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Kurzfassung
Mit zunehmender Autonomie von Fahrzeugen ist die Gewährleistung der Sicherheit zu einem
vorrangigen Anliegen geworden. Eine grundlegende Aufgabe dabei ist die Lokalisierung, die für
einen sicheren Betrieb unerlässlich ist. Zur Quantifizierung der Sicherheitsanforderungen wurde
das Konzept der Integrität eingeführt. Die Integrität beschreibt die Fähigkeit des Systems
rechtzeitig und korrekt zu warnen, wenn ein sicherer Betrieb nicht mehr gewährleistet werden
kann. Um jedoch die Funktionsfähigkeit des Systems abschätzen zu können, muss unter
anderem die Unsicherheit der Lokalisierung bewertet werden.

In der Literatur existieren zwei vorherrschende Ansätze – die Wahrscheinlichkeitstheorie und
die Mengenzugehörigkeitstheorie, die mathematische Werkzeuge zur Bewertung der Unsicherheit
zur Verfügung stellen. Probabilistische Ansätze liefern oft gute Ergebnisse, neigen aber dazu
den Fehler zu unterschätzen. Bei mengentheoretischen Ansätzen hingegen wird die Unsicherheit
zuverlässig bewertet, der Fehler jedoch tendenziell überschätzt. Während die Unterschätzung des
Fehlers zu gefährlichen Systemausfällen ohne Vorwarnung führen kann, machen zu pessimistische
Schätzungen das System unbrauchbar.

Das Ziel dieser Dissertation ist es, die symbiotische Beziehung zwischen mengenbasierten und
probabilistischen Lokalisierungsansätzen zu untersuchen und sie zu einem einheitlichen, hybriden
Lokalisierungsansatz zur Fehlerabschätzung zu kombinieren. In dieser Arbeit wird eine neue
Lokalisierungsmethode vorgestellt – die sogenannte Hybrid Probabilistic- and Set-Membership-
based Coarse and Refined (HyPaSCoRe) Lokalisierung. Diese Methode lokalisiert einen
Roboter in einer Gebäudekarte in Echtzeit und berücksichtigt zwei Arten der Hybridisierung.
Einerseits werden mengenbasierte Ansätze verwendet, um probabilistische Ansätze in ihrem
Lösungsbereich einzuschränken und somit die Robustheit zu erhöhen. Andererseits werden
probabilistische Ansätze verwendet, um den Pessimismus mengentheoretischer Ansätze zu
reduzieren, indem zusätzliche probabilistische Bedingungen hinzugefügt werden.

Die Methode besteht aus drei Modulen: visuelle Odometrie, grobe Lokalisierung und
verfeinerte Lokalisierung. Die HyPaSCoRe Lokalisierung konzentriert sich auf die Lokalisierung
in städtischen Gebieten, in denen GNSS-Daten ungenau sein können. Das Modul für die visuelle
Odometrie berechnet die relative Bewegung des Fahrzeugs. Die grobe Lokalisierung schränkt die
Menge der möglichen Posen mit einem mengenbasierten Ansatz ein und erweitert die Schätzung
mit einer probabilistischen Methode, um die wahrscheinlichsten Lösungen innerhalb der Menge
zu bestimmen. Das Modul für die verfeinerte Lokalisierung präzisiert das Ergebnis, indem es
den Pessimismus der mengenbasierten Unsicherheitsschätzung durch weitere probabilistische
Bedingungen reduziert.

Die experimentelle Untersuchung zeigt, dass die Integrität der Unsicherheitsabschätzung
gewährleistet ist, während präzise Lokalisierungsergebnisse in Echtzeit geliefert werden. Die
Einführung dieses neuen hybriden Lokalisierungsansatzes stellt einen Beitrag zur Entwicklung
sicherer und zuverlässiger Algorithmen im Kontext des autonomen Fahrens dar.

Schlagworte:
Autonomes Fahren, Lokalisierung in Gebäudekarten, Hybride Interval-Probabilistische Lokalisie-
rung, Mengenbasierte Fehlerabschätzung, Intervallarithmetik, Probabilistische Fehlerabschätzung
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Abstract
Ensuring safety has become a paramount concern with the increasing autonomy of vehicles and
the advent of autonomous driving. One of the most fundamental tasks of increased autonomy
is localization, which is essential for safe operation. To quantify safety requirements, the
concept of integrity has been introduced in aviation, based on the ability of the system to
provide timely and correct alerts when the safe operation of the systems can no longer be
guaranteed. Therefore, it is necessary to assess the localization’s uncertainty to determine the
system’s operability.

In the literature, probability and set-membership theory are two predominant approaches that
provide mathematical tools to assess uncertainty. Probabilistic approaches often provide accurate
point-valued results but tend to underestimate the uncertainty. Set-membership approaches
reliably estimate the uncertainty but can be overly pessimistic, producing inappropriately large
uncertainties and no point-valued results. While underestimating the uncertainty can lead
to misleading information and dangerous system failure without warnings, overly pessimistic
uncertainty estimates render the system inoperative for practical purposes as warnings are fired
more often.

This doctoral thesis aims to study the symbiotic relationship between set-membership-based
and probabilistic localization approaches and combine them into a unified hybrid localization
approach. This approach enables safe operation while not being overly pessimistic regarding
the uncertainty estimation. In the scope of this work, a novel Hybrid Probabilistic- and Set-
Membership-based Coarse and Refined (HyPaSCoRe) Localization method is introduced. This
method localizes a robot in a building map in real-time and considers two types of hybridizations.
On the one hand, set-membership approaches are used to robustify and control probabilistic
approaches. On the other hand, probabilistic approaches are used to reduce the pessimism of
set-membership approaches by augmenting them with further probabilistic constraints.

The method consists of three modules – visual odometry, coarse localization, and refined
localization. The HyPaSCoRe Localization uses a stereo camera system, a LiDAR sensor, and
GNSS data, focusing on localization in urban canyons where GNSS data can be inaccurate.
The visual odometry module computes the relative motion of the vehicle. In contrast, the
coarse localization module uses set-membership approaches to narrow down the feasible set
of poses and provides the set of most likely poses inside the feasible set using a probabilistic
approach. The refined localization module further refines the coarse localization result by
reducing the pessimism of the uncertainty estimate by incorporating probabilistic constraints
into the set-membership approach.

The experimental evaluation of the HyPaSCoRe Localization shows that it maintains the
integrity of the uncertainty estimation while providing accurate, most likely point-valued solu-
tions in real-time. Introducing this new hybrid localization approach contributes to developing
safe and reliable algorithms in the context of autonomous driving.

Keywords:
Autonomous Driving, Localization in Building Maps, Hybrid Interval-Probabilistic Localization,
Set-Membership-based Uncertainty Models, Interval Analysis, Probabilistic Uncertainty Models
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1 Introduction

In 2021, 2.3 million traffic accidents were registered in Germany – 258 987 of them involved
human injury. Human error was by far the most frequent cause: 88.0 % of the accidents were
caused by driver misconduct, according to the German Federal Statistical Office. [1, 2]

Due to the increasing maturity of driver assistance systems in modern vehicles, the number of
accidents generally decreases, suggesting that more technical assistance during driving improves
traffic safety [1]. One goal of increasing vehicle autonomy is to further reduce the number of
accidents caused by driver misconduct and thereby increase road safety. The ultimate objective
in the field of highly automated driving is still to achieve full autonomy [2]. In our society, the
expectation that these systems will have fully deterministic, comprehensible, and safe behavior
is very high [3, 4]. Nevertheless, the question remains: Is it possible to achieve this ideal goal
from a technical point of view?

Driving a vehicle involves many different tasks. For example, obstacles must be detected,
and the vehicle must determine whether it may collide with the objects. Is the detected
obstacle just a leaf from a tree, or is it a living creature the vehicle could harm in case of a
collision? Object detection is, therefore, one of the critical tasks to be solved. Localization
poses another fundamental problem: The vehicle needs to localize itself on a map to plan a
trajectory and navigate from the starting point to the destination. Is the vehicle on the road or
too close to the sidewalk where potential pedestrians may be at risk? Are the driver assistance
functions authorized in the localized area of the map? These are just a few examples of
different tasks that combine different research areas where we need to analyze the determinism,
comprehensibility, and safety of the sensors and algorithms. Within the scope of this thesis, we
will restrict ourselves to the localization problem as a small but fundamental part.

We have already alluded to terms such as safety and reliability. As stated in [5], safety is
defined as the absence of unacceptable risk. Risk, however, is defined as "[...] a combination of
the probability of fault occurrence and the severity of corresponding consequences" [4, 6]. Fault
occurrence is conceptually tied to the reliability: The higher the fault occurrence, the lower the
reliability. As a result, safety considers both the probability of a fault and its consequences. A
system can only be called safe if faults with severe consequences only occur with an acceptably
low probability [4]. To quantify the requirements for safety, the term integrity has to be
introduced.
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Figure 1.1: Integrity levels in the Stanford-ESA Integrity Diagram based on [4, 7]. The
horizontal axis measures the true error, and the vertical axis the estimated error.
The alert limit defines the five regions that correspond to the integrity levels.

1.1 Integrity

The integrity of a system is a "[...] measure of the trust that can be placed in the correctness
of the information supplied by the total system [...]" [4]. Furthermore, the integrity of a system
includes the ability to provide timely and valid alerts to the user in case that the system must
not be used for the intended operation [4]. Hence, regarding localization, the vehicle must be
able to warn the passengers if the localization uncertainty exceeds an alert limit. The integrity
of a system is usually classified into integrity levels, which are visualized in the Stanford-ESA
Integrity Diagram in Figure 1.1 based on [7].

While the horizontal axis defines the true position error, which is usually unknown during
regular operation, the vertical axis represents the estimated upper bound of the true position
error provided by the localization system. An ideal localization system would provide perfect
estimates of the localization error where all pairs of true and estimated errors lie in the diagonal
line. Operating the system in the upper left triangle with green areas allows the safe operation
of the localization system because the estimated error is greater than or equal to the true
error. Consequently, the system has high integrity as the results are trustworthy. However,
operation in the lower right triangle with red regions defines unsafe operation because the
localization system underestimates the true error. The system has no integrity since the
uncertainty assessment is not reliable. [4, 7]

The alert limit defines the estimated error limit above which the system will alert the user
that the vehicle cannot be operated safely. In this case, either the passengers must take action
or the vehicle must stop. As shown in the Stanford diagram in Figure 1.1, the alert limit divides
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the diagram into five sections. At best, the localization system stays in the green region. At
worst, its estimates are in the lower right triangle. The operation is acceptable as long as the
true error is below the alert limit. However, suppose the true error exceeds the alert limit while
the estimated error is still below the alert limit. In that case, the localization system enters
the Hazardously Misleading Information region. The operation becomes dangerous because
the user is not warned as the estimated error is too optimistic even though the true error has
exceeded the alert limit.

As a consequence, estimating the error is a vital part of measuring the integrity and, therefore,
the safety of a system. The estimation of the possible error is known as risk assessment. How
can we compute the risk? This question leads us to the problem statement and the research
questions this thesis addresses.

1.2 Problem Statement and Research Questions

In the literature, different methods exist to assess the risk of a localization estimate. The
central idea is to propagate the uncertainty of the measurements to the estimate. In contrast
to other works [8, 9], we use the term uncertainty as a measure of fuzziness of measurements
and states. Consequently, we will use the terms risk and uncertainty synonymously throughout
this work, assuming events to occur with measurable probability.

The most commonly used uncertainty models are probabilistic models that consider the
uncertainty by a probability distribution. The uncertainty of the localization estimate is assessed
by propagating the error distribution from the sensor readings to the localization estimate.
However, the first problem that arises with probabilistic approaches is the selection of the
appropriate probability distribution. By appealing to the Central Limit Theorem [10], and due
to convenient mathematical properties of the Gaussian function, most probabilistic localization
approaches assume pure offset-free normally distributed errors for the measurements. Although
in many cases, probabilistic approaches provide good results and have low computational
weight, the uncertainty of the localization estimate is often severely underestimated. The
problem with probabilistic approaches is that the error propagation from the sensor readings to
the localization results under the Gaussian assumption involves linearization that introduces
incorrect approximations in the uncertainty computation. The linearization point significantly
influences the uncertainty assessment. Furthermore, the true error distribution usually deviates
from the normal distribution, again introducing approximation errors leading to too optimistic
uncertainty estimations. Regarding the Stanford-ESA Diagram, underestimating the true error
leads to the unsafe operation in the bottom right triangle in Figure 1.1. Hence, an overly
optimistic uncertainty estimate means the localization system raises fewer alerts, although the
true error may exceed the alert limit. [4, 11, 12]

An alternative model to asses the uncertainty is to use set theory. In this thesis, we will
use interval analysis which is a part of set theory and provides convenient tools to work with
box-like sets. The basic idea of set-membership approaches is to initially start with a large
region where the vehicle is localized and to gradually dismiss infeasible and inconsistent parts
in such a way so that we only obtain a set that satisfies the set of applied constraints. The
advantage of interval-based approaches is that we do not need to know the distribution of the
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sensor errors – but we need to know the upper bounds of the error. If those upper bounds
are satisfied, interval-based approaches provide well-defined sets that guarantee to enclose
the correct location of the vehicle. However, the main disadvantage of those methods is
their pessimism leading to wide sets providing large uncertainties as only worst-case scenarios
are modeled by the bounds. Furthermore, no point-valued results are provided by purely
set-membership-based methods. The pessimistic uncertainty estimation is assigned to the top
left triangle in the Stanford-ESA Diagram in Figure 1.1. The methods highly overestimate the
error, although the true error may be significantly smaller. Hence, the system is unavailable for
the same alert limit as the user is always warned that it cannot operate since the uncertainty is
too high. [4, 11, 12]

In summary, probabilistic approaches often provide good results but tend to underestimate
the uncertainty. Interval approaches are promising in the uncertainty assessment but can be
very pessimistic, due to which the localization approach may provide inappropriately large
uncertainties and not provide point-valued results. Consequently, both approaches have
complementary properties. Hence, this observation raises the central research question of this
thesis:

• Is there a symbiotic relationship between set-membership and probabilistic
approaches that can be exploited to improve the robot localization estimation
and the uncertainty assessment?

If so, the symbiotic relationship should lead to a mutual improvement of each approach
compared to the case they are applied individually. Consequently, two further questions arise
that we will focus on in this work:

• How can set-membership approaches be used to robustify probabilistic ap-
proaches?

• How can probabilistic approaches be used to reduce the pessimism of set-
membership approaches?

In complement to well-founded mathematical theories such as Possibility theory [13–15] and
Dempster-Shafer theory [16, 17], this thesis aims to show different practical ways to combine
interval and probabilistic approaches to solve the robot localization problem by providing a
unified hybrid approach.

1.3 Solution Approach and Contributions
This work introduces our novel Hybrid Probabilistic- and Set-Membership-based Coarse
and Refined (HyPaSCoRe) Localization approach. The HyPaSCoRe Localization combines
probabilistic and set-membership approaches into one unified method that localizes a robot
in a building map in real-time. The method is composed of three modules: visual odometry,
coarse localization, and refined localization. Figure 1.2 shows the method overview.

Our method uses a stereo camera system, Light Detection And Ranging (LiDAR), and
Global Navigation Satellite System (GNSS) data. Note that we assume the sensors to be
calibrated and synchronized. The HyPaSCoRe Localization focuses on the localization in urban
canyons. The main problem of urban regions is that GNSS data can become highly inaccurate
as multi-path effects corrupt the GNSS-based location estimates. Consequently, the uncertainty
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Figure 1.2: Method overview to the HyPaSCoRe Localization pipeline. In gray we specify
which parts are given, optimized, extended and new.

of the GNSS measurements is very large, which poses a problem when the localization is
initialized. As the vehicle’s location is unknown, we must assume that the vehicle is placed
anywhere on the map. Although GNSS data provides a first estimate, we can only partially
rely on the GNSS data. Our approach can cope with those large uncertainties. It can provide a
feasible set of poses that encloses the correct pose and provides a maximum likely pose that
best fits the local LiDAR measurements to the building map.

As shown in Figure 1.2, the visual odometry module uses stereo images and LiDAR data to
compute the relative motion of the vehicle. The coarse and refined localizations use the relative
motion information. The coarse localization module is colored orange and has a set-membership
and probabilistic part. The set-membership part uses basic but globally valid constraints to
narrow down the feasible set of poses. Such basic constraints include, for instance, that
the vehicle cannot be located inside a building. The feasible set is then forwarded to the
probabilistic approach. A green region illustrates the feasible set in Figure 1.2. Using a novel
bounded Monte Carlo Localization (MCL) with an aggressive resampling procedure, the coarse
localization’s probabilistic part provides the most likely poses inside the feasible set.

The bottom blue part of Figure 1.2 illustrates the refined localization module that further
refines the coarse localization result. Since the coarse localization approach does not consider
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the direct associations of the locally captured data to the building map, the feasible set is
comparatively pessimistic. The refined localization aims at reducing the pessimism of the
uncertainty estimate. Therefore, the probabilistic part of the refined localization chooses the
best fitting particle of the bounded MCL of the coarse localization. Based on the point-valued
pose estimate, the local LiDAR data is associated with the building facades on the map. We
illustrate this procedure with black dots for the LiDAR points and black lines for the facades.
The association is forwarded to the set-membership part of the refined localization as we can
draw local association constraints. Those association constraints considering the building map
uncertainty and the LiDAR measurement uncertainty are used to determine the consistent set.
The bottom arrow from the set-membership approach to the probabilistic approach indicates
that the consistent set provides bounds for a novel modified bounded optimization approach that
determines the most likely pose within the smaller consistent set. The consistent set determined
by the set-membership approach prevents the probabilistic approach from significantly diverging
by limiting the solution space.

Note the most right arrow in Figure 1.2 that connects the consistent set of the refined
localization with the pessimistic coarse localization: In the case of high reliability of the
consistent set, we contract the feasible set to the consistent set to reduce the pessimism of the
uncertainty estimate. This contraction automatically reduces the exploration region for the
bounded MCL in the probabilistic part of the coarse localization and thereby conditions and
robustifies the bounded MCL. From the HyPaSCoRe Localization, we obtain a feasible set as
the uncertainty estimation and the most likely pose as the best point-valued localization result.
The HyPaSCoRe Localization is real-time capable and is operable in different environments as
long as enough buildings are visible.
The core contributions of this work are:

• Investigation of the symbiotic relationship between set-membership-based and probabilistic
localization methods to overcome the shortcomings of the individual approaches.

• Development of the novel visual odometry that combines windowed bundle adjustment
with an interval-based odometry computation. The probabilistic approach provides
the probabilistic constraints, while the set-membership approach implements the error
propagation.

• Design of the novel coarse localization method that can cope with large GNSS uncer-
tainties combining a set-membership method with a probabilistic approach in a hybrid
fashion.

• Development of the novel refined localization that improves the localization estimates
reducing the pessimism by introducing probabilistic maximum likely association and
interval bounded optimization.

• Design of the novel HyPaSCoRe Localization pipeline that localizes a vehicle in publicly
available building maps using the coarse localization and refined localization.

• Evaluation of all modules, including visual odometry, coarse and refined localization in an
ablation study. Furthermore, we extensively evaluate the HyPaSCoRe Localization with
real author-collected and publicly available benchmark datasets.

• A software package that implements the method is made publicly available here:
https://github.com/AaronEhambram/hypascore_localization.

https://github.com/AaronEhambram/hypascore_localization
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Figure 1.3: Overview of the thesis structure.

1.4 Structure of the Thesis
Figure 1.3 shows the graphical overview of this thesis containing the different modules de-
veloped in this work. Throughout this document, we will use this figure to put the different
methodological chapters into the overall HyPaSCoRe Localization context. While Chapter 2
introduces the required basics for this work, Chapter 3 summarizes the State of the Art for
robot localization.

In Chapter 4, we introduce the first module of the HyPaSCoRe Localization system. The
corresponding block in Figure 1.3 is presented on the left. As indicated, it provides the relative
motion information. Chapter 5 describes the coarse localization. As illustrated in Figure 1.3 it
uses the relative motion information to provide a coarse localization estimate considering large
uncertainties. It is the first part of the localization block. The refined localization in the bottom
part of the localization block in Figure 1.3 refines the coarse localization results and is explained
in Chapter 6. The full system architecture that combines the relative motion estimates
with the real-time localization in the HyPaSCoRe Localization is detailed in Chapter 7 and
illustrated by the bottom left block in Figure 1.3.

The experimental evaluation based on different benchmark datasets and the comparison of
our approach and selected State of the Art approaches is provided in Chapter 8. In Chapter 9,
we discuss the results obtained in this work. Furthermore, we identify open research questions
and suggest future work. Finally, Chapter 10 summarizes and concludes this thesis.



2 Basics

In robotics, many problems can be generalized to state estimation problems. For instance, the
robot localization problem is a typical state estimation problem, where the state we seek to
estimate is the vehicle’s pose. The core difficulty is that we typically do not have an accurate
sensor to measure the pose directly. Instead, the robot is equipped with sensors that perceive
the environment locally so that by associating the local measurements to the map, we aim to
deduce the robot’s state. However, local measurements are not perfect. Depending on the
sensors the robot is equipped with, we have to deal with measurement errors which we try to
model with uncertainty representations. How do the uncertainties of the local measurements
affect the state that we deduce from them? We must propagate the local measurement
uncertainties to the state to answer this question by applying the state equations.

The details of the uncertainty propagation depend on the uncertainty model. In this work,
we present two fundamentally different approaches – namely, the classical probabilistic and the
interval-based model. In Section 2.1 we introduce the fundamental basics of probability theory
and in Section 2.2 interval analysis. Furthermore, this chapter will also present the working
principle of the used sensors and their sensor models in Section 2.3. We conclude this chapter
with the structure of building maps in Section 2.4 that are used in this work.

2.1 Probability Theory
The key concept in probabilistic robotics is to represent uncertainties using probability theory.
While earlier works in the field typically tried to come up with single best guesses, probabilistic
approaches focus on constructing the probability distribution over a set of solutions [18]. In the
robotics community, probabilistic approaches have found broad acceptance since they represent
the concept of risk in a mathematically sound way, assuming that certain assumptions are met.
Although probabilistic robotics, in its basic concept, is indeed a mathematically elegant way
to handle uncertainties, concrete implementations are fraught with significant shortages and
problems. This thesis aims to partially overcome those problems by combining probabilistic
approaches with interval analysis.

We briefly introduce some basic probability theory to understand the problems that prob-
abilistic approaches may run into and how we can use interval analysis to counteract such
problems. Afterward, concrete and well-known implementations of probabilistic approaches are
evaluated, pointing out the weaknesses. The following notions and definitions are taken from
Sebastian Thrun’s book [18].
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2.1.1 Basic Notions and Concepts

The central idea of probabilistic robotics is to portray quantities such as sensor measurements,
controls, the states of the robot (e.g. the pose), and the environment as random variables.
The strategy to harness random variables to propagate information from one set of random
variables to another is based on fundamental probability theory. Consider a random variable X.
Definition 2.1.1
A random variable X is a measurable function X : Ω→ E from a sample space Ω as a set of
possible outcomes to a measurable space (Borel space) E. The probability that X takes on a
value in a measurable set S ⊆ E is written as

P (X ∈ S) = P ({w ∈ Ω|X(w) ∈ S}). (2.1)

Example 2.1.1. For example, rolling a dice can be modeled as a random process, where a
random variable defines the state of the dice. The state of the dice can be represented by
the side that is upward facing after rolling. In this case, the random variable can take values
between 1 and 6.

When the image of X countable, the random variable is called discrete random variable as
it is the case in Example 2.1.1. Its distribution is a discrete probability distribution described
by a probability mass function. However, if the image of X is uncountably infinite, then X is
called a continuous random variable. Its distribution can be described by a probability density
function (PDF).

First, let us consider the discrete case. We denote x as a specific value the random variable
X might assume. The probability that X has value x is denoted by P (X = x). Considering
Example 2.1.1, the probability that X takes one value between 1 and 6 is equally distributed in
the case of a fair dice, and the probability is P (X = 1) = ... = P (X = 6) = 1

6 . The random
variable has to take a value among the possible events. This means, for Example 2.1.1, the
probability that the dice will take one of the states 1 to 6 is 1. Mathematically speaking, the
sum over all probabilities among all values that a random variable can take always sums to 1:

∑
x

P (X = x) = 1. (2.2)

Note that probabilities are always non-negative.
For the sake of simplicity, we want to rewrite P (X = x) by P (x). While Example 2.1.1

introduces the model of a discrete event space with an equal probability distribution among all
events, continuous spaces are characterized by random variables that can take on a continuum
of values. The mapping function

p(x) : R→ [0, 1]. (2.3)

defines the probability density among the continuous spaces. In the scalar case it can, for
instance, be x ∈ R. If the event space is continuous, we need to adapt (2.2) by taking the
integral into account ∫

x
p(x)dx = 1. (2.4)
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Figure 2.1: One-dimensional normal distribution. The size of the confidence intervals of defined
confidence probabilities depends on the standard deviation σ, while the mean µ
determines the probability peak. The distribution is symmetrical to the mean.

A PDF can generally have an arbitrary shape as long as the properties mentioned above
are fulfilled. However, dealing with arbitrary PDFs is often burdened with high computational
efforts when it comes to inference – that means if we want to deduce the probability of
the events in question. Fortunately, there are also PDFs that have convenient mathematical
properties that make efficient inference possible. For example, the normal distribution has such
convenient properties. Additionally, as in robotic applications the measurement error is often
composed of many independent additive errors, the Central Limit Theorem [10, 19] legitimates
the employment of the normal distribution and has proven to be a good choice for uncertainty
modeling in robotics.

The normal distribution is characterized by the first two moments – the mean µ and the
variance σ. The Gaussian function defines the normal distribution

p(x) = 1√
2πσ2

· e−
(x−µ)2

2σ2 . (2.5)

Figure 2.1 visualizes the one-dimensional normal distribution. Note that this PDF is fully
determined by the two parameters µ and σ. One of the nice properties the normal distribution has
is that so-called confidence intervals can easily be constructed. Confidence intervals determine
an interval of values the random variable X might take for a defined confidence probability. As
illustrated in Figure 2.1, the width of such confidence intervals is determined by the standard
deviation σ. Hence, the probability that X takes a value in the interval [µ− 1 · σ, µ+ 1 · σ]
has a confidence probability of

∫ µ+1·σ

µ−1·σ
p(x)dx = 68.26 %, while a wider interval like for

instance [µ− 3 · σ, µ+ 3 · σ] has a confidence probability of
∫ µ+3·σ

µ−3·σ
p(x)dx = 99.73 %. As

we will see later in this work, confidence intervals will be the key to combining interval-based
set-membership and probabilistic approaches.

(2.5) describes the normal distribution in the one-dimensional case. However, often x will
be a multi-dimensional vector. Normal distributions over multi-dimensional vectors are called
multivariate. The multivariate normal distribution is described by the density function

p(x) = 1√
det(2πΣ)

· e−
1
2 (x−µ)TΣ−1(x−µ). (2.6)
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Note that (2.6) is a strict generalization of (2.5). While µ is the mean vector, Σ is the so-called
covariance matrix directly linked to σ2 in the one-dimensional case.

Let us turn our attention to discrete probability distributions again. The joint distribution
of two random variables is given by P (x , z), which describes the probability, that the random
variable X takes the value x and Z the value z. Conditional probabilities are described by
P (x | z), which provides the probability of the occurrence of x for X given we know that Z’s
value is z. Joint and conditional probabilities are linked with each other by

P (x | z) = P (x , z)
P (z) . (2.7)

Now we can introduce Bayes rule, which plays a predominant role in probabilistic inference
in robotics. It relates a conditional probability of the type P (x | z) to its "inverse" P (z |x).
The rule

P (x | z) = P (z |x) · P (x)
P (z) (2.8)

requires P (z) > 0. We name P (x) the prior probability distribution, x represents the quantity
we want to infer (e.g. pose of the robot), and z represents the sensor measurement. The
distribution P (x) describes our knowledge before incorporating the sensor measurements z.
The probability P (x | z) is the posterior probability distribution that interests us the most
since it describes the probability of x given the specific sensor measurements. The Bayes rule
provides a convenient way to compute this probability using the inverse conditional probability
P (z |x) and the prior probability distribution P (x). The inverse conditional probability P (z |x)
describes the probability of sensor measurement z given the robot state x. Since the probability
describes how a specific state x of the robot causes sensor measurements y, this probability is
determined by the sensor model known a priori and the prior knowledge on x.

In our context, the state vector x can contain static landmarks in the environment and/or
the poses of the robot at different times. We denote a state at time t by xt. Furthermore, we
define zt as the sensor measurements at time t. Usually, in robotics, we also have access to
the control commands ut at time t, providing valuable information that can be used to infer
the robot’s state xt. The goal in robotics is to estimate the current state of the robot xt given
all previous states x1:t−1, all previous sensors measurements z1:t−1 and control commands u1:t.
As a consequence, we want to determine the PDF of p(xt |x1:t−1, z1:t−1, u1:t).

Historically, in localization and mapping, two paradigms mainly influenced the field. Filter
approaches mainly defined the first paradigm. The core assumption here is that the modeled
states are complete: That means that knowledge of past states, measurements, or controls
do not provide additional information to help us predict the future more accurately than the
last state. We only need to know the previous state and can forget everything that happened
before. We call such temporal processes Markov chains. The Bayes Filter is the most general
algorithm that calculates the probability distribution of the current state of the robot based
on the previous state, the measurements, and control data. The Gaussian implementation
of the Bayes Filter is the Extended Kalman Filter (EKF). Since the general Bayes Filter and
the EKF are not directly relevant to our work, we provide a brief summary in the appendix in
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Figure 2.2: Particle representation of distributions based on [18]. The PDF of the input variable
x is Gaussian distributed. Instead of representing the distribution in its parametric
form, the particle filter approximates the distribution by particles visualized by blue
dots. The particle filter performs the propagation through the non-linear function
g(x) by evaluating each particle individually. This makes the particle filter well
applicable to arbitrary distributions and non-linear functions. The distribution of the
particles of the output random variable well approximates the PDF, as illustrated
on the left.

Section A.1 and Section A.2. The particle filter introduced in Section 2.1.2 is a non-parametric
form of the Bayes Filter and will play an essential role in the HyPaSCoRe Localization pipeline.

The hallmark of the second paradigm is optimization – sometimes also called smoothing.
The approaches perform batch optimization and typically rely on least-square error minimization
[20]. In contrast to filtering approaches, optimization methods do not assume states to be
complete. As a result, older states, measurements, and control data are also involved in the
computation of the current robot state [21]. A non-linear least squares approach is used to
determine the posterior probability distribution, which is introduced in Section 2.1.3.

2.1.2 Particle Filter

The particle filter is a non-parametric implementation of the Bayes Filter. Non-parametric means
that the underlying but unknown PDFs are not represented by a set of parameters. Instead,
the particle filter represents a distribution by a set of samples drawn from the distribution.
Although this representation is approximate, the non-parametric description makes the particle
filter applicable to a broader family of PDFs. Figure 2.2 illustrates this for the same example
shown in Figure A.1 for the EKF in the appendix.
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Samples of a distribution are called particles and are denoted by Xt = {x1
t , ..., x

n
t } for n ∈ N

particles. Particles can be seen as a actual hypothesis of the state at time t. The intuition
behind particle filters is to sustain the belief bel(xt) by a set of particles Xt. As illustrated in
Figure 3.2, the denser particles populate a subregion, the higher the probability that the true
state lies in this subregion. Just as all Bayes Filter algorithms, the particle filter constructs the
belief of the current state bel(xt) recursively from the belief of the previous state bel(xt−1).
Therefore, the particle filter also performs a prediction and correction step. A simple form of
the particle filter algorithm is shown in Algorithm 1.

Algorithm 1: Particle Filter
Data: Xt−1, ut, zt
Result: Xt

1 X t = Xt = ∅;
// Prediction step

2 for all xit−1 in Xt−1 do
3 sample xit from p(xt |ut, xit−1);
4 wit = p(zt |xit);
5 add {xit , wit} to X t;
6 end

// Correction/Resampling step
7 for m = 1 to n do
8 draw i with the probability wit;
9 add xit to Xt;

10 end

Typically starting with a uniform distribution of the particles as a first approximation, the
true picture of the PDF emerges as the result of an iterated prediction and resampling process,
which takes into account the weights of particles induced by the fitness of local measurements
to the particle location in the map.

The prediction step generates new particles xit from the old particles xit−1 by randomly
updating the old particles based on the control ut. For example, in the robot localization
problem, the prediction step is typically implemented as the particle update step that applies
the odometry measurements to the old particles. In line 4, the predicted particle is evaluated,
considering the sensor measurement zt. The evaluation provides an importance weight for the
predicted particle xit. The higher the weight, the better the sensor measurements comply with
the predicted state. Hence, the particle is evaluated as very likely if the weight is high.

In the correction step, the "trick" of the particle filter happens. Note that we only use the
term correction to maintain the link to the general structure of the Bayes Filter. However, in the
case of the particle filter, the correction step is a resampling step where we randomly resample
from the predicted set of particles X t another set Xt of n particles. The resampling procedure
is implemented as an importance sampling where the importance of a particle is determined by
its weight, which we computed in the prediction step. That means if a particle xit is evaluated
as likely, the particle’s weight will be high. Accordingly, the probability that this particle is
resampled from X t is higher. Consequently, after the filtering step, only those particles will
be considered for the next iteration step that are evaluated as very likely. By incorporating
the importance weights into the resampling process, the distribution of the particles changes.
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While before the resampling step, the particles are distributed according to bel(xt), after the
resampling, they are distributed approximately according to the posterior bel(xt).

In contrast to the EKF, the particle filter can deal with arbitrary distributions and non-linear
functions. However, the accuracy of the calculated posterior probability critically depends on the
number of particles. The more particles are used for the approximation, the more accurate the
approximation will be. Nonetheless, more particles directly imply higher computational effort
since each particle needs to be evaluated individually. As a result, a trade-off between accuracy
and computation effort is necessary. Moreover, due to the random resampling procedure,
an unfortunate sampling sequence can lead to particle depletion. This problem happens if
particles cluster in regions with low probability, and the resampling can lead particles to vanish
or diverge from the correct solution. To overcome the problems, many different approaches
were suggested in the literature, and the interested reader might consult [18].

2.1.3 Optimization

While filtering approaches model the localization and mapping problem as an online state
estimation, where the system consists of only the current robot pose and the map, optimization
approaches estimate the entire trajectory of the robot from the complete set of measurements.
Hence, optimization approaches rely on least-square error minimization techniques instead of
incrementally updating the state as filters do.

A graph-based formulation of the problem has proven to be intuitive for localization and
mapping tasks. Especially in the context of SLAM problems, graph-based approaches for
optimization have become the State of the Art. While SLAM is not our focus here, the
graph-based formulation will play an essential role in this work. Therefore, this section provides
an introduction to graph-based SLAM. Graph-based SLAM solutions solve the full SLAM
problem consisting of estimating the posterior probability of the robot’s whole trajectory
x1:t and the map m of the environment given all the measurements and the initial pose x0:
p(x1:t,m | z1:t, u1:t, x0). This is the core difference to filtering approaches that only consider
the last state, ignoring the trajectory before.

In graph-based SLAM, poses of the robot and the position of landmarks are modeled by
nodes in a graph. Spatial constraints between poses and landmarks resulting from odometry
measurements ut or landmark observations zt are represented by edges between the respective
nodes. Figure 2.3 shows an exemplary SLAM-graph. Solving a graph-based SLAM problem can
be decoupled into two subtasks. The first subtask consists of the constructing the graph from
the raw measurements. This step is usually called the front-end. The second subtask, given
the edges of the graph, the most likely configuration of the poses and landmarks is determined.
This step is called back-end.

The front-end typically performs the data association and relates the raw measurements with
edges in the graph that constrain nodes. Ideally, this step involves the modeling of a full-fledged
random process. Yet, this strategy typically encounters a stumbling block: The modeling of
the data association gets mired in a combinatorial explosion. That is why usually, the data
association takes the shortcut of the maximum likely association, suppressing lower probability
associations. The goal in the back-end of the graph-based approach is to approximate the
posterior over the robot trajectory and the map. Under the assumption that the observations
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Figure 2.3: Exemplary SLAM-graph. Poses and landmarks represent the parameter blocks that
need to be determined. Those parameter blocks are represented in the graph by
nodes. Grey nodes with the car symbol visualize pose nodes, and blue star-shaped
nodes represent the landmarks. The edges between the nodes are measurements
that represent constraints between the connected nodes. The blue edges illustrate
observation constraints between pose and landmark nodes. The orange edges
illustrated odometry constraints between consecutive pose nodes.

are affected by Gaussian noise only and the data association in the front-end is correct, the
mean of the Gaussian that describes the posterior that we are interested in can be determined
by computing the configuration of the nodes that maximizes the likelihood of the observations.
Since we assume Gaussian observation uncertainty, the Maximum Likelihood Estimation (MLE)
of the configuration can be cast into a least-squares minimization problem that sophisticated
numerical solvers can cope with. While the front-end depends on the type of sensors we are
using, the back-end performs the probabilistic estimation process based on the abstract graph
representation. We will examine the back-end in the following to understand the strengths and
drawbacks of graph-based optimization approaches.

Let x =
(
xT1 , ...,xTn

)T
be a vector of parameters, where each xi represents a generic

parameter vector. The parameter vector may represent, for instance, the robot’s pose at a
certain time step or a landmark that we inserted into the graph in the front-end. For example,
if we consider a 6DOF pose, six parameters need to be considered, and in the case of a point
landmark, three parameters are considered by xi. Let zij and Ω−1

ij represent respectively the
mean and the covariance of a measurement that relates xi and xj. While we interpret the
raw sensor measurements as mean values, the sensor manufacturer provides the measurement
uncertainty described by covariances. Typically, xi is a pose and xj a landmark. In that case,
zij describes how the landmark xj was seen from the pose xi and Ω−1

ij describes the uncertainty
of the observation provided by the sensors. However, both nodes may also describe poses.
Then, zij would be the odometry measurement. As a consequence, zij can be seen more
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generally as a constraint between xi and xj, and the accuracy of the constraint is defined by
Ωij.

The error function e(xi,xj, zij) measures how well the parameters xi and xj satisfy the
constraint zij. Therefore, the error function computes the difference between the expected
observation ẑij for the given xi and xj and the real observation zij. Note that the expected
observation ẑij comes from the sensor model that we defined for the EKF and the particle
filter as h(xt) (cf. Subsection A.2 and 2.1.2). As a result, the error is defined by

e(xi,xj, zij) = zij − ẑij(xi,xj). (2.9)

Since the e(xi,xj, zij) relates to a measurement zij with the covariance matrix Ω−1
ij , the

contribution of this error to the objective function that we seek to minimize is

Fij = e(xi,xj, zij)TΩije(xi,xj, zij). (2.10)

The quadratic formulation of the error in (2.10) results from the goal to determine the
distribution of p(x1:t,m | z1:t, u1:t, x0). A satisfactory way to achieve that is the MLE. As shown
in [10], if all related random variables of a problem are Gaussian distributed, the MLE problem
becomes a least squares problem. Consequently, the quadratic formulation of the error in (2.10)
is only valid if we assume Gaussian uncertainties for the measurements. That means the core
assumption of the optimization approach is the Gaussian distribution of all related variables.

The full objective function is the sum of all quadratic errors that are considered in the graph
encoded as observation constraints in the edges

F(x) =
∑
〈i,j〉∈C

Fij (2.11)

The goal in the back-end of the graph-based optimization approach is to find a set of parameters
x∗ that minimizes the objective function so that

x∗ = argmin
x

F(x). (2.12)

So far, we just considered how the graph optimization problem can be formulated. The following
will examine how this least-squares problem in (2.12) can be solved. If a good initial guess x̌ is
known that is comparatively close to the optimal solution x∗, the numerical solution of (2.12)
can be obtained by using popular Gauss-Newton or Levenberg Marquardt (LM) algorithms [22].
The idea of such numerical solvers is to iteratively minimize the error by applying gradient
descent. Therefore, the error function is approximated by its first order Taylor expansion – as
introduced in the EKF – around the current initial guess x̌

e(x̌i + ∆xi, x̌j + ∆xj, zij) =: eij(x̌ + ∆x) (2.13)
≈ eij(x̌) + Jij∆x. (2.14)
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The Jacobian Jij of eij(x) is computed in x̌. Substituting (2.14) in the error term Fij in
(2.10) leads to

Fij(x̌ + ∆x) = eij(x̌ + ∆x)TΩijeij(x̌ + ∆x) (2.15)
≈ (eij + Jij∆x)TΩij(eij + Jij∆x) (2.16)
= eTijΩijeij︸ ︷︷ ︸

cij

+2 eTijΩijJij︸ ︷︷ ︸
bij

T

∆x + ∆xT JTijΩijJij︸ ︷︷ ︸
Hij

∆x (2.17)

= cij + 2bTij∆x + ∆xTHij∆x. (2.18)

For sake of simplicity we abbreviate eij(x̌) by eij. If we substitute the local approximation of
Fij in the full objective function (2.11) that considers all edges in the graph, we obtain

F(x̌ + ∆x) =
∑
〈i,j〉∈C

Fij(x̌ + ∆x) (2.19)

≈
∑
〈i,j〉∈C

cij + 2bTij∆x + ∆xTHij∆x (2.20)

= c+ 2bT∆x + ∆xTH∆x. (2.21)

By setting c =
∑

cij, b =
∑

bij and H =
∑

Hij, we obtain the quadratic form of the
linearized error as presented in (2.21). Since we aim to minimize the error, we seek to find the
increment ∆x that minimizes (2.21). The optimal value of ∆x is determined by solving linear
system

H∆x = −b. (2.22)

The obtained solution for ∆x is just an increment that improves the initial guess of the values
of the involved variables by reducing the error term. The new guess is x̌ + ∆x. However, the
new guess is not necessarily an acceptable solution. As a consequence, the whole procedure of
linearizing at x̌+∆x (cf. (2.21)) and solving the linear system (2.22) needs to be repeated until
a defined termination criterion is met (Gauss-Newton algorithm). That means the optimization
approach computes incremental update steps and linearizes point-wise for each iteration. The
best solution for the problem defined in (2.12) is obtained by adding all increments ∆x∗ to the
initial guess

x∗ = x̌ + ∆x∗. (2.23)

A more elegant way to solve the linear system in (2.22) is to solve the damped version

(H− λI)∆x = −b. (2.24)

This solver extends the Gauss-Newton method and is called the Levenberg-Marquardt (LM)
method. The factor λ introduces further damping and backup actions to the basic Gauss-
Newton to control the convergence. For more information on the LM method, consult [23,
24].

The remaining uncertainty of the obtained solution is represented by H – the information
matrix of the system. As defined above, H is obtained by summing up the matrices JTijΩijJij
for each constraint. Hence, the structure of H depends on the Jacobian of the error function.
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Since the error function of the constraint only takes the values of two nodes into account, the
Jacobian for all parameters x has the form

Jij =
(
. . . 0 Aij 0 . . . 0 Bij 0 . . .

)
. (2.25)

The terms Aij = ∂eij(x)
∂xi |x=x̌ and Bij = ∂eij(x)

∂xj |x=x̌ are the partial derivatives of the error
function concerning xi and xj, respectively. All other partial derivatives concerning the other
parameters are 0, as they play no part in the error term derived from the edge between the
graph’s i-th and j-th node.

Consequently, the Hij has a block structure with non-zero entries for the parameters that
represent the i-th and j-th node

Hij =



. . .
AT
ijΩijAij . . . AT

ijΩijBij
... ...

BT
ijΩijAij . . . BT

ijΩijBij

. . .


. (2.26)

Hij has a very sparse structure since most entries are zero. As a consequence, the system
information H, which is the sum over all Hij , is also a sparse block matrix and is the adjacency
matrix of the graph. Figure 2.4 illustrates the structure of the matrix H.

The inverse of the system information matrix H is the covariance matrix that describes
the uncertainty of the estimated parameters. Note that the inversion of the sparse adjacency
matrix may result in a densely populated matrix. That means the inversion may become very
costly in computation for a large matrix H. While the system covariance matrix considers
the correlation between all parameters that may not be directly linked in the graph, those
correlations are often negligible. Consequently, the covariance of dedicated parameter blocks
can directly be extracted from the system covariance matrix by suppressing the correlation to
other parameter blocks (marginalization).

Optimization-based approaches also propagate the uncertainty of the measurements to the
estimated state through the Jacobian as the EKF does. Although the optimization performs a
linear approximation at each iteration step and can deal with non-linearities better than the
EKF, which only performs the linearization for the predicted state, the uncertainty propagation
is still potentially fraught with poor approximation. The optimization approach assumes –
similar to the EKF – the input and out uncertainties to be Gaussian distributed. However, this
assumption is only valid if the involved error functions (2.9) for all edges are linear with regard
to x. In general, this is not the case. Nonetheless, optimization-based approaches force the
output uncertainty to be Gaussian distributed. That is why the Jacobian needs to be used
for the uncertainty propagation, as only linear functions produce Gaussian distributions from
Gaussian input. That means, while the optimization provides a powerful method to compute
a very likely solution, it fails to provide a reliable estimate of the uncertainty of the state
parameters x.
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(a) Observation of the landmark l1 from pose x1.

(b) Robot odometry from pose x1 to x2.

(c) Several steps later.

Figure 2.4: Structure of the system information matrix H of the exemplary graph in Figure 4.4
(based on [18]). The graph is visualized on the left, and the system information
matrix H is on the right. Non-zero blocks in H are colored blue, gray, or orange.
All white cells represent zero blocks. Figure 2.4a only considers the first observation
constraint. The concerning blocks are colored in H. The effect of an odometry
constraint is illustrated in Figure 2.4b. Odometry constraints populate the sub-
diagonal blocks with non-zero entries. The system information matrix for the whole
graph is shown in Figure 2.4c.
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Outlier Treatment – Robust Kernels

Outliers in the data association in the front-end are not always avoidable. Already a few
outliers are sufficient to let an optimization process diverge. The main problem caused by
outliers is that they generate significant errors. Since the error we want to minimize stems
from a quadratic objective function, the impact of outliers on the overall error may overshadow
the error of inliers. As illustrated in Figure 2.5a, the larger the measurement error, the more
significant its contribution to the overall error, so outliers will disproportionally influence the
optimization.

Hence, for optimization approaches, taking explicit care of outliers is vital. The literature
shows two popular outlier treatments in the least squares context. On the one hand, Random
Sample Consensus (RANSAC) approaches select the minimum number of measurements
required to satisfy the model, counting the total number of measurements in agreement and
repeating the process many times. The measurements are chosen randomly for each time. The
largest consensus is considered the inlier set, while the remaining measurements are discarded
as outliers. On the other hand, robust M-estimation is an alternative approach that addresses
the outlier treatment by exchanging the least squares cost function introduced in (2.10) by
a robust cost function (also called robust kernels) that decreases the influence of outliers.
According to the literature, the second method has proven to be a good choice for robotics
applications like SLAM and localization [25–29]. That is why we will stick to robust kernels to
deal with outliers in the context of least squares optimization.

The core idea of robust M-estimation is to map the quadratic error (2.10) to a weighted
error that down-weights the impact of large errors. The robust kernel determines the way
how the error is down-weighted. In the literature, different types of robust kernel functions
are suggested. In [25], a collection of robust kernels is presented and compared for different
optimization problems corrupted by outliers. To gain a general understanding of what those
kernel functions do, let us generally assume that a kernel function is described by

F̂ij = ρ(Fij), (2.27)

where Fij is the quadratic error from (2.10) for the measurement zij connecting the nodes xi
and xj . The kernel function ρ maps the quadratic error to F̂ij . To reflect the weighted error in
the optimization, typically, the information matrix Ωij is updated based on a weight function
w(Fij) to obtain Ω̂ij = w(Fij) · Ωij which replaces the original information matrix Ωij. All
the following calculations in the optimization procedure remain identical using the updated
information matrix Ω̂ij.

In this work, we will restrict ourselves to the Geman-McClure and Threshold error functions
out of a large family of kernel functions offered in the literature (cf. [25]). Figure 2.5a depicts
the resulting cost functions, while the weight of measurements with different errors in the
optimization is reflected in Figure 2.5b. We also plot the classical quadratic error and weight
without robustification for comparison.
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(b) Robust weights.

Figure 2.5: Figure 2.5a visualizes the robust cost functions and Figure 2.5b shows the cor-
responding weights. The cost function determines the impact of the error on
the optimization procedure. The weight function determines how the errors are
weighted to obtain the corresponding cost function.

The Threshold cost function – sometimes also called saturated cost function – clips all
errors that exceeded a predefined maximal error of t to a maximally permitted error σ and is
described by

ρT(Fij) =

Fij for Fij ≤ t2,

σ2 for Fij > t2
. (2.28)

However, the saturated cost function typically sets the weight to update the information matrix
to

wT(Fij) =

1 for Fij ≤ t2,

0 for Fij > t2
. (2.29)

Accordingly, all those measurements that exceed the error threshold are discarded from the
optimization as they do not have any impact due to zero weight. We illustrate this in Figure 2.5b.

The Geman-McClure kernel function [30] is

ρGM(Fij) = Fij

σ + Fij

, (2.30)

and is visualized in Figure 2.5a. In this expression, σ is a parameter that defines the shape of
the cost function. This cost function weights larger errors lower than smaller errors as indicated
in Figure 2.5b. As a result, the impact of larger errors on the optimization result reduces. The
weight function is described by

wGM(Fij) = σ2

(σ + Fij)2 . (2.31)

The weight function is shown in Figure 2.5b and indicates that the larger the error, the closer
the weight converges to zero so that the influence on the optimization of measurements fraught
with larger error decreases. Summing up, robust kernels deal with outliers by down-weighting
the impact of large errors in the overall objective function by manipulating the information
matrix in the way sketched above.
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(a) Polyhedral. (b) Ellipsoidal. (c) Interval. (d) Subpaving.

Figure 2.6: Set membership approaches to enclose an arbitrary set S. S is colored blue and
the enclosure is colored orange.

2.2 Interval Analysis

Since the first proof of the existence of irrational numbers by the Pythagorean Hippasus of
Metapontum [31], the consideration of irrational numbers has raised the question of their
decimal representation. Using interval bounds to approximate unknown but bounded values has
been a widely and extensively used tool in mathematics. The well-known Greek mathematician
Archimedes already provided a reasonably small enclosure of the irrational number π [32].
By approximating the circle by an inner and outer 96-sided polygon, Archimedes concluded
223
71 < π < 22

7 .
With the advent of numerical computation, interval analysis gained further popularity. Due

to finite floating-point computations within computers, the representation of real numbers of
infinite precision inevitably leads to an approximation error. This prompted scientists to tackle
the question how to model the error, leading to the first notable book on interval analysis
in 1966, authored by Ramon E. Moore [33]. This work paved the way for the application
of interval analysis in various disciplines such as solving interval equation systems [34, 35],
advanced digital computer arithmetic [36, 37], recursive state estimation [38, 39], numerical
error propapgation [40, 41], and global optimization [42–45]. Although interval analysis has
been broadly applied in many different fields, this thesis will focus on the uncertainty modeling
of physical quantities. In robotics, we can determine bounds for measurement errors and
perform reliable computations. Employing interval analysis, the measurement uncertainties can
be reliably propagated to the involved physical quantities we seek to deduce from the uncertain
measurements.

Interval analysis is part of a large family of set-membership methods. Where interval
analysis applies intervals to enclose a set, other geometrical structures such as polygons [46],
ellipsoids [38, 47] or zonotopes [48] may also be used. Figure 2.6 depicts different types of
set-membership approximations of an arbitrary set S. Note that Figure 2.6d depicts a special
type of interval enclosure, where the set is represented by multiple subsets, which are intervals.
We call such a representation a subpaving. All set-membership approaches overestimate S.
We call this approximation of S the outer approximation since no region of S is outside of the
approximation. We qualify an approach to be better the less the approximation overestimates
the set we want to represent. As a result, the polyhedral and ellipsoidal enclosure seem to better
approximate S compared to the interval enclosure in Figure 2.6c. However, the computation
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with ellipsoidal and polyhedral sets can become convoluted. To solve robotic tasks, intervals
have proven to be an appropriate representation since efficient computations are possible.

Applying interval analysis to model the uncertainty of measurements and states in the context
of robotics implies fundamentally different assumptions compared to classical probabilistic
approaches. We must define a probability density function for the measurements to apply
a probabilistic approach. As explained in the previous section, a normal distribution of the
measurements is typically assumed. By propagating the probability densities via the state
equations to the density functions that describe the states, we obtain probabilities for individual
states. As discussed in the previous section, the exact propagation procedure is computationally
infeasible, due to which unavoidable approximations affect the propagation and potentially
distort the states’ probability density functions to an unacceptable extent.

In contrast to probabilistic approaches, interval approaches assume the measurement error
to be bounded. Those bounds are propagated via the state equations to the set of feasible
states represented by intervals. That means while interval approaches introduce the assumption
that the selected bounds enclose the correct measurement, probabilistic approaches define
probabilities on a set of measurements. The interval approach provides a set of feasible solutions
by applying the propagation tools, while the probabilistic approach provides probabilities for
individual solutions.

Consequently, classical probabilistic and interval analysis approaches model sensor errors
differently since they make different assumptions about the real world. Probabilistic approaches
assume the error distribution to be known, but interval-based approaches assume the error can
be bounded reliably so that the estimate encloses the correct value. However, none of those
assumptions are universally correct for the real world. The selection of the appropriate error
model always depends on what we want to compute and which assumptions fit the real world
best.

In the following, the notions and definitions are taken from Luc Jaulin’s book [49], Simon
Rohou’s Ph.D. thesis [50], and Raphael Voges’ Ph.D. thesis [51]. For the numerical interval
computations, we employ the publicly available IBEX library [52].

2.2.1 Basic Notions and Operations

An interval [x] is a closed and connected subset of R. IR denotes the set of all intervals. The
interval [x] is defined by

[x] = [x, x] = {x ∈ R | x ≤ x ≤ x }, (2.32)

where x and x set the lower and upper bounds of [x] as illustrated in Figure 2.7. The lower as
well as the upper bound can be infinite. In the case of x = x, the interval [x] is said degenerate.
Consequently, any real number can generally be considered a degenerate interval. The same
applies to the empty set ∅, which denotes the absence of a solution to our problems.
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x x
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Figure 2.7: Definition of an interval.

The actual but unknown value we aim to estimate – bounded by its interval estimation [x] –
will be denoted by x∗. In the interval literature, the uncertainty of the enclosure [x] of the
desired value x∗ is given by the interval’s width

w([x]) = x− x. (2.33)

To generate a commensurate metric that allows for direct comparison between interval analysis
and confidence intervals typical for probability theory, we will use the radius

r([x]) = x− x
2 (2.34)

as a measure of uncertainty of x∗. This enables the direct comparison with the standard
deviation in case of Gaussian uncertainties.

Moreover, the midpoint of an interval [x] is defined by

mid([x]) = x+ x

2 . (2.35)

The midpoint may serve as an initial approximation of x∗.
Example 2.2.1. In the following, exemplary intervals, their radius, and their midpoint are
specified:

[x] r([x]) mid([x])
[−4, 6] 5 1

[5] 0 5
∅ undefined undefined

[−∞,∞] ∞ undefined
[5,∞] undefined undefined

2.2.1.1 Operation on Sets

All operations defined in set theory are applicable to intervals. The intersection between two
intervals [x] and [y] is defined by

[x] ∩ [y] = { z ∈ R | z ∈ [x] and z ∈ [y] }. (2.36)

The intersection of two intervals always results in a new interval.
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The union is denoted by

[x] ∪ [y] = { z ∈ R | z ∈ [x] or z ∈ [y] }. (2.37)

In contrast to the intersection, the union of two intervals is not necessarily an interval, as the
resulting set may not fulfill the connectedness property.
Example 2.2.2. [5, 7] ∪ [9, 10] is not an interval since the result is not connected.

To overcome this problem, we need to introduce the notion of an interval hull. We denote
the interval hull to the set X ⊂ R by [X], which represents the smallest interval containing all
values of X. Hence, the interval hull over [x]∪ [y] represents the smallest interval containing [x]
and [y]. As a consequence, [x]∪ [y] ⊂ [[x] ∪ [y]] holds. Note that the hull increases pessimism
in the estimate, as the hull may contain parts that are not part of the union.
Example 2.2.3. Exemplary operations are listed in the following:

• [3, 5] ∩ [4, 6] = [4, 5],
• [1, 2] ∩ [4, 6] = ∅,
• [5, 7] t [9, 10] = [5, 10],
• [x] ∩∅ = ∅,
• [x] t [−∞,∞] = [−∞,∞].

2.2.1.2 Interval Computations

Besides set-theoretic operations, interval analysis also extends real arithmetic operators to
intervals. Let � ∈ {+,−, ·, /} be one of the for classical operators. Applying an operator to
the two intervals [x] and [y] results in

[x] � [y] = [{x � y ∈ R | x ∈ [x], y ∈ [y] }]. (2.38)

Hence, the result defines the smallest interval that contains all results for x � y for every
x ∈ [x] and y ∈ [y]. As intervals represent a connected set, the computation of the operations
mentioned above only needs to consider the bounds. For instance, addition can be performed
by

[x] + [y] = [x+ y, x+ y]. (2.39)

Definitions for the other classical operators can be found in [49].
Example 2.2.4.

• [3, 5] + [4, 6] = [7, 11],
• [1, 2] �∅ = ∅.
The extension of the basic operators from R to IR also leads to different properties of the

operators. For example the distributive law x · (y+ z) = x · y+x · z does not apply to intervals
since

[x] · ([y] + [z]) ⊂ [x] · [y] + [x] · [z] (2.40)

holds. Further, the subtraction of an element by itself [x] − [x] 6= [0] does not result in
the neutral element of addition in general. Hence, dealing with intervals requires careful
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(a) Monotonic function.
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(b) Non-monotonic function.

Figure 2.8: Interval computation for monotonic and non-monotonic functions.

examination of the related equations, and often it is important to simplify equations to obtain
tighter intervals.

The arithmetic extension includes elementary functions such as sin, cos, and exp. Sometimes
the image of an interval [x] belonging to a function f is not necessarily an interval – as is the
case for discontinuous functions. Therefore, the evaluation of f([x]) – denoted by [f ]([x]) – is
defined by the smallest interval enclosure containing all the images of [x] through f :

[f ]([x]) = [{ f(x) | x ∈ [x] }]. (2.41)

If f is monotonic, the interval evaluation simplifies to evaluating the upper and lower bound
as illustrated in Figure 2.8a. Since the property of a monotonic function is that it only increases
or decreases for an increasing argument, the bounds of the argument [x] are sufficient to
determine the resulting interval [f ]([x]). For instance, exp is such a monotonic function for
which

[exp]([x]) = [exp(x), exp(x)] (2.42)

holds. However, treating non-monotonic functions is more complicated, as illustrated in
Figure 2.8b. For functions like, for example, sin and cos, the evaluation of the bounds only is
insufficient. Special algorithms must be considered to compute the image of such functions
[49].

2.2.1.3 Interval vectors

We define the Cartesian product of n intervals

[x] = [x1]× ...× [xn] =
(
[x1] ... [xn]

)T
(2.43)

an interval vector – we also call it box – defining a subset of Rn. The set of all interval vectors is
described by IRn. An interval vector represents an axis-aligned box, where the i-th component
is the interval that results from the projection of the box to the i-th axis. In Figure 2.9, a two
dimensional box [x] ∈ IR2 is illustrated. The already introduced operations on intervals are
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[x]

[x1]

[x2]

Figure 2.9: A two dimensional interval vector [x] = [x1]× [x2] and the projected intervals.

extended to interval vectors by performing the corresponding operation on each component
of the interval vector. Similarly, interval matrices are constructed in analogy to the interval
vectors.

2.2.1.4 Inclusion functions

Let us consider an arbitrary function f : Rn → Rm. If we compute the image set f([x]) for
every possible value in the input box [x], f([x]) does not necessarily result into a box. The
image set can have any arbitrary shape, contain disconnected subsets, and may also have holes,
as illustrated in Figure 2.10. The representation and computation of such complicated sets can
become computationally expensive. Therefore, we introduce the notion of inclusion functions
that approximate the complicated image sets by enclosing boxes.

We define an inclusion function [f ] : IRn → IRm to enclose the image of [x] by f in a box
such that ∀[x] ∈ IRn : f([x]) ⊂ [f ]([x]). The inclusion function aims to provide the interval
enclosure reasonably fast.

An inclusion function [f ] is minimal if ∀[x], [f ]([x]) is the smallest box containing f([x]).
We denote the unique minimal inclusion function as [f ]∗, as also illustrated in Figure 2.10. Any
non-minimal inclusion function is dubbed pessimistic since it overestimates the image set (cf.
Figure 2.10). Furthermore, we define an [f ] to be thin if the image of any degenerate interval
vector [x] = x is also degenerate. [f ] is said inclusion monotonic if [x] ⊂ [y] ⇒ [f ]([x]) ⊂
[f ]([y]).

Natural Inclusion Function

When the function f is composed of elementary functions such as sin, cos,
√

(·), and
operators +, −, ·, /, the simplest way to obtain an inclusion function is to replace each variable
xi by its interval representation [xi] and each function and operator by their interval counterpart
defined on IR. We call a function [f ] that is obtained this way a natural inclusion function of f .

A natural inclusion function is always thin and inclusion monotonic by construction. In general,
the natural inclusion function is not necessarily minimal because of possible dependencies
between variables and the wrapping effect (cf. Section 2.2.3). Nonetheless, if a function is
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Figure 2.10: Illustration of an arbitrary function f that maps a box [x] (blue) to a disconnected
image set f([x]) colored in orange. While [f ]([x]) is an arbitrary inclusion function
to f , [f ]∗([x]) is the minimal inclusion function.

only composed of continuous operators and functions, and if each of the variables only appears
once in the equations, the natural inclusion function is minimal.

2.2.2 Constraint Satisfaction Problems (CSP)

CSPs formulate a family of problems in which we seek to find from an initial set X a subset S
that contains all values that satisfy all constraints defined in the CSP. Consider n variables
xi ∈ R with 1 ≤ i ≤ n, bound by m constraints of the form

fj(x1, ..., xn) = 0, j ∈ {1, ...,m}. (2.44)

Each variable xi belongs to an interval domain [xi]. For simplicity of notation we assemble all
variables to vector x =

(
x1 ... xn

)T
. Hence, the prior domain for x is the interval vector

[x].
Furthermore, we arrange all constraints fj(x) = 0 to vector form so that our constraints

can be written as f(x) = 0. This corresponds to the CSP H which we formulate as

H : (f(x) = 0,x ∈ [x]). (2.45)

The solution set S is the subset among the initial domain [x] that satisfies all constraints
defined in H.

S = {x = [x] | f(x) = 0}. (2.46)

Example 2.2.5. An exemplary CSP is given by its constraints and the initial domains of the
variable:

H :


f(x) =


(x1 − 3.5)2 + (x2 − 3.5)2 − r2

1 = 0
(x1 − 7)2 + (x2 − 4.5)2 − r2

2 = 0
x1 − x2 + b = 0

[x1] = [1, 9], [x2] = [0.5, 8], [r1] = [2, 2.5], [r2] = [3.5, 4.5], [b] = [1.5, 2.5]

 .
(2.47)
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Figure 2.11: Illustration of how a contractor works based on the Example 2.2.5. Each constraint
of the CSP H is visualized. The first and second constraints are circles, while the
third is a stripe. The exact solution set is the intersection of all geometries and
is highlighted yellow. The contractor C contracts the initial set [x] to a smaller
subset [x′].

Figure 2.11 visualizes the CSP. The first and second constraints represent two ring areas. The
first constraint corresponds to the smaller blue area, and a green area visualizes the second
constraint. The third constraint is a stripe in the 2D space visualized in red. The solution set
of the CSP is the intersection highlighted in yellow. The initial domain for [x] is represented in
Figure 2.11 by the large black-bordered box.

Unfortunately, finding the solution set S of a CSP is generally NP-hard. To overcome this
difficulty, we use contractors to approximate the solution set with a reasonably tight enclosure
of S in polynomial time.

2.2.2.1 Contractors

A contractor C reduces the initially large domain [x] to a smaller domain [x′] ⊂ [x] such that
the solution set remains unchanged so that S ⊂ [x′] holds. In other words, only those subsets
of the initial domain [x] are dismissed by the contractor that are not part of the solution
set S. No bisections of the domains are allowed to maintain a polynomial time and space
complexity for contractors. In Figure 2.11, the general idea of a contractor is visualized for the
CSP introduced in Example 2.2.5. The contractor C takes the large initial interval box [x] as
input and contracts it to a smaller box [x′], that still contains the whole solution set, which is
highlighted yellow.
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Formally speaking, a contractor is an operator C : IRn → IRn, which is associated with a
constraint and returns a box C([x]) ⊆ [x] without removing any value that is consistent with
the constraint. As such, a contractor is characterized by two fundamental properties:

1. Contraction: ∀[x] ∈ IRn, C([x]) ⊆ [x],
2. Consistency: (x ∈ [x], C({x}) = {x})⇒ x ∈ C([x]).

While the first property ensures that a contractor can only reduce but never enlarge a box, the
second property guarantees that the contractor never loses a point that satisfies the constraint.
Accordingly, a contractor can be applied to a box as often as it is deemed advisable without
losing parts of the solution subsets enclosed in the initial domain.

Often one is interested in finding the minimal contractor that manages to contract the
box [x] to the smallest box containing the solution set. In Figure 2.11, a minimal contractor
provides the smallest possible axis-aligned box that encloses the yellow region. Finding such a
minimal contractor is not trivial. However, if a contractor is found to be minimal, it allows
to efficiently determine the enclosure of the solution set by just applying it once. For the
non-minimal case, it may be required to iterate the contraction process multiple times.

Forward-Backward Contractor

One of the most important and widely used contractors is the forward-backward contractor
C↑↓. It exploits that constraints are formulated as a sequence of operations involving elementary
operators and functions. Decomposing those constraints into their most basic components and
considering them for contraction in isolation, the C↑↓ is suitable to perform contractions for
non-linear constraints. We illustrate the construction of a forward-backward contractor based
on the following example.
Example 2.2.6. Let us consider the following CSP.

H :
(
f(x) = x1 · exp(x2) + x2

3 = 0
x1 ∈ [x1], x2 ∈ [x2], x3 ∈ [x3]

)
. (2.48)

In the forward pass, we split the function y = f(x) into the sequence of operations. Therefore,
we need to introduce intermediate variables ai for i > 0 and utilize the interval inclusion
functions for the operators:
1. [a1] = exp([x2]);
2. [a2] = [x1] · [a1];
3. [a3] = [x3]2;
4. [y] = [a2] + [a3].

Since our constraint is f(x) = y = 0, we can add the further step
5. [y] = [y] ∩ [0].

If this process step leads [y] to be empty, the solution set of the CSP has to be empty. If not,
[y] is replaced by [0]. The final step is the backward pass, where all associated domains are
updated utilizing the inverse primitive operators and functions.
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n2

(a) Complex shape that is hard to parametrize.

n1

n2

(b) Approximation of the shape by a binary image.

Figure 2.12: Approximation of complex shapes by a binary image that denotes a pixel value of
1 if the respective region is part of the shape. The corresponding pixel is colored
black. Those pixels not part of the shape are colored white and have the value 0.

