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Zusammenfassung

Moderne Gesellschaften sind weltweit zunehmend von der reibungslosen Funktionalität immer
komplexer werdender Systeme, wie beispielsweise Infrastruktursysteme, digitale Systeme wie das
Internet oder hochentwickelten Maschinen, abhängig. Sie bilden die Eckpfeiler unserer technolo-
gisch fortgeschrittenen Welt, und ihre Effizienz steht in direktem Zusammenhang mit unserem
Wohlbefinden sowie dem Fortschritt der Gesellschaft. Diese wichtigen Systeme sind jedoch einer
ständigen und breiten Palette von Bedrohungen natürlichen, technischen und anthropogenen
Ursprungs ausgesetzt. Das Auftreten globaler Krisen wie die COVID-19-Pandemie und die
anhaltende Bedrohung durch den Klimawandel haben die Anfälligkeit der weit verzweigten und
voneinander abhängigen Systeme sowie die Unmöglichkeit einer Gefahrenvorhersage in voller
Gänze eindrücklich verdeutlicht. Die Pandemie mit ihren weitreichenden und unerwarteten
Auswirkungen hat gezeigt, wie ein externer Schock selbst die fortschrittlichsten Systeme zum
Stillstand bringen kann, während der anhaltende Klimawandel immer wieder beispiellose Risiken
für die Systemstabilität und -leistung hervorbringt. Diese globalen Krisen unterstreichen den
Bedarf an Systemen, die nicht nur Störungen standhalten, sondern sich auch schnell und effizient
von ihnen erholen können. Das Konzept der Resilienz und die damit verbundenen Entwicklun-
gen umfassen diese Anforderungen: Analyse, Abwägung und Optimierung der Zuverlässigkeit,
Robustheit, Redundanz, Anpassungsfähigkeit und Wiederherstellbarkeit von Systemen – sowohl
aus technischer als auch aus wirtschaftlicher Sicht.
In dieser kumulativen Dissertation steht daher die Entwicklung umfassender und effizienter Instru-
mente für die Resilienz-basierte Analyse und Entscheidungsfindung von komplexen Systemen im
Mittelpunkt. Das neu entwickelte Resilienz-Entscheidungsfindungsverfahren steht im Kern dieser
Entwicklungen. Es basiert auf einem adaptierten systemischen Risikomaß, einer zeitabhängigen,
probabilistischen Resilienzmetrik sowie einem Gittersuchalgorithmus und stellt eine bedeutende
Innovation dar, da es Entscheidungsträgern ermöglicht, ein optimales Gleichgewicht zwischen
verschiedenen Arten von Resilienz-steigernden Maßnahmen unter Berücksichtigung monetärer
Aspekte zu identifizieren.
Zunehmend weisen Systemkomponenten eine erhebliche Eigenkomplexität auf, was dazu führt,
dass sie selbst als Systeme modelliert werden müssen. Hieraus ergeben sich Systeme aus Systemen
mit hoher Komplexität. Um diese Herausforderung zu adressieren, wird eine neue Methodik
abgeleitet, indem das zuvor eingeführte Resilienzrahmenwerk auf multidimensionale Anwendungs-
fälle erweitert und synergetisch mit einem etablierten Konzept aus der Zuverlässigkeitstheorie,
der Überlebenssignatur, zusammengeführt wird. Der neue Ansatz kombiniert die Vorteile beider
ursprünglichen Komponenten: Einerseits ermöglicht er einen direkten Vergleich verschiedener
Resilienz-steigernder Maßnahmen aus einem mehrdimensionalen Suchraum, der zu einem opti-
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malen Kompromiss in Bezug auf die Systemresilienz führt. Andererseits ermöglicht er durch die
Separationseigenschaft der Überlebenssignatur eine signifikante Reduktion des Rechenaufwands.
Sobald eine Subsystemstruktur berechnet wurde – ein typischerweise rechenintensiver Prozess –
kann jede Charakterisierung des probabilistischen Ausfallverhaltens von Komponenten validiert
werden, ohne dass die Struktur erneut berechnet werden muss.
In der Realität sind Messungen, Expertenwissen sowie weitere Informationsquellen mit vielfältigen
Unsicherheiten belastet. Hierfür wird eine effiziente Methode vorgeschlagen, die auf der Kombina-
tion von Überlebenssignatur, unscharfer Wahrscheinlichkeitstheorie und nicht-intrusiver stochastis-
cher Simulation (NISS) basiert. Dadurch entsteht ein effizienter Ansatz zur Quantifizierung der
Zuverlässigkeit komplexer Systeme unter Berücksichtigung des gesamten Unsicherheitsspektrums.
Der neue Ansatz, der die vorteilhaften Eigenschaften seiner ursprünglichen Komponenten syner-
getisch zusammenführt, erreicht eine bedeutende Verringerung des Rechenaufwands aufgrund der
Separationseigenschaft der Überlebenssignatur. Er erzielt zudem eine drastische Reduzierung der
Stichprobengröße aufgrund der adaptierten NISS-Methode: Es wird nur eine einzige stochastische
Simulation benötigt, um Unsicherheiten zu berücksichtigen. Die neue Methodik stellt nicht
nur eine Neuerung auf dem Gebiet der Zuverlässigkeitsanalyse dar, sondern kann auch in das
Resilienzrahmenwerk integriert werden.
Für eine Resilienzanalyse von real existierenden Systemen ist die Berücksichtigung kontinuierlicher
Komponentenfunktionalität unerlässlich. Diese wird in einer weiteren Neuentwicklung adressiert.
Durch die Einführung der kontinuierlichen Überlebensfunktion und dem Konzept der Diagonal Ap-
proximated Signature als entsprechendes Ersatzmodell kann das bestehende Resilienzrahmenwerk
sinnvoll erweitert werden, ohne seine grundlegenden Vorteile zu beeinträchtigen.
Im Kontext der Regeneration komplexer Investitionsgüter wird ein umfassendes Analyserah-
menwerk vorgestellt, um die Übertragbarkeit und Anwendbarkeit aller entwickelten Methoden
auf komplexe Systeme jeglicher Art zu demonstrieren. Das Rahmenwerk integriert die zuvor
entwickelten Methoden der Resilienz-, Zuverlässigkeits- und Unsicherheitsanalyse. Es bietet
Entscheidungsträgern die Basis für die Identifikation resilienter Regenerationspfade in zweierlei
Hinsicht: Zum einen im Sinne von Regenerationspfaden mit inhärenter Resilienz und zum anderen
Regenerationspfade, die zu einer maximalen Systemresilienz unter Berücksichtigung technischer
und monetärer Einflussgrößen des zu analysierenden komplexen Investitionsgutes führen.
Zusammenfassend bietet diese Dissertation innovative Beiträge zur effizienten Resilienzanalyse
und Entscheidungsfindung für komplexe Ingenieursysteme. Sie präsentiert universell anwendbare
Methoden und Rahmenwerke, die flexibel genug sind, um beliebige Systemtypen und Leistungs-
maße zu berücksichtigen. Dies wird in zahlreichen Fallstudien von willkürlichen Flussnetzwerken,
funktionalen Modellen von Axialkompressoren bis hin zu substrukturierten Infrastruktursystemen
mit mehreren tausend Einzelkomponenten demonstriert.

Schlüsselwörter: Resilienz, Entscheidungsfindung, Unsicherheit, Komplexe Systeme, Zuverläs-
sigkeit.
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Abstract

Modern societies around the world are increasingly dependent on the smooth functionality
of progressively more complex systems, such as infrastructure systems, digital systems like
the internet, and sophisticated machinery. They form the cornerstones of our technologically
advanced world and their efficiency is directly related to our well-being and the progress of society.
However, these important systems are constantly exposed to a wide range of threats of natural,
technological, and anthropogenic origin. The emergence of global crises such as the COVID-19
pandemic and the ongoing threat of climate change have starkly illustrated the vulnerability
of these widely ramified and interdependent systems, as well as the impossibility of predicting
threats entirely. The pandemic, with its widespread and unexpected impacts, demonstrated how
an external shock can bring even the most advanced systems to a standstill, while the ongoing
climate change continues to produce unprecedented risks to system stability and performance.
These global crises underscore the need for systems that can not only withstand disruptions, but
also, recover from them efficiently and rapidly. The concept of resilience and related developments
encompass these requirements: analyzing, balancing, and optimizing the reliability, robustness,
redundancy, adaptability, and recoverability of systems – from both technical and economic
perspectives.
This cumulative dissertation, therefore, focuses on developing comprehensive and efficient tools
for resilience-based analysis and decision-making of complex engineering systems. The newly
developed resilience decision-making procedure is at the core of these developments. It is based
on an adapted systemic risk measure, a time-dependent probabilistic resilience metric, as well as
a grid search algorithm, and represents a significant innovation as it enables decision-makers to
identify an optimal balance between different types of resilience-enhancing measures, taking into
account monetary aspects.
Increasingly, system components have significant inherent complexity, requiring them to be
modeled as systems themselves. Thus, this leads to systems-of-systems with a high degree of
complexity. To address this challenge, a novel methodology is derived by extending the previously
introduced resilience framework to multidimensional use cases and synergistically merging it with
an established concept from reliability theory, the survival signature. The new approach combines
the advantages of both original components: a direct comparison of different resilience-enhancing
measures from a multidimensional search space leading to an optimal trade-off in terms of system
resilience, and a significant reduction in computational effort due to the separation property
of the survival signature. It enables that once a subsystem structure has been computed – a
typically computational expensive process – any characterization of the probabilistic failure
behavior of components can be validated without having to recompute the structure.
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In reality, measurements, expert knowledge, and other sources of information are loaded with
multiple uncertainties. For this purpose, an efficient method based on the combination of survival
signature, fuzzy probability theory, and non-intrusive stochastic simulation (NISS) is proposed.
This results in an efficient approach to quantify the reliability of complex systems, taking into
account the entire uncertainty spectrum. The new approach, which synergizes the advantageous
properties of its original components, achieves a significant decrease in computational effort due
to the separation property of the survival signature. In addition, it attains a dramatic reduction
in sample size due to the adapted NISS method: only a single stochastic simulation is required
to account for uncertainties. The novel methodology not only represents an innovation in the
field of reliability analysis, but can also be integrated into the resilience framework.
For a resilience analysis of existing systems, the consideration of continuous component function-
ality is essential. This is addressed in a further novel development. By introducing the continuous
survival function and the concept of the Diagonal Approximated Signature as a corresponding
surrogate model, the existing resilience framework can be usefully extended without compromising
its fundamental advantages.
In the context of the regeneration of complex capital goods, a comprehensive analytical framework
is presented to demonstrate the transferability and applicability of all developed methods to
complex systems of any type. The framework integrates the previously developed resilience,
reliability, and uncertainty analysis methods. It provides decision-makers with the basis for
identifying resilient regeneration paths in two ways: first, in terms of regeneration paths with
inherent resilience, and second, regeneration paths that lead to maximum system resilience,
taking into account technical and monetary factors affecting the complex capital good under
analysis.
In summary, this dissertation offers innovative contributions to efficient resilience analysis and
decision-making for complex engineering systems. It presents universally applicable methods
and frameworks that are flexible enough to consider system types and performance measures of
any kind. This is demonstrated in numerous case studies ranging from arbitrary flow networks,
functional models of axial compressors to substructured infrastructure systems with several
thousand individual components.

Keywords: Resilience, decision-making, uncertainty, complex systems, reliability.
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1 Introduction

1.1 Motivation

In the modern era, societies across the globe increasingly rely on the seamless functioning of
complex systems, including infrastructure networks, industrial plants, digital networks, cyber-
physical systems, and sophisticated machinery. These systems serve as the backbone of our
technologically advanced societies, and their efficiency is directly linked to societal well-being and
progress. However, the reality is that these systems face continuous exposure to a wide array of
threats from natural, technical, and anthropogenic sources, jeopardizing their functionality and
must not be overlooked [1, 2]. With the continuously increasing complexity and interconnectedness
of these systems, it is practically infeasible to predict, identify and prevent all potential adverse
effects.
The emergence of global challenges, such as the COVID-19 pandemic and the persisting threat of
climate change, has further emphasized the vulnerabilities of these systems. The pandemic, with
its far-reaching and unexpected impacts has demonstrated how an external shock can bring even
the most advanced systems to a standstill [3], while the ongoing climate change continually poses
unprecedented threats to system stability and performance [1, 4]. These global crises underscore
the need for robust systems that can not only withstand disruptions but also recover from them
efficiently and rapidly.
The concept of resilience, along with its related developments, encompasses these requirements:
analyzing, balancing and optimizing the reliability, robustness, redundancy, adaptability, and
recoverability of systems – both from technical and economic perspectives [5–7]. Initially
introduced in the fields of ecology [8] and psychology [9], the notion of resilience has made a
significant transition into the engineering realm, mainly due to its relevance and application in
system security [10–13]. It signifies a paradigm shift from a “fail-safe” strategy that focuses on
preventing system failures to a “safe-to-fail” approach that (also) concentrates on efficient system
recovery after inevitable and unpredictable failures [1, 14–16].
The quest for improved comprehension and application of resilience in engineering is an ongoing
challenge, further accentuated by the rapid evolution, increased complexity, and interdependency
of modern systems [17]. The concept of resilience continues to gain rapid popularity within
different scientific communities and sectors, thereby constituting a dynamic and active research
field [12]. In response to the COVID-19 pandemic, numerous publications have demanded an
imperative increase in the resilience of key systems, such as the healthcare system [18], food
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system [19], education system [20], global supply chains [21, 22], and many more. Consequently,
it is indispensable to address this concept in a more nuanced manner. This includes the
development of comprehensive definitions, considering its various facets and implications, and
creating standardized methodologies for its quantification, assessment, application, and decision-
making in the field of system engineering [6, 23, 24].
The aim of this dissertation is to contribute to the ongoing discourse on enhancing the resilience of
complex engineering systems. It provides insights, broad strategies, and efficient decision-making
approaches that are crucial for improving their overall resilience and effectiveness.

1.2 Resilience definition and origin

The concept of “resilience” has its roots in the Latin word “resilire”, meaning “to bounce back”,
and is prevalent across various domains including ecology, economics, psychology, and sociology,
as well as in the context of engineering systems, see, e.g., [25, 26]. This variability in the notion’s
use across disciplinary boundaries inevitably leads to a multitude of different definitions that,
while mostly overlapping at the core to some degree, often have entirely distinct nuances.
The interest in the concept of resilience as an empirically observable quantity emerged, according
to Masten in [27], simultaneously, but independently, during the 1970s, in the disciplines of
ecology, see [8], and psychology, see, e.g., [9, 28]. These studies, as well as a variety of others,
have been substantially influenced by the basic insights of general systems theory provided by
Bertalanffy in [29]. Masten, a highly respected, and influential figure in the field of psychology,
specifically, on the study of resilience in child development, considers resilience to be a dynamic
process that involves positive adaptation and successful recovery in the face of significant adversity
or stress. Resilience is not viewed as a fixed trait, but rather as a complex interaction of multiple
systems – including individual, family, and societal factors – that enhances an individual’s ability
to recover from adverse experiences. Masten emphasizes that resilience arises from “ordinary
magic”, i.e., it is a general phenomenon arising from normative human adaptive systems, rather
than an exceptional, rare trait [30, 31]. In a more systemic context, Masten defines resilience
cross-disciplinarily in [27] as: “[. . . ] the capacity of a dynamic system to adapt successfully to
disturbances that threaten system function, viability, or development.” and adds: “The concept
can be applied to systems of many kinds at many interacting levels, both living and nonliving,
such as a microorganism, a child, a family, a security system, an economy, a forest, or the global
climate.” Other widely considered studies on the definition of resilience in the field of psychology
are provided, e.g., in [32–35].
In the domain of economics, Martin provides a widely cited definition of resilience in [36] as:
“[. . . ] the capacity of a [. . . ] economy to reconfigure, that is adapt, its structure (firms, industries,
technologies and institutions) so as to maintain an acceptable growth path in output, employment
and wealth over time.” Additional studies addressing the definition of resilience in an economic
context are given, e.g., in [37–39]. In comparison, a definition in an urban context is proposed
by Alberti et al. in [40] as: “[. . . ] resilience in cities – the degree to which cities tolerate
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alteration before reorganizing around a new set of structures and processes ([41]) – depends on
the cities’ ability to simultaneously maintain ecosystem and human functions.” In [4], Meerow
et al., meanwhile, critically examine the academic literature on urban resilience, provide a
comprehensive overview, especially with a focus on the topic of climate change, and offer their
own well-regarded definition: “Urban resilience refers to the ability of an urban system – and all
its constituent socio-ecological and socio-technical networks across temporal and spatial scales –
to maintain or rapidly return to desired functions in the face of a disturbance, to adapt to change,
and to quickly transform systems that limit current or future adaptive capacity.” Note that the
definitions and disciplines related to resilience discussed in this section are not comprehensive
and only provide a partial representation. Comprehensive overviews on the origins, prevalence,
and definitions of the concept of resilience and discussion on its application across disciplines is
provided in studies such as [26] by Martin-Breen & Anderies, [42] by Bhamra et al, and [43] by
Francis & Bekera.
Resilience science is an exceedingly dynamic, emerging and interdisciplinary field of research,
naturally resulting in a variety of approaches, definitions, interpretations, and discussions being
published. This interdisciplinary perspective on the concept of resilience is addressed in [44].
In this highly referenced work, Southwick et al. focus on the concept of resilience in terms of
definitional problems across disciplines. On the one hand, the authors emphasize a context-
dependent understanding of resilience, endorsing a variety of definitions tailored to distinct
situations. On the other hand, they underscore the necessity for a broad, comprehensive
interpretation, achievable through interdisciplinary collaboration between numerous disciplines,
such as engineering, ecology, biology, and social sciences. Thus, the authors advocate for a delicate
balance between specialized and generalized conceptions of resilience. However, controversial
definitional terms also exist within the same discipline. In the context of engineering systems
Linkov & Palma-Oliveira, in [45], provide an analysis of different definitions of the concept of
resilience with a focus on the distinction between risk and resilience. Furthermore, the resilience
concept is addressed in terms of definitional issues by Mayunga in [46] in the domain of community
resilience and by Manyena in [47] regarding the its distinction to the notion of vulnerability.
Four properties that are inherent to a resilient system, valid for both physical and social systems
are presented by Bruneau et al. in [48] as the “dimensions of resilience”. These four properties
have received considerable attention in the literature and are commonly referred to as the four
R’s, see, e.g., [49] and [50]:

• Robustness: Refers to the strength or the capability of elements, systems, and other units of
investigation to endure a specific level of stress or demand without experiencing degradation
or functional loss.

• Redundancy: Denotes the degree of existing elements, systems or other units of investigation
that are substitutable and can meet the functional demands placed upon them in the event
of a disruption, degradation, or loss of functionality.
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• Resourcefulness: Represents the ability to recognize problems, prioritize tasks, and allocate
resources in situations where elements, systems, or other units of analysis are threatened
by disruption. Resourcefulness can further be defined as the capacity to utilize material
(e.g., monetary, physical, technological, and informational) and human resources to address
priorities and accomplish objectives.

• Rapidity: Refers to the ability to address priorities and achieve objectives in a time-sensitive
manner in order to minimize losses and prevent future disruptions.

It shall be noted that these definitions, although consistently associated with the concept of
resilience, are in some cases controversially defined in the literature. In minor terms, this means
that only modest adjustments that slightly change the meaning appear in the definitions. For
example, Tierney & Bruneau in [51] define robustness following the four R’s, as “[. . . ] the ability
of systems, system elements, and other units of analysis to withstand disaster forces without
significant degradation or loss of performance.” Compared to the original work, involving the
same author, Bruneau, see [48], this definition includes only a slight adjustment, however, the
usage of the term “significant” permits more interpretation of the notion robustness, in this
case meaning, it allows for certain performance degradations of the system, compared to the
original definition. A more significant deviation from the definition of robustness given in [48], is
the description by Faturechi & Miller-Hooks. In their work [52], it is described as: “Robustness
measures the ability of a system to continue in operation and, thus, maintain some level of
functionality, even when exposed to disruption.” This definition is more similar to the adaptation
by Tierney & Bruneau than that given by Bruneau et al. It should be noted, however, that
although there are inconsistencies in the literature regarding the naming of dimensions and
phenomena in the context of the concept of resilience, the description and attribution of these
phenomena to this very resilience concept is quite consistent.
A primary definition that is arguably one of the most highly regarded references on resilience
definition in the scientific literature is provided by Holling. In [8], Holling introduced the
idea of system resilience in terms of ecological systems, defining it as “[. . . ] a measure of the
persistence of systems and their ability to absorb change and disturbance and still maintain the
same relationships between populations or state variables.” Although for an entirely different
discipline, this definition includes key features that are consistent, in whole or in part, across
numerous definitions of resilience for engineering systems that have appeared subsequently, such
as in the work of Fiksel [53], Little [54], Hollnagel et al. [55], Bruneau & Reinhorn [56], and Youn
et al. [57].
Further work on the definition of resilience in an engineering context is provided for example by
Park et al., who describe resilience in [58] as an “[. . . ] emergent property of what an engineering
system does, rather than a static property the system has.” In [59], Holling addresses the direct
differences between the resilience of systems in engineering and the resilience of ecological
systems. Woods explores and categorizes in [60] various technical definitions of system resilience
in engineering complex adaptive systems. The author delineates resilience into four principal
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concepts: 1. rebound from trauma and return to equilibrium, 2. synonymy with robustness,
3. the antithesis of brittleness, and 4. as adaptive network architectures that can sustain the
ability to adapt to future surprises. These concepts serve as cornerstones for comprehending and
applying resilience in engineering practice. In [61], the authors specifically address the definition
and quantification approaches of resilience in transportation systems.
A comprehensive literature review on the definition of resilience in an engineering context is
presented in [6] by Ayyub. Based on selected highly influential documents on the topic of resilience
definition, such as those of the Presidential Policy Directive (PPD-21) [62], National Research
Council [63], the ASCE Committee on Critical Infrastructure [64], or the Civil Contingencies
Secretariat of the Cabinet Office, London, United Kingdom [65], Ayyub defines ten criteria
a comprehensive definition of resilience has to meet. The focus here is on the scope of this
definition’s application to complex systems in a wide variety of engineering domains, such as
buildings, infrastructure systems, networks, communities, and the like, and on the necessity of
establishing a basis for resilience measurability, i.e., promising resilience metrics. The following
ten criteria are provided by Ayyub:

1. Expanding on earlier conceptual definitions, specifically Presidential Policy Directives
(PPDs) [62, 66].

2. Evaluation of initial and residual capacities or strengths before and after a disruptive event,
i.e., robustness.

3. Addressing the capacity to prepare, plan, absorb, recover, or adapt effectively to adverse
events [63].

4. Representing disturbances as stochastic processes with occurrence rates and demand
intensity.

5. Allowing the consideration of diverse performance inputs based on respective failure modes
for a variety of assets at risk, e.g., environment, socioeconomic structures, essential public
services, human populations, physical infrastructure, and social networks and systems [67,
68].

6. Acknowledging system changes over time, including improvements, fragility, or aging.

7. Taking into account complete or partial recovery and associated recovery times.

8. Incorporating potential system performance enhancements post-recovery.

9. Relating to established concepts such as reliability and risk, building on pertinent reliability
and risk metrics.

10. Facilitating the development of resilience metrics with significant units.
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Addressing these criteria, Ayyub further provides in [6] a comprehensive definition of resilience
in the context of complex systems that is highly respected in the literature and draws from
the content of the PPD-21 on critical infrastructure security and resilience [62]: “Resilience
notionally means the ability to prepare for and adapt to changing conditions and withstand and
recover rapidly from disruptions. Resilience includes the ability to withstand and recover from
disturbances of the deliberate attack types, accidents, or naturally occurring threats or incidents.
The resilience of a system’s function can be measured based on the persistence of a corresponding
functional performance under uncertainty in the face of disturbances.”. This definition serves as
a robust foundation for quantifying resilience and demonstrates the concept’s relevance across
diverse engineering fields while maintaining the core aspects originally introduced by Holling [8]
and embracing the former definitions. In the further course of this dissertation, as well as in all
included publications, the term resilience has been and is understood based on this definition
provided by Ayyub.

1.3 Resilience quantification

An essential prerequisite for assessing resilience in the context of engineering systems is the
availability of quantitative measures of resilience. Consequently, numerous methods have been
developed over the past two decades, and many more are being published each year. Several
authors provide comprehensive reviews of this very dynamic development of resilience metrics in
systemic contexts [12, 23, 45, 69–74] and mathematical derivation and examination of measures in
the context of resilience is provided, e.g., by Ayyub in [6]. In addition to quantitative assessment
approaches for systemic resilience, it should be noted that qualitative approaches have also been
published, as seen, e.g., in [12]. However, as this dissertation clearly focuses on systems in an
engineering context, the emphasis is on resilience assessment methods that aim at resilience
quantification, as a basis for the development of approaches to identify specific and meaningful
resilience enhancement strategies.

1.3.1 Fundamentals

Bruneau et al. introduce in [48] the well-known concept of the resilience triangle, along with
their widely respected resilience metric that is described in Sec. 1.3.3. Figure 1.1 illustrates
the resilience triangle, which describes the loss area spanned from a system performance over
time after a disruptive event at time t0 and the subsequent recovery of the system back to
the original performance level at time t1. In Fig. 1.1, point A represents the original system
performance before a disruptive event occurred, point B the performance immediately after the
performance-reducing disruptive event, and point D the recovered performance on the same level
as the original pre-disturbance performance. Accordingly, a system is more resilient the smaller
the area of its resilience triangle, i.e., the loss area. This concept is the basis for numerous
quantification approaches to systemic resilience that have appeared since and is cited extensively
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in the literature.
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Figure 1.1: Resilience triangle; adapted from [48], [75] and [6].

Shinozuka et al. define in [75] two of the four resilience dimensions, robustness and rapidity,
as quantifiable properties of a resilient system, according to the points marked in Fig. 1.1, as
follows:

Robustness = B − C, (1.1)

Rapidity = A−B

t1 − t0
, (1.2)

where robustness is given in percentage and rapidity as the average recovery rate in percentage
per time. Note that Eq. 1.1 corresponds rather to the interpretation of the resilience dimension
“robustness” according to the interpretation of Tierney & Bruneau in [51] than to the original
one by Bruneau et al. in [48], see Sec. 1.2. These definitions and concepts, while not necessarily
part of every resilience metric, have helped and continue to aid in understanding the research
of quantifying system resilience. They are directly or indirectly incorporated into numerous
quantification approaches in the literature.
In their work [76], Henry & Ramirez-Marquez present, in addition to a resilience metric, three
system states and two system transitions that a system traverses during a characteristic per-
formance cycle, i.e., when it is exposed to a disruptive event and subsequently recovers its
operational capabilities. Fig. 1.2 illustrates these states and transitions that need to be taken
into account by comprehensive measures for resilience quantification. The system passes through
the following phases and transitions: (i) The original state, whose duration reflects the reliability
of the system, is the initial phase. (ii) The transition of the system towards a disruptive state,
triggered by the occurrence of a performance degrading disruptive event, is characterized by
the robustness of the system that contributes to mitigate the performance degradation. This
transition is also characterized by the vulnerability of the system, i.e., the inverse of robustness.
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Time
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Figure 1.2: System state transitions for resilience quantification; adapted from [76].

(iii) The subsequent phase, the disruptive phase, is determined by its duration until recovery
starts and consequently performance is (re)gained. (iv) The system recovery, i.e., the transition
of the system to a new stable and recovered state. This transition is characterized by the rapidity
and the quality of the recovery. (v) The new recovered stable state of the system.
Taking into account these phases and transitions, and according to works by, for example,
Shinozuka et al. [75], Henry & Ramirez-Marquez [76], Baroud et al. [77], Pant et al. [78],
Hosseini et al. [12] and several others, three important dimensions for resilience quantification,
can be determined: 1. Reliability: the ability of a system to maintain a typical performance
before the occurrence of a disruptive event. 2. Robustness: the ability of a system to mitigate
the performance-degrading effects of a disruptive event and thus maintain a certain level of
performance. Alternatively, this dimension is frequently defined by the opposite, i.e., vulnerability,
represented by the loss of performance after the occurrence of a disruptive event. 3. Recoverability:
the ability of a system to comprehensively and rapidly recover the performance of the system,
whereby the new performance level can be identical to the original one, but can also be below
or above it. A practical example of a post-recovery performance level above the original level
might be if the recovery process is used to implement, for instance, hardware/software updates
or other improvements to the system. These dimensions, essential for quantification and widely
recognized in the literature, are shown in Fig. 1.3 in a typical systemic performance cycle.
It should be noted that similar to the research on a resilience definition, inconsistencies do exist
regarding the notations related to the context of resilience quantification in the literature. However,
these inconsistencies mainly pertain to the terminology of consistently applied phenomena. For
example, Shinozuka et al. [75], Ayyub [6, 10], Faturechi & Miller-Hooks [52], Hosseini et al. [12],
and many other authors use the notion of robustness as the quality of remaining performance
after a performance-degrading disruptive event, see Eq. 1.1. On the other hand, Galaitsi et al. [79]
for instance, use the term resistance for precisely this dimension of resilience quantification. In
contrast, they refer to robustness as the dimension that is described by numerous authors, e.g.,
Madni & Jackson [80], Pant et al. [78], Hosseini et al. [12] and Gillespie-Marthaler et al. [81], as
reliability in the context of resilience. However, it must be emphasized again that the underlying
phenomena are characterized identically and are consistently assigned in the literature, i.e.,
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Figure 1.3: Resilience dimensions in the evolution of a system before and after the occurrence of a performance
disruptive event: (i) reliability, (ii) robustness, vulnerability, (iii) recoverability; adapted from [76] and [78].

practically all sources agree that both exemplarily described properties are essential for the
quantification of resilience. Therefore, these inconsistencies are almost exclusively limited to
terminology.
Examples of highly regarded, comprehensive, and recent developments in the domain of resilience
quantification are presented in the following. Bergström et al. emphasize in [23] the importance
of resilience in contemporary literature, noting the critical connection between increasing system
complexity and associated risks. Meanwhile, Sun et al. concentrate in [73] on infrastructure
resilience, underscoring the close relationship between resilience and functionality, respectively
performance measures. In [82], Moslehi & Reddy provide a performance-based resilience assess-
ment methodology for engineered complex systems where resilience is quantified through loss of
functionality and associated monetary costs incurred by the system stakeholders under different
scenarios, covered in a consequence matrix and allowing for the evaluation of various resilience
enhancement options. Cai et al. instead, provide in [83], a resilience metric predicated on system
availability, incorporating the system’s intrinsic structure and restoration resources as principal
factors. They introduce a dynamic Bayesian network-based evaluation methodology, derived
from the proposed resilience metric, allowing for prediction of the system resilience value and
furnishing implementation guidance for system planning, design, operation, construction, and
management. In [43], Francis & Bakera developed a high-regarded elaborate resilience analysis
framework that encompasses system identification, resilience objective setting, vulnerability
analysis, and stakeholder engagement. In addition, they propose an uncertainty-weighted re-
silience metric grounded on three resilience capacities: adaptive capacity, absorptive capacity,
and recoverability. Singh et al. propose in [84] the resilience deficit index, an index for resilience
quantification of buildings, that focuses on the loss of resilience, connecting the concept of
the resilience triangle with monetary aspects. It is worth mentioning that Bruneau is among
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the authors of this novel work, who, 20 years ago, together with his colleagues, developed the
well-known Resilience Index in [48], the basis for this new approach, see Sec. 1.3.3. In [85] Didier
et al. develop a quantitative measure to quantify the resilience of critical infrastructure called
Resilience-Compositional Demand/Supply (Re-CoDeS). Their methodology considers both the
ability of the civil infrastructure system to continue to provide its services or resource to the
community and the corresponding demand for those services or resources within the community
following a disaster event, i.e., a confrontation of supply, demand, and the consumption of the
resource or service in question. It should be noted that these studies represent only a fraction of
the published developments in recent years.
A major challenge in the assessment of systemic resilience is that, to date, no resilience metric has
been developed that can be considered universal in the sense that it is applicable across different
system types and independent of the type of stress [74]. With such a metric, analysts would be
able to compare the resilience of a wide variety of systems and evaluate large, interconnected
assemblies of systems in terms of their resilience. Since this has not yet been realized, some of
the current review studies, such as those mentioned above, focus on categorizing diverse resilience
assessment approaches, see Sec. 1.3.2, and classifying them in terms of their capacity, limitations,
and areas of application.

1.3.2 Categorization

The range of sophisticated quantification approaches for systemic resilience has reached a high level
in the literature. Nevertheless, variations in the definition of resilience persist, and consequently
the frameworks used to assess resilience quantitatively or qualitatively are not very standardized
and may not provide clear guidance to decision-makers, see, e.g., [43]. This, the dynamic nature
of the research field, and the vast number of different resilience quantification approaches – major
review studies such as those by Hosseini et al. [12] and Cheng et al. [74] have presented more
than 60 and more than 80 highly regarded resilience metrics, respectively – makes it essential
to develop appropriate categorization schemes. Not only can these schemes aid in identifying
suitable resilience metrics for individual issues in practice, but the clarity and guidance provided
by them may also assist in exploring and developing new resilience metrics and frameworks.
In [12], Hosseini et al. propose a highly regarded categorization scheme for resilience assessment
methodologies. This scheme is shown in Fig. 1.4 and is bifurcated into two overarching categories:
qualitative and quantitative approaches.

1. Qualitative approaches: These methods aim to evaluate the resilience of a system without
the application of numerical descriptors. Instead, they rely on subjective analysis and
human judgment. Within this category, two sub-categories can be identified:

A. Conceptual frameworks: These are grounded on best practices and heuristic methods
that provide a structure for understanding resilience. They often serve as guides for
the design and development of resilient systems.
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Conceptual frameworks Semi-quantitative indices General measures Structural-based models

Quantitative assessment

Probabilistic approaches

Deterministic approaches

Optimization models

Simulation models

Fuzzy logic models

Figure 1.4: Categorization scheme for resilience metrics and resilience assessment methodologies according to
Hosseini et al. [12].

B. Semi-quantitative indices: These are often constructed by expert assessments which
focus on distinct qualitative facets of resilience. They represent a bridge between
purely qualitative and quantitative analysis, utilizing expert judgment and specifically
designed questions to derive numerical scores, e.g., in percentage scale, based on
qualitative data.

2. Quantitative approaches: These methods involve the use of numerical descriptors to quantify
resilience. This category is further divided into two sub-categories:

A. General measures: These are domain-agnostic measures, meaning they can be applied
across various domains or sectors to quantify resilience. This universality allows for
broader applicability and comparability across different system types. They provide a
quantitative approach to evaluate resilience by measuring the system’s performance
before and after a disruptive event, regardless of the system’s structure. Furthermore,
these general measures are further characterized as deterministic and stochastic, each
capable of describing static and dynamic system behavior:

• Deterministic measures: These measures do not incorporate uncertainty, such as
the probability of disruption, into the metric.

• Probabilistic (or stochastic) measures: These measures capture the uncertainty
associated with system behavior.

Dynamic measures account for time-dependent behavior, whereas static measures do
not consider time-dependency.

B. Structural-based models: These are domain-specific and utilize mathematical and
computational models to represent and analyze resilience within a particular domain.
They examine how the resilience of a system is affected by its structure. Such methods
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are often complex, requiring significant expertise, observation, data, and simulation,
but can offer detailed, system-specific insights. Hosseini et al. define three sub-classes
of structural-based approaches:

• Optimization models

• Simulation models

• Fuzzy logic models

The categorization scheme by Hosseini et al. reflects the diversity of approaches and methodologies
within the realm of resilience quantification, underscoring the complexity of measuring resilience
and the multitude of perspectives that contribute to it. It is instrumental in providing a nuanced
understanding of the diverse methodologies employed in this field.
Another indication of the dynamic and complex nature of the research field of resilience assessment
approaches is provided by the fact that not one but numerous categorization schemes exist in the
literature. For instance, Cheng et al. in [74], recently presented, along with a review of existing
approaches to quantitatively assessing resilience, a novel categorization scheme. In this scheme
they group, numerous established and recently developed resilience metrics into the following
categories and subcategories:

1. Length of hazard and recovery periods: These measures quantify resilience as the ratio
between the expected recovery and the realized recovery period.

2. Performance over a time period: Metrics in this category measure the robustness of the
system and its recovery capacity in terms of performance degradation and recovery during
hazard and recovery phases. This category is divided into six subcategories.

• Performance during the hazard period

• Difference between actual and desired performance during a period

• Ratio of actual and desired performance during a period

• Ratio of performance loss and desired performance during a period

• Recovered performance

• Average performance (loss)

3. Performance at a time instant: These measures assess resilience as an immediate indicator
at a specific moment in time. In the case of certain service-oriented systems, the system
resilience is evaluated directly by the performance status at a particular instant. Three
subcategories characterize this category.

• Performance at a time instant

• Normalized performance at a time instant

• Ratio of the recovered and degraded performance
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4. Probabilistic metrics: In real-world scenarios, hazards occur randomly, and consequently,
system performance degrades at random as well. Moreover, in practice, recovery is a
stochastic process, subject to numerous uncertainties. This requires describing system
resilience from a probabilistic perspective, which is realized by the metrics in the following
six subcategories.

• Probability that performance is recovered to a level within a period

• Reliability

• Complement of failure probability

• Reliability improvement

• Probability that performance loss and recovery rapidity meet certain thresholds

• Conditional probability that performance is recovered to a level within a period

5. Multiple indicators: The resilience of a system can be divided into different segments.
Measures in this category combine these individual segments into aggregate resilience. The
category is divided into two subcategories.

• Sum of reliability and recovery ability

• Other indicators

Although both their review study and categorization scheme are extensive, some problematic
inconsistencies can be identified in the scheme proposed by Cheng et al. Especially in comparison
to the categorization scheme provided by Hosseini et al. in [12], it is noticeable that the categories
and subcategories do not have sufficient selectivity. All investigated metrics are assigned to
a single subcategory, even though it would be feasible or even necessary to assign numerous
metrics to multiple subcategories. For example, the resilience metric introduced by Ayyub in [6]
and presented in Sec. 1.3.4, is categorized in Cheng et al.’s scheme as a metric with “multiple
indicators” rather than a “probabilistic metric” or a “performance over a time period” metric,
although clearly all three attributes are accurate, according to Ayyub, and according to Hosseini
et al.’s scheme in [12]. Similarly, the metric by Ouyang et al. in [86], also presented in Sec. 1.3.4,
is not declared to be a “probabilistic metric” in the scheme by Cheng et al., contrary to the
authors themselves and Hosseini et al. Instead, in [74], it is only declared as a “performance over
a time period” metric. Even though this is undoubtedly correct, this declaration is incomplete
and misleading. This ambiguity or inconsistency can be identified for multiple metrics and can
be objected to as a clear weakness of this categorization scheme. Other categorization schemes
for resilience metrics are provided, e.g., by Johansen et al. in [87] for the domain of community
resilience, by Raoufi et al. in [72] for field of power systems, and by Sun et al. in [73] in the
context of transportation infrastructure.
Among the categories of resilience assessment approaches proposed in Hosseini et al.’s scheme, the
group of performance-based, i.e., general measures is one of the most prevalent in the literature.
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These approaches can be ratio-based, integral-based, or both. In particular, probabilistic, time-
dependent resilience metrics allow for comprehensive resilience analyses and are capable of
taking into account all three essential dimensions of resilience quantification shown in Fig. 1.3.
The subsequent sections, Sec. 1.3.3 and Sec. 1.3.4, in which selected and in the literature
highly respected time-dependent deterministic and probabilistic resilience metrics are specifically
addressed, are guided by the widely recognized categorization scheme according to Hosseini et al.

1.3.3 Deterministic resilience metrics

In the following, two deterministic and time-dependent resilience metrics that have received
significant attention in the literature are presented. These metrics are highly relevant in this
new and dynamic field of research. Other widely considered developments in the domain of
deterministic resilience metrics include, for example, the works of Francis & Bekera [43] and
Omer et al. [88] in the field of urban infrastructure, Cox et al. [89], Enjalbert et al. [90], Chen &
Miller-Hooks [91], and Henry & Ramirez-Marquez [76] on transportation, Ouedraogo et al. [92]
for human-machine systems, Cimellaro et al. [5] in the healthcare sector and Zou & Chen [93] on
traffic and electrical power systems.

Metric by Bruneau et al.

Along with the concept of the resilience triangle, see Fig. 1.1, Bruneau et al. introduce in [48]
a time-dependent deterministic metric for assessing the resilience of communities subjected to
seismic disruption. Given that t0 represents the moment of the disruptive event’s occurrence and
t1 denotes the time point of the system’s full recovery, their proposed metric is formulated as:

R =
∫ t1

t0
[100−Q(t)]dt, (1.3)

while Q(t) indicates the quality of the community infrastructure at time t in relation to a specific
type of system performance. It should be noted that, analogous to the concept of the resilience
triangle, their resilience metric does not refer to the resilience of a system, but to the loss of
resilience compared to an ideal system performance over time, which Bruneau et al. determine
to be 100. R, therefore, does not represent a system resilience, but a loss of resilience and is
equivalent to the area of the resilience triangle.
A major advantage of this approach is its broad applicability. Although the metric was originally
developed for measuring seismic resilience of communities, it can be effortlessly applied to other
system types. Moreover, the limitation to a static benchmark of a pre-disaster performance of
100% can be easily adapted. The metric of Bruneau et al. was one of the first and is now one of
the most widely referenced quantification approaches for systemic resilience in the literature and
has had a major influence on numerous metrics that followed, see, e.g., [94–96].
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Metric by Rose

In [97] Rose provides a deterministic resilience metric in the context of economic systems that
is focused on recovery and denoted as dynamic resilience. Rose notes, “In the literature on
resilience, dynamics often refers to the issue of stability or to the speed of recovery. The real
interesting question here is the pattern of recovery – how much recovery takes place in each
time period and why.” The performance of a system, in this approach, is assumed to be the
time-dependent economic activity Y (ti). Dynamic resilience DR, according to Rose, is defined
as the loss-reducing effect of hasted recovery and accelerated reconstruction of the capital stock,
opposed to a standard recovery procedure:

DR =
n∑

t=0
YDR(ti)−

m∑
t=0

YDU (ti), (1.4)

with n and m representing the number of considered time steps and m > n, time period ti, YDR(ti)
denoting the economic activity of the system under hastened recovery and YDU (ti) representing
the economic activity of the system under standard recovery. The concept is illustrated in Fig. 1.5.
The area spanned between the resilient, loss-reducing recovery path of YDR(ti) and the path of
standard recovery YDU (ti) can be interpreted as the loss area, similar to the interpretation of the
loss triangle by Bruneau et al. [48], as illustrated in Fig. 1.1 and described in Sec. 1.3. Rose’s
resilience approach emphasizes the vast importance of incorporating monetary aspects in the
context of resilience analysis and focuses on practical decision-making.

1.3.4 Probabilistic resilience metrics

In the following, two particularly sophisticated probabilistic and time-dependent resilience metrics
that have received much attention in the literature and are widely applicable are presented as
examples. Other widely cited probabilistic resilience metrics include, for example, the works
of Franchin & Cavalieri [98], Attoh-Okine et al. [99], and Guidotti et al [100] in the field of
urban infrastructure, Pant et al. [78] on transportation, Hashimoto et al. [101] on water resource
systems, Chang & Shinozuka [49] and Guidotti et al. [100] on community resilience, Youn et
al. [57] on engineering design, Barker et al. [102] on network resilience, Zeng et al. [103] on energy
systems and Xu et al. [104] on multi-state networks.

Metric by Ayyub

A sophisticated, comprehensive, and widely referenced probabilistic resilience metric is presented
by Ayyub in [6] and [10]. This performance-based metric is time-dependent and can account
for any negative as well as positive factors influencing the performance of a system over any
period of time. Consequently, it is capable of capturing all relevant phases of system resilience
quantification outlined in Fig. 1.3. According to Ayyub, the metric can be vividly explained by
means of Fig. 1.6. The figure schematically illustrates a time-dependent system performance
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Figure 1.5: Recovery-based resilience metric; adapted from [97] and [12].

Q(t), subjected to aging effects and the occurrence of disruptive events at a rate λ that follows
a Poisson process. A potential failure event occurring at time ti lasts for a duration of ∆Tf

and ends at time tf . Subsequently, a period of recovery begins that lasts for a duration of ∆Tr

and concludes at time tr. For illustrative purposes, the diagram shows three different types of
failure events: brittle (f.1), ductile (f.2), and graceful (f.3), as well as six unique recovery events:
expeditious recovery to a state better than the original (r.1), expeditious recovery to the original
state (r.2), expeditious recovery to a state better than the aged state (r.3), expeditious recovery
to as good as the aged state (r.4), recovery to the original aged state (r.5), and recovery to a
state worse than the original aged state (r.6). Together, these events represent different rates
of change in the performance of the system. In addition, the figure illustrates the performance
trajectory of the system during aging and the expected trajectory after recovery. The cumulative
disruption D is characterized by a duration of ∆Td, which is calculated as the sum of ∆Tf and
∆Tr as:

∆Td = ∆Tf + ∆Tr, (1.5)

with
∆Tf = Tf − Ti, (1.6)
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Figure 1.6: Resilience metrics and definitions; adapted from [6].

and
∆Tr = Tr − Tf . (1.7)

The time to incident Ti, the time to failure Tf , as well as the time to recovery Tr, shown in
Fig. 1.6, are all assumed to be random variables.
Following these definitions and illustrations, Ayyub’s resilience metric is provided as:

Resilience (Re) = Ti + F∆Tf + R∆Tr

Ti + ∆Tf + ∆Tr
, (1.8)

with F denoting the failure profile, defined for each failure event f as:

Failure(F ) =
∫ tf

ti
fdt∫ tf

ti
Qdt

. (1.9)
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The value of the failure profile F can be considered with respect to the four dimensions of
resilience introduced by Bruneau et al., see Sec. 1.2, both as a measure of the system property
robustness, i.e. the difference of the performance points C and B in Fig. 1.1, see Eq. 1.1, that is
the remaining system performance, and as the redundancy of the system. Analogous to F , for
each recovery event r, the corresponding recovery profile R is defined as:

Recovery(R) =
∫ tr

tf
rdt∫ tr

tf
Qdt

. (1.10)

The recovery profile value R, again with respect to the four R’s, see Sec. 1.2, can be considered
as a measure of resourcefulness and rapidity, proposed to cover the notion in Eq. 1.2 and as
illustrated in Fig. 1.1. The time to failure Tf is characterized by its probability density function
fTf

, described by the following function that is, according to Ayyub, derived from [105] and is
based on a Poisson process:

fTf
= − d

dt

∫ ∞

s=0
exp

[
−λt

(
1− 1

t

∫ t

τ=0
FL(α(τ)s)dτ

)]
fS0(s)ds, (1.11)

with λ, the incident occurrence rate, α(t), embodying the aging effects, that constitute a time-
dependent degradation mechanism, and Q(t), the time-dependent system performance, defined
as the difference between the system’s strength S and the corresponding load effect L with
Q = S−L. L and S are considered to be stochastic variables, with FL representing the cumulative
probability distribution function of L, and fS representing the probability density function of S.
Note that α(t), theoretically, can also reflect performance improvements over time. This resilience
metric by Ayyub is coherent with the conditions on a definitional concept of resilience presented
by him, and consequently coherent with his proposed definition of resilience as both shown in
Sec. 1.2. It should be noted that in addition to the sophisticated resilience metric provided here,
Ayyub, in [10], presents also a simplified, more practical version of this metric. Ayyub states that
although the metric, see Eqs. 1.5 to 1.11 and Fig. 1.6 “[. . . ] offer a comprehensive capture of the
resilience attributes according to the resilience definition; it is complex and might be impractical.”

Metric by Ouyang et al.

