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Kurzfassung 

Jedes Jahr ereignen sich weltweit Millionen von Arbeitsunfällen, die zahlreiche Opfer 

fordern und enorme wirtschaftliche Verluste zur Folge haben. Vorangegangene 

Studien aus dem Feld der Risikoeinschätzung zeigten, dass es wichtig ist die 

Wahrscheinlichkeit von Faktoren, welche zum Auftreten von Unfällen beitragen, zu 

quantifizieren. Mehrere Methoden, wie z. B. die Technik zur Vorhersage der 

menschlichen Fehlerrate (Technique for Human Error Rate Prediction, THERP), 

wurden dafür vorgeschlagen, potenzielle Risikofaktoren zu bewerten und die 

Systemsicherheit zu verbessern. Diese Methoden haben jedoch einige 

Einschränkungen, wie z.B. ihre geringe Generalisierbarkeit, die Behandlung von 

Unfallursachen und menschlichem Einfluss als zwei voneinander getrennte 

Forschungsthemen, die Notwendigkeit ausgiebiger Datensätze, oder die 

ausschließliche Abhängigkeit von Expertenwissen. 

Um diese Einschränkungen zu überwinden, 1) klassifiziert diese Dissertation die 

Systeme in zwei Kategorien. Zum einen in von menschlichem Einfluss separierte 

Systeme (Human Performance Separated System, HPSS) und zum anderen in 

Systeme mit menschlichem Einfluss (Human Performance Included System, HPIS); 

2) entwickelt ein auf Bayes‘schen Netzwerken (BN) basierendes 

Unfallkausalitätsmodell, das auf beide Arten von Systemen angewendet werden kann, 

um den Einfluss menschlicher Wahrnehmung in HPSS und den Einfluss 

menschlichen Versagens in HPIS zu untersuchen; 3) untersucht zwei Methoden zur 

Analyse menschlichen Versagens. Die erste Methode geht von einer kognitiven 

Wahrnehmung aus und die zweite behandelt das menschliche Versagen als 

essenziellen Teil des Systems. 4) schlägt eine innovative Taxonomie namens 

Contributors Taxonomy for construction Occupational Accidents (CTCOA) für HPIS 

vor, die nicht nur auf die Unfallkausalität abzielt, sondern auch zur Rückverfolgung 

menschlichen Versagens im Bauwesen verwendet werden kann. 5) erstellt BN-



Beispielmodelle aus unterschiedlichen Industriesektoren. Dazu zählen 

Gasturbinenausfälle als typisches Beispiel für HPSS-Maschinenversagen, das Multi-

Attribute Technological Accidents Dataset (MATA-D) für einfaches HPIS-

Systemversagen und das Contributors to Construction Occupational Accidents 

Dataset (CCOAD) für komplexes HPIS-Systemversagen. Diese drei BN-Modelle 

zeigen, wie die von uns vorgeschlagene Methode in Bezug auf spezifische Probleme 

aus verschiedenen Industriesektoren angepasst und angewendet werden kann. 

Unsere Analyse zeigt die Effizienz der Kombination von Expertenwissen und 

mathematischer Unabhängigkeitsanalyse bei der Identifizierung der wichtigsten 

Abhängigkeitsbeziehungen innerhalb der BN-Struktur. Vor der 

Parameteridentifizierung auf Basis von Expertenwissen sollten die Auswirkungen der 

menschlichen Wahrnehmung auf die Modellparameter gemessen werden. Die 

vorgeschlagene Methodik basierend auf der Kombination der menschlichen 

Zuverlässigkeitsanalyse mit statistischen Analysen kann zur Untersuchung 

menschlichen Versagens eingesetzt werden. 

Schlüsselwörter: Unfallkausalitätsmodell, Menschlichem Einfluss, Bayes‘schen 

Netzwerken, menschlichem Einfluss separierte Systeme, Systeme mit menschlichem 

Einfluss 

  



ABSTRACT 

Millions of work-related accidents occur each year around the world, leading to a 

large number of deaths, injuries, and a huge economic cost. Previous studies on 

risk assessment have revealed that it is important to calculate the probabilities of 

factors that can contribute to the occurrence of accidents. Several methods, such 

as the Technique for Human Error Rate Prediction (THERP), have been proposed 

to evaluate potential risk factors and to improve system safety. However, these 

methods have some limitations, such as their low generalizability, treating 

accident causation and human factor as two separate research topics, requiring 

intensive data, or relying solely on expert judgement.  

To address these limitations, this dissertation 1) classifies systems into two types, 

Human Performance Separated System (HPSS) and Human Performance Included 

System (HPIS), depending on whether the system involves human performance; 2) 

develops accident causal models based on Bayesian Network (BN) that can be applied 

to both types of systems while examining the influence of human perception in HPSS 

and human errors in HPIS; 3) examines two methods for the analysis of human errors 

with the first method based on the cognitive view and the other method treating 

human errors as an essential part of the system; 4) proposes an innovative taxonomy 

as an example for HPIS, known as the Contributors Taxonomy for Construction 

Occupational Accidents (CTCOA), which not only targeting accident causation, but 

can also be used for tracking human error in construction; 5) builds example BN 

models in the different industrial sectors, including gas turbine failures as a typical 

example of HPSS machine failures, Multi-Attribute Technological Accidents Dataset 

(MATA-D) as simple HPIS failures, and Contributors to Construction Occupational 

Accidents Dataset (CCOAD) as complex HPIS failures. These three types of BN 

models demonstrate how our proposed methodology can be adapted to specific 

questions and how it can be applied in various industrial sectors.  



Our analysis demonstrates that it is efficient to combine expert judgement with 

mathematical independence analysis to identify the main dependency links for the BN 

structure in all models. The influence of human perception on model parameters 

should be measured before these parameters being identified based on expert 

judgement. Our proposed methodology can be used to study human errors by 

combining traditional human reliability analysis with statistical analysis. 

Keywords: Accident causation model, Human error, Bayesian network, Human 

performance separated system, Human performance included system 
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Chapter 1. Introduction 

1.1 Background 

The International Labour Organisation (ILO) estimates that there are approximately 340 

million work-related accidents and 160 million fatalities of work-related illnesses every 

year. Among them, there are about 2.3 million humans around the world who succumb to 

work-related accidents or diseases every year (ILO, 2022). In developed countries, such 

as the United States of America (USA), 1,133 reported work-related fatalities in 2020 

among cases inspected by the Federal or State Occupational Safety and Health 

Administration (Department of Labour of USA, 2021). In the United Kingdom (UK), the 

manufacturing industry caused 27 deaths of workers between 2019 and 2020 (Health & 

Safety Executive, 2021). In 2020, more than 44,000 cases involved machine failures in 

the UK, including 2% to 6% of which reported nonfatal and fatal injuries (Nicola Laver 

LLB, 2020). In Germany, 2,187 fatal accidents at work in the commercial sector 

(excluding mining and public roads) were reported to the Federal Institute for 

Occupational Safety and Health (BauA) during 2009 to 2021, of which 40% occur at 

construction sites (Federal Institute for Occupational Safety and Health (BauA), 2022). 

In developing countries, such as China, about 34,600 occupational accidents occurred in 

2021, causing 26,307 deaths in the industry (National Bureau of Statistics of China, 

2022), including 356 accidents and 503 fatal injuries in the mining industry (National 

Mine Safety Administration of China, 2022). In the first half-year of 2018, 1,732 

accidents and 1,752 deaths were reported in the construction industry of China (Work 

Safety Commission of the State Council, 2018).  

Previous studies revealed that some of these accidents were simply caused by machine 

failure, while the others were complex with multi-attributes, arising from the interaction 

between workers and equipment, tools, techniques, and technologies. For example, 

McCafferty (1995) revealed that 80% of the accidents in the US’s offshore gas and oil 
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facilities were human-induced and occur in the operations departments. Harati-Mokhtari 

(2007) had shown that 80 to 85% of all recorded maritime accidents between 1991 and 

2001 are directly due to or associated with human errors. Wang (2015) pointed out that 

human errors play a major role in rail crack incidents. Therefore, it is important to 

understand the influence of human factors to ensure safe operations of engineering 

systems and minimise the chance of catastrophic consequences.  

The term ‘human factor’ is typically used to refer to complex relationships and 

interactions between humans and the surrounding environment, organizations, tasks, and 

technologies (Dhillon, 1986; Hollnagel, 1998; Swain & Guttman, 1983). Previous 

studies have suggested that Human Reliability Analysis (HRA) should be conducted to 

assess the probability of human failure events (HFEs) and to estimate the probability of 

human errors (Aguilar & West, 2000; K.M. Groth & A. Mosleh, 2009).  

However, despite the variety of HRA methods available to estimate the probability 

associated with human factors, these methods treat accidents as direct consequences of 

human errors while ignoring the influence of other factors on accidents . Furthermore, 

due to the lack of data, these methods require data obtained from expert judgement with 

relevant experiences and knowledge, which may be confounded by expert bias. Thus, 

probabilities tools, in particular the Bayesian Network (BN), are receiving increasing 

attention in the field. However, the evaluation of conditional probability tables (CPTs) of 

BN requires more data to capture all possible conditions specified in the model. In these 

cases, this research has focused on developing a BN-based methodology to enable 

combining expert judgement with empirical data-driven analysis. This dissertation 

examines whether the proposed methodology could identify risk factors using previously 

collected datasets and a new dataset of construction accidents.  

This dissertation is organised as follows: Chapter 1 reviewed the theoretical background and 

research gaps in accident causation modelling and specified the objectives of this dissertation. 

Chapter 2 introduced the Bayesian Network, including its mathematical foundation, 
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modelling process, and inference procedure. Chapter 3 reported the failure assessment 

modelling procedure for the Human Performance Separated System (HPSS) and an idea to 

explore the influence of human perception in this model. Chapter 4 built an example BN 

model for gas turbine failure by following Chapter 3. Chapter 5 reported the idea of a failure 

assessment model for the Human Performance Included System (HPIS) and explored the 

influence of human errors in two methods. Chapter 6 built an example BN model of human 

errors by following Chapter 5 and revealed weights of the major contributors to human errors 

from a cognitive point of view. Chapter 7 presented an example BN model of HPIS by using 

data that were built from occupational accidents in the construction industry in China. It also 

reported on analysis of human errors by following Chapter 5. Chapter 8 summarized the 

findings, contributions, and limitations of this dissertation, and directions for future studies.  

1.2 Accident Causation Model and Human Reliability Analysis  

1.2.1 Accident Causation Models 

1.2.1.1 Definition  

Accidents are unintended and unwanted events with catastrophic consequences that are 

related to mechanical failures or human errors (Moura et al., 2017). Accident causation 

models are used to identify hazards, implement post-accident accountability, prevent 

imminent accidents, and improve safety awareness of the public and workers 

(Dhalmahapatra, Das, & Maiti, 2022). Most accident causation models aim to address 

two key questions: a) what are the causes of the accident? B) how does the accident 

happen? These models aim to not only form the theoretical foundation for the growing 

safety science and but also provide essential methods for accident prevention and 

analysis (Fu et al., 2020).  
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1.2.1.2 Types of Accident Causation Models 

Accident causal models can be classified into nonlinear and linear models (Fu et al., 

2020; Yan, Chi, & Lai, 2020). Linear accident causation models study the causes of 

accidents at different stages to form a chain using logical sequences. On the contrary, 

nonlinear accident causation models do not distinguish causes of accidents at different 

stages, but focus on different aspects of accidents, such as statistics, energy, system, and 

human (Fu et al., 2020). For example, statistics-based accident models employ accident 

statistics to examine the connection between the severity and the number of accidents. 