6. [a2] = [a2] ∩ ([y]− [a3]); [a3] = [a3] ∩ ([y]− [a2]);
7. [x3] = [x3] ∩

√
[a3];

8. [x1] = [x1] ∩ [a2]
[a1] ; [a1] = [a1] ∩ [a2]

[x1] ;
9. [x2] = [x2] ∩ log([a1]);

Steps 6 and 8 consist of two operations since the backward propagation is performed for binary
operators.

Generally, the forward-backward contractor is not minimal and must be applied multiple
times to obtain a reasonably small box. However, it is minimal if each variable only appears once
in all constraints. This said, the forward-backward contractor we introduce in Example 2.2.6 is
minimal.

Image Contractor

The forward-backward contractor is well applicable for those cases where we can describe
the solution set by a set of equations. However, describing an unstructured set S as depicted
in Figure 2.12a by a set of equations may become inconvenient. A parametric representation
seems inappropriate, especially if we think of arbitrary building maps of large cities. To deal
with such unstructured shapes, Sliwka et al. first introduced in [53] the image contractor.
Desrochers [54] used the contractor to solve localization tasks in unstructured environments.
Here we will stick to Desrochers’ notation in [54].

We need to describe the region by a binary image to apply the image contractor. Hence, we
need to approximate the region S by a set of pixels structured in a raster. The binary image
encodes for pixels with a non-empty intersection with S with the value 1, 0 otherwise. The
approximated binary image representation of the orange set in Figure 2.12a is colored black in
Figure 2.12b. Note that the approximation error depends on the raster size – the more pixels
the binary image contains, the more accurate the approximation will be. Furthermore, the
binary image representation of S always overestimates the region since we set all those pixels
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(a) Initial box [n0].
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Ci([n0])
(b) Result after applying the image contractor.

Figure 2.13: Illustration of the image contractor based on [54].

to 1 with a non-empty intersection with S. So by construction, we ensure that we never lose
any subsets of S.

The image contractor uses the so-called integral image of the binary image constructed
from the set S as explained above. The integral image is widely used in computer vision [54].
It represents and stores for each pixel the sum of pixel values located between the image’s
top-left corner and the considered pixel. As a result, given a binary image i the integral image
I for the pixel position (n1, n2) is defined by

I(n1, n2) =
∑

n′1≤n1, n′2≤n2

i(n′1, n′2) (2.49)

The integral image has to be computed beforehand based on the binary image. Utilizing
the integral image, the number of 1-valued pixels in any rectangular region can be efficiently
computed by just four operations. Let [n] =

(
[n1] [n2]

)T
be a box aligned on the grid of a

binary image. We define the function φ, which returns the number of 1-valued pixels in a given
box [n] by

φ([n]) = I(n1, n2) + I(n1, n2)− I(n1, n2)− I(n1, n2). (2.50)

For example the box [n0] in Figure 2.13a contains three black pixels – that means φ([n0]) = 3.
The aim of the image contractor Cim is to find the smallest box [n′] = Cim([n0]) in the binary
image, that contains the same number of 1-valued pixels – which means that φ([n0]) = φ([n′])
holds. This is illustrated in Figure 2.13b. The algorithm of the image contractor Cim([n]) = [m]
for [n] =

(
[n1] [n2]

)T
and [m] =

(
[m1] [m2]

)T
only consists of two min and two max

operations:

1. m1 = max
(
x ∈ [n1], φ

(
[n1, x]
[n2]

)
= 0

)
;

2. m1 = min
(
x ∈ [n1], φ

(
[x, n1]
[n2]

)
= 0

)
;

3. m2 = max
(
x ∈ [n2], φ

(
[m1]

[n2, x]

)
= 0

)
;

4. m2 = min
(
x ∈ [n2], φ

(
[m1]

[x, n2]

)
= 0

)
.
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[x]

[x]
S

(a) Initial boxes that partially
overlap with S. The boxes
are colored black, and S is
orange.

[xin]

[xin]
S

(b) Outer approximation
CS([x]) = [xin] of the
subsets inside S.

[xout]

[xout] S

(c) Outer approximation
CS([x]) = [xout] of the
subsets outside S.

Figure 2.14: Illustration of a separator applied on different initial boxes in Figure 2.14a. The
contraction results for the set S are shown in Figure 2.14b, while the result
concerning S is shown in Figure 2.14c.

The first two operations determine the interval [m1] that defines the horizontal size of the
box. While the first operation determines the maximal lower bound x ∈ [n1] so that the
box

(
[n1, x] [n2]

)T
does not contain any 1-valued pixels, the second operator computes the

minimal upper bound x ∈ [n1] so that the box
(
[x, n1] [n2]

)T
also does not contain any

1-valued pixels. By setting the bounds for [m1], we ensure that none of the 1-valued pixels
initially contained in [n] will be lost. The same operations are applied on the row interval [m2].

The efficiency of the image contractor mainly relies on the implementation of the min and
max operators. We implemented the operators using dichotomy, which yields logarithmic
complexity.

2.2.2.2 Separators

A contractor that is consistent to a set S replaces an input box [x] by a smaller box [x′] so
that all of the initially contained subsets of S in [x] are preserved in [x′]. So by construction, a
contractor always provides the outer approximation of the set S. Consequently, the systematic
overestimation of S is the flipside of being sure never to lose parts of S. However, for some
applications, having the outer and inner approximation of the set S is useful. However, contrary
to the outer approximation, we do not directly compute the inner approximation. Instead, we
invert this problem to an outer approximation problem by contracting the initial box to the
complementary set S. This approach is handy since we can compute the outer approximation
using a contractor. Summing up, we apply two complementary contractors CS and CS on an
initial box [x] so that we obtain CS([x]) = [xin] and CS([x]) = [xout], where [xin] defines the
outer approximation of the subsets inside S and [xout] is the outer approximation of the subsets
outside S. We illustrate the complementary sets in Figure 2.14.
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Following the terminology in [54], we call the operator that separates an initial box into
two complementary subsets a separator. Thus, a separator S associated to a set S defines the
operation

S : IRn → IRn × IRn (2.51)
[x]→ ([xin], [xout]). (2.52)

The separator has the following properties

(i) [x] = [xin] ∪ [xout],
(ii) [xin] ∩ S = [x] ∩ S,
(iii) [xout] ∩ S = [x] ∩ S.

(2.53)

Note that the first property expresses the separation property, stating that the two sets are
complementary. The second property defines that [xin] does not lose any subsets of S that
were already considered in [x]. In analogy, the third property describes that [xout] does not lose
any subsets of S that were already considered in [x]. Due to the separator’s properties, we can
also define it as a pair of contractors {CS, CS} such that for all [x] ∈ IRn the complementarity
property

CS([x]) ∪ CS([x]) = [x] (2.54)

holds. A separator that is consistent to the set S is minimal if and only if the two contractors
CS and CS are both minimal.

In what follows, we will use a special implementation of a separator dedicated to polygons.
This separator makes use of another separator which is the so-called boundary-based separator.
Hence, first, we will introduce the boundary-based separator and then describe the polygon
separator.

Boundary-based Separator

An alternative way to implement a separator instead of using two complementary contractors
is to consider the boundary δS of the set S. If we can provide a contractor consistent to δS
and if we have a test that determines whether a given point is inside or outside S, we can come
up with a separator following the boundary approach. Let CδS be the contractor consistent to
δS and TS a test such that

TS([x]) =

true if [x] ⊆ S
false otherwise

(2.55)

that determines if [x] ∈ Rn is inside or outside S. The boundary-based separator SδS performs
two steps. First, the separator applies CδS to contract an input box [x]. That means this
operation provides a smaller box [δx], that includes the subset of δS ignoring if a subset is
inside or outside S. The resulting boxes are visualized in Figure 2.15. If we obtain [δx] ⊆ [x],
we can divide the initial input box [x] into subboxes as visualized in Figure 2.15. The number
of subboxes depends on how δS and [x] are related to each other. In general, together with
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[x1]

[δx] = CδS([x])

S

δS

[x2]

Figure 2.15: Illustration of the boundary separator based on the example introduced in Fig-
ure 2.14a. The boundary boxes [δx] are colored blue. The boundary box divides
the initial box into multiple subsets that we call [x1] and [x2].

[δx], there can be at most five subboxes for the case that [x] fully includes S. In Figure 2.15,
the input boxes lead to three subboxes that we denote [x1], [x2] and [δx]. Since all subboxes
besides [δx] cannot cross δS – that means the remaining subboxes need to be either inside
or outside S – we can choose in each subbox besides in [δx] an arbitrary point, for instance,
the mid-point, and utilize TS to determine if the subbox is inside or outside S. In Figure 2.15
the bottom example shows a case where [x1] is inside S and [x2] outside S. However, special
constellations such as the upper example may occur, where we obtain no interval box dedicated
to the inner part since both subboxes happen to be placed outside S. The result of the
separation for the bottom example in Figure 2.15 is given by

SδS([x]) = {[xin], [xout]}
= {[δx] ∪ [x1], [δx] ∪ [x2]} . (2.56)

But for the upper example [xin] is empty and [xout] is determined by [δx] ∪ [x1] ∪ [x2]. Hence,
the union over all subboxes that are determined to be outside S and the boundary box [δx]
determines [xout]. The union over all subboxes that are determined to be inside S and the
boundary box [δx] determines [xin].

Polygon Separator

Closed polygons well represent structured environments such as buildings and rooms. Our
next step is to adapt the boundary-based contractor to polygons. Therefore let us consider the
border of a polygon. Since a polygon is defined as a composition of oriented line segments,
the polygon separator mirrors this configuration by multiple boundary-based contractors, each
corresponding to a different segment. Therefore, let us first consider the boundary-based
contractor dedicated to oriented line segments.
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(a) Related variables to check if m lies on a line
segment.

P

[x]

C{ai,bi}([x])

(b) Illustration of the line segment contractor
C{ai,bi}.

Figure 2.16: The set described by a polygon is P . The connected vertices a and b span a line
segment which is a part of the boundary δP . Figure 2.16a illustrates the related
variables involved in the constraints in (2.57). The point m does not fulfill the
first constraint since the vectors b− a and a−m are not collinear. Figure 2.16b
illustrated the line segment contractor C{ai,bi}.

Let {a,b} be the line segment defined by a,b ∈ R2 as end and start point. A point m lies
on the segment m ∈ {a,b}, if the two constraintsdet(b− a, a −m) = 0,

min(a,b) ≤m ≤ max(a,b)
(2.57)

are fulfilled. While the first constraint determines m to be on the line a and b span, the
second constraint checks whether m is within the segment determined by the end and start
point. We illustrate this in Figure 2.16a. In this example, vectors b− a and a −m are not
collinear, due to which m is not on the line and the first constraint is not fulfilled.

A general polygon P comprises n oriented line segments. We describe the i-th segment by
{ai,bi} for i ∈ {1, ..., n}. As a consequence, the border δP of a polygon is given by

δP = {m ∈ R2 | ∃i ∈ {1, ..., n},m ∈ {ai,bi}}. (2.58)

For each of the line segments {ai,bi} we define a contractor C{ai,bi}, that contracts an input
box to the boundary defined by the line segment. Therefore, we use the constraints defined in
(2.57) and build the forward-backward contractor described above. The line segment contractor
is illustrated in Figure 2.16b.

The union of all line segment contractors defines the contractor for the whole polygon
boundary:

CδP =
n⋃
i=1
C{ai,bi}. (2.59)

The only component that remains to be added to complete the polygon separator is the test TP ,
which decides if a given point lies inside or outside the polygon. To accomplish this task, [54]
proposes to utilize the winding number test. This test is portrayed in Figure 2.17 and aims to
evaluate the total number of times the curve consisting of line segments travels around a given
point. The winding number depends on the orientation of the line segments, and therefore
we need to ensure that all segments of the polygon are consistently oriented. Considering the
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(b) The test point is outside since the sum of all
angles is less than 2π.

Figure 2.17: Winding number test to validate if a point m is inside a polygon P or outside.

polygon P defined by an ordered set of corner points vi ∈ VP , the winding number for a given
point m is defined by

wn(m,P) = 1
2π

n∑
i=1

θi (2.60)

= 1
2π

n∑
i=1

arctan2
(
det((vi −m), (vi+1 −m)), (vi −m)T (vi+1 −m)

)
. (2.61)

If m is placed outside P, the winding number will be wn(m,P) < 1 (cf. Figure 2.17b),
otherwise if m is inside P (cf. Figure 2.17a). Note that θi is the oriented angle from (vi −m)
to (vi+1 −m). Now we have assembled all the necessary components to build the boundary-
based separator SP for the polygon P as described above. We first apply the polygon-boundary
contractor CδP to obtain the subboxes as illustrated in Figure 2.15 and after that assign the
subboxes to the inner and outer parts by applying the in-polygon test TP utilizing the winding
number test for an arbitrary point inside each subbox.

2.2.3 Pessimism and Wrapping Effect

One of the main challenges of applying interval analysis to robotics is pessimism, meaning an
overestimation of the uncertainty and, therefore, may end up with meaningless results. The
pessimism is mainly caused by two problems we want to discuss briefly in this section. However,
although we tend to overestimate the uncertainty, the reliability of the result is not affected.
Nonetheless, dealing with interval analysis, it is crucial to consider overcoming pessimism.

2.2.3.1 Dependencies between variables

Let us consider the following example.
Example 2.2.7. We subtract the same intervals:
[1, 2]− [1, 2] = [{a− b | a ∈ [1, 2], b ∈ [1, 2]}] = [1− 2, 2− 1] = [−1, 1].

The subtraction is performed strictly according to the inclusion function of the subtraction
operator. We can generalize the example to the difference between two identical non-degenerate
intervals [x]− [x] = [x− x, x− x] which is not thin. While subtracting the same element in
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R leads to the neutral element of addition 0, the interval counterpart in IR does not naturally
lead to a thin result. This example again highlights that the properties of basic operations on
intervals can differ from their equivalent in R. This issue appears if a variable is involved several
times in an expression, as in the example. The dependency between the variables directly leads
to unwanted pessimism.

A modification of the analytical expression is vital to avoid or at least reduce this effect.
We can reduce the pessimism implied by the dependency between variables by exploiting and
deleting common subexpressions to obtain a minimal expression representation. However, up
to now, there are no general methods adopted in existing interval solvers.

2.2.3.2 Wrapping effect

As illustrated in Figure 2.10, we introduce pessimism whenever we try to enclose a set that is
not an axis-aligned box since intervals and interval boxes are axis-aligned elements. We call
this phenomenon the wrapping effect. The successive evaluation of a function that suffers from
over-enclosure can cause pessimism to overgrow. To illustrate this problem, Moore introduces
in his book [33] an example where he applies consecutive rotations to a box. We give a similar
example in Figure 2.18. To overcome the wrapping effect, dividing the solution space into a
set of non-overlapping boxes (subpaving) and individually contracting those subsets is helpful.
While this approach significantly reduces pessimism, it comes with higher computation and
memory consumption costs. The following section provides more insights into that approach.

2.2.4 Set Inversion Via Interval Analysis (SIVIA)

An arbitrary solution set that may contain holes cannot be approximated by an interval vector
without introducing pessimism due to the wrapping effect. One way to cope with that problem
is to divide the solution space into multiple non-overlapping boxes and to evaluate each box to
see if it contains parts that belong to the solution set. As a result, instead of a box wrapped
around the solution set, the goal, for now, is to represent the approximation of the solution set
by a set of boxes – called subpaving. In particular, subpavings become handy for set-inversion
problems.

Why shall we consider the inversion of a function in the context of robotics? To answer this
question, let us consider, for instance, the localization problem. Let x be the unknown pose
of the robot. Further, let y be the measurements the robot perceives from its pose x in the
mapped environment m. Typically, in robotics, the measurement function f(x) = y that maps
a pose to local measurements under consideration of the map is known. This function is an
analytical description of how the utilized sensor perceives its environment m. However, in the
localization problem, the local measurements y are known, and the goal is to determine the
pose x given the local measurements y and the map m. That means, to solve the localization
problem, we need to invert the measurement function f−1(y) = x given the map m to obtain
the pose. SIVIA is an inversion approach for sets that uses subpavings. In the following, we
will introduce subpavings and the SIVIA algorithm.
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x

y

Figure 2.18: Illustration of the wrapping effect when a robot performs rotation. A black line
visualizes the robot’s trajectory, and the positions at different points in time are
illustrated with blue boxes. The robot starts the trajectory in the bottom left.
Here, the pose uncertainty is very small, shown by a red interval box. Also, for
the next pose in the trajectory, the enclosing interval box (black) is small since no
rotation was involved. However, the robot rotates between the second and third
pose, as illustrated in the figure. The axis-aligned box that encloses the rotated
black box is colored orange. Here, the wrapping effect leads the orange box to
overestimate the robot’s position due to the property of an axis-aligned box. The
movement from the third to the fourth position again involves a rotation, and
further overestimation is introduced. The successive rotation of the robot leads
to a large enclosure (red box at the end) that highly overestimates the position
uncertainty.

2.2.4.1 Subpaving

The approximation of an arbitrary set X ⊂ Rn with a union of non-overlapping boxes

K = {[x1], ..., [xn]} (2.62)

is usually thinner compared to a single box [x] that contains X due to the wrapping effect.
We call the set of all boxes K a subpaving. We can obtain a subpaving by applying a finite
number of bisections and selections on [x] as illustrated in Figure 2.19a. The initial box [x] is
the large box that fully contains the set X. By recursively bisecting [x] and selecting those
parts that contain the solution set, we obtain a set of subboxes as a union that approximates
X with less pessimism compared to [x]. We call this subpaving regular. For interval boxes in
higher dimensions, the question of how to bisect those boxes may arise. Typically the widest
dimension is chosen to be bisected. This is also why the subboxes in Figure 2.19 have different
sizes. However, selecting the widest dimension is just a heuristic that has proven to provide
good results in computing a subpaving efficiently. That means another strategy to divide the
solution space is also valid and sometimes more favorable depending on the solution set we
seek to approximate.
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(a) Illustration of a subpaving as a result
of recursive bisection and selection.

X

X
X

(b) Outer and inner subpaving. While the inner subpaving X
is colored orange, the outer subpaving X blue.

Figure 2.19: Visualization of regular subpavings.

Generally, two subpavings are used to approximate a set X. While the inner subpaving X
only consists of boxes that are fully included inside X, the outer subpaving defines the outer
approximation and is denoted by X. For example, the subpaving in Figure 2.19a is an outer
subpaving. As a consequence,

X ⊆ X ⊆ X (2.63)

holds. Figure 2.19b visualizes the different types of subpavings. Usually, we are interested in
the outer approximation of a set, and therefore, in this work’s scope, we will focus on the outer
subpaving.

2.2.4.2 SIVIA algorithm

The SIVIA algorithm is a set inversion approach that allows approximating the set X for an
arbitrary image set Y that are linked by a possibly non-linear function f : Rn → Rm by

X = {x ∈ Rn | f(x) ∈ Y} = f−1(Y). (2.64)

SIVIA is a branch and bound algorithm that utilizes the subdivision of the solution space
to compute the inner and outer subpaving enclosing the solution set. Therefore, it uses the
inclusion function [f ] : IRn → IRm. An exemplary version of the SIVIA algorithm is shown
in Algorithm 2. The algorithm needs as an input the inclusion function [f ] and the image
set Y as described above. Furthermore, we need to provide an initial (possibly very large)
box [x0] that encloses the outer approximation X of the solution set X. The accuracy of the
outer approximation depends on an additional parameter ε that determines the minimal width
of a box that we consider for bisection. Internally, SIVIA uses a stack that stores all those
boxes that need to be evaluated. Hence, the initial large box [x0] is inserted into the stack as
depicted in line 1. We can encounter four cases for each box stored in the stack. For reader
convenience, we also provide a visual explanation of the successive steps of the SIVIA algorithm
and the different possible cases in Figure 2.20.

1. If [f ]([x]) has an empty intersection with Y, then [x] does not belong to X and does not
need to be further considered as shown in Algorithm 2 lines 4 and 5 (cf. Figure 2.20b).
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(a) [f ]([x]) has a non-empty intersection with Y and the width is larger than ε. Hence, [x] needs to
be bisected.
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(b) [f ]([x]) has no intersection with Y. As a result, [x] cannot be part of the solution X and can be
discarded.
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(c) [f ]([x]) is fully contained in Y. The box [x] is part of the inner subpaving X as it does not contain
any parts that are not part of the solution set.
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(d) [f ]([x]) has a non-empty intersection with Y but the width of [w(x)] is smaller than ε. That
means [w(x)] is not further bisected and is considered as part of the outer subpaving X.

Figure 2.20: Visual explanation of the successive steps of the SIVIA algorithm with the different
possible cases.
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Algorithm 2: SIVIA
Data: [f ], [x0], Y, ε
Result: X, X
// Initialize the stack S.

1 S.push([x0]);
2 while S 6= ∅ do
3 [x] =top(S);
4 if [f ]([x]) ∩ Y = ∅ then

// [x] cannot be part of the solution set.
5 continue;
6 else if [f ]([x]) ⊂ Y then

// [x] is an inner subset of X.
7 X = X ∪ [x];
8 X = X ∪ [x];
9 else if w([x)] < ε then

// [x] partially overlaps with X but too small for bisection.
10 X = X ∪ [x];
11 else

// [x] partially overlaps with X, needs to be bisected.
12 ([x1], [x2]) = bisect([x]);
13 S.push([x1]);
14 S.push([x2]);
15 end
16 end

2. If [f ]([x]) is entirely in Y, then [x] belongs to the solution set X and needs to be inserted
to X and X as presented in Algorithm 2 lines 6 to 8 (cf. Figure 2.20c).

3. If [f ]([x]) partially overlaps but is not entirely in Y and if the width of the box is lower
than ε, then it is not bisected and is determined to be only part of the outer approximation
X as described in Algorithm 2 lines 9 and 10 (cf. Figure 2.20d).

4. Otherwise, we bisect [x] and push the resulting subsets to the stack to be considered in
the successive iterations (Algorithm 2 lines 11 to 13 and cf. Figure 2.20a).

The parameter ε determines the precision of the approximation of the solution set. The
smaller ε, the more bisections are performed, and the smaller the boxes on the outer region of
the outer subpaving will get. Nonetheless, this comes with the cost of higher computational
effort and memory consumption. Figure 2.21 shows examples of different accuracies for the
SIVIA-based computation of a set.

The branch and bound approach that SIVIA introduces is not only handy for set inversion
problems. Also, in the case of pessimistic contractors, SIVIA can increase the accuracy of the
result by applying the contractor on subsets of the initial box. Algorithm 3 shows a simple
version of the SIVIA algorithm, which utilizes a contractor C. Notice that the contractor C
is used to reduce the size of the box [x] in line 4 before it is bisected. As a result, coupling
the SIVIA algorithm with contractors decreases the time complexity since potentially fewer
bisections become necessary for a fixed accuracy ε. Although applying a contractor in the SIVIA
algorithm provides more accurate results, the computational effort and memory consumption
increase compared to the contractor-only approach. Unfortunately, the computation time
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(a) Low accuracy since ε is large. (b) High accuracy since ε is small.

Figure 2.21: Representation of a set by subpavings computed by SIVIA with different accuracy
levels. The outer subpaving is colored blue and the inner subpaving is colored
orange.

Algorithm 3: SIVIA with contractor
Data: C, [x0], ε
Result: X
// Initialize the stack S.

1 S.push([x0]);
2 while S 6= ∅ do
3 [x] =top(S);
4 [x] = C([x]);
5 if [x] = ∅ then

// [x] cannot be part of the solution set.
6 continue;
7 else if w(x) < ε then

// [x] partially overlaps with X but too small for bisection.
8 X = X ∪ [x];
9 else

// [x] partially overlaps with X, needs to be bisected.
10 ([x1], [x2]) = bisect([x]);
11 S.push([x1]);
12 S.push([x2]);
13 end
14 end
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increases exponentially with the dimension of x. If we have fewer dimensions, utilizing SIVIA to
improve the results is a good choice. However, the more dimensions we consider for bisection,
the more subsets must be evaluated. So, in the case of more dimensions, it is worth prioritizing
the dimensions and only bisecting those (hopefully) few dimensions mainly affected by the
pessimism of the contractor.

2.2.5 Relaxed intersection

The core assumption for the application of interval analysis is that the correct value x∗ is
contained in the interval [x]. That means if we have n measurements that we use to construct
n measurement intervals [xi] with i ∈ 1, ..., n taking the measurement uncertainty into account,
we assume that all measurement intervals enclose the true value x∗ that we would obtain if we
would have a perfect error-free measurement. The selection of the error bounds of [xi] need to
be carefully chosen. If we account for large errors that might happen on rare occasions, the
interval widths will inflate significantly, and we will obtain large meaningless intervals. On the
other hand, if we choose the bounds too tight, the assumption that x∗ has to be contained in
[xi] can be violated. That means choosing the interval bounds as tight as possible and as wide
as necessary is vital for interval-based approaches.

Since gross errors like outliers are rare, considering those large errors in selecting the error
bounds often leads to large meaningless intervals. Furthermore, in many cases, it is not even
possible to provide error bounds on outliers. That means we need to take such gross errors
differently into account. Therefore, we introduce the notion of relaxed intersection in this
section.

Let us consider a simple example.
Example 2.2.8. Let the four intervals [x1] = [−1, 1], [x2] = [−2, 0], [x3] = [−1, 3] and
[x4] = [1, 2] be the measurements of same value. However, the intersection of all intervals is
empty

[x1] ∩ [x2] ∩ [x3] ∩ [x4] = ∅. (2.65)

To allow outliers in our interval-based computations, it is possible to perform a q-relaxed
intersection [55]. This robust intersection approach tolerates maximum q outliers while all
other intervals have to overlap. Therefore, we need to specify the number q that reveals how

many outliers we encounter. We denote the q-relaxed intersection by
{q}⋂

1≤i≤n
[xi].

Figure 2.22 visually illustrates the relaxed intersection for different values for q. Considering
Example 2.2.8, the 1-relaxed intersection results into

{1}⋂
1≤i≤4

[xi] = [−1, 0], (2.66)

while the 2-relaxed intersection is
{1}⋂

1≤i≤4
[xi] = [−1, 2]. (2.67)
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(a)
{1}⋂

1≤i≤4
[xi]. (b)

{2}⋂
1≤i≤4

[xi]. (c)
{3}⋂

1≤i≤4
[xi].

Figure 2.22: Illustration of the q-relaxed intersection.

2.3 Sensor Models
In this section, we introduce the sensors we employed in this work. The introduction includes a
general overview of the operating principle and a model of each sensor. Since this work focuses
on robot localization, our sensors can generally be categorized into global and local. While
global sensors provide information about the global location of the vehicle, local sensors provide
information about the vehicle’s immediate environment. While the cameras and LiDAR sensors
provide local data, GNSS sensors provide global positioning data. First, we will introduce stereo
cameras and LiDAR sensors in Subsection 2.3.1 and 2.3.2. Finally, the global GNSS sensor is
introduced in Subsection 2.3.3.

2.3.1 Stereo Cameras

In this work, we use a stereo camera system that combines rich projective image information and
provides depth data. First, we introduce the monocular pinhole camera model in Part 2.3.1.1.
Based on the monocular camera model, we will consider the multi-view stereo vision case and
provide a summary of the epipolar geometry in Part 2.3.1.2, which is the basis for interval-based
feature reconstruction.

2.3.1.1 Monocular Camera Model

A figure of a camera that we used in our experiments and a schematic structure are shown in
Figure 2.23. In contrast to LiDAR sensors, optical cameras are typically passive measurement
systems. An optical lens system first focuses visible light passing through the camera aperture.
Figure 2.23b illustrates the lens system by a simplified single lens. The bundled light is refracted
to a focal point, called the projection or optical center. The actual sensor is installed behind the
projection center. The imaging sensor consists of several tiles, referred to as pixels. The tiles
are coated with semi-conductive materials. When visible light hits the tiles, a voltage difference
is generated due to the photoelectric effect, which is measured electronically. The higher the
intensity of the light, the higher the generated voltage. The most commonly used imaging
sensors are Charged-Coupled Devices (CCD) and Complementary Metal-Oxide Semiconductor
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(a) FLIR camera with a lens system.
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(b) Simplified illustration of the operation of a projective
camera.

Figure 2.23: Figure 2.23a shows a FLIR Grasshopper3 camera equipped with a Fujinon lens.
Figure 2.23b depicts a simplified schematic of a camera’s operation.

(CMOS) sensors. As a consequence, the imaging process performs a discretization of the
continuous environment to a discretized image plane. The image resolution is determined by
the number of pixels on the imaging sensor.

To mathematically describe the mapping between the 3D environment and the 2D image,
the pinhole camera model is used [56]. Although in the actual camera system, as shown in
Figure 2.23, the focal point is generated by the lens system, the pinhole model approximates
the projection by idealizing the camera aperture by a point that coincides with the projection
center and defines the origin of the optical camera frame C. Note that the approximation
neglects the lens’s distortion behavior, and that is why the pinhole model needs a distortion
correction which we will introduce later. Figure 2.24 shows the pinhole model. To simplify the
schematic figure, the image plane (depicted in gray) is projected in front of the pinhole. In
reality, however, it is placed behind the projection center resulting in an image that is rotated
by 180◦. Thus, we exploit the point-symmetry of the camera projection. Based on the pinhole
model, the projection of a 3D point onto the 2D image plane is defined by

λ

(
Ip
1

)
= λ


Ipx
Ipy
1

 =


fx 0 cx
0 fy cy
0 0 1



Cpx
Cpy
Cpz

 = K · Cp. (2.68)

The 3D point Cp =
(
Cpx

Cpy
Cpz

)T
is described in the camera frame that is shown in

Figure 2.24. The image pixel point is described by Ip =
(
Ipx

Ipy
)T

and defines the pixel
position in the image frame I. The focal lengths fx, fy and the principal point

(
cx cy

)T
are intrinsic camera parameters that define the projection matrix K. The intrinsic camera
parameters are determined by a calibration procedure beforehand, and we assume to know
those parameters in the scope of this work. Note that the projection of a 3D point to the 2D
image plane is invariant to scale. That means if Cp is located at a different distance concerning
the camera center along the observation ray, the same pixel is captured. As a result, it is
impossible to reconstruct a 3D point unambiguously only from its pixel point in the image.
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Figure 2.24: Illustration of the pinhole camera model. The figure is adopted from [51].

That is why in (2.68) on the left side, the unknown scale factor λ is introduced. Note that λ
determines the distance of the measured point to the projection center. Since the camera does
not capture this information, the camera only provides bearing information for points detected
on the image plane.

Using the pinhole model, we have neglected the distortion of the lens system up to this point.
In the literature, typically, the radial and tangential distortions are considered. To compensate
for the distortion, the image pixel positions must be corrected, often called undistortion or
rectification. After removing the distortion, the pinhole model becomes applicable. To remove
the distortion, the radial and tangential distortion parameters k1, k2, k3, p1, and p2 need
to be determined during the camera calibration. The correction of a pixel Ip =

(
x y

)T
is

determined by

r2 = x2 + y2, (2.69)
x′ = x(1 + k1r

2 + k2r
4 + k3r

6) + 2p1xy + p2(r2 + 2x2), (2.70)
y′ = y(1 + k1r

2 + k2r
4 + k3r

6) + p1(r2 + 2y2) + 2p2xy. (2.71)

The new pixel position Ip′ =
(
x′ y′

)T
is the distortion-free pixel position and satisfies the

pinhole model. In the scope of this work, we assume that the distortion parameters are
determined by the calibration accurately so that we rectify the images before further processing
them.
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Figure 2.25: Epipolar geometry for two cameras. The gray cones represent cameras. The
image planes are facing forward so that the FoV of both cameras overlap. The
epipolar geometry describes the correspondence between the left and right image
points.

2.3.1.2 Stereoscopic Model – Epipolar Geometry

A monocular camera only provides bearing information as the depth information is lost due
to the projection of the scene to the image plane. To reconstruct the depth information,
depth sensing technologies like LiDAR can be utilized as suggested in [57]. However, LiDAR
sensors provide a relatively sparse representation of the scene compared to cameras. Another
way to determine the scale is to use another camera that sees the same scene from another
perspective. If the calibration parameters and the relative transformation between the cameras
are known, the depth of the commonly observed 3D point can be determined from triangulation
as illustrated in Figure 2.25a. However, initially, we do not know which image points of the left
and right image correspond to the same point in the 3D scene. Stereo matching is a non-trivial
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Cl Cr
(a) The stereo cameras are almost parallel.

Cl Cr
(b) The cameras are perfectly parallel.

Figure 2.26: The more similar the camera’s orientations are, the more parallel the epipolar
lines become since the epipoles are shifted further apart. For the stereo-rectified
setup, the epipoles are shifted to an infinite distance, due to which the epipolar
lines degenerate into horizontal lines.

problem with a long research history in computer vision [56]. To determine if a point in the
left corresponds to a point in the right image, we use feature detectors that extract distinct
features in the images and determine so-called descriptors. Descriptors represent a formal
description of a feature point and are unique. By comparing the descriptors of feature points
in the left and right images, we can match the features with the most similar descriptors. As a
result, based on the feature matching, we know which points on the left image correspond to
points in the right image that captures the same 3D point in the scene.

Now that we know which image points correspond, we can continue with the geometric
reconstruction of the 3D point. Therefore, let us consider again the pixel point in the left
image. As the pixel point spans an observation ray on which the observed 3D point has to
lie (cf. Figure 2.25b), the observation ray of potential positions generates a line of potential
corresponding pixel locations in the right image. This line is the so-called epipolar line.
Furthermore, the projection centers of both cameras and the 3D point span the so-called
epipolar plane (blue plane in Figure 2.25c). The epipolar plane inherits the baseline between
both cameras. The intersection of the epipolar plane with the image planes defines the epipolar
lines. As illustrated in Figure 2.25d, all epipolar lines intersect at one point because all epipolar
planes inherit the baseline. This point is the so-called epipole.

The epipolar geometry between two cameras is solely determined by the relative pose of
the cameras. Figure 2.25 demonstrates the epipolar geometry for an arbitrary orientation
between the cameras. Since matched image points lie on corresponding epipolar lines, obtaining
a convenient orientation of the epipolar lines is favorable to accelerate the stereo feature
matching. Figure 2.26 depicts the epipolar lines for different relative orientations of the
cameras. The edge case where the cameras are oriented exactly parallel represents the most
convenient configuration at which the epipolar lines degenerate to parallel horizontal lines in
the image plane. This configuration is, in particular, convenient for stereo feature matching, as
corresponding features are located on the same image row, simplifying the feature matching.

However, in practice, obtaining a perfect parallel orientation of the left and right cameras
is impossible. That is why in stereoscopic vision, often a stereo-rectification is performed.
The core idea of the stereo-rectification is that if we have almost parallel cameras that are
slightly rotated with respect to each other, to correct the images in such a way that we obtain
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(a) The Velodyne HDL-64E is an exem-
plary mechanical LiDAR with 64 scan-
lines. [58]
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(b) Simplified illustration of the opera-
tion of an exemplary mechanical Li-
DAR based on [59].

Figure 2.27: A mechanical LiDAR has mechanically rotating parts that cover a large FoV.

images that are identical to images that perfectly parallel cameras would have taken. The core
ingredient of the stereo-rectification is to apply a so-called homography that rotates the images
accordingly. This type of transformation maps points from one plane to another plane – in our
case, a slightly rotated plane to obtain the stereo-rectification. The stereo camera calibration
determines the homography matrix. While the monocular camera calibration determines the
intrinsic camera parameters, the stereo calibration determines the relative transformation
between the stereo camera pair used for the stereo-rectification. In the scope of this work, we
assume that the calibration parameters are accurately known. Furthermore, before applying
our algorithms to the stereo images, we stereo-rectify them to fulfill the assumption of parallel
cameras.

2.3.2 Light Detection And Ranging (LiDAR) sensors

Light Detection And Ranging (LiDAR) sensors are laser scanners classified as active optical
measurement systems. LiDAR sensors rely on the Time of Flight (ToF) principle. The distance
between the sensor and the reflecting target is determined by measuring the time delay between
the emission and reception of the light signal and by considering the speed of light. The
wavelength of the emitted light depends on the field of application. However, infrared light
with 905 nm is typically used in the automotive sector and robotics. In recent years, new LiDAR
technologies have been developed. Besides the traditional pulsed mechanically rotating LiDAR,
new ranging mechanisms, beam generation, and deflection technologies are becoming State of
the Art. We want to briefly summarize here and focus on the LiDAR technologies utilized in
the scope of this work.

LiDAR sensors are typically categorized concerning the ranging technology and the mechanical
structure. The ranging technology defines how the depth information is deduced from the
emitted and received signal. Therefore, different ranging technologies employ different types
of light signals. The LiDAR ranging technologies can be categorized into three different
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(a) The Cepton Vista 8800 is a pulsed
MEMs solid state LiDAR. [60]
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(b) Simplified illustration of the operation of an exem-
plary MEMs LiDAR based on [59].

Figure 2.28: A MEMs LiDAR works with microelectromechanically controlled mirrors for beam
deflection. Using mirrors, different scan patterns can be driven. Typically, Lissajous
patterns are used.

ToF principles: the pulsed ToF, Amplitude-Modulated Continuous Wave (AMCW) ToF, and
Frequency-Modulated Continuous Wave (FMCW) ToF [59].

• The most widely used ToF principle is the pulsed ToF which sends a light impulse that is
diffusely reflected on the target and is perceived by the sensors receiver diode. The time
delay between the emission and reception of the very short impulse determined the range
measurement.

• Compared with pulsed ToF LiDARs, AMCW ToF LiDARs use the intensity-modulated
optical signal rather than the pulsed optical signal for sensing. To determine the range,
the AMCW analyzes the phase difference between the transmitted modulated and received
light. While the pulsed ToF principle is suitable for long-range distances, the AMCW
ToF is better suitable for moderate distances and provides more accurate distance
measurements.

• FMCW LiDARs emit a frequency-modulated light signal and compare frequencies of the
reflected signal. While the time delay reveals the target’s distance similar to the pulsed
ToF principle, the frequency modulation makes detecting the Doppler effect possible.
Consequently, in addition to the distance of the target, its relative velocity is determined.
The FMCW ToF principle traditionally comes from the FMCW Radar signal processing.
Applying the FMCW ToF principle to nm-wavelength signals requires expensive and
dedicated hardware.

In the automotive sector and robotics, mainly pulsed LiDARs are utilized due to their simple and
cost-effective ToF principle. Nonetheless, FMCW LiDARs were comparatively new when this
manuscript was written and represent a promising alternative to the rather simple pulsed version
since dynamic objects can be detected and distinguished in just a single measurement. [59]

Regarding the mechanical structure, LiDARs are distinguished between mechanical and solid-
state LiDARs. Mechanical LiDAR sensors traditionally use a mechanical rotation mechanism
to achieve a wide FoV scanning. As illustrated in Figure 2.27, mechanically rotating parts such
as tilting mirrors deflect the light signal. While such LiDARs have a large FoV, the mechanical
structure makes the sensor bulky and sensitive to vibrations. In contrast, solid-state LiDARs do
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not have any mechanical components. At present, different topologies are used to implement
solid-state LiDARs. The most widely used schemes are Flash-based, Microelectromechanical
systems-based (MEMs), and Optical Phased Array-based (OPA) LiDARs:

• Flash LiDARs use a single light flash to illuminate the measured scene simultaneously.
With a working principle similar to a camera flash, the sensor measures the distance
of surrounding targets by recording the reflected light at different times. The main
disadvantage of this technology is its sensitivity to retroreflective materials. [59, 61, 62]

• MEMs LiDARs substitute the mechanical part of the mechanical LiDARs with electrome-
chanically controlled mirrors. By cascading multiple microelectromechanically tiltable
mirrors to adjust the emission angle of the laser beam, 3D depth perception is possible,
enabling miniaturized LiDAR sensors. Figure 2.28 illustrates the schematic structure of
MEMs LiDARs. [59, 61]

• OPA LiDARs make use of a microarray of independent emitters. By controlling the
timing between the signals transmitted by each antenna, the beam direction is controlled
without a mechanical rotation [59, 62].

In the scope of this work, we use a traditional mechanical and a solid-state MEMs LiDAR
sensor presented in Chapter 8.

Independent of the LiDAR principle, each laser beam provides the distance r to the reflecting
target. Depending on the LiDAR topology, the polar (vertical) angle α and the azimuthal angle
β as exit angles with respect to the LiDAR reference frame are determined for each laser beam.
Computing the exit angles depends on the intrinsic calibration of the sensor. We compute the
3D coordinates of any measured point by converting the spherical coordinates r, α and β to
Cartesian coordinates

p =


x

y

z

 =


r · sinα · cos β
r · sinα · sin β

r · cosα

 . (2.72)

However, the intrinsic calibration of the sensor is not perfect. As a consequence, deviations
can occur to all three spherical coordinates. Those deviations are modeled as uncertainties
of the measurement. Classical probabilistic approaches model the uncertainty by a Gaussian
distribution. In contrast, in this work, we will account for those deviations by defining
interval bounds on the uncertainty of the spherical coordinates as suggested in [51, 57]. The
core idea is to inflate the spherical coordinates by the maximum possible errors ∆r, ∆α,
and ∆β, specified by the manufacturer. Thus, we obtain the intervals [r] = [r −∆r, r + ∆r],
[α] = [α−∆α, α + ∆α] and [β] = [β −∆β, β + ∆β]. By extending (2.72) to interval operators
and using the spherical interval parameters, we obtain a box [p′] as illustrated in Figure 2.29. As
stated in [51], the interval-based error model up to this point only considers imperfect intrinsic
calibration and potential environmental impacts such as humidity and changing reflectance of
surfaces. However, the initial footprint of the laser beam is not considered. In the scope of
this work, we will neglect the minor impact of the initial footprint.
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Figure 2.29: Transformation from spherical interval coordinates to the Cartesian coordinate
frame leads to an inflated box. Hence, each measurement point p is inflated to
box [p′] that encloses the correct target position p∗. The figure is adapted from
[57].

2.3.3 Global Navigation Satellite System (GNSS)

GNSS is a system for positioning and navigation on Earth and in space using signals emitted by
satellites that orbit the Earth. The term GNSS generally covers all existing and future global
satellite systems. To date, there are four different fully operational GNSSs:

• The Navigational Satellite Timing and Ranging – Global Positioning System (NAVSTAR
GPS), often abbreviated by GPS, is the most widely used system developed and operated
by the United States Space Force. Currently, 32 satellites exist, of which 24 are used in
the core constellation to maintain good coverage.

• The Global’naya Navigatsionnaya Sputnikovaya Sistema (GLONASS) is a Russian GNSS
operated by Roscosmos. GLONASS also uses a constellation with 24 satellites, while 26
satellites are orbiting.

• The European Union Agency operates the European Galileo GNSS for the Space Pro-
gramme (EUSPA) and the European Space Agency (ESA). Currently, there are 30
satellites, of which 24 are active and six are spare.

• The Chinese GNSS BeiDou is operated by the China National Space Administration
(CNSA). BeiDou uses 30 satellites, while 35 are orbiting the Earth.

Furthermore, different supplementary systems exist that augment the GNSSs. [63]
Although different GNSSs exist, the basic principle of all systems relies on multilateralism

based on the distances of the measured point to the observed satellites. Figure 2.30a illustrates
the principle of satellite-based positioning. Each satellite broadcasts an electromagnetic signal
that consists of multiple components. The physical layer defines the carrier frequency as
the high-energy carrier signal on which further information is modulated (phase modulation).
Two further data layers are modulated onto the carrier frequency that convey the information
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Figure 2.30: The general principle of how GNSSs works is depicted in Figure 2.30a. The
GNSS-related coordinate systems are shown in Figure 2.30b. The GNSS receiver
typically provides the spherical coordinates in the ECEF. We transform the position
to a local tangential UTM coordinate system.

necessary for positioning the receiver. The ranging code layer provides information on the
propagation time. It is a periodic modulated signal that is strictly synchronized to the satellite
time system and the data messages to enable time synchronization of the receiver. The data link
contains, among other things, the transmission time and satellite ephemerides (satellite position)
[64]. Consequently, the receiver must first decode the information from the electromagnetic
signal. The ephemerides decoded from the signals reveal the exact position of each satellite
relative to the earth’s center (geocentric coordinate frame). If the receiver employs a clock
precisely synchronized to the GNSS time, the geometric distance to each satellite could be
accurately measured by recording the run time required for the satellite signal to reach the
receiver. Thus, here again, the distance measurement relies on a time of flight measurement
similar to the LiDAR – with the difference that the signal travels a long distance and the time
synchronization has to consider relativistic effects due to the speed and gravitational difference
between the receiver and satellite. That means ranges to only three satellites would suffice
since the intersection of three spheres, as illustrated in Figure 2.30a yields the three unknowns
(e.g. latitude, longitude, and height). However, modern receivers apply a slightly different
technique. As low-cost receivers use inexpensive crystal clocks, set approximately to system
time, the time may be offset. As a result, the distance measured to the satellite also differs from
the geometric range. Therefore, the measured quantities are called pseudoranges since they
represent the geometric distance plus a distance correction resulting from the receiver clock
error that defines a further unknown. Consequently, we now obtain four unknowns (latitude,
longitude, height, and time offset) that are fully determined by four satellite signals instead of
only three.
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Up to this point, we only introduced the basic principle of GNSSs. In the scope of this
work, we will also consider different global coordinate frames that we want to summarize in
the following briefly. The receiver position is determined in a geocentric coordinate system,
also known as the Earth-centered, Earth-fixed coordinate system (ECEF). The ECEF is a
conventional 3D right-handed system. The fixation of the ECEF coordinate system (the origin
with respect to the earth) is determined by the so-called geodetic datum. For example, the
WGS84 is such a datum that is used for NAVSTAR GPS. The WGS84 models the earth as
an ellipsoid, and the origin of the ECEF coordinate frame in WGS84 is the earth’s center of
mass. As shown in Figure 2.30b, the z-axis faces northward, while the x and y axes are in the
equator plane. The x-axis faces to 0◦ longitude to the prime meridian, and the y-axis faces
towards 90◦E longitude. The GNSS receiver provides the position in WGS84 by longitude,
latitude, and altitude coordinates (spherical coordinates) as shown in Figure 2.30b. Note that
the altitude is referenced in the WGS84 earth ellipsoid. However, the building map we want to
localize the vehicle is defined in the so-called Universal Transverse Mercator (UTM) coordinate
system. In contrast to WGS84, which has its origin in the center of mass of the earth, the
UTM coordinate system is a planar projected coordinate system defined on the surface of the
earth as shown in Figure 2.30b. To obtain such a tangential coordinate system and minimize
the projection’s approximation error, the earth is divided into 60 UTM zones with different
origins for the Cartesian UTM coordinate system. There are two possibilities to describe the
orientation of the UTM coordinate system for a zone on the earth’s surface: The East-North-Up
(ENU) defines the x-axis to be oriented to the east. In contrast, the y-axis faces to the north,
and the z-axis defines the height as illustrated in Figure 2.30b. An alternative orientation is
the North-East-Down (NED) convention which we mention here only for completeness. To
transform from the global position described in WGS84 to the UTM coordinate system in ENU
convention, we utilize the Proj4 library [65] that performs the projection. [66, 67]

Since GNSS signals are sensitive to external effects, the position can be error-prone. As
the signal passes a long distance through multiple atmospheric layers, the signal is refracted
on the phase transition of different layers. Although the refraction can be compensated in
the positioning, the refraction model can only approximate the complex dynamic behavior of
atmospheric layers [68]. As this atmospheric effect cannot be fully eliminated with a single
receiver, the error needs to be considered as further uncertainty in the positioning. Another
problem of GNSS is the multipath effect: The transmitted GNSS signal may not always reach
the receiver directly. If the receiver is placed close to large buildings or other objects, the signal
may be reflected on the surface of the objects and may reach the receiver indirectly. Due to the
reflection, the signal travels a longer distance, corrupting the position estimation. Especially
in urban regions, the multipath effect may severely corrupt the position estimate [68]. This
work aims to cope with the large uncertainty the GNSS positioning provides and improve the
uncertain position with a local LiDAR sensor to building map association.

2.4 Building Maps

In this work, we introduce a novel building map-based localization pipeline. An efficient
representation of the building is necessary to perform the localization in the building map. In
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(a) LOD2 City Model. (b) OSM inflated to 3D.

Figure 2.31: The CityGML LOD2 model is shown in Figure 2.31a and the 3D inflated OSM
building map is shown in Figure 2.31b

the scope of this work, we use the CityGML Level Of Detail 2 (LOD2) city model [69] and
OpenStreetMap (OSM) [70]. While the LOD2 city model is only available for dedicated cities,
OSM provides worldwide geospatial data.

A portion of the LOD2 city model of Hanover is shown in Figure 2.31a. The generalized 3D
model of the buildings is based on cadastral information and data from airborne laser scanning.
Only dedicated cities provide such publicly available building maps. For the two author-collected
datasets recorded in Hanover, the LOD2 maps are available and officially maintained and
distributed by the city government’s planning and urban development department. The main
advantage of the LOD2 city model is its precision since airborne laser scanning provides highly
accurate data. Nonetheless, the LOD2 model generalizes complex facade shapes to simple
planes, introducing generalization errors in the building map. Since also cadastral data is
considered within the LOD2 models, the uncertainty is comparatively small, with standard
deviations between 2 to 10 cm. The LOD2 map also provides generalized roof shapes as
shown in Figure 2.31a. However, in the scope of this work, we assume the vehicle to move on
the streets so that the roofs are generally not captured by the sensors and therefore do not
contribute to the localization.

In contrast to the LOD2 model, OSM is a publicly maintained map where everyone can
contribute to the map. Consequently, the OSM database provides maps worldwide and combines
different information like street names, building numbers, and restaurant locations. Although
the maps provide rich environmental information, OSM only provides 2D building footprints.
However, for some buildings, the height information is also available. Figure 2.31b shows a
3D inflated OSM building map of the same region as in Figure 2.31a. Note that the roofs are
visualized flat since no information on the roof shape is available in OSM.

One of the main problems with OSM data is its reliability. Although the OSM database is
frequently updated and corrected, different contributors are equipped with different measuring
instruments with different accuracies. As a result, generally, it is not possible to quantify the
uncertainty of the map. However, we found that we could reliably bound the maximal error
motivating the use of interval-based approaches for the maps we used for the different datasets.

Since neither the LOD2 nor OSM provides information on the ground terrain, the building
map-based localization cannot constrain the elevation of the vehicle. Furthermore, to ensure
the global applicability of our approach by maintaining compatibility with OSM that only



2.4. Building Maps 57

(a) All walls available in the building maps. (b) Only visible walls are considered in queries.

Figure 2.32: The building footprints also contain hidden walls between directly connected
buildings, as shown in Figure 2.32a. We only consider outer walls for map queries,
which are visible as shown in Figure 2.32b.

provides 2D maps, we perform the localization in 2D. We only use the building footprints
illustrated in Figure 2.32a.

The footprint of buildings also contains hidden walls that the sensors cannot see. Such hidden
walls are, for instance, between connected buildings within a series of buildings. Especially in
urban environments, such dense building structures are ubiquitous, as shown in Figure 2.32a.
As we are only interested in the visible walls, we only consider the outer building walls in a
map query. The footprint submap that only contains the visible walls is shown in Figure 2.32b.

Consequently, we assume a map consisting of building footprints with uncertainties for which
we can give an upper and lower bound. A building is modeled by multiple facades where each
facade forms a line segment in the map and connects the corner points of a building. That
means each building is represented by a closed polygon in the map, defined by a series of corner
points. A line segment is defined by a pair of building corner points Ma1 and Ma2 described in
the map frame M as visualized in Figure 2.34. We further represent the line by its implicit
form

nTM · Ma − dM =
(
cos(αM) sin(αM)

)
·
(
Max
May

)
− dM = 0. (2.73)

The orientation of the facade is described by the angle αM , while the distance of the line to the
origin of M is defined by dM as shown in Figure 2.33a. As we assume interval uncertainty for
the facades, each corner point inflates to a box, and the line parameters also inflate to intervals.
Consequently, the i-th facade in the map is fully described by Fi = {[Ma1], [Ma2], [αM ], [dM ]}.
To ensure efficient map queries like radius or nearest neighbor searches, we employ an additional
KD-Tree representation of the building footprint map. Since the KD-Tree organizes a set of
points for efficient search, we need to represent the building map by a set of points. Therefore,
we homogeneously subsample points from the 2D projected facades, taking the start and
end-points into account as illustrated in Figure 2.33b. Since the map queries are performed
from local measurements provided by the sensors, we only represent the outer visible buildings
walls, omitting hidden walls, in the KD-Tree representation. Further, for each point, we also
store the information to which facade it belongs. During the radius search, points near the
search point are selected. As each point is associated with the corresponding facade, we
determine the facades associated with the points in the vicinity.
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Ma1
Ma2

M

dM

αM

(a) Visualization of the facade parameters.

(b) Exemplary sampling points to build the KD-
Tree for efficient map queries. For each sam-
pling point, we store the association to the
original facade in the map.

Figure 2.33: Exemplary map to illustrate the facade parameters (Figure 2.33a) and the sampling
of points for the KD-Tree (Figure 2.33b).

Figure 2.34: The convex polygon hull defines the border of the map. Black-filled polygons
visualize the buildings. The map corresponds to the evaluation dataset KITTI
0018.

Although the building map can be arbitrarily large, our localization pipeline relies on closed
building maps. As shown in Figure 2.34, we choose the convex polygon hull as the map’s
border. We assume the vehicle is only operated in the closed region inside the map.

The OSM and LOD2 city model is defined in UTM. Since we only use datasets acquired
in Germany, we stick to the 32N zone. Nonetheless, the corner points of the buildings have
large coordinate values since the origin of the 32N zone is several 100 km away. That is why
we define a local coordinate system with the same orientation as the UTM frame but only
offset in translation to a nearby point. This point defines the origin of our map frame M . The
localization is performed in M .



3 State of the Art

Robot localization has been researched for decades, and many approaches have been proposed.
The goal of this chapter is to provide a summary of the historical development of robot
localization algorithms. Since in the HyPaSCoRe Localization a hybrid interval-probabilistic
visual odometry module utilizing a SLAM-graph is introduced, we also provide for the interested
reader State of the Art visual odometry and SLAM approaches in the appendix Chapter B.

Three types of robot localization problems are distinguished in the literature – namely robot
tracking, global localization, and kidnapped robot problem. Robot tracking assumes the robot’s
initial pose to be known. However, this information can be corrupted by noise and uncertainties.
In contrast to the global localization problem, the initial pose uncertainty is rather small. Hence,
the tracking problem is local since the uncertainty is small and the initial estimate is close to
the correct pose.

Unfortunately, this initial information is not always well known. Especially in urban canyons,
global positioning systems may provide very inaccurate pose estimates due to occlusions and/or
multi-path effects. In the worst case, no global information on the robot’s initial pose is
available. While tracking approaches rely on the assumption that the pose error is small, for the
global localization problem, this assumption is not always valid, as the initial pose uncertainty
is rather large.

The kidnapped robot problem is a variant of global localization, where the robot can get
kidnapped and moved to another location during the operation. In the scope of this work, we
only focus on robot tracking and global localization, as those types of problems are the most
relevant ones in the context of autonomous driving. In the literature, a large variety of different
approaches have been suggested to those types of problems. The approaches differ regarding
the map, the sensors used, and the uncertainty representation of the involved variables. We
introduce and discuss relevant State of the Art probabilistic, interval-based, and hybrid robot
localization approaches in the following.

3.1 Probabilistic Approaches

Probabilistic approaches model the observations and states by probabilities. Probabilistic
localization algorithms are variants of Bayes filters. The application of Bayes filters to the
localization problem is called Markov localization. Markov localization approaches mainly differ
concerning the underlying state space representation [71, 72]. While the Extended Kalman
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Filter (EKF) represents the state space by the first and second moment of the belief, grid-based
techniques apply histogram filters. The most prominent Monte Carlo Localization applies the
particle filter approach to solve the localization problem. Maximum Likelihood Estimation
(MLE) approaches have recently gained more popularity due to mature numerical optimization
techniques. The Gaussian assumption enables the formulation of the MLE approach as a
least-squares problem that robust optimization techniques can solve [23, 29].

3.1.1 Extended Kalman Filter

The EKF is one of the most classical probabilistic state estimation approaches. Leonard and
Durrant-Whyte present in [73] one of the first applications of the EKF to the localization
problem. The authors first match the locally observed geometric beacons to the beacons on the
map. Utilizing the matches, the authors determine the robot’s pose on the map with an EKF
that models the pose as the state parameters. The prediction step uses the control input of the
robot. The locally observed beacons are extracted from the sonar data to perform the update
step. As the authors assume that to accurately know the robot’s initial pose, the matching of
the local sensor data to the map beacons boils down to the nearest-neighbor association. By
applying the EKF for each iteration step, the authors successfully track the robot in the simple
artificial map.
Iocchi et al. [74] extend the EKF-based tracking to line-like and circular structures in the
environment. Therefore, the authors introduce a Hough Transformation [75], aggregating the
locally measured point into the Hough space. The sets of points that form line-like structures
generate local maxima in the Hough space. The map features are also transformed into the
Hough space which means lines in the map become points in the parameter space. As the
authors assume to know the initial pose, the local maxima are closely located to the feature
points in the Hough space. Hence, the authors can match the local data to the map features
by employing a simple nearest-neighbor association. Using the matches, the authors correct
the predicted robot pose in the EKF.
Teslic et al. [76] use the EKF to localize a four-wheeled mobile robot equipped with encoders for
the wheel and a 2D LiDAR. The authors assume the robot moves in a structured environment
with well-defined and mapped line-like walls. In the prediction step, the pose estimate
is determined by simulating the robot’s kinematic model. The pose is then corrected by
minimizing the difference between the local and global line segments. Local line segments
are matched to the global map lines in a nearest-neighbor fashion. Hoang et al. [77] present
the EKF-based localization with additional sensors such as a compass and an omni-directional
camera. Like the classical EKF approach, the authors use wheel encoders to predict the robot’s
pose. In the correction step, the authors improve the state estimate by fusing the compass data
and omni-directional camera images into the computations. While the compass improves the
orientation estimate of the robot, the authors extract an artificially placed red-colored landmark
in the arena that is tracked in the image. Based on where the red landmark is detected in the
omni-directional image, the orientation of the robot is corrected.
All localization approaches that were presented are only applicable to the robot tracking
problem. Generally, linearized Gaussian techniques mainly work well if the uncertainty of
the initial estimate is small enough. That is why the tracking approaches are well modeled
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Figure 3.1: Pose candidates in a building map-based localization. The blue dots mark the valid
and the red invalid candidates. [78]

by, for instance, unimodal probability distributions. Regarding global localization, unimodal
distributions are usually inappropriate. As a result, classical EKF approaches are not generally
suitable for the global localization problem. However, there exist extensions of the EKF that
represent a belief by multiple Gaussians, like the Multi-Hypothesis Tracking (MHT), that can
be employed to solve the global localization problem.

Landsiedel et al. [78] present an MHT global localization approach that performs chamfer
matching between the locally seen building outlines and corresponding map sections. As
input data, the authors use a LiDAR scanner to extract planes projected to two-dimensional
lines. Matches between the building edges from the sensor data and the 2D building map are
computed by a template matching procedure. Appropriate candidate poses are selected and
refined by a chamfer matching method similar to [79]. Figure 3.1 depicts the exemplary result
of pose candidates. The approach can become very heavy in computation, depending on the
number of tracked candidates.

3.1.2 Grid-based Localization

The grid-based localization is a metric variant of Markov localization. Moravec and Elfes
initiated the idea to use a certainty grid map for obstacle representation [80]. However, Burgard
et al. present in [81] one of the first approaches that use the same grid map representation for
localization. Therefore, the authors invert Elfes’ and Moravec’s idea by constructing a position
probability grid where each grid represents the posterior probability that the grid includes the
robot’s current position. Similar to the EKF-based localization, the grid-based approach also
consists of two steps: First, the probability grid is shifted according to the robot’s odometry
measurements, taking dead-reckoning errors into account. Second, for each cell in the grid, the
position probability is determined by combining the likelihood of the local reading – supposed
the cell is the robot’s current position in the map – with the likelihood already stored in the
cell.
Fox et al. extend [81] in [82] by improving the robustness of the approach for highly dynamic and
densely crowded environments. Therefore the authors augment the grid-based localization with
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Robot position

(a) Initial particle set.

Robot position

(b) After 2m robot motion.

Robot position

(c) After moving into the room.

Figure 3.2: Global localization of a mobile robot using MCL with 10000 particles. The images
are adapted from [85]. The further the vehicle moves, the denser the particles
converge to the correct vehicle position.

a filtering technique that updates the position probability density using only those measurements
with high likelihood produced by known objects in the map. The presented approach was
successfully applied to tour-guide robots in the Deutsches Museum Bonn and the National
Museum of American History.
The grid-based localization is capable of solving the tracking and global localization problem.
The major drawback is the computational burden and memory consumption. While a high
resolution of the grid leads to a higher accuracy of the localization estimate, the memory
consumption and the computation time rise. A trade-off between accuracy and runtime is
necessary.

3.1.3 Monte Carlo Localization

The MCL was first presented by Dellaert et al. in [83] and represents an important milestone
in probabilistic robotics. As a classical filtering approach, the particle filter has a prediction
phase, in which the motion model is applied to each particle, and an update phase, in which
the particles are weighted based on the likelihood of the pose given the local measurements and
resampled from the weighted set. While Dellaert et al. present the basic version of the MCL,
in the following years, many different variants and extensions have been published. We only
mention a few selected variations of the MCL approach. For instance, Fox presents in [84] an
extension of the basic MCL algorithm that adapts the number of the drawn particles based on
the approximation error. The approximation error is modeled by the Kullberg-Leibler distance
(KLD). If the KLD measure is small, the particles are concentrated on a small part of the state
space, and the number of particles can be reduced in the MCL approach. Otherwise, a large
sample set is necessary if the state uncertainty is high. Thrun et al. [85] further robustify the
MCL to a Mixture-MCL by integrating two complementary ways of generating samples in the
estimation. Figure 3.2 illustrates the basic principle of the MCL.
Since the MCL represents a powerful tool, also recent works integrate the particle filter into
their localization procedure. Hentschel and Wagner [86] use MCL to localize their autonomous
vehicle in an outdoor environment using OpenStreetMap (OSM) data. The authors use MCL
only for tracking since they receive global localization information from GPS data. While
the GPS position fix is Kalman filtered with the vehicle’s wheel odometry and IMU data, the
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resulting filtered pose is integrated into the MCL by adding a small number of samples drawn
from a Gaussian distribution centered at the Kalman Filter pose. The authors demonstrate
they can navigate an autonomous vehicle using the localization estimate.
Using visual odometry, Floros et al. [87] localize a robot on the road network. Using a local
history of previous poses, the trajectory is matched to the road graph by applying chamfer
matching. The localization scheme is structured in an MCL framework where each particle is
weighted based on the matching result of the local trajectory to the road graph. The approach
needs a rough initial GPS position.
Ruchti et al. [88] classify laser scans into the road and non-road measurements. The
classification is used in a corresponding observation model to weight the particles of an MCL
based on OSM data.
Yan et al. [89] globally localize a robot on OSM data using a 4-bit semantic descriptor. The
descriptor encodes information about the visibility of road intersections and building gaps.
Based on OSM data, the authors first condense the OSM data to a set of 4-bit descriptors
by computing the descriptor for all potential positions and orientations in the map. Further,
the authors perform a semantic segmentation for each 3D LiDAR scan and compute a local
descriptor. To localize the vehicle, the authors combine the expected and real observation
represented by descriptors to define the observation model for the MCL. Each particle is
weighted based on the hamming distance of the map descriptor and the local descriptor.
Chen et al. [90] perform global localization in a self-built hybrid map that consists of visual
keyframes and an occupancy map using camera data and LiDAR. A global image descriptor
matching is applied to search the referenced keyframes according to the current visual observation
and is used as the observation model of an MCL approach. After global localization with the
image descriptor matching, LiDAR-based tracking is maintained.
Chen et al. [91] perform MCL using range images generated from real LiDAR scans and
synthetic renderings of a mesh map. The difference between the range images is used to
formulate the observation model for the MCL. The authors show that a high amount of
particles is necessary to localize the vehicle successfully. That is why the authors report high
computation time before convergence.
Zhang et al. [92] augment the MCL approach by a particle swarm optimization. In contrast to
the classical MCL approach, the authors suggest optimizing the particles with a least-squares
approach. Therefore, a fitness value for each particle needs to be determined, increasing
the computational burden. However, due to the optimization step, the authors report that
fewer particles are necessary to let the estimation converge to the correct solution. While in
conventional MCL methods, each particle individually tracks the pose as the robot progresses, in
the proposed approach, particles in each sub-swarm track the robot’s pose in the corresponding
hypothesis. Clusters of the most likely particles generate sub-swarms. When a new observation
is available, particles in a sub-swarm are optimized to move towards the maximal likely region.
By performing normalization and weighted resampling as in the classical MCL, unlikely pose
hypotheses and sub-swarms are eliminated gradually from the global localization results, and
the remaining particles converge to the correct pose. This approach combines MCL with
techniques of MLE approaches that are introduced in the next Subsection 3.1.4.
Recent works, as presented in [93] and [94], use learned observation models to perform particle
weighting within the MCL framework. Chen et al. propose a neural network-based observations
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model that computes the expected overlap of two 3D LiDAR scans. The learned model predicts
the overlap and the yaw angle offset between the current sensor reading and the virtual frame
generated from a pre-built map. The predicted overlap score is integrated into the particle
weighting in the MCL framework. Zhou et al. combine the MCL with matching ground-level
images to 2D cartographic maps such as OSM provides. The matching is based on a learned
embedded space representation linking images and map tiles. The matching score is piped into
the MCL as a weighting mechanism of particles.
The core of MCL-based approaches is the observation model that determines the weighting
mechanism of the particles. Note that the mentioned MCL approaches differ in the observation
model while the rest of the particle filter algorithm stays identical. While for instance, Hentschel
et al. [86] use the classical beam-end model for the observation model, Yan et al. [89] propose
an observation model based on a 4-bit semantic descriptor. Machine learning-based observation
models are presented in [93, 94]. The MCL is one of the most popular localization algorithms
in the robotics community due to two facts: Implementing the MCL algorithm is comparatively
easy, and, as it can approximate nearly any distribution, it is also one of the most potent ones
[18]. Hence, the particle filter approach applies well to the tracking and global localization
problem. However, one of the significant problems of MCL approaches is that the quality of the
localization solution heavily depends on the number of particles. If the uncertainty is very large,
many samples may be required to cover the solution space. As a result, updating and correcting
a large number of particles leads to more computation. That also means that a trade-off
between accuracy, convergence speed, and runtime has to be made for the MCL, similar to
grid localization. Another problem the MCL has to cope with is the wrong convergence of the
method caused by an unfortunate sequence of random samples [95]. As a consequence, MCL
approaches lack integrity, and often results are not repeatable, as the sampling is random.

