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Kurzfassung

Es werden neuartige Approximationstechniken für die Analyse und Bewertung nichtlinearer

dynamischer Systeme im Bereich der stochastischen Dynamik vorgeschlagen. Die effiziente

Bestimmung von Antwortstatistiken und Zuverlässigkeitsschätzungen für nichtlineare Systeme

ist nach wie vor eine Herausforderung, insbesondere für Systeme mit singulären Matrizen oder

fraktional abgeleiteten Termen. Diese Arbeit befasst sich mit den Herausforderungen von drei

Hauptthemen.

Das erste Thema betrifft die Bestimmung der Antwortstatistiken nichtlinearer Systeme mit meh-

reren Freiheitsgraden und singulären Matrizen, die kombinierten deterministischen und stochas-

tischen Erregungen ausgesetzt sind. Singuläre Matrizen können in den Bewegungsgleichungen

technischer Systeme aus verschiedenen Gründen auftreten, z. B. aufgrund einer Modellierung

mit redundanten Koordinaten oder aufgrund der Modellierung mit zusätzlichen Zwangsbedin-

gungen. Außerdem ist es üblich, dass nichtlineare Systeme gleichzeitig stochastische und de-

terministische Erregungen erfahren.

In diesem Zusammenhang wird zunächst ein neuartiger Lösungsrahmen zur Bestimmung der

Antwort solcher Systeme bei kombinierter deterministischer und stochastischer Anregung sta-

tionärer Art entwickelt. Dies wird durch die Anwendung der Methode des harmonischen Gleich-

gewichts und der verallgemeinerten statistischen Linearisierungsmethode erreicht. Es wird ein

überbestimmtes Gleichungssystem erzeugt, welches mithilfe der Theorie verallgemeinerter in-

verser Matrizen gelöst wird.

Anschließend wird der entwickelte Rahmen auf Systeme ausgedehnt, die einer Mischung aus

deterministischen und stochastischen Erregungen nichtstationärer Art unterliegen. Die verallge-

meinerte statistische Linearisierungsmethode wird verwendet, um das nichtlineare Teilsystem

zu behandeln, das einer nichtstationären stochastischen Anregung unterliegt. In Verbindung mit

einer Zustandsraumformulierung führt dies zu einer Matrixdifferentialgleichung, die die sto-

chastische Systemantwort beschreibt. Anschließend werden die entwickelten Gleichungen mit
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numerischen Methoden gelöst.

Die Genauigkeit der vorgeschlagenen Techniken wurde durch die Anwendung auf mit redun-

danten Koordinaten modellierte nichtlineare strukturelle Systeme, sowie auf Systeme mit pie-

zoelektrischen Vibrationsenergie-Harvestern demonstriert.

Das zweite Thema betrifft die normkonforme Analyse der stochastischen Dynamik nichtli-

nearer Struktursysteme mit fraktional abgeleiteten Elementen. Zunächst wird ein neuartiges

Näherungsverfahren zur effizienten Bestimmung der Antwortspitzen nichtlinearer Struktursys-

teme mit fraktional abgeleiteten Elementen vorgeschlagen, die einer mit einem bestimmten

seismischen Auslegungsspektrum kompatiblen Anregung ausgesetzt sind. Die vorgeschlage-

nen Methoden beinhalten die Ableitung eines evolutionären Erregungsleistungsspektrums, das

dem Auslegungsspektrum in einem stochastischen Sinne entspricht. Der Spitzenwert wird durch

die Verwendung äquivalenter linearer Elemente in Verbindung mit normgerechten Auslegungs-

spektren angenähert, was für Ingenieure in der Praxis von Vorteil ist. Es wurden nichtlinea-

re Struktursysteme mit fraktional abgeleiteten Termen in den beschreibenden Bewegungsglei-

chungen betrachtet. Ein besonderes Merkmal ist die Verwendung von lokalisierten zeitabhän-

gigen äquivalenten linearen Elementen, die den klassischen Ansätzen mit zeitinvarianten statis-

tischen Linearisierungsmethoden überlegen sind.

Anschließend wird die Näherungsmethode erweitert, um eine stochastische inkrementelle dyna-

mische Analyse für nichtlineare Struktursysteme mit fraktional abgeleiteten Elementen durch-

zuführen, die stochastischen Erregungen ausgesetzt sind, die mit modernen seismischen Be-

messungsregeln abgestimmt sind. Die vorgeschlagene Methode stützt sich auf der Kombina-

tion von stochastischer Mittelwertbildung und statistischen Linearisierungsmethoden, was zu

einem effizienten und umfassenden Weg zur Ermittlung der Wahrscheinlichkeitsdichtefunkti-

on der Verschiebungsantwort führt. Anstelle der traditionellen Kurven wird eine stochastische

inkrementelle dynamische Analyseoberfläche erzeugt, die zu zuverlässigen Statistiken höherer

Ordnung der Systemantwort führt.

Abschließend wird das Problem der ersten Exkursionswahrscheinlichkeit nichtlinearer dynami-

scher Systeme bei ungenau definierten Gaußschen Lasten betrachtet. Dazu muss ein verschach-

teltes Doppelschleifenproblem gelöst werden, das im Allgemeinen ohne den Rückgriff auf Er-



iii

satzmodellierungsverfahren nicht lösbar ist. Um diese Herausforderungen zu bewältigen, wird

in dieser Arbeit zunächst ein verallgemeinerter Operator-Norm-Ansatz vorgeschlagen, der auf

einer statistischen Linearisierungsmethode basiert. Seine Effizienz wird dadurch erreicht, dass

die Doppelschleife durchbrochen wird und die Werte der epistemisch unsicheren Parameter, die

Grenzen für die Versagenswahrscheinlichkeit darstellen, a priori bestimmt werden. Der vorge-

schlagene Ansatz kann den Berechnungsaufwand erheblich verringern und eine zuverlässige

Schätzung der Versagenswahrscheinlichkeit liefern.

Schlüsselwörter: Stochastische Dynamik, singuläre Matrizen, kombinierte Anregung, statisti-

sche Linearisierung, stochastische Mittelwertbildung, Vibrationsenergie-Harvester, Entwurfss-

pektrum, fraktional abgeleitete Elemente, inkrementelle dynamische Analyse, ungenaue Wahr-

scheinlichkeit, ersten Exkursionswahrscheinlichkeit, intervall-stochastischer Prozess.





Abstract

Novel approximation techniques are proposed for the analysis and evaluation of nonlinear dy-

namical systems in the field of stochastic dynamics. Efficient determination of response statis-

tics and reliability estimates for nonlinear systems remains challenging, especially those with

singular matrices or endowed with fractional derivative elements. This thesis addresses the

challenges of three main topics.

The first topic relates to the determination of response statistics of multi-degree-of-freedom

nonlinear systems with singular matrices subject to combined deterministic and stochastic ex-

citations. Notably, singular matrices can appear in the governing equations of motion of engi-

neering systems for various reasons, such as due to a redundant coordinates modeling or due to

modeling with additional constraint equations. Moreover, it is common for nonlinear systems

to experience both stochastic and deterministic excitations simultaneously.

In this context, first, a novel solution framework is developed for determining the response of

such systems subject to combined deterministic and stochastic excitation of the stationary kind.

This is achieved by using the harmonic balance method and the generalized statistical lineariza-

tion method. An over-determined system of equations is generated and solved by resorting to

generalized matrix inverse theory.

Subsequently, the developed framework is appropriately extended to systems subject to a mix-

ture of deterministic and stochastic excitations of the non-stationary kind. The generalized sta-

tistical linearization method is used to handle the nonlinear subsystem subject to non-stationary

stochastic excitation, which, in conjunction with a state space formulation, forms a matrix dif-

ferential equation governing the stochastic response. Then, the developed equations are solved

by numerical methods.

The accuracy for the proposed techniques has been demonstrated by considering nonlinear

structural systems with redundant coordinates modeling, as well as a piezoelectric vibration

energy harvesting device have been employed in the relevant application part.
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The second topic relates to code-compliant stochastic dynamic analysis of nonlinear structural

systems with fractional derivative elements. First, a novel approximation method is proposed to

efficiently determine the peak response of nonlinear structural systems with fractional derivative

elements subject to excitation compatible with a given seismic design spectrum. The proposed

methods involve deriving an excitation evolutionary power spectrum that matches the design

spectrum in a stochastic sense. The peak response is approximated by utilizing equivalent linear

elements, in conjunction with code-compliant design spectra, hopefully rendering it favorable

to engineers of practice. Nonlinear structural systems endowed with fractional derivative terms

in the governing equations of motion have been considered. A particular attribute pertains

to utilizing localized time-dependent equivalent linear elements, which is superior to classical

approaches utilizing standard time-invariant statistical linearization method.

Then, the approximation method is extended to perform stochastic incremental dynamical anal-

ysis for nonlinear structural systems with fractional derivative elements exposed to stochastic

excitations aligned with contemporary aseismic codes. The proposed method is achieved by

resorting to the combination of stochastic averaging and statistical linearization methods, re-

sulting in an efficient and comprehensive way to obtain the response displacement probability

density function. A stochastic incremental dynamical analysis surface is generated instead of

the traditional curves, leading to a reliable higher order statistics of the system response.

Lastly, the problem of the first excursion probability of nonlinear dynamic systems subject to

imprecisely defined stochastic Gaussian loads is considered. This involves solving a nested

double-loop problem, generally intractable without resorting to surrogate modeling schemes.

To overcome these challenges, this thesis first proposes a generalized operator norm framework

based on statistical linearization method. Its efficiency is achieved by breaking the double

loop and determining the values of the epistemic uncertain parameters that produce bounds

on the probability of failure a priori. The proposed framework can significantly reduce the

computational burden and provide a reliable estimate of the probability of failure.

Keywords: stochastic dynamics, singular matrices, combined excitation, statistical lineariza-

tion, stochastic averaging, vibration energy harvester, design spectrum, fractional derivative

elements, incremental dynamics analysis, imprecise probability, first-excursion probability, in-

terval stochastic process.
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Chapter 1

Introduction

1.1 Motivation

Stochastic dynamics relates to the assessment of response statistics and reliability of structural

or mechanical dynamical systems subject to uncertain conditions. In structural and mechanical

engineering, many phenomena, attributed to the uncontrollable causation, are considered as the

random processes, such as seismic ground motion, traveling vehicles over rough surfaces, tur-

bulence due to strong winds, atmospheric turbulence and jet noise (e.g. Grigoriu, 2002; Roberts

and Spanos, 2003; Li and Chen, 2009). The dynamical analysis of structural or mechanical

systems subject to external excitations, modeled as the random processes, is known as ran-

dom vibration analysis. In addition, the fundamental theory around stochastic dynamics deals

with dynamical systems with uncertainty in model parameters, which can arise from various

sources such as manufacturing tolerances, variations in material properties, and uncertainty in

the geometry (e.g. Ibrahim, 2008). This leads to dynamical analysis with uncertainty structural

parameters, known as stochastic structural analysis or stochastic finite element analysis (e.g. Li

and Chen, 2009; Ghanem and Spanos, 2003). The significance of stochastic dynamics lies in the

fact that most real physical systems are exposed to random dynamic environments during their

lifespan. The randomness in the excitations or model parameters can result in stochastic system

responses, potentially leading to failures in structural or mechanical systems (e.g. Roberts and

Spanos, 2003).

It is generally recognized that Einstein’s study of Brownian motion in 1905 (Einstein et al.,

1905) is the origin of stochastic dynamics. Subsequently, in 1908, Langevin proposed a stochas-

tic differential equation to describe the motion of Brownian particles close to a physical point

of view (Langevin, 1908). Fokker and Planck later introduced the partial differential equation

to model the Brownian motion of particles (Fokker, 1913; Planck, 1917), whose rigorous math-

1



CHAPTER 1. INTRODUCTION 2

ematical basis was further established by Kolmogorov (Kolmogoroff, 1931). The development

of probability theory and relevant tools (such as spectral density), provided a solid mathemat-

ical foundation for the theory of stochastic dynamics (e.g. Wiener, 1930; Kolmogoroff, 1931;

Rice, 1944). In the 1950s, random vibration was initially applied to structural or mechanical

systems to solve the vibration problem of aircraft panels in the aerospace industry, basing on

the principles of structural dynamics and probability theory (e.g. Crandall, 1958). Crandall is

widely recognized as the person who introduces random vibration of mechanical systems to

engineers. More details on the historical development of stochastic dynamics can be found in

the literature review (Paez, 2006). Since then, there have been significant breakthroughs in the

theory, technologies, experiments, and applications of stochastic dynamics, (e.g. Lin, 1967;

Soong and Bogdanoff, 1974; Soong and Grigoriu, 1993; Newland, 1993; Lin, 1995; Elishakoff,

1999; Grigoriu, 2002; Roberts and Spanos, 2003; Lutes and Sarkani, 2004; Socha, 2007; Li and

Chen, 2009).

The main objective of stochastic dynamics is to characterize the statistical properties of dy-

namical system responses, such as mean, variance, and probability density function (PDF),

under uncertainty environments. These response statistics are subsequently utilized to perform

reliability analysis, sensitivity analysis and optimization design, which facilitate engineers in

realistic engineering design. Specifically, in structural and mechanical engineering fields, this

is critical for ensuring structural safety and risk assessment, which often involves solving the

first-passage problem by calculating the probability of the response reaching or crossing a pre-

defined safety margin for the first time (e.g. Crandall et al., 1966).

A flourishing field of numerical and analytical techniques have been developed to determine re-

sponse statistics and estimate reliability of stochastically excited dynamical systems. However,

efficiently determining such response statistics and reliability estimates for nonlinear systems

remains a challenging task, especially for some complex systems. In engineering, the inherent

complexity of physical mechanism often causes more complex structural models, such as the

presence of singular matrices in the governing equation of motion or the system modeling with

fractional derivative elements. Thus, the attention has shifted towards modeling the stochastic

dynamic behavior of these more complex systems (e.g. Jerez et al., 2022b). Note, in pass-

ing, that while it may seem intuitively evident that a system is complex, there is no universally
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accepted definition of complex systems. Further, the difficulty of analyzing complex systems

arises not only from their physical modeling but also from the practical environment in which

they operate, which involves more intricate excitation modeling, such as the combination of

deterministic and stochastic excitation or imprecise stochastic loading.

In this thesis, an effort is made to address several challenges for nonlinear stochastic dynam-

ical systems, especially for those with singular matrices and those endowed with fractional

derivative elements. The thesis focuses, first, on determining the response statistics of nonlin-

ear systems with singular matrices subject to combined deterministic and stochastic excitations.

Next, a novel framework is developed for approximating the peak response of hysteretic sys-

tems with fractional derivative elements subject to code-compliant seismic excitations. Finally,

a highly efficient approach is proposed for bounding the first excursion probability of nonlinear

systems under imprecise stochastic loading.

1.2 Systems with nonlinear or hysteretic behavior

1.2.1 Sources of nonlinearity

Almost all structural and mechanical systems in nature exhibit nonlinear behavior due to various

factors. For instance, the nonlinear restoring force could be caused by the material nonlinearity

and geometric nonlinearity (e.g. Bonet et al., 2021). Physical nonlinearity occurs when the

relationship between the stress and stain does not satisfy the Hooke’s law while geometric

nonlinearity arises from the nonlinear relationship between the strain and displacement when a

structure undergoes large displacements (e.g. Kerschen et al., 2006). In addition, structures may

exhibit hysteretic behavior with a decrease in stiffness and/or strength under severe excitations.

Thus, the restoring force is affected not only by the current state of the system, but also by

its response history, resulting in energy dissipation. Then, nonlinear damping can arise from

effects such as dry friction effects and hysteretic damping (e.g. Caughey and Vijayaraghavan,

1970; Sherif and Omar, 2004), while inertial nonlinearity is primarily induced by inerters used

in vibration control (e.g. Smith, 2002; Marian and Giaralis, 2014). Furthermore, nonlinearity

also arises from boundary conditions, such as free surfaces in fluids and contacts with rigid
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constraints (e.g. Tsai and Yue, 1996; Babitsky and Krupenin, 2001).

1.2.2 The importance of nonlinear stochastic dynamic analysis

As previously discussed, real-world systems commonly display nonlinear behavior during their

lifetime, in contrast to the idealized linear assumption (e.g. Roberts and Spanos, 2003). Ne-

glecting nonlinearity in system modeling can result in a particularly inadequate approximation

of system behavior and inaccurate analysis, leading to potentially serious consequences. The

consideration of nonlinearity becomes even more significant with increasing vibration ampli-

tude, particularly in the context of random vibration, where the excitation in the stochastic

sense has the probability to reach a large scale, leading to large response amplitudes (e.g. Iwan,

1974). Therefore, it is crucial to account for large excitations in the design phase, even if their

probability is low (e.g. Roberts and Spanos, 2003). Specifically, in structural engineering,

buildings and other structural systems commonly exhibit a hysterestic behavior under severe

seismic excitations. A suitable stochastic description of seismic excitations is interwoven with

an appropriate nonlinear model to ensure the accuracy of reliability assessment and design pro-

cedures for structural systems (e.g. Roberts and Spanos, 2003; Li and Chen, 2009). In addition,

some special phenomena, such as chaotic vibration and self-excited vibration (e.g. Kansara

et al., 2014), cannot be accurately assessed by resorting to the linear dynamics theory. Employ-

ing linear dynamics theory to evaluate the stochastic response of such intrinsically nonlinear

systems will lead to errors (e.g. Roberts and Spanos, 2003).

1.2.3 System response determination: current solution treatments

In the field of stochastic dynamics, since the excitation of the considered nonlinear systems

is described in a probabilistic manner, it is necessary to determine the response statistics (e.g.

mean, mean square, power spectrum and probability density function) and then employ them

to estimate the system reliability. However, this task is significantly more challenging, in com-

parison to the linear counterparts. Over the years, various techniques have been developed to

tackle this issue.
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The deterministic techniques, for computing the integration of the governing equations of mo-

tion of nonlinear systems, can be employed to accurately estimate the response statistics of

stochastically excited nonlinear systems, by resorting to the Monte Carlo Simulation (MCS)

method (e.g. Bird, 1981; Rubino and Tuffin, 2009; Rubinstein and Kroese, 2016). However,

the MCS method involves simulating numerous samples and performing nonlinear response

time history analysis for each sample. To achieve sufficient accuracy, a relatively large num-

ber of time history excitations are required in conjunction with the integration of the governing

equations of motion to determine the response statistics. In this setting, despite its broad ap-

plicability, the demanding computational cost of MCS methods is prohibitive, particularly for

systems with numerous DOFs and high nonlinearity. To mitigate this issue, advanced sim-

ulation methods based on MCS have recently been developed by utilizing efficient sampling

methods, such as importance sampling (e.g. Melchers, 1989), Latin hypercube sampling (e.g.

Stein, 1987), adaptive sampling (e.g. Bucher, 1988), descriptive sampling (e.g. Saliby, 1990),

line sampling (e.g. Koutsourelakis et al., 2004), directional sampling (e.g. Nie and Ellingwood,

2004), and subset sampling (e.g. Au and Beck, 2001). The above-advanced simulation methods

are much more efficient than the traditional MCS method. However, these numerical methods

still involve nonlinear dynamical analysis for systems under a number of samples for stochastic

excitation. This problem is further exacerbated in problems involving the repeated evaluation of

stochastic dynamical systems, such as reliability-based design optimization formulations (e.g.

Jerez et al., 2022c; Jensen et al., 2021; Jensen et al., 2022; Jerez et al., 2022a), in which the

corresponding computational effort can become excessive or even prohibitive.

Alternatively, analytical/approximatation techniques have been developed for determining the

response statistics of nonlinear structural systems, which avoid the significant computational

demands, including statistical linearization methods (e.g. Caughey, 1963; Lutes, 1970; Roberts

and Spanos, 2003; Socha, 2007; Mitseas et al., 2016b), perturbation methods (e.g. Crandall,

1963; Nayfeh, 2008; Holmes, 2012), equivalent nonlinear system methods (e.g. Caughey,

1986; Zhu and Yu, 1989; Cai and Lin, 1988), diffusion process theory (e.g. Yong and Lin,

1987; Scheurkogel and Elishakoff, 1988; Caughey, 2018), stochastic averaging techniques (e.g.

Roberts and Spanos, 1986; Zhu, 1988; Spanos et al., 2018) and moment closure methods (e.g.

Iyengar and Dash, 1978; Crandall, 1980; Kuehn, 2016).
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Among these techniques, the statistical linearization method is considered as the most versa-

tile and applicable for dealing with the nonlinear structural systems in the context of random

vibration. Specifically, the original governing equations of motion of the nonlinear system

are replaced by equivalent linear equations based on mean-square minimization criteria (e.g.

Roberts and Spanos, 2003). Compared to other methods, which are often limited to systems

with specific nonlinear models or forms of excitation, the statistical linearization method is

widely used in engineering problems. However, the assumption of equivalent linear systems in

the method may cause the response to deviate from the exact one. In this context, the stochastic

averaging method combined with statistical linearization is proposed to accurately estimate the

response statistics of the stochastic dynamical systems, based on the diffusion process theory.

This is achieved by assuming a Markov process for the amplitude of the system response. (e.g.

Zhu, 1988). In this thesis, the approximate semi-analytical techniques based on statistical lin-

earization or stochastic averaging methods are developed for response and reliability analysis

of nonlinear (hysteretic) systems.

1.3 Systems with singular matrices

Formulating the equation of motion for complex nonlinear systems can be challenging. In

general, the minimum number of coordinates are utilized to formulate the equation of motion

of dynamic structural or mechanical systems, resulting in the symmetric, positive-definite and

non-singular mass matrices. However, due to the complexity of the system under consideration,

the technique of utilizing the minimum number of coordinates to generalize the motion can be

a non-trivial task for special case problems (Schutte and Udwadia, 2010). In this setting, Ud-

wadia and his co-workers have developed a technique to efficiently model complex multi-body

systems by utilizing redundant coordinates in the field of deterministic dynamics (Udwadia and

Kalaba, 1992, 1996; Udwadia and Kalaba, 2000; Udwadia and Phohomsiri, 2006; Schutte and

Udwadia, 2010; Udwadia and Wanichanon, 2013). Apart from redundant coordinate modeling,

singular matrices can also arise from the absence of certain-order derivatives for multi-degree-

of-freedom (MDOF) systems in the equation of motion, such as ill-conditioned systems (e.g.

Maciejewski, 1990b), systems with hysteretic nonlinearity (e.g. Wen, 1976), energy harvest-



CHAPTER 1. INTRODUCTION 7

ing devices (e.g. Adhikari et al., 2009), and translational motion of rigid bodies (e.g. Jr and

Kurdila, 2006). Further, due to the presence of singular matrices, classical methodologies for

determining the closed forms of the system response statistics are not applicable. Recently,

several techniques have been developed for deriving the response statistics of specific problems

in stochastic dynamics.

1.3.1 System modeling with redundant coordinates

The importance of system modeling and the ease of obtaining the equation of motion for the

correctly modeled multi-body system, are reported in the literature (e.g. Kane and Levinson,

1980; Schiehlen, 1984). The use of redundant coordinates in complex multi-body mechani-

cal systems can significantly reduce the laborious task of generating equations of motion (e.g.

Udwadia and Kalaba, 1996).

Current approaches to system modeling involve casting the multi-body systems into tree topolo-

gies, which rapidly increases the effort of formulating the equation of motion for complex sys-

tems (Schutte and Udwadia, 2010). Apart from that, they also limit the flexibility in generating

the equations of motion as they conceptualize a predefined modeling structure. Any change in

the system constraints would require a redesign of the system motion within this structure. In

addition, these approaches are problem-specific to determine the Lagrange multiplier and re-

quire constraints to be functionally independent. Determining the Lagrange multiplier and veri-

fying the above requirement are not straightforward tasks and can be challenging, especially for

systems with numerous DOFs and non-integrable constraints (Udwadia and Phohomsiri, 2006).

It poses difficulties in explicitly determining the motion of complex systems.

Udwadia and co-workers have proposed a novel approach to modeling constrained mechanical

systems, including those with holonomic and non-holonomic constraints (Udwadia and Kal-

aba, 1992, 1996; Udwadia and Kalaba, 2000; Udwadia and Phohomsiri, 2006; Schutte and

Udwadia, 2010). This approach avoids the need for complex and cumbersome descriptions of

such systems by using more coordinates than the minimum required. The approach involves

decomposing the complex system into smaller subsystems, formulating their equations of mo-

tion separately, and then combining them using appropriate constraints to model the composite
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system in a straightforward and relatively simple manner. However, the use of constraints to

ensure structural compatibility can introduce dependent coordinates into the system modeling,

resulting in singular matrices in the equations of motion. The presence of singular matrices

poses challenges to standard methodologies in subsequent analyses, as highlighted in previous

studies (e.g. Lutes and Sarkani, 2004; Roberts and Spanos, 2003).

1.3.2 Systems with singular matrices: diverse applications

The presence of singular matrices in the equation of motion not only arises from redundant

coordinate system modeling, but also appears in the applications of physical sciences and engi-

neering.

An ill-conditioned algebraic system, characterized by a coefficient matrix that is nearly singu-

lar, is a common source of systems with singular matrices (Fragkoulis, 2017). This issue is

prevalent in structural and mechanical engineering, such as earthquake and wind engineering,

particularly in the inverse problem of identifying external forces (e.g. Turco, 2005; Reichel

and Rodriguez, 2013). Moreover, ill-conditioned systems also arise in motion simulation of

graphics objects (e.g. Maciejewski, 1990a; Terzopoulos and Witkin, 1988) and large-scale con-

strained mechanical systems (e.g. Mani et al., 1985). Typically, in handling such ill-conditioned

algebraic systems, small terms in the coefficient matrices are ignored for efficiency by setting

them to zero, leading to singular matrices in the governing equation of motion (e.g. Kawano

et al., 2013).

Furthermore, the appearance of singular matrices may stem from mathematical formulation

problems, such as the absence of derivatives of certain degrees of freedom. A general applica-

tion is the category of systems that exhibit hysteretic nonlinear behavior. The popular models

for describing hysteretic behavior are the bilinear model (e.g. Roberts and Spanos, 2003) and

the Bouc-Wen model (Wen, 1976) due to their simplicity and versatility in approximating hys-

teretic patterns. Specifically, the restoring force in these models depends on both the instanta-

neous deformation and its past-time history, which requires an auxiliary first-order differential

equation coupled with the second-order differential equation of the original system to construct

the governing motion. This coupling of equations results in a singular mass matrix for the over-
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all system modeling. Singular matrices can also appear in the equations of motion as a result

of non-white stochastic excitations by a series of filters subject to white noise (e.g. Pasparakis

et al., 2022a). In addition, non-viscously damped systems can also lead to singular matrices in

the system equations of motion (e.g. Wagner and Adhikari, 2003; Woodhouse, 1998; Adhikari,

2013). Specifically, these systems are often described with an exponential damping model and

analyzed by state space methods. This introduces internal variables with deficient rankings of

the damping matrices, resulting in the appearance of singular matrices in the system equations

(e.g. Adhikari and Wagner, 2004; Adhikari, 2013).

Singular matrices are also encountered in systems with mechanical and electrical subsystems. A

characteristic category of applications are energy harvesting devices. Specifically, these devices

typically include a mechanical system (e.g. cantilever beams), exhibiting vibrational behavior

under external loads. Smart materials such as piezoelectric patches form the electrical subsys-

tem of these devices, which convert the vibration energy into electrical current to power both

themselves and other interconnected devices (e.g. Adhikari et al., 2009). The theory and appli-

cations of energy harvesting devices have rapidly been developed, as they offer an alternative

to conventional batteries for powering low-energy consumption electronics. Examples of such

applications include medical implants in the healthcare field (e.g. Shi et al., 2018), wildlife

tracking and bio-logging devices (e.g. Reissman and Garcia, 2008), high-rise buildings to har-

ness and dissipate the vibration energy (e.g. Xie et al., 2015), structural health monitoring (e.g.

Park et al., 2008; Le et al., 2015). The interested reader is also directed to Priya and Inman,

2009; Safaei et al., 2019; Nechibvute et al., 2012; Selvan and Mohamed Ali, 2016 for addi-

tional applications. Due to the inherent coupling of electrical and mechanical systems, singular

matrices naturally arise in the governing equations of motion for these devices (e.g. Adhikari

et al., 2009).

1.3.3 System response determination: current solution treatments

In general, the classical approach for response determination of systems usually involves in-

verting matrices, which is straightforward for the system with non-singular matrices. Unfortu-

nately, this approach is not applicable when dealing with systems with singular matrices. The
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popular methodologies of dealing with the singular matrices are problem-specific, such as op-

timization algebraic or so-called regularization methods. For instance, in complex constrained

systems, considerable effort is often dedicated to computing or eliminating Lagrange multipli-

ers to mitigate singular matrices (e.g. Mariti et al., 2011). Also, regularization methods have

been explored in the literature to treat ill-posed inverse problems (e.g. Hansen, 1998; Tikhonov,

1963; Tikhonov et al., 1995). However, regardless of their case-specific defect, these methods

are not robust, as they can be sensitive to small perturbations of the inputs, leading to inaccurate

solutions. Given the broad range of applications involving singular matrices, in conjunction

with the challenges and limitations associated with existing methods, there is a pressing need

to develop appropriate techniques to deal with nonlinear systems with singular matrices in the

field of stochastic dynamics. Consequently, it has been an active area of research.

Fragkoulis and his coworkers (Fragkoulis et al., 2014; Fragkoulis et al., 2016a,b; Fragkoulis et

al., 2015, 2017) first proposed methods to treat dynamical systems with singular matrices sub-

ject to stochastic excitations by utilizing generalized matrix inverse methodology in the time

domain. Since then, the topic of systems with singular matrices in the field of random vibra-

tion has gained significant attention, resulting in numerous literature on different applications.

Specifically, Kougioumtzoglou et al., 2017 extended Fragkoulis’s works to analyze linear and

nonlinear stochastic dynamical systems with singular matrices in the frequency domain. Pan-

telous and Pirrotta, 2017 developed a modified modal analysis for systems with singular matri-

ces, which offers a straightforward and simplified method of assessing the natural frequencies.

In Pirrotta et al., 2019, a frequency domain treatment based on generalized modal analysis

was developed to determine the response statistics of structural systems modeled via depen-

dent coordinates. Pasparakis and his co-workers developed harmonic wavelets based methods

to determine the time-frequency response of stochastic dynamical system with singular matri-

ces (Pasparakis et al., 2019, 2021, 2022a,c,b). Pirrotta et al., 2021 proposed both time-domain

and frequency-domain methods to determine the response of systems endowed with singular

matrices and fractional derivative elements. Fragkoulis et al., 2022a; Fragkoulis et al., 2022b

also proposed an asymptotic approximation methodology where the random eigenvalue prob-

lem was reformulated and solved for systems with singular random parameter matrices. These

approaches make use of the theory of generalized matrix inverse theory, such as Moore-Penrose
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inverse theory. Simultaneously, researchers have also employed alternative tools, such as poly-

nomial matrix theory (Antoniou et al., 2017) and Kronecker canonical forms of matrix pencils

(Karageorgos et al., 2021), to formulate the equations of motion and determine the response of

MDOF systems.

Although a substantial body of literature exists on determining the response of system with sin-

gular matrices in stochastic dynamics, most of the works are limited to systems under purely

stationary stochastic excitations. However, many structural and mechanical systems endure

more complex excitations, especially combined deterministic and stochastic excitations in prac-

tice. Thus, given the broad applications of singular matrices modeling, the need of analyzing

nonlinear systems with singular matrices subject to combined deterministic and stochastic exci-

tations arises. This thesis presents two semi-analytical techniques for determining the response

statistics of nonlinear systems with singular matrices subject to combined deterministic and

stationary excitations, and combined deterministic and non-stationary excitations, respectively.

The proposed techniques are demonstrated by relevant examples, especially their applications

in energy harvester devices.

1.4 Systems endowed with fractional derivative elements

Classical continuous (or discrete) mechanics theory, based on the integer differential calculus,

has been widely used for modeling and analyzing the dynamical system in random vibration.

Nevertheless, recent advances in mathematical tools, such as fractional calculus that allows for

non-integer order calculations, have been utilized to accurately model the behavior of media

(e.g. Fragkoulis et al., 2019a). Due to its tremendous new features, such as memory and hered-

itary, fractional calculus has emerged as a rapidly developing theoretical or mathematical topic

with applications in various fields of science and engineering. In particular, it has found signifi-

cant use in mechanical and structural engineering to model the behavior of viscoelastic materials

and in vibration control for structural systems (e.g. Bagley and Torvik, 1983a; Rüdinger, 2006).

A brief introduction to fractional calculus, especially for fractional derivative, is given in this

section.
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1.4.1 Historical background

The origins of fractional calculus can be traced to the personal communication between Leibniz

and de L’Hôpital in 1695, wherein the concept of a non-integer order derivative was discussed.

Subsequently, several mathematicians such as Fourier, Laplace, Lacroix, and Euler also made

contributions to the field during the first systematic study stage. Contributions to the definition

of the fractional calculus up to the end of nineteenth century were made by mathematicians,

including Liouville, Riemannn, Grunwald and Letnikov (as discussed in Ross, 1977). However,

at that time fractional calculus was mainly considered as a purely mathematical tool without a

clear geometric and physical interpretation.

In 1921, Nutting used a power-law time function with fractional order to model stress relaxation

in materials based on experiment data (Nutting, 1921). This work marked the beginning of ap-

plying fractional calculus to describe the constitutive behavior of viscoelastic media, which was

further explored in Gemant, 1936; Bosworth, 1946; Blair and Caffyn, 1949. In this setting,

Bagley and Torvik firstly provided the physical interpretation of fractional calculus for the vis-

coelastic phenomenon (e.g. Bagley and Torvik, 1983a). Caputo introduced a new definition of

fractional operators that offered advantages over previous definitions (Caputo, 1966, 1967) and

the first monograph on the subject was completed in 1974 (Oldham and Spanier, 1974). Since

then, fractional calculus has become a topic of particular interest, with significant breakthroughs

documented in the literature over the past 50 years (e.g. Miller and Ross, 1993; Podlubny, 1999;

Hilfer, 2000; Sabatier et al., 2007; Dalir and Bashour, 2010; Baleanu et al., 2012).

Three fundamental definitions of fractional derivatives are presented below. The first defini-

tion pertains to the discrete form of the α-order Grunwald-Letnikov fractional derivative for a

variable x,

Dα
0,tx(t) = lim

N→∞

(
t

N

)−α N−1∑
j=0

Γ(j − α)
Γ(−α)Γ(j + 1)x(t− jt/N), (1.1)

where α ∈ R is the fractional order; t, j and N represents the time and time step and the total

number of time steps, respectively; Γ(·) denotes the Gamma function, and t/N is incremental

time step. Secondly, the Riemann-Liouvile representation is given by,

Dα
0,tx(t) = 1

Γ(n− α)
dn

dtn
∫ t

0

x(τ)
(t− τ)α−n+1 dτ, (1.2)
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where n is an integer for which n − 1 ≤ α < n and τ denotes the time lag. Then, the Caputo

representation is defined as

Dα
0,tx(t) = 1

Γ(n− α)

∫ t

0

x(n)(τ)
(t− τ)α−n+1 dτ, (1.3)

where x(n)(τ) denotes the n-order derivative of x. Note, in passing, that when 0 < α < 1, the

Caputo definition reduces to

Dα
0,tx(t) = 1

Γ(1 − α)

∫ t

0

ẋ(τ)
(t− τ)α

dτ (1.4)

From these definitions, it is evident that fractional derivatives take into account the past state

of a system. Contrasting these definitions, it can be observed that the Grunwald representation

provides a discrete version, whereas the remaining two definitions involve an integral function

with a time lag τ . In addition, compared to Caputo’s representation, Riemann-Liouville’s defi-

nition cannot be utilized in the Laplace transformation and its deviation to an arbitrary constant

is not zero, which is contrary to common sense. Therefore, Caputo’s definition is more practical

in engineering, and for this study, the definition in Eq. (1.4) will be employed.

The physical interpretation of integer-order derivatives and integrals is clear. In general, a func-

tion x(t) represents the displacement of an object, with its first derivative ẋ(t) corresponding

to velocity and the second derivative ẍ(t) denoting acceleration. However, fractional calculus

stems from a purely mathematical viewpoint and its physical interpretation is rather left unex-

plored in the literature. This limitation is probably due to that it has no obvious geometrical

meaning. In the last decades, experiments via creep and relaxation tests have demonstrated that

the viscoelastic behavior of various materials can be more accurately described by fractional

derivatives (Podlubny, 1999; Di Paola et al., 2011). Specifically, viscoelastic materials exhibit

a unique combination of properties of solids (elasticity) and liquids (viscosity). This results in

materials that possess properties, such as the memory, which states the materials exhibit time-

dependent strain. Fractional derivative modeling with the integral convolution operator can

reflect the memory effect and frequency-dependent viscoelastic damping (e.g. Gorenflo et al.,

2002; Mainardi, 1996; Koeller, 1984).
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Fractional calculus has emerged as a powerful tool with diverse applications in various fields

of physics and engineering, including modern economics (e.g. Tarasov, 2019), modeling vis-

coelastic behavior of polymer materials (e.g. Bagley and Torvik, 1983a; Sasso et al., 2011),

non-local elasticity (e.g. Paola and Zingales, 2008; Failla et al., 2010; Failla et al., 2013), diffu-

sion fluid mechanics problems (e.g. Kulish and Lage, 2002), biophysical systems (e.g. Hilfer,

2000). In the rapidly developing field of structural and mechanical engineering, in particular,

several research efforts pertaining to seismic isolation and vibration control applications have

demonstrated the successful use of fractional derivatives to model the behavior of fluid or solid

viscoelastic dampers (e.g. Makris et al., 1990; Makris and Constantinou, 1992; Makris et al.,

1993; Koh and Kelly, 1990; Papoulia and Kelly, 1997; Hwang and Wang, 1998; Lee and Tsai,

1994; Shen and Soong, 1995; Rüdinger, 2006; Di Matteo et al., 2014; Di Matteo et al., 2015).