Energy-based accident models consider energy transfer and release as study objects to 

suggest associated measures. System-based accident models are recent models that 

include all factors related to the accident in the analysis. Human-based accident models 

focus on human factors (Yan, Chi, & Lai, 2020). Woolley, Goode, Read, and Salmon 

(2019) argued that accident causation models can also be classified into simple linear 

models, complex linear models, and complex nonlinear models.  

Simple linear models, such as Heinrich’s Domino Theory (Heinrich & Herbert William, 

1931), assume that an accident is the outcome of several sequential causes, including 

social, environmental, and individual factors (Wang & Yan, 2019). Social ancestry or 

environment, personal fault, unsafe actions, physical and mechanical hazards, accident, 

and injury are five critical factors that result in an eventual accident (Dwi Wicaksono et 

al., 2022). Accidents are usually caused by one of the factors falling with a continuing 

impact of the explosion, which ultimately results in the accident. Any eliminations of 

dominos (interruption of the knockdown impact) can avoid or stop the accident. Li, 

Zhang, and Peng (2021) states that mechanical vulnerabilities and unsafe actions are 

central factors in the sequence of an accident. Fault Tree Analysis (FTA) is the logic 

based on the multicausality principle that uses symbols, identifiers, and labels to trace 

event branches with the capacity to contribute to the accident. Budiyanto and Fernanda 

(2020) argued that the root causes of each risk category should be determined through a 
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top-down approach. The top event (undesired events of interest) is identified before the 

conditions of direct causal fault leading to such an event are revealed. When the order of 

fault dependencies or primary failures are identified, the accident may be stopped (Ahn 

et al., 2021). Therefore, removing human errors as the cause of several accidents makes 

any previous factors ineffective (Dunlap, Basford & Smith, 2019). 

Complex linear models presume that accidents blend several unsafe factors and 

conditions in which the individual interacts closely with the at-risk system. Methods of 

accident avoidance developed from the initial sequential focus to finding original causes 

of accidents, elimination, and establishment of barriers to encapsulating such causes. The 

accident is preventable by forming the correct controls (Hasan, Chatwin, & Sayed, 

2019).  

The most prominent complex linear models are the generic epidemiological, time 

sequence, systemic, systems safety, and Reason’s “Swiss Cheese” model (Stretton, 

2020). For instance, the Swiss-Cheese model conceptualises the system with imperfect 

defence layers to detect and prevent errors. The layers are characterised by latent and 

active failures (holes) or rare conjunctions in successive defences that permit hazards 

that damage contact with assets and people (Joe-Asare, Amegbey, & Stemn 2020). The 

model identifies the probabilities of organisational factors that cause accidents. 

However, complex linear models do not offer clear explanations for the occurrence of 

causal factors of accidents (Bode & Vraga, 2021). Instead, accidents arise from 

interrelating variables in actual environments (Eric Hollnagel, 1998). Understanding the 

interacting variables helps prevent accidents (Alders, Rafferty, & Anderson, 2022).  

Complex nonlinear models include the Functional Resonance Accident Model (FRAM) 

(Erik Hollnagel, 2012b) and Systems-Theoretic Accident Model and Processes (STAMP) 

(Diop, Abdul-Nour, & Komljenovic, 2022). The FRAM offers approaches to describing 

outcomes using the resonance idea of the unpredictability of regular performance (Choi 

& Ham, 2020). It uses four steps of describing functional resonance and variability, and 



6 

 

damping unwelcome variability, including a) describing and identifying vital system 

functions before characterising every function by means of six fundamental aspects 

(characteristics); b) checking the model consistency or completeness; characterise likely 

variability of model functions and the possible natural variability of model functions; c) 

describing functional resonances based on couplings or dependencies amongst functions 

as well as the capacity of functional variabilities; d) and identifying the manner of 

monitoring resonance development (dampen the variability for unwanted results or 

amplify the variability for wanted results) (David, Schraagen, & Endedijk, 2022). 

Recently, machine learning has also attracted some attention in building accident models 

(Kim et al., 2022; Matías et al., 2008; Morais, et al., 2022; Zhu et al., 2021). For 

example, Kim et al. (2021, 2022) pointed out that the statistical analysis method can 

hardly reflect the nonlinear characteristics of accidents determined by complex 

influencing factors, like in the construction industry, and developed machine learning 

models for construction safety accidents as well as container port accidents, which 

performs better than a conventional multi-regression model. Infante (2022) compared 

machine learning models with statistical models on road traffic accident severity 

classification and found that, with a small sample of imbalanced data, machine learning 

models generally do not perform better than statistical models; however, they function 

similarly when the sample is large and has a slight imbalance. Morais et al. (2022) used 

machine learning algorithms to classify accident reports from different sectors and 

compared the results with human experts. These studies have revealed that it is feasible 

to use artificial intelligence to collect data for risk and reliability assessment.  

1.2.2 Human Reliability Analysis 

Previous studies have revealed that human reliability analysis (HRA) can be used as a 

structured method to identify human failure events (HFEs) and estimate the probability 

of those events. The probabilities used to evaluate HFEs are known as Human Error 

Probabilities or HEPs (Gao, Su, Qian, & Pan, 2022). There are multiple methods used 
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for HRA, including Technique for Human Error Rate Prediction (THERP) (Swain & 

Guttman, 1983), Time Reliability Correlation (TRC) (Hall, Fragola, & Wreathall, 1982), 

Cognitive Reliability and Error Analysis Method (CREAM) (Hollnagel, 1998), Standardised 

Plant Analysis Risk-Human Reliability Analysis (SPAR-H) (Gertman et al., 2004), Success 

Likelihood Index Method/Multi-Attribute Utility Decomposition (SLIM/MAUD) (Rosa, 

Humphreys, Spettell & Embrey.,1985), and Bayesian Network (Bruce Hallbert, 

Kolaczkowski, & Lois 2007).  

1.2.2.1 Technique for Human Error Rate Prediction (THERP)  

Swain and Guttman (1983) proposed the THERP initially for human reliability assessment 

in the nuclear industry using a fault-tree approach. In recent years, THERP has been 

expanded to evaluate the probability of human errors occurring throughout the 

interaction between human and machine systems in other hazardous industries. THERP 

is used to reduce the likelihood of occurrence of these errors and to improve overall 

system safety. THERP is the first-generation HRA approach with an event tree 

modelling base where every limb signifies a blend of people’s actions, impact, and 

outcomes of the actions. Zhang, Zhu, Hou, and Liu (2021) stated that one advantage of 

the THERP method lies in its ability to assess human error rate for system failures. It is 

particularly efficient in assessing human reliability for routine tasks (Farcasiu & 

Constantinescu 2021). However, THERP has some limitations, including being resource 

intensive, time consuming, limited performance shaping factors (PSF), and reliance on 

subjective expert judgement to identify causal links (Dsouza & LU, 2016). 

1.2.2.2 Time Reliability Correlation (TRC) 

According to Hall (1982), the TRC is used to quantify the diagnosis of HFEs based on 

available time and adjustments of human responses by considering PSFs in a risk 

analysis. Institutions and researchers use TRC to quantify human failure after an 

irregular event. Data are derivable either from expert judgement or quantitative analysis. 
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The simulator information leads to the advancement of TRC systems based on the 

uncertainty of the model and the positive response time. Variability in workers, job-

linked characteristics, and particular events place a vital uncertainty on response 

prediction (distributed response time) (Bona et al., 2021). There is a need to quantify the 

response time with the time-dependent distributions after considering the adequate 

response time in the median response time because it is a vital factor for identifying the 

leading behaviour connected to human action that underlies the response time. Sufficient 

response time influences response reliability and post-initiator response (Jung & Park 

2020). However, the response time is not available in many accidents reports for the 

TRC. 

1.2.2.3 Standardised Plant Analysis Risk-Human Reliability Analysis (SPAR-H)  

According to Gertman et al. (2004), the SPAR-H model merges elements of information 

processing and stimulus-response approaches because to undertake actions repeatedly 

identified in procedures fruitfully, HRA analysts must have the capacity to take planning 

and diagnosis aspects as well as a possibility of operator ability into consideration. Chen, 

Zhang, Qing, and Liu (2021) argued that the distinction between information processing 

(diagnosis) and response (action) forms the foundation for distinct action and diagnosis 

worksheets with distinct calculations of probability.  

Furthermore, the SPAR-H acknowledges the role of environmental factors in action and 

diagnosis. For instance, analysts can note during performance evaluations, but 

interactions or factors are hard to examine because of the complexity, deceptive 

indications, time-reliant aspects, and/or impact of faulted or unavailable equipment 

combinations (Liu et al., 2021). The SPAR-H includes the following steps: a) Step 1 

Categorising the HFE as action and/or Diagnosis; b) Step 2 Rating the PSFs (existing 

time, stressors and stress, complexity, training and experience, procedures, human-

machine interface and ergonomics, duty fitness, office processes); c) Step 3 Calculating 
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the PSF-amended HEP; d) Step 4 Calculating Dependence Accountability and e) Step 5 

Setting the minimum cut-off value (Murchison & Gilmore, 2018). 

The main components in SPAR-H including: a) A flow of information from the 

environment through diverse sensing modalities (visual, kinaesthetic, and auditory). 

Environmental aspects filter information; b) Detection (direct and simple perception, 

recognition, and identification); c) Task demand characteristics that impact an operator’s 

internal resources; d) Situational and environmental factors that contribute to the failure 

or success of people’s performance by considering effects upon processing, response and 

perception (Krymsky & Akhmedzhanov, 2021).  

However, SPAR-H is not ideal for realistic and detailed analysis of empirical data since 

it contains only eight PSFs, which cannot cover the complexity of many accidents. 

Although previous research argued that PSFs should be expanded, there is no explicit 

guidance on how to calculate or estimate the probabilities associated with the events 

(Julie Bell & Justin Holroyd 2009). 

1.2.2.4 Success Likelihood Index Method/Multi-Attribute Utility Decomposition 

(SLIM/MAUD)  

According to Rosa, Humphreys, Spettell & Embrey (1985), SLIM/MAUD uses a MAUD 

(interactive computer-based) procedure for organising and extracting professional 

opinions and guessing HEPs. The simple justification underlying SLIM/MAUD is that 

the combined effect of relatively small PSFs determines the probability of error in 

particular situations. Silva, Oliveira, and Veronese (da Silva et al., 2021) contend that 

experts can assess each PSF’s relative weight or importance using its impact on task 

reliability. The main assumption is that experts give numerical ratings indicating 

excellent or bad PSFs as independent assessment in a task of relative importance. ‘Good’ 

refers means the PSFs are enhancing reliability while ‘bad’ refers to the degrading of 

reliability (Pan & Wu 2020). Upon attaining the weight and rating’s relative importance, 



10 

 

SLIM/MAUD multiplies them with every PSF and sums the resulting product to cause 

Success Likelihood Index (SLI).  