3.1.4 Maximum Likelihood Estimation

Maximum Likelihood Estimation (MLE) approaches seek to find the most likely solution within
the solution space. Therefore, the probability distribution within the solution space needs to be
determined. This probability distribution is generally defined by the probability distributions of
the local measurements, those of the given map, and the function that maps the measurements
to the solution space. The probability distribution of the set of poses is determined by
propagating the probabilities from the measurement space (the local measurements and the
map) to the solution space (the pose of the robot). Unfortunately, this propagation step is
difficult for arbitrary probability distributions and non-linear mapping functions. To cope with
that problem, different approaches and assumptions have been introduced in the literature,
briefly summarized in the following.
In [96], Olson presents a maximum likelihood map matching method, where the robot location
is determined by the pose that maximizes the agreement between the local map retrieved by
range data and the given map. Therefore, the author introduces a search strategy to locate the
most likely pose. First, an arbitrary nominal position of the robot is considered an initial position
that provides a likelihood to compare. Then, the pose space is divided into rectilinear cells.
For each cell, the likelihood of the pose is determined, and only good cells are further analyzed.
The likelihood of a pose is determined by a map similarity measure based on the locally seen
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features and features in the map. The branch-and-bound strategy determines the most likely
pose for a given search space. The presented method was successfully applied to the Sojourner
Mars rover. The main advantage of this method is that an arbitrary probability distribution
in the solutions space is well represented by the cells. This approach is very similar to grid
localization as it maintains subparts of probability histograms. However, on the downside, the
branch-and-bound search algorithm leads to a high computational burden depending on the
defined search space.

MLE approaches dealing with arbitrary probability distributions must overcome many hurdles,
often leading to a high computational burden. To avoid this problem, a very typical probabilistic
prerequisite in the literature has proven to be an elegant solution: When all major measurement
disturbances are eliminated – that means if there are no systematic errors in the measurements
– the remaining errors are formed from many small error sources. According to the Central Limit
Theorem, the probability distribution of the sum of N small independent random variables
tends to the normal distribution when N increases. Hence, the Gaussian assumption can be a
good approximation for many independent measurements without systematic errors. Assuming
a normal distribution for all the measurement errors, it is mathematically shown in [10] that the
MLE becomes a least-squares method. This is indeed good news for probabilistic approaches,
as there exist effective and robust least-squares optimization methods [23, 29, 97] that can be
employed to solve the MLE formulation of the localization problem.
One of the most popular scan-matching – or more generally speaking scan-registration – methods
is the Iterative Closest Points (ICP) algorithm [98] that exploits the Gaussian assumption and
formulates the matching problem as a least-squares problem. The registration method can also
localize the robot in a given environment, as presented in [99]. Different variants of the ICP
algorithm, such as [100–102], mainly differ in the cost function that is minimized. Nevertheless,
the optimization problem is always formulated as a least-squares problem so that standard
optimizers can be used.
Vysotska and Stachniss [103] localize a robot with a LiDAR in building maps retrieved from
OSM data. The authors extend a standard pose graph-based SLAM formulation by relating
dedicated nodes of the pose graph with existing building map information by including prior
information to the pose graph determined by the localization procedure. The authors first filter
the range scans to localize the robot in the building map so that most non-building objects are
removed. Then, the filtered scan is matched to the building map as illustrated in Figure 3.3.
Therefore, the authors apply the standard ICP algorithm. As a result, the proposed approach
cannot be applied to global localization since the ICP approach needs a good initial guess for
the pose. The authors initialize their method with a manually specified first pose or based on
GNSS data. By integrating the localization as prior information to the pose graph, the authors
show that they can stabilize the SLAM-graph and even detect inconsistencies in the building
maps.
Similar to [103], Boniardi et al. [104] propose a scan-to-map-matching method based on
Generalized ICP [100] to localize an indoor robot in architectural CAD drawings. In contrast
to [103] and [104], that integrate the localization information as prior data to the pose graph,
Wilbers et al. [105] directly integrate third-party maps as prior knowledge about the states of
the detected landmarks. The authors consider detections of pole-like objects as landmarks and
match them to an existing third-party map. To perform the matching, a variant of the ICP
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Figure 3.3: OSM data is used to align the robot’s trajectory. The left image shows the
pointcloud before and the left after alignment. [103]

approach is used to search for associations between landmark detections and mapped landmarks.
All ICP-based map association approaches are inherently local since ICP only performs a local
search. As a result, [103–105] can only solve the robot tracking problem as they have to rely
on a good initial pose estimate.
Ratz et al. [106] and Cho et al. [107] suggest probabilistic approaches using unique descriptors
for matching. While distinctive descriptors represent the map, local descriptors are computed
and matched to the map database similar to [89]. Ratz et al. present a global localization
algorithm that uses only a single 3D LiDAR scan at a time. First, the authors extract segments
for which descriptors are computed based on a neural network. The segment descriptors are
then matched against a database representing the map. After a geometric consistency test, a
least-squares problem is solved to obtain the 6 DOF pose. The authors do not comment on
multiple feasible solutions in the case of strong symmetries. Cho et al. generate a descriptor
database for an OSM map based on the distances to buildings from arbitrary locations at a
regular angle. Further, the authors determine a descriptor for the local LiDAR scan by taking
the shortest distances to building points from the current location at a regular angle into
account. The authors can localize the vehicle by comparing the local descriptor to the database.
However, the presented method only keeps track of the most likely solution. The approaches
work well if the parts of the map are well distinguishable. In the case of strong symmetries, the
methods do not perform well, as multiple localization hypotheses are not tracked.

3.2 Interval-based Approaches

Interval-based approaches model the sensor and pose estimation uncertainties by intervals.
While probabilistic methods propagate probability distributions from the measurement space to
the state space, interval-based techniques perform the propagation utilizing interval arithmetic.
The philosophy of how the same localization problem is solved differs significantly. Probabilistic
approaches do not aim to enclose the correct solution. Instead, the goal is to determine the
probability distribution in the state space that provides the information of how likely a state
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represents the true state given the measurements. In contrast, interval-based approaches seek
to provide an enclosure represented by interval sets that guarantee to enclose the true solution
if and only if all assumptions are fulfilled. While probabilistic approaches are attracted by the
most likely solutions, interval methods seek to keep track of all feasible solutions by dismissing
infeasible parts.

Kieffer et al. [108] present one of the first interval-based static localization methods with
ultrasonic sensors for structured 2D indoor environments. The prior map consists of oriented
segments (walls) that describe the landmarks. The authors assume that within the mapped
environment, there are no other unmapped obstacles that the sonars can perceive and that
the vehicle must always be located within the map. Based on those assumptions, the authors
formulate localization tests that qualify a set of poses as feasible, infeasible, or undetermined.
The set of feasible poses for a given map and a given set of sonar readings is determined by
applying SIVIA: Starting with an initially large pose box, the set of poses is recursively divided
into subpavings individually tested by the localization tests. If the tests qualify a subpaving as
infeasible, this part of the solution will be omitted. It becomes part of the feasible solution set if
it is qualified as feasible. Otherwise, if the subpaving is apt to contain the feasible set of poses
partially, the subpaving is further bisected until the minimal interval width is reached. This
approach makes global localization possible, as multiple disconnected feasible solutions can
coexist in the estimation. However, the computation time for this testing-based SIVIA approach
is high, depending on the map size. The same authors extended their approach in [109] to
a tracking method, where they also incorporated the previous estimate and the odometry
data into the interval-based localization procedure. While initially, the same localization has
to be applied to localize on the map globally, the tracking problem is solved by an update
and correction procedure similar to the Kalman Filter architecture. In the update step, the
previous set of feasible poses is updated by the odometry data taking interval uncertainty into
account. Hence, the size of the interval estimates gets shifted and inflated. In the correction
step, the same SIVIA approach is applied. In [110, 111], concrete applications that use the
presented approach are shown. In [112], the authors extend the localization approach to a
robust method that can deal with a defined number of outliers by a q-relaxation. However, the
method can only cope with a small number of outliers. That means unmapped obstacles in
the environment will lead the technique to fail. Further, the proposed method only deals with
very few measurements and therefore is not well suited for laser scanners.

Gning and Bonnifait [113] present a localization approach that fuses dead-reckoning data
derived from wheel encoders and the angle of the driving wheel with differential GPS data.
The authors determine the vehicle’s displacement using the wheel encoders, driving wheel
orientation, and the motion model. Therefore, interval errors are estimated for the encoders
and are propagated to the displacement estimate by formulating the problem as a Constraint
Satisfaction Problem (CSP). The CSP is solved by utilizing contractors. This approach makes
the error propagation very fast but possibly more pessimistic than the SIVIA approach presented
in [108]. The GPS data is used to initialize the pose estimate. In [114, 115], the authors extend
the set of sensors with an additional gyro and compare their approach with an EKF approach.
The authors show that the interval-based approach is more pessimistic but provides consistent
estimates. The EKF does not guarantee that the estimated error ellipse encloses the correct
solution and occasionally loses track of the correct vehicle pose. Lambert et al. [116] further
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evaluate the odometers, gyro, and GPS-based localization with outdoor experiments with a car
equipped with embedded processors. The interval-based localization approach is processed in
real-time and is compared with a particle filter approach. The authors come to a very similar
conclusion, as stated in [114, 115] that the particle filter is more accurate but tends to diverge
in the case of biased GPS measurements. This cannot happen to the interval approach as long
as the error bounds are satisfied. Nonetheless, the authors only consider proprioceptive and
absolute measurements. Clérentin et al. [117] extend the proposed constraint propagation
approach to exteroceptive measurements. The robot has an omnidirectional vision system, a
2D LiDAR, and two odometers. The authors seek to localize the robot in a map with high-level
primitives like corners and edges in an indoor environment. Therefore, the authors first extract
locally seen primitives from the range data and the omnidirectional images. Then, in contrast
to [108], the authors explicitly associate the locally seen primitives to the mapped primitives
by taking the constellation into account. Each matching possibility leads to a new track
represented by a subpaving. If a matching turns out to be incorrect, the constraint propagation
approach will lead to an empty set for the pose estimate, and the track will be omitted. Hence,
only feasible matchings remain and are tracked.

Sliwka et al. [53, 118] propose a robust version of an interval-based localization approach
applying the image contractor. While the previously presented approaches assumed a structured
environment that can be modeled by line segments, the authors seek to localize an underwater
robot in an unstructured marina. As a result, the approximation of the environment with line
segments becomes inapplicable, so the authors propose a binary image representation of the
environment. While the marina walls are represented by ones in the regular image grid, non-wall
parts of the map are marked with zeros. An imaging sonar sensor provides the local data
used for localization on the map. For a given set of poses, the authors propagate each sonar
beam measurement to the map frame and contract each local measurement to the marina wall
applying the image contractor. In a back-propagation step, the contracted measurements lead
to the contraction of the robot pose estimate. However, the sonar readings may be corrupted
by outliers. That is why the authors use the q-relaxed intersection approach that excludes
inconsistent measurements from the contraction. The authors successfully apply the approach
to real data acquired in a Costa Brava marina. The main problem of the approach is that for
the q-relaxed intersection, the number of outliers needs to be determined. Unfortunately, this
information is not a priori available.

Langerwisch et al. [119] present an approach for localization in a structured indoor
environment using wheel odometry and a 2D LiDAR. The authors represent the map by
line segments defined by their start and end points similar to [109–111]. However, also the
uncertainty of the line segments is considered in the map representation. While the odometry
data is used for the prediction step, as previous works also did [112, 113, 117], the update
step takes the local 2D LiDAR measurements into account. Therefore, the authors subdivide
the initial pose estimate into subsets, representing the initial set by a subpaving. The local
measurements are transformed from the sensor frame to the map frame for each subset. Due
to the uncertainty of the pose subsets, the uncertainty of the local measurements gets further
inflated in the map frame. For each transformed measurement, the authors determine the hull
among the intersections of the measurement with map line segments. Hence, the transformed
measurements are contracted to that hull. The authors can propagate this information to



3.2. Interval-based Approaches 69

Figure 3.4: Experimental results of indoor interval-based localization. The estimated mean
trajectory is colored black, the green trajectory depicts pure wheel odometry, and
the interval boxes are painted blue for five situations. [119]

the pose by applying a forward-backward contractor. However, unmapped objects in the
environment and erroneous measurements may lead to outliers. The authors account for
that problem by introducing a q-relaxed intersection in the update step when applying the
forward-backward contractor similar to [53, 112]. Langerwisch et al. successfully apply the
tracking algorithm to an indoor robot that is operated in real-time as shown in Figure 3.4. On
the downside, the initial pose estimate must be reasonably small to make the computational
burden feasible. Further, the authors only account for a fixed number of outliers in the local
sensor data. If the number of outliers exceeds this limit, the pose estimate may become invalid
and is not guaranteed anymore.

Guyonneau et al. [120] combine the approaches presented in [53] and [119] to solve the
global localization problem in indoor environments. While the authors use the same grid-based
image-like representation of the map as presented in [53], the interval-based localization
procedure is very similar to [119]. Additionally, the authors compare the interval-based method
with a classical MCL approach. The authors report that the interval approach initially needs
more computation time than MCL. However, the computation times are comparable when the
domains are significantly reduced. On the one hand, the authors point out that MCL does not
provide deterministic results, so the MCL tends to converge to an incorrect solution for certain
runs. This does not happen with the interval approach, which – on the other hand – is more
pessimistic.

Desrochers et al. [121] perform global localization using a terrain model as a map and a
LiDAR. By robustly contracting the robot’s pose to the feasible and consistent portions in the
terrain model (cf. Figure 3.5) by taking the local LiDAR scans into account, the authors can
localize the robot without the necessity to move the platform. On the downside, the approach
is comparatively slow, and a good terrain model is necessary to obtain good results.

Kenmogne et al. [122] apply an interval-based localization approach to an unmanned aerial
vehicle (UAV). The UAV is equipped with a camera, IMU, and a barometer. In the environment,
mapped landmarks are placed that can be tracked by the camera. The authors localize the
vehicle by matching the captured landmarks in the images to the mapped landmarks. Therefore,
the authors exploit the Perspective-n-Point (PnP) constraints and build a forward-backward
contractor that contracts the pose taking the landmarks and the local observations in the
image into account. The contractor is applied in a SIVIA algorithm. The authors show that the
interval-based approach occasionally leads to empty sets caused by inconsistent measurements.
If such an event occurs, the authors perform a relocalization based on the seen landmarks. With
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(a) Robot equipped with a LiDAR. [121] (b) Terrain model. [121]

Figure 3.5: The terrain model is used to contract the feasible set of poses of the robot. The
images are adapted from [121].

this procedure, the authors report a lower localization error than a classical EKF-localization
approach, which is less robust concerning outliers.

The main problems interval-based localization approaches have are pessimism and rigid
outlier treatment. One way to deal with the pessimism is to apply a SIVIA approach that
performs more bisections. Unfortunately, this leads to a higher computational burden. Hence,
a trade-off between pessimism and computational effort is necessary. Regarding outliers, all
presented methods introduce q-relaxed intersection, which can identify at most q outliers. The
main problem of this robustification approach is that we need to know a priori the maximum
number of outliers. However, this cannot be known beforehand. That means selecting q is not
trivial and has a tremendous impact on the solution: If q is chosen too small, outliers will be
considered in the solution, and the estimated solution set is not guaranteed anymore – or even
becomes empty. Good and restrictive measurements may be omitted if q is chosen too high,
and the estimation can become overly pessimistic. Due to this dilemma, Jaulin introduces the
GOMNE algorithm [49, 121] that selects the minimal q for which the solution set is not empty.
However, this algorithm leads to two problems. First, the selected q does not guarantee that
all outliers can be detected. Hence, the solution set can still be corrupted by outliers. Second,
the iterative nature of GOMNE makes the approach costly in computation.

3.3 Hybrid Approaches

Hanebeck and Horn introduce in [123] a mixed stochastic and set-theoretic uncertainty model.
The authors describe a measurement error composed of two additive parts. On the one hand,
stochastic noise cannot be bounded, but its probability density is well described in most cases
by a normal distribution. On the other hand, measurements can be further corrupted by
systematic biases for which rigid bounds can be defined, but the distribution is unknown. By
defining the error by two additive terms, the authors derive an estimator containing classical
probabilistic and set-theoretic estimation concepts as border cases. The authors show that this
approach can be applied to localization problems in a simulation. On the one hand, the more
measurements of one state are acquired, the smaller the stochastic uncertainty term will get.
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Nonetheless, the set-theoretic uncertainty does not depend on the number of measurements.
It does not shrink, due to which the authors show that the estimation result always includes
the correct solution. However, the authors only present a simple scalar localization problem
along one axis.

Jaulin presents in [124] a probabilistic approach that uses classical set-membership localization
methods for state estimation. The method’s main idea is to provide a lower bound for the
probability that the robot is located in the set estimated by classical set-membership localization.
Hence, instead of defining the different uncertainties as an additive term as suggested in [123],
Jaulin proposes to provide a quality measure for the interval-based estimate with probabilistic
means. Therefore, Jaulin suggests exploiting the probability of the occurrence of an outlier.
The author shows, under the assumption that the occurrence of an outlier at a specific timestep
is independent of the past, that the probability of having exactly i inliers among m follows
the binomial law. Hence, this approach is compatible with the fact that although a q-relaxed
set-membership-based localization provides a feasible set of poses, there is still a non-zero
probability that the robot is not inside the estimated set. This is because the occurrence of
outliers is seen probabilistically, and accordingly, more than q outliers might occur – but with a
lower probability. As a result, Jaulin provides an interpretation of the q-relaxed set-membership-
based localization estimate in the context of probabilities and shows that both strategies of
modeling the error are compatible.

Nassreddine et al. [17] propose a hybrid state estimation approach that applies the Dempster-
Shafer theory. The core idea is to extend the interval representation of a set by subsets
with mass-functions that can be interpreted as probabilities similar to [124]. Hence, partial
information on the distribution of the measurements can be taken into account. Although the
authors demonstrate that the approach leads to less pessimistic results than pure interval-based
approaches, the proposed method is costly in computation since maintaining the mass-functions
for the subsets generates a computational overhead.

Ashokaraja at al. [125] present a hybrid localization approach that fuses the EKF with
an interval-based localization approach. The authors equipped the mobile robot with inertial
sensors, encoders, and ultrasonic range sensors. Since the EKF is only used to estimate the
vehicle’s pose using the inertial sensors data and the encoder data, the estimate provided by the
EKF suffers from biases and drift. The interval approach is used to correct this accumulating
error: In the interval approach, the authors employ a line segments map of the environment
and the ultrasonic range measurements as suggested in [109]. As a result, the interval approach
provides a set of feasible poses on the map, considering the local measurements. In contrast,
the EKF provides a pose estimate based on inertial and wheel encoder data. Two cases can
occur to perform the adaptive fusion mechanism of both estimates. If the interval-based
estimate encloses the EKF-based pose estimate, the EKF pose is qualified as valid. However, if
the EKF pose estimate is not inside the feasible set, a pose inside the feasible set is selected
that is geometrically closest to the invalid EKF estimate. Hence, the EKF estimate gets
corrected. The authors experimentally show that the adaptive fusion mechanism of both
approaches leads to lower estimation errors than the EKF-only estimation. Additionally, the
authors not only provide a feasible set, but this fusion mechanism also provides a point estimate
of the pose that can, for instance, be used for control algorithms. Nonetheless, the proposed
approach does not exploit the full potential of the individual methods: The EKF can take the
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ultrasonic measurements for the localization into account, which will reduce the drift. Also,
the interval-based method can be improved by including inertial and encoder data in the pose
estimation relating consecutive poses to each other, thereby reducing the pessimism.

Louédec and Jaulin [126] also propose to combine an interval-based filter with the EKF.
However, instead of applying the algorithms separately on each set of sensors and fusing the
estimate at a later point in the state estimation, the core idea presented in [126] is to use
the interval-based filter to narrow down the feasible set that provides potential points for the
linearization. In this approach, the interval method helps the EKF to find a proper linearization
point. As a result, the proposed Interval EKF (IEKF) will behave as a classical EKF as soon
as the state estimate is close to the correct solution. In contrast, when the estimate is far
from the correct solution, the IEKF will benefit from the global view of the set-membership
approach. The authors apply this approach to an underwater robot localization that can sense
its distance to beacons. The authors’ experimental results show that the EKF diverges if the
initial estimate is too far from the correct solution. By using the interval approach to provide
the EKF with the proper linearization points, the IEKF can converge to the correct solution
independent of the initial pose estimate.

Abdallah et al. [127] present a hybrid interval-probabilistic state estimation approach called
Box-Particle Filter (BPF). The main idea is to replace punctual states in particle filters with
boxes. Hence, instead of spreading point-valued particles, boxes are spread. This makes it
possible to significantly reduce the number of particles – since a box represents an infinite set
of point-valued particles – and to increase computational efficiency. To accomplish the BPF,
the processing steps of the particle filter need to be adapted to interval-based computations.
The prediction step can easily be adopted by applying inclusion functions to the propagation
equations. However, the weighting cannot be easily adapted to the boxes. While in the
classical particle filter the weight is determined based on the proximity between the real and
the predicted measurements given the predicted state, the BPF takes the box likelihood as a
measure of the weight. Therefore, the intersection between predicted and real measurements is
determined. The authors define the box likelihood as the ratio between the interval widths
of the intersected and predicted measurements. Hence, the larger the overlap between the
intersected and predicted measurement is, the higher the weight for this particular measurement.
As multiple measurements are associated with one box-particle, the product among all ratios
is defined as the box likelihood of the box-particle. Before resampling, the authors propose
contracting the box-particles to eliminate inconsistent parts. The same strategies used in
the classical particle filter can be applied to the weighted random resampling. The authors
apply the BPF to localization problems using GPS, gyro, and odometer data. While the gyro
and odometry data is used for state prediction, the GPS data is used for weighting. Wang
et al. extend in [128] the BPF to line features to perform localization with OSM building
footprints. The BPF is computationally more efficient than the classical particle filter but is
more pessimistic in the state estimation. The BPF also suffers from the particle depletion
problem as the classical particle filter due to the random resampling. Hence, the BPF may also
suffer from box-particle depletion.

In contrast to [127], Neuland et al. [11, 95, 129] propose to fuse the particle filter and the
set-membership approaches for localization tasks differently. While Abdallah et al. spread boxes
instead of particles, Neuland et al. spreads particles inside the feasible set of poses determined
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Figure 3.6: Evolution of the hybrid method using contractors that reduce the feasible set
combined with MCL. The black boxes represent the feasible set. The particles are
colored yellow to red depending on the weight, the blue dots are landmarks, and
the green dot is the average particle. [11]

by the set-membership approach. As a result, the authors propose a localization scheme that
consists of two steps. First, the initial pose estimate, which can be arbitrarily large, is narrowed
down to a feasible set that is consistent with the local measurements. Second, particles are
spread inside the feasible set, and the particle filter algorithm can be applied to refine the
pose estimate. Consequently, the interval-based approach helps the particle filter stick to the
feasible region, as shown in Figure 3.6. Therefore, in the first iteration of the particle filter, the
initial population of particles is only created inside the search space defined by the feasible set.
The particles are evaluated and discarded for subsequent iterations if they are located outside
the feasible set. For each discarded particle, a random particle is drawn inside the feasible set
and is added to the current population. The authors show that this approach leads to better
coverage of the uncertainty region since the interval-based method reduces the search space.
Further, wrong convergence can be detected as the interval approach guides the particle filter
to stick to the feasible solutions. The authors evaluate their approach only with simulated data.
While in [11], the authors extend the contractor-only approach for the interval-based method to
a SIVIA approach that provides tighter bounds on the feasible set, in [95], the authors further
robustify the interval approach with a q-relaxed version of SIVIA (RSIVIA). Further, in [95],
the authors introduce the global localization problem in simulation. However, experiments
with a real robot are not yet conducted with the proposed approach. Additionally, the authors
report high runtimes for the calculations, which makes their implementation inapplicable to
real-time applications.
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Figure 4.1: The visual odometry is the first module in the localization pipeline.

The first module in our HyPaSCoRe Localization pipeline is the visual odometry, as high-
lighted in the overview in Figure 4.1. The main goal of this chapter is to determine the vehicle’s
relative motion. Note that this module does not require prior maps since it solely uses local
sensor data to compute the relative movement. The close-up on the visual odometry module is
presented in Figure 4.2. As input data, this module uses stereo images and LiDAR data. Based
on the input data, visual odometry is performed by constructing a SLAM-graph and solving
the graph problem by applying classical least squares optimization and interval analysis in a
hybrid fashion. A SLAM-graph is illustrated on the right side of Figure 4.2. The trajectory
is represented by a sequence of pose nodes, visualized by black boxes, and landmarks are
represented by landmark nodes, visualized by green boxes. The connecting edges visualize the
observation constraints between the poses and landmarks.
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Figure 4.2: Visual odometry. Stereo images and LiDAR data are used to determine the relative
motion of the vehicle. Therefore, a SLAM-graph is constructed and solved.

This chapter is structured as follows: First, we will introduce the assumptions and notations
in the hybrid visual odometry approach in Section 4.1. Our visual odometry module consists of
two parts. The first part is the construction of the SLAM-graph based on the incoming data
stream introduced in Section 4.2. The core idea of constructing the SLAM-graph is to structure
the measurements to represent the links and dependencies between the involved variables. This
part, also called the front-end, performs its computations in real-time, directly evaluating and
inserting the local sensor data into the graph. The second part is evaluating the graph, which
we call the back-end. The back-end process runs parallel to the front-end but with a lower
processing frequency. The goal in the back-end is to estimate the vehicle poses and the landmark
locations. The central contribution of this chapter is the preselection of consistent landmarks
in the back-end for the interval-based visual odometry computation employing a probabilistic
windowed bundle adjustment. The back-end is presented in Section 4.3. We will conclude
the chapter by putting the visual odometry module in the HyPaSCoRe Localization context in
Section 4.4.

4.1 Task Description, Notation and Assumptions

The goal of this chapter is to determine the relative motion of the vehicle. The literature
review in Appendix B reveals that visual odometry methods that simultaneously build a local
map for pose estimation provide the most accurate results. We will stick to such an approach.
Nonetheless, as we are only interested in the vehicle’s relative motion, we do not incorporate
any loop closure refinements.

In the scope of this chapter, we use a stereo camera system and a LiDAR scanner. We assume
the stereo camera is calibrated, and the system provides stereo-rectified images. Furthermore,
we assume that all extrinsic calibration parameters are precisely known. The sensors provide
synchronous data. We also assume that the LiDAR data is motion-compensated.

Figure 4.3 shows the data stream we assume from the sensors on a timeline. Both images
and LiDAR scan are synchronously available at a specific time step t with a specified data rate.
We define a frame Ft as a collection of data synchronously acquired at time t. To each frame
Ft, we associate a pose that we represent in the SLAM-graph by a pose node. An exemplary
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Figure 4.3: The data stream, frames, keyframes, and windows on a timeline. A window Ws→e
is always defined as the set of frames between the times s and e for which keyframes
Ks and Ke are inserted. A frame Ft describes the synchronized data collection
acquired at time t.

SLAM-graph is shown in Figure 4.4. Pose nodes are illustrated in Figure 4.4 by circular nodes
with vehicle symbols.

We obtain landmarks by detecting image features in the stereo images and by reconstructing
the 3D location of the feature incorporating the LiDAR depth information. Hence, we define
an observation as the pixel points in a frame’s left and right image, while a landmark is the
corresponding 3D location.

We define a pixel location in the left image of the frame Ft by Il,tp. While the bold p
denotes that the variable represents a general location, the top left index Il,t defines in which
coordinate frame this location is described. In this case, the coordinate frame is an image
coordinate frame I that spans the 2D image space. The indices l and t encode that the left
image corresponding to Ft at time t is considered. Hence, if we want to describe the location
of a pixel in the right image at time t, we have to exchange the top left index by Ir,t.

Similarly, landmark locations are defined by Cl,tpi. The top left index indicates that the
location is defined in the coordinate frame Cl,t, which is the left camera frame at time t. The
left camera frame is a 3D coordinate frame, and the location has three parameters. If we want
to describe a point in the LiDAR frame at time t, we will exchange the top left index by Lt.
Additional index notations can be found in the symbol list.

Landmarks are also represented by nodes in the SLAM-graph. In Figure 4.4, landmark nodes
are visualized by stars. Pose nodes and landmark nodes are connected via observation edges.
In our case, those edges encode the information on the pixel location in the images of the
corresponding frame. To determine the vehicle’s relative motion, observing the same landmarks
across multiple frames is vital. Therefore, we track features in the images to obtain landmark
associations across multiple frames. We do not detect new landmarks in each frame Ft.
However, if we enter new scenes in the environment, we will have to detect new landmarks that
we can track subsequently, as explained in Subsection 4.2.1. Therefore we introduce so-called
keyframes Kt, which are special frames at which we detect new landmarks. Note that for normal
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frames Ft, landmarks are only tracked and never newly detected. As a consequence, on Ft,
only landmarks are tracked that were detected in the previous keyframe Ks that was inserted at
time s < t. Another consequence of this architecture is, that all frames Ft with t ∈ {s, ..., e}
for s, e ∈ N and s < e between two keyframes Ks and Ke always track the same landmarks. In
the following, we will call this connected sequence of frames Ft with t ∈ {s, ..., e} that starts
and ends with keyframes as a window Ws→e. In the bundle adjustment community, the window
is also called a batch. We will use both terms interchangeably. Figure 4.3 visualizes the frames,
keyframes, and a window on the timeline. In the exemplary SLAM-graph in Figure 4.4, we
visualize the windows by coloring the corresponding nodes accordingly.

The presented approach represents the vehicle’s pose by intervals. As we only determine the
relative motion of the vehicle, we only store for each frame Ft the relative motion Cl,t−1TCl,t ,
which describes the transformation between the previous frame Ft−1 and the currently considered
frame Ft described in the left camera frame rigidly mounted on the vehicle. Internally, we
represent the relative transformation by intervals. That means the translation [Cl,t−1tCl,t ]
consists of three intervals. The rotation described by Euler angles in the RPY-convention
[Cl,t−1ξCl,t ] also consists of three intervals. The goal is to determine the set of six intervals by
propagating the observation uncertainty of the landmarks in the stereo images augmented by
the LiDAR depth information.

4.2 Front-End – Build the SLAM-Graph

The objective of the front-end is to construct the SLAM-graph. We use the SLAM-graph as a
data structure that conveniently stores the dependencies and links between the variables. In
our case, we have two types of variable sets: pose variables and landmark variables. Since we
use natural visual features as landmarks, we first need to detect distinct and well track-able
features in the stereo-camera system as described in Subsection 4.2.1. After that, using the
tracked features in the left and right image, we perform a stereo reconstruction by extending
the epipolar geometry to interval analysis (see Subsection 4.2.2). As a result, we obtain boxes
describing the outer bound of the seen feature. To reduce the uncertainty of the feature boxes,
we further incorporate the LiDAR-data as described in Subsection 4.2.3 that provides accurate
range data. As we track visual features frame by frame, we also compute in real-time the
dead-reckoning as explained in Subsection 4.2.4 to obtain an initialization for the windowed
bundle adjustment described in the next section. Note that all processing steps are performed
in real-time. An exemplary SLAM-graph is illustrated in Figure 4.4.

4.2.1 Image Feature Tracking

Initially, no features are tracked when we start the visual odometry pipeline. Hence, the very
first frame has to be defined as a keyframe, and we need to detect new features. As described
in the State of the Art summary in Chapter B, the computer vision community provides many
different types of features. However, our application needs features that can be detected and
compared as fast as possible with less computational effort. Therefore, we have decided to use
Oriented FAST and Rotated BRIEF (ORB) features [130], which have proven to be a good
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Figure 4.4: SLAM-Graph. The vehicle poses at different points in time are represented by
circular pose nodes along the dotted trajectory that we seek to determine. Pose
nodes correspond to frames. Keyframes are highlighted with a black border.
Landmarks are represented by star-shaped nodes connected to the pose nodes via
observation edges. Nodes that belong to a specific window are accordingly color
coded. In total, three windows are illustrated.

choice according to [26, 131–134] for relative motion estimation. Since we use a calibrated
stereo-camera system that provides two stereo-rectified images, we initially detect ORB-features
in the left and right images independently. A good distribution of the features in the image is
vital for well-constrained pose estimation. Therefore, we perform feature detection in predefined
tiles of the image as proposed in [134]. As shown in Figure 4.5, the image plane is divided into
multiple tiles, and the ORB-feature detection is performed on each.

Our goal is to detect features commonly observed in the left and right images to triangulate
the feature location. Therefore, we match the left and right features. Since we have stereo-
rectified images, the epipolar lines in the images are horizontal (see Part 2.3.1.2). As a result,
corresponding features in the left and right images need to be located on the same image row.
However, due to observation uncertainties and imperfect calibration, the detected features
may not perfectly meet the epipolar constraint. Hence, we consider an uncertainty region
above and below the image row. Depending on the feature’s detection scale, we adapt the
uncertainty region that defines a stripe in which we search for a given feature. Note that we
consider the left image features to query in the right image for features located inside the
search region defined by the stripe around the respective image row. We compare each left
image feature with all potential matches in the right image within the search region stripe. The
feature similarity is determined by the Hamming distance between the binary-oriented BRIEF
descriptors [130]. If the match with the lowest Hamming distance is lower than a predefined
threshold, the respective left and right features are seen as a correctly matched feature pair.
Figure 4.6 shows a frame’s left and right images with matched features. Note that each
feature can be matched independently, making parallel processing possible. We use OpenMP
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Figure 4.5: ORB-feature detection and image tiles. The detected features are colored. The
image plane is divided into tiles with identical sizes in which features are detected.
White lines visualize the border of the tiles. This enables to detect features that
are well distributed on the image plane.

Figure 4.6: Feature matching in left and right images. Detected and tracked ORB-features
in the left and right images are matched based on the binary BRIEF descriptor.
Matched features are highlighted with the same color, and a connection line
indicates their correspondence. Since we use stereo-rectified image pairs, the
epipolar lines are horizontal. That is why the corresponding features in the left and
right images are on the same image row.

Figure 4.7: Initialization of the SLAM-graph with the first keyframe.
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Figure 4.8: Successfully tracked frames are inserted to the SLAM-graph.

[135] for multi-threaded processing. Figure 4.7 illustrates the initialization with the first frame
as a keyframe and the observed landmarks in the SLAM-graph.

If the feature tracking was initialized and features were detected in the previous frame,
we try to track the features in the images subsequently which is also known as registration
problem. To track features, we apply the Lucas-Kanade optical flow algorithm [136] for each
feature that was successfully matched in the previous frame Ft−1 in the left and right image.
The optical flow algorithm provides the pixel error on the tracking result for each feature. We
only consider features tracked in both images with an error lower than a defined threshold.
Furthermore, if the tracked features in the left and right image satisfy the epipolar constraint
and the classically reconstructed feature location (cf. Part 2.3.1.2) has positive depth, we
consider the feature to be a correctly tracked landmark observation. As a result, if enough
features are tracked, those frames Ft that were successfully tracked are inserted into the graph
as pose nodes connected to the respective landmark nodes as illustrated in Figure 4.8.

However, when the number of tracked features drops – since the vehicle moved, for instance,
into parts of the scene that were not captured before or features are not well tracked, new
features need to be detected. As defined above, keyframes are those frames in which we need
to detect new features. Hence, a keyframe Kt provides new landmarks and observations while
the regular frames Ft only provide new observations for landmarks that were already detected
in the last keyframe Ks for s < t.

If we need to insert a new keyframe, we must prevent re-detecting features in texture-rich
image regions. Therefore, we only perform detection on image tiles that contain too few
features. The decision in which tile new features should be detected is based on the left image
in our implementation. To decide when to insert a new keyframe – that means when we have
to detect new landmarks, we exploit the distribution of features in the left image again: For
each tile, we check how many features are tracked for a new frame. If a tile has more than
a defined threshold for the minimal number of features, the tile is qualified as good. If less
than 40 % of the tiles are good, new features are tracked, and the current frame is defined
as a keyframe Kt. Note that we only detect new features in those tiles that were qualified as
not good. As a result, very stable landmarks can be tracked for a long trajectory surviving
across multiple keyframes. Figure 4.9 illustrates the insertion of a keyframe. As the keyframe
introduces the end and start of windows, the keyframe node is colored with both window colors.
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Figure 4.9: Insertion of a keyframe into the SLAM-graph if not enough features are tracked.

The image feature tracking provides the information on which landmarks are seen from
the current frame Ft. We encode this information in a SLAM-graph structure that stores for
each frame Ft which landmark i was seen and the corresponding pixel positions Il,tpi and
Ir,tpi of the feature in the left and right image as observations. Furthermore, we compute the
3D location Cl,tpi of the landmark i described in the local left camera frame as an additional
component of the observation. The 3D reconstruction is explained in the following.

4.2.2 Interval-based Stereo Reconstruction

We only permit features consistently observed through the left and right cameras. Since
the stereo camera system is calibrated, we can apply the epipolar geometry to compute the
local feature position in the 3D scene described in the left camera frame. First, we introduce
the classical triangulation method that provides the intersection point that minimizes the
quadratic distance between the observation rays. After that, we will introduce the interval-
based counterpart implementing a feature-box contractor.

Let Il,tp =
(
xl yl

)T
be the pixel position of the feature in the left image and Ir,tp =(

xr yr
)T

the pixel position in the right image. Furthermore, we define the unknown 3D feature
position in the left camera frame as Cl,tp =

(
Xl Yl Zl

)T
. Since we obtain stereo-rectified

images captured by identical cameras, the intrinsic camera matrix K for both cameras is
identical:

K =


fx 0 cx
0 fy cy
0 0 1

 . (4.1)

The main advantage of using stereo-rectified images is the assumption of images synthetically
captured by perfectly parallel cameras that only have a translational displacement in the
horizontal direction, as explained in Part 2.3.1.2. As a consequence, the feature location
described in the right camera frame is Cr,tp =

(
Xl − b Yl Zl

)T
, where b is the stereo

base-length that measures the distance between the projection points of the left and right
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Figure 4.10: Feature location triangulation with least squares approach. The blue points
represent matched features Il,tp and Ir,tp in the images. The projection centers
are visualized by white dots in the center of the images. The observation rays
are colored blue. In this example, observation rays do not intersect. The least
squares approach provides the feature location Cl,tp that minimized the quadratic
distance between the observation rays.

camera. As a consequence, we can use the left and right camera projection equation to
formulate the linear equation system for triangulating Cl,tp



Il,tp
1

 · Zl = K · Cl,tpIr,tp
1

 · Zl = K · Cr,tp
. (4.2)

The equation system yields six equations. However, the homogeneous extension in K only
leads to four equations we can use to solve the system. As a consequence, we can reformulate
the equation system in matrix form

−1 0 xl−cx
fx

0 −1 yl−cy
fy

−1 0 xr−cx
fx

0 −1 yr−cy
fy

 · Cl,tp =


0
0
−b
0

 . (4.3)

Note that Cl,tp only has three unknown parameters, while we obtain four equations. Hence,
the linear equation system is overdetermined. We solve the equations system in the least
squares fashion by applying a column pivoting QR decomposition. Figure 4.10 visualizes the
result we obtain by solving (4.3): The reason for the overdetermination of the system is that
observation rays may not intersect. That is why we determine the point that minimizes the
quadratic distance between the observation rays as indicated in Figure 4.10.
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While we use the least squares reconstruction to validate if a feature match is consistent, as
explained in Subsection 4.2.1, the more interesting part is the interval feature location that
considers the observation uncertainties. Therefore we will design a contractor. Hence, let us
again consider (4.3) that provides the constraints on the feature box considering the local
image observations. Note that the last column of the left matrix has no zero entries. Since
this column corresponds to the depth coordinate Zl, the depth parameter substantially impacts
Xl and Yl. Furthermore, we can see in (4.3) that only the first and third rows determine Zl
due to the horizontal stereo structure indicated by the −b entry in the right vector. When we
extract the first and third equations from (4.3), we obtain−Xl + xl−cx

fx
Zl = 0

−Xl + xr−cx
fx

Zl = −b
. (4.4)

By substituting Xl in the first equation with the corresponding term obtained by the second,
we get the stereo-depth constraint

Zl = b · fx
xl − xr

. (4.5)

The equations in (4.4) do not only constrain Zl but also Xl. To obtain the constraints on Yl,
we must consider the second and fourth lines in (4.3). Similar to the Xl coordinate, we get

−Yl + yl−cy
fy

Zl = 0
−Yl + yr−cy

fy
Zl = 0

. (4.6)

Now we have all the constraints to build the contractor for a feature box [Cl,tp]. The algorithm
for our contractor is depicted in Algorithm 4. Note that directly applying a simple forward-
backward contractor based on (4.4) and (4.6) yields poor results since the depth coordinate
Zl appears in all equations. However, by first contracting the depth in line 3 and using the
depth estimate to apply the forward-backward contraction using (4.4) in lines 4 and 5, and
(4.6) in lines 6 and 7 provides good results on the feature box. Furthermore, we consider the
rectified stereo constraints, that corresponding features need to be on the same image row, by
contracting the y-component of the pixel boxes in lines 1 and 2.

The visual illustration of the feature box contraction is shown in Figure 4.11. While the
classical least squares approach yields the point that minimizes the quadratic distance to
line-shaped rays, applying interval analysis, the rays inflate to cones since we consider the
pixel observation uncertainty. The intersection of those cones is the region where the observed
landmark has to be located. Since the intersection region has a complex shape in 3D space,
interval analysis provides the tools to compute the axis-aligned box [Cl,tp] that encloses this
region.

4.2.3 LiDAR measurements

The main problem of stereo camera-based 3D reconstruction is the significant depth uncertainty
for distant landmarks. The depth uncertainty is high if the stereo system’s base length is much
smaller than the distance of the feature as the parallax becomes small. This phenomenon is
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Algorithm 4: Stereo-Feature Contractor

Data: [Il,tp] =
(

[xl]
[yl]

)
, [Ir,tp] =

(
[xr]
[yr]

)
, [Cl,tp] =

[Xl]
[Yl]
[Zl]

, K, b

Result: [Cl,tp] =

[Xl]
[Yl]
[Zl]


// Rectified stereo constraint

1 [yl] = [yl] ∩ [yr];
2 [yr] = [yr] ∩ [yl];

// Depth constraint for rectified stereo
3 [Zl] = [Zl] ∩ [ b·fx

[xl]−[xr] ];
// Constraints on the Xl-coordinate
// Forward

4 [Xl] = [Xl] ∩ [[Zl] · [xl]−cx
fx

] ∩ [[Zl] · [xr]−cx
fx

+ b];
// Backward

5 [Zl] = [Zl] ∩ [[Xl] · fx
[xl]−cx ] ∩ [[[Xl]− b] · fx

[xr]−cx ];
// Constraints on the Yl-coordinate
// Forward

6 [Yl] = [Yl] ∩ [[Zl] · [yl]−cy
fy

] ∩ [[Zl] · [yr]−cy
fy

];
// Backward

7 [Zl] = [Zl] ∩ [[Yl] · fy
[yl]−cy ] ∩ [[Yl] · fy

[yr]−cy ]

z

x
y

b

Cl,t

[Il,tp] [Ir,tp]

[Cl,tp]

Figure 4.11: Feature location triangulation with interval analysis. The features are represented
by the boxes [Il,tp] and [Ir,tp] in the images. The boxes span cones in 3D space.
The intersection of the cones is colored red and describes the region where the
tracked feature has to be located. Due to the wrapping effect by applying interval
analysis, we obtain the green enclosing box [Cl,tp] by applying the contractor.
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Figure 4.12: Interval-based stereo feature reconstruction uncertainty for different depths. The
visualization shows the same reconstruction approach as shown in Figure 4.11
from the top view. On the left, the reconstruction result of a close feature is
visualized. On the right, a distant feature is considered that results in a more
uncertain reconstruction for the same pixel uncertainty.

illustrated in Figure 4.12. For features located on textured planes like road signs or building
facades, the depth measurements can be refined by the LiDAR data as its range measurement
is typically more accurate. The set-membership-based fusion of stereo feature observations
with LiDAR data was already published in [137] and will be introduced in the following.

Let [Cl,tp] be the stereo feature location described in the left camera frame. Furthermore,
we assume that the relative transformation LTCl , which transforms a point described in the
left camera frame to the LiDAR frame, is known accurately from calibration. The LiDAR
provides a set of points Ltp̂i, that inflate to boxes [Ltp̂i] by considering the interval-based
LiDAR uncertainty model introduced in Subsection 2.3.2. First, we need to transform [Cl,tp]
from the left camera frame Cl,t to the LiDAR frame Lt. Therefore, we apply LTCl which
provides [Ltp] using the interval inclusion functions for the transformation. Now, we determine
the set of LiDAR measurements S, that have a non-empty intersection with [Ltp] so that

S = { i ∈ 1, ..., N | [Ltp] ∩ [Ltp̂i] 6= ∅ }. (4.7)

If the number of points – that means |S| – is large enough, we contract [Ltp] to the hull
among all intersections of the boxes considered in S and the initial box [Ltp] by

[Ltp] =
⋃
i∈S

([Ltp] ∩ [Ltp̂i]). (4.8)

This step is illustrated in Figure 4.13. While the green box is the initial stereo feature
box, the yellow box is the contracted feature location box considering the associated LiDAR
measurements colored in blue with red dots. We transform the contracted feature box to the
camera frame Cl,t. Hence, we obtain the contracted feature boxes taking into account stereo
camera observations and LiDAR measurements.

To efficiently determine the intersection of [Ltp] with the LiDAR measurements Ltp̂i, we
utilize a KD-Tree structure that stores the mids of the LiDAR measurement boxes. To retrieve
the LiDAR measurements that can have a potential intersection with [Ltp], we perform a radius
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[Ltp]
[Ltp̂i]

Figure 4.13: Contract stereo feature to the union of intersections with LiDAR measurements.
The LiDAR measurements are illustrated by blue boxes with red mid-points. The
initial stereo feature box [Ltp] is visualized green, and the contracted feature box
is colored yellow.

search in the KD-Tree using the midpoint of [Ltp] as search point and the half diameter of
[Ltp] as the radius.

4.2.4 Frame-to-Frame Pose Estimation

Up to this point, we constructed the SLAM-Graph and solved the data association problem. The
precise estimation of the pose will be performed in the back-end by applying a windowed bundle
adjustment and the interval-based odometry computation, as presented in the next section.
However, as we are interested in the vehicle’s current pose, we also perform dead-reckoning by
determining the current pose of Ft concerning the previous Ft−1. The dead-reckoning result,
which only considers a pair of frames, is used to initialize the windowed bundle adjustment in
the back-end. Since we only consider the current and previous frame for the dead-reckoning
computation, the relative motion transformation is determined with low-weight computation in
real-time – well suited for the front-end.

Therefore, we use a classical LM optimization that minimizes the stereo reprojection error
as explained in Subsection 2.1.3. The optimization consists of two steps using different robust
kernels: First, we apply the Geman-McClure cost function, and second we utilize the saturated
robust kernel that clips off all those measurements that exceed a defined error threshold
(cf. Subsection 2.1.3). The first optimization step optimizes the pose so that the poses and
landmarks fit the measurements as well as possible in the least squares sense while weighting
large errors less according to the kernel function presented in [25]. After this optimization step,
the MLE result will yield a smaller overall reprojection error. However, it may be corrupted by
incorrect matchings (outliers) with large reprojection errors. To reduce the impact of outliers
on the MLE result, the optimization with the saturated optimization kernel is applied, which
only considers features with an acceptable initial reprojection error. In our implementation, we
apply the graph optimization framework g2o [29].
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Note that in the front-end, we do not perform an interval-based computation of the
relative motion since features that may be qualified as good according to the frame-to-frame
optimization may still be corrupted by dynamics: For example, features on slowly moving objects
will generate small residuals so that they may be determined as good features. However, since
they are outliers, they may incorrectly corrupt the contraction for interval-based dead-reckoning
computation. Although there are ways to cope with the outliers using interval analysis (see
Subsection 2.2.5) with q-relaxed intersection, the main problem of this approach is that we do
not know the number q of inconsistent features. Using the GOMNE algorithm [138] is also
not possible here since this may also lead to slightly inconsistent features so that they do not
generate empty sets. However, the dead-reckoning results may still be corrupted. Furthermore,
GOMNE also leads to longer run times due to its sequential algorithmic structure. That is
why we shift the interval-based visual odometry computation to the back-end. There, before
applying the interval-based visual odometry computation, we first perform a windowed bundle
adjustment that preselects those features that are qualified as good (small residuals for the
reprojection in the left and right image) for a longer sequence, where dynamic features are easily
detected and can be filtered as inconsistent. Hence, by only taking those features into account
that are consistent and lead to lower reprojection errors, we can perform interval-based visual
odometry without the q-relaxed intersection since the windowed bundle adjustment already
filters all outliers.

4.3 Back-End – Solve the SLAM-Graph

The construction of the SLAM-graph, which represents the data association, was explained
in the previous section. An exemplary SLAM-graph is depicted in Figure 4.4. Although the
majority of the associations are correct in practice, some may be error-prone: Mismatches
of closely located landmarks and features on dynamic objects are possible outliers that may
corrupt the interval-based odometry computation. Using the q-relaxed intersection for outlier
treatment is not possible in our case since we do not know the number of outliers q beforehand
as mentioned above. To identify the outliers and to get rid of those, we utilize prior to the
interval-based odometry estimation a robust windowed bundle adjustment. Robust kernels
in optimization methods have proven to provide good results, as shown in [26, 27, 29, 101].
Hence, we will use the windowed bundle adjustment augmented by robust kernels to preselect
those landmark observations that fall below a defined residual for the reprojection error. We
introduce the windowed bundle adjustment in Subsection 4.3.1. The interval-based odometry
estimation provides the vehicle’s relative motion considering the preselected observations of
the landmarks and their uncertainties, and will be presented in Subsection 4.3.2.

The back-end runs on a separate thread parallel to the real-time front-end, similar to the
PTAM [139], ORB-SLAM [134], and LSD-SLAM [27] architectures. While the front-end
process is always triggered when a new data frame Ft comes from the sensors, we trigger
the back-end process if a new keyframe is inserted that closes the current window of frames
and opens a new one. To understand why we consider keyframe insertions to trigger the
back-end, we need to analyze Figure 4.3 again. As introduced in Section 4.1, the window size
is determined by keyframes: Between two consecutive keyframes Ks and Ke with s < e always
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Figure 4.14: In the SLAM-graph, two closed windows and one open window are illustrated.
While the windowed bundle adjustment can be performed on the rose and green-
colored windows, the violet window must be completed before the optimization
can be applied.

the same features are tracked that were detected in the first keyframe Ks at the beginning
of the batch Ws→e. Hence, if a new keyframe Ke is inserted, the current window of frames
with common landmark observations is closed. As a result, we can proceed with the bundle
adjustment for this window, as it will not be changed anymore. After the preselection of
consistent observations, we compute the interval-based visual odometry for the whole batch.
Figure 4.14 illustrates the batches in the exemplary SLAM-graph from Figure 4.4.

The back-end does not need to process the data at frame rate because, in the back-end,
a whole window is processed at once. Hence, if a window has a size of 10 at a sensor frame
rate of 0.1Hz, the window encloses a period of 1 s. Within this time, the last window could be
processed. Hence, slower processing frequency is possible in the back-end maintaining real-time
operability for the visual odometry as we process multiple frames simultaneously. However, the
processing must be fast enough to finish the computations in the current window time.

4.3.1 Windowed Bundle Adjustment

The reason for using a windowed bundle adjustment in our ego-motion estimation approach is
to detect inconsistent features that do not comply with the largest consistent set of tracked
features in the stereo images. As in the major part of the stereo images, static parts of the
scene are observed, we can assume that the largest consistent set is the set of static features
in which we are interested. This assumption can be violated if a large dynamic object occludes
the static scene. To deal with such corner cases, motion sensors like IMUs or wheel odometers
need to be fused to the ego-motion estimation. Nonetheless, in the scope of this work, we
want to stick to the former assumption of the static scene ignoring the mentioned corner case.

While gross outliers can be detected by checking feature consistency in simple dead reckoning
approaches that only compute the relative motion between two consecutive frames [140], small
outliers will be hard to detect since they may seem consistent with the correct features.
Hence, to cope with such hard-to-detect outliers in the data association, we apply the bundle
adjustment approach on a larger window that contains multiple frames. The advantage of a
larger observation window is that feature observations with small perturbations, like features
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on slowly moving objects, can be detected and discarded from the estimation by applying a
robust approach. Figure 4.15 shows features on a slowly moving car that are hard to identify
as outliers if we only consider a pair of consecutive frames as suggested in [140]. Nevertheless,
when we consider the whole observation window, also small movements will lead to significant
reprojection errors for such features in the bundle adjustment, as the slow motion accumulates
along the window time. Hence, the windowed bundle adjustment makes detecting the consistent
set of landmark observations possible without the need to forecast the number of inconsistent
landmarks, as would be the case for the interval counterpart – the q-relaxed intersection – that
we avoid with this approach.

We use the same graph optimization framework g2o [29] for the windowed bundle adjustment
as for the frame-to-frame pose estimation in Subsection 4.2.4. While we insert the set of
frames as pose nodes into the optimization graph, landmarks are inserted as landmark nodes.
Observations in the stereo images are the pixel locations of the features corresponding to
the respective landmarks represented as edges. Figure 4.4 shows an exemplary graph. The
optimization goal is to obtain the poses and the landmark locations so that the observations
are met as well as possible, minimizing the quadratic reprojection error in the left and right
images.

Since we already structured the captured data in a SLAM-graph, we can directly transfer this
SLAM-graph to the g2o optimization graph and perform the optimization. However, a simple
least squares bundle adjustment without explicit outlier treatment is doomed to fail, as already a
few outliers are sufficient to let the optimization (we use LM) diverge. Therefore, similar to the
frame-to-frame pose estimation in Subsection 4.2.4, we perform a two-staged optimization with
two different robust kernels. The first optimization step is performed with the Geman-McClure
cost function [25] that reduces the impact of a measurement on the optimization the higher
the residual is. We initialize the pose nodes with the frame-to-frame pose estimates computed
in the front-end. The reference frame for the whole windowed bundle adjustment is the first
frame Ks of the batch, which is always a keyframe as illustrated in Figure 4.4. Hence, first, we
transform all poses to the left camera frame Cl,s of Ks by accumulating the frame-to-frame
estimations. To initialize the landmark nodes, we need to consider the stereo reconstructed
landmark locations seen in Ks: Since the keyframe defines the frame in which new features are
detected, it will always have common observations with all following frames Ft in the window.
Hence, we can initialize the landmarks for the whole batch Ws→e with the stereo reconstructed
locations in Cl,s, while the pose corresponding to Ks defines the origin of the coordinate system
in which we perform the windowed bundle adjustment. The first step provides the initial
configuration for the second stage of the optimization. In this stage, we utilize the saturated
cost function that discards all those measurements that exceed a defined reprojection error
threshold. Hence, this optimization step refines the poses and landmark locations by only
considering observations with comparatively low error.

After the two-stage optimization, we can retrieve the remaining reprojection errors for each
observation we inserted as an edge to the optimization graph. Now we can proceed with the
preselection of the landmarks and the observations for the interval-based visual odometry. For
each landmark, we check the corresponding reprojection errors of each observation. Hence,
as illustrated in Figure 4.16, we check for each landmark the connected edges – that means
observations – and evaluate the reprojection error after the optimization. Suppose there is
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Figure 4.15: Visual feature on dynamic objects. The tracked features for an exemplary scene are
shown in the left camera image. Features are consistently tracked on a dynamic
vehicle approaching the sensor system. Those features are outliers and need to be
removed for the ego-motion estimation.
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Figure 4.16: After the optimization, the residuals for each observation of each landmark in the
window are checked. This is illustrated in the graph by checking the edges that
are connected to the considered landmark. If at least one observation exceeds the
residual threshold, the landmark is discarded from the consistent set.

at least one observation for a landmark that exceeds a maximal reprojection error. In that
case, the landmark and all corresponding observations to this landmark are discarded from the
consistent set of observations used for the interval-based visual odometry that is introduced in
the next section.

Note that this approach heavily relies on the correct convergence of the windowed bundle
adjustment. Nonetheless, due to many features and since the major part of the observations is
well conditioned if the stereo camera system captures a substantial part of the static scene, this
approach yields good results in practice. Furthermore, if the bundle adjustment diverges, the
interval odometry will provide inconsistent results, leading to empty sets. On the bright side, if
empty sets occur, we can deduce that the bundle adjustment did not converge and could not
provide the needed consistent set. As a result, the user can be warned that inconsistencies
were detected in the perceived data.

4.3.2 Interval-based Visual Odometry

The preselection with the robust windowed bundle adjustment only admits landmarks and
observations consistent with the vehicle’s estimated movement. That means we only consider
landmarks with a reprojection error in the stereo images below a defined threshold with subpixel
accuracy. The goal, for now, is to use the preselected landmarks to determine the relative
motion taking interval observation uncertainty into account. The relative motion that we
seek to determine between time step t and t + 1 is described by Cl,t+1TCl,t which consists
of a rotation Cl,t+1RCl,t and translation Cl,t+1tCl,t . Note that we utilize the RPY-Euler angle
parametrization for the rotation Cl,t+1RCl,t(Cl,t+1ξCl,t), and that we choose as a reference frame
to describe the motion the left camera frame Cl. Figure 4.17 visualizes the constellation and
variables we will use in the following.

First, we must check which landmarks are commonly seen at time t and t+1. Each landmark
node connected to both pose nodes at t and t+ 1 provides constraints on the relative motion
we will consider in the following. Let L be the set of all landmarks commonly seen at both
time steps. Let the position of the i-th commonly observed landmark described in the left
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Figure 4.17: Visualization of all coordinate frames and variables used in stereo visual odometry
contractor. From two stereo frames Ft and Ft+1, the same landmark is seen.
The landmark in 3D space is visualized in blue. The location of the landmark
is described in the left camera frame at time t denoted by Cl,t. The coordinate
frame of the right camera is denoted by Cr,t, and the transformation between the
left and right camera frames is precisely known by ClTCr . The frame Ft+1 also
consists of one stereo image pair. However, the relative motion between t and
t+ 1 is defined by the transformation between the left camera frames denoted by
Cl,t+1TCl,t in red. The image feature locations are also colored blue. The pixel
positions are described in the corresponding image coordinate frames.

camera frame at time t be Cl,tpi. The location of the landmarks is already determined in the
front-end as described in Subsection 4.2.2. Since the measured pixel position Il,tpi in the left
image is known from detection and tracking, we can draw the first projection constraint in the
left camera image

Cl,tpz,i ·
(
Il,tpi

1

)
= K · Cl,tpi. (4.9)

In Figure 4.17, this constraint is visualized by the blue observation ray that goes through the
projections center of the left camera in frame Ft.

Similarly, we can draw the projection constraint for the right camera at time t as we only
consider landmarks that are observed as features in the left and right images. Since the
landmark position is described in the left camera frame, we first need to transform Cl,tpi to the
right camera frame Cr,t to apply the camera projection matrix. Since we assume a calibrated
stereo camera setup, the transformation CrTCl is precisely known from calibration. As the
images are also stereo rectified, we can further assume that the landmark’s distance from the
left and right camera is identical due to which Cl,tpz,i = Cr,tpz,i holds. As a consequence, the
second constraint is

Cl,tpz,i ·
(
Ir,tpi

1

)
= K · (CrRCl · Cl,tpi +Cr tCl), (4.10)
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that describes the projection of the considered landmark to the right image for time step t (see
Figure 4.17).

Note that up to now, in none of the two constraints, we encounter the relative motion
variables since we only focused on one time step t. However, as we also see the same landmark
at t+ 1, we can consider the relative motion between the time steps t and t+ 1. Therefore,
consider the left camera frame Cl,t+1 at time t+ 1. We see the same landmark in the image at
the pixel position Il,t+1pi. To perform the projection, we first need to transform the landmark
location Cl,tpi described in the left camera frame at time t to Cl,t+1. Therefore we need to
apply the relative transformation so that we obtain

Cl,t+1pi =Cl,t+1 RCl,t · Cl,tpi +Cl,t+1 tCl,t . (4.11)

Hence, the transformed point can be projected to the left image, and we should obtain the
measured pixel point Il,t+1pi. So, we retrieve the constraint

Cl,t+1pz,i ·
(
Il,t+1pi

1

)
= K · (Cl,t+1RCl,t · Cl,tpi +Cl,t+1 tCl,t). (4.12)

In Figure 4.17, the constraint is visualized by the ray that intersects with the image plane at
Il,t+1pi in the left camera of frame Ft+1.

As we see the same landmark also in the right image at time t+ 1, by applying again the
stereo calibration parameters we obtain the projection constraint

Cl,t+1pz,i ·
(
Ir,t+1pi

1

)
= K ·

(CrRCl · (Cl,t+1RCl,t · Cl,tpi +Cl,t+1 tCl,t) +Cr tCl
)

(4.13)

All Stereo-Visual-Odometry (SVO) constraints can be rewritten to a multidimensional
function fSVO

i (Il,tpi, Ir,tpi, Il,t+1pi, Ir,t+1pi,Cl,t+1 ξCl,t ,
Cl,t+1 tCl,t) = 0 for one commonly observed

landmark i. The set of constraints is valid for all landmarks i ∈ L. As a consequence, we can
formulate the CSP

HSVO :


Variables: Il,tpi, Ir,tpi, Il,t+1pi, Ir,t+1pi,Cl,t+1 ξCl,t ,

Cl,t+1 tCl,t
Constraints: ∀i ∈ L : fSVO

i (Il,tpi, Ir,tpi, Il,t+1pi, Ir,t+1pi,Cl,t+1 ξCl,t ,
Cl,t+1 tCl,t) = 0

Domains: [Il,tpi], [Ir,tpi], [Il,t+1pi], [Ir,t+1pi], [Cl,t+1ξCl,t ], [
Cl,t+1tCl,t ]

.

(4.14)
Note that all rotation matrices are internally represented by Euler angles. Subsequently, we
build a forward-backward contractor CSVO

i ([Cl,t+1ξCl,t ], [
Cl,t+1tCl,t ]) for each landmark i of the

CSP HSVO and intersect all of them to obtain the final contractor

CSVO([Cl,t+1ξCl,t ], [
Cl,t+1tCl,t ]) =

⋂
i∈L
CSVO
i ([Cl,t+1ξCl,t ], [

Cl,t+1tCl,t ]). (4.15)

The question remains how we initialize the interval domains of the variables in the contractor
(4.15). Let us first consider the landmark location. Although the landmark location Cl,tpi is
handled as an internal set of variables, we incorporate the stereo-reconstruction results from
the front-end presented in Subsection 4.2.2 directly as initial values for [Cl,tpi].
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For setting the pixel uncertainties [Il,tpi], [Ir,tpi], [Il,t+1pi] and [Ir,t+1pi] we have two
possibilities. One possibility is to select the maximally permitted reprojection error we defined
for the preselection after the windowed bundle adjustment as the uncertainty radius. As CSVO

i is
not optimal, this yields overly pessimistic results for visual odometry. The main problem of this
uncertainty assessment is that we model all observations with the same highest possible error.
However, some observations may provide more accurate measurements. Hence, we propose a
second option for the uncertainty selection: The windowed bundle adjustment provides the
remaining residuals for each observation as the reprojection error. By choosing the reprojection
error as the pixel error radius for each consistent preselected landmark observation, we can
assess the uncertainty of each observation individually. Hence, if an observation has a large
reprojection error, the observation is handled with higher uncertainty in the interval-based
odometry estimation. Furthermore, we can ensure that the residuals are consistent with at least
one solution – the least squares solution of the windowed bundle adjustment. Consequently,
we can interpret the interval result as the uncertainty assessment of the least squares solution
under consideration of the measurement perturbation using interval tools. Note that this
uncertainty selection heavily depends on the correct convergence of the bundle adjustment.
Hence, we cannot guarantee that the interval-based odometry estimate will contain the true
solution since the uncertainty estimation of the observations is not guaranteed to contain the
error-free observation. However, this approach yields less pessimistic results in practice and
provides a good estimate of the relative transformation.

The rotation domain [Cl,t+1ξCl,t ] and translation domain [Cl,t+1tCl,t ] also need to be initialized.
The problem that we encounter when we initialize all the domains with very large intervals is that
CSVO does not contract the relative motion domains efficiently due to pessimism that mainly
arises from the Euler rotation parameters. However, while the stereo-visual odometry computes
a 6DOF pose, the following localization algorithms only use the 2D pose. Consequently, neither
the pitch, roll, nor elevation estimation is used in the following algorithms. That is why we
approximate the relative motion’s roll, pitch, and elevation results by the windowed bundle
adjustment results and initialize the corresponding domains with those estimates without
uncertainty inflation. As a consequence, only the yaw angle [Cl,t+1ϕCl,t ] and the position
( [Cl,t+1tx,Cl,t ] [Cl,t+1ty,Cl,t ] )ᵀ are initialized with large intervals. We store the odometry data
determined by CSVO to each frame Ft+1 at t+ 1 as the transformation from Ft to Ft+1.

4.3.3 Keep the SLAM-Graph Clean

A clean SLAM-graph containing as little as possible and as much as necessary information
is vital for efficiency. Landmark observations that do not contribute valuable information for
relative motion computations are removed from the graph. Specifically, landmarks that are
seen only once, that are connected to only one pose node, are deleted. This often happens
with keyframes, as new features/landmarks are detected only for keyframes, but not all of
them are accurately tracked in subsequent frames. To maintain a clean graph, a separate
process identifies and removes such landmarks. By deleting these irrelevant landmarks, the
graph analysis becomes faster and memory consumption is reduced.
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Map

Localization in Building Map
Coarse Localization (Chapter 5)

Refined Localization (Chapter 6)

Relative Motion

Real-Time Localization (Chapter 7)

Visual Odometry (Chapter 4)

Figure 4.18: The visual odometry module provides the relative motion defined in a local
reference frame. We must determine the spatial link between the local reference
and the map frame. The next chapter solves this problem.

4.4 Module Output
The visual odometry module computes the relative motion of the vehicle and stores for each
frame Ft+1 the relative transformation Cl,t+1TCl,t . The relative transformation is internally rep-
resented by a translation vector Cl,t+1tCl,t and euler angles Cl,t+1ξCl,t . While the roll Cl,t+1ψCl,t ,
pitch Cl,t+1θCl,t and elevation Cl,t+1tz,Cl,t are handled as correctly estimated values from the bun-
dle adjustment, the yaw orientation [Cl,t+1ϕCl,t ] and the 2D position ( [Cl,t+1tx,Cl,t ] [Cl,t+1ty,Cl,t ] )ᵀ
is represented by intervals taking the observation uncertainty of the locally seen landmarks as
ORB-features into account.

Using the hybrid visual odometry approach as a stand-alone algorithm has two problems.
First, since we store the relative motion in a dead-reckoning fashion for each frame Ft, the
reconstruction of the relative motion to a reference frame leads to uncertainty accumulation.
We illustrate this in Figure 4.18 using the trajectory tube with rising uncertainty. Global
information is necessary to tackle this problem to reduce accumulating uncertainty. In this work,
we will use building maps. However, the second problem is that visual odometry only provides
the relative motion with respect to a predefined local reference frame. That means we cannot
know a priori the relative location and orientation of the odometry frame concerning the map
frame. This problem is also known as initial localization or global localization problem. The
next chapter introduces our interval-probabilistic coarse localization that solves this problem.
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Map

Localization in Building Map
Coarse Localization (Chapter 5)

Refined Localization (Chapter 6)

Relative Motion

Real-Time Localization (Chapter 7)

Visual Odometry (Chapter 4)

Figure 5.1: The coarse localization is the second module in the localization pipeline and uses
the ego-motion estimation determined by the visual odometry.