1.4.2 System response determination: current solution treatments

The first attempt to develop response determination frameworks for dynamical systems with

fractional derivative elements pertains to deterministic cases. The developed methods include

Laplace transforms (e.g. Bagley and Torvik, 1983b, 1985), Fourier transforms (e.g. Gaul et al.,

1989), numerical methods (e.g. Koh and Kelly, 1990; Yuan and Agrawal, 2002), eigenvector

expansion (e.g. Suarez and Shokooh, 1997; Rossikhin and Shitikova, 2006), the averaging

method (e.g. Wahi and Chatterjee, 2004; Shen et al., 2012), Adomian decomposition (e.g.

Pálfalvi, 2010) and harmonic balance method (e.g. Rossikhin and Shitikova, 2000; Leung and

Guo, 2011). The reader is referred to Padovan and Sawicki, 1998; Drăgănescu, 2006; Saha Ray

et al., 2005 for additional information on the different methods.

A more comprehensive and thorough understanding of structural performance can be obtained

by system analysis in stochastic dynamics, in comparison to the deterministic counterparts.

Thus, there is a need to extend the aforementioned deterministic framework to determine the

response of systems endowed with fractional derivative elements subject to stochastic excita-

tions.arises. First, several MCS or numerical methodologies have been proposed to address

the problem over the last decades. Specifically, Spanos and Zeldin, 1997 introduced abstract

state-space representations to determine the response of such systems subject to stationary exci-
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tation. The time domain techniques have also been developed by using mathematical tools, such

as the eigenvector expansion method and the Laplace-transform-based technique (e.g. Agrawal,

1999, 2002; Agrawal, 2001). In addition, Kun et al., 2003 proposed a Fourier-transform-based

technique to obtain Duhamel integral-type expression for this aim.

However, the MCS or numerical methods require significant computational time to solve such

systems, due to the numerical solution of the convolution integral associated with the fractional

derivative operator and complex nonlinearity. Analytical or approximation techniques can serve

as a remedy. Huang and Jin, 2009 developed a stochastic averaging method to analyze strongly

nonlinear systems with light damping and fractional derivative elements. Due to the versa-

tility of the statistical linearization and the accuracy of stochastic averaging method, several

schemes, based on the combination of these two methods, have been successfully developed

for determining the response statistics of nonlinear systems with fractional derivative elements.

In detail, Kougioumtzoglou and Spanos, 2016 proposed a harmonic wavelet based approximate

technique for determining the response evolutionary power spectrum. Galerkin scheme-based

approaches were developed to determine the survival probability and the first-passage probabil-

ity of such nonlinear/hysteretic systems (Spanos et al., 2016; Di Matteo et al., 2018). Fragkoulis

et al., 2019b developed a framework to approximate the response statistics of nonlinear systems

with fractional derivative elements subject to non-stationary excitation. Then, Fragkoulis and

Kougioumtzoglou extended their previous work to estimate the survival probability (Fragkoulis

and Kougioumtzoglou, 2023). The interested reader is also referred to Chen and Zhu, 2009;

Chen et al., 2013; Zhang et al., 2021; Sun and Yang, 2020; Xiao et al., 2022; Luo et al., 2022,

2023; Fragkoulis et al., 2023, for additional information on this topic.

The focus of this thesis is to develop novel methodologies for engineers to apply the subject

of stochastic dynamics and fractional calculus in practice, particularly in earthquake structural

engineering, where more accurate system modeling with fractional derivative elements for vis-

coelastic materials is needed. In this context, this thesis aims to develop a novel approximate

framework for the estimation of the peak response and the analysis of incremental dynamics

analysis of nonlinear structural systems with fractional derivative elements subject to stochastic

excitations compatible with a given seismic design spectrum. This framework builds upon the

methodology proposed in Fragkoulis et al., 2019b and takes into account a comprehensive un-
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derstanding of the controlled structural performance, aligning with the seismic design spectrum

specified in current codes.

1.5 System subject to combined stochastic and deterministic

excitation

1.5.1 Diverse engineering applications

Previous research in the field of random vibration mainly focuses on the response determination

of stochastically excited nonlinear systems. However, many structural or mechanical systems in

engineering practice potentially operate under more complicated excitation conditions, which

are often encountered a combination of stochastic and deterministic excitation. For instance,

in the case of energy harvesting devices with structural monitoring sensors, the deterministic

excitation comes from the primary modes of the monitored structures, while the stochastic

excitation arises from factors such as tire-road interaction or footfalls (e.g. Green et al., 2013;

Zuo and Zhang, 2013; Dai and Harne, 2018). Similarly, systems subject to combined stochastic

and deterministic excitations can also be found in applications pertaining to wind turbine blades

vibration under turbulent flow (e.g. Namachchivaya, 1991; Zhu and Wu, 2004; Megerle et al.,

2013), nonlinear vibration of beams and plates (e.g. Spanos and Malara, 2020), vibration of

gear systems (e.g. Yang, 2013; Fang et al., 2018; Zhang and Spanos, 2020b) and ship roll

motion (e.g. Ren et al., 2019).

1.5.2 System response determination: current solution treatments

Due to the nonlinear nature of the systems, the superposition principle cannot be applied, mean-

ing that the response of such systems cannot be treated separately as a deterministic and a

stochastic part and then simply added together. Various approximate analytical techniques have

been developed over the last decades to address this problem.

In detail, focusing, first, on the study of oscillators subject to combined deterministic and

stochastic excitations, a technique combining harmonic balance and stochastic averaging meth-
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ods was developed in Haiwu et al., 2001 to determine the response of the Duffing oscillator.

Then, the stochastic averaging method was utilized to analyze nonlinear oscillators subject to

combined harmonic and white-noise excitations (Huang et al., 2000) and was later extended to

bound the first-passage failure problem (Zhu and Wu, 2004). Further, the stochastic averaging

method was also extended to treat the nonlinear oscillator with fractional derivative damping

for determining the first passage problem (Chen and Zhu, 2009) and stochastic jump and bi-

furcation problem (Chen and Zhu, 2011). Moreover, Anh and his co-workers approached the

problem of Duffing and Van der Pol nonlinear oscillators by resorting to a combination of aver-

aging and equivalent linearization methods (Anh and Hieu, 2012; Anh et al., 2014). In addition,

Zhu and Guo, 2015 employed a mix of harmonic balance method and Gaussian closure method

to investigate the response of a Duffing oscillator under combined harmonic and random excita-

tions. In a separate study, Kong and his co-workers utilized the harmonic balance and statistical

linearization method to treat the hysteretic system with fractional derivative elements (Kong

et al., 2022b), while Wei et al., 2021 employed a combination of the weighted-average method,

stochastic averaging, and finite difference method to determine stationary responses and bifur-

cations for a nonlinear Markov jump system.

In 2019, the first study of nonlinear MDOF systems subject to combined deterministic and

stochastic excitation was conducted by Spanos and his co-workers, wherein a novel technique

was developed to address this issue by utilizing harmonic balance and statistical linearization

methods(Spanos et al., 2019). Alternatively, this problem is also addressed by combining har-

monic averaging and statistical linearization methods (Zhang and Spanos, 2020a). Further, the

framework was extended to treat the classical Bouc-Wen hysteretic MODF systems (Kong and

Spanos, 2021).

1.5.3 Aims and objectives

The techniques for systems under combined deterministic and stochastic excitations in section

1.5.2 concentrate on conventionally modeled nonlinear systems. To the best of the author’s

knowledge, almost no techniques are proposed for nonlinear systems with singular matrices. In

this thesis, as discussed in section 1.3, singular matrices are prevalent in diverse applications,
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such as redundant coordinates modeling and systems modeling with additional constraint equa-

tion. Given the practical scenario of systems experiencing combined deterministic and stochas-

tic excitations, the need of investigation of nonlinear systems with singular matrices under such

excitations arises.

All techniques mentioned above focus primarily on nonlinear systems subject to combined de-

terministic and stochastic excitation of a stationary kind. However, due to the increasing de-

mand for more accurate modeling of stochastic excitation in nature, researchers have turned

their attention towards modeling stochastic processes describing excitations met in nature, ex-

hibiting non-stationary characteristics (e.g. Mitseas et al., 2014c). Thus, the study of nonlinear

systems subject to combined deterministic and non-stationary stochastic excitations naturally

comes into the sight of researchers. Kong and co-workers in Han et al., 2022; Kong et al.,

2022a developed a statistical linearization based framework combined with Lyapunov-like dif-

ferential equations to address this issue. However, this framework is limited to conventionally

modeled nonlinear systems and can not be applied to the nonlinear systems with singular ma-

trices. Thus, this thesis also aims to develop a technique to determine the response statistics

for nonlinear systems with singular matrices under combined deterministic and non-stationary

excitations.

Further, the proposed techniques have also been utilized in the applications of energy harvester

devices, considering its application to combined excitation in section 1.5 and its application in

singular matrices modeling for the system consisting of mechanical and electricity sub-systems

discussed in section 1.3.

1.6 Design Spectrum Analysis

1.6.1 Importance of inelastic seismic design

Considering the significant economic losses and fatalities resulting from structure collapses

during earthquakes, the topic of seismic resistance of structures is of paramount importance in

structural engineering. Current aseismic codes of practice for structures allow engineers to use
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the Uniform Hazard Spectrum (UHS) to evaluate the action of structures under different levels

of intensity of ground motions (e.g. CEN, 2004). The UHS is derived in a probabilistic and

empiricism manner by considering the peak response of linear viscously damped single-degree-

of-freedom (SDOF) oscillators with different natural frequencies that exceed a pre-specified

probability under a variety of ground motions, for a nominal critical viscous damping ratio

(e.g. Chopra, 2007). It is a linear elastic response spectrum. However, in reality, structures

are expected to exhibit ductile behavior under severe earthquakes, to achieve the goal of eco-

nomically efficient design. This leads to the use of elastic response spectra to estimate inelastic

displacements of structures.

1.6.2 Inelastic response determination: current solution treatments

A representative technique for determining the inelastic seismic response determination of

structures involves performing nonlinear response history analysis (NRHA) for a majority of

seismic acceleration time-histories. Specifically, seismic acceleration time histories are first

selected from large databases with subjective preference and expertise and/or artificially gen-

erated according to the criteria whose average design spectrum matches the target UHS (e.g.

Katsanos et al., 2010). These seismic accelerations should then be further scaled and modi-

fied to ensure the desired compatibility with the given UHS; the interested reader is referred to

literature (e.g. Grigoriu, 2011; Haselton et al., 2012). Further, although current codes enable

engineers to determine system response with a minimum number of ground motions, a number

of ground motions are still needed to reduce the diversity and deviation of the peak response.

Therefore, the NRHA for structures subject to seismic accelerations should be conducted in an

MCS manner. In this way, both the requirements of efficient numerical methods of NRHA for

complex structures and a amount of seismic accelerations render the technique computationally

intensive.

In this setting, current seismic codes (e.g. Eurocode 8) favor the simplified methods for inelastic

seismic design to reduce the computation cost. These methods estimate inelastic deformation

during strong earthquake ground motions by using strength reduction factors R. These fac-

tors represent the ratio of elastic strength demand to inelastic strength demand (e.g. Miranda,
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1993). The inelastic strength demand is estimated by the yield strength to ensure the ductility

ratio demand µ, while the ductility ratio demand µ is the ratio of the peak inelastic relative dis-

placement to its yield displacement. Taking into account factors such as system period T , soil

conditions at the site, and the ductility demand, many studies have been conducted to build the

R−µ−T relationship, mainly obtained by numerical integration of inelastic viscously damped

oscillators for a large ensemble of ground motions (e.g. Mahin and Bertero, 1981; Miranda,

1993, 2000; Borzi et al., 2001; Miranda and Ruiz-García, 2002; Chopra and Chintanapakdee,

2004; Chopra, 2007; Karakostas et al., 2007; Silva et al., 2023). The R − µ − T relationship

then helps to construct the inelastic seismic design spectra (e.g. Chopra and Chintanapakdee,

2004). However, due to the diversity of nonlinear/hysterestic characteristics, inherent proper-

ties of ground motions and sites, such an indirect approach leads to misjudgments of the actual

building response (e.g. Liu et al., 2004).

Furthermore, stochastic dynamics remains complex and impractical for the majority of engi-

neers to apply in the design of structures, despite the importance of stochastic modeling for

ground motions. In this setting, the need arises to develop an approach that allows engineers

to determine the response statistics or reliability assessment of nonlinear structures compatible

with a given UHS in the field of random vibration. To this end, Giaralis and Spanos proposed a

stochastic dynamics-based framework to obtain the seismic demand estimation of bilinear hys-

teretic SDOF oscillators (Giaralis and Spanos, 2010). In addition, Mitseas et al., 2017; Mitseas

et al., 2018, 2019 proposed a novel statistical linearization-based framework to estimate the

peak inelastic response of MDOF systems subject to code-compliant seismic excitation. These

approaches are achieved without undertaking the NRHA method. This framework involves

several steps: (I) the derivation of a stationary stochastic power spectrum representing the sta-

tionary excitation process via a given design response spectrum for a special damping ratio in

code-compliant seismic structure design, (II) calculating effective linear properties (ELPs) for

each DOF by the statistical linearization and decoupling method, (III) renewing the excitation

spectrum by updating the damping ratios from the ELPs and repeating the steps (I) and (II) until

a good convergence for damping ratios, (IV) estimating the peak response by these final ELPs

in conjunction with the given UHS. Later, the framework was extended to model decomposi-

tion (Mitseas and Beer, 2019), fragility analysis (Mitseas and Beer, 2020), and first-excursion



CHAPTER 1. INTRODUCTION 21

stochastic incremental dynamical analysis (Mitseas and Beer, 2021). Note, in passing, that the

excitation acting on the structures in the framework is derived from a given response spectrum

with a desired compatibility.

Nevertheless, previous literature (Giaralis and Spanos, 2010; Mitseas et al., 2018) has only fo-

cus on the strong part of the seismic excitation, thus, a stationary stochastic consideration was

made. With the more accurate description of natural phenomena, the ground motions are mod-

elled as a non-stationary process (e.g. Conte et al., 1992; Deodatis, 1996; Spanos et al., 2005;

Cacciola, 2010; Yeh and Wen, 1990; Der Kiureghian and Crempien, 1989; Barbato and Conte,

2008). The non-stationary characteristic results from the variation of the intensity and frequency

content of the ground motion with time. The intensity increases rapidly to a maximum in a few

seconds and decreases slowly until it vanishes to background noise, and the frequency content

shifts to lower frequencies with time increasing (e.g. Wang et al., 2002). In this setting, the

need for transient modeling of earthquake ground motions arises. In structural engineering, to

facilitate engineers in practice for the design of structures, the seismic excitation should be com-

patible with the given UHS in current codes according to certain spectrum-compatible criteria.

This is achieved by Cacciola, who proposed a technique for generating spectrum compatible

fully non-stationary earthquakes with consideration of the non-stationary frequency content of

seismic assessment (Cacciola, 2010).

1.6.3 Incremental dynamical analysis methodology

The concept of performance-based engineering (PBE) is introduced to predict the performance

of structures throughout their lifetime in a more intelligent and informed manner by taking

into account uncertainties (e.g. Krawinkler, 1999; Barbato et al., 2013). This concept consists

of four stages in earthquake engineering, namely hazard analysis, structural analysis, damage

analysis, and loss analysis (Porter, 2003). Specifically, the excitations are parameterized by

intensity measures (IMs) that are appropriate for different hazard levels, such as peak ground

acceleration and spectral acceleration. Through structural analysis, the system response param-

eters, such as inter-story drift, are obtained and represented by Engineering Demand Parameters

(EDPs). Then, the EDPs are used in a set of fragility functions to model the probability of dif-
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ferent levels of structural damage. Further, the relationship between IMs and EDPs, along with

damage measures, is used to estimate decision variables, such as fatalities, financial loss risk,

and life cycle costs. The reader interested in PBE in earthquake engineering is referred to the

literature (e.g. Zareian, 2006; Krawinkler and Miranda, 2004; Günay and Mosalam, 2013;

Barbato and Tubaldi, 2013; Tubaldi et al., 2014; Mitseas et al., 2016a, 2014a,b, 2015).

Incremental dynamical analysis (IDA) is a widely recognized method of PBE in earthquake

engineering that formulates the relationship between IMs and EDPs (e.g. Vamvatsikos and Cor-

nell, 2002; Vamvatsikos and Fragiadakis, 2010). Specifically, IDA evaluates the performance

of dynamical systems by subjecting them to various ground motions with different levels of

seismic intensity in an MCS context. NRHA is performed for each and every scaled ground

motion to obtain the structural response parameters. Thus, the IDA curves are achieved with

the relationship between each level of seismic intensity and the corresponding response mag-

nitude. However, the task of performing NRHA in the MCS fashion for each and every scaled

ground motion is computationally demanding. Several efforts have been made to reduce the

cost of IDA in MCS context, such as parallel methods (Vamvatsikos, 2011) and the efficient

Latin hypercube sampling method (Vamvatsikos, 2014). In addition, IDA is also involved in the

selection and scaling of ground motion accelerations. The selection of accelerations increases

the computational cost to achieve sufficient accuracy with a large number of data sets, while the

scaling acceleration remains a highly controversial issue (e.g. Grigoriu, 2011).

Alternatively, dos Santos et al., 2016 proposed an efficient stochastic IDA methodology for

nonlinear/hysteretic oscillators by utilizing the stochastic averaging and statistical linearization

method. A novel IDA surface is determined by utilizing the concepts of the nonlinear stochastic

dynamics in a semi-analytical way, as opposed to a computationally expensive MCS method.

1.6.4 Aims and objectives

Considering the limitations of current methods for design spectrum analysis and the broad range

of applications for nonlinear systems with fractional derivative elements discussed in section

1.4, this thesis aims to establish a framework for estimating the peak inelastic response of

SDOF hysteretic systems with fractional derivative elements subject to excitation compatible
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with elastic response UHS. In addition, due to the widely acknowledged IDA for predicting the

performance of structures, the method is extended to perform stochastic IDA for the hysteretic

SDOF systems with fractional derivative elements subject to excitation compatible with the

elastic response UHS.

1.7 First excursion probability of structural dynamics sys-

tems: imprecise probability

The inherent randomness of many phenomena leads to their characterization as stochastic pro-

cesses. This inherent randomness is defined as aleatory uncertainty. However, due to a lack

of knowledge, incomplete or even conflicting information and other epistemic sources of un-

certainty (e.g. Smith, 2013), the stochastic process modeling can not be precisely described.

This leads to the epistemic uncertainty. Thus, the aleatory uncertainty combined with epistemic

uncertainty in the stochastic process hinders the application of uncertainty propagation of sys-

tems by the classical stochastic dynamics techniques. In this context, imprecise probability (e.g.

Beer et al., 2013) may offer an appropriate tool to address this issue. This section, first, intro-

duces the source of imprecise probability, followed by the current solution techniques. Then,

the imprecise probability stochastic process is illustrated. Finally, the aim of this thesis, i.e.,

bounding the first excursion probability of nonlinear structures subject to imprecise stochastic

excitations, is presented.

1.7.1 Sources of imprecise probability

Uncertainty can generally be categorized into two types, namely aleatory uncertainty and epis-

temic uncertainty (e.g. Smith, 2013). These uncertainties are commonly encountered in the field

of structural dynamics due to the inherent randomness of a natural phenomenon and structural

properties, such as wind and earthquakes, as well as a lack of knowledge or incomplete informa-

tion (e.g. Smith, 2013; Beer et al., 2013). Natural phenomena are too complex to be precisely

described, and various techniques have been developed to quantify them, such as power spec-

trum density. For instance, the Clough-Penzien spectrum (Clough and Penzien, 1975) and the
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Davenport spectrum (Davenport, 1961) are commonly employed as seismic and wind models,

respectively. Aleatory uncertainty may also arise in structural materials due to natural varia-

tions in the raw materials or the manufacturing process. For instance, the strength of concrete

is varied from the mix design, the water-cement ratio, the curing process, and the quality of the

raw materials, resulting in the uncertain in material properties. To address the issues of aleatory

uncertainties, various frameworks have been developed based on the probability theory (e.g.

Vanmarcke and Grigoriu, 1983; Shinozuka and Sato, 1967). However, sufficient information is

needed to determine the parameters in the probabilistic models for simulating these uncertain-

ties in time and space. in practice, the information may be unavailable or incomplete due to

limited observations or high experimental costs. This leads to the epistemic uncertainty in the

stochastic process model.

In this context, subjective probability density function approaches can serve as a remedy to

model epistemic uncertainty in cases of subjective assumptions with sufficient justification.

However, in many cases, this is considered as a questionable and problematic technique since

it uses unjustified probability density functions to compensate for information limitations and

incompleteness, leading to a false sense of reliability assessment (e.g. Flage et al., 2018).

In engineering, formulating the desired mathematical models to accurately model phenomena

without ignoring important information and/or introducing unwarranted assumptions remains a

challenge (e.g. Beer et al., 2013).

Further, certain set theories, such as intervals and fuzzy sets (e.g. Moore, 1966; Alefeld and

Herzberger, 2012; Zadeh, 1965; Zadeh, 1978), can serve as appropriate mathematical models

for imprecise variables, as noted in the literature (e.g. Möller and Beer, 2008; Beer et al.,

2013). In general, set-theoretic models used to describe the imprecise parameters in probability

models, in conjunction with the probability models themselves, serve to fully account for the

inherent randomness of phenomena and the lack of knowledge (e.g. Beer et al., 2013). Thus,

the concept of imprecise probability is introduced to deal with the mix of probability model

and imprecise parameters, wherein the approaches include Bayesian methods (e.g. Bi et al.,

2019), random sets approaches (e.g. Tonon and Bernardini, 1998), sets of probability measures

(e.g. Fetz and Oberguggenberger, 2004), evidence theory-based methods (e.g. Shafer, 2016)

and fuzzy stochastic methods (e.g. Beer et al., 2011). The interested reader is referred to Beer
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et al., 2013; Helton and Oberkampf, 2004; Fellin et al., 2005; Augustin et al., 2014; Bradley,

2019; Faes et al., 2021.

The set-theoretic models include intervals (e.g. Moore, 1966; Alefeld and Herzberger, 2012),

Bayesian sets (e.g. Zimmermann, 2011), rough sets (e.g. Pawlak, 1991), clouds and convex

models (e.g. Neumaier, 2004). Specifically, interval imprecise probability theory describes

a hybrid of uncertainties where the parameter value of random tools, such as power density

spectrum or probability density function, falls within a range of upper and lower bounds without

any other additional information. In this setting, the interval probability assumption is necessary

for the probability model with insufficient information (e.g. Sun et al., 2018). In interval

imprecise probability analysis, the interval serves as the input and then is translated to the

interval output without any subjective assumption. Interval imprecise probability is considered

in this thesis.

1.7.2 Uncertainty propagation: current imprecise probability-based so-
lution framework

Uncertainty propagation for the combination of aleatory and epistemic uncertainty is usually

achieved in a double loop, where the inner loop deals with the aleatory uncertainty and the outer

loop deals with the epistemic uncertainty (e.g. Moens and Vandepitte, 2004). The solution of

the double loop defines an optimization problem that can be solved using the interval Monte

Carlo method (e.g. Zhang et al., 2010) or the interval quasi-Monte Carlo method (e.g. Zhang

et al., 2013). However, fully accurate modeling of epistemic uncertainty requires a sufficient

number of values to be sampled in the interval, and the failure probability of structures must

be calculated for each sample, which is computationally expensive. Furthermore, despite the

complexity and high cost of the failure probability computation, probability estimation in the

inner loop can lead to non-smooth behavior of the objective function, making the computation

of the bounds of the reliability problem intractable (Faes et al., 2021).

In this setting, some decoupling methods, such as the importance sampling-based method (e.g.

Wei et al., 2019a,b) and the advanced line sampling method (e.g. de Angelis et al., 2015),

have been developed to efficiently handle the double loop problem. Another computationally
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efficient technique is the surrogate modeling method, which uses supervised learning to train

a surrogate model. These approaches include models such as the polynomial chaos expansion

model (e.g. Liu et al., 2020), the Kriging model (e.g. Lelièvre et al., 2018; Ling et al., 2019;

Schöbi and Sudret, 2017), the high dimensional model representation (e.g. Wei et al., 2019a),

and the interval predictor model (e.g. Crespo et al., 2016). These are "black box" techniques,

and the accuracy of the failure probability bounds is ensured by the convexity assumption of the

training and the rigorous framework of scenario optimization; the interested reader is referred

to the review paper (Faes et al., 2021).

In particular, research on stochastic processes with imprecise probabilities has only recently

been initiated. Gao et al., 2018 proposed a framework for assessing the reliability of structures

with imprecise random and interval fields. In Faes and Moens, 2019, an imprecise random

field analysis was presented, including an interval of correlation length of the auto-correlation

function. Faes et al., 2020 proposed an operator norm based framework to bound the first excur-

sion probability of linear systems under interval stochastic loads. Faes et al., 2022 developed

a distribution-free p-boxes method for assessing the system reliability under imprecise non-

Gaussian stochastic process. Alternatively, the response and reliability assessment of systems

subject to stochastic processes with missing data are investigated in Comerford et al., 2017;

Zhang et al., 2017; Pasparakis et al., 2022d.

1.7.3 Aims and objectives

As discussed, the field of stochastic dynamics faces the challenge of dealing with imprecise

probability problems. However, current techniques for imprecise probability quantification are

computationally demanding. Additionally, the research on imprecise probability stochastic pro-

cesses is just recently initiated with less corresponding research. Thus, the need for a solution

to the first excursion problem of dynamic structures arises when dealing with imprecise prob-

ability stochastic processes. Recently, Faes et al., 2020 proposed a technique to address this

challenge. Nevertheless, it is important to note that the current operator norm-based methods

are only suitable for linear systems and may not be suitable for various engineering applications.

In this context, this thesis aims to bound the first excursion probability of nonlinear dynamical
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systems subject to imprecise stochastic loading.
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1.8 Contributions

This thesis focuses on analyzing and assessing nonlinear stochastic structural dynamical sys-

tems. It is still a challenge to efficiently determine the response statistics and estimate the

failure probability of nonlinear stochastic dynamical systems, especially for those with singular

parameter matrices and constraints, as well as those endowed with fractional derivative ele-

ments. This thesis covers three key topics in stochastic dynamics. The first topic deals with

the determination of response statistics of nonlinear systems with singular matrices subject to

combined deterministic and stochastic excitations. The second topic relates to efficiently de-

termining the peak response of nonlinear structural systems with fractional derivative elements

subject to excitations compatible with a given seismic design spectrum. The third one focuses

on the bounds on the first-excursion probability of nonlinear dynamical systems under imprecise

Gaussian loads.

1.8.1 Stochastic response determination of nonlinear systems with singu-
lar parameter matrices and constraints

Firstly, a method is proposed for determining the response of nonlinear systems with singular

matrices subject to deterministic and stationary stochastic excitations simultaneously. This is

driven by the presence of singular matrices in nonlinear system modeling due to various factors

such as considering a redundant modeling of the system’s governing equations or incorporating

additional constraint equations. In addition, it is common for nonlinear structural and mechani-

cal systems to operate under combined deterministic and stochastic excitations simultaneously.

The proposed methodology relies on the combination of the statistical linearization and the

harmonic balance methods, and also uses elements of the generalized inverse matrix theory to

determine the response statistics of nonlinear systems with singular matrices. Specifically, the

harmonic balance method is extended to handle the deterministic component of the response of

nonlinear systems with singular matrices. The stochastic component response is achieved by

using the statistical linearization method with averaging treatment. Subsequently, an iteration

scheme is developed to break the loop of the two coupled deterministic and stochastic systems.

The methodology and results can be found in Ni et al., 2021; Mitseas et al., 2021.
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Then, driven by the need to model in a more accurate way for the excitations in nature, the

problem of determining non-stationary response statistics of structural systems arises. To ad-

dress this issue, a methodology for determining the response statistics of nonlinear systems with

singular matrices subject to combined deterministic and non-stationary stochastic excitations is

considered. Specifically, a matrix differential equation is formulated by combining a general-

ized statistical linearization methodology and a state space formulation to analyze the nonlinear

subsystem with singular matrices under non-stationary stochastic excitation. The methodology

is applied to cases of combined deterministic and modulated white noise excitations, as well

as to cases of combined deterministic and modulated filter noise excitation. The results are

presented in Ni et al., 2023a.

The applications of the two proposed techniques have been demonstrated by considering the

MDOF nonlinear structural system with singular matrices due to the redundant coordinates

modeling. This is driven by the flexibility and cost-effectivity of system modeling with addi-

tional DOFs, especially for the complex systems with many DOFs. In addition, the cases of a

vibration energy harvester device subject to considered excitation are presented. In this context,

the electrical system in the energy harvester device is considered as a constraint equation for the

system. The relevant results for nonlinear energy harvesting device under the case of combined

deterministic and stationary loads, and the case of combined deterministic and non-stationary

loads have been published in Ni et al., 2022a and in Ni et al., 2023a, respectively.

1.8.2 Code-compliant stochastic structural aseismic analysis

An approximate method is developed to efficiently estimate the peak response of nonlinear

structural systems with fractional derivative elements subject to seismic excitations compat-

ible with a given design spectrum, without undertaking the nonlinear time history analysis.

The seismic excitations in the method are represented by an evolutionary power spectrum in

a stochastic sense, which is compatible with the given design spectrum. This avoids the com-

putational demand and bias of selecting and scaling the ground motions. Further, due to the

non-stationary characteristics of excitations, the time-variant equivalent stiffness and damping

elements are obtained by utilizing the combination of statistical linearization and stochastic av-
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eraging method, which is more effective compared to the time-invariant linearization method in

the stationary case. This leads to more accurate estimates in ensuing analysis. Then, the peak re-

sponse displacement is approximated by using the global minimum and the global maximum of

the time-variant stiffness and damping elements, in conjunction with the given design spectrum,

which makes it accessible to engineers. In addition, for more accurate modeling of viscoelastic

material in vibration control, the nonlinear system endowed with fractional derivative elements

in the governing equations of motion is considered. Thus, the framework takes into account

the comprehensive and thorough understanding of controlled structural performance and aligns

with the seismic design spectrum specified in current codes. These results have been published

in Kougioumtzoglou et al., 2022.

Further, a stochastic incremental dynamics analysis method is proposed for nonlinear systems

with fractional derivative elements. The proposed method facilitates engineers in practice due to

the code-compatible stochastic seismic modeling. The probability density function of response

displacement is generated efficiently and comprehensively, based on the stochastic averaging

and statistical linearization methods. Especially, a stochastic incremental dynamical analysis

surface is obtained, resulting in more reliable response statistics in comparison with the tradi-

tional incremental dynamical analysis curves. In addition, a significant property refers to the

derivation of response evolutionary power spectrum function for spectral seismic accelerations.

These results have been accepted in Ni et al., 2023b.

1.8.3 Imprecise probability of stochastic dynamical structures

An operator norm-based statistical linearization technique is proposed for bounding the first ex-

cursion probability of nonlinear systems under imprecise stochastic loading. This typically in-

volves a nested double-loop problem, where the propagation of aleatory uncertainty for stochas-

tic loading must be performed for each realization of the epistemic parameters. This task is gen-

erally intractable, especially for nonlinear dynamical systems. These challenges are overcome

with a generalized operator norm framework based on the statistical linearization methodology.

The proposed scheme succeeds in breaking the double loop and determining the values of the

epistemic uncertain parameters that produce bounds on the probability of failure a priori. It can
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significantly reduce the computational burden and provide a reliable estimate of the probability

of failure. These results have been published in Ni et al., 2022b.



CHAPTER 1. INTRODUCTION 32

1.9 Organization of the thesis

This thesis comprises five chapters, followed by the list of published articles. It includes five

articles except for Chapter 1 and Chapter 8. Each article corresponds to the pertinent acticals.

Specifically, this thesis is organized as follows.

Chapter 1 serves as an introduction to the thesis and outlines the motivation and objectives of

the current research effort. Furthermore, the contributions and organization of thesis are also

briefly presented.

Chapter 2 focuses on the response statistics determination of nonlinear systems with singular

matrices subject to combined deterministic and stochastic excitations.

Chapter 3 proposes a technique for determining the response statistics of nonlinear systems with

singular matrices subject to combined deterministic and stochastic excitations of non-stationary

kind.

In Chapter 4 an application pertaining to the response determination of the vibration energy

harvesting devices subject to combined deterministic and stochastic excitations is showcased.

In Chapter 5, a novel approximate framework is proposed for estimating the peak response of

nonlinear systems with fractional derivative elements subject to stochastic seismic excitations,

compatible with a given design spectrum. In this chapter, the author’s contributions focus on

the methodology, software, writing - original draft, visualization.

In Chapter 6, a novel stochastic incremental dynamical analysis method is proposed for nonlin-

ear systems with fractional derivative elements under code-compliant seismic excitation.

Chapter 7 presents a generalized operator norm framework to bound the first excursion proba-

bility of nonlinear systems under imprecise stochastic excitations, this is attained by resorting

to the statistical linearization method.

In Chapter 8 the concluding remarks as well as some potential future research directions are

presented.
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Abstract: A new technique is proposed for determining the response of multi-degree-of-freedom

nonlinear systems with singular parameter matrices subject to combined stochastic and deter-

ministic excitations. Singular matrices in the governing equations of motion potentially account

for the presence of constraint equations in the system. Further, they also appear when a redun-

dant coordinates modeling is adopted to derive the equations of motion of complex multi-body

systems. In this regard, considering that the system is subject to both stochastic and determin-

istic excitations, its response also has two components, namely a deterministic and a stochastic

one. Therefore, employing first the harmonic balance method to treat the deterministic compo-

nent leads to an overdetermined system of equations, to be solved for computing the associated

coefficients. Then, the generalized statistical linearization method for deriving the stochastic

response of nonlinear systems with singular matrices, in conjunction with an averaging treat-

ment, are utilized to determine the stochastic component of the response. The validity of the

proposed technique is demonstrated by pertinent numerical examples.
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2.1 Introduction

Utilizing the minimum number of independent generalized coordinates constitutes the com-

monly followed practice for modeling the equations of motion of multi-degree-of-freedom

(MDOF) dynamical systems (e.g., Roberts and Spanos, 2003; Li and Chen, 2009). Clearly,

this is due to the symmetric and positive definite system parameter matrices appearing in the

governing equations of motion. These facilitate the development of efficient stochastic response

determination techniques, such as these based on the Wiener path integral (e.g., Petromichelakis

and Kougioumtzoglou, 2020), but also on recently developed efficacious sparse representa-

tions of the stochastic system response based on compressive sampling concepts and tools (e.g.,

Kougioumtzoglou et al., 2020). However, also taking into account the effort involved in the

modeling procedure, it can be argued that modeling based on the minimum number of coordi-

nates can be a rather daunting task. This especially applies for classes of complex multi-body

systems and/or systems subject to constraints (e.g., Udwadia and Kalaba, 1992; Udwadia and

Kalaba, 2001). In particular, depending on the number of bodies which constitute the system

under consideration, on the topology and nature of their connections (e.g., linear, nonlinear,

hysteretic), as well as on the presence of constraint equations, utilizing the minimum number

of coordinates/degrees-of-freedom (DOFs) can even become impractical. Moreover, it can be

argued that following the standard minimum number of DOFs-based formulation of the equa-

tions of motion in multi-body system modeling (instead of adopting a redundant DOFs one),

apart from providing the modeler with limited flexibility, it also relates to solution frameworks

of increased computational cost; see, indicatively, Udwadia and Phohomsiri, 2006; Feather-

stone, 1984; Schutte and Udwadia, 2011; Pappalardo and Guida, 2018b; Pappalardo and Guida,

2018a; Udwadia and Wanichanon, 2013; Pirrotta et al., 2019 for a more detailed discussion.

Further, it is worth noting that the degree of simplicity and the amount of effort required for

deriving the equations of motion are critical for assessing the performance of an applied solution

framework.



CHAPTER 2. RESEARCH ARTICLE 1: RESPONSE DETERMINATION OF
NONLINEAR SYSTEMS WITH SINGULAR MATRICES SUBJECT TO COMBINED
STOCHASTIC AND DETERMINISTIC EXCITATIONS 65

In this regard, an alternative approach has been developed for bypassing some of the previous

limitations, where the formulation of the governing equations of motion relies on adopting ad-

ditional dependent coordinates/DOFs (e.g., Udwadia and Kalaba, 2001; Udwadia and Phohom-

siri, 2006; Schutte and Udwadia, 2011). However, due to the dependence among the utilized

DOFs, singular matrices appear in the system equations of motion, rendering all standard sys-

tem analyses inapplicable. Therefore, it is necessary to develop new tools and techniques for

studying the behavior and assessing the reliability of engineering systems with singular param-

eter matrices in the governing equations of motion. The first steps towards this direction have

been recently made by resorting to the theory of generalized matrix inverses. In particular, the

Moore-Penrose (M-P) matrix inverses theory has been invoked to extend standard time- and

frequency-domain approaches of random vibration theory to account for linear and nonlinear

systems with singular matrices (Fragkoulis et al., 2016a; Fragkoulis et al., 2016b; Kougioumt-

zoglou et al., 2017; Pasparakis et al., 2021; Pirrotta et al., 2021); see also Refs. Fragkoulis et al.,

2015; Pantelous and Pirrotta, 2017; Pirrotta et al., 2019 for additional applications based on an

M-P matrix inverses framework.

The machinery of the M-P matrix inverses-based solution framework is further enhanced in

this paper by introducing a technique for determining the response of MDOF nonlinear systems

with singular parameter matrices subject to combined stochastic and deterministic excitations.