SLI is the quantity representing the complete confidence of the judges in negative or 

positive PSF effects on the probability of the task’s success (Norazahar, 2020). The 

assumption is that in the long run, SLI is connected to the observed likelihood of success 

in situations of interest (actuarially determined probability) because judges have 

experience, knowledge, and accurate awareness of the effect of PSF on the possibility of 

success (Jamshidi, 2020). The evaluation of two available tasks with a known probability 

of success is to create an observed calibration relation between the log of task-success 

probability and SLI in the evaluated set (P. Liu & Liu 2020). The recommended 

logarithmic form relationship is Log p (win) = an (SLI) + b for the transformation of 

SLIs into the HEPs; wherein b and a are constants that are empirically resultant.  

The occurrence of such a condition means that the b and constants in the equation above 

are transformable by the judges into logarithmic probability of task success and SLI 

values. Then, the log-likelihood of success is easily converted into success probability 

(Santiasih & Ratriwardhani, 2021). The SLIM procedure comprises an assortment of the 

professional panel, subset, and situation definition, PSF elicitation, task rating on the 

PSF scaling, elicitation of ideal-point and calculation scaling, checks on independence, 

procedures of weighting, SLIs calculation, SLIs conversion into needed probabilities, 

uncertainty-bound scrutiny, sensitivity study for purposes of error-reduction research and 

process of documentation (Liu & Liu 2020; Jamshidi & Sadeghi, 2021). 

However, SLIM is highly dependent on expert judgement, which requires a panel of 

experts. When there is a lack of data, it is difficult to calibrate the SLIs (Julie Bell & 

Justin Holroyd 2009). 
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1.2.2.5 Cognitive Reliability and Error Analysis Method (CREAM) 

In 1998, Erik Hollnagel developed the CREAM to maintain divisions between the logical 

consequences and causes of human errors (Hollnagel, 1998; Pasquale et al., 2013). The 

CREAM holds that occurrences of a particular behaviour are the leading causes of 

people’s subsequent responses leading to catastrophic consequences. CREAM allows: a) 

Identification of tasks, actions, or work in need or dependent on people’s cognition and 

are impacted by cognitive reliability variations; b) Determination of conditions for 

reducing cognition reliability, and conditions for increased risk for actions; c) Provision 

of appraisal on system safety or human performance significances employable in 

Probabilistic Safety Assessment (PSA) or Probabilistic Risk Assessment (PRA); d) 

Development and specification of modifications which improve conditions, increase 

cognition reliability, and risk reduction. Sharma and Rai (2021) find that CREAM is a 

model, method, and classification scheme that can be employed a) predictively for the 

prediction of likely human errors, and b) retrospectively for error analysis and 

quantification. Slim and Nadeau contend that CREAM is a timely and valuable HRA to 

present error taxonomies based on cognitive engineering principles to integrate 

organizational, individual, and technological features (Slim & Nadeau, 2020).  

CREAM is used as the second-generation HRA approach for probabilistic safety 

assessment (PSA) or stand-alone accident analysis and is part of the larger interactive 

systems design methodology (Hollnagel, 1998). In addition to offering an essential 

theoretical base, CREAM provides a graduated explanation of how to employ a context -

dependent cognitive model to establish how taxonomy applies to the analysis and the 

prediction of performance (Abolfazl, Abdolnaser & Iraj, 2020). CREAM enables risk 

analysts and system designers to a) identify tasks dependent on people’s cognitive 

reliability and in need of people’s cognition; b) determine circumstances for risk 

reduction and cognitive reliability; and c) provide assessments of the human 

performance consequences on the safety of the system (Vladykina & Thurner, 2019). 



12 

 

However, as Hollnagel (2012) pointed out that CREAM focuses on: a) How actions can 

fail, rather than on the variability of performance; b) One part or component of the 

system only, namely the human(s). Thus, data analysed in the CREAM cannot be used to 

predict accidents.   

1.2.2.6 Bayesian Network  

Recently, the Bayesian Network (BN) approach to HRA has received increasing 

attention. BN is a graphical model that represents and quantifies probabilistic 

relationships among factors in a directed graph. It has been recognised as an appropriate 

method for uncovering overall causal structure for scarce, multisource data, potentially 

improving both the estimation of human error probabilities and the underlying 

assumptions in the quantitative algorithms employed by the different HRA methods 

(Bruce et al., 2007). Mkrtchyan, Podofillini and Dang (2015) indicated that the BN 

approach can combine different sources of information, potentially allowing the 

development of more robust HRA models based on cognitive theory and empirical data. 

They grouped the BN approach within the HRA domain in two directions: a) several 

studies use the BN ability to model multilevel influences of Management and 

Organizational Factors (MOF) on human errors; b) some contributions proposed BN 

versions of existing HRA models, such as SPAR-H and CREAM (Mkrtchyan, 

Podofillini, & Dang, 2014). 

1.3 Research Gaps 

Accidents are rather complex events. The mechanism behind them may differ from that 

of the industrial sectors. The triggers might be human carelessness, a failure of a 

component, or a combination of various causes. It is difficult to build a universal model 

for all kinds of accidents. Finding a universal methodology is important to provide a 

potential solution for industrial sectors. However, there are some research gaps in this 

field.  
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First, there are few studies on the combination of causation modelling and HRA. In the 

present, accident causation modelling and HRA are studied as two separate research 

topics. The former focuses on linear or non-linear mechanisms and aims to find the 

trigger(s). The latter pays more attention to the human condition, including performance 

variability and cognition, to improve human reliability (Podofillini & Dang, 2017). Since 

human factors are core components in many systems, but not in all of them, a universal 

methodology for accident modelling should include HRA. However, they are still 

separated.  

Second, traditional accident models value the importance of logical reasoning, but do not 

focus on the quantity and quality of data. Logical reasoning does not work well for 

complex systems. A numerical model is more powerful but requires sufficient data. 

However, these data are not available in many industrial sectors, especially complex 

systems such as construction industry.  

Third, traditional HRA methods await for improvement in several aspects: 1) Extending 

method scope, such as including different types of errors and other industrial sectors; 2) 

Collecting more empirical data that have a stronger basis on cognitive models; 3) 

Applying to advanced human-machine interfaces; 4) Conducting more structured and 

detailed qualitative analyses, and 5) Forming more empirically-based representation of 

the failure influencing factors (Mkrtchyan, Podofillini, & Dang, 2015). 

1.4 Scopes and Goals  

This dissertation focuses on the quantitative modelling demands of the accident model. It 

aims to develop a universal methodology and procedure for the industry. Models using 

this methodology are expected to deal with both simple and complex accidents while 

accounting for human factors when relevant.  

In this dissertation, an accident is treated as a system failure. The proposed methodology 

will locate which part(s) of the system has a greater chance of being abnormal (or 
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irregular) and which part(s) shows more influence on the whole system than others. One 

innovation of this methodology is that we classify systems into two types, known as 

Human Performance Separated System (HPSS) and Human Performance Included 

System (HPIS). The former is similar to a hardware system which does not involve 

human organization or human performance. For instance, an engine, a ship, a spaceship, 

etc. This type of system only requires minimal involvement of human, for example 

telling it to start working or stop working, but the orders is not a part of the system. In 

contrast, HPIS, it not only contains the hardware but also some complex factors, such as 

human performance and human organisation. Although systems differ from sector to 

sector, our proposed methodology allows us to explore the accident from the same 

pipeline regardless of the industrial sectors. For example, in the construction industry, 

HPSS is a product itself, such as a bridge, a tunnel, or a house, which does not concern 

building and maintaining it while HPIS is the process of building or maintaining the 

product. To model HPSS, we first dismember it and then observe every component, every 

part, and every function. To model HPIS, HRA is a core part, and this dissertation focuses on 

human performance during operation but not during the design of the system. Thus, our 

methodology can both include or exclude HRA depending on the type of target system.  

Importantly, our methodology combines expert knowledge with statistical data analysis. 

The models using this methodology can exploit the potential use of limit data to 

overcome the shortage of the traditional model. It can also deal with the lack of data in 

many industrial sectors with the help of expert knowledge. Our methodology will reveal 

the most influential contributors to the system and quantify the probabilities of 

components and system failures. We will test our methodology in case studies , as 

reported in Chapters 4,6 &7.  

Furthermore, our methodology will improve HRA in several ways:  

1) It allows us to explore the human factor from different angles by forming different 

system structures. This dissertation shows two possible angles, explores what is behind 
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human errors from the cognitive point of view, and examines the role of human errors in 

HPIS. 

2) It provides guidelines for data collection and expansion (see Chapter 6&7).  

3) It is a more structured and detailed qualitative analysis. The models based on it have 

clear graph structures and can quantify the causation. Despite the imprecision of 

quantification with data access limitation, the models can tell more details. 
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Chapter 2. Overview of the Bayesian Network  

This chapter first introduces the probability theory that forms the mathematical foundation of 

the Bayesian Network (BN) that is used to model the causation of accidents in this 

dissertation. Then, it reviews the BN theory and demonstrates the procedure for building a 

BN model. Finally, it presents two types of inference analysis, including predictive analysis 

and diagnostic analysis, that are used to identify the most probable consequence or the most 

important contributors of accidents.  

2.1. Probability Theory  

This section introduces key concepts and principles of the probability theory that serves as 

the mathematical framework of the BN. 

2.1.1. Total Probability 

The law of total probability (Zwillinger, 2019) is a theorem that states if {𝑌: 𝑦 = 1,2,3, … , 𝑛} 

is a finite or countably infinite partition of a sample space (in other words, a set of pairwise 

disjoint events whose union is the entire sample space), and each event 𝑌(𝑦) is measurable, 

then for any event 𝑍 of the same probability space: 

𝑃(𝑍) = ∑ 𝑃(𝑌𝑦 , 𝑍)𝑛
𝑦=1   Equation 2-1 

In which 𝑃(𝑌𝑦, 𝑍) is the joint probability that events Yy and Z occur. 