In the previous chapter, the visual odometry module was introduced that provides the ego-
motion estimation of the vehicle in a dead-reckoning fashion. However, our goal is to localize
the vehicle on the map. Since the ego-motion of the vehicle is described in a local reference
frame, we do not know the spatial correspondence between the local reference and the map
frame in which the buildings are described. This chapter presents a hybrid interval-probabilistic
localization under large global positioning uncertainties in urban environments.

Many localization solutions in the literature address the tracking problem. However, the
problem we seek to solve is fundamentally different: If the initial pose uncertainty is high,
the local measurements’ association with elements in the map may become inapplicable
since matches can be ambiguous. Tracking each possible match will let the runtime explode.
Therefore, we need to approach the problem differently. In the literature, localization under
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Interval-based Localization

Bounded Monte Carlo Localization

Weight and
Resample

Contraction

Figure 5.2: Coarse hybrid interval-probabilistic localization. Buildings in the maps are visualized
in black. The correct pose is colored red. The coarse interval-based localization
provides the feasible set of poses (green). The bounded MCL spreads particles
inside the feasible set and determines the most likely solution by an aggressive
resampling procedure.

large uncertainties is typically called global localization. However, the term global implies that
no information on the vehicle’s initial location is known. Hence, the typical global localization
problem considers a map where we must assume that the vehicle can be everywhere. In
contrast, in our case, we do have information on the vehicle position from GNSS measurements.
Nonetheless, global positioning systems may provide very inaccurate pose estimates due to
occlusions and/or multi-path effects, especially in urban canyons. In the worst case, no global
information on the robot’s pose is available. The localization problem we are addressing in
this chapter can be categorized between global localization and local tracking. We are not
performing global localization since we have a rough initial estimate of the vehicle’s location
from GNSS data. However, the uncertainty of the GNSS data is so large that an unambiguous
matching of locally seen landmarks is impossible, due to which multiple hypotheses need to
be tracked. The dominant approach in the literature to solve that problem are derivatives
of the Monte Carlo Localization (MCL). In this work, we introduce a real-time capable set-
membership enhanced bounded MCL scheme that compensates for the shortcomings of classical
MCL approaches, improving the convergence and reducing the runtime. Our method efficiently
solves the localization problem using a LiDAR sensor, odometry data, GNSS data, and publicly
available building maps provided by OSM and LOD2 city model.

As presented in the overview in Figure 5.2, our method consists of two steps. Using
interval analysis, we first narrow down the feasible set of poses under consideration of the local
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LiDAR data, the vehicle odometry provided by the visual odometry module, and occasionally
available uncertain GNSS measurements. This is illustrated in the upper block in Figure 5.2
and represents the interval-based localization method. The result of the interval-based method
– the feasible set of poses – is used for the second method illustrated in the bottom block.
We perform a bounded MCL within the feasible set to determine the most likely solution. By
tracking the feasible solution set with the interval method, only a few particles are necessary
to determine the most likely candidates in the feasible set. An aggressive resampling of
the particles is possible, leading to faster convergence to the correct solution. Our hybrid
interval-probabilistic approach was already published in [141] and will be presented here in
more detail.

After introducing the task description, notations, and assumptions, we present in Section
5.2 the first part of our hybrid method – the interval-based localization – that determines the
feasible set of poses. Then, in Section 5.3, we introduce the bounded MCL that determines
the most likely solutions within the feasible set.

5.1 Task Description, Notations and Assumptions
The robot is initially placed somewhere on the building map, but it lacks knowledge of its
whereabouts [18, p. 194]. From GNSS readings, we have a rough estimate of its position.
However, this position estimate can have large uncertainty. The goal is to determine the set of
all feasible poses MT̂Lt ∈M PLt of the vehicle in the given map with building footprints and
the most likely poses within the feasible set. We choose the vehicle fixed LiDAR coordinate
frame Lt at time t as the reference frame for the localization of the vehicle. We consider three
basic assumptions: First, the robot can never be inside a building. Second, the robot will not
exit the map. Third, GNSS position estimates have a maximum bounded error, and the vehicle
has to be located within the uncertainty region of the GNSS measurements. As a result, we
exclude buildings from our map that consist of bridge-like structures. As measurements, we
use odometry and LiDAR data locally, while we also occasionally have very uncertain GNSS
measurements on the position.
We perform the localization in a map that consists of building footprints in 2D. The robot
pose MT̂Lt =

(
MtLt MϕLt

)T
consists of two translation parameters MtLt =

(
tx ty

)T
and one orientation parameter MϕLt . When we refer to a set of poses MPLt , we imply
that the three parameters inflate to sets represented by intervals. Hence, the set of poses
MPLt =

(
MTLt MΦLt

)T
consists of a set of translations MTLt and a set of orientations

MΦLt . A connected set of orientations is well defined by an interval MΦLt = [MϕLt ]. Due
to ambiguities in localization, the feasible set of orientations is not necessarily connected.
That is why we approximate MΦLt by a subpaving MΦ�Lt , that is a union of non-overlapping
intervals [MϕLt ] ⊂M Φ�Lt . Similarly, the set of translations MTLt is also approximated by an
outer subpaving MT �Lt , that consists of non-overlapping translation boxes [MtLt ] ⊂M T �Lt with
[MtLt ] =

(
[tx] [ty]

)T
, where [tx] is the interval in the x and [ty] in the y direction. The

rotation and translation subpaving define the pose. Hence, the set of poses MP�Lt is represented
by a 3D subpaving.
A possible translation subpaving MT �Lt is illustrated Figure 5.3. Note that the border of the
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Figure 5.3: Translation subpaving. The buildings are shown in black. MT �Lt is a set of non-
overlapping green boxes [MtLt ] ⊂M T �Lt . The subpaving MT �Lt approximates the
set of feasible translations. A red polygon illustrates the border of the correct
feasible set.

set we want to describe is colored red. Due to the approximation of this set with a subpaving,
we overestimate this set. That is the reason why there are green parts beyond the red border.
However, we can increase the accuracy of the approximation by reducing the size of the minimal
permitted box width. On the downside, this will lead to more boxes. Consequently, the
computational effort will also increase as each box needs to be processed. Since we use within
this chapter a subpaving representation of the set of poses MP�Lt , we will omit the subpaving
qualifier � in the following.

5.1.1 Odometry

The hybrid interval-probabilistic visual odometry presented in Chapter 4 provides the odometry
data and the corresponding uncertainty. Nonetheless, any method that provides such data is
applicable. Given the pose MT̂Lt at time t and the odometry data LtT̂Lt+1 =

(
∆t ∆ϕ

)T
,

the pose at time t+ 1 is determined by

fodom(MT̂Lt) =M T̂Lt+1 =

MtLt +
(

cosMϕLt − sinMϕLt
sinMϕLt cosMϕLt

)
·∆t

MϕLt + ∆ϕ

 . (5.1)

Note that we assume the odometry data LtT̂Lt+1 to be uncertain. Hence, the odometry
parameters are represented by intervals ∆ϕ ∈ [∆ϕ] and ∆t ∈ [∆t] and the mathematical
operators are extended to interval arithmetic.

5.1.2 Map

The used building maps are already introduced in Section 2.4. However, in the scope of this
chapter, we need to introduce further properties of the building footprint map. First, we need
to define the borders of a map to determine the inner and outer regions. We define the map
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by the convex hull over all buildings. Note that the borders of a map define a closed region.
As a result, the border can be represented by a polygon. Furthermore, we represent a building
in the map also by a polygon. A polygon P is described by an ordered set of corner points
CP = {Mc1, . . . ,

Mcn} with Mci =
(
x y

)T
described in the map coordinate frame for n ∈ N,

i ∈ {0, . . . , n} and x, y ∈ R so that the border of the polygon is defined by the line segments
between the corner points. We also consider the map uncertainty by inflating the corner points
to boxes in our computations.

5.1.3 Uncertain GNSS Position

The GNSS receiver provides the latitude and longitude position described in WGS84 as
introduced in Subsection 2.3.3. As the building map is globally referenced and has a locally
defined frame, we transform the GNSS position from WGS84 to the map frame. We experienced
inconsistencies in the uncertainty estimate of the GNSS data and therefore decided to consider
a large empirically determined maximum error bound of 50m of the transformed position
estimate. However, the selection of this maximal error limit depends on the used GNSS receiver.
Note that the maximal error bound does not have to be static. If sophisticated error models
on the GNSS reliability are available, also dynamically changing error bounds can be used.
However, we will stick to a fixed upper-bound error for our work.

5.2 Interval-based Localization

Initially, we do not know the vehicle’s position and orientation on the map. We can represent
the orientation interval [−π, π] by a subpaving. That means we divide the interval into smaller
subsets. We independently narrow down the feasible set of positions for each orientation subset
by applying multiple contractors.

To introduce our interval-based localization approach, we first want to focus on one
orientation subset that encloses the correct orientation. Later, we will generalize our explanation
to an arbitrary orientation subset. If the initial orientation is known up to a defined uncertainty,
the localization problem simplifies finding the two translation parameters. According to the
assumptions, the robot’s position can be described by a set of positions on the map with an
empty intersection with the buildings. The left figure in Figure 5.4 illustrates such a set for the
initial pose: The set of all feasible positions is colored green while the buildings are colored
black. Initially, the robot can be located everywhere in the green region. The green region
– the feasible set of positions – is represented by a subpaving. When the robot moves, the
subsets of the subpaving are updated according to the measured odometry. However, the robot
can never be located inside the buildings also during movement. That means when the robot
moves, we can discard those regions that are shifted into the building regions. As a result, the
feasible set of positions is gradually narrowed down as more and more parts of the feasible
region get discarded when the robot moves. This is illustrated in the middle and right figure
of Figure 5.4. We call the contractor that contracts the feasible position region so that only
those parts remain that do not overlap with the buildings, the No-Overlap Contractor which
will be presented in Subsection 5.2.3.
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Figure 5.4: Localization sequence with correct initial orientation. The buildings are black and
the set of all feasible vehicle positions is colored green. The ground truth pose is
visualized red. The images show the localization result of a sequence starting on
the left and ending on the right. The coarse localization is initialized in the left
figure.

For the No-Overlap Contractor, only the odometry data as local data is used. However,
also the LiDAR data enables us to draw constraints for the feasible set of poses: Due to
the height and solid structure of building facades in urban environments, almost all laser
beams are blocked – that means the visibility region is restricted – by the building walls.
Somehow, there are exceptions: Open doors and non-solid windows allow laser beams to
capture measurements beyond the walls. However, LiDAR measurements that go through small
openings lead to small structures in the LiDAR scan that can be filtered out. For the filtered
LiDAR data, the constraint that measurements cannot cross walls becomes valid. Using the
no-cross constraint, we can further contract the feasible set of poses. We call this contractor
the No-Cross Contractor, which will be presented in Subsection 5.2.4.

As the No-Overlap and No-Cross Contractor solely use local sensor data, multiple discon-
nected sets for the feasible pose can occur. GNSS positioning information provides further
information to reduce the feasible set. However, one of the major challenges of GNSS data
is its inaccuracy in urban canyons. Nonetheless, we can provide pessimistic but always valid
upper bounds on the error of the position estimate. Based on the upper bound of the position
measurement error, we define a circular GNSS-uncertainty region where the vehicle must be
located at the time of measurement. Based on this constraint, we can further contract the
feasible region as presented in Subsection 5.2.5.

Up to this point, we assumed to know the orientation up to some uncertainty. Now, let
us withdraw this assumption to generalize our approach. In that case, we can represent the
orientation interval [−π, π] by a subpaving. That means we divide the interval into smaller
subsets. We can apply the same contraction algorithms described above for each of those
orientation subsets. Incorrect initial orientation subsets will lead to an empty set for the
translation, as all translation subsets will become infeasible. If so, those orientation subsets
are dismissed from the feasible orientation set. Applying the contractors to each translation
subpaving of each orientation subset may become computationally expensive. Fortunately, the
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(a) Map. (b) Initialization. (c) Initial Subpaving.

Figure 5.5: Exemplary Scenario. Figure 5.5a depicts the map and the trajectory. The robot
has a straight linear movement. The initial set of poses is illustrated in Figure 5.5b.
Figure 5.5c shows the subpaving after applying the No-Overlap Contractor. The
correct pose is visualized in red.

translation subpavings of each orientation subset can be handled independently. Consequently,
to achieve real-time performance, we apply parallel execution of the contractors by multi-
threading the tasks on a consumer-grade CPU. Each thread performs the contraction of the
translation subpaving of one orientation subset. If orientation subsets, for which the translation
becomes empty, are dismissed, we bisect a non-empty orientation subpaving and process it with
the released thread. The rotation splitting further passively contracts the orientation subpaving,
making a balanced workload possible. We present the rotation splitting in Subsection 5.2.6.

To illustrate our approach, we want to introduce a simple scenario depicted in Figure 5.5a.
In this simple scenario, we assume the vehicle only drives forward along a straight line, as
illustrated with the red arrow. In the following, we will explain our contractors based on this
example.

5.2.1 Initialization

The robot can have an arbitrary initial translation and orientation. We set the initial set
of orientations Φ0 to [−π, π] and the initial translation subpaving T0 to the whole map as
illustrated in Figure 5.5b. For the sake of simplicity, we will omit the frame indices M and
L as all poses refer to the pose of the LiDAR frame L in the map frame M . We will only
keep the time index. We subdivide Φ0 into q equally sized subsets Φi,0 with i ∈ {1, ..., q}.
That means each subset Φi,0 generates an independent set of poses Pi,0 =

(
T0 Φi,0

)T
. As a

consequence, we obtain q independent potential initial pose sets, which have the same initial
translation subpaving T0 but differ concerning the set of initial orientations Φi,0. The following
algorithms for contracting and updating the set of poses are applied to each initial pose set Pi,0
independently. The subdivision of rotation parameters can also be interpreted as generating
multiple rotation bins that must be considered independently. The computations are performed
in parallel on multiple threads. Directly after the initialization, the contractors are applied to
dismiss infeasible poses.
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(a) Non-regular subpaving. (b) Raster coloring. (c) Regularized subpaving.

Figure 5.6: Regularization of a 2D subpaving with the image contractor. Figure 5.6a shows
a non-regular subpaving. First, as illustrated in Figure 5.6b, a raster is defined
in which cells with a non-empty intersection with the subpaving are colored. A
regular subpaving, as shown in Figure 5.6c, is determined by applying the image
contractor to the colored raster.

5.2.2 Pose Update with Odometry Data

We use the odometry data to update the set of feasible poses for each time step t as presented
in Subsection 5.1.1. Let Pi,t =

(
Ti,t Φi,t

)T
and Pi,t+1 =

(
Ti,t+1 Φi,t+1

)T
be the set of

feasible poses at time t and t + 1 described in the map frame. By applying the odometry
update described in (5.1) to each subset of the subpaving Ti,t, the updated set of positions
Ti,t+1 is obtained. Therefore, the operations in (5.1) are extended to interval arithmetic so
that MtLt ∈ Ti,t, MtLt+1 ∈ Ti,t+1, MϕLt ∈ Φi,t, MϕLt+1 ∈ Φi,t+1, holds.
However, the direct update step causes a regular position subpaving Ti,t to be updated to
a non-regular subpaving Ti,t+1. This is because the odometry uncertainty inflates the pose
estimate, and the subsets may start overlapping. An exemplary non-regular subpaving is
illustrated in Figure 5.6a. There are two possibilities to obtain the regular subpaving to the
feasible set of poses. One possibility is to reformulate the pose update as a set-inversion
problem. Alternatively, the image contractor can be employed to regularize the subpaving after
the direct odometry update. In the following, we will present both possibilities.

Odometry Update by Set-Inversion

The set-inversion approach does not directly apply the odometry update as presented in (5.1).
Instead, the inverse of fodom(T̂i,t) is employed to determine a regular subpaving for Pi,t+1 from
Pi,t. The recursive algorithm is presented in Algorithm 5.

Initially, we set all domains of Pi,t+1 to large intervals. We apply the inverse odometry
function

f−1
odom(T̂t+1) = T̂t =

tt+1 −
(

cos (ϕt+1 −∆ϕ) − sin (ϕt+1 −∆ϕ)
sin (ϕt+1 −∆ϕ) cos (ϕt+1 −∆ϕ)

)
·∆tt

ϕt+1 −∆ϕ

 , (5.2)

to obtain P̂i,t according to line 2. As we already know Pi,t represented by a subpaving from
the previous iteration step, we contract P̂i,t by considering the intersection with Pi,t. After the
contraction of P̂i,t, we apply the forward odometry function fodom(MT̂Lt) to determine Pi,t+1



104 Chapter 5. Coarse Localization

Algorithm 5: Odometry Update by Set-Inversion.
Data: Pi,t =

(
Ti,t Φi,t

)T
and Pi,t+1 =

(
[−∞,+∞] [−∞,+∞] [−π, π]

)T
Result: Pi,k+1

1 Function OdometryUpdateBySetInversion(Pi,t,Pi,t+1)
2 P̂i,t = [f−1

odom](Pi,t+1);
3 P̂i,t = P̂i,t ∩ Pi,t;
4 Pi,t+1 = Pi,t+1 ∩ [fodom](P̂i,t);
5 w = getSmallestTranslationWidth(Pi,t+1);
6 if w > ε then
7 (Pleft, Pright) = bisect(Pi,t+1);
8 Pi,t+1 = Pi,t+1 ∪ OdometryUpdateBySetInversion(Pi,t,Pleft);
9 Pi,t+1 = Pi,t+1 ∪ OdometryUpdateBySetInversion(Pi,t,Pright);

10 end
11 return Pi,t+1;

from P̂i,t. Next, we bisect the translational parameter with the highest interval width of Pi,t+1.
So we obtain a left and right child Pleft and Pright. The same procedure is recursively applied
to the obtained left and right children until the translation parameters of Pi,t+1 are smaller
than a given threshold ε. The set of all obtained pose estimates Pi,t+1 for all i ∈ {1, . . . , q}
after applying the recursive algorithm provides the regular subpaving Pt+1.

Direct Odometry Update and Regularization with the Image Contractor

How we employ the image contractor to regularize a subpaving is illustrated in Figure 5.6.
After applying a sequence of uncertain odometry updates to the set of feasible poses, the
translation subpaving will consist of subsets that overlap as illustrated in Figure 5.6a. First, we
insert the subpaving into a raster which we interpret as an image. The scale of a pixel can be
chosen arbitrarily. In our experiments, we choose a scale of 0.5 m

pix . As shown in Figure 5.6b,
we approximate the subpaving by coloring those pixels with a non-empty intersection with the
subpaving accordingly. As a result, we obtain a binary image. Using that binary image, we
apply the image contractor in a SIVIA fashion. First, we start with an arbitrarily large box that
includes all colored pixels and apply the image contractor to that box. The box is contracted to
the box hull containing all colored pixels. Due to the arbitrary shape of the original subpaving,
the box hull will also contain non-colored pixels. Hence, we bisect the box and apply the
contractor again on those newly generated boxes. We recursively apply this algorithm until none
of the generated boxes contain non-colored pixels. This can be detected very efficiently using
the integral image. If we apply this SIVIA algorithm to the binary image shown in Figure 5.6b,
we will retrieve the subpaving shown in Figure 5.6c. Hence, the regularization can be computed
very efficiently.
On the downside, the new subpaving overestimates the original set due to the discretization
with a raster. Due to the overestimation problem, we only apply the image contractor if the
overlap area of the subsets exceeds a given threshold for the translation subpaving.

The experimental evaluation shows that the regularization with the image contractor performs
better than the set-inversion approach. This is because the second option makes extensive
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use of parallel computation possible. While the set-inversion approach needs to perform the
computations sequentially, the direct pose update can be performed in parallel. Building the
raster and applying the image contractor introduces some computational overhead. However,
compared to the sequential computation of the set-inversion approach, the image contractor-
based regularization is still computationally more efficient. That is why we use the second
option to regularize the subpaving of the translational parts of the feasible set of poses with
the image contractor.

5.2.3 No-Overlap Contractor – Vehicle Outside Buildings

Given a set of poses Pi =
(
Ti Φi

)T
, the goal is to delete those parts of the translation

subpaving that overlap with buildings. In other words, we restrict the feasible set only to the
free space not occupied by buildings. Therefore, we apply the No-Overlap Contractor. The
algorithm is depicted in Algorithm 6. Note that Pi =M PLt,i holds and that we omit the frame
indices and the time index, as we only consider the LiDAR frame pose in the map frame for
one time step t.

Let [t] ⊂ Ti be a subset of the subpaving. First, we determine all buildings B∗ that are in
the vicinity of [t] as shown in Algorithm 6 in line 6. For each building B we apply the polygon
separator Spoly([t], B) as introduced in Part 2.2.2.2 on [t]. As a result, the separator provides
an inner box [tin] and an outer box [tout]. Since [tout] defines the box hull over all parts of
[t] that are outside B, the wrapping leads to an overestimation. Hence, parts inside B can
also be part of the hull. That is why we first determine the intersection [tinter] = [tout] ∩ [tin].
If the intersection is empty, then we can indeed replace [t] by [tout]. If the intersection is
non-empty, [tout] can contain inner parts of B. If the smallest width of [tout] is larger than a
given threshold ε, we will bisect [tout] and apply the separator recursively (SIVIA). As a result,
for [t], we will obtain multiple subsets that represent the outer part. Accordingly, we replace
the subset [t] in the subpaving Ti by the obtained outer subsets. In Algorithm 6, the stack
data structure may also be replaced by a queue.
We can proceed similarly regarding the map hull. The only difference is that only subsets inside
the hull should be considered. As a result, we can use a similar algorithm as presented in
Algorithm 6. The main difference is that instead of inserting and bisecting [tout], we need to
apply the steps to [tin].
When we apply the No-Overlap Contractor on the initial set of poses as depicted in Figure 5.5b,
the output subpaving that only contains the feasible subsets is shown green in Figure 5.5c. In
Figure 5.7, we can see the result after applying the sequence of pose updates with odometry
data and no-overlap contractions for different orientations. Please note the white "shadows"
of the buildings in the green feasible sets Pa, Pb and Pc in the figures 5.7a, 5.7b and 5.7c
depending on the different orientation Φa, Φb and Φc.

5.2.4 No-Cross Contractor – LiDAR Data in Visible Region

The LiDAR provides information on the visibility of the scene. If a specific part of the scene
reflects a laser beam, we can deduce the information that between the measured point and the
LiDAR sensor, there cannot be any other solid object. Due to the height and solid structure of
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Algorithm 6: No-Overlap Contractor
Data: Initial set of poses Pi =

(
Ti Φi

)T
, the building polygons are B = {B1, ...Bm}

Result: Feasible set of poses P∗i that do not overlap with the buildings B
1 Function NoOverlapContractor(Pi,B)
2 T ∗i = ∅;
3 S := Ti;
4 while S 6= ∅ do
5 [t] := top(S);
6 B∗ = getCloseBuildings([t], B);
7 for B : B∗ do
8 ([tin], [tout]) = Spoly([t], B);
9 if [tin] ∩ [tout] = ∅ then

// Insert to subpaving.
10 T ∗i = T ∗i ∪ [tout];
11 else
12 if w([tout]) > ε then

// Bisect [tout]
13 ([tl], [tr]) = bisect([tout]);
14 S.push([tl]);
15 S.push([tr]);
16 else

// Insert to subpaving.
17 T ∗i = T ∗i ∪ [tout];
18 end
19 end
20 end
21 end

22 P∗i =
(
T ∗i Φi

)T
;

23 return P∗i ;

building facades in urban environments, almost all laser beams are blocked – that means the
visibility region is restricted – by the building walls. Nevertheless, some exceptions exist: Open
doors and non-solid windows allow laser beams to capture measurements beyond the walls. As
the modeling depth of the map is limited to the outer geometric structure of the buildings,
windows or doors are not represented in the map. Generally, such openings are small compared
to the facades, so only a few laser beams shoot through. Consequently, only a few points are
captured beyond the facades, which we seek to filter out from the LiDAR point cloud. After
applying the filter, the assumption that a local range-and-bearing measurement cannot cross a
building wall becomes valid. This assumption provides another constraint, for which we have
implemented the so-called No-Cross Contractor. This contractor dismisses all infeasible poses
that lead to a crossing of a local observation with a building wall on the map.
Please note that this approach does not require the filter to delete all points other than those
on the facades. It only needs to delete potential points that lie beyond potential walls reliably.
That means points of objects on the street or trees, which are inside the visibility region,
satisfy the visibility constraint and represent excellent and reliable information for the No-Cross
Contractor.
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(a) Orientation Φa. (b) Orientation Φb. (c) Orientation Φc.

Figure 5.7: Subpavings to the sets of feasible poses to three different orientations after the
vehicle has moved forward and the No-Overlap Contractor was applied. The
orientation interval is visualized in the upper left corner. Figure 5.7b encloses the
correct orientation. The robot moves straight forward. The subpavings are updated
according to the orientation.

Figure 5.8: Raw LiDAR data. The points are colored based on the z-component.

Filter

An exemplary raw LiDAR scan is depicted in Figure 5.8. The top view of the same scene is
depicted in Figure 5.9a. Note that in this exemplary scene, there is an open garage door, which
can be well seen in the point cloud depicted in Figure 5.8. The corresponding point cloud in
the top view in Figure 5.9a shows that some LiDAR points are also captured inside the garage
as the door is open. The goal of the filter is to filter out such structures so that the no-cross
assumption becomes valid. For filtering the point cloud, we only consider the mid-points of the
LiDAR measurement boxes.

The most restrictive points considering the no-cross constraint are those points that capture
the building facades. As illustrated in Figure 5.8, those points usually form clusters on well-
defined planes. As we perform the pose estimation in 2D, the facades are represented by
points that lie on long lines. As a result, by clustering the points into line segments, we can
choose only comparatively long line clusters. The core idea behind this approach is that points
captured behind the walls through small openings cannot form large lines such as building
facades in the LiDAR scan. By doing this, we can delete potential points behind building
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(a) Raw LiDAR data in to view. (b) Virtual 2D scan. (c) Fully filtered.

Figure 5.9: Top view of the LiDAR data at different filtering stages. Figure 5.9a shows the raw
data from the solid state LiDAR. The points are colored based on the elevation
axis. Figure 5.9b depicts the filtered point cloud (red) after applying the modified
virtual 2D scan method [142]. Figure 5.9c presents the results after applying line
clustering and filtering. The point cloud is colored blue.

facades as shown in Figure 5.9b. Our filtering approach consists of three steps: First, we
project the 3D point cloud to a virtual 2D scan. Second, we cluster the points into lines and
select the largest clusters with the highest support. Third, we subsample the clusters to obtain
a sparse representation of the building facades.

We first need to project the 3D LiDAR point cloud to 2D to extract line segments. Therefore,
we use a similar approach to the virtual 2D scan method in [142]. The virtual 2D scan method
first projects all 3D points onto the plane by setting the z-component to zero. Then, the points
are sorted into horizontal angle bins. The size of the bins depends on the horizontal angle
resolution of the LiDAR sensor. By selecting the point with the largest distance to the LiDAR
origin for each angle bin, the authors obtain a 2D boundary map for indoor environments.
However, we apply our algorithms in outdoor environments, where we do not always have
enclosing boundaries. That is why we modify the boundary point selection. Similar to [142],
we also sort the points based on the horizontal angle αh = atan2(y, x) using the x- and
y-component of the points into horizontal angle bins. We further sort the points within each
angle bin based on the horizontal distance dh =

√
x2 + y2 into distance bins. As a result,

multiple distance bins are associated with each angle bin, and to each distance bin, multiple
points are associated. We determine the vertical span angle of the associated points for each
angle and associated distance bin. That means, for each point associated with the distance
bin, the vertical angle αv = atan2(

√
x2 + y2, z) is determined, and we store the maximum

and minimum vertical angles. Hence, for each distance bin, we associate the vertical angle
span determined by the difference between the minimal and maximal vertical angles. For each
horizontal angle bin, we now select an arbitrary point from the associated distance bin with
the largest vertical angle span. This selection algorithm exploits the property that points on
facades usually span a large observation vertical angle. Then, we project the selected points to
the x-y plane.

By applying this selection algorithm to the LiDAR scan shown in Figure 5.9a, we obtain the
modified virtual 2D scan depicted in Figure 5.9b. Up to this point, we managed to reduce the
3D scan to a 2D scan that contains candidate points that may lie on facades. Now we need to
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Algorithm 7: Line clustering of ordered points.
Data: Set of points P = {p1, ...,pn}, where pi =

(
x y

)T
, that are ordered based on the

horizontal angle; Maximal line distance dmax for association.
Result: Set of line clusters C = {L1, ...Lm}, where Li = p1, ...,pk is a set of points that

correspond to a line.
1 Function LineClustering(P )
2 C = {};
3 while size(P ) > 2 do

// Initialize set of points corresponding to a line.
4 L = {};

// Retreive neighboring points.
5 p0 = P [0];
6 p1 = P [1];
7 L.insert(p0);
8 L.insert(p1);
9 P.erase(0);

10 P.erase(1);
// Compute the line paramters n and d.

11 d = p0 − p1;
12 α = atan2(−d.x,d.y);

13 n =
(
cosα sinα

)T
;

14 d = nT · p0;
// Check line distances to all remaining points.

15 for i = 0; i < size(P ); i = i+ 1 do
16 pi = P [i];
17 if |d− nT · pi| ≤ dmax then
18 L.insert(pi);
19 P.erase(i);
20 i = i− 1;
21 end
22 end
23 C.insert(L)
24 end
25 return C;

cluster the points into line segments. Our clustering algorithm is described in Algorithm 7. The
general idea is to determine the line spanned by consecutive pairs of points and to associate
points in the vicinity of the line. Therefore, we first need to select consecutive points in the
ordered set of points P . In Algorithm 7, the first and second points in the list are selected.
Those selected points are erased from the list of non-clustered points. From lines 11 to 14,
the 2D line parameters are determined. Then, we associate all the remaining points of the
non-clustered list closer than dmax with the line. Therefore, we generate a local line list L and
delete those points from P . After iterating through all remaining points, we compute the new
cluster by repeating the association algorithm.

In Algorithm 7, we exemplarily select the pairs of points that are immediate neighbors to
determine a line. Instead, it is also possible to select close points by, for instance, taking every
fifth point. This reduces the noise of the line parameters but may lead to neglecting short-line
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Outside building
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Figure 5.10: No-Cross Contractor variables. The building B is visualized in black. One wall
represented by the line segment spanned by a and b is highlighted blue. The
rotation corrected local measurement is m̂ represented by the red vector.

clusters. As we are interested in comparatively large lines in the 2D virtual scan, skipping a
few points to compute the line has proven to be a good choice. In our current implementation,
we take every fifth point to determine the local line.

Algorithm 7 provides a set of line clusters from which we only select those that fulfill the
following constraints. First, the candidate cluster must contain a minimal number of points.
Second, the extracted candidate clusters must exceed a minimum length threshold. The
parameters depend on the data and the map topology. For our datasets, we choose a minimal
number of 6 points and a minimal length of 7.5 m as those parameters lead to the best results
in our empirical studies.

Depending on how well facades are captured by the LiDAR scanner, the density of points
may vary in the virtual 2D scan. In the case of very dense points, the No-Cross Contractor
does not need to consider all points of a selected cluster to dismiss infeasible parts. To ensure
the efficient performance of the No-Cross Contractor, we further subsample from the selected
clusters by homogeneously selecting points along the lines. We subsample one point every 1 m
along each line. After applying all filtering steps to the LiDAR data depicted in Figure 5.9a,
the result is shown in Figure 5.9c.

No-Cross Contractor

The No-Cross Contractor contracts the set of poses to the feasible set, for which each filtered
local measurement does not cross a mapped wall. As buildings are represented by polygons,
a wall is modeled by a line segment between consecutive corner points. By a blue line, we
illustrate an exemplary line segment in Figure 5.10. The corner points a and b that span the
line are highlighted in blue. The corresponding building is colored black. The contractor is
applied to each subset [t] of the translation subpaving Ti of the set of poses Pi =

(
Ti Φi

)T
.

First, we must determine the potential line segments that may cross the local measurements.
We determine the search radius by adding the length of the half-diagonal of [t] to the distance
of the farthest measured point pfar. The radius search is performed with the KD-Tree. Hence,
the radius search provides a list of buildings in the vicinity of [t].
Now, we apply the No-Cross Contractor for each building and each line segment of the building
polygon. Let L = {[a], [b]} be a line segment and let [Lm] be a filtered local measurement
described in the local LiDAR frame taking the sensor uncertainty into account. For reader
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(a) Orientation Φa. (b) Orientation Φb. (c) Orientation Φc.

Figure 5.11: Subpavings to the sets of feasible poses to different orientations after applying the
No-Overlap and the No-Cross Contractor. Using the results shown in Figure 5.7
and applying the No-Cross Contractor with the filtered point cloud in Figure 5.9c,
the resulting subpavings to the corresponding orientations are shown in the figures.

convenience, we omit the map frame index M . Note that we also consider the map uncertainty
by inflating the corner points a and b also to boxes. The No-Cross Contractor contracts
[t] such that the observation line spanned by [Lm] does not intersect with the map line
segment L. As [Lm] is described in the local LiDAR frame, the observation vector needs to be
transformed to the map frame by rotating Lm by ϕi to m̂ for all Lm ∈ [Lm], m̂ ∈ [m̂] and
ϕi ∈ Φi. By doing this, we preserve the local observation as a local vector but only modify the
orientation from the LiDAR frame L to the map coordinate frame M . The no-cross constraint
is formulated by 

ab = b − a,
am = m̂ + t − a,
at = t − a,
ta = a − t,
tb = b − t,
z1 = det(ab, am) · det(ab, at),
z2 = det(m̂, ta) · det(m̂, tb),
max(z1, z2) > 0

, (5.3)

for all a ∈ [a], b ∈ [b], m̂ ∈ [m̂] and t ∈ [t]. Figure 5.10 depicts graphically the geometric
correspondence between the variables. In the graphical example, (5.3) is not satisfied because
m̂ and the line segment between a and b intersect. The no-cross constraint is only satisfied if
the local observation m̂, does not cross the line segment spanned by a and b. The No-Cross
Contractor implements the constraints in a forward-backward manner [49].
The No-Cross Contractor is applied to each local measurement and each line segment of each
building in the vicinity. The intersection over all contracted results replaces the former subset
[t] in the subpaving Ti of the set of poses Pi.
Applying the No-Cross Contractor to the set of poses in Figure 5.7, the resulting contracted
subset with the local observations shown in Figure 5.9c is depicted in Figure 5.11. Note that
the no-cross constraint makes discarding large parts of the set of poses possible. The local
measurements provide strong constraints on the set of feasible poses. However, the no-cross
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(a) Orientation Θa. (b) Orientation Θb. (c) Orientation Θc.

Figure 5.12: Subpavings after applying the GNSS Contractor. Only feasible sets from Fig-
ure 5.11 that are inside the circular uncertainty region of the GNSS-measurement
are kept.

constraint is only valid if the filter reliably discards measurements that shoot through small
openings in the facades. Hence, we should choose the filter parameters conservatively so that
the no-cross assumption is always valid. On the downside, the conservative nature of the filter
also discards good and restrictive points that will help the No-Cross Contractor to dismiss
infeasible parts more efficiently. We refrain from using a q-relaxed intersection as the number
of no-cross violations is unknown beforehand and requires further parameter tuning.

5.2.5 GNSS Contractor – Vehicle Inside GNSS-Region

The GNSS Contractor cuts off the region, which is inconsistent with the GNSS-uncertainty
region. GNSS can be unreliable in urban environments, so that occasional dropouts may occur.
We only apply for the GNSS Contractor if the global position is available. However, the global
position can be severely corrupted. Hence, we account for the global positioning error by
considering an uncertain region. We define the border of this region by a circle around the
global position. The radius of the circle describes the uncertainty. The GNSS Contractor
implements a forward-backward contractor [49] for the circle equation

(tx − px)2 + (ty − py)2 = r2, (5.4)

where tx ∈ [tx] and ty ∈ [ty] is the vehicle position, px ∈ R and py ∈ R is the GNSS-based
position transformed to the map frame and r ∈ [r] is the uncertainty radius for the GNSS-based
position. We set [r] = [0, 50] in our experiments. Figure 5.12 illustrates the GNSS contractor.
Note that large parts of the feasible set from Figure 5.11 are dismissed by the GNSS Contractor.
Especially in symmetric scenes where multiple disconnected feasible solutions can co-exist, the
GNSS data provides precious information, although it can be comparatively uncertain.

5.2.6 Rotation bisection

The introduced contractors are only applied on the translation subpaving of each set of poses
Pi,t (rotation bin) where each Pi,t is processed by an independent thread in parallel as shown in
Figure 5.13. Each sub-figure in Figure 5.13 represents a rotation bin. The according orientation
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Figure 5.13: Rotation bins. The contractors are applied to each rotation bin independently.
The corresponding rotation interval to the bin is visualized in the top left corner.
The feasible set of translations is shown in green. In total, 25 rotation bins are
considered here.

set Φi,t is illustrated in the top left corner, and the set of translations Ti,t is colored green. The
corresponding set of rotations Φi,t is not directly contracted. Up to now, we only considered
the passive contraction of the feasible set of rotations for the case when the Ti,t of Pi,t becomes
empty. In this case, we can dismiss Φi,t from the feasible set of orientations as illustrated in
Figure 5.14a. However, uncertain odometry data provided by our visual odometry module also
let the set of orientations Φi,t for each bin grow. We consider further bisection of the rotation
parameter to improve the passive rotation contraction.

If a rotation bin Pi,t is identified as infeasible, since the translation Ti,t became empty
(cf. Figure 5.14a), the workload on the CPU decreases since one thread terminates. We use the
freed thread to process a new rotation bin. Therefore, we select the set of poses Pj,t that has
the largest translation subpaving Tj,t. We perform the rotation splitting by bisecting Φj,t to
Φjl,t and Φjr,t. Each of the obtained rotation intervals forms a new rotation bin. Hence, from
Pj,t =

(
Tj,t Φj,t

)T
we obtain Pjl,t =

(
Tj,t Φjl,t

)T
and Pjr,t =

(
Tj,t Φjr,t

)T
. Note that

the translation parts of Pj,t, Pjl,t and Pjr,t are identical since we simply copy the translation
subpaving Tj,t from the initial set Pj,t. Only the rotation parameters are different. While we
exchange Pi,t by Pjl,t in the ith thread, the jth thread continues the process on the right child
Pjr,t of the bisection. Figure 5.14b illustrates the rotation splitting.

While the rotation bin size can be chosen initially coarsely, the bisection narrows down
the feasible rotation by decoupling rotation subsets. Since this is done dynamically based
on the available computational resources, the workload is well-balanced along the trajectory.
Note that we only perform the rotation bisection if the orientation interval Φj,t exceeds a
defined threshold to avoid unnecessary bisections. This means that if the orientation interval is
comparatively small, we do not occupy the complete computational resources of the CPU.
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(a) Detection of infeasible rotation bins. The corresponding rotation interval is considered infeasible
if the set of translations becomes empty for a rotation bin. Hence the feasible set of rotations is
contracted. In this case, two rotation bins are detected as infeasible, indicated by a red cross.

(b) Bisection of the largest rotations bins. As infeasible rotation bins are detected as shown in
Figure 5.14a, the rotation bins are replaced by the right child of the bisection of the rotation bins
with the largest translation subset. Note that the rotation intervals of the obtained rotation bins
shrink. In this case, two rotation bins are replaced based on the bisection of the rotation bins
with the largest translation subpavings.

Figure 5.14: Bisection of the rotation intervals. As rotation bins are associated with threads,
rotation bins that are detected as infeasible are replaced by bisected rotation bins
to balance the workload and obtain optimal parallelism.
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(a) Feasible set. (b) Spread particles. (c) Resample.

Figure 5.15: Bounded Monte Carlo Localization. Figure 5.15a shows the set of feasible poses
in green. The image shows a snapshot of a trajectory. The red pose is the ground
truth vehicle pose for the snapshot. The red line visualizes the driven trajectory.
Figure 5.15b shows the randomly spread particles inside the feasible set. Blue
coordinate frames represent the particles. The aggressive resampling only permits
particles with very high weights, while other particles get omitted in this step as
visualized in Figure 5.15c

5.3 Bounded Monte Carlo Localization

The interval-based localization provides a feasible set of poses for the robot. This section
focuses on the most likely solutions within the feasible set. That means the feasible set can be
considered the exploration region where we seek to find the most consistent solution by applying
a modified MCL approach. Classical MCL approaches do not track the feasible solution. That
is why those methods need to keep track of a large variety of particles along the trajectory so
that they do not lose particles that may be good candidates. That implies that the classical
approach needs many particles. Since in our hybrid approach the interval method already
provides the feasible solution set, we only need a few particles in combination with an aggressive
resampling procedure in our proposed bounded MCL.

To efficiently spread the particles, we consider the rotation bins of the interval method.
Each set of poses Pi represents a rotation bin and the corresponding feasible position of the
vehicle. That is why we allocate for each Pi a specified number of particles that should be
spread within the feasible solution set. In our experiments, we set the maximal number of
particles for one subset Pi to 20. This is illustrated Figure 5.15. While Figure 5.15a displays
all feasible sets of poses determined by the interval-based approach, Figure 5.15b shows the
randomly spread particles all over the feasible set.

For each time step, each particle is updated by the odometry as explained in Subsection 5.2.2.
The update also represents a random process where we sample from a uniform error distribution.
The update step may cause particles to leave the feasible solution set. In that case, we delete
those particles, as the represented solution is not considered feasible. For each deleted particle
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Figure 5.16: Mapping function from distance to weight.

associated with a rotation bin Pi, we randomly spread a new particle inside the feasible solution
set in Pi. This enables us to check for better solutions in the feasible set.

We weight the particles based on the virtual 2D scan extracted from the LiDAR data as
introduced in Subsection 5.2.4. Therefore, using the pose of the particles, the local LiDAR
points are transformed from the local frame to the map frame. For each transformed LiDAR
point, we determine the distance to the nearest facade. Therefore, we employ the KD-Tree
for a nearest-neighbor search. The particles are weighted based on the transformed points’
proximity to the nearest facade. To map the distance of a transformed point to a weight, we
choose the modified sigmoid function

fweight(d) = 1− 1
1 + exp(−7 · (|d| − 1)) . (5.5)

The variable d defines the orthogonal distance of the transformed point to the closest facade.
In Figure 5.16, the mapping function is plotted. As shown in Figure 5.16, the closer a point
to a facade, the higher the weight of this local measurement. If the local measurement has a
distance of more than 2 m, it is weighted zero. We define the particle weights as the sum of
all local measurement weights. If all transformed local measurements fit well to the facades,
the particle’s weight will be the number of all local measurement points.

We perform a weighted resampling in each iteration step to replace particles with low weights.
High-weighted particles are directly chosen for the next iteration step and are unaffected by
the resampling process. Particles are classified as highly weighted if their weight is at least
90 % of the maximal weight among all particles in the current iteration step. All those particles
that have lower weights are resampled from the high-weighted particles so that all low-weight
particles are replaced. In the resampling process, we randomly manipulate the pose of the
particle so that we do not precisely resample a copy of the particle but retrieve a similar one.

Hence we have two sources of producing new particles: First, as explained above, for each
deleted particle – since they exited the feasible set – a new particle is randomly generated in
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the feasible region. This makes exploring regions inside the feasible set that are not covered
by particles possible. Second, we generate new particles from the high-weighted particles by
applying minor random manipulations on the pose of the particles. The odometry uncertainty
determines how large the manipulations are. This enables a local exploration of the region
in the vicinity of high-weighted particles, making convergence to the correct pose possible.
Figure 5.15c shows the particles inside the feasible set after applying the aggressive resampling
approach on the particles shown in Figure 5.15b. Note that only the few best particles can
survive this resampling procedure.

The combination of deleting infeasible and randomly spreading new particles leads to fast
convergence of the bounded MCL to the most likely solution. Note that this resampling
procedure is only possible because the interval method provides the feasible set of poses at
each time step so that particles are only spread in those feasible regions. We do not depend
on a large set of different particles since, in the case of particle depletion, the interval-based
approach provides us with the region where new particles can be spread. Hence, in the case of
relocalization, we do not have to spread particles all over the map again as classical MCL does.
Instead, we can concentrate on the feasible region by spreading only in those parts, increasing
the convergence speed.

5.4 Module Output
The first module in our pipeline is the visual odometry. The module provides the relative motion
of the vehicle described in a defined reference frame. However, the odometry approach suffers
from drift as we only consider local information. That is why we have to incorporate global
information into the pose estimation. Buildings in urban environments represent distinguishable
and detectable landmarks that we can use for localization. Additionally, building maps are
publicly available, making the localization approach globally applicable. Nonetheless, as the
visual odometry only provides the relative motion of the vehicle described in a local reference
frame, we do not know where the vehicle is located initially. Especially in urban canyons, where
GNSS measurements are very inaccurate due to multipath effects and blockage, the initial
position uncertainty can be very high. In this chapter, we have presented a hybrid localization
method that can cope with such large uncertainties and provides, on the one hand, a feasible
set of poses that satisfy simple but always valid constraints and, on the other hand, most likely
poses within the feasible set represented by particles. As a result, the method presented in
this chapter solves the localization problem under large uncertainties, providing a first coarse
estimate of the vehicle’s pose.

Nonetheless, the feasible set can be comparatively large since only very pessimistic but
always valid constraints determine the feasible set of poses. However, by exploiting the best
particle estimate on the vehicle pose, we can improve the localization result: Up to now, we did
not consider for the set-membership-based approach the direct association of LiDAR points to
building facades. This becomes feasible now since the coarse localization already provides an
acceptable initial estimate of the vehicle’s pose. The association-based refinement of the vehicle
pose in the building map is introduced in the next chapter, which completes our HyPaSCoRe
Localization pipeline.
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Figure 6.1: The refined localization is the third module in the HyPaSCoRe Localization pipeline
and refines the localization estimates provided by the coarse localization module.

The previous chapter introduced the coarse localization that uses the ego-motion information
from the visual odometry and the building map to localize the vehicle. However, the estimation
of the coarse localization module can be very uncertain, as the feasible region is only contracted
on very pessimistic but always valid constraints. Furthermore, the aggressive resampling method
in the bounded MCL provides fast convergence. However, it suffers from error-prone tracking:
The method can be rapidly attracted by alternative solutions inside the feasible set if the
observation model does not provide a well-distinguishable particle weighting. Since the vehicle
is equipped with LiDAR sensors that provide measurements with centimeter accuracy, the
coarse localization does not fully exploit the potential of the LiDAR sensor. In this chapter we
bridge this gap and provide a stable localization estimate.
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Figure 6.2: Overview. From the point cloud, lines are extracted and associated with the facades
on the map. By applying interval analysis, we narrow down the consistent set of
poses based on the association. The set of positions is described by a polygon
(green), and the orientation (blue) by an interval. We find the most likely solution
within the consistent set using a bounded optimization method.

We have not considered a point-to-facade association of LiDAR measurements for the
interval-based localization. The association was not possible until now because at least a rough
estimate of the vehicle’s location was needed. Since the previous chapter provided the tools
to solve the coarse localization and particles inside the feasible set indicate which pose is the
most likely one, we can perform the data association that will provide further constraints on
the location, significantly reducing the pessimism as shown in the localization pipeline overview
in Figure 6.1.

This chapter presents a real-time capable hybrid interval-probabilistic refined localization
method that improves the coarse localization results. The overview of our method is depicted in
Figure 6.2. The fundamental difference between coarse and refined localization is the knowledge
about the initial pose. While for the refined localization, the initial pose is known with a small
uncertainty, for the coarse localization, the initial pose information is very uncertain or even
unknown. This chapter assumes that the initial pose is known from the coarse localization.
While association-based localization provides more accurate localization results than the coarse
localization, it comes with the cost of stronger assumptions: If we associate a point to a facade
in the map, we need to consider geometric assumptions that allow us to suppress alternative
constellations. Hence, we cannot guarantee that a considered association is correct. As a
result, we cannot guarantee that the localization result will be correct – we only know that it
is consistent to the association. That means, in this chapter, we gain more accuracy for our
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localization result with the cost of less integrity. The obtained solution is evaluated in the
HyPaSCoRe Localization regarding its reliability. If the reliability is high, the consistent set
provided by the refined localization is used to contract the pessimistic feasible set from the
coarse localization.

Our hybrid approach consists of two steps. First, the interval-based approach narrows down
the orientation to a smaller interval. It provides a set described by a minimal polygon for the
vehicle’s position that encloses the consistent set of poses by associating local LiDAR points to
building facades. Second, we perform a probabilistic MLE to determine the most likely solution
within the determined consistent set. The MLE is converted into a least-squares problem that
is solved by an optimization approach that considers the bounds of the solution set so that
only a solution within the consistent set is selected as the most likely one.

The approach has already been published in [143]. In the scope of this work, we provide
further insights into our approach and present a more detailed description of our method.
Furthermore, this work aims to embed the method presented in [143] in the entire HyPaSCoRe
Localization pipeline.

6.1 Task Description, Notations and Assumptions
The initial pose of the robot is known up to a defined uncertainty. The goal of our hybrid
interval-probabilistic method is to provide the set of all consistent poses MP4Lt and the most
likely pose MT̂∗Lt ∈

M P4Lt of the vehicle for each time step in a given map that consists of
building footprints using 3D LiDAR data. We define a single pose MT̂Lt =

(
tx ty ϕ

)T
by

two translation parameters and one orientation parameter in the 2D space. Accordingly, a set
of poses MP4Lt = {MT 4Lt , [MϕLt ]} is described by a polygon MT 4Lt that defines the translation
and an interval [MϕLt ] that defines the set of orientations. We describe a polygon MT 4Lt by its
border defined by an ordered set of corner points C = {Mc1, . . . ,

Mcn} with Mci =
(
x y

)T
for n, i ∈ N and x, y ∈ R. Hence, the border of MT 4Lt is determined by the line segments
between corner points. We define a position

(
tx ty

)T
∈M T 4Lt by a point that lies within or

on the border of MT 4Lt . Note that the polygonal representation of the feasible set of positions
is a generalization of the classical interval-based 2D box representation. That means, if the
polygon simplifies to an axis-oriented rectangle MT ′Lt , the polygon is well represented by a box
that consists of two intervals

(
[tx] [ty]

)T
⊆M T ′Lt . As the translation part of MP4Lt always

refers to a polygonal set representation, in the scope of this chapter will omit the polygon
qualifier 4, and we will write MPLt .

The initial pose of the robot is known for a defined uncertainty. This uncertainty cannot
be arbitrarily large. As the proposed method in this chapter cannot cope with ambiguous
localization results, we assume the initial pose uncertainty to be large – but small enough
to unambiguously match local data to map facades. Further, without loosing generality we
assume the initial position MTL0 ⊇

(
[tx,0] [ty,0]

)T
to be a box. Hence, we approximate the

feasible set of positions from the coarse localization by enclosing it with an axis-aligned box.
Given the map and the LiDAR data, the goal of our interval approach is to determine a

minimal position polygon MTLt and the orientation interval [MϕLt ] that enclose all vehicle
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poses that are consistent with the point-to-facade associations. We define a polygon as minimal
concerning a set S if no other polygon has a smaller area for a finite number of corners. The
bounded MLE aims to find the most likely pose among the consistent set of poses determined
by the interval-based method.

6.2 Interval-based Refinement

The goal is to refine the localization estimate from the coarse localization. Therefore, we need
to adapt the available data accordingly. Since the LiDAR provides 3D boxes as measurements
under consideration of an interval-based sensor error model, we first need to project the boxes
to 2D by omitting the elevation axis.
The interval-based refinement approach consists of five steps. First, the previous localization
estimate needs to be updated by the vehicle motion provided by the visual odometry module as
presented in Subsection 6.2.1. Second, we need to determine which of the building facades are
seen. Therefore, we introduce the map line selection in Subsection 6.2.2, which determines the
association between local LiDAR measurements and the building facades on the map. That
means clusters of local measurements are associated with the facades in the vicinity. However,
the association does not distinguish between facade and non-facade measurements. Hence, the
association step may also associate, for instance, points that lie on balconies, ornaments, or
close objects that are seen in the LiDAR sensor. The goal of the third step – the interval-based
Hough Transformation (iHT) – is to extract a line with the highest support from each of
the clusters of projected LiDAR boxes that correspond to the associated facade. The iHT is
presented in Subsection 6.2.3. Based on the extracted local line parameters and the associated
facades in the map, in the fourth step presented in Subsection 6.2.4, we contract the orientation
interval of the pose to the set of consistent orientations under consideration of the association.
In the fifth step in Subsection 6.2.5, we determine the minimal position polygon by exploiting
the detection accuracy of the facades in the local data and considering the building geometry.
For reader convenience, we introduce an exemplary scenario in Figure 6.3 to visually describe
the steps in our approach. The exemplary building map is shown in Figure 6.3a. The map
frame M is colored black. The initial pose parameters are visualized in green. As defined above,
the initial position is defined by a box MTL0 and the orientation interval [MϕL0 ] is represented
by a set of headings. In Figure 6.3b, the local LiDAR measurement boxes are illustrated in
blue. The local LiDAR coordinate frame Lt is also colored blue.

6.2.1 Odometry Update

Suppose the refined localization has not been initialized. In that case, we assume an initial
position MTL0 described by an interval box and the initial orientation [MϕL0 ] described by an
interval to be given. In our HyPaSCoRe Localization system, the coarse localization provides
this initial estimate. However, if the localization has already been initialized, the polygon
MTLt−1 and the orientation interval [MϕLt−1 ] from the previous step are available. To obtain
an initial estimate on the set of poses for time t based on the previous set t− 1, we predict
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MTL0

[MϕL0 ] Map

(a) Map and initial pose. (b) Local LiDAR measurement boxes.

Figure 6.3: Exemplary scenario. Figure 6.3a shows a map and the initial pose estimate. The
map components are colored black. Fig. 6.3b shows the local measurements, which
are colored blue.

the vehicle pose using odometry data. Therefore we use the interval-based odometry estimate
from the visual odometry module.

To predict the orientation interval, the same approach as presented in Subsection 5.1.1 by
simply adding the relative orientation ∆ϕ to the orientation at time t− 1 can be used:

MϕLt =M ϕLt−1 + ∆ϕ. (6.1)

Note, that MϕLt−1 ∈ [MϕLt−1 ], ∆ϕ ∈ [∆ϕ] and MϕLt ∈ [MϕLt ] holds. Since we use the
interval extended addition operator, we obtain the predicted orientation interval [MϕLt ]. Since
[∆ϕ] has a non-zero width, the orientation interval will inflate by the odometry uncertainty.

While the rotation update is similar to the approach presented in Subsection 5.1.1, the
translation update is differently handled since we represent the translation MTLt−1 by a polygon
instead of a subpaving as we do in the coarse localization. Hence, at time t − 1 the set of
positions MTLt−1 is represented by a polygon with the corner points C = {Mc1, . . . ,

Mcn}. To
obtain the predicted set of poses for time t we transform the set MTLt−1 by the odometry
estimate [∆ϕ] and [∆t]. Unfortunately, we cannot directly apply interval tools to perform
the transformation as MTLt−1 is defined by points that define the borders of the set. One
possibility is to use subpavings as introduced in the coarse localization. However, this involves
more computation as we approximate the polygon by a set of smaller boxes. That is why we
approximate the polygon MTLt−1 by an axis-aligned box hull that encloses the polygon. This
enables the direct application of interval tools, with the cost of introducing further pessimism
due to the wrapping effect. Hence, we can use the same odometry update equation

MtLt =M tLt−1 +
(

cosMϕLt−1 − sinMϕLt−1

sinMϕLt−1 cosMϕLt−1

)
·∆t (6.2)

as presented in 5.1.1. Since all involved variables are described in the interval domain, we
obtain the predicted set of positions MTLt described by an interval box.
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6.2.2 Map Line Selection

In this step, we determine which local measurements can potentially be associated with the
facades. We consider two different approaches for the association. First, we introduce the
set-membership-based approach in Part 6.2.2.1. When the feasible set provided by the coarse
localization is small enough to make unambiguous matching possible, we can transform the
local measurements to the map frame using the feasible solution set. This inflates the local
measurements in the map frame. Based on the intersection, we can perform the association.

However, if the feasible solution set is comparatively large, the transformed measurements
will be large boxes. Hence, the boxes may intersect with multiple facades, so an unambiguous
association is impossible. We introduce the second method in Part 6.2.2.2 that represents
a typical probabilistic association. Therefore, the bounded MCL in the coarse localization
provides valuable probabilistic information: Although the feasible set may be large, particles
may form clusters in the most likely regions. If a particle cluster stably tracks the vehicle pose
and the particle weights are large for a comparatively large time interval, the particles are likely
to be close to the correct pose. Hence, we can use the particles with the highest weight to
perform the association.

6.2.2.1 Set-Memebership-based Association

To associate local LiDAR measurements with building facades, we first transform the local
measurements to the map frame by using the predicted estimate [MϕLt ] and MTLt . Hence,
the transformation of a local measurement box [Lm] to measurement [Mm] described in the
map frame is defined by

Mm =
(

cos (MϕLt) − sin (MϕLt)
sin (MϕLt) cos (MϕLt)

)
· Lm +

(
tx,t
ty,t

)
, (6.3)

for Mm ∈ [Mm], MϕLt ∈ [MϕLt ], Lm ∈ [Lm] and
(
tx,t ty,t

)
∈M TLt . We determine [Mm]

by applying interval operations in (6.3). As [MϕLt ] and MTLt are uncertain, the interval
operations propagate the uncertainty to the estimate of [Mm], so that the measurement boxes
inflate in the transformation step. For the scenario depicted in Figure 6.3, the result of the
transformation is illustrated in Figure 6.4a.

The transformation of the local measurements [Lm] to the map frame enables us to
associate the local measurements to the map facades by simply checking for intersections: If a
transformed measurement [Mm] has a non-empty intersection with a facade in the map, we can
deduce that under the consideration of the initial pose uncertainties and LiDAR measurement
uncertainties that [Mm] can be a potential measurement on the facade. To identify if a box
has a non-empty intersection, we consider two constraints that must be fulfilled. For a given
facade Fi = {[Ma1], [ma2], [Mα], [Md]} a box [Mm] that satisfies both constraints i)

(
cos([Mα]) sin([Mα])

)
· [Mm] ∩ [Md] 6= ∅

ii) ([Ma1] t [ma2]) ∩ [Mm] 6= ∅
, (6.4)
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(a) Transform to map frame. (b) Intersection with Fi.
(c) Association in the local

frame.

Figure 6.4: As shown in Figure 6.4a, the boxes are inflated by the transformation from L
to M due to the predicted pose uncertainty. In Figure 6.4b, those boxes with
a non-empty intersection with a facade are associated with it. Based on the
association, Figure 6.4c shows the associated local box clusters.

has a non-empty intersection with Fi. The first constraint checks if [Mm] has a non-empty
intersection with the line spanned by Fi. Further, the second constraint validates if [Mm] is
within the line segment defined by the end and start point of Fi. If a measurement intersects
with a facade, we qualify the measurement as a potential facade observation. The presented
idea is very similar to the set-membership-based data association presented in [144] which
considers the constellation of the locally observed landmarks and the map. To ensure efficient
intersection checks, we only consider facades Fi that are in the vicinity of [Mm]. Therefore
we perform a radius search in the map KD-Tree, where the mid of [Mm] determines the
center and the half diagonal length of [Mm] the radius for the radius search. In Figure 6.4b,
the intersection-based association of the transformed boxes from Figure 6.4a is visualized.
Measurements that are associated with a particular facade are accordingly colored. Note that
those local measurements that do not intersect with any of the facades can be discarded since
those measurements cannot be potential measurements on the facade. Furthermore, boxes
that have intersections with multiple facades can also be associated with each of them. This
is not considered in Figure 6.4b for the sake of simplicity. Based on the association in the
map frame as illustrated in Figure 6.4b, we also know which measurement in the local frame is
associated with which facade in the map (see Figure 6.4c). As a result, the map line selection
segments the local measurement boxes into clusters associated with seen facades on the map.
This set-membership-based association approach was presented and evaluated in [143].

6.2.2.2 Probabilistic Association

The set-membership-based association considers the uncertainty of the current pose estimate
to perform the association of local LiDAR points to building facades. While this approach
provides reliable results, large uncertainties may hinder unambiguous association, making the
approach inapplicable. However, the bounded MCL in the coarse localization provides the most
likely poses represented by particles which we can use for the association. However, we cannot
guarantee that the most likely poses are close to the correct pose. To analyze if a particle can
be considered for the association, we consider the temporal stability of the particle. Therefore,
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Figure 6.5: Interval-based Hough Transformation. From a set of boxes, an accumulator is filled
using the angle-distance line parametrization. Each angle interval [α] generates a
distance interval [d] for a measurement [m].

we track the age of each particle in the coarse localization. Only if the considered particles
have survived a minimal number of iterations it is considered as stable. As a result, we choose
the particle with the highest weight that has survived a minimal number of iterations. This
particle provides the position vector and the orientation value as scalar values. We can use the
parameters to transform the local LiDAR point cloud to the map frame applying (6.3). Points
that are close enough to facades are associated. Hence, we utilize a simple nearest-neighbor
association representing a typical probabilistic method. Note that the association suppresses
possible alternative solutions and only considers the most likely one. However, this method
works well in practice since in the coarse localization particles form clusters in the feasible set
very rapidly. In the scope of this work, we will only evaluate the probabilistic approach since,
within the HyPaSCoRe Localization pipeline, this approach provides the best performance.

6.2.3 Interval-based Hough Transformation

The quality of the above-described association procedure severely depends on the uncertainty of
the predicted pose estimate [MϕLt ] and MTLt . The more uncertain the predicted pose estimate
is, the larger the transformed boxes [Mm] will be in the case of the set-membership-based
association. In the case of a probabilistic association, we may consider error-prone associations.
That means more non-facade measurements are qualified as potential candidates for the facades.
As a result, the associated clusters of local measurements, as illustrated in Figure 6.4c, will
contain local measurements that are not part of the bare planes that describe the facades. This
processing step aims to extract a line segment with the highest support from each associated
box cluster. Furthermore, we need to consider the uncertainty of the extracted lines using
intervals. Therefore, we introduce a novel interval-based Hough Transformation (iHT) similar
to the approach presented by Jaulin in [145].

A line is parametrized by the angle and the orthogonal distance as described in (2.73). As
our goal is to extract the line segment with the highest support from each associated box
cluster, the Hough space, into which we need to transform the local measurements, is spanned
by the two parameters. The Hough space is illustrated in the right part of Figure 6.5. In the
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Figure 6.6: Interval line with the highest support from the accumulator. Figure 6.6a shows
the approximation of an interval’s upper and lower bound. Figure 6.6b shows
the accumulator values. The interval line corresponds to the angle and distance
intervals hull enclosing the highest accumulator values.

left part, an exemplary cluster of boxes is shown. All the boxes are associated with a facade
according to the map selection procedure described above. Each clustered box is transformed to
the Hough space by taking (2.73) into account. This transformation is illustrated in Figure 6.5
for two exemplary boxes colored green and blue. Note that each box in the measurement space
generates a graph in the Hough space. However, to ensure an efficient representation, we
approximate the Hough space using a quantized accumulator, shown in Figure 6.6a. The main
advantage of the interval representation of the parameters is that intervals naturally comply
with quantizations. Hence, the transformation of boxes from the measurement space to the
Hough space is well represented by intervals. To build the graph in the Hough space for a given
box [m] =

(
[x] [y]

)
, we quantize the angle into smaller intervals. In our experiments, an

interval width of 0.5◦ has proven to be a proper quantization. For each of the angle intervals
[α] we determine the corresponding distance interval [d] for the box [m] by taking the line
constraint (

cos(α) sin(α)
)
·
(
x

y

)
− d = 0 (6.5)

into account. By applying a forward-backward contractor, the interval [d] is determined. We
perform this operation for all angle intervals [α] and obtain the corresponding distance intervals
[d] given a measurement box [m]. The resulting distance intervals to a corresponding angle
interval are depicted in the right part of Figure 6.5. The green measurement box in the left
part generates the sequence of green distance intervals, and the blue box generates the blue
sequence.
A distance interval [d] can partially overlap with a cell in the accumulator. The goal of the
accumulator is to count the number of contributions of measurements to each cell, which
represents a set of line parameters. To ensure an efficient accumulator representation, we
overestimate the uncertainty by taking the lowest upper bound and the highest lower bound
according to the quantization that includes the interval as shown in Figure 6.6a.
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If we build the accumulator for all the measurements, the cells of the accumulator represent
the support of a specific set of line parameters by the measured data. In our exemplary
case, where we only transformed two measurement boxes to the Hough space, the resulting
accumulator is shown in Figure 6.6b. In this illustration, we only show the non-zero entries
in the accumulator. Note that the accumulator value is two for those cells where the green
and blue graphs intersect. That means the blue and green measurement boxes support the
corresponding sets of line parameters. Hence, as we seek to find the line parameters with the
highest support in the measured data, we need to detect the cells with the highest accumulator
values. Therefore, we take the accumulator cell with the highest support v (high accumulator
cell value) and consider all the cells with an accumulator value higher than 0.95v. The cells
with high accumulator values will be close together for suitable line structures, as illustrated
in Figure 6.6b. However, no significant peak will be detectable in the accumulator for bad
line structures where the box cluster does not form a line-like structure. That is why we only
select clusters of cells in an accumulator supported by enough measurements (minimal cell
threshold) and have a significant peak so that 0.95v is five times higher than the average
non-zero cell value. The parameters are chosen empirically. This restrictive selection procedure
only considers cells with high support, and the extraction of the line parameters becomes
robust against artifacts in the measurements. In Figure 6.6b, the cell values of selected cells
are colored red. In this simple example, all the cells with an accumulator value of two are
further considered. We then take the hull of all selected cells in the Hough space so that we
get an interval for the angle [α] and for the distance [d] as illustrated in Figure 6.6b by a red
box. These parameters describe the set of lines with the highest support and incorporate the
uncertainty of contributing measurements.

Computing the accumulator of the hough space can become heavy in computation. However,
we can reduce the size of the Hough space by considering prior knowledge. By transforming
the associated map line from the map frame to the local frame using the initial pose estimate,
we obtain comparatively uncertain estimates for the local line parameters. However, the first
estimate of the local line parameter reduces the Hough space as we exploit the information
where we expect a line to be in the local data. This reduces computational costs as the
accumulator can be set smaller. On the downside, we are implicitly deciding which facade a
box cluster has to belong to. Consequently, ambiguous localization is suppressed. However,
this approach works well in practice with real data if the initial pose uncertainty is small enough
to avoid ambiguous matching.

As a result, for each box cluster the iHT determines the set of lines defined by the angle
[Lα] and the distance [Ld] that have the highest support. Furthermore, we can determine the
subset of boxes consistent with this parameter set using the accumulator as we track which of
the boxes contribute to which cell. Consequently, by choosing the two boxes [La1] and [La2]
among the supporting boxes that have the highest distance to each other we can describe the
line as a line segment – similar to the facade Fi. As a result, the iHT provides a local line
segment Li = {[La1], [La2], [Lα], [Ld]} that is associated with the facade Fi.
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6.2.4 Orientation Contraction

For each associated pair Li and Fi, the orientation is determined by the difference between the
line angles [Mαi] and [Lαi]. For n associated pairs, the orientation interval is determined by

[MϕLt ] = [MϕLt ]
⋂

i∈{1,...,n}
[Mαi]− [Lαi]. (6.6)

Note that two equivalent parameter sets can represent a line expressed by the angle and
distance parametrization since a line can be rotated by π. However, since we restrict the Hough
space based on the expected parameter set by transforming the associated map line to the
local frame, we ensure that the angle representation complies with the angle of the map line.
By doing this, we also bypass the modulo-2π problem.