This is a rather substantial extension with applications, for instance, in the response determina-

tion of slender structures (e.g., wind turbines, submission towers, etc.), which are often subject

to stochastic wind loading as well as deterministic loading due to vortex-shedding (Davenport,

1995; Tessari et al., 2017). In such cases, depending on the complexity of the system under

consideration, adopting the herein proposed multi-body system modeling approach potentially

facilitates the derivation of its dynamics, and subsequently, of the system response determina-

tion. Further, the proposed approach can be used in vibration energy harvesting applications.

Specifically, it can be used in applications related to contemporary vibration energy harvesters

(VEHS) designed to operate in tandem with larger structures, such as bridges vibrating due to
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wind loads and harmonic loads caused by vehicles (Cai and Harne, 2020). In particular, when

the problem of combined VEHs is considered for maximizing the energy production (e.g., Lee

et al., 2019), a redundant DOFs modeling can be employed to facilitate the derivation of the

system dynamics.

The herein proposed technique can be construed as a generalization of a recently developed

framework for deriving the response of MDOF nonlinear systems subject to combined stochas-

tic and deterministic excitations (Spanos et al., 2019) to account for systems with singular

parameter matrices. In this regard, the harmonic balance method (e.g., Mickens, 2010; Krack

and Gross, 2019) and the recently derived statistical linearization methodology for systems with

singular matrices (Fragkoulis et al., 2016b; Kougioumtzoglou et al., 2017) are invoked to deter-

mine the response of systems exhibiting singular matrices, and subject to combined stochastic

and deterministic excitation. Specifically, considering the form of the excitation, first, it is

assumed that the corresponding system response is composed of a deterministic and a stochas-

tic part. Next, the harmonic balance method is employed to treat the deterministic response.

However, in contrast to the standard implementation of the method (i.e., Spanos et al., 2019),

an overdetermined system of equations (e.g., Lindfield and Penny, 2018) is constructed, to be

solved for computing the harmonic coefficients of the method. Therefore, a novel M-P matrix

inverses-based theoretical framework is introduced to solve the system, and thus, to determine

the associated harmonic coefficients (e.g., Ben-Israel and Greville, 2003; Campbell and Meyer,

2009). Then, the generalized statistical linearization methodology for systems with singular

matrices in conjunction with an averaging treatment are employed for treating the stochastic

component of the response. It is noted that the combination of the two methods (i.e., of the har-

monic balance and the statistical linearization) leads to a coupled system of algebraic equations,

which is solved iteratively and both the stochastic and the deterministic response components

are derived. Two numerical examples are used to demonstrate the validity of the proposed tech-

nique. Specifically, systems with mass, damping as well as stiffness nonlinearities of several

magnitudes are considered. The obtained results are compared and found in complete agree-
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ment with corresponding results derived by applying the standard approach in Spanos et al.,

2019.

2.2 Mathematical formulation

2.2.1 Nonlinear multi-degree-of-freedom Systems with Singular Parame-
ter Matrices

The matrix form of the equations of motion of an l-DOF nonlinear system, where x denotes an

l-dimensional dependent coordinates vector is given by

Mxẍ + Cxẋ + Kxx + Φx(x, ẋ, ẍ) = Qx(t), (2.1)

where Mx,Cx and Kx correspond to the l× l mass, damping and stiffness matrices of the sys-

tem. Further, Φx(x, ẋ, ẍ) denotes the l-dimensional vector of the system nonlinearities, which

depends on the displacement x and its first and second derivatives. Finally, Qx(t) represents

a zero-mean Gaussian stochastic excitation. Next, it is considered that the system of Eq. (2.1)

is subject to additional constraints of the form (Schutte and Udwadia, 2011; Fragkoulis et al.,

2016a)

A(x, ẋ, t)ẍ = b(x, ẋ, t), (2.2)

which, for simplicity, are expressed as Aẍ + Eẋ + Lx = F, with A,E,L and F denoting,

respectively, m× l matrices and an l-dimensional vector. Then, Eq. (2.1) is recast into

M̄xẍ + C̄xẋ + K̄xx + Φ̄x(x, ẋ, ẍ) = Q̄x(t). (2.3)
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In Eq. (2.3), M̄x, C̄x and K̄x denote the augmented (l + m) × l mass, damping and stiffness

matrices of the system, which are given by (Fragkoulis et al., 2016a)

M̄x =

(Il − A+A)Mx

A

 , C̄x =

(Il − A+A)Cx

E

 , K̄x =

(Il − A+A)Kx

L

 , (2.4)

whereas

Φ̄x =

(Il − A+A)Φx

0

 , Q̄x(t) =

(Il − A+A)Qx(t)

F

 (2.5)

are the augmented (l + m)-dimensional vectors of the system nonlinearities and stochastic

excitation, respectively. Finally, Il corresponds to the l× l identity matrix, and “+” denotes the

M-P matrix inverse operation (see Appendix I). A detailed derivation of Eqs. (2.3)-(2.5) can be

found in ibid.

2.2.2 Generalized Statistical Linearization Methodology for multi-degree-
of-freedom Systems with Singular Parameter Matrices

The statistical linearization methodology for solving approximately and efficiently nonlinear

stochastic differential equations (e.g., Roberts and Spanos, 2003; Socha, 2007), has been re-

cently extended and generalized to determine the response statistics of nonlinear dynamical

systems with singular parameter matrices (Fragkoulis et al., 2016b; Kougioumtzoglou et al.,

2017). A concise presentation of the generalized method is included in this section for com-

pleteness. The major objective of the methodology lies in replacing the originally given nonlin-

ear system with an equivalent linear one. This becomes feasible by minimizing, in some sense,

the error that is formed by the difference between the two systems. The rationale behind this

approach stems from that there are readily available closed form analytical expressions in time

and frequency domains for the response characterization of linear systems, which are used to

approximate the response of the original nonlinear system. The method is widely utilized in

diverse engineering applications due to its versatility in addressing a wide range of nonlinear
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behaviors, and also due to that it leads to closed-form expressions for determining the parameter

matrices of the equivalent linear system (e.g., Spanos and Evangelatos, 2010; Spanos and Kou-

gioumtzoglou, 2012; Fragkoulis et al., 2019; Mitseas and Beer, 2019; Pasparakis et al., 2021).

The interested reader is directed to Fragkoulis et al., 2016b and Kougioumtzoglou et al., 2017

for a detailed presentation of the method.

For the application of the generalized statistical linearization methodology, first, an equivalent

linear system to the nonlinear system defined in Eq. (2.3) is considered as

(M̄x + M̄e)ẍ + (C̄x + C̄e)ẋ + (K̄x + K̄e)x = Q̄x(t), (2.6)

where M̄e, C̄e and K̄e denote the augmented equivalent linear mass, damping and stiffness

(l +m) × l matrices. Then, the error

ε = Φ̄x(x, ẋ, ẍ) − M̄eẍ − C̄eẋ − K̄ex (2.7)

is defined as the difference between the nonlinear and the equivalent linear systems, and is

minimized in the mean square sense. Further, by adopting the standard Gaussian response

assumption (Roberts and Spanos, 2003) a linear set of equations is derived, whose solution

leads to the determination of the elements of the equivalent linear matrices. Thus, denoting by

meT
i∗ , ceT

i∗ and keT
i∗ the i-th row of M̄e, C̄e and K̄e, and utilizing the M-P matrix inverses theory

yields (Fragkoulis et al., 2016b)


keT

i∗

ceT
i∗

meT
i∗

 = E[x̂x̂T]+E[x̂x̂T]E


∂Φ̄x(i)

∂x

∂Φ̄x(i)
∂ẋ

∂Φ̄x(i)
∂ẍ

+ g(y), (2.8)

for i = 1, 2, . . . , l + m, where x̂ is the 3l-dimensional vector x̂T =
[
xs ẋs ẍs

]
, E[·] denotes

the expectation operator and “T” represents the matrix transpose operation. Further, g(y) is an
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arbitrary 3l-dimensional vector (see also Appendix I), which leads to a family of solutions for

the determination of the equivalent linear elements. Nevertheless, based on the adoption of the

mean square error minimization criterion, it has been proved in Fragkoulis et al., 2016b that

the solution obtained by setting the arbitrary term equal to zero is at least as good, as any other

solution that corresponds to a non-zero value for the arbitrary term.

Next, a frequency domain treatment is applied to derive the response statistics of the equivalent

system in Eq. (2.6). This is attained by resorting to the standard input-output relationship of

random vibration theory, which connects the power spectrum of the system response to the

corresponding excitation spectra. Specifically, the recently derived generalized input-output

relationship for systems with singular parameter matrices is employed (Kougioumtzoglou et

al., 2017)

Sx(ω) = αx(ω)SQ̄x(ω)αT∗
x (ω), (2.9)

where SQ̄x(ω) and Sx(ω) denote, respectively, the excitation and response power spectrum

matrices, and αx(ω) represents the frequency response function (FRF) matrix of the system.

Further, “∗” corresponds to the conjugate matrix operation. The FRF matrix is given by (Kou-

gioumtzoglou et al., 2017)

αx(ω) =
(
−ω2(M̄x + M̄e) + iω(C̄x + C̄e) + (K̄x + K̄e)

)+
. (2.10)

Finally, for the determination of the second order response statistics, Eq. (2.9) is used in con-

junction with

E[xxT] =
∫ ∞

−∞
Sx(ω)dω. (2.11)

2.2.3 Combined Harmonic Balance and Statistical Linearization Meth-
ods for MDOF Systems with Singular Parameter Matrices

In this section a new approach is proposed for determining the response of nonlinear systems

with singular matrices subject to stochastic and deterministic excitations. It consists of a combi-
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nation of the harmonic balance method, which is used for deriving the periodic solution of non-

linear differential equations (Krack and Gross, 2019; Mickens, 2010; Chatterjee, 2003) and the

generalized statistical linearization methodology (Fragkoulis et al., 2016b; Kougioumtzoglou

et al., 2017). The proposed approach can be construed as a generalization of the methodology

developed in Spanos et al., 2019 to account for systems with singular matrices; see also Kong

and Spanos, 2021 for an extension to nonlinear systems with hysteretic behavior. Further ap-

plications of systems subject to combined stochastic and deterministic excitations are found,

indicatively, in Anh and Hieu, 2012; Haiwu et al., 2001; Chen and Zhu, 2011; Megerle et al.,

2013; Spanos and Malara, 2020.

Generalized harmonic balance solution framework

Following closely the formulation of Eq. (2.3), the equations of motion for an l-DOF nonlin-

ear system subject to constraint equations of the form in Eq. (2.2), as well as to combined

deterministic and stochastic excitations, are given by

M̄xẍ + C̄xẋ + K̄xx + Φ̄x(x, ẋ, ẍ) = f̄d,x(t) + Q̄x(t), (2.12)

where M̄x, C̄x, K̄x are defined in Eq. (2.4) and Φ̄x(x, ẋ, ẍ) is given by Eq. (2.5). Further, the

deterministic component of the excitation is given by the (l +m)-dimensional vector

f̄d,x(t) =

(Il − A+A)fd,x(t)

0m×1

 , (2.13)

whereas the stochastic component Q̄x(t) is also given by Eq. (2.5).

Then, considering the combined excitation of the augmented system in Eq. (2.12), it is assumed

that the system response is written as

x(t) = xs(t) + xd(t), (2.14)
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where xs(t) and xd(t) denote its stochastic and deterministic components, which account for

the corresponding components of the excitation. Next, assuming for simplicity that the stochas-

tic excitation is modeled as a zero-mean Gaussian process, substituting Eq. (2.14) into the

augmented equations of motion in Eq. (2.12) and ensemble averaging leads to

M̄xẍd + C̄xẋd + K̄xxd + E[Φ̄x(xs + xd, ẋs + ẋd, ẍs + ẍd)] = f̄d,x(t). (2.15)

Clearly, Eq. (2.15) consists of a deterministic and an additional stochastic component, which

are treated separately in the ensuing analysis. Specifically, first, an extended harmonic balance

methodology in conjunction with M-P matrix inverses-based theoretical concepts are applied to

the deterministic component in Eq. (2.15). Then, the application of the generalized statistical

linearization methodology to treat the stochastic component of the system follows.

Next, directing attention to treating the deterministic component of the response, it is assumed

that the system nonlinearities are of the polynomial kind. Note that, apart from simplicity, since

it facilitates the derivation of closed form solutions for determining the equivalent linear system,

this assumption is directly related to the application of the harmonic balance method (Mickens,

1984). Moreover, it is commonly adopted in nonlinear engineering system modeling (Roberts

and Spanos, 2003). Further, f̄d,x(t) in Eq. (2.13) is modeled as a monochromatic function of

period T = 2π
ωd

, i.e.,

f̄d,x(t) = f̄d1,x cos(ωdt) + f̄d2,x sin(ωdt), (2.16)

where f̄d1,x and f̄d2,x are the constant coefficient (l +m)-dimensional vectors for the new coor-

dinates system in the phase plane (Krack and Gross, 2019; Hayashi, 2014). In this regard, the

deterministic response is written as

xd(t) = xd1 cos(ωdt) + xd2 sin(ωdt), (2.17)

where xd1 ,xd2 are constant l-dimensional vectors. Substituting Eqs. (2.16) and (2.17) into Eq.
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(2.15) yields

− ω2
dM̄x(xd1 cos(ωdt) + xd2 sin(ωdt)) + ωdC̄x(−xd1 sin(ωdt) + xd2 cos(ωdt))

+ K̄x(xd1 cos(ωdt) + xd2 sin(ωdt))

+ E[Φ̄x(xs + xd, ẋs + ẋd, ẍs + ẍd)] = f̄d1,x cos(ωdt) + f̄d2,x sin(ωdt). (2.18)

Then, applying the harmonic balance method, Eq. (2.18) leads to a set of 2(l + m) equations

with 2l unknowns. Specifically, these are given by

− ω2
d

l∑
j=1

(
M̄x(i, j)xd1(j)

)
+ ωd

l∑
j=1

(
C̄x(i, j)xd2(j)

)
+

l∑
j=1

(
K̄x(i, j)xd1(j)

)
+ 2

T

∫ T

0
E[Φ̄x(xs + xd, ẋs + ẋd, ẍs + ẍd)](i) cos(ωdt)dt = f̄d1(i) (2.19)

and

− ω2
d

l∑
j=1

(
M̄x(i, j)xd2(j)

)
− ωd

l∑
j=1

(
C̄x(i, j)xd1(j)

)
+

l∑
j=1

(
K̄x(i, j)xd2(j)

)
+ 2

T

∫ T

0
E[Φ̄x(xs + xd, ẋs + ẋd, ẍs + ẍd)](i) sin(ωdt)dt = f̄d2(i), (2.20)

for i = 1, 2, . . . , l + m, where the indexes (i, j) and (j), (i) denote, respectively, the elements

in position (i, j), and in positions j and i of the corresponding (l +m) × l matrices and l-

dimensional vectors.

For the solution of the algebraic system defined by Eqs. (2.19) and (2.20), and thus, for the

computation of the deterministic response component, Eqs. (2.19) and (2.20) are equivalently

written in the form

Pu = v, (2.21)
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where

P =

K̄x − ω2
dM̄x ωdC̄x

−ωdC̄x K̄x − ω2
dM̄x

 (2.22)

is a 2(l+m) × 2l matrix whose components are given by Eq. (2.4). Further, the 2l-dimensional

and 2(l +m)-dimensional vectors u and v are given by

u =

xd1

xd2

 (2.23)

and

v =

f̄d1 − 2
T

∫ T
0 E[Φ̄x] cos(ωdt)dt

f̄d2 − 2
T

∫ T
0 E[Φ̄x] sin(ωdt)dt

 , (2.24)

respectively. Clearly, Eqs. (2.19) and (2.20) or, equivalently, Eqs. (2.21)-(2.24) define an overde-

termined system of equations, whose solution is derived by resorting to the generalized matrix

inverses theory (Campbell and Meyer, 2009; Ben-Israel and Greville, 2003). In particular, by

utilizing the concept of the M-P matrix inverses, the general solution to Eq. (2.21) is given by

u = P+v + (I − P+P)y, (2.25)

where y denotes an arbitrary 2l-dimensional vector (see also Appendix I). It is readily seen that

due to the arbitrary vector y, Eq. (2.25) corresponds to a family of solutions for obtaining the

deterministic component of the response, instead of a uniquely defined solution.

However, depending on the rank of the matrix P in Eq. (2.22), the selection of a uniquely

defined solution is feasible. In particular, if P has full column rank (Meyer, 2000), the M-

P inverse matrix P+ is written in closed-form as (Lindfield and Penny, 2018; Campbell and

Meyer, 2009)

P+ = (P∗P)−1P∗. (2.26)
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Thus, substituting Eq. (2.26) into Eq. (2.25), and taking into account that the M-P inverse of any

matrix is uniquely defined (Campbell and Meyer, 2009), Eq. (2.25) attains a unique solution

u = P+v. (2.27)

In passing, it is worth noting that the augmented matrix M̄x in the diagonal entries of matrix P

in Eq. (2.22) ensures that the columns of the latter are independent of each other or, equivalently,

that P has full column rank. Therefore, Eq. (2.27) constitutes the uniquely defined solution of

the system in Eq. (2.21) or, equivalently, in Eqs. (2.19) and (2.20) for determining xd1 and xd2 .

Subsequently, this leads to the derivation of the deterministic response component.

Generalized statistical linearization and averaging treatments

In this section, the recently proposed generalized statistical linearization methodology for sys-

tems with singular parameter matrices (Fragkoulis et al., 2016b; Kougioumtzoglou et al., 2017)

is applied to treat the stochastic component xs(t) of the system response.

In this regard, forming the difference between the systems in Eqs. (2.12) and (2.15) yields

M̄xẍs + C̄xẋs + K̄xxs + Φ̃x = Q̄x(t), (2.28)

where

Φ̃x = Φ̄x(xs + xd, ẋs + ẋd, ẍs + ẍd) − E[Φ̄x(xs + xd, ẋs + ẋd, ẍs + ẍd)] (2.29)

is the zero-mean vector of the system nonlinearities, and xs is the stochastic component of the

response. Next, following closely the formulation of Eq. (2.6), the linear equivalent system to

Eq. (2.28) becomes

(M̄x + M̄e)ẍs + (C̄x + C̄e)ẋs + (K̄x + K̄e)xs = Q̄x(t). (2.30)
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Then, the error function which is defined as the difference between Eqs. (2.28) and (2.30) is

formed, and minimized by adopting the mean square minimization criterion (Fragkoulis et al.,

2016b). Further, considering that the arbitrary vector g(y) in Eq. (2.8) is the null vector, the

elements of the (l +m) × l matrices M̄e, C̄e and K̄e are readily determined by


keT

i∗

ceT
i∗

meT
i∗

 = E[x̂x̂T]+E[x̂x̂T]E


∂Φ̃x(i)

∂x

∂Φ̃x(i)
∂ẋ

∂Φ̃x(i)
∂ẍ

 , (2.31)

where Φ̃x(i), i = 1, 2, . . . , l + m, denotes the i-th component of the nonlinear vector in

Eq. (2.29).

Clearly, the nonlinear vector Φ̃x in Eq. (2.29) not only depends on the stochastic response com-

ponent xs(t) (and its first and second order derivatives) but also on the deterministic (harmonic)

component of the system response, i.e., xd(t), and its first and second order derivatives. Thus,

the elements me
ij, c

e
ij, k

e
ij , for i = 1, 2, . . . , l + m and j = 1, 2, . . . ,m, obtained in Eq. (2.31)

are also time dependent. Nevertheless, by relying on the harmonic balance method, the slowly

varying over a period T of oscillation components of matrices M̄e, C̄e and K̄e are approximated

by their average over T (Spanos et al., 2019; Hayashi, 2014), i.e.,

M̄av
e = 1

T

∫ T

0
M̄edt, C̄av

e = 1
T

∫ T

0
C̄edt, K̄av

e = 1
T

∫ T

0
K̄edt. (2.32)

The matrices of Eq. (2.32) serve, in essence, as the closed form solutions which are used

to approximate the equivalent mass, damping and stiffness matrices of the linear system in

Eq. (2.30), which becomes

(M̄x + M̄av
e )ẍs + (C̄x + C̄av

e )ẋs + (K̄x + K̄av
e )xs = Q̄x(t). (2.33)

Subsequently, a frequency domain approach is invoked to derive the response statistics of the
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equivalent system in Eq. (2.33). In this regard, taking into account Eqs. (2.32) and (2.33), the

FRF matrix is derived by Eq. (2.10), i.e.,

αx(ω) =
(
−ω2(M̄x + M̄av

e ) + iω(C̄x + C̄av
e ) + (K̄x + K̄av

e )
)+
, (2.34)

and thus, the response power spectrum Sxs(ω) is found by Eq. (2.9). Finally, the second order

response statistics of the equivalent system in Eq. (2.33), are computed by Eq. (2.11), i.e.,

E[x2
s(i)] =

∫ ∞

−∞
Sxs(i)xs(i)(ω)dω, E[ẋ2

s(i)] =
∫ ∞

−∞
ω2Sxs(i)xs(i)(ω)dω, (2.35)

for i = 1, 2, . . . , l. Note, in passing, that the integrals in Eq. (2.35) are calculated numerically in

the ensuing analysis. However, closed-form solutions for calculating random vibration integrals

are also available (Roberts and Spanos, 2003).

Clearly, Eq. (2.35) in conjunction with the generalized input-output relationship in Eq. (2.9),

as well as Eq. (2.27), constitute a coupled nonlinear system of equations to be solved for

determining the system response. The following simple iterative procedure is used to solve the

coupled nonlinear system: i. The scheme is initialized by setting the nonlinear vector Φ̃x in

the governing equations of motion equal to the null vector. Then, the deterministic response

xd is obtained. ii. Employing Eq. (2.9), as well as Eq. (2.35), the variance of the stochastic

response xs is derived. iii. Using step (ii.), Eq. (2.27) yields the deterministic response xd.

Then, the (updated) values of matrices M̄av
e , C̄av

e and K̄av
e are calculated. iv. Steps (ii.) and

(iii.) are repeated until satisfactory accuracy for the response variance is attained.

2.3 Numerical examples

In this section, two numerical examples are used to validate the herein proposed approach and

assess its versatility. The obtained results are compared with corresponding results which are

derived by following the standard solution framework in Spanos et al., 2019.
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2.3.1 3-DOF Nonlinear System with Singular Matrices

The 3-DOF nonlinear system in Fig. 1(a) is considered, where mass m1 is connected to the

foundation by a linear spring of stiffness k1, a nonlinear inerter (e.g., Smith, 2002; Marian and

Giaralis, 2014) and a nonlinear damper. The damping force is given by c1q̇1(1 + ε2q̇
2
1) and the

force due to the nonlinear inerter is given by m1q̈1(1 + ε1q̇
2
1), where qi (i = 1, 2, 3) denotes

the displacement of the i-th mass, and ε1 and ε2 denote the magnitude of the nonlinearity for

each case. Further, mass m1 is connected to masses m2 and m3 by linear springs of stiffness k2

and k4, respectively. Finally, mass m2 is connected to mass m3 by a linear spring of stiffness

k3 and a linear damper of damping c2. A force Q3(t), which is modeled as a Gaussian white

noise stochastic process with constant spectral density S0, and a deterministic force given by

fd2,3 sin(ωdt) are applied on mass m3.

 

(a)
 

(b)

Figure 2.1: (a) A 3-DOF nonlinear system subject to stochastic and deterministic excitations.
(b) The nonlinear system of Fig. 2.1(a) modeled by employing redundant coordinates.

Next, the standard solution framework in Spanos et al., 2019 is applied for deriving the system

response variance. In this regard, the parameter values m1 = m3 = 2, m2 = 1, c1 = c2 = 0.1,

k1 = k2 = k3 = k4 = 1, in conjunction with the parameter values ε1 = ε2 = 1 as well as

S0 = 10−3 for 0 < ω < 2π, and fd2,3 = 0.4, ωd = π, are considered. The standard approach
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leads to

σ2
q1 = 0.0478, σ2

q̇1 = 0.0103, σ2
q̈1 = 0.0061, (2.36)

σ2
q2 = 0.0051, σ2

q̇2 = 0.0029, σ2
q̈2 = 0.0052, (2.37)

σ2
q3 = 0.0033, σ2

q̇3 = 0.0082, σ2
q̈3 = 0.0438. (2.38)

Then, considering the redundant coordinates vector xT =
[
x1 x2 x3 x4 x5

]
, the 3-DOF

system in Fig. 1(a) is decomposed into its constituent parts as shown in Fig. 1(b). Further,

taking into account the constraint equations connecting the subsystems in Fig. 1(b), matrix A

in Eq. (2.2) becomes

A =

1 −1 0 0 0

0 1 1 −1 0

 , (2.39)

whereas E = L = 02×5 and F = 02×1. Thus, Eq. (2.12) is formed, where

M̄x =



0.4m1 0.2m2 0.2m2 0.2m3 0.2m3

0.4m1 0.2m2 0.2m2 0.2m3 0.2m3

−0.2m1 0.4m2 0.4m2 0.4m3 0.4m3

0.2m1 0.6m2 0.6m2 0.6m3 0.6m3

0 0 0 m3 m3

1 −1 0 0 0

0 1 1 −1 0



, C̄x =



0.4c1 0 0 0 0

0.4c1 0 0 0 0

−0.2c1 0 0 0 0

0.2c1 0 0 0 0

0 0 0 0 c2

0 0 0 0 0

0 0 0 0 0



(2.40)
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and

K̄x =



0.4k1 0.2k4 −0.2k2 −0.2k4 −0.2k4

0.4k1 0.2k4 −0.2k2 −0.2k4 −0.2k4

−0.2k1 −0.6k4 0.6k2 0.6k4 0.6k4

0.2k1 −0.4k4 0.4k2 0.4k4 0.4k4

0 −k4 0 k4 k3 + k4

0 0 0 0 0

0 0 0 0 0



, (2.41)

and the nonlinear vector in Eq. (2.5) becomes

Φ̄T
x (x, ẋ, ẍ) = (ε1m1ẋ

2
1ẍ1 + ε2c1ẋ

3
1)
[
0.4 0.4 −0.2 0.2 0 0 0

]
. (2.42)

Also, Eqs. (2.5) and (2.13) yield, respectively,

Q̄T
x = Q3(t)

[
0.2 0.2 0.4 0.6 1 0 0

]
,

f̄T
d,x = fd2,3 sin(ωdt)

[
0.2 0.2 0.4 0.6 1 0 0

]
.

(2.43)

Next, the herein generalized harmonic balance method for systems with singular matrices is ap-

plied to the system defined by the singular parameter matrices in Eqs. (2.40) and (2.41). Thus,

taking into account the decomposition of the system response into a stochastic and a determinis-

tic component, i.e., xT
s =

[
xs,1 xs,2 xs,3 xs,4 xs,5

]
and xT

d =
[
xd,1 xd,2 xd,3 xd,4 xd,5

]
,

Eq. (2.42) yields

E[Φ̄x]T =
(
ε1m1(ẋ2

d,1ẍd,1 + σ2
ẋs,1ẍd,1) + ε2c1(ẋ3

d,1 + 3ẋd,1σ
2
ẋs,1)

)
×
[
0.4 0.4 −0.2 0.2 0 0 0

]
.

(2.44)

Further, since the 14×10 matrix P in Eq. (2.22) has full rank, i.e., rank(P) = 10, Eq. (2.27) is

used instead of Eq. (2.25) to derive a unique solution for the periodic response vector (see also

Eqs. (2.19) and (2.20)). Finally, applying the generalized statistical linearization method, in
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conjunction with the averaging treatment, Eqs. (2.32) yields

C̄av
e = 0.6ε2c1σ

2
ẋs,1



2H(6, 6) 2H(7, 6) 2H(8, 6) 2H(9, 6) 2H(10, 6)

2H(6, 6) 2H(7, 6) 2H(8, 6) 2H(9, 6) 2H(10, 6)

−H(6, 6) −H(7, 6) −H(8, 6) −H(9, 6) −H(10, 6)

H(6, 6) H(7, 6) H(8, 6) H(9, 6) H(10, 6)

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0



+

ε2c1ω
2
d(x2

d1,1 + x2
d2,1)



0.6 0 0 0 0

0.6 0 0 0 0

−0.3 0 0 0 0

0.3 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0



(2.45)
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and

M̄av
e = 0.2ε1m1σ

2
ẋs,1



2H(11, 11) 2H(12, 11) 2H(13, 11) 2H(14, 11) 2H(15, 11)

2H(11, 11) 2H(12, 11) 2H(13, 11) 2H(14, 11) 2H(15, 11)

−H(11, 11) −H(12, 11) −H(13, 11) −H(14, 11) −H(15, 11)

H(11, 11) H(12, 11) H(13, 11) H(14, 11) H(15, 11)

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0



+

ε1m1ω
2
d(x2

d1,1 + x2
d2,1)



0.2 0 0 0 0

0.2 0 0 0 0

−0.1 0 0 0 0

0.1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0



.

(2.46)

The terms H(i, j), i, j = 1, 2, . . . , 15, in Eqs. (2.45) and (2.46) denote the (i, j) element of the

15 × 15 matrix E[x̂x̂T]+E[x̂x̂T] in Eq. (2.31) (see also Fragkoulis et al., 2016b).

Then, the coupled set of algebraic equations formed by Eq. (2.35), Eq. (2.9) and Eq. (2.27)

is solved for determining the stochastic and deterministic components of the response. This is

attained by employing the iterative scheme included in section “Generalized statistical lineariza-

tion and averaging treatments”. In this regard, considering the initial values M̄av
e = C̄av

e = 0

and xd1 = xd2 = 0, the stochastic component is derived based on the criterion
∣∣∣∣M̄av

e,j+1−M̄av
e,j

M̄av
e,j

∣∣∣∣ <
10−5 and

∣∣∣∣ C̄av
e,j+1−C̄av

e,j

C̄av
e,j

∣∣∣∣ < 10−5, whereas a similar criterion is used to obtain the deterministic

components xd1 , xd2 . The iterative scheme stops after 5 iterations, when satisfactory accuracy

for the response velocity variance σ2
ẋs,1 is attained (see Eqs. (2.45) and (2.46)).

Finally, substituting Eq. (2.17) into Eq. (2.14), and successively ensemble and temporal aver-
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aging to treat, respectively, the stochastic and deterministic components of the response, yields

〈
E[x2

i ]
〉

= σ2
xs,1 +

x2
d1,i + x2

d2,i

2 ,
〈
E[ẋ2

i ]
〉

= σ2
ẋs,1 +

ω2
d(x2

d1,i + x2
d2,i)

2 (2.47)

and 〈
E[ẍ2

i ]
〉

= σ2
ẍs,1 + ω4

d

2 (x2
d1,i + x2

d2,i), (2.48)

for i = 1, 2, . . . , 5, where ⟨·⟩ denotes the temporal averaging operation. Eqs. (2.47) and (2.48),

in conjunction with the results of the iterative scheme above yield

σ2
x1 = 0.0478, σ2

ẋ1 = 0.0103, σ2
ẍ1 = 0.0061, (2.49)

σ2
x3 = 0.0051, σ2

ẋ3 = 0.0029, σ2
ẍ3 = 0.0052, (2.50)

σ2
x5 = 0.0033, σ2

ẋ5 = 0.0082, σ2
ẍ5 = 0.0438. (2.51)

Comparing Eqs. (2.49)-(2.51) with Eqs. (2.36)-(2.38), it is readily seen that the herein proposed

framework is in total agreement with the standard approach in Spanos et al., 2019.

2.3.2 2-DOF Nonlinear Structural System with Singular Parameter Ma-
trices

In this example, the application of the herein proposed framework to a wider magnitude range

of system nonlinearities is demonstrated. In this regard, the 2-DOF system of rigid masses

m1 and m2 in Fig. 2(a) is considered. Mass m1 is connected to the foundation by a nonlinear

inerter and a nonlinear spring, whose forces arem1q̈1(1+ε1q̇
2
1) and k1q1(1+ε2q

2
1), respectively,

where qi (i = 1, 2) denotes the displacement of the i-th mass, and ε1, ε2 the magnitude of the

nonlinearities. Further, mass m1 is connected to mass m2 by a linear spring of stiffness k2 and

a linear damper of damping c2. The system is excited by combined stochastic and deterministic

forces applied on mass m1. In particular, Q1(t) is modeled as a Gaussian white noise stochastic

process with constant spectral density S0 and the deterministic force has the form fd2,1 sin(ωdt).
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Further, considering the parameter values m1 = m2 = 1, c1 = c2 = 0.2, k1 = k2 = 1,

 

(a)
 

(b)

Figure 2.2: (a) A 2-DOF nonlinear system subject to stochastic and deterministic excitations.
(b) The nonlinear system of Fig. 2.2(a) modeled by employing an additional redundant coordi-
nate.

S0 = 10−2 (0 < ω < 2π) and fd2,1 = 0.4, ωd = π, the system response variance is determined

by applying the standard approach in Spanos et al., 2019. In addition, the magnitude ε of

nonlinearities, where ε1 = ε2 = ε, is taking values in the interval [0, 5]. The results are depicted

by the solid line in Fig. 3.

Next, considering the redundant coordinates vector x =
[
x1 x2 x3

]
, the 2-DOF system of

Fig. 2(a) is decomposed into its partial subsystems, as shown in Fig. 2(b). In this regard,

Eq. (2.2) is formed, where

A =
[
1 −1 0

]
, (2.52)

E = L = 01×3 and the vector F degenerates to F = 0. Thus, the parameter matrices in Eq.

(2.12) are given by

M̄x =



0.5m1 0.5m2 0.5m2

0.5m1 0.5m2 0.5m2

0 m2 m2

1 −1 0


, C̄x =



0.5c1 0 0

0.5c1 0 0

0 0 c2

0 0 0


, K̄x =



0.5k1 0 0

0.5k1 0 0

0 0 k2

0 0 0


, (2.53)
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whereas Eqs. (2.5) and (2.13), respectively, yield

Φ̄T
x (x, ẋ, ẍ) = (m1ε1ẋ

2
1ẍ1 + k1ε2x

3
1)
[
0.5 0.5 0 0

]
, Q̄T

x = Q1(t)
[
0.5 0.5 0 0

]
(2.54)

and

f̄T
d,x = fd2,1 sin(ωdt)

[
0.5 0.5 0 0

]
. (2.55)

For the application of the harmonic balance method, the system response is decomposed into

its stochastic xT
s =

[
xs,1 xs,2 xs,3

]
and deterministic xT

d =
[
xd,1 xd,2 xd,3

]
components,

and thus, substituting Eq. (2.17) into Eq. (2.54) and ensemble averaging yields

E[Φ̄x]T =
(
m1ε1(ẋ2

d,1ẍd,1 + σ2
ẋs,1ẍd,1) + k1ε2(x3

d,1 + 3xd,1σ
2
xs,1)

) [
0.5 0.5 0 0

]
. (2.56)

Then, the overdetermined system of equations defined by Eq. (2.21) (or, equivalently, by

Eqs. (2.19) and (2.20)) is solved. To this end, it is noted that the 8 × 6 matrix P in Eq. (2.22)

has full rank. Hence, Eq. (2.27) leads to a uniquely defined periodic response component.

Subsequently, the generalized statistical linearization method is used in conjunction with the

averaging treatment to treat the stochastic component of the response. In this regard, Eq. (2.32)

implies

K̄av
e = 1.5k1ε2σ

2
xs,1



H(1, 1) H(2, 1) H(3, 1)

H(1, 1) H(2, 1) H(3, 1)

0 0 0

0 0 0


+ 3k1ε2



(x2
d1,1+x2

d2,1)
2 0 0

(x2
d1,1+x2

d2,1)
2 0 0

0 0 0

0 0 0


(2.57)
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and

M̄av
e = 0.5m1ε1σ

2
ẋs,1



H(7, 7) H(8, 7) H(9, 7)

H(7, 7) H(8, 7) H(9, 7)

0 0 0

0 0 0


+m1ε1



ω2
d(x2

d1,1+x2
d2,1)

2 0 0
ω2

d(x2
d1,1+x2

d2,1)
2 0 0

0 0 0

0 0 0


, (2.58)

where H(i, j), i, j = 1, 2, . . . , 9, denote the (i, j) element of matrix E[x̂x̂T]+E[x̂x̂T] in Eq.

(2.31).

Then, the iterative scheme in section “Generalized statistical linearization and averaging treat-

ments” is employed to solve the coupled set of algebraic equations formed by Eqs. (2.35),

Eq. (2.9) and Eq. (2.27), and thus, to derive the variance of the stochastic response. Considering

the dependence between the stochastic and deterministic components (see Eqs. (2.56)-(2.58)),

the scheme is initialized by using M̄av
e = 0, K̄av

e = 0 and xd1 = xd2 = 0. Then, the stochas-

tic and deterministic components are derived based on the criterion
∣∣∣∣M̄av

e,j+1−M̄av
e,j

M̄av
e,j

∣∣∣∣ < 10−5 and∣∣∣∣ K̄av
e,j+1−K̄av

e,j

K̄av
e,j

∣∣∣∣ < 10−5, as well as a similar criterion for xd1 , xd2 . The iterative scheme continues

until reaching satisfactory accuracy for the response displacement and velocity variance σ2
xs,1

and σ2
ẋs,1 .

Finally, the system response variance is determined by utilizing Eqs. (2.47) and (2.48). The

obtained results for different values of ε1 = ε2 = ε ∈ [0, 5] are represented by dots in Fig.