Ouyang et al. provide in [86] a time-dependent resilience metric that determines the expected
annual resilience of infrastructure systems. The general formulation of the metric allows for easy
adaptation to other time periods as well as application to any type of system. The metric is
defined as the mean proportion of the area enclosed by the real performance function P (t) and
the time axis relative to the area enclosed by the target performance function TP (t) and the
time axis as

AR = E

[ ∫ T
0 P (t)dt∫ T

0 TP (t)dt

]
= E

[∫ T
0 TP (t)dt−

∑N(T )
n=1 AIAn (tn)∫ T

0 TP (t)dt

]
, (1.12)
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with E(·) representing the expected value and T denoting a time interval of one year. n refers
to the event occurrence number, encompassing co-occurrences of different hazard types and
N(T ) signifying the aggregate number of event occurrences throughout the time interval T .
Furthermore, tn is a random variable, representing the occurrence time of the n-th event. Lastly,
AIAn(tn) is a random variable as well and denotes the impact area for the n-th event occurrence
at time tn, which is the area between the actual performance curve P (t) and the targeted
performance curve TP (t). Note that both the actual performance function and the target
performance function are stochastic processes, although the target performance function can also
be assumed to be a constant for practical reasons, i.e., TP (t) = TP . If in addition it is assumed
that the system returns to its original performance level after each disruptive event, Eq. 1.12
simplifies to:

AR =
TP · T − E

[∑N(T )
n=1 AIAn (tn)

]
TP · T

=
TP − E

[
1
T

∑N(T )
n=1 AIAn (tn)

]
TP

. (1.13)

In their work, Ouyang et al. provide further specification for the calculation of AIAn(tn)
for various hazard scenarios involving both single hazard type and multiple joint hazard types.
Nevertheless, in both cases, Eq. 1.12 and Eq. 1.13 are appropriate quantitative resilience functions,
capable of addressing the possibility of simultaneous hazard type occurrences. Thereby, the
equations account for potential variations in frequency within N(T ), as well as for variations
in AIAn(tn) that may occur for the n-th event as a result of resource allocation or preventive
measures for other hazard events.

1.4 System reliability

From Sec. 1.2 and Sec. 1.3, it is clear that there is a wide consensus in the literature that
reliability is an essential component of a definitional concept of resilience and, consequently, must
be considered in resilience quantification, see, e.g., Fig. 1.3. In practice, during analysis, the
reliability phase typically requires a considerable number of system evaluations, especially when
various simulations of different system configurations are needed. These simulations influence
the probability structure of the system components and subsystems and consequently affect the
overall system. Therefore, particularly efficient analysis approaches are required for this phase.
It is therefore logical, if not necessary, to explore the well-researched and extensive domain of
system reliability engineering for tools that can meaningfully assist the emerging field of systems
resilience analysis in areas such as quantification, decision-making, efficiency, etc.

1.4.1 Assessment approaches and quantification

Traditional methods for system reliability assessment and quantification encompass failure mode
and effect analyses, see, e.g., [106, 107], and mathematical representations such as reliability
block diagrams [108], as well as fault tree and success tree methods, see [109–111]. In [112]

19



CHAPTER 1. INTRODUCTION

and [113], the authors employ master logic diagrams to describe the behavior of systems and
assess their reliability. However, various of these methodologies may encounter limitations in
handling large, complex systems where the calculations required – for example, for identifying
minimal path sets or cut sets – become computationally prohibitive [114]. Furthermore, Markov
models [115], Bayesian analysis [116], Bayesian networks [117–119] and Petri nets [120] represent
other established approaches. Kabir & Papadopoulos [121] provide a comprehensive overview on
the applications of Bayesian networks and Petri nets in safety, reliability, and risk assessments.
More recent research has introduced advanced methods for system reliability assessment. For
instance, multi-state systems are considered from various perspectives in [122–124], while in [125],
Guo et al. employ the Bayesian melding method, integrating data from various sources at
both system and subsystem levels. Additionally, novel approaches based on learning Kriging
models are proposed by Yang et al. and Xiao et al. in [126, 127], respectively, incorporating
multiple failure modes and a multiple response model and in [128] Xiao et al. provide a reliability
analysis methodology based on dependent Kriging predictions and a parallel learning strategy.
In the context of systems composed of repairable components with intricate failure distribution
structures, Li et al. offer a distinct reliability approach in [129]. In [130], Luo et al. provide a
novel statistical model for system reliability assessment that incorporates correlated component
lifetimes and lifetime ordering constraints, integrating dynamic environmental effects and using
the maximum likelihood method for parameter estimation and generalized pivots for confidence
intervals. Mellal & Zio present in [131] an enhanced nest cuckoo optimization algorithm, a novel
approach for system reliability-redundancy allocation using a cold-standby strategy.
Note that this is only a short sample of novel developments in the extensive research field of
system reliability analysis and has no claim of completeness. A broad review of numerous system
reliability methodologies and the evolution of reliability optimization is furnished in publications
such as [132–137]. These collective efforts contribute to a robust and evolving body of knowledge
on system reliability assessment in increasingly complex environments.

1.4.2 Concept of survival signature

Numerous system reliability methodologies rely on the mathematical principle of the structure
function, which depicts a system’s functional state based on its components’ states, or state
vectors [138–143]. However, the structure function can become convoluted or unfeasible, particu-
larly for large and complex systems [144, 145]. Patelli et al. state in [114] that the structure
function has a Boolean format and can only be employed to determine a particular output of the
system. However, multiple structure functions can be used to capture all possible states of the
system, which is typically necessary but severely increases the complexity of the analysis and
thus its computational cost, see, e.g., [146]. For coherent systems, i.e., systems with a monotonic
structure function whose functional state depends on the functionality of their components [147],
and which contain only a single type of component, the system signature serves as a summary of
the structure function and thus constitutes a valuable tool [148].
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The survival signature concept, pioneered by Coolen and Coolen-Maturi [149], has emerged as a
promising technique for effectively modeling the reliability of systems with multiple component
types. Introduced as a generalization of the system signature, the survival signature overcomes the
limitation to single-component-type systems during reliability analysis. The principal advantage
of this approach, compared to conventional methods, is its capacity to separate the system’s
structure and the time-dependent probabilistic properties of its components. Once the system
structure has been evaluated, typically a computationally demanding process, any required
probabilistic characterizations can be examined without necessitating a reassessment of the
system structure. Consequently, this technique alleviates the computational demands associated
with repeated model evaluations in reliability engineering processes, typically encountered in
design and maintenance processes, when compared to traditional methods [114, 150]. Furthermore,
it condenses the system structure by aggregating state vectors into individual survival signature
entries with associated reliabilities, resulting in substantially reduced storage needs and simplified
data access [151]. These features are what make the survival signature unique and valuable in
the context of system reliability analysis [152]. Comprehensive information on the concept and
its derivation can be found in [149, 153, 154].
As noted by [114], a purely analytical application of the survival signature to real-world complex
systems is frequently infeasible, necessitating the use of simulations. Accordingly, Patelli et al.
propose simulation algorithms based on the survival signature concept and Monte Carlo simula-
tion [114]. Nevertheless, the computational effort required to determine the survival signature for
large systems may be prohibitively high. To address this issue, Behrensdorf et al. recently provide
an approach that focuses on approximating survival signature entries by estimating associated
reliability values over a subset of relevant state vectors, significantly reducing the computational
cost of the singular topological system evaluation [155]. Moreover, [156] provides an efficient
algorithm for the precise computation of system and survival signatures using binary decision
diagrams. Further, the process of substructuring a system into smaller serial or parallel subsys-
tems and subsequently merging their survival signatures has been explored [157]. Other current
research incorporates the concept of survival signature with multiple failure modes and dependent
failures [158], common cause failures [159], interconnected networks [160], reliability analyses
under consideration of imprecision [152], systems with shared components [161], systems subject
to internal failures and external shocks [162], direct partial logic derivatives [163], reliability-
redundancy allocation problems [164], multi-state components [114, 165], and continuous-state
components as well as continuous-state systems [166].

Structure function

Consider a system composed of m components belonging to a single type. The state vector
of these components is represented by x = (x1, x2, . . . , xm) ∈ {0, 1}m, where xi = 1 signifies
a functioning state for the i-th component and xi = 0 indicates a non-functioning state. The
structure function, denoted by ϕ, is a function of the state vector that describes the operating
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state of the system under investigation: ϕ = ϕ(x) : {0, 1}m → {0, 1}. Consequently, ϕ(x) = 1
indicates a functioning system, while ϕ(x) = 0 signifies a non-functioning system with respect to
the state vector x.
In the case of a system composed of components of multiple types, i.e., K ≥ 2, the total number
of system components is given by m = ∑K

k=1 mk, where mk represents the number of components
of type k ∈ {1, 2, . . . , K}. The state vector for each type can then be defined analogously to
systems with only a single component type as xk =

(
xk

1, xk
2, . . . , xk

mk

)
.

Survival signature and survival function

The survival signature characterizes the probability of a system remaining in a functioning state,
depending solely on the number of functioning components lk for each type k. Assuming the
failure times of components of the same type to be independent, identically distributed (iid) or
exchangeable within this type, the survival signature can be expressed as:

Φ (l1, l2, . . . , lK) =

 K∏
k=1

(
mk

lk

)−1
× ∑

x∈Sl1,l2,...,lK

ϕ(x), (1.14)

where
(mk

lk

)
denotes the total number of state vectors xk of type k and Sl1,l2,...,lK represents the

set of all state vectors of the entire system for which lk = ∑mk
i=1 xk

i . Thus, the survival signature is
dependent solely on the system’s topology, irrespective of any time-dependent failure behavior of
its components. It is important to note that the concept of exchangeability, as outlined in [167],
implies that the input ordering of random quantities is inconsequential. Therefore, in practical
applications, rearranging the components assumed to be exchangeable should be irrelevant to
the actual system. The assumption of exchangeability is reasonable for components that share
the same functionality, are produced by the same manufacturer, and operate under the same
environmental conditions. However, when environmental factors change, components of the
same type might be subjected to varying environmental stresses, such as significantly different
temperatures, influencing their behavior and lifetime probability distribution function. In such
cases, assuming exchangeability would be inappropriate, as discussed in [114].
Let Ck(t) ∈ {0, 1, . . . , mk} denote the number of components of type k in a functioning state at
time t, and assume the probability distribution for the failure times of type k to be known, with
Fk(t) representing the corresponding cumulative distribution function. Then,

P

(
K⋂

k=1
{Ck(t) = lk}

)
=

K∏
k=1

P (Ck(t) = lk)

=
K∏

k=1

(
mk

lk

)
[Fk(t)]mk−lk [1− Fk(t)]lk

(1.15)

describes the probabilistic structure of the system, i.e., the time-dependent failure behavior of
the system components, without considering its topology. The survival function, which describes
the probability of a given system remaining in a functioning state at time t, is calculated as:
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P (Ts > t) =
m1∑

l1=0
. . .

mK∑
lK=0

Φ (l1, l2, . . . , lK)× P

(
K⋂

k=1
{Ck(t) = lk}

)
, (1.16)

with Ts denoting the random system failure time. Figure 1.7 illustrates an exemplary survival
function for an arbitrary system with arbitrarily chosen distribution functions and distribution
function parameters that describe the failure behavior of the system components, i.e., the system’s
reliability.
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Figure 1.7: Arbitrary survival function.

1.5 Uncertainty

The analysis of complex systems, necessary for scenarios such as design and maintenance decisions,
relies not only on the quality of the model but also on the quality of the available data. In the real
world, the collection of exact data is often not feasible, as, e.g., lifetime data measurements and
expert assessments are naturally subject to different kinds of uncertainty. Consequently, both the
model’s parameters and its inputs are burdened by inherent uncertainties propagated through
the model. This unavoidable limitation necessitates a detailed understanding of uncertain system
behavior. A complex and major challenge engineers face is how to accurately incorporate these
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uncertainties into their models.

1.5.1 Definition and classification

In the academic literature, there is an ongoing debate about various aspects of uncertainty
modeling, such as nomenclature, interpretation [168, 169], and their representation [170, 171].
Building on Nikolaidis’ perspective in [172], uncertainty can be interpreted indirectly through
the lens of decision theory, by considering the definition of certainty and its absence. This
interpretation, along with its corresponding states, is illustrated in Fig. 1.8(a). Expanding this
concept into a broader interpretation, certainty – symbolized by state 4 in Fig. 1.8 – denotes
the condition wherein full knowledge concerning model input is present. Such a condition is
an idealistic one, where deterministic models can be utilized. Accordingly, uncertainty signifies
the presence of incomplete knowledge in terms of, for instance, component behavior or relevant
decision measures and their resulting outcomes, as discussed in [172]. Maximum uncertainty
corresponds to a state of total ignorance, i.e., state 1, where no knowledge exists. Though this
state exists only theoretically, in actual practice, the current state of information, represented as
state 2, typically comprises a combination of known and unknown variables. The gap between
total ignorance and the present state of information represents knowledge deemed certain, which
can be deterministically implemented in the model. Conversely, the gap between the present
state and certainty corresponds to residual uncertainty. In decision-making, stakeholders aim to
mitigate dangerous uncertainties maximally, pushing the present state of information as close to
certainty as practicality and cost-effectiveness permit.

Maximum uncertainty

Knowledge Uncertainty(a)

(b)

1. 2.2. 4.4.

2. 3. 4.

Complete
ignorance

Present state of
information

Present state of
information

CertaintyCertainty

CertaintyCertaintyPresent state of
information

Present state of
information

State of precise
information

State of precise
information

(Imprecision)
Reducible uncertainty

(Imprecision)
Reducible uncertainty

Irreducible
uncertainty
Irreducible
uncertainty

Figure 1.8: Elements and interpretation of uncertainty; adapted from [172] and [168].
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Appropriate handling of uncertainties in analyses necessitates a proper classification, such as
the two-part taxonomy proposed by Der Kiureghian & Ditlevsen in [169]: “The advantage of
separating the uncertainties into aleatory and epistemic is that we thereby make clear which
uncertainties can be reduced and which uncertainties are less prone to reduction, at least in
the near-term, i.e., before major advances occur in scientific knowledge”. Nikolaidis, in [172],
observes that further taxonomies of uncertainty can be found in the literature. However, a
general agreement prevails that differentiating these two types of uncertainty is advantageous
and adequate in the engineering domain [168, 169, 173]. Concentrating on this dual classification,
the first type is often referred to as irreducible, aleatoric, or objective uncertainty, and the second
is termed as imprecision, epistemic uncertainty, reducible or subjective uncertainty. These terms
are typically used interchangeably across the literature [168, 174]. However, this terminology is
subject to ongoing discussions, as evidenced by comparisons among [168, 175, 176]. Aughenbaugh
& Paredis, in [168], clarify the existence of aleatoric uncertainty as a philosophical debate,
emphasizing the practical application of the terms irreducible uncertainty and imprecision.
Hence, these terms are adopted henceforth.
Fig. 1.8(b) demarcates the two types of uncertainty. Here, the state of precise information,
illustrated as state 3, defines the boundary between irreducible uncertainty and imprecision. The
space between state 3 and certainty represents the uncertainty currently considered irreducible.
This type originates from assumed variability and randomness, which prevents certainty during
the evaluation process [173]. In contrast, the space between the present state of information
and the state of precise information denotes imprecision, which can, e.g., result from limited
sample sizes or subjective, fuzzy evaluations by experts. Further origins of imprecision and their
considerations are discussed in [169] and [177]. Actions can be taken to improve information
quality and thus reduce imprecision [173]. However, these actions typically involve effort and
costs, and achieving the state of precise information may be unattainable.

1.5.2 Approaches to uncertainty incorporation and handling

In the field of resilience analysis, there are only a few sporadic approaches that adequately
account for uncertainty at the present, such as in the work of Azadeh et al. [178] on modeling and
improving supply chains with imprecise transportation delays and resilience factors, Rocchetta
et al. [179] in the field of (imprecise) probabilistic assessments of power system resilience, and
Filippi et al. [180] on optimizing the resilience of space systems under epistemic uncertainty.
However, the few existing approaches rarely address the direct integration of uncertainty into
fundamental resilience quantification approaches such as presented in Sec. 1.3.
In contrast, in the established domain of system reliability analysis, research has long been
conducted on the direct integration of uncertainties into existing models. Existing recognized
methods include, e.g., Dempster-Shafer theory [181–183], Bayesian methods [124, 184, 185],
info-gap theory [186], p-boxes [187–189], and fuzzy probabilities [124, 190]. Comprehensive
studies on uncertainty engineering in general and reviews on reliability analysis approaches
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considering uncertainties in a systemic context, in particular, are provided, e.g., in [191–199].
Regarding the concept of survival signature, see Sec. 1.4.2, several studies [114, 145, 154, 200–202]
have successfully merged the advantages of the survival signature with uncertainty considerations
and provided holistic frameworks for reliability analysis. In order to account for both irreducible
uncertainty and imprecision, appropriate system analysis approaches are required. A common
approach is a two-phase simulation, often referred to as a “double-loop” approach. In this
approach, variables with imprecision are propagated in an “outer loop” while variables with
irreducible uncertainty are sampled within an “inner loop” [203]. Conversely, irreducible variables
can be sampled in the outer loop, with the propagation of imprecision occurring within the inner
loop [204]. For clarifying definition and distinction of aleatory and epistemic uncertainties, see
Sec. 1.5.1. A resulting survival function, compared to the precise survival function shown in
Fig. 1.7, could for instance appear as in Fig. 1.9, i.e., an arbitrary, imprecise survival function
with an upper and a lower bound. However, this simplified approach leads to large sample sizes,
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Figure 1.9: Imprecise survival function with lower and upper bound.

especially for complex systems, and thus requires significant computational resources, as [205,
206] confirm. Therefore, there is a need for simulation methods that increase computational
efficiency while maintaining high accuracy with the smallest possible sample size.
Several methods have been proposed to circumvent exhaustive double-loop simulations, such
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as interval Monte Carlo simulations and interval impact sampling [207, 208], approximation
in the context of novel reliability design theory under parametric uncertainty [209], stochastic
extensions, and optimization-based interval estimation [210], in addition to sequential optimization
and reliability assessment approaches [211], single-loop methods [212, 213], and decoupling
approaches [214, 215]. Novel techniques to increase computational efficiency in uncertainty
quantification include the fusion of p-boxes, univariate dimensionality reduction methods, and
optimization [216], as well as the implementation of the augmented space integral [217], the
application of line failure distribution factors [218], and equivalent reliability index utilization for
surrogate model uncertainty quantification [219]. Wei et al. recently introduced non-intrusive
stochastic simulation (NISS) in [220], an innovative approach to efficiently compute imprecise
structural models while significantly reducing the sample size. This methodology is divided into
two primary methods, local extended Monte Carlo simulation (LEMCS) and global extended
Monte Carlo simulation (GEMCS), each of which offers significant advantages in terms of precision
and variability.
Generally, it can be assumed that three distinctive strategies exist for handling uncertainty in a
model: non-probabilistic approaches, precise probability approaches, and imprecise probability
approaches [220]. To maintain a clear distinction between irreducible uncertainty and imprecision
throughout the analysis, only imprecise probability approaches seem suitable [220, 221]. This
strategy combines set-theoretical concepts describing imprecision, such as intervals or fuzzy sets,
with traditional probability theory distributions that represent irreducible uncertainty [168, 222].
Among various approaches, the utilization of fuzzy sets has demonstrated particular advantages
in this context [194, 223].

1.5.3 Fuzzy probability

In the discipline of system reliability engineering, ambiguities and imprecision often arise from
limitations present in practice, such as scarcity of data or unclear expert knowledge regarding
the probability distribution types and parameters that determine, for example, the lifetime of
system components. This is where fuzzy probability theory comes into play, providing a suitable
tool for accounting for these uncertainties.
Imprecise distribution parameters can be modeled, for instance, by triangular fuzzy numbers,
defined as θ̃ = (a/b/c), where a < b < c, [a, c] represents the base of θ̃, and b signifies its peak.
Suppose F (x) is a probability distribution function, which characterizes the failure probability
of a system component within a time period x. Further, assume that the understanding of
the parameters of this distribution function is imprecise. Under these conditions, the fuzzy
probability distribution function symbolized as F̃ (x), encapsulates this phenomena, as depicted in
Fig. 1.10. Here, the membership function of F (x) is represented by µ(F (x)), while supp(F̃ (x)) =
[F α0(x), F

α0(x)] signifies the support of F̃ (x). An important point to highlight is that for
µ(F (x)) = 1, corresponding to an α-level of α = 1, F̃ (x) equals F (x).
For an assumed arbitrary system with arbitrarily chosen imprecise distribution functions describ-
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Figure 1.10: Arbitrary fuzzy probability distribution function based on continuous, triangular fuzzy parameters;
adapted from [224].

ing the failure behavior of the system components and corresponding distribution parameters
described by triangular fuzzy numbers, Fig. 1.11 represents the, analogous to Fig. 1.7 and Fig. 1.9,
resulting fuzzy survival function. Detailed insight into fuzzy probability theory and its practical
usage can be found in works such as [124, 194, 224–227].

1.6 Decision-making and economic aspects

A fundamental requirement for practical resilience analysis, based on resilience quantification
approaches presented in Sec. 1.3 for real-world systems, is the ability to balance different alloca-
tions and options that enhance the system’s resilience. In the context of critical infrastructures,
Liu et al. recently stated in [228] that existing approaches for decision-making between resilience-
enhancing measures commonly use an ad hoc approach via optimization. These approaches
can generally be divided into two categories: 1. optimization of investments before a disruptive
event [229–231], aimed at enhancing resilience through preventive measures such as hardening of
vulnerable components, and 2. acute emergency response and recovery planning after a disruptive
event [232–234], aimed at minimizing losses through quick and efficient recovery actions, such
as optimized resource allocation. However, according to Liu et al., these methods lack compre-
hensive consideration, balancing, and coordination of resilience measures across all phases of a
system’s life cycle. Thus, there is a scientific gap in resilience frameworks that are able to provide
decision-makers with a comprehensive and quantitative scheme for enhancing system resilience
during the designing, upgrading, and reconstructing of critical infrastructure. This statement can
be generalized to other types of systems. There is a lack of generally formulated approaches in the
literature that can be applied to any system type, easily integrated into existing frameworks, and

28



CHAPTER 1. INTRODUCTION

Time0
0

1
Su

rv
iv

al
 fu

nc
tio

n
α0
α0.2
α0.4
α0.6
α0.8
α1

Figure 1.11: Fuzzy survival function.

adapted for any kind of use cases. Liu et al. present such a comprehensive resilience framework
in [228], albeit specifically designed for the critical infrastructure domain. Further resilience
decision-making frameworks for specific domains include the artificial intelligence-based decision-
making framework for resilience building of supply chains by Belhadi et al. provided in [235],
and the adaptive robust framework for optimizing resilience of interdependent infrastructures
under the impact of natural disasters presented by Fang & Zio presented in [236]. Extensive
discussion on the topic is provided in works such as [237] by Attoh-Okine, [238] by Larkin et al.,
and [239] by Wilson.
Another essential and evident prerequisite for resilience decision-making on practical applications
is the inclusion of monetary aspects. Otherwise, the trivial and obvious outcome of the analysis
of a system’s resilience would always be the simultaneous maximization of all resilience-enhancing
measures. However, as such measures are associated with monetary costs in reality, this solution is
purely theoretical. In this context, Ayyub, in [6], states: “Improving the resiliency of a system to
meet target levels requires the examination of system enhancement alternatives in economic terms,
within a decision-making framework.” Therefore, in addition to the resilience metric presented
in Sec. 1.3.4, Ayyub presents in [6] a broad discussion and an approach on comprehensively
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integrating monetary aspects into resilience decision-making processes. As shown in Fig. 1.12
resilience assessment can be based on the savings of potential direct and indirect losses as well as
the recovery costs. Resilience measures that can reduce these potential losses can be analyzed
by benefit-cost analysis models. The benefits B are the sum of potential savings in losses and
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Figure 1.12: Probability densities over the level of recovery costs as well as direct and indirect losses; adapted
from [6].

recovery costs due to the implementation of a measure. The costs C correspond to the costs
for the implementation of the measure itself. The benefits and costs are assumed to be random
variables. Given that B and C are normally distributed and independent, a benefit-cost index
βB/C is defined as:

βB/C = µB − µC√
σ2

B + σ2
C

, (1.17)

where µ is the mean and σ the standard deviation. The probability Pf,B/C that the costs
outweigh the benefits can be determined as:

Pf,B/C = P (C > B) = 1− Φ(β), (1.18)

with Φ being the standard normal cumulative distribution function. For lognormally distributed
benefits and costs, Eq. 1.17 can be written as:

βB/C =
ln
(

µB
µC

√
δ2

C+1
δ2

B+1

)
√

ln
[(

δ2
B + 1

) (
δ2

C + 1
)] , (1.19)

with δ, the coefficient of variation. Note that in times when various types of systems in modern
societies are interconnected and interdependent, determining indirect or secondary costs in
practice can be particularly challenging.
More economic models in a resilience context and discussion about them are provided, e.g.,
by Gilbert & Ayyub in [240], Moslehi & Reddy in [82], Rose in [97] and Pant et al. in [241].
However, it should be noted that the cost of resilience should not be solely reduced to an economic
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perspective. Numerous publications [6, 16, 48, 242] point out that in addition to pure economic
costs, non-monetarily quantifiable “costs” must be incorporated in resilience decision-making
as well. These include, for instance, effects on the environment, on people’s social lives, on
the health care system, and on other community systems. However, due to the tremendous
complexity, there is a lack of specific approaches to comprehensively incorporate the full range of
these non-monetarily quantifiable “costs” into resilience decision-making frameworks. Further
fundamental research is needed to address this gap.
As indicated in Sec. 1.5, in the context of existing resilience decision-making frameworks, the
imprecision of all influencing factors is widely neglected in the literature. However, for a
comprehensive decision-making process, this must be taken into account. Thus, decision-makers
need to be provided with information about not only which level of system resilience is acceptable
but also which level of imprecision can be tolerated and at which specific points imprecision
needs to be reduced in order to identify an appropriate equilibrium point. Since the reductions
are beneficial but come typically with unavoidable monetary costs due to the conduction of
experimental trials, destructive testing, and similar procedures, for a thorough analysis, these
costs must be taken into account in the decision-making process as well.

1.7 Aims and objectives

This dissertation aims to address critical gaps in the understanding and practice of resilience
analysis in complex engineering systems. The objective of this research is to develop and improve a
decision-making framework that can utilize quantifiable measures, enhance cost and computational
efficiency in resilience management, incorporate monetary aspects and uncertainties, and ensure
the methodologies are applicable and transferable to any type of complex system. This is achieved
through specific research targets set for each publication.
The primary focus of the first publication is the development of a resilience decision-making
procedure designed to address the challenges faced by complex systems. Current research reveals
a distinct gap: a shortage of methodologies that enable decision-makers to consider and balance
the full range of resilience-enhancing measures at any life cycle stage of a complex system. These
measures include, e.g., reliability and robustness-enhancing measures, as well as strategies to
improve recoverability. As a result, an adaptable and flexible approach is required that integrates
various control mechanisms and strategies, facilitating effective comparisons and decision-making
among a variety of resilience-enhancing options. It is important that monetary aspects can be
integrated into the decision-making process to account for real-world resource constraints. In
addition, there is a clear need to reduce the associated computational burden to enable more
efficient application in complex system environments.
The second publication addresses the increasing complexity of modern systems that frequently
contain numerous substructures. This complexity requires even more efficient approaches
for comprehensive resilience analysis and decision-making. The objective is to merge the
resilience framework developed in the first publication in Chap. 2 with the concept of survival
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signature into a novel methodology. This approach will offer the best of both worlds: efficient
comparisons of resilience-enhancing arrangements and significantly reduced computational effort
when addressing underlying component and subsystem failure behavior. All of the benefits of
the original methodology must be preserved, such as the inclusion of monetary constraints in the
resilience analysis, to ensure that the novel approach can be practically applied in real-world
scenarios. In addition, the framework is to be extended such that it is applicable to problems
with multidimensional input spaces for resilience-enhancing improvements.
The scope of the third publication is to address the issue of efficiently accounting for imprecision
in the analysis of complex systems, along with its impact on reliability and, ultimately, resilience.
This area remains largely neglected in current methods of resilience analysis, and in reliability
analysis it is often accompanied by major computational costs, indicating the need for a framework
that can account for this imprecision. Decision-makers need to be provided with the necessary
information to decide what level of imprecision is acceptable in certain issues and where imprecision
needs to be reduced, e.g., by specific investments. The goal is to incorporate concepts from several
areas, namely survival signature, fuzzy probability theory, and NISS methods. This synthesis is
intended to create a methodology that not only copes with imprecision, but also dramatically
reduces the computational effort and sample size normally required for such analyses. This novel
approach is expected to provide the basis for incorporating uncertainties into the developed
resilience decision-making framework for substructured and complex systems from the second
publication in Chap. 3, while retaining all the existing benefits.
The principal aim of the fourth publication is to overcome a specific limitation of the existing
resilience framework for complex and substructured systems from Chap. 3, which currently allows
only a binary component state consideration in subsystem structures due to the limitation of
the survival signature. The growing complexity and size of modern systems necessitate more
nuanced analyses that encompass continuous performance measures at this level. Hence, the
objective is to extend the existing resilience framework to include continuous state consideration
by developing a novel approach based on the separation property of the concept of the survival
signature. Thereby, the existing advantages shall be maintained in order to enable comprehensive
resilience analysis of real-world systems.
The aim of the fifth publication is to clearly demonstrate the complete transferability of all
developed methods to any systems and use cases. Using the example of the regeneration of
complex capital goods, it is to be shown that the developed methodologies are suitable for
designing resilient regeneration processes in two ways. First, to analyze and guarantee the
resilience of the regeneration process itself, and second, to provide a basis for decision-makers
to decide between multiple (resilient) regeneration paths by resilience analysis of the regarded
complex capital good. This resilience analysis, coupled with efficient reliability analyses, lifetime
analyses, and consideration of uncertainties, shall form an overall framework for resilience-based
decision criteria for optimal regeneration of complex capital goods.
In summary, the ultimate goal of this dissertation is to significantly improve our understanding
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and management of resilience in complex systems of any kind in a world where societies are
becoming increasingly dependent on them in the face of ongoing crises such as climate change.
Each study is designed to address pressing needs in this area, with the overall aim of providing
more efficient, comprehensive, cost-effective, practical, and resilient solutions.

1.8 Original contributions

A core innovation of this dissertation is the development of a universally applicable resilience
decision-making framework, presented in the first publication, see Chap. 2. This framework
can address complex systems of any kind as well as consider any type of system performance,
marking a significant advancement in the field. By merging an adapted systemic risk measure
with a sophisticated probabilistic and time-dependent resilience metric, it provides an innovative
approach for comparing resilience-enhancing measures and investments at any stage, allowing
decision-makers to strike an optimal balance not only between failure prevention and recovery
improvements, but between improvements of all types.
Significantly, this framework recognizes real-world constraints by incorporating monetary aspects
into the decision-making process. This feature is critical as it supports decision-makers in
identifying the most cost-effective strategies for enhancing resilience. Employing a grid search
algorithm for systemic risk measures increases efficiency and reduces computational effort,
enhancing the framework’s practicality in real-world applications.
The universal applicability and effectiveness of this framework have been demonstrated in case
studies involving a multi-stage axial compressor and Berlin’s U-Bahn and S-Bahn system. These
examples serve to highlight the broad scope and adaptability of the methodology, demonstrating
its potential to enhance the resilience of a wide range of complex systems. As a cornerstone of
this dissertation, this innovative resilience decision-making framework promises to significantly
enhance the understanding and improvement of resilience in modern society’s complex systems.
Building on the resilience decision-making framework of the first publication, the second publi-
cation in Chap. 3 presents a novel methodology that merges the resilience framework with the
concept of survival signature. This improves decision-making, especially for complex, large, and
substructured systems, corresponding to the systems of modern societies, and extends the scope
of the first publication.
The new approach integrates the beneficial features of its two original components. It enables a
direct comparison between various resilience-enhancing options, under consideration of monetary
aspects and complexity extensions such as cascading failures and other dependency structures
due to time-step accurate simulations, and a significant reduction in computational effort due
to the synergy between the survival signature and the grid search algorithm: a majority of the
resilience-enhancing endowment properties affect the probability structure of the components of
a system. These numerous changes in the probability structure during the resilience analysis,
caused by the grid search algorithm and considered to be typically among the most costly parts of
the simulation, can be ideally captured with minimal effort due to the separation property of the
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survival signature – once a subsystem structure has been computed, any possible characterization
of the probabilistic part can be validated without having to recompute the structure.
Embedding the survival signature in the resilience framework further leads to the important
advantage that it allows the potential exploitation of all existing and ongoing developments of
this concept, as they can be integrated straight forward. In addition, the novel methodology
allows for consideration of multidimensional search spaces achieved by an extension of the grid
search algorithm.
The novel methodology integrates a substructuring approach for large, complex systems. This,
together with the integration of the survival signature, enables the propagation of subsystem
reliabilities through any number of system levels up to the top level and leads to a significant
reduction in computational effort. In this way, and with the extension of the adapted systemic
risk measure, it is now possible to analyze systems with a large number of components for their
resilience. This is demonstrated in the second publication by applying the novel methodology
for a multidimensional resilience analysis of an infrastructure system consisting of numerous
subsystems and more than 2500 individual components.
The original contribution of the third publication, see Chap. 4, is a novelty in the field of reliability
analysis considering uncertainties. At the same time, it lays the groundwork for the extensive
integration of uncertainties into the comprehensive resilience decision-making framework of
Chap. 3. A novel methodology is developed by merging survival signature, fuzzy probability
theory, and NISS methods. The advantageous properties of the original ingredients are retained:
lower computational cost due to the separation property of the survival signature and significantly
smaller sample size in the simulation of imprecise failure behavior due to the adapted NISS
methods. Beneficially, these adapted NISS methods require only a single stochastic simulation,
bypassing the traditionally used and computationally expensive double-loop simulations.
Integrating fuzzy probabilities incorporates imprecision into the systems’ probabilistic structure,
addressing another complexity level. This enables a more sophisticated and nuanced identification
of critical imprecision in system reliability analysis than traditional approaches allow, which is
particularly important in design and maintenance processes.
Again, practical applications demonstrate the effectiveness of the methodology. By applying
it to an axial compressor and an arbitrary complex system, the approach proves to be both
efficient and widely applicable. Furthermore, the inclusion of an analysis comparing the LEMCS
and GEMCS, respectively, provides deeper insight into the applicability of the methodology
depending on the specific requirements and the existing knowledge of the uncertain behavior of
the system.
In summary, the primary contribution of the third publication constitutes a novelty in its field
and is a potential extension of the resilience decision-making framework towards a consideration
of imprecision. It not only acknowledges the inherent uncertainties in complex systems, but also
provides practical tools for assessing system reliability despite uncertainties. This achievement
enriches the ongoing development of the comprehensive approach in Chap. 3, advancing the
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efficient and extensive resilience analysis of complex systems.
Similar to the original contribution of the third publication in Chap. 4, the new developments in
the fourth publication in Chap. 5 present a novelty in the field of reliability analysis. However,
they also serve as an extension that can be incorporated into the comprehensive resilience
decision-making framework of Chap. 3. The core of the innovative contribution lies in addressing
the limitations of a binary component and system state consideration on subsystem level in the
resilience framework. This limitation needs to be overcome to ensure the comprehensive resilience
analysis of real-world systems. This is achieved by introducing the continuous-state survival
function and the concept of the Diagonal Approximated Signature (DAS) as a corresponding
surrogate model. The introduction of DAS, based on combinatorial decomposition adopted from
the survival signature concept, ensures the separation of topological and probabilistic information,
providing an enriched perspective for resilience analyses.
Building upon potentially high-dimensional coherent structure functions, and a stochastic process
that models the time-dependent degradation of the continuous-state components, this approach
enables the direct computation of the continuous-state survival function. An explicit formula and
a stored DAS are utilized, avoiding expensive online Monte Carlo simulations. This innovation
not only maintains the original resilience framework’s advantages but also allows for an efficient
continuous performance consideration of components on subsystem level, significantly enhancing
resilience optimization for substructured systems. This offers a valuable extension and new
dimension to resilience analysis, holding potential for further research and practical applications.
The fifth publication in Chap. 6 primarily contributes to the field by creating a comprehensive
decision-making framework for the regeneration of complex capital goods. Additionally, the
work demonstrates the broad applicability and transferability of all developed methodologies to
systems of any type, and the seamless integration into completely different application domains
and frameworks than those shown in the core publications, see Chap. 2 and Chap. 3.
The framework tackles two key facets: first, it ensures the resilience of the regeneration pro-
cess itself; second, it offers decision-makers a robust basis to choose from multiple (resilient)
regeneration paths, through the resilience analysis of the complex capital good. This combined
approach, integrating resilience, reliability, and lifetime analyses alongside the consideration
of uncertainties, provides effective resilience-based decision criteria for optimal regeneration of
complex capital goods.
Moreover, the publication builds on the use of functional models for representing physically
complex systems, taking into account input parameter dependencies through time-dependent
sensitivity analysis and importance indices. Overall, the framework offers an enhanced foundation
for decision-making in maintenance, repair and overhaul (MRO) processes, contributing to the
better understanding and implementation of resilience in the regeneration paths of complex
capital goods.
The presented dissertation delivers innovative contributions to the field of resilience decision-
making for complex engineering systems, through the development of universally applicable
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methodologies and frameworks, addressing important scientific gaps. At its heart is a resilience
framework that integrates monetary considerations, enabling decision-makers to optimally balance
different types of resilience-enhancing measures in practice. This is further augmented by the
integration of the survival signature concept, leading to more computational efficiency and
providing tools for assessing the resilience of substructured systems. A further extension of
the survival signature, based on the integration of NISS and fuzzy probability theory, provides
the basis for enabling resilience analysis of complex systems with inherent uncertainties. The
research then progresses to introduce the continuous-state survival function and DAS, addressing
the limitations of binary component and system state consideration on subsystem level, thereby
potentially enriching resilience framework’s capability. The final original contribution extends
the applicability of these methodologies into the realm of MRO processes, thus underlining
the wide-ranging potential of the developed tools in enhancing resilience across varied complex
systems and application cases.

1.9 Structure of the thesis

The dissertation is composed of four journal articles and one book contribution. The four
journal articles represent the core developments and innovations of the dissertation. The
book contribution demonstrates the broad applicability, compatibility and transferability of all
developed methodologies. Although all developments are novelties in themselves, they complement
and build upon each other in the overall context of the developed resilience decision-making
framework.
Chapter 2 introduces an approach to resilience-based decision-making for complex systems,
comprised of an adapted systemic risk measure and an appropriate resilience metric that enables
balancing between any resilience-enhancing measures. In Chap. 3, the resilience decision-making
procedure is extended and combined with the concept of survival signature to enable more
efficient, multidimensional resilience analyses for complex and substructured systems. Chapter 4
addresses the analysis of reliability of complex systems in the presence of imprecision and fuses
methods of the concept of survival signature, fuzzy probabilities, and NISS into a novel approach
that significantly reduces the computational cost and sample size. Chapter 5 introduces the
continuous survival function and DAS as a model for a more comprehensive resilience analysis that
enables a continuous performance consideration at the subsystem level. Chapter 6 demonstrates
the transferability and compatibility of all developed methods by embedding them into the
context of resilience-based regeneration of complex capital goods, forming a novel framework
for analyzing resilient regeneration paths. The final chapter, Chap. 7, concludes the thesis and
provides an outlook that identifies future implications and directions for the research presented.
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Abstract

Complex systems – such as gas turbines, industrial plants and infrastructure networks – are of paramount
importance to modern societies. However, these systems are subject to various threats. Novel research does
not only focus on monitoring and improving the robustness and reliability of systems but also focus on their
recovery from adverse events. The concept of resilience encompasses these developments. Appropriate quantitative
measures of resilience can support decision-makers seeking to improve or to design complex systems. In this paper,
we develop comprehensive and widely adaptable instruments for resilience-based decision-making. Integrating
an appropriate resilience metric together with a suitable systemic risk measure, we design numerically efficient
tools aiding decision-makers in balancing different resilience-enhancing investments. The approach allows for a
direct comparison between failure prevention arrangements and recovery improvement procedures, leading to
optimal trade-offs with respect to the resilience of a system. In addition, the method is capable of dealing with
the monetary aspects involved in the decision-making process. Finally, a grid search algorithm for systemic
risk measures significantly reduces the computational effort. In order to demonstrate its wide applicability, the
suggested decision-making procedure is applied to a functional model of a multi-stage axial compressor, and to the
U-Bahn and S-Bahn system of Germany’s capital Berlin.
Keywords: Decision-making, Resilience, Algorithms, Risk, Complex systems, Compressors, Robustness, Failure.

2.1 Introduction

Modern societies rely on the operations of various complex systems, such as gas turbines, industrial
plants, or infrastructure networks. These form complex capital goods whose construction,
improvement, and regeneration are of paramount importance. However, these systems are subject
to various threats. Evidence shows that a wide range of natural, technical, and anthropogenic
impacts at all scales can severely affect the functionality of these systems. Due to their high and
increasing complexity, it is infeasible to identify all potential adverse impacts and to prevent them
accordingly. Novel developments are therefore important that do not only focus on monitoring
and improving the robustness and reliability of systems but also focus on their recovery from
adverse events [243]. The concept of resilience encompasses these developments: analyzing and
optimizing robustness, reliability, and recovery of systems – both from a technical and from an
economic perspective [5, 7, 10]. Resilience applied to the artificial systems of our modern society
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leads to a paradigm shift. Secure systems can not only be based on strategies that prevent
failures but must include strategies for the efficient recovery in cases of failure.
The concept of resilience in the context of engineering applications has gained growing popularity
in recent years [23, 24]. The term “resilience” appears in several different domains like ecology,
economy, psychology as well as in the context of mechanical and infrastructure systems and is
derived from the Latin word “resilire” which means “to bounce back”. The concept of resilience
first appeared in the domain of ecological systems by Holling [8]. He defined resilience as “[. . . ] a
measure of the persistence of systems and their ability to absorb change and disturbance and still
maintain the same relationships between populations or state variables.”. Although many different
definitions of resilience were introduced in the context of engineering and complex systems (e.g.,
see Refs. [53–57]), the early definition from Holling [8] captures key aspects of all of them.
Ayyub [6] provides a review of the literature and develops a comprehensive definition of resilience
in the context of complex systems which is based on the content of the Presidential Policy
Directive (PPD) on critical infrastructure security and resilience [62]: “Resilience notionally
means the ability to prepare for and adapt to changing conditions and withstand and recover
rapidly from disruptions. Resilience includes the ability to withstand and recover from disturbances
of the deliberate attack types, accidents, or naturally occurring threats or incidents. The resilience
of a system’s function can be measured based on the persistence of a corresponding functional
performance under uncertainty in the face of disturbances.”. This novel definition embraces the
former definitions, and provides a solid basis for the quantification of resilience.
Our paper suggests a novel quantitative approach to resilience enabling decision-makers to
efficiently design and improve complex systems present all over our modern communities [12, 243].
Resources are not unlimited, and resiliences cannot arbitrarily be improved in reality; realistic
models must reflect constraints and methods must be developed that support decision-makers in
choosing between different resilience-enhancing investments [7, 244].
This paper provides an efficient method for identifying the cost-effective allocations of different
resilience-enhancing investments by combining the resilience metric of Ouyang et al. [86] and the
systemic risk measure of Feinstein et al. [245]. A grid search algorithm for systemic risk measures
significantly reduces the computational effort. In order to demonstrate its wide applicability,
the suggested decision-making procedure is applied to a functional model of a multi-stage axial
compressor, and to the U-Bahn and S-Bahn system of Germany’s capital Berlin.
The paper is structured as follows: Section 2.2 describes the theoretical foundations: the
quantification of resilience, the systemic risk measure and its adaptation to technical systems,
and the grid search algorithm. Section 2.3 develops on this basis a novel resilience-based decision-
making process. In Section 2.4 and 2.5, the methods are, first, applied to a functional model
of an axial compressor and, second, to Berlin’s suburban train (S-Bahn) and subway (U-Bahn)
network. Section 2.6 summarizes the results and discusses questions for future research.
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Figure 2.1: In the evolution of a system after the impact of a disruptive event, different phases can be distinguished:
(i) the original stable state, (ii) disruptive impact, vulnerability, (iii) disrupted state and recovery. These are
separated by the following points in time: to - beginning of the original stable state; te - end of the original stable
state due to the occurrence of a disruptive event; td - end of disruptive impact and beginning of disrupted state; ts

- end of disrupted state and beginning of system recovery; tf - end of system recovery and beginning of new stable
state; adapted from [76].

2.2 Theoretical fundamentals

2.2.1 Resilience quantification

Applications of resilience to engineering problems rely on the availability of quantitative measures
of resilience. Within the last two decades, various methodologies have been developed. Compre-
hensive discussions of different resilience metrics are provided by Bergstöm et al. [23], Hosseini
et al. [12], and Linkov & Palma-Oliveira [45] . In addition, Hosseini et al. [12] propose a specific
classification system for these metrics. Most resilience metrics are performance-based, and the
majority of performance-based measures of resilience are assigned to the category of “generic
resilience metrics”. These determine resilience by comparing the performance of a system before
and after a disruptive event. Further subcategories are constructed by distinguishing between
time-dependent or time-independent and deterministic or probabilistic metrics, respectively.
Performance-based approaches may be ratio-based, integral-based, or both. When a system is
exposed to a disruptive event and recovers its functionality afterward, it passes through three
essential phases: (i) The original stable state whose duration can be interpreted as the reliability
of the system forms the first phase. (ii) The second phase is the vulnerability of the system,
represented by a loss of performance after the occurrence of a disruptive event; the robustness
of the system mitigates the loss of performance. (iii) The disrupted state of the system and its
recovery to a new stable state represent the recoverability and the last phase. The three phases
are illustrated in Fig. 2.1, with Q(t) denoting the system performance at time t. The new stable
state may differ from the original state, e.g., in terms of its performance which may be higher or
lower.
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Figure 2.2: Resilience triangle; adapted from [48].

The majority of resilience metrics in the literature is based on system performance, i.e., on these
three states and their transitions. A quantitative measure of resilience thus depends on the
specific choice and definition of system performance [10].
Bruneau et al. [48] propose a time-dependent metric of the resilience of communities under
seismic disruption in a deterministic setting. If t0 is the time of occurrence of a disruptive event,
t1 the time of complete recovery, and Q(t) the quality of the community infrastructure at time t,
a specific type of system performance, their metrics can be expressed in the following form:

RBr =
∫ t1

t0
[100−Q(t)]dt. (2.1)

For systems with random performance, this metric defines a pathwise measure of resilience.
Bruneau et al. [48] also introduce the well-known principle of a “resilience triangle” as illustrated
in Fig. 2.2. Their approach was applied in various contexts and forms a strong basis for several,
later proposed metrics [94–96]. Further resilience metrics in the context of deterministic models
were e.g. suggested by Refs. [43, 88, 89, 92, 246].
Pathwise metrics do not rely on probabilities and do not capture quantities that depend on
probabilities – such as the rates of occurrences of disruptive events and the distributions or
moments of the random size of disruptions or the random times of their recovery. Such quantities
require the existence and knowledge of a probability measure on the scenario space together with
probabilistic resilience metrics, e.g., see Refs. [57, 78, 98, 99, 102]. Very informative resilience
metrics were introduced by Ouyang et al. [86] and Ayyub [6]; both metrics are probabilistic,
time-dependent, and universally applicable.
In this paper, we utilize the probabilistic resilience metric by Ouyang et al. [86]. Denoted by
Res, it is defined as the expectation of the ratio of the integral of the system performance Q(t)
over a time interval [0, T ] and the integral of the target system performance T Q(t) during the
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same time interval:
Res = E[Y ], where Y =

∫ T
0 Q(t)dt∫ T

0 T Q(t)dt
. (2.2)

System performance Q(t) is a stochastic process. The parameter T Q(t) is generally considered
as a stochastic process as well, but for simplicity it is assumed to be a non-random constant T Q

in this work.
Sometimes, it is useful to rewrite Eq. 2.2 in terms of a sum of the impact areas of failure events.
If t1, t2, t3, . . . is the sequence of the consecutive occurrences of failures, the random number of
failures up to time T is N(T ) = sup{n : tn ≤ T}. The impact area AIAn is the expected area
between the reduced system performance curve and the target system performance curve caused
by the n-th failure within the considered time interval. Under the assumption that the system
fully recovers before its next failure, one obtains that AIAn = E

(∫ tn+1
tn

[T Q−Q(t)]dt
)
. In this

case, Eq. 2.2 can be written as

Y = 1−
∑N(T )

n=1 AIAn

T Q · T
. (2.3)

The resilience metric takes values between 0 and 1. The value Res = 1 indicates a system
performance corresponding to the target performance, while Res = 0 captures that the system is
not working during the considered time period.