6.2.5 Position Polygon

The distance parameter of the extracted line Li provides the orthogonal distance information
to the map line Fi. This means the vehicle’s position is restricted along the normal direction of
the facade Fi. In other words, the associated pair Li and Fi provides a stripe that is oriented
in parallel to Fi, which restricts the position in the normal direction of Fi. We illustrate this
constraint in Figure 6.7 by a green stripe. While the black line segment represents Fi and the
blue line segment Li, the green arrow illustrates the constraint in the lateral direction that
generates the green stripe that restricts the vehicle position. However, the normal direction
of Fi is not fixed since the angle parameter [Mαi] is an interval. Nonetheless, this parameter
mainly depends on the quality of the map. In practice, the interval width of [Mαi] is typically
small since the orientation uncertainty is small for the building maps that we use. Consequently,
we can approximate the orientation interval [Mαi] of Fi by a scalar orientation by taking the
mid Mαmid. As a result, Fi is approximated by a set of parallel lines as the orientation is
approximated to a fixed scalar. Accordingly, the position

(
tx ty

)T
has to satisfy

(
cos (Mαmid) sin (Mαmid)

)
·
(
tx
ty

)
= Md − Ld = d⊥, (6.7)

for unknown tx ∈ [tx] and ty ∈ [ty] and known Md ∈ [Md], Ld ∈ [Ld] and d⊥ ∈ [d⊥]. That
means an upper and lower line parallel to the facade can border the position. The position has
to be within the stripe as illustrated with the green stripe in Figure 6.7.

We can draw a further constraint from the association of Li and Fi. The finite length
of the line segments constrains the position along the facade Fi because Li and Fi need to
intersect. The orange arrow in Figure 6.7 illustrates this constraint. This means the line
intersection constraint restricts the set of feasible positions in the perpendicular direction of Fi.
The feasible region based on this constraint is colored orange. An interval line equation can
also define the orange stripe. Since the stripe is oriented perpendicular to Fi, the orientation
of the stripe is also approximated by a scalar angle determined by Mαmid + π

2 . However, the
distance parameter, which depends on the start and end points of the line segments, needs to
be determined. Therefore, we calculate the parameter [gd‖] that describes the set of distances
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Figure 6.7: Matched line segments and the predicted position provide constraints. The map
facade Fi is colored black, and the local line segment Li is blue. The position
is constrained along the normal of the line segment (green) and along the line
due to finite segment lengths (orange). Each line segment match provides two
parallel lines that border the feasible position. The predicted vehicle position further
constrains the consistent set visualized by gray stripes. The red polygon describes
the region consistent with the facade association and the predicted position.

of two arbitrary points on the line between the start point ga1 and endpoint ga2 for the map
line segment and a local line segment (g ∈ {m, l}). As we consider interval uncertainty, the
distance interval is defined by the hull

[gd‖] = [gnT ] · [ga1] t [gnT ] · [ga2], (6.8)

for gn =
(
cos (gα + π

2 ) sin (gα + π
2 )
)T

, gα ∈ [gα] and gn ∈ [gn] based on the corner points
of the line segments Li and Fi. Now we can describe the orange stripe by

(
cos (Mαmid + π

2 ) sin (Mαmid + π
2 )
)
·
(
tx
ty

)
= d‖, (6.9)

for known d‖ = Md‖ − Ld‖, Md‖ ∈ [Md‖] and Ld‖ ∈ [Ld‖] and unknown tx ∈ [tx] and ty ∈ [ty].
This constraint again introduces a stripe represented by an upper and lower line perpendicular



130 Chapter 6. Refined Localization

to the facade. As a result, each associated facade gives a stripe (pair of bordering lines) parallel
and perpendicular to the facade as shown in Figure 6.7.

Nevertheless, not only the associated facades constrain the set of positions. Also, the
predicted set of positions MTLt deduced from the previous estimate MTLt−1 using odometry
data constrains the set of positions. As introduced in Subsection 6.2.1,

(
[t′x] [t′y]

)T
=M TLt

is represented by an interval box. As the predicted box encloses the consistent set of positions,
[tx] ⊂ [t′x] and [ty] ⊂ [t′y] hold as further constraints on the set of positions. Since MTLt is axis-
aligned, we can represent the constraints in the same stripe form as for the facade association
as illustrated in Figure 6.7. Hence, the predicted position in the x-direction generates the
stripe constraint (

1 0
)
·
(
tx
ty

)
= t′x, (6.10)

with t′x ∈ [t′x]. The predicted position in the y-direction can be formulated as the constraint

(
0 1

)
·
(
tx
ty

)
= t′y, (6.11)

with t′y ∈ [t′y]. Both are visualized in Figure 6.7 by gray-colored stripes.
The intersection region of all the stripes represents the region of positions consistent with

the facade association and the predicted position. This region can be described by a convex
polygon and is illustrated in Figure 6.7 in red. That means since each seen facade in the
environment provides two stripes, in the case of m seen facades, we obtain 2m + 2 stripes.
The +2 stems from the predicted position using odometry data. The intersection of all 2m+ 2
stripes defines the feasible set of positions taking the observations and their uncertainties into
account.

We can formulate (6.7) and (6.9) for multiple facades as an interval linear equation system


cos(α1) sin(α1)
... ...

cos(αn) sin(αn)


(
tx
ty

)
=


d1
...
dn

 , (6.12)

where each facade contributes two rows, tx ∈ [tx] and ty ∈ [ty] are unknowns, and d1 ∈ [d1]
and dn ∈ [dn] are described by known intervals. Note that due to the approximation of the
orientation uncertainty of the map facade by a scalar, the matrix on the left side of the equation
is a matrix with scalar entries. Hence we can rewrite (6.12) to the common form A · t = d
with t ∈ [t] and d ∈ [d]. In interval analysis, efficient tools exist to determine the smallest
axis-aligned box

(
[tx] [ty]

)T
enclosing the solution space that satisfies the linear equation

system (6.12) [49]. However, we want to determine the exact, minimal polygon described by
the corner points. Therefore, we propose a novel method illustrated in Figure 6.8 exploiting the
parallel border lines of each stripe. The corresponding algorithm is presented in Algorithm 8.

Each row in (6.12) corresponds to a stripe bordered by an upper and lower line defined by
the interval distance [di]. As a consequence, from each row, we obtain two parallel lines. In
Figure 6.8, we illustrate three stripes (red, blue, and green) with the upper and lower border
lines. We first determine all possible intersections between the bordering lines as shown in
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Algorithm 8: Polygon Corner Extraction
Data: Linear interval equation system A · t = d with t ∈ [t] and d ∈ [d] as presented in

(6.12)
Result: Set of corner points C, that defines a polygon enclosing consistent set of positions [t]

1 Function LineIntersection(n1 =
(
n1,x n1,y

)T
,d1,n2 =

(
n2,x n2,y

)T
,d2)

// Compute the intersection of two lines described in the normal form.

2 y =
d2−

n2,x
n1,x
·d1

n2,y−
n2,x
n1,x
·n1,y

;

3 x = d1−n1,y ·y
n1,x

;

4 return
(
x y

)T
;

5 Function FeasiblePositionPolygon(A,[d])
// Initialize empty set of corner points

6 C = ∅;
// Compute all intersections between the border lines of the stripes

7 for i = 0; i < len([d]); i+ + do
8 for j = i+ 1; j < len([d]); j + + do

// Get first stripe
9 ni = A.getColumn(i)T ;
10 [di] = [d].getColumn(i);

// Get second stripe
11 nj = A.getColumn(j)T ;
12 [dj ] = [d].getColumn(j);

// Compute intersections
13 p1 = LineIntersection(ni, [di].lb(),nj , [dj ].lb());
14 p2 = LineIntersection(ni, [di].lb(),nj , [dj ].ub());
15 p3 = LineIntersection(ni, [di].ub(),nj , [dj ].lb());
16 p4 = LineIntersection(ni, [di].ub(),nj , [dj ].ub());
17 C.push_back({p1,p2,p3,p4});
18 end
19 end

// Check which of the intersection points are inside the stripes
20 for i = 0; i < len([d]); i+ + do
21 ni = A.getColumn(i)T ;
22 [di] = [d].getColumn(i);
23 αi = atan2(ni,y, ni,x);

24 R =
(

cos (αi) − sin (αi)
sin (αi) cos (αi)

)
;

25 for j = 0; j < len(C); j + + do
// Rotate the intersection point to stripe-oriented frame

26 p̂ = R · C[j];
27 if not([di].contains(p̂x)) then

// p is not inside the stripe, delete p from C
28 C.erase(j);
29 j −−;
30 end
31 end
32 end
33 return C
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(a) Intersections. (b) Deletion. (c) Polygon.

Figure 6.8: Determine the polygon from a set of stripes. Figure 6.8a shows all intersections of
the bordering lines of the stripes. Iteratively deleting the points if they do not lie
within the stripes as illustrated in Figure 6.8b, the polygon corners are determined
as shown in Figure 6.8c, that define the borders of the feasible solution set.

Figure 6.8a with red circles. In Algorithm 8, the computation of all intersection points is shown
in lines 7 to 19. Note that the line intersection function is defined in lines 1 to 4. Each of the
intersection points is inserted into a set of potential corner points C (line 17).
The next goal is to retrieve the intersection points that are part of the common intersection
region of all stripes since these corner points define the polygon corners. Therefore, for each
of the stripes we check if an intersection point lies within the stripe. If it is not located
inside the region, the corner will be deleted from the set of corner points C. We illustrate
this in Figure 6.8b for the red stripe. The deletion process is described in lines 20 to 32 in
Algorithm 8. To check if a point is located inside the stripe, we first transform the point to a
rotated coordinate frame located in the origin of the original frame. The rotated coordinate
frame is oriented in such a way that the x-axis points to the orthogonal (normal) direction
of the considered stripe. In Figure 6.8b, this rotated coordinate frame is colored red. The
corresponding rotation matrix is fully determined by the angle αi as shown in lines 23 and 24
in Algorithm 8. The rotation is applied to a test point in line 26. The transformation simplifies
the test if a point is inside or outside the stripe to an efficient scalar in interval test: As the
x-component of the transformed point p̂ defines the distance of the point to the frame origin
along the stripe normal, the x-component has to be inside the distance interval [di] if the point
is inside the stripe. If this does not hold, the considered point will be erased from the set of
corner points C (line 28). This procedure is performed for each row of the system (6.12) –
ergo for each stripe. The remaining set C defines the corner points of the polygon as shown in
Figure 6.8c.

Conclusively, we want to provide further insights into the runtime complexity of this algorithm.
For n different stripes, 2n border lines potentially intersect. However, each pair of lines of a
stripe cannot intersect with its partner line and with itself. Hence, for the number of intersection
points we obtain the following mathematical series

2 · (2n− 2) + 2 · (2n− 4) + ...+ 2 · (2n− 2 · (n− 1)) =
n−1∑
m=1

4 · (n−m). (6.13)



6.3. Maximum Likelihood Estimation with Rigid Bounds 133

Note that the first term on the left side of the equation provides the number of intersection
points when considering the first stripe: Let us consider one line of the stripe. In total, 2n
intersections are possible, but as the line cannot intersect with its partner in the stripe (parallel)
and cannot intersect with itself, two must be subtracted. As this number of intersections also
applies to the partner line in the stripe, we obtain 2 · (2n− 2). We can argue similarly for the
next stripe, but we need to subtract two further intersections as those are already considered in
the first term. Hence, we obtain the term 2 · (2n− 4). We obtain the series mentioned above
by summing up the terms for all n stripes. We can rewrite (6.13) to

n−1∑
m=1

4 · (n−m) = 4 ·
( n−1∑
m=1

n−
n−1∑
m=1

m
)

= 4 ·
(
n · (n−1)− n · (n− 1)

2
)

= 2 · (n2−n) (6.14)

applying the Gaussian summation formula. As a result, the number of intersections rises
quadratically with the number of stripes. Since we need to perform at maximum an intersection-
in-stripe check per stripe, we can bound the number of checks by 2 · (n3 − n2). That means
the runtime complexity of our algorithm to solve the linear interval equation system is O(n3).
Fortunately, in our application, the number of facades observed in one frame is limited.
Accordingly, only a few intersection points need to be considered, making our approach well
applicable to the localization problem in building maps. The computed polygon describes the
minimal set concerning the linear equation system (6.12).

6.3 Maximum Likelihood Estimation with Rigid Bounds
The interval-based method provides a set of poses consistent with local observations and the
building map. The consistent set is defined by an interval [MϕL] for the orientation and a
polygon MTL for the set of positions. A set of corners describes the polygon points C. This
section aims to determine the most likely solution within the consistent set. Therefore, some
previously made assumptions must be adapted: We initially assumed that all errors are bounded
to apply the interval-based approach. As a result, in the sense of set-membership-based
approaches, there is no possibility of determining the most viable solution since all poses in the
consistent set are equally likely. However, we cannot draw any conclusions on the likelihood
of individual solutions. That is why we need to refine our error model further. In the scope
of this work, we augment our assumption on the boundedness of measurement errors by a
Gaussian distribution of the error. This provides us with two advantages. First, the boundedness
assures that we can restrict the search space to the consistent set of poses provided by the
interval-based refinement approach. Second, an MLE under normally distributed errors leads
to a least-squares formulation of the problem that can be solved by well-known methods like
Newton or Levenberg-Marquardt (LM) [10]. In summary, this section aims to formulate the
localization problem as a least-squares problem and to solve the minimization problem with the
LM method under consideration of the rigid bounds defined by the interval-based refinement
method.

First, we must define the objective function we seek to minimize. Therefore, let us again
consider our measurements and observations: We measure points in our environment with a
3D LiDAR sensor. Further, we have a building map of our environment that provides us with
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information on the location of the facade in the map frame. However, more information is
available: In the interval-based refinement, we performed an association of the local LiDAR
measurements to the facades (Subsection 6.2.2) and then we select the most supportive
local measurements for each facade utilizing the iHT (Subsection 6.2.3). Consequently, the
interval-based refinement provides us – as a side-product – the information on which local
measurement is associated with which facade in the map. Let Lm be a local measurement in
the LiDAR frame that is associated with facade Fi which is described by the normal vector
Mn and the distance parameter Md. As a result, we seek to find a pose MTL so that

MnT · (MTL · Lm) = Md (6.15)

holds. Now let us write out the vectors’ and matrix’s individual elements in (6.15).

(
nx ny

)
·

(cos (ϕ) − sin (ϕ)
sin (ϕ) cos (ϕ)

)
·
(
mx

my

)
+
(
tx
ty

) = Md. (6.16)

By further expanding the equation, we obtain

cos (ϕ) · (mx · nx + my · ny) + sin (ϕ) · (mx · ny −my · nx) + tx · nx + ty · ny = Md. (6.17)

While nx, ny, Md, mx and my are known from the map and the local LiDAR measurement, the
pose parameters p =

(
tx ty ϕ

)T
are the unknowns. We seek to find a parameter set p∗ that

fulfills (6.17) as well as possible. To cast the problem to a least-squares problem, we define the
left part of (6.17) as the virtual measurement function f(p). Hence, the real measurement x is
defined by the right term Md of (6.17). That means we define our measurement based on the
robot’s distance to a seen facade along the normal direction. However, (6.17) only considers
one LiDAR point associated with one facade. In each frame, multiple points are associated
with one facade, while we also observe multiple facades. As a consequence, we need to consider
multiple constraints of the same form as presented in (6.17) and the multidimensional virtual
measurement function f(p) and the measurement vector x are defined by

f(p) =



f1,1(p)
f1,2(p)

...
f1,p1(p)
f2,1(p)

...
f2,p2(p)

...
fn,1(p)

...
fn,pn(p)



and x =



Md1
Md1
...

Md1
Md2
...

Md2
...

Mdn
...

Mdn



, (6.18)
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where we stack all virtual measurement functions and real measurements. The lower right
index of fn,pn(p) identifies the virtual measurement function of the n-th seen facade and the
pn-th point associated with that facade. Now we can define the minimization problem as

p∗ = argmin
p
||x− f(p)||2. (6.19)

We apply a modified version of the LM non-linear least-squares algorithm to solve this problem.
Therefore, we need to determine the Jacobian of f(p) concerning p. We define J = δf(p)

δp . For
the i-th facade and the j-th point on that facade, the Jacobian matrix Jij can be derived from
(6.17). We omit the indices i and j for simplicity. As a result, we obtain

Jij =
(
δfi,j(p)
δtx

δfi,j(p)
δty

δfi,j(p)
δϕ

)
(6.20)

=
(
nx ny − sin (ϕ)(mx · nx +my · ny) + cos (ϕ)(mx · ny −my · nx)

)
. (6.21)

That means each measurement contributes one row to J.
The modified LM algorithm is presented in Algorithm 9. The original LM algorithm was

adopted from [23]. However, the original version poses two problems to our application. First,
it does not consider the rigid bounds of the feasible set of pose parameter P when the update of
the parameter vector is computed. Second, one degree of freedom is not sufficiently constrained
as the point-to-plane constraint in (6.17) only considers the error in the orthogonal direction
while along the facade, the pose is not constrained. Due to this problem, the optimizer may
shift the poses along the facade direction, as the update vector may have non-zero parts in this
direction. Therefore we introduce modifications to the LM algorithm that will be discussed in
the following in detail.

As input data, we provide the optimizer with the virtual measurement function f(p), the
measurement vector x, the set of normal vectors N of the seen facades, the feasible set of
poses P = {MTL, [MϕL]} computed by the interval-based refinement and the initial pose
parameters p0. We choose p0 as the mid of P. We define the mid of a polygon MTL as the
midpoint of the box-hull, while for the orientation, the interval’s midpoint is chosen. The key
ingredient of the damped gradient descent approach is the Jacobian matrix J that we already
introduced for our problem above. Note that the Jacobian is always computed after updating
the pose parameter p (lines 3 and 22). That means the linearization is reevaluated for each
iteration step, which qualifies the LM algorithm to deal with non-linearities. The system matrix
A and the error εp are also computed for each update of p as shown in lines 4 and 23. For
each iteration step the update vector δ̂p is computed in line 9 by solving the linear system.
Note that the LM algorithm solves the augmented normal equations where a damping term µ

controls the size of the update vector δ̂p. In line 5, µ is initialized with the maximal diagonal
value of the system matrix A times a factor τ . However, solving the system in line 9 will lead
to an update vector δ̂p that may contain parts along the non-constrained directions due to the
unconstrained degree of freedom for the point-to-line matching as stated above. Consequently,
the translation part of δ̂p – the first two parameters – needs to be corrected. The correction is
introduced in Algorithm 9 in lines 10 to 14. While the orientation update remains unchanged
(line 10), the translation part is corrected based on the normal vectors of all seen facades. As
we only should consider the update directions which point along the normal vectors of the
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Algorithm 9: Levenberg-Marquardt Optimization with rigid bounds
Data: Virtual measurement function f(p), measurement vector x, set of normal vectors

N = {nm,1, . . . ,nm,n} for each seen facade, the consistent set of poses
P = {MTL, [MϕL]} initial parameters p0.

Result: The vector p∗ minimizing ||x− f(p)||2.
1 Function LevenbergMarquardtOptimizationWithRigidBounds(f(p), x, N , P, p0)
2 k = 0; v = 2; p = p0;
3 J = computeJacobian(p);
4 A = JTJ; εp = x− f(p); g = JT εp;
5 stop = (||g||∞ ≤ ε1); µ = τ ·max(Aii);
6 while (not stop) and (k < kmax) do
7 k = k + 1;
8 do

// Compute the update
9 Solve (A + µI)δ̂p = g;

// Correct the translation part of the update

10 δp =
(
0 0 δ̂p(2)

)T
;

11 for nm,i : N do
12 δ̂t = δ̂p.subvector(0, 1);

// Only consider partial update along the normal vector nm,i
13 δp.subvector(0, 1) = δp.subvector(0, 1) + nTm,i·δ̂t

||nm,i|| · nm,i;
14 end
15 if ||δp|| ≤ ε2||p|| then

// Update is not significant enough, so stop
16 stop = true;
17 else
18 pnew = p + δp;
19 ρ = ||εp||2−||x−f(pnew)||2

δTp (µδp+g) ;
20 if ρ > 0 and pnew ∈ P then

// Error smaller and pnew is inside P, take update
21 p = pnew;
22 J = computeJacobian(p);
23 A = JTJ; εp = x− f(p); g = JT εp;
24 stop = (||g||∞ ≤ ε1);
25 µ = µ ·max(1

3 , 1− (2ρ− 1)3); v = 2;
26 else

// Error larger or pnew is not inside P
// Do not take update and increase damping factor

27 µ = µ · v; v = 2v;
28 end
29 end
30 while (ρ > 0) or stop;
31 end
32 p∗ = p;
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seen facades, we can calculate the correct translation update vector as the sum over the scalar
products of the translation update vector δ̂t and the normal vectors nm,i as stated in line 13.
As a result, at the end of the for-loop, we obtain a corrected update vector δp.
First, we check in line 15 if the update vector is significantly large. Suppose the norm of the
update vector is smaller than the adaptive threshold, we can infer that the gradient is close to
zero. Therefore, we cannot significantly improve the current parameter estimate p and the
algorithm can terminate. However, if the update is significant enough, we continue with line
18. Here, we compute the updated pose parameter pnew to check in line 19 if this updated
parameter vector leads to a better solution. Note that in line 19 the variable ρ will be positive
in the case that pnew reduces the error ||x− f(pnew)||2 compared to the old parameter vector.
But on the other hand, if ρ is negative, the old error ||εp||2 generated by the old parameter
vector p is smaller than the error produced by pnew. The LM algorithm takes the update only if
pnew indeed reduces the error – that means if ρ > 0. If this is not the case, the damping factor
µ increases. However, for our parameter estimation approach, we have a further criterion that
has to be met: The updated parameter vector pnew needs to lie inside the feasible set P . That
is why we further modify the LM algorithm in line 20, where we only permit to update p if the
ρ < 0 and if pnew ∈ P. We check if P contains pnew by first determining if the orientation
parameter pnew(2) is inside [MϕL] and second, performing the winding-number check to ensure
that the translation part pnew.subvector(0, 1) is inside MTL.

The main advantage of the modified LM optimization with rigid bounds is that we can
perform a joint optimization of the pose in one optimization procedure taking all facades into
account. Nonetheless, the update vector correction in lines 10 to 14 may lead to divergence
of the optimization if there is an unfortunate distribution of the points among the facades:
Since we take individual point measurements into account, the number of points determines
the weight of the different facades in the optimization. Hence, a facade with fewer points will
have less impact on the update vector. If the facades are differently oriented, we also allow
the update vector to include components in the normal direction of the facades with fewer
points. The facades with more points will also incorrectly contribute to the update in this
direction. Fortunately, in practice this happens rarely, but the optimization can diverge in those
cases. However, the bounds can protect the optimization from significantly diverging, as the
parameter vector cannot exit the feasible region. Consequently, the interval method provides
an upper bound on the error. That means with the optimization with rigid bounds, we can
guarantee – if and only if all assumptions are fulfilled – that the bounds provide the maximal
error we can obtain from the localization.

6.4 Module Output

The first module in our localization pipeline is the visual odometry which computes the relative
motion of the vehicle. As we do not know the vehicle’s initial location in the building map,
we perform the coarse localization in the second module. The coarse localization provides a
feasible set of poses where the vehicle can be located, considering simple but always valid
constraints. By augmenting the set-membership-based approach with a bounded MCL, the
module provides the most likely locations of the vehicle in the building map. However, the
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localization estimates are pessimistic for the set-membership result that encloses the feasible set
of poses. As the set-membership result does not consider the direct associations of the LiDAR
data to the building map, the full potential of the sensors is not exploited. In this chapter, we
introduced the third module, which fills this gap and refines the localization estimate.

The refinement module uses the estimation from the coarse localization. Since the coarse
localization narrows down the feasible set of poses based on the always valid constraints, the
refinement module performs a points-to-facade association of the LiDAR points. By considering
the LiDAR measurement uncertainty and the building map uncertainty, our refinement module
further narrows down the feasible region to a smaller polygon for the position and a smaller
orientation interval by exploiting the associations. However, the refinement can only be
performed if the feasible set provided by the coarse localization is accurate enough to perform
unambiguous matching. Hence, the refinement has to wait until the coarse localization result
is accurate enough to operate.

Note that the consistent set is not necessarily reliable. In the case of an incorrect association,
the result provided by the refinement may be error-prone. Nonetheless, if the association is
correct, the refinement significantly improves the accuracy of the localization estimate. To
improve the overall localization performance, in the case of correct associations, we can use the
refined results to improve the coarse localization to accelerate convergence and gain computation
time. However, the main problem here is that we must ensure that the current track considers
correct associations. The next chapter introduces our solution to this problem and provides an
overview of how the modules are connected to the HyPaSCoRe Localization system.
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Figure 7.1: HyPaSCoRe Localization overview.

Up to this point, we introduced the different components of the HyPaSCoRe Localiza-
tion pipeline. This chapter aims to bring all components together into one localization
application and highlight the interfaces and collaboration between the modules. Furthermore,
we will focus on the localization estimation in real-time. Figure 7.1 shows the complete
schematic overview of the HyPaSCoRe Localization pipeline.

The visual odometry module uses stereo images and LiDAR data to compute the relative
motion of the vehicle. The visual odometry module consists of the front-end and the back-end.
In the front-end, visual features are extracted from the stereo images, and the depth information
from the LiDAR sensor further augments the depth estimation of the stereo feature. As features
are tracked along the trajectory, the dependencies between the poses and the landmarks are
stored in a SLAM-Graph. Furthermore, within the front-end, we determine the frame-to-frame
relative motion that initializes the windowed bundle adjustment in the back-end. The robust
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windowed bundle adjustment is applied on a sequence of poses during which the same landmarks
are observed. Using the bundle adjustment, we determine outliers and exclude them from the
interval-based trajectory estimation.

The coarse localization uses the relative motion obtained by the visual odometry to localize
the vehicle inside the building map. The coarse localization consists of two steps. First, using
interval analysis, the feasible set of poses under consideration of the local LiDAR data, the
visual odometry, and occasionally available uncertain GNSS measurements is narrowed down to
a smaller set. Second, a bounded MCL is performed within the feasible set to determine the
most likely solution. However, the feasible set is typically large as the coarse localization only
uses always valid but less restrictive constraints to contract the feasible region.

To improve the localization estimate, we utilize the refined localization. It refines the coarse
localization result by introducing point-to-facade associations. Using the particle with the
highest weight from bounded MCL of the coarse localization, local LiDAR points are associated
with facades in the building map in a nearest-neighbor fashion. The associations make further
contraction of the feasible set from the coarse localization possible as we narrow down the set
of feasible poses to the subset consistent with the point-to-facade associations. Furthermore,
we use the associations to determine the most likely pose within the consistent set by applying
a bounded least squares optimization.

To ensure the real-time capability of our method, a multi-threaded architecture of the
localization pipeline is mandatory that exploits independent processes to speed up the method.
In Section 7.1, we first present the general architecture of our implementation of the localization
pipeline. The localization process is always delayed by the bundle adjustment in the visual
odometry module, so we cannot directly determine the location of the current pose. Therefore,
we introduce a workaround in Section 7.2 that provides the most likely pose and the uncertainty
bound for the current frame making real-time localization possible.

Our HyPaSCoRe Localization pipeline does not only perform a straightforward localization
from coarse to refined localization. To improve the performance of the whole localization
pipeline, we also introduce feedback from the refined localization to the coarse localization
to control the exploration region to accelerate the convergence speed, which is described in
Subsection 7.3.2.

7.1 Architecture

The general software architecture of our localization pipeline is displayed in Figure 7.2. The
visual odometry uses two parallel threads. The first thread runs the front-end that constructs the
SLAM-Graph. This thread has to process the sensor data with the sensor data rate for real-time
capability. Based on the received sensor data, the front-end extracts landmarks and stores the
observations to the SLAM-Graph as explained in Section 4.2. Hence, the SLAM-Graph is the
data structure that connects the front- and the back-end. The second thread executes the
back-end. As presented in Section 4.3, the back-end solves the SLAM-Graph by applying a
windowed bundle adjustment and the interval-based visual odometry. However, this process
runs on a lower frequency than the data rate since the back-end is only initiated if a keyframe is
inserted. As the back-end processes the whole batch considering multiple frames, the back-end
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Figure 7.2: Software architecture of the HyPaSCoRe Localization pipeline. The pipeline uses
three host threads. Two threads are dedicated to the visual odometry, while the
localization uses one host thread. The different tasks that need to be solved by the
processes are bounded by boxes and are colored according to the thread to which
they are assigned. Ellipses bound messages between tasks/processes. Messages
between two threads are colored yellow.

does not need to be executed at sensor frequency. Nonetheless, the process needs to be finished
until the next trajectory window is closed by a new keyframe.

Once the back-end thread of the visual odometry has processed the batch, the localization
is triggered. Consequently, we process the whole window of frames sequentially at once.
Thus, the localization procedure is (at maximum) delayed by the window size of a batch.
Since the localization is executed faster per frame than the sensor data rate, the localization
procedure quickly keeps up with the current frame as soon as a new batch of frames is ready
for localization. Nonetheless, with this architecture, real-time localization is not possible. We
deduce the real-time localization to the current frame at the data rate by considering the less
accurate frame-to-frame odometry computed in the front-end based on the recent localization
estimate. The real-time localization is presented in more detail in Section 7.2.

The localization is executed on a single host thread as the tasks are performed sequentially.
The localization processes the trajectory window frame by frame. First, the coarse localization
begins with interval-based localization (cf. Section 5.2). Based on the feasible set, a bounded
MCL is performed to obtain the most likely poses as presented in Section 5.3.
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The refined localization is only executed if the particles obtained from the coarse localization
are staged as stable. The stability check will be presented in more detail in Subsection 7.3.1.
The refined localization performs the point-to-facade association and computes the consistent
polygon set and orientation interval in the interval-based refinement. The newly obtained
bounds are used for the bounded optimization to obtain the most likely pose within the
consistent set.

As stated previously, the refined localization provides more accurate localization results than
the coarse localization. The higher accuracy comes with the cost of less integrity due to the
possibly error-prone association step. However, the localization results are more accurate in
the case of a correct association since the consistent set represents a tighter bound. Hence, if
the association is correct, we can improve the coarse localization by contracting the feasible
set to the consistent set. The exploration region can be further contracted, accelerating the
convergence. The idea is to take advantage of the higher accuracy and only consider the
smaller set if we can be sure the refined estimate is trustworthy. Subsection 7.3.2 presents
how we do that. With this approach, we maintain high integrity standards and accuracy for
the localization result. This feedback mechanism from the refined localization to the coarse
localization is indicated by the orange arrows Figure 7.2.

7.2 Real-Time Localization

The localization is only triggered when the back-end of the visual odometry has finished
processing the current window. Consequently, the localization is always delayed as the back-end
only processes closed windows. That means our architecture cannot provide the localization
estimate for the sensor frame to date. Nonetheless, based on the recent localization estimate,
we predict the current pose to frame rate. Therefore, we utilize the real-time frame-to-frame
relative pose estimate computed in the front-end of the visual odometry as presented in
Subsection 4.2.4.

Let MT̂Lt−k be the pose parameters of the frame that is processed at the timestep t when
the newest data from the sensors are received. Due to the delay in the visual odometry
back-end, the processed pose corresponds to the data frame Ft−k at time t− k. As a result,
the localization is delayed by k timesteps. The refined localization provides the consistent set
of poses MP4Lt−k =

(
MT 4Lt−k , [

Mϕ4Lt−k ]
)T

described by a polygon MT 4Lt−k for the translation
and an orientation interval [Mϕ4Lt−k ], and the most likely pose MT̂∗Lt−k within the consistent
set. The coarse localization provides the feasible set of poses MP�Lt−k =

(
MT �Lt−k ,

M Φ�Lt−k
)T

with a 2D subpaving for the translation MT �Lt−k and a 1D subpaving MΦ�Lt−k for the orientation
interval. As those estimates correspond to Ft−k at time t − k the goal is to determine the
current pose MT̂Lt and the set-membership estimates MP4Lt and MP�Lt at time t. The problem
is that at time t, we do not have reliable relative pose estimates for all frames between t and
t− k as illustrated in Figure 7.3. The windowed bundle adjustment was not processed for the
last frames, as the current window has not been closed.

Fortunately, in the front-end of the visual odometry, we determine frame-to-frame odometry
by applying a classical LM optimization that minimizes the reprojection error of the commonly
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Figure 7.3: Timeline with processed and unprocessed frames. The frames highlighted in red are
the keyframes Ks and Ke that define the closed windowWs→e. Since the windowed
bundle adjustment is only initiated if a window of frames is closed by inserting
a keyframe, the frames after Ke are not yet processed by the bundle adjustment.
That is why we do not have accurate relative pose information for those frames.

observed stereo features of consecutive frames in real-time. Hence, we first estimate the relative
transformations between the k consecutive poses between timesteps t−k and t. However, those
estimates are not necessarily reliable. Formerly, we used the estimates in the back-end only to
initialize the windowed bundle adjustment that improves the poses in the batch since dynamic
features may corrupt the frame-to-frame estimates. Nonetheless, we can use the relative
transformations to predict the vehicle’s pose at time t by considering a comparatively large
uncertainty for the estimate. Note that the frame-to-frame pose estimation in the front-end of
the visual odometry is an MLE approach that only provides a scalar-valued estimate on the
pose parameters LiT̂Li+1 for an arbitrary relative pose between frames at i and i+ 1. Hence,
we do not have a direct estimate of the uncertainty of the relative transformation. That is
why we inflate the scalar-valued relative pose estimates to intervals. Therefore, we account
for a comparatively large uncertainty to compensate for the possibly error-prone relative pose
estimate. The width by which we inflate the pose estimates is fixed for the parameters, and
we determined the parameters empirically. For the translation, we choose 0.005m, and for
rotation, 1◦ inflation radius.

As we want to determine the pose MT̂Lt at time t in the map frame and the pose
MT̂Lt−k at t − k is known, we determine the relative pose Lt−kT̂Lt by concatenating the
relative transformations between the consecutive poses between the time steps t − k and t.
Therefore, we represent the transformation parameters Lt−iT̂Lt for i ∈ {0, ..., k} by the affine
transformation Lt−iTLt and perform the concatenation by

Lt−kTLt =Lt−k TLt ·Lt−(k−1) TLt · ... ·Lt−1 TLt . (7.1)

Since the relative poses Lt−iT̂Lt are represented by intervals as we inflate the frame-to-frame
pose estimates, the concatenation of the transformations are extended to interval operations
so that Lt−iT̂Lt ∈Lt−i PLt . As a predefined uncertainty inflates each relative pose, the
concatenation of the transformation accordingly accumulates the uncertainties as illustrated in
Figure 7.4. The obtained relative pose is used to determine the current pose MT̂Lt at t by
transforming the MT̂Lt−k with Lt−kT̂Lt .
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(a) Ground truth trajectory.
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Figure 7.4: Accumulation of uncertain relative transformations. While Figure 7.4a shows
a schematic ground truth trajectory, Figure 7.4b visualizes the interval-based
relative pose estimate at different timesteps. The concatenation of the relative
transformations accumulates the uncertainty using interval tools. The result is
visualized in Figure 7.4c.

[Lt−kT̂Lt ]

MT 4Lt−k

(a) Set of consistent poses at time t− k and the
relative transform for a selected point.

MT 4Lt

MT 4Lt−k

(b) Transformation of the consistent set described
by a polygon by the relative transform.

Figure 7.5: Relative transformation of a polygon. Figure 7.5a shows the position estimate
MT 4Lt−k of the refined localization at time t−k. Furthermore, the relative transform
from Figure 7.4c is shown for an exemplary point inside MT 4Lt−k . To determine
MT 4Lt , we transform each corner point of MT 4Lt−k by the relative transform [Lt−kT̂Lt ]
so that we obtain multiple boxes as illustrated in Figure 7.5b. We define the MT 4Lt
as the convex polygon hull over all generated boxes.

First, let us consider the transformation of the coarse localization estimate MP�Lt−k . However,
transforming a subpaving can become heavy in computation since the transformation has to be
applied to each subset. That is why we approximate the subpaving by a box hull – a hull over
the translation subpaving and a hull over the orientation subpaving. Consequently, MP�Lt−k
simplifies to MP�Lt−k with three intervals, where MT �Lt−k is a simple 2D box and MΦ�Lt−k is an
interval. The translation is determined by

MtLt =
(

cosMϕLt−k − sinMϕLt−k
sinMϕLt−k cosMϕLt−k

)
·Lt−k tLt +M tLt−k , (7.2)

for MtLt−k ∈M T �Lt−k , MϕLt−k ∈M Φ�Lt−k and Lt−ktLt ∈Lt−k TLt . The rotation is determined
by MϕLt =M ϕLt−k +Lt−k ϕLt for MϕLt ∈M ΦLt , MϕLt−k ∈M Φ�Lt−k and Lt−kϕLt ∈Lt−k ΦLt .

Now, let us consider the refined localization estimate that provides a polygon MT 4Lt−k for
the position and an interval [Mϕ4Lt−k ] for the orientation. To transform the polygon and the
orientation interval from t− k to t, we can use SIVIA. However, as we want to perform the
transformation in real-time, a branch-and-bound algorithm may exceed the time budget for
special constellations, leading to multiple bisections. That is why we propose an approximation.
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The polygon MT 4Lt−k is defined by multiple corner points that define the border of the polygon.
We consider each corner point as a feasible position for the vehicle. Hence, we transform
each corner pose by the concatenated relative pose as shown in (7.2). Hence, we obtain a
position box for each corner pose at t − k and an orientation interval at time t. We define
the feasible set of positions at time t by the convex polygon hull among all position boxes
generated at t by the corner poses. The orientation is defined by the orientation hull among
all corner poses. Figure 7.5 illustrates our approach. The most likely pose is determined by
classically transforming the most likely pose obtained by the refined localization by the bounded
optimization.

7.3 Cooperations between the Coarse and Refined Locali-
zation

The refined localization depends on the coarse localization results. Since the refined localization
performs a point-to-facade association, we need a comparatively accurate result from the coarse
localization to initialize the refined localization. Up to this point, only the coarse localization is
processed. How do we detect that a result is accurate enough to initiate the refined localization?
Therefore, we introduce the particle stability check in Section 7.3.1.

After the refined localization has been initiated, we will obtain two different estimates of the
vehicle location. While the coarse localization provides the feasible set of poses as a subpaving
MP�Lt , the refined localization provides a polygon set for the translation and an interval for the
rotation that we describe by MP4Lt . The set MP�Lt obtained by the coarse localization is very
reliable to contain the correct pose since the estimation is based on always valid and simple
constraints. On the downside, MP�Lt is large. In contrast, the refined localization estimate
MP4Lt provides less pessimistic results. However, the estimate is less reliable since it uses a data
associations step that may be error-prone. Hence, how can we fuse both estimates to obtain
the best of both estimates and have reliable and accurate location estimates? In Section 7.3.2,
we present our approach to obtain a reliable and accurate estimate based on MP�Lt and MP4Lt .

7.3.1 Particle Stability Check

Based on the coarse localization results, the particle stability check determines when to initiate
the refined localization. Therefore we exploit the stability of the particle-based pose estimate
of the bounded MCL: Initially, particles are very unlikely to be spread close to the correct
pose. Since we perform aggressive resampling with the random spreading of particles, only
high-weighted particles will survive because inconsistent particles will be replaced. As a result,
the age of a particle, which indicates how many iterations it survived, can be chosen as a
metric of how reliable the particle estimate is. The longer a particle survives, the more reliable
it is, as it has proven to be consistent for at least a part of the trajectory.

Note that a particle resampled from another high-weighted particle inherits the age. Con-
sequently, in the case of convergence to a consistent pose, the bounded MCL will form a
cluster of particles with the same comparatively high age. The age of a particle is a metric for
measuring the consistency of the local measurements to the map location. The consistency
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Figure 7.6: The coarse and refined localization results. The coarse localization describes the
feasible set of locations of the vehicle by a subpaving MP�Lt and a set of weighted
particles of the bounded MCL. The refined localization provides a set of poses
MP4Lt where the translation set is described by a polygon and the orientation by an
interval and a most likely pose from the MLE approach. Both approaches provide
a set-membership-based and probabilistic estimate of the vehicle location.

indicates that the bounded MCL tracks the correct pose. However, we cannot guarantee that
the consistent pose is correct. For instance, in the case of symmetries in the map, multiple
consistent poses may exist as the local measurements can be consistently matched at different
locations. In that case, we do not have any possibility to distinguish if a tracked consistent pose
is indeed the correct one. However, this corner case is not a specific problem of our approach.
Also, as presented in Chapter 3, State of the Art approaches have difficulties in such corner
cases. Although the bounded MCL may suffer from symmetries in the map, the interval-based
approach in the coarse localization counteracts this problem as it will still identify all feasible
locations of the vehicle correctly and will be able to deal with symmetries in contrast to other
State of the Art methods.

If the age of a particle exceeds a given threshold, we initiate the refined localization. To
initialize the refined localization, we consider the particle with the highest weight to determine
the point-to-facade association. Based on the association, the refined localization provides a
minimal polygon and a smaller interval for the orientation than the coarse localization.

7.3.2 Bound the Exploration Region – Reliability of the Refined Lo-
calization

After the initiation of the refined localization, our pipeline provides two different estimates
of the vehicle location. The coarse localization provides a comparatively pessimistic but very
reliable subpaving MP�Lt and a set of particles. The refined localization provides a polygon pose
set MP4Lt that is less pessimistic but also less reliable. Furthermore, the refined localization
provides the most likely pose within MP4Lt that best satisfies the association. Figure 7.6
illustrates the localization results we obtain from both approaches. The main problem of MP4Lt
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MP4Lt = ∅

(a) MP4Lt is empty.
(b) The particle with the highest score is outside

MP4Lt .

(c) The particle with the highest score is inside
MP4Lt .

(d) The maximum likely pose has the highest
weight and the tracking survived long enough
without switching.

Figure 7.7: Different scenarios for track switching. Figure 7.7a directly leads to a full reset as
MP4Lt = ∅ indicates that the association is inconsistent. In Figure 7.7b, the particle
outside the consistent set has a higher weight than the tracked pose. If the blue
particle has survived a minimal number of iterations, the track is switched to the
blue particle and is fully reset. In Figure 7.7c, the blue particle with higher weight
is inside MP4Lt . If the blue particle is old enough, the track is internally switched.
If the tracked pose (orange) has the highest weight and survives a minimal number
of iterations, MP�Lt is contracted to MP4Lt as shown in Figure 7.7d.

is that it relies on the point-to-facade association that can be error-prone. If the association
is correct, it is guaranteed to contain the correct pose. However, we cannot assure that the
association is correct, and consequently, we cannot guarantee that MP4Lt encloses the correct
pose.

However, we can use the same consistency metric that we introduce in Subsection 7.3.1 to
measure the trustworthiness of the refined localization result. When the refined localization is
initiated, a track is initiated by the particle with the highest weight from the bounded MCL
of the coarse localization. We define the trustworthiness of a track based on the number of
timesteps the track survives, similar to the particle stability in Subsection 7.3.1. Track switches
for which we reset the age are performed in the following cases:

• Either the rotation interval or the translation polygon of MP4Lt is empty as illustrated in
Figure 7.7a. The empty set indicates that the association in the refined localization is
inconsistent. Hence, the current track has to be incorrect.

• The coarse localization tracks multiple particles, while the refined localization represents
the most likely solution by one tracked particle. Suppose there is a better particle
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that is old enough and has a higher score than the currently tracked particle in the
refined localization. In that case, the track is switched to the higher-weighted particle
from the coarse localization. This scenario is illustrated in Figure 7.7b and Figure 7.7c.
To determine the score of a particle, we utilize the beam-end model as presented in
Section 5.3.

When necessary, the track is switched to the particle with the highest weight.
We distinguish two types of track switches. The first type considers a full reset of the refined

localization, equivalent to reinitializing the whole refined localization. When a full reset is
necessary, the prediction polygon for the next iteration step is not determined by the odometry
update as presented in Section 6.2.1 for the usual case. In contrast, the prediction polygon is
defined by the hull of the interval-based estimate MP�Lt of the coarse localization so that the
wrong track does not affect the following iterations in the refined localization. Furthermore,
the age of the track is set to zero. The full reset is applied in two cases which are visualized in
Figure 7.7a and Figure 7.7b: First, if MP4Lt is empty or second, if there is a better particle
that is outside MP4Lt . In both cases, the association provides inconsistent or less consistent
results than alternative solutions tracked by the bounded MCL in the coarse localization.

The second type considers an internal switch of the refined localization when a full reset is
unnecessary. The switch is applied for the case when there is a better particle inside MP4Lt
as illustrated in Figure 7.7c. As the better particle is compatible with the association of the
current track, the polygon is used to predict the pose for the next iteration step. Only the age
of the track is set to zero, and the tracked particle is switched to the better particle provided
by the coarse localization. As a consequence, the main difference between the full reset and the
internal switch is that the tracked set MP4Lt is treated differently for the next iteration step.

If a track survives long enough and exceeds a defined number of iterations, the track is
classified as reliable. In that case, we contract the feasible region MP�Lt to MP4Lt . This contracts
the exploration region of the coarse localization as shown in Figure 7.7d. We only perform the
contraction if differently oriented facades are observed. This accelerates the convergence of
the localization as the bounded MCL concentrates on a smaller set and reduces the runtime
because the subpaving shrinks. Furthermore, we correct the highest particle pose of the coarse
localization by the most likely pose estimate from the refined localization to further consider the
refined localization result in the next iteration of the bounded MCL in the coarse localization.
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Figure 8.1: The sensor platform mounted on the test vehicle acquired the author-collected
datasets.

We evaluate the HyPaSCoRe Localization with eleven different datasets. Two are author-
collected datasets (T1 and T2), while nine are from the KITTI benchmark [146]. In the KITTI
datasets, we use the images provided by the two PointGray Flea2 color cameras (FL2-14S3C-C)
with an image resolution of 1241× 376 pixels. The cameras are equipped with Edmund Optics
lenses, and the base length of the stereo setup measures 0.54m. Furthermore, the LiDAR data
comes from a Velodyne HDL-64E rotating 3D laser scanner. We utilize the OXTS RT3003
inertial and GPS navigation system measurements as a ground truth reference for the poses.
The whole setup of the test vehicle can be found in [146].

We acquired our datasets in an urban region in Hanover, Germany. The sensor setup we
mounted on our test vehicle is presented in Figure 8.1. We use two FLIR Grasshopper3 color
cameras (GS-U3-23S6C-C) with a 1920 × 1200 pixels resolution. Each of the cameras is
equipped with a Fujinon CF12.5HA-1 lens. The stereo baseline measures a length of 0.85m. In
contrast to the KITTI dataset, we use the MEMS solid-state LiDAR Cepton Vista 8800. The
ground truth measurements are acquired with the Riegl VMX-250 Mobile Mapping System.

We visualize the maps and the ground truth trajectories in Figure 8.2. Note that we
selected different map topologies with different building densities to evaluate our HyPaSCoRe
Localization method. We summarize further information on the datasets in Table 8.1. While
we test all trajectories with the OSM data downloaded from the database [70], the LOD2 map
is only tested with the author-collected datasets T1 and T2. Note that the KITTI trajectories
0027∗ and 0034∗ were acquired on the 30th of September 2011. We put a star in the index
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(a) T1 in the OSM. (b) T2 in the OSM. (c) 0018.

(d) 0020. (e) 0027∗. (f) 0027.

(g) 0028. (h) 0033. (i) 0034∗.

(j) 0034. (k) 0071.

Figure 8.2: Trajectories and OSM building data for all datasets. The trajectories are colored
blue.
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Dataset Length Frames Map size
OSM LOD2

T1 1249m 2866 365m× 479m 1036m× 2050m
T2 1054m 2795 291m× 512m 1036m× 2050m
0018 2206m 2750 593m× 632m -
0020 1230m 1096 175m× 580m -
0027∗ 684m 1070 300m× 436m -
0027 3081m 3824 895m× 717m -
0028 3230m 4086 1966m× 2840m -
0033 1706m 1593 852m× 998m -
0034∗ 897m 1179 955m× 935m -
0034 5062m 4634 1081m× 1263m -
0071 239m 1058 327m× 394m -

Table 8.1: Datasets. The trajectory length, the number of LiDAR frames, the number of
buildings in the map, and the map size of the different datasets are listed. The
size is measured by the length in the north direction times the length in the east
direction.

to distinguish them from the other trajectories to maintain unique naming. For naming the
KITTI trajectories, we follow the raw-data naming on the KITTI web page [146].

With the KITTI datasets, we experience problems with the ground truth trajectory. The
ground truth data provided by the KITTI benchmark has occasional offsets to the OSM data. In
rare cases, there are also jumps in the ground truth trajectory. We visualize such an exemplary
jump in 0028 in Figure 8.3. Although the error in 0028 is an extreme example that occurs very
rarely, during the evaluation, we need to remember that the KITTI ground truth needs to be
considered cautiously as it is unreliable. In contrast, the ground truth of the author-collected
datasets has centimeter accuracy and is, therefore, very reliable.

All experiments are performed on one consumer-grade laptop equipped with an Intel Core
i7-9850H @ 2.6GHz × 12 CPU, 64GB RAM and an NVIDIA Quadro T2000 GPU. We
perform the image processing and feature extraction in the front-end of the visual odometry
module on the GPU. However, all other modules are processed on the CPU.

8.1 Visual Odometry

In this section, we evaluate the first module of our localization pipeline. The visual odometry
module uses the stereo images and the LiDAR data to determine the local frame-to-frame
motion of the vehicle as presented in Chapter 4. Therefore, we detect and track visual features
as landmarks. Since we use a SLAM-graph architecture to determine the vehicle’s trajectory,
we can divide the visual odometry into two submodules that we evaluate separately.

The first submodule is the front-end which builds the graph based on the sensor data.
Consequently, in Subsection 8.1.1, we focus our analysis of the experimental results on feature
detection and tracking. Since we implement a keyframe-based approach, we batch the incoming
frames into multiple windows for which we construct the graphs.
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Figure 8.3: Exemplary error of the ground truth trajectory in 0028.

The second submodule is the back-end which processes the SLAM-graph built by the front-
end to determine, on the one hand, outliers of landmark observations and, on the other hand,
the relative motion between the consecutive frames in the window that is processed. Hence,
in Subsection 8.1.2, we evaluate the reprojection errors of the visual features, the detected
outliers, and the reconstructed landmark uncertainties after applying the windowed bundle
adjustment and the interval-based odometry estimation. Furthermore, we provide insights into
the uncertainty of the interval odometry and compare the results to a classical MLE approach
for a small exemplary trajectory. Finally, we provide the runtime evaluation in Subsection 8.1.3.

8.1.1 Front-End Evaluation

The front-end detects and tracks visual features in the stereo images. Hence, depending on how
well and how many features are tracked in the images, the front-end determines the length of
a window processed in the back-end in the windowed bundle adjustment. The longer a window
is, the longer features are tracked, which means we acquire more information on a potential
landmark. The longer windows are, the better it is for the windowed bundle adjustment since
more information is processed once in the optimization, and outliers are more likely to be
detected. However, as the vehicle is driving and the sensors capture new parts of the scene, a
window cannot have an infinite length. As described in Subsection 4.2.1, we introduce a new
window when the number of tracked features drops below a predefined threshold. In the scope
of the experiments, we set this threshold to 80 based on empirical studies.

To evaluate the length of the windows and how long landmarks are tracked along the
trajectory, we provide two exemplary histograms. While Figure 8.4 depicts the window lengths
in T1, Figure 8.5 shows the tracking length of all valid landmarks. In Table 8.2, we provide
results with condensed evaluation metrics for all trajectories.

The histogram in Figure 8.4 shows that most windows in T1 have a length below 5m.
Nonetheless, some windows are longer than 10m. The longest window has a length of 33m.
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Figure 8.4: Histogram of window lengths in T1. The number of windows with a given length is
visualized. Note that the number of windows is logarithmically scaled.
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Figure 8.5: Histogram of tracking lengths of landmarks in T1. The number of landmarks that
are tracked at a given length along the trajectory is visualized. The number of
landmarks is logarithmically scaled.

Since the start of a new window implies the insertion of a keyframe, we can maintain a
conservative keyframe insertion policy that inserts as few as possible and as many as needed
keyframes depending on how well features are tracked within the window. Interestingly,
landmarks can exist beyond windows as implied in Figure 8.5: The tracking length of a large
portion of the tracked landmarks is longer than the maximal window length of 33m. The
longest track of landmarks measures almost 200m. Further investigation reveals that those
features correspond to distant features that provide poor constraints on the relative translation
but very restrictive constraints on the relative orientation for the odometry computation. In
Table 8.2, we can see in the first row that while the average window length is 4.64m, the
average tracking length of 6.91m is larger, stressing that on average more landmarks are
tracked beyond the window length.

However, this is not the case for all trajectories. For instance, in 0020, 0027, 0028, 0033,
0034∗, and 0034, the average tracking length is smaller than the average window length.
This implies that the features are not as stably tracked as in the other datasets. The reason
for the varying tracking performances can have different causes that we will analyze in the
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Dataset Average window
length

Average number of
detected landmarks

Average landmark
tracking length

T1 4.64m 256 6.91m
T2 3.46m 430 3.5m
0018 3.89m 204 5.06m
0020 3.95m 387 3.28m
0027∗ 3.58m 516 5.05m
0027 3.1m 658 2.91m
0028 2.44m 656 1.69m
0033 2.9m 278 1.7m
0034∗ 2m 98 1.38m
0034 2.55m 339 1.228m
0071 2.88m 192 3.42m

Table 8.2: Front-end evaluation results for all trajectories. While the first column provides
the average window length of a batch, the second column provides the average
number of detected landmarks. Note that the average is only based on landmarks
initially detected in a keyframe and successfully tracked in at least one subsequent
frame. The third column provides information on the average tracking length of
successfully tracked features.

following. Further investigation reveals that T1 provides excellent conditions for the feature
tracking: Many close texture-rich facades combined with high-resolution cameras with a large
stereo baseline of 0.85m provide robust visual features with low reconstruction uncertainty
(cf. Table 8.3) with very low average reprojection errors. Suppose distinct and well-trackable
features are detected in the images. In that case, our conservative keyframe insertion policy
assures that only a few good features are tracked, as is the case for T1 and 0018 according
to Table 8.2. In contrast, in 0027 and 0028, the average number of detected and tracked
landmarks is very high. The reason for this is that the extracted features are not stable. That is
why those datasets’ average tracking lengths are significantly smaller than T1 and 0018. 0034∗
has the lowest number of successfully detected and tracked features. Further investigation
reveals that a significant part of the images capture bushes and trees on which many features
are detected. However, due to the similarity, they are not tracked well. Consequently, the
average tracking length of landmarks is comparatively small, as indicated in Table 8.2. Since
not many features are tracked well, more keyframes that shorten the window lengths need
to be inserted. In general, the feature tracking performs better in T1 and T2 as the cameras
provide images with higher resolution than in the KITTI datasets.

In summary, the visual feature detection and tracking in the front-end heavily depends on
the structure of the scene and the image resolution. Features are tracked well if the scene
contains texture-rich parts close to the sensor system. The front-end provides comparatively
large tracking windows in which the landmarks are tracked along a large trajectory, enabling
stable back-end processing. If too much vegetation is captured by the images or too many
texture-less parts are in the images, the feature tracking suffers.
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8.1.2 Back-End Evaluation

In the back-end, we perform the windowed bundle adjustment on each window the front-end
provides. The windowed bundle adjustment has two primary purposes. First, since we apply a
robust optimization approach, feature observations that lead to high residuals are identified as
outliers. Second, the remaining residuals for the feature observations identified as compatible
observations are used for the uncertainty estimation for the observations in the interval-based
odometry computation as discussed in Subsection 4.3.2. Accordingly, we divide the evaluation
into two parts. First, we provide experimental results on the windowed bundle adjustment in
Part 8.1.2.1 evaluating the reprojection errors and the landmark reconstruction uncertainties.
Second, we evaluate the interval-based odometry estimation in Part 8.1.2.2. We conclude
the back-end evaluation by directly comparing the uncertainty estimates of our interval-based
odometry approach and a classical MLE with a Gaussian uncertainty model applying covariance
propagation for the uncertainty estimation of the relative transformation in Part 8.1.2.3.

8.1.2.1 Windowed Bundle Adjustment

The main two objectives of the windowed bundle adjustment are to estimate the poses and
the landmark locations so that the reprojection errors are minimized in the least squares
sense and the outliers that exceed a maximal permitted reprojection error are identified and
excluded from the minimization. In contrast to the classical approach, where individual feature
observations are treated as outliers, we stage landmarks as outliers or inliers. As explained
in Subsection 4.3.1, if the landmark is connected to at least one observation that exceeds
the maximal permitted reprojection error threshold, we define the landmark and all connected
observations as outliers. Since the threshold selection depends on the image resolution, we must
select different thresholds for the author-collected and KITTI datasets. For the author-collected
datasets T1 and T2, we choose a maximal reprojection error of 3.0 px, and for the KITTI
datasets, we choose 4.0 px. The thresholds are selected empirically.

In Figure 8.6, the landmark-related uncertainties in T1 are exemplarily visualized. While
Figure 8.6a presents the reprojection errors of the inlier observations after the windowed bundle
adjustment, Figure 8.6b shows the interval-based reconstruction uncertainty of the landmarks in
the local frames Cl. Table 8.3 shows results for all datasets using further condensed evaluation
metrics.

According to Figure 8.6a, most inlier observations have a reprojection error below 0.1 px in
T1. As depicted in Table 8.3, the average absolute error measures 0.06 px, showing that the
bundle adjustment achieves subpixel accuracy. The presented reprojection errors do not include
outliers. As shown in the first column, in T1 among all detected landmarks 10 % are identified
as outliers along the whole trajectory. In Figure 8.7, we qualitatively illustrate inlier and outlier
landmarks for the first window processed in T1 for the same scene we introduced exemplarily in
Figure 4.15. Outliers are colored red, and inliers are green. The bundle adjustment correctly
identifies all features on the moving vehicle as outliers since the reprojection error of features
on moving objects results in observations with large residuals in the optimization. Furthermore,
many outliers are detected on a construction barrier on the bottom right part. Here, the outliers
mainly result from the incorrect association of features since similar features are detected on
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(b) Uncertainties of reconstructed landmarks. The boxplots visualize the interval widths of the
reconstructed 3D features in the left camera frame Cl.

Figure 8.6: Landmark reconstruction uncertainties. Figure 8.6b shows the reconstruction
uncertainty and Figure 8.6a the reprojection errors in T1. The reprojection errors
are used as the pixel uncertainties for stereo-camera-based landmark reconstruction.

the repetitive texture that is incorrectly associated during the tracking in the window. As a
result, the windowed bundle adjustment performs a good preselection of consistent landmarks,
which can be used for the interval-based odometry computation.

Note that the average absolute reprojection error for all KITTI trajectories is larger since
we admit larger residuals for inlier observations. The boxplots in Figure 8.6a reveal that the
median of the reprojection error is very close to zero. The reprojection error has approximately
a Gaussian distribution with zero means. This indicates that the least squares result represents
the most consistent result considering the observations. This underlines that the approximation
of the uncertainty of the pixel observation with the reprojection error is indeed tenable.

The 3D uncertainty of the reconstructed landmarks as interval boxes using the reprojection
errors is shown in Figure 8.6b. The interval box is computed with the stereo feature contractor
and depth refinement with LiDAR measurements as presented in Subsection 4.2.2. Note
that in Cl, the z-axis points to the driving direction, x to the right, and y downward. The
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Figure 8.7: Outliers are detected and deleted by the robust windowed bundle adjustment.
Successfully tracked features in the window that are detected as invalid due to high
residuals in the windowed bundle adjustment are colored red, and good features
that are permitted for the interval-based odometry computation are colored green.

uncertainty in the depth axis (z) is the largest due to the stereo camera parallax, although we
incorporate LiDAR data. Only a small part of the landmarks are depth refined by the LiDAR.
This is because the LiDAR measurements are less dense than the camera data. Notably, the
uncertainty in the y-axis is smaller compared to the other directions. The explanation for this
observation is the admitted error in the vertical direction when the left and right image features
are matched: Although we stereo-rectify the image pairs for each frame, the rectification as
well as the feature detection algorithm are not perfect due to which corresponding features are
not always detected precisely on the same image rows. That is why we tackle this matching
problem by admitting feature matching across at a maximum of 2.0 px above or below the
query row in the right image. However, this also means that the matched features generate
cones that have a smaller intersection region in the vertical direction, which coincides with
the y-axis. Consequently, the uncertainty estimate in the y-axis is smaller as the intersection
region is more susceptible to stereo-matching uncertainties.

According to Table 8.3 in T1 and T2 the median uncertainty in the x and y direction is
below 0.01m, while in z the uncertainty is 0.047m and 0.022m, respectively. However, for
the KITTI datasets, the uncertainties are significantly larger. The main reason is that the
reprojection error is twice as large as for the author-collected datasets. As explained above,
this is due to the smaller resolution of the used cameras. Furthermore, in the KITTI datasets,
the Velodyne HDL64E only captures a small part of the images, so the depth uncertainty is on
average larger in the KITTI trajectories. In 0020, the uncertainties are huge because, in this
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Dataset
Ratio of
invalid

landmarks

Average
absolute

reprojection
error

Median
landmark
uncertainty

in x

Median
landmark
uncertainty

in y

Median
landmark
uncertainty

in z
T1 10 % 0.06 px 0.009m 0.007m 0.047m
T2 4 % 0.05 px 0.005m 0.002m 0.022m
0018 13 % 0.13 px 0.082m 0.026m 0.277m
0020 8 % 0.18 px 0.344m 0.085m 1.02m
0027∗ 9 % 0.13 px 0.064m 0.023m 0.223m
0027 4 % 0.16 px 0.103m 0.037m 0.351m
0028 5 % 0.12 px 0.064m 0.02m 0.21m
0033 4 % 0.13 px 0.204m 0.074m 0.619m
0034∗ 2 % 0.12 px 0.104m 0.04m 0.364m
0034 3 % 0.12 px 0.183m 0.074m 0.572m
0071 14 % 0.1 px 0.035m 0.013m 0.1m

Table 8.3: Landmark-related evaluation of the windowed bundle adjustment for all trajectories.
The first column depicts the ratio of landmarks staged as outliers in the bundle
adjustment since they are connected to observations that exceed the maximal permit-
ted reprojection error (residual). The second column lists the average reprojection
errors of feature observations corresponding to non-outlier landmarks. The last
three columns show the median landmark uncertainties measured by the interval
width of the reconstructed landmark using the proposed interval-based approach
described in Cl.

trajectory, the camera captures mainly features that are far away, as only a few close objects
are captured by the sensors. Hence, only very few good features are tracked, and the landmark
uncertainty suffers.

8.1.2.2 Interval-based Odometry

Now we focus on the interval-based odometry that poses the output of the visual odometry
module and is further used in the localization modules in the HyPaSCoRe Localization pipeline.
Figure 8.8 depicts the interval widths of the frame-to-frame relative transformations along the
trajectory T1. We only consider the two translation components x and z in Cl in the driving
plane and the yaw-rotation angle. We omit the evaluation of the other components since they
are not relevant for the HyPaSCoRe Localization, as only the 3 DOF relative transformation is
passed to the localization modules. In Table 8.4, we summarize the results for all trajectories.
While the rotation interval width visualized in Figure 8.8b varies along the trajectory, it does
not exceed 0.35◦. According to Table 8.4, the median interval width is 0.04◦. Hence, the
rotation uncertainty is contracted to very small values.

We can see a similar behavior of the interval widths for the translation components in
Figure 8.8a. Although the x-component has two peaks to an interval width of approximately
20 cm, the z component stays under 5 cm. It is noticeable that the uncertainty of the x-
component is always larger than the z-component. However, this observation seems to be
contradicting to the results discussed in the previous section: According to Table 8.3, the



8.1. Visual Odometry 159

0.20

0.15

0.10

0.05

0.00
0 200 400 600 800 1000 1200

In
te
rv
al

wi
dt
h
in

m

Driven distance in m

Clz

Clx

(a) Frame-to-frame translation uncertainty. We only visualize the uncertainties on the ground plane
described in Cl, omitting the elevation axis.
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(b) Frame-to-frame rotation uncertainties. We only visualize the yaw angle in the Cl.

Figure 8.8: Uncertainty evaluation of the frame-to-frame interval-based odometry in T1 along
the trajectory.

z-uncertainty of the reconstructed landmarks is always larger than in the other directions, and
therefore we would expect a larger uncertainty in the z-direction of the translation. Further
investigations reveal that the intersection of all contractors CSVO

i leads to the smaller uncertainty
of the z-translation component. While applying a single Stereo-Visual-Contractor CSVO

i just
for the i-th landmark, the uncertainty along the driving direction z is – as expected – the
highest compared to the other directions. However, if we intersect all contractors CSVO

i to CSVO

according to (4.15), the uncertainty in z is reduced as the depth estimation of the landmarks
are more susceptible to the image measurement perturbations.

According to Table 8.4, the odometry estimates for the KITTI datasets are significantly more
uncertain than the author-collected datasets. As described above, the higher reprojection errors
are due to lower image resolution. In particular, 0020 has a comparatively large uncertainty
for the estimated odometry since too few features are detected and tracked. Comparing
the different datasets, the first column in Table 8.4 reveals that the vehicle was operated
in the KITTI trajectories with higher speeds. Hence, another reason for the lower tracking
performance in the KITTI datasets may be motion blur caused to higher velocities.
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Dataset
Average

frame-to-frame
distance

Median
interval width

Clx

Median
interval width

Clz

Median
interval width

rotation
T1 0.429m 0.017m 0.003m 0.04◦
T2 0.38m 0.004m 0.001m 0.012◦
0018 0.819m 0.046m 0.009m 0.091◦
0020 1.16m 0.072m 0.015m 0.126◦
0027∗ 0.667m 0.039m 0.007m 0.088◦
0027 0.817m 0.045m 0.008m 0.099◦
0028 0.81m 0.045m 0.008m 0.099◦
0033 1.088m 0.06m 0.01m 0.108◦
0034∗ 0.77m 0.04m 0.007m 0.096◦
0034 1.106m 0.061m 0.012m 0.124◦
0071 0.227m 0.021m 0.004m 0.053◦

Table 8.4: Interval-based odometry evaluation. In this table, the frame-to-frame odometry
computed with CSVO is presented. The first column shows the average frame-to-
frame distance between two consecutive poses. This value provides an average
value of how fast the vehicle was moved. The second and third columns depict the
median interval widths for the translation components on the driving plane. The
fourth column provides the interval width for the yaw rotation angle. All relative
transformation parameters are described in the local left camera frame Cl.

8.1.2.3 Interval-based vs. MLE-based Odometry

To compare our interval-based odometry with a State of the Art approach, we use a small
part of T1. As a baseline approach in the literature, we use an MLE approach with a Gaussian
uncertainty model that implements the least squares optimization in a graph optimization
fashion. This enables the direct comparison since we can reuse the SLAM-graph for the
baseline approach. As the graph optimization library, we use g2o [29] that we also use for the
windowed bundle adjustment in our approach. The uncertainty is determined by the system
covariance matrix obtained by inverting the systems matrix as explained in Subsection 2.1.3.
We retrieve the pose covariance matrices by cutting the respective blocks out of the whole
system covariance matrix. We compare the 99.9 %-confidence ellipsoids with our interval
estimates.

In Figure 8.9 the results are shown. The pose uncertainty estimated by the interval method
rises continuously as the size of the pose boxes increases. Also, the pose uncertainty of the MLE
results grows as the size of the 99.9 %-position-ellipsoids increases, as shown in the close-ups.
However, the uncertainty rises much slower than the interval uncertainty: While the semi
diagonal of the last position box computed by the interval-based odometry measures 6.55m for
a driven distance of 74.8m, the semi diagonal of the corresponding 99.9 %-position-ellipsoid
computed by g2o is only 0.44m. As a result, our method accounts for a drift of 8.7 %, while
the MLE method estimates a drift of 0.58 %. That means g2o’s uncertainty estimate is nearly
15 times more optimistic than the interval method.

However, let us inspect the deviation of the MLE results from the ground truth. We can see
that the estimate is overconfident: As shown in the second close-up compared to the first, the
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Figure 8.9: Comparison of the interval-based odometry with a least squares approach (MLE
with Gaussian uncertainty) for a small part of T1. The gray boxes visualize the
interval results while the red ellipses represent the 99.9 %-confidence ellipsoids
computed by the g2o graph optimization library. The ground truth trajectory is
colored green. Both close-up figures have the same scale.

deviation between ground truth and g2o pose estimates also rises, and the 99.9 %-ellipsoids do
not contain ground truth anymore. Considering the deviation between ground truth and g2o
position estimate, we have an actual drift of 0.72 %, which is higher than the estimated drift
of 0.58 %. In other words, the MLE optimization method underestimates the uncertainty of
the poses with the 99.9 %-ellipsoids.

Our proposed method shows a contrary behavior: It estimates a very high drift of 8.7 % and
is very pessimistic. The estimated bounds for the vehicle pose always enclose ground truth
relative motion estimate. Hence, this behavior is beneficial for safety-critical systems.

8.1.3 Runtime

Finally, we want to present the runtime evaluation of the visual odometry module. As presented
in Section 7.1, the visual odometry consists of two threads – one for the front-end and the second
for the back-end. The front-end processes the incoming sensor data, representing the real-time
critical process in the visual odometry module. In contrast, the back-end simultaneously
performs the windowed bundle adjustment and the interval-based odometry computation for
the whole window. Since a window consists of multiple frames and the sensors are operated
at 10Hz, the back-end typically has an operation time frame of several seconds. Since the
windowed bundle adjustment with g2o and the interval-based odometry computation for each
frame in the window are typically processed in less than a second, the back-end is not real-time
critical. That is why we will only focus on the runtimes in the front-end.

Figure 8.10 shows the overall runtimes for the front-end for the trajectory T1. A dashed red
line illustrates the real-time runtime limit. We can see that the runtimes are below the limit
except at the beginning, where sudden runtime peaks exceed the limit. Note that we are not
using any real-time kernels so the runtime peaks may be caused by other parallel processes
called by the operating system.
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Figure 8.10: Runtimes of the real-time critical front-end along the trajectory of T1.

Dataset Front-end Preprocessing Tracking Tracking and
detection

Frame-to-frame
pose optimization

T1 0.029 s 0.006 s 0.003 s 0.034 s 0.018 s
T2 0.038 s 0.006 s 0.005 s 0.038 s 0.024 s
0018 0.034 s 0.002 s 0.004 s 0.025 s 0.023 s
0020 0.033 s 0.003 s 0.003 s 0.026 s 0.021 s
0027∗ 0.036 s 0.002 s 0.004 s 0.021 s 0.026 s
0027 0.032 s 0.002 s 0.003 s 0.024 s 0.021 s
0028 0.032 s 0.003 s 0.003 s 0.026 s 0.02 s
0033 0.037 s 0.003 s 0.003 s 0.028 s 0.022 s
0034∗ 0.033 s 0.002 s 0.003 s 0.025 s 0.019 s
0034 0.037 s 0.002 s 0.004 s 0.028 s 0.02 s
0071 0.034 s 0.003 s 0.005 s 0.024 s 0.025 s

Table 8.5: Runtimes in the front-end. The runtimes per frame for the whole front-end and the
different subprocesses are listed for all datasets. All processing times are averaged
along the whole trajectories.

In Table 8.5, the average processing times for the entire front-end and the different
subprocesses are listed. For all datasets, the average front-end processing time is significantly
lower than the time limit for real-time execution. Note that the tracking is very lightweight,
while the tracking combined with the detection takes more time. Fortunately, only when a
new keyframe is inserted the detection is triggered. The insertion of a keyframe happens
rarely and therefore saves computation time. Furthermore, the preprocessing of the images,
including stereo-rectification and undistortion, takes almost twice the time for the author-
collected datasets T1 and T2 compared to the KITTI datasets as the image resolution in the
author-collected datasets is higher. Also, the tracking and detection times are longer for T1

and T2. Nonetheless, we can conclude that the visual odometry module is generally lightweight
enough to achieve real-time performance.
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8.2 Coarse Localization

Now we focus on the coarse localization. In the first part of the experimental evaluation, we
will consider the interval-based localization in Subsection 8.2.1. In the second part, we compare
the coarse localization with a State of the Art AMCL approach in Subsection 8.2.2. Finally, we
conclude the evaluation of the coarse localization by a runtime analysis.

8.2.1 Interval-based Localization

We pick two exemplary trajectories – T1 from the author-collected and 0027 from the KITTI
dataset – to evaluate the interval-based localization approach. Note that the interval-based
approach provides regions. Therefore, standard evaluation metrics like the root mean squared
error are not applicable. Hence, first, we will introduce the evaluation metrics and then examine
the experimental results for the two representative trajectories.

As the goal of the interval-based localization is to enclose the feasible set of poses as
closely as possible, the quality of the interval method is well reflected by the sizes of the
enclosing sets. As the 2D pose contains a translation and rotation part, we must examine the
parameter sets independently. While the translation is represented by a subpaving composed
of multiple 2D boxes, the rotation is represented by a 1D subpaving. Note, that to each
rotation subset a translation subpaving is associated. As subpavings may contain disconnected
subsets, evaluating the sizes of the enclosing sets is not as straightforward as if we would have
connected sets. In the scope of this work, we evaluate the translation estimate by wrapping the
smallest rotated box around the translation subpaving. By doing this, we obtain a convenient
and intuitive way to describe the uncertainty by only considering the side lengths of the rotated
boxes. Similarly, we define an enclosing interval hull around the feasible set of orientations –
thus, also providing a simple metric on the size of the subpaving. However, the hull-based
metric does not consider the size of infeasible gaps inside the enclosure. Figure 8.12c visualizes
the feasible translation subpaving in green and the smallest rotated enclosing box in blue. Note
that the feasible set consists of many disconnected sets. Although the total area of the green
region is comparatively small, the box hull measures a comparatively large region. Nonetheless,
this metric provides a convenient and simple geometric measure of the feasible set, so we
decided to utilize it in our evaluation.

8.2.1.1 Author-Collected Dataset T1

First, let us examine the author-collected dataset T1. In Figure 8.11a, we visualize the rotated
box hull side lengths along the driven distance. We evaluate the interval-based position estimate
by considering the long and short sides of the rotated box. By decoupling the side lengths into
two perpendicular directions represented by the side lengths, we can detect if the uncertainty
grows isotropically or if there is a favored direction in which the uncertainty grows faster. The
red dashed lines for selected frames indicate the driven distance for which a snapshot to the
localization estimate is displayed in Figure 8.12. Figure 8.11b shows the interval hull of the
orientation subpaving.
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(a) Side lengths of the rotated box that encloses the feasible set of positions at each frame.
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(b) Width of the orientation interval that encloses the feasible set of orientations.

Figure 8.11: Sizes of the enclosing intervals for the position (Figure 8.11a) and the orientation
(Figure 8.11b) for trajectory T1. The sizes represent the uncertainty of the interval-
based pose estimation. The according feasible set of positions are visualized for
selected frames in Figure 8.12. The frames are highlighted by red dashed lines in
Figure 8.11a.

Initially, as illustrated in Figure 8.12a, the vehicle can potentially be located everywhere
on the map. Accordingly, the position uncertainty is very large. Due to scaling reasons, in
Figure 8.11a, we limit the plot to 120m of uncertainty. However, shortly after initialization,
GNSS measurements are available. Using the GNSS Contractor, the feasible set is reduced to
the circular uncertainty region of the GNSS measurement as shown in Figure 8.12b. Since we
fix the GNSS uncertainty to a radius of 50m, the size of the boxes shrinks to approximately
80m. We do not reach the expected 100m side length, as the vehicle is closely located on the
map’s border. As the No-Overlap Contractor limits the size of the feasible region so that it
stays inside the map, the feasible region is accordingly smaller.

In the first 55m, we can observe a serrated pattern of the box side lengths in Figure 8.11a.
This pattern is caused by GNSS measurements that restrict the feasible set to the GNSS-
uncertainty region. When the GNSS Contractor performs the contraction, the feasible set is
contracted, while uncertain odometry updates let the feasible region continuously grow. That
is also why the long side is consistently contracted to 100m, which corresponds to the diameter
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(a) Driven distance: 0m. (b) Driven distance: 2m. (c) Driven distance: 55m.

(d) Driven distance: 120m. (e) Driven distance: 170m. (f) Driven distance: 550m.

(g) Driven distance: 670m. (h) Driven distance: 1030m. (i) Driven distance: 1100m.

Figure 8.12: Sequence of localization results of the interval method at different time steps
for trajectory T1. All feasible poses of all rotation bins are combined into each
figure. The blue box is the smallest rotated box enclosing the feasible positions
set. Figure 8.11a displays the sizes of the blue box.
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of the GNSS uncertainty region. While at 55m (Figure 8.12c) the feasible set already has
many disconnected subsets, at 120m (Figure 8.12d) only two comparatively small disconnected
subsets remain. At around 120m, we again can observe the same serrated pattern of the
short side of the rotated box hull due to the feasible subset close to the border region of the
GNSS-uncertainty region (see Figure 8.12d).

After the driven distance of 160m, the bottom subset shown in Figure 8.12d is entirely
deleted from the feasible set. That is why the rotated box hull size significantly drops at
160m. The remaining subpaving is visualized in Figure 8.12e. Note the elongated shape of the
feasible set along the driving direction. This is due to the building constellation that only makes
contractions in the lateral direction possible, as buildings are only located on the left and right
sides of the vehicle. That is why the short side length has a comparatively stable length of
approximately 10m while the long side length increases continuously between 160m and 550m
driven distance. Figure 8.12f reveals that in this part of the trajectory, we only have a straight
road with buildings on the left and right sides. Hence, the uncertainty grows along the driving
direction. As a result, at the end of this trajectory part, the uncertainty in the driving direction
is comparatively large and reaches almost 45m according to Figure 8.11a. However, at a driven
distance of 560m, the No-Cross Contractor makes the contraction along the driving direction
possible since a perpendicular wall is perceived. Accordingly, the uncertainty can be reduced
again between 560m and 650m driven distance as depicted in Figure 8.11a. Figure 8.12g
shows the remaining feasible set of positions.

When the vehicle turns and moves in another direction also leads to a significant contraction
of the feasible set. After the feasible set of translations is narrowed to a comparatively small
set until a driven distance of 160m, there are two significant turns at 600m and 1040m
the vehicle performs. If we consider the rotated box hull side lengths in Figure 8.11a, the
contractions directly correspond to those turns. For instance, consider the 90◦ turn at 1040m.
Before the turn, the position uncertainty is prominent along the driving direction as shown
in Figure 8.12h. The larger side of the rotated box has a length of 53m. During the turn,
those parts in the front and back of the vehicle are successively dismissed from the feasible
set using the No-Overlap Contractor as those parts are shifted into the buildings. The result
after the turn is shown in Figure 8.12i, and the largest side length of the rotated box hull
drops to less than 20m. Turns reduce the uncertainty due to two facts: First, when it comes
to a turn, in urban environments, often perpendicular building facades are observed that are
used for contraction. Second, the feasible set of positions is shifted to another direction, so
the buildings are observed from another direction. Further contraction based on the No-Cross
Contractor and the No-Overlap Contractor is possible.

The rotation uncertainty shows a different behavior compared to the translation. While in
the first 50m, we can observe a serrated pattern of the box side lengths in Figure 8.11a, the
rotation uncertainty Figure 8.11b does not change at all. This behavior is because the rotation
is only passively contracted using the translation sets. None of the introduced contractors
performs a contraction on the rotation directly. However, as we divide the initial feasible set
of orientations into multiple bins and apply the contractors successively to dismiss infeasible
translation subsets from each bin MPL,i, we passively contract the orientation if the translation
set MTL,i becomes empty for a particular orientation bin. Hence, we cannot directly dismiss the
whole set of translations for a bin initially. As a result, the orientation cannot be contracted.
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(b) Width of the orientation interval that encloses the feasible set of orientations.

Figure 8.13: Sizes of the enclosing intervals for the position (Figure 8.13a) and the orientation
(Figure 8.13b) for the KITTI trajectory 0027. The sizes represent the uncertainty
of the interval-based pose estimation. The according feasible set of positions is
visualized for selected frames in Figure 8.14. The frames are highlighted by red
dashed lines in Figure 8.13a.

However, the rotation uncertainty drops quickly after a driven distance of 50m as shown in
Figure 8.11b. This is mainly caused by the GNSS Contractor: As the GNSS uncertainty region
is fixed to 50m radius. Those translation sets of bins oriented in the opposite direction of the
actual orientation get deleted as those sets cannot be located inside the uncertainty region of
the GNSS measurement. As a result, the orientation uncertainty rapidly decreases to 8◦ interval
width at 170m driven distance. Note that in our implementation, we perform continuous
splitting of the rotation interval if a rotation bin’s uncertainty exceeds a given threshold. This
makes further contraction of the orientation uncertainty possible. However, in this example,
the rotation splitting does not decrease the rotation uncertainty further. That is why the
orientation uncertainty linearly increases with 0.00625◦ 1

m
due to the uncertainty accumulation

of the odometry data after 170m.
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8.2.1.2 KITTI Dataset 0027

Now we examine the KITTI dataset 0027. The rotated box hull side lengths and the orientation
interval width along the trajectory are depicted in Figure 8.13a and Figure 8.13b, respectively.
Figure 8.14 shows the snapshots to selected frames again highlighted by dashed red lines in
Figure 8.13a.

In this dataset, we can observe a similar behavior of our interval-based method as in T1.
The serrated pattern of the rotated box hull side lengths is also observable in the beginning.
However, the size of the rotated box hull shrinks faster as the map and the trajectory are
topologically different: In T1, there are many connected buildings along the streets. However,
in the considered part of Karlsruhe, the buildings are disconnected and are more distributed
within the map. The more buildings are distributed, the more regions exist where the No-
Overlap Contractor can dismiss infeasible translation subsets that are shifted into the buildings.
Furthermore, as the buildings are not connected, more building facades perpendicular to the
driving direction are visible, which improves the No-Cross Contractor performance. Another
essential factor is also the trajectory. While in T1, the first turn is at 190m, in 0027, the
first turn is already at 90m. As explained above, turns provide valuable information for the
contractors so that the feasible set is significantly reduced in 0027 earlier compared to T1.

The GNSS information only provides helpful information at the beginning when the un-
certainty is large. However, if the translation uncertainty is comparatively small, the GNSS
contractor does not contribute to reducing the feasible set. Nonetheless, the GNSS Contractor
is very important for our approach as it initially reduces the feasible set significantly.

The shape of the graph in Figure 8.13b is very similar to Figure 8.11b. As observed above,
for 0027 the rotation is only contracted after a driven distance of 50m as shown in Figure 8.13b.

8.2.2 Hybrid Method vs. AMCL

In the last section, we analyzed the interval-based localization results. Now we will consider the
bounded MCL part by comparing our method with a State of the Art Adaptive Monte Carlo
Localization (AMCL). The AMCL combines an adaptive resampling approach [147] with a low
variance resampling [84] similar to the approaches presented in [89, 91, 93, 94]. We initialize the
AMCL with 20000 uniformly distributed particles similar to our hybrid method that initializes the
location to the map region. We divide the initial rotation uncertainty into 25 bins for our hybrid
method. As the bounded MCL allocates 20 particles per bin, our method only uses a maximum
of 500 particles. For a fair comparison, the observation model for weighting the particles is the
beam-end model presented in the bounded MCL approach described in Section 5.3. Note that
the observation model is interchangeable with more sophisticated observation models [93, 94].
We selected the well-known beam-end model to keep our implementation as simple as possible
and have a common baseline for a fair comparison. Furthermore, in the resampling process
of AMCL, we also consider the buildings, map borders, and the GNSS uncertainty regions: If
a particle is updated to a location inside a building or outside the map, we do not resample
from this particle so that it does not survive in the next iteration step. Furthermore, we also
consider GNSS information in the same manner as we do in our approach by only considering
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(a) Driven distance: 0m. (b) Driven distance: 15m.

(c) Driven distance: 90m. (d) Driven distance: 290m.

(e) Driven distance: 1020m. (f) Driven distance: 2840m.

Figure 8.14: Sequence of localization results of the interval method at different time steps for
trajectory 0027. All feasible poses of all rotation bins are combined into each
figure. The sizes of the rotated box are shown in Figure 8.13a.
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Figure 8.15: Average particle distance to ground truth for trajectory T1 for the best and worst
runs of our method and AMCL among 20 runs. The convergence points are
marked.

those particles inside the uncertainty region of the global position acquired by the GNSS sensor.
We are choosing the same uncertainty region for AMCL as we are using in our method.

When particles get depleted in the AMCL, we uniformly spread new particles in a radius
of 100m around the actual position with random orientation. To ensure a representative
comparison between the methods, we run AMCL and our hybrid method for each dataset 20
times. The convergence to the correct pose quantifies the performance of localization methods.
However, to measure the convergence, we need to take, on the one hand, the convergence
speed and, on the other hand, the tracking behavior of the correct pose after convergence
into account. We define the convergence point as the driven distance after which the average
particle position drops below 5m. We consider the tracking error after convergence by analyzing
the average estimation error. While Table 8.6 lists the results for the convergence analysis for
all datasets, Table 8.7 shows the tracking results for all datasets. To obtain a more detailed
overview of the localization behavior of our method compared to AMCL, we also plot the
average particles distance to ground truth along the whole trajectory of T1 in Figure 8.15 and
of 0027 in Figure 8.16. Therefore, we consider two runs among the 20 for T1 and 0027 for
which we observed the fastest and slowest convergence.

Convergence Speed and Repeatability

As shown in Figure 8.15, while the worst run with our hybrid approach converges at 201m,
the best run already at 3.4m. In contrast, the best run with the AMCL converges at 47m.
While AMCL’s best run converges faster than the worst run of our hybrid approach, the worst
run of AMCL does not converge at all. Taking the first row of Table 8.6 into account, which
considers all 20 runs for T1, we found that for this particular trajectory, our method converges
on average 4.7 times faster than AMCL. Furthermore, according to Table 8.6, the average
particle distance after convergence is lower with our approach than the AMCL.

We observe a similar result for 0027 in Figure 8.16. While the best run of our method
already converges at 30m, the worst run converges after AMCL’s best run. According to
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Figure 8.16: Average particle distance to ground truth for trajectory 0027 for the best and
worst runs of our method and AMCL among 20 runs. The convergence points
are marked.

Table 8.6, our method converges on average 3.7 times faster than AMCL for the trajectory
0027. Furthermore, AMCL’s average particle error in Figure 8.16 for the best run jumps shortly
after falling below the 5m limit to an error above 30m. This is due to the tracking behavior
we will analyze in the next paragraph.

Regarding the convergence behavior, we obtain similar results for other trajectories as
summarized in Table 8.6. As the first column shows, our hybrid method converges on average
faster than AMCL except for 0034. This does not mean that the AMCL always converges
slower. As shown in Figure 8.15 and Figure 8.16, a fortunate resampling in the AMCL method
may lead to a faster convergence for specific runs. However, on average, the AMCL shows
slower convergence. In the worst case, the AMCL does not converge as shown in the third
column of Table 8.6 while our method always converges to the correct solution for almost all of
the datasets. For 0020, AMCL converges in none of the 20 runs. Only for 0034 and 0034∗, our
method does not always converge since both datasets are recorded in residential areas where
trees and hedges occlude significant parts of the buildings. This is also why our methods and
AMCL converge very lately for both datasets. Another observation model may improve the
result for 0034 and 0034∗.

The main reason for the faster convergence of our hybrid method is the interval method
that reliably keeps track of the feasible region and enables an aggressive resampling process for
the bounded MCL. While the interval method implicitly stores the past trajectory information
by providing the feasible set of poses at each time step, the AMCL implicitly reflects this
information in the set of particles. That is why AMCL performs a more defensive resampling
so that a large variety of particles is kept as long as possible. However, due to unfortunate
resampling, incorrect particles may be overpopulated, leading to particle depletion later. As
the information on the feasible region is not available for AMCL, particles need to be spread
randomly, ignoring the already driven trajectory – the convergence speed suffers. The aggressive
sampling process in our hybrid approach continuously checks for better solutions in the feasible
region so that switching to the correct solution is possible. On the downside, the aggressive
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Dataset
Average driven
distance until
convergence

Standard deviation
of driven distance
until convergence

Runs with average
error below 5m
(at least once)

Ours AMCL Ours AMCL Ours AMCL
T1 80.12m 377.58m 74.95m 230.78m 100% 95%
T2 163.78m 305.26m 112.94m 168.28m 100% 75%
0018 152.29m 653.08m 9.6m 361.53m 100% 85%
0020 263.34m - 51.66m - 100% 0%
0027∗ 107.2m 406.95m 25.23m 181.41m 100% 60%
0027 98.57m 365.76m 38.71m 287.1m 100% 100%
0028 526.2m 1632.79m 145.68m 277.89m 100% 100%
0033 694.42m 952.36m 129.69m 184.77m 100% 65%
0034∗ 443.17m 592.77m 75.03m 178.95m 90% 20%
0034 2364.47m 2283.24m 723.68m 1014.5m 95% 30%
0071 148.62m 226.98m 1.74m 0.0m 100% 5%

Table 8.6: Convergence evaluation. Both approaches are run 20 times on each data set. The
average and standard deviation of the driven distance until convergence are only
considered for those runs that converge. Those runs are classified as runs with
average particle error below 5m (at least once).

resampling leads to less accurate tracking results, as it is shown Figure 8.16, which will be
analyzed in the next paragraph.

To study the repeatability of the methods, we also compare the standard deviation of
the driven distance until convergence. The results are depicted in the second column of
Table 8.6. The standard deviations of the driven distances are significantly lower with our
method, revealing that the convergence distances are more similar among all runs except
for 0071. The exception is because AMCL only converged once (5 %) among 20 runs (third
column). The main reason for the higher repeatability of our method compared to the AMCL
is the deterministic interval method. As the interval approach always provides the same result
on the feasible region, the bounded MCL – the random component in our hybrid approach – is
restricted to this deterministic region. The AMCL has no deterministic components – so each
run can lead to totally different results.

Tracking Error After Convergence

Up to now, we considered the convergence speed. As we define the convergence speed as
the driven distance at which the average particle error drops below 5m, the question remains
how well do the localization methods track the correct pose after the convergence point so
that the localization error stays small. Therefore, let us consider again the average particle
errors along the trajectory shown in Figure 8.15 and Figure 8.16. While in Figure 8.15, our
method and the AMCL can keep the error comparatively low after convergence, at 1200m the
run with the fastest convergence of our method (yellow) exceeds the 5m error limit. Hence
our method could not keep the average particle error below the defined limit, while the AMCL
does not converge at all for the worst case. Figure 8.16 illustrates the problem more clearly.
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Neither our method nor AMCL is able to keep the average particle error below 5m after the
convergence points. However, we observe different mechanisms for the methods that lead to
larger errors, We will analyze them in the following.

Let us first focus on the AMCL. The AMCL’s average particle error jumps shortly after
falling below the 5m limit to an error above 30m at 139m driven distance, as mentioned above.
This is caused by particle depletion: We experienced in our experiments that in the AMCL,
particles close to the true pose survive longer – however, if the orientation of the remaining
particles is slightly off, the particles will at some point be deleted as they become infeasible.
To counteract this problem, we could spread more particles. However, increasing the number
of particles leads to longer runtimes. Furthermore, the selection of how many particles need to
be spread depends on the map and the trajectory. Hence, although the localization with AMCL
may work for this dataset when we increase the number of particles, this does not guarantee
that the number of particles is sufficient for another dataset.

Furthermore, from 900m onward, the AMCL average particle error is significantly lower than
before. Nonetheless, the AMCL is not able to further reduce the error. The main reason for
this behavior is that AMCL needs to keep track of many particles to prevent particle depletion.
This also means that the average particle estimate will consider low-weighted particles leading
to more significant errors with this metric.

In contrast, our method can significantly reduce the average particle error. However, our
method shows another unfavorable behavior: Error spikes at around 1500m in Figure 8.16
occur. The main reason for the spikes is the constant checking for better solutions inside the
feasible set: Particles may populate regions enclosing temporarily better solutions. While the
aggressive resampling procedure leads to fast convergence, it comes with the cost that good
solutions may be omitted earlier as, temporarily, other parts of the feasible set may fit better
to the LiDAR data. Due to the aggressive resampling, the better particle is preferred, leading
to an error spike. Hence, our method is more sensitive to cases where the observation model
does not properly weight the particles. This is also why spikes are clustered between 1300m
and 2100m. In this trajectory part, the building walls are occluded by trees and hedges. While
our method generates error spikes, the AMCL keeps the average particle error at an almost
constant but high error level.

For the other trajectories, we observe similar results. The results are summarized in Table 8.7.
According to the first column, the average particle distance to the correct pose is lower for
our hybrid method except for 0028, 0034, and 0071, although the error spikes occur. The
problems with 0034 and 0071 are already mentioned above. However, 0028 again shows the
weakness of our approach. The aggressive resampling leads to larger jitter of the localization
estimate compared to the AMCL, although our method converges 3 times faster to an error
below 5m according to Table 8.6. We measure the jitter based on the standard deviation of
the average particle distance in the second column of Table 8.7. The smaller the standard
deviation, the smaller the jitter of the average particle error. For 0028, we can see that the
standard deviation is much lower for the AMCL than our method. However, this is not the
case for all trajectories. Depending on the maps and the trajectories, the methods provide
different results. For instance, for T1, AMCL shows preferable behavior as it provides more
stable estimates, although the average particle error with the AMCL is larger compared to our
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Dataset
Average particle error
after convergence

Standard deviation of
particle error after

convergence
Ours AMCL Ours AMCL

T1 1.99m 2.32m 1.24m 0.96m
T2 1.91m 2.15m 2.32m 1.12m
0018 3.51m 9.82m 2.79m 7.68m
0020 4.24m - 3.66m -
0027∗ 4.79m 5.06m 7.13m 3.67m
0027 3.79m 10.24m 2.44m 8.14m
0028 11.93m 5.89m 12.27m 1.48m
0033 7.95m 12.22m 5.08m 8.16m
0034∗ 7.82m 8.68m 4.35m 7.91m
0034 18.17m 15.01m 10.55m 7.08m
0071 4.5m 3.3m 4.33m 0.38m

Table 8.7: Tracking evaluation. Both approaches are run 20 times on each data set. The
average particle error after convergence and the dtandard deviation of the particle
error after convergence is shown.

method. However, for 0027, our method has less jitter in the localization estimate than AMCL.
If we consider Figure 8.16, we can see that our method mainly has temporary error spikes after
convergence. In contrast, the AMCL has larger parts where the average particle error changes
rapidly due to particle depletion.

In summary, our method converges faster than the AMCL. However, our method is more
sensitive to problems caused by the observation model, due to which the tracking performance
suffers. Hence, more sophisticated observation models are vital for the good performance of
our method. Nonetheless, our method constantly checks better solutions inside the feasible
set so that tracking losses lead to error spikes that are corrected rapidly. The AMCL is more
robust concerning problems of the observation models. However, the error stays comparatively
large since the AMCL has to consider a large variety of particles. This hinders the average
particle error from being further reduced.

8.2.3 Runtime

While the average operation times along the whole trajectories are presented in the first column
of Table 8.8, Figure 8.17 and Figure 8.18 show the average operation times per frame depending
on the driven distance for T1 and 0027, respectively. The LiDAR data was acquired at 10Hz for
all datasets. As a result, a real-time operation requires an operation time below 0.1 s per frame.
According to the first column in Table 8.8, our method satisfies the real-time requirement for
all datasets with the average operation time per frame. The AMCL does not fulfill the runtime
requirement for all datasets. In the worst case, the AMCL needs in 0028 an average operation
time per frame up to three times longer than real-time. In contrast, our method only needs a
third of the available time on average for the same dataset.
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Dataset
Average operation
time per frame

Standard deviation
of operation time

per frame
Ours AMCL Ours AMCL

T1 0.038 s 0.025 s 0.041 s 0.077 s
T2 0.033 s 0.034 s 0.022 s 0.079 s
0018 0.034 s 0.071 s 0.02 s 0.33 s
0020 0.03 s 0.071 s 0.023 s 0.076 s
0027∗ 0.067 s 0.188 s 0.043 s 0.68 s
0027 0.043 s 0.18 s 0.027 s 0.63 s
0028 0.034 s 0.292 s 0.017 s 0.38 s
0033 0.036 s 0.173 s 0.023 s 0.57 s
0034∗ 0.051 s 0.106 s 0.045 s 0.21 s
0034 0.062 s 0.113 s 0.038 s 0.42 s
0071 0.034 s 0.068 s 0.025 s 0.09 s

Table 8.8: Average operation time per frame and the standard deviation of the operation time
per frame.

The standard deviations of the average operation times are listed in the second column
of Table 8.8. Note that our method’s standard deviation of the average operation time per
frame is significantly lower. Hence, the runtime stays comparatively constant compared to
the AMCL. Figure 8.17 and Figure 8.18 underline this observation based on the exemplary
trajectories T1 and 0027. While our method shows similar behavior in both plots, the AMCL
operation time profile differs significantly. When the localization is initialized, the uncertainty
is substantial. Hence, our approach has to consider a vast feasible region, while AMCL has
to spread particles to cover the whole map widely. Consequently, for both methods, the
initialization requires significant operation times. That is why both methods do not satisfy
the real-time requirement initially. However, as our method successively dismisses infeasible
subsets rapidly, the computational burden is gradually decreased so that our method reaches
low operation times per frame. Nonetheless, there are rare frames at which the operation
time exceeds the time limit of 0.1 s in Figure 8.17 and Figure 8.18. Hence, we cannot ensure
hard real-time. Note that our machine uses no real-time kernels, so we cannot guarantee hard
real-time execution.

Although the plots for the AMCL operation times in Figure 8.17 and Figure 8.18 significantly
differ, in both plots, we can see noticeable jumps. Those jumps are caused by particle depletion:
When all particles vanish as the remaining particles are updated to infeasible regions, new
particles must be spread. We uniformly spread 20000 particles in a defined region as described
above. As the number of particles suddenly rises, the operation time increases accordingly. As
in Figure 8.17, the AMCL can rapidly reduce the number of particles to a small amount. The
operation time for AMCL is comparatively low, except for those frames where new particles are
spread. However, for the dataset 0027, the AMCL cannot aggressively reduce the number of
particles. That is the reason why the operation time stays comparatively large. Due to the
large number of particles that AMCL tracks, the operation time is higher compared to our
approach. The performance of the AMCL is mainly dependent on the map and trajectory, while
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Figure 8.17: For each frame in trajectory T1 the operation time is averaged among all 20 runs.
The average operation time per frame is plotted for the driven distances.
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Figure 8.18: For each frame in trajectory 0027 the operation time is averaged among all 20
runs. The average operation time per frame is plotted for the driven distances.

our method performs similarly for all datasets regarding the operation time. As the number
of particles changes suddenly for AMCL, the operation time per frame also changes suddenly,
increasing the standard deviation of the average operation time per frame shown in the second
column of Table 8.8.

Note that the online capability of our method depends on the size and structure of the map,
the size of the initial pose estimate, and the number of cores available on the CPU. For both
methods, the operation time before convergence takes longer than after. Nonetheless, our
hybrid method is real-time capable for the tested scenarios. In contrast, the AMCL does not
reach real-time performance for most KITTI datasets.

8.3 Refined Localization

Now we will turn our attention to the refined localization. In the HyPaSCoRe Localization, the
hybrid refined localization module uses the coarse localization results to improve and refine
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the pose estimate by performing local measurement association to facades in the map. In the
scope of this section, we want to evaluate this module independently.

To achieve an independent operation of the refined localization, we need to introduce some
minor modifications to the pipeline for the sake of the ablation study. Since the main objective
of the coarse localization is to narrow down the feasible set of poses from a large set of possible
poses, the coarse localization performs the major part of its work during initialization when the
uncertainty is large. As we want to design our experiments so that the coarse localization has
no impact on the pose estimation, we manually fix the initial pose uncertainty to a smaller
region using the ground truth pose so that the refined localization is directly applicable. We
also limit the maximum possible error during the trajectory to a smaller region. Theoretically,
this experimental setup is appropriate for the ablation study. However, further investigation
on the ground truth pose shows that for some KITTI trajectories, the OSM and the provided
ground truth trajectories have a varying offset. Unfortunately, we cannot reconstruct the source
of the error, whether the ground truth trajectory or the OSM are error-prone, and compensate
for that error. On the bright side, for the author-collected datasets T1 and T2, the ground
truth trajectories are consistent with the maps.

Nonetheless, we suggest the following to use the KITTI dataset for evaluation. Along
the trajectory, we provide for each frame a feasible set of poses that we define based on an
appropriate region around the ground truth pose. The radius of the inflation depends on
the maximal error that we determine empirically for each dataset beforehand. Similar to the
bounded MCL in the coarse localization, we spread particles in that small inflated region to
determine the best pose, which we use to initialize the refined localization. By doing this, we
bypass the ground truth problem of the KITTI dataset coming with the cost of a possibly
sub-optimal performance of the refined localization as we cannot assure the best particle to be
indeed an acceptable initial solution. While we choose for 0020 and 0034 an inflation radius of
10m and for 0028 20m, for all remaining six trajectories, we select a position inflation radius
around the ground truth position of 5m. For the ground truth angle inflation, we select for all
datasets an inflation radius of 5◦.

In Subsection 6.2.2, we introduced a set-membership-based and a probabilistic association.
Here we only evaluate the probabilistic association that chooses the best particle among all
particles in the feasible set, as this association method is used in the HyPaSCoRe Localization
pipeline. The results on the set-membership-based association can be found in [143].

The refined localization consists of two parts. In the first part, based on the points-to-facades
association, the consistent set of poses is determined by computing a polygon that describes the
set of consistent positions and an interval that encloses the consistent set of orientation angles.
In the second part, we apply a bounded optimization approach to determine the most likely
solution within the consistent set. Accordingly, we also divide our evaluation into two parts.
In the first part in Subsection 8.3.1, we evaluate the pessimism of the set-membership-based
uncertainty estimation. Therefore, we study the sizes of the obtained sets and analyze the
association. We evaluate the sets’ width corresponding to the polygons’ widths and the
rotation angle intervals. Suppose we admit an inflation of r for the position. In that case, the
maximal side length of the rotated rectangle can be

√
2r, which is the size of the diagonal

of the maximally permitted uncertainty region. Note that during the regular operation of the
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(a) Many differenly oriented facades – 3D view. (b) Many differenly oriented facades – 2D view.

Figure 8.19: An exemplary configuration with many facades. The interval-based localization
result is shown in the 3D view (Figure 8.19a) and the 2D view (Figure 8.19b).
The extracted facade points using the iHT and the stripes corresponding to the
facades are colored accordingly.

HyPaSCoRe Localization, the region in which the refined localization operates is restricted by
the coarse localization. The maximum error for the orientation is 10◦, twice the rotation angle
inflation radius. In the second part in Subsection 8.3.2, we evaluate the bounded optimization
results and compare those with a classical unbounded MLE approach. Therefore, we can use
classical evaluation metrics to compare the most likely poses with the ground truth.

The performance of our refined localization approach mainly depends on the map’s topology.
Although we evaluate our method on nine different datasets and provide condensed results
based on common evaluation metrics, we want to provide a more in-depth evaluation on two
of nine dedicated, exemplary datasets. First, we choose T1 with the LOD2 map, which has
higher accuracy, and second, 0027 with the OSM, which has lower accuracy. Both maps are
topologically different, as we will see later. The uncertainty of building maps is determined by
the position and orientation uncertainty of the facades. For the LOD2 maps, we account for a
position uncertainty of up to 1m and an orientation uncertainty of up to 1.7◦. For the OSMs,
we account for 1.3m, and 2.9◦. The uncertainty bounds are estimated empirically.

8.3.1 Set-Membership-based Localization

In Figure 8.19, the set-membership-based localization result for a scene with many differently
oriented facades is presented. While Figure 8.19a shows the localization result in 3D, Fig-
ure 8.19b shows the result in 2D. The associated points to the different facades are colored.
Note that those seen facades are marked with a line in the specific color in which the associated
points are displayed. Each of the seen facades generates position stripes that we illustrated
with an upper and lower border line on the ground plane. The stripes are accordingly colored.
The intersection region of all stripes that represents the consistent set of positions of the robot
is highlighted with a green polygon. A building geometry as presented in Figure 8.19 is
favorable for the proposed localization scheme since many differently oriented facades restrict
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(a) Similarly oriented facades – 3D view. (b) Similarly oriented facades – 2D view.

Figure 8.20: An exemplary configuration with facades with similar orientation. The interval-
based localization result is shown in the 3D view (Figure 8.20a) and the 2D
view (Figure 8.20b). The extracted facade points using the iHT and the stripes
corresponding to the facades are colored accordingly.

the pose along many directions. Consequently, we obtain many differently oriented stripes that
lead to a small intersection region.

In contrast to a good constellation of the building facades, Figure 8.20 shows a less favorable
building constellation that leads to poor localization results with our localization scheme. All
facades are similarly oriented, due to which all stripes are similarly oriented. In our experiments,
we restricted the initial set of positions to 5m × 5m rectangle. Only this initial restriction
further contracts the positions in the parallel direction. Note that we also obtain constraints for
the position in the parallel direction due to the line segment intersection constraint. However,
the constraints are less restrictive in this situation than the initial position constraint.

To illustrate the impact of the building geometry in the vehicle’s vicinity on the localization
estimation, we display the uncertainty of the localization estimate along the small trajectory
part of T1 in Figure 8.21. To evaluate the localization performance of our method, we need to
quantify the accuracy. The radius of the interval can measure the orientation accuracy. To
measure the size of the position polygon, we fit an enclosing rotated rectangle with the smallest
area. The width and the height approximate the position accuracy. Figure 8.21 displays the
position polygons for a small part of the trajectory T1 where each polygon is colored based
on the length of the largest side length of the rotated enclosing bounding box. While blue
encodes a comparatively high uncertainty, red highlights small uncertainty. Note that in T1,
the front-facing Cepton LiDAR-sensor was used. Due to the LiDAR’s limited observation cone,
only those poses from which facades with a perpendicular orientation to the driving direction
are seen have lower uncertainty. The localization estimate becomes uncertain if the LiDAR
only captures very similarly oriented facades.

In the following, we will consider the two datasets T1 and 0027 in more detail to evaluate
the sizes of the computed consistent set.
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8.3.1.1 Author-Collected Dataset T1 with LOD2 map

The overview to the trajectory and the map is visualized on in middle right in Figure 8.22.
We also show close-up figures with the determined polygon (blue) and the enclosing rotated
rectangle (orange) for dedicated driven distances. The driven distances to which the localization
polygons refer are denoted in green in the close-up figures. To evaluate how the polygon size
and rotation interval width change along the trajectory, we also provide the side lengths of
the rotated rectangle for the driven distances and the rotation interval widths in Figure 8.23a.
The sample close-ups in Figure 8.22 are accordingly marked in Figure 8.23a by a red dashed
vertical line. To measure the size of the position polygon, we wrap the smallest rotated box
that minimizes the area. We measure the polygon’s size by considering the long and short sides
of the rotated rectangle. We plot the interval width for the orientation in Figure 8.23b.

When we compare the progression of the long side length (blue) and the short side length
(orange) in Figure 8.23a, it is noticeable that the long side length changes to a greater extent,
while the short side length always stays around 2m with an average of 1.57m according to
Table 8.9. A closer inspection of the long side length in Figure 8.23a reveals a repeated
saw-tooth pattern where the long side length continuously rises and suddenly shrinks to a small
value. For instance, this pattern is particularly strong between 400m and 560m. If we compare
this portion in the trajectory overview in Figure 8.22, this part corresponds to the top left part
where the vehicle is between buildings in a sluice-like street so that it can only see buildings on
the left and right side. Consequently, since in this part, no facades are seen perpendicular to
the driving direction, the uncertainty along the driving direction rises continuously. That is why
the polygon size rises along the driving direction as illustrated in the close-up in Figure 8.22:
Initially at 400m, the polygon is comparatively small. However, at 480m, the polygon shape
gets more elongated in the driving direction. Considering Figure 8.23a, at 480m, the vehicle
has evolved almost half of the sluice-like portion of the trajectory. Shortly after 540m of driven
distance, the large side length jumps to a smaller value due to observing a perpendicular facade
that makes the contraction of the consistent set possible. If we consider Figure 8.22 at 560m,
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Figure 8.22: T1 trajectory overview and selected pose estimation. Polygons are colored blue,
the rotated rectangle is colored orange.
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Figure 8.23: Sizes of the enclosing rotated rectangle for the position (Figure 8.23a) and the
orientation (Figure 8.23b) for trajectory T1 using the LOD2 map. The sizes
represent the uncertainty of the polygon pose estimation. The according polygons
and enclosing rotated boxes are visualized for selected frames in Figure 8.22. The
frames are highlighted by red dashed lines in Figure 8.23a.

the vehicle associates its local LiDAR measurements to a facade at the end of the road. Hence,
the uncertainty in the driving direction is reduced. The contracted position polygon is depicted
in the bottom left close-up in Figure 8.22.

The rotation interval width shown in Figure 8.23b is almost independent of how many
facades are seen. As already one facade observation provides good contraction on the rotation
interval, the interval width is mainly affected by the iHT estimation of the local line. Since
the iHT performs a line parameter estimation, the quality of the results depends on how well
the perceived points construct a line in the projected LiDAR scan. Consequently, the more
points are associated with a facade, the better the local line estimates will be, and accordingly,
the orientation interval width will shrink. Sometimes the interval width jumps to the maximal
value of 10◦. This happens if the association is error-prone, so the orientation interval becomes
empty. In that case, we assume maximal uncertainty for the orientation.
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Figure 8.24: Evaluation of the association. The number of seen facades (Figure 8.24a) and the
ratio of associated LiDAR points (Figure 8.24b) affect the localization accuracy.

Figure 8.24 illustrates how well our method associates local LiDAR measurements to building
facades. While Figure 8.24a plots the number of facades along the trajectory, Figure 8.24b
depicts the ratio of how many LiDAR measurements from the total amount of measurements
are associated with facades along the trajectory. The highest number of facades is seen at
300m. As shown in Figure 8.22, the vehicle is placed in a junction where many different
oriented facades are observed. This is also the reason why at this driven distance, the polygon
size (< 1m) and orientation interval width (< 1◦) is very small.

Nonetheless, shortly after the orientation interval is contracted to a very small interval, the
interval width jumps to the maximal value. The main problem of an overly optimistic and
small orientation interval is that already small perturbations may lead to empty sets if the iHT
underestimates the uncertainty of the local line orientation. In the case of more significant
occlusions, the association ratio drops. In Figure 8.24b, we see a ratio drop at 650m. According
to Figure 8.22, the vehicle was located on a left turn in the left part of the map. During this
turn, the LiDAR was occluded by other traffic participants and parked cars.
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8.3.1.2 KITTI Dataset 0027 with OSM

The map we use for the 0027 KITTI dataset is available on the OSM database. Although OSM
has less accurate building footprints, we can localize the vehicle using our refined localization
method. Since the dataset was collected in a residential area in Karlsruhe, the map significantly
differs from the map that we considered previously for T1. While the map in T1 shows a
very dense structure with connected buildings (cf. Figure 8.22), the 0027 map as shown in
Figure 8.25 contains many disconnected buildings that are partially occluded by for instance
vegetation.

Similar to the overview Figure 8.22 for T1, the overview of the whole trajectory and dedicated
close-ups on the set-membership-based localization results are shown for the KITTI dataset
0027 in Figure 8.25. When directly comparing the close-ups in Figure 8.22 and Figure 8.25,
it can be noticed that the polygons in Figure 8.25 do not contain the green ground truth
trajectory path while the polygons in Figure 8.22 do. This is due to the KITTI dataset’s
error-prone ground truth trajectory. Although the relative motion of the vehicle is correct for
the major part of the KITTI ground truth trajectories, the absolute localization accuracy reveals
an offset to the OSM data. Particularly the bottom right close-up figure in Figure 8.25 shows
the inconsistent offset of the OSM and the ground truth trajectory since the green ground
truth trajectory touches the building so that the vehicle should have collided with the building.
Nonetheless, the offset is within 5m range, and therefore the ground truth can still be used as
a rule of thumb in our evaluation. Due to this offset, the polygons do not directly contain the
green path as is the case in Figure 8.22, where we have very accurate absolute ground truth.

Figure 8.26 shows the set-membership evaluation similar to the already introduced plots in
Figure 8.23. Although the saw-tooth pattern is much stronger in T1 (Figure 8.23a), in the
0027 trajectory between 400m and 500m and between 1000m and 1100m we can notice a
similar behavior. As denoted by the red dashed vertical lines, the polygons for the saw-tooth
pattern between 400m and 500m are depicted on the top left close-ups in Figure 8.25. In this
portion of the trajectory, the vehicle is in a similar sluice-like street enclosed by a left and right
row of connected buildings. This leads to a growing uncertainty along the driving direction
until a perpendicular facade is detected. However, according to Table 8.9, the long side has an
average length of 3.25m for 0027 compared to 3.56m in T1 with the more accurate LOD2
map. This is mainly because 0027 provides more visible, differently oriented facades as more
separate buildings are in the residential area. Nonetheless, the uncertainty of the OSM is higher
compared to the LOD2 map due to which, according to the second column in Table 8.9, the
short side length is much smaller with 1.57m in T1 compared to 2.3m in 0027.

The rotation interval width along the trajectory is depicted in Figure 8.26b. Similar to
Figure 8.23b, we also experience sudden jumps to the maximally permitted orientation error
due to inconsistencies in the association that lead to empty sets. Furthermore, the angle
uncertainty in Figure 8.26b is higher compared to Figure 8.23b as we account for the OSM
higher uncertainties as explained above.

The association evaluation is depicted in Figure 8.27. Note, that in T1 the association ratio
reaches in Figure 8.24b more than 60 %, while the association ratio in 0027 does not even
reach 50 % according to Figure 8.27. The main reason for this observation is that different
LiDAR systems are used. The KITTI dataset provides data of an HDL64 LiDAR with 360◦
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Figure 8.25: 0027 trajectory overview and selected pose estimation. Polygons are colored blue,
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Figure 8.26: Sizes of the enclosing rotated rectangle for the position (Figure 8.26a) and the
orientation (Figure 8.26b) for trajectory 0027 using the OSM. The sizes represent
the uncertainty of the polygon pose estimation. The according polygons and
enclosing rotated boxes are visualized for selected frames in Figure 8.25. The
frames are highlighted by red dashed lines in Figure 8.23a.

FoV. In T1, we utilize a front-facing solid-state LiDAR with 60◦ × 40◦ FoV. In the case of the
HDL64 LiDAR, a major portion of the scans measures the street, while the front-facing LiDAR
scans perpendicular facades almost entirely. As a result, a larger part of the measured point of
the front-facing LiDAR is more likely to measure points on a facade than with the HDL64.

Although it is not surprising, it is worth noticing that the number of seen facades is correlated
with the ratio. For instance, at 2300m in Figure 8.27a almost no facades are seen for a short
period, and accordingly, the ratio drops to zero in Figure 8.27b. The according portion of
the trajectory in Figure 8.25 is the rightmost part where only on one side of the trajectory
buildings are present. A closer inspection of this portion reveals that unmapped walls occlude
the buildings, due to which no buildings are visible. This is also why the rotated rectangle
side lengths grow at 2300m as depicted in Figure 8.26. Hence, a shrinking association ratio
generally leads to increasing uncertainty, as we have fewer constraints on the vehicle location
on the map.
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Figure 8.27: Evaluation of the association. The number of seen facades (Figure 8.27a) and the
ratio of associated LiDAR points (Figure 8.27b) affect the localization accuracy.

8.3.1.3 All Datasets

After an in-depth evaluation of two exemplary trajectories, we want to evaluate the set-
membership-based localization for all datasets. Therefore, we want to consider the average side
lengths (long and short) of the smallest enclosing rotated rectangle and the average rotation
interval width along the whole trajectories. Furthermore, to evaluate the rotation uncertainty,
we depict the rotation interval width in the third column of Table 8.9. Table 8.10 summarizes
the association performance where the first column depicts the number of facades and the
second the average ratio of associated points.

We conducted two experiments with each T1 and T2 to study the effect of the map accuracy
by using the LOD2 map and the OSM. The average rotated rectangle lengths and the rotation
interval width are smaller using the LOD2 map since we account for a smaller facade error
for the LOD2 map. Furthermore, due to the higher global consistency of the LOD2 map, our
method can associate more points to facades on average compared to the OSM, as stated in
the first two rows in Table 8.10. On average, our method uses one facade per frame more with
the LOD2 map. Additionally, the ratio of associated points is almost 7 % higher for the LOD2
map.
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Dataset
Average length of

long rotated
rectangle side

Average length of
short rotated
rectangle side

Average rotation
interval width

T1 with OSM 5.73m 2.12m 4.06◦
T1 with LOD2 3.56m 1.57m 2.16◦
T2 with OSM 4.59m 2.36m 3.66◦
T2 with LOD2 5.24m 1.84m 2.36◦
0018 3.31m 2.16m 3.65◦
0020 11.19m 4.92m 7.59◦
0027∗ 5.04m 2.5m 4.08◦
0027 3.25m 2.3m 3.42◦
0028 10.78m 5.82m 5.04◦
0033 6.88m 4.64m 4.56◦
0034∗ 6.29m 3.52m 5.08◦
0034 15.06m 7.63m 7.79◦
0071 6.41m 3.12m 3.82◦

Table 8.9: Evaluation of the set-membership results. The sizes of the position polygons are
evaluated by determining the side lengths of the smallest rotated rectangle. We
depict the average long-side and short-side lengths. The width of the orientation
interval represents the rotation angle interval uncertainty.

In contrast to T1, T2 shows a different effect. As depicted in the third and fourth column
of Table 8.9, only the short rotated rectangle side and the average rotation interval width
are smaller for the LOD2 map compared to the OSM results – due to smaller uncertainties
considered in LOD2. However, the rotated rectangle’s large side is larger than the OSM results.
Furthermore, the comparison reveals that the average number of seen facades and the ratio
of associated points using the LOD2 map is slightly smaller than with the OSM according to
Table 8.10. Hence, our method associates fewer measurements to the facades, due to which
the long side of the rotated rectangle is larger with the LOD2 map.

Still, the question remains why fewer points are associated using the LOD2 map than
OSM, although the LOD2 map is more accurate. Further investigation shows that the average
values are mainly affected by the different levels of details of the maps. The OSM provides
less accurate data and applies further simplifications on the building geometries. While the
LOD2 map also considers smaller facade jumps between connected walls, the OSM typically
approximates such structures by straight facades. At the beginning of the trajectory T2, facades
are observed by the LiDAR that are simplified in the OSM by straight lines. However, in the
LOD2 map, the facade is represented by multiple connected walls that represent the complex
geometry of the facade in more detail. Since we only admit associations with a minimal number
of points associated with a wall, the association with the LOD2 suffers as many different walls
are seen with fewer points associated per wall. In contrast, in the OSM, the considered facade
is represented by one wall, and all points are associated with that wall. Hence, the number of
associations per wall is naturally higher for OSM. Hence, using the LOD2 map, we miss those
associations with smaller walls. As a result, the localization accuracy suffers in those situations
using the LOD2 map. While this effect is less pronounced in T1 and the later part of T2, the
impact of this effect leads to inferior average results in T2 using the LOD2 map.
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Dataset Average number of
seen facades

Average ratio of
associated points

T1 with OSM 2.3 27.7 %
T1 with LOD2 3.37 34.4 %
T2 with OSM 1.96 27.86 %
T2 with LOD2 1.8 27.31 %
0018 3.27 12.21 %
0020 1.25 6.6 %
0027∗ 3.73 19.92 %
0027 4.38 19.1 %
0028 1.89 7.11 %
0033 1.41 4.46 %
0034∗ 2.09 6.43 %
0034 0.61 1.96 %
0071 2.05 6.47 %

Table 8.10: Evaluation of the LiDAR point and facade association. The table depicts the
average number of seen facades and the average ratio of associated measurements.

The main problem we identified here is that our method assumes a fixed minimum number
of points associated with the wall so that they are admitted as a valid set of associations.
However, simply fixing this threshold as we do in our implementation is misleading since the
number of points depends on factors such as the size of the wall and the distance. Hence, to
improve our method, a dynamic threshold is more appropriate for the association.

For the KITTI trajectories, we only use the OSM for localization. According to Table 8.9,
the localization uncertainty for 0018 and 0027 is the smallest. However, uncertainty for the
localization estimate is significantly higher for 0020, 0028, and 0034 with a long rotated
rectangle side above 10m on average. The reason for the high uncertainty is a poor association
of local LiDAR points to facades. The main problem in those trajectories is that vegetation,
unmapped walls, and other objects occlude significant parts of the buildings. That is why the
average ratio of associated points in Table 8.10 is significantly smaller. The refined localization
module can only perform localization if points-to-facades association is possible.

8.3.2 Hybrid Approach vs. Maximum Likelihood Estimation

This subsection aims to compare our proposed bounded optimization within our hybrid refined
localization approach with a classical MLE method that does not consider any bounds in the
estimation. To ensure a fair comparison, we consider the same points-to-facades associations
obtained by the best particles-based association procedure introduced in Part 6.2.2.1. In
contrast to the previous subsection, where we evaluate the uncertainty of the set-membership
results by considering the size of the determined set, we evaluate most likely pose estimates in
this subsection. Consequently, instead of intervals, we have to deal with classical point-valued
pose estimates. Accordingly, we use the classical error metrics for the evaluation: We determine
the translation error by the Euclidean distance (root mean squared error) between the computed
vehicle position and the ground truth position in the map for the considered time steps. As a
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Figure 8.28: Root mean squared error of the MLE estimation in T1 with the LOD2 map. Our
bounded optimization is compared with the classical unbounded optimization.

simple scalar represents the rotation, we determine the error by the absolute error between
the estimate and the ground truth. While we present in Part 8.3.2.3 the average errors for all
datasets, we also provide in-depth evaluation for exemplary trajectories T1 with the LOD2 map
and 0027 with the OSM in Part 8.3.2.1 and Part 8.3.2.2, respectively.

8.3.2.1 Author-Collected Dataset T1

Figure 8.30 shows an overview on the map and the trajectories for T1 with the LOD2 map.
The ground truth trajectory is colored green, the trajectory obtained by the classical unbounded
optimization is blue, and the trajectory obtained by our bounded optimization approach
is colored orange. As we can notice in the close-up figures, the bounded and unbounded
optimization estimates are comparatively close to the green ground truth trajectory.

Since the minor deviations between the estimates are hard to recognize in the trajectory
overview, we also provide the error plots for the translation in Figure 8.28 and for the rotation
in Figure 8.29 along the trajectory. In both plots, the result of the bounded optimization is
colored orange, and the unbounded results are colored blue.

In Figure 8.28, we can see that the bounded and unbounded optimization achieve similar
results. However, our bounded optimization approach can reduce the error peaks. Especially
the zoomed view on the error plot shows that the unbounded optimization leads to higher
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Figure 8.29: Rotation parameter error of the MLE estimation in T1 with the LOD2 map. Our
bounded optimization is compared with the classical unbounded optimization.

error, while in our approach, the bounds prevent the estimation from significant errors. This
observation is also underlined by the overall results listed in Table 8.11. As depicted in the
second row, the average translation and rotation errors are very similar. However, using the
bounded optimization approach, the largest translation and rotation errors are significantly
smaller.

While the bounds mainly improve the optimization results for the translation, the rotation
error is shadowed by other effects: In Figure 8.29 in rare portions of the trajectory the blue curve
is below the orange, which shows that the unbounded optimization sometimes leads to smaller
errors – as it is the case in the close-up figure. This is because if an error-prone association leads
to an incorrect contraction of the rotation interval, the interval may not contain the correct
orientation angle. If this happens, the error will be higher for the bounded optimization as the
bounds prevent the optimization from approaching the better solution. Since the uncertainty
rises due to uncertainty accumulation of the odometry, the error of the bounded optimization is
reduced slowly along the trajectory until the bounded and unbounded optimization provides the
same error. This can be observed in the close-up in Figure 8.29 between 85m and 105m and
between 120m and 150m. This behavior of the bounded optimization is unfavorable. Luckily,
this only happens in rare cases in practice since we choose the map uncertainty pessimistically.
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Figure 8.30: T1 trajectory overview and selected close-ups. The ground truth trajectory is
green, our result is orange, and the unbounded optimization result is blue.
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Figure 8.31: Root mean squared error of the MLE estimation in 0027 with the OSM. Our
bounded optimization is compared with the classical unbounded optimization.

8.3.2.2 KITTI Dataset 0027

The overview and the close-up figures to the KITTI trajectory 0027 are depicted in Figure 8.33.
While the optimization results in Figure 8.30 are very close to the green ground truth trajectory,
in Figure 8.33, an offset between the estimated poses and the ground truth can be seen.
Particularly in the top close-up figures, the offset is well observable.

If we consider the absolute Euclidean error of the translation in Figure 8.31, we can observe
higher errors compared to Figure 8.28. Especially between 1700m and 2300m, the error is
above 6m for the bounded and unbounded estimate. However, we need to consider this error
with a grain of salt since – as described above – the OSM and the ground truth trajectory have
an unknown offset. Therefore, we assume that the actual error has to be lower in the range of
the errors that we determined for T1.

In comparing the bounded and the unbounded optimization, we can observe in Figure 8.31
and in Figure 8.32 only minimal differences. In general, also in this dataset, our method can
reduce the error by preventing the optimization from divergence. This can again be observed in
the close-ups in Figure 8.31 and Figure 8.32. While the unbounded optimization occasionally
tends to have higher errors due to the divergence of the optimization process, our method can
keep the error within a maximally permitted error.
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Figure 8.32: Rotation parameter error of the MLE estimation in 0027 with the OSM. Our
bounded optimization is compared with the classical unbounded optimization.

8.3.2.3 All Datasets

The overall results for all datasets are listed in Table 8.11. The first two columns provide
the average translation and rotation error for the whole datasets. The last two columns list
the largest errors that are encountered in the datasets. Each column is further divided into
two sub-columns – each provides the results for the bounded and unbounded optimization,
respectively.

The first column shows that our proposed bounded optimization provides on average lower
error for almost all datasets compared to the classical unbounded optimization. Nonetheless,
the average difference between the translation errors is very small. Regarding the average
rotation error, the differences between the unbounded and bounded optimized solutions only
differ slightly. In contrast to the average translation error, the bounded optimization approach
does not perform better than the unbounded version. The main reason for this observation is
that the case of an incorrect association or overly optimistic local line extraction in the iHT
leads to rotation intervals that provide bounds that hinder the optimization from converging to
the minimal value, as explained above.

Nonetheless, the main advantage of using a bounded optimization is that the bounds prevent
the optimization from significantly diverging. That is why we also consider the largest errors
since minimizing this maximal error motivates the usage of bounded optimization. As presented
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Figure 8.33: 0027 trajectory overview and selected close-ups. The ground truth trajectory is
green, our result is orange, and the unbounded optimization result is blue.
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Dataset
Average

translation
error

Average
rotation
error

Largest
translation

error

Largest
rotation
error

bound un-
bound bound un-

bound bound un-
bound bound un-

bound
T1 with OSM 1.81m 1.83m 0.68◦ 0.7◦ 5.51m 6.2m 4.44◦ 6.9◦
T1 with LOD2 0.85m 0.87m 0.36◦ 0.34◦ 2.61m 3.31m 1.94◦ 3.33◦
T2 with OSM 1.89m 1.9m 0.99◦ 0.94◦ 5.25m 5.71m 6.04◦ 11◦
T2 with LOD2 2m 2m 0.72◦ 0.75◦ 5.27m 5.89m 5.42◦ 7.51◦
0018 3m 2.99m 1.02◦ 1.07◦ 5.19m 5.65m 3.36◦ 5.62◦
0020 5.83m 5.91m 1.4◦ 1.42◦ 17.76m 17.76m 3.97◦ 6.99◦
0027∗ 2.26m 2.27m 0.63◦ 0.62◦ 5.28m 5.31m 9.7◦ 9.7◦
0027 2.76m 2.78m 0.9◦ 0.87◦ 6.6m 6.91m 6.63◦ 8.71◦
0028 5.3m 5.32m 1.63◦ 1.71◦ 21.7m 22.1m 12.05◦ 15.65◦
0033 3.44m 3.45m 1.13◦ 1.25◦ 6.39m 6.45m 9.26◦ 9.26◦
0034∗ 4.31m 4.34m 1.06◦ 1.1◦ 6.36m 6.36m 4.04◦ 11.59◦
0034 7.02m 7.06m 3.83◦ 4◦ 13.06m 13m 29.94◦ 29.97◦
0071 3.05m 3.09m 1.59◦ 1.41◦ 5.76m 6.39m 5.41◦ 9.41◦

Table 8.11: Average error of the maximum likely pose. We compare a classical unbounded
optimization with our bounded optimization. While the two left columns list the
average translation and rotation error, the two right columns depict the largest
errors.

in the last two columns of Table 8.11, the bounded optimization provides for almost every
dataset a lower maximal error on average compared to the classical unbounded optimization.
Our approach not only prevents the optimization from divergence but also provides information
on the maximally possible error under consideration of the current association. Hence, it
provides information on how trustworthy the estimate is with interval tools.

According to Table 8.11, the refined localization provides the best results with the T1 dataset
combined with the LOD2 map (second row). Here, we achieve an average localization error of
below 1m – simply using the surrounding building geometry. This shows the potential of the
presented approach.

Using the OSM, our approach provides an average translation error of 1.81m, which is
acceptable regarding a map uncertainty of 1.5m. However, since we restrict ourselves to
buildings in the scope of this work as landmarks for localization, our method is doomed to fail
in those datasets where we have poor visibility of the buildings. For instance, in the dataset
0034, large parts of the trajectory cover residential areas where the buildings are occluded by
vegetation and unmapped walls. That is why this dataset’s localization error is substantial.

In summary, the refined localization with the bounded optimization provides localization
results with small errors depending on the map’s accuracy. While our method provides a set
of consistent positions as a polygon and a rotation interval describing the uncertainty of the
location estimate, a bounded optimization approach provides the most likely point-valued pose
considering the bounds of the consistent set of poses. This enables us to provide the maximum
possible error for each frame, increasing the integrity of our localization approach.
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Dataset full iHT polygon association
T1 with OSM 0.025 s 0.02 s 0.000078 s 0.0036 s
T1 with LOD2 0.033 s 0.028 s 0.00016 s 0.0042 s
T2 with OSM 0.023 s 0.019 s 0.000063 s 0.0036 s
T2 with LOD2 0.024 s 0.019 s 0.000063 s 0.0038 s
0018 0.012 s 0.01 s 0.000057 s 0.0028 s
0020 0.0071 s 0.0048 s 0.00003 s 0.0022 s
0027∗ 0.02 s 0.017 s 0.000059 s 0.003 s
0027 0.018 s 0.014 s 0.000064 s 0.0032 s
0028 0.01 s 0.007 s 0.000046 s 0.003 s
0033 0.009 s 0.006 s 0.0000325 s 0.0028 s
0034∗ 0.015 s 0.01 s 0.000046 s 0.0037 s
0034 0.011 s 0.007 s 0.000023 s 0.003 s
0071 0.014 s 0.011 s 0.000043 s 0.003 s

Table 8.12: Operation time evaluation for all datasets. All operation times per frame are
averaged along the whole trajectories. The column full depicts the operation time
per frame for the whole operation, iHT for the interval-based Hough Transformation,
polygon for the polygon computation of the consistent set, and association for the
particles-based association.
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Figure 8.34: Full operation time per frame in T1 with the LOD2 map along the trajectory.

8.3.3 Runtime

Conclusively we provide further insights into the runtime of the refined localization algorithm
on our reference system. Figure 8.34 shows the operation times per frame along the trajectory
for an exemplary run of T1 with the LOD2 map. The overall average runtimes for the other
trajectories are listed in the first column of Table 8.12.

Using the LOD2 map requires slightly more operation time per frame. The utilized LOD2
map contains a much larger region than the used OSMs. Hence, each map query takes slightly
longer for the LOD2 maps than the smaller OSMs. While this runtime difference is noticeable
for T1, the runtime difference between the LOD2 and OSM-based run for T2 is almost negligible.
The reason for the observation is that in T1, more facades are observed on average than in
T2 according to Table 8.10. As a result, in T1, more map queries are performed so that the
influence on the runtime in T1 is higher.
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Table 8.10 reveals that the main computational bottleneck of the hybrid refined localization
approach is the iHT. While the iHT needs almost the major portion of the whole operation time
per frame, the polygon estimation and the particle-based association have a minor contribution
to the whole computation time. Since the iHT mainly depends on the number of points
associated with facades in the map, the overall operation time per frame directly correlates
with the associated points ratio. That is the reason why in Figure 8.34, there are runtime
peaks at those driven distances where the association ratio (Figure 8.24b) rises.

On average, the complete refined localization algorithm needs 0.033 s per frame for T1. As
depicted in Table 8.12, the average runtimes for all other datasets are significantly below this
value. Since we run our sensors with 10Hz, the refined localization is real-time capable.

8.4 HyPaSCoRe Localization System

In this section, we evaluate the whole HyPaSCoRe Localization pipeline using all datasets.
Since the whole pipeline uses a particle filter that introduces a random component in the
coarse localization, each run of the same dataset may provide different results. Hence, we
consider multiple runs for each dataset to maintain a representative evaluation. While detailed
explanations are given based on an exemplary run with the author-collected trajectory T1 with
OSM, the evaluation results for all datasets are condensed and summarized in tables. The
values are determined by averaging the result for all 20 runs for each dataset.

Unique about our pipeline is that we distinguish between the localization estimate at
localization time and in real-time. Since the windowed bundle adjustment delays the direct
localization to real-time, we predict the real-time location based on the slightly delayed
localization frame. Hence, this architecture raises the question of how the localization estimates
differ regarding the accuracy and how significant the delay is. In Subsection 8.4.1, we provide
a detailed evaluation of the impact of the localization results for the localization time frame
and the real-time frame.

Another unique feature of our HyPaSCoRe Localization is that it provides a feasible and
consistent set for the vehicle’s location. While the coarse localization determines the feasible
set, the refined localization computes the consistent set by performing maximum likely point-
to-facade associations. In the scope of Subsection 8.4.2, we compare both sets regarding their
pessimism and reliability, taking ground truth pose estimates into account. Furthermore, in
Subsection 8.4.3, we analyze the integrity of the HyPaSCoRe Localization results by considering
the Stanford-ESA integrity diagram.

In Subsection 8.4.4, the absolute localization errors of the maximum likely poses determined
by the refined localization is evaluated. In particular, the difference between the localization
results at localization time and real-time are compared. As mentioned above, the ground
truth trajectory has centimeter accuracy consistent with the OSM and LOD2 map for the
author-collected datasets. Unfortunately, the ground truth absolute pose provided by the KITTI
dataset is unreliable. Although we evaluate the localization accuracy based on the faulty ground
truth data, the error results for the KITTI datasets need to be considered with caution. In
contrast, the results for the author-collected datasets are fully reliable.
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Figure 8.35: Comparison of the polygon sizes at localization time and real-time in T1 using
the OSM. The polygon sizes are measured by the long and short side lengths of
the smallest rotated rectangles wrapped around the polygons.

We conclude the section with the runtime evaluation of all components of our HyPaSCoRe
Localization in Subsection 8.4.5. The dedicated evaluation sections above evaluate the operation
times for the individual components run independently. The main focus here is to provide
insights into how well the different components simultaneously perform on one consumer-grade
laptop.

8.4.1 Localization Time vs. Real-Time

The localization algorithms are applied to localization time and predict the real-time pose. The
delayed execution of the localization algorithms is due to the windowed bundle adjustment that
delays the localization times by the window time since only frames already processed by the
windowed bundle adjustment are used for the localization.

In Figure 8.35, we compare the sizes of the polygons computed for the same frame at
localization time and in real-time. Note that a frame determines a fixed pose in the map
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Figure 8.36: Histogram of the time delay between the localized and real-time frames along the

trajectory T1.

that describes the location of the vehicle at the time when the frame is acquired. Hence, due
to the delayed localization time, we effectively estimate the pose of that frame twice: First,
a real-time prediction (when the sensor provides the data) based on a previous localization
frame processed in the localization pipeline. Second, the localization at localization time, when
the localization pipeline reaches the considered frame when processing the frames after the
windowed bundle adjustment sequentially. Generally, the polygon sides computed in real-time
are larger than at localization time. Since we use the accumulated frame-to-frame odometry
to determine the real-time pose based on the localization frame, the localization uncertainty of
the frame, currently processed in the localization pipeline, is augmented by the frame-to-frame
odometry uncertainty. Accordingly, it leads to higher uncertainties for the real-time estimates
than the delayed estimate when the current frame is processed in the localization pipeline. We
visually illustrate the different sizes of the position estimates for exemplary frames in the top
images in Figure 8.35.

Note that the polygons are elongated along the driving direction in the right image. As
already discussed in Subsection 8.3.1, this is due to the tube-like structure of the building
that only constrains the location in the perpendicular direction. Consequently, as shown in
the diagram, the short side of the rotated rectangle that encloses the polygon is small for
that frame. The same behavior is also noticeable directly after the initialization of the refined
localization.

Figure 8.36 shows the histogram of the time delays between the localization frame and the
time at new sensor-data acquisition in T1. The time delay depends on the window length,
the time for the windowed bundle adjustment, and the time for the interval-based odometry
computation. However, the most significant influence comes from the windowed bundle
adjustment presented in Subsection 8.1.1 since good visual feature tracking can create windows
spanning several seconds. The time delay mainly varies between 1 s and 5 s. According to the
histogram, there are more frames with a time delay of less than 1 s than with a delay larger
than 5 s. In general, larger delays imply larger visual tracking windows where more observations
are considered in the windowed bundle adjustment, increasing the optimization’s robustness.
On the downside, a larger time delay between the localization frame and real-time frame also
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Figure 8.37: Exemplary polygons for the largest processing delay between the localization time
and real-time. The blue polygon is determined for the frame that was localized.
Since the localization is delayed, the real-time pose is predicted based on the
visual odometry between the localization time and real-time. The uncertainty is
accordingly inflated for the real-time pose estimate.

means higher uncertainty for the pose estimate in real-time since the prediction from the
localization frame spans a more significant period in which more uncertainty is accumulated.

We illustrate the prediction of the position polygon in real-time for the largest time delay
of 6.5 s. While the localization processes the frame at a driven distance of 765m, the vehicle
has already driven 37m further, so the real-time frame is at a driven distance of 802m. Due
to the accumulation of the uncertainty of the frame-to-frame visual odometry as explained in
Section 7.2, the real-time pose estimate has a larger uncertainty since the pose estimate at
localization time is shifted and inflated to the real-time estimate.

The condensed average results of the localization time and real-time pose estimates of
the refined localization for all datasets are given in Table 8.13. Note that the average results
are determined based on 20 runs for each dataset. In Subsection 8.3.1, we already analyzed
the results of the interval-based pose estimation of the refined localization. However, the
experiments in Subsection 8.3.1 were conducted for the refined localization when executed
independently. In contrast, we analyze the result in the whole HyPaSCoRe Localization here.
This is also the reason why the results in Table 8.13 differ from those in Table 8.9: In Table 8.13,
we only consider the polygon sizes after the initialization of the refined localization when the
coarse localization provides stable particle-based estimates. In Table 8.9, the whole trajectory
is considered since the localization is already restricted to a smaller area to initiate the refined
localization for the experiment directly. Consequently, the results are not directly comparable.
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Dataset
Average length of
short rotated
rectangle side

Average length of
large rotated
rectangle side

Average time
delay

Loc. time Real-time Loc. time Real-time
T1 with OSM 3.6m 4.8m 9.2m 10.3m 2.5 s
T1 with LOD2 3m 4.1m 6.6m 7.5m 2.6 s
T2 with OSM 4m 5.2m 7.7m 8.9m 2.1 s
T2 with LOD2 3.9m 5.5m 7.3m 9.4m 4.7 s
0018 3.1m 4m 4.2m 5.5m 0.6 s
0020 3.8m 4.8m 9.2m 9.5m 0.3 s
0027∗ 4m 5.6m 7.7m 9.8m 1.3 s
0027 3.3m 4.3m 4.6m 5.7m 0.5 s
0028 3.8m 4.9m 10.4m 11.2m 0.4 s
0033 10.8m 11.4m 24.4m 25.6m 0.47 s
0034∗ 4.2m 5m 5.8m 7.8m 1.9 s
0034 22.3m 23.9m 42.1m 43.9m 0.5 s
0071 3.6m 4.5m 21.1m 23.2m 1.5 s

Table 8.13: Size of the consistent set at localization time (loc. time) and in real-time for the
same frame. Here we only consider the size of the polygon that we measure by
the side lengths of the smallest rotated rectangle that can be wrapped around the
polygon. We distinguish between the short and large sides to consider possible
influences induced by the map structure. The last column lists the average time
delay between the localization frame time and the real-time. The average values
consider 20 runs for each dataset.

In Table 8.13, most datasets measure an average length of 3m to 4m for the short side at
localization time while at real-time, the length is between 4m and 6m. Hence, according to
our expectations, the real-time estimate is more uncertain than the localization time estimate.
However, for the datasets 0033 and 0034, the polygons’ sizes are significantly larger. The
main issue is that facades are seen very rarely. Due to, for example, bushes, large front
yards with tall trees, and walls, large parts of the facades are occluded. Hence, our building-
map-based approach is not well suited for those datasets. Nonetheless, the HyPaSCoRe
Localization pipeline can be adapted to other maps using the same methods presented in this
work.

The large side of the polygons listed in the second and fourth columns show similar behavior
as the short sides. However, the long side varies slightly more so that at localization time, we
obtain lengths between 4m and 10m and at real-time between 5m and 12m. It is remarkable
that for 0071, the large side has more significant uncertainty than the short side. This is due
to the structure of the map. The whole trajectory goes through a tunnel-like structure with
almost no constraints along the driving direction.

The uncertainty is comparatively large for all datasets, as we account for a wall uncertainty of
1.8m. We choose such a pessimistic uncertainty to tackle the map uncertainty, especially of the
OSM, as some facades are incorrectly mapped. Although only a rare number of facades suffer
from significant errors, our method also needs to consider those leading to more pessimistic
uncertainty bounds.



8.4. HyPaSCoRe Localization System 203

2000

1500

1000

500

0

Nu
m
be
ro

fi
te
ra
tio

ns

0 200 400 600 800 1000 1200
Driven distance in m

300

initialization switch

switch

switch
switch

reset

Highest weighted particle
Refined localization track

Figure 8.38: Highest particle age in the coarse localization and the refined localization tracking
age. Orange and red dashed lines mark switches or resets of the track. The gray
vertical lines define the driven distances at which the feasible set is contracted to
the consistent set.

In the last column of Table 8.13, the average time delays between the processed localization
frame time and real-time are listed. Interestingly, the author-collected datasets’ average time
delays are larger than for the KITTI datasets. In our investigations, we found that this is mainly
due to the differing performance of the visual odometry module: Since in the author-collected
datasets we use cameras that provide images with higher resolution, the optical tracking
performs well and accordingly produces large tracking windows. Furthermore, a slightly larger
average delay is noticeable for T2 with the LOD2 map compared to T1 and T2 with OSM.
One reason for this observation is that the coarse localization initially needs more processing
time. Since the buildings are not densely distributed in that part of the map, the feasible set is
not contracted as fast as in T1. Additionally, the LOD2 map is significantly larger than the
OSM counterpart, increasing the time for map queries. Consequently, multiple factors lead to
different time delays.

8.4.2 Feasible Set vs. Consistent Set

Now we compare the feasible set P� an the consistent set P4. As explained in Section 7.3,
we initialize the refined localization only if a stable particle of the bounded MCL in the coarse
localization has survived a minimal number of iterations. We set the threshold for all datasets
to 120 iteration, corresponding to 12 s of particle survival without being sampled out in the
aggressive resampling procedure. Furthermore, after a track is initialized, the refined localization
result can be used to contract the feasible set in the case of high reliability, the track can be
reset, or a switch of the tracked particle in the refined localization can occur, as explained in
Subsection 7.3.2. In this subsection, we will analyze when those events occur and the influences
on the pose estimates. We will again base the detailed analysis on an exemplary run of T1 with
OSM.

Figure 8.38 depicts the particle age of the highest weighted particle in the coarse localization
and the current track in the refined localization. As denoted in the diagram, the driven distance
at which the refined localization is initialized is marked with a dashed black vertical line. Since
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Figure 8.40: Interval width of the sine of the interval hull among all observed facade orientation
angles. The contraction of the feasible set is only permitted for interval width
above 0.9, which corresponds to almost 90◦ of minimal orientation difference.

the coarse localization already starts at the beginning of the trajectory, the yellow graph starts
at 0m while the blue graph commences at 80m. Note that the initialization corresponds to the
driven distance at which the highest weighted particle reaches minimum iterations of survival
above 120 (empirical thresholds). After the initialization, the highest-weighted particle and the
refined localization track are treated independently. They are only compared regarding their
weight which measures how well the pose estimates fit the current measurements to the map.
Based on the weights, switches, and resets are performed. If those events occur (denoted by
orange and red dashed lines), the age of the track is set to zero as explained in Section 7.3.

Note that the gray vertical lines that highlight those frames at which the feasible set is
contracted only occur when the tracked particle age is above 300. This is because we determine
a track’s reliability only based on the age. Figure 8.39 shows the reliability of the track in the
refined localization, which linearly scales the track age between 0 % and 100 %. Hence, we fully
trust the refined localization result if the age of the track is above 300 iterations, corresponding
to a minimal tracking time of 30 s. This threshold is also selected empirically. Hence, as shown
in Figure 8.39, the reliability is clipped to 100 % if the age exceeds 300 in Figure 8.38.
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Figure 8.41: Size of the feasible set P� and consistent set P4 along the trajectory T1. The
feasible set is contracted to the consistent set for dedicated frames if the consistent
set is staged as reliable.

As described in Subsection 7.3.2, the feasible set is only contracted if the consistent set
is fully reliable and if differently oriented facades are observed. The difference in the facade
orientation is determined by the interval width of the sine of the interval hull among all observed
facades and is depicted in Figure 8.40. The sine interval angle width can take values between 0
and 2, while a 1 signals a facade orientation difference of 90◦. We set the minimum threshold
to 0.9 so that if the sine interval angle width exceeds this value and if the consistent set is
fully reliable, the feasible set P� can be contracted to the consistent set P4. The frames at
which the feasible set is contracted are marked in all diagrams by a gray vertical line. The gray
lines only occur if the reliability is at 100 % and the sine interval angle width is above 0.9.

The feasible and consistent set sizes are depicted in Figure 8.41. Here again, we use the
rotated rectangle metric to measure the sizes of translation components T � and T 4 and plot
in Figure 8.41a the lengths of the small and short sides. Furthermore, the interval widths
measure the orientation uncertainties and are plotted in Figure 8.41b. Note that if the feasible
set contraction is triggered, the feasible set size is immediately contracted to the size of the
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Figure 8.42: Weights of the highest weighted particle in the coarse localization and the weight
of the tracked particle in the refined localization.

consistent set. Especially the close-up images in the top right of Figure 8.41a and Figure 8.41b
visualize the contraction.

Switches and resets of the refined localization track are depicted in the diagrams by vertical
dashed lines colored orange and red, respectively. Figure 8.42 exemplarily shows why we
introduce those mechanisms into the HyPaSCoRe Localization pipeline. The rising uncertainty
of the pose estimation due to the accumulation of the uncertain visual odometry may lead
the refined localization track to drift. As a consequence, the weight of the track will decrease
as the local measurements are not well matched to the map. For instance, this is the case
in the exemplary run at 850m: As shown in the close-up image, the weight of the track is
significantly lower than the highest-weighted particle. The reset and switch mechanism makes
switching the track to the better solution possible. This is why the track has a higher weight
after the second switch in the close-up. Nonetheless, we set the age again to zero so that the
reliability, as shown in Figure 8.39, is set to zero again when switches or resets occur.

In Table 8.14, we summarize the comparison of the sizes of the feasible set and the consistent
set for all datasets. Note that we only consider here the translation components. Table 8.15
summarizes for each dataset the driven distance until initialization, the number of feasible set
contractions, switches, and resets. Furthermore, in the last two columns, we evaluate the ratio
of frames whose feasible and consistent sets contain the ground truth, which measures the
reliability of the computed sets.
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Dataset
Average length of
short rotated
rectangle side

Average length of
large rotated
rectangle side

T � T 4 T � T 4
T1 with OSM 11.9m 3.6m 16.9m 9.2m
T1 with LOD2 6.9m 3m 9.3m 6.6m
T2 with OSM 10m 4m 14.3m 7.7m
T2 with LOD2 7.8m 3.9m 11.3m 7.3m
0018 13.3m 3.1m 16.7m 4.2m
0020 12.4m 3.8m 25.5m 9.2m
0027∗ 41.8m 4m 46.6m 7.7m
0027 13m 3.3m 15.8m 4.6m
0028 27m 3.8m 39.9m 10.4m
0033 33.8m 10.8m 46.1m 24.38m
0034∗ 33m 4.2m 39.8m 5.8m
0034 45.7m 22.3m 58.8m 42.1m
0071 22m 3.6m 38m 21.1m

Table 8.14: Comparison of the average sizes of the feasible set T � and consistent set T 4.
Only the translation components are considered here. We conducted 20 runs for
all datasets to determine the average values.

As expected, according to Table 8.14, the consistent set is much smaller than the feasible
set. The feasible set obtained by the coarse localization is only contracted by always valid and,
therefore, elementary constraints. In contrast, the consistent set considers the local facade
matching of the LiDAR points, which provides smaller but less reliable results. Although we
contract the feasible set in the case of high reliability of the consistent set, the contractions
only occur rarely – and for some datasets, never (cf. Table 8.15). This is also why the reliability
of the feasible set is higher than that of the consistent set, as we will discuss later based on
Table 8.15.

Comparing the sizes of the sets among all datasets, the feasible set size varies more than
the consistent set size. Recall that the No-Overlap Contractor and the No-Cross Contractor
contract the feasible set. Hence, the map’s topology and the buildings’ density significantly
influence the size of the feasible set. As we have chosen the datasets in such a way that we
cover and evaluate the HyPaSCoRe Localization based on different scenarios, this leads to more
considerable differences. The consistent set size mainly depends on the visibility and matching
performance of the local LiDAR data to the map facades. For instance, in 0034 and 0033,
facades are barely observed. That is why the consistent set size is so large for those datasets.

Another interesting observation is that 0027∗ measures comparatively small consistent sets,
although the feasible set is very large. In Table 8.15, we can find the reason: The consistent
set is never reliable enough, so the feasible set is never contracted to the consistent set. Apart
from a few exceptions, the consistent set size seems to vary less across the datasets since we
assume similar facade uncertainties.

In the first column of Table 8.15, the driven distances until initialization are listed. The
driven distances differ significantly from dataset to dataset since the initialization heavily
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Dataset
Average
Driven
distance
initial.

Median
Num. of

exploration
region

contraction

Median
Num. of
switches

Median
Num. of
resets

Average
Reliability
feasible
set

Average
Reliability
consistent

set

T1 with OSM 81.4m 88 8.5 3 100 % 85 %
T1 with LOD2 180m 245 1 0 100 % 99 %
T2 with OSM 149.6m 336 8 3 100 % 92 %
T2 with LOD2 88.3m 170.5 12 10 100 % 96 %
0018 195m 196 8 7 (83 %) (46 %)
0020 425.4m 0 5 4 (73 %) (36 %)
0027∗ 216.3m 0 3 1 (96 %) (71 %)
0027 259.7m 733.5 7.5 2.5 (73 %) (32 %)
0028 321.1m 104 34 16 (92 %) (38 %)
0033 245.3m 0 12 7 (100 %) (58 %)
0034∗ 747.8m 0 0 0 (93 %) (7 %)
0034 619.2m 0 29 14.5 (100 %) (58 %)
0071 165.4m 0 3 0 (100 %) (68 %)

Table 8.15: Evaluation of various aspects of the feasible set and the consistent set. The first
column lists the average driven distance until the refined localization is initialized.
The second column depicts the median number of contractions of the feasible set
to the consistent set, the third column the number of switches, and the fourth the
number of resets. The last two columns depict the reliability of the feasible and
consistent set. The reliability is measured based on the ratio of frames at which
the respective set encloses the ground truth.

depends on the map structure. Therefore, the results are not directly comparable among the
datasets. Nonetheless, the initialization driven distance is a disadvantage of the HyPaSCoRe
Localization: The vehicle has to drive a significant distance until the refined localization can
operate. Hence, the localization approach does not provide appropriate localization results
directly from the starting point onward. The user has to drive the vehicle initially to reduce
the localization uncertainty.

In the second column, it is noticeable that the feasible set contraction to the consistent set
is not performed at all for some datasets because the consistent set is not reliable enough. That
is also why the feasible set size for those datasets is large. The feasible set is not contracted
for almost half of the datasets, leading to high pessimism. However, pessimism is necessary
because false contractions of the feasible set will corrupt it so that it does not contain the
correct pose anymore, which we seek to avoid as we want to obtain a reliable feasible set with
high integrity. The number of switches and resets differ in each run as they depend on the
performance of the bounded MCL that introduces random resampling.

The last two columns depict the reliability of the feasible and consistent set. We measure the
reliability by computing the ratio of frames whose feasible and consistent sets contain the ground
truth pose. The ground truth pose is always inside the feasible set for the author-collected
datasets. Consequently, the feasible set is entirely reliable. In contrast, the consistent set has
reliability below 100 %, which indicates that incorrect facade matches occasionally corrupt
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the consistent set. Regarding the KITTI dataset, the reliability analysis in Table 8.15 is not
trustworthy because we encounter a significant offset between the ground truth poses provided
by the publishers of the KITTI datasets and the OSM data. That is why the KITTI results are
in brackets and only listed here for completeness.

In summary, the feasible set has high integrity. The correct pose is always included in the set.
However, the feasible set can be very pessimistic. The consistent set, which is less pessimistic
and provides tighter bounds, has lower integrity standards. Nonetheless, in the case of high
reliability of the consistent set, we can reduce the pessimism of the feasible set and gain tighter
bounds without losing the high integrity standard.

8.4.3 Integrity Evaluation

To assess the integrity of the HyPaSCoRe Localization, we analyze the Stanford-ESA integrity
diagram introduced in Chapter 1. The Standford-ESA diagram plots the true and estimated
errors as tuples for each localized frame (cf. Figure 1.1). While points in the top left trian-
gle ensure the safe operation of the system, points in the bottom right lead to dangerous
underestimation of the error.

To evaluate the integrity of the HyPaSCoRe Localization, we only consider the author-
collected datasets T1 and T2 since we only have reliable ground truth for those trajectories.
In our evaluations, we conducted 20 experiments for each dataset. As we have the OSM and
LOD2 map for the T1 and T2, we consider 80 runs in the integrity assessment. Here, we only
consider the translation part and neglect the rotation component for the simplicity of the
Stanford-ESA integrity diagram.

In our experiments, the true error is determined by the error between the most likely estimate
of the refined localization and the ground truth for each frame. The feasible and consistent set
size determines the uncertainty of the most likely solution at each frame. However, to compute
the estimated error for a frame, we exploit the rotated enclosing rectangle approximation of
the sets: For each frame, we compute the Euclidean distance of each corner of the rotated
rectangle to the most likely position. We define the largest distance as the estimated error.
Each frame within each run provides a tuple of the true error and the estimated error that we
plot for all 80 runs in the Stanford-ESA diagram depicted in Figure 8.43.

The diagram shows that the feasible set never underestimates the error and provides reliable
uncertainty estimates. In contrast, the consistent set occasionally underestimates the error,
as we can also see orange points on the bottom right triangle. The feasible set satisfies
high integrity standards as it never leads to misleading information. The contraction of the
feasible set to the consistent set reduces the pessimism while not reducing the reliability of
the HyPaSCoRe Localization estimates. This again underlines our findings in the previous
subsection 8.4.2. Nonetheless, the uncertainty is sometimes vastly overestimated by the feasible
set. Note that we have comparatively large uncertainties because only building maps are used.
Including further maps with other landmarks can reduce the pessimism.
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Figure 8.43: Stanford-ESA integrity diagram for the HyPaSCoRe Localization system. In this
diagram, only the author-collected datasets, including LOD2 and OSM runs,
are considered. For each dataset and map, 20 experiments are conducted to
consider each frame of 80 runs in the integrity diagram. In this diagram, only the
translation part is considered. Figure 8.43a depicts the complete diagram while
Figure 8.43b shows a close-up of the critical part.

8.4.4 Localization Error

Now we consider the absolute error of the most likely poses determined by the refined localization.
Therefore, we consider the ground truth poses of the datasets for each frame. Note that we
only determine the error after the initialization of the refined localization. Remember that
while the ground truth absolute poses in the map frame are reliable for the author-collected
datasets, the ground truth data of the KITTI datasets need to be considered with caution as
offsets between the ground truth and the OSM exist. Therefore, the ground truth trajectories
for the KITTI datasets are only considered as approximations.

Figure 8.44 shows the absolute localization error at localization time and in real-time for
the whole trajectory of T1 with the OSM. We plot the real-time, localization time, and ground
truth trajectories in the map overview in Figure 8.45 to provide a more intuitive visualization
of the error. While the absolute translation error in Figure 8.44a reaches up to 4m, during the
major part of the trajectory, the error stays below 2m. The absolute rotation error depicted in
Figure 8.44b has rare peaks up to 3◦ while for the major part of the trajectory, the error is
below 1.5◦.

According to Figure 8.44, the translation and rotation errors are slightly larger for the
real-time estimates. Table 8.16 underlines the observation. However, the small difference in the
error is almost negligible. The curve structure at localization time and in real-time is similar
along the trajectory. However, the real-time error curve is slightly delayed. This is because the
error made at localization time is propagated to the real-time pose estimation.
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Figure 8.44: Absolute pose estimation error at localization and real-time.

In Figure 8.44a, a longer series of larger errors (at almost 3m) is noticeable at a driven
distance of 600m to 700m. The close-up of this part of the trajectory is shown in the left
middle close-up in Figure 8.45. Our investigations reveal that in this part of the trajectory, the
bottom left building facades have a larger positioning error as they are shifted in the north
direction. Since the facade is still matched with the local LiDAR data, the trajectory is slightly
shifted to the north leading to the observed larger errors.

Furthermore, between 700m and 800m, we can observe error jumps. The corresponding
close-up figure is in the bottom left of Figure 8.45. Here we also found that the series of
buildings on the south side (bottom part in the close-up) are slightly shifted to the north
leading to more significant errors. However, since the width between the north and south
buildings are not consistent anymore due to the offset, in our experiments, we experience that
the localization estimate jumps since either the left or the right facade is matched. That is
why the blue trajectory in the close-up has spikes along this part. Hence, this is a disadvantage
of the HyPaSCoRe Localization since constantly checking for better poses in the feasible set
tends to cause the localization estimate to jump. Since this improves the convergence behavior
of the localization, the tracking behavior suffers.

Although our method can cope with the uncertainty of the OSM by enclosing the correct
pose in the feasible set, the most likely estimate suffers from inconsistent maps. Hence, to
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Figure 8.45: Trajectories plotted into the map with close-ups for T1 with OSM.
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Dataset
Average

translation error
Average

rotation error
Loc. time Real-time Loc. time Real-time

T1 with OSM 1.72m 1.72m 0.54◦ 0.62◦
T1 with LOD2 0.82m 0.86m 0.23◦ 0.36◦
T2 with OSM 1.33m 1.46m 0.77◦ 0.8◦
T2 with LOD2 1.03m 1.13m 0.56◦ 0.66◦
0018 4.22m 3.93m 1.73◦ 1.46◦
0020 4.95m 5.66m 1◦ 1.1◦
0027∗ 3.28m 3.67m 1.01◦ 1.04◦
0027 3.22m 3.58m 0.82◦ 0.98◦
0028 5.06m 5.53m 1.14◦ 1.28◦
0033 9.1m 9.4m 1.75◦ 1.93◦
0034∗ 7.4m 7.8m 1.31◦ 1.43◦
0034 13.5m 14m 2.52◦ 2.59◦
0071 3.5m 4.1m 2◦ 2.1◦

Table 8.16: Absolute average localization errors at localization time and in real-time. The
average results consider all 20 runs per dataset.

obtain low localization errors, it is vital to use consistent and accurate building maps such
as the LOD2. In that case, the absolute localization error can be below 1m according to
Table 8.16.

Table 8.16 lists all datasets’ average absolute localization errors. The results consider all 20
runs for each dataset. Generally, comparing the errors at localization time and real-time reveals
that the error is slightly larger at real-time, but the differences are insignificant. The absolute
translation and orientation errors are significantly smaller for the author-collected datasets T1

and T2. The HyPaSCoRe Localization shows its best performance on T1 with the LOD2 map.
Since T1 covers a region densely populated by buildings, and the LOD2 map provides accurate
facade locations, our building map-based localization approach provides estimates with an
average error below and close to 1m, which is very good for a building map only localization.
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Figure 8.46: Operation times per frame for the localization thread plotted along the trajectory

T1 with the OSM.
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Dataset Visual
odometry

Coarse
localization

Refined
localization

Full
localization

T1 with OSM 0.03 s 0.008 s 0.025 s 0.036 s
T1 with LOD2 0.029 s 0.007 s 0.026 s 0.035 s
T2 with OSM 0.03 s 0.005 s 0.017 s 0.028 s
T2 with LOD2 0.03 s 0.006 s 0.02 s 0.034 s
0018 0.03 s 0.01 s 0.01 s 0.027 s
0020 0.03 s 0.008 s 0.006 s 0.016 s
0027∗ 0.03 s 0.03 s 0.02 s 0.058 s
0027 0.03 s 0.013 s 0.019 s 0.033 s
0028 0.029 s 0.01 s 0.011 s 0.024 s
0033 0.031 s 0.016 s 0.011 s 0.03 s
0034∗ 0.031 s 0.017 s 0.004 s 0.025 s
0034 0.034 s 0.037 s 0.01 s 0.052 s
0071 0.036 s 0.01 s 0.004 s 0.021 s

Table 8.17: Average operation times per frame among all 20 runs per dataset. The first column
only covers the front-end of the visual odometry. The runtime of the particular
localization methods and the full localization are listed in the first, second, and
third columns, respectively.

The orientation error is very low as the long facades constrain the orientation well. However,
according to our expectations, the same trajectories combined with the less accurate OSM data
provide higher average errors, which are still significantly below 2m for the translation part.

In contrast to the author-collected trajectories, the KITTI datasets have significantly larger
errors. While in 0027, the average error is at 3.22m at localization time, 0034 shows the
highest error with 13.5m, which is almost unusable. On the one hand, the higher errors mainly
come from significant offsets of the OSM data to the ground truth. Furthermore, in 0034,
facades are barely seen, so the building map-based localization does not work well. While the
error results of the author-collected datasets are entirely trustworthy, the results of the KITTI
datasets need to be considered with caution due to the ground truth problem.

8.4.5 Runtime

Conclusively we evaluate the whole HyPaSCoRe Localization system’s runtime when all modules
run on one machine. Therefore, we must consider the parallel processing architecture introduced
in Section 7.1. In total, we have three threads that run in parallel. One thread performs
real-time sensor data processing and visual feature tracking as the front-end in the visual
odometry module. Another thread in the visual odometry module performs the windowed
bundle adjustment. The third thread applies the coarse and refined localization algorithms.

Since the windowed bundle adjustment is processed rapidly, the only bottlenecks for real-time
operation are the front-end processing in the visual odometry and the localization algorithms.
That is why in Table 8.17, we only consider the average runtime per frame for those components.
The operation times for the entire localization thread per frame are plotted for T1 in Figure 8.46.
Besides the peaks, the localization time is significantly lower than the real-time operation limit
of 0.1 s.
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During our experiments, we noticed that the initial contraction of the feasible set strongly
influences the performance. The coarse localization becomes slow when the feasible set contains
many subsets within the subpaving. Mainly for maps that are sparsely populated with buildings,
this poses a performance problem. While the front-end performs very similarly on all datasets,
we can see some differences in the performance of the localization algorithms. For instance,
the operation time for the whole localization thread is significantly larger for 0027∗ and 0034
because the feasible set is not contracted small enough as in the other datasets. Hence, the time
for the coarse localization increases. Furthermore, for those datasets that do not contract the
feasible set since the consistent set is never staged as reliable enough according to Table 8.15,
we can observe larger operation times in Table 8.17 regarding the coarse localization and
thus for the full localization thread. Nevertheless, the operations times still enable real-time
operation of our proposed HyPaSCoRe Localization.



9 Summarizing Discussion and
Prospects

The experimental evaluation aimed to validate the HyPaSCoRe Localization and to reveal
the benefits and problems of the hybrid approach compared to State of the Art methods.
Therefore we validated each component independently and compared the results with other
benchmark approaches. Finally, we evaluated the whole HyPaSCoRe Localization system under
consideration of the accuracy, reliability, and real-time operation. In the following, we sum up
the results and lessons learned. Furthermore, we provide hints and ideas for future works to
improve our HyPaSCoRe Localization.

Visual Odometry

In Section 8.1, we evaluated the visual odometry representing the core module for the relative
motion estimation. The module is divided into two parts: front-end and back-end. We showed
that the windowed bundle adjustment combined with a two-staged robust kernel optimization
makes detecting outliers with high reprojection errors possible. In contrast to State of the Art
approaches, we do not only discard single observations that lead to high residuals. We discard all
observations of landmarks that are connected to at least one outlier observation. Although this
outlier rejection mechanism is conservative, it effectively deletes incorrect landmark observations.
Furthermore, we showed that the remaining residuals can be used to assess the observation
error on the image. By doing this, we avoid conservative uncertainty assumptions on the
pixel error. On the one hand, this design heavily relies on the correct convergence of the
windowed bundle adjustment, which we cannot guarantee. It represents a critical point in the
visual odometry. On the other hand, we also cannot guarantee that all observations meet an
assumed conservative pixel error. Furthermore, in the case of the windowed bundle adjustment
divergence, the pixel observations’ uncertainty will be large as the residuals will become large,
or the interval-based odometry estimation will provide empty sets, which directly signals that
the observations are inconsistent. Nonetheless, in practice, the experimental results showed
that our uncertainty assessment based on the windowed bundle adjustment provides reliable
results that are less conservative as we consider the uncertainty of the observations for each
observation individually.

Furthermore, we evaluated the window length. While large window lengths are preferable
for the windowed bundle adjustment and therefore need stably tracked features, the delay of
the processed localization frame will increase. As we predict the real-time pose based on the
localization frame pose, significant delays negatively influence the real-time pose estimate as
the uncertainty increases. Hence, a balanced window length is vital.
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In a direct comparison in Part 8.1.2.3, we illustrated that the MLE uncertainty assessment
assuming Gaussian error distribution provides too optimistic results. We show that the 99.9 %-
confidence ellipsoid does not contain the correct pose for 99.9 % of the cases. The interval-based
estimate, in contrast, is 100 % reliable as it always contains the true pose in our experiments.
However, it is significantly more pessimistic as it accounts for higher drift.

In the runtime evaluation in Subsection 8.1.3, we showed that the visual odometry module
is generally real-time capable. Nonetheless, due to the application of the windowed bundle
adjustment in the back-end, the interval-based odometry computation is delayed, as discussed
above. That is why we apply real-time pose prediction.

The main disadvantage of the visual odometry module is the delay due to the back-end.
To avoid that, the visual odometry can be exchanged by odometric sensors such as wheel
odometry or IMU. In future work, we can robustify the feature extraction by exploiting semantic
information provided by methods such as [148–150]. For instance, we can avoid detecting
features on objects that are likely to be dynamic (e.g. other vehicles).

Coarse Localization

The main goal of the coarse localization is to localize the vehicle under large uncertainties. The
method consists of two parts: interval-based localization and bounded MCL. The interval-based
localization provides the feasible set that satisfies two simple but always valid constraints. The
first constraint is that the vehicle cannot be placed inside a building. The second constraint is
that none of the filtered LiDAR points can lie beyond the facades. Based on the constraints, we
introduced two contractors that gradually narrow down the feasible set. However, as we show
in our evaluation in Section 8.2, the set can be very conservative with uncertainties of more
than 10m, which is inappropriately large for the safe localization of the vehicle. Nonetheless,
the feasible set makes it possible to reduce the location uncertainty of the GNSS of 40m to
a smaller region in our experiments. To improve the localization estimate, we augment the
feasible set by a bounded MCL, spreading particles inside the feasible set to determine the
most likely solution. Hence, the MCL approach is conditioned by the feasible set.

In our experimental results, we saw that the subpaving representation of the feasible set
makes tracking the vehicle with multiple disconnected solutions possible, qualifying the approach
for global localization tasks [18]. Nonetheless, to ensure the real-time capability of the method,
we illustrated in the runtime analysis that an initial contraction of the feasible set is vital to
reduce the subpaving as quickly as possible. That is why GNSS measurements, although they
can have high uncertainties in urban environments, are essential – especially at the beginning.
Since the vehicle moves while GNSS measurements continuously contract the feasible set, the
rotation uncertainty can be reduced quickly. Only a small subset of feasible rotation angles
remain consistent with the vehicle movement. We also showed that the approach can only
work properly in urban environments with a high building density. In the case of a sparse map,
neither the No-Overlap Contractor nor the No-Cross Contractor will reduce the feasible set.

Although the feasible set is very pessimistic, we demonstrated in Subsection 8.2.1 that the
ground truth pose is always inside the feasible set. Consequently, the feasible set is reliable.
Compared to the AMCL, our bounded MCL converges faster and has lower tracking errors
while augmenting the feasible set with the most likely result. The coarse localization only
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needs a few particles due to aggressive resampling that enables fast convergence. However, this
comes with the cost that the localization track jumps and error spikes can occur, as pointed
out in Subsection 8.2.2. Due to the deterministic property of the interval method, the hybrid
approach shows better repeatability of the results. While particle depletion is a big problem for
classical MCL approaches, our hybrid method can address the issue as the feasible set tracks
the region where new particles can be spread.

A disadvantage of the coarse localization is that many parameters must be tuned. In
particular, the LiDAR filter can admit points that violate the No-Cross assumption if not well
tuned. If the No-Cross constraint is violated, the feasible set loses the guarantees to contain
the correct pose.

In the current implementation of the bounded MCL, we only consider the simple beam-end
model. In the future, more sophisticated observation models in the MCL can be used that
employ machine learning approaches as presented in [93] and [148]. Furthermore, our method is
only evaluated and tested in this work based on building maps. However, the coarse localization
can also use other maps, such as street maps, to restrict the feasible region where the vehicle
has to be located. In combination with other maps, other constraints can be included in the
CSP by including more contractors. This will further reduce the pessimism of the feasible set
and increase the convergence of the bounded MCL as it has to cover a smaller feasible set.

Refined Localization

The refined localization refines the coarse localization estimates by matching locally seen
facades to the facades on the map. Therefore, the highest weighted particle of the coarse
localization is used to perform the matching. The refined localization consists of two parts: a
set-membership-based localization and a bounded optimization. While the set-membership-
based localization determines the set consistent with the local matching to the facades, the
bounded optimization provides the most likely pose that satisfies the matching in the least
squares sense. The optimization is restricted to the consistent set during the optimization
iterations. We presented the evaluation of the refined localization in Section 8.3.

Compared to the feasible set, the consistent set is significantly less pessimistic. The compact
representation of the consistent set by a polygon and an orientation interval reduces the
wrapping effect. However, the problem with the refined localization is its dependency on
the bounded MCL results of the coarse localization. Hence, the initialization of the refined
localization can differ in each run for the same dataset due to the random component in the
bounded MCL.

Although the consistent set contained the correct pose in most frames, it does not always
enclose the ground truth. Hence, the set-membership approach can be corrupted by incorrect
associations. Consequently, the consistent set is less pessimistic but comes with the cost of
being unreliable. It represents the counterpart to the feasible set that is very reliable but
more pessimistic. That is why we introduce in the HyPaSCoRe Localization an alternative
heuristic measure for reliability, to use the consistent set to reduce the pessimism of the feasible
set in the cases where we can be sure that the consistent set is trustworthy. The consistent
set provides the bounds for the bounded optimization and prevents the optimization from
divergence. However, the bounds are only valid if the matching is correct. In the case of
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incorrect matching, the consistent set may hinder the optimization from converging to the
correct result. This happened in rare cases because we associate conservatively.

When we compared the author-collected dataset results with the KITTI results, we encoun-
tered a better performance for the facade association for the scanning LiDAR sensor with 360◦
FoV. We saw that the localization accuracy depends on the visibility of the facades and how
well they are matched to the map facades. In the case of large occlusions of facades, the
uncertainty rises, and the consistent set stays large.

The refined localization’s main problem is that each individual facade’s error bounds must
be known. Unfortunately, this error is typically unknown, and assumptions must be introduced.
While overestimating leads to overly pessimistic results, underestimating the error can lead to
corrupted consistent sets that will not contain the correct poses.

The nearest neighbor approach can be augmented in future work by more sophisticated
matching algorithms of local LiDAR data and map facades. For instance, the semantic
segmentation of point clouds provided by machine learning approach such as [148] can improve
the association. Alternatively, a set-membership-based association scheme can be implemented,
that combines the consistent set contraction and association. Therefore, the constellation
contractor presented in [144] should be considered in future works.

HyPaSCoRe Localization

We evaluated the whole localization system in Section 8.4. The main objective of the whole
system is to combine the feasible set and the consistent set so that we maintain the integrity
of the feasible set and reduce the pessimism by contracting it to the consistent set for those
cases where the consistent set is staged to be reliable. Therefore, we introduced a way to
assess the reliability heuristically. Furthermore, the windowed bundle adjustment makes direct
localization only possible at a delayed time. However, to determine the vehicle pose in real-time,
we evaluated the real-time pose prediction and compared the results to the localization time
estimates.

Although the prediction in real-time has higher uncertainty as it accumulates the localization
uncertainty of the processed frame and the frame-to-frame odometry, the absolute error is not
significantly higher than at localization time. That also means that the uncertainty estimate
is more pessimistic than it has to be. It is remarkable that for an accurate map such as the
LOD2 and a good observation of the facades, we obtain an absolute error of less than 1m.
We achieve this high accuracy only by considering the surrounding buildings showing enormous
potential for localization of highly automated and autonomous vehicles. However, if facades
are barely seen, the uncertainty becomes very large. Generally, this is the correct behavior of
the HyPaSCoRe Localization since the absence of information means that the observed state
of the vehicle becomes more uncertain, which signals that the absolute error of the vehicle
location may increase. If the uncertainty is inappropriately high and makes safe operation
impossible, we can detect that state and warn the passengers to intervene or stop the vehicle.
The more differently oriented facades are visible and matched, the better the HyPaSCoRe
Localization performs. However, not only the quantity but also the quality of the used maps
significantly impact the pose estimation of the vehicle, as the comparison between the OSM
and LOD2 showed.
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In our evaluations, we showed that the feasible set always contains the correct pose (at least
for the author-collected dataset with reliable ground truth), which underlines the high reliability
and integrity of the estimate. On the one hand, it comes with very pessimistic uncertainties.
On the other hand, the refined localization provides less pessimistic but also less reliable pose
estimates. We demonstrated that we could reduce the large pessimism of the feasible set
using the consistent set for those frames at which the consistent set is staged as reliable.
We validated the integrity of the feasible set with the Standford-ESA integrity diagram. The
contraction of the feasible set reduces the computation overhead as the subpaving becomes
significantly smaller, and we gain computation time. Furthermore, we avoid the unnecessary
spreading of particles as we only concentrate on the smaller consistent set. However, the critical
part here is the reliability assessment of the consistent set. As presented in Subsection 8.4.2, we
contract the feasible set to the consistent set if the refined localization track is old enough and
if differently oriented facades are visible. This metric to measure reliability is just a heuristic
that works well in practice for the datasets we considered in our evaluation. However, this
metric does not guarantee that the consistent set is reliable regarding the correct pose. Hence,
other reliability metrics need to be considered and evaluated in future work. For instance, the
reliability can be estimated by introducing cross-validation of the pose estimate in different
maps with other landmarks like road markings.

We showed that other, more appropriate results could be tracked by allowing switches and
resets of the refined localization track. In the case of drift or a wrong track, we can always
switch to the correct pose, which we detect with the bounded MCL in the feasible set in the
coarse localization. On the downside, this comes with the cost that switches, and resets lead
to jumps in the localization estimate.

The HyPaSCoRe Localization only provides accurate pose estimations after the initialization
of the refined localization. Until then, the HyPaSCoRe Localization only provides the highly
uncertain but reliable feasible set and the particles of the coarse localization. As the experimental
results revealed, the initialization highly depends on the map structure and the performance of
the bounded MCL. The disadvantage of the HyPaSCoRe Localization is that the vehicle has to
generally ride a significant distance until the refined localization is initialized. Furthermore, the
vehicle must move so that the feasible and consistent sets are continuously contracted.

Another weakness of the HyPaSCoRe Localization is the large number of empirically tuned
parameters. Although we chose the same parameters for all datasets, they may perform poorly
in other scenarios. Expert knowledge is necessary to fine-tune the parameters. Furthermore, a
good knowledge of the sensor and map uncertainties is necessary to bound the error appropriately.
While an overestimation provides unnecessarily pessimistic results, underestimating the error
may corrupt the uncertainty computation of the feasible and consistent set. Finally, we showed
that our hybrid localization approach is real-time capable since each component is carefully
engineered and utilizes an appropriate multi-threading.

In future work, other maps that contain, for example, a terrain model, road signs, and
guide posts can be integrated into the HyPaSCoRe Localization to improve the robustness
and accuracy of the localization. To avoid the localization delay, the visual odometry can be
exchanged by other dedicated sensors such as wheel odometers and IMU.



10 Conclusions

This thesis aims to exploit the cooperation between probabilistic and set-membership-based
localization approaches. Whereas the significant part of State of the Art uses probabilistic or set-
membership approaches, a new hybrid method called HyPaSCoRe Localization is introduced that
combines both approaches into one unified method. The HyPaSCoRe Localization determines
a robot’s pose in a building map in real-time and satisfies high integrity standards while being
less pessimistic on the uncertainty estimation.

The HyPaSCoRe Localization focuses on urban canyons. The main problem of urban regions
is that GNSS data can become highly inaccurate as multi-path effects corrupt the GNSS-based
location estimates. Our approach can cope with those large uncertainties. It can provide a
feasible set of poses that encloses the correct pose and provides a maximum likely pose that
best fits the local LiDAR measurements to the building map.

As shown in Figure 10.1, the HyPaSCoRe Localization consists of three main modules: visual
odometry, coarse localization, and refined localization. While the visual odometry provides the
relative motion of the vehicle, the coarse localization uses the building map and the relative
motion of the vehicle to narrow down the feasible set of vehicle poses. Therefore, globally valid
constraints on the vehicle pose and the observations are exploited. The refined localization
refines the coarse localization results by introducing the consistent set as a subset of the feasible
set that considers the most likely point-to-facades association of the local LiDAR points to the
surrounding buildings. If the consistent set is staged as reliable, the pessimistic feasible set is
contracted to the consistent set. Consequently, the HyPaSCoRe Localization provides the set
of feasible poses representing the localization uncertainty and the most likely pose estimate
determined by the refined localization.

In the introduction of this thesis, we raised three research questions. In conclusion, let us
return to them and examine more closely what answers we have found in this work. The central
research question of this thesis was:
Is there a symbiotic relationship between set-membership and probabilistic approaches
that can be exploited to improve the robot localization estimation and the uncer-
tainty assessment?
In the light of this work, we can answer this question with yes. In general, set-membership
approaches aim to provide sets enclosing the solution. Consequently, they are good at re-
stricting the solution set. In contrast, probabilistic approaches asses the solution by employing
probability distributions. However, the major part of the State of the Art assumes Gaussian
error distribution. The estimation simplifies to computing the mean solution and the covariance



222 Chapter 10. Conclusions

Localization

Set-Membership ApproachProbabilistic Approach
A.) Globally valid constraints:

B.) Probabilistic constraints:

A.) Localization:
Particle Filter

B.) Association:
Maximum Likelihood Estimation

Vehicles are not inside buildings.

Vehicles are inside the given map.

Vehicles move continuously.

Local measurements cannot be 

inside buildings.

Observation points on facades

form a line.

Observation a is associated to

landmark b.

Weight

Resample

Predict

Association

Bounded Optimization

Association

Consistent set 

Feasible set 

Reduce 
Exploration

Region

Coarse Localization

Refined Localization

Stereo Images LiDAR Point Clouds

Visual Odometry
optimized and new

new

new

extended

given

extended

Figure 10.1: Method overview to the HyPaSCoRe Localization.

estimate. While the mean is often a good guess and is close to the correct pose, the covariance
estimate that conveys the uncertainty information of the mean solution often underestimates the
true error, which makes safe operation almost impossible, as the probabilistic method provides
misleading information on the error of the estimate (cf. Standford-ESA integrity diagram in
Figure 1.1). In our experiments in Part 8.1.2.3, we found that the 99.9 %-confidence regions
determined by a least squares probabilistic approach does not enclose the correct solution for
99.9 % of the cases which highlight the underestimation of the true error. Furthermore, typical
probabilistic approaches, such as the particle filter or the MLE, tend to diverge in the case of
incorrect data associations. In those cases, set-membership approaches are beneficial: As they
restrict the solution space, the probabilistic approach can only operate within the defined set.

This observation leads us to the second research question:
How can set-membership approaches be used to robustify probabilistic approaches?
By restricting the solution set to the feasible region indicated by the set-membership approach,
the probabilistic approach is restricted and is prevented from divergence. It becomes more
robust since outliers that lead to solutions outside the feasible set can be identified and excluded.
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This philosophy of hybridization is used in the coarse localization and the refined localization
according to Figure 10.1. In the coarse localization, the interval-based localization restricts
the bounded MCL to the feasible region. The bounded MCL converges up to four times
faster compared to the State of the Art AMCL according to Table 8.2.2 as it concentrates
on a subpart of the whole map, as illustrated in the top left part in Figure 10.1. The refined
localization uses the consistent set to restrict the bounded optimization and therefore bounds
the maximal possible error as evaluated in Subsection 8.3.2. As visualized in Figure 10.1, this
type of hybridization makes the set-membership part the crucial component, as it restricts and
controls the probabilistic part. Accordingly, the crucial part of the coarse localization is the
interval-based localization on the top right side of Figure 10.1.

However, it is different for the visual odometry and the refined localization. Up to now, we
have only discussed hybridization in the sense that the set-membership approach controls the
probabilistic approach. But what about the other way? This leads us to the third research
question:
How can probabilistic approaches be used to reduce the pessimism of set-membership
approaches?
Probabilistic approaches make maximum likely associations possible. Although those associa-
tions may occasionally be unreliable, they often provide valuable information. If we can verify
the reliability of the association, this information can be used to draw further constraints that
can be used to further contract the solution set. Accordingly, by introducing further constraints
from probabilistic approaches, we can reduce the pessimism of set-membership approaches.
This philosophy of hybridization is predominantly used in the visual odometry and the refined
localization modules. In the visual odometry, the windowed bundle adjustment preselects those
observations used in the interval-based odometry estimation. In the refined localization, the
pose particle with the highest weight of the coarse localization is used to associate the local
LiDAR measurements to the facades as illustrated in the bottom left in Figure 10.1. Based on
those associations, constraints are formulated to determine the consistent set, as illustrated
in the bottom right in Figure 10.1. If the consistent set is reliable, we contract the feasible
set of the coarse localization that significantly reduces the pessimism of the set-membership
localization estimation. This hybridization approach makes the probabilistic part the crucial
component as it controls the constraints used in the set-membership approach. The crucial part
of the refined localization is the association illustrated in the bottom left part of Figure 10.1.

The experimental results showed that the HyPaSCoRe Localization maintains integrity with
the feasible set while providing accurate, most likely point-valued solutions. While we validated
that the true solution is always contained in the feasible set, the average positioning error is
between 0.8m and 1.8m for the author-collected datasets evaluated with reliable ground truth.
It is remarkable that when utilizing a precise map like the LOD2 and if a good observation
of the facades is possible, we achieve an absolute error of less than 1m. This impressive
level of accuracy is solely accomplished by taking into account the surrounding buildings,
which demonstrate immense potential for localizing highly automated and autonomous vehicles.
Nonetheless, the critical discussion of the results revealed some weaknesses that need to be
improved in future works. Although the experimental results showed that the uncertainty
assessment in the visual odometry provides appropriate and less conservative results, the
method highly depends on the correct convergence of the windowed bundle adjustment, which
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we cannot guarantee. Furthermore, the windowed bundle adjustment introduces a delay of
the localization frame, so a pessimistic prediction of the pose in real-time is necessary. The
visual odometry module can be exchanged or augmented by additional sensors, such as wheel
odometers, to avoid those disadvantages.

The coarse localization provides the reliable feasible set and particles representing the most
likely poses within the feasible set. In the scope of this work, we only consider a simple
beam-end model on the bounded MCL. In the future, more sophisticated observation models
can accelerate convergence and lead to a faster initialization of the refined localization.

The refined localization provides the most likely pose within the consistent set. The point-
to-facades association uses a simple nearest-neighbor approach. In future works, semantic
segmentation of LiDAR points can improve and robustify the association. Furthermore, the
assessment of the reliability of the consistent set is heuristically determined by the age of
a track. By introducing other independent maps, cross-validation can be applied to assess
the reliability of a pose estimate. Although the pessimism of the error estimate is reduced in
the HyPaSCoRe Localization , the integrity assessment showed a significant overestimation
of the error. We identified that the high pessimism comes from parts of the building maps
where barely any facades are seen or only very similarly oriented facades are observed. The
localization can be improved and the pessimism reduced by using different maps such as road,
lane-marking, and sign maps.

In summary, this thesis shows that exploiting the symbiotic relationship between probabilistic
and set-membership approaches reduced the pessimism of the set-membership approaches
and robustifies probabilistic approaches while maintaining integrity. However, this work only
considers building maps. Extending the approach to different maps and using multiple maps to
cross-validate the localization result will increase the robustness and reduce the pessimism of
the HyPaSCoRe Localization.



Appendices



A Basics to Probabilistic Approaches

In this chapter, we briefly summarize the concept of Bayes filters and introduce the Gaussian
implementation of the Bayes Filters known as the Extended Kalman Filter (EKF). The non-
parametric implementation of the Bayes filter is the particle filter introduced in Subsection 2.1.2.

A.1 Bayes Filters

The Bayes Filter is the most general algorithm that calculates the probability distribution of
the current state of the robot based on the previous state, the measurements, and control data.
The Bayes Filter recursively computes the belief bel(xt) at time t from the belief bel(xt−1)
at time t− 1. A belief is defined in probabilistic robotics as posterior probabilities over state
variables conditioned on the available data. As a consequence, the belief

bel(xt) = p(xt | z1:t, u1:t) (A.1)

is just an abbreviation of the posterior probability on the state of the robot that we are
interested in. The Bayes Filter algorithm is depicted in Algorithm 10.

Algorithm 10: Bayes Filter
Data: bel(xt−1), ut, zt
Result: bel(xt)

1 for all xt do
2 bel(xt) =

∫
p(xt |ut, xt−1)bel(xt−1)dxt−1;

3 bel(xt) = ηp(zt |xt)bel(xt);
4 end

The Bayes Filter contains two essential steps. The first step presented in line 2 is the
so-called prediction step and predicts the belief on the current state using the previous state
and the control input. Note that this step does not involve any sensor measurements and
therefore represents an a priori probability estimate. The second step presented in line 3 is the
measurement update. The Bayes Filter multiplies the predicted belief bel(xt) by the probability
that the measurement zt may have been observed for all hypothetical posterior states xt. Since
the product does not generally result in probabilities, the values may not integrate to 1. That
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is why a normalization factor η is introduced that maps the product to probabilities that we
interpret as the final belief bel(xt).

The Bayes Filter is a very general algorithm to calculate beliefs. That means this filter
approach applies to any arbitrary PDF. However, the integral in line 2 and the product of
probabilities in Algorithm 10 may become very heavy in computation. If we assume a normal
distribution for all involved quantities, the Bayes Filter simplifies to the well-known Kalman Filter.
We will present the more general Extended Kalman Filter (EKF) as an essential representative
of the Gaussian implementation of the Bayes Filter (cf. Section A.2). The Bayes Filter can also
be implemented with non-parametric distributions. Instead of using an analytical description of
the PDF, the probability distribution can be represented by particles. Implementing the Bayes
Filter with a particle representation of the probability distribution is the so-called particle filter
introduced in Section 2.1.2.

A.2 Extended Kalman Filter

The Kalman Filter is the Gaussian version of the Bayes Filter. The classical Kalman Filter is
an optimal state estimator if the observation functions are linear, the next state is a linear
function of the previous state, and all random variables follow a normal distribution. If that
is the case, the Kalman Filter is a very efficient filter approach since the parameters of the
resulting Gaussian can be computed in closed form. However, in practice, neither the state
transition nor the observation functions are linear, which poses a significant limitation to the
classical Kalman Filter. Therefore, the Extended Kalman Filter (EKF) relaxes the linearity
assumption and makes applying to non-linear problems possible. Since the EKF is a strict
generalization of the classical Kalman Filter, we will only introduce the EKF here.

The assumption is that the state transition and the measurement are described by non-linear
functions

xt = g(ut, xt−1) + εt, (A.2)
zt = h(xt) + δt, (A.3)

respectively. The state transition is corrupted by a Gaussian random vector εt that introduces
the uncertainty. Similarly, δt describes the measurement noise. The main problem in the EKF
is the non-linearity of the involved functions: Although the measurement uncertainty and the
initial state uncertainty can be Gaussian, the belief can no longer be Gaussian. Performing the
belief update exactly is usually impossible for non-linear functions g and h – there are no closed
form solutions. Figure A.1 illustrates this problem. If we propagate a normally distributed
random variable through a non-linear function, the output PDF cannot be a normal distribution.
As shown in Figure A.1, only if the function is linear a normal distribution is propagated to a
normal distribution that can be computed in closed form. That is why the EKF performs a
local linearization: Since a linear function maps a normal distribution to a normal distribution,
the EKF approximates the non-linear function at the mean point of the input. Hence, using
linearization, the output PDF can be determined in closed form.
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Figure A.1: Illustration of the linearization in the EKF algorithm based on [18]. The probability
distribution of x is propagated through a non-linear function y = g(x). The input
variable is normally distributed. The corresponding PDF is drawn at the bottom.
The exact PDF passed through g(x) to the output y is not described by a Gaussian
and is illustrated on the left. To generate the Gaussian approximation of the
uncertainty, the EKF linearizes g(x) at the mean of the original Gaussian. An
orange dashed line illustrates the linear approximation. By propagating the original
Gaussian through the linear approximation, the output PDF is also a Gaussian and
is visualized by a solid line.

The EKF algorithm is depicted in Algorithm 11. Note that the EKF maintains the classical
structure of a Bayes Filter that consists of a prediction and correction step. In the prediction
step in lines 1 to 3, the predicted state only considers the previous state and the control
command. In line 2, the state transition function is linearized. A Taylor approximation with the
first and second terms is introduced in this case. Consequently, Gt is also called the Jacobian
of the transition function concerning the state. In line 3, the covariance of the previous state
Σt−1 is propagated via the Jacobian Gt to the prediction covariance Σt. Rt is the covariance
of the random variable εt. The correction step incorporates the sensors measurements zt into
the state estimation. However, the Kalman gain (cf. Algorithm 11 line 5) determines whether
we should rely more on the prediction or the sensor measurement. Note that the covariance of
the measurement noise is Qt.

The EKF provides a closed-form solution for the state estimation problem for dedicated
linearization points. This makes the EKF very efficient in computation. The EKF assumes
all involved uncertainties to be Gaussian distributed. In practice, the EKF performs well if
the error is small and the linearization is a good approximation. However, highly non-linear
functions may lead the EKF to diverge as the linear approximation is insufficient. In this case,
the EKF may significantly underestimate the state uncertainty defined by the covariance matrix
Σt as the linearization error is not considered in the state estimation. Furthermore, the EKF
cannot handle non-Gaussian PDFs and therefore is very limited. Although there are extensions
like, for instance, the Multi-Hypothesis EKF that can deal with mixtures of Gaussians, in the
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Algorithm 11: Extended Kalman Filter
Data: µt−1, Σt−1, ut, zt
Result: µt, Σt

// Prediction step
1 µt = g(ut, µt−1);
2 Gt = δg(ut,xt−1)

δxt−1
|xt−1=µt−1 ;

3 Σt = GtΣt−1G
T
t +Rt;

4 Ht = δh(xt)
δxt
|xt=µt ;

// Kalman gain
5 Kt = ΣtH

T
t (HtΣtH

T
t +Qt)−1;

// Correction step
6 µt = µt +Kt(zt − h(µt));
7 Σt = (I −KtHt)Σt;

literature, the particle filter has proven to be a good alternative in the case of arbitrary PDFs
and strong non-linearities but coming with the cost of higher computational effort.



B State of the Art – Visual Odometry
and SLAM

The main goal of visual odometry is to estimate the relative motion of a robot equipped with
one or multiple cameras concerning a defined reference frame. This frame is typically selected
at the beginning of a trajectory we seek to determine. Nister coined the term visual odometry
[151], who compared the image sensor-based incremental motion estimation to wheel odometry.
As a result, wheel and visual odometry pursue the same goal, however, with different sensors.

The problem of recovering the relative camera poses, and the 3D structure from a set of
images is known in computer vision as Structure-from-Motion (SfM) since the early 80ties
starting with pioneering works such as [152]. Visual odometry is a particular case of SfM.
While SfM typically refines camera poses and the structure in offline optimization (i.e. bundle
adjustment), visual odometry focuses only on estimating the camera poses sequentially and in
real-time [153].

Visual odometry can be divided into monocular and multi-camera approaches depending on
how many cameras – that have a substantial overlap of the FoVs – are used. In the scope of
this work, we are using a stereo camera setup that uses two cameras. The main advantage
of using multi-view visual odometry compared to monocular approaches is that the motion
scale is fully determined. In the case of monocular visual odometry, one camera only provides
bearing information on the scene. As a consequence, the relative motion of the vehicle in
the monocular case can only be determined up to a scale factor. To overcome this problem,
other sensors, such as IMU or range sensors, are typically employed to determine the scale.
Nonetheless, algorithms that are used for monocular visual odometry can be extended to the
multi-view case. This section will consider monocular and stereo-vision approaches for visual
odometry [153].

The main problem of dead reckoning approaches is the accumulation of errors when the
motion is determined incrementally frame by frame. A classical approach to counteract this
problem is windowed bundle adjustment. SfM is not online capable. However, it typically has
high accuracy due to a bundle adjustment. Typically, a sliding window bundle adjustment is
employed to increase the accuracy of visual odometry. While it decreases the drift, the sliding
window bundle adjustment also has a higher computational cost. The drift can also be reduced
by combining it with other sensors [153].

Although this section focuses on visual odometry, it is worth mentioning that there is a
parallel, closely related research field: Visual Simultaneous Localization and Mapping (V-SLAM).
The goal of SLAM, in general, is to obtain a globally consistent robot path. This goal also
implies that the approach needs to keep track of a map of the environment, although in this



B.1. Probabilistic Approaches 231

case, the map is not needed per se [153]. In SLAM, the map is used to detect when the robot
revisits already seen places and to draw additional constraints to further reduce the drift in
both the map and trajectory. Integrating place recognition techniques into estimating the map
and the trajectory is called loop closure and poses one of the key components of SLAM.

In contrast, visual odometry aims at recovering the trajectory incrementally – potentially
optimizing only over the last n poses of the trajectory (sliding window bundle adjustment).
However, we can interpret the sliding window optimization as equivalent to building a locally
consistent map in SLAM. However, the philosophy differs: While visual odometry only cares
about the local consistency of the trajectory, SLAM is concerned with the global map consistency
[153]. Nonetheless, visual odometry is typically used as one building block of complete SLAM
algorithms to obtain the incremental motion – while further building blocks like loop closing
and global optimization extend visual odometry to V-SLAM. Consequently, to have an overview
of the existing literature on visual odometry, we will also introduce V-SLAM algorithms and
visual dead reckoning approaches, mainly focusing on the visual odometry component.

In visual odometry, there are probabilistic, interval-based, and hybrid approaches. In the
following, we will introduce relevant State of the Art visual localization approaches pointing
out the approaches’ differences, advantages, and disadvantages.

B.1 Probabilistic Approaches

Similar to the already introduced probabilistic robot localization algorithms in Section 3.1, the
major part of visual odometry and V-SLAM research model uncertainties with probabilistic
means. Due to the convenient properties of the normal distribution, the Gaussian assumption
has become very classical in this field, which makes the EKF and MLE methods applicable to
visual odometry. However, due to the sequential nature of visual odometry, other Bayesian
filtering methods – such as a modified version of the particle filter – can be applied to this
problem. With rising computation power, MLE methods have proven their accuracy in visual
odometry and pose the current State of the Art. One of the main assumptions that make MLE
approaches so efficient is the Gaussian assumption. Only this assumption on the measurements
makes it possible to solve the MLE problem by a least squares formulation usually solved by a
numerical optimization method such as the LM algorithm [10, 23]. The following introduces
some relevant implementations of the different estimation strategies.

B.1.1 Extended Kalman Filter

The core assumption for applying the EKF to visual odometry is that all our measurements
are zero-mean Gaussian distributed and that two arbitrary measurements of the same state
are always statistically independent. Note that this assumption is not necessarily satisfied by
camera observations. External factors like lighting conditions or dynamic objects may corrupt
measurements of the same landmark in the scene so that the measurements are not statistically
independent anymore as the same perturbations affect them. Nonetheless, the EKF paved the
way for one of the first real-time capable visual odometry implementations.
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Davison et al. present in [154] a real-time capable monocular SLAM method applying
full covariance EKF for probabilistic state estimation. The camera poses, velocity and visual
landmarks define the state. The natural visual landmarks are detected initially by a Shi and
Tomasi operator [155]. Instead of only storing the detected points, the authors store image
patches that contain the salient features and the orientation of the approximated surface. To
reobserve the detected feature in subsequent images, the patch can be projected from 3D
to the image plane to produce a template for matching. A warped version of the original
patch taking the patch orientation with respect to the camera pose is used for matching by
normalized cross-correlation. However, since the approach only uses a monocular camera, the
3D position of a feature cannot be determined as the scale is not fixed. The authors solve this
problem by initially providing features with known positions and appearance. This makes fixing
the scale during initialization possible.
For the prediction step, the authors assume a constant velocity model. The update step is
based on the patch correlation-based matching of the mapped features to the actual image
regions. While the uncertainty is estimated by a full covariance matrix taking all landmarks
into account, the EKF-based approach can track the correlation between features. However,
this comes with the cost of more states that need to be estimated in the EKF. That is why the
proposed method is not arbitrarily scalable to larger scenes since more landmarks directly lead
to more computation, and the method becomes not real-time capable anymore. Further, the
authors do not update an initialized feature patch to prevent drift. However, this makes the
method less resistant to lighting changes in the scene, and the scale can drift over time if not
already mapped features are not reobserved for a longer period.

Paz et al. tackle the problem of an increasing state vector by dividing the scene into
multiple sub-maps [156]. Instead of performing EKF-SLAM for the whole environment and
keeping track of all correlations, the authors approximate the state estimation by producing
multiple independent local maps. This enables to bound the maximum number of states for the
EKF-SLAM and therefore does not suffer from quadratically rising computation costs. However,
the correlation between local maps is not considered by dividing the environment into limited
sub-maps, so valuable information is unused in the state estimation. Consequently, the proposed
approximation requires the assumption that the sub-maps are statistically independent – which
cannot be the case as the scene is explored sequentially. To partially tackle this problem, the
authors propose to define shared states between the EKF-SLAM sessions by inserting a limited
number of further states representing common landmarks in both sub-maps. Hence, instead of
requiring statistical independence, they can lose this restriction to conditional independence.
The overhead slightly increases the computation. However, the correlation between the maps
is at least partially modeled.
The authors use a stereo camera that overcomes the scale ambiguity of the monocular case.
Nonetheless, the update step does not only take stereo features into account but also includes
monocular observations from both cameras. Due to the correlation via the covariance matrix
of the states, the monocular observations are fixed in scale by the stereo observations.
The main problem with this approach is that dividing the scene into smaller maps may amplify
the drift. Consequently, sub-maps that may be created at different points in time may refer to
the same region in the actual scene. Hence, further loop closure techniques are necessary, as
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also proposed by the authors. However, correcting the trajectory and the map based on the
loop closure constraints again results in a costly and time-consuming computation.

B.1.2 Rao-Blackwellized Particle Filter

Although the PF has proved to be a powerful Bayesian localization method that can cope with
non-linearities as this filter is non-parametric, the straightforward implementation of the PF to
visual odometry and V-SLAM is doomed to fail: Due to the large number of variables involved
in describing the map and the robot’s trajectory, the PF becomes inefficient [18]. However,
there is a convenient property of SLAM problems that can be exploited to apply particle filters:
The full SLAM problem, in which we assume to know the correspondences of landmarks and
their observations at different points in time, possesses a conditional independence between
any two disjoint sets of landmarks in the map, given the pose [18]. Consequently, if we know
the robot’s pose, we can deduce the location of each landmark independently of each other.
Dependencies are only introduced through the robot pose uncertainty [18]. This observation
paved the way to a factored version of the PF - the Rao-Blackwellized Particle Filter (RBPF) -
that makes applying the PF to the SLAM problem feasible.

The core idea of the RBPF is to use the particles to represent the posterior over a subset
of variables. The remaining variables are modeled with easy-to-handle parametric PDF-like
Gaussian distribution by exploiting conditional independence. FastSLAM [157, 158] is one of
the first and most well-known implementations of RBPF to SLAM with 2D LiDARs. FastSLAM
represents the robot’s pose by a set of particles. However, each of those particles tracks a map
individually. Now, conditional independence comes into play: Since the individual map errors
are conditionally independent for each of the particles, the mapping problem can be factored
into many separate problems – one for each landmark per particle [18]. FastSLAM uses a
low-dimensional EKF for each landmark estimation problem. Consequently, FastSLAM uses
particles to represent the robot’s pose while each particle carries its own map that is updated
individually for each landmark using an EKF.

Sim et al. [159] apply RBPF to V-SLAM for indoor mobile robots equipped with stereo
vision. The landmark estimates are derived from stereo images using Scale Invariant Feature
Transform (SIFT) [160] features, and the motion estimates are based on visual odometry. SIFT
features are detected in the left and right images and matched using epipolar geometry (rectified
stereo image pairs) and SIFT descriptor similarity. The landmarks are distinguishable based
on the SIFT descriptor. The authors determine the relative motion between two consecutive
frames based on the tracked features to perform the prediction step for the particles. By
minimizing the re-projection error of the 3D coordinates of the landmarks by applying the LM
optimization algorithm [23], the authors compute the relative transformation that maximizes
the log-likelihood of the relative pose. Figure B.1 shows the difference between maps that
result from the RBPF-based pose estimation and the pure odometry-based map.
The observations model to weight the particles relies on the descriptor-based matching of the
detected features and the already mapped landmarks. As each particle represents the vehicle’s
pose, the locally observed features can be transformed into the map frame. The authors define
a weighting strategy for the particles that relies on the distance of the transformed feature and
the mapped landmark. For each landmark, an EKF is utilized to correct and update its position
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(a) Constructed map for the best sample at
the end of the trajectory. The map is
consistent, and the room structure is pre-
served. [159]

(b) Constructed map solely only relying on
visual odometry. The map is corrupted
by drift, and the room structure appears
bent. [159]

Figure B.1: Constructed maps with different trajectories. The blue trajectory indicates the
trajectory of the best sample, he green trajectory indicates the visual odometry
measurements, and the yellow trajectory the robot’s wheel odometry. [159]

in the map frame. The authors show that their approach consistently estimates the map and
the trajectory, although the visual dead-reckoning is corrupted by drift as shown in Figure B.1
Wu et al. [161] improve [159] by introducing more mature landmark management using re-
balancing trees. Furthermore, a robust initialization of the LM optimization algorithm with a
RANSAC approach is introduced. A set of features are drawn from the seen features to compute
the initial relative motion estimate. This approach improves the experimental results. However,
the suggested method is not online capable due to the expensive SIFT feature detection and
many particles necessary for convergence. Furthermore, it is not easily scalable to large outdoor
scenarios.

B.1.3 Maximum Likelihood Estimation

MLE approaches were already introduced in the context of localization in Subsection 3.1.4. We
saw that the MLE approach yields outstanding results if the initial solution is good enough so
that the optimization can converge to the correct pose. Furthermore, the MLE approach also
assumes that there only exists one unique and correct solution. That means the MLE approach
must decide which solution it has to stick to in the case of ambiguities. Especially for the
localization problem, the MLE approach can run into severe problems because the localization
estimate may initially be very uncertain. Sticking to just one consistent solution may become
problematic if this locally consistent pose is incorrect.

However, in this chapter, we are dealing with a topologically different problem: The goal
of visual odometry is the computation of the relative motion of the vehicle. As a result, the
incremental structure of the problem complies well with the strengths of an MLE approach:



B.1. Probabilistic Approaches 235

The MLE approach provides for each time step the most likely relative motion that typically
results in visual odometry into a comparatively low drift and therefore provides reasonable
estimates.

For visual odometry computation, the Gaussian assumption in the context of the MLE
approach has proven to be very convenient: Since many different but minor errors mainly
influence the incremental pose estimation, the Central Limit Theorem justifies the Gaussian
assumption. Consequently, the MLE problem under Gaussian uncertainty can be formulated
as a least squares problem for which sophisticated solvers exist. In the case of non-linearities
(i. e. rotation), incremental optimizers that perform local linearization often lead to acceptable
results. However, as we will see, many methods do not consider the uncertainty estimate
provided by the optimization approach since those estimates are often very optimistic and do
not reliably consider the uncertainty.

In [139], Klein and Murray suggest dividing the tracking and mapping into separate working
threads. While the tracking performs real-time operations providing visual odometry, the
mapping part runs on a lower frequency. It performs global bundle adjustment based on
keyframes, which form a subset of all frames to improve accuracy. This approach leaves
enough computation resources available for the visual odometry to perform a windowed bundle
adjustment online. Similar to [154], features are stored with a planar patch. However, to
efficiently detect the points of interest, the authors apply the FAST corner detector [162]. By
template matching, features observed in consecutive frames are associated. The relative pose
is determined by numerical optimization of the re-projection error similar to [163]. Furthermore,
the pose is refined by a windowed bundle adjustment. The authors show that this approach
outperforms the EKF and RBPF for v-SLAM as it can cope with more landmarks and does
not have to deal with multiple particles. Due to the parallel nature of the processing, the
authors call their approach Parallel Tracking and Mapping (PTAM). Many follow up works
[134, 164–166] have adopted this architecture. While the initial implementation was developed
for monocular cases, follow-up works such as [165] extend PTAM to stereo vision avoiding the
scale problem.

One of the most widely used v-SLAM implementations is ORB-SLAM, developed by Mur-
Artal et al. [134] that builds upon PTAM. One of the main disadvantages of PTAM is that it
can only operate in small-scale environments, lacks adequate loop closures for refinement, and
has low invariance to viewpoint changes due to the template-matching approach. The authors
improve PTAM by using ORB features [130] for tracking, mapping, relocalization, and loop
closing (see Figure B.2a). The most interesting part of ORB-SLAM in the context of this work
is the suggested tracking architecture that provides visual odometry information. A map with
the seen features needs to be initialized to start the tracking. Since ORB-SLAM, as presented
in [134], uses a monocular camera, an initialization procedure based on heuristics is suggested.
However, ORB-SLAM was extended to RGBD- and stereo-cameras in [26] (ORB-SLAM2) so
that the scale problems of monocular cameras can be avoided. If a map is initialized and the
last frame is successfully tracked, the camera pose is predicted by assuming a constant motion
model. As a result, a guided search of the map points detected in the last frame is performed.
Based on this initial set of features, the predicted pose can be optimized by minimizing the
reprojection error. The improved pose is then used to project the local map in the camera’s
FoV to search for more map point correspondences. The camera pose is finally optimized
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(a) ORB feature detection. Points close to the camera are colored
green, and far features are colored blue [26]. (b) Trajectory with many loops

and the corresponding ORB
feature map.

Figure B.2: ORB-SLAM detects ORB features in the camera image and determines the camera
pose by tracking the features. The SLAM system performs loop-closures to improve
the trajectory and map by global bundle adjustment [26, 134].

with all the map points found in the frame. As PTAM, if the number of tracked features
drops significantly, a keyframe is inserted. When a keyframe is inserted, all the features newly
detected in the frame are inserted as further map points. ORB-SLAM further improves the
pose estimate and the map by loop closure constraints and global bundle adjustment (see
Figure B.2b). The authors use the graph optimization approach g2o presented in [20, 29].

Up to this point, we only considered a feature-based approach for visual odometry and SLAM.
However, larger regions can be used to determine the camera movement instead of relying on
distinct features in the scene. For instance, LSD-SLAM [166] is an appearance-based approach.
This approach’s core idea is to minimize the photometric error of aligned image regions instead
of minimizing the reprojection error of distinct points in the scene as illustrated in Figure B.3.
While the appearance-based approach is well suited for visual odometry, distinct features still
need to be used for detecting loops. Another drawback of the photometric minimization
approach is that a good initialization is necessary. Consequently, in the scope of our work,
we will stick to the feature-based visual odometry approach due to the problems mentioned
above of the appearance-based approaches and due to the high robustness of feature-based
approaches as demonstrated in [26, 134].

Recent visual-odometry approaches improve the pose estimate by fusing data with further
sensors. For example, Zhang and Singh present in [167] a visual-LiDAR odometry and mapping
approach with low drift that operates robustly in real time called VLOAM. The online method
starts with visual odometry to estimate the sensor system’s ego motion and correct the
motion-blurred point cloud of a continuously spinning LiDAR sensor. To accomplish that, the
authors track three types of visual features with a monocular camera: depth-registered features,
features with triangulated depth from multiple frames, and features without depth information.
An equation system can be formulated based on the tracked set of features. An optimizer
solves that in the least squares sense. Hence, Gaussian uncertainties are assumed. Using the
ego-motion estimate from the monocular camera enhanced by the depth information from
the previous LiDAR measurements, the current LiDAR scan be corrected by compensating
the motion. The corrected point cloud is then added to the subsampled depth map, which
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Figure B.3: LSD-SLAM. The visual odometry is computed minimizing the photometric error
of regions in the image that are rich in texture [166].

associates depth information with the visual features. Shao et al. enhance VLOAM in [168] by
a stereo vision system and an IMU for motion compensation for the LiDAR data.

Visual odometry and v-SLAM approaches using MLE achieve impressive results with low
error compared to filter-based methods such as the EKF and the RBPF. However, most existing
techniques focus mainly on determining the most likely map and leave open how to efficiently
compute the uncertainties [169, 170]. Consequently, the MLE approaches only provide solutions
without quantifying the estimate’s trustworthiness. There are just very rare works that try to
tackle this problem. The basic foundation of all MLE approaches that solve a least squares
problem is the Gaussian assumption for all involved measurements.

Consequently, due to the construction of such approaches, the uncertainty of the estimated
states – that means the robot poses and landmark locations – are modeled by multivariate
normal distributions. To determine those marginal covariances, the system matrix of the least
squares formulation as introduced in Subsection 2.1.3 needs to be inverted. However, this
inversion operation is very intense in computation, as the least squares formulation may involve
many poses and landmarks. This makes real-time computation impossible and therefore is often
ignored. Nonetheless, rare works like [169] and [170] introduce approximations to accelerate
uncertainty estimation. Alternative approaches, such as the Gaussian Belief Propagation, bypass
this bottleneck, computing the estimates by sequential propagation of the state information
to the connected states [171]. This approach exploits the property of SLAM problems that
can be formulated in a graphical structure as illustrated in Figure 4.4. However, to use this
approach efficiently, special Intelligence Processing Units (IPU) are necessary [172]. However,
not only the computation time is a problem for the very popular MLE approaches regarding
uncertainty estimation: If a state has many measurements, the covariance of the state will
decrease as its estimate becomes more and more certain. Consequently, if there are two
measurements for one state, while one measurement type generates more measurements than
the other, the measurement type with more measurements will have a higher impact on the
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state estimation. That means, in the long run, the measurement type with more measurements
will determine the state and its uncertainty as it will overshadow the other, although it may
be less accurate. To mitigate this problem, the input covariances are accordingly scaled, or
the number of measurements must be modified accordingly. However, those workarounds can
harm the solution and corrupt the uncertainty estimation.

To sum up, while MLE approaches provide, in practice, very impressive results, uncertainty
estimation is often neglected. On the one hand, it poses a bottleneck for real-time applications.
On the other hand, it provides overly optimistic results due to vanishing marginal covariance
that relies on assumptions of zero-mean Gaussian error. Consequently, relying only on the
Gaussian assumption is insufficient – alternative error models are necessary to cope with the
abovementioned problems. Hence, we will consider interval-based visual odometry approaches
in the following subsection.

B.2 Interval-based Approaches

Interval-based approaches represent the uncertainties for all involved variables by construction.
In this section, we want to draw our attention to the basic principle that interval-based ap-
proaches follow: The goal of interval-based approaches is to cast the existing problem to a set of
(possibly nonlinear) equations and inequalities. Those equations and inequalities are interpreted
as constraints on the variables that encode the poses and landmark locations. Interval analysis
provides the mathematical tools to propagate information between those variables using the
constraints. That means, for instance, if we know the location and orientation of the very first
pose – which is typically the case in SLAM – we can use the constraints to deduce the following
poses taking the movement constraints based on the dynamics into account. Furthermore,
the landmark locations seen from the first pose are determined via observation constraints.
Since all variables are defined in the interval domain, we can also consider the uncertainty. As
a consequence, interval-based approaches are very similar to graph-based MLE approaches.
Here, the goal is to set up the constraints in one large equation system and solve that equation
system. However, both approaches solve the set of equations seeking different philosophies:
MLE approaches are only interested in the most likely configuration of the variables and typically
solve the constraints in the least squares sense by an iterative approach (e. g. LM). However,
interval analysis considers the set of all feasible solutions consistent with the constraints.
Passing information between connected variables via constraints is not unique to interval-based
approaches. For instance, Gaussian Belief Propagation pursues the same approach – instead of
propagating intervals, Gaussian beliefs (normal distributions) are passed as information between
the connected variables [171–173] to infer the variable’s state and uncertainty. Consequently,
interpreting and storing the involved variables in a graphical structure as presented in Sub-
section 2.1.3 is a good way to formalize the SLAM problem as it reflects the nature of the
problem.

Jaulin presents in [174] an interval-based SLAM approach with underwater sonar images
enhanced by a loch-Doppler, a gyrocompass, an altimeter, and a barometer. The sonar images
detect fixed seamarks on the seabed, similar to image features for classical cameras. A side
scan sonar image is illustrated in Figure B.4. The goal in [174] is to map the seen seamarks
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Figure B.4: Sonar image. Just one side of the side-scan sonar is shown. An old shipwreck on
the seabed is detected. Image credit: Simon Rohou.

and to reconstruct the trajectory. Although the sensors on board well measure the submarine’s
motion, the determined relative motion still suffers from drift. As GPS signals do not propagate
underwater, GPS-based correction is not possible. On the one hand, the authors use the
seamarks to reduce the drift. On the other hand, using interval analysis, the authors can
measure the submarine’s drift by considering the sensor properties and providing the feasible set
of locations of the seamarks on the seabed. To accomplish that, Jaulin considers the following
constraints: An evolution equation that considers the submarine’s velocity and orientation
determines the submarine’s movement. Furthermore, if the submarine is on the surface, it
receives GPS signals. Consequently, two further observation constraints on the submarine’s
position in a global frame can be drawn for the mission’s beginning and end. The last set of
equations is based on the seamark observations in the sonar images. By performing interval
propagation through all constraints that connect the pose and seamark variables, the authors
can solve the SLAM problem as shown in Figure B.5. Note that the resulting seamark locations
(black boxes) and the pose at different points in time are described by intervals inherently
providing the estimates’ uncertainties. However, this approach solves the SLAM problem in an
offline fashion. Furthermore, landmark detection and association are performed by a human
operator.

Drocourt et al. use in [175] a stereoscopic vision system equipped with a cone-shaped mirror
and a camera that captures the reflected light, enabling an omnidirectional view of the scene.
Vertical landmarks are extracted based on homogeneous regions on the cone. Based on the
detection regions, a range and bearing measurement are computed, considering the distance
and bearing-angle uncertainty. The pose is initially predicted using odometry information
that shifts and inflates the refined vehicle pose subpaving at each new time step. Vertical
landmarks in consecutive frames are matched by checking the intersection of the current
measurement transformed by the predicted pose with the already mapped landmarks. Suppose
inconsistent measurements lead to an empty set. The GOMNE algorithm increases the q in
the q-relaxed intersection according to Subsection 2.2.5 until the resulting relative pose is not
empty. However, the proposed method only works in closed laboratory environments and is not
real-time capable.

Bethencourt and Jaulin propose in [176] v-SLAM approach with an RGBD camera (Kinect)
using interval analysis. The main idea is to define initially large intervals for the transformation
parameters for the relative pose between consecutive frames and then contract those intervals
concurrently using common feature observations. Each observed feature defines constraints
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Figure B.5: Interval-based SLAM result. The interval approach provides a consistent envelope
enclosing the submarine’s trajectory, and six seamarks are detected and the map
taking the interval uncertainty into account [174].

restricting the feasible set of relative pose parameters. To accelerate the contraction of the
orientation parameters, the authors use an additional IMU that provides further constraints
for the relative orientation. The ASIFT features are detected in the color image, and features
in consecutive frames are matched using the descriptor. As the RGBD sensor also provides
the depth information for the detected feature, each feature provides a simple transformation
constraint that a forward-backward contractor implements. To deal with incorrect feature
associations, a q-relaxed intersection is applied.

Vincke proposes in [177] an interval-based v-SLAM algorithm called Constraint Propagation
SLAM (CP-SLAM) that uses wheel odometry and a monocular camera. The authors assume
that the vehicle only moves on a flat surface. As a result, the robot pose can be parametrized
by the two-dimensional position and the orientation. However, due to the scale ambiguity in
monocular vision interval analysis makes a better parametrization of landmarks possible: While
the observations ray and the robot pose needs to be considered, the depth of an observation
can be defined by [0,∞] instead of the inverse depth as it is done in classical probabilistic
approaches. As the observation ray is defined as a cone that goes from the camera projection
center to infinity, the location of the landmark seen from different perspectives is directly
obtained by the intersection. This innovative parametrization is only compatible since interval
uncertainty is used. As image features, the authors use SURF [178]. Mapped landmarks are
matched to detected features in two stages: First, the landmarks in the camera’s FoV are
projected into the image plane. Note that a landmark is defined by a box determined by the
intersection of multiple views. However, if the perspective change has not been large enough,
the depth estimate of the landmark will be comparatively large, resulting in a large 3D box.
The projection region is defined as the search region. Second, this search region is used to
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Figure B.6: CP-SLAM results. The uncertainty accumulates until loop closure constraints are
included [177].

find a feature with the most similar descriptor. The pose estimation is classically divided into
two steps. First, the pose is updated using the odometry information. Second, the landmark
observation constraints are considered in the correction step to further contract the pose
estimate. This approach is also capable of detecting loops. Such loop closures are essential
to reduce the uncertainty. Figure B.6 illustrates the experimental results of a small trajectory
with a detected loop. Note that the uncertainty accumulates until the loop closure constraints
reduce the uncertainty again.

Similar to [176], Mustafa et al. suggest an RGBD camera-based interval SLAM approach
[179]. However, instead of relying on distinct features as landmarks, the authors extract planes
by first segmenting the color image and then clustering the corresponding point cloud with a
RANSAC approach to planes. An interval-based approach determines the plane parameters
from the clustered points for the plane patch. To distinguish and robustly track the planar
patches, SURF features [178] are extracted from the planar image patch. Plane patches are
used as landmarks are matched across multiple frames using a bag-of-words approach [180]
that exploits the set of feature descriptors. The matched planes constrain the robot’s relative
pose using a forward-backward contractor with SIVIA. While the approach works in small
and well-defined environments, that approach is severely limited in the scalability of larger
environments. Furthermore, the approach is not online capable.

All interval-based methods that we have considered up to now only operate in closed
regions with many loop closure constraints. Simple visual odometry that does not consider
loop closure is doomed to fail using intervals, as the observation uncertainty will continuously
accumulate along the trajectory. Voges and Wagner experimentally show in [51, 140] that
visual odometry continuously accumulates the observation uncertainty, making the interval
estimate useless. Other global information is vital to bound the uncertainty accumulation.
Voges and Wagner, for instance, cope with this problem by incorporating very accurate GPS
information. While the GPS data is only available at low frequency, the authors implement
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an interval visual-LiDAR odometry to estimate the vehicle motion at sensor frequency. To
accomplish that, the authors detect and track Shi-Tomasi features [155] in the image from a
monocular camera. By projecting the LiDAR points and considering the interval uncertainties,
some features are further augmented by depth information. Tracking those features, with or
without depth, the relative transformation between consecutive frames can be determined by
contracting an initially large pose interval vector to a smaller pose estimate by applying a
sequence of forward-backward contractors for each tracked feature. The authors tackle outliers
by applying a q-relaxed intersection. However, setting the value for q is empirical and cannot
be determined in a guaranteed way. Furthermore, the method yields pessimistic results and is
not real-time capable.

B.3 Hybrid Approaches
In the previous sections, we saw that probabilistic approaches are more popular than interval-
based solutions for v-SLAM and visual odometry. One of the main reasons for that is that the
uncertainty estimation is often neglected. While MLE approaches provide impressive results,
the uncertainty estimate is often corrupted by linearization errors and/or covariance scalings
inserted to set the importance of defined measurements but do not reflect the uncertainty
properly. Consequently, hybrid approaches may yield better results by combining the good
parts of those two worlds. However, to the best of our knowledge, no hybrid works exist in the
context of v-SLAM and visual odometry. With this work, we intend to fill this gap.



Bibliography

[1] S. B. (Destatis), “Verkehr 2021”, https : / /www .destatis . de /DE/Themen/
Gesellschaft-Umwelt/Verkehrsunfaelle/Publikationen/Downloads-Verkehrsunfaelle/
verkehrsunfaelle-jahr-2080700217004.pdf, [Online; accessed 27-April-2023], 2023.

[2] R. Hussain and S. Zeadally, “Autonomous cars: Research results, issues, and
future challenges”, IEEE Communications Surveys and Tutorials, vol. 21, no. 2,
pp. 1275–1313, Secondquarter 2019.

[3] M. Maurer, B. Lenz, J. C. Gerdes, and H. Winner, Eds., Autonomes Fahren:
Technische, rechtliche und gesellschaftliche Aspekte. Springer Vieweg, 2015, pp. 9–
37.

[4] M. Wörner, F. Schuster, F. Dölitzscher, C. G. Keller, M. Haueis, and K. Dietmayer,
“Integrity for autonomous driving: A survey”, in 2016 IEEE/ION Position, Location
and Navigation Symposium (PLANS), Apr. 2016, pp. 666–671.

[5] “Road vehicles – Functional safety – Part 1: Vocabulary”, International Organization
for Standardization, Geneva, CH, Standard, Dec. 2018.

[6] A. K. Verma, S. Ajit, and D. R. Karanki, “Uncertainty analysis in reliability/safety
assessment”, in Reliability and Safety Engineering. London: Springer London, 2016,
pp. 457–491.

[7] M. Tossaint, J. Samson, F. Toran, J. Ventura-Traveset, M. Hernandez-Pajarez,
J. Juan, J. Sanz, and P. Ramos-Bosch, “The stanford – esa integrity diagram: A
new tool for the user domain sbas integrity assessment”, Navigation, vol. 54, no. 2,
pp. 153–162, 2007.

[8] M. King and J. Kay, Radical Uncertainty: Decision-making for an unknowable
future. Hachette UK, 2020.

[9] K. F. Park and Z. Shapira, “Risk and uncertainty”, in The Palgrave Encyclopedia
of Strategic Management, M. Augier and D. J. Teece, Eds. London: Palgrave
Macmillan UK, 2017, pp. 1–7.

[10] V. Kreinovich and S. Shary, “Interval methods for data fitting under uncertainty:
A probabilistic treatment”, Reliable Computing, vol. 23, pp. 105–140, Jul. 2016.

https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Verkehrsunfaelle/Publikationen/Downloads-Verkehrsunfaelle/verkehrsunfaelle-jahr-2080700217004.pdf
https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Verkehrsunfaelle/Publikationen/Downloads-Verkehrsunfaelle/verkehrsunfaelle-jahr-2080700217004.pdf
https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Verkehrsunfaelle/Publikationen/Downloads-Verkehrsunfaelle/verkehrsunfaelle-jahr-2080700217004.pdf


244 Bibliography

[11] R. Neuland, R. Maffei, L. Jaulin, E. Prestes, and M. Kolberg, “Improving the
precision of auvs localization in a hybrid interval-probabilistic approach using a
set-inversion strategy”, Unmanned Systems, vol. 2, pp. 361–375, Oct. 2014.

[12] A. Ehambram, R. Voges, C. Brenner, and B. Wagner, “Interval-based visual-inertial
lidar slam with anchoring poses”, in 2022 International Conference on Robotics
and Automation (ICRA), May 2022, pp. 7589–7596.

[13] D. Dubois and H. Prade, “Possibility theory”, in Encyclopedia of Complexity and
Systems Science, R. A. Meyers, Ed. New York, NY: Springer New York, 2009,
pp. 6927–6939.

[14] D. Dubois and H. Prade, “Possibility theory and its applications: Where do we
stand?”, Mathware and Soft Computing Magazine, vol. 18, Jan. 2015.

[15] A. Neumaier, “Clouds, fuzzy sets, and probability intervals”, Reliable Computing,
vol. 10, no. 4, pp. 249–272, 2004.

[16] G. Nassreddine, F. Abdallah, and T. Denoeux, “A new method for state estima-
tion of dynamic system based on dempster shafer theory”, in 2009 International
Conference on Advances in Computational Tools for Engineering Applications, Jul.
2009, pp. 101–106.

[17] G. Nassreddine, F. Abdallah, and T. Denoux, “State estimation using interval
analysis and belief-function theory: Application to dynamic vehicle localization”,
IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 40,
no. 5, pp. 1205–1218, Oct. 2010.

[18] S. Thrun, W. Burgard, and D. Fox, Probabilistic robotics. Cambridge, Mass.: MIT
Press, 2005.

[19] A. A. Borovkov, “Random variables and distribution functions”, in Probability
Theory. London: Springer London, 2013, pp. 31–63.

[20] G. Grisetti, R. Kümmerle, C. Stachniss, and W. Burgard, “A tutorial on graph-based
slam”, IEEE Intelligent Transportation Systems Magazine, vol. 2, no. 4, pp. 31–43,
Dec. 2010.

[21] H. Strasdat, J. Montiel, and A. J. Davison, “Visual slam: Why filter?”, Image and
Vision Computing, vol. 30, no. 2, pp. 65–77, 2012.

[22] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical
Recipes 3rd Edition: The Art of Scientific Computing, 3rd ed. Cambridge University
Press, 2007.

[23] M. L. A. Lourakis and A. A. Argyros, “Is levenberg-marquardt the most efficient
optimization algorithm for implementing bundle adjustment?”, in Tenth IEEE Inter-



Bibliography 245

national Conference on Computer Vision (ICCV’05), vol. 2, Oct. 2005, pp. 1526–
1531.

[24] W. Förstner and B. P. Wrobel, Photogrammetric computer vision. Springer, 2016.

[25] K. MacTavish and T. D. Barfoot, “At all costs: A comparison of robust cost func-
tions for camera correspondence outliers”, in 2015 12th Conference on Computer
and Robot Vision, Jun. 2015, pp. 62–69.

[26] R. Mur-Artal and J. D. Tardós, “Orb-slam2: An open-source slam system for
monocular, stereo, and rgb-d cameras”, IEEE Transactions on Robotics, vol. 33,
no. 5, pp. 1255–1262, Oct. 2017.

[27] J. Engel, T. Schöps, and D. Cremers, “Lsd-slam: Large-scale direct monocular
slam”, in Computer Vision – ECCV 2014, D. Fleet, T. Pajdla, B. Schiele, and
T. Tuytelaars, Eds., Cham: Springer International Publishing, 2014, pp. 834–849.

[28] C. Kerl, J. Sturm, and D. Cremers, “Dense visual slam for rgb-d cameras”, in 2013
IEEE/RSJ International Conference on Intelligent Robots and Systems, Nov. 2013,
pp. 2100–2106.

[29] R. Kümmerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard, “G2o: A
general framework for graph optimization”, in 2011 IEEE International Conference
on Robotics and Automation, May 2011, pp. 3607–3613.

[30] S. Geman, D. E. McClure, and D. Geman, “A nonlinear filter for film restoration
and other problems in image processing”, CVGIP: Graphical Models and Image
Processing, vol. 54, no. 4, pp. 281–289, 1992.

[31] J. R. Choike, “The pentagram and the discovery of an irrational number”, The
Two-Year College Mathematics Journal, vol. 11, no. 5, pp. 312–316, 1980.

[32] Archimedes, “Measurement of a circle”, in The Works of Archimedes: Edited in
Modern Notation with Introductory Chapters, T. L. Heath, Ed., ser. Cambridge
Library Collection - Mathematics. Cambridge University Press, 2009, pp. 91–98.

[33] R. Moore, Interval Analysis, ser. Prentice-Hall series in automatic computation.
Prentice-Hall, 1966.

[34] A. Neumaier, Interval Methods for Systems of Equations, ser. Encyclopedia of
Mathematics and its Applications. Cambridge University Press, 1991.

[35] J. Rohn, “Systems of linear interval equations”, Linear Algebra and its Applications,
vol. 126, pp. 39–78, 1989.

[36] N. Apostolatos and U. Kulisch, “Grundlagen einer maschinenintervallarithmetik”,
Computing, vol. 2, no. 2, pp. 89–104, 1967.



246 Bibliography

[37] U. W. Kulisch and W. L. Miranker, “The arithmetic of the digital computer: A
new approach”, SIAM Review, vol. 28, no. 1, pp. 1–40, 1986.

[38] F. Schweppe, “Recursive state estimation: Unknown but bounded errors and system
inputs”, IEEE Transactions on Automatic Control, vol. 13, no. 1, pp. 22–28, Feb.
1968.

[39] E. Fogel and Y. Huang, “On the value of information in system identifica-
tion—bounded noise case”, Automatica, vol. 18, no. 2, pp. 229–238, 1982.

[40] K. Nickel, “Bericht über neue Karlsruher Ergebnisse bei der Fehlererfassung von
numerischen Prozessen”, German, Apl. Mat., vol. 13, pp. 168–173, 1968.

[41] K. Nickel, “Über die Notwendigkeit einer Fehlerschranken-Arithmetik für Reche-
nautomaten”, German, Numer. Math., vol. 9, pp. 69–97, 1966.

[42] E. R. Hansen, “Global optimization using interval analysis: The one-dimensional
case”, Journal of Optimization Theory and Applications, vol. 29, no. 3, pp. 331–344,
1979.

[43] R. B. Kearfott, “Optimization”, in Rigorous Global Search: Continuous Problems.
Boston, MA: Springer US, 1996, pp. 169–208.

[44] G. Trombettoni, I. Araya, B. Neveu, and G. Chabert, “Inner regions and interval
linearizations for global optimization”, vol. 1, Aug. 2011.

[45] I. Araya, G. Trombettoni, B. Neveu, and G. Chabert, “Upper bounding in inner
regions for global optimization under inequality constraints”, Journal of Global
Optimization, vol. 60, no. 2, pp. 145–164, 2014.

[46] E. Walter and H. Piet-Lahanier, “Exact recursive polyhedral description of the
feasible parameter set for bounded-error models”, IEEE Transactions on Automatic
Control, vol. 34, no. 8, pp. 911–915, Aug. 1989.

[47] D. Y. Rokityanskiy and S. M. Veres, “Application of ellipsoidal estimation to
satellite control design”, Mathematical and Computer Modelling of Dynamical
Systems, vol. 11, no. 2, pp. 239–249, 2005.

[48] C. Combastel, “A state bounding observer for uncertain non-linear continuous-time
systems based on zonotopes”, in Proceedings of the 44th IEEE Conference on
Decision and Control, Dec. 2005, pp. 7228–7234.

[49] L. Jaulin, M. Kieffer, O. Didrit, and E. Walter, Applied Interval Analysis with Ex-
amples in Parameter and State Estimation, Robust Control and Robotics. Springer
London Ltd, Aug. 2001, p. 398.



Bibliography 247

[50] S. Rohou, L. Jaulin, L. Mihaylova, F. Bars, and S. Veres, Reliable Robot Localization:
A Constraint-Programming Approach Over Dynamical Systems. Oct. 2019.

[51] R. Voges, “Bounded-error visual-lidar odometry on mobile robots under consid-
eration of spatiotemporal uncertainties”, PhD thesis, Hannover: Institutionelles
Repositorium der Leibniz Universität Hannover, 2020.

[52] G. Chabert. (2022). Ibex, a c++ library for constraint processing over real numbers,
[Online]. Available: http://www.ibex-lib.org (visited on 07/12/2022).

[53] J. Sliwka, F. Le Bars, O. Reynet, and L. Jaulin, “Using interval methods in the
context of robust localization of underwater robots”, in 2011 Annual Meeting of
the North American Fuzzy Information Processing Society, Mar. 2011, pp. 1–6.

[54] B. Desrochers, “Simultaneous Localization and Mapping in Unstructured Environ-
ments”, Theses, Université Bretagne Loire, May 2018.

[55] L. Jaulin, “Robust set-membership state estimation; application to underwater
robotics”, Automatica, vol. 45, no. 1, pp. 202–206, 2009.

[56] R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision, 2nd ed.
Cambridge University Press, 2004.

[57] R. Voges and B. Wagner, “Set-Membership Extrinsic Calibration of a 3D LiDAR
and a Camera”, in IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), On-Demand Conference, Oct. 2020.

[58] “Lidar laser zur detektierung von hindernissen hdl-64e”, [Online; accessed March
22, 2023], 2023.

[59] N. Li, C. P. Ho, J. Xue, L. W. Lim, G. Chen, Y. H. Fu, and L. Y. T. Lee, “A
progress review on solid-state lidar and nanophotonics-based lidar sensors”, Laser
& Photonics Reviews, vol. 16, no. 11, pp. 210–511, 2022.

[60] “Vista-p90”, [Online; accessed March 22, 2023], 2023.

[61] D. V. Nam and K. Gon-Woo, “Solid-state lidar based-slam: A concise review
and application”, in 2021 IEEE International Conference on Big Data and Smart
Computing (BigComp), Jan. 2021, pp. 302–305.

[62] B. Zhou, D. Xie, S. Chen, H. Mo, C. Li, and Q. Li, “Comparative analysis of slam
algorithms for mechanical lidar and solid-state lidar”, IEEE Sensors Journal, vol. 23,
no. 5, pp. 5325–5338, Mar. 2023.

[63] “Introduction”, in GNSS — Global Navigation Satellite Systems: GPS, GLONASS,
Galileo, and more. Vienna: Springer Vienna, 2008, pp. 1–12.

http://www.ibex-lib.org


248 Bibliography

[64] “Satellite signals”, in GNSS— Global Navigation Satellite Systems: GPS, GLONASS,
Galileo, and more. Vienna: Springer Vienna, 2008, pp. 55–104.

[65] PROJ contributors, PROJ coordinate transformation software library, Open Source
Geospatial Foundation, 2023.

[66] “Gps”, in GNSS — Global Navigation Satellite Systems: GPS, GLONASS, Galileo,
and more. Vienna: Springer Vienna, 2008, pp. 309–340.

[67] “Reference systems”, in GNSS — Global Navigation Satellite Systems: GPS,
GLONASS, Galileo, and more. Vienna: Springer Vienna, 2008, pp. 13–25.

[68] “Observables”, in GNSS — Global Navigation Satellite Systems: GPS, GLONASS,
Galileo, and more. Vienna: Springer Vienna, 2008, pp. 105–160.

[69] G. Gröger and L. Plümer, “Citygml – interoperable semantic 3d city models”,
ISPRS Journal of Photogrammetry and Remote Sensing, vol. 71, pp. 12–33, 2012.

[70] M. Haklay and P. Weber, “Openstreetmap: User-generated street maps”, IEEE
Pervasive Computing, vol. 7, no. 4, pp. 12–18, Oct. 2008.

[71] V. Fox, J. Hightower, L. Liao, D. Schulz, and G. Borriello, “Bayesian filtering for
location estimation”, IEEE Pervasive Computing, vol. 2, no. 3, pp. 24–33, Jul.
2003.

[72] J.-S. Gutmann and D. Fox, “An experimental comparison of localization methods
continued”, in IEEE/RSJ International Conference on Intelligent Robots and
Systems, vol. 1, Sep. 2002, pp. 454–459.

[73] J. J. Leonard and H. F. Durrant-Whyte, “Mobile robot localization by tracking
geometric beacons”, IEEE Transactions on robotics and Automation, vol. 7, no. 3,
pp. 376–382, 1991.

[74] L. Iocchi, D. Mastrantuono, and D. Nardi, “A probabilistic approach to hough
localization”, in Proceedings 2001 ICRA. IEEE International Conference on Robotics
and Automation, vol. 4, May 2001, pp. 4250–4255.

[75] R. O. Duda and P. E. Hart, “Use of the hough transformation to detect lines and
curves in pictures”, Commun. ACM, vol. 15, no. 1, pp. 11–15, Jan. 1972.

[76] L. Teslić, I. Škrjanc, and G. Klančar, “Ekf-based localization of a wheeled mobile
robot in structured environments”, Journal of Intelligent & Robotic Systems,
vol. 62, no. 2, pp. 187–203, May 2011.

[77] T. T. Hoang, P. M. Duong, N. T. T. Van, D. A. Viet, and T. Q. Vinh, “Multi-
sensor perceptual system for mobile robot and sensor fusion-based localization”, in



Bibliography 249

2012 International Conference on Control, Automation and Information Sciences
(ICCAIS), Nov. 2012, pp. 259–264.

[78] C. Landsiedel and D. Wollherr, “Global localization of 3d point clouds in building
outline maps of urban outdoor environments”, International journal of intelligent
robotics and applications, vol. 1, no. 4, pp. 429–441, 2017.

[79] P. Jensfelt and S. Kristensen, “Active global localization for a mobile robot using
multiple hypothesis tracking”, IEEE Transactions on Robotics and Automation,
vol. 17, no. 5, pp. 748–760, Oct. 2001.

[80] H. Moravec and A. Elfes, “High resolution maps from wide angle sonar”, in
Proceedings. 1985 IEEE International Conference on Robotics and Automation,
vol. 2, Mar. 1985, pp. 116–121.

[81] W. Burgard, D. Fox, D. Hennig, and T. Schmidt, “Estimating the absolute position
of a mobile robot using position probability grids”, in Proceedings of the national
conference on artificial intelligence, 1996, pp. 896–901.

[82] D. Fox, W. Burgard, and S. Thrun, “Markov localization for mobile robots in
dynamic environments”, Journal of artificial intelligence research, vol. 11, pp. 391–
427, 1999.

[83] F. Dellaert, D. Fox, W. Burgard, and S. Thrun, “Monte carlo localization for
mobile robots”, in Proceedings 1999 IEEE International Conference on Robotics
and Automation, vol. 2, May 1999, pp. 1322–1328.

[84] D. Fox, “Kld-sampling: Adaptive particle filters”, in Advances in Neural Information
Processing Systems, T. Dietterich, S. Becker, and Z. Ghahramani, Eds., vol. 14,
MIT Press, 2001.

[85] S. Thrun, D. Fox, W. Burgard, and F. Dellaert, “Robust monte carlo localization
for mobile robots”, Artificial Intelligence, vol. 128, no. 1, pp. 99–141, 2001.

[86] M. Hentschel and B. Wagner, “Autonomous robot navigation based on open-
streetmap geodata”, in 13th International IEEE Conference on Intelligent Trans-
portation Systems, Sep. 2010, pp. 1645–1650.

[87] G. Floros, B. van der Zander, and B. Leibe, “Openstreetslam: Global vehicle
localization using openstreetmaps”, in 2013 IEEE International Conference on
Robotics and Automation, May 2013, pp. 1054–1059.

[88] P. Ruchti, B. Steder, M. Ruhnke, and W. Burgard, “Localization on openstreetmap
data using a 3d laser scanner”, in 2015 IEEE International Conference on Robotics
and Automation (ICRA), May 2015, pp. 5260–5265.



250 Bibliography

[89] F. Yan, O. Vysotska, and C. Stachniss, “Global localization on openstreetmap
using 4-bit semantic descriptors”, in 2019 European Conference on Mobile Robots
(ECMR), Sep. 2019, pp. 1–7.

[90] Y. Chen, W. Chen, L. Zhu, Z. Su, X. Zhou, Y. Guan, and G. Liu, “A study of
sensor-fusion mechanism for mobile robot global localization”, Robotica, vol. 37,
no. 11, pp. 1835–1849, 2019.

[91] X. Chen, I. Vizzo, T. Läbe, J. Behley, and C. Stachniss, “Range image-based lidar
localization for autonomous vehicles”, in 2021 IEEE International Conference on
Robotics and Automation (ICRA), May 2021, pp. 5802–5808.

[92] Q.-b. Zhang, P. Wang, and Z.-h. Chen, “An improved particle filter for mobile
robot localization based on particle swarm optimization”, Expert Systems with
Applications, vol. 135, pp. 181–193, 2019.

[93] X. Chen, T. Läbe, L. Nardi, J. Behley, and C. Stachniss, “Learning an overlap-
based observation model for 3d lidar localization”, in 2020 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), Oct. 2020, pp. 4602–4608.

[94] M. Zhou, X. Chen, N. Samano, C. Stachniss, and A. Calway, “Efficient localisation
using images and openstreetmaps”, in 2021 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), Sep. 2021, pp. 5507–5513.

[95] R. Neuland, M. Mantelli, B. Hummes, L. Jaulin, R. Maffei, E. Prestes, and M.
Kolberg, “Robust hybrid interval-probabilistic approach for the kidnapped robot
problem”, International Journal of Uncertainty, Fuzziness and Knowledge-Based
Systems, vol. 29, no. 02, pp. 313–331, 2021.

[96] C. Olson, “Probabilistic self-localization for mobile robots”, IEEE Transactions on
Robotics and Automation, vol. 16, no. 1, pp. 55–66, Feb. 2000.

[97] S. Shan, “A levenberg-marquardt method for large-scale bound-constrained nonlin-
ear least-squares”, eng, PhD thesis, 2008.

[98] P. J. Besl and N. D. McKay, “Method for registration of 3-D shapes”, in Sensor Fu-
sion IV: Control Paradigms and Data Structures, P. S. Schenker, Ed., International
Society for Optics and Photonics, vol. 1611, SPIE, 1992, pp. 586–606.

[99] S. Pang, D. Kent, X. Cai, H. Al-Qassab, D. Morris, and H. Radha, “3d scan
registration based localization for autonomous vehicles - a comparison of ndt and
icp under realistic conditions”, in 2018 IEEE 88th Vehicular Technology Conference
(VTC-Fall), Aug. 2018, pp. 1–5.

[100] A. Segal, D. Haehnel, and S. Thrun, “Generalized-icp.”, in Robotics: science and
systems, Seattle, WA, vol. 2, 2009, p. 435.



Bibliography 251

[101] I. Vizzo, T. Guadagnino, B. Mersch, L. Wiesmann, J. Behley, and C. Stachniss,
“Kiss-icp: In defense of point-to-point icp – simple, accurate, and robust registration
if done the right way”, 2022.

[102] P. Dellenbach, J.-E. Deschaud, B. Jacquet, and F. Goulette, “Ct-icp: Real-time
elastic lidar odometry with loop closure”, in 2022 International Conference on
Robotics and Automation (ICRA), 2022, pp. 5580–5586.

[103] O. Vysotska and C. Stachniss, “Exploiting building information from publicly
available maps in graph-based slam”, in 2016 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), Oct. 2016, pp. 4511–4516.

[104] F. Boniardi, T. Caselitz, R. Kümmerle, and W. Burgard, “Robust lidar-based
localization in architectural floor plans”, in 2017 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), Sep. 2017, pp. 3318–3324.

[105] D. Wilbers, C. Merfels, and C. Stachniss, “Localization with sliding window factor
graphs on third-party maps for automated driving”, in 2019 International Conference
on Robotics and Automation (ICRA), May 2019, pp. 5951–5957.

[106] S. Ratz, M. Dymczyk, R. Siegwart, and R. Dubé, “Oneshot global localization:
Instant lidar-visual pose estimation”, in 2020 IEEE International Conference on
Robotics and Automation (ICRA), May 2020, pp. 5415–5421.

[107] Y. Cho, G. Kim, S. Lee, and J.-H. Ryu, “Openstreetmap-based lidar global lo-
calization in urban environment without a prior lidar map”, IEEE Robotics and
Automation Letters, vol. 7, no. 2, pp. 4999–5006, Apr. 2022.

[108] M. Kieffer, L. Jaulin, É. Walter, and D. Meizel, “Robust autonomous robot
localization using interval analysis”, Reliable Computing, vol. 6, no. 3, pp. 337–362,
Aug. 2000.

[109] M. Kieffer, L. Jaulin, E. Walter, and D. Meizel, “Guaranteed mobile robot tracking
using interval analysis”, in MISC’99, Workshop on Application of Interval Analysis
to System and Control, Girona, Spain, Feb. 1999, pp. 347–360.

[110] E. Seignez, M. Kieffer, A. Lambert, E. Walter, and T. Maurin, “Experimental
vehicle localization by bounded-error state estimation using interval analysis”, in
2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, Aug.
2005, pp. 1084–1089.

[111] I. A. R. Ashokaraj, P. M. G. Silson, A. Tsourdos, and B. A. White, “Robust
sensor-based navigation for mobile robots”, IEEE Transactions on Instrumentation
and Measurement, vol. 58, no. 3, pp. 551–556, 2009.



252 Bibliography

[112] E. Seignez, M. Kieffer, A. Lambert, E. Walter, and T. Maurin, “Real-time bounded-
error state estimation for vehicle tracking”, The International Journal of Robotics
Research, vol. 28, no. 1, pp. 34–48, Jan. 2009.

[113] A. Gning and P. Bonnifait, “Guaranteed dynamic localization using constraints
propagation techniques on real intervals”, in IEEE International Conference on
Robotics and Automation, vol. 2, Apr. 2004, pp. 1499–1504.

[114] A. Gning and P. Bonnifait, “Dynamic vehicle localization using constraints propaga-
tion techniques on intervals a comparison with kalman filtering”, in Proceedings of
the 2005 IEEE International Conference on Robotics and Automation, Apr. 2005,
pp. 4144–4149.

[115] A. Gning and P. Bonnifait, “Constraints propagation techniques on intervals for
a guaranteed localization using redundant data”, Automatica, vol. 42, no. 7,
pp. 1167–1175, 2006.

[116] A. Lambert, D. Gruyer, B. Vincke, and E. Seignez, “Consistent outdoor vehicle
localization by bounded-error state estimation”, in 2009 IEEE/RSJ International
Conference on Intelligent Robots and Systems, Oct. 2009, pp. 1211–1216.

[117] A. Clérentin, M. Delafosse, L. Delahoche, B. Marhic, and A.-M. Jolly-Desodt,
“Uncertainty and imprecision modeling for the mobile robot localization problem”,
Autonomous Robots, vol. 24, no. 3, pp. 267–283, 2008.

[118] J. Sliwka, L. Jaulin, M. Ceberio, and V. Kreinovich, “Processing interval sensor
data in the presence of outliers, with potential applications to localizing underwater
robots”, in 2011 IEEE International Conference on Systems, Man, and Cybernetics,
Oct. 2011, pp. 2330–2337.

[119] M. Langerwisch and B. Wagner, “Guaranteed mobile robot tracking using robust
interval constraint propagation”, in Intelligent Robotics and Applications, C.-Y. Su,
S. Rakheja, and H. Liu, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2012,
pp. 354–365.

[120] R. Guyonneau, S. Lagrange, L. Hardouin, and P. Lucidarme, “Guaranteed interval
analysis localization for mobile robots”, Advanced Robotics, vol. 28, no. 16,
pp. 1067–1077, Jul. 2014.

[121] B. Desrochers, S. Lacroix, and L. Jaulin, “Set-membership approach to the kid-
napped robot problem”, in 2015 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), Sep. 2015, pp. 3715–3720.

[122] I.-F. Kenmogne, V. Drevelle, and E. Marchand, “Image-based uav localization
using interval methods”, in 2017 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), Sep. 2017, pp. 5285–5291.



Bibliography 253

[123] U. D. Hanebeck and J. Horn, “A new estimator for mixed stochastic and set
theoretic uncertainty models applied to mobile robot localization”, in Proceedings
1999 IEEE International Conference on Robotics and Automation, vol. 2, May
1999, pp. 1335–1340.

[124] L. Jaulin, “Set-membership localization with probabilistic errors”, Robotics and
Autonomous Systems, vol. 59, no. 6, pp. 489–495, 2011.

[125] I. Ashokaraj, A. Tsourdos, P. Silson, and B. White, “Sensor based robot localisation
and navigation: Using interval analysis and extended kalman filter”, in 2004 5th
Asian Control Conference, vol. 2, Jul. 2004, pp. 1086–1093.

[126] M. Louédec and L. Jaulin, “Interval extended kalman filter—application to under-
water localization and control”, Algorithms, vol. 14, no. 5, 2021.

[127] F. Abdallah, A. Gning, and P. Bonnifait, “Box particle filtering for nonlinear state
estimation using interval analysis”, Automatica, vol. 44, no. 3, pp. 807–815, 2008.

[128] P. Wang, L. Mihaylova, P. Bonnifait, P. Xu, and J. Jiang, “Feature-refined box par-
ticle filtering for autonomous vehicle localisation with openstreetmap”, Engineering
Applications of Artificial Intelligence, vol. 105, p. 104 445, 2021.

[129] R. Neuland, J. Nicola, R. Maffei, L. Jaulin, E. Prestes, and M. Kolberg, “Hybridiza-
tion of monte carlo and set-membership methods for the global localization of
underwater robots”, in 2014 IEEE/RSJ International Conference on Intelligent
Robots and Systems, Sep. 2014, pp. 199–204.

[130] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “Orb: An efficient alternative
to sift or surf”, in 2011 International Conference on Computer Vision, Nov. 2011,
pp. 2564–2571.

[131] R. Mur-Artal and J. D. Tardós, “Fast relocalisation and loop closing in keyframe-
based slam”, in 2014 IEEE International Conference on Robotics and Automation
(ICRA), May 2014, pp. 846–853.

[132] R. Mur-Artal and J. D. Tardós, “Orb-slam: Tracking and mapping recognizable”,
in Workshop on Multi View Geometry in Robotics (MVIGRO)-RSS, 2014.

[133] R. Mur-Artal and J. D. Tardós, “Probabilistic semi-dense mapping from highly
accurate feature-based monocular slam.”, in Robotics: Science and Systems, Rome,
vol. 2015, 2015.

[134] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardós, “Orb-slam: A versatile and
accurate monocular slam system”, IEEE Transactions on Robotics, vol. 31, no. 5,
pp. 1147–1163, Oct. 2015.



254 Bibliography

[135] OpenMP Architecture Review Board, “OpenMP application program interface
version 4.5”, 2015.

[136] B. D. Lucas and T. Kanade, “An Iterative Image Registration Technique with an
Application to Stereo Vision”, in IJCAI’81: 7th international joint conference on
Artificial intelligence, vol. 2, Vancouver, Canada, Aug. 1981, pp. 674–679.

[137] A. Ehambram, R. Voges, and B. Wagner, “Stereo-visual-lidar sensor fusion using set-
membership methods”, in 2021 IEEE 17th International Conference on Automation
Science and Engineering (CASE), Aug. 2021, pp. 1132–1139.

[138] L. Jaulin, M. Kieffer, E. Walter, and D. Meizel, “Guaranteed robust nonlinear
estimation with application to robot localization”, IEEE Transactions on Systems,
Man, and Cybernetics, Part C (Applications and Reviews), vol. 32, no. 4, pp. 374–
381, Nov. 2002.

[139] G. Klein and D. Murray, “Parallel tracking and mapping for small ar workspaces”,
in 2007 6th IEEE and ACM International Symposium on Mixed and Augmented
Reality, Nov. 2007, pp. 225–234.

[140] R. Voges and B. Wagner, “Interval-based visual-lidar sensor fusion”, IEEE Robotics
and Automation Letters, vol. 6, no. 2, pp. 1304–1311, Apr. 2021.

[141] A. Ehambram, L. Jaulin, and B. Wagner, “Interval-based global localization in
building maps”, SWIM 2022, 2022.

[142] O. Wulf, K. Arras, H. Christensen, and B. Wagner, “2d mapping of cluttered
indoor environments by means of 3d perception”, in IEEE International Conference
on Robotics and Automation, vol. 4, Apr. 2004, pp. 4204–4209.

[143] A. Ehambram, L. Jaulin, and B. Wagner, “Hybrid interval-probabilistic localization
in building maps”, IEEE Robotics and Automation Letters, vol. 7, no. 3, pp. 7059–
7066, Jul. 2022.

[144] S. Rohou, B. Desrochers, and L. Jaulin, “Set-membership state estimation by
solving data association”, in 2020 IEEE International Conference on Robotics and
Automation (ICRA), May 2020, pp. 4393–4399.

[145] L. Jaulin and S. Bazeille, “Image shape extraction using interval methods”, IFAC
Proceedings Volumes, vol. 42, no. 10, pp. 378–383, 2009, 15th IFAC Symposium
on System Identification.

[146] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics: The kitti
dataset”, en, International journal of robotic research, vol. 32, no. 11, pp. 1231–
1237, 2013.



Bibliography 255

[147] G. Grisetti, C. Stachniss, and W. Burgard, “Improved techniques for grid mapping
with rao-blackwellized particle filters”, IEEE Transactions on Robotics, vol. 23,
no. 1, pp. 34–46, Feb. 2007.

[148] A. Milioto, I. Vizzo, J. Behley, and C. Stachniss, “Rangenet ++: Fast and accurate
lidar semantic segmentation”, in 2019 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), Nov. 2019, pp. 4213–4220.

[149] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified,
real-time object detection”, in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), Jun. 2016.

[150] K. He, G. Gkioxari, P. Dollar, and R. Girshick, “Mask r-cnn”, in Proceedings of
the IEEE International Conference on Computer Vision (ICCV), Oct. 2017.

[151] D. Nister, O. Naroditsky, and J. Bergen, “Visual odometry”, in Proceedings of
the 2004 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, 2004. CVPR 2004., vol. 1, Jun. 2004, pp. I–I.

[152] H. C. Longuet-Higgins, “A computer algorithm for reconstructing a scene from
two projections”, Nature, vol. 293, no. 5828, pp. 133–135, 1981.

[153] D. Scaramuzza and F. Fraundorfer, “Visual odometry [tutorial]”, IEEE Robotics
and Automation Magazine, vol. 18, no. 4, pp. 80–92, Dec. 2011.

[154] A. J. Davison, I. D. Reid, N. D. Molton, and O. Stasse, “Monoslam: Real-time single
camera slam”, IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 29, no. 6, pp. 1052–1067, Jun. 2007.

[155] Jianbo Shi and Tomasi, “Good features to track”, in 1994 Proceedings of IEEE
Conference on Computer Vision and Pattern Recognition, Jun. 1994, pp. 593–600.

[156] L. M. Paz, P. PiniÉs, J. D. TardÓs, and J. Neira, “Large-scale 6-dof slam with
stereo-in-hand”, IEEE Transactions on Robotics, vol. 24, no. 5, pp. 946–957, Oct.
2008.

[157] M. Montemerlo, S. Thrun, D. Koller, B. Wegbreit, et al., “Fastslam: A factored
solution to the simultaneous localization and mapping problem”, Proceedings of
the National Conference on Artificial Intelligence, Nov. 2002.

[158] M. Montemerlo, S. Thrun, D. Koller, B. Wegbreit, et al., “Fastslam 2.0: An
improved particle filtering algorithm for simultaneous localization and mapping
that provably converges”, in IJCAI, 2003, pp. 1151–1156.

[159] R. Sim, P. Elinas, M. Griffin, J. J. Little, et al., “Vision-based slam using the
rao-blackwellised particle filter”, in IJCAI Workshop on Reasoning with Uncertainty
in Robotics, vol. 14, 2005, pp. 9–16.



256 Bibliography

[160] D. G. Lowe, “Distinctive image features from scale-invariant keypoints”, Interna-
tional Journal of Computer Vision, vol. 60, no. 2, pp. 91–110, Nov. 2004.

[161] E.-y. Wu, G.-y. Li, Z.-y. Xiang, and J.-l. Liu, “Stereo vision based slam using
rao-blackwellised particle filter”, Journal of Zhejiang University-SCIENCE A, vol. 9,
no. 4, pp. 500–509, Apr. 2008.

[162] E. Rosten and T. Drummond, “Machine learning for high-speed corner detection”,
in Computer Vision - ECCV 2006, A. Leonardis, H. Bischof, and A. Pinz, Eds.,
Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 430–443.

[163] S. Se, D. Lowe, and J. Little, “Mobile robot localization and mapping with
uncertainty using scale-invariant visual landmarks”, The International Journal of
Robotics Research, vol. 21, no. 8, pp. 735–758, 2002.

[164] H. Strasdat, A. J. Davison, J. M. M. Montiel, and K. Konolige, “Double window
optimisation for constant time visual slam”, in 2011 International Conference on
Computer Vision, Nov. 2011, pp. 2352–2359.

[165] T. Pire, T. Fischer, J. Civera, P. De Cristóforis, and J. J. Berlles, “Stereo parallel
tracking and mapping for robot localization”, in 2015 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), Sep. 2015, pp. 1373–1378.

[166] J. Engel, J. Stückler, and D. Cremers, “Large-scale direct slam with stereo cameras”,
in 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), Sep. 2015, pp. 1935–1942.

[167] J. Zhang and S. Singh, “Visual-lidar odometry and mapping: Low-drift, robust,
and fast”, in 2015 IEEE International Conference on Robotics and Automation
(ICRA), May 2015, pp. 2174–2181.

[168] W. Shao, S. Vijayarangan, C. Li, and G. Kantor, “Stereo visual inertial lidar simul-
taneous localization and mapping”, in 2019 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), Nov. 2019, pp. 370–377.

[169] G. D. Tipaldi, G. Grisetti, and W. Burgard, “Approximate covariance estimation
in graphical approaches to slam”, in 2007 IEEE/RSJ International Conference on
Intelligent Robots and Systems, Oct. 2007, pp. 3460–3465.

[170] V. Ila, L. Polok, M. Solony, P. Smrz, and P. Zemcik, “Fast covariance recovery in
incremental nonlinear least square solvers”, in 2015 IEEE International Conference
on Robotics and Automation (ICRA), May 2015, pp. 4636–4643.

[171] J. Ortiz, T. Evans, and A. J. Davison, “A visual introduction to gaussian belief
propagation”, 2021.



Bibliography 257

[172] J. Ortiz, M. Pupilli, S. Leutenegger, and A. J. Davison, “Bundle adjustment on
a graph processor”, in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), Jun. 2020.

[173] A. J. Davison and J. Ortiz, “Futuremapping 2: Gaussian belief propagation for
spatial ai”, 2019.

[174] L. Jaulin, “A nonlinear set membership approach for the localization and map
building of underwater robots”, IEEE Transactions on Robotics, vol. 25, no. 1,
pp. 88–98, Feb. 2009.

[175] C. Drocourt, L. Delahoche, E. Brassart, B. Marhic, and A. Clérentin, “Incremental
construction of the robot’s environmental map using interval analysis”, in Global
Optimization and Constraint Satisfaction, C. Jermann, A. Neumaier, and D. Sam,
Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2005, pp. 127–141.

[176] A. Bethencourt and L. Jaulin, “3d reconstruction using interval methods on the
kinect device coupled with an imu”, International Journal of Advanced Robotic
Systems, vol. 10, no. 2, p. 93, 2013.

[177] B. Vincke, A. Lambert, and A. Elouardi, “Guaranteed simultaneous localization and
mapping algorithm using interval analysis”, in 2014 13th International Conference
on Control Automation Robotics Vision (ICARCV), Dec. 2014, pp. 1409–1414.

[178] H. Bay, T. Tuytelaars, and L. Van Gool, “Surf: Speeded up robust features”, in
Computer Vision – ECCV 2006, A. Leonardis, H. Bischof, and A. Pinz, Eds., Berlin,
Heidelberg: Springer Berlin Heidelberg, 2006, pp. 404–417.

[179] M. Mustafa, A. Stancu, N. Delanoue, and E. Codres, “Guaranteed slam—an
interval approach”, Robotics and Autonomous Systems, vol. 100, pp. 160–170,
2018.

[180] D. Galvez-López and J. D. Tardos, “Bags of binary words for fast place recognition
in image sequences”, IEEE Transactions on Robotics, vol. 28, no. 5, pp. 1188–1197,
Oct. 2012.





Publications

Publications as main author
A. Ehambram, P. Hemme, and B. Wagner, “An approach to marker detection in IR- and

rgb-images for an augmented reality marker”, in Proceedings of the 16th International
Conference on Informatics in Control, Automation and Robotics, ICINCO 2019 - Volume 2,
Prague, Czech Republic, July 29-31, 2019, O. Gusikhin, K. Madani, and J. Zaytoon, Eds.,
SciTePress, 2019, pp. 190–197.

A. Ehambram, H. Homann, S. P. Kleinschmidt, T. Ritter, N. Fischer, and B. Wagner, “Hierarchic
single cluster graph partitioning: A sequential place recognition method”, in 2020 IEEE
International Conference on Systems, Man, and Cybernetics (SMC), Oct. 2020, pp. 1398–
1405.

A. Ehambram, R. Voges, and B. Wagner, “Stereo-visual-lidar sensor fusion using set-membership
methods”, in 2021 IEEE 17th International Conference on Automation Science and Engi-
neering (CASE), Aug. 2021, pp. 1132–1139.

A. Ehambram, R. Voges, C. Brenner, and B. Wagner, “Interval-based visual-inertial lidar
slam with anchoring poses”, in 2022 International Conference on Robotics and Automation
(ICRA), May 2022, pp. 7589–7596.

A. Ehambram, L. Jaulin, and B. Wagner, “Hybrid interval-probabilistic localization in building
maps”, IEEE Robotics and Automation Letters, vol. 7, no. 3, pp. 7059–7066, Jul. 2022.

A. Ehambram, L. Jaulin, and B. Wagner, “Interval-based global localization in building maps”,
SWIM 2022, 2022.

Publications as co-author
P. Venet, K. Safronov, A. Ehambram, S. Wagner, J. Bock, and U. E. Zimmermann, “Application

of ontologies for semantic scene segmentation and object recognition”, in ISR 2020; 52th
International Symposium on Robotics, Dec. 2020, pp. 1–7.

Y. Jiang, A. Ehambram, and B. Wagner, “Interval-based robot localization with uncertainty
evaluation”, in Proceedings of the 19th International Conference on Informatics in Control,
Automation and Robotics, INSTICC, vol. 1, SciTePress, 2022, pp. 296–303.



About the Author

Personal details

Name Aaronkumar Ehambram
Date of birth Januray 27th, 1996
Place of birth Rinteln, Germany

Education

2002 – 2014 General school education
Abitur at Gymnasium Ernestinum Rinteln

2014 – 2019
Studies in Electrical Engineering and Information Technology
at Leibniz University Hannover
B. Sc. and M. Sc. degrees

Scientific work

January 2020 – Present

Research associate
at Leibniz University Hannover
Institute of Systems Engineering – Real Time Systems Group
DFG Research Training Group 2159 (i.c.sens)


	Title Page
	Acknowledgements
	Kurzfassung
	Abstract
	Contents
	Acronyms
	Symbols
	1 Introduction
	1.1 Integrity
	1.2 Problem Statement and Research Questions
	1.3 Solution Approach and Contributions
	1.4 Structure of the Thesis

	2 Basics
	2.1 Probability Theory
	2.1.1 Basic Notions and Concepts
	2.1.2 Particle Filter
	2.1.3 Optimization

	2.2 Interval Analysis
	2.2.1 Basic Notions and Operations
	2.2.2 Constraint Satisfaction Problems (CSP)
	2.2.3 Pessimism and Wrapping Effect
	2.2.4 Set Inversion Via Interval Analysis (SIVIA)
	2.2.5 Relaxed intersection

	2.3 Sensor Models
	2.3.1 Stereo Cameras
	2.3.2 Light Detection And Ranging (LiDAR) sensors
	2.3.3 Global Navigation Satellite System (GNSS)

	2.4 Building Maps

	3 State of the Art
	3.1 Probabilistic Approaches
	3.1.1 Extended Kalman Filter
	3.1.2 Grid-based Localization
	3.1.3 Monte Carlo Localization
	3.1.4 Maximum Likelihood Estimation

	3.2 Interval-based Approaches
	3.3 Hybrid Approaches

	4 Visual Odometry
	4.1 Task Description, Notation and Assumptions
	4.2 Front-End – Build the SLAM-Graph
	4.2.1 Image Feature Tracking
	4.2.2 Interval-based Stereo Reconstruction
	4.2.3 LiDAR measurements
	4.2.4 Frame-to-Frame Pose Estimation

	4.3 Back-End – Solve the SLAM-Graph
	4.3.1 Windowed Bundle Adjustment
	4.3.2 Interval-based Visual Odometry
	4.3.3 Keep the SLAM-Graph Clean

	4.4 Module Output

	5 Coarse Localization
	5.1 Task Description, Notations and Assumptions
	5.1.1 Odometry
	5.1.2 Map
	5.1.3 Uncertain GNSS Position

	5.2 Interval-based Localization
	5.2.1 Initialization
	5.2.2 Pose Update with Odometry Data
	5.2.3 No-Overlap Contractor – Vehicle Outside Buildings
	5.2.4 No-Cross Contractor – LiDAR Data in Visible Region
	5.2.5 GNSS Contractor – Vehicle Inside GNSS-Region
	5.2.6 Rotation bisection

	5.3 Bounded Monte Carlo Localization
	5.4 Module Output

	6 Refined Localization
	6.1 Task Description, Notations and Assumptions
	6.2 Interval-based Refinement
	6.2.1 Odometry Update
	6.2.2 Map Line Selection
	6.2.3 Interval-based Hough Transformation
	6.2.4 Orientation Contraction
	6.2.5 Position Polygon

	6.3 Maximum Likelihood Estimation with Rigid Bounds
	6.4 Module Output

	7 HyPaSCoRe Localization Pipeline
	7.1 Architecture
	7.2 Real-Time Localization
	7.3 Cooperations between the Coarse and Refined Localization
	7.3.1 Particle Stability Check
	7.3.2 Bound the Exploration Region – Reliability of the Refined Localization


	8 Experimental Results
	8.1 Visual Odometry
	8.1.1 Front-End Evaluation
	8.1.2 Back-End Evaluation
	8.1.3 Runtime

	8.2 Coarse Localization
	8.2.1 Interval-based Localization
	8.2.2 Hybrid Method vs. AMCL
	8.2.3 Runtime

	8.3 Refined Localization
	8.3.1 Set-Membership-based Localization
	8.3.2 Hybrid Approach vs. Maximum Likelihood Estimation
	8.3.3 Runtime

	8.4 HyPaSCoRe Localization System
	8.4.1 Localization Time vs. Real-Time
	8.4.2 Feasible Set vs. Consistent Set
	8.4.3 Integrity Evaluation
	8.4.4 Localization Error
	8.4.5 Runtime


	9 Summarizing Discussion and Prospects
	10 Conclusions
	Appendix A Basics to Probabilistic Approaches
	A.1 Bayes Filters
	A.2 Extended Kalman Filter

	Appendix B State of the Art – Visual Odometry and SLAM
	B.1 Probabilistic Approaches
	B.1.1 Extended Kalman Filter
	B.1.2 Rao-Blackwellized Particle Filter
	B.1.3 Maximum Likelihood Estimation

	B.2 Interval-based Approaches
	B.3 Hybrid Approaches

	Bibliography
	Publications
	About the Author