3. They are in complete agreement with the corresponding results obtained by applying the

standard approach in Spanos et al., 2019 (solid line). Thus, the herein developed combination

of the M-P matrix inverses-based statistical linearization and harmonic balance scheme consti-

tutes a generalization of the formulation in ibid. to account for systems with singular parameter

matrices. Note, in passing, that a normalization with respect to the analytical results for the lin-

ear case, i.e., ε1 = ε2 = 0, is considered for both solution frameworks to show the considerable

nonlinearity effect on the system response.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.3: Normalized response variance of the nonlinear structural system in Figs. 2.2(a)-
2.2(b) vs. nonlinearity magnitude. Comparison between the standard and the proposed tech-
niques. (a) 1st DOF response displacement variance; (b) 2nd DOF response displacement vari-
ance; (c) 1st DOF response velocity variance; (d) 2nd DOF response velocity variance; (e) 1st
DOF response acceleration variance; (f) 2nd DOF response acceleration variance
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2.4 Conclusions

In this paper, a novel technique has been developed for bounding the responses and probability

of failure of nonlinear structural models subjected to imprecisely defined stochastic Gaussian

loads. The proposed technique can be construed as a generalization of a recently developed

operator norm-based method to account for nonlinear dynamical systems. This is attained by

resorting to the statistical linearization methodology for defining a linear system equivalent to

the nonlinear system under consideration. In this regard, the double loop that is typically asso-

ciated with estimating the bounds on the probability of failure of nonlinear dynamical systems

is effectively decoupled, and the associated computational cost is reduced by several orders of

magnitude. Thus, it can be argued that integrating statistical linearization into the operator norm

framework allows for bounding the probability of failure of nonlinear systems with acceptable

accuracy and at greatly reduced numerical cost.

The validity and numerical efficiency of the proposed technique have been demonstrated by

considering two nonlinear structural systems. However, since the linearization scheme has

been performed in a mean square error minimization sense, the representation of the nonlinear

system is less accurate in the tails of the distribution. This aspect renders the proposed approach

mostly suitable for estimating the bounds of moderate to large failure probabilities. Neverthe-

less, future work is directed toward developing an enhanced operator norm-based linearization

scheme capable of estimating bounds on smaller failure probabilities. This can be achieved,

in principle, by combining the application of the statistical linearization methodology with a

stochastic averaging treatment.

Further, the proposed framework can be integrated with more advanced simulation methods,

such as importance sampling or subset simulation. Another path for future work consists of ex-

tending the range of application of the proposed framework to more general models for stochas-

tic loading (other than Gaussian). Finally, the evaluation of the proposed approach for more

complex and numerically demanding structural models involving multiple types of nonlineari-
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ties constitutes an additional subject for future research.
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2.6 APPENDIX I. Elements of the theory of Moore-Penrose matrix in-

verses

In this appendix, a concise presentation of the fundamental results of the Moore-Penrose (M-

P) generalized matrix inverses theory is presented for completeness. The interested reader is

directed to Campbell and Meyer, 2009 and Ben-Israel and Greville, 2003 for a detailed presen-

tation.

The mathematical problem that gave rise to the generalized matrix inverses theory is related to

the solution of the algebraic system of equations

Ax = b. (2.59)

In the general case, A in Eq. (2.59) denotes a rectangular m × n matrix and x,b correspond,

respectively, to n- and m-dimensional vectors. However, it is noted that the ensuing results also

hold for the case of square, but singular matrix A. Taking into account that the general solution

to the problem in Eq. (2.59) is not possible due to the nature of matrix A, and also considering
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that such problems are often encountered in theoretical as well as in applied science, the concept

of a “partial inverse” of matrix A was introduced (Campbell and Meyer, 2009).

Definition 1. Given a matrix A ∈ Cm×n, there is a uniquely defined matrix A+ ∈ Cn×m such

that:

(i) AA+A = A, (ii) A+AA+ = A+, (iii) (AA+)∗ = AA+, (iv) (A+A)∗ = A+A.

Matrix A+ in Definition 1 is the so-called M-P inverse of A. In general, when A is invertible,

A+ coincides with the regular inverse A−1. Considering the solution of the algebraic system

in Eq. (2.59), the M-P inverse holds an exceptional place among the family of generalized

inverses, since it leads to the family of solutions

x = A+b + (In − A+A)y, (2.60)

where In is the identity n×nmatrix and y accounts for an arbitrary n-dimensional vector (ibid.;

Ben-Israel and Greville, 2003).
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Abstract: A new technique is proposed for determining the response of multi-degree-of-freedom

nonlinear systems with singular parameter matrices subject to combined deterministic and non-

stationary stochastic excitation. Singular matrices in the governing equations of motion poten-

tially account for the presence of constraints equations in the system. Further, they also appear

when a redundant coordinates modeling is adopted to derive the equations of motion of com-

plex multi-body systems. In this regard, the system response is decomposed into a deterministic

and a stochastic component corresponding to the two components of the excitation. Then, two

sets of differential equations are formulated and solved simultaneously to compute the system

response. The first set pertains to the deterministic response component, whereas the second

one pertains to the stochastic component of the response. The latter is derived by utilizing the

generalized statistical linearization method for systems with singular matrices, while a formula

for determining the time-dependent equivalent elements of the generalized statistical lineariza-
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tion methodology is also derived. The efficiency of the proposed technique is demonstrated

by pertinent numerical examples. Specifically, a vibration energy harvesting device subject to

combined deterministic and modulated white noise excitation and a structural nonlinear system

with singular parameter matrices subject to combined deterministic and modulated white and

colored noise excitations are considered. Keywords: Stochastic Dynamics; Combined Excita-

tion; Moore-Penrose Matrix Inverse; Statistical Linearization; Energy Harvester

3.1 Introduction

Assessing the reliability of nonlinear multi-degree-of-freedom (MDOF) systems subject to com-

bined deterministic and stochastic loading constitutes a persistent challenge in random vibra-

tion, which finds a plethora of applications in several engineering fields. Indicatively, these span

from vibration energy harvesting (e.g., Ando et al., 2017; Dai and Harne, 2018; Huang et al.,

2022) to the problem of turbine blades vibration under turbulent flow (e.g., Namachchivaya,

1991; Zhu and Wu, 2004), or nonlinear vibration of beams and plates (e.g., Spanos and Malara,

2020), and vibration of gear systems (e.g., Zhang and Spanos, 2020b).

In this context, considerable research effort has been put over the last decades into developing

methodologies and techniques aiming at determining the response of nonlinear MDOF systems

subject to combined deterministic and stochastic excitation. This has been done by utilizing

and combining standard deterministic and stochastic analysis tools such as, indicatively, the

harmonic balance and statistical linearization or Gaussian closure methods (e.g., Zhu and Guo,

2015; Zhang and Spanos, 2020a; Spanos et al., 2019; Zhang and Spanos, 2020b; Kong and

Spanos, 2021; Kong et al., 2022c), the harmonic balance and stochastic averaging methods

(e.g., Haiwu et al., 2001), and the equivalent linearization and deterministic or stochastic av-

eraging methods (e.g., Anh and Hieu, 2012; Anh et al., 2014). Further, the need for more

accurate media behavior modeling dictated by recent advances in theoretical and applied me-

chanics (e.g., Di Paola et al., 2013) has propelled the use of fractional calculus which, in turn,

resulted to the development of pertinent frameworks (e.g., Spanos and Malara, 2020; Kong
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et al., 2022b). Yet, most of the approaches available in the literature to-date treat systems

whose stochastic excitation component is modeled as a stationary stochastic process. However,

a more accurate modeling of the applied stochastic excitation component necessitates consider-

ing the non-stationary characteristics corresponding to excitations often met in nature, such as

wave, wind and earthquake loads. This has recently led to the extension of relevant tools, and

approaches accounting for non-stationary stochastic excitations (e.g., Kong et al., 2022a) and

non-stationary excitations described by evolutionary power spectrum forms (e.g., Han et al.,

2022) have been proposed.

An additional aspect of the response determination problem for MDOF systems subject to com-

bined deterministic and stochastic excitation relates to the complexity of the system under con-

sideration. In this regard, a technique accounting for singular parameter matrices and constraints

in the equations governing the dynamics of the MDOF system has been recently developed in

Ni et al., 2021. Examples of such systems are often met in engineering applications including,

indicatively, systems with massless joints (e.g., Pirrotta et al., 2019, 2021), oscillators modeled

via additional auxiliary state equations (e.g., Petromichelakis et al., 2020), energy harvesting

devices and specific classes of non-viscously damped systems (e.g., Adhikari, 2013). Hence,

utilizing tools from the theory of generalized matrix inverses (e.g., Campbell and Meyer, 2009)

has led to the extension of known input-output (excitation-response) expressions in random vi-

bration theory, and subsequently, to the development of various frameworks for determining

the response of MDOF linear and nonlinear systems (e.g., Fragkoulis et al., 2016a,b; Kou-

gioumtzoglou et al., 2017; Antoniou et al., 2017; Karageorgos et al., 2021), conducting joint

time-frequency analysis of the system response (e.g., Pasparakis et al., 2021, 2022), or solving

random eigenvalue problems for systems with singular random parameter matrices (Fragkoulis

et al., 2022).

In this paper, the technique developed in Ni et al., 2021 is extended to MDOF nonlinear sys-

tems with singular parameter matrices subject to combined deterministic and non-stationary

stochastic excitation. This is done by formulating and solving simultaneously two sets of dif-
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ferential equations, corresponding to the deterministic and the stochastic components of the

response, respectively. An additional contribution relates to the generalization of the expression

derived in Fragkoulis et al., 2016b to determine the time-dependent equivalent elements of the

generalized statistical linearization methodology for systems with singular parameter matrices.

Three numerical examples are considered to assess the reliability of the proposed technique.

These include a vibration energy harvesting device subject to combined deterministic and mod-

ulated white noise excitation and a structural nonlinear system with singular parameter matrices

subject to combined deterministic and modulated white and colored noise excitations. The ob-

tained results are compared with pertinent Monte Carlo simulation (MCS) data as well as with

corresponding results obtained by the approach proposed in Kong et al., 2022a.

3.2 Mathematical formulation

3.2.1 Nonlinear MDOF systems with singular parameter matrices

The governing equations of motion of an l-DOF nonlinear system subject to combined deter-

ministic and non-stationary stochastic excitation are given by

Mxẍ + Cxẋ + Kxx + Φx(x, ẋ, ẍ) = fd,x(t) + Qx(t), (3.1)

where x denotes the (possibly dependent) l-dimensional response displacement vector and ẋ,

ẍ are the response velocity and acceleration l-dimensional vectors, respectively. Further, Mx,

Cx and Kx correspond to the l× l mass, damping and stiffness matrices of the system, whereas

Φx(x, ẋ, ẍ) denotes the l-dimensional nonlinear vector of the system. Lastly, fd,x(t) and Qx(t)

are the l-dimensional vectors of the deterministic and the zero-mean non-stationary stochastic

excitation, respectively. It is noted that considering a zero-mean excitation is rather for simplic-

ity and not restrictive for the ensuing analysis, which can be generalized also to the case of a

nonzero-mean process (e.g., Roberts and Spanos, 2003).
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Considering, next, that the l-DOF system of Eq. (3.1) is subject to additional constraints (Ud-

wadia and Phohomsiri, 2006; Fragkoulis et al., 2016a )

A(x, ẋ, t)ẍ = b(x, ẋ, t), (3.2)

Eq. (3.1) is recast into

M̄xẍ + C̄xẋ + K̄xx + Φ̄x(x, ẋ, ẍ) = f̄d,x(t) + Q̄x(t). (3.3)

In Eq. (3.3), M̄x, C̄x and K̄x denote the augmented (l + m) × l mass, damping and stiffness

matrices of the system given by (Karageorgos et al., 2021; Pasparakis et al., 2022)

M̄x =

JMx

A

 , C̄x =

JCx

E

 , K̄x =

JKx

L

 , (3.4)

the augmented (l +m)-dimensional nonlinearity vector has the form

Φ̄x =

JΦx

0m×1

 , (3.5)

whereas the augmented (l+m)-dimensional vectors of the applied deterministic and stochastic

excitations are given by

f̄d,x(t) =

Jfd,x(t)

0m×1

 (3.6)

and

Q̄x(t) =

JQx(t)

F

 , (3.7)

respectively. For the derivation of the system parameter matrices in Eq. (3.4), as well as the

excitation vectors in Eq. (3.7), the system constraints Eq. (3.2) is written, for simplicity, in

the form Aẍ + Eẋ + Lx = F, with A, E, L denoting m × l matrices and F denoting an
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m-dimensional vector (e.g., Fragkoulis et al., 2016a). Further, J represents an l × l matrix

connecting the constraints Eq. (3.2) with the system governing equations of motion Eq. (3.1)

(e.g., Antoniou et al., 2017; Pasparakis et al., 2022). A detailed derivation of Eqs. (3.3-3.7) can

be found in Fragkoulis et al., 2016a; Kougioumtzoglou et al., 2017; Ni et al., 2021.

3.2.2 System response determination

In this section, a semi-analytical technique is proposed for determining the response of MDOF

systems with singular parameter matrices subject to combined deterministic and non-stationary

stochastic excitation. This is attained by decomposing the nonlinear system into two subsys-

tems, i.e., one subject to the non-stationary stochastic excitation and one subject to the determin-

istic excitation. The former is simplified by resorting to the generalized statistical linearization

method for systems with singular parameter matrices (Fragkoulis et al., 2016b; Kougioumt-

zoglou et al., 2017), followed by a state variable treatment. This involves the formulation of

a time-dependent matrix differential equation, whose solution yields the standard deviation of

the stochastic component of the response. Further, a set of deterministic differential equations

corresponding to the subsystem subject to the deterministic excitation, and thus, governing the

deterministic response component, is derived and solved simultaneously with the matrix differ-

ential equation above. This can be done by resorting to any standard numerical scheme, such as

the Runge–Kutta method.

Generalized statistical linearization based framework

Consider the augmented system in Eq. (3.3) which is subject to combined deterministic and

non-stationary stochastic excitation. The system response is decomposed into two components,

namely the stochastic and the deterministic one, accounting, respectively, for the corresponding

components of the excitation. That is

x(t) = xs(t) + xd(t), (3.8)
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where the l-dimensional vector xs(t) denotes the zero-mean stochastic component of the re-

sponse and the l-dimensional vector xd(t) represents the deterministic response component.

Then, taking into account that the stochastic displacement component is modeled as a zero-

mean process, substituting Eq. (3.8) into Eq. (3.3) and ensemble averaging yields

M̄xẍd + C̄xẋd + K̄xxd + E
[
Φ̄x(xs + xd, ẋs + ẋd, ẍs + ẍd)

]
= f̄d,x(t), (3.9)

where E[·] denotes the expectation operator. Eq. (3.9) constitutes a subsystem of deterministic

differential equations to be solved for computing the deterministic response of the system. Then,

subtracting Eq. (3.9) from Eq. (3.3) yields a subsystem of equations subject to non-stationary

stochastic excitation, namely

M̄xẍs + C̄xẋs + K̄xxs + Φ̃x = Q̄x(t), (3.10)

where

Φ̃x = Φ̄x(xs + xd, ẋs + ẋd, ẍs + ẍd) − E
[
Φ̄x(xs + xd, ẋs + ẋd, ẍs + ẍd)

]
. (3.11)

Clearly, the nonlinear terms in Eqs. (3.9) and (3.10) consist of a deterministic and a stochastic

response components, which are intertwined. Therefore, Eqs. (3.9) and (3.10) constitute a

coupled set of differential equations to be solved for determining the system response.

In this regard, the generalized statistical linearization method is applied and a linear system

equivalent to the subsystem of Eq. (3.10) is defined as

(
M̄x + M̄e(t)

)
ẍs +

(
C̄x + C̄e(t)

)
ẋs +

(
K̄x + K̄e(t)

)
xs = Q̄x(t), (3.12)

where M̄e(t), C̄e(t) and K̄e(t) are the time-varying (l + m) × l mass, damping and stiffness

matrices of the equivalent linear system. Then, the error function is defined as the difference be-

tween the nonlinear system in Eq. (3.10) and the equivalent linear system in Eq. (3.12), and it is
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minimized by adopting a mean square minimization criterion in conjunction with the Gaussian

response assumption (Roberts and Spanos, 2003).

Clearly, one of the advantages of the standard statistical linearization method relates to its ca-

pacity to provide closed-form expressions for determining the equivalent linear elements of

Eq. (3.12). In this context, consider that meT
i∗ (t), ceT

i∗ (t) and keT
i∗ (t) for i = 1, 2, . . . , l + m de-

note the i-th row of the (l+m)× l time-varying matrices M̄e(t), C̄e(t) and K̄e(t), respectively,

and that x̂ =
[
xs ẋs ẍs

]T
is a 3l-dimensional vector with “T” denoting the matrix transpose

operation. A key aspect in determining meT
i∗ (t), ceT

i∗ (t) and keT
i∗ (t) is that the covariance ma-

trix E[x̂x̂T] is invertible (Roberts and Spanos, 2003). However, due to the possibly dependent

coordinates utilized to model the system governing equations of motion in Eq. (3.1), E[x̂x̂T] is

singular. Nevertheless, generalized expressions for the equivalent elements have been proposed

in Fragkoulis et al., 2016b; Kougioumtzoglou et al., 2017 for the case where the system is sub-

ject to stationary stochastic excitation, as well as in Ni et al., 2021 for MDOF systems subject

to combined deterministic and stationary stochastic excitation.

In this regard, the equivalent linear elements for systems with singular parameter matrices and

subject to deterministic and non-stationary stochastic excitations are given by


keT

i∗ (t)

ceT
i∗ (t)

meT
i∗ (t)

 = E[x̂x̂T]+E[x̂x̂T]E


∂Φ̃x(i)

∂x

∂Φ̃x(i)
∂ẋ

∂Φ̃x(i)
∂ẍ

 , (3.13)

for i = 1, 2, . . . , l + m, where “+” denotes the Moore-Penrose generalized inverse matrix

operation (e.g., Campbell and Meyer, 2009). In passing, note that an arbitrary term should also

be included in Eq. (3.13) due to utilizing the generalized inverse matrix theory for its derivation.

Thus, Eq. (3.13) corresponds, in essence, to a family of solutions for the equivalent linear

elements rather than a unique expression. Nevertheless, it has been proved in Fragkoulis et al.,

2016b that the solution derived by setting the arbitrary term equal to zero is at least as good as

any other solution corresponding to a nonzero value for the arbitrary term. Therefore, Eq. (3.13)
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constitutes the counterpart of the expression in Fragkoulis et al., 2016b used for determining the

time-dependent equivalent elements of the generalized statistical linearization methodology for

systems with singular parameter matrices. The interested reader is directed to Fragkoulis et al.,

2016b; Kougioumtzoglou et al., 2017 for details on the derivation of Eq. (3.13); corresponding

expressions accounting for joint time-frequency response analysis of nonlinear systems with

singular matrices are found in Pasparakis et al., 2021.

Finally, it is noted that the response covariance matrix E[x̂x̂T] as well as its Moore-Penrose

generalized matrix inverse E[x̂x̂T]+ are required for computing the equivalent linear elements in

Eq. (3.13), and subsequently, for determining the system response. In addition, it is readily seen

that the equivalent linear elements are time-dependent, and thus, in contrast to the stationary

case Fragkoulis et al., 2016b; Kougioumtzoglou et al., 2017, a set of differential equations

is derived and solved in the ensuing analysis. This is attained by utilizing a state variable

formulation, which leads to a matrix differential equation governing the time-variant covariance

matrix of the system response.

State variable analysis for MDOF systems with singular parameter matrices

In this section, the state variable formulation developed in Fragkoulis et al., 2016a for MDOF

systems with singular parameter matrices is further extended to treat the linear system with time-

dependent equivalent elements in Eq. (3.12). Ultimately, this leads to a time-varying matrix

differential equation to be solved for determining the standard deviation of the non-stationary

response component.

In this regard, suppose for simplicity that M̄x,t = M̄x + M̄e(t), C̄x,t = C̄x + C̄e(t) and

K̄x,t = K̄x + K̄e(t). Then, taking into account the properties of the generalized matrix inverse

theory (e.g., Campbell and Meyer, 2009), Eq. (3.12) yields

ẍ = M̄+
x,t

(
−C̄x,tẋ − K̄x,tx + Q̄x(t)

)
+
(
I − M̄+

x,tM̄x,t

)
y, (3.14)
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where y is an arbitrary l-dimensional vector. Clearly, the presence of y in Eq. (3.14) defines a

family of equations for the response acceleration. Nevertheless, it is noted that for the special

case when the (l + m) × l matrix M̄x,t has full rank, i.e., rank(M̄x,t) = l, its Moore-Penrose

generalized matrix inverse simplifies to M̄+
x,t =

(
M̄∗

x,tM̄x,t

)−1
M̄∗

x,t, where “∗” denotes the

conjugate transpose matrix operation. Substituting the latter into Eq. (3.14), the arbitrary part

becomes zero and Eq. (3.14) is recast into the state space form

ṗ = Ḡx(t)p + qx, (3.15)

where

Ḡx(t) =

 0l×l Il×l

−M̄+
x,tK̄x,t −M̄+

x,tC̄x,t

 (3.16)

is a 2l × 2l matrix with time-dependent elements and

p =

xs

ẋs

 , qx =

 0l×1

M̄+
x,tQ̄x(t)

 (3.17)

are 2l-dimensional vectors. The interested reader is also referred to Pirrotta et al., 2021, where

a generalized state variable formulation for MDOF systems with fractional derivative terms and

singular parameter matrices is introduced.

Next, for an initially at rest system it is assumed that the time-dependent system response vector

p in Eq. (3.17) is a zero-mean stochastic process. Then, defining the 2l × 2l matrix of the

system response variance V = E[ppT] and resorting to the standard theory of linear systems

(e.g., Chen, 1998), the general solution of the state space equation Eq. (3.15) is derived. It takes

the form

V̇(t) = VḠT
x (t) + Ḡx(t)V +

∫ t

0
exp

(
Ḡx(t− τ)

) (
w(t, τ) + wT(t, τ)

)
dτ, (3.18)
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where

w(t, τ) =

0l×l 0l×l

0l×l M̄+
x,twQ̄x(t, τ)(M̄+

x,t)T

 (3.19)

is the 2l × 2l covariance matrix of the system excitation with wQ̄x(t, τ) = E[Q̄xQ̄T
x ] denoting

the (l +m) × (l +m) covariance matrix of Q̄x.

Solution of the proposed matrix differential equation subject to modulated white noise

In this section, the zero-mean non-stationary excitation in Eq. (3.1) is modeled as the product

of a stationary excitation with a modulated time-function. That is

Qx(t) = a(t)Qx,s(t), (3.20)

where a(t) is a deterministic l×nmatrix of modulating functions and Qx,s(t) is an n-dimensional

stationary stochastic process. Therefore, the (l+m)×(l+m) covariance matrix of the excitation

in Eq. (3.19) takes the form

wQ̄x(t, τ) =

Ja(t)wQx,s(t− τ)aT(t)JT Ja(t)Qx,sFT

FQT
x,saT(t)JT FFT

 , (3.21)

where wQx,s(t − τ) = E[Qx,sQT
x,s]. Eq. (3.21) is further simplified if the stationary excitation

Qx,s(t) in Eq. (3.20) is modeled as a Gaussian white noise process with wQx,s(t − τ) =

δ(t − τ)S, where S is a real, symmetric and non-negative n × n matrix of constants, and δ(·)

denotes the Dirac delta function. Thus, taking into account Eq. (3.21), the matrix differential

equation in Eq. (3.18) becomes

V̇(t) = VḠT
x (t) + Ḡx(t)V + Θ(t), (3.22)
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where

Θ(t) =

0l×l 0l×l

0l×l M̄+
x,twQ̄x(t, τ)

(
M̄+

x,t

)T

 (3.23)

is a 2l × 2l matrix with

wQ̄x(t, τ) =

Ja(t)SaT(t)JT Ja(t)Qx,sFT

FQT
x,saT(t)JT FFT

 . (3.24)

Clearly, in the special case where the system excitation is a stationary process, Eq. (3.22) degen-

erates to the standard Lyapunov matrix differential equation governing the covariance matrix of

the system response (e.g., Roberts and Spanos, 2003; Fragkoulis et al., 2016a).

The matrix differential equation Eq. (3.22) in conjunction with the generalized equivalent linear

elements derived by Eq. (3.13) constitute a coupled set of equations to be solved for determin-

ing the response of the subsystem subject to the non-stationary excitation. The deterministic

component of the response is derived by considering Eq. (3.9), i.e., the subsystem subject to

the deterministic excitation. Overall, the differential equations corresponding to the determinis-

tic and stochastic response components are solved simultaneously by resorting to any standard

numerical algorithm, such as the Runge-Kutta method.

Solution of the proposed matrix differential equation subject to modulated colored noise

In this section, the non-stationary non-white system excitation is modeled by considering addi-

tional auxiliary linear filter equations. In general, linear and nonlinear filters are widely used

to model non-white excitation processes in engineering dynamics in various cases, such as the

Kanai-Tajimi excitation, or even to provide sufficiently accurate approximations in cases where

the excitation power spectrum cannot be represented in the time domain as the response of a

filter (e.g., Spanos, 1986; Chai et al., 2015; Psaros et al., 2018).

In this regard, each one of the nonzero elements of the stationary excitation vector Qx,s(t)

in Eq. (3.20) are considered as the output of a linear r-order filter equation whose input is a
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Gaussian white noise process. Specifically, the filter equations are

vr−1u
(r−1) + vr−2u

(r−2) + · · · + v0u
(0) = Qs(t) (3.25)

and

u(r) + λr−1u
(r−1) + · · · + λ0u

(0) = w(t), (3.26)

where λi and vi (i = 0, 1, . . . , r − 1) denote the filter coefficients, w(t) is a white noise pro-

cess with constant power spectrum density S0, and the superscript “(j)” denotes the j-th order

derivative (j = 0, 1, . . . , r).

Next, assuming that v =
[
v0 v1 · · · vr−1

]T
is the vector of the filter constants and that

u =
[
u(0) u(1) · · · u(r−1)

]T
represents the pre-filter output, combining Eqs. (3.7), (3.20)

and (3.25) yields

D̄xu = Q̄x(t), (3.27)

where

D̄x =

 0l×r

M̄+
x,tP̄a(t)vT

 (3.28)

and

Q̄x =

 0l×1

M̄+
x,tP̄a(t)Qs(t)

 . (3.29)

The (l + m)-dimensional vector P̄ in Eqs. (3.28-3.29) corresponds to the nonzero elements of

the excitation Q̄x in Eq. (3.7). Therefore, Eq. (3.7) is equivalently written as

Q̄x(t) = a(t)Qs(t)P̄ (3.30)
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with a(t) denoting a time-modulating function and

P̄ =

 JIP̄

(a(t)Qs(t))−1 F

 . (3.31)

For instance, assuming for simplicity that Qx(t) in Eq. (3.20) contains only a single zero-mean

process in its first entry yields IP̄ =
[
1 0 · · · 0

]T
, and J, F correspond to the l×l matrix and

m-dimensional vector of Eq. (3.7), respectively. Further, Eq. (3.26) is written in the standard

state variable form

u̇ = Λu + ws, (3.32)

where

Λ =



0 1 · · · 0

0 0 · · · 0
...

−λ0 −λ1 · · · −λr−1


(3.33)

denotes an r × r matrix and ws =
[
0 0 · · · w(t)

]T
is an r-dimensional vector.

Overall, the governing equations of the system under consideration are derived by combining

the equations of the original system defined in Eq. (3.15) and the filter equations Eqs. (3.25-

3.26). Specifically, considering the new variable z =
[
pT uT

]T
, the augmented state space

system is written as

ż = N̄z + W, (3.34)

where

N̄ =

 Ḡx D̄x

0r×2l Λ

 , W =

02l×1

ws

 . (3.35)

Finally, denoting by V = E[zzT] the response covariance matrix, the matrix differential equa-

tion corresponding to Eq. (3.22) for the case where the system excitation is modeled as modu-
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lated colored noise takes the form

V̇ = VN̄T(t) + N̄(t)V + Ws, (3.36)

where Ws = diag(0, 0, . . . , 2πS0) is a (2l + r) × (2l + r) diagonal matrix.

The matrix differential equation Eq. (3.36) is considered in conjunction with Eq. (3.13) to deter-

mine the stochastic response component. Moreover, similar to the formulation in section 3.2.2,

the deterministic component of the response is computed by considering the subsystem subject

to the deterministic excitation in Eq. (3.9). Finally, the Runge-Kutta method is used to solve

simultaneously the set of differential equations governing the stochastic and the deterministic

response.

Mechanization of the proposed technique

The mechanization of the proposed technique is concisely described by the following steps:

1. Consider Eq. (3.8) to decompose the system response into deterministic and stochastic

parts. Then, form the subsystems of deterministic and stochastic differential equations

defined by Eqs. (3.9) and (3.10), respectively.

2. Apply the generalized statistical linearization methodology in section 3.2.2 to derive the

equivalent linear system in Eq. (3.12) corresponding to the nonlinear stochastic differen-

tial equation Eq. (3.10). This is done by utilizing Eq. (3.13) for determining the time-

varying equivalent linear elements.

3. Apply the state variable analysis for systems with singular parameter matrices in section

3.2.2. First, construct matrix Ḡx in Eq. (3.16). Then,

Case 1: Nonlinear system subject to modulated white noise.

determine matrix Θ in Eq. (3.23), and thus, formulate the matrix differential equa-

tion Eq. (3.22).

Case 2: Nonlinear system subject to modulated colored noise.
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determine matrices D̄x and Λ in Eqs. (3.28) and (3.33), respectively, and thus, con-

struct matrix N̄ in Eq. (3.35). Next, form the matrix differential equation Eq. (3.36).

4. Finally, solve simultaneously the matrix differential equation derived in step 3, i.e., Eq. (3.22)

for the white noise excitation, or Eq. (3.36) for the colored noise excitation, in conjunc-

tion with the deterministic differential equation Eq. (3.9) derived in step 1. This can be

done by resorting to any standard numerical algorithm, such as the Runge-Kutta method.

3.3 Numerical examples

In this section, three numerical examples are used to demonstrate the validity of the proposed

technique and assess its reliability. The first one pertains to a nonlinear piezoelectric energy

harvesting device subject to combined deterministic and modulated white noise excitation. The

technique is applied to determine the response displacement and induced voltage of the device,

while a comparison with pertinent MCS data (500 realizations) is used to demonstrate the accu-

racy of the obtained results. The second example refers to a 2-DOF nonlinear structural system

with singular parameter matrices subject to combined deterministic and modulated white noise

excitation, whereas in the third example the same system is considered subject to combined

deterministic and modulated colored noise excitation. In both cases the results obtained by the

proposed technique are compared with corresponding results obtained by the standard approach

in Kong et al., 2022a.

3.3.1 Nonlinear energy harvesting device subject to combined determin-
istic and modulated white noise excitation

In this example, the proposed technique is used for determining the response of a typical non-

linear piezoelectric energy harvesting device. Such devices consist of a mechanical part, which

is usually a cantilever beam moving as a result of applied excitation and a corresponding piezo-

electric part, which is used to transform the mechanical energy into electric current or voltage.

They often operate in tandem with large scale infrastructure such as bridges and high-rise build-
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ings (e.g., Roccia et al., 2020), which, in turn, are potentially subject to combined deterministic

and non-stationary stochastic excitation (e.g., Quaranta et al., 2018).

The coupled electro-mechanical equations governing the dynamics of the system subject to

combined deterministic and non-stationary excitation are given by

q̈ + 2ζq̇ + dU(q)
dq

+ κ2y = fd(t) +Q(t) (3.37)

ẏ + αy − q̇ = 0 (3.38)

where q, q̇ and q̈ denote the response displacement, velocity and acceleration of the mechanical

part, and y is the induced voltage of a capacitive harvester (e.g., Daqaq et al., 2014; Petro-

michelakis et al., 2018; Karageorgos et al., 2021). ζ denotes the damping coefficient of the

mechanical part, κ is a coupling coefficient, α is a constant and U(q) represents the potential

function. The nonlinear function of the system is given by

dU(q)
dq

= q + λq2 + δq3, (3.39)

where λ and δ are coefficients classifying a typical harvesting device into distinctive classes;

the interested reader is directed to He and Daqaq, 2016; Petromichelakis et al., 2018 for a

detailed discussion. Further, assume that the deterministic component of the excitation is given

by fd = fd,1 sin (ωdt). The non-stationary stochastic excitation component is modeled as a

modulated white noise stochastic process Q(t) = a(t)Qs, where a(t) = A exp(−µt) with

A, µ > 0 is a time-modulating function and Qs(t) is a Gaussian white noise process with

E [Qs(t)Qs(t+ τ)] = 2πS0δ(τ).

Next, the proposed technique is used to treat the system of Eqs. (3.37-3.39). In this regard,

considering the coordinates vector x(t) =
[
q(t) y(t)

]T
, Eqs. (3.37-3.39) are written in the
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form of Eq. (3.1), where

Mx =

1 0

0 0

 , Cx =

2ζ 0

−1 1

 , Kx =

1 κ2

0 α

 , (3.40)

Φx =

λq2 + δq3

0

 (3.41)

and

fd,x =

fd(t)

0

 , Qx =

Q(t)

0

 . (3.42)

Clearly, the matrix Mx in Eq. (3.40) is singular, and thus, a direct treatment of the system of

Eqs. (3.37-3.39) is not possible. However, in the ensuing analysis a solution is derived in a direct

manner by resorting to the generalized matrix inverse theory. Specifically, considering that

Eq. (3.38) constitutes the constraints equation of the harvesting device (e.g., Petromichelakis

et al., 2018; Karageorgos et al., 2021; Pasparakis et al., 2022) and differentiating it once with

respect to time, Eq. (3.2) is formulated, where

A =
[
−1 1

]
, E =

[
0 α

]
, L =

[
0 0

]
(3.43)

and

F = 0. (3.44)

Further, the l × l matrix J in Eqs. (3.4) and (3.5) interconnecting the constraints to the system

governing equations takes the form

J = Il − A+A, (3.45)

where Il denotes the l × l identity matrix. The interested reader is directed to indicative Refs.

Fragkoulis et al., 2016a; Pirrotta et al., 2021; Karageorgos et al., 2021 for more details. There-
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fore, the system of Eqs. (3.37-3.39) is equivalently written in the form of Eq. (3.3), where

M̄x =


0.5 0

0.5 0

−1 1

 , C̄x =


−0.5α 0.5

−0.5α 0.5

0 α

 , K̄x =


0.5 0.5κ2 + α

0.5 0.5κ2 + α

0 0

 , (3.46)

Φ̄x(x) =
(
λq2 + δq3

)

0.5

0.5

0

 (3.47)

and

f̄d,x = fd,1 sin (ωdt)


0.5

0.5

0

 , Q̄x = Q(t)


0.5

0.5

0

 . (3.48)

Next, considering that the system response consists of a stochastic and a deterministic compo-

nent, namely xs =
[
qs ys

]T
and xd =

[
qd yd

]T
, ensemble averaging the nonlinear vector in

Eq. (3.47) yields

E[Φ̄x] =
(
λσ2

qs
+ λq2

d + 3δσ2
qs
qd + δq3

d

)

0.5

0.5

0

 . (3.49)

Then, applying the generalized statistical linearization method with x̂ = xs the equivalent linear

matrix K̄e is determined by Eq. (3.13) in the form

K̄e =
(
λqd + 1.5δ

(
σ2

qs
+ q2

d2

))

R(1, 1) R(2, 1)

R(1, 1) R(2, 1)

0 0

 , (3.50)

where R(i, j), i, j = 1, 2, denotes the (i, j) element of the matrix E[x̂x̂T]+E[x̂x̂T]. For the

numerical evaluation, the following set of parameter values are used for the system ζ = 0.1,
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κ = 3.25, α = 0.8, δ = 0.2, λ = 2
√
δ ≈ 0.89, and fd1 = 0.1, ωd = 1, A = 1, µ = 0.1

and S0 = 0.2/π for the excitation. In this regard, the matrix differential equation Eq. (3.22) is

formed, where

wQ̄x = exp (−0.2t)


0.0159 0.0159 0

0.0159 0.0159 0

0 0 0

 (3.51)

and

Θ(t) = exp (−0.2t)



0 0 0 0

0 0 0 0

0 0 0.0637 0.0637

0 0 0.0637 0.0637


. (3.52)

Finally, the deterministic response component and the standard deviation of the stochastic re-

sponse component for both the mechanical and the piezoelectric parts of the device are de-

termined by considering the coupled set of Eqs. (3.9) and (3.22). Specifically, 10 differential

equations governing the stochastic response of the system are derived by Eq. (3.22), whereas 4

additional differential equations governing the deterministic response are derived by Eq. (3.9).

These are solved simultaneously by the Runge-Kutta method. The solid lines in Figs. 3.1(a) and

3.1(b) show the obtained results corresponding to the mechanical part of the device, namely the

deterministic response displacement and the standard deviation of the stochastic response dis-

placement, respectively. Further, the solid lines in Figs. 3.2(a) and 3.2(b) correspond to the

piezoelectric part of the device. Fig. 3.2(a) shows the deterministic component of the induced

voltage y, whereas Fig. 3.2(b) shows the standard deviation of the stochastic component of y.

The obtained results are compared and found in good agreement with MCS data (500 realiza-

tions) generated by the spectral representation method Liang et al., 2007, with a signal duration

T0 = 100 s and a cut-off frequency equal to 2π rad/s.
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(a) (b)

Figure 3.1: Response of the mechanical part of the nonlinear energy harvesting device described
by Eqs. (3.37-3.39) subject to combined deterministic and modulated white noise excitation: (a)
deterministic response displacement; (b) standard deviation of the stochastic response displace-
ment. MCS data (500 realizations) are included for comparison.

(a) (b)

Figure 3.2: Response of the piezoelectric part of the nonlinear energy harvesting device de-
scribed by Eqs. (3.37-3.39) subject to combined deterministic and modulated white noise exci-
tation: (a) deterministic component of the induced voltage; (b) standard deviation of the stochas-
tic component of the induced voltage. MCS data (500 realizations) are included for comparison.
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3.3.2 2-DOF nonlinear structural system with singular parameter matri-
ces subject to combined deterministic and modulated white noise
excitation

The 2-DOF nonlinear structural system in Fig. 3.3(a) is considered, where mass m1 is con-

nected to the foundation with a nonlinear spring with stiffness coefficient k1 and a nonlin-

ear damper with damping coefficient c1. The corresponding forces are k1q1(1 + ε1q
2
1) and

c1q̇1(1 + ε2q̇
2
1), respectively, where ε1 and ε2 are positive constants, and q1 denotes the response

displacement of mass m1. Further, mass m2 is connected to mass m1 via a linear spring and

a linear damper with stiffness and damping coefficients k2 and c2, respectively. q2 denotes the

response displacement of mass m2. The system is subject to a combined deterministic and non-

stationary stochastic excitation, which is applied on massm1. The deterministic excitation com-

ponent is fd = fd,1 sin(ωdt). The stochastic excitation is modeled as a modulated white noise

Q1(t) = a(t)Qs(t), where a(t) = A exp(−µt) is a time-modulating function with t ≥ 0 and

A, µ > 0, and Qs(t) is a Gaussian white noise process with E [Qs(t)Qs(t+ τ)] = 2πS0δ(τ).

(a) (b)

Figure 3.3: (a) A 2-DOF nonlinear structural system subject to combined deterministic and non-
stationary stochastic excitation. (b) The nonlinear system of Fig. 3.3(a) modeled by employing
an additional redundant coordinate.

The system governing equations of motion are derived by considering the (generalized) coordi-

nates vector q =
[
q1 q2

]T
. The mass, damping and stiffness matrices of the system are given
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by

M =

m1 0

m2 m2

 , C =

c1 −c2

0 c2

 , K =

k1 −k2

0 k2

 . (3.53)

Further, the system nonlinearity is written as

Φ(q, q̇, q̈) =

ε1k1q
3
1 + ε2c1q̇

3
1

0

 , (3.54)

whereas the deterministic and non-stationary excitation vectors are

fd =

fd,1 sin(ωdt)

0

 , Q =

Q1

0

 . (3.55)

For the numerical evaluation, the system parameters take the values m1 = m2 = 1, c1 = c2 =

0.2, k1 = k2 = 1, ε1 = ε2 = 0.1, S0 = 0.2
π

, A = 1, µ = 0.1 and the excitation parameter values

are fd,1 = 1, ωd = 1. The deterministic response component and the standard deviation of the

stochastic response component of the nonlinear system are derived by applying the standard

technique proposed in Kong et al., 2022a. The obtained results for the response displacement

and the response velocity for each of the system DOFs are shown by dashed line in Figs. 3.4

and 3.5, respectively.

Next, the system governing equations of motion are derived by adopting a redundant coordinates

modeling. The nonlinear system in Fig. 3.3(a) is decomposed into its constituent parts as seen in

Fig. 3.3(b), and considering the coordinates vector x =
[
x1 x2 x3

]T
, the equation of motion

Eq. (3.1) is formed. Further, differentiating twice with respect to time the constraints equation

connecting the two subsystems in Figs. 3.3(a) and 3.3(b), i.e., x2 = x1 + d, where d denotes the

length of mass m1, Eq. (3.2) is formed, where

A =
[
1 −1 0

]
, (3.56)
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E = L = 01×3 and F = 0. In addition, matrix J in Eq. (3.45) becomes

J =


0.5 0.5 0

0.5 0.5 0

0 0 1

 . (3.57)

In this regard, the parameter matrices in Eq. (3.4) are given by

M̄x =



0.5 0.5 0.5

0.5 0.5 0.5

0 1 1

1 −1 0


, C̄x =



0.1 0 0

0.1 0 0

0 0 0.2

0 0 0


, K̄x =



0.5 0 0

0.5 0 0

0 0 1

0 0 0


, (3.58)

whereas the nonlinearity of Eq. (3.5) becomes

Φ̄x(x, ẋ, ẍ) =
(
k1ε1x

3
1 + c1ε2ẋ

3
1

) [
0.5 0.5 0 0

]T
. (3.59)

Lastly, the deterministic and non-stationary stochastic excitation components are given by

f̄d,x = fd,1 sin(ωdt)
[
0.5 0.5 0 0

]T
(3.60)

and

Q̄x = Q1(t)
[
0.5 0.5 0 0

]T
, (3.61)

respectively.

Then, for the application of the proposed technique the system response is decomposed into a

deterministic component xd =
[
xd,1 xd,2 xd,3

]T
and a corresponding stochastic component
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xs =
[
xs,1 xs,2 xs,3

]T
. Next, ensemble averaging the nonlinear function in Eq. (3.59), i.e.,

E
[
Φ̄x
]

=



0.5k1ε1
(
x3

d,1 + 3xd,1σ
2
xs,1

)
+ 0.5c1ε2

(
ẋ3

d,1 + 3ẋd,1σ
2
ẋs,1

)
0.5k1ε1

(
x3

d,1 + 3xd,1σ
2
xs,1

)
+ 0.5c1ε2

(
ẋ3

d,1 + 3ẋd,1σ
2
ẋs,1

)
0

0


, (3.62)

Eq. (3.9) is formed for the subsystem subject to deterministic excitation, while the generalized

statistical linearization method is applied to treat the subsystem subject to non-stationary excita-

tion. Thus, considering the 6-dimensional vector x̂ =
[
xs ẋs

]T
, the equivalent linear elements

in Eq. (3.13) are given by

K̄e = 1.5k1ε1
(
x2

d,1 + σ2
xs,1

)


R(1, 1) R(2, 1) R(3, 1)

R(1, 1) R(2, 1) R(3, 1)

0 0 0

0 0 0


(3.63)

and

C̄e = 1.5c1ε2
(
ẋ2

d,1 + σ2
ẋs,1

)


R(4, 4) R(5, 4) R(6, 4)

R(4, 4) R(5, 4) R(6, 4)

0 0 0

0 0 0


, (3.64)

whereR(i, j), i, j = 1, 2, . . . , 6 denotes the (i, j) element of matrix E[x̂x̂T]+E[x̂x̂T] of Eq. (3.13).

Then, following the presentation in section 3.2.2, the matrix differential equation Eq. (3.22) is

formed, where

wQ̄x = exp (−0.2t)
20π



1 1 0 0

1 1 0 0

0 0 0 0

0 0 0 0


, (3.65)
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and

Θ(t) = exp (−0.2t)
5π



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 1 1 −1

0 0 0 1 1 −1

0 0 0 −1 −1 1



. (3.66)

This leads to 21 differential equations pertaining to the determination of the stochastic response

component, which are solved simultaneously with 6 additional differential equations derived by

Eq. (3.9). The set of all differential equations is solved by the Runge-Kutta method. The ob-

tained results for the deterministic and stochastic components of the response displacement and

velocity for both DOFs of the system are shown by solid line in Figs. 3.4 and 3.5, respectively.

Clearly, these are in total agreement with the corresponding results (dashed line) obtained by

the standard method proposed in Kong et al., 2022a.

3.3.3 2-DOF nonlinear structural system with singular parameter matri-
ces subject to combined deterministic and modulated colored noise
excitation

In this section, the system shown in Figs. 3.3(a) and 3.3(b) is subject to combined determin-

istic and non-stationary stochastic excitation, with the latter modeled as modulated colored

noise. Similar to the case in section 3.3.2, the deterministic excitation component is given

by fd,1 sin(ωdt). The stochastic component is modeled as Q1(t) = a(t)Qs, where a(t) =

A exp(−µt) is a time-modulating function with t ≥ 0 and A, µ > 0, and Qs is a non-white

stochastic excitation process with a Kanai-Tajimi power spectrum

S(ω) =
1 + 4ξg

ω2

ω2
g(

1 − ω2

ω2
g

)2
+ 4ξg

ω2

ω2
g

S0. (3.67)
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Figure 3.4: Response of the 2-DOF nonlinear structural system in Figs. 3.3(a) and 3.3(b) sub-
ject to combined deterministic and modulated white noise excitation: (a) deterministic response
displacement of the 1st DOF; (b) standard deviation of the stochastic response displacement of
the 1st DOF; (c) deterministic response displacement of the 3rd DOF; and (d) standard devia-
tion of the stochastic response displacement of the 3rd DOF. Results obtained by the proposed
technique (solid line) vs corresponding results obtained by the method in Kong et al., 2022a
(dashed line).
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Figure 3.5: Response of the 2-DOF nonlinear structural system in Figs. 3.3(a) and 3.3(b) subject
to combined deterministic and modulated white noise excitation: (a) deterministic response
velocity of the 1st DOF; (b) standard deviation of the stochastic response velocity of the 1st
DOF; (c) deterministic response velocity of the 3rd DOF; and (d) standard deviation of the
stochastic response velocity of the 3rd DOF. Results obtained by the proposed technique (solid
line) vs corresponding results obtained by the method in Kong et al., 2022a (dashed line).



CHAPTER 3. RESEARCH ARTICLE 2: NON-STATIONARY RESPONSE OF
NONLINEAR SYSTEMS WITH SINGULAR PARAMETER MATRICES SUBJECT TO
COMBINED DETERMINISTIC AND STOCHASTIC EXCITATION 125

The values of the parameters in the power spectrum of Eq. (3.67) are ξg = 0.5, ωg = 1 and

S0 = 0.2π.

Next, the technique proposed in section 3.2.2 is applied for determining the response of the sys-

tem. In this regard, Eqs. (3.25) and (3.26) reduce to a second order linear filter with coefficients

λ0, λ1, v0 and v1, given by

v1u
(1) + v0u

(0) = Qs(t) (3.68)

and

u(2) + λ1u
(1) + λ0u

(0) = w(t), (3.69)

where v0 = ω2
g , v1 = 2ζgωg, λ0 = ω2

g , λ1 = 2ζgωg, and w(t) is a white noise process. Fur-

ther, since the excitation is applied only on the first DOF of the system (see Fig. 3.3(b)),

IP̄ in Eq. (3.31) is equal to IP̄ =
[
1 0 0

]T
and using Eq. (3.45), Eq. (3.31) yields P̄ =[

0.5 0.5 0 0
]T

. This leads to the computation of the 6 × 2 matrix D̄x in Eq. (3.28). In

addition, Eqs. (3.63-3.64) are used for computing the 6 × 6 matrix Ḡx(t) in Eq. (3.16), whereas

Λ is readily found by Eq. (3.33).

Finally, taking into account Eq. (3.35), the matrix differential equation Eq. (3.36) is formed

and solved simultaneously with the deterministic sub-equations derived by Eq. (3.9). Over-

all, Eq. (3.36) yields 36 differential equations governing the stochastic response component,

whereas Eq. (3.9) yields 6 additional differential equations governing the deterministic compo-

nent of the response. The set of differential equations is solved by the Runge–Kutta method.

The results obtained for the deterministic and the stochastic components of the response dis-

placement and velocity for both DOFs of the system are shown by solid line in Figs. 3.6 and

3.7, respectively. To demonstrate the validity of the proposed technique, corresponding results

obtained by the standard method in Kong et al., 2022a are also included in Figs. 3.6 and 3.7

for comparison. The latter are depicted by dashed line and practically coincide with the results

obtained by the proposed technique.
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Figure 3.6: Response of the 2-DOF nonlinear structural system in Figs. 3.3(a) and 3.3(b) subject
to combined deterministic and modulated colored noise excitation: (a) deterministic response
displacement of the 1st DOF; (b) standard deviation of stochastic response displacement of the
1st DOF; (c) deterministic response displacement of the 3rd DOF; and (d) standard deviation
of the stochastic response displacement of the 3rd DOF. Results obtained by the proposed tech-
nique (solid line) vs corresponding results obtained by the method in Kong et al., 2022a (dashed
line).
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Figure 3.7: Response of the 2-DOF nonlinear structural system in Figs. 3.3(a) and 3.3(b) subject
to combined deterministic and modulated colored noise excitation: (a) deterministic response
velocity of the 1st DOF; (b) standard deviation of stochastic response velocity of the 1st DOF;
(c) deterministic response velocity of the 3rd DOF; and (d) standard deviation of stochastic
response velocity of the 3rd DOF. Results obtained by the proposed technique (solid line) vs
corresponding results obtained by the method in Kong et al., 2022a (dashed line).
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3.4 Concluding remarks

In this paper, a new technique has been proposed for determining the response of MDOF sys-

tems with singular parameter matrices subject to combined deterministic and non-stationary

stochastic excitations. The appearance of singular matrices in the equations of motion per-

tain to additional constraints equations in the system, or to a redundant coordinates modeling

of its governing dynamics. Further, the stochastic excitation component is modeled as a non-

stationary process driven by the need to develop response analysis frameworks accounting for

the non-stationary characteristics of excitations such as wave, wind and earthquake loads.

In this regard, the MDOF nonlinear system has been decomposed into two subsystems based

on the applied excitation, and a coupled set of equations has been derived and solved to de-

termine the system response. First, a subsystem of deterministic equations governing the re-

sponse of the system subject to deterministic excitation has been derived. Next, the generalized

statistical linearization method has been utilized to treat the nonlinear subsystem subject to

non-stationary stochastic excitation. This has been done in conjunction with a state space for-

mulation, which resulted a matrix differential equation governing the stochastic response. The

latter has been solved simultaneously with the deterministic equation above by applying a stan-

dard Runge-Kutta numerical scheme. In addition, a closed form expression for determining

the time-dependent equivalent elements of the generalized statistical linearization methodology

(Fragkoulis et al., 2016b) has been derived. Overall, the proposed technique can be construed

as an extension of the approach in Ni et al., 2021 to systems subject to combined deterministic

and non-stationary stochastic excitation. It has been assessed by considering three numerical

examples including a vibration energy harvesting device subject to combined deterministic and

modulated white noise excitation, and a structural nonlinear system with singular parameter

matrices subject to combined deterministic and modulated white and colored noise excitations.

The reliability of the obtained results has been demonstrated by comparisons to MCS data and

corresponding results obtained by the approach proposed in Kong et al., 2022a.
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Abstract: An approximate analytical technique for determining the response statistics of a

nonlinear piezoelectric energy harvesting device is proposed. This is attained by resorting to a

recently developed method for determining the response of multi-degree-of-freedom dynamical

systems with singular matrices subject to combined deterministic and stochastic loads. Such

systems are often met in engineering applications, for instance, as a result of modeling the gov-

erning equations of motion of complex multi-body systems by utilizing dependent coordinates.

In this regard, the governing equations of the harvesting system dynamics are treated separately.

Specifically, the harmonic balance method is used for treating the deterministic component of

the response, while the corresponding stochastic response component is treated by combining

the stochastic averaging and the statistical linearization methodologies. A numerical example

is used to demonstrate the validity of the proposed technique. The obtained results are verified

by using pertinent MCS data.
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4.1 Introduction

In general, formulating the system governing equations of motion of engineering systems relies

on the use of the minimum number of (generalized) coordinates Roberts and Spanos, 2003.

This, in turn, results system parameter matrices with some appealing properties, such as posi-

tive definiteness and symmetry. However, for several classes of complex engineering systems

and/or systems subject to constraint equations, it is often more efficient to derive the governing

equations based on a dependent coordinates modeling, i.e., by considering additional degrees-

of-freedom (DOF) (e.g., Udwadia and Kalaba, 2001; Udwadia and Phohomsiri, 2006; Schutte

and Udwadia, 2011). As a result the aforementioned appealing properties of the system pa-

rameter matrices do not apply anymore, since the latter are singular. Subsequently, this aspect

necessitates the development of pertinent methodologies for conducting response analyses of

such systems.

In this regard, considering the problem of multi-DOF linear and nonlinear systems with singular

matrices, as well as with constraint equations, has led to the development of pertinent solution

frameworks for determining the stochastic response of such system in time and frequency do-

mains, as well as for conducting a joint time-frequency response analysis; see indicatively,

Fragkoulis et al., 2016a,b; Kougioumtzoglou et al., 2017; Antoniou et al., 2017; Fragkoulis et

al., 2015; Pantelous and Pirrotta, 2017; Pirrotta et al., 2019; Pasparakis et al., 2021; Pirrotta et

al., 2021; Karageorgos et al., 2021; Fragkoulis et al., 2022. This has been attained by resorting

to the theory of generalized matrix inverses (Ben-Israel and Greville, 2003), and particularly,

by considering the concept of the Moore-Penrose inverse of a matrix.

In this paper, a recently proposed generalized matrix inverses-based framework for deriving the

response of MDOF nonlinear systems with singular matrices subject to combined periodic and

stochastic excitations (Ni et al., 2021) is used to compute in a direct way the stochastic response

of a nonlinear piezoelectric energy harvesting device (Petromichelakis2021; Petromichelakis

et al., 2018; Karageorgos et al., 2021). This is attained by considering the harmonic balance
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method for treating the periodic component of the response (Mickens, 2010; Spanos et al.,

2019; Kong and Spanos, 2021; Kong et al., 2022) in conjunction with the statistical lineariza-

tion methodology for systems with singular matrices for treating the corresponding stochastic

response component (Fragkoulis et al., 2016b; Kougioumtzoglou et al., 2017). The obtained

results are compared with pertinent Monte Carlo simulation data.

4.2 Mathematical formulation

4.2.1 Governing equations of motion

The governing equations of motion of an l-DOF nonlinear system subjected to combined

stochastic Qx(t) and deterministic fd,x(t) excitations have the form (Fragkoulis et al. 2016b;

Spanos et al. 2019)

Mxẍ + Cxẋ + Kxx + Φx(x, ẋ, ẍ) = fd,x(t) + Qx(t). (4.1)

In Eq. (4.1), x is an l dependent coordinates vector, Mx,Cx and Kx denote the l × l system

parameter matrices, whereas Φx(x, ẋ, ẍ) corresponds to the l vector of the system nonlinearity.

Next, the system of Eq. (4.1) is subject to additional constraint equations, which are written for

simplicity in the form (Schutte and Udwadia, 2011)

Aẍ + Eẋ + Lx = F, (4.2)

where A,E,L are m × l matrices and F is an l vector. In this regard, Eq. (4.1) is equivalently

written as (Kougioumtzoglou et al., 2017)

M̄xẍ + C̄xẋ + K̄xx + Φ̄x(x, ẋ, ẍ) = f̄d,x(t) + Q̄x(t), (4.3)
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where

M̄x =

(Il − A+A)Mx

A

 , (4.4)

C̄x =

(Il − A+A)Cx

E

 (4.5)

and

K̄x =

(Il − A+A)Kx

L

 , (4.6)

are the (l +m) × l parameter matrices of the system, whereas

Φ̄x =

(Il − A+A)Φx

0

 (4.7)

and

Q̄x(t) =

(Il − A+A)Qx(t)

F

 , (4.8)

f̄d,x(t) =

(Il − A+A)fd,x(t)

0

 , (4.9)

are, respectively, the (l + m) vectors of the system nonlinearities, as well as the stochastic and

deterministic excitations. Also, Il denotes the l × l identity matrix and “+” is used for the

Moore-Penrose (M-P) matrix inverse operation. A detailed derivation of Eqs. (4.3-4.9) is found

in Kougioumtzoglou et al., 2017.
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4.2.2 Determination of the system response

Considering that Q̄x(t) and f̄d,x(t) in Eq. (4.3) correspond to the stochastic and deterministic

excitations of the system, where the former is modeled as a zero-mean Gaussian process and

the latter is modeled as a monochromatic function of period T = 2π
ωd

; i.e.,

f̄d,x(t) = f̄d1,x cos(ωdt) + f̄d2,x sin(ωdt), (4.10)

where f̄d1,x and f̄d2,x are constants. It is assumed that the system response has also a stochastic

and a periodic component. These are denoted by xs(t) and xd(t), respectively. Therefore,

ensemble averaging Eq. (4.3), an expression consisting of a periodic and a stochastic component

arises. This is given by

M̄xẍd + C̄xẋd + K̄xxd + E[Φ̄x(xs + xd, ẋs + ẋd, ẍs + ẍd)] = f̄d,x(t), (4.11)

which is used next for deriving the system response. To this end, a framework is proposed which

is based on the combination of the harmonic balance method (for treating the deterministic

component), and the statistical linearization methodology for systems with singular matrices

(for treating the stochastic component).

Application of the harmonic balance and statistical linearization treatments

First, considering the system in Eq. (4.3), the harmonic balance method is applied for deter-

mining the periodic component of the response. It is assumed for simplicity that the nonlinear

vector Φ̄x(xs +xd, ẋs + ẋd, ẍs + ẍd) in Eq. (4.3) contains polynomial nonlinear functions. This

assumption facilitates the derivation of closed form solutions for the system response (Spanos

et al., 2019), as well as simplifies the application of the harmonic balance method (Mickens,

2010).
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In this regard, the deterministic response becomes

xd(t) = xd1 cos(ωdt) + xd2 sin(ωdt), (4.12)

where xd1 ,xd2 are constant l vectors. Next, applying the harmonic balance method yields

Pu = v. (4.13)

In Eq. (4.13), P is a 2(l+m)×2l matrix whose elements are functions of ωd and the augmented

parameter matrices defined in Eqs. (4.4)-(4.6). Further, v is a 2(l + m) vector containing the

deterministic excitation, as well as the ensemble average of the stochastic excitation, whereas

the 2l vector

u =

xd1

xd2

 (4.14)

contains the deterministic response of the system.

Then, employing the M-P inverse of the matrix P (Ben-Israel and Greville, 2003), the solution

to the overdetermined system of equations defined in Eq. (4.14) is given by

u = P+v + (I − P+P)y. (4.15)

In Eq. (4.15), y is an arbitrary 2l vector, and thus, this expression corresponds to a family of

possible solutions for the deterministic response component of the system. However, a unique

solution is attained when P has full column rank. Specifically, it such case the M-P inverse ma-

trix of P is given by P+ = (P∗P)−1P∗, and substituting the latter into Eq. (4.15), a simplified

expression is derived.

Next, the stochastic response component is treated by resorting to the statistical linearization

methodology for systems with singular matrices (Fragkoulis et al., 2016b; Kougioumtzoglou

et al., 2017); see also Mitseas et al., 2016, 2018; Fragkoulis et al., 2019; Mitseas and Beer,
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2019; Pasparakis et al., 2021; Mitseas and Beer, 2021; Ni et al., 2022 for indicative application

frameworks of the method.

In this regard, considering Eqs. (4.3) and (4.11) leads to

M̄xẍs + C̄xẋs + K̄xxs + Φ̃x(xs,xd) = Q̄x(t), (4.16)

where

Φ̃x(xs,xd) = Φ̄x(xs + xd, ẋs + ẋd, ẍs + ẍd) − E[Φ̄x(xs + xd, ẋs + ẋd, ẍs + ẍd)] (4.17)

is the zero-mean nonlinear vector of the system, to be replaced by equivalent linear elements.

Specifically, applying the statistical linearization yields the equivalent linear system

(M̄x + M̄e)ẍs + (C̄x + C̄e)ẋs + (K̄x + K̄e)xs = Q̄x(t), (4.18)

where M̄e, C̄e and K̄e denote the unknown equivalent linear (l+m)× l matrices of the system,

which are used to account for neglecting from Eq. (4.16) the nonlinear vector. It is noted that

closed form expressions for the equivalent linear matrices are found in Fragkoulis et al., 2016b

and Kougioumtzoglou et al., 2017. Further, it is noted that since the nonlinear vector in Eq.

(4.17) is written in terms of both the stochastic and deterministic response components, this

will also hold for the equivalent linear elements. However, considering that the elements of the

equivalent matrices are slowly varying over a period T of oscillation, they are approximated by

their average over T Spanos et al., 2019. Therefore, Eq. (4.18) becomes

(M̄x + M̄a
e)ẍs + (C̄x + C̄a

e)ẋs + (K̄x + K̄a
e)xs = Q̄x(t). (4.19)

Eq. (4.19) corresponds to the equivalent linear system, whose solution is derived by following

either a time-domain treatment, where the system response is derived by solving a Lyapunov

equation Fragkoulis et al., 2016a. Alternatively, applying a frequency-domain treatment, the
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system response is determined by Roberts and Spanos, 2003

E[xxT] =
∫ ∞

−∞
Sx(ω)dω, (4.20)

where E[·] denotes the expectation operator and Sx(ω) is the response power spectrum. The

latter is determined by resorting to the input-output expression

Sx(ω) = αx(ω)SQ̄x(ω)αT∗
x (ω), (4.21)

where αx(ω) is the frequency response matrix and SQ̄x(ω) the power spectrum of the excitation;

see Kougioumtzoglou et al., 2017 for a detailed presentation.

4.3 Numerical examples

In this section, the M-P generalized inverse matrix-based framework is used to compute the

response of a piezoelectric energy harvesting device. An indicative piezoelectric energy har-

vester, consists of a mechanical system, such as a cantilever beam moving as a result of applied

excitation, and a corresponding piezoelectric system, which is used for transforming the me-

chanical energy into electric current. Such devices are used in several applications, mostly for

powering adjoining low power level devices. Specifically, they often operate in tandem with

large scale infrastructure, such as bridges and high-rise buildings (Roccia et al., 2020), which

are potentially subjected to combined deterministic and stochastic excitations.

The equations governing the dynamics of the system are given by (Daqaq et al., 2014; Petro-

michelakis et al., 2018; Karageorgos et al., 2021)

q̈ + 2ζq̇ + dU(q)
dq

+ κ2y = w(t) + fd(t), (4.22)

ẏ + αy − q̇ = 0. (4.23)
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In the coupled system of Eqs. (4.22) and (4.23), q denotes the response displacement of the

mechanical part and y is either the induced voltage or the induced current. Further, ζ is the

damping coefficient of the mechanical system, κ denotes a coupling coefficient, α is a constant

and U(q) denotes the potential function (He and Daqaq, 2016). The system is subjected to

the stochastic excitation w(t), which is modeled as a Gaussian white noise stochastic process

with constant spectral density S0, and also to the deterministic component, which is given by

fd = fd1 cosωdt + fd2 sinωdt. It is assumed that the nonlinear function of the system has the

form (Petromichelakis et al., 2018)

dU(q)
dq

= q + λq2 + δq3, (4.24)

where λ and δ denote parameters which control the intensity of the nonlinearity. The following

set of parameter values are used: α = 0.8, S0 = 0.05, δ = 0.1, κ = 3.25, ωd = π, fd1 = 0 and

fd2 = 0.1.

Setting

x(t) =

q(t)
y(t)

 (4.25)

and also considering Eq. (4.24), the system of Eqs. (4.22) and (4.23) is written in the form of

Eq. (4.1), where the parameter matrices are given by

Mx =

1 0

0 0

 , Cx =

2ζ 0

−1 1

 (4.26)

and

Kx =

1 κ2

0 α

 , (4.27)
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whereas the deterministic and stochastic excitation vectors become, respectively,

fd,x =

fd(t)

0

 (4.28)

and

Qx =

w(t)

0

 . (4.29)

Clearly, the matrix Mx in Eq. (4.26) is singular, which hinders the direct treatment of the sys-

tem. However, considering that Eq. (4.23) denotes the constraint equation of the harvester (see

also Petromichelakis et al., 2018) facilitates the ensuing analysis. Specifically, differentiating

Eq. (4.23) once with respect to time, Eq. (4.2) is formulated, where

A =
[
−1 1

]
, E =

[
0 α

]
, L =

[
0 0

]
(4.30)

and

F = 0. (4.31)

In this regard, the system of Eqs. (4.22) and (4.23) is equivalently written in the form of Eq.

(4.3), where

M̄x =


0.5 0

0.5 0

−1 0

, C̄x =


−0.5α 0.5

−0.5α 0.5

0 α

 (4.32)

and

K̄x =


0.5 0.5k2 + α

0.5 0.5k2 + α

0 0

. (4.33)
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Further, Eq. (4.7) becomes

Φ̄x(x) = (λq2 + δq3)


0.5

0.5

0

 , (4.34)

and Eqs. (4.8) and (4.9) yield, respectively,

Q̄x = w(t)


0.5

0.5

0

 (4.35)

and

f̄d,x = fd2 sin(ωdt)


0.5

0.5

0

 . (4.36)

Next, considering that the voltage process y(t) has zero mean (Grigoriu, 2021), the herein gen-

eralized harmonic balance method for systems with singular matrices is employed. Considering

further that the system response in Eq. (4.25) has a stochastic and a deterministic component,

i.e.,

xs(t) =

qs(t)

ys(t)

 , xd(t) =

qd(t)

yd(t)

 (4.37)

and ensemble averaging Eq. (4.34), leads to

E[Φ̄x] =
(
λσ2

qs
+ λq2

d + 3δσ2
qs
qd + δq3

d

)
×


0.5

0.5

0

 . (4.38)
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Then, the 6 × 4 matrix P in Eq. (4.13) is formed and since it has full rank, a unique solution for

the periodic response vector is found by solving Eq. (4.15). Further, applying the generalized

statistical linearization method, the equivalent matrices M̄a
e , C̄a

e and K̄a
e are derived and the

equivalent linear system in Eq. (4.19) is formed. Indicatively, the matrix K̄a
e is given by

K̄a
e = 1.5δσ2

qs


H(1, 1) H(2, 1)

H(1, 1) H(2, 1)

0 0

+ 1.5δ


q2

d1
+q2

d2
2 0

q2
d1

+q2
d2

2 0

0 0

 . (4.39)

In Eq. (4.39), H(i, j), i, j = 1, 2, denote the (i, j) element of the matrix E[x̂x̂T]+E[x̂x̂T],

where x̂T =
[
x ẋ

]
and x is defined in Eq. (4.25); see Fragkoulis et al., 2016b for a detailed

discussion.
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(a)

(b)

Figure 4.1: Figure 1. Response variance of the energy harvesting system of Eqs. Eqs. (4.22)
and (4.23) subjected to combined stochastic and deterministic excitations (S0 = 0.05, fd2 =
0.4, ωd = π). Analytical solution vis-à-vis MCS estimate (500 realizations): (a) response
displacement variance; (b) response voltage variance.

Finally, the variance of the stochastic response is computed by solving the coupled set of Eqs.

(4.15), (4.20) and (4.21). In addition, considering Eqs. (4.12), (4.25) and (4.37), and succes-

sively ensemble and temporal averaging to treat, respectively, the stochastic and deterministic

components of the response, yields

〈
E[x2

i ]
〉

= σ2
xs,1 +

ωd(x2
d1,i + x2

d2,i)
2 , (4.40)

i = 1, 2, where ⟨·⟩ denotes the temporal averaging operation.
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The response displacement variance and the variance of the response voltage of the nonlinear

harvester of Eqs. (4.22) and (4.23) subjected to combined stochastic and deterministic excita-

tions are shown, respectively, in Figs. 4.1(a) and 4.1(b). The validity of the results obtained by

the proposed method is verified by also considering pertinent MCS data. Specifically, 500 re-

alizations are generated by the spectral representation method (Shinozuka and Deodatis, 1991)

for duration T0 = 50 s and cut-off frequency equal to 2π. Then, the system response variance

is derived by utilizing a standard 4th order Runge-Kutta numerical integration scheme to solve

the governing equations of the system.

4.4 Concluding remarks

In this paper, the problem of determining the response statistics of a nonlinear piezoelectric en-

ergy harvesting device subjected to combined stochastic and deterministic excitation has been

considered. The system response has been computed in a direct way by utilizing a recently

developed method for determining the response of multi-degree-of-freedom nonlinear systems

with singular parameter matrices (Ni et al., 2021). The method relies on the combination of the

generalized statistical linearization treatment for systems with singular matrices and the har-

monic balance method. Specifically, since the system excitation consists of a periodic and a

stochastic component, the system response has been decomposed into two corresponding com-

ponents. Then, the statistical linearization and harmonic balance methods have been utilized to

treat, respectively, the former and latter. The validity of the obtained results has been verified

by considering pertinent MCS data.
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Abstract: A novel approximate approach is developed for determining, in a computationally

efficient manner, the peak response of nonlinear structural systems with fractional derivative

elements subject to a given seismic design spectrum. Specifically, first, an excitation evolution-

ary power spectrum is derived that is compatible with the design spectrum in a stochastic sense.

Next, relying on a combination of statistical linearization and stochastic averaging yields an

equivalent linear system (ELS) with time-variant stiffness and damping elements. Further, the

values of the ELS elements at the most critical time instant, i.e., the time instant associated with

the highest degree of nonlinear/inelastic response behavior exhibited by the structural system,

are used in conjunction with the design spectrum for determining approximately the nonlin-
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ear system peak response displacement. The herein developed approach can be construed as

an extension of earlier efforts in the literature to account for fractional derivative terms in the

governing equations of motion. Furthermore, the approach exhibits the significant novelty of

exploiting the localized time-dependent information provided by the derived time-variant ELS

elements. Indeed, the values of the ELS stiffness and damping elements at the most critical time

instant capture the system dynamics better than an alternative standard time-invariant statistical

linearization treatment. This leads to enhanced accuracy when determining nonlinear system

peak response estimates. An illustrative numerical example is considered for assessing the per-

formance of the approximate approach. This pertains to a bilinear hysteretic structural system

with fractional derivative elements subject to a Eurocode 8 elastic design spectrum. Compar-

isons with pertinent Monte Carlo simulation data are included as well, demonstrating a high

degree of accuracy.

Keywords: Earthquake engineering; Design spectrum; Stochastic dynamics; Fractional deriva-

tive; Nonlinear system; Statistical linearization

5.1 Introduction

Contemporary seismic codes favor design spectrum based response analyses of building struc-

tures. In this regard, the input seismic action is defined through elastic design spectra that pro-

vide the peak response of linear single-degree-of-freedom (SDOF) oscillators as a function of

their natural period T and damping ratio ζ (e.g., Chopra, 2001). These are developed, typically,

for a nominal damping ratio ζ = 0.05 and are complemented with damping adjustment factors

in case a different damping ratio needs to be considered (e.g., Lin et al., 2005). Nevertheless,

seismic codes and regulatory agencies allow ordinary structures to exhibit nonlinear/inelastic

response behaviors towards achieving cost-effective designs (e.g., CEN, 2004). In this setting,

the problem of estimating the peak nonlinear/inelastic system response subject to a given elastic

design spectrum arises naturally in code-compliant structural design applications, and remains

a persistent research challenge in the field of earthquake engineering.
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Irrespective of the nonlinearity type, the above problem can be addressed by performing nonlin-

ear system response time-history analyses in a Monte Carlo simulation (MCS) context. Specifi-

cally, the nonlinear system is subjected to an ensemble of ground motion records, whose average

design spectrum matches approximately the target one provided by the codes (e.g., Katsanos et

al., 2010). Such design spectrum compatible excitation records can comprise artificial accelero-

grams and/or judiciously selected records from relevant databanks (e.g., Giaralis and Spanos,

2009; Cacciola, 2010; Araújo et al., 2016). In many cases, these records need to be further

scaled and modified to achieve the desired compatibility with the given design spectrum. Note,

however, that the operation of scaling accelerograms has raised significant concerns in the lit-

erature from a theoretical perspective (e.g., Grigoriu, 2011). Further, to reduce the variability

of the peak response data obtained based on the minimum number of accelerograms allowed

by the seismic codes (e.g., Beyer and Bommer, 2007), a relatively large number of excitation

records are required for the system response analysis. In this manner, numerical integration of

the nonlinear equations of motion needs to be performed in MCS fashion; thus, rendering the

approach computationally demanding.

Obviously, the aforementioned computational cost becomes higher with increasing complexity

of the mathematical model representing the nonlinear/hysteretic system under consideration. In

this regard, the need for more accurate modeling of viscoelastic material behavior has led re-

cently to the utilization of advanced mathematical tools such as fractional calculus (e.g., Makris,

1997; Sabatier et al., 2007; Rossikhin and Shitikova, 2010; Di Paola et al., 2013). Indeed, mod-

els based on fractional derivatives have exhibited a high degree of accuracy compared with

experimental viscoelastic response data obtained via creep and relaxation tests. Notably, in

contrast to traditional models that utilize combinations of Maxwell and/or Kelvin elements and

depend on several parameters, the fractional derivative model requires the identification of two

parameters only for capturing both relaxation and creep tests (e.g., Di Paola et al., 2011). Re-

markably, structural engineering has benefited significantly from exploiting fractional calculus

concepts. In fact, several research efforts pertaining to seismic isolation and vibration control
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applications have demonstrated the capability of fractional derivatives to model successfully the

response behavior of viscoelastic dampers, e.g., Koh and Kelly, 1990; Makris and Constanti-

nou, 1991; Lee and Tsai, 1994; Shen and Soong, 1995; Rüdinger, 2006. The interested reader

is also directed to Petromichelakis et al., 2021 for a recent paper referring to fractional deriva-

tive modeling of the capacitance term in the governing equations of a broad class of nonlinear

electromechanical energy harvesters. It is noted that solving numerically the corresponding

fractional differential equation of motion can be a highly demanding task computationally. This

is due to the need for treating numerically the convolution integral associated with the fractional

derivative operator in conjunction with complex nonlinearities and hysteresis. In this context,

various solution schemes have been developed for determining the response of deterministically

and/or stochastically excited nonlinear oscillators with fractional derivative elements (e.g., Koh

and Kelly, 1990; Spanos and Evangelatos, 2010; Di Matteo et al., 2014; Fragkoulis et al., 2019;

Pirrotta et al., 2021; Kong et al., 2022a,b).

It is readily seen that there is merit in developing alternative, more efficient, approaches for

treating the problem of estimating the peak response of a nonlinear/hysteretic system with frac-

tional derivative elements subject to a given elastic design spectrum. In this regard, a rather

popular class of approaches relates to deriving an equivalent linear system (ELS) based on var-

ious deterministic or stochastic linearization criteria (e.g., Iwan, 1980; Iwan and Gates, 1979a;

Jennings, 1968; Iwan and Gates, 1979b; Hadjian, 1982; Koliopulos et al., 1994; Giaralis and

Spanos, 2010; Mitseas et al., 2018; Mitseas and Beer, 2019). Further, the ELS is characterized

by effective stiffness and damping elements that can be used in conjunction with the elastic

design spectrum for estimating approximately the peak response of the original system.

In this paper, an approximate stochastic dynamics approach is developed for determining the

peak response displacement of nonlinear structural systems with fractional derivative elements

subject to a given seismic design spectrum. This is done in a computationally efficient manner

without resorting to numerical integration of the governing equations of motion. Specifically,

first, an approximate scheme by Cacciola Cacciola, 2010 is employed for deriving an excitation
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evolutionary power spectrum (EPS) compatible in a stochastic sense with the design spectrum.

Note that the choice of utilizing the above scheme is not restrictive, and other alternative ap-

proaches for deriving design spectrum compatible power spectra can be adopted. Further, a

solution treatment based on a combination of statistical linearization and stochastic averaging

is employed that yields an equivalent linear system (ELS) with time-variant stiffness and damp-

ing elements. Without loss of generality, systems with softening response behaviors reflecting

structural degradation are considered in the ensuing analysis. In this regard, the time instant

corresponding to the global minimum and the global maximum of the time-variant stiffness and

damping elements, respectively, is treated as the most critical time instant associated with the

highest degree of nonlinear/inelastic response behavior exhibited by the structural system. In

passing, it is remarked that Dos Santos et al. dos Santos et al., 2016 relied on a somewhat sim-

ilar concept to develop an efficient stochastic incremental dynamic analysis methodology for

circumventing computationally expensive nonlinear system response analyses in a MCS con-

text. Next, the stiffness and damping values at this critical time instant are used in conjunction

with the design spectrum for determining approximately the nonlinear system peak response

displacement. Note that the peak response estimate is evaluated in an iterative manner till con-

vergence, which ensures that the damping ratio of the imposed design spectrum matches the

damping ratio of the ELS.

Compared to earlier relevant efforts in the literature (e.g., Giaralis and Spanos, 2010; Mitseas

et al., 2018), the herein developed approach can be construed as an extension to treat structural

systems with fractional derivative elements. Furthermore, its significant novel aspect of pro-

viding localized time-dependent information via the derived time-variant ELS elements leads

to an enhanced accuracy degree when determining nonlinear system peak response estimates.

Indeed, it is shown that the values of the ELS stiffness and damping elements at the most critical

time instant capture the system dynamics better than an alternative standard statistical lineariza-

tion solution treatment yielding time-invariant (stationary) ELS stiffness and damping elements

(e.g., Giaralis and Spanos, 2010; Mitseas et al., 2018). An illustrative numerical example is
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considered pertaining to a bilinear hysteretic structural system with fractional derivative ele-

ments subject to a Eurocode 8 elastic design spectrum. Comparisons with relevant MCS data

are included as well for assessing the accuracy of the approximate approach.

5.2 Mathematical formulation

5.2.1 Auxiliary concepts: Equivalent linear system time-dependent damp-
ing and stiffness elements, and stochastic averaging solution treat-
ment

The governing equation of motion describing the dynamics of a stochastically excited nonlinear

SDOF system with fractional derivative terms takes the form

mẍ(t) + cDα
0,tx(t) + g(t, x, ẋ) = mag(t), (5.1)

where x represents the response displacement process, a dot over a variable denotes differen-

tiation with respect to time t, m is the mass and c is a damping coefficient. Further, g(t, x, ẋ)

is an arbitrary nonlinear function that can account also for hysteretic response behaviors, and

Dα
0,tx(t) denotes the Caputo fractional derivative of order α defined as

Dα
0,tx(t) = 1

Γ(1 − α)

∫ t

0

ẋ(τ)
(t− τ)α

dτ, 0 < α < 1, (5.2)

where Γ(·) represents the Gamma function. Equivalently, Eq. (5.1) can be cast in the form

ẍ(t) + βDα
0,tx(t) + g0(t, x, ẋ) = ag(t), (5.3)

where β = c/m and g0 = g/m. Furthermore, ag(t) is a non-stationary stochastic excitation

process with an EPS Sag(ω, t) that is compatible with a prescribed design spectrum S(ω, ζ),

where ω denotes the frequency in rad/s and ζ is the damping ratio.
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Note that various approaches have been developed in the literature over the past few decades

for deriving stochastic process power spectra that are compatible in a statistical sense with

design spectra provided by seismic building codes; see Pfaffinger, 1983; Spanos and Loli, 1985;

Christian, 1989; Park, 1995; Gupta and Trifunac, 1998; Cacciola, 2010; Giaralis and Spanos,

2009; Shields, 2015; Brewick et al., 2018 for some indicative references. Without loss of

generality, the approach proposed in Cacciola, 2010 is employed in the ensuing analysis for

generating Sag(ω, t) based on a given S(ω, ζ). The salient aspects of the approach are included

in section 5.6 for completeness.

Next, the fundamental ingredients of a recently developed approximate analytical technique

for determining the stochastic response of oscillators governed by Eq. (5.3) are delineated.

The interested reader is also directed to Fragkoulis et al., 2019 for more details. Specifically,

relying on a combination of statistical linearization and stochastic averaging (see Roberts and

Spanos, 1986; Roberts and Spanos, 2003 for a broad perspective), the technique in Fragkoulis

et al., 2019 yields the non-stationary response amplitude PDF of nonlinear/hysteretic oscillators

endowed with fractional derivative elements.

More specifically, considering relatively light damping, the system response exhibits a pseudo-

harmonic behavior described by the equations

x(t) = A(t) cos(ω(A)t+ ψ(t)) (5.4)

and

ẋ(t) = −ω(A)A(t) sin(ω(A)t+ ψ(t)), (5.5)

where the response amplitude A(t) and phase ψ(t) are considered to be slowly-varying quanti-

ties with respect to time, and thus, approximately constant over one cycle of oscillation. Next,

manipulating Eqs. (5.4) and (5.5) yields

A2(t) = x2(t) +
(
ẋ(t)
ω(A)

)2

. (5.6)
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Further, Eq. (5.3) is recast, equivalently, in the form

ẍ(t) + β0ẋ(t) + h(t, x,Dα
0,tx, ẋ) = ag(t), (5.7)

where

h(t, x,Dα
0,tx, ẋ) = βDα

0,tx+ g0(t, x, ẋ) − β0ẋ, (5.8)

with β0 = 2ζ0ω0 representing a damping coefficient, and ω0 and ζ0 denoting, respectively, the

natural frequency and damping ratio of the corresponding linear oscillator (i.e., h(t, x,Dα
0,tx, ẋ) =

ω2
0x(t)). Furthermore, an ELS is defined as

ẍ(t) + (β0 + β(A)) ẋ(t) + ω2(A)x(t) = ag(t). (5.9)

In the following, applying a mean square error minimization between Eqs. (5.7) and (5.9),

and approximating the involved fractional derivatives according to Spanos et al., 2016; Li et

al., 2015; Di Matteo et al., 2018, yields the ELS amplitude-dependent damping and stiffness

coefficients in the form Fragkoulis et al., 2019

β(A) = ω2
0

Aω(A)S(A) + β

ω1−α(A) sin
(
απ

2

)
− β0 (5.10)

and

ω2(A) = ω2
0
A
F (A) + βωα(A) cos

(
απ

2

)
, (5.11)

where

S(A) = − 1
π

∫ 2π

0
g0(A cosφ,−Aω(A) sinφ) sinφdφ, (5.12)

F (A) = 1
π

∫ 2π

0
g0(A cosφ,−Aω(A) sinφ) cosφdφ, (5.13)

and φ(t) = ω(A)t+ ψ(t).

Note that the ELS elements ω(A) and β(A) depend on the response non-stationary amplitude
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A to account for the nonlinearities and the fractional derivative terms of the original system.

Thus, ω(A) and β(A) can be construed as non-stationary stochastic processes, whose time-

varying mean values are given by applying the expectation operator on Eqs. (5.10) and (5.11).

This yields

βeq(t) =
∫ ∞

0
β(A)p(A, t)dA (5.14)

and

ω2
eq(t) =

∫ ∞

0
ω2(A)p(A, t)dA, (5.15)

respectively. Further, Eqs. (5.14-5.15) can be associated with an alternative to Eq. (5.9) ELS of

the form

ẍ(t) + (β0 + βeq(t)) ẋ(t) + ω2
eq(t)x(t) = ag(t). (5.16)

In passing, note that the potent concept of a time-dependent ELS natural frequency, such as

the one defined in Eq. (5.15), has been of considerable importance in the field of structural

dynamics. Indicative applications include damage detection (e.g., Spanos et al., 2007) and

identification of moving resonance phenomena (e.g., Beck and Papadimitriou, 1993; Tubaldi

and Kougioumtzoglou, 2015). The latter can occur, for example, during a seismic event when

the decrease of the fundamental system frequency due to yielding tends to track the decrease

of the predominant frequency of the ground motion. As a result, nonlinear systems can exhibit

significant response amplifications.

Next, it is readily seen that the evaluation of the ELS time-dependent damping βeq(t) and stiff-

ness ω2
eq(t) elements via Eqs. (5.14-5.15) requires knowledge of the non-stationary response

amplitude PDF p(A, t). In this regard, the stationary response amplitude PDF corresponding to

a linear oscillator with fractional derivative terms and subjected to Gaussian white noise was

obtained in closed-form in Spanos et al., 2018 based on stochastic averaging. Motivated by this

analytical solution, a generalized form of this PDF was considered in Fragkoulis et al., 2019 for

modeling the non-stationary response amplitude PDF of the nonlinear oscillator governed by



CHAPTER 5. RESEARCH ARTICLE 4: AN APPROXIMATE STOCHASTIC DYNAMICS
APPROACH FOR DESIGN SPECTRUM BASED RESPONSE ANALYSIS OF
NONLINEAR STRUCTURAL SYSTEMS WITH FRACTIONAL DERIVATIVE
ELEMENTS 165

Eq. (5.3), or equivalently, by Eq. (5.7). This takes the form

p(A, t) =
sin

(
απ
2

)
A

ω1−α
0 c(t)

exp
sin

(
απ
2

)
ω1−α

0

A2

2c(t)

 , (5.17)

where c(t) is a time-dependent coefficient to be determined. Further, based on a stochastic

averaging solution treatment of Eq. (5.16), it was shown in Fragkoulis et al., 2019 that substi-

tuting Eq. (5.17) into the associated Fokker-Planck partial differential equation governing the

evolution in time of the response amplitude PDF, i.e.,

∂p(A, t)
∂t

= − ∂

∂A

{(
−1

2(β0 + βeq(t))A+ πSag(ωeq(t), t)
2ω2

eq(t)A

)
p(A, t)

}

+ 1
4
∂

∂A

{
πSag(ωeq(t), t)

ω2
eq(t)

∂p(A, t)
∂A

+ ∂

∂A

(
πSag(ωeq(t), t)

ω2
eq(t)

p(A, t)
)}

(5.18)

and manipulating, leads to

ċ(t) = −(β0 + βeq(c(t)))c(t) +
sin

(
απ
2

)
ω1−α

0

 πSag(ωeq(c(t)), t)
ω2

eq(c(t))
. (5.19)

Eq. (5.19) constitutes a deterministic first-order nonlinear ordinary differential equation. This

can be solved readily by any standard numerical integration scheme, such as the Runge–Kutta,

for determining the time-dependent coefficient c(t). Furthermore, c(t) can be used for evalu-

ating the ELS time-dependent damping and stiffness elements by employing Eqs. (5.14) and

(5.15). Note that the ELS elements are expressed in Eq. (5.19) as βeq(t) = βeq(c(t)) and

ωeq(t) = ωeq(c(t)) to highlight the explicit dependence of βeq(t) and ωeq(t) on the time-varying

coefficient c(t) via Eqs. (5.14-5.15).

It is remarked that various approaches have been proposed in the literature for nonlinear sys-

tem peak response estimation based on deriving a stationary power spectrum compatible with

the provided design spectrum (e.g., Giaralis and Spanos, 2010; Mitseas et al., 2018). In other

words, ag(t) in Eq. (5.3) is modeled as a stationary process with a power spectrum Sag(ω)

compatible with the design spectrum S(ω, ζ). In this case, it can be readily seen that employ-
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ing the technique developed in Fragkoulis et al., 2019 for a stationary excitation process, i.e.,

Sag(ω, t) = Sag(ω), leads to a time-invariant stationary PDF for the response amplitude. In

fact, Eq. (5.17) becomes

p(A) =
sin

(
απ
2

)
A

ω1−α
0 c(t∞)

exp
sin

(
απ
2

)
ω1−α

0

A2

2c(t∞)

 , (5.20)

where c(t∞) is the stationary constant value of c(t) as t → ∞, and thus, Eqs. (5.14) and (5.15)

degenerate to

βeq =
∫ ∞

0
β(A)p(A)dA (5.21)

and

ω2
eq =

∫ ∞

0
ω(A)p(A)dA, (5.22)

respectively. Obviously, Eqs. (5.21-5.22) represent the stationary mean values of the damping

and stiffness elements corresponding to the time-invariant, in this case, ELS of Eq. (5.16).

5.2.2 A novel approximate approach for nonlinear system peak response
estimation exhibiting enhanced accuracy and accounting for frac-
tional derivative modeling

In this section, a novel approximate approach is developed for determining, in a computation-

ally efficient manner, the peak response of nonlinear structural systems with fractional deriva-

tive elements subject to a design spectrum S(ω, ζ) provided by seismic building codes. The

approach can be construed as an extension of the work in Mitseas et al., 2018 to account for

systems with fractional derivative terms. Further, compared to the scheme proposed in ibid.,

the herein developed approach exhibits an enhanced accuracy degree in determining nonlinear

system peak response estimates. This is primarily due to the novel aspect of exploiting the lo-

calized time-dependent information provided by the derived ELS elements of Eqs. (5.14-5.15).

In this regard, the proposed approach is capable of identifying the critical time instant where
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the nonlinear/inelastic behavior of the system response is most prevalent. Clearly, the values

of the ELS elements of Eqs. (5.14-5.15) corresponding to this specific time instant capture the

localized system dynamics better than the time-invariant (stationary) ELS elements derived in

Mitseas et al., 2018 based on a standard statistical linearization treatment. In fact, it is shown

that more accurate estimates are obtained for the nonlinear system peak response by employing

Eqs. (5.14-5.15) compared to their stationary counterparts in Eqs. (5.21-5.22).

Specifically, the mechanization of the proposed approach comprises the following steps:

i) Derivation of an excitation EPS Sag(ω, t) compatible with the provided elastic design

spectrum S(ω, ζ); see Cacciola, 2010 and section 5.6 for more details.

ii) Stochastic averaging/linearization solution treatment of the nonlinear/hysteretic oscillator

with fractional derivative terms, and determination of ELS time-dependent stiffness ωeq(t)

and damping βeq(t) elements via Eqs. (5.14-5.15).

iii) Identification of the most critical time instant tcr corresponding to the global maximum

and global minimum of βeq(t) and ωeq(t), respectively. This time instant is treated as be-

ing associated with the highest degree of nonlinear/inelastic response behavior exhibited

by the oscillator.

iv) Evaluation of ωeq(tcr) and ζeq(tcr) = β0+βeq(tcr)
2ωeq(tcr) . If |ζ−ζeq(tcr)|

ζ
< ε, then go to step v),

otherwise set ζ = ζeq(tcr) and repeat steps i)-iv) until convergence. This iterative scheme

ensures that the damping ratio of the imposed design spectrum matches the damping ratio

of the ELS; see also Mitseas et al., 2018 for more details.

v) Peak response estimation by employing the updated design spectrum S(ω, ζeq(tcr)) and

considering the ELS natural frequency value ωeq(tcr).

The mechanization of the proposed approach is depicted graphically in Fig. 5.1, where it is

also compared with the original approach in ibid. The novel aspects of the herein developed

approach are highlighted in bold red. Clearly, not only the approach in ibid. is extended to treat

systems with fractional derivative terms, but it also exploits localized time-dependent informa-
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tion for evaluating the ELS elements ωeq(tcr) and ζeq(tcr). This leads to enhanced accuracy

when determining peak response estimates.

Figure 5.1: Nonlinear system peak response estimation: (a) Approach in Mitseas et al., 2018,
(b) Proposed approach exhibiting enhanced accuracy and accounting for fractional derivative
modeling.

5.3 Illustrative application

In this section, a bilinear hysteretic structural system with fractional derivative terms subject

to a Eurocode 8 elastic design spectrum is considered as an illustrative numerical example for

demonstrating the reliability of the developed approach. The achieved accuracy of the predicted

peak displacements is quantified by comparison with pertinent results derived from nonlinear

response history analyses for an ensemble of time-histories compatible with the considered

Eurocode 8 design spectrum. 5.7 includes details on the definition of the imposed Eurocode 8
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elastic design spectrum.

5.3.1 Governing equations of a bilinear hysteretic structural system with
fractional derivative elements, and ELS time-dependent elements

The governing equation of the bilinear hysteretic oscillator, which has been widely utilized in

earthquake engineering applications (e.g., Caughey, 1960; Roberts and Spanos, 2003), takes

the form of Eq. (5.3) with

g0(t, x, ẋ) = γω2
0x+ (1 − γ)ω2

0xyz (5.23)

and

xyż = ẋ{1 −H(ẋ)H(z − 1) −H(−ẋ)H(−z − 1)}. (5.24)

In Eqs. (5.23-5.24),H(·) denotes the Heaviside step function, γ is the post- to pre-yield stiffness

ratio, z is the hysteretic force corresponding to the elasto-plastic characteristic, and xy is the

critical value of the displacement at which the yield occurs.

Next, taking into account Eq. (5.23), Eqs. (5.10-5.11) become (e.g., Fragkoulis et al., 2019)

β(A) = (1 − γ)ω2
0S(A)

Aω(A) + β

ω1−α(A) sin
(
απ

2

)
− β0 (5.25)

and

ω2(A) = ω2
0

[
γ + (1 − γ)F (A)

A
+ βωα(A) cos

(
απ

2

)]
, (5.26)

respectively, where

S(A) =


4xy

π

(
1 − xy

A

)
, A > xy

0, A ≤ xy

(5.27)

F (A) =


A
π

[
Λ − 1

2 sin(2Λ)
]
, A > xy

A, A ≤ xy

(5.28)
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and

cos(Λ) = 1 − 2xy

A
. (5.29)

Further, substituting Eqs. (5.25) and (5.26) into Eqs. (5.14) and (5.15), respectively, yields

βeq(t) = − β0 +
β sin2(απ

2 )
ω1−α

0 c(t)
×
∫ ∞

0

A

ω1−α(A) exp
(

−
sin(απ

2 )
ω1−α

0

A2

2c(t)

)
dA

+
4xyω

2
0(1 − γ) sin(απ

2 )
πω1−α

0 c(t)
×
∫ ∞

1

1 − xy

A

ω(A) exp
(

−
sin(απ

2 )
ω1−α

0

A2

2c(t)

)
dA (5.30)

and

ω2
eq(t) =ω2

0 − (1 − γ)ω2
0

{
exp

(
−
xy

2 sin(απ
2 )

2c(t)ω1−α
0

)
−

sin(απ
2 )

πω1−α
0 c(t)

×
∫ ∞

1
(Λ − 1

2 sin(2Λ))A× exp
(

−
sin(απ

2 )
ω1−α

0

A2

2c(t)

)
dA
}

+
β sin(απ

2 ) cos(απ
2 )

ω1−α
0 c(t)

×
∫ ∞

0
ωα(A)A exp

(
−

sin(απ
2 )

ω1−α
0

A2

2c(t)

)
dA. (5.31)

5.3.2 Peak inelastic response determination and comparisons with Monte
Carlo simulation data

First, following the approach by Cacciola Cacciola, 2010 described succinctly in section 5.6, the

excitation EPS Sag(ω, t) compatible with the Eurocode 8 design spectrum S(ω, ζ = 0.05) (see

5.7) is determined. Specifically, Fig. 5.2(a) shows the aR
g (t) component of Eq. (5.32) referring

to a recorded time history at El Centro site of the Imperial Valley earthquake of May 18, 1940.

Fig. 5.2(b) shows a joint time-frequency analysis of the recorded time history at El Centro based

on the short-time Thompson’s multiple window spectrum estimation scheme proposed in Conte

and Peng, 1997. It is readily seen that not only the intensity, but also the frequency content

of the time history changes with time. In Fig. 5.2(c), the power spectrum GS(ω) is plotted

corresponding to the stationary component aS
g (t) of Eq. (5.32). This is determined based on the
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iterative scheme of Eq. (5.43). Further, Fig. 5.2(d) shows the calculated excitation EPS Sag(ω, t)

compatible with the Eurocode 8 design spectrum. This is used in the ensuing analysis as the

input EPS for evaluating the ELS time-dependent elements via Eqs. (5.30-5.31). Furthermore,

to compare the herein developed approach shown graphically in Fig. 5.1(b) with the approach

in Mitseas et al., 2018 shown in Fig. 5.1(a), a design spectrum compatible stationary power

spectrum is also determined. Specifically, setting α = 0 and φ(t) = 1 in Eq. (5.32) yields

Sag(ω, t) = Sag(ω) = GS(ω), which is computed based on Eq. (5.43) and plotted in Fig. 5.3.

Clearly, the GS(ω) in Fig. 5.3 corresponds to a larger variance than the GS(ω) in Fig. 5.2(c).

This is anticipated since the additional component of aR
g (t) in Eq. (5.32) is omitted in this case,

and thus, the intensity of aS
g (t) needs to increase to counteract the absence of aR

g (t).

(a) (b)

(c) (d)

Figure 5.2: (a) The recorded time history at El Centro site; (b) EPS estimate of the recorded
time history at El Centro site; (c) Calculated power spectrum GS(ω) corresponding to the sta-
tionary process aS

g (t); (d) Excitation EPS Sag(ω, t) compatible with a Eurocode 8 type B design
spectrum S(ω, ζ = 0.05).

Further, the parameter values ω0 = 5.48 rad/sec, β0 = 0.7, γ = 0.4, xy = 7 cm and α = 0.5
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Figure 5.3: Calculated stationary power spectrum Sag(ω, t) = Sag(ω) = GS(ω) compatible
with a Eurocode 8 type B design spectrum S(ω, ζ = 0.05).

are used in conjunction with the bilinear hysteretic oscillator with fractional derivative elements

described by Eqs. (5.23-5.24). The herein developed approach for nonlinear system peak re-

sponse estimation is applied next. Specifically, considering the excitation EPS in Fig. 5.2(d)

and utilizing Eqs. (5.30-5.31), Eq. (5.19) is solved numerically for c(t). This is substituted into

Eqs. (5.30-5.31) and the ELS time-variant stiffness ωeq(t) and damping ζeq(t) elements are eval-

uated. Also, the most critical time instant tcr is identified corresponding to the global minimum

and global maximum of ωeq(t) and ζeq(t), respectively.

Next, to ensure that the input design spectrum S(ω, ζ) and the ELS of Eq. (5.16) share the

same value of damping ratio ζ , an iterative scheme till convergence is applied, where the design

spectrum is updated at each step by setting S(ω, ζ = ζeq(tcr)); see also Mitseas et al., 2018 for

more details. In this regard, Fig. 5.4 shows the computed time-variant elements ωeq(t) and ζeq(t)

corresponding to the 4-th iteration when convergence has been reached. These are compared

with time-invariant (stationary) elements ωeq and ζeq obtained by Eqs. (5.21-5.22). It is readily

seen that ωeq(t) and ζeq(t) are capable of capturing time-localized dynamics of the nonlinear

system response. In fact, the value of the ELS natural frequency at the most critical time instant

tcr, i.e., ωeq(tcr), is considerably smaller than the time-invariant value ωeq. In other words,

ωeq(tcr) reflects a higher degree of nonlinear/inelastic response behavior than ωeq. In a similar
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manner, and in agreement with the above argument, ζeq(tcr) is larger than the time-invariant

value ζeq; thus, reflecting a higher degree of system nonlinearity. Further, the calculated ELS

elements ωeq(tcr) and ζeq(tcr) are plotted in Fig. 5.4 corresponding to successive iterations of

the scheme, and compared with stationary ωeq and ζeq estimates. It is seen that convergence has

been achieved practically after 4 iterations.

(a) (b)

Figure 5.4: ELS time-variant elements and most critical time instant tcr based on Eqs. (5.14-
5.15) and corresponding to the 4-th iteration when convergence of the scheme has been reached:
(a) natural frequency ωeq(t), and (b) damping ratio ζeq(t). Comparisons with stationary esti-
mates based on Eqs. (5.21-5.22).

Following convergence of the scheme, i.e., |ζ − ζeq(tcr)|/ζ < ε, the obtained ELS elements

ωeq(tcr) and ζeq(tcr) for k = 4 in Fig. 5.5 are used to estimate the nonlinear system peak

response in conjunction with the Eurocode 8 elastic design spectrum. This procedure is shown

schematically in Fig. 5.6 where the Eurocode 8 design spectrum is plotted against the natural

period T = 2π/ω, in terms of spectral acceleration S(ω, ζeq(tcr)), left vertical axis, and in

terms of spectral displacement S(ω, ζeq(tcr))/ω2, right vertical axis. Next, the peak inelastic

displacement is read on the right vertical axis using the pair (Teq(tcr) = 2π/ωeq(tcr), ζeq(tcr))

indicated on the figure.

Further, to assess the accuracy of the herein developed approach for nonlinear system peak

response estimation, comparisons with pertinent MCS data are included as well. In this regard,

an ensemble of 1000 acceleration time-histories are generated compatible with the Eurocode 8
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(a) (b)

Figure 5.5: ELS time-variant elements based on Eqs. (5.14-5.15) corresponding to successive
iterations and evaluated at the most critical time instant tcr: (a) natural frequency ωeq(tcr), and
(b) damping ratio ζeq(tcr). Comparisons with stationary estimates based on Eqs. (5.21-5.22).

Figure 5.6: Nonlinear system peak response displacement determination using the ELS ele-
ments ωeq(tcr) and ζeq(tcr) for k = 4 in Fig. 5.5 in conjunction with the design spectrum of 5.7.
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design spectrum S(ω, ζ = 0.05) based on Eq. (5.44) of section 5.6. Furthermore, the governing

Eq. (5.1) is numerically integrated for the above ensemble by resorting to an L1-algorithm (e.g.,

Koh and Kelly, 1990), and the mean peak response estimate is obtained based on statistical

analysis of the response time-histories. In passing, note that the nonlinearity degree exhibited

by the oscillator is significant as shown by the MCS-based average ductility demand estimate.

This is calculated as xmax/xy = 0.1965/0.07 = 2.8, indicating that the oscillator enters well

into the inelastic range.

Table 5.1 compares the MCS-based estimate with peak displacements obtained by using both

the time-variant elements (ωeq(tcr), ζeq(tcr)) and the stationary elements (ωeq, ζeq), reported

in Fig. (5.5) for k = 4, in conjunction with the Eurocode 8 design spectrum as illustrated in

Fig. (5.6). Also, results corresponding to various values of the fractional derivative order α and

of the nonlinearity parameter γ are included in Table 5.1 as well. In all cases, it is seen that

the peak response obtained by the proposed approach not only agrees well with the MCS-based

estimate, but it also consistently exhibits a higher accuracy degree compared with the results

obtained by a stationary treatment of the ELS elements.

Table 5.1: Peak response displacement of bilinear/hysteretic oscillator with fractional deriva-
tive elements using the ELS elements ωeq(tcr) and ζeq(tcr) for various values of the fractional
derivative order α and of the nonlinearity parameter γ. Comparisons with stationary estimates
based on Eqs. (5.21-5.22), and with MCS data.

Peak displacement estimates

(α, γ) MCS Time-invariant
(stationary)

elements
ωeq , ζeq

error (based
on MCS)

Time-variant
elements

ωeq(tcr), ζeq(tcr)

error (based
on MCS)

(0.5, 0.4) 0.1965 0.1939 1.3% 0.1977 0.6%

(0.75, 0.4) 0.1623 0.1587 2.2% 0.1618 0.3%

(0.5, 0.2) 0.1941 0.1852 4.6% 0.1901 2.1%

(0.75, 0.2) 0.1675 0.1585 5.4% 0.1630 2.7%
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5.4 Concluding remarks

In this paper, an approximate approach has been developed for determining the peak response

displacement of nonlinear structural systems with fractional derivative elements subject to a

given seismic design spectrum. This has been done in a computationally efficient manner

without resorting to numerical integration of the governing equations of motion. Specifically,

first, an approximate scheme has been utilized for deriving an excitation EPS compatible in

a stochastic sense with the design spectrum. Further, employing a solution treatment based

on a combination of statistical linearization and stochastic averaging has yielded an ELS with

time-variant stiffness and damping elements. Without loss of generality, systems with soften-

ing response behaviors reflecting structural degradation have been considered. In this setting,

it has been shown that the global minimum and the global maximum of the time-variant stiff-

ness and damping elements, respectively, correspond to the time instant associated with the

highest degree of nonlinear/inelastic response behavior exhibited by the oscillator. In this re-

gard, the stiffness and damping values at this critical time instant have been used in conjunction

with the design spectrum for determining approximately the nonlinear oscillator peak response

displacement. Compared to earlier relevant efforts in the literature (e.g., Giaralis and Spanos,

2010; Mitseas et al., 2018), the herein developed approach can be construed as an extension

to treat systems with fractional derivative elements. Furthermore, its significant novel aspect

of providing localized time-dependent information via the derived time-variant ELS elements

leads to an enhanced accuracy degree when determining nonlinear system peak response esti-

mates. Indeed, it has been shown that the values of the ELS stiffness and damping elements

at the most critical time instant capture the system dynamics better than an alternative standard

statistical linearization solution treatment yielding time-invariant (stationary) ELS stiffness and

damping elements. An illustrative numerical example has been considered for assessing the

performance of the approximate approach, pertaining to a bilinear hysteretic oscillator with

fractional derivative elements subject to a Eurocode 8 elastic design spectrum. Comparisons
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with relevant Monte Carlo simulation data have demonstrated a high degree of accuracy.
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5.6 Appendix: Derivation of design spectrum compatible excitation evo-

lutionary power spectrum

Following Cacciola, 2010, the non-stationary excitation stochastic process ag(t) comprises a

fully non-stationary component aR
g (t) modeled by a recorded earthquake time-history, and a

time-modulated stationary zero-mean Gaussian process aS
g (t), i.e.,

ag(t) = αaR
g (t) + φ(t)aS

g (t). (5.32)

In Eq. (5.32), both the scaling factor α and the power spectrum GS(ω) of the stationary process

aS
g (t) are unknowns to be determined, and the time-modulating function φ(t) is given as

φ(t) =



(
t
t1

)2
, t < t1

1, t1 ≤ t ≤ t2

exp [−β(t− t2)] , t > t2

(5.33)

where t2 = t1 +Ts, with Ts representing the time window during which stationarity is assumed.

Next, an approximate relationship can be derived for the corresponding design spectra; that is,

S(ω, ζ) =
√
α2SR(ω, ζ)2 + SS(ω, ζ)2, (5.34)



CHAPTER 5. RESEARCH ARTICLE 4: AN APPROXIMATE STOCHASTIC DYNAMICS
APPROACH FOR DESIGN SPECTRUM BASED RESPONSE ANALYSIS OF
NONLINEAR STRUCTURAL SYSTEMS WITH FRACTIONAL DERIVATIVE
ELEMENTS 178

where SR(ω, ζ) and SS(ω, ζ) are the design spectra referring to the response a linear oscillator

subject to aR
g (t) and aS

g (t), respectively. Taking into account Eq. (5.34), the value of α lies in

the range (0, 1] and is estimated as

α = min
{
S(ω, ζ)
SR(ω, ζ)

}
. (5.35)

Next, attention is directed to determining GS(ω). This is done by relying on an approximate

solution treatment of the first-passage time problem according to Vanmarcke, 1976, and to

an iterative scheme proposed by Cacciola et al., 2004. Specifically, consider the n-th order

stationary response spectral moment of a linear SDOF oscillator

λn =
∫ ∞

0
ωn 1

(ω2
0 − ω2)2 + (2ζ0ω0ω)2G

S(ω)dω, (5.36)

where ω0 and ζ0 are the natural frequency and the damping ratio of the oscillator. Further,

assuming a sufficiently long duration of Ts ≥ 15 s, GS(ω) can be related to SS(ω0, ζ0) in a

statistical manner via the concept of the “peak factor” η. That is,

SS(ω0, ζ0) = ω2
0η
√
λ0(ω0, ζ), (5.37)

where the peak factor can be estimated by the semi-empirical expression Vanmarcke, 1976

η =
√

2 ln(2µ)
[
1 − exp

(
−δ
√
π ln(2µ)

)]
. (5.38)

In Eq. (5.38), the mean zero crossing rate µ and the spread factor δ are defined as

µ = Ts

2π

√
λ2

λ0
(− ln p)−1, (5.39)

and

δ =
√

1 − λ2
1

λ0λ2
, (5.40)
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respectively. Herein, the probability p in Eq. (5.39) is set equal to 0.5, so that SS(ω0, ζ0) in

Eq. (5.37) is interpreted as the “median” pseudo-acceleration design spectrum. That is, half of

the displacement response spectral ordinates of an ensemble of stationary samples of duration

Ts compatible with the power spectrum GS(ω) lie below SS(ω0, ζ0)/ω2
0; see also Giaralis and

Spanos, 2010 and Mitseas et al., 2018 for more details. Next, relying on the approximate

expression (Vanmarcke, 1976)

λ0 = GS(ω0)
ω3

0

(
π

4ζ0
− 1

)
+ 1
ω4

0

∫ ωi

0
GS(ω)dω, (5.41)

substituting Eq. (5.41) into Eq. (5.37), and manipulating, yields

SS(ω0, ζ0) = η2ω0G
S(ω0)

(
4 − πζ0

4ζ0

)
+ η2

∫ ωi

0
GS(ω)dω. (5.42)

Applying a discretization of the frequency domain into a uniform grid of M frequency points

ωi = ωl
b +(i−0.5)∆ω, i = 1, 2, . . . ,M within the range (ωl

b, ω
u
b ), and manipulating Eq. (5.42),

yields Cacciola et al., 2004

GS(ωi) =


4ζ

ωiπ−4ζ0ωi−1

(
(SS(ω0,ζ0))2

η2 − ∆ω∑i−1
q=1 G

S(ωq)
)
, ωl

b < ωi < ωu
b

0, ωi ≤ ωl
b

(5.43)

Eq. (5.43) can be recursively applied for i = 1, 2, . . . ,M to evaluate the ordinates of the power

spectrum GS(ω) at the M frequency points ωi lying δω apart in the range (ωl
b, ω

u
b ).

Further, following determination of GS(ω), a k-th non-stationary acceleration time-history can

be generated based on spectral representation theory (e.g., Shinozuka and Deodatis, 1991; Liang

et al., 2007). That is,

a(k)
g (t) = αaR

g (t) + φ(t)
Na∑
i=1

√
4GS(i∆ω)∆ω cos

(
i∆ωt+ φ

(k)
i

)
, (5.44)

where φ(k)
i are independent random phases uniformly distributed in the interval [0, 2π), and Na
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is the number of harmonics to be considered in the summation. Clearly, the non-separable EPS

Sag(ω, t) can be estimated by various joint time-frequency analysis techniques based on statis-

tical analysis of an ensemble of realizations generated by Eq. (5.44) (e.g., Qian, 2002; Spanos

and Failla, 2004; Kougioumtzoglou et al., 2012, 2020). Furthermore, iterative improvement of

the GS(ω) may be required for satisfying code provisions. To this aim, the iterative scheme

GS(j)(ω) = GS(j−1)(ω)
(

S(ω, ζ)2

Ŝ(j−1)(ω, ζ)2

)
, (5.45)

can be applied, where Ŝ(j−1)(ω, ζ)2 is the mean design spectrum of the ground acceleration

ag(t) at the (j − 1)-th iteration; see also Cacciola, 2010 and references therein for more details.

Note that the approach presented succinctly in this Appendix degenerates to the scheme in Cac-

ciola et al., 2004 by setting α = 0 and φ(t) = 1 in Eq. (5.32). In this regard, the design spectrum

compatible power spectrum becomes Sag(ω, t) = GS(ω) corresponding to the stationary pro-

cess aS
g (t).

5.7 Appendix: Eurocode 8 design spectrum

The Eurocode 8 design spectrum for peak ground acceleration 0.36g (g = 981 cm/s2) and

ground type B used in the numerical example of this paper is defined as CEN, 2004

S(T, ζ) = 0.432g ×



1 + T
0.15(2.5δ − 1), 0 ≤ T ≤ 0.15

2.5δ, 0.15 ≤ T ≤ 0.5
1.25δ

T
, 0.5 ≤ T ≤ 2

2.5δ
T 2 , 2 ≤ T ≤ 4

(5.46)

where

δ =
√

10
5 + ζ

≥ 0.55, (5.47)

T = 2π/ω is the natural period and ζ is the damping ratio.
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Abstract: A novel stochastic incremental dynamics analysis methodology is developed for

nonlinear structural systems with fractional derivative elements exposed to seismic excitation

consistently aligned with contemporary aseismic codes provisions (e.g. Eurocode 8). Render-

ing to the concept of non-stationary stochastic processes, the vector of the imposed seismic

excitations is characterized by evolutionary power spectra compatible in a stochastic sense with

elastic response acceleration spectra of specified modal damping ratio and scaled ground accel-

eration. The proposed stochastic dynamics technique relies on a combination of the stochastic

averaging and statistical linearization methods, which permits the determination of the response

displacement probability density function in an efficient and comprehensive manner. The com-

monly encountered in the literature incremental dynamics analysis curves have been replaced by

a stochastic incremental dynamics analysis surface providing with reliable higher order statis-

tics of the system response. A significant attribute of the method pertains to the derivation

of an associated response evolutionary power spectrum as a function of spectral acceleration.
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The method retains the coveted attribute of a particularly low associated computational cost. A

structural system comprising the nonlinear model endowed with fractional derivative terms sub-

ject to a Eurocode 8 elastic design spectrum serves as a numerical example for demonstrating

the reliability of the proposed methodology, whose accuracy is demonstrated by comparisons

with pertinent Monte Carlo simulation data.

6.1 Introduction

In the engineering discipline of earthquake resistant structures nonlinearities arise naturally in

various forms. In this setting, there is a well-detected need for rigorous and consistent rep-

resentation of the system model by considering thoroughly the underlying mechanisms which

determine the overall system behavior. Constant needs for enhanced modeling purposes dic-

tate a reasonable transition to more advanced mathematical tools such as fractional calculus.

Notably, structural engineering has significantly benefited from the utilization of fractional cal-

culus concepts. The emerged number of research efforts pertaining to seismic isolation, vibra-

tion control and energy harvesting applications reveals the capabilities of fractional calculus

to offer upgraded system modeling services in numerous cases of structural engineering inter-

est (Makris and Constantinou, 1991; Rüdinger, 2006; Koh and Kelly, 1990; Kougioumtzoglou

et al., 2022; Di Paola et al., 2013; Rossikhin and Shitikova, 2010). Further, an appropriate

stochastic representation of seismic excitation in conjunction with nonlinear system modeling

and in alignment with aseismic codes provisions secures a solid basis for formulating a realistic

structural analysis procedure (Mitseas and Beer, 2021).

Reliable numerical estimations related to the performance of structural systems necessitate a

proper quantitative treatment of uncertainties. The emerging concept of performance-based

earthquake engineering (PBEE) advocates the assessment of the structural system performance

in a comprehensive and rigorous manner by properly accounting for the presence of uncer-

tainties (Mitseas et al., 2016; Mitseas and Beer, 2020). Specifically, basic notions pertaining to

PBEE comprise the definition of excitation related variables, known as intensity measures (IMs)
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(e.g., spectral acceleration, peak ground acceleration, etc.), and of system response related vari-

ables known as engineering demand parameters (EDPs) (e.g., peak story drift, inter-story drift

ratio, etc.). Moreover, the information provided via the functional relationship between the IMs

and the EDPs in conjunction with judicially defined damage-state rules (DSs), is utilized for

quantifying a decision variable (DV) (e.g. financial loss).

In the earthquake engineering field, one of the customarily employed methodologies for esti-

mating the functional relationship between the IMs and the EDPs is the incremental dynamic

analysis (IDA) (Vamvatsikos and Cornell, 2002). IDA aims at assessing the structural perfor-

mance of systems subject to a suite of ground motion records, each scaled to several levels of

seismic intensity; thus, conducting a nonlinear response time-history analysis (RHA) for each

and every scaled record. It is noteworthy that each IDA curve is related to a specific ground

motion record whereas each point of the curve corresponds to a specific ground motion inten-

sity level and respective structural system response magnitude. Clearly, the determination of

the above-mentioned functional relationship is associated with a significant computational cost.

Further, IDA provides with simple statistics of the selected EDP such as the standard deviation

and the mean whereas potential higher order statistics requirements under a fully probabilistic

framework could render the whole process computationally prohibitive. Notably, some recent

research efforts have been made in the area harnessing the potential of advanced random vibra-

tion concepts (dos Santos et al., 2016; Mitseas and Beer, 2021).

The developed stochastic incremental dynamics analysis methodology pertains to nonlinear

structural systems with fractional derivative elements exposed to seismic excitation consistently

determined with contemporary aseismic codes provisions (e.g. Eurocode 8). Specifically, the

imposed scaled seismic excitation is characterized by a series of evolutionary power spectra

(EPS) compatible in a stochastic sense with an elastic response acceleration spectrum of spec-

ified modal damping ratio and scaled ground acceleration (Cacciola, 2010). At the core of

the proposed technique lies a combination of the stochastic averaging and statistical lineariza-

tion methodologies (Roberts and Spanos, 2003; Fragkoulis et al., 2019), which permits the
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determination of the response displacement probability density function (PDF) in an efficient

manner. The generated stochastic incremental dynamics analysis surface provides with reliable

higher order statistics of the system response. In addition, a significant attribute of the proposed

method is the derivation of the associated response EPS as a function of spectral acceleration.

Notably, the method keeps the associated computational cost at a minimum level. An illus-

trative numerical example pertaining to a bilinear hysteretic structural system with fractional

derivative elements subject to a Eurocode 8 elastic design spectrum serves as a numerical ex-

ample for demonstrating the reliability of the proposed methodology, while comparisons with

relevant Monte Carlo simulation (MCS) data are included as well for assessing its accuracy.

6.2 Mathematical formulation

6.2.1 Equivalent linear system determination

The governing equation of motion of a nonlinear single-degree-of-freedom (SDOF) system

endowed with fractional derivative elements subject to a non-stationary excitation is given by

ẍ(t) + βDα
0,tx(t) + g(t, x, ẋ) = ag(t), (6.1)

where x is the response displacement and a dot over a process denotes differentiation with

respect to time. g(t, x, ẋ) is an arbitrary nonlinear/hysteretic function and Dα
0,t(·) represents the

Caputo fractional derivative of fractional order α (0 < α < 1)

Dα
0,tx(t) = 1

Γ(1 − α)

∫ t

0

ẋ(τ)
(t− τ)α

dτ, (6.2)

where Γ(·) is the Gamma function and β is a damping coefficient. Lastly, ag(t) is a stochastic

seismic excitation process whose evolutionary power spectrum (EPS) Sag(ω, t) is compatible

with a prescribed design spectrum S(ω, ζ0) (Cacciola, 2010).
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Next, a recently developed approximate analytical technique (Fragkoulis et al., 2019), which

relies on a combination of statistical linearization and stochastic averaging methods, is applied

to determine the non-stationary response amplitude PDF of the oscillator in Eq. (6.1). Con-

sidering that the oscillator is lightly damped, its response follows a pseudo-harmonic behavior,

given by

x(t) = A(t) cos(ω(A)t+ ψ(t)), (6.3)

ẋ(t) = −ω(A)A(t) sin(ω(A)t+ ψ(t)), (6.4)

where ψ(t) and A(t) = A denote the response phase and amplitude, respectively. The latter

vary slowly with respect to time, and thus, can be regarded as constant over one cycle of os-

cillation (Roberts and Spanos, 1986). Taking into account Eqs. (6.3)-(6.4), a decoupling of the

corresponding differential equations is attained in the form

A2(t) = x2(t) +
(
ẋ(t)
ω(A)

)2

, (6.5)

ψ(t) = −ω(A)t− arctan
(

ẋ(t)
x(t)ω(A)

)
. (6.6)

Then, applying a statistical linearization scheme, Eq. (6.1) is recast into

ẍ(t) + (β0 + β(A)) ẋ(t) + ω2(A)x(t) = ag(t), (6.7)

where β0 = 2ζ0ω0 with ω0 and ζ0 denoting the natural frequency and damping ratio of the

corresponding linear oscillator. Further, defining an error function as the difference between

Eqs. (6.1) and (6.7) and minimizing it in a mean square sense, leads to the equivalent linear
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amplitude-dependent elements

β(A) = −β0 + S(A)
Aω(A) +

β sin
(

απ
2

)
ω1−α(A) , (6.8)

ω2(A) = F (A)
A

+ βωα(A) cos
(
απ

2

)
, (6.9)

where

S(A) = − 1
π

∫ 2π

0
g0(A,φ) sinφdφ, (6.10)

F (A) = 1
π

∫ 2π

0
g0(A,φ) cosφdφ, (6.11)

with g0(A,φ) = g (A cosφ,−Aω(A) sinφ) and φ(t) = ω(A)t + ψ(t). Since Eqs. (6.8) and

(6.9) are amplitude-dependent, β(A) and ω(A) are also non-stationary processes. Hence, taking

expectations on Eqs. (6.8) and (6.9) yields the time-varying mean values (Kougioumtzoglou and

Spanos, 2009)

βeq(t) =
∫ ∞

0
β(A)p(A, t)dA, (6.12)

ω2
eq(t) =

∫ ∞

0
ω2(A)p(A, t)dA, (6.13)

where p(A, t) denotes the non-stationary response amplitude PDF. In passing, note that Eqs. (6.12)

and (6.13) correspond to the equivalent linear system

ẍ(t) + (β0 + βeq(t)) ẋ(t) + ω2(t)x(t) = ag(t). (6.14)

Clearly, p(A, t) is required for evaluating the time-varying equivalent elements in Eqs. (6.12)-

(6.13), which is given by (Fragkoulis et al., 2019)

p(A, t) =
sin

(
απ
2

)
A

ω1−α
0 c(t)

exp
−

sin
(

απ
2

)
ω1−α

0

A2

2c(t)

 . (6.15)
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In Eq. (6.15), c(t) denotes an unknown time-dependent coefficient, which is determined by

resorting to a stochastic averaging treatment of Eq. (6.14). In this regard, first, a first-order

stochastic differential equation for A(t) is derived. Then, substituting Eq. (6.15) into the corre-

sponding Fokker-Planck partial differential equation governing the evolution in time of p(A, t),

i.e.,
∂p(A, t)
∂t

= − ∂

∂A


− 1

2(β0 + βeq(t))A+ πSag(ωeq(t), t)
2ω2

eq(t)A

)
p(A, t)


+ 1

4
∂

∂A

{
πSag(ωeq(t), t)

ω2
eq(t)

∂p(A, t)
∂A

+ ∂

∂A

(
πSag(ωeq(t), t)

ω2
eq(t)

p(A, t)
),

(6.16)

and manipulating yields

ċ(t) = − (β0 + βeq (c(t))) c(t) +
sin

(
απ
2

)
ω1−α

0

 πSag(ωeq(c(t)), t)
ω2

eq(c(t))
. (6.17)

Eq. (6.17) constitutes a deterministic first-order nonlinear ordinary differential equation, which

can be readily solved by the Runge-Kutta numerical integration scheme; the interested reader is

directed to Fragkoulis et al., 2019; Kougioumtzoglou et al., 2022; Fragkoulis and Kougioumt-

zoglou, 2023 for more details on the derivation of Eqs. (6.7)-(6.17).

Lastly, considering Eqs. (6.8)-(6.9) and following Kougioumtzoglou, 2013, the amplitude-

dependent response EPS is determined by

Sxx(ω, t) =
∫ ∞

0

Sag(ω, t)p(A, t)dA
(ω2(A) − ω2)2 + (ωβ(A))2 . (6.18)

6.2.2 Code-compliant stochastic incremental dynamics analysis method-
ology

Numerous systems of real engineering interest can be modeled adequately as SDOF systems

(Roberts and Spanos, 2003). Consider a quiescent nonlinear SDOF system base-excited by a

response spectrum compatible acceleration stochastic process ag(t) whose dynamic behavior is

governed by Eq. (6.1). Following Cacciola, 2010, the non-stationary acceleration process ag(t)
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is characterized in the frequency domain by an associated EPS Sag(ω, t), compatibly defined

with Eurocode 8 provisions. An incremental mechanization analogous to that used in normal

IDA is adopted herein, where a0
g stands for the scaled image of the excitation magnitude leading

to the introduction of the definition of Sag(ω, t; a0
g). In the present study, the selected EDP is

that of the response displacement amplitude A at the most critical time instant tin, which stands

for the time instant when the parameter c(t) found in Eq. (6.17) reaches its maximum value.

In this regard, the response amplitude PDF at tin with respect to specific level of the scaled

excitation a0
g is given by

p(A, tin; a0
g) =

sin
(

απ
2

)
A

ω1−α
0 c(tin)

exp
−

sin
(

απ
2

)
ω1−α

0

A2

2c(tin)

 . (6.19)

The generated p(A, tin; a0
g) for each and every scaled level of the excitation a0

g leads to the effi-

cient determination of the stochastic IDA response amplitude PDF surface, comprising valuable

higher order statistics under a fully probabilistic consideration. Manipulating Eqs. (6.18)-(6.19)

yields the response power spectrum with respect to a specified level of excitation a0
g and time

instant,

Sxx(ω, a0
g) =

∫ ∞

0

Sag(ω, tin; a0
g)

(ω2(A) − ω2)2 + (ωβ(A))2 × p(A, tin; a0
g) dA, (6.20)

where Sxx(ω, a0
g) is the system response EPS at the time instant when the response variance

reaches its maximum value for a given ground acceleration a0
g.

The above quoted relation leads to the efficient determination of the coveted response power

spectrum which pertains evolutionary characteristics as a function of spectral acceleration. The

mechanization of the proposed methodology is provided in the following steps:

1. Derive the excitation EPS Sag(ω, t; a0
g) in a stochastically compatible manner with an

assigned elastic response acceleration spectrum of specified modal damping ratio and

scaled ground acceleration a0
g; see Cacciola, 2010 for more details.

2. Following the proposed stochastic averaging and linearization method shown in sec-
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tion 6.2.1, determine the maximum value cmax(tin) and the corresponding time instant

tin. Practically, this is achieved by employing Eqs. (6.12)-(6.13) and Eq. (6.17).

3. For a specific level of excitation a0
g, estimate the response EDP PDF and the response

EPS at tin by Eqs. (6.19) and (6.20), respectively.

4. Repeat steps 1-3 for all scaled images of the excitation a0
g to determine the stochastic

IDA response amplitude PDF surface and the response EPS as function of the spectral

acceleration.

6.3 Numerical application

Employing the bilinear hysteretic force-deformation law is a common practice to capture the be-

havior of structural members and structures under seismic excitation (Mitseas and Beer, 2019;

Giaralis and Spanos, 2010). Therefore, in this section, a bilinear hysteretic oscillator with frac-

tional derivative elements subject to a Eurocode 8 elastic pseudo-acceleration response spec-

trum is utilized to demonstrate the reliability of the proposed stochastic IDA framework. The

obtained results are compared and found in good agreement with corresponding results derived

from nonlinear RHA in a MCS-based context.

6.3.1 Bilinear hysteretic SDOF system with fractional derivative elements

The equation of motion of a nonlinear bilinear hysteretic SDOF system with fractional deriva-

tive elements is considered. The restoring force of the system is given by

g(t, x(t), ẋ(t)) = γω2
0x(t) + (1 − γ)ω2

0xyz(t), (6.21)

xyż(t) = ẋ{1 − Φ(ẋ(t))Φ(z(t) − 1) − Φ(−ẋ(t))Φ(−z(t) − 1)}, (6.22)

where Φ(·) denotes the Heaviside step function. Further, z(t) is an auxiliary state representing

the hysteretic component, γ denotes the post- to pre-yield stiffness ratio and xy is the yielding

displacement.
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Next, taking into account Eq. (6.21), Eqs. (6.10) and (6.11) become

S(A) =


4xyω2

0
π

(
1 − xy

A

)
, A > xy

0, A ≤ xy

(6.23)

F (A) =


Aω2

0
π

(
Λ − 1

2 sin(2Λ)
)
, A > xy

Aω2
0, A ≤ xy

(6.24)

with cos(Λ) = 1 − 2xy

A
. Thus, Eq. (6.12) yield

βeq(c(t)) = −β0 +
β sin2(απ

2 )
ω1−α

0 c(t)
×
∫ ∞

0

A

ω1−α(A) exp
(

−
sin(απ

2 )
ω1−α

0

A2

2c(t)

)
dA

+
4xyω

2
0(1 − γ) sin(απ

2 )
πω1−α

0 c(t)
×
∫ ∞

xy

1 − xy

A

ω(A) exp
(

−
sin(απ

2 )
ω1−α

0

A2

2c(t)

)
dA,

(6.25)

whereas Eq. (6.13) leads to

ω2
eq(c(t)) = ω2

0 − (1 − γ)ω2
0 ×

{
exp

(
−
xy

2 sin(απ
2 )

2c(t)ω1−α
0

)
−

sin(απ
2 )

πω1−α
0 c(t)

×
∫ ∞

xy

2Λ − sin(2Λ)
2A−1 exp

(
−

sin(απ
2 )

ω1−α
0

A2

2c(t)

)
dA

}
+
β sin(απ

2 ) cos(απ
2 )

ω1−α
0 c(t)

×
∫ ∞

0
ωα(A)A exp

(
−

sin(απ
2 )

ω1−α
0

A2

2c(t)

)
dA.

(6.26)

6.3.2 Response statistics stochastic IDA surfaces determination

The elastic pseudo-acceleration design spectrum S(ω, ζ0 = 0.05) for soil type B according to

Eurocode 8 is selected as the reference input spectrum. In addition, the recorded time history

at the El Centro site corresponding to the SOOE (N-S) component of the Imperial Valley earth-

quake of May 18, 1940, is used to model the excitation’s non-stationary attributes. The scaled

images of the excitation are determined as a0
g = 0.35g × [0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6]

where g stands for the acceleration of gravity.

The following parameters pertaining to the bilinear SDOF system under consideration have been
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employed: m = 1, ω0 = 8, ζ0 = 0.05, a = 0.5, γ = 0.2 and xy = 0.02 m. It can be readily

seen that following the mechanization presented in section 6.2.2, the stochastic IDA response

EDP PDF surface and the response EPS stochastic IDA surface can be efficiently determined at

a particularly low computational cost. Note, in passing, that the corresponding time instants tin

differ with respect to the scaled image of the ground acceleration a0
g following the criterion of

the maximum value cmax(tin).

Fig. 6.1 shows the response EDP PDF surface of the bilinear SDOF system with fractional

derivative order α = 0.5. Note that the red solid line depicts the modes of the EDP. To assess

the accuracy of the developed approach, the response EDP PDF surface from MCS data is

plotted as well in Fig. 6.2. In this regard, utilizing the spectral representation method of Liang

et al., 2007, an ensemble of 10, 000 acceleration time histories is generated, compatible with the

reference design spectrum corresponding every time to a specified scaled image of the excitation

a0
g. Subsequently, the governing equation of motion Eq. (6.1) subject to the above ensemble of

accelerograms is numerically solved by resorting to an L1-algorithm (Koh and Kelly, 1990).

Considering the approximations involved in the proposed approach, it can be clearly stated that

the results obtained by the proposed methodology are in good agreement with the MCS-based

estimates.

The response EPS stochastic IDA surface is shown in Fig. 6.3. It is noted that exceeding an

intensity threshold signals a gradual transition from elastic into the plastic region. The noted

break, which is expressed with a transition to lower values of frequency, is indicative of the

system stiffness degradation. It is noteworthy that the proposed method provides with an in-

sight into the underlying dynamic character of the system; this significant operation cannot be

determined following typical nonlinear RHA.

6.4 Conclusions

In this paper, a novel stochastic incremental dynamics analysis methodology has been devel-

oped for nonlinear systems with fractional derivative elements subject to a seismic excitation
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Figure 6.1: Response EDP PDF surface of a bilinear hysteretic oscillator with fractional deriva-
tive elements by the proposed method: (a) 3D view; (b) planar view.

Figure 6.2: Response EDP PDF surface of a bilinear hysteretic oscillator with fractional deriva-
tive elements by MCS method (10, 000 realizations): (a) 3D view; (b) planar view.

Figure 6.3: Response EPS stochastic IDA surface of a bilinear hysteretic oscillator with frac-
tional elements: (a) 3D view; (b) planar view.

vector consistently aligned with contemporary aseismic codes provisions. In this regard, an in-

cremental mechanization analogous to the one used in normal incremental dynamic analysis is

adopted to ensure the necessary compatibility for pertinent applications in structural engineering
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field. Specifically, rendering to the concept of non-stationary stochastic processes, the vector of

the imposed seismic excitations is characterized by EPS stochastically compatible with elastic

response acceleration spectra of specified modal damping ratio and scaled ground acceleration.

Harnessing the potential of a combination of the stochastic averaging and statistical lineariza-

tion methods, the response displacement PDFs are determined in an efficient and comprehensive

manner. The proposed methodology provides with reliable higher order statistics of the selected

EDP rather than simple estimates only of the mean and standard deviation, which is currently

the norm in the IDA relevant literature. Further, a particularly interesting attribute of the pro-

posed methodology is the derivation of the associated response EPS as a function of spectral

acceleration. This coveted element has a twofold meaning; it performs structural behavior mon-

itoring considering intensity, whereas it provides with an insight into the underlying dynamic

character of the system. The efficient identification of the latter cannot be determined following

nonlinear RHA. Lastly, the associated low computational cost renders the proposed method-

ology particularly useful for related performance-based engineering applications. A structural

system comprising the bilinear model endowed with fractional derivative elements serves as

a numerical example for demonstrating the reliability of the proposed methodology, whereas

comparisons with relevant MCS data demonstrate the accuracy of the proposed code-compliant

stochastic IDA technique.
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Abstract: This paper presents a highly efficient approach for bounding the responses and proba-

bility of failure of nonlinear models subjected to imprecisely defined stochastic Gaussian loads.

Typically, such computations involve solving a nested double loop problem, where the prop-

agation of the aleatory uncertainty has to be performed for each realization of the epistemic

parameters. Apart from near-trivial cases, such computation is generally intractable without

resorting to surrogate modeling schemes, especially in the context of performing nonlinear dy-

namical simulations. The recently introduced operator norm framework allows for breaking

this double loop by determining those values of the epistemic uncertain parameters that pro-

duce bounds on the probability of failure a priori. However, the method is in its current form

only applicable to linear models due to the adopted assumptions in the derivation of the in-

volved operator norms. In this paper, the operator norm framework is extended and generalized
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by resorting to the statistical linearization methodology, to account for nonlinear systems. Two

case studies are included to demonstrate the validity and efficiency of the proposed approach.

Keywords: Uncertainty quantification; Imprecise probabilities; Operator norm theorem; Sta-

tistical linearization

7.1 Introduction

Uncertainties about the true properties of, and loads acting on, structural systems are commonly

encountered in the context of all fields of engineering, including structural dynamics. For in-

stance, natural phenomena such as earthquakes or wind loads are especially hard to model ex-

actly, since the corresponding dynamical loads acting on the system often cannot be described

in a crisp way due to the sheer complexity of the underlying phenomena. Further, when design-

ing structures with natural or highly engineered materials, such uncertainties may arise as well.

To treat these issues effectively, stochastic processes (Shinozuka and Sato 1967, Vanmarcke and

Grigoriu 1983) have been introduced as a rigorous framework to account for the aleatory un-

certainties and corresponding correlations in space and time of uncertain loads and properties.

This is obtained by resorting to the well-documented framework of probability theory, which is

highly suited to treat aleatory uncertainties.

However, the definition of such stochastic processes may require prohibitive amounts of in-

formative data to fully characterize the probabilistic descriptors, including the auto-correlation

function. In a practical engineering context, such information may not always be available due

to scarcity, incompleteness or even conflicted nature of typically available data sources. As a

potential remedy, one can model the additional (epistemic) uncertainty by means of subjective

probability density functions, which might be a valid approach in case sufficient reasons are

present to validate the considered assumptions. However, in general, this includes unwarranted

subjectivity in the analysis, which might give a wrong sense of reliability to the model. Alter-

natively, set theoretical approaches, such as intervals (Faes and Moens 2019) or fuzzy numbers

(Beer 2004), can be used to include the epistemic uncertainty. By imposing such set-theoretical
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descriptors on top of probabilistic models for the uncertainty, a full set of probabilistic models

that is consistent with the lack of knowledge is considered, which allows for an objective judge-

ment on the bounds of the system reliability. In this context, utilizing the concept of imprecise

probabilities (Beer et al. 2013) provides the analyst with a concrete theoretical framework to

define and compute (with such hybrid forms) the uncertainties. In structural dynamics, for in-

stance, given a set of stochastic processes that are consistent with the epistemic uncertainty, an

imprecise probabilities-based solution treatment leads to bounds on the first excursion proba-

bility. The latter not only allows to assess the sensitivity of the model reliability to the existing

epistemic uncertainty, but also yields an estimate of the lower bound of the reliability.

In engineering practice, however, the effective application of such methods is typically hin-

dered by the corresponding computational cost. In essence, the propagation of the epistemic

and aleatory uncertainty has to be performed such that their effects on the reliability are kept

separated (Moens and Vandepitte 2004). This gives rise to double loop approaches, where the

outer loop takes care of epistemic uncertainty while the inner loop deals with aleatory uncer-

tainty. Many efficient methods have been introduced in recent years to alleviate this compu-

tational cost; see, indicatively, Faes et al., 2021a for a recent review paper. Examples of such

approaches are based on Extended Monte Carlo simulation (Wei et al. 2019), surrogate model-

ing schemes (Schöbi and Sudret 2017), Bayesian probabilistic propagation (Wei et al. 2021) or

Line Sampling (de Angelis et al. 2015). A recent development in this context is based on oper-

ator norm theory to decouple the double loop into a deterministic optimization, followed by a

single reliability analysis per bound on the reliability (Faes et al. 2020; 2021), which is capable

of reducing the corresponding computational cost by several orders of magnitude. However,

the methods based on operator norm theory are limited to linear systems subject to Gaussian

loading, which renders their application to realistic engineering models impossible.

In this regard, directing attention to extending the operator norm framework to nonlinear dy-

namical systems subject to imprecise Gaussian loading, a new technique is developed herein for

computing moderate to large failure probabilities. This is attained by resorting to the statistical
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linearization methodology (Roberts and Spanos 2003, Socha 2007), which is used for defining

an equivalent linear system of equations to account for the nonlinear system under considera-

tion. Then, an operator norm theory-based solution treatment (Faes et al. 2021) is employed to

obtain the bounds on the probability of failure. Two pertinent numerical examples demonstrate

the validity and efficiency of the proposed methodology.

7.2 Bounds on the reliability of nonlinear dynamical systems

7.2.1 Nonlinear stochastic dynamics

A nonlinear dynamical system subjected to a stochastic load p(t, ξ) is represented using the

Finite Element representation of the dynamical equation, by the following set of ordinary dif-

ferential equations:

Mq̈(t) + Cq̇(t) + Kq(t) + Φ (q̈(t), q̇(t),q(t)) = ρp(t, ξ), (7.1)

where M ∈ Rnd×nd , C ∈ Rnd×nd and K ∈ Rnd×nd represent, respectively, the mass, damping

and stiffness matrices of the system, and nd denotes the degrees of freedom in the model. Fur-

ther, ξ represents a realization of a random variable vector, whereas the vector ρ ∈ Rnd×1 links

the stochastic load p(t, ξ) to the appropriate degrees of freedom in the structure. The vectors

q ∈ Rnd , q̇ ∈ Rnd and q̈ ∈ Rnd represent, respectively, the nodal displacements, velocities and

accelerations, where a dot over a variable denotes differentiation with respect to time t ∈ R.

Finally, Φ (q̈(t), q̇(t),q(t)) ∈ Rnd represents the nonlinear restoring force, which depends on

the nodal displacement, velocity and acceleration vectors.

In Eq. (7.1), p(t, ξ) represents the load to which the system is subjected, which in the context of

stochastic dynamical systems is usually modeled as a stochastic process. If p(t, ξ) is a stationary

zero-mean Gaussian process, it can be characterized using its power spectral density function

SP P (ω), where ω ∈ R denotes the circular frequency. The Wiener-Khintchine theorem allows
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for the calculation of the autocorrelation function corresponding to SP P (ω), and vice versa.

This is attained by utilizing the Fourier transforms:

SP P (ω) = 1
2π

∫ +∞

−∞
RP P (τ)e−iωτdτ, RP P (τ) =

∫ +∞

−∞
SP P (ω)eiωτdω, (7.2)

whereRP P (τ) denotes the autocorrelation function with time lag τ ∈ R and ‘i’ is the imaginary

unit. Sample paths of this stochastic process can be generated, for example, by applying the

Karhunen-Loève (KL) expansion (e.g., Schenk and Schuëller 2005, Stefanou 2009). In this

regard, assume that the loading is applied for time T , where tk = (k − 1)∆t, k = 1, 2, . . . , nT ,

corresponds to time discretization with step ∆t and nT denotes the number of discrete time

steps. Then, the associated discrete correlation matrix RPP ∈ RnT ×nT becomes:

RPP =



RP P (0) RP P (t1 − t2) . . . RP P (t1 − tnT
)

RP P (t2 − t1) RP P (0) . . . RP P (t2 − tnT
)

...
... . . . ...

RP P (tnT
− t1) RP P (tnT

− t2) . . . RP P (0)


. (7.3)

Note that the framework described above can be also extended to account for non-stationary

Gaussian processes, see e.g. Li and Chen, 2009a. Utilizing the matrix-vector form of the KL

expansion, i.e.:

p(ξ) = ΨΛ1/2ξ, (7.4)

sample paths compatible with the stochastic ground acceleration are generated. In Eq. (7.4), p

denotes an nT -dimensional vector containing the sample of the loading; ξ is a realization of the

random variable vector Ξ, which follows an nKL-dimensional standard Gaussian distribution,

where nKL corresponds to the number of terms retained in the KL expansion; Ψ ∈ RnT ×nKL is

a matrix whose columns contain the eigenvectors associated with the largest nKL eigenvalues

of the discrete covariance matrix RPP; and Λ ∈ RnKL×nKL denotes a diagonal matrix whose

elements contain the largest nKL eigenvalues of RPP. A criterion for selecting the number
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of terms to be retained in the KL expansion is to find the minimum value of nKL, such that∑nKL
p=1 λp ≥ pv

∑nT
p=1 λp, where pv denotes the fraction of the total variance of the underlying

stochastic process that is retained by the approximate representation, and λp is the p-th eigen-

value of RPP (Lee and Verleysen 2007). For a recent overview of numerical methods to solve

the associated Fredholm integral eigenvalue problem in a continuous case, the reader is directed

to Betz et al., 2014. Alternatively, the sample paths can also be generated using frequency

domain methods, such as described in Chen and Li, 2013.

In a structural engineering context, one is usually interested in finding the reliability of the

structure, which is related to its performance by means of Eq. (7.1). Practically, the structural

reliability can be quantified by its complement, i.e., the failure probability Pf . In this context,

failure is encoded in the performance function g(ξ), i.e., g(ξ) ≤ 0 indicates that the realization

of values ξ leads to a structural failure. The probability of failure is calculated by solving the

integral equation:

Pf =
∫

ξ∈RnKL

IF (ξ) fΞ (ξ)dξ, (7.5)

where fΞ (·) is a standard nKL-dimensional Gaussian probability density function and IF (·)

is the indicator function, whose value is equal to one in case g(ξ) ≤ 0 and zero otherwise.

Note, in passing, that the exact formulation of g(ξ) is highly case dependent. For instance,

when considering the first-passage problem, which is a classical problem in stochastic dynamics

(e.g., Spanos and Kougioumtzoglou 2014, Spanos et al. 2016), g(ξ) is given by:

g (ξ) = 1 − max
i=1,...,nη

(
max

k=1,...,nT

(
|ηi (tk, ξ)|

bi

))
. (7.6)

where ηi(tk, ξ), i = 1, 2, . . . , nη, indicates the i-th response of the system at time instant tk (e.g.,

qi or one of its time derivatives), | · | denotes the absolute value and bi is a predefined threshold

value above which a structural failure occurs (e.g., a maximally allowed displacement).

The integral in Eq. (7.5) usually comprises a high number of dimensions, as nKL may be in

the order of hundreds or thousands for realistic stochastic processes. Furthermore, g(ξ), and
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hence, IF (ξ) is only known point-wise for realizations ξ of Ξ. Therefore, such an integral

cannot be solved analytically. In general, simulation methods should be applied to evaluate Pf

(Schuëller and Pradlwarter 2007). However, using simulation methods to calculate the proba-

bility of failure of a non-linear dynamical system can become quite challenging (Pradlwarter

et al. 2007). For instance, the definition of appropriate importance sampling density functions

to be used within the context of Importance Sampling might not always be trivial in this case

(Au 2009). Moreover, it is highlighted that the nonlinear restoring force Φ (q̈(t), q̇(t),q(t))

in Eq. (7.1) hinders the determination of ηi(tk), i = 1, 2, . . . , nη, k = 1, 2, . . . , nT , since its

presence necessitates the employment of pertinent numerical algorithms (Chopra 1995). In

particular, combining simulation algorithms with these nonlinear solvers potentially leads to

solution frameworks of prohibitively high computational cost.

7.2.2 Imprecise stochastic dynamical analysis

The characterization of the stochastic process p(t, ξ) in Eq. (7.1) in terms of its power spectral

density, or autocorrelation function, usually relies on a prescribed model. This, in turn, depends

on a number of parameters, which are grouped in a vector θ ∈ Rnθ . In this case, the parame-

ters that determine the covariance matrix RPP(τ |θ) reflect some specific characteristics of the

process, such as dominant frequencies, amplitude, etc. When selecting the appropriate value of

these quantities, the analyst may be faced with considerable uncertainty, such as lack of knowl-

edge, vague or ambiguous information, etc., which leads to epistemic uncertainty concerning

the correct parameter value. Therefore, instead of selecting a crisp value, it is often preferred

to explicitly account for this epistemic uncertainty by resorting to non-traditional models for

uncertainty quantification (Beer et al. 2013).

In this regard, it is herein assumed that the epistemic uncertainty in the definition of θ can be

bounded by an interval, i.e., θ ∈ θI = [θ,θ], where θ and θ denote, respectively, the lower

and upper bound between which the true parameter value is believed to lie. Techniques to infer

these bounds based on limited data have been reported; see, indicatively, Imholz et al., 2020.
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Taking these uncertainties explicitly into account, Eq. (7.1) becomes:

Mq̈(t) + Cq̇(t) + Kq(t) + Φ (q̈(t), q̇(t),q(t)) = ρp(t, ξ,θI). (7.7)

Close inspection of Eq. (7.7) reveals that both interval and random variables are present. The

fact that the input parameters of the stochastic loading model are described by means of in-

tervals has important implications on the evaluation of the structural reliability of the model

under consideration. In particular, both loading and the structural system responses become

interval stochastic processes (Faes and Moens 2019). This, in turn, leads to an interval valued

performance function, which causes the failure probability to become interval valued as well.

Therefore, instead of calculating a single probability of failure associated with the structure (us-

ing Eq. (7.5)), given the epistemic uncertainty represented by θI , one has to estimate the bounds

on Pf . These bounds are calculated by solving the optimization problems:

P f = min
θ∈θI

(Pf (θ)) = min
θ∈θI

(∫
ξ∈RnKL

IF (ξ,θ) fΞ (ξ)dξ
)
, (7.8)

P f = max
θ∈θI

(Pf (θ)) = max
θ∈θI

(∫
ξ∈RnKL

IF (ξ,θ) fΞ (ξ)dξ
)
. (7.9)

In general, the solution of the optimization problems defined in Eqs. (7.8) and (7.9) is extremely

demanding from a computational perspective. Specifically, as pointed out earlier, the solution

of the reliability problem for nonlinear dynamical systems is rather cumbersome. In addition,

solving the corresponding optimization problems is not straightforward, since this constitutes a

double loop problem, where the inner loop comprises probability calculation, while the outer

loop explores the possible values of the parameters θ. Hence, besides considering near-trivial

simulation models, such computation is generally intractable without resorting to surrogate

modelling strategies.
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7.3 Operator norm theory as a tool to decouple the double loop

A highly efficient operator norm theory-based approach to decouple the double loop associated

with the solution of Eqs. (7.8) and (7.9) has already been developed by some of the authors of

the present paper (Faes et al. 2021; 2020). In this section, a concise presentation of the results

in Faes et al., 2021b, 2020 is provided for completeness. Then, directing attention to computing

the bounds on the probability of failure of the nonlinear system given by Eq. (7.7), a novel

methodology is proposed, which is based on the combination of the statistical linearization

method (Roberts and Spanos 2003) with the theoretical framework described above.

7.3.1 Linear problems

The operator norm method introduced in Faes et al., 2021b, 2020, specifically focuses on

models whose relation between the response η and the uncertain inputs θ and ξ is given by:

η(θ, ξ) = AB(θ)ξ. (7.10)

In Eq. (7.10), A : Rnt 7→ Rnη denotes a continuous linear map that represents the translation

of the model input to the responses of interest, whereas B : RnKL 7→ Rnt is a linear map that

transforms the random vector ξ to the sample paths of the stochastic process which serves as

model input. For instance, using the KL series expansion, B is given in its discrete form as:

B = ΨΛ1/2, (7.11)

where Ψ and Λ are the matrices which contain, respectively, the eigenvectors and eigenvalues

of the matrix RPP (see also section “Bounds on the reliability of nonlinear dynamical sys-

tems”). Note that eq. (7.10) allows modeling the dynamic response of linear structural systems

comprising classical or non-proportional damping subject to dynamic loading. Details about the

numerical formulation of eq. (7.10) can be found in, e.g., Chopra, 1995; Jensen and Valdeben-
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ito, 2007.

Considering the linear map defined in Eq. (7.10) and also defining D(θ) = AB(θ) for simplic-

ity, it can be shown that the inequality:

∥D(θ)ξ∥p1 ≤ |c|∥ξ∥p2 , (7.12)

with ∥·∥p denoting a certain Lp norm, always holds. In essence, this equation states that the

length of the uncertain model input ξ, quantified via a prescribed Lpi
norm, can be amplified at

most by a factor c towards the model responses η when applying the linear mapping defined by

D(θ). A measure for how much a certain deterministic linear map D(θ) increases the length of

the uncertain model input v in the maximum case, is given by the operator norm ∥D(θ)∥p1,p2 ,

which is defined in a deterministic sense (i.e., for one realization of the uncertain parameters)

as:

∥D(θ)∥p1,p2 = inf {c ≥ 0 : ||D(θ)v||p1 ≤ |c| · ∥v∥p2 ,∀v ∈ Rnv} , (7.13)

or, equivalently:

∥D(θ)∥p1,p2 = sup
{

∥D(θ)v∥p1

∥v∥p2

: v ∈ Rnv with v ̸= 0
}
. (7.14)

Clearly, the calculation of a specific value ∥D(θ)∥p1,p2 depends on the choice of p1 and p2. The

interested reader is directed to Faes et al., 2021b, 2020 for an analytical presentation of the

method and for guidance on the optimal selection of p1 and p2; and to Faes and Valdebenito,

2020; Faes and Valdebenito, 2021 for a practical application of the framework in the context of

reliability-based design optimization.

In case of calculating first excursion probabilities, taking into account Eq. (7.6), experience

shows that selecting p1 → ∞ and p2 = 2 provides a good correlation between the operator norm

∥D(θ)∥∞,2 and the failure probability Pf . This happens since the operator norm ∥D(θ)∥∞,2

describes the amount of ‘energy’ amplification in the random signal towards the ‘extremes’ of
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the responses ηi, and hence, its corresponding effect on Pf . Thus, it is readily seen that finding

those values of the epistemic uncertain parameters θ that minimize and maximize, respectively,

∥D(θ)∥∞,2 will provide a good approximation of the realizations that minimize and maximize

Pf . Hence, the double loop that is presented in Eqs. (7.8) and (7.9) can be efficiently decoupled,

first, by determining θU via:

θU = argmax
θ∈θI

∥D(θ)∥∞,2 (7.15)

to find the parameters that yield P f , and then, by determining θL via:

θL = argmin
θ∈θI

∥D(θ)∥∞,2 (7.16)

to find the parameters that yield P f . Next, the bounds on Pf , i.e., P f and P f , are obtained by

solving Eq. (7.5) twice, corresponding to θU and θL. It is noted that any pertinent optimization

solver can be employed to solve Eqs. (7.15) and (7.16). Further, it is readily seen that recasting

the problem in the form given by Eq. (7.10) is critical for the application of the method. In

essence, this means that the underlying model must be linear, and that the aleatory uncertainty

can only be present in the load description (Faes et al. 2021). This feature of the method hinders

its direct application to nonlinear systems defined by Eq. (7.7). Nevertheless, this limitation is

addressed in the following by resorting to the statistical linearization method, i.e., by defining

an equivalent linear system for the nonlinear system of Eq. (7.7).

7.3.2 Statistical linearization methodology

In this section, a concise presentation of the statistical linearization methodology is provided for

completeness. The main objective of the method is to replace the originally considered nonlin-

ear system with an equivalent linear one and minimize (in some sense) the difference between

the two systems. Clearly, the readily available solution frameworks for treating the equiva-

lent linear system are used to estimate the stochastic response of its nonlinear counterpart. In

general, several variations of the method have been used to solve approximately and efficiently
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nonlinear stochastic differential equations associated with engineering applications; see, indica-

tively, Fragkoulis et al., 2016a; Kougioumtzoglou et al., 2017; Fragkoulis et al., 2019; Spanos

and Malara, 2020; Pasparakis et al., 2021; Ni et al., 2021 and references therein. Its exten-

sive utilization in stochastic dynamics is associated with its capacity to treat a wide range of

nonlinear behaviors in a straightforward manner.

The statistical linearization method is invoked herein to obtain an equivalent linear system that is

compatible with the operator norm framework. For the application of the method, the nonlinear

system in Eq. (7.1) is replaced by an equivalent linear system of the form:

(M + Me) q̈(t) + (C + Ce) q̇(t) + (K + Ke) q(t) = ρp(t, ξ). (7.17)

In Eq. (7.17), Me,Ce and Ke denote, respectively, the mass, damping and stiffness nd ×

nd matrices of the equivalent linear system that account for neglecting the nonlinearity from

Eq. (7.1) . Next, the error ε ∈ Rnd is defined as the difference between Eqs. (7.1) and (7.17),

i.e.:

ε = Φ (q̈(t), q̇(t),q(t)) − Meq̈(t) − Ceq̇(t) − Keq(t), (7.18)

and its mean square is minimized. Note that although several criteria are available for mini-

mizing ε (e.g., Socha 2007, Elishakoff and Andriamasy 2012), adopting a mean square error

minimization in conjunction with the Gaussian assumption for the system response probabil-

ity density functions (Roberts and Spanos 2003) facilitates the determination of the equivalent

linear system in Eq. (7.17). Specifically, the elements of matrices Me,Ce and Ke are given in

closed form by:

me
ij = E

[
∂Φi

∂q̈j

]
, ce

ij = E
[
∂Φi

∂q̇j

]
, ke

ij = E
[
∂Φi

∂qj

]
, (7.19)

where E[·] is the expectation operator and the indices i, j = 1, 2, . . . , nd denote the correspond-

ing element of the nd × nd matrices and nd-dimensional vectors.
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Next, note that the equivalent linear system response variance is also required to compute the

elements of the equivalent matrices given by Eq. (7.19). This is attained by employing either

a time- or a frequency-domain solution framework (Roberts and Spanos 2003, Fragkoulis et

al. 2016, Kougioumtzoglou et al. 2017). For instance, following the latter, the system response

variance is determined by resorting to the input-output relationship of random vibration theory:

Sqq(ω) = α(ω)SPP(ω)αT∗(ω), (7.20)

where Sqq(ω) and SPP(ω) denote, respectively, the response and excitation power spectrum,

and ‘T∗’ corresponds to the conjugate transpose matrix operator. Further, α(ω) is the frequency

response function matrix of the equivalent system in Eq. (7.17), i.e.:

α(ω) =
[
−ω2(M + Me) + iω(C + Ce) + (K + Ke)

]−1
, (7.21)

Thus, taking into account Eqs. (7.20) and (7.21), the system response variance is determined

by:

E
[
q2

i (t)
]

=
∫ ∞

−∞
Sqiqi

(ω)dω, E
[
q̇2

i (t)
]

=
∫ ∞

−∞
ω2Sqiqi

(ω)dω, E
[
q̈2

i (t)
]

=
∫ ∞

−∞
ω4Sqiqi

(ω)dω,

(7.22)

where Sqiqi
(ω), i = 1, 2, . . . , nd, are the diagonal elements of the system response spectrum

Sqq(ω). Clearly, Eq. (7.19) and Eq. (7.22) define a coupled set of nonlinear equations to be

solved for determining Me,Ce and Ke. For its solution, the following iterative scheme is used.

First, the equivalent parameter matrices in Eq. (7.17) are set equal to null matrices. Then,

initial values for the response variance are computed by Eq. (7.22). Next, the latter are used

in conjunction with Eq. (7.19) to update the values for Me,Ce and Ke. The last two steps are

repeated until convergence.

Finally, it is noted that since the linearization is performed in a mean-square error minimization

sense, the approximation of the true system is generally less accurate in the tails of the distri-
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bution. Hence, the accuracy of the method tends to decrease when considering smaller failure

probabilities. That is, using the equivalent linear system does not generally provide sufficiently

accurate estimates for smaller failure probabilities. In this regard, in the proposed approach the

equivalent linear system is only used for identifying the epistemic parameter values that yield

the extrema of Pf . After these values have been identified, they are used to obtain the corre-

sponding lower and upper bounds of Pf for the original nonlinear system by means of direct

Monte Carlo simulation. Nonetheless, as it is shown in the numerical examples section, the pro-

posed framework provides practical advantages in the sense that the failure probability bounds

can be computed with significantly greater numerical efficiency.

7.3.3 Solution of the equivalent linear system

Clearly, Eq. (7.17) represents a linear structural system subject to stochastic Gaussian load-

ing. However, it is noted that, depending on the form of nonlinearity Φ (q̈(t), q̇(t),q(t)) in

Eq. (7.7), the parameter matrices of the equivalent system in Eq. (7.17) are no longer necessar-

ily symmetric. Nevertheless, this poses no difficulty in applying the proposed methodology. In

general, new approaches have been recently developed for treating linear and nonlinear multi-

degree-of-freedom systems which lack mathematically appealing properties, such as symmetry

and positive definiteness; see, indicatively, Fragkoulis et al., 2016b,a. Further, note that matrix

C + Ce represents a ‘full’ damping matrix. Therefore, commonly applied solution schemes

based on convolution, as described in Chopra, 1995 cannot be applied directly.

In this regard, Eq. (7.17) is recast into a state-space form (Chopra 1995; Jensen and Valdeben-

ito 2007):

M∗q̇∗(t) + K∗q∗(t) = P∗(t, ξ), (7.23)
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where M∗ ∈ R2nd×2nd , K∗ ∈ R2nd×2nd and P∗ ∈ R2nd×1 are block matrices given by:

M∗ =

 0 M + Me

M + Me C + Ce

 , K∗ =

 −(M + Me) 0

0 K + Ke

 , P∗ =

 0

ρp(t, ξ)

 ,
(7.24)

and q∗(t) denotes the 2nd-dimensional vector

q∗(t) =

q̇(t)
q(t)

 . (7.25)

The impulse response function hi(t) corresponding to the system in Eq. (7.23) is defined as:

hi(t) =
2nd∑
r=1

βT
i ΦrΥT

prρ

(2λrTr + Sr)
eλrt, (7.26)

where i = 1, 2, . . . , nr denotes the number of responses, and βi is a constant vector such that

a response of interest ηi is generated as ηi = βT
i q. Variables Tr and Sr are the modal energies

given by:

Tr = ΥT
pr(M + Me)Φpr, Sr = ΥT

pr(C + Ce)Φpr, (7.27)

where Υpr and Φpr are, respectively, the position parts (i.e., the last nd components) of the right

and left eigenvectors, associated with the right and left eigenproblems of Eq. (7.23); λr contains

the corresponding eigenvalues.

The dynamic responses ηi, i = 1, 2, . . . , nη, that solve Eq. (7.17) are calculated by apply-

ing the convolution integral between the corresponding unit impulse response functions hi(t),

i = 1, 2, . . . , nη, and the stochastic loading p(t, ξ), i.e.:

ηi (t, ξ) =
∫ t

0
hi (t− τ) p(t, ξ)dτ , i = 1, 2, . . . , nη. (7.28)
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In view of the excitation model introduced in Eq. (7.4), evaluating Eq. (7.28) at time tk yields:

ηi(tk, ξ) =
k∑

l1=1
∆tϵl1hi(tk − tl1)

nKL∑
l2=1

ψl1,l2

√
λl2ξl2

 = γi,kξ, (7.29)

for i = 1, 2, . . . , nη, k = 1, 2, . . . , nT , where ψl1,l2 is the (l1, l2)-th element of matrix Ψ; γi,k is

a nKL-dimensional vector such that:

γi,k =
[∑k

l1=1 ∆tϵl1hi(tk − tl1)ψl1,1
√
λ1 . . .

∑k
l1=1 ∆tϵl1hi(tk − tl1)ψl1,nKL

√
λnKL

]
(7.30)

and ϵl1 is a coefficient depending on the numerical integration scheme used in the evaluation

of the convolution integral. When the trapezoidal integration rule is chosen (Gautschi 2012),

ϵl1 = 1/2, if l1 = 1 or l1 = k; otherwise, ϵl1 = 1. As such, ηi is calculated as a linear

transformation that maps the standard normal random vector ξ to the responses ηi for each time

instant:

ηi(ξ) = Γi(θ)ξ, (7.31)

where:

ηi(ξ) =



ηi(t1, ξ)

ηi(t2, ξ)
...

ηi(tnT
, ξ)


, Γi(θ) =



γi,1(θ)

γi,2(θ)
...

γi,nT
(θ)


, (7.32)

in which Γi(θ) is a nT ×nKL matrix that represents a linear map from the standard normal ran-

dom vector ξ to the i-th response of interest. Note that Γi(θ) depends directly on the epistemic

uncertain parameters θ through the eigenvalues and eigenvectors of the KL series expansion.

7.3.4 Bounds on the first excursion probability

As explained in section “Linear problems”, the operator norm theorem can be used to bound the

probability of failure of linear models under epistemic uncertainty in the definition of the load.
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To extend the method towards treating nonlinear dynamical simulation models, a framework

based on the combination of the operator norm-based treatment and the statistical linearization

methodology is proposed. Hereto, the linearized system of Eq. (7.31) is considered. Specifi-

cally, the epistemic uncertain parameters of the imprecisely defined stochastic load that bound

Pf are defined as:

θU = argmax
θ∈θI

max
i=1,2,...,nη

∥Γi(θ)∥∞,2 (7.33)

and:

θL = argmin
θ∈θI

max
i=1,2,...,nη

∥Γi(θ)∥∞,2, (7.34)

with Γi as defined in Eq. (7.32). These parameter realizations are used for finding the parameters

that yield P f and P f , respectively. Note that the explicit dependence of Γi on θ is highlighted in

these equations. The parameters θ influence Γi through the eigenfunctions and corresponding

eigenvalues of the KL expansion shown in Eq. (7.4) and the interaction with the structural

nonlinearities. Based on the derivations in Tropp, 2004, Eqs. (7.33) and (7.34) are recast into:

θU = argmax
θ∈θI

max
i=1,2,...,nη

max
j=1,2,...,nT

∥Γj:
i (θ)∥2 (7.35)

and:

θL = argmin
θ∈θI

max
i=1,2,...,nη

max
j=1,2,...,nT

∥Γj:
i (θ)∥2, (7.36)

respectively, where the superscript ‘j :’ denotes the j-th row of matrix Γi and ∥ · ∥2 denotes the

regular L2 vector norm.

To summarize, the proposed procedure can be described as follows:

1. Represent the nonlinear model including the epistemic uncertainty by using Eq. (7.7).

2. Solve the optimization problems in Eqs. (7.35) and (7.36) to identify θU and θL, by

using any appropriate algorithm. Then, compute matrix Γ(θ) for a given realization

θ. This is done in two steps. First, applying the statistical linearization method, solve

iteratively Eqs. (7.19)-(7.22). Secondly, taking into account Eqs. (7.24)-(7.32), perform
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modal analysis over the equivalent linear system to derive matrix Γ(θ).

3. Once θU and θL are identified, perform reliability analysis using the full nonlinear model

in order to determine the upper and lower bounds of the failure probability.

7.4 Numerical examples

7.4.1 Case study 1: two-degrees-of-freedom nonlinear system

In this case study, the two-degrees-of-freedom (DOF) system in Fig. 7.1 is considered. The

system consists of masses m1 and m2, which are connected to each other by a linear damper of

damping coefficient c2 and a linear spring of stiffness coefficient k2. Further, mass m1 connects

to the foundation by a linear damper of damping coefficient c1 and a nonlinear spring of stiffness

coefficient k1.

Figure 7.1: A two-degrees-of-freedom nonlinear system under stochastic excitation.

Next, considering the coordinates vector qT =
[
q1 q2

]
and following the standard Newto-

nian approach to derive the system governing equations of motion (Roberts and Spanos 2003),

Eq. (7.1) is formulated. The system parameter matrices are given by:

M =

m1 0

0 m2

 , C =

c1 + c2 −c2

−c2 c2

 , K =

k1 + k2 −k2

−k2 k2

 , (7.37)

whereas:

ρp(t, ξ) =

1

0

 p(t, ξ) (7.38)

denotes the stochastic excitation. Further, the nonlinear restoring force of the system is given

by:

Φ(q̈, q̇,q) =

k1νq
3
1

0

 , (7.39)
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where ν corresponds to the intensity of the nonlinearity. Finally, the load p(t, ξ) acting on

the system is modeled as a zero-mean Gaussian stochastic process, described by the Clough-

Penzien spectrum (Li and Chen 2009):

SP P (ω) =
ω4
(
ω4

g + (2ζgωgω)2
)
S0(

(ω2
g − ω2)2 + (2ζgωgω)2

) (
(ω2

f − ω2)2 + (2ζfωfω)2
) . (7.40)

The following parameter values are considered for the system in Fig. 7.1, m1 = m2 = 1

[kg], c1 = c2 = 0.2 [N· s/m], k1 = k2 = 1 [N/m], whereas the intensity of the nonlinear-

ity is ν = 1 and the nominal parameters of the excitation spectrum are [ωg, ωf , ζg, ζf , S0] =

[4π, 0.4π, 0.7, 0.7, 3 × 10−4]. Failure of the system is considered as the first passage of any of

the displacements of the masses over a threshold value of b = 0.040 [m]. Further, it is con-

sidered that the analyst is unsure about the exact values of the stochastic load acting on the

system. Specifically, the definition of the parameters of the Clough-Penzien spectrum is subject

to epistemic uncertainty. The intervals that are applied for bounding this epistemic uncertainty

are shown in Table 7.1.

Next, the herein proposed operator norm theory-based statistical linearization framework is

employed for computing the bounds on the probability of failure. In this regard, first, the gov-

erning equation of motion with parameter matrices and nonlinear vector given by Eqs. (7.37)

and Eq. (7.39), respectively, is replaced by an equivalent linear system of the form of Eq. (7.17).

Then, considering the error function in Eq. (7.18) and adopting a mean square minimization of

the error, Eq. (7.19) leads to the equivalent parameter matrices:

Me =

0 0

0 0

 , Ce =

0 0

0 0

 , Ke =

3k1νσ
2
q1 0

0 0

 . (7.41)

Regarding the numerical implementation, considering as stopping criterion
∣∣∣∣Ki+1

e −Ki
e

Ki
e

∣∣∣∣ < 10−5,

where the index ‘i’ denotes the i-th iteration and the initial value K0
e is set equal to zero, the

iterative scheme described in the section “Statistical linearization methodology” converges after
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three iterations. Thus, the nonlinear system shown in Fig. 7.1 is approximated by the equivalent

linear system whose governing equations of motion are given by Eq. (7.17).

Next, the augmented state-space system in Eq. (7.23) is formulated and taking into account

Eqs. (7.26)-(7.31), the linear map Γi(θ) is calculated. Then, following the presentation in

the section “Bounds on the first excursion probability”, and considering the derived equivalent

linear matrices, the operator norm that corresponds to any given realization of the epistemically

uncertain Gaussian process load is computed. In addition, the optimization over the operator

norm can be performed using the Matlab built-in patternsearch optimization tool. Finally, two

optimization problems have to be solved; the first one for determining θU (see Eq. (7.35)) and

the second one for determining θL (see Eq. (7.36)), which require approximately 100 iterations

to converge.

So far, the operator norm-based statistical linearization framework is used for determining the

bounds on Pf . Next, the validity of the obtained results is verified by using a brute-force imple-

mentation of the double-loop problem. Hereto, the Newmark solver is considered in conjunction

with Monte Carlo simulation (MCS) as the ‘inner loop’ in Eqs. (7.8) and (7.9) for computing Pf

for each realization of the epistemic uncertainty. It is noted that a total of 1000 samples are con-

sidered for estimating the failure probability at each realization of the epistemic parameters. A

patternsearch optimization algorithm (Kolda et al. 2003) is used to solve the optimization prob-

lem in the ‘outer loop’. This result serves as the benchmark for the bounds on Pf against which

the result of the proposed operator norm-based statistical linearization framework is compared.

Results and discussion

The functional relationship between the operator norm ∥Γ∥2,∞, as computed over the linearized

system, and Pf , as computed using MCS combined with the Newmark solver, is shown in

Fig. 7.2. The black dots in this figure are obtained by drawing 1000 uniformly distributed

samples in between the bounds of θI . First, it is noted that the relation between the operator

norm ∥Γi(θ)∥∞,2 and Pf is not bijective. In addition, there is a clear trend between these
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two quantities, where higher operator norm values correspond to higher probability of failure

values and vice-versa. This illustrates the validity of the proposed approach in the sense that

minimizing (or maximizing) the operator norm also yields a minimum (or maximum) of the

failure probability. Further, Table 7.2 shows the parameters that yield an extremum in Pf by

optimizing directly over Pf (indicated DL), as well as over the operator norm (indicated ON).

These parameters are grouped in the rows indicated with θ. Furthermore, the corresponding

optima are reported, as well as the number of required function calls (n0). It is important to

stress that to obtain a value for the operator norm, only the linear map Γ (see Eq. (7.31)) needs

to be assembled and the corresponding operator norm needs to be calculated. On the other hand,

the calculation of one value of Pf requires the full solution of Eq. (7.5).

Finally, in order to evaluate the performance of the proposed approach for different threshold

levels, Fig. 7.3 presents the failure probability bounds obtained by the proposed method (de-

noted ON) and the reference bounds obtained by a direct double loop implementation (denoted

DL) for different values of b. First, note that the failure probability values tend to decrease for

higher threshold levels, as expected. In addition, it is seen that the lower bounds for the failure

probability obtained by the proposed approach agree very well with the reference values for

smaller threshold levels, i.e., b ≤ 0.040 m. On the other hand, the deviations between the op-

erator norm-based estimates for the lower bounds and the corresponding reference values tend

to increase for larger values of b, which are associated with smaller failure probabilities. For

instance, the proposed scheme overestimates the lower failure probability bound in 30% for the

case b = 0.050 m. This illustrates that the proposed statistical linearization-based method is

more suitable for problems involving moderate to large failure probabilities, as already pointed

out. In this regard, the integration of the ON-based framework with alternative linearization

techniques can (potentially) improve the performance of the proposed scheme for smaller fail-

ure probabilities.
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Figure 7.2: Comparison of the operator norm, computed on the linearized system with the
probability of failure as computed by Monte Carlo simulation in combination with Newmark
method.

Figure 7.3: Failure probability bounds for different threshold levels obtained by the proposed
method (ON) and a double loop implementation (DL).

7.4.2 Case study 2: six degrees-of-freedom structure

In this example, a 6-DOF system of rigid massesmi (i = 1, 2, · · · , 6) connected to each other by

nonlinear dampers as shown in Fig. 7.4 is considered. In this regard, considering the coordinates

vector qT =
[
q1 q2 q3 q4 q5 q6

]
, the matrix form of the system governing equations of

motion is formulated (see Eq. (7.1)), whose parameter matrices are given by:

M =



m1 0 0 0 0 0

m2 m2 0 0 0 0

m3 m3 m3 0 0 0

m4 m4 m4 m4 0 0

m5 m5 m5 m5 m5 0

m6 m6 m6 m6 m6 m6



,C =



c1 −c2 0 0 0 0

0 c2 −c3 0 0 0

0 0 c3 −c4 0 0

0 0 0 c4 −c5 0

0 0 0 0 c5 −c6

0 0 0 0 0 c6



(7.42)

and:

K =



k1 −k2 0 0 0 0

0 k2 −k3 0 0 0

0 0 k3 −k4 0 0

0 0 0 k4 −k5 0

0 0 0 0 k5 −k6

0 0 0 0 0 k6



. (7.43)
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Further, it is assumed that the system is subjected to ground acceleration, which is modeled as

a stochastic process, whose corresponding power spectrum is given by:

S(ω) =



S1(ω) 0 0 0 0 0

0 S2(ω) 0 0 0 0

0 0 S3(ω) 0 0 0

0 0 0 S4(ω) 0 0

0 0 0 0 S5(ω) 0

0 0 0 0 0 S6(ω)



, (7.44)

where Si(ω), i = 1, 2, . . . , 6, is modeled as a Clough-Penzien spectrum (see Eq. (7.40)) with the

epistemic uncertainty on the parameters ωg, ωf , ζg and ζf characterized by the intervals given

in Table 7.1, whereas the epistemic uncertainty on parameter S0 is characterized by the interval

[0.8, 1.2] × 0.05. In addition, the nonlinear function Φ(q̈, q̇,q) takes the form:

ΦT(q̈, q̇,q) =[
c1νq̇

3
1 − c2νq̇

3
2 c2νq̇

3
2 − c3νq̇

3
3 c3νq̇

3
3 − c4νq̇

3
4 c4νq̇

3
4 − c5νq̇

3
5 c5νq̇

3
5 − c6νq̇

3
6 c6νq̇

3
6

]
,

(7.45)

with ν describing the intensity of the nonlinearity in Eq. (7.45). The system parameter values

are m1 = m2 · · · = m6 = 1, c1 = c2 · · · = c6 = 0.2, k1 = k2 · · · = k6 = 1 and ν = 3.

In addition, failure is defined in this case as the first passage of any interstory drift beyond the

maximum allowable threshold b = 0.6 m.

Figure 7.4: A six-degrees-of-freedom nonlinear system under stochastic excitation.

Then, the herein proposed operator norm theory-based statistical linearization framework is

applied. In this regard, the equivalent linear mass and stiffness 6 × 6 matrices take the form:

Me = Ke = 0, (7.46)
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whereas the equivalent linear damping 6 × 6 matrix becomes:

Ce =



3c1νσ
2
q̇1 −3c2νσ

2
q̇2 0 0 0 0

0 3c2νσ
2
q̇2 −3c3νσ

2
q̇3 0 0 0

0 0 3c3νσ
2
q̇3 −3c4νσ

2
q̇4 0 0

0 0 0 3c4νσ
2
q̇4 −3c5νσ

2
q̇5 0

0 0 0 0 3c5νσ
2
q̇5 −3c6νσ

2
q̇6

0 0 0 0 0 3c6νσ
2
q̇6



. (7.47)

The elements of the equivalent matrix in Eq. (7.47) are determined by utilizing the iterative

scheme described in the section ‘Statistical linearization methodology’. Specifically, using∣∣∣∣Ci+1
e −Ci

e

Ci
e

∣∣∣∣ < 10−5 as stopping criterion, where ‘i’ denotes the i-th iteration of the scheme,

and also considering the initial value C0
e = 0, the scheme converges after five iterations. Thus,

the nonlinear system shown in Fig. 7.4 is approximated by the equivalent linear system whose

governing equations of motion are given by Eq. (7.17).

Next, the augmented state-space system in Eq. (7.23) is formulated and taking into account

Eqs. (7.26)-(7.31), the linear map Γi(θ) is calculated. Subsequently, following the presentation

in the section “Bounds on the first excursion probability”, and considering the derived equiv-

alent linear matrices, the operator norm that corresponds to a certain realization of the epis-

temically uncertain Gaussian process load is computed. In addition, the optimization over the

operator norm is performed using the Matlab built-in patternsearch optimization tool. Finally,

two optimization problems have to be solved; the first one for determining θU (see Eq. (7.35))

and the second one for determining θL (see Eq. (7.36)), which require approximately 200 iter-

ations to converge.

Results and discussion

The results of the herein proposed framework are shown in Table 7.3, which shows the pa-

rameters that yield an extremum in Pf by either optimizing directly over Pf (indicated DL)
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or over the operator norm (indicated ON). These parameters are grouped in the rows indicated

with θ. Clearly, the proposed method is capable of adequately approximating the true bounds

on Pf . The results are compared to a brute-force double loop implementation using Newmark

method to solve the nonlinear ODE, MCS to calculate Pf , and patternsearch in Matlab to opti-

mize over the epistemic parameter space. It is highlighted that the results obtained by following

the proposed approach are in reasonable agreement with the corresponding results obtained by

following a classic double loop approach. The small discrepancy between the results is ex-

pected and is due to adopting an approximate linearization scheme to enable the application of

the operator norm framework. Nonetheless, it can be argued that these bounds are highly rea-

sonable given the immense reduction in computational cost that is required to calculate them.

For instance, considering the upper bound on Pf , the required number of deterministic model

solutions can be reduced from 292000 to just 626, with 1000 additional samples for computing

the associated failure probability.

7.5 Conclusions

In this paper, a novel technique has been developed for bounding the responses and probability

of failure of nonlinear structural models subjected to imprecisely defined stochastic Gaussian

loads. The proposed technique can be construed as a generalization of a recently developed

operator norm-based method to account for nonlinear dynamical systems. This is attained by

resorting to the statistical linearization methodology for defining a linear system equivalent to

the nonlinear system under consideration. In this regard, the double loop that is typically asso-

ciated with estimating the bounds on the probability of failure of nonlinear dynamical systems

is effectively decoupled and the associated computational cost is reduced by several orders of

magnitude. Thus, it can be argued that integrating statistical linearization into the operator norm

framework allows for bounding the probability of failure of nonlinear systems with acceptable

accuracy and at greatly reduced numerical cost. The validity and numerical efficiency of the

proposed technique has been demonstrated by considering two nonlinear structural systems. It
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Table 7.1: Tested values for θI .

ωI
g ωI

f ζI
g ζI

f SI
0

[0.8, 1.2] × 4π [0.8, 1.2] × 0.4π [0.8, 1.2] × 0.7 [0.8, 1.2] × 0.7 [0.8, 1.2] × 3 × 10−4

Table 7.2: Results of the optimization problems. Case study 1.

parameter Pf (DL) Pf (ON) P f (DL) P f (ON)

θ

S∗
0 2.409 · 10−04 2.409 · 10−04 3.534 · 10−04 3.591 · 10−04

ω∗
g 11.782 15.080 11.195 10.056
ω∗

f 1.507 1.508 1.007 1.005
ζ∗

g 0.700 0.840 0.575 0.840
ζ∗

f 0.825 0.840 0.575 0.560

Output
Pf 0.084 0.088 0.977 0.974
ON 0.0072 0.0069 0.0354 0.0375
n0 354000 520 + 1000 28900 595 + 1000

Table 7.3: Results of the optimization problems. Case study 2.

parameter Pf (DL) Pf (ON) P f (DL) P f (ON)

θ

S∗
0 0.040 0.040 0.060 0.060
ω∗

g 12.557 12.684 14.570 10.053
ω∗

f 1.507 1.508 1.007 1.005
ζ∗

g 0.809 0.840 0.700 0.560
ζ∗

f 0.827 0.840 0.567 0.560

Output
Pf 0.097 0.123 0.859 0.855
ON 0.081 0.079 0.307 0.319
n0 281000 1804 + 1000 292000 626 + 1000

is noted, however, that since the linearization scheme has been performed in a mean-square

error minimization sense, the representation of the nonlinear system is less accurate in the tails

of the distribution. This aspect renders the proposed approach mostly suitable for estimating

the bounds of moderate to large failure probabilities. Nevertheless, future work is directed to-

wards developing an enhanced operator norm-based linearization scheme capable of estimating

bounds on smaller failure probabilities. This can be achieved, in principle, by combining the ap-

plication of the statistical linearization methodology with a stochastic averaging treatment. Fur-

ther, the proposed framework can be integrated with more advanced simulation methods, such

as importance sampling or subset simulation. Another path for future work consists of extend-
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ing the range of application of the proposed framework to more general models for stochastic

loading (other than Gaussian). Finally, the evaluation of the proposed approach for more com-

plex and numerically demanding structural models involving multiple types of nonlinearities

constitutes an additional subject for future research.
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Chapter 8

Concluding remarks

In this chapter, the main conclusions are presented and discussed along with the pertinent re-

marks of the present thesis. Potential future research is also outlined.

This thesis aims to address several key challenges of response and reliability analysis for non-

linear dynamical systems in random vibration. Structural and mechanical systems commonly

exhibit nonlinear behavior and operate in uncertain environments during their lifetime due to

various factors, leading to the need of developing methods for nonlinear stochastic dynamical

analysis. However, Efficient determining response statistics and estimating reliability estimates

for nonlinear systems remain challenging, especially those with singular matrices or endowed

with fractional derivative elements. Various applications of these complex nonlinear systems

are met in engineering.

In this context, this thesis has made efforts to address the challenges of three main topics,

including determining the response statistics of nonlinear systems with singular matrices, es-

timating the peak response of nonlinear systems with fractional derivative elements subject to

stochastic code-compatible excitations, and bounding the first excursion probability of nonlin-

ear systems under imprecise stochastic loading. The motivation and objectives of the thesis

have been demonstrated in chapter 1.

In chapter 2 and 3, two techniques have been developed for determining the response statistics

of nonlinear systems with singular matrices under simultaneous deterministic and stochastic

loading. The first technique pertains to the case of combined deterministic and stochastic exci-

tation of the stationary kind, while the other focuses on the case of combined deterministic and

stochastic excitation of the non-stationary kind. These techniques are motivated by the presence

of singular matrices in the governing equation of motion, resulting from redundant coordinates

modeling for complex multi-body systems or due to system modeling using additional con-

straint equations. Further, the stochastic excitation component is modeled as a non-stationary

238
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process accounting for the inherent non-stationary characteristics of natural phenomena, such

as wave, wind and earthquake.

These methods involve decoupling the system response into two components, namely a stochas-

tic and a deterministic part, to account for both stochastic and deterministic excitations. For the

case of combined deterministic and stationary stochastic excitation, a generalized harmonic

balance method is employed to determine the deterministic response component, resulting in

an over-determined system of equations to determine the coefficients. The use of generalized

matrix inverse theory overcomes this challenge. Subsequently, the stochastic response compo-

nent is derived by using the generalized statistical linearization methodology for systems with

singular matrices, in conjunction with the averaging treatment.

For the case of combined deterministic and non-stationary stochastic excitation, two subsystems

are first generalized for governing the deterministic and non-stationary stochastic response, sep-

arately. Next, the generalized statistical linearization method is developed to determine the time-

dependent equivalent elements of the equivalent linear systems of the stochastic sub-systems

with singular matrices. Then, the equivalent linear systems associated with the state space

method formulate a matrix differential equation, which is solved together with the deterministic

subsystems by numerical methods. The proposed techniques are demonstrated on nonlinear

MDOF systems with redundant coordinates modeling. This is driven by the flexibility and

cost-effectivity of system modeling with additional DOFs, especially for the complex systems

with many DOFs. Finally, the proposed techniques are applied for determining the response

of vibration energy harvester devices, which further illustrates the accuracy and efficiency of

the techniques in the problem of systems modeling with additional constraint equations. The

application of the energy harvester devices can be found in chapter 4.

The proposed techniques for nonlinear systems with singular matrices in this thesis are applied

to the Duffing model for nonlinear systems, without this being restrictive for their application.

Therefore, future research could focus on more complex and diverse nonlinear systems, such

as bilinear or Bouc-Wen hysterestic nonlinear systems. In addition, the proposed techniques

can also be extended to assess the reliability of the nonlinear systems with singular matrices,

examining, for instance, the first passage probability determination problem.
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Chapter 5 presents an approximate approach for estimating the peak response of nonlinear struc-

tural systems with fractional derivative elements subject to seismic excitations compatible with

a given design spectrum. Specifically, the seismic excitation is modeled by an evolutionary

power spectrum compatible with the design spectrum in a stochastic sense. Then, the time-

dependent equivalent stiffness and damping elements are obtained by utilizing the combination

of statistical linearization and stochastic averaging. Subsequently, the global minimum and

maximum of the time-variant stiffness and damping elements are selected to estimate the peak

response displacement in conjunction with the given design spectrum.

The proposed approach avoids the need for undertaking the nonlinear time history analysis. The

use of evolutionary power spectrum compatible with design spectrum to represent the seismic

excitation not only captures the non-stationary characteristics of earthquakes but also facilitates

engineers in practical structural design. Further, the peak response is estimated by the global

minimum and maximum of the time-variant stiffness and damping elements leading to a more

accurate assessment than the time-invariant elements obtained by the linearization methods in

the stationary sense. Moreover, nonlinear system modeling endowed with fractional derivative

elements is considered in the framework, making its application for the viscoelastic material

in vibration control. Thus, the framework takes into account the comprehensive and thorough

understanding of controlled structural performance and aligns with the seismic design spectrum

specified in current codes.

In Chapter 6, a stochastic incremental dynamical analysis method has been proposed for nonlin-

ear systems with fractional derivative elements under code-compliant stochastic seismic excita-

tions. Specifically, the proposed method generates an incremental dynamical analysis surface,

which ensures a more reliable assessment of systems compared to the traditional incremental

dynamical analysis curves. In addition, a significant novelty of the proposed method refers

to the response evolutionary power spectrum function, which is aligned with the spectrum for

different ground acceleration levels.

Further, potential future work can be found in the first-passage probability determination for

nonlinear systems with fractional derivative elements subject to stochastic excitation compat-

ible with a design spectrum. Future research work in performance-based earthquakes engi-

neering can be also in the study of fragility analysis problems. In addition, these proposed
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code-compitable frameworks can also be extended to more complex systems.

In chapter 7 an operator norm-based statistical linearization technique is proposed to bound the

responses and probability of failure of nonlinear structural models under imprecisely stochas-

tic loading. Specifically, the statistical linearization method is utilized to define the equiva-

lent linear systems to the original nonlinear systems. Then, the operator norm-based statistical

linearization technique is proposed to decouple the double loop and bound the probability of

failure of nonlinear dynamical systems. The proposed technique is much more efficient with

significantly lower computational cost by several orders of magnitude compared to Monte Carlo

simulation method. Two nonlinear structural systems are provided to demonstrate the validity

and efficiency of the proposed technique.

However, the statistical linearization methodology may result in less accurate response statistics,

especially in determining the tails of the response distribution, due to the adopted Gaussian

response assumption. This renders its application mostly suitable for bounding large response

failure probabilities. In this context, future research may focus on an enhanced operator norm-

based linearization scheme that can be used for bounding smaller failure probabilities. This

may be achieved by resorting to a combination of the statistical linearization and stochastic

averaging methods. Further, the proposed framework can be enhanced by using more advanced

simulation methods, such as importance sampling or subset simulation. In addition, due to

the imprecise Gaussian loading assumption in the thesis, the proposed technique can also be

extended for more general models for stochastic loading, such as non-Gaussian processes.

In summary, the first three developments pertains to response statistics determination of nonlin-

ear systems with singular matrices subject to combined deterministic and stochastic excitations.

The fourth and fifth proposed methods are developed for the peak response determination and

incremental dynamic analysis of nonlinear systems with fractional derivative elements subject

to code-compliant seismic stochastic excitations. And the last development deals with the first

excursion probability of nonlinear systems subject to imprecise stochastic loading. These devel-

opments find applications in the nonlinear stochastic structural dynamical analysis of engineer-

ing systems. However, there are still numerous challenges that need to be addressed, particularly

in the realm of stochastic dynamics for nonlinear systems. Further potential research in this area

is warranted.
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