2.2.2 Systemic risk measure

Feinstein et al. [245] propose a novel approach to measure risk inherent in complex systems.
Their methodology is based on two key components: first, a suitable descriptive input-output
model; and, second, an acceptance criterion representing the normative safety standards of a
regulatory authority. These systemic risk measures were, e.g., considered in finance, see Weber
& Weske [247], and applied to power transmission, see Cassidy et al. [248].
Let (Ω, F, P ) be a probability space, l ∈ N the number of entities in the considered system, and
k ∈ Rl a vector of controls. For each scenario ω ∈ Ω and a control vector k, we denote by Yk(ω)
the relevant stochastic outcome of the system; for each k ∈ Rl, Yk is a random variable.
In the context of financial systems, the vector k is the “endowment” and describes the capital
allocation to the entities of the system. The underlying input-output model of the system
is given by Y = (Yk)k∈Rl , a non-decreasing random field taking values in some vector space
X of random variables. The monotonicity property encodes that a larger capital allocation,
ki ≤ mi ∀ i = 1, . . . , l, increases the random outcome, i.e., Yk ≤ Ym. The acceptance criterion is
described by the set A ⊆ X of random variables meeting the requirements of a decision-maker;
for a survey on acceptance sets and monetary risk measures, we refer to Föllmer & Weber [249].
The systemic risk measure constructed from these two basic ingredients, the input-output model
and the acceptance criterion, is the set of allocations of additional capital leading to random
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outputs that satisfy the acceptance criterion, i.e.,

R(Y ; k) =
{

m ∈ Rl | Yk+m ∈ A
}

. (2.4)

2.2.3 Adapted systemic risk measure

The systemic risk measure introduced in Sec. 2.2.2 can be applied to engineering systems with
components of multiple types with several endowment properties. We consider technical systems
for which a meaningful system performance Q(t) can be determined. It is assumed that the
system consists of l system components each characterized by their type and n properties that
influence the system performance. For convenience, we replace the vector notation of Sec. 2.2.2
by matrix notation.
Consider a component i ∈ {1, ..., l}. Such a component can be characterized by a row vector

(ai; ji) = (ηi1, ηi2, ..., ηin; ji) ∈ R(1×n) × N, (2.5)

where (ηi1, ηi2, ..., ηin) are the numerical values of the n relevant properties and ji ∈ {1, 2, . . . , b} ⊆
N is its type. Once all components are specified, the system is described by a pair consisting of a
matrix A ∈ R(l×n) and a column vector z ∈ Nl that captures the types of the components:

(A; z) =


η11 η12 . . . η1n; z1

η21 η22 . . . η2n; z2
...

...
...

...
ηl1 ηl2 . . . ηln; zl

 . (2.6)

The input-output model Y = (Y(A;z)) is enumerated by these pairs. In our case studies, we will
typically assume that vector z of types is fixed and investigate the impact of a varying matrix A.
A corresponding systemic risk measure is now constructed as follows. As a specific example, we
choose the acceptance set

A = {X ∈ X | E[X] ≥ α} with α ∈ [0, 1]. (2.7)

A corresponding risk measure is defined by

R(Y ; K) = R(Y ; (K; z)) =
{

A ∈ Rl×n | Y(K+A;z) ∈ A
}

, (2.8)

which is the set of all allocations of modifications of the system properties A such that the altered
system characterized by (K + A; z) possesses a resilience greater than or equal to α. In order to
keep the notation simple and without loss of generality we set K = 0, and R(Y ; 0) is written as
R(Y ).
For practical applications, it is often necessary to impose restrictions on the structure of the
matrix in Eq. 2.6. For example, it might be required that any component of a specific type is
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configured in the same way, meaning that the corresponding row vectors ai must be equal. As
described in Ref. [245], such constraints can be captured by monotonously increasing functions
gz : Rp → R(l×n), a′ 7→ (A; z) where z ∈ Rl denotes the types of the components; these functions
map a lower-dimensional set of parameters a′ ∈ Rp to the description of the system.
To illustrate this, we consider a system with l = 5 components of b = 2 types. Each component
is characterized by its two endowment properties and its type, i.e. (ηi1, ηi2; ji), and we assume
that ηi2 is a function of the type ji of the component i. More specifically, we suppose that
ηi2 = 3 for type 1 and ηi2 = 5 for type 2. We choose p = 5 and consider as an example the types
z = (1, 1, 1, 2, 2)⊤. This leads to the following characterization of the system:

g
1
1
1
2
2





q1

q2

q3

q4

q5


=



q1 3; 1
q2 3; 1
q3 3; 1
q4 5; 2
q5 5; 2


= (A; z). (2.9)

In this example, the constraint reduces the dimension from 10 = 5× 2 to 5.
The dimension of the space of parameters can be further reduced, if more constraints are
introduced. Consider, e.g., the additional condition that the first endowment property ηi1 is a
function of the type of the components, but that it can otherwise freely be chosen. This implies
for the given types z = (1, 1, 1, 2, 2)⊤ that q1 = q2 = q3 and q4 = q5. In this case, p = 2 becomes
the appropriate dimension of the parameter space.

2.2.4 Grid search algorithm

Set-valued systemic risk measures can be computed via a combination of a grid search algorithm
and stochastic simulation, see Ref. [245]. To employ this algorithm, a box-shaped subset of
endowments which are of interest is subdivided by a grid of equally spaced points.
The grid search algorithm proceeds as follows. In a first step, the search is started at the origin
of the considered box; we assume that the origin is outside of R(Y ); from here, the acceptance
criterion is successively evaluated for each adjacent grid point, lying on the diagonal of the grid
identified by the direction (1, 1, . . . , 1)⊤. Each evaluation typically requires stochastic simulation.
The search along the diagonal direction is interrupted as soon as a point satisfying the acceptance
criterion is identified. Due to the monotonicity of the input-output model and the properties of
the acceptance criterion (cf., Ref. [245]), all grid points representing superior endowments are
acceptable as well and belong to R(Y ). Analogously, all endowments that are worse than the
first identified point are rejected, thus belonging to R(Y )c, the complement of the systemic risk
measurement. It is precisely this monotonicity property that makes the algorithm efficient.
Each pair of diagonally adjacent points, one meeting the requirements and the other not, defines
a sub-box. The algorithm checks the remaining corners of this sub-box and can quickly assign an
acceptance status to dominating, respectively, dominated endowments. Subsequently, new pairs
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Figure 2.3: Example of a flow network with b = 2 component types.

of points can be determined, one in R(Y ) and one outside. The successively resulting sub-boxes
are checked in the same way as before. The algorithm terminates when all points on the grid are
assigned to an acceptance status. It finally determines a discrete grid-approximation of R(Y ).
For a more detailed description of the grid search algorithm we refer to Ref. [245, Ch. 4].

2.3 Resilience decision-making

The decision-making process for resilience-enhancing endowments in complex systems, developed
in this work, integrates resilience metrics and systemic risk measures. As discussed in Zuev et al.
[250], complex systems are often described as networks: nodes and edges represent systems as
well as the connections between their components. System components may be represented as
network edges or nodes – whatever representation is more appropriate.
In order to illustrate our method, we consider a specific flow network as shown in Fig. 2.3.
This network consists of seven nodes and eight edges, as well as a source node denoted by
s characterized by an initial flow w and a target node denoted by t with a destination flow
v, respectively. The network edges represent the essential components of the network. Each
component is assigned to one of the two types, i.e., b = 2. We set n = 2, i.e., two endowment
properties are associated with each component: a capacity c and a recovery improvement r∗.
Each component i ∈ {1, ..., 8} is characterized by (ai; ji) = (ci, r∗

i ; ji) ∈ R(1×2) × {1, 2}.
System performance and resilience are analyzed for a time window [0, T ]. The interval is
partitioned into u parts by the time points 0 = t0 < · · · < tu−1 < tu = T . System performance
Q(t) is defined as a piecewise constant stochastic process that evaluates the ratio of the destination
flow and the initial flow at each time point, i.e.

Q(t) = v(th)
w

with t ∈ [th, th+1). (2.10)

We assume that partition is equidistant, i.e. ∆t = th+1 − th = T
u ∀h. The specification of a

notion of system performance is, of course, not uniquely determined by the system; instead,
alternative choices may be analyzed simultaneously and should thereby be carefully selected to
enable suitable resilience analysis for the intended decision-making process.
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The flow for a given endowment (A; z) is simulated as follows: at each time point th, the flow of
the entire network is computed as follows. The flow starts at the source node and runs iteratively
by means of a node-by-node breadth-first search through the entire network up to the destination
node. Each node receives the partial flows from all edges leading into it and returns them to all
subsequent edges, obeying the following allocation rules: (i) the incoming flow is allocated to all
subsequent edges such that 30% runs into edges of type 1 and 70% runs into edges of type 2.
Among subsequent edges of the same type, the relevant flow is uniformly allocated; (ii) if the
capacity of a subsequent edge is exceeded, this edge is destroyed immediately and the flow is
instead reallocated to the remaining edges according to (i); (iii) if a node has no subsequent edge,
the flow emanating from this node is lost, i.e. the node becomes a sink.
After the flow has been computed at the time point th, the simulation proceeds to time-step
th+1 = th + ∆t: edges that have been destroyed at time th are removed from the network in
consecutive time-steps unless they are recovered; the process of recovery will be described below.
In addition, each edge can fail at random after the flow has been computed at time th and before
time th+1. At time th+1, the algorithm (i) – (iii) described earlier is then applied to the remaining
network.
The failure probability of the edges in the time interval (th, th+1),

P {Component i fails during (th, th+1)} = ∆t · λi(th), (2.11)

depends on the utilization of the maximum edge capacity caused by the flow; letting vi(th) be
the current flow of the edge i, ci its capacity, and β > 0 a mitigation factor, we set

λi(th) = β · vi(th)
ci

. (2.12)

As discussed by Ayyub [6], multiple causes and processes can lead to failures. In this illustrative
example and in applications in later sections, we consider only immediate failures due to overload
or random impacts; failure might also occur due to a loss of performance in time, e.g., by aging.
After failure, each destroyed edge is assumed to be immediately recovered to the original
performance level after a certain number of time-steps

r = rmax − r∗ with r∗ < rmax, (2.13)

where rmax is an upper bound for number of time-steps for recovery and r∗ is a reduction specific
to the component. Since each time-step has a length of ∆t = T

u , the duration of the recovery
process is r · T

u . This recovery model corresponds to a one-step recovery profile; as discussed
before in the context of failure profiles, various characteristic profiles of recovery in time are
possible as well, cf., Refs. [6, 10].
In the context of our model, the simulation procedure is executed consecutively for all time
points, resulting in a single path of the performance process t 7→ Q(t) over the time interval
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Figure 2.4: Monte Carlo sample average of the system performance Q(t) for the flow network shown in Fig. 2.3,
considering the following model and simulation parameter values: rmax = 21, r∗

i = 11 for all edges, ci = 12 for all
edges of type ji = 1, ci = 8 for all edges of type ji = 2, β = 0.025, u = 100, ∆t = 0.01 .

[0, T ]. A sample average of the system performance as a function of time T obtained from a
Monte Carlo simulation is exemplarily illustrated in Fig. 2.4. The probabilistic resilience metric
given in Eq. 2.2 can, of course, also be computed as a suitable average of Monte Carlo samples.
When analyzing the resilience of the system, an important task consists in determining the set of
all endowment configurations (A; z) that lead to a prescribed acceptable level of system resilience.
The numerical procedure is computationally expensive, but tractable due to the grid search
algorithm by Feinstein et al. [245]. In addition, the problem is also simplified if restrictions are
imposed on the matrix A via a suitable function gz where z denotes the vector of types; this was
discussed in Sec. 2.2.3.
To illustrate this procedure in the context of a flow network model, we fix the vector of types
z ∈ {1, 2}8 for the eight edges. Figure 2.3 provides, for example, z = (2, 1, 2, 1, 2, 2, 1, 2)⊤.
We assume that the constraint function gz captures the following restrictions: (a) recovery
improvements r∗

i are fixed and equal for all components i. (b) Capacities ci are a function of
the type ji of the components i, i.e., if two components are of the same type, they possess the
same capacity. We explore a range of capacities in order to separate acceptable and inacceptable
pairs. Figure 2.5 provides an example how the results of the grid search algorithm could look like.
The blue dots signify the acceptable pairs of capacities of the two types of components, whereas
red dots are inacceptable pairs. Acceptable pairs satisfy the desired resilience criterion, while
inacceptable pairs do not. Obviously, the computation of the systemic risk measure significantly
facilitates decision-making.
Additionally, the procedure allows the integration of monetary aspects into any decision process
that is focusing on the resilience of the system. An important question concerns the identification
of a least expensive configuration that is acceptable with respect to the chosen resilience criterion.
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Figure 2.5: Acceptable parameter pairs are marked as blue, filled dots; least expensive acceptable pairs are
marked as blue, filled dots that are highlighted in green.

If increasing the endowment values is costly, a least expensive solution will always be at the
boundary between the red and the blue area. If the price of the endowments is linearly increasing,
prices define a normal vector to this boundary that characterizes the least expensive acceptable
configurations on the boundary, as illustrated by the green points in Fig. 2.5. Finding the least
expensive configurations corresponds to efficient allocation rules as introduced by Feinstein et al.
[245].

2.4 Multistage high-speed axial compressor

Gas turbines are a highly important technology employed in industrial application, e.g., for
electricity production, as well as in the military and transportation sector, e.g., as component of
aircraft propulsion systems. In particular, axial compressors are one of the key components of
gas turbines. For economic and safety reasons, it is of the utmost importance that they are as
resilient as possible. In order to illustrate how the decision-making method developed in this
paper allows for an analysis of the financial burden of increasing resilience and for an optimal
choice between different instruments to enhance resilience, our method is applied to a functional
model of an axial compressor.
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Figure 2.6: Functional model of the multi-stage high-speed axial compressor.

2.4.1 Model

In a previous work by one of the authors of this paper, developed within the Collaborative
Research Centre 871, funded by the German Research Foundation [251], a functional model of
an axial compressor was created as the foundation for a reliability analysis. This model has been
developed to represent the reliability characteristic and functionality of the four-stage high-speed
axial compressor of the Institute for Turbomachinery and Fluid Dynamics at Leibniz Universität
Hannover. Detailed information about this axial compressor is provided in Refs. [252–254].
The model captures the influence of the roughness of the blades in the individual stator and rotor
rows, alternately connected in series, on the performance of the axial compressor, namely, on the
total-to-total pressure ratio and on the total-to-total isentropic efficiency. This functional model
of the axial compressor has been assembled by applying a sensitivity analysis and identifying
the relative important indices from an aerodynamic model of the compressor. The network
representing the functional model is shown in Fig. 2.6. Each component of the reliability-based
model represents one of the rotor blade rows (R1 - R4) or stator blade rows (S1 - S4). The
arrangement of the components was chosen according to the effect of blade roughness on the
two performance parameters of the axial compressor. More specifically, an interruption between
start and end means a performance variation of at least 25%, corresponding to a nonfunctional
compressor. This defines the system performance Q(t) of the functional model for the subsequent
application of the resilience decision-making method. The system performance is determined at
each time point th and is 1 if there is a connection from start to end and 0 if this connection
is interrupted. More detailed information on the functional model and its formulation can be
obtained from Ref. [251].
For the analysis, as components, we do not distinguish between the stator blade rows and the
rotor blade rows and enumerate them by i ∈ {1, . . . , 8}. Further, each of them is assigned to the
same component type, i.e., it is ji = 1 ∀i ∈ {1, . . . , 8}, and we therefore simplify the notation by
(ai; ji) = (ai; 1) = ai ∀i ∈ {1, . . . , 8}. Each row, i.e., each component of the functional model,
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is assumed to be characterized by two endowment properties, a roughness resistance re and a
recovery improvement r∗, so that a component is fully described by ai = (rei, r∗

i ). Both, the
roughness resistance rei and the recovery improvement r∗

i of each row i are assumed to be
functions of the type ji, i.e., rei = rei′ , r∗

i = r∗
i′ if ji = ji′ and are therefore in this case study

equal for all components. This restriction can be captured by a suitable constraint function gz,
cf., Sec. 2.2.3.
It should be noted that, in order to improve the roughness resistance of a blade, techniques
that counteract the roughening of the surface are required. However, such techniques are not
clearly identifiable and readily available at the moment. Within the scope of this example, the
application of methodologies leading to an improvement of the resistance, e.g., by applying
coating techniques, can nevertheless still be envisioned for the scope of the analysis. As an
example, in areas not inherent with the mechanical resistance, the principle of blade coatings is
already extensively employed, e.g., in the reduction of heat transfer from the gas flow into the
blades by means of thermal coatings [255].
Each component of the functional model can fail at random after the system performance has
been computed at time th. A failed component is treated as no longer present in the model
and does not contribute to the overall system performance at time th+1 and all subsequent time
points anymore until it is fully recovered. The failure probability of a component i in the time
interval (th, th+1) is assumed to be constant in time, cf., Ref. [251], and is given by

P {Component i fails during (th, th+1)} = ∆t · λi (2.14)

with
λi = 0.8− 0.03 · rei, (2.15)

where λi is the time-independent failure rate. An increase of the roughness resistance of a row
of blades will reduce the degradation of the surface, and thus, the corresponding failure rate
λi. In contrast to the flow model in Sec. 2.3, in the functional model of the axial compressor, a
component can fail exclusively at random.
If a component i failed, its functionality is assumed to be fully recovered after a number of
time-steps according to Eq. 2.13. Single-step failure and recovery profiles are assumed in this
application (cf., Sec. 2.3).

2.4.2 Costs of endowment properties

The optimal endowment properties are related to the quality of the components, and an increase
in their production quality is associated with large costs. This should be taken in to account
in the decision-making process. As discussed in Ref. [256], an increase of the reliability of
components in complex networks might be associated with an exponential increase in their costs,
and in our analysis, we will make such an assumption.
The endowment property “roughness resistance” affects the failure rate of the blades of a row,
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Table 2.1: Parameter values for the resilience decision-making method for the functional model of the multi-stage
high-speed axial compressor.

Parameter Scenario
Number of Rotor/Stator blade rows l 8
Acceptance threshold α 0.8
Number of time steps u 200
Length of a time step ∆t 0.05
Maximum recovery time rmax 21
Recovery improvement r∗ r∗

i ∈ {1, ..., 20}
Roughness resistance re rei ∈ {1, ..., 20}
Recovery improvement price price∗ 600e
Roughness resistance price pricere 500e

cf., Eqs. 2.14 and 2.15. Better “roughness resistance” improves reliability, and we assume that
its total costs equal

costre =
8∑

i=1
pricere · 1.3(rei−1), (2.16)

where rei is the “roughness resistance” value of component i and pricere a common basic price
that does not depend on i in this case study. In a similar way, an exponential relationship is
assumed for the cost associated with recovery improvement:

cost∗ =
8∑

i=1
price∗ · 1.3(r∗

i −1). (2.17)

The total cost “cost” of an endowment is the sum of these costs:

cost = costre + cost∗. (2.18)

2.4.3 Scenario

In order to apply the decision-making method for resilience-enhancing endowments to the
multistage high-speed axial compressor, the model parameter and simulation parameter values,
shown in Table 2.1, are considered. A resilience acceptance threshold of α = 0.8, an arbitrarily
selected number of u = 200 time-steps as well as an arbitrarily selected time-step length of
∆t = 0.05 are assumed. We first determine the set of all acceptable endowments corresponding to
a resilience value of at least Res = 0.8 over the considered time period. Second, in practice, any
improvement of the axial compressor blades is associated with costs; thus, the least expensive
acceptable endowment is characterized as well, denoted by Â. The roughness resistance re and
the recovery improvement r∗ are explored over rei ∈ {1, ..., 20}, r∗

i ∈ {1, ..., 20} ∀i ∈ {1, . . . , l}.
These values can be interpreted as increasing quality levels. In terms of recovery, this leads to a
recovery time for the components of maximum 20 time-steps to a minimum of one time-step,
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Figure 2.7: Numerical results of the grid search algorithm for the functional model of the axial compressor with
explored roughness resistance/recovery improvement values.

depending on the recovery improvement value r∗
i of each component.

The scenario was simulated on the basis of the functional model, following the procedure described
in Secs. 2.2.3 and 2.2.4. Figure 2.7 shows the results of the grid search algorithm. The blue, filled
dots are the acceptable pairs of roughness resistance and recovery improvement. In terms of
system resilience, the impact of the quality of recovery improvement and the quality of the blade
coatings can be compared. For example, for recovery improvement values of r∗

i ≥ 15 time-steps,
only the minimum roughness resistance value of rei = 1 is necessary in order to achieve the
desired level of system resilience.
By applying the grid search algorithm [245], only about 10% of the possible pairs of roughness
resistance and recovery improvement values had to be tested to determine R(Y ). As described
in Sec. 2.3, the least expensive endowment is an element of the boundary of R(Y ). Taking
into account the base prices in Table 2.1, the least expensive endowment is characterized by a
roughness resistance of rei = 8 and a recovery improvement of r∗

i = 13 for each component. In
Fig. 2.7 the corresponding pair is highlighted in green. According to Eq. 2.17, its cost is 136 930e.

2.5 Berlin’s U-Bahn and S-Bahn system

Berlin’s subway U-Bahn, suburban train S-Bahn, trams, and buses carry more than 1.5 billion
passengers each year. Approximately, two-thirds of these passengers are transported via the
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S-Bahn and U-Bahn rails ([257], [258]). These are the most used public transport systems in
Berlin and of utmost importance for Germany’s capital. Obviously, key infrastructures of high
social and economic relevance require a large degree of resilience. The method developed in this
paper will be applied to a model of the Berlin subway and suburban train system, with the
aim of examining suitable resilience-enhancing modifications. Our methodology could also be
applied to assess the resilience of new systems that are still in their design phase. This provides
an opportunity to characterize ex ante adequate system requirements in terms of reliability,
robustness and regenerative capacity.

2.5.1 Model

The U-Bahn and S-Bahn public transportation systems in Berlin are interconnected via multiple
train stations. As described in Ref. [250], they may thus be considered as one single public
transport network, in the following called “metro network”. Zhang et al. [259] explain how a
metro network can be mapped into a topological graph: train stations correspond to the nodes
and the connecting railway lines to the edges of the graph. For simplicity, we map parallel railway
lines between two stations to one single undirected edge. In this way, the complexity of the metro
network can be significantly reduced. In the case of the Berlin metro network, this procedure
leads to a topological graph with 306 nodes and 350 edges. This representation of the U-Bahn
and S-Bahn system is shown in Fig. 2.8.
We begin our analysis with the definition of a suitable metric of the system performance of
the network, as explained in Sec. 2.2.3. Zhang et al. [260] present resilience assessments for
large-scale metro networks and apply their approach to the Shanghai metro network. They
suggest that the connectivity between the individual stations is an essential criterion for assessing
metro operations. Their approach employs the characteristics of topographic networks in order
to capture resilience, e.g., the characteristic path length, the network-clustering coefficient, the
average node degree, and the network efficiency.
Network efficiency, as described by Latora & Marchiori [261], is a quantitative indicator of the
network connectivity:

Ef = 1
N(N − 1)

∑
i ̸=j

1
dij

, (2.19)

with N being the number of nodes in the network and dij being the path length between node i

and node j, i.e., the shortest distance between these nodes. We use the network efficiency Ef

as system performance of the Berlin metro network in each time point th, previously denoted
by Q(th). Zhan & Noon [262] and Dreyfus [263] provide a good overview of tools for efficiently
determining the path length dij between nodes, e.g., the algorithms of Floyd, Dijkstra’s, or
Bellman-Ford.
The node degree represents the number of nodes in the graph that have a direct connection to
the i-th node. In many useful random graphs, the distribution of node degrees follows a power
distribution, see, e.g., Barabási & Albert [264]. Figure 2.9 shows the relative frequencies of
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Figure 2.8: Topological network for the Berlin metro system.

the node degrees in case of the Berlin metro network which could be approximated by a power
distribution.
Metro stations are modeled as nodes of the network. We assume that each metro station i is
characterized by two endowment properties, (a) robustness roi and (b) recovery improvement r∗

i ;
a component i of type ji is described by a tuple (ai; ji) = (roi, r∗

i ; ji). Again both endowment
properties are assumed to be functions of their component type ji only, such that roi = roi′ and
r∗

i = r∗
i′ if ji = ji′ . These restrictions can again formally be captured by the constraint function

gz that explicitly describes the reduction of the dimension of the problem, cf., Sec. 2.2.3.
Metro stations fail at random. The failure probability for each component i is

P {Component i fails during (th, th+1)} = ∆t · λi(th) (2.20)

with
λi(th) = (1 + ki(th) · 0.2)− roi

romax
, (2.21)

where λi(th) is the failure rate at time th, ki(th) is the time-dependent number of direct neighbors
of the i-th metro station that are in a failed state at time th, roi is the robustness of the i-th
metro station, and romax is the maximum value of the robustness. As the robustness of a metro
station i increases, its failure rate λi(th) decreases. In the event of failure of a directly adjacent
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Figure 2.9: Relative frequency of node degrees for the metro network of Berlin.

metro station, its probability of failure increases; a rational for this assumption is that the load on
the considered station becomes larger which increases the likelihood of failure. This phenomenon
might potentially lead to cascading failures, cf., Refs. [265–267].
The second endowment property, the recovery improvement r∗

i , determines the time to recovery
after failure according to Eq. 2.13. Failed metro stations are not removed, but remain in the
set of metro stations; however, their node degree becomes 0 in the evolving network structure.
This assumption is important, since the computation and interpretation of network efficiency Ef

depends on the number of nodes; our case study relies on the fact that the number of nodes is
preserved. After recovery, all previous connections to other metro stations are restored, unless
these are in a state of failure. Our analysis focuses on determining the optimal endowments in
terms of resilience. This is in contrast to Zhang et al. [260] whose focus is – among other things –
the optimal order in which connections should be recovered.

2.5.2 Endowment property costs

Improving the endowment properties is costly. We again assume an exponential relationship.
The total cost of “robustness” for all stations is

costro =
∑

i

pricero
(roi;ji) · 1.2roi−1, (2.22)

where ji is the type of station i, its robustness is roi and its basic price of the endowment property
“robustness” is pricero

(roi;ji). The total cost of “recovery improvement” is given by

cost∗ =
∑

i

price∗
(r∗

i ;ji) · 1.2r∗
i −1, (2.23)
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Table 2.2: Parameter values for two scenarios of the decision-making method of the Berlin metro network.

Parameter Scenario 1 Scenario 2
Number of nodes l 306 306
Number of edges 350 350
Acceptance threshold α 0.8 0.8
Number of time steps u 100 100
Length of a time step ∆t 0.01 0.01
Maximum recovery time rmax 25 25
Maximum robustness romax 20 20
Number of metro station types 2 1
Recovery improvement r∗ r∗

i = 15 for ji ∈ {1, 2} r∗
i ∈ {1, ..., 20}

Robustness ro roi ∈ {1, ..., 20} for ji ∈ {1, 2} roi ∈ {1, ..., 20}
Robustness price pricero

(roi;ji) pricero
(roi;1) = 1 000e pricero

roi
= 1 500e

pricero
(roi;2) = 2 000e

Recovery impr. price price∗
(r∗

i ;ji) price∗
(r∗

i ;ji) = 1 100e for ji ∈ {1, 2} price∗
r∗

i
= 1 100e

where ji is the type of station i, its recovery improvement is r∗
i and its basic price of the endowment

property “recovery improvement” is price∗
(r∗

i ;ji). The total cost cost(A;z) of an endowment (A; z)
is obtained as

cost(A;z) = costro + cost∗. (2.24)

2.5.3 Scenarios

We consider two different scenarios characterized by the simulation and model parameters in
Table 2.2. In both scenarios, we assume a resilience threshold of α = 0.8, a number of u = 100
time-steps, and a time-step length of ∆t = 0.01. The objective of the analysis is to characterize
suitable endowment allocations such that the metro network’s resilience is at least Res = 0.8.
We will also identify the least expensive acceptable endowments, denoted by (Â; z) in both cases.

Scenario 1

In the first scenario, each metro station is assigned to one of the two station types, namely,
“small” and “large”. The “small” metro stations i (type ji = 1) have only one or two direct
neighboring stations, i.e., a node degree of 1, 2, while the “large” metro stations i (type ji = 2)
have more than two direct neighboring stations, i.e., a node degree > 2, and are highlighted in
red in Fig. 2.8. Out of all stations, a total of 245 are of type 1 and 61 of type 2.
The endowment properties of all components depend on their type only. We vary robustness
with roi ∈ {1, ..., 20} for all i. The recovery improvements of both component types are fixed
and equal r∗

i = 15 for all components i independent of their types.
Figure 2.10 shows the results of the grid search algorithm for scenario 1. The blue, filled dots
signify the pairs of robustness values that lead to acceptable endowments. In terms of system
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Figure 2.10: Numerical results of scenario 1 of the Berlin metro network, varying robustness.

resilience the robustness of the “small” metro stations is more important than the one of the
“large” stations in this case study. For example with large robustness values for the “small”
stations, i.e., roi ≥ 18 for ji = 1, acceptability may be achieved even with a minimal robustness
value of roi = 1 of “large” stations, i.e. ji = 2. The slope of the almost linear boundary indicates
that in order to compensate for the reduction of one robustness unit of the endowments of the
“small” stations, an increase of approximately 1.7 robustness units of the endowments of the
“large” stations is necessary.
This observation can be explained as follows: first, the number of “small” stations (245) is
significantly larger than the number of “large” stations (61), and thus, their overall influence is
large. Second, “small” stations are often arranged in chains. If a station within such a chain
fails, all stations further out of town are automatically cut off from the main network, which has
a major impact on network efficiency.
Thanks to the grid search algorithm only about 10% of all pairs of robustness values had to
be tested to determine the set of all accepted endowments. As described in Sec. 2.3, the least
expensive endowment is an element of the boundary of the acceptable endowment allocations.
For the parameters in Table 2.2, the least expensive endowment corresponds to a robustness
of roi = 10 for all “small” stations i of type ji = 1 and a robustness of roi = 13 for all “large”
stations of type ji = 2. The corresponding pair of parameters is highlighted in green in Fig. 2.10.
The total endowment cost, computed according to Eq. 2.24, equals 6 673 579e.
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Figure 2.11: Numerical results of scenario 2 of the Berlin metro network, varying robustness/recovery-improvement.

Scenario 2

In the second scenario, all metro stations are assigned to the same station type, and (ai; ji)
can simply be written as ai. We vary both recovery improvement and robustness, i.e. r∗

i , roi ∈
{1, ..., 20} ∀i.
Figure 2.11 shows the results of the grid search algorithm for scenario 2. The blue, filled
dots signify the pairs of robustness and recovery improvement values that lead to acceptable
endowments. The application of the grid search algorithm leads to a similar reduction of the
computing effort as in scenario 1. For the parameters in Table 2.2 the least expensive endowment
corresponds to robustness roi = 14 and recovery improvement r∗

i = 11 for all stations i; this
is highlighted in green in Fig. 2.11. Its cost is computed according to Eq. 2.24 and equals
6 995 127e.

2.6 Conclusion

This paper introduces a procedure for decision-making in complex systems that enables the
optimal allocation of scarce resources to resilience-enhancing endowments. The methodology
integrates systemic risk measures with time-dependent and probabilistic resilience metrics. Our
approach is not limited to controls of the same type, but allows for a direct comparison of the
impact of heterogeneous controls on the resilience of the system, e.g., failure prevention and
recovery improvement arrangements, over any period of time. The system behavior itself may
depend on a wide variety of stochastic variables that influence its performance. Our method
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characterizes, in a first step, all acceptable endowments of system components that lead to a
desired level of resilience. In a second step, it is capable of incorporating monetary aspects into
the decision-making process and admits the identification of the least expensive controls. In
addition, we explain a grid search algorithm for systemic risk measures that significantly reduces
the required computational effort.
The suggested methodology is not limited to a certain type of networks. This paper illustrates
that the approach is easily adaptable and universally applicable. Examples in this paper include
technical systems such as axial compressors as well as infrastructure networks such as the Berlin
metro system. Many other applications are possible, thereby supporting decision-makers in
improving the complex systems of our modern society and increasing their resilience.
Future research may apply the suggested methodology to highly complex systems. In this paper,
many simplifying assumptions were made in order to be able to focus on the basic concepts
and to demonstrate the versatility of the approach in concrete examples. More challenging
problems, e.g., higher dimensions of the parameter space, are left to future developments. From a
conceptional point of view, real-world problems involve multiple objectives and are not limited to
a finite time horizon. Future work should not only focus on system resilience and the costs of the
controls but also on long-term effects, such as different expected profits under a modified system
resilience. Comprehensive decisions require a deep understanding of the tradeoff between the
costs and the gains of resilience. Further work will also have to address the balancing between
monetary and safety-related criteria for decision-making. The proposed method provides powerful
instruments for one important aspect: the characterization of acceptable resilience-enhancing
endowments and the identification of the most cost-efficient allocation. This tool box will be a
prerequisite for future answers to many challenging questions.
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Abstract

Complex systems, such as infrastructure networks, industrial plants and jet engines, are of paramount importance
to modern societies. However, these systems are subject to a variety of different threats. Novel research focuses not
only on monitoring and improving the robustness and reliability of systems, but also on their recoverability from
adverse events. The concept of resilience encompasses precisely these aspects. However, efficient resilience analysis
for the modern systems of our societies is becoming more and more challenging. Due to their increasing complexity,
system components frequently exhibit significant complexity of their own, requiring them to be modeled as systems,
i.e., subsystems. Therefore, efficient resilience analysis approaches are needed to address this emerging challenge.
This work presents an efficient resilience decision-making procedure for complex and substructured systems.
A novel methodology is derived by bringing together two methods from the fields of reliability analysis and
modern resilience assessment. A resilience decision-making framework and the concept of survival signature
are extended and merged, providing an efficient approach for quantifying the resilience of complex, large and
substructured systems subject to monetary restrictions. The new approach combines both of the advantageous
characteristics of its two original components: A direct comparison between various resilience-enhancing options
from a multidimensional search space, leading to an optimal trade-off with respect to the system resilience and a
significant reduction of the computational effort due to the separation property of the survival signature, once a
subsystem structure has been computed, any possible characterization of the probabilistic part can be validated
with no need to recompute the structure.
The developed methods are applied to the functional model of a multistage high-speed axial compressor and
two substructured systems of increasing complexity, providing accurate results and demonstrating efficiency and
general applicability.
Keywords: Resilience, Decision-making, Survival signature, Reliability, Complex systems, Substructured systems.

3.1 Introduction

In today’s highly developed societies, complex systems, such as infrastructure networks, industrial
plants and jet engines are both ubiquitous and of paramount importance to the functioning of
these modern societies. It is evident that these systems are exposed to a variety of harmful
influences of natural, technical and anthropogenic origin. At the same time, as Punzo et al.
highlight in [17], “It is an undeniable fact that modern day systems are more integrated, more
interdependent, evolve at faster pace and, in a word, are more complex than the systems of the
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previous century [...].” Considering this high and increasing system complexity, it is impractical to
detect and prevent all potential negative impacts. Therefore, it is essential that new developments
in engineering focus not only on monitoring and improving the robustness and reliability of
systems, but also on their recoverability after adverse events [243]. The concept of resilience
encompasses these aspects: analyzing and optimizing robustness, reliability and recovery of
systems, from a technical and economic perspective [5, 7, 10]. Applying resilience to engineered
systems leads to a paradigm shift. Secure systems cannot solely rely on strategies to prevent
failures, but must include strategies for efficient recovery in the event of failure as well, see,
e.g., [11, 13].
In engineering, the concept of resilience has steadily gained popularity in recent years [17, 23, 24].
The notion of “resilience” appears in various fields such as ecology, economics, and psychology,
as well as in the context of mechanical systems, and is derived from the Latin word “resilire,”
which means “to bounce back.” The concept of resilience was first introduced by Holling in the
field of ecological systems [8]. Although several other definitions by various scientists followed,
most of them have certain key aspects in common that were already captured by Holling’s early
definition [53–57]. In [6], Ayyub provides a literature review and develops a comprehensive
definition of resilience in the context of complex systems based on the content of the Presidential
Policy Directive (PPD) on critical infrastructure security and resilience [62]. His definition
provides a solid foundation for quantifying resilience.
Numerous options exist for improving the resilience of complex systems. However, resources are
not unlimited and resilience cannot be increased at will. Therefore, it is essential not only to be
able to distinguish and weigh between a variety of different resilience-enhancing measures, but to
also consider their monetary aspects [240, 244]. In [268], Salomon et al. present a method for
identifying the most cost-effective allocation of resilience-enhancing investments by merging the
resilience metric of [86] and an adaptation of the systemic risk measure of [245]. Their approach
allows for a direct comparison of the effects of heterogeneous controls on the resilience of a system
over an arbitrary time period in a two-dimensional parameter space.
Additionally, current research in the context of resilience focuses on improved resilience quantifi-
cation measures, as proposed in [84], and overarching frameworks for stakeholder decision-making,
e.g., for transportation networks in the presence of seismic hazards [269]. For a comprehensive
literature review on resilience assessment frameworks that balance resources and performance,
see [270]. Other researchers recently studied the complexity of realistic infrastructure systems,
failure consequences, recovery sequences, and varying external effects. In [271], for example, the
authors revealed the vast complexity of modern critical infrastructures and their multi-factorial
nature as cyber-human-physical systems and studied appropriate modeling and resilience analysis
approaches. Further, the works [272] and [273] are concerned with the effects on decision-making
when considering stakeholder preferences or enhancement and recovery strategies. External
effects and challenges arising from climate change were studied in the context of resilience, e.g.,
in [274].
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Various technical and infrastructural systems in today’s society are large and complex in nature.
In particular, when system components have such complexity that they themselves need to be
modeled as systems, so-called systems of systems [275, 276], resulting in a significantly high
number of components. This is in accordance to Batty, who highlights “A very simple definition
of a complex system is ‘a system that is composed of complex systems”’ [277]. As each of the
subsystems affects the top-level system under consideration, this causes a significant increase in
computational effort for system analysis and constitutes a major challenge [278, 279]. Therefore,
it is particularly important to have tools capable of efficiently assessing all three resilience phases.
Typically the reliability phase involves the most system evaluations, in particular when various
different system configurations need to be assessed that have an impact on the probability
structure of the subsystems and thus on the overall system. Therefore, a particularly efficient
analysis approach is required for this phase.
An efficient approach to modeling the reliability of systems with multiple component types is
provided by the concept of survival signature, introduced and discussed in [149, 153] by Coolen
and Coolen-Maturi. Its major benefit over conventional approaches is the separation of the
system structure from the probabilistic properties of the system components. Once the system
structure has been analyzed, any possible probabilistic characterization can be tested without
having to reevaluate any system states. Consequently, this approach reduces the computational
cost of repeated model evaluations typically required in design and maintenance processes [114].
Current research is focused on multi-state components [114], common cause failures [159], multiple
failure modes and dependent failures [158], approximation techniques for large systems [155] and
reliability analysis in consideration of imprecision [152].
In this paper, theoretical fundamentals are summarized and the resilience decision-making
method introduced in [268] is extended to multidimensional parameter spaces. Next, a novel and
encompassing methodology is developed, consisting of its two major ingredients, the extended
resilience decision-making method and the survival signature. This allows for an efficient and
multidimensional resilience analysis of complex, large and substructured systems. The extension
and novel methodology are then applied to a functional model of a multistage high-speed axial
compressor, an arbitrary complex system as well as the U-Bahn and S-Bahn system of Berlin, to
prove general applicability.

3.2 Resilience decision-making

Assessing the resilience of complex systems subject to technical or monetary constraints requires a
sophisticated methodology to efficiently derive optimal decisions. In [268], Salomon et al. propose
a versatile approach with three key elements, including a metric for resilience quantification,
an adapted systemic risk measure, and a grid search algorithm that increases computational
efficiency.
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3.2.1 Resilience quantification

A suitable quantitative measure of resilience is a fundamental prerequisite for assessing resilience
in engineering. In [12, 23, 73], the authors provide a comprehensive overview of resilience metrics
in a systemic context. While Bergström et al. emphasize the general concept of resilience in the
current literature as a critical link between increasing complexity of systems and their risk [23],
Sun et al. focus on resilience of infrastructures and highlight the close link between resilience
and functionality respectively performance measures [73]. Hosseini et al. proposed a general
scheme for categorizing resilience quantification approaches [12]. In summary, performance-based
resilience metrics are most widely used. These determine the resilience of a system by comparing
its performance before and after a destructive event. Further subcategories relate to time
in-/dependence and characterization as deterministic or probabilistic processes.
According to [76] and [12], performance-based and time-dependent metrics are capable of
considering the following system and transition states before and after a disruptive event:

• The original stable state, i.e., the duration until a disruptive event occurs, relying on the
reliability of the system.

• The system vulnerability, represented by a loss of performance after the occurrence of
a disruptive event and the robustness counteracting the vulnerability and mitigating
this performance loss. Both are governed by degradation characteristics of the system
components.

• The system recoverability, characterized by the disrupted state of the system and its
recovery to a new stable state.

An illustration of these phases and transitions is shown in Fig. 3.1. The performance level of the
new stable state might differ from the performance level of the original state.
The area of performance loss between original and new stable state in Fig. 3.1 refers to the
well-known principle of “resilience triangle” introduced by Bruneau et al. [48], as illustrated in
Fig. 3.2. In their work, Bruneau et al. proposed a time-dependent, performance-based, and
deterministic metric for resilience loss of a community due to seismic disasters as follows. Let t0

be the time a disruptive event occurs and t1 be the time of completed recovery. Further, Q(t)
denotes the quality of the community infrastructure at time t, specifying the type of system
performance. Then, the metric is defined as:

RBr =
∫ t1

t0
[100−Q(t)]dt. (3.1)

Note that the system performance is compared with a time-independent ideal performance of
100 in the considered interval of performance loss. The approach forms a strong basis for several,
later proposed metrics in various contexts, see [94–96].
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Figure 3.1: In the evolution of a system before and after the impact of a disruptive event, different phases can be
distinguished: (i) the original stable state, (ii) disruptive impact, vulnerability, robustness, (iii) disrupted state
and recovery; adapted from [76].
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Figure 3.2: Resilience triangle; adapted from [48].

In [268], Salomon et al. utilize the probabilistic and time-dependent metric developed by Ouyang
et al. [86]. The metric is defined as the expected ratio of the integral over the actual system
performance Q(t) from 0 to a given time T and the corresponding integral of a target system
performance T Q(t) over the same time interval:

Res = E[Y ], (3.2)

where
Y =

∫ T
0 Q(t)dt∫ T

0 T Q(t)dt
. (3.3)

Thereby, the system performance Q(t) is a stochastic process. The target system performance
T Q(t) can be generally considered as a stochastic process as well, however, for simplicity, T Q(t)
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may be assumed as a non-random and constant quantity T Q. Assuming that the actual system
performance does not exceed the target performance, the metric takes values between 0 and 1.
For Res = 1, the system performance is equal to the target system performance, while Res = 0
indicates that the system is not functioning during the entire period under consideration.

3.2.2 Adapted systemic risk measure

In [245], Feinstein et al. proposed a general approach to measuring systemic risk, e.g., pursued
in finance [247]. In [268], this risk measure was adapted and extended for the application to
engineering systems as summarized in this section. The adapted systemic risk measure comprises
a descriptive input-output model and an acceptance criterion that represents normative resilience
standards of a regulatory authority.
Let a system be given with m components i ∈ {1, . . . , m} of type ki ∈ {1, 2, . . . , K} ⊆ N with e

properties that influence the system performance Q(t). These properties, hereafter referred to as
"endowment properties", affect system resilience and can be improved through capital allocations.
Then, the component i is characterized by

(ai; ki) = (ηi1, ηi2, . . . , ηie; ki) ∈ R(1×e) × N, (3.4)

where (ηi1, ηi2, . . . , ηie) are the numerical values of the e relevant endowment properties. Conse-
quently, the entire system can be described by a tuple, consisting of the matrix A ∈ R(m×e) and
the column vector z ∈ Nm that captures the component types:

(A; z) =


η11 η12 · · · η1e; z1

η21 η22 · · · η2e; z2
...

...
...

...
ηm1 ηm2 · · · ηme; zm

 . (3.5)

The system under consideration is defined via a descriptive, non-decreasing input-output model
Y = Y(A;z) that is specified by this tuple and relates endowment properties to system performance.
With respect to Eq. 3.2, the model output is specified as Y = Y(A;z) dependent on the current
endowment allocation (A; z).
Further, consider the following specific acceptance set

A = {X ∈ X | E[X] ≥ α} (3.6)

for a normalized model output X and its expected value E[X] with α ∈ [0, 1]. Correspondingly,
the risk measure is defined as

R(Y ) =
{

A ∈ Rm×e | Y(A;z) ∈ A
}

, (3.7)

that is the set of all endowment property allocations A such that the system reaches a resilience
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value greater or equal to α.
In practice, it might be necessary to impose structural restrictions on the matrix in Eq. 3.5. For
example, consider the case that any component i of a specific type should be configured in the
same way, i.e., the row vectors ai are claimed to be equal. In [245], Feinstein et al. capture such
constraints by monotonously increasing functions gz : Rp → R(m×e), a′ 7→ (A; z) with z ∈ Rm

denoting the component types. Such a function maps a lower-dimensional set of parameters
a′ ∈ Rp to the system description given in Eq. 3.5.

3.2.3 Grid search algorithm and the curse of dimensionality

According to [245] and [268], the measure of systemic risk might be determined via a combination
of a grid search algorithm and stochastic simulations. The grid search algorithm operates in the
space of all possible endowments, while stochastic simulations are employed to evaluate system
resilience for the endowment allocations according to the grid search algorithm. The probabilistic
resilience metric (Eq. 3.2 and Eq. 3.3) is estimated by means of Monte Carlo simulation. The
grid search algorithm given in [245] consists of two phases and can be recapitulated as follows:

(I) Search along the main diagonal of the space of endowment properties until the first
acceptable combination is found based on the adapted systemic risk measure.

(II) Identify the Pareto front between the set of acceptable endowments R(Y ) and its comple-
ment R(Y )c starting at the first accepted allocation.

The algorithm allows to compute the entirety of R(Y ) while significantly reducing the computa-
tional cost due to the assumed monotonicity property of the input-output model Y(A;z) given in
Sec. 3.2.2. For a detailed description of a grid search algorithm for two dimensional problems,
see [245], Ch. 4.
In [268] this algorithm was included in the resilience decision-making method and applied to case
studies with two dimensional parameter spaces. In their work [245], Feinstein et al. point out
that the grid search algorithm is applicable to higher dimensional problems “[. . . ] at the price of
substantially larger computation times and required memory capacity.”. However, when analyzing
real technical systems, it is often inevitable to consider a large number of influencing factors
and thus a higher dimensionality of the parameter space. Therefore, in Sec. 3.5, an extension of
the previously proposed resilience decision-making methodology to n-dimensional problems is
applied to a four-dimensional functional model of an axial compressor and, in Sec. 3.7, as part of
the novel methodology proposed in Sec. 3.4, it is applied to the U-Bahn and S-Bahn system of
Berlin, addressing a five-dimensional problem.

3.3 Concept of survival signature

Introduced in [149], the concept of survival signature allows to compute the survival function of
a system with multiple component types and attracted increasing attention for its advantageous
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features over the last decade. One of its merits is the high efficiency in repeated model evaluations
due to the separation of the topological system reliability and the probability structure of system
component failures. At the same time, the survival signature radically condenses information
on topology. System components are of one type if their failure times are independent and
identically distributed (iid) or exchangeable. This differentiation is important when it comes to
modeling dependent component failure times [153]. A brief recap of the concept is provided in
the following subsections. Detailed information about both the derivation of the concept and
further applications can be found in [149, 153, 154].

3.3.1 Structure function

Let a system be given consisting of m components of a single type. Further, let
x = (x1, x2, . . . , xm) ∈ {0, 1}m define the corresponding state vector of the m components,
where xi = 1 indicates a functioning state of the i-th component and xi = 0 indicates a non-
functioning state. Then, the structure function ϕ is a function of the state vector x defining the
operating status of the considered system: ϕ = ϕ(x) : {0, 1}m → {0, 1}. Accordingly, ϕ(x) = 1
denotes a functioning system and ϕ(x) = 0 specifies a non-functioning system.
Suppose that a system consists of components of more than one type, i.e., K ≥ 2. Then,
the quantity of system components is denoted by m = ∑K

k=1 mk, where mk is the number of
components of type k ∈ {1, 2, . . . , K}. Correspondingly, the state vector for each type is given
by xk =

(
xk

1, xk
2, . . . , xk

mk

)
.

3.3.2 Survival signature

The survival signature summarizes the probability that a system is functioning as a function solely
depending on the number of functioning components lk per component type k ∈ {1, 2, . . . , K}.
Assuming the failure times within a component type to be iid or exchangeable, the survival
signature is defined as:

Φ (l1, l2, . . . , lK) =

 K∏
k=1

(
mk

lk

)−1
× ∑

x∈Sl1,l2,...,lK

ϕ(x), (3.8)

where
(mk

lk

)
corresponds to the total number of state vectors xk of type k and Sl1,l2,...,lK denotes

the set of all state vectors of the entire system for which lk = ∑mk
i=1 xk

i . Consequently, the
survival signature depends only on the topological reliability of the system, independent of the
time-dependent failure behavior of its components that is described in Sec. 3.3.3. For more
information on claimed exchangeability in practice, see [152, 153].

3.3.3 Probability structure

The probability structure of system components specifies the probability that a certain number of
components of type k is functioning at time t. Accordingly, Ck(t) ∈ {0, 1, . . . , mk} represents the
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number of components of type k in a functioning state at time t. Further, assume the probability
distribution for the failure times of type k to be known with Fk(t), denoting the corresponding
cumulative distribution function. Then,

P

(
K⋂

k=1
{Ck(t) = lk}

)
=

K∏
k=1

P (Ck(t) = lk)

=
K∏

k=1

(
mk

lk

)
[Fk(t)]mk−lk [1− Fk(t)]lk

(3.9)

describes the probability structure of the system, regardless of its topology.

3.3.4 Survival function

The survival function describes the probability of a system being in a functioning state at time t

and results from Sec. 3.3.2 and 3.3.3 as:

P (Ts > t) =
m1∑

l1=0
. . .

mK∑
lK=0

Φ (l1, l2, . . . , lK)× P

(
K⋂

k=1
{Ck(t) = lk}

)
, (3.10)

where Ts denotes the random system failure time. Clearly, the concept of survival signature
separates the time-independent topological reliability and the time-dependent probability struc-
ture. Thus, the survival signature, calculated once in a pre-processing step, can be reused for
further evaluations of the survival function, which are necessary, for example, when analyzing a
variety of different system configurations that affect the probability structure given a constant
system topology. The survival signature can be stored in a matrix, thereby summarizing the
topological reliability. The utilization of this matrix circumvents the repeated evaluation of the
often computationally expensive structure function. Note that it is precisely these properties of
the survival signature concept that provide an important advantage over conventional methods
when system simulations need to be performed repeatedly [114]. In terms of computational
demand, Monte Carlo simulation may be used to approximate the survival signature of large
systems [155].

3.4 Proposed methodology

In this section, the proposed methodology for computationally efficient resilience analysis in the
context of complex substructured systems is illustrated. The approach integrates the concept of
survival signature described in Sec. 3.3 into the resilience decision-making framework recapped in
Sec. 3.2. First, the preparation of the complex system by means of a formalized substructuring
approach is presented. Second, the novel methodology is proposed.
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v = 1 v = 2 v = 3 = L v = 4 = L+1 

Figure 3.3: Illustration of the proposed substructuring concept.

3.4.1 Definition of substructured systems

Assume a substructured system S that is composed of a set of subsystems and a set of compo-
nents. The subsystems can again be comprised of further subsystems and components. This
substructuring approach can be conducted for L ≥ 1 levels of subsystems, where only components
exist at level L + 1. Components are directly associated with probability distributions describing
their time-dependent probabilistic behavior. Note that the level 1 relates to the overall system
level. Figure 3.3 illustrates the substructuring concept.
Let there be nv subsystems Sv

1 ,Sv
2 , . . . ,Sv

nv and mv components Cv
1 , Cv

2 , . . . , Cv
mv at level v =

1, 2, . . . , L. During the analysis, the information on component behavior is propagated from level
L + 1 to level 1 before determining the state s0 of the overall system S in dependence on various
topological (sub)system structures. In the context of the resilience framework in Sec. 3.2, the state
s0 ∈ S ⊆ R+ with state space S of the overall system S corresponds to the system performance
Q(t) that is basis for the resilience measure Res, see Eq. 3.2. Note that multiple resilience analyses
might be conducted for various Q(t). The quantity s0 indicates system functionality from an
ordered perspective and depends on the functionality of its directly subordinate subsystems and
components. Given level v = 1, . . . , L, the dependency of the (sub)system state sv

j on the state
vector xv

j is modeled via the mapping sv
j = ϕv

j (xv
j ) ∈ {0, 1}, where ϕv

j is a structure function, i.e.,
a topological rule for system functioning as presented in Sec. 3.3.1. The state vector is introduced
as xv

j = (sw
1 , sw

2 , . . . , sw
nw

j
, cw

1 , cw
2 , . . . , cw

mw
j

) for the j-th subsystem at level v with j = 1, 2, . . . , nv

and w = v + 1. Thereby, sw
p , cw

q ∈ {0, 1} denote the functionality of the p-th subsystem and
q-th component, respectively. Further, nw

j is the number of subsystems at level w contained in
subsystem j at level v and ∑nv

j nw
j = nw. Analogously, mw

j has the equivalent interpretation for
components. At level v = 1, the notation reduces to s0 = ϕ0(x0). The state vectors at level
L comprises only component states as xL

j = (cw
1 , cw

2 , . . . , cw
mw

j
) with j = 1, 2, . . . , nL, cw

i ∈ {0, 1}
and w = L + 1.
The probability distributions governing the component states cv

i are assumed to be known as
CDF Fk(t) for given component type k according to Sec. 3.3.3. Note that different subsystems
might rely on the same component types. The assumption sv

j , cv
i ∈ {0, 1} is due to the fact that
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the concept of survival signature is based on a binary-state consideration. However, multiple
researchers work on extensions of the concept to a discrete or continuous multi-state consideration,
see e.g. [165, 216, 280, 281].

3.4.2 Extension of the adapted systemic risk measure

In the resilience analysis of complex, substructured systems, it may be important that endowments
can be formally assigned not only to system components but to other system structures, such as
subsystems. To enable the incorporation of such endowment assignments in the novel methodology,
the adapted systemic risk measure, cf. Sec. 3.2.2, is extended as follows.
Let a system, in addition to its m components, be given with a total of n subsystems j ∈ {1, . . . , n}
of bj ∈ {1, 2, . . . , B} ⊆ N types over all system levels L with d endowment properties that influence
the system performance Q(t). Then, the subsystem j is characterized by

(Sj ; bj) = (ξj1, ξj2, . . . , ξjd; bj) ∈ R(1×d) × N, (3.11)

where (ξj1, ξj2, . . . , ξjd; bj) are the numerical values of the d relevant endowment properties.
The entire system is then, in addition to the description by the tuple consisting of the matrix
A ∈ R(m×e) and the column vector z ∈ Nm, capturing the components, described by the tuple
composed of the matrix D ∈ R(n×d) and the column vector h ∈ Nn, capturing the subsystems:

(D; h) =


ξ11 ξ12 · · · ξ1d; h1

ξ21 ξ22 · · · ξ2d; h2
...

...
...

...
ξn1 ξn2 · · · ξnd; hn

 . (3.12)

The system under consideration is defined via the descriptive, non-decreasing input-output model
Y = Y(A;z),(D;h) that is specified by both tuples and relates endowment properties to system
performance. Again, with respect to Eq. 3.2, the model output is specified as Y = Y(A;z),(D;h)

dependent on the current endowment allocation for components (A; z) and subsystems (D; h).
Then, with the specific acceptance set A from Eq. 3.6, the extended adapted systemic risk
measure is defined as

R(Y ) =
{

A ∈ Rm×e, D ∈ R(n×d) | Y(A;z),(D;h) ∈ A
}

, (3.13)

that is the set of all endowment property allocations A and D such that the system reaches a
resilience value greater or equal to α. Note that in this manner, equivalently, any performance-
influencing endowments, of any system structures, or even endowments independent of system
structures, can be incorporated into the resilience decision-making analysis.
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3.4.3 Augmentation of the resilience analysis

The system resilience Res is governed by the reliability, robustness and recoverability of a system
as illustrated in Fig. 3.1. The magnitude of these quantities is influenced by the endowment
allocations that are captured in the tuples (A; z) and (D; h). The assigned resilience-enhancing
endowment properties (ηi1, ηi2, . . . , ηim) and (ξj1, ξj2, . . . , ξjd) can either relate to a specific
quantity or a subset of the three quantities and correspond to different implementations in the
overall system performance model, i.e., input-output model Y(A;z),(D;h).
The reliability is typically the most computationally challenging quantity when evaluating
system resilience Res. Thus, this part of the computation is augmented by the concept of
survival signature with its advantageous separation and compact storage properties as well as
the fundamental substructuring approach proposed in the previous Sec. 3.4.1 in order to enable
efficient resilience analyses of large and highly complex systems.
In a pre-processing step, the survival signatures Φv

j (l1, l2, . . . , lK) of the n = ∑L
v nv subsystems

Sv
j are computed based on the corresponding structure functions ϕv

j as described in Sec. 3.3.2.
Subsequently, the survival signatures are utilized to efficiently retrieve the topological subsystem
reliability (online) for varying endowment configurations.
In order to identify the set of all acceptable endowments R(Y ), repeated evaluations of Y(A;z),(D;h)

are required according to the grid search algorithm – various endowment allocations in the
search space spanned over discretized numerical values of A ∈ Rm×e with m = ∑L+1

v mv and
D ∈ R(n×d) with n = ∑L+1

v nv need to be evaluated analogous to Sec. 3.2.3. In each evaluation
N stochastic simulations of Y(A;z),(D;h) have to be performed to obtain E[Y ], see Eq. 3.2, and
corresponding status assignments according to the acceptance set A in Eq. 3.6. Given the number
of dimensions that need to be evaluated according to the grid search algorithm as M , the number
of evaluations for Q(t) is M ·N · u with u being the total number of time steps per simulation.
Consequently, simulating system resilience is a complex, demanding and repeating challenge.
Computing the resilience directly relates to the computation of at least one structure function that
can be any function that expresses the relation of interacting elements. The structure function
can correspond to simple logical expressions, such as Reliability Block Diagrams (RBD) or fault
trees, up to sophisticated simulation models, e.g., when assessing the network efficiency of a graph.
In fact, such models often become extremely challenging in the context of real world systems.
The evaluation of a global structure function including the entirety of all components at once
might even be computationally unfeasible. In contrast, given a system in a substructered form S
as proposed in Sec. 3.4.1, the computation of the system functionality splits into the evaluation of
multiple hierarchically ordered structure functions. Such a consideration enables a wider range of
application in terms of system size and complexity, especially when the computational capacity
is limited.
The computational efficiency is further enhanced by application of the survival signature. Given
a system, substructered according to Sec. 3.4.1 with L ≥ 2, the computation of subsystem
reliabilities can be propagated from level L to level 1 by evaluating the survival functions of
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subsystems Sv
j based on the survival functions of Sw

p instead of computing sv
j = ϕv

j (xv
j ) for each

level. Coolen et al. proposed a methodology to merge survival signatures of specifically arranged
subsystems in the context of substructured systems [157]. However, note that this approach
differs from the one developed in the current paper. The survival function P (Tsv

j
> t) of the

j-th subsystem at level v is then computed according to Eq. 3.10 w.r.t. the survival signature
Φv

j (l1, l2, . . . , lK). At top-level 1, the failure rates of the subsystems S1
j with j = 1, 2, . . . , n1,

utilized to sample subsystem functionality, can then be obtained via the cumulative hazard
function and its derivative:

λs1
j (t) = −

d ln P (Ts1
j

> t)
dt

. (3.14)

This enables to sample the subsystem state s1
j for time step (th, th+1) online with significantly

reduced computational effort when evaluating the system resilience Res. The computation of
Res then only involves n1 + m1 instead of ∑L+1

v mv elements. In addition, significantly increased
computational efficiency is achieved due to the separation of system topology and probability
structure, the latter determined by the current endowment allocation. While the component
probability structure varies, the topological reliability, independent of the endowment allocation,
is captured in the survival signature in a compact manner and can be retrieved repeatedly with
close to no costs. Note that subsystems of the same type share the same survival signature. This
can be exploited for increased efficiency as well. In fact, the computational advantage of the
proposed approach scales with size and complexity of the considered system S. The developed
and employed algorithm is outlined in Alg. 3.4.3 for illustrative purposes.
In order to prove efficiency and general applicability, the novel approach is applied to an arbitrary
complex system in Sec. 3.6 and to the U-Bahn and S-Bahn system of Berlin in Sec. 3.7.

Algorithm 3.4.3

Step A Computation of the survival signatures for all subsystem Sv
j with v = 1, 2, . . . , L and

j = 1, 2, . . . , nv.

Step B Identification of the Pareto front by executing the grid search algorithm; each endowment
allocation is evaluated by performing the following steps:

Step B1. Generation of the failure rate matrix with dimensions n1×T based on Eq. 3.14
for each subsystem and each timestep th with h = 1, 2, . . . , u and generation
of the failure rate matrix with dimensions m1 × T for each component and
each timestep; if L ≥ 2, the failure rate matrix for v = 1 for each subsystem is
generated recursively from bottom to top by computing the survival functions.

Step B2. Perform N samples with time th = 0:

a) Evaluate the system performance Q(th).

b) Sample possible failures of subsystems S1
j for j = 1, 2, . . . , n1 and compo-

nents C1
i for i = 1, 2, . . . , m1 based on the failure rate matrices computed in
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Step B1.

c) Check if any failed subsystem/component has recovered;
if a subsystem/component recovers, set the time counter of its specific
failure rate to 0.

d) Set th = th+1 = th + ∆t and repeat Steps a) – d) until th = T , i.e., the
maximum time is reached.

Step B3. Obtain Res for the current endowment configuration via Eq. 3.2 and Eq. 3.3
over all time steps u and all samples N .

The complete algorithm has been implemented in the Julia package ResilienceDecisionMaking.jl
and made publicly available on Github [282].

3.5 Multistage high-speed axial compressor

Axial compressors are complex, multi-component key elements of gas turbines. Therefore, it is
critical in both design and maintenance to consider as many factors affecting system performance
as possible to efficiently maximize compressor resilience. To address this challenge, the decision-
making analysis proposed in [268] regarding system resilience is extended in order to deal with
components, respectively factors, of different types.

3.5.1 Model

In [251], the authors present a functional model of a four-stage high-speed axial compressor from
the Institute of Turbomachinery and Fluid Dynamics at Leibniz Universität Hannover, Germany,
depicting its functionality as well as reliability characteristics. For detailed information about
this particular axial compressor see [252–254].
The model captures the dependence of the overall performance of the compressor, i.e., the
total-to-total pressure ratio and the total-to-total isentropic efficiency, on the surface roughness
of the individual blades. These are arranged in rotor and stator rows. The model is based on the
results of a sensitivity analysis of an aerodynamic model of the compressor and the so-called
Relative Important Indices, cf. [154]. A network representation of the functional model is shown
in Fig. 3.4. Each component represents either a stator (S1 - S4) or rotor (R1 - R4) row.
The rows are classified into K = 4 component types ki ∈ {1, 2, 3, 4} ∀i ∈ {1, . . . , 8}. This
classification, as well as the arrangement of the components, is based on the resulting effect of
their blade roughness on the two performance parameters of the compressor. More precisely,
an interruption between start and end implies that a roughness-induced performance variation
of at least 25% is exceeded, corresponding to a non-functional compressor. This defines the
system performance Q(t) of the functional model for subsequent application of the resilience
decision-making method. The system performance is determined at each time point th and is
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Figure 3.4: Functional model of the multistage high-speed axial compressor.

1 if there is a path from start to end and 0 if this connection is interrupted. More detailed
information about the functional model and its derivation can be obtained from [251].
For the resilience analysis, it is assumed that each row, i.e., each component of the functional
model, is characterized by two endowment properties, a roughness resistance re and a recovery
improvement rec, such that a component is fully described by (ai; ki) = (rei, reci; ki). In this
context, the roughness resistance can be interpreted as a qualitative coating that counteracts
the roughening of the blade surfaces. Both the roughness resistance rei and the recovery
improvement reci of each row i are assumed to be functions of the component type ki, i.e.,
rei = rei′ , reci = reci′ if ki = ki′ .
Each component of the functional model can fail randomly after system performance is calculated
at time th. A failed component is considered as no longer being part of the model and does not
contribute to the overall system performance at time th+1 and at all subsequent times until it is
completely recovered. The failure probability of a component i in the time interval (th, th+1) is
assumed to be constant in time, cf. [251], and is specified by

P {(ai; ki) fails during (th, th+1)} = ∆t · λi (3.15)

with
λi = 0.8− 0.03 · rei, (3.16)

where λi is the time-independent failure rate. Increasing the roughness resistance of a blade row
reduces the degradation of the surface and consequently the corresponding failure rate λi.
When a component i fails, its functionality is assumed to be immediately and completely recovered
after a certain number of time steps, according to

r = rmax − reci with reci < rmax (3.17)

where rmax is an upper bound on the number of time steps for recovery and reci is the recovery
improvement that reduces the recovery duration. Note, that this recovery model corresponds to
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a one-step recovery profile and various alternative characteristic profiles of recovery are possible
as well, cf., [6] and [10].

3.5.2 Costs of endowment properties

Optimal endowment properties are related to the quality of the components, and an increase in
their production quality is associated with increasing costs. This should be taken into account
in resilience decision-making. As discussed in [256], increasing the reliability of components in
complex networks can be associated with an exponential increase in cost.
Increasing the endowment property of roughness resistance reduces the failure rate of blades in a
row and thus improves reliability, see Eq. 3.15 and Eq. 3.16. Thus, its total cost is assumed to be

costre =
8∑

i=1
pricere

(rei;ki) · 1.2(rei−1), (3.18)

where rei is the roughness resistance value of component i, ki its type and pricere
(rei;ki) an arbitrary

common basic price. Accordingly an exponential relationship is assumed for the cost associated
with recovery improvement:

costrec =
8∑

i=1
pricerec

(rec;ki) · 1.2(reci−1). (3.19)

The total cost cost(A;z) of an endowment is the sum of these costs:

cost(A;z) = costre + costrec. (3.20)

3.5.3 Scenario

In order to apply the decision-making method for resilience-enhancing endowments to the
multistage high-speed axial compressor, the model parameter values and simulation parameter
values shown in Tab. 3.1 are considered.
In a first step, the set of all acceptable endowments corresponding to a resilience value of at
least Res = 0.85 over the considered time period is determined. Since any axial compressor
blade improvement involves costs, the second step is to identify the most cost-efficient acceptable
endowment, denoted as Â. The recovery improvement rec is assumed to be fixed for all
components, regardless of the type, reci = 11 ∀i ∈ {1, . . . , m} and the roughness resistance re

is examined over rei ∈ {1, . . . , 20} ∀i ∈ {1, . . . , m}. The roughness resistance values may be
interpreted in ascending order as increasing quality levels of coatings.
Figure 3.5 illustrates the results of the grid search algorithm. It shows the roughness resistance
combinations contained in R(Y ), i.e., all combinations that lead to a satisfying system resilience
of at least Res = 0.85. It can be clearly seen that the roughness resistance of the blades of the
fourth stage (component type 3) has the greatest influence on the system resilience. Combinations
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Table 3.1: Parameter values for the resilience decision-making method for the functional model of the multistage
high-speed axial compressor.

Parameter Scenario
Acceptance threshold α 0.85
Number of time steps u 200
Length of a time step ∆t 0.05
Maximum time T 10
Base failure rate λ 0.8
Roughness resistance re rei ∈ {1, . . . , 20}
Roughness resistance price pricere

(rei;ki): 800e ∀ki ∈ {1, 2, 3}
500e ∀ki = 4

Maximum recovery time rmax 21
Recovery improvement rec 11
Recovery improvement price pricerec

(rec;ki): 600e
Sample size N 500

with coating qualities of rei ≤ 15 at the fourth stage are generally not sufficient to achieve an
acceptable level of resilience, regardless of the endowment property values of the other component
types. In addition, the roughness resistance of the four stators (component type 4) has the
least influence on system resilience of all types. Here, a minimum coating quality of rei = 1 as
endowment is in various combinations already sufficient to achieve acceptable resilience values.
The same applies to the rotors of component type 1 and type 2. However, the components of
the other types require significantly higher coating qualities compared to the stators in order to
compensate for the small roughness resistance values in these both types.
The design, maintenance and optimization of complex systems, such as an axial compressor,
are invariably subject to monetary limitations. It is crucial for decision-making to be able to
take these financial constraints into account. Therefore, Fig. 3.6 shows only those roughness
resistance combinations included in R(Y ) that result in an acceptable system resilience of at least
Res = 0.85 and are less expensive than a predefined cost limit for the total roughness resistance,
that is arbitrarily assumed to be costre = 40 000e in this case study.
The results reveal that only configurations with low coating qualities for stators (component type
4) are below the cost limit. On the one hand, this is due to their aforementioned low influence
on system resilience, and on the other hand to the high cost of the quality levels for the stators.
Although the base price of 500€ is rather low, it is significantly higher in terms of cost for the
entire component type than for the other types due to the higher total number of components of
this type. In addition, only configurations that provide the highest quality levels of rei ≥ 18 for
the type 3 rotor are acceptable and below the price limit. The roughness resistance of this rotor
has such a large impact on system resilience that at lower quality levels, compensation by higher
quality levels of the remaining stages would exceed the given budget. Although the roughness
resistance of the rotor of component type 2 has a lower influence on the system resilience than
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Figure 3.5: Numerical results of the 4D grid search algorithm for the functional model of the axial compressor
with explored roughness resistance values.

that of component type 3, minimal quality levels of the coating can not be compensated by high
qualities of the other components. Therefore, at least rei = 5 for ki = 2 is required to fulfill the
acceptance criterion.
The grid search algorithm is able to reduce the numerical effort for the calculation of R(Y ) by
about 98%. As a result, only 2% of the potential combinations of roughness resistance values
need to be evaluated.
Taking into account the base prices in Tab. 3.1, the most cost-efficient endowment is characterized
by roughness resistances of rei = 7 for ki = 1, rei = 13 for ki = 2, rei = 19 for ki = 3 and
rei = 1 for ki = 4 for the respective components. In Fig. 3.6 the corresponding configuration
is highlighted in blue. The final cost results from Eq. 3.20 as cost(Â;z) = costre + costrec =
35 209e+ 29 720e = 64 929e.

3.6 Complex system

In [114] and [152] the authors apply their introduced simulation approaches for reliability analysis
on an arbitrary complex system. In order to demonstrate the wide applicability and efficiency of
the proposed methodology developed in this paper, this complex system is considered, adapted
by means of substructuring, and an efficient resilience decision-making analysis is conducted.
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Figure 3.6: Numerical results of the 4D grid search algorithm for the functional model of the axial compressor
with explored roughness resistance values and a cost threshold for roughness resistance of 40 000e.

3.6.1 Model

The arbitrary complex system consists of n = 14 subsystems, each assigned to one of B = 6
subsystem types. Figure 3.7 illustrates the complex system and the assignment of subsystems to
their types. A connection between start node and target node indicates a functioning state and
an interruption of this connection indicates a non-functioning state of the overall system. This
defines the system performance Q(t) of the functional model for subsequent application of the
resilience decision-making method. The system performance is determined at each time point th

and is 1 if there is a path from start to end and 0 if this connection is interrupted. Note that
the complex system is thus formally an RBD. For illustration and simplicity, it is assumed that
there is only one level of subsystems, i.e., l = L = 1, and thus xs = (s1, s2, . . . , s14), S1

j = Sj ,
and λs1

j (t) = λsj (t). Figure 3.8 illustrates the structure of the six subsystem types. These are
formally RBDs as well. It is assumed that each subsystem of the same type is represented by the
same RBD. A subsystem Sj is considered to be functional if a connection exists from start to end
and non-functional if this connection is interrupted, i.e., sj ∈ {0, 1} ∀j ∈ {1, . . . , 14}. Depending
on the type, the subsystems consist of seven to ten components. Thus, the overall system is
composed of m = 106 individual components.
The components are classified into K = 2 types ki ∈ {1, 2} ∀i ∈ {1, . . . , 106}, i.e., 50 components
of type 1 and 56 components of type 2. For the resilience analysis, each component of the model,
is assumed to be characterized by an endowment property, that is the reliability improvement
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Subsystem Type 1

Subsystem Type 2

Subsystem Type 5

Subsystem Type 6

Subsystem Type 3

Subsystem Type 4

Figure 3.7: Representation of the arbitrary complex system with 14 components, adapted from [114].

rel, such that a component is fully described by (ai; ki) = (reli; ki). Note that the reliability
improvement reli of each component i is assumed to be function of the component type ki, i.e.,
reli = reli′ if ki = ki′ . Further, each component type, and thus each component, is characterized
by a specific time-dependent failure behavior. In practice, the underlying distribution functions,
describing this behavior, need to be derived from existing operational data. However, the
consideration of real data is often highly challenging due to the inherent uncertainty caused by,
e.g., lack of data, measurement inaccuracies, subjective expert knowledge, small sample sizes,
etc. New developments in the context of the survival signature as introduced, e.g., in [152], allow
for the efficient consideration and propagation of uncertainties through the entire model. They
will be incorporated into the proposed methodology towards an imprecise resilience approach
in future work of the authors. However, for the purpose of proof of concept and applicability,
exponential distributions are considered for both component types in this case study as

Fi(t; λi(reli)) = 1− e−λi(reli)t for t ≥ 0, (3.21)

with
λi(reli) = λi,max −∆λi · reli, (3.22)

being the failure rate of component i of type k depending on the corresponding reliability
improvement reli. λi,max is the maximum failure rate and ∆λi denotes the failure rate reduction
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Subsystem Type 1

Component Type 1

Component Type 2

Subsystem Type 2

Subsystem Type 3 Subsystem Type 4

Subsystem Type 5 Subsystem Type 6

Figure 3.8: Representation of the B = 6 subsystem types of the complex system.
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per reliability improvement reli that is assumed to be constant for each component type, leading
to equidistant failure rate variations.
The simulation can be summarized as follows: after the system performance has been computed
at time th, each subsystem Sj of the complex system can fail at random based on the extracted
and time-dependent failure rate λsj (th) from corresponding survival function, cf. Eq. 3.14. A
failed subsystem is treated as no longer present in the model and does not contribute to the
overall system performance Q(t) at time th+1 and all subsequent time points until it is fully
recovered. The failure probability of a subsystem Sj in the time interval (th, th+1) is

P {Sj fails during (th, th+1)} = ∆t · λsj (th). (3.23)

If a subsystem Sj failed, its functionality is assumed to be immediately and fully recovered after
r time steps, again corresponding to a one-step recovery profile. It is assumed that a repaired
subsystem and thus all components of the subsystem are in as-new original condition after repair.
Note that this is an assumption for the sake of demonstration, and in reality deviating states
might be obtained after repair, possibly depending on further endowment properties that affect
the duration and quality of recovery. After recovery, the survival function of a subsystem is
time-zeroed, such that the resulting failure rate per simulation step λsj (th) evolves over time
equivalent to that of a subsystem in new condition.

3.6.2 Costs of endowment properties

The improvement of endowment properties is inevitably associated with costs. Increasing the
endowment property “reliability improvement” reduces the failure rate of components and
consequently of corresponding subsystems. Again, an exponential relationship between costs and
improvements is assumed. Then the total costs can be defined as

cost(A;z) = costrel =
106∑
i=1

pricerel
(reli;ki) · 1.2(reli−1), (3.24)

where (reli; ki) is the reliability improvement value of component i, ki its type and pricerel
(reli;ki)

is an arbitrary common basic price.

3.6.3 Scenario

The considered model parameters and simulation parameters values for the application of the
resilience decision-making method for complex and substructured systems to the arbitrary
complex system illustrated in Fig. 3.7, are shown in Tab. 3.2. The recovery is assumed to be fixed
with r = 20 time steps for all subsystems, regardless of the type. The reliability improvement
reli is explored over reli ∈ {1, . . . , 10} ∀i ∈ {1, . . . , m}.
In a pre-processing step, the survival signatures of all 14 subsystems are determined. As an
example, Tab. 3.3 depicts the survival signature values of subsystem type 5 of the complex
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Table 3.2: Parameter values for the resilience decision-making method on the arbitrary complex system.

Parameter Scenario
Acceptance threshold α 0.90
Number of time steps u 200
Length of time step ∆t 0.05
Maximum time T 10
Maximum failure rate λi,max λi,max = 0.15 for ki = 1

λi,max = 0.20 for ki = 2
Failure rate reduction ∆λi ∆λi = 0.014 for ki = 1

∆λi = 0.019 for ki = 2
Reliability improvement reli reli ∈ {1, . . . , 10} for ki ∈ {1, 2}
Reliability improvement price pricerel

(reli;ki) pricerel
(reli;1) = 1 000e

pricerel
(reli;2) = 2 000e

Recovery time steps r 20
Sample size N 500

system. For clarity, only the non-trivial survival signature values are shown, i.e., all values
that are neither zero or one. Then the analysis starts as follows: In a first step, the set of
all acceptable endowment configurations R(Y ), corresponding to a resilience value of at least
Res = 0.9 over the considered time period, is determined according to Algorithm 3.4.3. Since any
improvement of the system components is associated with costs, the second step is to identify
the most cost-efficient acceptable endowment Â.
Figure 3.9 illustrates the results of the grid search algorithm. It shows the reliability improvement
combinations contained in R(Y ), i.e. all combinations that lead to a satisfying system resilience.
It can be seen, that the reliability improvement of components of type 1 is more important,
i.e., has a higher impact on the overall system resilience than the reliability improvement of
components of type 2. For maximum reliability improvement values for type 1, i.e., reli = 10
for ki = 1, even low reliability improvement values for type 2, i.e., reli = 2 for ki = 2, are
sufficient in order to fulfill the acceptance criterion and reach system resilience values of at least
Res = 0.90. On the other hand, with maximum reliability improvement for components of type
2, i.e., reli = 10 for ki = 2, a moderate reliability improvement for type 1 of at least reli = 4 for
ki = 1 is required to meet the acceptance criterion.
These results are plausible, since a detailed examination of the subsystem types and their topology,
cf. Fig. 3.8, reveals that components of type 1 hold a total of six so-called bottleneck positions
within the subsystems, i.e., positions where the failure of a single component interrupts the
functioning of the entire subsystem, while components of type 2 occupy only three of these
positions. This results in a higher influence of component type 1 on the functionality of the
subsystems and thus ultimately in a higher influence on overall system resilience. Accordingly, the
quality of reliability improvement of component type 1 is more relevant than that of component
type 2. Looking at the probabilistic structure of the components, it is noticeable that the failure
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Table 3.3: Non-trivial survival signature values of subsystems with bj = 5 of the complex system, shown in
Fig. 3.7 and Fig. 3.8.

l1 l2 Φ (l1, l2)
2 4 1/25
3 3 3/50
2 5 3/25
4 3 3/20
3 4 9/50
2 6 1/5
5 3 11/50
6 3 3/10
3 5 3/10
4 4 33/100
3 6 2/5
5 4 23/50
4 5 12/25
6 4 3/5
4 6 3/5
5 5 16/25
6 5 4/5
5 6 4/5

Improvement for component type 1
1 2 3 4 5 6 7 8 9 10
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Figure 3.9: Numerical results of the 2D grid search algorithm for the complex system with explored reliability
improvement values.
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rate reduction for components of type 2 is greater than for components of type 1, i.e., the increase
in reliability improvement for type 2 probabilistically generates a higher surplus value compared
to improvements of type 1. However, this obviously cannot balance the influence gradient between
both types and thus underlines the critical topological importance of type 1 components.
The design, maintenance and optimization of complex systems is typically restricted by economic
limitations. It is crucial for decision-making to be able to take these monetary constraints into
account. Assuming the arbitrary base prices in Tab. 3.2, the most cost-effective acceptable
endowment Â is specified by a reliability improvement configuration of reli = 8 for ki = 1 and
reli = 4 for ki = 2 for the respective components. In Fig. 3.9, the corresponding configuration is
highlighted. Note that due to the monotonicity of the input-output model and the monotonically
increasing endowment costs, the most cost-efficient endowment can only be located on the
dominant vertices of the Pareto front. Therefore, only these configurations need to be examined
in terms of cost. The final cost results from Eq. 3.24 as cost(Â;z) = 372 695e.
Due to the utilization of the grid search algorithm, the numerical effort required to compute
R(Y ) is reduced. Only 23% of all possible configurations of reliability improvement values need
to be evaluated. This reduction effect scales with the size and dimensionality of the endowment
search space. By means of the novel resilience decision-making method, the considered complex
system could be reduced from its entirety of 106 individual components to 14 components on the
top-level with respect to the resilience analysis and the associated identification of all acceptable
endowment configurations, which drastically reduces the computational effort. Nevertheless,
all 106 components and their influence were considered by incorporating and propagating the
subsystems’ survival functions. Again, this effect scales with increasing complexity and size of
the investigated systems.

3.7 U-Bahn and S-Bahn system of Berlin

About two thirds of the total of 1.5 billion passengers per year are transported by Berlin’s subway
U-Bahn and suburban trains S-Bahn [257, 258], making these two transport services the most
used means of public transport in Berlin and thus of utmost importance for the German capital.
Key infrastructures that are of such significant social and economic relevance to modern societies
obviously and inevitably need to be as resilient as humanly possible. The applicability of the
methodology developed in this work to large complex systems is demonstrated on a comprehensive
model of the Berlin U-Bahn and S-Bahn system. The objective is to identify suitable resilience-
enhancing properties for all stations in the system, taking into account monetary constraints.
This allows the characterization of acceptable endowments for the system in terms of reliability,
robustness, and recoverability. This approach can be applied not only to any phase during the
life cycle of existing systems, but also to systems in the design phase, in order to optimize their
resilience.
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Figure 3.10: Topological network for the Berlin metro system.

3.7.1 Model

Berlin’s U-Bahn and S-Bahn systems are highly interconnected systems that are linked by
numerous stations. According to [250], they may therefore be considered as a unified system,
hereafter referred to as “metro system”. In [268] the authors apply their introduced approach
for resilience decision-making to a model of the Berlin metro system. In order to demonstrate
the wide applicability and efficiency of the proposed methodology developed in this work, this
model is considered, extended and adapted by means of substructuring, and an efficient and
multidimensional resilience decision-making analysis is conducted.
In [259], Zhang et al. proposed how mapping of metro networks into topological graphs can be
conducted. Based on this, the Berlin metro system consists of 306 nodes for 306 metro stations
and 350 edges for 350 connections between these stations. For simplicity, parallel connections
are mapped to single edges in the model, and are assumed to be undirected. These assumptions
reduce the complexity of the metro system. Figure 3.10 illustrates the graph representation.
The functionality of systems depends on the functionality of its components. However, the
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functionality of these components often depends again on the functionality of a variety of
subcomponents, etc. A major challenge in modeling is therefore determining an appropriate level
of detail.
The resilience decision-making methodology proposed in this paper allows for the incorporation of
such subsystem structures by live propagation of corresponding reliability characteristics up to the
top-level. Therefore, for the resilience analysis of the metro system, each metro station is modeled
as a subsystem with own functionality and performance function. Again, for illustrative purposes
and sake of convenience, assume that there is only one level of subsystems, i.e., l = L = 1, and
thus xs = (s1, s2, . . . , s306), S1

j = Sj and λs1
j (t) = λsj (t) with n = 306 subsystems respectively

metro stations.
In terms of reliability modeling, subcomponents could correspond to structural elements, such
as stairs, columns, ceilings, station rails as well as electric facilities, such as railway power
supply, elevators, escalators, ventilation plants, information systems and illuminations. These
subcomponents can be subdivided in terms of their functionality and relevance to the metro
station, such as in rail operations related components and user accessibility related components.
For illustrative purpose, the analysis is restricted to reliability modeling of metro stations.
Therefore, functional models are defined for the metro station subsystems that are, as in the
previous case study, formally RBDs. Again, a subsystem Sj is considered to be functional if
a connection from start to end exists and non-functional if this connection is interrupted, i.e.,
sj ∈ {0, 1} ∀j ∈ {1, . . . , 306}. Figure 3.10 illustrates three of these subsystems for three different
metro stations as an example. The metro stations are classified into B = 6 types, depending on
the number of their connections to direct neighbors, i.e., stations with only one connection form
subsystem type 1, stations with two direct neighbors form subsystem type 2, etc. For the analysis,
each subsystem is assumed to be characterized by an endowment property, that is the recovery
improvement rec, such that a metro station j with type bj is described by (Sj ; bj) = (recj ; bj).
Note, that the recovery improvement recj of each metro station is assumed to be a function of
the station type bj , i.e., recj = recj′ if bj = bj′ . For simplicity, it is assumed that each metro
station of a type is represented by the same RBD. Figure 3.11 displays the structure of all six
subsystem types and Fig. 3.12 tabulates the number of individual metro stations per type.
Depending on the type and thus with increasing complexity related to the number of direct
neighbors, also known as node degree, the subsystems consist of four up to twenty-one components.
Taking into account the information from Fig. 3.12, the overall system therefore consists of a
total of m = 2776 considered individual components.
The components are classified into K = 4 types ki ∈ {1, 2, 3, 4} ∀i ∈ {1, . . . , 2776}. For the
analysis, each component is assumed to be characterized by an endowment property, that is
the reliability improvement rel, such that a component is fully described by (ai; ki) = (reli; ki).
Note, that the reliability improvement reli of each component is assumed to be a function of the
component type ki, i.e., reli = reli′ if ki = ki′ . Further, each component is characterized by a
specific time-dependent failure behavior. For the purpose of proof of concept and applicability,
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Figure 3.11: Representation of the B = 6 station types of the Berlin metro system.
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Figure 3.12: Number of individual metro stations per type.

for component type 1 and 3, i.e., ki = 1 and ki = 3, exponential distributions are considered
according to Eq. 3.21 and Eq. 3.22. For component type 2 and 4, i.e., ki = 2 and ki = 4, two
parametric gamma distributions are considered. The cumulative distribution function of the
gamma distribution can be derived based on its probability density function that is given in
terms of the rate parameter λi(reli) depending on the current reliability endowment value reli of
component i of type ki as

f(t; αi, λi(reli)) = tαi−1e−λi(reli)tλi(reli)αi

Γ(αi)
, (3.25)

for t, αi, λi(reli) > 0, where αi is the shape parameter, λi(reli) is the rate parameter, and Γ(αi)
is the well-known Gamma function. Consequently, the cumulative distribution function can be
obtained by integration and with respect to the current endowment of component i it can be
formulated as

F (t; αi, λi(reli)) =
∫ t

0
f(u; αi, λi(reli))du. (3.26)

λi(reli) is again a function of the component specific reliability improvement and given by
Eq. 3.22.
In order to perform a resilience analysis, the definition of an appropriate system performance
measure for the metro system is imperative. As in [259] and [268], in this case study, the so-called
network efficiency Ef is adopted as the relevant performance measure, i.e., Q(t) = Ef (t). Zhang
et al. justified in [259] their choice by stating that connectivity between individual metro stations
is an essential criterion for evaluating metro operations. As described by Latora and Marchiori
in [261], network efficiency is a quantitative indicator of network connectivity and is defined as:

Ef = 1
n(n− 1)

∑
u̸=v

1
duv

(3.27)

with n the number of subsystems, i.e., metro stations in the network and duv the path length
between metro station u and metro station v, i.e., the shortest distance between these stations.
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A comprehensive overview of algorithms to efficiently determining the path length duv between
stations, such as the algorithms of Floyd, Dijkstra’s, or Bellman-Ford, is provided in [263]
and [262].
The simulation procedure corresponds to that from the previous case study and the failure
probability of a subsystem Sj , i.e., metro station, in the time interval (th, th+1) is defined by
Eq. 3.23. Unlike in the previous case study, a failed metro station is not entirely removed from
the system, but remains in the set of metro stations; however, their node degree becomes 0,
i.e., all existing connections to direct neighbors are removed. This assumption is essential, as
the computation and interpretation of the system performance network efficiency depends on
the number of nodes. The case study therefore relies on the fact that the number of nodes is
constant.
If a subsystem Sj failed, its functionality is assumed to be immediately and fully recovered after
a certain number of time steps r:

r = rmax − 2 · recj with recj < rmax, (3.28)

where recj is the recovery improvement specific to the station Sj and rmax is an upper bound
for number of time-steps for recovery. After recovery, all previous connections to other metro
stations are assumed to be restored, unless these are in a state of failure. As each time-step
has a specific length of ∆t = (T/u), the duration of the recovery process is r · (T/u). Again,
this recovery model corresponds to a one-step recovery profile and as mentioned before, various
alternative characteristic profiles of recovery are possible as well. A repaired station and thus all
components of the station are assumed to be in a as-new original condition after repair. This is
an assumption for the sake of demonstration, and deviating states are possible. After recovery,
the survival function of a metro station is time-zeroed, such that the resulting failure rate per
simulation step λsj (th) evolves over time equivalent to that of a station in new condition.

3.7.2 Costs of endowment properties

The improvement of both endowment properties, “reliability improvement” and “recovery im-
provement”, is inevitably associated with costs. Again, exponential relationships between total
costs and improvements are assumed:

costrel =
2776∑
i=1

pricerel
(reli;ki) · 1.2(reli−1), (3.29)

where reli is the reliability improvement value of component i, ki its type and pricerel
(reli;ki) an

arbitrary common basic price. Accordingly an exponential relationship is assumed for the total
cost associated with recovery improvement:

costrec =
306∑
j=1

pricerec
(recj ;bj) · 1.2(recj−1), (3.30)
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where recj is the recovery improvement value of station j, bj its type and pricerec
(recj ;bj) an arbitrary

common basic price. The total cost cost(A;z),(D;h) of an endowment is the sum of these costs:

cost(A;z),(D;h) = costrel + costrec. (3.31)

In practice, it is crucial to include the economic aspects of failure and recovery processes in detail
in the resilience assessment. Mitigating resilience losses through system improvements imposes
direct costs on stakeholders, such as improving component properties. Note, however, that for a
comprehensive analysis, it is important to also consider indirect costs to the affected population
and businesses, when the performance of a key system declines, as stated in [273]. Further, it is
reasonable to incorporate the subjective preferences of stakeholders into the resilience assessment,
as suggested in [272]. These considerations have the potential to significantly influence the
outcome of a resilience decision-making process. Therefore, they should be integrated into the
proposed methodology in future work by including additional cost conditions and discount rates
for the corresponding deterioration and recovery sequences.

3.7.3 Scenario

In order to apply the resilience decision-making method to the Berlin metro system illustrated
in Fig. 3.10, the model parameter and simulation parameter values, shown in Tab. 3.4, are
considered. The recovery improvement recj is explored over recj ∈ {1, . . . , 10} ∀j ∈ {1, . . . , 306},
but considered to be equal for each station, regardless of the type bj . The reliability improvement
reli again is explored over reli ∈ {1, . . . , 10} ∀i ∈ {1, . . . , 2776} for ki ∈ {1, . . . , 4}.
In a pre-processing step, the survival signatures of all 306 metro stations are determined. As an
example, Tab. 3.5 illustrates the non-trivial survival signature values, i.e., Φ (l1, . . . , l4) ̸= 0 and
Φ (l1, . . . , l4) ̸= 1, of station type 2 of the metro system. Then, the set of all acceptable endowment
configurations R(Y ), corresponding to a resilience value of at least Res = 0.99 over the considered
time period, is determined according to Algorithm 3.4.3. Further, as any improvement of the
system components and stations is associated with costs, the most cost-efficient acceptable
endowment, denoted by the tuple (Â, D̂), is determined.
In Fig. 3.13 the results of the grid search algorithm are illustrated. It shows the accepted
endowments contained in R(Y ), i.e. all combinations that lead to a satisfying resilience of the
metro system. It is clearly visible that type 1 components as well as the recovery improvement
of the metro stations have the greatest influence and thus the highest importance for the
metro system. Only endowments with a reliability improvement of at least reli = 8 for type
1 components and endowments with a recovery improvement for all metro stations of at least
recj = 8 lead to a system resilience meeting the acceptance criterion. In addition, type 2
components are of considerable relevance. Here, only endowments with a reliability improvement
of at least reli = 6 are acceptable. The reliability improvements of type 3 and 4 components,
on the other hand, are of less significance. For both types of components, there are numerous
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Table 3.4: Parameter values for the resilience decision-making method on the metro system of Berlin.

Parameter Scenario
Acceptance threshold α 0.99
Length of time step ∆t 0.05
Number of time steps u 200
Maximum time T 10
Shape parameter gamma distribution αi αi = 1.2 for ki = 2

αi = 2.6 for ki = 4
Maximum failure rate λi,max λi,max = 0.34 for ki = 1

λi,max = 0.43 for ki = 2
λi,max = 0.36 for ki = 3
λi,max = 0.66 for ki = 4

Failure rate reduction ∆λi ∆λi = 0.03 for ki = 1
∆λi = 0.04 for ki = 2
∆λi = 0.034 for ki = 3
∆λi = 0.051 for ki = 4

Reliability improvement reli reli ∈ {1, . . . , 10} for ki ∈ {1, . . . , 4}
Reliability improvement price pricerel

(reli;ki) pricerel
(reli;1) = 100e

pricerel
(reli;2) = 200e

pricerel
(reli;3) = 200e

pricerel
(reli;4) = 400e

Maximum recovery time rmax 22
Recovery improvement recj recj ∈ {1, . . . , 10}
Recovery improvement price pricerec

(recj ;bi) pricerec
(recj ;1) = 100e

pricerec
(recj ;2) = 200e

pricerec
(recj ;3) = 300e

pricerec
(recj ;4) = 400e

pricerec
(recj ;5) = 500e

pricerec
(recj ;6) = 600e

Sample size N 500
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Table 3.5: Non-trivial survival signature values of stations with bj = 2 of the metro system, shown in Fig. 3.11.

l1 l2 l3 l4 Φ (l1, . . . , l4)
2 2 1 1 1/4
2 1 1 2 1/4
2 2 2 1 3/8
2 2 1 2 3/8
2 1 2 2 3/8
3 2 1 1 1/2
2 3 1 1 1/2
2 1 3 1 1/2
3 1 1 2 1/2
2 3 1 2 1/2
2 1 1 3 1/2
2 2 1 3 1/2
2 3 1 3 1/2
2 2 2 2 9/16
3 2 2 1 3/4
2 3 2 1 3/4
2 2 3 1 3/4
3 2 1 2 3/4
3 1 2 2 3/4
2 3 2 2 3/4
2 1 3 2 3/4
2 1 2 3 3/4
2 2 2 3 3/4
2 3 2 3 3/4
3 2 2 2 7/8
2 2 3 2 7/8
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Figure 3.13: The set of all accepted endowments R(Y ) evaluated via the 5D grid search algorithm for the Berlin
metro system with explored reliability improvement and recovery improvement values.

acceptable configurations that include minimum reliability improvement values for one of these
types.
These results again prove to be plausible, as in the previous case study, upon closer examination
of the topological structures of the metro system and its subsystems. Several U-Bahn and S-Bahn
lines start and end in long chains of directly interconnected type 2 stations, see Fig. 3.10. The
resilience analysis of the Berlin metro system published in [268] revealed that especially an
interruption of these chains has a major negative impact on the network efficiency and thus on
the resilience of the metro system. Accordingly, the importance of type 2 stations is particularly
high not only due to their multiplicity in the system, but due to their topological contribution in
terms of connectivity as well. Consequently, components of this station type have a significant
impact on the resilience of the overall system. An examination of the type 2 subsystem model,
see Fig. 3.11, shows that type 1 components take on a predominant position. Once both type
1 components in this subsystem fail, the entire metro station fails. No other components of a
single type can cause this in station type 2.
The significant influence of type 2 components can easily be explained by examining the type 3
and 5 station systems, see again Fig. 3.11. Of all stations, only here bottleneck positions exist,
where the failure of a single component interrupts the functioning of the entire station. Both of
these positions, in type 3 and type 5 stations, are occupied by type 2 components. Since both
station types have three and five direct connections to other stations, they can be considered to
be particularly interconnected and thus of high relevance to network efficiency and thus of high
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relevance to system resilience.
Type 3 and 4 components, on the other hand, do not occupy any particularly significant positions
in the stations’ systems. This explains their low influence. The enormous influence of the recovery
improvement is intuitively explainable. As resilience is established via the integral of the actual
system performance, each recovered metro station contributes directly and immediately to the
network efficiency and thus to the resilience of the system. Therefore, improvement of this
property results in an immediate and intuitive increase in resilience.
Assuming the arbitrary base prices in Tab. 3.4, the most cost-efficient acceptable endowment
(Â, D̂) results from a reliability improvement configuration of reli = 10 for ki = 1, reli = 9 for
ki = 2, reli = 7 for ki = 3, reli = 2 for ki = 4 for components of type 1 to 4 and a maximum
recovery improvement configuration of recj = 10 for bj ∈ {1, 2, 3, 4}, i.e., all stations, regardless of
their type. In Fig. 3.14, the corresponding configuration is highlighted. Due to the monotonicity
of the input-output model and the assumed monotonically increasing endowment costs, only the
endowment configurations on the dominant vertices of the Pareto front have to be examined
for the identification of the most cost-efficient endowment. Therefore, only these endowment
configurations are shown in Fig. 3.14. The resulting costs are given by Eq. (3.29, 3.30, 3.31) with
cost(Â,D̂) = 1 700 829e+ 361 185e = 2 062 014e.