2.1.2. Conditional Probability  

Conditional probability is a measure of the probability that an event is occurring – given that 

another event has happened (by assumption, presumption, assertion, or evidence) happened 

(Allan Gut, 2013). If the event of interest is 𝑋 and the event 𝑌 is known or assumed to have 

occurred, ‘the conditional probability of 𝑋 given 𝑌′ or ‘the probability of 𝑋 under condition 

𝑌′ is usually written as 𝑃(𝑋 𝑌⁄ ) (Probability and Statistics Symbols). The mathematical 

definition of 𝑃(𝑋 𝑌⁄ ) is as the following equation (Kolmogorov & Bharucha-Reid, 1956): 
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𝑃(𝑋 𝑌⁄ ) = 𝑃(𝑋, 𝑌) 𝑃(𝑌)⁄   Equation 2-2 

With a formula translation, this axiom can also be defined as follows: 

𝑃(𝑋, 𝑌) = 𝑃(𝑋 𝑌⁄ )𝑃(𝑌)  Equation 2-3 

For three variables, such as the conditional probability of 𝑋 given 𝑌 and 𝑍, the axiom can 

be expressed as follows: 

𝑃(𝑋, 𝑌, 𝑍) = 𝑃(𝑋 (𝑌, 𝑍)⁄ )𝑃(𝑌, 𝑍) Equation 2-4 

If event 𝑌 and event 𝑍 are independent, then the equation is translated to  

𝑃(𝑋, 𝑌, 𝑍) = 𝑃(𝑋 (𝑌, 𝑍)⁄ )𝑃(𝑌)𝑃(𝑍)  Equation 2-5 

2.1.3. Marginal Probability 

Contrary to conditional probability, the marginal probability is the probability that a single 

event will occur, independently of other events. According to the law of total probability 

(Zwillinger, 2019):  

𝑃(𝑋) = ∑ 𝑃(𝑋, 𝑌𝑦) 𝑃(𝑌𝑦)⁄𝑛
𝑦=1   Equation 2-6 

2.1.4. Bayesian Theorem 

The Bayesian theorem is stated mathematically as the following equation (Stuart and Ord, 

1994): 

𝑃(𝑌 𝑋⁄ ) =
𝑃(𝑋 𝑌⁄ )𝑃(𝑌)

𝑃(𝑋)
  Equation 2-7 

where 𝑃(𝑌 𝑋⁄ ) stands for the conditional probability of 𝑌 given 𝑋.  

This theorem can be derived from the conditional probability equation (Stuart & Ord, 1994). 

Then replaced the express of 𝑃(𝑋) with total probability, we got the following formula: 
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𝑃(𝑌𝑦 𝑋⁄ ) =
𝑃(𝑋 𝑌𝑦⁄ )𝑃(𝑌𝑦)

𝑃(𝑋)
=

𝑃(𝑋 𝑌𝑦⁄ )𝑃(𝑌𝑦)

∑ 𝑃(𝑋,𝑌𝑦) 𝑃(𝑌𝑦)⁄𝑛
𝑦=1

  Equation 2-8 

Both formulas in the preceding theorem are known as the Bayesian theorem because they 

were initially proposed by Thomas Bayes (published in 1763). The first formula allows us to 

compute 𝑃(𝑌 𝑋⁄ ) if we know 𝑃(𝑋 𝑌⁄ ), 𝑃(𝑌), and 𝑃(𝑋), while the second formula allows 

us to compute 𝑃(𝑌𝑦 𝑋⁄ ) if we know 𝑃(𝑋 𝑌𝑦⁄ )and 𝑃(𝑌𝑦) for 1 ≤  𝑦 ≤ 𝑛. Using either of 

these formulas, computing a conditional probability is known as Bayesian inference 

(Neapolitan, 2004). 

2.2. Bayesian Network Theory 

This section reviews the Bayesian Network (BN), a graphical model that represents 

probabilistic relationships between antecedents and consequents. BN is used for probabilistic 

inferences. The Bayesian theorem is simple when only two variables are included in the 

model. It becomes more sophisticated when more variables are involved (Neapolitan, 2004). 

2.2.1. Bayesian Network Structure 

The BN structure can be shown as a causal graph that must be directed and acyclic. This 

graph model, named Directed Acyclic Graph (DAG), is defined by a set of nodes and 

directed arrows. The nodes represent variables within the system of interest. Arrows 

symbolize dependencies or cause-effect relationships among nodes. Thus, the DAG is a graph 

of the preceding-consequent model. 

Figure 2-1 is an example of the BN model. Nodes Y and Z are both antecedents of node X. 

Both Y and Z are also parents of X due to the direct arrows in this model. 
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Figure 2-1. An example of a BN model 

2.2.2. Bayesian Network Parameter 

A parameter is the quantitative part of a network. The parameter of BN varies in conditional 

probability and marginal probability. The Conditional Probability Distribution (CPD) is often 

demonstrated as the Conditional Probability Table (CPT) (see Table 2-1). It represents the 

probability distribution of the node given the combinations of the parents’ status. The 

marginal probability distributions should be used for the root node without any antecedent 

node. 

Referring to the example model in Figure 2-1, let’s assume nodes X, Y &Z are all binary with 

two possible status only. Then the CPT of node X, shown in Table 2-1, is the parameter of 

node X. 

Table 2-1. CPT of node X in the example model 

Status of node 

Y 

Status of node 

Z 

Degree of belief for child node X given the status 

of parents 

𝑥1 𝑥2 

𝑦1 𝑧1 𝑃(𝑥1/𝑦1, 𝑧1) 𝑃(𝑥2/𝑦1, 𝑧1) = 1 − 𝑃(𝑥1/𝑦1, 𝑧1) 

𝑦2 𝑧1 𝑃(𝑥1/𝑦2 , 𝑧1) 𝑃(𝑥2/𝑦2, 𝑧1) = 1 − 𝑃(𝑥1/𝑦2, 𝑧1) 

𝑦1 𝑧2 𝑃(𝑥1/𝑦1, 𝑧2) 𝑃(𝑥2/𝑦1, 𝑧2) = 1 − 𝑃(𝑥1/𝑦1, 𝑧2) 

𝑦2 𝑧2 𝑃(𝑥1/𝑦2, 𝑧2) 𝑃(𝑥2/𝑦2, 𝑧2) = 1 − 𝑃(𝑥1/𝑦2, 𝑧2) 

For node Y, a Marginal Probability Table (MPT) is used to show its parameters (see Table 2-

2). 

Y 

(𝑦1, 𝑦2) 

Z 

(𝑧1, 𝑧2) 

X 

(𝑥1, 𝑥2) 
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Table 2-2. MPT of node Y in example mode 

Status of node Y 𝑦1 𝑦2 

Degree of belief 𝑃(𝑦1) 𝑃(𝑦2) = 1 − 𝑃(𝑦1) 

Likewise, the MPT of node Z is the parameter. 

Table 2-3. MPT of node Z in example mode 

Status of node Z 𝑧1 𝑧2 

Degree of belief 𝑃(𝑧1) 𝑃(𝑧2) = 1 − 𝑃(𝑧1) 

Together, Figure 2-1 shows the combination of parameters as shown in Tables 2-1 – 2-3, 

forming a BN model. 

A BN is a DAG with associated conditional probability distributions (Koski and Noble, 

2009). 

2.2.3. Bayesian Network Inference 

A BN model allows for updating the degrees of belief to assign nodes, given a certain status 

of one or several variables as input. This update process is known as BN inference. 

Taking the model in Figure 2-1 as an example, according to the law of total probability, the 

belief for 𝑋 = 𝑥1 could be calculated as follows: 

𝑃(𝑥1) = ∑ 𝑃(𝑥1, 𝑦𝑖 , 𝑧𝑖) = 𝑃(𝑥1/𝑦1 , 𝑧1)𝑃(𝑦1)𝑃(𝑧1) +𝑖=1,2

𝑃(𝑥1/𝑦2, 𝑧1)𝑃(𝑦2)𝑃(𝑧1) + 𝑃(𝑥1/𝑦1, 𝑧2)𝑃(𝑦1)𝑃(𝑧2) +

𝑃(𝑥1/𝑦2, 𝑧2)𝑃(𝑦2)𝑃(𝑧2)  Equation 2-9 

In which 𝑃(𝑥1, 𝑦𝑖, 𝑧𝑖) is the joint probability that 𝑋 = 𝑥1, 𝑌 = 𝑦𝑖 and Z = zI occur.  

𝑃(𝑥1), together with 𝑃(𝑥2) = 1 − 𝑃(𝑥1) is a prior probability for node 𝑋(𝑥1, 𝑥2). 

If there is an input of 𝑌 = 𝑦1, which means 𝑃(𝑦1) = 1 and 𝑃(𝑦2) = 0, then 𝑃(𝑥1) will be 

replaced by 𝑃(𝑥1/𝑦1), and the degrees of belief will update as following 

𝑃(𝑥1/𝑦1) = 𝑃(𝑥1, 𝑦1)/𝑃(𝑦1) = 𝑃(𝑥1/𝑦1, 𝑧1)𝑃(𝑧1) + 𝑃(𝑥1/𝑦1, 𝑧2)𝑃(𝑧2)  Equation 2-10 
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This process is shown in the probability table. 

When the parameters in Table 2-1, Table 2-2 and Table 2-3 are specified, prior probabilities 

can be calculated following equations 2-5. Detail calculation is skipped, but the result of 

𝑃(𝑥𝑖 , 𝑦𝑖, 𝑧𝑖) is shown in Table 2-4. 

Table 2-4. Probability table of 𝑃(𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖) in the example model 

Status of node 

Y 

Status of node 

Z 
Status of node X 𝑃(𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖) 

𝑦1 𝑧1 𝑥1 0.03 

𝑦2 𝑧1 𝑥1 0.05 

𝑦1 𝑧2 𝑥1 0.08 

𝑦2 𝑧2 𝑥1 0.12 

𝑦1 𝑧1 𝑥2 0.15 

𝑦2 𝑧1 𝑥2 0.17 

𝑦1 𝑧2 𝑥2 0.19 

𝑦2 𝑧2 𝑥2 0.21 

Note: ∑ 𝑃(𝑥𝑖, 𝑦𝑖, 𝑧𝑖) =𝑖=1,2 1 

According to this table, Equation 2-9 equals: 

𝑃(𝑥1) = ∑ 𝑃(𝑥1, 𝑦𝑖 , 𝑧𝑖)
𝑖=1,2

= 0.03 + 0.05 + 0.08 + 0.12 = 0.28 

This is the prior probability for node X. Given the input of 𝑌 = 𝑦1, meaning 𝑃(𝑦1) = 1, 

according to equation 2-10, the posterior probability should be: 

𝑃(𝑥1/𝑦1) = 𝑃(𝑥1, 𝑦1)/𝑃(𝑦1) = (0.03 + 0.08)/(0.03 + 0.08 + 0.15 + 0.19) =
11

45
≈ 0.24 

If the input is given as 𝑋 = 𝑥1, the belief for nodes Y and Z can also be updated following the 

same steps. 
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2.3. Procedure for Building a BN Model  

The BN modelling procedure is essential to achieve robustness in data analysis. Building a 

BN model involves three primary steps (Darwiche, 2009). The first step is to decide on the 

set of variables and their possible values which will be represented as nodes. The second step 

is to build the network structure by connecting the variables into a DAG. The last step is to 

define the CPT for each network variable (node). 

2.3.1. Discovering Nodes 

In uncertain domains, human experiences and judgements are helpful, but they are often 

insufficient to make the best decision. It requires more sophisticated calculations, such as 

mechanical analysis of a machine, statistical analysis of traffic accidents, and pathology 

knowledge of diseases. As BN modelling reveals the conditional probability for a set of 

random variables and the causal probability relationships between variables, inferences based 

on the BN model can be used to aid in decision-making. 

Nodes are essential elements of a BN model. There are multiple ways to define nodes, 

including identifying relevant contributors in the dataset, using expert judgement, learning 

from previous accidents, or using the combination of these methods. In addition, discovering 

nodes involves tagging the content with specific and practical taxonomy terms. However, as 

reviewed in Chapter 1, taxonomies varied across existing studies on human reliability 

analysis. For example, failures of the ‘hardware system’ can only be attributed to mechanical 

issues, such as mislocution or malfunction of a particular part, but systems involving more 

human factors can be more complex.   

2.3.2. Building BN Structure 

The network structure is essential for the BN model. It comprises a set of dependency links, 

representing causal relationships in the system. Expert judgement and mathematical analysis 

are the two most popular methods to determine the structure.  



23 

 

2.3.2.1. Expert Judgement 

Expert judgement refers to the specification of the BN structure by humans. Although there is 

no restriction on the minimum number of experts, the judgement of multiple experts shows 

less subjectivity. Questionnaires are often used to collect expert judgement data. 

Expert judgement is usually reliable when dealing with the ‘hardware system’ because parts 

of this type of system have clear and predefined relationships. Experts often show more 

agreement on the BN structure of the ‘hardware system’ than the ‘software system’ and the 

‘combined system’ (Constantinou, Fenton and Neil, 2016). Therefore, expert judgement is 

widely adopted to define dependence relationships of the ‘hardware system’.  

2.3.2.2. Mathematical Analysis 

Mathematical analysis is believed to be more objective than expert judgement. Two 

approaches are used to learn the graphical structure in the data using mathematical analysis. 

The first approach is based on a constraint-based search (Verma, 1995). The second approach 

is a Bayesian search for graphs with the highest posterior probability given the data (Cooper 

Gfc, 1992; Spirtes & Scheines, 1993). In the case of different variable types, Richard E. 

Neapolitan recommended some methodologies (Neapolitan, 2004). Commercial software also 

provides algorithms to develop the BN structure. (Bayes server, 2019; BayesFusion, 2019; 

Murphy, 2003). We may choose different algorithms for different fields, but the issue is not 

just about selecting algorithms but the lack of sufficient data in some fields for mathematical 

analysis.  

2.3.2.3. Hybridized Method 

The hybridized method refers to the combination of the two methods mentioned above to 

minimize subjectivity and lower the standards for data quality. The order should be decided 

by the degree of liability in the target field. In the first approach, the BN structure is 

determined using an algorithm and then modified by expert judgement. In the second 
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approach, the BN structure is first determined by expert judgement and then revised by an 

algorithm. An independent test, such as Pearson’s chi-square test, is usually required for the 

second approach. This test examines the independence between two categorical variables and 

can be used as a complement method to expert judgement. It can also be used for preliminary 

data analysis in some structure learning algorithms (Tang & Srihari, 2012) or as a structure 

learning algorithm in some subjects with simple structures. Specifically, the Chi-square test, 

specified as the χ2 test, is a goodness-of-fit test in which the model from the data is compared 

with a model based on the null hypothesis of independence (Hand, Mannila, & Smyth, 2001). 

Let X and Y be two multinomial variables governed by the distributions P(X=xi) and P(Y=yj). 

O[xi , yj] is the count observed for each joint assignment of X = xi and Y = yj. Given the null 

hypothesis that X and Y are independent, the expected count for (xi, yj ) is E[xi, yj]. Then the 

χ2 statistic (Wasserman 2004) for the data set (x,y) is defined by 

χ2(𝑥, 𝑦) = ∑
(𝑂[𝑥𝑖, 𝑦𝑗] − 𝐸[𝑥𝑖, 𝑦𝑗])

2

𝐸[𝑥𝑖 , 𝑦𝑗]𝑖,𝑗
 

The value of χ2 is used to evaluate how likely the null hypothesis is true based on the 

observed count in a Chi-square distribution (Mood, Graybill, & Boes, 1974). The smaller the 

value, the more likely the variables are independent. The Chi-square distribution has been 

reported in previous studies (NIST/SEMATECH, 2012). Table 2-5 shows critical values for 

binary variables. However, there is no consensus on the cut-off value to categorize 

dependence and independence, but it calls for human judgement.  

Table 2-5. Critical values for Chi-square distribution of binary variables 

Dependence probability 0.5 0.75 0.90 0.95 0.975 0.99 0.999 

Critical value 0.455 1.323 2.706 3.841 5.024 6.635 10.828 

2.3.3. Developing CPT for a BN Model 
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There are two approaches to develop CPT in BN. One way is to learn distributions using data 

based on mathematical principles. The other way is to use expert judgement when the data is 

insufficient.  

Neapolitan (2004) introduced the mathematical principles for parameter learning using data 

with different qualities. Several algorithms are used for parameter learning, such as the 

Maximum Likelihood Approach and the Bayesian Approach (Darwiche, 2009), which can 

also be used to deal with missing data (Blanco, 2005). However, the conditional probabilities 

may differ (even contradict) from one expert to another due to the influence of subjectivity. 

Jensen and Nielsen (2007) provided suggestions to minimize the adverse effects of 

subjectivity, such as taking the mean of the numbers or calculating a weighted average.  

Data size is the main factor that should be considered when determining whether to use 

parameter learning or expert judgement. However, there is no strict cut-off value for the data 

size required to perform BN parameter learning. BayesFusion (2019) suggested that data 

cases should be at least ten times the number of nodes. Otherwise, the dataset cannot support 

parameter learning. However, it seems that the size of CPT also plays an important role. The 

size of CPT is the number of rows, which stands for the size of the combination for the 

circumstance. The reason is due to a common feature in the learning process. Even if there 

are ten times the number of data cases according to the scale of nodes, there may be some 

unavailable value in the CPT tables, which means there are no available data given the 

combination of parents’ states. Table 2-6 shows an example of this circumstance. 

Table 2-6. An example case of an unavailable value in CPT 

Status of node 

Y 

Status of node 

Z 

Degree of belief for child node X given the 

status of parents 

𝑥1 𝑥1 

𝑦1 𝑧1 100% 0 

𝑦2 𝑧1 90% 10% 

𝑦1 𝑧2 unavailable unavailable 

𝑦2 𝑧2 1% 99% 
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There is an unavailable value because the dataset has not covered the specific circumstance of 

(y1, z2). Therefore, we need a prior parameter, known as the initial parameter. There were 

several methods to identify the initial parameter (Xiao et al. 2019; Nguyen, 2018; Steck, 

2008). As for the binary node, an arbitrary number given by estimation or assumption is more 

efficient. Uniform distribution or random distribution are typical solutions in this subject. 

2.4. Model Validation 

The validity of a BN model is evaluated on the basis of the network structure and parameters. 

To validate the structure, we need to cross-check each dependency link by referring to results 

of mathematical analysis or our empirical knowledge and expertise. If the structure is 

discovered using the mathematical analysis, empirical knowledge, like expert knowledge, 

logical judgement, or even common sense, should be used for model validation. By contrast, 

mathematical analysis should be used for model validation if the BN structure is identified 

using expert judgement, in which the validation remains efficient even if the dataset only 

represents part of the structure. In particular, the amount of data should be sufficient and 

representative regardless of whether the dataset covers part or the whole BN structure. For 

the model parameters, they do not have to be precise, but they should represent how the 

system works. In other words, with a sensible network structure, the parameters will reveal 

the disparity of nodes and links. 

There are a few methods that are often used to validate BN models. For example, the 

goodness-of-fit test is the method that is usually used to validate the structure and parameters 

of the BN model simultaneously. However, this test requires a large amount of data. It is not 

ideal for validating models containing nodes with discrete distribution of states, such as 

binary nodes. The what-if test examines whether a model works as it should by checking 

different consequences given different (opposite to binary nodes) probabilities. On the one 

hand, a different state of a virtual node, which can be judged by common sense, is supposed 

to lead to entirely different outputs. On the other hand, the analysis of an irrelevant node 

(relatively speaking) could be compared with the essential one to see if its influences 
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significantly differ. For this purpose, several typical nodes should be chosen and performed 

on what-if analysis individually. Due to the limitation of expert judgement and insufficient 

available data, the assessment model is not expected to be accurate but reveals the causal 

links between contributors and consequences within complex systems. Instead, the most 

important contributors and links are expected to be located. 

2.5. Inference Analysis with the Bayesian Network 

After calculating the probabilities of the variables, inference analysis is performed to find the 

most important contributors, as shown in Section 2.2.3. There are two types of inference 

analysis: predictive analysis and diagnostic analysis depending on the direction of arrows in 

the BN model. Note that as the BN models that can be applied to most systems are more 

complex than the one shown in Figure 2-1, specific algorithms must be applied to the 

inference process, such as Pearl’s message passing algorithm, the junction tree algorithm, the 

symbolic probabilistic inference algorithm, the logic sampling algorithm, the likelihood 

weighting algorithm, and Cooper’s best-first search algorithm (LI et al. 2008; Nagarajan, 

Scutari, & Lèbre, 2013; Neapolitan, 2004).  

2.5.1. Predictive Analysis 

Predictive analysis aims to find the most probable consequence initiated by a specific state of 

one or more nodes. In this inference process, the node representing the event that occurred, as 

input information to the model, is the ancestor of the assigned node or nodes within the BN 

graph. The inference example from node Y to node X in Section 2.2.3 follows this sequence. 

2.5.2. Diagnostic Analysis 

Diagnostic analysis explores the most probable contributor that leads to an event. Here, the 

node standing for the event is a descendant of the assigned node or nodes within the BN. For 

example, diagnostic inference is to update the belief of Y and Z given 𝑋 = 𝑥1 in the model 

presented in Section 2.2. 
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Chapter 3. Modelling for a Human Performance Separated 

System Based on Expert Judgement and Human Perception 

Influence Analysis 

This chapter reports on the procedure for building a Bayesian network (BN) model for 

assessing the failure of the Human Performance Separated System (HPSS). This chapter aims 

to demonstrate how a BN model can be applied to a hardware system that operates 

automatically and only requires minimum inputs from human, such as “start” and “stop”. By 

contrast, the Human Performance Included System (HPIS) involves not only the hardware, 

but also complex variables such as human factors. Compared with HPIS, modelling the 

failure of HPSS is more straightforward, since the links between contributors are clear-cut 

and are usually specified during the design. 

First, the procedure for developing a BN model to assess HPSS failure is reported. This 

modelling procedure was conducted using BN based on expert judgement, since lack of data 

is still the main problem in many industrial sectors. Then, the principles and key points of the 

modelling procedure are reported. Finally, a method is proposed to examine the influence of 

human perception on the performance of the BN model as an example of a human reliability 

analysis (HRA). Our modelling process combines expert judgement with numerical analysis 

and reveals the importance of factors by calculating their probabilities. When there are 

sufficient data, it is possible to replace expert judgement by mathematical analysis, at least 

part of it. Compared to traditional failure models, the BN model can show clearer dependence 

between contributors and can be generalized to different industrial sectors.  

3.1. Procedure for Developing an HPSS Failure Assessment Model with 

Bayesian Network 

An HPSS includes multiple mechanical components or system functions. It is often 

straightforward to find out how an HPSS works because the functions of its components or 

parts and the dependencies between them are specified when the system is designed. Thus, 
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even with insufficient data, expert-informed mechanical reasoning is a reliable method for 

developing the network structure. 

3.1.1. Finding Nodes  

Experts in the relevant field are often asked to find nodes for the mechanical features or 

relations of an HPSS. In general, there are four steps to complete this task. 

1) Find a suitable node classification scheme, such as similarity of functions or features of the 

system. Expert knowledge in a specific field is required. 

2) Read accident investigation reports to find and classify causations of accidents. Expert 

consensus is required. 

3) Define each node. Expert knowledge in a specific field is required. 

4) Define the state, i.e., the type and size, of nodes. The type of nodes can be discrete or 

continuous. Expert judgement is required to make this decision. Nevertheless, to simplify the 

calculation process, the type of nodes of a mechanical system can be defined as a discrete 

variable. Although evaluation of mechanical equipment is usually required to define the size 

of the nodes, the size of the nodes can be defined as a binary variable in the BN model to 

reduce the workload of parameter learning. In addition, the system’s operation can be defined 

on the basis of whether it operates regularly or irregularly (sometimes it is defined as normal 

or abnormal).   

3.1.2. Procedure for Building Dependency Arrows 

To build dependency arrows, we should go through accident investigation reports and use 

expert judgement to find the failure path. Steps to build dependency arrows are shown below: 

I. Build an initial antecedent-consequent group model based on expert knowledge to represent 

the hierarchy of the groups.  
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II. Find all possible dependencies between two given nodes. This step can be done in three 

sub-steps: 

1) Check each pair of nodes from a different hierarchy level, one from the antecedent 

group and the other from the consequent one. 

2) Check each pair of nodes within the same group. 

3) Check each pair of nodes from the same level of groups (if they have) which have 

no antecedent-consequent relations. 

Sometimes there might be some unclear links, which can be classified into direct and 

indirect connections. The direct link means that a causal relation is evident, while the 

indirect link does not show a clear causal relation.  

III. Build a dependency chain for each indirect link. For example, there is no direct dependency 

between A and C, but A may influence C through B, then we have A→B→C.  

IV. Cross-check direct link and indirect link. Every link in the dependency chain should 

correspond to a direct link, i.e., A→B and B→C should both exist. 

3.1.3. Key Points of Building Dependency Arrows 

To build dependency arrows, one shall pay attention to three key points:  

First, follow the hierarchy rule. The dependency arrow should start from the node within the 

antecedent group and point to another within the consequent group. The dependency arrow 

can also be placed between nodes within the same level group. This is not a strict rule, but it 

helps reduce the occurrence of cyclic relations. 

Second, avoid reciprocal links. Only one arrow is allowed to go in one direction between two 

given nodes. This is a principle that cannot be violated. However, components might 

mutually influence each other in some situations. To deal with such problems, four solutions 

can be applied, as shown below: 
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Given a dependency chain as (A←→B) →C, in which A and B are mutually linked: 

I. The node within the reciprocal links could be split. Node A could be divided into A1 & A2 

due to different mechanical reasons, functions, or locations. Then node A1 becomes the 

cause of node B, while A2 could be considered a consequence. 

 A1→B→C 

 B→A2→C 

II. The nodes are independent, indicating that they can lead to consequences separately. In 

other words, each node that fails can cause a consequence. For this instance, we delete the 

links between the nodes, and then the probability equation became as follows: 

 A→B→C 

 B→A→C 

 P(Ci)=P(Ci /A)P(A) ∪ P(Ci /B)P(B) 

III. One node dominates the other. The chance that the domination node causes the other is 

much higher than the reverse situation. This could be considered an antecedent-consequent 

dependency, so we can only keep the link from antecedent to consequent and delete the 

reverse one. The demonstration and probability equation is shown below: 

 A→B→C 

 B→A→C 

 P(Ci)=P(Ci /B) P(B/A) P(A) 

IV. The two nodes within the reciprocal links must fail to cause other consequences, and the 

chance of causing the other consequence is approximately equal. In this situation, we can 

introduce a joint node to replace them; then, the probability equation becomes as follows: 

 Joint nodes (AB)→C 
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 P(Ci)=P(Ci /AB) P(AB)=P(Ci /AB) P(A) P(B) 

Third, build a direct acyclic graph (DAG), in other words, to avoid any cyclic link. 

Although the reciprocal link is a type of cyclic link, another typical cyclic relationship is a 

cyclic chain, such as A→B→C→A. There are two ways to cope with this cyclic chain: 

I. Some link within this chain is weak and could be deleted. For instance, 

 A→B, B→C, C→A 

II. The node within the chain could be split. For instance,  

 A1→B→C→A2 

or 

          A→B→C1 & C2→A 

3.1.4. Developing Model Parameters using Human Perception 

In the present study, the term human perception stands for expert judgement about the 

conditional probability distribution of each node within the BN model. With insufficient data, 

human perception becomes the only option to develop model parameters, which means that 

we fill in the probability table using expert opinions. The challenge is the size of the 

Conditional Probability Table (CPT), which expands exponentially as the number of parents 

of a child node increase. For example, if a child node has three parents with binary states, 

there are 8 (23) combinations of the parent state. When the node has four binary parents, there 

will be 16 (24) combinations and 32 (25) varieties for the node with five parents. When the 

size of CPT is too big, it is impractical and unreliable to use human perception. Ideally, the 

number of parents for each node should be no more than three. The idea to fix the problem is 

to narrow the size of each CPT by introducing intermedia node(s) between the child node and 

some of its parents. The procedure is as follows: 

I. Check with all parents of this kind of child node and find out if there are any common 
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features of the link, such as similar function, mechanics or influence route. 

II. Introduce an intermedia node between the route to link these parents and the corresponding 

child. It should be noted that the same gathering of parents leading to the different children 

must not share the same intermedia node. 

To fill the CPT, we shall follow the principles below: 

I. For the parent node, expert opinions can decide which parent node has a more significant 

influence than other parent nodes. For example, A and B are both parents of C. If A’s failure 

is much more likely to affect C than B to affect C, then the failure probability number of C 

only given that A failed should be much bigger than only given that B failed. 

II. For a root node without any antecedent, the CPT is replaced by a MPT, representing the 

event occurring unconditioned on any other event and thus forms a powerful statement. 

III. For an intermedia node, if the states of gathering parents are the same, this intermedia node 

could be in the same condition; in other words, the probability of this state is 100%. 

Otherwise, the states should be 0%. 

IV. 100% or 0% should only be filled in when the result is unquestionable and without any 

exception.  

V. If there is very little chance of causing a result, we could choose a small number like 0.1%. 

3.2. Influence of Human Perception on Model Performance 

Model performance refers to the output represented by the marginal probability distribution 

of the designated node. Since expert opinions may differ from one person to another or even 

the same expert may provide different opinions at different times, it is important to know how 

human perception influences model performance. To answer this question, the sensitivity of 

the conditional probability distribution is calculated, representing the strength of the 

dependency link. This could be analysed using two methods: correlation coefficient and 

sensitivity analysis. A correlation coefficient is a numerical measure that represents the 
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statistical relationship between two variables. Sensitivity analysis studies how the uncertainty 

in the output can be divided and assigned to different sources of uncertainty in its inputs. 

3.2.1. Correlation Between Human Perception and Model Output 

The correlation coefficient indicates the relationship between human perception and model 

output, whether positive or negative, strong or weak. The Karl-Pearson correlation coefficient 

formula is a common method used to calculate this.  

𝜌𝑥𝑦 =
𝑐𝑜𝑣(𝑋𝑌)

𝜎𝑥𝜎𝑦
  Equation 3-1 

where: 

𝑋 is a variable for human perception 

𝑌 is a variable for the model output corresponding to 𝑋 

𝜌𝑥𝑦 is the correlation coefficient o(𝑋, 𝑌) 

𝑐𝑜𝑣 is the covariance 

𝜎𝑥  is the standard deviation of 𝑋 

𝜎𝑦 is the standard deviation of 𝑌 

The human perception value could be a continuous or discrete variable based on human 

perception. With countable guesses, a perception sample can be developed, and the equation 

can be transformed as follows: 

𝑟𝑥𝑦 =
∑ (𝑥𝑖−𝑥̅)(𝑦𝑖−𝑦̅)𝑛

1

√∑ (𝑥𝑖−𝑥̅)2𝑛
1 √∑ (𝑦𝑖−𝑦̅)2𝑛

1

                       Equation 3-2 

where: 

𝑥 is a variable for human perception in a sample 



35 

 

𝑦 is a variable for model output in the sample 

𝑟𝑥𝑦 is the correlation coefficient of(𝑥, 𝑦) 

n is the sample size 

𝑥̅ is the sample mean 𝑥̅ =
1

𝑛
∑ 𝑥𝑖

𝑛
𝑖=1 ; and analogously for 𝑦̅ 

The correlation coefficient falls between [−1, +1]. Positive value stands for positive 

relationship, while negative value stands for negative relationship association. An absolute 

value closer to 1 means a more substantial relation, while closer to 0 means a weaker link. 

3.2.2. Sensitivity Analysis for Human Perception 

Sensitivity analysis explores the division of the uncertainty in the model output by 

manipulating the perception. The idea is to change the perception, to see which one impacts 

the output. We shall manipulate one input variable while keeping other variables at baseline 

values to calculate the sensitivity coefficient. The sensitivity coefficient is defined below: 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 =
∆𝑜𝑢𝑡𝑝𝑢𝑡 𝑜𝑢𝑡𝑝𝑢𝑡⁄  𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

∆𝑝𝑒𝑟𝑐𝑒𝑝𝑡𝑖𝑜𝑛 𝑝𝑒𝑟𝑐𝑒𝑝𝑡𝑖𝑜𝑛 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒⁄
  Equation 3-3 

where: 

∆𝑝𝑒𝑟𝑐𝑒𝑝𝑡𝑖𝑜𝑛 is the difference between changed perception and its baseline 

∆𝑜𝑢𝑡𝑝𝑢𝑡 is the difference between changed output and baseline 

A more significant value of the sensitivity coefficient means a higher sensitivity to the output 

using human perception.
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Chapter 4. Assessment Model for Gas Turbine Failures and 

Human Perception Influence Analysis 

This chapter demonstrates how the procedure and principles of building an BN model for the 

HPSS can be applied in real-world situations using the gas turbine failure as an example. The 

first part of this chapter reports on the building of a BN model for gas turbine failure. This 

model is used as an example to demonstrate how to build a BN model using expert 

judgement. The second part of this chapter presents a validation of the BN model using 

hypothesized cases of gas turbine failure. The third part of this chapter reports the influence 

of human perception on model performance. 

4.1. Procedure for Developing the Model 

4.1.1. Nodes of the BN Model for Gas Turbine Failure 

Contributors related to gas turbine failure have been discovered using expert knowledge. 

There are thirty-one contributors in six groups (see Table 4-1). 

Table 4-2 shows the nodes with the definitions used in the gas turbine model. Not all factors 

were used in the gas turbine model. The underlined factors (F1, F2, E1, E2, E3, B7, B8, B9) 

were not temporarily adapted to the model, and the italicized factors (B6 & B10) were 

divided according to the acyclic rule. 

4.1.2. Finding Dependencies between Nodes 

This step aims to find the mechanical relationships between nodes using expert knowledge.  
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Table 4-1. Contributors related to gas turbine failure 

Operative type Maintenance type Main components Core components Cause of failure System function 

Node Contributor Node Contributor Node Contributor Node Contributor Node Contributor Node Contributor 

F1 Baseload E1 
Preventive 

maintenance 
D1 Rotor  C1 

Compressor 

blading 
B1 Over-Speed A1 Fuel system 

F2 
Variable 

load 
E2 

Predictive 

maintenance 
D2 Compressor C2 Combustor B2 Sealing rupture A2 Lube oil system 

  E3 
Corrective 

maintenance  
D3 

Combustion 

chamber 
C3 

Turbine 

blading 
B3 Blading rupture A3 

Hydraulic/pneumatic 

control system 

    D4 Turbine C4 Bearing B4 TBC spallation A4 
Digital Control 

System 

      C5 AC pump B5 Misalignment A5 
Secondary air-

cooling system 

      C6 
Emergency 

pump 
B6 Overheating A6 

Uninterruptible 

power supply 

        B7 Foreign object   

        B8 

Design / 

manufacturer / 

assembly failure 

  

        B9 
Unexpected 

cause 
  

        B10 Vibration   
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Table 4-2. Nodes used in the gas turbine model 

Group Node Contributor Definition 

Function 

system 

A1 Fuel system 

Fuel transfer gate, dual fuel (oil and gas) application, 

power augmentation, emission control, piping, fuel control 

line, filter, control and safety valves, ventilation valves 

A2 Lube oil system 
Tank, piping, filter, valves, interface pumps (AC, DC, 

Jacking), control system 

A3 
Hydraulic/pneumatic 

control system 

Piping, valves (solenoid) 

A4 
Digital control 

system (DCS) 

All lines for safety and control functions between DCS 

and actuators 

A5 
Secondary air-

cooling system 

Internal and external cooling, rotor and blade cooling, film 

cooling, etc. 

A6 
Uninterruptible 

Power Supply (UPS) 

Infrastructure of battery operation and emergency diesel 

Failure 

cause 

B1 Over-speed 

All influences causing an uncontrolled overspeed event, 

especially those introduced by malfunctions of the fuel 

system or the control system 

B2 Sealing rupture Ruptures at the rotor and/or stator 

B3 Blading rupture Ruptures in the compressor or turbine 

B4 TBC spallation 
Spallation at rotating or stationary parts, e.g., blades, 

vanes, or combustion chamber 

B5 Misalignment 
Wrong fit components through failure in design or 

manufacturing as well as assembly 

B6T Thermal overheating 
Caused by a failure in the combustion system affecting all 

components in the hot gas path 

B6M 
Mechanical 

overheating 

Caused by mechanical contact due to mismatching of parts 

B10T Thermal vibration 
Resonance in the combustion system, causing mechanical 

damage 

B10M Mechanical 

vibration 

Unbalance caused by the liberation of parts or 

misalignment 

Core 

components 

C1 Compressor blading Compressor blade component 

C2 Combustor Single fuel and dual fuel application 

C3 Turbine blading Turbine blade component 

C4 Bearing Journal bearings and axial pads to control the rotor 

C5 AC pump Main pump with piping 

C6 Emergency pump 
DC pump (emergency pump with piping) and jacking 

pump (lifting pump with piping) 

Main 

components 
D1 Rotor  

All rotating parts like discs or shaft segments, including 

compressor and turbine blades, as well as sealing 
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4.1.2.1. Hierarchy of groups 

To find the dependencies, the first step is to define the hierarchy of groups. Figure 4-1 shows 

the initial antecedent-consequent group model. 

Figure 4-1. Hierarchy of groups within a gas turbine model 

Since ‘Operation’ & ‘Maintenance’ are the primary processes in gas turbine technology, their 

status can be identified by analysing specific mechanical equipment. To simplify the model, 

it was assumed that the system was in preventive maintenance at base load, so Groups E & F 

(as shown in Table 4-1) were removed. Since the model aimed to trace system failures only 

during the working stage, failures related to design, manufacturing, and assembly were 

ignored. In addition, ‘foreign objects’ and ‘unexpected causes’ were not considered. 

Therefore, nodes B7, B8 and B9 (as shown in Table 4-1) were removed. All nodes used in the 

gas turbine model are shown in Table 4-2. 

4.1.2.2. Dependency Table 

D2 Compressor Rotor, compressor casing, and blading 

D3 
Combustion 

chamber 

Cooling path, heat shields, and transition pieces 

D4 Turbine Rotor, turbine casing, and blading 

Operation (F) Maintenance (E) 

System Fault (A) 

Core Component damage (C) 

Causes (B1, B2, B3, B4, B5, B6, B10) 

Causes (B7, B8, B9) 

Main Component damage (D) 
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All dependency relationships were established by expert judgement. Dependency tables can 

be categorized into three types depending on the groups or node pairs. For example, failure of 

compressor blade (C1) and bearing (C4) may affect compressor behaviour (D2). The 

compressor blading (C1) and bearing (C4) are the parents. Each pair of nodes can either have 

a direct or indirect link in the dependency table. A direct link refers to a clear causal relation 

between nodes, while an indirect link indicates a vague relation between nodes. A link chain 

was developed to show the dependency of indirect links. 

1) Dependencies between nodes of different groups 

➢ Group C and Group D 

➢ Group B and Group C 

➢ Group A and Group C 

➢ Group A and Group B 

These groups contain both direct and indirect dependencies. The indirect dependencies, such 

as the cyclic interdependencies, were complex and were not allowed in the BN model. In 

some cases, interdependencies can be considered as contributors of minor importance. Taking 

them out would not change the model significantly, as shown in Section 3.1.3. Node 

‘overheating (B6)’ was split into two nodes, known as ‘thermal overheating (B6T)’ and 

‘mechanical overheating (B6M)’ (see Table 4-2). For the same reason, the node ‘vibration 

(B10)’ has divided into ‘thermal vibration (B10T)’ and ‘mechanical vibration (B10M)’ (see 

Table 4-2). More details can be found in Part I of Appendix A. 

2) Dependencies between nodes of the same group 

➢ Within-group C 

➢ Within-group B 

➢ Within-group A 

3) Emergency system 

➢ Uninterrupted Power Supply (A6) 
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➢ Thermal acoustic induced vibration (B10T) 

➢ Mechanical vibration (B10M) 

➢ Over-speed (B1) 

Table 4-3. Dependency table for the child-parent links 

No. Child Parent 

1 A1 A3      

2 A2 C5 C6     

3 A3 A4      

4 A4 n.a.      

5 A5 n.a.      

6 A6 n.a.      

7 B1 A1 A4     

8 B2 B1 B5 B6T C4   

9 B3 B1 B5 B6T C4   

10 B4 B6T      

11 B5 A4 B6T C4    

12 B6T A1 A5     

13 B6M B2 B3 B5 C4   

14 B10T A1 A4     

15 B10M A4 B1 B3    

16 C1 B1 B6M B10M C4   

17 C2 B1 B4 B10T    

18 C3 B1 B4 B6M B10M C2 C4 

19 C4 A2 B1     

20 C5 n.a.      

21 C6 A4 A6     

22 D1 C1 C3 C4    

23 D2 C1 C4     

24 D3 C1 C2     

25 D4 C1 C2 C3 C4   

In this model, four emergency systems were extracted one by one. As these systems only 

operate in emergency situations and cause no damage when they are not in operation, they are 

controlled as fail-safe systems. As emergency systems work only when a specific value has 

surpassed the limit, two dependency chains are included. These dependency chains can be 
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converted to a child-parent dependency table (see Table 4-3). See Part II of Appendix A for 

all eleven dependency tables. 

4.1.3. Network Structure for the Causation of Gas Turbine Failure  

To define the network structure of gas turbine failure, we must draw a graph with nodes and 

dependency arrows between them based on Table 4-3. Figure 4-2 shows the structure graph 

revealing contributors to a gas turbine failure. For instance, D2 has two parents, known as C1 

and C4. Therefore, two separate arrows start from C1 and C4, and both point to D2. 

4.1.4. Developing Conditional Probability Tables 

Expert judgement is used to develop the Conditional Probability Table (CPT) for each node 

with two possible states (regular vs. irregular).  

4.1.4.1. Intermedia Nodes 

As mentioned in Section 3.1.4, intermedia nodes were introduced to deal with nodes with 

more than three parents. There are six nodes of this kind (B2, B3, B6M, C1, C3, and D4) (see 

Table 4-3). Figure 4-3 demonstrates how an intermedia node works. As compressor blading 

and turbine blading are both blading failures and their failures similarly affect the turbine, an 

intermedia node (ID4) is thus included between blading (C1, C3) and turbine (D4). All 

figures related to intermedia nodes can be found in Part II of Appendix A. 
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Figure 4-2. Structure of contributors to gas turbine failure 
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Figure 4-3. Intermedia node model of turbine  

Seven intermedia nodes are required to deal with six child nodes (see Table 4-4). Figure 4-3 

shows the rows related to D4 in Table 4-4.  

Table 4-4. Dependency table for child-parent with intermedia nodes 

Child Parent Mechanical translation of the intermedia node 

B2 B1 B6T IB2  

IB2 B5 C4  Mechanical operation failure 

B3 B1 B6T c  

IB3 B5 C4  Mechanical operation failure 

B6M C4 IB6M   

IB6M B2 B3 B5 Mechanical operation failure 

C1 B1 IC1   

IC1 B6M B10M C4 Mechanical operation failure 

C3 B1 I1C3 I2C3  

I1C3 B6M B10M C4 Mechanical operation failure 

I2C3 B4 C2  Hot gas path failure 

D4 C2 C4 ID4  

ID4 C1 C3  Mechanical failure 

C1 (compressor 
blading) 

C3 (turbine 
blading) 

 

C4 (bearing) C2 (combustor) 

 

ID4 (mechanical 

failure) 

D4 (turbine) 
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4.1.4.2. Probability Table with Expert Judgement 

In total, thirty-two CPT and four marginal probability tables are required for the BN model. 

Table 4-5 to Table 4-8 show examples of probability tables. The letter ‘I’ stands for irregular 

working state, while the letter ‘R’ stands for regular. Table 4-5 shows the probability of A1 

(fuel system). If A3 ((hydraulic/ pneumatic control system) works irregularly, it is likely that 

A1 works irregularly. According to expert judgement, this probability is 80%. When A3 

works regularly, the chance of an irregular state for A1 is very low. However, it is kept in the 

model for other reasons, such as human errors in the operation or maintenance of the fuel 

system, whose probability is around 1% based on expert judgement.  

Table 4-5. Conditional probability of A1 (fuel system) 

A3 

 (hydraulic/ pneumatic control system) 

Probability of A1 (fuel system) 

A1=I A1=R 

I 80% 20% 

R 1% 99% 

Table 4-6 shows the probability of A4 (digital control system). Since A4 is a root node in this 

model, the probability of A4 contains a marginal probability. The failure chance of a digital 

control system is rare due to its high technical standard. Thus, the probability is 0.1% based 

on expert judgement. 

Table 4-6. Marginal probability of A4 

Probability of A4 (digital control system) 

A4= I A4=R 

0.1% 99.9% 

Table 4-7 shows the probability of B1 (over-speed) based on expert judgement. When both 

A1 and A4 work irregularly, the chance of overspeed is 99%. When A1 or A4 work 

irregularly, the chance of overspeed is 20% and 90%, respectively. When both A1 and A4 

work regularly, the chance of overspeed is 0.1%.  



46 

 

Table 4-7. Conditional probability of B1 (overspeed) 

A1 (fuel system) 
A4 (digital control 

system) 

Probability of B1 (overspeed) 

B1=I B1=R 

I I 99% 1% 

R I 90% 10% 

I R 20% 80% 

R R 0.1% 99.9% 

Table 4-8 shows an example of the probability of C6 (emergency pump). A4 (digital control 

system) and A6 (UPS) conditions are the parents of C6. Once either parent has an irregular 

state, C6 cannot work regularly (100%). According to expert judgement, A4 and A6 work 

periodically, and thus the probability of a bearing problem is 0.1%. 

Table 4-8. Conditional probability of C6 (Emergency pump) 

Condition of A4 

(Digital control system) 

Condition of A6 

(UPS) 

Probability of C6 

(Emergency pump) 

C6=I C6=R 

I I 100% 0 

R I 100% 0 

I R 100% 0 

R R 0.1% 99.9% 

All conditional tables can be found in Part III of Appendix A. 

4.2. Validation  

A what-if analysis with hypothetical cases was performed to validate the model and a belief 

propagation algorithm was used that executed the BN inference process.  

4.2.1. Emergency Pump Failure  
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Take an emergency pump failure as an example. Given a hypothetic input with an irregular 

emergency pump (C6=I), inferences could be made based on a diagnosis analysis and a 

prognosis analysis.  

➢ Diagnosis analysis 

A diagnostic analysis was first used to identify the contributors to the emergency pump 

failure. This analysis calculated the probability of parent or antecedent nodes contributing to 

the emergency pump failure by building a gas turbine model. According to Figure 4-2, A4 

(Digital control system) and A6 (UPS) are the parents of C6 (emergency pump). The 

irregular probabilities of A4 and A6 are shown below: 

① Irregular probability of A4 is 33.37%, 

② Irregular probability of A6 is 33.37%. 

The irregular probabilities of A4 and A6 are the same because they have identical marginal 

probability distribution (see marginal probabilities of A4 and A6 in Appendix A) and equal 

weights in the CPT table of C6 (see Table 4-8). 

➢ Prognosis analysis  

Then a prognostic analysis was conducted to estimate the consequences of an emergency 

pump failure. This process calculated the probability of the child or the descendant nodes that 

may contribute to the emergency pump failure. For example, as the child of C6, the irregular 

probability of A2 (lube oil system) is 0.1%. This value is small because either the parent of 

A2, speaking of C6 or C5 (AC pump) alone, can guarantee that A2 works regularly. In this 

case, the emergency pump failed (C6 = I) and there is no input from C5, whose irregular 

probability is 0.1%, without any input from the child or descendant node. However, the 

probability varies with different inputs. Table 4-9 shows the prognosis analysis of D1(rotor) 

with different combinations of inputs in an emergency pump failure.  
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The reference case refers to no input involved, and the default parameters are used for D1. In 

this case, the irregular probability of DCS (A4=I) is 0.1% by expert judgement (see Table 4-

6). The irregular probability of D1 is 6.83%, which is the prognostic result in this case. 

Table 4-9. Prognoses of the rotor based on emergency pump failure 

Case No. 
Input 

Probability of irregular rotor  

(D1=I) 

1st input 2nd input  

Reference 

case 
n/a n/a 6.83% 

Case 1 

Emergency 

pump 

working 

irregularly 

(C6=I) 

n/a 86.47% 

Case 2 

DCS working irregularly 

(A4=I) 
99.59% 

DCS working regularly 

(A4=R) 
6.26% 

Case 3 

UPS working regularly 

(A6=R) 
92.32% 

UPS working irregularly 

(A6=I) 
6.98% 

Case 1 refers to one input that C6 (emergency pump) works irregularly. In this case, the 

irregular probability of D1 is 86.47%. This high value, which means a high failure 

probability, is linked with a 33.37% irregular probability of A4, an important component in 

the gas turbine. We introduce additional inputs to prove this, as shown in Cases 2 and 3.  

In Case 2, there is an additional input of A4 (DCS) in addition to C6=I. If the evidence shows 

that DCS works irregularly (A4=I), the irregular probability of D1 is higher than in Case 1. 

Suppose the evidence shows that DCS works regularly (A4=R). In that case, the irregular 

probability of D1 is even lower than in the reference case (0.1%) because the irregular 

probability of A4 in the reference case is 0.1%, according to the marginal probability table of 

A4 (see Table 4-6). 
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Case 3 shows an additional input of A6 instead of A4. If the input shows UPS works 

regularly (A6=R), which also means the emergency pump failure (C6=I) is most probably 

caused by A4, then it raises the irregular probability of D1 (rotor). If the input shows that the 

UPS works irregularly (A6=I), the emergency pump failure (C6=I) is probably caused by A6. 

Since both A6 (UPS) and C6 (emergency pump) are components, they only work when the 

main ones fail. Therefore, in this case, the irregular probability of D1 only increases by an 

insignificant amount compared to the reference case. 

4.2.2. TBC Spallation Failure  

Take the TBC spallation failure (B4=I) as another example. 

➢  Diagnosis analysis 

The diagnosis analysis aims to calculate the probability of the parent or antecedent node of 

B4 (TBC spallation). According to Figure 4-2, B6T (thermal overheating) is a parent of B5. 

The analysis result shows that the irregular probability is 41.29%. 

➢ Prognosis analysis 

The prognosis analysis shows that the irregular probability of B6M (mechanical overheating) 

and D4 (turbine) are 74.32% and 98.53%, respectively. TBC spallation is associated with 

thermal problems, but the difference between the state of B6T (thermal overheating) and 

B6M (mechanical overheating) lies in the additional inputs. Table 4-10 shows the prognosis 

analysis of D4 according to B4 with more input. 

Table 4-10 shows that both TBC spallation and the overheating problem play an important 

role in the probability of turbine failure. If there is no overheating problem, even when TBC 

spallation occurs, the irregular probability of turbine failure reduces to 10.55%. In contrast, if 

the overheating problem is not apparent, the irregular probability of the turbine is 

exceptionally high. 



50 

 

Table 4-10. Prognoses of the turbine based on TBC spallation 

Case no. 
Input Irregular 

probability of 

turbine (D4=I) 
1st input 2nd input 

Reference 

case 
n/a n/a 9.03% 

Case 1 
TBC 

spallation 

(B5=I) 

n/a 98.53% 

Case 2 No thermal overheating (B6T) =R 72.32% 

Case 3 No mechanical overheating (B6M) =R 80.31% 

Case 4 No overheating issue (B6T, B6M) =R 10.55% 

4.2.3. Thermal Overheating  

The last example shows the influence of TBC spallation due to overheating. Then, let us look 

at another example of thermal overheating. The input is that the thermal overheating state is 

irregular (B6T=I). 

➢ Diagnosis analysis 

According to Figure 4-2, A1 (fuel system) and A5 (secondary air-cooling system) are the 

parents of B6T. The diagnostic results are: 

① Irregular probability of fuel system (A1) is 84.65%, 

② Irregular probability of a secondary air-cooling system (A5) is 7.37%. 

Although A1 and A5 have equal weights in the conditional probability table of B6T (see 

conditional probability table of B6T in Appendix A), the irregular probability of A1 here is 

much higher than A5. This is because A1 has a higher chance of failure than A5, which can 

be found in the marginal probability tables of A1 and A5. 

➢ Prognosis analysis 

Table 4-11 shows the prognosis analysis of D4 (turbine) with additional inputs. The results 

show that the probability of an irregular turbine (D4) is 98.70%, given only the thermal 
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overheating problem. Cases 2-6 indicate little change in the result given different additional 

inputs, which means that overheating is highly harmful to the turbine. 

Table 4-11. Prognoses of the turbine based on thermal overheating 

 Input Irregular 

probability of 

turbine (D4=I) 

1st input 
2nd input 

Reference 

case 
n/a n/a 9.03% 

Case 1 

Thermal 

overheating 

occurs  

(B6T=I) 

n/a 98.70% 

Case 2 Fuel system working regularly 

(A1=R) 
95.28% 

Case 3 Cooling system working regularly 

(A5=R) 
98.83% 

Case 4 No rupture (B2, B3) =R 89.91% 

Case 5 No mechanical overheating 

(B6M=R) 
91.71% 

Case 6 No vibration (B10M, B10T=R) 97.14% 

4.2.4. Mechanical Vibration 

Mechanical vibration is another function failure case. Let’s introduce the input in which the 

state of mechanical vibration is irregular (B10M=I). 

➢ Diagnosis analysis 

According to Figure 4-2, B3 (blading rupture) and A4 (DCS) are the parents of B10M. The 

diagnostic results are: 

① Irregular probability of blading rupture (B3) is 93.31%, 

② Irregular probability of DCS (A4) is 0.24%. 

These results suggest a greater chance of mechanical vibration caused by blading rupture than 

DCS failure. 
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➢ Prognosis analysis 

According to Figure 4-2, C1 (compressor blading) and C3 (turbine blading) are the children 

of B10M (mechanical vibration). D4 (turbine) is the descendent of B10M (mechanical 

vibration). See below for the prognostic results: 

①Irregular probability of compressor blading (C1) is 0.7938 

②Irregular probability of turbine blading (C3) is 0.8763 

③Irregular probability of turbine (D4) is 0.9944 

Then, let us introduce additional inputs (see Table 4-12). Only Case 5 shows a small value of 

the irregular probability of the turbine, suggesting that we should check compressor blading 

and turbine blading when mechanical vibration occurs. If both blading parts work regularly, it 

is likely that the turbine still works. Otherwise, the turbine probably does not work. 

Table 4-12. Prognoses of the turbine based on mechanical vibration 

 Input irregular 

probability of 

turbine (D4 = I) 

1st input 
2nd input 

Reference 

case 
n/a n/a 9.03% 

Case 1 

Mechanical 

vibration 

occurs 

(B10M = I) 

n/a 99.44% 

Case 2 No blading rupture (B3=R) 92.35% 

Case 3 No compressor blade rupture (C1 =R) 90.92% 

Case 4 The turbine blading works regularly 

(C3=R) 
80.53% 

Case 5 
Both compressor and turbine blades 

work regularly.     (C1, C3=R) 
14.17% 

4.2.5. Conclusion of the Validation 

The results of these validation cases meet the logical reasoning, suggesting that the model 

allows us to analyse the gas turbine failure. 
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4.3. Analysis of Human Perception Influence 

As the probability tables in the model were developed by expert judgement, human 

perception played a role there. Thus, it is important to examine the influence of human 

perception by performing a sensitivity analysis in which different values in the probability 

table were assigned and the corresponding results were compared. In this analysis, only the 

irregular probabilities of the target nodes were examined, while all parent nodes were 

assumed to work regularly. 

4.3.1. Three Types of Irregular Probability with the Assumption of All Parents Working 

Regularly 

Theoretically, each node can have a different probability. However, since these values are 

assigned by expert judgement, it may not be possible to give each node a unique value. 

Furthermore, as human perceptions are sometimes inaccurate, the benefit of using expert 

judgement is unclear. