fake

convergence. Compared to the upper bound of posterior COV defined in Eq. (9.16), the posterior

COV is a more suitable quality that can measure the extent of variability in relation to the posterior

mean of the failure probability. This makes it easier to specify an appropriate threshold for the

stopping criterion before running the method.

9.3.2.2 Learning function

In case that the above stopping criterion is not met, a learning function is needed to suggest the

best next point to query the β-function, rather than choosing it arbitrarily. Based on the posterior

variance of the failure probability, a new learning function, termed ‘posterior standard deviation

contribution’ (PSDC), is proposed:

PSDC
(
u⊥
)

= φU⊥(u⊥) ×
∫

U⊥
kΦ̃n(−β̃)(u

⊥, u⊥′)φU⊥′(u⊥′)du⊥′. (9.31)
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It is easy to check that
∫

U⊥ PSDC
(
u⊥
)

du⊥ = σ2
P̃f,n

holds true. In this respect, the PSDC function

can be regarded as a measure of the contribution of the numerical uncertainty at site u⊥ to the

posterior variance (or rather the posterior standard deviation) of the failure probability. It is worth

mentioning that the UPSDC function (Eq. (9.15)) is actually an upper bound of the proposed PSDC

function. Besides, the UPSDC function only includes the posterior variance function of Φ(−β), not

the posterior covariance function, which can reveal spatial correlation, while the proposed PSDC

does. Therefore, the PSDC function provides a more informative indicator regarding the degree of

contribution of a specific realization in the sample space towards the level of epistemic uncertainty

associated with the failure probability. By selecting the point maximizing the PSDC function as the

best next point to evaluate the β function, it is expected that σ2
P̃f,n+1

will be reduced the most. This

involves an optimization problem, where one should note that an analytically intractable integral

is involved in the objective function (i.e., the PSDC function).

In this study, we propose to approximate the integral term in Eq. (9.31) by a numerical

integration scheme, called unscented transformation [44]. In this context, the PSDC function can

be approximated by the following expression:

P̂SDC
(
u⊥
)

= φU⊥(u⊥)
2(d−1)∑

i=0
wikΦ̃n(−β̃)(u

⊥, u⊥′,(i)), (9.32)

where the 2(d − 1) + 1 integration points and weights are given by [44]

u⊥′,(0) = 0, w0 = ϱ

d − 1 + ϱ
,

u⊥′,(i) =
√

d − 1 + ϱei, wi = 1
2(d − 1 + ϱ) ,

u⊥′,(i+d−1) = −
√

d − 1 + ϱei, wi+d−1 = 1
2(d − 1 + ϱ) ,

(9.33)

where ϱ is a free parameter specified as ϱ = 3 − (d − 1)− = 4 − d [44]; ei = [0, · · · , 0, 1, · · · , 0],

i = 1, 2, · · · , d − 1.

The best next point is identified by maximizing the P̂SDC function such that:

u⊥,(n+1) = arg max
u⊥∈U⊥

log P̂SDC
(
u⊥
)

. (9.34)

It should be pointed out that each evaluation of P̂SDC
(
u⊥
)

can still be slightly computationally
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demanding, though the integral involved in the PSDC
(
u⊥
)

function is approximated by only using

2(d − 1) + 1 points. In this work, we apply a commonly-used nature-inspired optimization method,

called particle swarm optimization, but other more efficient techniques can also be explored.

Once u⊥,(n+1) is obtained, y(n+1) = β
(
u⊥,(n+1)

)
can be evaluated according the method

described in the coming subsection. It follows that the previous dataset can be enriched with{
u⊥,(n+1), y(n+1)

}
, and one can make Bayesian inference about the failure probability based on the

enriched data.

9.3.3 Step-by-step procedure of the proposed method

The above two subsections only focus on several important ingredients (e.g., the posterior

variance, learning function and stopping criterion), while there are still some aspects left for imple-

menting the proposed method, such as the important direction and evaluation of β function. Due to

length limitation, these aspects are directly embedded in the numerical implementation procedure

of the proposed method in the following.

The procedure of the proposed BAL-LS method consists of six main steps, as illustrated by the

flowchart (Fig. 9.3) and summarized below:

Step 1: Choosing an initial important direction

The proposed BAL-LS method has to been initialized with an initial important direction α(0).

As suggested in PAL-LS, a convenient choice is the negative normalized gradient of the G-function

at the origin [30]:

α(0) = − ∇uG(0)
||∇uG(0)|| , (9.35)

where ∇uG(0) =
[

∂G(0)
∂u1

, ∂G(0)
∂u2

, · · · , ∂G(0)
∂ud

]
; ||·|| denotes the 2-norm. In case that the gradient in-

formation of G is not available, one can simply apply the numerical differentiation method at the

cost of (d + 1) G-function evaluations. After that, the corresponding matrix Q(0) that defines the

orthogonal hyperplane perpendicular to α(0) can be specified by means of, e.g., the Gram–Schmidt

process.

Step 2: Constructing an initial observation dataset and updating the important

direction

This step involves generating an initial observation dataset D from the β function and updating
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the important direction. First, a small number of samples (say n0 = 5) on the hyperplane orthogonal

to α(0) are generated according to φU⊥,λ(u⊥) by using the, e.g., Latin hypercube sampling. These

samples are denoted as Ũ⊥ =
{

ũ⊥,(i)
}n0

i=1
, each of which can form a line parallel to α(0), i.e.,

α(0)u∥ + Q(0)ũ⊥,(i). Second, one has to find the distance between ũ⊥,(i) and the limit state surface

G = 0 along α(0), which is identical to fining the root of G
(
α(0)u∥ + Q(0)ũ⊥,(i)

)
= 0. In this study,

we develop an adaptive inverse interpolation (AII) method for solving the aforementioned equation.

The idea is to use the cubic spline interpolation to approximate the inverse of G along the direction

α(0). To get started, two values z(1) and z(2) of G
(
α(0)u∥ + Q(0)ũ⊥,(i)

)
at two prescribed points (say

u∥,(1) and u∥,(2)) are determined. As a convenient rule of thumb, u∥,(1) and u∥,(2) in this study are set

to be 3 and 7, respectively. A rough root (denote as u∥,(3)) can be found by performing a cubic spline

interpolation of the two data points
(
z(1), u∥,(1)

)
and

(
z(2), u∥,(2)

)
at z = 0, and the third value z(3)

is obtained by evaluating G
(
α(0)u∥,(3) + Q(0)ũ⊥,(i)

)
. One can identify the next approximate root

u∥,(4) by interpolating the three data points
(
z(1), u∥,(1)

)
,
(
z(2), u∥,(2)

)
and

(
z(3), u∥,(3)

)
at z = 0.

The process is repeated until the relative distance of two consecutive approximate roots is less than

a small threshold γ (e.g., 5%), i.e.,
∣∣∣u∥,(j+1) − u∥,(j)

∣∣∣ /u∥,(j) < γ, j = 3, 4, · · ·. Typically, the stopping

criterion can be reached after several iterations. The final n0 roots corresponding to Ũ⊥ are denoted

as Ỹ =
{

ỹ(i)
}n0

i=1
, and each approximate intersection point of the line α(0)u∥ + Q(0)ũ⊥,(i) and the

limit state surface G = 0 is recorded as α(0)ỹ(i) + Q(0)ũ⊥,(i). Third, a new important direction

α(1) is identified as the normalized vector of the approximate intersection point with the shortest

distance to the origin, and the associated matrix Q(1) can be specified. Fourth, one can obtain the

initial observation dataset D =
{

U⊥, Y
}

simply by projecting those n0 approximate intersection

points on the hyperplane orthogonal to α(1). Let n = n0 and q = 1. It is worth mentioning that

one does not need to re-evaluate the G function, though the important direction is changed in this

step. For a schematic illustration of this step, one can refer to Fig. 9.2.

Step 3: Making Bayesian inference about the failure probability

Conditional on the observation dataset D, the posterior mean and variance of the failure

probability can be inferred. To do so, the posterior mean and covariance functions of the β-

function are first obtained by Eqs. (9.11) and (9.12), and this task can be done by using the

fitrgp function in Statistics and Machine Learning Toolbox of Matlab. In this study, the prior

mean function is assumed to be a constant value and the prior covariance function adopts the

squared exponential kernel with a separate length scale per dimension. The hyper-parameters are
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(a) Before changing important direction
 (b) After changing important direction

Figure 9.2: Schematic illustration of Step 2 of the proposed BAL-LS algorithm in two dimensions
(n0 = 3).

determined by the maximum likelihood estimation. The posterior mean and variance estimates

of the failure probability are then computed by the SDA-IS method in a sequential manner, as

described in section 9.3.1.3. The SDA factor λ is set to be 1.5, and two tolerances δ1 and δ2 are

specified as 1% and 10%, respectively.

Step 4: Checking the stopping criterion

If the stopping criterion given in Eq. (9.30) is satisfied twice in a row, then go to Step 5.

Otherwise, go to Step 6. In this study, the associated threshold η is taken as 5%.

Step 5: Enriching the observation dataset and updating the important direction

The best next point ũ⊥,(n+1) to evaluate the β-function is identified by maximizing the proposed

P̂SDC function, according to Eq. (9.34). The β-function value ỹ(n+1) at ũ⊥,(n+1) can be obtained by

solving the equation G
(
α(q)u∥ + Q(q)ũ⊥,(n+1)

)
= 0. Different from Step 2, the Newton’s method

is used here with a starting point taken as mβ̃n

(
ũ⊥,(n+1)

)
[30]. Once ỹ(n+1) is solved, a new

approximate intersection point α(q)ỹ(n+1) + Q(q)ũ⊥,(n+1) is available. As long as the new point is

the nearest to the origin among all the n + 1 intersection points, the important direction is updated

to α(q+1) =
(
α(q)ỹ(n+1) + Q(q)ũ⊥,(n+1)

)
/||α(q)ỹ(n+1) + Q(q)ũ⊥,(n+1)||. After that, a new matrix

Q(q+1) can be specified. The enriched observation dataset can be obtained by projecting the n + 1

intersection points on the latest hyperplane orthogonal to α(q+1) and let q = q + 1. Otherwise, one
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can simply enrich the previous dataset with (ũ⊥,(n+1), ỹ(n+1)). Let n = n + 1 and go to Step 3.

Step 6: Ending the algorithm

Return the last posterior mean estimate of the failure probability and end the algorithm.

Start

Specify an initial important direction α(0) according to Eq. (9.35)
and the matrix Q(0) using the Gram–Schmidt process

Construct an initial observation dataset Dn0 =
{

U⊥, Y
}

and update the important direction and Q-matrix to α(1) and Q(1).
Let n = n0 and q = 1

Compute the posterior mean and variance estimates of the failure probability
conditional on D using the sequential SDA-IS method

Stopping criterion?

Identify the best next point ũ⊥,(n+1) by Eq. (9.34),
observe the correspoding β-fucntion value ỹ(n+1).

If possible, update the important direction and Q-matrix,
and let q = q + 1.

Enrich the training dataset D.
Let n = n + 1

Return m̂P̂f,n
as the estimated failure probability

Stop

No

Yes

Figure 9.3: Flowchart of the proposed BAL-LS method.

9.4 Numerical examples

The performance of the proposed BAL-LS method is demonstrated in this section by means of

four numerical examples. The reference result of the failure probability for each example is produced

by the crude MCS method with a sufficiently large sample size when applicable. For comparison

purposes, we also implement several existing methods, including sequential quadratic programming

(SQP) based FORM [45] (denoted as FORM-SQP), SORM [12], traditional LS [9], AGPR-LS [35]

and PBAL-LS [30]. All methods expcet PBAL-LS are based on the use of FORM-SQP to provide

the most probable point (MPP) if applicable. Otherwise, FORM-HLRF [11] is applied instead. For
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repeatability, the initial points of FORM-SQP and FORM-HLRF are selected as the origin. For

traditional LS, the Newton’s method is adopted for processing each line. Similar to the proposed

BAL-LS, the stopping criterion in PBAL-LS is also required to meet twice in succession and the

tolerance is set to be 5%. Note that even though the gradient information for some numerical

examples is easy to solve analytically, we treat them as black-box problems.

9.4.1 Example 1: A test function

The first numerical example takes a test function of the form [30]:

Z = g(X) = a − X2 + bX3
1 + c sin(dX1), (9.36)

where X1 and X2 are two i.i.d. standard normal variables; a, b, c and d are four constant parameters,

the values of which are set as a = 5.5, b = 0.02 and c = 5
6 , d = π

3 .

The reference value of the failure probability is 3.57×10−7 (with a COV being 0.53%), which is

provided by MCS with 1011 samples. The proposed method is compared to several other methods,

as summarized in Table 9.2. FORM-SQP only requires 28 performance function evaluations, which,

however, produces a poor failure probability estimate. The poor accuracy of FORM-SQP can be

significantly improved by using SORM, with 7 additional performance function calls. The traditional

LS method is carried out twice with two different numbers of lines (i.e., 100 and 200). In both cases,

the traditional LS method is able to yield more accurate results than FORM-SQP, but it requires

considerably more computational costs. By using AGPR-LS, PBAL-LS and BAL-LS, the number

of lines and performance function calls can be significantly reduced, while maintaining reasonable

accuracy. Compared to AGPR-LS and PBAL-LS, the proposed BAL-LS method is more efficient

in terms of Ncall.

For illustration purposes, Fig. 9.4 shows some computational details of the proposed BAL-LS

method, including the initial and final importance directions, and approximate intersections points.

It can be seen that the initial importance direction given by Eq. (9.35) is far from optimal, while

the final one is almost optimal. This indicates the effectiveness of the proposed learning function for

suggesting next best points to query, as well as the developed strategy for automatically updating

the importance direction. What is more, those approximate intersection points are very close to

the true limit state line, implying the accuracy of the proposed line search algorithm.
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Table 9.2: Results for Example 1 by several different methods.

Method P̂f δP̂f
or δP̂f

Nline Ntotal

MCS 3.57 × 10−7 0.53% - 1011

FORM-SQP 7.19 × 10−7 - - 28
SORM 3.53 × 10−7 - - 35

Traditional LS 3.36 × 10−7 7.56% 100 376
3.70 × 10−7 4.66% 200 706

AGPR-LS 3.63 × 10−7 2.24% 10 46
PBAL-LS 3.56 × 10−7 1.60% 14 40
Proposed BAL-LS 3.56 × 10−7 3.40% 8 30

Note: P̂f = failure probability estimate; δP̂f
= COV of P̂f ;

δP̂f
= upper bound of the COV of P̂f , which is only used for

PBAL-LS; Nline = the number of lines; Ntotal = the total
number of performance function calls.

-6 -4 -2 0 2 4 6

-6

-4

-2

0

2

4

6

Figure 9.4: Illustration of the proposed BAL-LS method for Example 1.

9.4.2 Example 2: A nonlinear oscillator

A nonlinear single-degree-of-freedom (SDOF) oscillator under a rectangular pulse load [46] is

considered as a second example, which is shown in Fig. 9.5. The limit state function is given by:

Z = g (m, k1, k2, r, F1, t1) = 3r −

∣∣∣∣∣∣ 2F1
k1 + k2

sin

 t1
2

√
k1 + k2

m

∣∣∣∣∣∣ , (9.37)

where m, k1, k2, r, F1 and t1 are six random variables, as listed in Table 9.3.

A reference solution to the failure probability is obtained as 4.01 × 10−8 (with a COV being

0.50%), generated by MCS with 1012 samples. The proposed BAL-LS method is conducted to assess
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Figure 9.5: A nonlinear SDOF oscillator driven by a rectangular pulse load.

Table 9.3: Random variables for Example 2.

Variable Description Distribution Mean COV
m Mass Lognormal 1.0 0.05
k1 Stiffness Lognormal 1.0 0.10
k2 Stiffness Lognormal 0.2 0.10
r Yield displacement Lognormal 0.5 0.10

F1 Load amplitude Lognormal 0.4 0.20
t1 Load duration Lognormal 1.0 0.20

the failure probability, as well as several other methods, i.e., FORM-SQP, SORM, traditional LS,

AGPR-LS and PBAL-LS. The key results of these methods are summarized in Table 9.4. Similar

to the first example, FORM-SQP still produces an inaccurate failure probability estimate (i.e.,

4.88 × 10−8) even at the cost of 176 G-function evaluations in this example. With more calls to

the G-function, SORM can produce an accurate failure probability estimate, say 4.08 × 10−8. The

traditional LS method can improve the accuracy of FORM-SQP by using a number of additional

lines to probe the failure domain, which in turn leads to the significant increase in computational

costs. AGPR-LS, PBAL-LS and BAL-LS are able to produce failure probability estimates with

desirable accuracy. Among them, AGPR-LS requires the most performance function calls (say

205), while the proposed BAL-LS method requires the fewest (say 39).

9.4.3 Example 3: A reinforced concrete section

For the third example, we consider the bending limit state of a reinforced concrete section

[47, 48], as shown in Fig. 9.6. The limit state function is expressed as:

Z = g(X) = X1X2X3 − X2
1 X2

2 X4
X5X6

− X7, (9.38)

where X1 to X7 are seven basic random variables, as detailed in Table 9.5.
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Table 9.4: Results for Example 2 by several different methods.

Method P̂f δP̂f
or δP̂f

Nline Ntotal

MCS 4.01 × 10−8 0.50% - 1012

FORM-SQP 4.88 × 10−8 - - 176
SORM 4.08 × 10−8 - - 219

Traditional LS 4.22 × 10−8 2.83% 50 376
4.09 × 10−8 2.10% 100 576

AGPR-LS 3.93 × 10−8 0.81% 21 205
PBAL-LS 4.14 × 10−8 3.76% 22 62
Proposed BAL-LS 4.07 × 10−8 1.13% 13 39

 

Figure 9.6: Ultimate stress state for the reinforced concrete section.

As indicated by the reference result from the crude MCS method, this example also constitutes

a situation where the probability of failure is extremely small, say 1.57 × 10−8. Table 9.6 reports

the main results of several selected methods. As seen, the failure probability estimate given by

FORM-SQP is less accurate; however, it requires a total number of 157 G-function calls. With 214

G-function calls, SORM gives a less accurate value of the failure probability estimate, say 1.44×10−8.

The accuracy of FORM-SQP can be further improved by the traditional LS method by generating

Table 9.5: Basic random variables for Example 3.

Variable Description Distribution Mean COV
X1 Area of reinforcement Normal 1260 mm2 0.05
X2 Yield stress of reinforcement Lognormal 300 N/mm2 0.10
X3 Effective depth of reinforcement Normal 770 mm 0.05
X4 Stress–strain factor of concrete Lognormal 0.35 0.10
X5 Compressive strength of concrete Lognormal 30 N/mm2 0.15
X6 Width of section Normal 400 mm 0.05
X7 Applied bending moment Lognormal 80 kN·m 0.20
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additional lines, which leads to increased G-function evaluations at the same time. AGPR-LS is

able to provide an accurate failure probability estimate with 8 additional lines, while relying on

the MPP provided by FORM-SQP, which requires 157 additional calls to the G-function. Both

PBAL-LS and BAL-LS can give desirable results, but BAL-LS requires less lines and G-function

calls.

Table 9.6: Results for Example 3 by several different methods.

Method P̂f δP̂f
or δP̂f

Nline Ntotal

MCS 1.57 × 10−8 2.53% - 1011

FORM-SQP 1.46 × 10−8 - - 157
SORM 1.44 × 10−8 - - 214

Traditional LS 1.59 × 10−8 1.63% 10 164
1.59 × 10−8 1.43% 20 204

AGPR-LS 1.53 × 10−8 0.54% 8 173
PBAL-LS 1.58 × 10−8 3.72% 15 55
Proposed BAL-LS 1.58 × 10−8 0.21% 12 40

9.4.4 Example 4: A transmission tower structure

The last example consists of a transmission tower structure subject to horizontal and oblique

loads, as shown in Fig. 9.7. Using OpenSees [49], the structure is modeled as a three-dimensional

truss with 41 nodes and 148 elements. The geometric dimensions of the model are marked in Fig.

9.7 (a) and (b). The limit state function is defined by:

Z = g(X) = ∆ − H1(F1, F2, F3, F4, F5, θ1, θ2, θ3, θ4, E, A), (9.39)

where ∆ denotes a threshold, specified as 50 mm; H1 represents the horizontal displacement on

x-axis of the top node, which is a function of 11 random variables as given in Table 9.7.

The crude MCS method is not likely to be affordable for providing a reference solution in this

example. For this reason, we implement important sampling (IS) [50] as an alternative. The failure

probability given by IS is 6.04 × 10−6 with a COV being 1.00%. In this example, FORM-SQP does

not converge to the correct result, while FORM-HLRF does. The results from IS, FORM-HLRF,

SORM, traditional LS, AGPR-LS, PBAL-LS and BAL-LS are reported in Table 9.8. Both FORM-

HLRF and SORM give inaccurate failure probability estimates. Traditional LS can improve the

accuracy of FORM-HLRF by employing additional lines to probe the failure domain, while requiring
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Table 9.7: Basic random variables for Example 4.

Variable Description Distribution Mean STD
F1 Oblique load (in xz - plane) Lognormal 50 kN 10 kN
F2 Oblique load (in xz - plane) Lognormal 50 kN 10 kN
F3 Oblique load (in xz - plane) Lognormal 60 kN 12 kN
F4 Oblique load (in xz - plane) Lognormal 60 kN 12 kN
F5 Horizontal load (on x-axis) Lognormal 80 kN 16 kN
θ1 Angle Normal 0◦ 10◦

θ2 Angle Normal 0◦ 10◦

θ3 Angle Normal 0◦ 10◦

θ4 Angle Normal 0◦ 10◦

E Young’s modulus Normal 200 MPa 30 Mpa
A Sectional area Normal 8000 mm2 800 mm2

many additional G-function evaluations in order to provide a reliable result. AGPR-LS is able to

enhance the accuracy of FORM-HLRF, at the cost of many additional computational efforts. PBAL-

LS and BAL-LS give reasonably good estimates of the probability of failure. However, BAL-LS is

much more efficient than PBAL-LS in this example.

Table 9.8: Results for Example 4 by several different methods.

Method P̂f δP̂f
or δP̂f

Nline Ntotal

IS 6.04 × 10−6 1.00% - 64, 687
FORM-HLRF 4.19 × 10−6 - - 288
SORM 4.33 × 10−6 - - 421

Traditional LS 5.86 × 10−6 5.74% 100 810
6.16 × 10−6 3.89% 200 1356

AGPR-LS 6.24 × 10−8 3.49% 172 468
PBAL-LS 5.86 × 10−6 4.88% 89 272
Proposed BAL-LS 5.95 × 10−6 4.65% 23 106
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Figure 9.7: A transmission tower structure subject to horizontal and oblique loads.
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9.5 Concluding remarks

This paper offers a more complete Bayesian active learning treatment of line sampling in the

context of structural reliability analysis. This treatment leads to a new method, called ‘Bayesian

active learning line sampling’ (BAL-LS). In this method, we first complete a Bayesian treatment

of the standard line sampling in terms of the second-order posterior statistics. Specially, the pos-

terior variance of the failure probability defined in line sampling is derived, which can measure our

epistemic uncertainty about the failure probability resulted from a limited number of observations.

Then, the Bayesian active learning treatment is accomplished by proposing a learning function

and a stopping criterion based on the posterior statistics of the failure probability. Besides, the

proposed method can automatically update the importance direction throughout its course with-

out re-evaluating the performance function. From several numerical studies, it is shown that the

proposed BAL-LS method is able to assess extremely small failure probabilities for weakly and

moderately nonlinear reliability problems with high efficiency and accuracy. Moreover, BAL-LS

exhibits a superior performance when compared with our previously developed PBAL-LS in the

studied examples.

The proposed method is only suitable for a class of weakly to moderately nonlinear problems in

low to moderate dimensions (<20). For highly nonlinear problems, the failure domain can be quite

complex in geometry, far from being half-open. The Bayesian active learning framework based on

the GP model in its current form can be quite challenging in high dimensions. These limitations

can be addressed in future work.
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Abstract: Line sampling (LS) is a powerful stochastic simulation method for structural re-

liability analysis, especially for assessing small failure probabilities. To further improve the per-

formance of traditional LS, a Bayesian active learning idea has been successfully pursued. This

work presents another Bayesian active learning alternative, called ‘Bayesian active learning line

sampling with log-normal process’ (BAL-LS-LP), to traditional LS. In this method, we assign a

LP prior instead of a Gaussian process prior over the distance function so as to account for its

non-negativity constraint. Besides, the approximation error between the logarithmic approximate

distance function and the logarithmic true distance function is assumed to follow a zero-mean normal

distribution. The approximate posterior mean and variance of the failure probability are derived

accordingly. Based on the posterior statistics of the failure probability, a learning function and a

stopping criterion are developed to enable Bayesian active learning. In the numerical implemen-

tation of the proposed BAL-LS-LP method, the important direction can be updated on the fly

without re-evaluating the distance function. Four numerical examples are studied to demonstrate

*Corresponding Author
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the proposed method. Numerical results show that the proposed method can estimate extremely

small failure probabilities with desired efficiency and accuracy.

Keywords: Structural reliability analysis; Line sampling; Bayesian active learning; Numerical

uncertainty; Log-normal process; Gaussian process

10.1 Introduction

Probabilistic reliability analysis has become an important tool in the modern engineer’s toolbox.

In this context, one of the main tasks is to calculate the failure probability, which constitutes a

typical rare event probability estimation problem. The failure probability is defined by a multiple

integral of the form:

Pf =
∫
X

I(g(x))fX(x)dx, (10.1)

where X = [X1, X2, · · · , Xd]⊤ ∈ X ⊆ Rd is a vector of d random variables; fX(x) denotes the joint

probability density function (PDF) of X, which is assumed to be known; g(X) : X → R is the so-

called performance function (also known as limit state function) such that g takes negative values

when the underlying system behaves unacceptably and vice versa; I(·) is the indicator function:

I(g(x)) = 1 if g(x) < 0 and I(g(x)) = 0 otherwise. Typically, Eq. (10.1) is not analytically

tractable, and therefore a variety of numerical methods have been developed over the years to

approximate it.

Stochastic simulation techniques occupy a prominent position among the existing methods to

estimate failure probabilities. As the most representative example, Monte Carlo simulation (MCS)

has proved to be a universal method for reliability analysis. In many practical cases, however, the use

of MCS is ruled out due to its low sampling efficiency, especially when the g-function is expensive-

to-evaluate and the failure probability is extremely small. This leads to the development of more

advanced stochastic simulation techniques that require less performance function evaluations. A

partial list of such techniques includes importance sampling [1–3], subset simulation [4, 5], directional

simulation [6, 7] and line sampling (LS) [8, 9]. All in all, each method has its own advantages and

disadvantages, as often being discussed in the literature. In the following, we will limit our attention

to the LS method that is closely related to the subject of this study.

As a stand-alone simulation method, the invention of LS is attributed to the work of Kout-
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sourelakis et al. [8, 10]. However, a similar but slightly different idea was exposed early in [11]. In

the standard normal space, LS first identifies a unit vector that points towards the failure domain,

which is the so-called important direction α. Then, the d-dimensional failure probability integral

is reformulated into a nested integral, with the inner being a one-dimensional conditional integral

along α, and the outer being a (d−1)-dimensional integral over the hyperplane orthogonal to α. In

practice, the inner integral conditional on a point on the hyperplane is solved by means of a root-

finding algorithm, while the outer integral is approximated by the MCS. The basic idea of LS can

be understood as follows: to explore the failure domain by using random but parallel lines instead

of random points. As a result, the simulation can be focused on the region where failure is most

likely to occur. This makes it possible to provide an accurate estimate for the failure probability

with less g-function calls than the crude MCS. The LS method has been shown to be particularly

suitable for assessing small failure probabilities of weakly and moderately nonlinear problems.

The traditional LS has been enhanced in various ways to improve its performance and applica-

bility. In [12–14], efforts have been made to efficiently adjust the important direction and/or process

lines. These methods still rely on the direct use of MCS to address the outer integral, which can

lead to unnecessary computational cost. To alleviate this problem, LS can be used in combination

with active-learning-based surrogate models [15, 16]. Beyond its original purpose, the application

scope of the traditional LS has also been expanded greatly. Examples include but not limited

to reliability sensitivity analysis [17–19], imprecise reliability analysis [12, 20–24], reliability-based

design optimization [25] and system reliability analysis [26].

More recently, the first author and his collaborators have attempted to interpret the reliability

analysis problem as a Bayesian inference problem and then to further frame reliability analysis in

a Bayesian active learning setting [27–29]. Compared with the existing active learning reliability

methods, the developed Bayesian active learning methods put more emphasis on using Bayesian

principles, and hence have many promising advantages. For example, the uncertainty about the

failure probability estimate can be modeled explicitly, based on which two critical components for

active learning, i.e., learning function and stopping criterion, can be developed. The Bayesian active

learning idea has also been pursued in the context of LS for reliability analysis. In [30], a method,

called ‘partially Bayesian active learning line sampling’ (PBAL-LS), has been developed. This is

a first attempt to approach the failure probability integral in LS from a Bayesian active learning

perspective, where the posterior mean and an upper bound of the posterior variance of the failure
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probability are available. The exact expression of the posterior variance of the failure probability is

then given in [31], which allows for a more complete uncertainty characterization of the failure prob-

ability in terms of second-order statistics. The resulting method is termed ‘Bayesian active learning

line sampling’ (BAL-LS), which can be regarded as an enhanced version of PBAL-LS. However,

both PBAL-LS and BAL-LS only account for the discretization error, which is only one source of

uncertainty than preventing from learning the true value of the failure probability. Actually, there

is another kind of numerical uncertainty, i.e., the approximation error, due to the numerical approx-

imation of the inner integral. In addition, the non-negativity constraint of the distance function is

disregarded both in PBAL-LS, as well as in BAL-LS. Ignoring these two factors (i.e., approximation

error and non-negativity constraint) may lead to a less accurate failure probability estimate.

The goal of this work is to simultaneously consider the discretization error, the approximation

error, and the non-negativity constraint in a strategic manner when approaching the Bayesian active

learning idea in the context of LS for structural reliability analysis. For this purpose, the distance

function associated with the inner integral of LS is assigned to a log-normal process (LP) prior

in order to explicitly express the non-negativity constraint, instead of a Gaussian process (GP)

as used in PBAL-LS and BAL-LS. Using a simple trick, the prior assumption can be equivalent

to placing a GP prior over the logarithmic distance function. Further, the approximation error

between the logarithmic distance function and the logarithmic true distance function is assumed to

follow a zero-mean normal distribution. Conditional on some observations arising from evaluating

the logarithmic distance function at some locations, the posterior distribution of the logarithmic

distance function turns out to be a GP. This implies that the posterior distribution of the distance

function follows a LP. The posterior mean and variance of the failure probability can be derived

based on a moment-matched GP approximation of the LP posterior of the distance function. To

enable Bayesian active learning, a learning function and a stopping criterion are developed in light

of the uncertainty representation of the failure probability.

The rest of this paper is structured as follows. In Section 10.2, two related methods are

briefly reviewed. The proposed method is presented in Section 10.3. Four numerical examples

are investigated in Section 10.4 to demonstrate the proposed method. Section 10.5 gives some

concluding remarks.
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10.2 Brief review of two related methods

In this section, two methods in close relation to our development, i.e., traditional LS [8] and

BAL-LS [31], are briefly introduced. To do so, we first reformulate our reliability analysis problem in

the standard normal space. Assume that a reversible transformation T can be applied to transform-

ing the basic random vector X into a standard normal vector U = [U1, U2, · · · , Ud]⊤, i.e., U = T (X).

This makes it possible to define a transformed performance function G(U) := g(T −1(U)).

10.2.1 Traditional line sampling

Traditional LS begins by identifying an important direction α, which is a unit vector pointing

to the failure domain in the standard normal space, i.e., F = {u ∈ U : G(u) < 0}. This can be

achieved by using the, e.g., gradient information of G at a certain point [12], design point by the

first-order reliability method [32], or failure samples generated by the Markov Chain Monte Carlo

[32].

Under the premise that the failure domain F is a half-open region, the failure probability can

be formulated as:

Pf =
∫
Rd−1

Φ(−β(u⊥))φU⊥(u⊥)du⊥, (10.2)

where u⊥ denotes a realization of a (d−1)-dimensional standard normal vector U⊥ = [U⊥
1 , U⊥

2 , · · · , U⊥
d−1]⊤

such that U = αU∥ +BU⊥; U∥ is a standard normal variable parallel to α; B is a d×(d−1) matrix

containing (d − 1) orthogonal basis vectors for the hyperplane perpendicular to α; β(u⊥) returns

the Euclidean distance between u⊥ and the limit state surface G = 0 along α; Φ(·) is the cumulative

distribution function (CDF) of the standard normal distribution; φU⊥(·) is the joint PDF of U⊥.

The standard normal vector U ′ = [U∥; U⊥] can be interpreted as a rotated counterpart of U , and

the matrix R = [α, B] turns out to be the rotational matrix such that U = RU ′.

In traditional LS, the failure probability integral defined in Eq. (10.2) is solved by the crude

MCS in conjugation with a root-finding technique. The MCS estimator of Pf is given by:

P̂f = 1
N

N∑
i=1

Φ(−β̂(u⊥,(i))), (10.3)

where
{

u⊥,(i)
}N

i=1
is a set of N random samples generated according to φU⊥(·); β̂(u⊥,(i)) denotes

336



CHAPTER 10. ADVANCED BAYESIAN ACTIVE LEARNING LINE SAMPLING FOR RARE
EVENT ESTIMATION

the approximate result of u∥ subject to G(αu∥ + Bu⊥,(i)) = 0, which can be obtained by a suitable

root-finding algorithm such as polynomial interpolation [8] and Newton’s method [12]. Note that

a small approximation error of β̂(u⊥,(i)) may cause a large numerical error of Φ(−β̂(u⊥,(i))), and

the errors of Φ(−β̂(u⊥,(i))), i = 1, 2, · · · , N can accumulate when forming the failure probability

estimate. However, this aspect is ignored in the traditional LS and its variants.

10.2.2 Bayesian active learning line sampling

BAL-LS provides a Bayesian active learning alternative to the traditional LS described above.

The basic ideas of BAL-LS are as follows. In contrast to frequentist inference, estimating the failure

probability integral defined in Eq. (10.2) is first treated as a Bayesian inference problem, where the

discretzation error is considered as a kind of epistemic uncertainty. Then, the induced probabilistic

uncertainty in the failure probability allows the development of an active learning scheme so as to

reduce the epistemic uncertainty.

Following a Bayesian approach, BAL-LS places a GP prior over the β-function:

β0(u⊥) ∼ GP(mβ0(u⊥), kβ0(u⊥, u⊥′)), (10.4)

where β0 denotes the prior distribution of β; mβ0(u⊥) is the prior mean function; kβ0(u⊥, u⊥′) is the

prior covariance function. The prior mean and covariance functions are assumed to be a constant

and squared exponential kernel, respectively.

Suppose that we now obtain a training dataset D =
{

U⊥, Y
}

by evaluating the β-function,

where U⊥ =
{

u⊥,(j)
}n

j=1
is a (d − 1) × n design matrix with its j-th column being a observation

point u⊥,(j), and Y =
{

y(j)
}n

j=1
is a column vector with its j-th element being y(j) = β(u⊥,(j)).

Conditioning the GP prior on the data D gives a GP posterior of β:

βn(u⊥) ∼ GP(mβn(u⊥), kβn(u⊥, u⊥′)), (10.5)

where βn denotes the posterior distribution of β conditional on D; mβn(u⊥) and kβn(u⊥, u⊥′) are

the posterior mean and covariance functions respectively, which can be expressed in closed form

[33]:

mβn(u⊥) = mβ0(u⊥) + kβ0(u⊥, U⊥)⊤Kβ0(U⊥, U⊥)−1(Y − mβ0(U⊥)), (10.6)
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kβn(u⊥, u⊥′) = kβ0(u⊥, u⊥′) − kβ0(u⊥, U⊥)⊤Kβ0(U⊥, U⊥)−1kβ0(U⊥, u⊥′), (10.7)

where mβ0(U⊥) = [mβ0(u⊥,(1)), mβ0(u⊥,(2)), · · · , mβ0(u⊥,(n))]⊤; kβ0(u⊥, U⊥) = [kβ0(u⊥, u⊥,(1)), kβ0(u⊥, u⊥,(2)),

· · · , kβ0(u⊥, u⊥,(n))]⊤; kβ0(U⊥, u⊥′) = [kβ0(u⊥,(1), u⊥′), kβ0(u⊥,(2), u⊥′), · · · , kβ0(u⊥,(n), u⊥′)]⊤; Kβ0(U⊥, U⊥)

is an n × n covariance matrix with (i, j)-th entry being kβ0(u⊥,(i), u⊥,(j)).

Conditional on D, the posterior mean and covariance functions of Φ(−β(u⊥)) can also be

derived as [30, 31]:

mΦn(−β̃)

(
u⊥
)

= Φ

 −mβn

(
u⊥
)

√
1 + σ2

βn
(u⊥)

 , (10.8)

kΦn(−β)(u⊥, u⊥′) =Ψ


 mβn

(
u⊥
)

mβn

(
u⊥′

)
 ;

 0

0

 ,

σ2
βn

(
u⊥
)

+ 1 kβn(u⊥, u⊥′)

kβn(u⊥′, u⊥) σ2
βn

(
u⊥′

)
+ 1




− Φ

 mβn

(
u⊥
)

√
1 + σ2

β̃n
(u⊥)

Φ

 mβn

(
u⊥′

)
√

1 + σ2
βn

(u⊥′)

 ,

(10.9)

where σ2
βn

(
u⊥
)

is the posterior variance function of β, i.e., σ2
βn

(
u⊥
)

= kβn(u⊥, u⊥); Ψ denotes

the bivariate normal CDF.

The posterior mean and variance of the failure probability conditional on D turn out to be:

mPf,n
=
∫
Rd−1

mΦn(−β)
(
u⊥
)

φU⊥(u⊥)du⊥, (10.10)

σ2
Pf,n

=
∫
Rd−1

∫
Rd−1

kΦn(−β)(u⊥, u⊥′)φU⊥(u⊥)φU⊥′(u⊥′)du⊥du⊥′. (10.11)

Note that the posterior distribution of the failure probability (denoted as Pf,n) reflects our uncer-

tainty about the true failure probability value, where the uncertainty is due to the discretization of

the β-function. The posterior mean mPf,n
can be used as a point estimate of the failure probability,

while the posterior variance σ2
Pf,n

lends itself as a natural convergence diagnostic. Due to their

analytical intractability, mP̃f,n
and σ2

P̃f,n
have to be numerically approximated.

Based on the uncertainty representation of the failure probability, the above Bayesian inference

framework can also be equipped with the use of active learning, which is the so-called Bayesian

active learning. The stopping criterion for active learning is defined as:

σPf,n

mPf,n

< δ, (10.12)
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where δ is a user-specified tolerance value. If the stopping criterion is not satisfied, the next best

point to query the β-function can be identified by maximizing the following learning function, called

‘posterior standard deviation contribution’ (PSDC):

PSDC
(
u⊥
)

= φU⊥(u⊥) ×
∫

U⊥
kΦ̃n(−β̃)(u

⊥, u⊥′)φU⊥′(u⊥′)du⊥′, (10.13)

where the integral term is estimated by means of a numerical integration scheme.

In addition, another salient feature of BAL-LS is that it can adjust the important direction

on the fly during its course. This means that it is not necessary to specify an optimal important

direction at the very beginning, which is usually difficult or expensive to obtain. The reader is

referred to [31] for more information about BAL-LS.

However, the BAL-LS method also has some limitations that motivate the present work. First,

BAL-LS directly places a GP prior over the β-function. This can be a poor choice as it is unable to

express the non-negativity of β. Second, the numerical error introduced by the numerical approxi-

mation of y(j) = β(u⊥,(j)) is also ignored in BAL-LS, which may result in a poor failure probability

estimate.

10.3 Bayesian active learning line sampling with log-normal pro-

cess

This section introduces another Bayesian active learning alternative, i.e., BAL-LS-LP, to the

traditional LS, in order to address the aforementioned limitations of BAL-LS. The proposed method

starts by assigning a LP prior, instead of a GP prior, over the β-function, which allows explicitly

taking into account its non-negativity constraint. Furthermore, to account for the approximation

error of the β-function resulting from the root-finding procedure, the error term between the log

approximate distance function and the log true distance function is assumed to follow a zero-

mean normal distribution. The approximate posterior mean and variance of the failure probability

are obtained by using a moment-matched GP approximation of the LP posterior of the distance

function. Based on the quantified uncertainty, two critical components for active learning, i.e.,

stopping criterion and learning function, are proposed accordingly.
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10.3.1 Theoretical development

10.3.1.1 Prior distributions

Let β̂(u⊥) denote the approximation of β(u⊥). In this study, we assume that the error between

log
(
β̂(u⊥)

)
and log

(
β(u⊥)

)
is additive:

log
(
β̂(u⊥)

)
= log

(
β(u⊥)

)
+ ε, (10.14)

where ε represents the error term. For notational simplicity, we denote log
(
β̂(u⊥)

)
and log

(
β(u⊥)

)
as l̂(u⊥) and l(u⊥) respectively. It follows that Eq. (10.14) can be rewritten as:

l̂(u⊥) = l(u⊥) + ε. (10.15)

Considering the non-negativity of β, our prior beliefs about it are encoded by a LP model:

β0(u⊥) ∼ LP( m β0
(u⊥), k β0

(u⊥, u⊥′)), (10.16)

where m β0
(u⊥) and k β0

(u⊥, u⊥′) denote the prior mean and covariance functions receptively,

which can completely characterize the LP model. Using a simple trick, we equate the LP prior over

β to a GP prior over l(u⊥):

l0(u⊥) ∼ GP(ml0(u⊥), kl0(u⊥, u⊥′)), (10.17)

where l0 denotes the prior distribution of l; ml0(u⊥) and kl0(u⊥, u⊥′) are the prior mean and co-

variance functions, respectively. Without loss of generality, the prior mean and covariance functions

are chosen as a constant and as a squared exponential kernel, respectively:

ml0(u⊥) = b, (10.18)

kl0(u⊥, u⊥′) = σ2
k exp

(
−1

2(u⊥ − u⊥′)⊤Σ−1(u⊥ − u⊥′)
)

, (10.19)

where b ∈ R; σk > 0 is the process standard deviation; Σ = diag
(
w2

1, w2
2, · · · , w2

d−1

)
with wi > 0

being the length scale in the i-th dimension.
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In order to account for the difference between l and l̂, the error term should also be properly

modeled. In this study, we assume that the additive error ε follows a zero-mean normal distribution:

ε ∼ N (0, σ2
ε), (10.20)

where σε > 0 is the standard deviation of ε. The mean is taken as zero because we believe that the

average error over the location u⊥ is not very biased.

10.3.1.2 Hyper-parameters tuning

Our prior assumptions expressed in Eqs. (10.18)-(10.20) depend on a set of d + 2 parameters

Ω = {b, σk, w1, w2, · · · , wd−1, σε}⊤, which are referred as hyper-parameters. Given a noisy training

dataset D̃ =
{

U⊥, Z̃
}

, where U⊥ =
{

u⊥,(j)
}n

j=1
is a (d − 1) × n design matrix with its j-th

column being a design point u⊥,(j), and Z̃ =
{

z̃(j)
}n

j=1
is a column vector with its j-th element

being z̃(j) = log
(
β̃(u⊥,(j))

)
. The hyper-parameters can be tuned by maximizing the log marginal

likelihood:

Ω = arg max log p(Z̃|U⊥, Ω), (10.21)

in which

log p(Z̃|U⊥, Ω) = −1
2

[
log (|Kl0 + σεI|) +

(
Z̃ − b

)⊤
(Kl0 + σεI)−1

(
Z̃ − b

)
+ n log (2π)

]
,

(10.22)

where Kl0 is an n×n matrix whose (i, j)-th entry is kl0(u⊥,(i), u⊥,(j)); I is an n×n identity matrix.

10.3.1.3 Posterior distributions

The posterior distribution of l conditional on D̃ is also a GP:

ln(u⊥) ∼ GP(mln(u⊥), kln(u⊥, u⊥′)), (10.23)

where ln denotes the posterior distribution of l after seeing n noisy observations; mln(u⊥) and

kln(u⊥, u⊥′) are the posterior mean and covariance functions respectively, which can be further
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expressed as [33]:

mln(u⊥) = ml0(u⊥) + kl0(u⊥, U⊥)⊤ (Kl0 + σεI)−1 (Z̃ − ml0(U⊥)), (10.24)

kln(u⊥, u⊥′) = kl0(u⊥, u⊥′) − kl0(u⊥, U⊥)⊤ (Kl0 + σεI)−1 kl0(U⊥, u⊥,′), (10.25)

where ml0(U⊥) = [ml0(u⊥,(1)), ml0(u⊥,(2)), · · · , ml0(u⊥,(n))]⊤; kl0(u⊥, U⊥) = [kl0(u⊥, u⊥,(1)), kl0(u⊥, u⊥,(2)),

· · · , kl0(u⊥, u⊥,(n))]⊤; kl0(U⊥, u⊥′) = [kl0(u⊥,(1), u⊥′), kl0(u⊥,(2), u⊥′), · · · , kl0(u⊥,(n), u⊥′)]⊤.

It is readily noticed that the induced posterior distribution for β conditional on D̃ follows a

LP:

βn(u⊥) ∼ LP( m βn
(u⊥), k βn

(u⊥, u⊥′)), (10.26)

where βn denotes the posterior distribution of β; m βn
(u⊥) and k βn

(u⊥, u⊥′) are the posterior

mean and covariance functions respectively, which can be derived as:

m βn
(u⊥) = exp

(
mln(u⊥) + 1

2σ2
ln(u⊥)

)
, (10.27)

k βn
(u⊥, u⊥′) =

[
exp

(
kln(u⊥, u⊥′)

)
− 1

]
exp

(
mln(u⊥) + mln(u⊥′) + 1

2
(
σ2

ln(u⊥) + σ2
ln(u⊥′)

))
,

(10.28)

where σ2
ln

(·) = kln(·, ·).

With the LP posterior of β, it is non-trivial to derive the resulting posterior distribution

of Φ(−β) and even its posterior mean and covariance functions. This in turn prevents us from

obtaining the posterior statistics of the failure probability Pf . Inspired by [34, 35], we adopt an

approximation scheme for βn in order to avoid the lack of traceability. Specifically, the GP posterior

LP( m βn
(u⊥), k βn

(u⊥, u⊥′)) is approximated by a moment-matched GP, i.e., GP( m βn
(u⊥), k βn

(u⊥, u⊥′)).

This approximation makes it possible to directly exploit the previous results given in BAL-LS [31]

when inferring the posterior statistics of both Φ(−β) and Pf .

Under the Gaussian approximation, the approximate posterior mean and covariance functions

of Φ(−β) conditional on D̃ can be given by:

m Φ̃n(−β)

(
u⊥
)

= Φ

 − m βn

(
u⊥
)

√
1 + σ 2

βn
(u⊥)

 , (10.29)
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k Φ̃n(−β)(u
⊥, u⊥′) =Ψ


 m βn

(
u⊥
)

m βn

(
u⊥′

)
 ;

 0

0

 ,

 σ 2
βn

(
u⊥
)

+ 1 k βn
(u⊥, u⊥′)

k βn
(u⊥′, u⊥) σ 2

βn

(
u⊥′

)
+ 1




− Φ

 m βn

(
u⊥
)

√
1 + σ 2

βn
(u⊥)

Φ

 m βn

(
u⊥′

)
√

1 + σ 2
βn

(u⊥′)

 ,

(10.30)

where σ 2
βn

(·) = k βn
(·, ·). For proofs of Eqs. (10.29) and (10.30), please refer to [31]. Note that

Eqs. (10.29) and (10.30) are respectively different from Eqs. (10.8) and (10.9) in essence due to the

differences in the mean, variance and covariance functions involved.

As a consequence, we can approximate the posterior mean and variance of Pf by:

m Pf,n
=
∫
Rd−1

m Φn(−β)

(
u⊥
)

φU⊥(u⊥)du⊥, (10.31)

σ 2
Pf,n

=
∫
Rd−1

∫
Rd−1

k Φn(−β)(u
⊥, u⊥′)φU⊥(u⊥)φU⊥′(u⊥′)du⊥du⊥′. (10.32)

Eqs. (10.31) and (10.32) are easy to be proved by using the Fubini’s theorem, hence the proofs are

omitted. It is noted that Eqs. (10.31) and (10.32) are essentially different from Eqs. (10.10) and

(10.11) respectively due to the differences in the integrands involved. The uncertainty in the failure

probability summarizes the numerical uncertainty resulting from both the discretization error (i.e.,

discretizing the l-function at discrete locations) and the approximation error (i.e., approximating

the value l(u⊥)). The approximate posterior mean m Pf,n
can be used as a point estimate of

the failure probability, while the approximate posterior variance σ 2
Pf,n

provides a measure for the

uncertainty.

10.3.1.4 Estimating the approximate posterior mean and variance of the failure prob-

ability

The approximate posterior mean and variances of the failure probability defined in (10.31) and

(10.32) have to be numerically approximated due to their analytical intractability. Following the

same way in BAL-LS, we employ the standard deviation-amplified importance sampling (SDA-IS)

originally developed in [29]. The SDA-IS estimators of m Pf,n
and σ 2

Pf,n
can be given by:

m̂ Pf,n
= 1

N

N∑
q=1

Φ

 − m βn

(
u⊥,(q)

)
√

1 + σ 2
βn

(
u⊥,(q))

 φU⊥(u⊥,(q))
φU⊥,λ(u⊥,(q))

, (10.33)
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σ̂
2
Pf,n

= 1
N

N∑
i=1

k Φn(−β)(u
⊥,(q), u⊥′,(q)) φU⊥(u⊥,(q))φU⊥(u⊥′,(q))

φU⊥,λ(u⊥,(q))φU⊥,λ(u⊥′,(q))
, (10.34)

where
{

u⊥,(q)
}N

q=1
and

{
u⊥′,(q)

}N

q=1
are two sets of N random samples generated according to

φU⊥,λ(u⊥) and φU⊥,λ(u⊥′), respectively; φU⊥,λ(u⊥) is the SDA-IS density of the form φU⊥,λ(u⊥) =∏d−1
i=1 φU⊥

i ,λ(u⊥
i ), in which

φU⊥
i ,λ(u⊥

i ) = 1
λ

√
2π

exp
(

−u⊥,2
i

2λ2

)
, (10.35)

where λ > 1 is the amplification factor.

The corresponding variances of the above two estimators can be expressed as:

V
[

m̂ Pf,n

]
= 1

N(N − 1)

N∑
q=1

Φ

 − m β̂n

(
u⊥,(q)

)
√

1 + σ 2
β̂n

(
u⊥,(q))

 φU⊥(u⊥,(q))
φU⊥,λ(u⊥,(q))

− m̂ Pf,n

2

, (10.36)

V
[

σ̂
2
Pf,n

]
= 1

N(N − 1)

N∑
q=1

[
k Φn(−β)(u

⊥,(q), u⊥′,(q)) φU⊥(u⊥,(q))φU⊥(u⊥′,(q))
φU⊥,λ(u⊥,(q))φU⊥,λ(u⊥′,(q))

− σ̂
2
Pf,n

]2

.

(10.37)

In order to reduce the computational burden and guarantee the accuracy of the results, the

SDA-IS is implemented in a step-by-step manner, rather than all at once. That is, we generate sam-

ples incrementally (e.g., 1×104 at once) until
√
V
[

m̂ Pf,n

]
/ m̂ Pf,n

< τ1 and
√
V
[

σ̂
2
Pf,n

]
/ σ̂

2
Pf,n

<

τ2 are satisfied, where τ1 and τ2 are two user-specified thresholds.

10.3.1.5 Stopping criterion and learning function

The above Bayesian framework can be further cast in an active learning setting based on the

uncertainty modeling of the failure probability. Two principal components for active learning are

the stopping criterion and learning function.

Supposing that we are at the stage with n noisy observations, the stopping criterion can be

defined in terms of the estimated COV of the posterior failure probability such that:

σ̂ Pf,n

m̂ Pf,n

< η, (10.38)

where η is a tolerance value. The stopping criterion should be met twice in a row in order to avoid

344



CHAPTER 10. ADVANCED BAYESIAN ACTIVE LEARNING LINE SAMPLING FOR RARE
EVENT ESTIMATION

fake convergence.

If the stopping criterion is not reached, then the training dataset should be enriched so as to

further reduce the epistemic uncertainty in the failure probability. For this propose, a learning func-

tion, called ‘approximate posterior standard deviation contribution’ (APSDC), is first introduced:

APSDC
(
u⊥
)

= φU⊥(u⊥) ×
∫
Rd−1

k Φn(−β)(u
⊥, u⊥′)φU⊥′(u⊥′)du⊥′. (10.39)

Note that
∫
Rd−1 APSDC

(
u⊥
)

du⊥ = σ 2
P̃f,n

holds true. Hence, the APSDC function provides a

measure of the contribution of the epistemic uncertainty at site u⊥ to the approximate posterior

variance (or standard deviation) of the failure probability. The intractable integral term involved

in the APSDC function can be approximated by a numerical integration scheme such that:

ÂPSDC
(
u⊥
)

= φU⊥(u⊥) 1
M

M∑
p=1

k Φn(−β)(u
⊥, u⊥′,(p)), (10.40)

where
{

u⊥′,(p)
}M

p=1
is a set of M integration points, which are generated according to φU⊥′(u⊥′)

using Sobol sequence in this study.

The next best point u⊥,(n+1) to query the l-function can be identified by maximizing the

approximate APSDC function such that:

u⊥,(n+1) = arg max
u⊥∈Rd−1

ÂPSDC
(
u⊥
)

, (10.41)

where a global optimization algorithm, i.e., particle swarm optimization, can be used. As soon as

u⊥,(n+1) is selected, l̃(u⊥,(n+1)) should be evaluated by an appropriate algorithm.

10.3.2 Step-by-step procedure

During the theoretical development of the proposed BAL-LS-LP method, the important di-

rection is assumed to be fixed. However, it is not necessary to do so and the important direction

can be updated as well. In addition, how to evaluate the l function is another important aspect

that remains unmentioned. These issues will be addressed as the steps of the proposed method are

presented.

The procedure for implementing the proposed BAL-LS-LP method is summarized below in six
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main steps, and illustrated with a flowchart in Fig. 10.1.

Step 1: Specifying an initial important direction

The proposed method is initialized with an important direction α(0), which can be a rough

guess and does not need to be optimal. In this study, the initial important direction is chosen as

the negative normalized gradient of the G-function at the origin:

α(0) = − ∇uG(0)
||∇uG(0)|| , (10.42)

where ∇uG(0) =
[

∂G(0)
∂u1

, ∂G(0)
∂u2

, · · · , ∂G(0)
∂ud

]⊤
; ||·|| is the Euclidean norm. The gradient vector ∇uG(0)

may not be analytically available in most cases. To this end, the forward difference method is used

to provide a numerical approximation at the cost of (d + 1) G-function evaluations. Given α(0), it

is in principle not possible to uniquely determine the corresponding matrix B(0) that describes the

hyperplane orthogonal to α(0). However, this does not impose severe restrictions in practice because

one can simply employ, e.g., the Gram–Schmidt orthonormalization, to specify an admissible B(0).

Step 2: Generating an initial training dataset and updating the important direction

In this step, an initial training dataset needs to be generated and the initial important direction

can be updated. First, we draw a small set of samples U⊥ =
{

u⊥,(j)
}n0

j=1
uniformly distributed

within a hyper-rectangle [−r, r]d−1 on the hyperplane orthogonal to α(0), using Sobol sequence. As

a convenient rule of thumb, the two parameters n0 and r are specified as 5 and 3.5, respectively.

Second, for each sample u⊥,(j), one has to compute the Euclidean distance between u⊥,(j) and

the limit state surface G = 0 along α(0). This is equivalent to finding the root of G(α(0)u∥ +

B(0)u⊥,(j)) = 0, which can be solved by using the adaptive inverse interpolation method [31].

The approximate roots corresponding to U⊥ are denoted as Ỹ =
{

ỹ(j)
}n0

j=1
with ỹ(j) = β̃(u⊥,(j)).

Besides, it is also important to record each approximate intersection α(0)ỹ(j) + B(0)u⊥,(j) of the

line α(0)u∥ + B(0)u⊥,(j) and G = 0. Third, a new important direction α(1) can be set as the

normalized vector of the approximate intersection with the shortest distance to the origin, i.e.,

α(1) = α(0)ỹ(j⋆)+B(0)u⊥,(j⋆)

||α(0)ỹ(j⋆)+B(0)u⊥,(j⋆)|| with j⋆ = arg min1≤j≤n0 ||α(0)ỹ(j) + B(0)u⊥,(j)||. The matrix B(1)

corresponding to α(1) can be specified by means of the Gram-Schmidt process. Fourth, by projecting

those n0 approximate intersections onto the hyperplane perpendicular to α(1), one can simply obtain

the projection points U⊥ =
{

u⊥,(j)
}n0

j=1
and distances Ỹ =

{
ỹ(j)

}n0

j=1
. The initial training dataset
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is obtained as D̃ =
{

U⊥, Z̃
}

with Z̃ = log Ỹ . Let n = n0 and q = 1.

Step 3: Inferring the posterior statistics of the failure probability

The approximate posterior mean and variance of the failure probability can be inferred based

on data D̃. First, we make an inference about the GP posterior of the l-function, as defined in Eq.

(10.23). This can be achieved by using, e.g., the fitrgp function in Statistics and Machine Learning

Toolbox of Matlab. Second, via the relationship between the l-function and the β-function, it is

trivial to obtain the LP posterior of the β-function, as given by Eq. (10.26). Third, with the help of

the moment-matched GP approximation, we can finally arrive at the approximate posterior mean

and variance of the failure probability (as shown in Eqs. (10.31) and (10.32)). Fourth, one can

obtain the approximate mean estimate m̂ Pf,n
and the approximate variance estimate σ̂

2
Pf,n

by

using the sequential SDA-IS method described in Section 10.3.1.4. The sequential method (λ = 1.5)

is stopped until
√
V
[

m̂ Pf,n

]
/ m̂ Pf,n

< τ1 and
√
V
[

σ̂
2
Pf,n

]
/ σ̂

2
Pf,n

< τ2 are met (τ1 = 0.01 and

τ2 = 0.05).

Step 4: Checking the stopping criterion

If the stopping criterion
σ̂

Pf,n

m̂
Pf,n

< η is reached twice in a row, go to Step 6; Otherwise, go to

Step 5. In this study, the threshold η takes the value of 0.05.

Step 5: Enriching the training dataset and updating the important direction

This step involves enriching the previous training dataset by identifying a new promising loca-

tion at which to query the l-function, and updating the important direction once a more probable

one is found. First, the next best point u⊥,(n+1) is determined by maximizing the learning func-

tion (Eq. (10.40)), where M = 20 is adopted. Second, the approximate distance ỹ(n+1) between

u⊥,(n+1) and the limit state surface G = 0 is solved by using the Newton’s method. As a guess,

m βn
(u⊥,(n+1)) can be taken as the starting point. An approximate intersection is recorded as

α(q)ỹ(n+1) + B(q)u⊥,(n+1). Third, if the new intersection does not have the shortest distance to

the origin among all the available approximate intersections, the previous training dataset D̃ is

directly enriched with
{

u⊥,(n+1), log ỹ(n+1)
}

. Otherwise, the previous important direction is then

updated to a new one, i.e., α(q+1) = α(0)ỹ(n+1)+B(q)u⊥,(n+1)

||α(0)ỹ(n+1)+B(q)u⊥,(n+1)|| . Accordingly, a new matrix B(q+1)

can be specified and q = q + 1. Projecting all the available approximate intersections on the latest

hyperplane yields the enriched training dataset D̃. Let n = n + 1 and go to Step 3.

Step 6: Stopping the algorithm
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The latest m̂ Pf,n
and σ̂

2
Pf,n

are returned and the algorithm is stopped.

Start

Specify an initial important direction α(0) according to Eq. (10.42)
and the matrix B(0) using the Gram–Schmidt process

Construct an initial observation dataset D̃ =
{

U⊥, Z̃
}

and update the important direction and B-matrix to α(1) and R(1).
Let n = n0 and q = 1

Compute the approximate posterior mean and variance estimates of
the failure probability conditional on D̃ using the sequential SDA-IS method

Stopping criterion?

Determine the next best point u⊥,(n+1) by Eq. (10.41),
compute the correspoding β-fucntion value ỹ(n+1);

Update the important direction and R-matrix if possible
(q = q + 1) and obtain the enriched training dataset D̃.

Let n = n + 1

Return m̂
Pf,n

and σ̂
2
Pf,n

Stop

No

Yes

Figure 10.1: Flowchart of the proposed BAL-LS-LP method.

10.4 Numerical examples

In this section, we illustrate the proposed BAL-LP-LS method on four numerical examples.

Although some examples have explicit performance functions, they are all treated as implicit. In all

cases, the crude MCS method is employed to provide the reference failure probabilities whenever

possible. For comparison purposes, several existing methods, i.e., first-order reliability method with

sequential quadratic programming (FORM-SQP) [37], traditional LS [8], combination line sampling

(CLS) [14], active learning reliability method in UQLab version 2.0 (denoted as ALR in UQLab)

[38] and BAL-LS [31], are also implemented. In FORM-SQP, the starting point is set as the point

of origin and the SQP method adopts the one available in Matlab R2022b with its default settings.

The important direction in traditional LS is specified by FORM-SQP, and the Newton’s method is
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employed to process lines. For CLS, the initial important direction uses the same as the proposed

method (Eq. (10.42)). The ALR in UQLab employs the Kriging model with Gaussian kernel

instead of its default polynomial chaos-Kriging. For ALR in UQLab, BAL-LS and BAL-LS-LP,

20 independent runs are performed for the first three examples in order to test their robustness.

Therefore, we only report the mean and/or variability of the quantities of interest.

10.4.1 Example 1: A test function

For the first example, let us consider a test function taking the form [30]:

Y = g(X) = a − X2 + bX3
1 + c sin (dX1) , (10.43)

where a, b, c and d are four parameters that can influence the non-linearity of the problem and the

level of failure probability, which are specified as: a = 5.5, b = 0.02, c = 5
6 , d = π

3 ; X1 and X2 are

two standard normal variables.

The results of the proposed BAL-LS-LP method and several existing methods are summarized

in Table 10.1. The reference failure probability is taken as 3.54 × 10−7, which is provided by MCS

with 1011 samples. The failure probability estimate from FORM-SQP (say 7.19 × 10−7) differs

significantly from the reference one. To obtain a failure probability estimate with a reasonable

COV, both traditional LS and CLS require a large number of performance function calls. ALR

in UQLab only needs a dozen performance function evaluations on average, but it results in an

obvious bias in the mean of 20 failure probability estimates (say 3.95×10−7). The BAL-LS method

gives an average failure probability of 3.50 × 10−7 with a COV of 3.50%, which are at a cost of 9.25

lines and 35.50 G-function revelations on average. The proposed BAL-LS-LP can further reduce

the average number of Nline and Ncall, while producing a fairly good failure probability mean with

a small variability.

To provide a schematic illustration of the proposed method, Fig. 10.2 shows some of the results

obtained from an exemplary run. It can be observed from Fig. 10.2(a) that the initial important

direction is far from optimal, but still informative. After five approximate intersections are ob-

tained, the initial important direction is immediately updated to a new one. After three additional

intersections are available, the proposed method stops as the stopping criterion is satisfied. As seen

from Fig. 10.2(b), the final important direction is almost optimal.
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Table 10.1: Results of Example 1 by several methods.

Method Nline Ncall P̂f COV
[
P̂f

]
MCS - 1011 3.54 × 10−7 0.53%
FORM-SQP - 28 7.19 × 10−7 -

Traditional LS 100 366 3.74 × 10−7 7.01%
200 714 3.33 × 10−7 5.24%

CLS 100 490 3.79 × 10−7 6.91%
200 964 3.37 × 10−7 5.74%

ALR in UQLab - 16.00 3.95 × 10−7 6.30%
BAL-LS 9.25 35.50 3.50 × 10−7 3.50%
Proposed BAL-LS-LP 7.00 30.00 3.59 × 10−7 0.30%
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(a) Initial stage
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4
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(b) Final stage

Figure 10.2: Schematic illustration of the proposed BAL-LS-LP method for Example 1.

10.4.2 Example 2: A non-linear oscillator

The second example consists of a non-linear oscillator subject to a rectangular-pulse load [39],

as shown in Fig. 10.3. The performance function is defined by:

Z = g (m, k1, k2, r, F1, t1) = 3r −

∣∣∣∣∣∣ 2F1
k1 + k2

sin

 t1
2

√
k1 + k2

m

∣∣∣∣∣∣ , (10.44)

where m, k1, k2, r, F1 and t1 are six random variables, as detailed in Table 10.2.

In Table 10.3, we summarize the results of several methods, including MCS, FORM-SQP,

traditional LS, CLS, ALR in UQLab, BAL-LS and BAL-LS-LP. The reference value for the failure
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Figure 10.3: A nonlinear SDOF oscillator driven by a rectangular pulse load.

Table 10.2: Random variables for Example 2.

Variable Description Distribution Mean COV
m Mass Lognormal 1.0 0.05
k1 Stiffness Lognormal 1.0 0.10
k2 Stiffness Lognormal 0.2 0.10
r Yield displacement Lognormal 0.5 0.10

F1 Load amplitude Lognormal 0.4 0.20
t1 Load duration Lognormal 1.0 0.20

probability is 4.01×10−8 with a COV of 0.50%, provided by MCS with 1012 samples. At the cost of

176 G-function evaluations, FORM-SQP provides a failure probability estimate of 4.88×10−8, which

is not that close to the reference value. The accuracy of FORM-SQP can be further improved by

the traditional LS with a small number of extra lines (e.g., 50), which, in turn, leads to a significant

increase in G-function calls. Compared to the traditional LS, CLS needs more lines and G−function

evaluations to yield a reasonable result. ALR in UQLab is able to reduce the number of G-function

evaluations to 46.55 on average. Nevertheless, the mean value of 20 failure probability estimates

(say 4.75 × 10−8) appears to be biased and relatively larger than the reference value. BAL-LS-LP

requires on average slightly more lines and G-function calls than BAL-LS, but produces a almost

unbiased result with a significantly smaller COV.

10.4.3 Example 3: An I beam

As a third example, we consider a simply-supported I beam subject to a concentrated force

[40], as depicted in Fig. 10.4. The performance function is expressed as:

Y = g(X) = S − σmax, (10.45)
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Table 10.3: Results of Example 2 by several methods.

Method Nline Ncall P̂f COV
[
P̂f

]
MCS - 1012 4.01 × 10−8 0.50%
FORM-SQP - 176 4.88 × 10−8 -

Traditional LS 50 376 4.16 × 10−8 2.93%
100 576 4.09 × 10−8 1.92%

CLS 200 868 4.87 × 10−8 7.91%
300 1,329 4.65 × 10−8 6.79%

ALR in UQLab - 46.55 4.75 × 10−8 11.62%
BAL-LS 12.65 43.25 3.73 × 10−8 30.52%
Proposed BAL-LS-LP 13.65 46.20 4.02 × 10−8 0.92%

in which

σmax = Pa(L − a)d
2LI

, (10.46)

with

I = bf d3 − (bf − tw)(d − 2tf )3

12 . (10.47)

A total number of eight random variables X = [P, L, a, S, d, bf , tw, ff ]⊤ are involved in this example,

as listed in Table 10.4.

 

Figure 10.4: A simply-supported I beam.

Table 10.4: Random variables for Example 3.

Variable Distribution Mean COV
P Lognormal 1500 0.20
L Normal 120 0.05
a Normal 72 0.10
S Normal 200,000 0.15
d Normal 2.3 0.05
bf Normal 2.3 0.05
tw Normal 0.16 0.05
tf Normal 0.26 0.05
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The results obtained from several methods are reported in Table 10.5. MCS with 1011 samples

produces a reference failure probability of 1.69 × 10−7 with a COV being 0.77%. FORM-SQP gives

a result (say 1.48 × 10−7) that is slightly smaller than the reference one. However, it requires a

large number (i.e., 1511) of performance function evaluations. In order to achieve a good result,

traditional LS needs many additional G-function calls. Even with 200 lines, the failure probability

given by CLS still has a large COV, i.e., 7.40%. At the cost of 93.10 G-function calls on average,

the result from ALR in UQLab is still biased and tends to be larger than the reference value.

The average numbers of lines and G-function calls required by BAL-LP-LS are less than those of

BAL-LS, but can still give a failure probability mean that is closed to the reference one and with a

smaller COV.

Table 10.5: Results of Example 3 by several methods.

Method Nline Ncall P̂f COV
[
P̂f

]
MCS - 1011 1.69 × 10−7 0.77%
FORM-SQP - 1,511 1.48 × 10−7 -

Traditional LS 100 1,859 1.89 × 10−7 7.08%
200 2,195 1.62 × 10−7 2.43%

CLS 100 504 1.62 × 10−7 10.27%
200 993 1.50 × 10−7 7.40%

ALR in UQLab - 85.95 2.01 × 10−7 14.88%
BAL-LS 17.20 59.30 1.61 × 10−7 10.19%
Proposed BAL-LS-LP 11.35 40.70 1.62 × 10−7 8.88%

10.4.4 Example 4: A space truss structure

The last example involves a 120-bar space truss structure subject to seven vertical loads [27, 28],

as shown in Fig. 10.5. The structure is modeled as a three-dimensional truss using an open-source

finite element analysis software, OpenSees. The established model consists of 49 nodes and 120

truss elements. It is assumed that all elements have the same cross-sectional area, A, and the same

modulus of elasticity, E. The thirteen vertical loads (as depicted in Fig. 10.5) are denoted as

P0 ∼ P12. The performance function is defined as:

Y = g(X) = ∆ − V0(A, E, P0 ∼ P12), (10.48)
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where V0 is the vertical displacement of node 0; ∆ is a threshold, which is specified as 100 mm; A,

E, P0 ∼ P12 are fifteen random variables, as described in Table 10.6.

1589 cm

691.4 cm

1250 cm

Figure 10.5: A 120-bar space truss structure subject to seven vertical loads.
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Table 10.6: Random variables for Example 4.

Variable Distribution Mean COV
A Normal 2,000 mm2 0.10
E Normal 200 GPa 0.10
P0 Lognormal 400 kN 0.20
P1 ∼ P12 Lognormal 50 kN 0.15

In this example, we cannot afford to run the crude MCS in order to provide a reference solution

because the target failure probability is quite small. To this end, the importance sampling (IS)

available in UQLab [38] is then implemented as an alternative. The failure probability given by IS

is 1.90 × 10−9 with a COV of 1.97%. The results of IS and several other methods are compared

in Table 10.7. FORM-SQP converges to an infeasible point after one iteration. Therefore, the

traditional LS also cannot work because it is based on the FORM-SQP in our setting. ALR in

UQLab stops when only several additional points are added, but the result is completely wrong.

Although the CLS method is workable, its variability is quite large even using 1,000 lines. At

the cost of 25 lines and 144 performance function evaluations, BAL-LS gives a failure probability

estimate of 2.24 × 10−9 with a COV of 2.69%. Remarkably, the proposed BAL-LS-LP method can

produce a much better estimate with less G-functions calls compared to BAL-LS.

Table 10.7: Results of Example 4 by several methods.

Method Nline Ncall P̂f COV
[
P̂f

]
IS - 25,141 1.90 × 10−9 1.97%
FORM-SQP - - - -
Traditional LS - - - -

CLS 500 3,001 1.02 × 10−9 15.20%
1,000 5,926 1.82 × 10−9 14.12%

ALR in UQLab - - - -
BAL-LS 25 144 2.24 × 10−9 2.69%
Proposed BAL-LS-LP 26 102 1.90 × 10−9 2.39%
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10.5 Concluding remarks

This paper presents a new Bayesian active learning alternative, called ‘Bayesian active learning

line sampling with log-normal process’ (BAL-LS-LP), to the traditional line sampling for structural

reliability analysis, especially for assessing small failure probabilities. First, we treat the estimation

of the failure probability in LS with Bayesian inference. By using a LP prior instead of a GP

prior, it is possible to simultaneously consider the discretization error of the distance function, as

well as its non-negativity constraint that is ignored in both PBAL-LS and BAL-LS. In addition,

the approximation error of the distance function is taken into account by assuming a zero-mean

normal distribution. The approximate posterior mean and variance of the failure probability are

derived based on the use of a moment-matched GP approximation of the posterior distribution of the

distance function. Second, two essential components for active learning, i.e., learning function and

stopping criterion, are developed using the posterior statistics of the failure probability. Third, the

important direction can be automatically updated on the fly during the simulation from an initial

rough guess. By means of four numeral examples, it is demonstrated that the proposed method is

able to assess extremely small failure probabilities (e.g., an order of magnitude 10−7 ∼ 10−9) with

reasonable accuracy and efficiency.

Optimizing the learning function using a nature-inspired global optimization algorithm can

be time consuming as the dimensions increase. This degenerates the efficiency of the proposed

method in higher dimensions. The problem may be solved by simplifying the learning function or

employing a more efficient optimization algorithm (e.g., Bayesian global optimization). Besides,

it is also somewhat demanding to approximate the approximate posterior variance of the failure

probability by the SDA-IS method. One possible solution is to simplify the approximate posterior

variance of the failure probability, or to develop a more efficient numerical integrator. Future

research efforts can be devoted to those directions.
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11.1 Concluding remarks

Forward UQ is a branch of UQ that involves quantifying the uncertainty in the outputs of a

computational model given uncertain inputs. This in turn enables more informed decision-making,

risk management and improved predictions. Due to its increasing importance in many areas of

science and engineering, the study of forward UQ has attracted a lot of attention from researchers

and practitioners over the past several decades. This has led to the development of a variety of

methods, as well as interdisciplinary research. However, there is a great need for more advanced

methods in order to address more challenging problems as our computational models tend to be

more and more complex. This thesis aims at developing a set of cutting-edge methods for forward

UQ analysis, and offering some new insights into the problems under consideration, especially from

a Bayesian active learning perspective. The main results of the research are summarized and the

most important findings are highlighted in the following:

Chapter 2 presents the ‘moment-generating function based mixture distribution’ (MGF-MD)

method for dynamic reliability analysis of nonlinear structures with uncertain structural parame-

ters under stochastic seismic excitations. Such problems can be rather challenging because strong

nonlinearity and high-dimensional randomness are likely to coexist. The proposed method tackles

the challenge by estimating the extreme value distribution (EVD) from a small number of simula-

tions. The MGF as a descriptor for the EVD of interest is evaluated by Latinized partially stratified

sampling method. Then, the EVD is reconstructed by the proposed mixture distribution from the

knowledge of the estimated MGF. It is shown that the developed MGF-MD method is able to

provide reasonable accuracy and efficiency in three numerical examples.

Chapter 3 is devoted to the development of the ‘triple-engine parallel Bayesian global opti-

mization’ (T-PBGO) method for interval uncertainty propagation. The main contribution lies in

developing a novel infill sampling criterion, i.e., triple-engine pseudo expected improvement strat-

egy, to identify multiple promising points for minimization and/or maximization based on the past

observations at each iteration. Two salient features of T-PBGO are that: (1) it can produce the

lower and upper bounds of a model output of interest in a single run; and (2) it enables the use of

ever-increasing parallel computing facilities.

Chapter 4 reports the Bayesian active learning method, ‘parallel Bayesian quadrature optimiza-

tion’ (PBQO), for propagating hybrid uncertainties in the form of probabilistic models, parameter-
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ized probability-box models and interval models. In this method, we first treat the estimation of

response expectation function (REF) as a Bayesian inference problem. This also allows to quantify

the discretization error by a Bayesian approach. Based on the uncertainty representation of the

REF, learning functions and stopping criteria are developed for active learning proposes. Three key

advantages of PBQO are that: (1) it is fully decoupled in nature; (2) it supports parallel computing;

and (3) it is capable of yielding the REF, its variable importance and bounds simultaneously in a

single run.

Chapter 5 is about the ‘active learning augmented probabilistic integration’ (ALAPI) method,

which is designed for the propagation of parameterized probability-box models and the failure

probability function is of interest. To do so, we first develop a partially Bayesian active learning

method, ‘active learning probabilistic integration’ (ALPI), for probabilistic reliability analysis. In

this method, an upper-bound of the posterior variance for the failure probability is derived in

analytic form, based on which a learning function is also put forward. The ALAPI method is

formed by a combination of ALPI and high-dimensional model representation in the augmented

uncertainty space.

Chapter 6 develops a parallel partially Bayesian active learning method, ‘parallel adaptive

Bayesian quadrature’ (PABQ), for probabilistic reliability analysis with small failure probabilities.

The theoretical basis of PABQ is rooted in our previously developed ALPI. The main contribution

lies in two aspects: (1) enabling the estimation of small failure probabilities by proposing an im-

portance ball sampling; and (2) facilitating parallel distributed processing by devising a multi-point

selection strategy.

Chapter 7 offers a Bayesian perspective on the failure probability integral estimation, distin-

guished from the classical frequentist perspective. We develop a principled ‘Bayesian failure prob-

ability inference’ (BFPI) framework, and it allows to account for the numerical uncertainty behind

the failure probability by a Bayesian approach. In addition, a ‘parallel adaptive-Bayesian failure

probability learning’ (PA-BFPL) method is proposed within the BFPI framework. The method can

identity a batch of points at each iteration, and hence enables parallel computing.

Chapter 8 proposes a partially Bayesian active learning method based on line sampling, termed

‘partially Bayesian active learning line sampling’ (PBAL-LS), for probabilistic reliability analysis,

especially when involving small failure probabilities. In this method, we derive the posterior mean

of the failure probability, as well as an upper bound of the posterior variance. On the basis of
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the posterior statistics, two crucial components (i.e., learning function and stopping criterion) are

devised for active learning proposes. Besides, the important direction can be adapted on the fly

throughout the simulation. The developed method is called ‘partially’ because we only arrive at an

upper bound of the posterior variance of the failure probability.

Chapter 9 provides a more complete ‘Bayesian active learning line sampling’ (BAL-LS) method

for estimating small failure probabilities. Compared to our previously developed PBAL-LS, the main

advances in BAL-LS are: (1) an exact expression of the posterior variance for the failure probability

is derived; (2) based on which a new learning function and stopping criterion are put forward. The

proposed method outperforms several existing methods in terms of the number of performance

function evaluations on four test examples, including the PBAL-LS method.

Chapter 10 introduces a more advanced Bayesian active learning alternative, ‘Bayesian active

learning line sampling with log-normal process’ (BAL-LS-LP), to the traditional LS. Different from

using a Gaussian process as in both PBAL-LS and BAL-LS, we assign a LP prior over the beta

function, which can explicitly account for the discretization error and non-negativity constraint.

Additionally, the approximation error of the beta function is also modeled. Numerical studies

indicate that the proposed BAL-LS-LP can assess extremely small failure probabilities with desired

accuracy and efficiency.

Overall, this thesis develops a set of advanced methods that can be applied to a wide class of

problems in the field of forward UQ. Along the development of these methods, we also gain some

new insights into the problems of interest, among which a Bayesian active learning perspective is

particularly emphasized. The developed methods and gained insights are expected to benefit both

research progress and practical applications of forward UQ.

11.2 Future work

The results of this thesis can provide a promising starting point for a number of further studies.

Among them, some possible directions are especially suggested in the following:

(i) Bayesian active learning with fully Bayesian Gaussian processes. In most studies of this thesis,

we make use of the Gaussian processes with point estimate hyperparameters for Bayesian ac-

tive learning. However, this kind of Gaussian processes has known problems, e.g., over-fitting

and underestimating prediction uncertainty. Alternatively, some fully Bayesian Gaussian pro-
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cesses have been developed in the literature, where a Bayesian treatment of the hyperparam-

eters is advocated. The future study can use fully Bayesian Gaussian processes instead for

developing Bayesian active leaning methods for forward UQ;

(ii) Bayesian active learning with student-t processes. In addition to the Gaussian processes,

there are many different types of Bayesian models. Some of these models might be usable for

our Bayesian active learning purposes, e.g., student-t processes. One advantage of student-t

processes over Gaussian processes are that they can model heavy tailed behaviour. In the

literature, student-t processes have shown to outperform Gaussian processes for Bayesian

optimization in many cases. However, the applications of student-t processes to uncertainty

propagation still remain open;

(iii) Bayesian active learning with dimension reduction. Whether using Gaussian processes or

student-t processes, a common issue is that they are not suitable for modelling high-dimensional

problems. A potential solution to this issue is to employ dimension reduction techniques, such

as principal component analysis, active subspace and manifold learning, etc.
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