Figure 3.14: Dominant Pareto front endowments of the 5D grid search algorithm for the Berlin metro system
with explored reliability improvement and recovery improvement values and the most cost-efficient endowment
(Â, D̂) is highlighted.

Due to the utilization of the grid search algorithm, the computational effort could be significantly
reduced in this case study as well – only 0.159% of all potential endowment configurations had
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to be examined in order to assign a distinct state to each configuration in the search space as
accepted or not accepted. By means of the novel approach, the metro system could be reduced
from its entirety of 2776 individual components to 306 components on the top-level with respect
to the resilience analysis, drastically reducing the computational effort. Nevertheless, all 2776
components and their influence were considered. As in the case study of the axial compressor,
not only the most cost-efficient endowment configuration can be identified but also investigations
on configurations that are below certain budget limits can be conducted.
Note that, in this case study, as well as in the previous ones, various complexity variations such as
so-called cascading failures, see [265–267], are possible to implement due to the time-step-accurate
simulation. In the case of infrastructure systems, e.g., the increasingly frequent natural disasters
can thus be considered, that typically have an impact as local phenomena and affect stations
that are geographically close to each other. It has already been shown in [268] that these can be
taken into account in the resilience decision-making analysis of infrastructure systems.

3.8 Conclusion and outlook

This paper addresses the challenge of efficient multidimensional decision-making for complex and
substructured systems between resilience-influencing parameters. By merging an extension of
the resilience framework proposed in [268] with the survival signature, an efficient and novel
methodology is derived. The approach allows for direct comparison of the impact of heterogeneous
controls on system resilience, such as failure prevention and recovery improvement arrangements,
both during the design phase as well as during any phase in the life cycle of already existing
complex systems.
Due to the time-step accurate simulation of the system performance on system level during
the resilience analysis, complexity extensions such as cascading failures and other dependency
structures can be considered without difficulties. The new methodology has a high numerical
efficiency. The majority of the endowment properties examined affect the probability structure of
the system components. The numerous changes in the probability structure caused by constantly
changing endowment properties during the resilience analysis can be ideally covered with minimal
effort due to the separation property of the survival signature.
The novel approach includes a substructuring approach for large, complex systems. This and
the integration of the survival signature allow for the propagation of subsystem reliabilities
through any number of system levels to the top-level and lead to a significant reduction of the
computational load. This way, and with the extension of the adapted systemic risk measure, it is
now possible to analyze systems with a large number of components in terms of their resilience.
Monetary restrictions can easily be included in the analysis. More precisely, not only the most
cost-efficient, accepted endowment is identified, but subsets of the set of all accepted endowments
below defined price levels can be formed. Budget limits can thus be specifically taken into account
in the decision-making process.
The methodology is applied to three entirely distinct systems: A functional model of a multi-
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stage high-speed axial compressor, an arbitrary system consisting of numerous subsystems and
components and a comprehensive substructured model of the metro system of Berlin, proofing
wide and general applicability. All results obtained are plausible with the corresponding assumed
model parameters. Note, that the approach can be utilized to systems of any kind.
In the development of our proposed methodology, some simplifying assumptions were made
that do not accurately reflect reality. However, the authors strongly believe that the presented
approach can be considered as a meaningful core development that, for a reality-based application
on highly multifactorial systems, such as cyber-human-physical systems, should be combined
with future as well as existing developments to ensure an efficient and comprehensive resilience
decision-making analysis taking into account all technical and monetary aspects of modern
socities.
Future work will address the incorporation of various existing extensions of the concept of
survival signature, such as accounting for uncertainty and propagating it toward imprecise system
resilience and considering multiple state or continuous component functionality. Further, future
work regarding multidimensional parameter spaces must deal with the limitations in computing
time and storage capacity in order to enable application to even higher-dimensional problems.
Namely, techniques such as advanced sampling methods, e.g. Subset Simulation, see [283], must
be investigated to further reduce numerical effort.
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Abstract

In this work, the reliability of complex systems under consideration of imprecision is addressed. By joining two
methods coming from different fields, namely, structural reliability and system reliability, a novel methodology is
derived. The concepts of survival signature, fuzzy probability theory and the two versions of non-intrusive stochastic
simulation (NISS) methods are adapted and merged, providing an efficient approach to quantify the reliability of
complex systems taking into account the whole uncertainty spectrum. The new approach combines both of the
advantageous characteristics of its two original components: 1. a significant reduction of the computational effort
due to the separation property of the survival signature, i.e., once the system structure has been computed, any
possible characterization of the probabilistic part can be tested with no need to recompute the structure and 2. a
dramatically reduced sample size due to the adapted NISS methods, for which only a single stochastic simulation
is required, avoiding the double loop simulations traditionally employed.
Beyond the merging of the theoretical aspects, the approach is employed to analyze a functional model of an axial
compressor and an arbitrary complex system, providing accurate results and demonstrating efficiency and broad
applicability.
Keywords: Survival signature, System reliability, Complex systems, Reliability analysis, Epistemic uncertainty,
Imprecision, Fuzzy probabilities, Extended Monte Carlo methods, Non-intrusive imprecise stochastic simulation.

4.1 Introduction

Engineering systems constitute a key factor for the state of development and progress of modern
societies. Typical examples are infrastructure networks, industrial plants or machines, e.g., gas
turbines. Closely integrated into society, the functionality of such complex capital goods has a
significant impact on the economy as well as on everyday life. However, in reality, engineering
systems deteriorate due to environmental and operational influences. As a result, their overall
performance decreases over time or, in the worst case, they fail entirely. Consequently, for
economic and safety-related reasons the reliability of a system, i.e., its continuous functionality,
is of utmost importance. In order to ensure this reliability, appropriate decisions must be made
in both design and maintenance. However, since societal growth and progress is accompanied by
increasing size and complexity of societies’ systems [284] and since “Global population growth
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will continue for decades, reaching around 9.2 billion in 2050 and peaking still higher later in
the century,” [285], this task, i.e., the identification of appropriate decisions towards maximum
reliability, is becoming increasingly challenging. For this reason, the development of sophisticated
methods for quantifying and assessing system reliability gained more and more importance over
the past decades [132, 286–288] and will receive even more attention in the future.
Conventional tools in system reliability assessment are failure mode and effect analyses, see, e.g.,
[106, 107], as well as more mathematical representations, such as reliability block diagrams, see,
e.g., [108], fault tree and success tree methods, see, e.g., [109, 110]. However, as stated in [114],
the calculations for identifying minimal path sets or cut sets might be too arduous for large
complex systems, limiting the applicability of such methods. Further traditional approaches
are Markov models, see, e.g., [115] and Petri nets, see, e.g., [120]. In recent research, system
reliability assessment methods are provided, e.g., in [289] and [122] for multi-state systems, in
[125], using Bayesian melding method, including various available sources on system, as well as
subsystem level and in [126, 127], where Yang et al. as well as Xiao et al. propose approaches
based on an active learning Kriging model, considering multiple failure modes and a multiple
response model, respectively. Furthermore, Li et al. propose in [129] a reliability approach for
analyzing systems composed of repairable components with complex failure distribution structure.
A comprehensive review on numerous system reliability methods and the evolution of reliability
optimization is provided in, e.g., [133, 136, 137].
Various system reliability approaches are based on the mathematical concept of the structure
function that represents a functional state of a system in dependence on its components states,
i.e., its state vectors, see, e.g., [140, 142]. Nevertheless, not only for large systems the structure
function might become complicated or impractical [144, 145]. For coherent systems with
components of only a single type, i.e., exchangeable components, the system signature represents
a summarization of the structure function, providing an advantageous tool, see, e.g., [148].
In current research, the concept of survival signature is a promising approach to efficiently model
the reliability of systems with multiple component types. The survival signature was introduced
and discussed in [149, 153] as a generalization of the system signature. Apart from overcoming
the restriction to systems with only one type of components, similar to the signature, the key
feature of the survival signature is a clear separation between the structure of a system and the
probabilistic properties of its components [290]. In addition, it summarizes the system structure
by aggregating state vectors into single survival signature entries with associated reliabilities,
resulting in significantly reduced storage requirements and simplified data access. Once the
system structure has been evaluated – usually a demanding task – any number of calculations for
various probability properties can be performed without having to recalculate it. Thus, compared
to traditional approaches, the survival signature reduces the computational effort associated with
repetitive model evaluations that are typically required in reliability engineering processes. A
direct comparison between fault tree, Markov chain and survival signature modeling is presented
in [150].
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As stated in [114], a purely analytical implementation of the survival signature to real-life complex
systems is often not feasible and simulations are required instead. Therefore, in [114], Patelli et
al. provide simulation algorithms based on the concept of survival signature and Monte Carlo
simulation (MCS). However, for large systems the computational effort of determining the survival
signature might be prohibitive. Thus, current research addresses the approximation of survival
signature entries by estimating the associated reliability values over a subset of corresponding state
vectors, reducing computational expense for the single required topological system evaluation
significantly [291]. Furthermore, in [156] an efficient algorithm for exact computation of system
and survival signatures using binary decision diagrams is provided. In addition, sub-structuring
the system in serial or parallel subsystems of smaller size and the subsequent merging of the
survival signatures of these subsystems may be conducted [157]. Further research combines the
notion of survival signature with multiple failure modes and dependent failures [158], common
cause failures [159], interconnected networks [160] and multi-state components [114].
In reality, design and maintenance decisions determining the reliability of a system have to be
made under the presence of uncertain conditions. Gathering precise information is typically
unfeasible, since, for instance, measurements of lifetime data and subjective assessments by
experts are governed by uncertainty. Thus, comprehensive details, providing insight into the
uncertain system behavior, are required. Consequently, a challenging task for engineers is how
uncertainty can be integrated into reliability models. In the systemic context, current approaches
to propagate uncertainty in the model are, e.g., Dempster-Shafer theory [182, 292], info-gap
theory [186], p-boxes [188, 218] and fuzzy probabilities [190, 293]. It shall be noted that a lot
of debate is present in the literature on various aspects of modeling uncertainties, such as the
terminology and interpretation [168, 169] as well as their representation [170, 171]. In practice,
the reduction of uncertainty is desired but associated with unavoidable costs, involving for
example experimental campaigns, destructive testing, etc. Therefore, a trade-off is required by
decision-makers, where a critical level of uncertainty needs to be identified among various design
and maintenance measures in order to balance uncertainty and the costs associated with its
reduction. This can be achieved by utilizing fuzzy probabilities as an appropriate uncertainty
representation, as, e.g., Beer et al. propose in [194].
In the context of survival signature, several works, such as in [114, 145, 154, 157], have already
demonstrated how the numerous advantages of the concept of survival signature and the con-
sideration of uncertainties can be merged in an encompassing reliability analysis framework.
Accounting for both aleatoric and epistemic uncertainties requires an adequate treatment in
system analysis. An often conducted approach is a two-staged simulation, known as “double loop”
approach, where variables with epistemic uncertainty are propagated in an “outer loop” and
variables with aleatoric uncertainty are sampled in an “inner loop” [203], or, vice versa, aleatory
variables are sampled in an “outer loop” and epistemic uncertainty is propagated in the “inner
loop” [204]. It is obvious that for complex systems this naive approach leads to an extraordinarily
large sample size and thus to high computational effort, see, e.g., [294]. Consequently, simulation
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methods that enhance computational efficiency and provide high accuracy with minimal sample
size are desired.
Approaches to circumvent the exhaustive double loop simulation include interval MCS and
interval importance sampling [207, 208], stochastic expansions and optimization-based interval
estimation [210] as well as surrogate modeling via optimization and approximation techniques
[295]. Latest methods to improve computational performance for uncertainty quantification, for
instance, combine p-boxes, univariate dimension reduction method and optimization [216], utilize
the augmented space integral [217] or apply line outage distribution factors [218]. Recently, Wei
et al. introduced in [220] the non-intrusive stochastic simulation (NISS), a promising approach for
efficient computation of imprecise structural models with a drastically reduced sample size. The
method splits into two basic approaches, the local extended Monte Carlo simulation (LEMCS) and
the global extended Monte Carlo simulation (GEMCS), coming along with different advantages
in accuracy and variation.
In the present work, two methodologies from different fields, namely, structural reliability and
system reliability, are joined to derive a novel and comprehensive approach for system reliability
analysis taking into account imprecisions. More specifically, both, LEMCS and GEMCS, are
adapted and merged with the concept of survival signature. Through the complex amalgamation,
a new methodology is derived, combining the advantages of both original methods: a significant
storage reduction of system topological information and major efficiency advantages in repeated
model evaluations as well as an extensive consideration of uncertainties with just a single stochastic
simulation needed, reducing the sample size dramatically. The combination of these advantages
leads to beneficial synergy effects, increasing the efficiency even more. The representation of
uncertainties is achieved by integrating fuzzy probabilities.
The paper proceeds as follows: Section 2 briefly reviews the fundamental theory of survival
signature, uncertainty, fuzzy probability and NISS method. Based on this, Section 3 develops
the proposed novel approach. In Section 4 the method is applied to a functional model of a
multi-stage high-speed axial compressor as well as to an arbitrary complex system. Section 5
summarizes the results and discusses questions for future research.

4.2 Theoretical fundamentals

4.2.1 Survival signature

The survival signature according to [149] is a concept for efficiently determining the time-
dependent reliability of systems that are composed of components of different types. Detailed
information about the concept and its derivation can be found, e.g., in [149, 153, 154].

Structure function

Suppose a system composed of m components of a single type. Then, x = (x1, x2, . . . , xm) ∈
{0, 1}m defines the state vector of these components with xi = 1 indicating a functioning state
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of the ith component and xi = 0 indicating a non-functioning state. The structure function
ϕ is a function of the state vector, describing the operating state of the regarded system:
ϕ = ϕ(x) : {0, 1}m → {0, 1}. Accordingly, ϕ(x) = 1 indicates a functioning system and ϕ(x) = 0
indicates a non-functioning system with respect to the state vector x.
Suppose a system composed of components of multiple types, i.e., K ≥ 2, then the number of
system components is given by m = ∑K

k=1 mk with mk denoting the number of components of
type k ∈ {1, 2, . . . , K}. Then, the state vector for each type can be defined, equivalent to systems
with only a single component type, as xk =

(
xk

1, xk
2, . . . , xk

mk

)
.

Survival signature and survival function

The survival signature describes the probability of a system being in a functioning state, purely
depending on the number of functioning components lk for each type k. Assuming the failure times
of components of the same type to be independent, identically distributed (iid) or exchangeable
within this type, the survival signature can be defined as:

Φ (l1, l2, . . . , lK) =

 K∏
k=1

(
mk

lk

)−1
× ∑

x∈Sl1,l2,...,lK

ϕ(x), (4.1)

with
(mk

lk

)
denoting the total number of state vectors xk of type k and Sl1,l2,...,lK denoting the

set of all state vectors of the entire system for which lk = ∑mk
i=1 xk

i . Thus, the survival signature
only depends on the topology of the system, regardless of any time-dependent failure behavior
of its components. Note that the notion exchangeability, following [167], implies the input
ordering of the random quantities being irrelevant. As a consequence in practice, rearranging
the exchangeable assumed components should be irrelevant to real systems. For components
that have the same functionality, come from the same manufacturer and operate in the same
environment, the assumption of exchangeability is reasonable. However, as the environment
changes, components of the same kind are exposed to different environmental stresses as, e.g.,
significantly different temperatures, affecting their behavior and further their lifetime probability
distribution function. Here, assuming exchangeability would be inappropriate, see [114].
Let Ck(t) ∈ {0, 1, . . . , mk} denote the number of components of type k in a working state at time
t and suppose the probability distribution for the failure times of type k to be known with Fk(t),
being the corresponding cumulative distribution function. Then

P

(
K⋂

k=1
{Ck(t) = lk}

)
=

K∏
k=1

P (Ck(t) = lk)

=
K∏

k=1

(
mk

lk

)
[Fk(t)]mk−lk [1− Fk(t)]lk

(4.2)

describes the probabilistic structure of the system, i.e., the time-dependent failure behavior of the
system components, regardless of its topology. The survival function, describing the probability
of a regarded system being in a functioning state at time t, results as:
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P (Ts > t) =
m1∑

l1=0
. . .

mK∑
lK=0

Φ (l1, l2, . . . , lK)× P

(
K⋂

k=1
{Ck(t) = lk}

)
, (4.3)

with Ts denoting the random system failure time. Thereby, the concept of survival signature
separates the topology and the time-dependent probability structure. In addition, the survival
signature is a summary of the structure function and, therefore, is advantageous compared to
traditional methods when model simulations have to be conducted repeatedly, especially, if the
system failure evaluation is computational expensive [114, 149]. Note that these are precisely the
features that make the survival signature so unique and beneficial.

4.2.2 Uncertainty

In literature, various concepts concerning uncertainty are spread. Therefore, a brief clarification of
the notion of uncertainty, its interpretation, classification and further a hint of how uncertainties
can be advantageously implemented into the probability structure of a system, as presented in
Section 4.2.1, is given in the following.

Interpretation of uncertainty

Initially, a fundamental notion of uncertainty must be established. Following Nikolaidis in [172],
uncertainty can be defined indirectly by the definition of certainty known from decision theory
and its absence. This interpretation and its associated states are illustrated in Fig. 4.1(a). In this
sense but extended to a more general interpretation, certainty, represented by state 4 in Fig. 4.1,
is the state in which complete knowledge, e.g., concerning model input, is given. This state is
ideal and a deterministic model can be utilized. Accordingly, uncertainty implies incomplete
knowledge concerning, e.g., corresponding measures of a decision and their outcome as addressed
in [172] or component behavior. Further, maximum uncertainty refers to complete ignorance, i.e.,
state 1, in which no knowledge is available at all. This is the worst case scenario yet appearing
only in the theoretical sense. In practice, the present state of information, shown as state 2,
typically includes both knowledge and uncertainty. The gap between complete ignorance and the
present state of information relates to knowledge stated to be certain, i.e., it can be implemented
in the model deterministically, while the gap between the present state and certainty corresponds
to remaining uncertainty. Concerning decision-making, stakeholders intend, among other things,
a maximum reduction of hazardous uncertainties, i.e., shifting the present state of information
as close to certainty as cost and feasibility allow.

Classification of uncertainty

In order to deal with uncertainties in analyses properly, e.g., Der Kiureghian & Ditlevsen propose
a two-part classification of uncertainty in [169]: “The advantage of separating the uncertainties
into aleatory and epistemic is that we thereby make clear which uncertainties can be reduced
and which uncertainties are less prone to reduction, at least in the near-term, i.e., before major
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Figure 4.1: Interpretation of uncertainty; adapted from [172] and [168].

advances occur in scientific knowledge”. Nikolaidis remarks in [172] that further uncertainty
taxonomies can be found in the literature. However, a broad consensus exists that in engineering
practice a distinction between these two types of uncertainty is beneficial and sufficient [168,
169, 173]. Focusing on this two-part classification, for the first type frequently used terms
are irreducible, aleatoric or objective uncertainty and the second is denoted as imprecision,
epistemic uncertainty, reducible or subjective uncertainty. These terms are respectively utilized
interchangeably among literature [168, 174]. However, the terminologies are up for debate as
can be seen by comparing, e.g., [168, 175, 176]. Aughenbaugh & Paredis clarify in [168] the
existence of aleatoric uncertainty as a controversial but philosophical issue and emphasize the
terms irreducible uncertainty and imprecision with regard to practical application. Accordingly,
these terms are used in the following.
Fig. 4.1 (b) illustrates the distinction into the above-mentioned two uncertainty types. Here, the
state of precise information, shown as state 3, delimits irreducible uncertainty and imprecision.
Thereby, the gap between state 3 and certainty denotes uncertainty that is claimed to be irreducible
from the current perspective. This type arises from presumed variability and randomness and
impedes the analyst from being certain throughout the evaluation process [173]. In contrast, the
gap between the present state of information and state of precise information denotes imprecision.
Imprecision arises, e.g., as only a limited amount of samples or subjective and, thus, fuzzy
assessments of experts on component behavior are available. Further sources of imprecision and
their consideration are discussed in [169] and [177]. Measures can be implemented to increase
the quality of information and, therefore, reduce imprecision [173]. However, these are typically
associated with effort and reaching the state of precise information may even be unfeasible.
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Figure 4.2: Fuzzy probability distribution function of a continuous fuzzy random variable; adapted from [224].

Implementation of uncertainty

Concepts to deal with uncertainty in a model can be distinguished into three groups, namely,
non-probabilistic approaches, precise probability approaches and imprecise probability ap-
proaches [220]. In order to propagate a clear distinction between irreducible uncertainty and
imprecision throughout analysis only the latter appears appropriate [220, 221]. Thereby, set-
theoretical concepts describing imprecision, such as intervals or fuzzy sets, and probability
distributions from traditional probability theory that represent irreducible uncertainty are com-
bined [168, 222]. Among various alternatives, in this context fuzzy sets are beneficial [194, 223].
For instance, Beer et al. utilize fuzzy sets in reliability analyses and propose two approaches to
evaluate these. For more information see [227] as well as [194].

4.2.3 Fuzzy probability

In system reliability engineering, imprecisions frequently occur, e.g., due to scarcity of data or
vague expert knowledge regarding the underlying probability distribution types and distribution
parameters of component lifetimes. Fuzzy probability theory enables to take these imprecisions
into account.
Let F (x) be a probability distribution function, describing the failure probability of a system
component up to time x. Further, assume that the knowledge of the parameters of this
distribution function is imprecise. Then Fig. 4.2 shows the fuzzy probability distribution function
F̃ (x) describing this phenomenon, with µ(F (x)) denoting the membership function of F (x)
and supp(F̃ (x)) = [F α0(x), F

α0(x)] denoting the support of F̃ (x). Note that for µ(F (x)) = 1,
corresponding to an α-level of α = 1, F̃ (x) = F (x).
In this work, all imprecise distribution parameters are modeled by triangular fuzzy numbers
θ̃ = (a/b/c), with a < b < c, [a, c] denoting the base of θ̃ and b denoting its vertex. In practice,
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the fuzzy probability model can be learned from (precise or censored) lifetime data by using
either frequentist or Bayesian statistical inference methods. For example, given a small number
of precise lifetime data, the (100 · α)% confidence intervals can be inferred for θ̃ with either
confidence interval estimation or bootstrap approach, where α can be taken as the membership
level. Comprehensive information on fuzzy probability and its practical applications is provided,
e.g., in [224, 225].

4.2.4 Non-intrusive imprecise stochastic simulation

The NISS, according to [220] and [296], provides a general methodological framework for prop-
agating parameterized imprecise probability models through a black-box simulator with only
one stochastic simulation. Indeed, any stochastic simulation algorithm can be injected into this
framework to tackle different types of problems.
The original extended Monte Carlo simulation (EMCS) method was introduced in [297] for
parametric global sensitvity analysis as well as parametric optimization and was further developed
in [220] and [296] into the NISS framework for efficient evaluation of moments of imprecise
response functions in a structural context. For the classical EMCS, the unbiased estimators are
derived by sampling from probability distribution functions of input variables with imprecise
distribution parameters fixed at a particular point, hence, it has been referred to as LEMCS
in further work. In [220], the GEMCS was established, where no fixed point of distribution
parameter is required, but rather an auxiliary sampling distribution. Further, the combination of
the LEMCS and GEMCS with high-dimensional model representation (HDMR) was presented in
order to efficiently apply the NISS method to more sophisticated and high-dimensional models.
Additionally, improvements for rare failure events were introduced to NISS in [296] and further
developed in [298, 299].
Note that all NISS methods (including both LEMCS and GEMCS), although inspired by
importance sampling, have significant different features, compared to the classical importance
sampling including the one developed in [208]. The specific features of NISS can be summarized as
follows: First, global NISS methods utilize samples generated from the joint space of component
lifetimes and their imprecise parameters and show better global performance than the classical
importance sampling, especially for the cases with large imprecision. Second, when applied
to the cases with high-dimensional imprecise parameters, two types of HDMR decomposition
are injected into LEMCS and GEMCS with proper truncation for substantial alleviating the
expansion of variations of estimators, which is a common phenomenon appeared in all importance
sampling based algorithms. Third, all classical stochastic simulation techniques for stochastic
analysis, such as subset simulation and line sampling, developed for rare event analysis, can be
injected into the NISS framework, following same rationale. This has substantially expended the
suitability of NISS framework to different types of imprecise probability analysis tasks.
In this work, the LEMCS and GEMCS are reviewed, where LEMCS is the basis of all local NISS
methods, while GEMCS provides a basis for all global NISS methods. The NISS methods are
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originally developed for performance and reliability estimation of structures simulated with a
black-box model, such as a finite element model.

4.3 Proposed methodology

In the following, the two basic NISS methods, LEMCS and GEMCS, are adapted and merged
with the concept of survival signature allowing for efficient system reliability analyses under
the constraint of imprecision. These two methods form the basis for all further developments
included in the NISS framework.
Let t = (t1, t2, . . . , tm)⊤ denote the failure times of the components of a system and Ts indicates
the failure time of the system. For a coherent system a non-decreasing deterministic function,
denoted as Ts = g (t), can be uniquely derived for modeling the relationship between system and
component failure times. The failure times of all component functions are intrinsically random
variables and the conditional joint density function is assumed to be f (t |θ ), where θ indicates
the q-dimensional vector of non-deterministic distribution parameters. The imprecision embodied
through θ might result from a lack of life data on components or expert knowledge and supports
can be inferred by, e.g., confidence interval estimation. Based on the above setting, the system
failure time is also a random variable with non-deterministic distribution parameters, where the
probability distribution reflects the natural variability of system failure time and the bounds of
probability reflect the degree of unknown on this variability. The system survival function can
then be formulated as:

Rs (t, t|θ) =
∫
R+

I [g (t) > t] f (t|θ) dt, (4.4)

where R+ indicates the space of non-negative real numbers and I [·] is the indicator function
with the values being either one if the argument is true or zero if it is false. With the above
setting, the system survival function can be reformulated as:

Rs (t, t|θ) =
∫
R+

I [g (t) > t] f (t|θ)
f (t|θ∗)f (t|θ∗) dt, (4.5)

where θ∗ can be any fixed and crisp point of θ. Then, given a set of random samples t(n)

(n = 1, 2, . . . , N) following f (t|θ∗), the LEMCS estimator of the system survival function is
given as:

R̂s (t, t|θ) = 1
N

N∑
n=1

I
[
g
(
t(n)

)
> t
] f

(
t(n)|θ

)
f
(
t(n)|θ∗) . (4.6)

This estimator is unbiased and its variance can be easily derived. Given the above estimator, the
bounds of the survival function can be computed by any global optimization algorithm, such as
genetic and particle swarm algorithms.
The GEMCS method involves first attributing auxiliary distributions for θ, which, in the
simplest case, can be uniform distributions within [θlow, θup]. Let p (θ) denote the joint density
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function of these auxiliary distributions and p (θi) the marginal density function of θi. Then
a set of joint random samples (t(n), θ(n)) can be generated following the joint density function
f (t, θ) = f (t|θ) p (θ) of t and θ, based on which the GEMCS estimator for the system survival
function results as:

R̂s (t, t|θ) = 1
N

N∑
n=1

I
[
g
(
t(n)

)
> t
] f

(
t(n)|θ

)
f(t(n)|θ(n))

. (4.7)

Both the LEMCS and GEMCS performance might vary for different types of probability distri-
butions or different distribution parameters and can depend on an appropriate choice for θ∗ and
p (θ), respectively. More detailed information is provided in [220].
Another key feature of the classical NISS method is the HDMR, see [220, 296], based on which
the behavior of the system survival function with respect to θ can be learned visibly and the
variation of estimators can be substantially reduced, especially when the number of components
with imprecise distribution parameters is large. However, in this paper, the LEMCS and GEMCS
estimator are solely utilized without HDMR decomposition.

4.3.1 LEMCS algorithm

A modified version of the MCS algorithm 2 in [114] is utilized as the stochastic simulation module
for implementing LEMCS and GEMCS. The LEMCS algorithm is then described as follows:

Step A1. Discretize the support
[
0, t̄
]

of system failure time uniformly as 0 = tz1 < tz2 < · · · <
tzd = t̄ and initialize the value of θ∗ and the number N of deterministic simulations.
Let n = 1.

Step A2. Sample the failure times t(n) = (t(n)
1 , t

(n)
2 , . . . , t

(n)
m ) for all components following f (t|θ∗)

randomly.

Step A3. At each time instant tzi, count the number of components working for each component
type as Ck (tzi), where k = 1, 2, . . . , K denotes the component type.

Step A4. Evaluate the survival signature at each time instant as:
Φ(n)

zi = Φ (C1 (tzi) , C2 (tzi) , . . . , CK (tzi)).

Step A5. Define the weight function for the sample t(n) as w(n) (θ) = f(t(n)|θ)
f(t(n)|θ∗) . If n = N , finish

the simulation; else, let n = n + 1 and go back to Step A2.

Based on the samples Φ(n)
zi , the LEMCS estimator for the system survival function at time tzi is

formulated as:

R̂s (tzi, θ) = 1
N

N∑
n=1

Φ(n)
zi w(n) (θ). (4.8)
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Computing at each time instant the minimum and maximum values of the estimator in Eq. 4.8,
by utilizing any global optimization algorithm, leads to the estimated upper and lower bound of
the system survival function.

4.3.2 GEMCS algorithm

The GEMCS algorithm is similar to the LEMCS algorithm except that the stochastic simulation
needs to be implemented in the joint space of t and θ. Given the auxiliary density function p (θ),
the GEMCS algorithm is described as follows:

Step B1. Discretize the support
[
0, t̄
]

of system failure time uniformly as 0 = tz1 < tz2 < · · · <
tzd = t̄ and initialize the number N of deterministic simulations. Let n = 1.

Step B2. Generate a joint random sample (t(n), θ(n)) following the joint density f (t|θ) p (θ).

Step B3. Same as Steps A3 and A4.

Step B4. Evaluate the weight function for the joint sample (t(n), θ(n)) as w(n) (θ) = f(t(n)|θ)
f(t(n)|θ(n)) .

If n = N , finish the simulation; else, let n = n + 1 and go back to Step B2.

The GEMCS estimator for the system survival function is formulated equivalently to the LEMCS
estimator in Eq. 4.8 and the estimated upper and lower bound of the system survival function can
be computed at each time instant by utilizing any optimization algorithm. Note that the upper
and lower distribution parameter vectors θ(tzi) and θ(tzi), corresponding to the maximum and
minimum survival function values at time tzi, are time-dependent and might vary for different
time points.
One of the factors when performing the GEMCS method is the pre-specification of the auxiliary
density p (θ). It has been demonstrated that the type of auxiliary distribution has minor effect
on the performance of GEMCS estimators [300]. In this work, it is set as the uniform distribution
within the support of θ.
The most appealing aspect of both the LEMCS and GEMCS algorithm is that only a single
stochastic simulation is required in order to deal with the imprecisions. Therefore, the traditional
utilized double loop simulation can be avoided. For both LEMCS and GEMCS, the interval
analysis and stochastic analysis has been successfully decoupled and the computational cost is
mainly governed by the one stochastic simulation performed. Furthermore, due to the merging
with the survival signature, the stochastic analysis has been separated from the system topology,
thus, only one reliability analysis with respect to the topology is required for generating the
survival signature. Besides these advantageous properties of the survival signature, it is precisely
the feature of only a single required stoachstic simulation, that makes the proposed methodology
so efficient and clearly distinguishes it from traditional approaches. Due to this approach, for any
NISS method combined with the concept of survival signature, the imprecise stochastic analysis
for estimating the bounds of system survival function has been simplified significantly.
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4.3.3 Repeated p-box analysis for fuzzy probability approximation

In order to compute the survival function of a system with components whose random failure
times are based on distribution functions with imprecise distribution parameters modeled
by independent fuzzy numbers with support [a, c], a procedure is needed to handle these in
probabilistic models. In [194] such a procedure is provided, that is based on a repeated p-box
analysis. The procedure is shown in Fig. 4.3. Each xα denotes an α-level set of the fuzzy number

x
parameter of input p-box

Pf
failure probability

µ(x) µ(Pf )

0

α

1

0

α

1

xα

x̃

Pαf

P̃f

acceptable Pf

acceptable interval

repeated p-box analysis

Figure 4.3: Nested p-box analysis to determine a fuzzy failure probability; adapted from [194].

x̃, representing an interval parameter of a probability distribution and, therefore, defining a p-box.
This leads to an interval P α

f associated with the same α-level. Repeating this p-box analysis
with different α-levels leads to the fuzzy failure probability P̃f . For more detailed information,
see [194]. Note that the combined advantages of the proposed methodology, orginating from
the advantages of both the NISS methods and the concept of survival signature, as well as the
beneficial synergy effects emerging from this combination, facilitate the nested p-box analysis
with significantly reduced computational effort.

4.3.4 Decision-making procedure

In reality, decision-makers typically encounter situations of imprecise knowledge about component
behavior as starting point. This might be the case in design and maintenance, if, e.g., only
insufficient information on the installed components has been collected so far. Depending on the
budget, gathering precise information for each component type, e.g., via experimental campaigns,
might not be feasible, impeding proper reliability analyses. In fact, a complete elimination of
imprecision is in most cases neither necessary nor cost-efficient. Thus, a procedure for identifying
a critical level of imprecision is crucial for cost-efficient decision-making, balancing the amount
of imprecision and costs associated with its reduction. Integral parts of such a procedure are
illustrated in Fig. 4.4.
To establish a basis for this procedure, the spectrum of imprecision can be represented by
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Figure 4.4: Decision-making procedure.

means of nested p-boxes, as proposed in Section 4.3.3. Further, a certain number of α-levels is
determined. Note that a higher number of α-levels yields a more comprehensive imprecision
analysis. In the simplest case, each upper and lower parameter bound is relatively changed to
the same extent per α-level. Then, each θα = (θα

1 , θα
2 , ..., θα

q ), with α ∈ [0, 1] and the number
of distribution parameters q, is a tuple of parameter intervals θα

i of the fuzzy distribution
parameters θ̃i. Such an implementation allows the identification of a global critical imprecision
level, as the imprecisions for each component type are altered simultaneously. A more detailed
critical imprecision identification can be conducted by considering various mixed combinations of
imprecision levels or, in a more sophisticated manner, e.g., by means of importance measures in
a sensitvity analysis. However, this is beyond the scope of this paper. According to the simplest
case, for each θα the imprecise model is evaluated, resulting in the lower survival functions
R̂

α
s (tzi) = R̂α

s (tzi, θα(tzi)) and upper survival functions R̂
α

s (tzi) = R̂α
s (tzi, θ

α(tzi)) at each time
step tzi. Correspondingly, the time-dependent upper and lower distribution parameter vectors are
θ

α(tzi) ∈ I = {(θ1, θ2, ..., θq)|θi ∈ θα
i ∀ i = 1, 2, ..., q} and θα(tzi) ∈ I. Further, a set of reliability

requirements R = {(t1, R1), (t2, R2), ..., (tr, Rr)} is established, where the tuple (tj , Rj), with
j = 1, 2, ..., r, specifies a pair of time and reliability values for r requirements. Typically, in
practice, only R̂

α
s (tzi) is relevant with respect to R. Then, R̂

cr
s (tzi)) = min

α
{R̂α

s (tzi)|R̂
α
s (tj) ≥

Rj , (tj , Rj) ∈ R∀ j = 1, 2, ..., r} is the critical, i.e., last acceptable, lower survival function.
Thereby, αcr = arg min

α
{R̂α

s (t)|R̂α
s (tj) ≥ Rj , (tj , Rj) ∈ R∀ j = 1, 2, ..., r} ∈ [0, 1] indicates the

critical α-level. Note that lower distribution bounds not necessarily yield lower response function
bounds and vice versa. In accordance, θcr = [θαcr , θ

αcr ] is the interval of acceptable imprecision.
As a consequence, imprecision has to be reduced at least up to the bounds of θcr. This reduction
can be achieved for instance by investing more budget in experimental campaigns, destructive
testing, etc.
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The procedure allows decision-makers the straightforward and reliable identification of acceptable
levels of imprecision in the underlying failure probabilities, e.g., in the design of new systems.
Corresponding to the requirements defined in the right graph of Fig. 4.4, the acceptable α-level
is αcr = 0.7 with the tuple of parameter intervals θcr = (θ0.7

1 , θ0.7
2 , θ0.7

3 ) contained in the tuple
of fuzzy numbers θ̃ = (θ̃1, θ̃2, θ̃3). This decision-making procedure is demonstrated for the case
study in Section 4.5.3.

4.4 Multistage high-speed axial compressor

Axial compressors are complex multi-component machines that are employed in major sectors of
society, e.g., in the industrial sector, as a key component of gas turbines for electricity production
or as part of aircraft engines in the public transport or military sector. Therefore, in both design
and maintenance, it is critical to consider as many system performance influencing, certain
and uncertain, information as possible to maximize the reliability of the compressor efficiently.
In order to illustrate this, the proposed method is applied to a functional model of an axial
compressor.

4.4.1 Model

In [251] a functional model of an axial compressor is developed as the foundation for a reliability
analysis. This model has been created to represent the reliability characteristic and functionality
of the four-stage high-speed axial compressor of the Institute for Turbomachinery and Fluid
Dynamics at Leibniz Universität Hannover. Detailed information about this axial compressor is
provided in [253].
The functional model captures the dependence of the overall compressor performance, namely, the
total-to-total pressure ratio and the total-to-total isentropic efficiency, on the surface roughness of
the individual blades, arranged in rotor and stator rows. It is based on the results of a sensitivity
analysis of an aerodynamic model of the compressor. A network representation of the functional
model is shown in Fig. 4.5. Each component represents either a stator (S1 — S4) or rotor row
(R1 — R4).
The rows are classified into four component types. This classification as well as the component
arrangement is chosen based on the effect of their blade roughness on the two performance
parameters of the axial compressor. More specifically, a connection between start and end implies
a functioning state of the compressor and an interruption of this connection means exceeding
a roughness-related performance variation of at least 25%, corresponding to a non-functioning
state. More detailed information on the functional model and its formulation can be obtained
from [251].
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Figure 4.5: Functional model of the multi-stage high-speed axial compressor.

4.4.2 Reliability analysis

For the time-dependent reliability analysis, each row, i.e., each component of the functional
model, is characterized by a failure probability depending on its component type. Note that
the model is thus formally a reliability block diagram (RBD) [108]. In practice, the underlying
distribution functions have to be derived from existing operational data. However, in order
to prove the usability of the proposed method and the capability of dealing with imprecisions,
exponential functions with imprecise parameters are assumed for all components. The imprecise
parameters are modeled by triangular fuzzy numbers. Depending on the respective component
type, the following parameters are assumed: λ1 = (0.1/0.15/0.2) for type 1; λ2 = (0.2/0.25/0.3)
for type 2; λ3 = (0.4/0.5/0.6) for type 3; λ4 = (0.6/0.7/0.8) for type 4.
After determining the survival signature of the compressor, in a first step, the imprecise parameters
are taken into account by approximating them with a single p-box, being the base of each triangle
fuzzy parameter, corresponding to an α-level of α = 0. The imprecise parameters result as:
λ1 ∈ [0.1, 0.2] for type 1; λ2 ∈ [0.2, 0.3] for type 2; λ3 ∈ [0.4, 0.6] for type 3; λ4 ∈ [0.6, 0.8] for
type 4. Based on the functional compressor representation, shown in Fig. 4.5, the upper and
lower bounds of the survival function of the compressor are obtained and displayed in Fig. 4.6: 1.
via traditional double loop approach; 2. via LEMCS algorithm with λ∗

1 = 0.1, λ∗
2 = 0.2, λ∗

3 = 0.4,
λ∗

4 = 0.6 as the best fits for λ∗
i ; 3. via GEMCS algorithm with p(λ) assumed to be uniform;

4. analytically. Note that the sampling density for LEMCS estimation is generated by setting
λ∗

i at their lower bounds. For exponential distribution, only with this setting, the support of
the sampling density will coincide with the support of the imprecise probability models when
their distribution parameters vary in their imprecise intervals. This principle for specifying
the sampling density is referred to in [220]. The double loop approach is conducted with 5 000
samples (failure times) on the inner loop and 1 000 samples (λ-values) on the outer loop. In other
words: 1 000 λ-vectors are sampled (epistemic space), representing 1 000 different probabilistic
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Figure 4.6: Survival function bounds of the functional compressor model via double loop approach, LEMCS
algorithm, GEMCS algorithm and analytically.

models. Each model is solved by MCS algorithm 2 in [114], generating 5 000 failure time vectors
per model, i.e., a total of 5 000 000 samples. Then the enveloping system reliability is determined
by identifying the minimum and maximum survival function value for each time step. Note that
the number of samples for the double loop approach, i.e., the number of failure times as well as
the number of samples in epistemic space, is adopted from [114]. For both LEMCS and GEMCS
where only one simulation is required, 100 000 samples (failure times) are generated each, i.e.,
only 1/50th of the sample size compared to the double loop approach. Time discretization is set
to ∆t = 0.05. Furthermore, the precise survival function of the axial compressor model, i.e., with
distribution parameters λi = bi, is determined and displayed in Fig. 4.6 as well.
Clearly, both the LEMCS and GEMCS algorithm approximate the analytically calculated upper
and lower bound of the survival function accurately with relative errors of: δLEMCS = 0.23%,
δLEMCS = 0.23% and δGEMCS = 0.29%, δGEMCS = 0.3%, where δ relates to the upper and
δ to the lower bound of the survival function. Despite a 50-times increased sample size, the
double loop approach performs significantly worse and does not capture the outer boundaries
of the survival function correctly, see Fig. 4.6. Correspondingly, the relative errors are larger
with: δDoubleLoop = 0.98% and δDoubleLoop = 2.58%. To achieve the same quality of results with
the double loop approach as with the LEMCS or GEMCS, significantly more samples than the
5 000 000 would be required.
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Figure 4.7: Survival function bounds of a functional compressor model via LEMCS algorithm with fuzzy
probability approximation.

It shall be noted, that, in general, the GEMCS algorithm has better global performance than the
LEMCS algorithm, as demonstrated and discussed in the following, second case study. Further,
the approximation quality of the LEMCS algorithm highly depends on the choice, respectively,
on the knowledge of the preselected distribution parameters λ∗

i .
In a second step, by performing a nested p-box analysis to determine fuzzy failure probabilities,
described in Section 4.3.3, further bounds of the survival function for different imprecision levels
can now be determined, based on various α-levels. With regard to the survival signature, these
only represent a change in the probability structure. Due to the separation between topological
and probability structure, the survival signature does not have to be recalculated, neither for
parameter variations within an α-level, nor for each new α-level, only the probability structure
has to be adapted. This results in a substantial reduction of the computational effort.
The results of the LEMCS algorithm for different α-levels are shown in Fig. 4.7. Note that for
each α-level just one single stochastic simulation, according to Section 4.3.1, has to be performed.
Clearly, these results support decision-makers in design and maintenance processes of complex
capital goods to estimate the level of imprecision that is bearable and still ensures acceptable
reliability.
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4.5 Complex system

In [114] the authors test their introduced simulation approaches for reliability analysis on an
arbitrary complex system. In order to demonstrate the broad applicability as well as efficiency of
the method proposed in this work, the complex system from [114] is considered and a reliability
analysis is conducted, taking into account imprecisions.

4.5.1 Model

The complex system consists of 14 components each of which is assigned to one of six component
types. Figure 4.8 illustrates the complex system and the assignment of components to their types.
A connection between the start and destination node indicates a functioning and an interruption
of this connection a non-functioning state of the system.

Component Type 1

Component Type 2

Component Type 5

Component Type 6

Component Type 3

Component Type 4

Figure 4.8: Representation of the arbitrary complex system with 14 components, adapted from [114].

4.5.2 Reliability analysis

Each system component is characterized by a specific time-dependent failure behavior depending
on its assigned component type. Again, in practice, the underlying distribution functions,
describing this behavior, need to be derived from existing operational data. However, for the
purpose of proof of concept and applicability, the arbitrary distributions and corresponding
imprecise parameters shown in Tab. 4.1 are assumed. Note that thus the complex system is
formally an RBD. As for the reliability analysis in the previous section, the imprecise distribution
parameters are modeled by triangular fuzzy numbers.
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Table 4.1: Distribution functions and parameters for each component type of the complex system.

Component type Distribution Parameters Triangular fuzzy numbers
1 Weibull [scale, shape] [(3.6/4.0/4.4), (2.1/2.25/2.4)]
2 Exponential [λ] [(0.1/0.15/0.2)]
3 Weibull [scale, shape] [(2.9/3.05/3.2), (0.8/0.95/1.1)]
4 Log-normal [µ, σ] [(2.2/2.35/2.5), (3.3/3.4/3.5)]
5 Exponential [λ] [(0.2/0.25/0.3)]
6 Gamma [scale, shape] [(2.1/2.2/2.3), (3.2/3.35/3.5)]

The survival signature of the complex system is provided in Tab. 4.2 and Tab. 4.3. For the sake
of conciseness, only the non-trivial survival signature values are shown, i.e., all values that are
not equal to zero or one.
For the time-dependent reliability analysis, the imprecise distribution parameters are first assumed
to be precise by considering just the vertex b of each triangular fuzzy number. Second, the analysis
is conducted by approximating the distribution parameters with a single p-box, corresponding
to the base boundaries a and c of the fuzzy numbers. Third, the full imprecision is addressed
in Section 4.5.3 by considering the fuzzy numbers according to the repeated p-box analysis
described in Section 4.3.3.
In Fig. 4.9 the resulting survival function bounds of the complex system are displayed: 1.
via traditional double loop approach; 2. via LEMCS algorithm with θ∗

i corresponding to the
upper base bounds ci of each fuzzy parameter for all two-parametric distributions and with θ∗

i

corresponding to the lower base bounds ai for both exponential distributions, see Tab. 4.1; 3.
via GEMCS algorithm with p(θ) assumed to be uniform; 4. analytically. Again, the double loop
approach is conducted with 5 000 samples (failure times) on the inner loop and 1 000 samples
(θ-values) on the outer loop. As in the previous case study, the number of samples for the double
loop approach is adopted from [114]. For the one required LEMCS and GEMCS simulation,
200 000 samples (failure times) are generated each, i.e., only 1/25th of the sample size compared
to the double loop approach. Time discretization is again set to ∆t = 0.05. In addition, the
precise survival function of the complex system, i.e., with distribution parameters θi = bi, is
determined and displayed in Fig. 4.9.
As in the previous analysis of the axial compressor, both the LEMCS and GEMCS algorithm
approximate the analytically determined bounds of the survival function of the complex system
with high accuracy, see Fig. 4.9. However, considering the relative errors of both algorithms, it is
noticeable that the GEMCS approximates both bounds equally well, with errors of δGEMCS =
0.15% and δGEMCS = 0.12%, whereas the LEMCS algorithm provides a deviation in the quality
of the bound approximation that is more significant with δLEMCS = 0.06% and δLEMCS = 0.32%.
The different bound qualities provided by the LEMCS are due to its locality property that is
determined by the choice of the preselected θ∗. The LEMCS performs locally, i.e., in the region
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Table 4.2: Non-trivial survival signature values of the complex system, shown in Fig. 4.8 — Part 1.

l1 l2 l3 l4 l5 l6 Φ (l1, . . . , l6)
3 1 [1,2] 0 1 0 1/20
3 1 [0,1,2] [0,1] 0 1 1/20
3 1 0 1 1 [0,1] 1/20
3 1 0 0 1 1 1/20
3 2 [1,2] [0,1] 0 1 1/10
3 2 [1,2] 0 1 0 1/10
3 2 0 1 1 [0,1] 1/10
3 2 0 1 0 1 1/10
3 2 0 0 [0,1] 1 1/10
3 1 [1,2] 1 1 [0,1] 1/10
3 1 [1,2] 0 1 1 1/10
3 3 [0,1,2] [0,1] 0 1 3/20
3 3 [1,2] 0 1 0 3/20
3 3 0 1 1 [0,1] 3/20
3 3 0 0 1 1 3/20
3 4 [0,1,2] [0,1] 0 1 1/5
3 4 [1,2] 0 1 0 1/5
3 4 0 1 1 [0,1] 1/5
3 4 0 0 1 1 1/5
3 2 [1,2] 1 1 [0,1] 1/5
3 2 [1,2] 0 1 1 1/5
4 1 [1,2] [0,1] 0 1 1/5
4 1 [1,2] 0 1 0 1/5
4 1 0 1 1 [0,1] 1/5
4 1 0 0 [0,1] 1 1/5
4 1 0 1 0 1 1/5
3 3 [1,2] 1 1 [0,1] 3/10
3 3 [1,2] 0 1 1 3/10

of θ∗ excellent but worse on a global scale. However, since with the GEMCS all failure times are
sampled uniformly over the entire range of θ, it has better global performance, as shown by these
results. It shall be noted that in case of rare failure events, as stated in [220] for both original
NISS methods, also for the adapted method proposed in this work, instabilities may occur,
depending on the sample size. Guidance on selecting an appropriate sample size is provided at
the end of this section. If rare failure events are of special concern, it is recommended to use the
NISS methods driven by advanced stochastic simulation techniques such as subset simulation
and line sampling, see [296, 298, 299] for more details.
The difference between both algorithms is especially apparent for complex systems such as the
one considered in Fig. 4.8, with various component types and various underlying multi-parametric
and imprecise failure distribution functions. However, for less complex systems with single-
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Table 4.3: Non-trivial survival signature values of the complex system, shown in Fig. 4.8 — Part 2.

l1 l2 l3 l4 l5 l6 Φ (l1, . . . , l6)
4 2 [0,1,2] [0,1] 0 1 11/30
4 2 [1,2] 0 1 0 11/30
4 2 0 1 1 [0,1] 11/30
4 2 0 0 1 1 11/30
3 4 [1,2] 1 1 [0,1] 2/5
3 4 [1,2] 0 1 1 2/5
4 1 [1,2] 1 1 [0,1] 2/5
4 1 [1,2] 0 1 1 2/5
4 3 [0,1,2] [0,1] 0 1 1/2
4 3 [1,2] 0 1 0 1/2
4 3 0 1 1 [0,1] 1/2
4 3 0 0 1 1 1/2
5 1 [0,1,2] [0,1] 0 1 1/2
5 1 [1,2] 0 1 0 1/2
5 1 0 1 1 [0,1] 1/2
5 1 0 0 1 1 1/2
4 4 [0,1,2] [0,1] 0 1 3/5
4 4 [1,2] 0 1 0 3/5
4 4 0 1 1 [0,1] 3/5
4 4 0 0 1 1 3/5
4 2 [1,2] 1 1 [0,1] 2/3
4 2 [1,2] 0 1 1 2/3
4 [3,4] [1,2] 1 1 [0,1] 4/5
4 [3,4] [1,2] 0 1 1 4/5
5 2 [0,1,2] [0,1] 0 1 5/6
5 2 [1,2] 0 1 0 5/6
5 2 0 1 1 [0,1] 5/6
5 2 0 0 1 1 5/6

parametric distribution functions of the same type as given for the axial compressor model in
the previous section, the LEMCS performs equally well at both bounds and the errors are barely
different from those of the GEMCS. Similar to the previous analysis of the axial compressor,
the traditional double loop approach provides substantially worse approximations despite a
significantly larger sample size, as clearly shown in Fig. 4.9, with errors of δDoubleLoop = 2.07%
and δDoubleLoop = 1.93%. Again, as in the previous case study, to achieve the same quality of
results with the double loop approach as with the LEMCS or GEMCS, significantly more samples
than the 5 000 000 would be required.
In Fig. 4.10 a convergence study for the complex system, illustrated in Fig. 4.8, is shown.
Both algorithms are considered: On the left, the results of the GEMCS and, on the right, the
results of the LEMCS algorithm are depicted. The graphs display the relative error between the
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Figure 4.9: Survival function bounds of the complex system, displayed in Fig. 4.8, via double loop approach,
LEMCS algorithm, GEMCS algorithm and analytically.

results of the proposed estimator algorithms and the analytically evaluated survival function
bounds, plotted over various sample sizes with 500 evaluations each, reaching from 100 up to
250 000 samples. On the top, the relative error is evaluated for the upper survival function
bound and, on the bottom, the relative error is evaluated for the lower survival function bound.
The errors decrease signficantly with increasing sample size and, clearly, for both algorithms
and both bounds convergence is to observe. For the upper bound of the survival function via
LEMCS algorithm, even small sample sizes are sufficient to yield low median errors and variances
compared to the GEMCS results due to the specific choice of θ∗. In contrast, for the lower bound,
the LEMCS performs significantly worse than the GEMCS. This demonstrates the superior global
performance of the GEMCS algorithm compared to the LEMCS, while the LEMCS algorithm
shows better local performance. However, considering the GEMCS algorithm, the slightly larger
upper median error indicates the upper survival function bound as a more challenging region for
the global estimator. As stated in Section 4.4.2 for exponential distributions, this observation
relates to the point that the support of the sampling density should ideally coincide with the
support of the density with parameters varying in their imprecise intervals, see [220]. However,
this condition is not given for the majority of GEMCS samples at the upper bound, leading to
the slightly worse results compared to the lower bound.
As a supplementary decision-making indicator, the coefficient of variation can be considered to
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(a) GEMCS algorithm for upper bound
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(b) LEMCS algorithm for upper bound
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(c) GEMCS algorithm for lower bound
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(d) LEMCS algorithm for lower bound

Figure 4.10: Convergence study of the GEMCS and LEMCS algorithms with the relative error of the corresponding
survival function bounds with respect to the sample size over 500 evaluations each.

adaptively specify the required sample size. For instance, a threshold can be set for the coefficient
of variation, e.g., (5%). If the estimated coefficient is above this threshold, more samples should
be considered in order to reduce the variation.

4.5.3 Imprecision decision-making

Given the fuzzy numbers specified in Tab. 4.1, the spectrum of imprecision is represented by
means of a repeated p-box analysis as described in Section 4.3.3. The nested p-box analysis
conducted via the GEMCS algorithm provides further survival function bounds of the complex
system, corresponding to different α-levels, as shown in Fig. 4.11. Due to the separation between
topological and probability structure, the survival signature does not have to be recalculated,
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Figure 4.11: Survival function bounds of the complex system, displayed in Fig. 4.8, via GEMCS algorithm with
fuzzy probability approximation.

neither for parameter variations within an α-level, nor for each new α-level, only the probability
structure has to be adapted. Consequently, for each α-level only a single stochastic simulation,
according to Section 4.3.2, has to be performed. This enables comprehensive reliability analyses
with substantially reduced cost compared to traditional approaches. In order to perform
decision-making concerning the reduction of system components inherent imprecision, reliability
requirements can be establised, according to Section 4.3.4. In this case study, requirements are
arbitrarily assumed with R = {(t1, R1), (t2, R2), (t3, R3)} = {(1.5, 0.76), (2, 0.49), (3, 0.21)}, as
illustrated in Fig. 4.11. Due to αcr = arg min

α
{R̂α

s (t)|R̂α
s (tj) ≥ Rj , (tj , Rj) ∈ R∀ j = 1, 2, 3} =

arg min
α
{R̂α

s (t)|R̂α
s (1.5) ≥ 0.76, R̂

α
s (2) ≥ 0.49, R̂

α
s (3) ≥ 0.21} = arg min

α
{R̂0.8

s (t), R̂
1
s(t)} = 0.8.

Note that R̂
1
s(t) = R̂1

s(t) = R̂
1
s(t). Imprecision should be reduced at least up to a level of

α = 0.8 for all component types corresponding to the tuple of parameter intervals of θcr =
(θ0.8

1 , θ0.8
2 , . . . , θ0.8

10 ) with θ0.8
1 = [3.92, 4.08], θ0.8

2 = [2.22, 2.28], θ0.8
3 = [0.12, 0.18], θ0.8

4 = [3.02, 3.08],
θ0.8

5 = [0.92, 0.98], θ0.8
6 = [2.32, 2.38], θ0.8

7 = [3.38, 3.42], θ0.8
8 = [4.00, 4.33], θ0.8

9 = [3.32, 3.38],
θ0.8

10 = [2.18, 2.22].
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4.6 Conclusion and outlook

The present paper introduces a novel methodology supporting decision-making in the context of
system reliability analysis, taking into account imprecisions. It allows to efficiently estimate the
system reliability in design and maintenance processes, considering uncertainty in various levels,
underlying the system component behavior. Thereby, decision-makers are enabled to identify a
bearable level of imprecision that still ensures acceptable system reliability.
The proposed method consists of the sophisticated union of the concept of survival signature with
two adapted extended MCS methods (NISS methods), thus representing a novel development
combining two approaches from two different fields. Considering imprecision into the probabilistic
structure by means of fuzzy probabilities and utilizing a nested p-box analysis for approximating
this fuzziness allows for the ability of critical imprecision identification. The provided method
combines both tremendous advantages of its two main components: 1. the application of the
concept of survival signature dramatically reduces the computational effort for the analysis,
since once it has been computed, any number of probability structures can be tested without
having to recompute it and 2. the utilization of both adapted NISS methods is accompanied
by the necessity of only a single stochastic simulation per considered uncertainty level and
consequently a substantially reduced sample size compared to traditional approaches, leading
to another significant improvement of efficiency. Precisely these two characteristics and the
symbiosis between them make the proposed methodology so efficient and widely applicable.
The novel approach is employed to the functional model of an axial compressor as well as to
an arbitrary complex system. A comparison of analytical and numerical results proves the
applicability of the method. However, in general, the LEMCS exhibits more local accuracy,
while the GEMCS possesses better global performance and leads to superior results, especially
for systems with complex imprecise probability structure. In terms of choice of method and
application area, the LEMCS is preferable if accurate local performance is required and the
knowledge for an educated guess of θ∗ is available. While GEMCS should be applied if no prior
knowledge about the uncertain system behavior is present. Further, a combination of both
methods can be practical as well. First, GEMCS can be utilized to evaluate the neighborhood in
which the parameter vector θ yields the critical survival function bound. Second, LEMCS can
be applied to compute the results in the desired area of interest more accurately.
Further research should address the challenge of computing the survival signature for lifelike,
large and complex systems with components of various types since it is highly demanding or
even unfeasible. Thus, improved methods for determining the survival signature or enhanced
methods for approximations are required. In addition, future work of the authors will address
an improved rare failure event estimation and further performance improvements, such as the
utilization of an HDMR.
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Abstract

The increasing size and complexity of modern systems presents engineers with the inevitable challenge of developing
more efficient yet comprehensive computational tools that enable sound analyses and ensure stable system operation.
The previously introduced resilience framework for complex and sub-structured systems provides a solid foundation
for comprehensive stakeholder decision-making, taking into account limited resources. In their work, a survival
function approach based on the concept of survival signature models the reliability of system components and
subsystems. However, it is limited to a binary component and system state consideration. This limitation needs
to be overcome to ensure comprehensive resilience analyses of real world systems. An extension is needed that
guarantees both maintaining the existing advantages of the original resilience framework, yet enables continuous
performance consideration.
This work introduces the continuous-state survival function and concept of the Diagonal Approximated Signature
(DAS) as a corresponding surrogate model. The proposed concept is based on combinatorial decomposition
adapted from the concept of survival signature. This allows for the advantageous property of separating topological
and probabilistic information. Potentially high-dimensional coherent structure functions are the foundation. A
stochastic process models the time-dependent degradation of the continuous-state components. The proposed
approach enables direct computation of the continuous-state survival function by means of an explicit formula and
a stored DAS, avoiding costly online Monte Carlos Simulation (MCS) and overcoming the limitation of a binary
component and system state consideration during resilience optimization for sub-structured systems. A proof of
concept is provided for multi-dimensional systems and an arbitrary infrastructure system.
Keywords: Surrogate modeling, Continuous-state system, Survival function, Coherent structure function,
Resilience optimization, System reliability, Monte Carlo simulation.

5.1 Introduction

Engineering systems, such as infrastructure networks and complex machines, are ubiquitous
worldwide and form the backbone of modern societies. As societies grow, these systems become
increasingly sophisticated in size and complexity. Evidently, the stable operation of such systems
is crucial for the economy and an undisturbed and safe everyday life of civilians. This challenge
is exacerbated by exposure to an increasingly inhospitable, changing and uncertain environment.
It is evident that it is exceedingly difficult if not impossible to identify and prevent all potential
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adverse impacts. The focus in design and maintenance of complex systems has to be extended
from a pure failure prevention and failure persistence strategy to the capabilities of adaptation
and recovery. The concept of resilience meets exactly these needs both from a technical and
economic point of view and ensures steady functioning [5, 7, 10]. Consequently, there is an
increasing need for sophisticated and efficient computational tools that adapt this perspective in
order to exploit the potential emerging benefits in engineering practice.
A fundamental precondition for the assessment of resilience of complex systems is an appropriate
quantitative resilience metric. In [12, 23, 73], the authors present a broad review of current
resilience metrics. In [301], Linkov and Trump provided a critical analysis of resilience definitions
and metrics found in literature, their practical application and specifically compare them to the
concept of the traditional notion of risk. Hosseini et al. presented in [12] a categorization scheme
for resilience quantification approaches. Among these, performance-based resilience metrics are
the most common and are based on comparing the performance of a system before and after an
adverse event. Theoretically, such an adverse event could correspond to rare shock events on a
large time scale or persistent degrading effects on an infinitesimally small time scale. Further
subcategories distinguish between time in-/dependence and characterization as deterministic
or probabilistic. As motivated in [12] and [76], it is assumed that a performance-based and
time-dependent metric is capable of considering the following system states before and after a
disruptive event:

• The initial state that remains unchanged until the occurrence of an effectively disruptive
event, characterized by system reliability, that is interpreted as the ability of the system to
sustain typical performance prior to a disruptive event [12, 302].

• The disrupted state, determined by the system robustness, i.e., the ability of the system to
mitigate an effectively disruptive event and its counterpart, vulnerability, represented by a
potential loss of performance after the occurrence of a disruptive event [6, 52].

• The recoverability of the system characterizes the duration of the degraded state and the
recovery to a new stable state [6, 76].

5.1 illustrates these system states and their transitions simplified for a single effectively disruptive
event and its potentially infinitesimal small period. Note that the terminologies concerning the
governing properties, phases and states presented here, although in their physical interpretation
perceived alike or at least similarly, are discussed in literature partly controversially. Thus,
for example, what is described here, and, e.g., in [52], as system robustness is referred to
as resistance of a system, as in [79]. In fact, the boundaries between the interpretations of
reliability and robustness are fluid when extending the conventional perspective as shall be seen
in the further course of this work. For the developments subsequently proposed, it is critical
to define a concise interpretation of reliability from a probabilistic perspective. In accordance
with [303], let reliability refer to the probability of a system or some entity under consideration
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Figure 5.1: The concept of resilience - three essential phases, adapted from [76].

to uninterruptedly perform a certain specified function during a stated interval of a life variable,
e.g., time, within a certain specified environment.
In the field of engineering, resilience as a concept has consistently gained popularity in recent
years [17, 23]. There are numerous ways to improve the resilience of systems. However, there
are limits to available resources, and resilience cannot be increased indefinitely. Therefore, it is
important not only to be able to differentiate and balance between different resilience-enhancing
measures, but also to take into account their monetary aspects [240, 244]. In [268], Salomon et
al. present a method for determining the most cost-efficient allocation of resilience-enhancing
investments. Further, current research related to resilience focuses on improved metrics for
quantifying resilience, such as those proposed in [84], and overarching frameworks for stakeholder
decision-making, such as for transportation networks in the presence of seismic hazards [269].
Other recent studies have examined the complexity of real-world infrastructure systems, the
consequences of failures, recovery sequences, and various externalities. For instance, in [271], the
authors demonstrated the tremendous complexity of modern critical infrastructures and their
multifactorial nature as cyber-human-physical systems, and explored appropriate modeling and
resilience analysis techniques. Moreover, the studies [272] and [273] address the implications
for decision-making considering stakeholder priorities and enhancement or recovery strategies.
Climate change challenges have been explored in the context of resilience, e.g., in [274]. A
comprehensive literature review of resilience assessment frameworks balancing both resources
and performance can be found in [270].
Salomon et al. recently introduced in [304] an efficient resilience framework for large, complex
and sub-structured systems, providing a solid foundation for comprehensive stakeholder decision-
making, taking into account limited resources. In their work, a survival function approach
based on the concept of survival signature, first introduced in [149], models the reliability of
system components and subsystems of investigated systems. This reliability approach separates
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information on the topological (sub)system reliability and the component failure time behavior.
Thereby, the survival signature captures the topological information in an efficient manner [114]
and thus, can be seen as a type of surrogate modeling technique. This allows for significantly
reduced computational effort when it comes to repeated model evaluations, as the demanding
evaluation of the topological system model is circumvented [152]. This is all the more relevant
the larger and more complex the system under consideration is. The repeated model evaluations
are of crucial importance when the parameters examined during the resilience optimization affect
the probability structure of the system components. This results in a high number of changes
in the probability structure during the resilience analysis, which can be ideally covered by the
separation property of the survival signature with minimal computational effort.
A major restriction of the survival signature in its original form is the limitation to a binary com-
ponent and system state consideration. Consequently, the resilience framework for complex and
sub-structured systems in [304] is subject to the same constraints during resilience optimization.
However, for a comprehensive resilience analysis of real world systems, a continuous component
and system performance state consideration is an indispensable prerequisite. Therefore, an exten-
sion is needed that guarantees both the already existing advantages of the resilience framework
in [304] based on the original form of the survival signature, yet enables continuous performance
consideration.
The most widespread reliability assessment methods follow a binary-state consideration, i.e.,
reducing the consideration of system performance to the set of the two states of either perfect
functioning or complete failure, compare [305]. Jain et al. states that the “Majority of the existing
models have computed system reliability at a holistic level but fail to consider the interactions
at component and sub-system levels [...].” In [306], Yang & Xue highlight the importance of
a continuous-state consideration in reliability analysis. It is evident that the consideration of
continuous component and (sub)system states is equally important for resilience analysis and thus
indispensable for realistic resilience optimization. In the last years several researchers proposed
various concepts that bring the survival signature to a multi-state consideration, e.g., see [165,
216, 280, 281], which can be seen as a first step in development, towards continuous consideration
and potential implementation into proposed resilience framework for sub-structured complex
systems [304].
In the current work, theoretical fundamentals are first summarized. Then the concept of the DAS
is introduced as a new surrogate modeling approach, based on the concept of survival signature
and potentially high-dimensional coherent structure functions describing the relationship between
degrading components and corresponding continuous-state system performance. The proposed
approach enables direct computation of continuous-state survival function by means of an explicit
formula and a stored DAS, thus avoiding a costly online MCS and overcoming the limitation of
a binary component and system state consideration. A proof of concept is provided for multi-
dimensional systems consisting of min- and max-operators, where exact results are obtained.
Further, the applicability of the concept is investigated for an arbitrary infrastructure system.
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Finally, a conclusions and outlook are presented.

5.2 Theoretical fundamentals

5.2.1 Structure function

According to [307], the performance of a system depends only on its components, i.e., their states,
and their interactions. Then, a vector x(t) can be seen as the component state vector of the system
assigning a state to each component. x(t) should dependent on the environmental conditions.
As a result, the system performance can be described as a function of the component state
vector. Suppose that a component state is modeled via probability distributions in dependence on
component properties, environmental effects, and time. Then, the system performance function
solely describes the system structure, corresponding to the arrangement of the components and
their interactions. Such a system performance model can be considered as the well-known system
structure function. In the current work, the structure function is assumed to be time-independent.

Binary-state structure function

The structure function of a system is a fundamental concept to represent system topology in
reliability analysis. For a binary-state system the structure function can be defined as follows. Let
a system consist of n components of the same type. Further, let x = (x1, x2, . . . , xn) ∈ {0, 1}n

be the corresponding state vector of the n components, where xi = 1 indicates a working state of
the i-th component and xi = 0 indicates a nonworking state. Then, the structure function ϕ is a
function of the state vector defining the operating status of the considered system:

ϕ := ϕ(x) : {0, 1}n → {0, 1}, (5.1)

as proposed, e.g., in [149] Accordingly, ϕ(x) = 1 denotes a working system and ϕ(x) = 0 specifies
a nonworking system relative to the state vector x.
Let a system consist of components of different types, i.e., K ≥ 2. Then, the number of
system components is denoted by n = ∑K

k=1 nk, where nk is the number of components of
type k ∈ {1, 2, . . . , K}. Accordingly, the state vector for each type is specified by xk =
(xk,1, xk,2, . . . , xk,nk

).

Multi-state structure function

Analogously, the structure function can be defined for a discrete multi-state consideration. Then,
the system and component states degrade from a perfect state over a set of intermediate states
to the state of complete failure:

ϕ := ϕ(x) : {0, . . . , M}n → {0, . . . , M}, (5.2)
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compare [308].

Continuous-state structure function

When following a continuous multi-state consideration, the set of possible system and component
states are all elements of the interval between 0 and 1. Such a consideration relates to the
performance function well-known in structural reliability when normalized for minimum and
maximum parameter values, e.g., as proposed in [309]:

ϕ := ϕ(x) : [0, 1]n → [0, 1]. (5.3)

5.2.2 Coherent system

A special case of the general system is the class of coherent systems. Note that binary-state,
discrete multi-state, as well as continuous multi-state structure functions can be coherent. In
accordance with Hudson & Kapur [310], this class can be defined as follows. A (discrete or
continuous multi-state) system is defined to be coherent if the three subsequent conditions are
fulfilled:

• ϕ(x) is surjective. Consequently, for each system state m there exists at least one state
vector x for which ϕ(x) = m.

• ϕ(x) ≤ ϕ(y) if x ≤ y, i.e., ϕ is monotone and non-decreasing.

• The set C of all components contains no inessential components, i.e., each component
influences the system performance at some point.

5.2.3 Concept of binary-state survival signature

The concept of the survival signature is a promising approach for a more efficient evaluation
of system reliability, especially when it comes to repeated model evaluations. Introduced
in [149], this concept enables to compute the survival function of a system. The approach
attracted increasing attention over the last decade due to its advantageous features compared
to traditional methods [114]. One of its benefits is the efficiency in repeated model evaluations
due to a separation of the probability structure of system components and the topological
system reliability. In addition, the survival signature significantly condenses information on the
topological reliability for systems with multiple component types. Components are of the same
type if their failure times are independent and identically distributed (iid) or exchangeable. This
distinction is important when modeling dependent component failure times [153]. For more
information on claimed exchangeability in practice, see [152, 153]. In the following the derivation
of the concept of survival signature is shown for a binary-state system with a single component
type and multiple component types, respectively, based on Coolen et al. [149]. More detailed
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information about further applications and the derivation of the concept can be found in [149,
153, 154].
Consider a coherent system with a given structure function as described in 5.2.1. Given a
binary-state vector specifying the state of n components in total, there are

(n
l

)
state vectors

x with exactly l components with xi = 1, i.e., ∑n
i=1 xi = l. Let the set of these state vectors

refer to as Sl. Assume that the failure times of the components specifying x over time are iid.
Consequently, all possible state vectors are equally likely to occur and, hence, it can be stated
that

Φ(l) =
(

n

l

)−1 ∑
x∈Sl

ϕ(x), (5.4)

where ϕ(x) is the binary-state structure function. Then, Φ(l) denotes the probability that a
system is working given that exactly l of its components working for l = 1, . . . , n. Note that
the survival signature depends only on the topological reliability of the system, independent of
the time-dependent failure behavior of its components, hereafter referred to as the probability
structure of the system. It holds that Φ(0) = 0 and Φ(n) = 1 due to the coherent system property.
The expression given in 5.4 closely relates to the signature, introduced by Samaniego in [148].
The probability structure of system components specifies the probability that a certain number of
components of type k are working at time t. Let Ct ∈ {0, 1, . . . , n} be the number of components
functioning at time t > 0. Further, the probability distribution of the component failure time is
described by the cumulative density function (CDF) F (t). Therefore, the probability structure
for l ∈ {0, 1, . . . , n} is given as

P (Ct = l) =
(

n

l

)
[F (t)]n−l[1− F (t)]l. (5.5)

The topological reliability described by Eq. 5.4 and the probability structure characterizing the
component failure times can be brought together to obtain the survival function as

R(t) = P (Tf > t) =
n∑

l=0
Φ(l)P (Ct = l) , (5.6)

where Tf denotes the random system failure time. Clearly, the two terms on the right-hand
side of the equation have different roles: The term Φ(l) represents the topological reliability and
is determined by the structure function of the system, defining how the system functionality
depends on the function of its components. The other term P (Ct = l) describes component
failure behavior and is referred to as the probability structure of the system. Consequently,
the concept of survival signature separates the time-independent topological reliability and
the time-dependent probability structure. Thus, the survival signature computed once in a
pre-processing step can be reused for further evaluations of the survival function. The survival
signature can be stored in a matrix, summarizing the topological reliability. The utilization
of this matrix circumvents the repeated evaluation of the typically computationally expensive
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structure function. Note that precisely these properties give the concept of survival signature an
advantage over conventional methods when system simulations must be performed repeatedly
[114].
The survival function R(t) is a well-known concept in reliability engineering that is also referred
to as reliability function [311, 312]. It is typically interpreted as the mathematical formalization
of the definition of reliability provided in 5.1 and quantifies the system failure time to be greater
or equal to t. It relates to the CDF F (t) as R(t) = 1− F (t).
It is also possible to define the concept of survival signature for K ≥ 2, with K being the number
of component types. In this case, the survival signature summarizes the probability that a
system is working as a function depending on the number of working components lk for each
type k = 1, . . . , K, see [149] for more details.

5.2.4 Concept of continuous-state survival signature

The original concept of survival signature achieves considerable efficiency advantages when
computing system reliability but is limited to a binary-state consideration. However, a multi-
state or even continuous-state consideration might be beneficial for the assessment of most
real-world systems in terms of safety and cost efficiency. In the last years several researchers
proposed various concepts that bring the survival signature to a multi-state consideration, see
[165, 280, 281].
In [216], Liu et al. introduced an approach for the concept of survival signature in the context
of continuous-state systems, for which the component functionality is characterized by a stress-
strength relation. The strength of the components are assumed to be iid, while the strength
X and the stress Y acting on the components are statistically independent. The state of a
component is defined via a kernel function K : R+ → S through the relation η = K(Z) with the
random variable Z = X/Y . Thereby, S ∈ {0, 1, 2, . . . , M} and S ∈ [0, 1], respectively, depending
on a discrete or continuous multi-state consideration. The researchers provided formulas to
compute the survival signature for discrete multi-state systems similar to [280] in a combinatorial
manner but directly based on the number of path sets. Analogously, the survival signature for
continuous multi-state systems is given as

ρns(n) = P (ε ≥ s | N(s, n) = ns)

= δns(n)/
(

n

ns

) (5.7)

with
N(s, n) =

n∑
i=1

I(η ≥ s) (5.8)

that is the number of components in state s of in total n components and δns(n) being the number
of path sets for which exactly ns components are in state s or above. The time-independent
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probability that the system is at least in state s or above can then be given as

R(s) =
n∑

ls=0
ρls(n)

(
n

ls

)
P (N(s, n) = ns) , (5.9)

where ls is the number of components functioning in state s. Again, the left term represents the
inherently time-independent topological reliability, while the right term refers to the probability
structure that is time-independent in this case due to specific the stress-strength relation of
components established in [216].
Despite an extension to discrete and continuous multi-state consideration, the authors limited
their considerations in [216] to a time-independent reliability analyses. Thereby, R(s) quantifies
the probability that the entity under consideration performs in state s, compare R(t) that
measures the probability of the system failure time is greater or equal to time t. In addition, a
stress-strength relation characterizing probabilistic properties of components must be established
as prerequisite in order to determine the component probability structure P (N(s, n) = ns).

5.3 Proposed methodology

In this section, the continuous-state survival function is defined. In contrast to the previously
outlined approaches that are either probability measures of state s or time t, this notion depends
on both s and t simultaneously. For comparison with the subsequently presented methodology, a
true solution estimate based on MCS is proposed in order to evaluate the continuous-state survival
function. Eventually, the DAS is introduced as surrogate model to compute the continuous-state
survival function efficiently.

5.3.1 Continuous-state survival function

In this work, the probability P (us ≥ s|t) that the state of some entity under consideration us is
greater or equal to s at given time t is referred to as the continuous-state survival function of
this entity and is denoted by

R(s, t) = P (Us ≥ s|t). (5.10)

Thereby, the continuous-state survival function constitutes a time-dependent probability measure
that characterizes the distribution of performance states of the considered entity over time. From
another perspective, the continuous-state survival function can be interpreted as

R(s, t) = P (Ut ≥ t|s), (5.11)

where Ut is the random variable characterizing the time to failure of the condition that the state
of the entity is greater than s. Despite this perspective does not find application in this work,
the consideration is decisive for the terminology. In fact, the original and well-known survival
function can be extended to this notion when conditioning the considered lifetime to a state s in
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the interval [0, 1] instead of a binary condition of operating or not operating.
In the context of systems that consist of components facing disruptive events, the entity under
consideration may correspond to either a system or one of its components. Thereby, R(s, t)
can be established in several ways. The first attempt to quantify R(s, t) could be a fully
empirical approach, measuring the frequency of the system or component state us. Given the
typically limited number of samples, engineers in most cases face the challenge of modeling
a stochastic process based on limited data or expert knowledge and to utilize it as basis for
sampling performances as an alternative. Besides that, the continuous-state survival function
can be evaluated based on a given structure function ϕ(x), as presented in 5.2.1, that represents
system topology, i.e., component interaction, and a given probability structure describing the
degrading component performance over time. The latter approach involving ϕ(x) will be focal
point for all subsequent developments.

x2

x1

A

B

Figure 5.2: Examples for ∂Ωs and Ωs shown in a contour plot of an exemplary 2D-system with the structure
function ϕ(x) evaluated for an arbitrary state s.

Consider a system with a coherent and time-invariant structure function ϕ(x). Then us = ϕ(x)
and the corresponding continuous-state survival function can be given by R(s, t) = P (ϕ(x) ≥
s|t). 5.2 shows the contour line of an exemplary 2D system for a given state s. Thereby,
∂Ωs := {x | ϕ(x) = s} represents this contour line as the set of state vectors that meet exactly
the system performance ϕ(x) = s with x = (x1, x2, . . . , xn) and xi ∈ [0, 1]. Ωs := {x | ϕ(x) ≥ s}
corresponds to the set of state vectors that fulfill the criteria ϕ(x) ≥ s. Given ϕ(x), an exact
solution for R(s, t) can be obtained by evaluating the integral of the time-dependent probability
density at the state vectors belonging to Ωs. Denote the underlying probability distribution as
fxi(xi | t) – potentially time-dependent – describing the state xi of component i. Further, let
Ω = [0, 1]n be the set of all possible component states and assume the component states to be
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independently distributed. Then, the true solution of the continuous-state survival function is
given as the integral over Ωs ⊆ Ω:

R(s, t) =
∫

Ωs

fx(x | t)dx

=
∫

Ω
I(ϕ(x) ≥ s)f(x | t)dx,

(5.12)

where fx(x | t) = ⋂n
i=1 fxi(xi | t) is the conditional joint probability density characterizing the

probability of the component state vector x. Further, I(·) ∈ {0, 1} denotes the indicator function.
In fact, the identification of ∂Ωs := {x | ϕ(x) = s}, that corresponds to the well-known limit
state function, in order to quantify the probability mass assigned to the elements in Ωs is a
challenging task, particularly for nonlinear functions. MCS is applied to obtain an estimate
of the true solution, since there is no closed form available to solve this general and possibly
multi-dimensional problem. It holds true that

R(s, t) =
∫

Ω
I(ϕ(x) ≥ s)fx(x | t)dx

= 1
NMCS

NMCS∑
j=1

I(ϕ(xj) ≥ s | t),
(5.13)

where NMCS is the number of component state samples xj ∈ Ω ∼ fx(x | t) used for MCS, when
NMCS →∞.

5.3.2 Surrogate model: the concept of diagonal approximated signature

The concept of the DAS is introduced as a surrogate modeling approach that enables the compu-
tation of the true continuous-state survival function or at least an approximation of it depending
on the characteristics of ϕ(x). Similarly to the concepts of binary- and discrete/continuous
multi-state survival signatures, the concept of the DAS is based on a decomposition of working
components, compare l that is the number of components working, as in 5.6, and ls that is the
number of components functioning in state s, as in 5.9, respectively. This leads to a separation
property of these concepts that enables to store information on the system topology, i.e., the
functional interaction of components, and retrieve it in repeated model evaluations more efficiently
than compared to the evaluation via the original structure function.

Fundamental statement

With regard to the current developments, several categorizations for three properties of a
coherent system structure function are introduced. As first property, the diagonal state sign can
be defined: A coherent structure function is referred to as diagonally state positive if it holds
that ϕ(xs) > s ∀s ∈ [0, 1] with xs = (x1, x2, . . . , xn) and xi = s where n is the number of system
components. Analogously, the terms diagonally state neutral and diagonally state negative
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correspond to the conditions ϕ(xs) = s and ϕ(xs) < s, respectively. Secondly, note that a
structure function is called diagonally state invariant in particular if it is diagonally state neutral.
In contrast, the property of the diagonal state variance can also be assigned as diagonally state
variant if the structure function is partly diagonally state positive, neutral and negative. The
third property can be assigned as diagonally state extreme if it holds that ϕ(xs) ≥ s ∀s ∈ [0, 1]
with xs = (x1, x2, . . . , xn) and xi ∈ {0, s}. This condition would imply that the structure
function is also diagonally state constant, i.e., ϕ(xs) ≥ s ∀s ∈ [0, 1] with xs = (x1, x2, . . . , xn)
and xi ∈ [0, s]. Let these specifications relate to the diagonal state order. As an example, both
of these properties can be specified as diagonally state neutral and diagonally state extreme
for structure functions that are solely composed by min- or max-operators, i.e., compositions
of ϕe(x) = min(xf , xg) ∈ [0, 1] and ϕh(x) = max(xj , xk) ∈ [0, 1] with xf , xg, xj , xk ∈ [0, 1]. In
addition to such systems, Liu et al. also investigated k − consecutive− out− of − n− systems

which are diagonally state neutral and diagonally state extreme, compare [216]. The min- and
max-operators can be interpreted as analogy of series and parallel operators known from the
binary-state consideration, as stated in[306]. The binary operators often appear in reliability
block diagrams.
Assume a coherent structure function to be diagonally state neutral or at least positive and at
least diagonally state constant. Then, the basic concept of the DAS can be stated as

R(s, t) =
∫

Ωs

fx(x | t) dx

=
n∑

ls=0

(n
ls

)∑
p=1

[Rx(Φ(ls, p) | t)−Rx(s | t)]n−ls [Rx(s | t)]ls ,

(5.14)

where Φ(ls, p) represents the DAS and Rx(s | t) = Rxi(s | t) = P{xi | xi ≥ s, t} corresponds to
the probability that a component is in state s or above at time t given that all component states
are iid or exchangeable. Thereby, Φ(ls, p) stores values representing an approximation of the
limit state function, i.e., ∂Ωs that is the set of component state vectors fulfilling the condition
ϕ(x) = s. For a given state s, the p-th permutation of the overall

(n
ls

)
permutations defines a

subspace Ωs,ls,p ⊆ Ωs,ls ⊆ Ωs ⊆ Ω determined by ls that is the number of components working
in state s. All state vectors in the set of Ωs,ls,p fulfill the condition ϕ(x) ≥ s. Let the value
of Φ(ls, p) for subspace Ωs,ls,p be the minimum value of n− ls components of the state vector
x in the interval [0, s)n−ls for which the condition ϕ(x) ≥ s is met, while ls components are
fixed in state s. The developed algorithm for computing the values Φ(ls, p) ensures that the
continuous-state survival function R(s, t) can only be underestimated in the worst case.

Derivation of the fundamental statement

The derivation of 5.14 can be given as follows. Let I = {1, 2, . . . , n}, where n = |I|, and
(k1, k2, . . . , kn) ∈ Kp :=

( I
ls

)
. Then, Kp is the index set of all possible permutations of the state

vector for a given number of components functioning in state s with in total
(n

ls

)
elements,
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and the index p ∈ {1, 2, . . . ,
(n

ls

)
} corresponds to the p-th permutation. At first, consider the

decomposition of Ωs, the set of state vectors for which the condition ϕ(x) ≥ s is fulfilled, into its
subspaces when given ls components functioning in state s. The decomposition is formulated as

Ωs = {x | ϕ(x) ≥ s} =
n⋃

ls=0
Ωs,ls = Ωs,0 ∪

n−1⋃
ls=1

Ωs,ls ∪ Ωs,n

=
(n

0)⋃
p=1
{xk1 , . . . , xkn < s ∧ ϕ(x) ≥ s}

∪
n−1⋃
ls=1

(n
ls

)⋃
p=1

{
xk1,...,xki

≥ s ∧ xki+1 , . . . , xkn < s ∧ ϕ(x) ≥ s
}

∪
(n

n)⋃
p=1
{xk1 , . . . , xkn ≥ s ∧ ϕ(x) ≥ s}

=
n⋃

ls=0

(n
ls

)⋃
p=1

Ωs,ls,p,

(5.15)

where {ki+1, . . . , kn} = (I/Kp). Note that the subspace Ωs,ls is also decomposed into the
subspaces Ωs,ls,p defined via all possible permutations p of the state vector for ls given components
functioning in state s or above and the corresponding n− ls components functioning in state < s.
Secondly, the set-theoretical decomposition ⋃n

ls=0
⋃(n

ls
)

p=1 Ωs,ls,p proposed in 5.15 is utilized to
decompose the time-dependent state probability and to separate the probability structure and
the information on the limit state function. This spatial decomposition depending on a given
state s and time t is now utilized to form sums of mutually exclusive event sets as:

R(s, t) =
∫

Ωs

f(x | t) dx

= P (Ωs|t) = P (
n⋃

ls=0

(n
ls

)⋃
Kp=( I

ls
)
Ωs,ls,p|t)

=
n∑

ls=0

(n
ls

)∑
p=1

∫
Ωs,ls,p

f(x | t) dx.

(5.16)

The claim that the coherent structure function is diagonally state neutral or positive and
at least diagonally state constant implies that Ωs,ls,p = [ai(ls, p), bi(ls, p)]n. The boundary
points ai(ls, p) and bi(ls, p) characterize the subspace Ωs,ls,p and depend on ls the number of
components functioning in state s and the permutation p. Further, assume that the components
are independent and identically distributed, i.e., x1, x2, . . . , xn = x ∼ fx(xi | t). Consequently, it
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can be stated that∫
Ωs,ls,p

f(x | t) dx =
∫

Ωs,ls,p
f1(x1 | t)f2(x2 | t) · · · fn(xn | t) dx1dx2 . . . dxn

=
n∏

i=1

∫ bi(ls,p)

ai(ls,p
fi(xi | t)dxi =

n∏
i=1

∫ bi(ls,p)

ai(ls,p
fx(xi | t)dxi

=
n∏

i=1
Fx(bi(ls, p) | t)− Fx(ai(ls, p) | t)

=
n∏

i=1
1−Rx(bi(ls, p) | t)− (1−Rx(ai(ls, p)) | t)

=
n∏

i=1
Rx(ai(ls, p) | t)−Rx(bi(ls, p) | t).

(5.17)

The expression proposed in 5.14 involving the time-dependent state probability distribution results
from 5.17 when considering two reformulations: At first, note the simplification Rx(aj(ls, p))−
Rx(bj(ls, p)) = Rx(s) − Rx(1) = Rx(s) for the j-th component of the overall ls ∈ {0, 1, . . . , n}
components functioning in state greater or equal to s. At second, it can be stated that the DAS
Φ(ls, p) = ak(ls, p) as Rx(ak(ls, p))−Rx(bk(ls, p)) = Rx(Φ(ls, p))−Rx(s) for the k-th component
of the overall n− ls components in state < s. Consequently,

∫
Ωs,ls,p

f(x | t) dx =
n∏

i=1
Rx(ai(ls, p) | t)−Rx(bi(ls, p) | t)

= [Rx(Φ(ls, p) | t)−Rx(s | t)]n−ls [Rx(s | t)]ls .

(5.18)

Then, 5.16 and 5.18 are brought together to finally obtain the expression presented in 5.14:

R(s, t) =
n∑

ls=0

(n
ls

)∑
p=1

∫
Ωs,ls,p

f(x | t) dx

=
n∑

ls=0

(n
ls

)∑
p=1

[Rx(Φ(ls, p) | t)−Rx(s | t)]n−ls [Rx(s | t)]ls .

(5.19)

Note that the topological information captured beforehand in Φ(ls, p) is then retrieved and
inserted into the probability structure in order to evaluate R(s, t).

Basic algorithm for evaluating the DAS

At a first attempt, the approximation of Φ(ls, p) can be achieved via the numerical scheme
proposed in Algorithm 1. The presented Algorithm 1 poses a basic optimization scheme for
finding the values Φ(ls, p) for given state s. The proposed algorithm yields an exact representation
of the limit state function at state s if the coherent structure function is diagonally state extreme
and an approximated representation for diagonally state constant systems.
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Pseudocode 1 Evaluation of Φ(ls, p)
function evaluateDiagonalApproximatedSignature(ϕ(), x0, s, hmax)

▷ fixed point evaluation
if all(x0. == s) then

if ϕ(x0) ≥ s) then
return s

end if
end if

▷ start iteration
v, v1 ← s ▷ initialize auxiliary iteration variables
h← 0 ▷ initialize iteration counter
systemstate← ϕ(DetermineStateVector(x0, v1))
while h ≤ hmax do

if systemstate < s then
v1 ← v − s

2h

else if systemstate ≥ s then
v ← v1
v1 ← v − s

2h

end if
systemstate← ϕ(DetermineStateVector(x0, v1))
h← h + 1

end while
return v1

end function
▷ auxiliary function

function DetermineStateVector(x0, v1)
return fill(x0[x0. == NaN ], v1)

end function
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Considering Algorithm 1, ϕ(·) corresponds to the coherent structure function of the system and
x0 = (x1, x2, . . . , xn) with xi ∈ {NaN, s}, where x0 contains ls times s and n− ls times NaN .
Further, s indicates the state under consideration. The tuple (ls, p) is characterized by the number
of components in state s and their arrangement in the vector x0. If the vector x0 = (x1, x2, . . . , xn)
with xi = s fulfills the condition ϕ(x0) ≥ s, the structure function is at least diagonally state
neutral for the given state s and s can be returned as value for Φ(ls, 1) with ls = n. For every other
vector, the algorithm starts its search at s, next it checks the minimum value 0 and than evaluates
the interval in between until it stops. The algorithm stops when meeting the condition ϕ(x0) = s

or after a specified number of iterations hmax. Thereby, the step size is reduced in each iteration
by 1/2 and the last value v that met the requirement ϕ(DetermineStateVector(x0, v1)) ≥ s

is maintained and candidates are rejected if ϕ(DetermineStateVector(x0, v1)) < s. The
Algorithm 1 yields exact results if the system is diagonally state extreme, since both extreme
cases, i.e., Φ(ls, p) = s and Φ(ls, p) = 0, are evaluated. For diagonally state constant structure
functions the iteration achieves an underestimating approximation with an accuracy depending
on h. The algorithm can be further improved by including the stopping criteria for a sufficiently
small improvement between h and h + 1.

Extended statements

5.14 and 5.19, respectively, as well as the Algorithm 1 form the basis for all further developments
of the concept of DAS. However, the established expression still appears to be computation-
ally expensive, as the sum over all permutations becomes increasingly demanding for systems
comprising a large number of components. Therefore, a naive approach is introduced based on
counting the occurrences of equal values of Φc(ls, p) in the subspace Ωs,ls to further reduce the
computational effort: Let Ψ(ls, j) = (|Cj |, vj) be the so-called condensed DAS that assigns a
tuple for ls ∈ {0, 1, . . . , n} and j ∈ {1, 2, . . . , J}, where J is the number of unique values vj of
Φ(ls, p) for a fixed ls and p ∈ {1, 2, . . . ,

(n
ls

)
}. Thereby, vj indicates the j-th unique element in

the set Cj that is formally defined as Cj := {(ls, p) : Φ(ls, p) = vj}. Then,

R(s, t) =
n∑

ls=0

(n
ls

)∑
p=1

[Rx(Φ(ls, p) | t)−Rx(s | t)]n−ls [Rx(s | t)]ls

=
n∑

ls=0

J∑
j=1

Ψ(ls, j)[1] [Rx(Ψ(ls, j)[2] | t)−Rx(s | t)]n−ls [Rx(s | t)]ls

=
n∑

ls=0

J∑
j=1
|Cj | [Rx(vj | t)−Rx(s | t)]n−ls [Rx(s | t)]ls .

(5.20)

For most systems, the application of 5.20 will lead to a tremendous reduction of computational
cost since typically J << |{(ls, p)}| for a fixed ls and p ∈ {1, 2, . . . ,

(n
ls

)
}.

For systems with high |Cj | per ls but many values of vj ∈ [0, 1] in direct neighborhood to each other,
vj can be rounded up for r digits. Formally, this is defined as Cj,r := {(ls, p) : Φ(ls, p) = vj,r},
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where vj,r is a rounded value of vj up to r-th digit. Correspondingly, Ψr(ls, j) = (|Cj,r|, vj,r).
Considering the Algorithm 1, the corresponding values Φ(ls, p) were evaluated during the iteration
and yield an approximation. This introduces an approximation error and a trade-off between
computational cost and accuracy has to be made. The continuous-state survival function will be
underestimated in the worst case, since vj,r > vj ⇒ R(vj,r)−R(s) ≤ R(vj)−R(s). Consequently,
the concept of DAS can be formulated as an inequality for at least diagonally state neutral
coherent structure functions that are not diagonally state constant. For such systems a subspace
of Ωs,ls,p might be neglected. The hypervolume that is neglected and consequently by which
the continuous-state survival function is underestimated depends on the shape and curvature of
the corresponding limit state function. This probably large-scale approximation error results
from the facts that these systems are no longer diagonally state constant and the DAS values
are evaluated along the state diagonals of the individual subspaces Ωs,ls,p. Nevertheless, an
underestimation of the continuous-state survival function is provided in the worst case. This
property is of crucial importance in engineering practice to prevent an unconscious risk from
being taken. Let the following inequality be referred to as the concept of the naive first-order
DAS. It holds true that

R(s, t) ≥
n∑

ls=1

(n
ls

)∑
p=1

[Rx(Φ(ls, p) | t)−RX(s | t)]n−ls [Rx(s | t)]ls

≥
n∑

ls=0

J∑
j=1

Ψr(ls, j)[1] [Rx(Ψr(ls, j)[2] | t)−Rx(s | t)]n−ls [Rx(s | t)]ls ,

(5.21)

where Rx(s | t) = Rxi(s | t) = P{xi | xi ≥ s, t}, i.e., all component states are iid. The
statement above refers to as first-order approach since higher-order approaches are plausible.
One could consider convolutions of subspaces via a recursive formula. Let Φ1(ls, p) denote the
first-order DAS. Then, statements involving higher-order DAS such as Φh(ls, p) would rely on
the subordinate values Φh−1(ls, p). However, the development of such higher-order schemes is
beyond the scope of this paper.

5.4 Case studies

In this section, various system models are established that are designed for a proof of concept
and a test of applicability of the developed approaches. Subsequently, the numerical results are
presented.

5.4.1 System structure functions

Here, the structure functions are presented that will be studied to achieve a proof of concept
and test the applicability of the approach. Note that the structure functions model the system
topology, i.e., the functional interaction of components with each other.
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Proof of concept: min- and max-systems

The min- and the max-operator are crucial in the context of continuous-state system reliability
as these correspond to the fundamental series- and parallel-operator well-known from the binary-
state consideration of system functionality. Typically, they appear in the context of reliability
block diagrams. Several systems composed by these operators are established in order to proof
the fundamental methodologies proposed in 5.3. The following coherent structure functions
composed by min- and max-operators are considered:

• 2-component-min-system

The system is composed by two continuous-state components with xi ∈ [0, 1]. The
components are linked by a min-operator. Both components are considered to be of the
same type. The 2-Component-Min-System can be interpreted as the analog to a series-
connection in the binary-state case. The structure function ϕ(x) ∈ [0, 1] can be defined in
a functional form as

ϕ(x) = min(x1, x2). (5.22)

This structure function is diagonally state neutral, consequently, also diagonally state
invariant, and diagonally state extreme. A graphical representation is given in 5.3.

Component Type 1

Figure 5.3: System composed by a min-operator with two components.

• 2-component-max-system

The system is composed by two continuous-state components with xi ∈ [0, 1]. The
components are linked by a max-operator. Both components are considered to be of
the same type. The 2-Component-Max-System can be interpreted as the analog to a
parallel-connection in the binary-state case. The structure function ϕ(x) ∈ [0, 1] can be
defined in a functional form as

ϕ(x) = max(x1, x2). (5.23)

This structure function is diagonally state neutral, consequently, also diagonally state
invariant, and diagonally state extreme. A graphical representation is given in 5.4.

• 8-component-minmax-system

The system is composed by eight continuous-state components with xi ∈ [0, 1]. The
components are linked by min-operators, as well as, max-operators. All components are
considered to be of the same type. This system can be interpreted as the analog to a
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Component Type 1

Figure 5.4: System composed by a max-operator with two components.

reliability block diagram that is composed by eight components. The structure function
ϕ(x) ∈ [0, 1] can be defined in a functional form as

ϕ(x) = max(min(max(x1, x2, x3), x5, x8), min(x4, max(x6, x7))). (5.24)

This structure function is diagonally state neutral, consequently, also diagonally state
invariant, and diagonally state extreme. A graphical representation is given in 5.5.

Component Type 1

Figure 5.5: System composed by min- and max-operators with eight components, adapted from [304].

• 21-component-minmax-system

The system is composed by 21 continuous-state components with xi ∈ [0, 1]. The compo-
nents are linked by min-operators, as well as, max-operators. All components are considered
to be of the same type. This system can be interpreted as the analog to a reliability block
diagram that is composed by 21 components. The structure function ϕ(x) ∈ [0, 1] can be
defined in a functional form as

ϕ(x) =min(max(min(x1, max(x6, x7)), min(max(x2, x3), min(max(x4, x5),

max(x6, x7)), x8)), max(min(max(x9, x10), max(x14, x15, x16)),

max(min(max(x11, x12), x17), min(x13, max(x18, x19)))), max(x20, x21)).

(5.25)

This structure function is diagonally state neutral, consequently, also diagonally state
invariant, and diagonally state extreme. A graphical representation is given in 5.6.
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Component Type 1

Figure 5.6: System composed by min- and max-operators with 21 components, adapted from [304].

Test of applicability: infrastructure system

In today’s highly developed world, complex systems such as infrastructure networks and in-
dustrial plants are omnipresent and of vital importance to the functioning of modern societies.
Consequently, the resilience of these systems is of utmost importance as well. Therefore, in
the following, an arbitrarily chosen infrastructure network, represented by a graph, is consid-
ered. 5.7 illustrates the graph of this exemplary system. Hereafter, This system is referred to as
18-Component-Infrastructure-System.
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Figure 5.7: Arbitrary infrastructure system.

The graph consists of 15 nodes (capital letters, e.g., A) and 18 weighted edges (links between,
e.g., A−B), where the nodes may represent cities in the system and the edges may represent
transit links, as an example. The weights of the traffic routes can be interpreted as the travel
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time T required to complete this route.
As, e.g., in [259], [268] and [304], for the analysis of this infrastructure system it is assumed
that it has a performance function defined by the so-called network efficiency. According to
Latora and Marchiori [261], the network efficiency E represents a qualitative indicator of the
connectivity of a network and is defined as:

E(G) = 1
N(N − 1)

∑
i ̸=j∈V

1
dW

ij

, (5.26)

with G denoting the considered graph, V is the set of nodes, i.e., cities, N = |V | the number of
cities and dW

ij the weighted path length between city i and city j, that is, the path with shortest
travel time between these two cities. A detailed review of algorithms for efficiently determining
the path length dW

ij , such as the Floyd, Dijkstra, or Bellman-Ford algorithms, can be found, e.g.,
in [263] and [262]. Furthermore, the authors in [261] and [313] proposed the utilization of a
normalized network efficiency Eglob:

Eglob(G) = E(G)
E (Gideal) . (5.27)

E
(
Gideal

)
is here the network efficiency of the graph in ideal state, i.e., all edges and nodes

are present and fully operative. As a basis for calculating dW
ij with respect to degrading edges,

assume a monotonic functional relationship between the performance of the degrading edge
and the travel time assigned to that edge. Therefore, a transformation function that maps

travel time T

degradation d

functionality f

time t

1

0
0 0

standard T 

+ X%

standard T 
tmax 1

Figure 5.8: Relation of the edge degradation and travel time T for infrastructure graph systems.

the component functionality f ∈ [0, 1] to a component degradation d ∈ [0, 1] via d = 1 − f is
introduced. Further, the component degradation is mapped to the travel time T via an arbitrary
function depicted in 5.8 on the right. Note that the function has to ensure the requirement
that the system structure function is at least diagonally state neutral. This function has an
exponential shape, For d = 0, the travel time of the edge is equal to the standard travel time
assigned as weight to the edge beforehand. The travel time increases up to a value of standard
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travel time plus 800% of the standard travel time as maximum.

5.4.2 Stochastic modeling of the component degradation process

As fundamental step for computing the continuous-state survival function via a structure function
ϕ(x), the probability structure characterizing the component state vector x in a probabilistic
manner over time has to be established. In the case of the DAS, this corresponds to the
continuous-state survival function, while sampling during MCS requires probability densities as
fundamental form. As outlined in 5.3.1, there exist a variety of approaches to generate the basic
probability structure. In this work, an arbitrary stochastic process is proposed for illustrative
purposes.
The stochastic degradation of components is modeled by combining an inverse Gamma process
and a Gamma process. These types of processes are widely spread in stochastic degradation
modeling [246, 314, 315]. Correspondingly, let Z ∼ InverseGamma(α, 1) and Y ∼ Gamma(β, 1)
be the random variables. Then, a random variable characterizing component degradation
following a Beta process results when sampled as

X = Z

Z + Y
∼ Beta(α, β), (5.28)

see [316].
MCS is applied to obtain a true solution estimate. In this case, the iid component state vector
x = [0, 1]n is sampled with respect to 5.28 for all obtained numerical results that are subsequently
presented. Consequently, the state of the i-th component is characterized as xi = X. Thereby,
NMCS state samples are generated for each component in the online phase.
In the case of the DAS, a continuous-state survival function describes the probabilistic character-
istics of a component. Accordingly, the continuous-state survival function of a component can be
established by solving the integral

Rx(s, t) = P (X ≥ s | t) =
∫

X
I(X ≥ s | t) = 1

NDAS

N∑
j=1

I(xj ≥ s | t), (5.29)

where X denotes the random peformance variable characterizing the component state, I cor-
responds to the indicator function, s is the considered state threshold, and t corresponds to
the currently considered time. Further, NDAS refers to the number of MCS samples utilized to
estimate the true solution of the continuous-state survival function for components and xj is the
j-the state sample, compare 5.13. It is possible that NDAS ̸= NMCS .
As exemplary parameters, α = 0.15 and α = 0.6 were arbitrarily selected. Further, In-
verseGamma(α, 1.5) was assumed, skewing the Beta process to the left. These parameters
were applied for all presented case studies.
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5.4.3 Numerical results

In this section all computed results are presented. Convergence studies for the number of samples
as well as studies concerning the computation time with respect to the number of samples and the
number of states were conducted. Further, contour plots of the continuous-state survival function
approximated by the DAS and contour plots depicting the corresponding error are provided.
Note that the code utilized to compute the following numerical results was not optimized in
terms of computational efficiency for the DAS and included print statements for computations
based on MCS and DAS. Further, the code was not parallelized and variations in the capacity of
working memory were unavoidable during the studies concerning convergence and computation
time. Besides the study of computation time in terms of the number of considered states, all
plots were generated with this number set to 101 states.

2-component-min-system

At first, consider the results computed for the continuous-state survival function of the 2-
Component-Min-System. In 5.9, the approximation of the continuous-state survival function
by means of the concept of DAS is depicted. The contour plot shows R(s, t) with a step size
of 0.1. In this example, the sample size N = NMCS = NDAS equals 51 000. No significant
differences between the computation via MCS, DAS and condensed DAS (indicated by DASC)
could be observed during the study. Consequently, it is sufficient to consider a single contour
plot out of three. As it can be observed in the figure, slight variations occur along the contour
curves. 5.9b shows the error between the true solution estimate obtained by means of MCS and
the approximation via the condensed DAS. In theory, the DAS should yield exact results when
for the underlying sampling process NDAS →∞. This can be verified by the obtained results, as
contour plot of the error purely exhibits variations with a maximum magnitude of 0.012 due to
the variance in sampling process of the underlying component degradation. It can be presumed
that the error vanishes completely for NMCS = NDAS →∞.
This becomes even more evident when considering 5.10. The convergence study was conducted
for sample sizes in the interval [1 000, 51 000] with a step size of 10 000. Three different error
measures were taken into account, namely, the Mean Absolute Error (MAE), the Mean Squared
Error (MSE), and the Root Mean Square Error (RMSE). Thereby, the errors between MCS true
solution estimate and both the approximations via DAS and via condensed DAS were considered.
They represent the total error over the entire spatial and temporal domain under consideration.
The error norms are common measures for evaluating the performance of estimators such as
the MCS. As expected, all indicators converge against zero for an increasing sample size. The
results emphasize that the developed approach neither suffers from significant outliers nor a bad
approximation in average. 5.11 shows studies concerning the computation time with respect to
the number of samples N , see in 5.11a, as well as to the number of considered states, see 5.11b.
The study with respect to sample size were considered analogously to the convergence study
with sample sizes NMCS and NDAS between 1 000 and 51 000 with a step size of 1 000. For the
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(a) Continuous-state survival function by means of DASC.
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(b) Error between MCS estimate and DASC approximation.

Figure 5.9: 2-component-min-system: DAS condensed approximation of continuous-state survival function and
the corresponding error.

study of computation time in terms of the number of considered states, the sample size N was
set to 11 000. It can be observed that the MCS exhibits a steep linear relation between the total
computation time in the online phase and the number of samples as well as a similar factorized
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Figure 5.10: 2-component-min-system: convergence study of MCS true solution estimate vs. DAS approximation
of the continuous-state survival function with MAE, MSE and RMSE as error measures in terms of sample size
NMCS , while NDAS = 100 000.

linear relation between the online computation time and the number of states. Both DAS and
DASC are constant with respect to the sample size. A slight linear relation can be observed in
the plot considering the number of states. In both plots the DAS and DASC exhibit computation
time in the same magnitude around 0 that is lower than the one achieved by MCS already for
N = 1 000. This results from the fact that the sums over n = 2 and max(|

(n
ls

)
|) = 3 for the DAS

as well as n = 2 and J = 2 for the DASC are computationally not demanding compared to 1 000
evaluations of the structure function.

2-component-max-system

Secondly, consider the computed results for the continuous-state survival function of the 2-
Component-Max-System. Again, 5.12 shows the approximation of the continuous-state survival
function by means of the DASC while 5.12b depicts the corresponding error. Considering
5.12a, the continuous-state survival function indicates higher reliability and robustness of the
2-Component-Max-System compared to the 2-Component-Min-System as expected. Not only
is the domain for which R(s, t) = 1 larger but also the domain between the contour curves. In
this example, the sample size N = NMCS = NDAS equals 51 000. Similarly to the previous case
study, slight variations occur along the contour curves. The error exhibits variations only due
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(a) ...with respect to the number of samples N .
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(b) ...with respect to the number of considered states.

Figure 5.11: 2-component-min-system: study of computation time for MCS true solution estimate, DAS
approximation, and DAS condensed approximation of the continuous-state survival function...

to the variance of the underlying sampling processes in the same magnitude of 0.012 as for the
previous example.
Considering 5.13 it becomes evident that also for this case study e(R(s, t))→ 0 if NDAS →∞.
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(a) Continuous-state survival function by means of DASC.
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(b) Error between MCS estimate and DASC approximation.

Figure 5.12: 2-component-max-system: DAS condensed approximation of continuous-state survival function and
the corresponding error.

The results, obtained for all error measures, are as expected and similar to the previous case
study. With regard to 5.14, the sample sizes for both studies of computation time, compare 5.14a
and 5.14b, are the same as in the previous example. Besides larger variations due to the in time
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Figure 5.13: 2-component-max-system: convergence study of MCS true solution estimate vs. DAS approximation
of the continuous-state survival function with MAE, MSE and RMSE as error measures in terms of sample size
NMCS , while NDAS = 100 000.

varying capacity of the local working memory, the computation time required in the online phase
are similar to the previous example. The MCS exhibits a linear relation for both sample size and
number of states. In contrast, the DAS and DASC shows a constant relation, see 5.14a. In terms
of increasing states, a slight linear relation with significantly lower computation times can be
observed, as illustrated in 5.14b.

8-component-minmax-system

Again, 5.15 verifies the expected behavior of the DAS and the DASC. In this example, the sample
size N = NMCS = NDAS equals 51 000. The contour plot of the continuous-state survival function
in 5.15a appears as a mixture of an 8-Component-System solely composed by min-operators as
minimum and an 8-Component-System solely composed by max-operators. The error in 5.15a
has the same maximum magnitude of 0.0012 as in the previous examples. The region with the
largest errors lies between the contour curves with R(s, t) < 1 and R(s, t) > 0. Considering the
previous contour plot of the error, this high magnitude region shifts to the bottom left for a
Min-System and to the upper right for a Max-System.
When considering 5.16, the behavior of all three error measures appears similar to the previous
examples. This is counterintuitive as one would expect an increasing error when sampling in
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Figure 5.14: 2-component-max-System: study of computation time for MCS true solution estimate, DAS
approximation, and DAS condensed approximation of the continuous-state survival function...

higher dimensions, compare [317]. But this seems not to hold true for diagonally state invariant
structure functions. The ranges of sample sizes for both studies of computation time shown
in 5.17 are the same as in the previous example. Analogously to the previous examples, the
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(a) Continuous-state survival function by means of DASC.
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(b) Error between MCS estimate and DASC approximation.

Figure 5.15: 8-component-minmax-system: DAS condensed approximation of continuous-state survival function
and the corresponding error.

computation times of the MCS are characterized by a similar linear relation with respect to
both sample size and number of considered states. In contrast, DAS and DASC are constant
in their relation with respect to the sample size. In terms of the number of considered state,

156



CHAPTER 5. THE CONCEPT OF DIAGONAL APPROXIMATED SIGNATURE: NEW SURROGATE MODELING
APPROACH FOR CONTINUOUS-STATE SYSTEMS IN THE CONTEXT OF RESILIENCE OPTIMIZATION

0 10k 20k 30k 40k 50k

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016
MSE: MCS-DAS
MSE: MCS-DASC
RMSE: MCS-DAS
RMSE: MCS-DASC
MAE: MCS-DAS
MAE: MCS-DASC

number of samples

er
ro

r m
ea

su
re

s

Figure 5.16: 8-component-minmax-system: convergence study of MCS true solution estimate vs. DAS approxi-
mation of the continuous-state survival function with MAE, MSE and RMSE as error measures in terms of sample
size NMCS , while NDAS = 100 000.

both DAS and DASC follow linear relations. It is noteworthy, that the factor of the linear
relation of the DAS seems significantly larger than before. Also in terms of the sample size the
computational time during the online phase significantly increased for the DAS. It can be observed
that for N = 1 000 the DAS is outperformed by the MCS approach. This result is reasonable as
the number of permutations tremendously increase for higher dimensions corresponding to the
binomial coefficient

(n
ls

)
, besides the already increasingly demandaning sum over n leading to

the slightly increased linear relation of the DASC. Nevertheless, the DASC still possesses a low
factor in its linear relation while maintaining exact results.

21-component-minmax-system

For this case study, the fundamental concept of DAS was omitted due to the combinatorial
complexity of

(n
ls

)
becoming computationally too demanding, resulting in unreasonable computa-

tional time. Consequently, solely the condensed DAS is applied as surrogate modeling approach.
Considering 5.18a and comparing it to the previous examples, the continuous-state survival
function appears as a mixture of min- and max-operators as expected. It is observable that the
domain in between of the contour curves are smaller than in the previous examples. In this
example, the sample size N = NMCS = NDAS equals 100 000. The sample size was increased to
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(a) ...with respect to the number of samples N .
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(b) ...with respect to the number of considered states.

Figure 5.17: 8-component-minmax-system: study of computation time for MCS true solution estimate, DAS
approximation, and DAS condensed approximation of the continuous-state survival function...

maintain a similar magnitude of errors as can be observed in 5.18b.
For the convergence study depicted in 5.19, the number of samples was increased for the entire
range. The evaluated sample sizes lie in the interval [20 000, 200 000] with a corresponding step
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(a) Continuous-state survival function by means of DASC.
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(b) Error between MCS estimate and DASC approximation.

Figure 5.18: 21-component-minmax-system: DAS condensed approximation of continuous-state survival function
and the corresponding error.

size of 20 000. The DASC also converges to zero for this high-dimensional structure function that
is diagonally state neutral and diagonally state extreme as composed by min- and max-operators.
This coincides with the theory established in 5.3: The DAS and DASC yield the true solution
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Figure 5.19: 21-component-minmax-system: convergence study of MCS true solution estimate vs. DAS approxi-
mation of the continuous-state survival function with MAE, MSE and RMSE as error measures in terms of sample
size NMCS , while NDAS = 100 000.

of such systems or at least an estimate only in dependence on the variance of the underlying
estimator of the component probability structure. For the study of computation time regarding
the number of considered states, the sample size N was set to 100 000. In terms of computation
time, higher variance can be observed in 5.20 then in the previous examples. This relates to
the variance in capacity of the deployed working memory. Again, a steep linear relation can
be observed for the MCS in terms of an increasing sample size. The DASC exhibits a constant
relation for NDAS due to its independence. The expected linear relation of the DASC concerning
the number of considered states significantly increased compared to the previous examples.
Despite the tremendous increase of computational complexity, the DASC still outperforms the
MCS globally. Only for smaller sample sizes where larger error magnitudes can be observed the
MCS shows slightly shorter computation times compared to the constant.

18-component-infrastructure-system

For this example, solely the DASC and the rounded DASC (referred to as DASCR) were
considered. To compute the underlying DAS for this example the maximum number of iteration
steps hmax was set to 100.
The continuous-state survival function obtained by means of the DASC is depicted in 5.21a. The
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(a) ...with respect to the number of samples N .
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Figure 5.20: 21-component-minmax-system: study of computation time for MCS true solution estimate, DAS
approximation, and DAS condensed approximation of the continuous-state survival function...

contour plot appears reasonable. As expected, the DASC achieves an approximation that in the
worst case underestimates the true solution but never overestimates it. The theoretical findings
can be verified when considering 5.21b. The contour plot of the error between the MCS true
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(a) Continuous-state survival function by means of DASC.
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(b) Error between MCS estimate and DASC approximation.

Figure 5.21: 18-component-infrastructure-system: continuous-state survival functions computed by means of
DASC and the corresponding error.

solution estimate and the approximation is positive over the entire domain. Dark blue indicates
an error magnitude of zero while dark purple represents magnitudes in the scale of machine
precision.
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Figure 5.22: 18-component-infrastructure-system: MCS true solution estimate.

The applied scheme already yields satisfying results taking into account that it is only a first-
order scheme for at least diagonally state neutral structure functions. However, a higher-order
implementation could significantly decrease the error in the remaining domain. In general, the
proposed methodology is also applicable to diagonally state negative structure functions when
adjusting the corresponding formula. For this example, it was ensured that the structure function
is at least diagonally state neutral by accordingly specifying the exponential transformation
function mapping component degradation to travel time. 5.22 shows the true solution estimate
of the continuous-state survival function obtained by means of MCS. The region of significant
magnitudes of the error between the MCS and the DASC occurs as the underlying structure
function is no longer diagonally state constant. As the structure function is still at least diagonally
state neutral this is the only source for errors besides the natural variance of the stochastic
degradation process.
The DASCR was applied to further increase the computational efficiency. In the following,
the potential decrease of accuracy is studied. The proposed methodology still ensures pure
underestimation of the true solution. For r = 5, compare 5.21, the computation time already
decreases significantly while the contour plots of the error appear similar, see 5.23b.
For r = 3, the computation time can be further reduced as J decreases significantly. Thereby, it
can be observed that the accuracy increases as all regions of error contour curves decrease in terms
of their area, see 5.24. The same observation can be made for r = 2: A tremendous reduction
of computation time could be achieved as the DASCR further condenses the information in
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(a) Continuous-state survival function by means of DASCR.
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(b) Error between MCS estimate and DASCR approximation.

Figure 5.23: 18-component-infrastructure-system: continuous-state survival functions computed by means of
DASCR with r = 5 and the corresponding error.

the DASC. By applying r = 2, J could be significantly decreased for all s along the diagonal
of the state space and all ls. In addition, it is noteworthy that the accuracy further increases,
compare 5.25 with 5.24 and 5.23.
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(a) Continuous-state survival function by means of DASCR.
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(b) Error between MCS estimate and DASCR approximation.

Figure 5.24: 18-component-infrastructure-system: continuous-state survival functions computed by means of
DASCR with r = 3 and the corresponding error.
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(a) Continuous-state survival function by means of DASCR.
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(b) Error between MCS estimate and DASCR approximation.

Figure 5.25: 18-component-infrastructure-system: continuous-state survival functions computed by means of
DASCR with r = 2 and the corresponding error.

5.5 Discussion

5.5.1 Case studies

The case studies show that the DAS converges to the true solution of the continuous-state survival
function for all MinMax-Systems regardless of their dimensionality. The global error vanishes for
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N →∞ as can be seen in the convergence studies. As the sample size NDAS for the establishment
of Rx(s, t) is assigned to be large, the convergence of the MCS solutions to the DAS solution can
be observed for all case studies conducted for the proof of concept. Besides the theoretical prove
these results underline the capability of the concept of DAS to achieve exact results for diagonally
state constant systems. These findings verify in particular that the fundamental methodology
introduced in 5.14 can be utilized as explicit formula when considering a diagonally state at least
neutral, diagonal state extreme and coherent structure function. Further, the results show that
the computation time is independent of the sample size when deploying the concept of DAS.
For the DAS, the computation time in the online phase purely depends on the total number of
components n and the number of considered components.Thereby, the DAS exhibits a linear
relation between computation time and number of considered states, depending on the factor that
is determined by n and correspondingly the binomial coefficient

(n
ls

)
. The observations coincide

with the theory established in 5.3. The formula 5.14 is independent of the sample size NDAS

and clearly depending on the number of states that are considered and inserted as s. It can
be observed that this basic approach becomes impractical for systems with n >> 10 combined
with a number of considered states that is >> 10. For the first two case studies, the DAS still
outperforms the MCS, although the evaluation of the corresponding structure function imposes
minimal costs in the case of the MCS. For more complex structure function this difference in
computational effort becomes even more evident.
The DASC was introduced and investigated as a naive solution to achieve increased computational
efficiency also for larger systems that are characterized by an at least diagonally state constant
and at least diagonally state neutral coherent structure function. The performance enhancement
is achieved by condensing the DAS in terms of all possible permutations depending on ls. In order
to compute a DASC entry Ψ(ls, j) = (|Cj |, vj), the number of occurrences of a value Φ(ls, p) is
determined and stored together with the value itself as a tuple. Thereby, the computational effort
is reduced from a sum over p = 1, 2, . . . ,

(n
ls

)
to a sum over j = 1, 2, . . . , J , where J is the maximum

number of different values for the DAS. The DASC shares the same convergence characteristics
for diagonally state constant and extreme systems. Simultaneously, this approach exhibits
significantly reduced numerical effort compared to its predecessor. The achieved reduction of J

by means information condensation is optimal with J = 2 for diagonally state extreme structure
functions as the number of tuples Ψ(ls, j) for a given number of components working in state s

or above ls. This can be explicitly expressed as vj ∈ {0, s} and their corresponding occurences
|Cj(vj)|.
The application of the DASCR is not required for diagonally state extreme structure functions.
In contrast, it is particularly useful when this criterion is not fulfilled. In the case of a diagonally
state constant or higher order structure function an iteration has to be performed in order to
approximate the DAS for each combination of s, ls and p. Values in the along the p-sum that
are in the direct neighborhood in [0, 1] are matched by means of a rounding procedure applied to
Φ(ls, p) and and Ψ(ls, j) is further condensed to Ψr(ls, j). Thereby, for a naive approach a trade-
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off has to be made in terms of computational cost and surrogate performance. Typically, it can
be expected that Jr−1 ≪ Jr but also that |er−1(R(s, t))|F ≥ |er(R(s, t))|F , where |er(R(s, t))|F
is the Frobenius norm of the error between the DASCR approximation and the theoretically
available true solution. However, a sophisticated rounding procedure should check the lower and
upper digits and determine the more favorable choice. Consequently, applying a sophisticated
rounding procedure can improve the results obtained by DASC and DASCR with high r.
In the test of applicability for an arbitrary infrastructure system, the first-order DASC and
DASCR5,3,2 perform well and underestimate the true solution of the continuous-state survival
function as expected. Depending on the parameter r ∈ {5, 3, 2} significant efficiency improvements
can be achieved. The largest errors occur in the central region. The concepts of DAS become
particularly useful for demanding structure functions. The evaluation of the weighted network
efficiency is computationally more demanding than a composition of min- and max-operators.
At the same time, highly demanding structure functions are neither diagonally state neutral
or positive nor diagonally extreme or constant. Consequently, the proposed approaches can be
applied in these cases when higher-order schemes are integrated or schemes for the estimation of
the error are established. In contrast, conventional approaches could not address such structure
functions at all.
In its basic form, the DAS requires ∑s

∑
ls(n)

∑
p(ls) entries to be stored. The DASC already

condenses the last sum that is the most critical for systems with a larger number of components
up to a minimum of J = 2. Considering the storage requirement, the property of a structure
function to be diagonally state invariant becomes important. However, note that for at least
partly diagonally state invariant structure functions the entries of the Φ(ls, p) and Ψ(ls, j) can
be expressed in a linear relation for the range of s that is diagonally state invariant. The
representation of the DAS and DASC by means of any type of function can enable to reduce the
storage required among the first sum ∑

s, tremendously.

5.5.2 Comparison with related research

Subsequently, the developed concept of DAS is compared to approaches based on the concept of
survival signature with regard to the properties of diagonal state sign, order, and variance and
also based on the findings of the case studies. In [280], Eryilmaz & Tuncel introduced an explicit
formula from a combinatorial perspective to compute a multi-state survival signature based on
multiple path-wise binary-state structure functions to model the discrete multi-state perspective.
The fundamental decomposition is based on the number of components in ls. Thereby, the term
path-wise corresponds to the terminology of a diagonally state extreme structure function. A
classification in terms of the diagonal state sign is not reasonable in this case. The approach might
consider diagonal state variance, as the structure functions can vary for each level. Theoretically,
it is possible to define as many structure functions as states considered. In practice, however,
this may prove infeasible when approaching a continuous view. However, these systems would
still need to have some sort of path-wise measurability. The approach proposed in [165] by Qin &
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Coolen exhibits similar properties to those of the concept developed by Eryilmaz & Tuncel. The
authors investigate discrete multi-state systems with multi-state components based on rule-based
structure functions. In comparison with [280], Qin & Coolen developed a refined notation. The
researchers based the combinatorial decomposition on the number of components working in
state s. The computation of the multi-state survival function describing the probability of a
system to be in state s or above is then performed in a post-processing step. In [281], Yi et
al. proposed a fundamentally different approach on how to establish the discrete multi-state
survival signature values. The authors adopt an probabilistic and conditional interpretation of
the survival signature and further establish transformation relations [318].
Recent developments show that the survival signature finds increased attention in the field of
stress-strength reliability. The works [319, 320] investigate approaches for statistical inference
based on the concept of survival signature for multi-state system with multi-state components
in this context. In [216], Liu et al. proposed an approach to compute R(s) for discrete and
multi-state systems with discrete and continuous multi-state stress-strength components. The
authors applied their approach to diagonally state neutral, state invariant and state extreme
systems. Thereby, a single vector is sufficient to represent the continuous-state survival signature
of the diagonally state invariant systems with a single component type.
In contrast to the approaches presented above, the DAS was developed to evaluate the
continuous-state survival function R(s, t), introduced in 5.3.1. Analogously, the concept of
DAS and its variants can be utilized to compute R(t) as well as R(s). Recent literature in the
context of survival signature addresses the computation of diagonally state extreme systems,
i.e., path-wise measurable structure functions. In contrast, the methodology proposed in the
current work enables surrogate modeling potentially for any kind of coherent structure function.
Consequently, such structure functions might be diagonally state constant or of higher order. In
the case of structure functions that are of higher order, the current concept of DAS yields an
approximation error. It appears practical to reduce this error by developing higher order schemes
and more sophisticated rounding procedures for the concept of DAS. Some of the reviewed
approaches take into account diagonally state variance by establishing one corresponding survival
signature for each considered state or level. For diagonally state invariant structure functions the
DASC(R) comprises ∑n

ls

∑J
p(ls) elements. The conventional concepts of survival signature are

only applicable to diagonally state extreme structure functions. Considering systems with a single
component type and let them be diagonally state invariant for the ease of notation, conventional
approaches require the storage of n values for the representation and the computation of the
sum ∑n

ls to evaluate R(t) or R(s) for a single t or s. In the same case, the DASC includes∑n
ls

∑2
p(ls) elements to be stored and evaluated. In summary, the DAS concept enables a broader

range of applications than similar and recently developed approaches, despite a slightly higher
computational cost. The extent to which the range of applications can be broadened needs to be
investigated in future work but the current findings appear promising.
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5.5.3 Contextualization in terms of resilience

Three different approaches to determine R(s, t) were outlined in 5.3. Regardless of the approach
utilized to establish R(s, t), the continuous-state survival function inherently captures the
probability of occurrence of disruptive events and their effect on the performance of the considered
entity. Thus, R(s, t) strongly relates to two properties of a system, reliability and robustness,
shown in 5.1 that govern its resilience when interpreted as in [268]. To show this theoretically,
suppose that the performance deterioration over time being investigated empirically by exposing
the entity to a certain environment in which potentially damaging effects or events occur in some
frequency. Suppose the measurement only observes the state us at time t, where ∆t between two
time steps might be infinitesimal small. The occurrence of an event at t counts to the probability
measure of the random variable to be less than s only if a deterioration in performance occurs
as a consequence at the next time step under consideration. Thereby, the probability of the
magnitude of the performance degradation of such a deteriorating event is intrinsically quantified
as well. When established properly, both parts of information should also be captured when the
continuous-state survival function is generated via stochastic processes modeling disruptive events
either explicitly or implicitly. And similarly for the approach including a structure function, the
disruptive events acting on components propagate their effects through the structure function ϕ(x)
to the system state us and are captured by the continuous-state survival function. Eventually,
despite not directly sampling a disruptive event from R(s, t) but rather component performances,
the occurrence of certain state sample is governed by the fundamental, measured or modeled
disruptive events and the according response of the considered entity. Thereby, the structure
function is critical for mitigating the effect of disruptive events acting on components. To
conclude with regard to 5.1, it quantifies not only if and when a performance deterioration
occurs (reliability) but also its magnitude (robustness). The continuous-state survival function
incorporates both notions simultaneously simply by representing the time-dependent probability
distribution of each state of functionality.
In the context of the multidimensional and sub-structured resilience framework established
in [304], the fact that R(s, t) models both reliability and robustness can be exploited to enhance
the stochastic simulation of subsystem as well as components during the evaluation of the
resilience metric. For basic components, R(s, t) can be established empirically or based on a
stochastic process. Then, the generated R(s, t) characterizing the stochastic degradation behavior
are propagated from bottom level to top level of the sub-structured system. The utilization of
R(s, t) allows for reduced computational effort in repeated evaluations of structure functions in
subordinate levels during resilience optimization at L ≥ 1 levels of subsystems. The concept
of DAS enables a direct propagation of the R(s, t) through each level by means of the explicit
formulas provided in 5.3.2. On the top-level, the overall structure function is evaluated by
means of performance samples in order to quantify the resilience metric. The corresponding
performances can be retrieved by sampling the state from the individual Ri(s, tc), where tc

denotes the currently considered time step. The DASC approach developed in the current work
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is immediately applicable to the case studies investigated in [304] after establishing a monotone
sampling procedure based on R(s, t) describing performance. Future work addresses the detailed
investigation concerning the integration of the continuous-state survival function as reliability
and robustness representation into the resilience framework for sub-structured systems.

5.6 Conclusions & outlook

In this work, the notion of the continuous-state survival function was presented and the concept of
DAS was introduced as a corresponding surrogate modeling procedure. Thereby, the continuous-
state survival function is defined as a time-dependent probability measure that characterizes the
distribution of performance states of the considered system over time. This consideration gives
engineers a new perspective when faced with the challenge of maintaining system performance
in the face of disruptive events in a hostile environment. In light of the theoretical proof
and the results in the case studies, the concept of DAS appears to be a solid foundation for
more sophisticated surrogate modeling techniques. The relations to the phases characterized
by reliability and robustness when quantifying system resilience were identified and discussed.
The proposed methodology appears as an adequate approach to integrate a continuous-state
consideration into a sub-structured resilience framework, as presented in [304].
In the course of this work, three different variants of the concept of DAS were established: At
first, the fundamental statement 5.14 was introduced to provide a comprehensive proof that DAS
yields exact results for diagonal extremal and constant structure functions. For systems with a
small number of components the DAS outperforms the MCS in terms of both computational
time and accuracy. Secondly, the DASC 5.20 was developed to overcome the limitations for
larger systems. Moreover, DASCR was defined in 5.21 to consider structure functions with a
diagonal state order higher than constant. Thus, the current methodology extends the range of
application of the separation property inherited by the concept of survival signature. It should
be noted that the code can be further optimized, e.g., by integrating parallel computing. This
leads to an additional increase in computational efficiency. In summary, the concepts of DAS
developed in the current work show good results and open a rich and promising research topic.
The following items can be listed as critical developments concerning the concept of DAS as an
autonomous surrogate model but also in particular its integration into the resilience framework
for complex and sub-structured systems [304].

• Integration into the resilience framework: The behavior of the DAS when integrated to
the multidimensional and sub-structured resilience decision-making framework should
be investigated in detail. The relationship between the endowment properties and the
continuous-state survival function should also be explored.

• Broadening the range of application: Higher-order schemes should be addressed to reduce
the approximation error for structure functions that are not diagonally state constant.
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Further, the DAS formulas should be extended for diagonally state negative structure
functions and multiple component types.

• Consideration of uncertainties: Extension of the DAS towards a consideration of uncertain-
ties based on the proposed approach in [152] and integration into the multidimensional
resilience decision-making framework for complex and sub-structured systems [304]. Ap-
proaches to reduce the storage requirements and to further condensate the developed
formulas for enhanced efficiency during the online phase are of great interest.
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Abstract

Complex capital goods, such as jet engines, are critical to the functioning of modern societies. These systems
are exposed to various threats that cannot be prevented entirely. Thus, the concept of resilience – encompassing
reliability as well as robustness and recovery in the presence of a disruptive event – is combined with efficient
reliability methods to support decision making for complex capital goods. As fundamental step, the current work
addresses the generation of a functional model from a physical model based on sensitivity analyses. The developed
resilience analysis framework is applied to this model in order to derive conclusions supporting decision maker
while incorporating monetary and technical aspects. A combination with the concept of survival signature enables
efficient reliability analysis in repeated model evaluations. A novel methodology is developed by amalgamating
the non-intrusive stochastic simulation method and the concept of survival signature leading to an significant
reduction of the computational effort when considering mixed uncertainties.
Keywords: Resilience optimization, Reliability analysis, Uncertainty quantification, Sensitivity analysis, Decision
making.

6.1 Motivation

Modern societies are highly dependent on a broad variety of complex capital goods including
aircraft engines, industrial plants, and infrastructure systems, [268]. Aircraft engines, for example,
are of paramount importance for both private mobility and the industrial transportation sector
of these societies. For economic and safety reasons, it is vital that such complex systems are as
reliable as possible [152]. To ensure this efficiently and sustainably, the Collaborative Research
Center “Regeneration of Complex Capital Goods” (CRC 871) investigates scientific fundamentals
for the maintenance, repair and overhaul (MRO) of these complex capital goods, especially in
the field of civil aviation, as proposed in [321]. In fact, these systems are exposed to various
threats and it is extremely challenging to identify all possible critical impacts and prevent them
accordingly. Therefore, recent developments focus not only on enhancing the reliability and
robustness of these systems, but on increasing their recoverability as well. This has led to the
concept of resilience that comprises all of these aspects, cf. [268].
Information required as basis in the design, maintenance, and repair of systems are commonly
governed by uncertainties, [152]. Thus, it is critical for decision making in such processes to
have tools capable of efficiently performing resilience and reliability analyses of complex systems,
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taking into account precisely these uncertainties comprehensively. An additional major concern
in MRO processes is not only the identification of direct influences of individual components,
but more importantly of complex and elusive interaction effects among multiple components
and their impact on the key performance measures of the capital good under investigation [322].
Global sensitivity analyses are a well-established tool in this specific context.
The current work addresses the development of a computationally efficient theoretical and
algorithmic framework for evaluating the resilience and reliability of complex capital goods under
consideration of uncertainty to support decision making in MRO processes. Correspondingly, the
following guiding principles were defined as:

• guarantee of resilience before, during and after regeneration, and in particular on the
functionality of the complex capital good;

• consideration of monetary and technical constraints;

• quantification of uncertainties during regeneration;

• identification of regeneration paths improving resilience such that technical and economic
risks are minimized.

Representative system 
model

Resilience and risk 
analysis for all 

regeneration paths

Identificitation of 
resilient and low-risk 

risk regeneration paths 

Additional basis for 
decision-making

Regeneration paths

Resilience/Reliability

Risk

Figure 6.1: Objectives and corresponding work flow.
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Typically, complex physical models are employed to derive conclusions in system engineering. A
large number of model evaluations are required to analyze and optimize the performance of a
system and its continuous guarantee. However, the utilization of a physical model for repeated
evaluations with varying model parameters is often accompanied by an enormous computational
burden. Thus, a derivation of a function-based model from the complex physical model, mapping
the core properties of interest and thus reducing computational effort, is proposed in the current
work, as illustrated in Fig. 6.1. After the generation of such a functional model, the developed
resilience assessment framework is applied to derive additional information for the decision
making process.

6.2 Scope of the paper

Given the principles above, four key objectives are formulated and addressed in the subproject
D5 “Resilience-based Decision Criteria for Optimal Regeneration” of the CRC 871:

1. the establishment of a comprehensive function-based modular system modeling approach
of the overall engine for resilience and reliability assessment;

2. efficient dynamic system modeling in dependence of operating states due to the concept of
survival signature for enhanced computational efficiency;

3. the development of models for mixed – aleatoric and epistemic – uncertainty and the
utilization of simulation methods reducing computational effort for sampling;

4. the identification of resilient regeneration paths.

More precisely, this means that at first a representative system model is extracted from a physical
simulation model, e.g., of an aircraft engine, by the utilization of a sensitivity analysis. The
corresponding findings are presented in Sec. 6.3. As illustrated in Fig. 6.1, the resulting functional
model is basis for further in-depth analysis and investigation.
Given the functional model of an arbitrary, complex capital good, the comprehensive resilience
analysis includes the parts illustrated in Fig. 6.2. At the top level a resilience analysis forms the
fundamental frame for the resilience assessment of complex capital goods, evaluating all possible
regeneration paths. Subsequently, limiting technical and monetary constraints are taken into
account and a reduced set of acceptable resilient and low-risk regeneration paths is identified.
The reliability analysis based on the concept survival signature, introduced in [149], for enhanced
computational efficiency, especially in case of repeated model evaluations, is integrated into
the resilience analysis for each regeneration path considered. This leads to a significantly
reduced computational effort during resilience analyses of considered complex capital goods. The
additional uncertainty analysis enables the consideration of diverse uncertainties utilizing novel
developed, highly efficient algorithms, see [152], reduce the sample size tremendously.
The resilience analysis is introduced in Sec. 6.4 and the consideration of monetary constraints is
demonstrated in Sec. 6.5. Further, an efficient approach for the integrated reliability analysis
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Figure 6.2: Work flow in the analysis framework.

is proposed in Sec. 6.6. The uncertainty analysis considered in Sec. 6.7 forms the last part
and enables for a computationally efficient uncertainty quantification when it comes to mixed
uncertainties. As a result, an additional basis for decision making in the virtual level of the
regeneration process management is obtained taking into account systemic interactions and
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uncertain data.

6.3 Functional modeling approach

In the current section, developments concerning various functional models and their generation,
as illustrated in Fig. 6.1, are presented. In the context of the CRC 871, a fundamental procedure
was established to generate a functional model based on sensitivity analysis utilizing Sobol indices,
see [251]. However, these developments focused on binary-state systems. In the current work,
the approach proposed in [251] is further developed for the consideration of multi-state systems.
In addition, an alternative sensitivity measure is considered, allowing for the incorporation
of interdependencies between various input parameters, enabling for a more comprehensive
and realistic system modeling. Once derived from the physical model, the functional model is
investigated in the analysis framework that was outlined in Sec. 6.2 and is presented in subsequent
sections.

6.3.1 Extraction of structure functions based on sensitivity analyses

As fundamental step, the methodology to derive a functional model from a physical simulation is
presented within the CRC 871, Miro et al. proposed in [251] a procedure to extract a functional
model from a performance model of an multistage axial compressor. A multistage compressor
combines multiple rotor and stator blade rows in an alternating series of connected stages. It was
shown that various performance measures are dependent on the blade roughness. According to
Miro et al., the blade surface roughness is considered as input variable for further analysis. The
four-stage high-speed axial compressor of the Institute of Turbomachinery and Fluid Dynamics
at Leibniz University Hannover is the baseline compressor of this study, consisting of four stator
rows S1 - S4 and four rotor rows R1 - R4.
Miro et al. established a functional model based on results of a sensitivity analysis considering
Sobol indices, see [323], of an one-dimensional aerodynamic simulation model of that axial
compressor. They chose a variance threshold of 25% based on expert knowledge, see Fig. 6.3.
Correspondingly, the system is considered to fail due to roughness related effects if a 25% total
variation of the system performance measure, estimated via Monte Carlo Simulation (MCS), is
reached.
The functional model developed by Miro et al. describes the dependence of the overall compressor
performance, i.e., the total-to-total isentropic efficiency, on the roughness of the rotor and stator
blades as binary-state structure function in the form of a Reliability Block Diagram (RBD), see
Fig. 6.4. According to the concept of RBDs, the system functions if there exists a connection
between start and end node and fails if this connection is interrupted, corresponding with a
performance variation of at least 25%.
In the approach proposed by Miro et al., a certain row is specified as one of four component types
ci for i ∈ {1, . . . , 4}. Components of the same type are prone to identical distributions describing
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Figure 6.3: Component importance measure with threshold of 25%, adapted from [251].

degradation while being independent from each other. The classification of the component type
and the arrangement of the components in the RBD is chosen based on the sensitivity of the
component blade roughness affecting the total-to-total isentropic efficiency. Fig. 6.3 shows the
sensitivity results that are based on Sobol indices. Components with similar sensitivity values
are determined to be of one component type. In the current work, the component type allocation
suggested by Miro et al. is adopted. Correspondingly, the stator and rotor rows are assigned as
(R1, c1), (R2, c1), (R3, c2), (R4, c3), (S1, c4), (S2, c4), (S3, c4), (S4, c4).

Figure 6.4: Functional model of the multistage high-speed axial compressor.

The arrangement of the components is established as follows: If the sensitivity value of a single
component exceeds the threshold, it is set in series with other components going beyond the
threshold due to significant importance to the overall system performance; if a sum of sensitivity
values exceeds the threshold the corresponding components are set in parallel and then linked in
series. For example, component R4 goes beyond the threshold alone and therefore is considered
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as the most important component. Thus, the system should fail if component R4 fails, i.e., R4
exceeds a critical roughness and due to that the roughness-related performance variation of the
system exceeds the threshold. Further, R1 or R2 only go beyond the threshold in sum with R3.
Correspondingly, the functioning of this subsystem is described as (R1 ∨ R3) ∧ (R2 ∨ R3) =
(R1 ∧R2) ∨R3, as shown in Fig. 6.4, where R1, R2, R3 ∈ {0, 1}. Following this idea all stators
should be arranged in parallel as each of them has rather a small impact. This parallel block
S = S1 ∨ S2 ∨ S3 ∨ S4 is again in series with the R1, R2, R3 block as well as with R4.
Miro et al. argued that the parallel stator block should be allocated in series as shown in
Fig. 6.4 based on expert knowledge, even though the sum of their sensitivity values doesn’t
reach the threshold. To summarize, the entire system and its functional state is described by
F = (R1 ∧R2) ∨R3) ∧R4 ∧ (S1 ∨ S2 ∨ S3 ∨ S4) with F ∈ {0, 1} and the system components
R1, R2, R3, R4, S1, S2, S3, S4 ∈ {0, 1}
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Figure 6.5: Component importance measure with thresholds of 2.5%, 7.5%, 15% and 30%.

In the current work, this approach is adapted for a multi-state system multi-state component
consideration to prove the applicability of the functional modeling approach in the context
of partial functionality. Thereby, suppose the system is functioning in the state j or above if
the j-th rule is satisfied for components in state j or above with j = 1, . . . , J . For illustrative
purposes, four rules are defined as structure functions represented by RBDs and thus J = 4.
Correspondingly, four thresholds are determined as basis to generate four structure functions
corresponding to four levels, see Fig. 6.5.
Fig. 6.6a shows the structure function via an RBD for the system state of perfect functioning
j = J = 4. The corresponding threshold is set to 2.5%. The components R1, R2, R3, R4 and S3
exceed this threshold, while components S1, S2 and S4 only go beyond the threshold if summed
up. Thus, R1, R2, R3, R4 and S3 are connected in series, while S1, S2 and S4 are connected in
parallel and then set in series. This seems reasonable as the components S1, S2 and S4 do not
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(a) Functional model for level j = 4 (b) Functional model for level j = 3

2/3

(c) Functional model for level j = 2 (d) Functional model for level j = 1

Figure 6.6: RBDs for different performance levels.

have a critical impact, while the components R1, R2, R3, R4 and S3 definitely harm the perfect
state due to their significant influence on the system performance variation.
Fig. 6.6b shows the structure function via an RBD for the intermediate system state j = 3.
The corresponding threshold is set to 7.5%. The components R1, R2, R3 and R4 exceed this
threshold, while components S1, S2, S3 and S4 only go beyond the threshold if summed up.
Thus, R1, R2, R3 and R4 are connected in series, while S1, S2, S3 and S4 are connected in
parallel and then set in series.
Fig. 6.6c shows the structure function via an RBD for the intermediate system state j = 2. The
corresponding threshold is set to 15%. The components R3 and R4 go beyond this threshold.
Thus, R3 and R4 are connected in series. In contrast, the components R1, R2 as well as the
parallel stator block S only exceed the threshold if at least two of those are summed up. Based
on the series connection of R3 and R4, the system functions in state j = 2 if at least R1 ∨R2,
R1 ∨ S and S ∨R2 take a value of 1, i.e., function in state j = 2 or above. As a consequence,
the latter relationship is modeled via an at-least-2-out-of-3-connection.
Fig. 6.6d shows the structure function via an RBD for the last system state j = 1 before complete
failure. The corresponding threshold is set to 30%. Note that all thresholds are set arbitrarily
and only for illustrative purpose. The component R4 goes beyond this threshold and is connected
in series. The components R1, R2 and S only exceed this threshold if summed up with R3. In
case of functioning it holds that (R1 ∨R3) ∧ (R2 ∨R3) ∧ (S ∨R3) = (R1 ∧R2 ∧ S) ∨R3.
The obtained binary-state structure functions represented in Fig. 6.4 and Fig. 6.6 are utilized for
multi-state system reliability analysis. The corresponding findings are presented in Subsec. 6.6.3.
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6.3.2 Kucherenko indices

Typically, Sobol indices are utilized for conducting sensitivity analysis as, e.g., proposed in [251].
These variance-based indices display effects of single input variables on output variables (first-
order effect indices), and interaction effects between several input variables and their impact on
the output variables (total-effect indices). The Sobol indices, as well as most other sensitivity
analysis tools, are based on the assumption that all input variables are independent of each
other. However, this assumption rarely applies in reality, and in various engineering fields, input
variables are correlated, see e.g., [324, 325]. Therefore, in this work, a sensitivity analysis of the
above mentioned steady-state performance model for an aircraft engine is conducted by applying
a generalized form of the Sobol indices according to [326], hereinafter referred to as Kucherenko
indices. These indices are capable of taking into account dependencies between input variables
and are therefore more suitable for addressing real world problems.
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Figure 6.7: First-order effect Kucherenko indices; adapted from [322].

In practice, an analytical determination of the Kucherenko indices is often not feasible. Therefore,
Kucherenko et al. presented Monte Carlo estimators for their indices in their work, [326]. Both
estimators require a conditional sampling. Conditional sampling, however, might be tedious
or even impossible for some models due to computational demand, such as for the jet engine
iteration matching model, considered in this work. Therefore, in [327], Marelli et al. provide
sample-based Monte Carlo estimators for both Kucherenko indices.
As an example, consider the V2500-A1 jet engine that is a two-spool turbofan with a fan,
low-pressure compressor (LPC), high-pressure compressor (HPC), high-pressure turbine (HPT),
low-pressure turbine (LPT) and a common thrust nozzle. This jet engine was considered in [322]
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to show the applicability of a sophisticated sensitivity measure for an entire jet engine. In
cooperation with the subproject D6 of the CRC 871 concerning module interactions and the
overall system behavior, the first-order effects for the six considered output quantities with respect
to the five varying input efficiencies of the main turbomachines, are determined by utilizing the
sample-based Monte Carlo estimators. The corresponding results are shown in Fig. 6.7. It can be
seen that among all of the direct effects on output variances, the variance of the HPT efficiency
is the dominant factor for four to five out of all six output quantities. This is the fact as the
HPT exhibits the highest index value and therefore constitutes the main influence on the system
performance. In this manner the approach is applicable for the assessment of an entire jet engine
under consideration of interdependencies between engine components.
In [322], Salomon et al. additionally compute the total-effect Kucherenko indices and both
results are discussed in detail. To summarize, the study shows that simple correlations are
not sufficient to explain the influence of combined module variances and find the causes of
deterioration. Therefore, sensitivity analyses under consideration of dependent variables by
means of Kucherenko indices and digital performance twins are powerful tools to determine the
influence on a scientific basis. For an overall view, however, the change in capacity and work
must also be examined at different operating points with an engine pressure ratio regulation.
It shall be noted, that these results can be utilized as a basis for a detailed reliability analysis
by developing a functional model according to [251] and [280] of the V2500-A1 aircraft engine
performance model.

6.4 Resilience analysis

The resilience analysis, developed in [268], forms the first phase and basis of the analysis framework,
illustrated in Fig. 6.2, and is presented in the current section. Therefore, a fundamental notion
of resilience and a corresponding metric is suggested. Subsequently, a resilience decision making
framework is developed consisting of two key ingredients, an adapted systemic risk measure and
a sophisticated resilience metric, enabling for systematic computation of the resilience for various
endowment configurations. These endowment configurations can be intepreted in a variety of
ways, e.g., as different regeneration paths of the considered complex capital good. Finally, the
grid search algorithm and its advantageous properties in terms of computational efficiency are
presented. For illustrative purposes, the developed algorithmic framework is than applied to
the functional model established in Sec. 6.3.1, whereby it is not limited to this particular use
case, but can be utilized to a variety of system models. Illustrative results are presented in
combination with the second phase of the analysis framework in Sec. 6.5.

6.4.1 Resilience metric

Given a system being exposed to a disruptive event and recovering its functionality afterwards,
three essential phases can be defined classifying the system states, as illustrated in Fig. 6.8: (i)
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The original stable state, whose duration relates to the reliability of the system, forms the first
phase. (ii) The second phase is the loss of performance after the occurrence of a disruptive
event. This loss depends on the vulnerability or robustness of the system; the robustness of
the system is interpreted as the resistance to a loss of performance. (iii) The disrupted state
of the system and its recovery to a new stable state is the last phase and governed by the
recoverability. In general, the new stable state may differ from the original state and, accordingly,
its performance may be higher or lower. The majority of resilience metrics available in the
current literature is based on system performance, i.e., on the three states and their transitions
shown in Fig. 6.8. Consequently, a quantitative measure of resilience depends on the specific
choice and definition of system performance, see e.g., [10]. Performance-based approaches may
be ratio-based, integral-based, or both.

Q(t)

time

Disruptive 
Event

Reliability

Vulnerability/
Robustness

Recoverability

Figure 6.8: The three resilience phases before and after a disruptive event; adapted from [76].

In the current work, the probabilistic resilience metric by Ouyang et al. [86] is utilized. The
metric is denoted by Res and defines the expected ratio of the integral of the system performance
Q(t) over the time interval [0, T ] and the integral of the target system performance T Q(t) over
the same time interval:

Res = E[Y ], where Y =
∫ T

0 Q(t)dt∫ T
0 T Q(t)dt

. (6.1)

The system performance Q(t) is described as a stochastic process. In general, T Q(t) might be
considered as a stochastic process as well, but for expediency it is assumed to be a non-random
constant T Q in this work. The resilience metric takes values between 0 and 1 when limiting the
recovered performance at maximum equivalent to the original performance. The value Res = 1
indicates a system performance corresponding to the target performance, while Res = 0 captures
that the system is not working during the considered time period at all.
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6.4.2 Adapted systemic risk measure

As proposed in [268], the resilience metric presented in Subsec. 6.4.1 is integrated into an adapted
systemic risk measure, enabling the systematical assessment of various system configurations,
that might be, e.g., regeneration paths. In particular, technical systems for which a meaningful
system performance Q(t) can be determined are considered.
Assume that the system encompasses l system components. Each component is characterized by
its type and n relevant properties that influence the overall system performance. For convenience,
apply matrix notation. A component i ∈ {1, ..., l} can be characterized by a row vector

(ai; ji) = (ηi1, ηi2, ..., ηin; ji) ∈ R(1×n) × N, (6.2)

where (ηi1, ηi2, ..., ηin) represent the numerical values of the n properties and ji ∈ {1, 2, . . . , b} ⊆ N
defines its type. The system is described by a pair including the matrix A ∈ R(l×n) and the
column vector z ∈ Nl that captures the types of the components:

(A; z) =


η11 η12 . . . η1n; z1

η21 η22 . . . η2n; z2
...

...
...

...
ηl1 ηl2 . . . ηln; zl

 (6.3)

The input-output model Y = (Y(A;z)) is evaluated for these pairs. In the following, a corresponding
adapted systemic risk measure is constructed as follows. As a specific example, choose the
acceptance set

A = {X ∈ X | E[X] ≥ α} with α ∈ [0, 1] (6.4)

The risk measure is defined as

R(Y ; K) = R(Y ; (K; z)) = {A ∈ Rl×n | Y(K+A;z) ∈ A}, (6.5)

that is the set of all allocations of modified system properties A that are added to the base
properties K for which the altered system (K + A; z) exhibits a resilience greater or equal to α.
Without loss of generality but to keep the notation simple, set K = 0, and R(Y ; 0) is written as
R(Y ).
Practical applications might require to impose restrictions for the structure of the matrix in
Eq. 6.3. For instance, components of a specific type might require an equivalent configuration,
i.e., the corresponding row vectors ai must possess equal values. Following [245], such constraints
can be captured by functions gz : Rp → R(l×n) that are monotonously increasing with a′ 7→ (A; z),
where z ∈ Rl indicates the types of the components. Such a function maps a lower-dimensional
set of parameters a′ ∈ Rp to the system description.
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6.4.3 Grid search algorithm

In accordance with [245], a set-valued systemic risk measures as presented in Subsec. 6.4.2 can
be computed via a combination of the so-called grid search algorithm and stochastic simulation.
In two dimensions, a box-shaped subset of endowment properties is subdivided by a grid of
equidistant points.
The algorithm proceeds as follows. The search starts at the origin of the search space; assume
that the origin is outside of R(Y ). In a successive manner, the acceptance criterion is evaluated
for each adjacent grid point on the grid diagonal along the direction (1, 1, . . . , 1)⊤. Typically, in
each evaluation stochastic simulation is performed. The search along the diagonal terminates as
soon as a grid point that meets the acceptance criterion is identified. Given the monotonicity of
the input-output model and the properties associated with the acceptance criterion (cf. [245]),
all grid point configurations in the box-shaped subset with the first accepted one as the bottom
left corner are acceptable as well and consequently belong to R(Y ). Analogously, all endowments
in the box-shaped subset with the first accepted one as the top right corner are rejected. Thus,
these points belong to R(Y )c that is the complement of the systemic risk measure. Precisely this
monotonicity property makes the algorithm efficient.
Each neighboring pair of diagonally adjacent points with one of these points meeting the
requirements and the other not, defines a sub-box. In the next step, the algorithm checks the
remaining corners of this sub-box, assigning a status to dominating and dominated endowments,
respectively. Subsequently, the next neighboring pairs of points can be determined. The algorithm
terminates as soon as all points on the grid have an assigned acceptance status. Finally, risk
measure R(Y ) is determined as a discrete grid-approximation. This algorithm, combined with
the methods proposed in Subsec. 6.4.1 and Subsec. 6.4.2, allows decision-making to be made
regarding the optimal trade-off between resilience-enhancing endowments for complex capital
goods.

6.5 Constrained resilience analysis of an axial compressor

In the current section, the methodology presented in Section 6.4 is demonstrated for illustrative
scenarios, while the procedure for considering monetary constraints is elaborated, see phase one
and two in Fig. 6.2. The method can be applied to assess a variety of complex capital goods.
In [328] and [268], Salomon et al. proved the applicability of the proposed approach for a wide
range of complex systems, e.g., flow networks, an axial compressor and the Berlin metro network.

6.5.1 Resilience analysis setting

In the context of the CRC 871, consider the functional model illustrated in Fig. 6.4 of the axial
compressor developed in [251] presented in Subsec. 6.3.1. Again, an interruption between start
and end represents system failure, i.e., a roughness-related performance variation of the physical
system of at least 25%. The system functionality is utilized as meaningful system performance
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Q(t) that was claimed in Subsec. 6.4.2 for the subsequent application of the resilience decision
making procedure. The system performance is evaluated at each point in time th and equals 1 if
there is a connection from start to end and is 0 if the connection is interrupted.
Components i ∈ {1, . . . , 8} of the functional model represent stator blade rows and rotor blade
rows. In this example, each of them is assumed to have the same component type, i.e., it holds
that ji = 1 ∀i ∈ {1, . . . , 8}. For simplicity, denote (ai; ji) = (ai; 1) = ai ∀i ∈ {1, . . . , 8}. Suppose
that each row, i.e., each component, is characterized by two endowment properties, namely, a
roughness resistance re and a recovery improvement r∗. Then, the component is described by
ai = (rei, r∗

i ). It holds true that rei = rei′ , r∗
i = r∗

i′ if ji = ji′ , consequently, the endowment pair
(rei, r∗

i ) has equal numerical values for all components. Each of these configuration pairs might
represent a particular regeneration path.
After evaluating the system performance in a previous time step th, each component can fail
randomly. A failed component is removed from the model and no longer contributes to the system
performance at time th+1. The component remains in the failed state until its full recovery.
Assume that the failure probability of the component i is assumed to be constant in the time
interval (th, th+1). For illustrative purposes, it is given by

P {Component i fails during (th, th+1)} = ∆t · λi (6.6)

with
λi = 0.8− 0.03 · rei, (6.7)

where λi is the time-independent failure rate. This single-step failure model corresponds to a
simple approach for considering reliability and robustness. A consideration of system reliability
in multiple states, where the system passes through several intermediate states before failure, as
presented in a subsequent section, is one possibility for a more comprehensive modeling approach.
Suppose that a failed component instantly recovers to the original performance level after a
certain number of time steps passed. Then, the component recovery is described by

ri = rmax − r∗
i with r∗

i < rmax, (6.8)

where rmax denotes the maximum number of time steps required for recovery and r∗
i is a reduction

depending on the current endowment of the component i. Since each time step is of the length
∆t = T

u , with T denoting the investigated duration and u the amount of considered time steps,
the duration of the recovery process is ri · T

u . In accordance with [6] and [10], this simple recovery
model corresponds to a one step recovery profile; however, various other characteristic profiles of
recovery in time are conceivable.
Note that in this setting increasing the roughness resistance of a blade row, i.e., a component
i, mitigates the degradation of the surface, i.e., counteracts the roughening process, and corre-
spondingly reduces the failure rate λi. If the component i fails, its functionality is fully recovered
after ri time steps specified via Eq. 6.8.
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6.5.2 Costs of endowment properties

A certain endowment relates to the property quality of one or more components. In general, a
higher quality of components results in a more resilient system. However, an increase in quality
is typically associated with an increase in costs. Consequently, it is essential to take into account
monetary aspects for an expedient decision making procedure. In accordance to [256], assume
that increasing the reliability of components in complex systems corresponds to an exponential
increase in their costs.
Assume that the cost associated with improving the endowment property roughness resistance is
given by

costre =
8∑

i=1
pricere · 1.2(rei−1), (6.9)

where rei is the roughness resistance value of component i. Further, pricere is a common basic
price independent of i in the current case study. Analogously, assume an exponential relationship
for the costs associated with the recovery improvement r∗

i :

costr∗ =
8∑

i=1
price∗ · 1.2(r∗

i −1). (6.10)

The total cost of an endowment results from the sum of these costs:

cost = costre + costr∗
. (6.11)

This cost function shown is subsequently utilized to determine the cost of a certain endowment.
Consequently, the endowment pair with minimum cost can be identified. The combination of the
adapted systemic risk measure developed in Subsec. 6.4.2, including the corresponding acceptance
set, with the cost function enables the evaluation of optimal endowment pairs regarding resilience
and monetary constraints.

6.5.3 Scenario and numerical results in a two-dimensional setting

In the following, the decision making method for identifying resilience-enhancing endowments
under consideration of monetary constraints is demonstrated for the multi-stage high-speed axial
compressor presented in Fig. 6.4 in Subsec. 6.3. For illustrative purposes, the model parameters
and simulation parameter values, shown in Tab. 6.1, are considered.
Assume an resilience acceptance threshold of α = 0.8, an arbitrarily selected number of u = 200
time steps, a constant failure rate of λ = 0.8 as well as an arbitrarily selected time step length of
∆t = 0.05. The first step in the analysis is to determine the set of all acceptable endowments that
correspond to a resilience value of at least Res = 0.8 over the time period under consideration. In
practice, any improvement of the axial compressor blades is associated with costs. Consequently,
the second step is to identify the least expensive acceptable endowment, denoted by Â. The grid
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Table 6.1: Parameter values for the resilience decision making method for the functional model of the multi-stage
high-speed axial compressor.

Parameter Index Value in Scenario
Number of Rotor/Stator blade rows l 8
Acceptance threshold α 0.8
Number of time steps u 200
Length of a time step ∆t 0.05
Failure rate λ 0.8
Maximum recovery time rmax 21
Recovery improvement r∗ r∗

i ∈ {1, ..., 20}
Roughness resistance re rei ∈ {1, ..., 20}
Recovery improvement price pricer∗ 600e
Roughness resistance price pricere 500e

search algorithm described in Subsec. 6.4.3 explores the roughness resistance re and the recovery
improvement r∗ over rei ∈ {1, ..., 20}, r∗

i ∈ {1, ..., 20} ∀i ∈ {1, . . . , l}. Increasing a value of the
properties of a component i is interpreted as increasing its the quality level. The roughness
resistance values are interpreted as various quality levels of coatings applied to the blades. In
terms of recovery, the quality increasing leads to a reduced recovery time for the components
taking values from a maximum of 20 time steps (for r∗

i = 1) to a minimum of one time step (for
r∗

i = 20) given rmax = 21.
Figure 6.9 shows the results of the grid search algorithm. The acceptable pairs of component
properties, i.e., roughness resistance and recovery improvement, are depicted as blue, filled
dots. Clearly, the quality of recovery improvement and the quality of the blade coatings can
be compared regarding their impact on the system resilience. For instance, given recovery
improvement values with r∗

i ≥ 15, the minimum roughness resistance value of rei = 1 is already
sufficient to achieve the desired level of resilience.
For the determination of R(Y ) only about 10% of all possible endowment pairs had to be
evaluated due to the grid search algorithm presented in Subsec. 6.4.3. More precisely, the number
of endowment pairs on the diagonal plus the number of pairs equivalent to the size of the set of
pairs with minimum acceptable resilience, i.e., the boundary or pareto front of R(Y ), had to be
evaluated. Taking into account the base prices in Tab. 6.1, the most cost-efficient endowment i

among the boundary set is characterized by a roughness resistance of rei = 8 and a recovery
improvement of r∗

i = 13 for each of the eight components. In Fig. 6.9 the corresponding pair is
highlighted by a green circle. According to Eq. 6.11 the total cost equals 136 930e. Based on
these results, the decision maker is advised to realize rei = 8 and r∗

i = 13.
Note that in case of analyzing regeneration paths, resilience applies to the regeneration paths in
two ways: 1. as a part of the overall performance over the entire life cycle of the complex capital
good, and 2. as a resilient regeneration path in itself. Clusters are formed or identified of similar,
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Figure 6.9: Numerical results of the grid search algorithm for the functional model of the axial compressor with
explored roughness resistance/recovery improvement values; adapted from [268].

equally acceptable regeneration paths to which, in the event of a problem, it is possible to switch
without great effort.

6.5.4 Scenario and numerical results in multiple dimensions

As shown in [328], the methodology developed in [268] can be utilized in the multi-dimensional
case as well. The current subsection shall prove the applicability in a four dimensional setting
given the model of the multistage high-speed axial compressor. The model parameter and
simulation parameter values shown in Tab. 6.2 are considered. Assume the recovery improvement
r∗ to be fixed for all components, regardless of their type, r∗

i = 11 ∀i ∈ {1, . . . , l}, while the
roughness resistance re is explored over rei ∈ {1, . . . , 20} ∀i ∈ {1, . . . , l}. Again, the roughness
resistance values can be interpreted as increasing quality levels of coatings. In this scenario, the
four component types suggested in Subsec. 6.3.1 are adopted. Correspondingly, the first and
second rotor blade rows are assigned as c1), the third and fourth as c2 and c3, respectively, while
all stator blade rows are assigned as c4. The set of all acceptable endowments leading to a system
resilience value of at least Res = 0.85 over the time period under consideration is determined via
the grid search algorithm. Then, the most cost-efficient endowment denoted by Â is identified.
Figure 6.10 shows the corresponding results. In Fig. 6.10a, all combinations with a satisfactory
system resilience of at least Res = 0.85 are depicted, corresponding to phase one in the analysis
framework, see Fig. 6.2. This is the set of roughness resistance endowment pairs contained in
R(Y ). In fact, the roughness resistance of the fourth rotor blade row (c3) has the highest impact
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Table 6.2: Parameter values for the resilience decision making method for the functional model of the multistage
high-speed axial compressor.

Parameter Index Value in Scenario
Number of blade rows l 8
Acceptance threshold α 0.85
Number of time steps u 200
Length of a time step ∆t 0.05
Failure rate λ 0.8
Maximum recovery time rmax 21
Recovery improvement r∗ 11
Roughness resistance re rei ∈ {1, . . . , 20}
Recovery improvement price price∗

(r∗;ji) 600e
Roughness resistance price pricere

(rei;ji) 800e ∀ji ∈ {1, 2, 3}
500e ∀ji = 4

on the system resilience compared to other rows. This can be concluded as only pairs with a
high roughness resistance quality for this type are acceptable. Regardless of the endowment
property values of all other component types ci ∈ {1, . . . , 4}, the endowment pairs with coating
qualities of rei ≤ 15 for c3 are not sufficient to provide an acceptable level of system resilience.
In contrast, the roughness resistance of the four stators (c4) has minor influence on the system
resilience compared to all other types. Even endowments with (rei, 4) = 1, i.e., a minimum
coating quality level, are sufficient to achieve acceptable resilience values. The same holds true
for the rotors of of type c1 and c2. Although, in comparison to the stators, components of types
c1 and c2 require significantly higher level of coating quality to compensate small, i.e., values
other than maximum values of roughness resistance for c3.
For decision making, it is crucial to be able to take into account monetary constraints. Therefore,
Fig. 6.10b shows the endowment pairs contained in R(Y ) that lead to a satisfying system resilience
of Res = 0.85 considering a budget threshold that is set to costre

max = 50 000e for illustrative
purposes, corresponding to phase two in the analysis framework, see Fig. 6.2.
The results illustrated in Fig. 6.10b show that only configurations with low coating quality levels
for all stators (c4) are below the cost limit. Firstly, this is the case due to their low influence on
system resilience, and secondly, to the high costs for increasing the quality levels for the stators
caused by their amount and exponential cost-quality behavior. In contrast, only configurations
that provide the highest quality levels of (rei, 3) ≥ 17 for the rotor of type 3 are acceptable and
below the price limit simultaneously. The roughness resistance of the rotor of type c3 has a
critical influence on the system resilience. Consequently, the compensation of lower quality levels
for c3 by higher quality levels of the remaining blade rows exceed the given budget threshold.
Even though the roughness resistance of the rotor of c2 has a lower influence on the system
resilience than that of c3, minimum quality levels for c2 cannot be compensated by high qualities
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(a) Numerical results with explored roughness resistance
values.

(b) Numerical results with explored roughness resistance
values considering a budget threshold.

Figure 6.10: Numerical results for multi-dimensional setting; adapted from [328].

of the other components either. Correspondingly, at least (rei, 2) = 4 is required to meet the
acceptance criterion.
Considering the base prices in Tab. 6.2, the most cost-efficient endowment is characterized by
the pair with roughness resistances of (rei, 1) = 4, (rei, 2) = 14, (rei, 3) = 19 and (rei, 4) = 3.
The corresponding configuration is highlighted in blue in Fig. 6.10b. Via Eq. 6.11 the total cost
is obtained as cost(Â;z) = costre + cost∗ = 42 604e+ 35 664e = 78 268e.
The numerical effort for the computation of R(Y ) was reduced by about 98% due to the grid
search algorithm compared to a naive evaluation of the search space. Correspondingly, only 2%
of all possible combinations of roughness resistance values had to be evaluated. Note that the
application of this methodology to higher-dimensional problems is only limited by constraints of
computational memory and time.

6.6 Reliability analysis

The reliability analysis follows the resilience analysis and the reduction of all, in terms of system
resilience, acceptable system configurations respectively regeneration paths due to technical and
monetary restrictions. It thus forms the third phase in the analysis framework, see Fig. 6.2.

6.6.1 Repeated evaluation of the survival function

For all remaining endowment pairs of interest for decision makers, a system reliability analysis is
conducted to evaluate the system failure probability at given time t. The system reliability is
evaluated based on the stochastic properties of the system components represented as probability
distribution functions that describe the event probability of failure due to degradation or a
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disruptive event. Each model evaluation leads to the so-called survival function, i.e., the
probability that the system is still functioning at time point t, performing its predefined task. In
Fig. 6.11 three different survival functions are shown as Path A, B and C for illustrative purposes.

Ideal solution

Minimum 
requirement

Without regeneration
measure

Maximum requirement

Figure 6.11: Reliability analysis based on the concept of survival signature considering multiple regeneration
paths.

Different endowment pairs evaluated in the grid search algorithm correspond to various component
properties due to different regeneration paths and lead to different survival functions. The three
survival functions in Fig. 6.11 correspond to three different regeneration paths, i.e., endowment
pairs. In addition, there might exist minimum and maximum requirements of system reliability due
to practical experiences, customer requirements, e.g., budget limitations, or other circumstances.
An efficient procedure is required to realize the large number of repeated model evaluations, i.e.,
computations of survival functions, with changing component properties.

6.6.2 Concept of binary-state survival signature

Fig. 6.12 illustrates the concept of survival signature introduced in [149]. The most beneficial
attribute of this approach is its separation property. That means that the system structure is
separated from the probability structure of the system describing the component failure behavior.
This leads to a significant reduction of the computational effort, since once the typical costly to
determine system structure has been computed, any possible characterization of the probabilistic
part can be tested with no need to recompute the structure. This means that any number of
system configurations, i.e. regeneration paths, can be simulated and analyzed, since these only
affect the probability structure and usually not the system structure. At the same time, the
survival signature radically condenses information on the topological reliability for systems with
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multiple component types with K being the maximum number of component types. The failure
times of components of one type are claimed to be independent and identically distributed (iid)
or exchangeable. For more information on claimed exchangeability in practice, see [153] and [152].
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System Structure Probability Structure

computationally expensive

Path A Path B Path C

Figure 6.12: Illustration of the advantageous properties of the concept of survival signature.

For a deeper understanding of this concept, consider a coherent system with a given binary-state
structure function defining the system state to be either 0 or 1 for a binary-state vector out of
the set of all possible state vectors. The binary-state vector specifies the state of n = ∑K

k=1 nk

components in total, there are
(n

l

)
state vectors x with exactly l components with xi = 1, i.e.,∑n

i=1 xi = l. Let the set of these state vectors with l functioning components refer to as Sl. In
the case of k ≥ 2, the survival signature summarizes the probability that a system is working
as a function depending on the number of working components lk for each type k = 1, . . . , K.
Assume the failure times within a component type to be iid or exchangeable. Consequently, all
possible state vectors are equally likely to occur. Then, the survival signature is defined as

Φ (l1, l2, . . . , lK) =

 K∏
k=1

(
nk

lk

)−1
 ∑

x∈Sl1,l2,...,lK

ϕ(x), (6.12)

where
(nk

lk

)
corresponds to the total number of state vectors xk of type k and Sl1,l2,...,lK denotes the

set of all state vectors of the entire system for which lk = ∑nk
i=1 xk,i. Then, the survival signature

Φ (l1, l2, . . . , lK) characterizes the probability that a system is working given that exactly l of
its components working for l = 1, . . . , n. Note that the survival signature depends only on the
topological reliability of the system, independent of the time-dependent failure behavior of its
components, namely, the probability structure. Note that it is differentiated between the concept
of survival signature with its separation property shown in Fig. 6.12 and the mathematical object
survival signature itself shown in Eq. 6.12.
Further, assume the probability distribution for the failure times of type k to be known with
Fk(t), denoting the corresponding cumulative distribution function. Then,

P

(
K⋂

k=1
{Ck(t) = lk}

)
=

K∏
k=1

P (Ck(t) = lk)

=
K∏

k=1

(
nk

lk

)
[Fk(t)]nk−lk [1− Fk(t)]lk

(6.13)
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describes the probability structure of the system, regardless of its topology. Ck(t) ∈ {0, 1, . . . , nk}
represents the number of components of type k in a working state at time t.
Both Eq. 6.12 and Eq. 6.13 form together the concept of survival signature illustrated in Fig. 6.12.
The concept is integrated into the proposed framework, see phase three in Fig. 6.2, to leverage its
salient beneficial properties for repeated model evaluations that are required for comprehensive
MRO decision making.

6.6.3 Concept of multi-state survival signature

While a binary-state consideration of systems and their components is state-of-the-art, further
research on multi-state systems with multi-state components is inevitable for a more realistic
and comprehensive assessment of system reliability. In [280], Eryilmaz & Tuncel proposed a
generalized concept of survival signature in the context of unrepairable homogeneous multi-state
systems. In accordance with the approach presented in [149], the survival function for multiple
types with type k = 1, . . . , K can be derived as:

P{T ≥J > t
}

=
∑

. . .
∑

i1≥...≥iJ

Φ≥J(i1
1, . . . , ij

k, . . . , iJ
K)

× P
{

C1
1 (t) = i1

1, . . . , Cj
k(t) = ij

k, . . . , CJ
K(t) = iJ

K

}
.

(6.14)

with maximum system and component level J and T ≥J that is the system failure time in state
J . Thereby, Φ≥J(i1

1, . . . , ij
k, . . . , iJ

K) represents the j-th level survival signature for level J , i.e.,
the probability that the system is working in state J or above if ij

k components are working for
types k = 1, . . . , K and states j = 1, . . . , J with ij−1

k ≥ ij
k. The total number of state vectors

given ij
k components of type k functioning in state j or above is

vn1,...,nK (i1
1, . . . , ij

k, . . . , iJ
K) =

J∏
j=1

(
n1 − ij+1

1
ij
1 − ij+1

1

)
· · ·
(

nK − ij+1
K

ij
K − ij+1

K

)
, (6.15)

where iJ+1
1 = . . . = iJ+1

K = 0 and nk denotes the total number of components of type k. The
j-th level survival signature for level J for multiple types is given as

Φ≥J(i1
1, . . . , ij

k, . . . , iJ
K) =

∑
x∈S

i1
1,...,i

j
k

,...,iJ
K

ϕ(x)

vn1,...,nK (i1
1, . . . , ij

k, . . . , iJ
K)

. (6.16)

Again the j-th level survival signature and the survival function with multiple components are
derived similarly to Eq. 6.16 and Eq. 6.14, respectively.
The approach proposed in [280] enables to compute the reliability of multi-state systems for J

binary-state structure functions with components following a Markov degradation process with
minor failures. Given the four binary-state structure functions established in Subsec. 6.3.1 and
the probability structure describing component degradation from state to state, the reliability of
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Figure 6.13: j-th level survival functions for j ∈ {1, . . . , 4}.

the multi-state axial compressor to be in one of four states can be evaluated. For illustrative
purposes, the component degradation model was established as suggested in [280] with arbitrarily
selected instantaneous degradation rates. Fig. 6.13 shows the survival functions of the levels
j = 1, . . . , 4 of the multi-state axial compressor previously introduced. The combination of this
multi-state system consideration with the developed analysis framework enables the assessment
of the resilience of mutli-state systems with multi-state components.

6.7 Uncertainty analysis

In reality, the information on a complex capital good and its behavior is subject to aleatoric or so-
called irreducible uncertainties but typically also epistemic uncertainties or so-called imprecision.
For instance, this is the case due to estimates of distribution parameters based on expert
knowledge, measurement errors or a simple lack of data. In the context of the CRC 871, the
influence of a regeneration measure on the survival behavior of a complex capital good might
not be precisely known, i.e., the distribution parameters describing the failure behavior can
only be estimated. Thus, the models and corresponding simulations are also governed by these
uncertainties. However, for comprehensive decision making existing uncertainties need to be
considered in analysis and therefore beneficial approaches to implement these are an important
research topic, see [227] and [194]. Consequently, the novel uncertainty analysis developed in
this work constitutes the fourth and final phase of the analysis framework, see Fig. 6.2.
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6.7.1 Imprecision and its implementation via fuzzy probability

Fig. 6.14 shows the concept of survival signature with an adaption of the probability structure via
fuzzy probabilities, cf. [152]. Thus, the imprecision is propagated through the model. This enables
the advantageous properties of this concept to be exploited while accounting for imprecision.
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Probability Structure

Fuzzy probabilities

Figure 6.14: Fuzzy probabilities included in the concept of survival signature.

The result is not a sharp survival function, as seen in Fig. 6.15a, but an imprecise survival
function with regions, as seen in Fig. 6.15b. The imprecise survival functions are computed on
basis of stochastic input variables described via fuzzy probabilities. The reliability analysis under
consideration of imprecision can be simplified by considering various discrete alpha-cuts with
α ∈ [0, 1] as illustrated in Fig. 6.15b for α ∈ {0, 0.2, 0.4, 0.6, 0.8}.
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(a) Precise survival function that is equivalent to an alpha-cut
α = 1 of the fuzzy probability.
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(b) Imprecise survival function described via fuzzy probability
with five alpha-cuts α ∈ {0, 0.2, 0.4, 0.6, 0.8, 1}.

Figure 6.15: Precise and imprecise survival functions; adapted from [152].

The survival function generated with α = 0 represents the maximum level of uncertainty. For
example, an expert specifies the parameter interval corresponding to an alpha level α = 0 of
the fuzzy probability as the maximum degree of uncertainty, i.e. the parameters will certainly
not violate the interval limits. This might be the case in design and maintenance, if, e.g.,
only insufficient information on the installed components has been collected so far and only
an educated guess of an expert is available. In contrast, an alpha-level of α = 1 corresponds
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to a precise survival function that is typically not known. Note that this is only the case for
triangular fuzzy probabilities as presented in [152]. However, there exist fuzzy probabilities that
describe an interval of parameters for α = 1 as well. Depending on the budget, gathering precise
information for each component type, e.g., via experimental campaigns, might not be feasible,
impeding proper reliability analyses. In fact, a complete elimination of imprecision is in most
cases neither necessary nor cost-efficient. Therefore, a method for determining a critical level of
imprecision is crucial for cost-effective decision making that balances imprecision against the cost
associated with reducing it. In [152], Salomon et al. developed a comprehensive decision making
procedure for uncertainty reduction. Integral parts are target values for the system reliability at
certain points in time. If the current setting of parameters modeled via fuzzy probabilities fail
to ensure these target reliabilites the imprecision in the fundamental data should be reduced.
The procedure is cost-efficient, since it proceeds successively from α = 0 up to α = 1 until the
reliability requirements are met.

6.7.2 Efficient simulation algorithm under consideration of imprecision

The consideration of both irreducible uncertainty and imprecision requires adequate treatment in
systems analysis. A frequently implemented approach is a two-stage simulation, commonly known
as a “double-loop” approach. Correspondingly, variables describing imprecision on parameters are
sampled in an “outer loop” and variables representing irreducible uncertainty and depending on
the imprecise parameters, as, e.g., failure time of components, are sampled in an “inner loop,” cf.
[203], or vice versa, in an “outer loop” aleatory variables are sampled and epistemic uncertainty is
treated in the “inner loop”, cf. [204]. Clearly, for complex systems, this naive sampling approach
leads to an extremely large sample size and consequently a high computational cost, see, e.g.
[294]. Consequently, simulation approaches that increase computational efficiency and yield high
accuracy at minimal sample size are desirable. Recently, the Non-Intrusive Stochastic Simulation
(NISS), a promising approach to efficiently compute imprecise structural models with significantly
reduced sample size was introduced in [220]. The method is divided into two basic approaches,
Local Extended Monte Carlo Simulation (LEMCS) and Global Extended Monte Carlo Simulation
(GEMCS), which provide different advantages in terms of accuracy and variation.
In [152], a novel methodology was developed in the context of imprecise system reliability
analysis by adapting the LEMCS and the GEMCS and combining them with the concept of
survival signature. The imprecision of parameters is modeled via fuzzy probabilities. This
imprecision is then propagated efficiently through the analysis framework by means of the new
method as illustrated in Fig. 6.16. The complex amalgamation brings together the advantages of
both the concept of survival signature and NISS concepts: a significant memory reduction of
topological information and large efficiency benefits in repeated model evaluations, combined
with a comprehensive consideration of uncertainties with only one required stochastic simulation,
thus drastically reducing the sample size. This combination leads to beneficial synergy effects,
increasing the efficiency even more. The savings due to the new methodology regarding sampling
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Figure 6.16: NISS method and the LEMCS estimator.

effort compared with the naive double loop approach are illustrated in Fig. 6.17. Fig 6.17a and
Fig. 6.17b The most attractive aspect of both the LEMCS and GEMCS algorithms is the fact

1. Loop 2. Loop

Sampling failure times
(e.g., n = 100000)

Sampling distribution
parameters (e.g., m = 
10000)

Imprecise Survival Function

(a) Sampling procedure via the traditional “double loop”
approach.

„2. Loop“

Sampling failure times
(e.g., n = 100000)

Sampling distribution
parameters (e.g., m = 
10000)

Imprecise Survival Function

1x

(b) Sampling procedure via novel developed uncertainty anal-
ysis.

Figure 6.17: Sampling via the “double loop” approach and the novel uncertainty analysis developed in this work.

that only a single stochastic simulation is necessary to account for the imprecisions. Therefore,
the traditionally employed “double loop” simulation can be circumvented. In both LEMCS
and GEMCS, the interval analysis and the stochastic analysis have been decoupled successfully,
and the computational expense is mainly driven by the single stochastic simulation performed.
Moreover, the stochastic analysis has been separated from the system topology by merging it
with the survival signature, so that only one reliability analysis in terms of topology is required to
generate the survival signature. In addition to these beneficial features of the survival signature,
it is exactly the single stochastic simulation required that gives the proposed methodology its
efficiency and differentiates it clearly from traditional approaches. Thanks to this approach the
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imprecise stochastic analysis used to estimate the bounds on the system survival function has
been greatly simplified.
In [152], the new methodology was demonstrated, among others, on the functional model of the
axial compressor presented in Subsec. 6.3 and shown in Fig. 6.4. The “double loop” approach
is conducted with 5 000 samples (failure times) on the inner loop and 1 000 samples (model
parameters) on the outer loop, i.e., a total of 5 000 000 samples. While even improving the
quality in results, for both LEMCS and GEMCS, only one simulation was required with 100 000
generated samples (failure times for 100 000 different model parameters). Correspondingly, only
1/50th of the sample size compared to the “double loop” approach was required.

6.8 Conclusions

A decision making process has been developed that enables the identification of optimal trade-offs
among numerous resilience-enhancing features/measures for complex capital goods of various
types. During the period of the CRC 871 the approach as been applied to models of an axial
compressor, of a flow network, of an arbitrary complex system, and of the Berlin metro network.
The consideration of monetary and technical constraints into the decision making process is
realized. The broad applicability of all developed methods is ensured, i.e., there are no limitations
to a specific system type. A reduction in computational effort has been achieved, mainly due
to the separation property of the survival signature, i.e., once the system structure has been
computed, any possible characterization of the probabilistic part can be evaluated without the
need to recompute the structure. The integration of uncertainties in the reliability analysis is
enabled and the sample size is drastically reduced due to the adapted NISS methods requiring
only a single stochastic simulation, avoiding the tedious “double loop” simulation traditionally
applied.
It could be shown that functional models are a good and effective approach to represent physically
complex systems. This approach was further developed to not only consider dependencies in
the input parameters but also to include a time dependency of the sensitivities by means of
importance indices. Still challenging is the merging of the several developed functional models of
subsystems within the overall jet engine into an encompassing representative overall model. It is
very computationally expensive due to the costly sensitivity analysis for complex systems with
numerous input and output parameters. Further in-depth research on this topic is required to
enable the generation of such an extensive model.
The comprehensive and encompassing analysis framework developed in this work, consisting of
resilience analysis, consideration of technical and monetary constraints, reliability analysis, and
uncertainty analysis, provides decision makers with an additional basis for decision making in
MRO processes, enabling sophisticated decisions on an efficient background. Thereby, resilience
applies to regeneration paths not exclusively as a part of the overall life cycle performance
of the complex capital good, but as an important property for the regeneration path in itself.
Clusters are identified of similar, equally acceptable regeneration paths to which, in the event
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of a problem, effortlessly can be switched, leading to a variety of resilient regeneration paths.
Furthermore, strict attention was given that all developed phases within the analysis framework
are applicable to complex capital goods of any kind and in every field of application, e.g., design
process, optimization process etc.
The outlook that goes beyond the scope of this project is the combination of all presented
approaches into a single encompassing methodology in order to be able to take even greater
advantage of the excellent synergy effects between them.
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7 Conclusions and outlook

In this concluding chapter, the main developments of the dissertation are summarized, and
meaningful extensions and potential improvements are suggested for future works.

7.1 Conclusions

The five publications in the dissertation focus on developing comprehensive methodologies for
decision-making for complex engineering systems with the aim of optimizing resource allocation
for resilience enhancement. The overall framework allows for the comparison of heterogeneous
controls on system resilience and the consideration of monetary aspects in the decision-making
process. The controls range from failure prevention to recovery improvement measures, at any
stage of the system’s life cycle. Furthermore, two methodologies in the domain of system reliability
are developed. Each represents a novelty in its own right but also serves as a powerful extension
to the resilience framework. The proposed work, in particular, the resilience decision-making
framework with its extensions, contributes significantly to the resilience analysis of complex
engineering systems and closes important scientific gaps in this field.
A core innovation of this dissertation is given in the first publication by the universally applicable
resilience decision-making framework. It consists of an adapted systemic risk measure and a
sophisticated probabilistic, and time-dependent resilience metric, enabling decision-makers to
optimally balance resilience-enhancing measures of any kind. The system behavior may depend
on a variety of stochastic variables that influence its performance. In a first step, the provided
methodology characterizes all acceptable configurations of system components that lead to a
desired level of system resilience. In a second step, the approach incorporates monetary aspects
into the decision-making process and allows for the identification of the most cost-efficient
allocation. The framework is capable of considering all types of system performance quantities,
offering a high degree of flexibility in its application. Furthermore, the utilization of a grid search
algorithm for systemic risk measures, significantly reduces the required computational effort.
In the second publication, the resilience decision-making method from the first publication
is extended for application to multidimensional search spaces. Then, an efficient and novel
methodology is developed by merging this extension with the concept of survival signature. The
approach continues to enable direct comparison of heterogeneous resilience-enhancing measures
on system resilience. Compared to the origin approach, the novel methodology is characterized by
high numerical efficiency, especially for large, substructured, complex systems. The majority of
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endowment properties under investigation affect the probability structure of system components.
The numerous changes in the probability structure caused by constantly changing endowment
properties during resilience analysis are typically costly to simulate and can be ideally accounted
for with minimal effort due to the separation property of the survival signature. The novel
approach incorporates a substructuring approach for large, complex systems. This and the
integration of the survival signature allow the propagation of subsystem reliabilities through any
number of system levels up to the top level and lead to a significant reduction in computational
effort. In this way, and with the extension of the adapted systemic risk measure, it is now possible
to analyze systems with a large number of components for their resilience.
The third publication of the dissertation presents an innovative methodology for system reliability
analysis, accounting for imprecision through fuzzy probabilities and nested p-box analysis. It
utilizes two adapted extended Monte Carlo simulation methods, which only require a single
stochastic simulation per considered uncertainty level. This approach is efficient, widely applicable,
and provides decision-makers with the ability to identify a bearable level of imprecision that
still ensures acceptable system reliability. Further, the provided novel methodology is developed
such that an embedding into the resilience decision-making framework established in the second
publication of this dissertation is straightforward.
The advancements made in the fourth publication, like those made in the third publication,
serve both as an extension of the encompassing resilience decision-making framework and, in
themselves, represent a novelty in the field of reliability analysis. The cornerstone of these
innovative contributions lies in tackling the constraints imposed by a binary consideration of
component and system states at the subsystem level for substructured complex systems within
the resilience framework. This objective is fulfilled through the newly introduced continuous-state
survival function and the introduction of the DAS as a corresponding surrogate model, based
on combinatorial decomposition adopted from the survival signature concept, allowing for the
separation of topological and probabilistic information. The results offer a more comprehensive
perspective for resilience analyses of practical systems.
The fifth publication provides a significant contribution by introducing a comprehensive decision-
making approach for the regeneration of complex capital goods. The publication demonstrates the
versatility and transferability of numerous methodologies previously developed in the dissertation,
which can be applied to any type of system and integrated into different application domains
and frameworks. The developed approach addresses two challenges: it analyzes the resilience of
a regeneration pathway itself and provides decision-makers with solid information for selecting
from a variety of (resilient) regeneration paths. This synergistic approach combines resilience,
reliability, and lifetime analyses, as well as consideration of uncertainties, to provide effective
resilience-based decision criteria for the optimal regeneration of complex capital goods. In
addition, the publication demonstrates the value of functional models in representing physically
complex systems, accounting for input parameter dependencies via time-dependent sensitivity
analyses and importance indices. In summary, this framework provides an improved foundation
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for decision-making and enhances the understanding and implementation of resilience in MRO
processes.

7.2 Outlook

The novel methodologies presented in this dissertation have proven to be capable of addressing
an efficient resilience analysis and decision-making of complex engineering systems. In the
following, some suggestions for extensions and future challenges in the context of these methods
are presented.
From a conceptual perspective, real-world problems often involve multiple objectives and are
not limited to a finite time horizon. Therefore, future work should focus not only on system
resilience and the cost of resilience-enhancing controls alone, but also on long-term impacts, such
as differential expected gains from modified system resilience. Comprehensive decisions require a
deep understanding of the trade-off between the costs and gains of resilience. Further work will
therefore need to address balancing monetary and other criteria, such as safety, social, moral,
and environmental considerations for decision-making, to name only a few.
In order to be capable of analyzing the increasingly growing and converging systems that
characterize our modern societies in the future, the efficiency of the developed methods must be
continuously improved under the aspect of the so-called “curse of dimensionality”. Although the
presented methods in this dissertation show high efficiency in terms of computational effort, an
efficient handling of interconnected systems (systems-of-systems), consisting of possibly billions
of components, has to be explored.
In view of the two aforementioned challenges of future research, the comprehensive integration
of uncertainties, which has already been addressed in this dissertation, must be pursued even
further in future research. Uncertainties are real and ubiquitous. However, their consideration
exacerbates and potentiates the aspect of increasing computational costs and complexity of
comprehensive resilience analyses.
The last and possibly most important aspect is the time pressure under which these developments
have to be carried out. Global challenges, first and foremost the accelerating climate crisis, make
it imperative to identify and implement solutions on an unprecedented scale to limit the impacts
and to build our societies more robust, more adaptable, more reliable, or in short, more resilient.
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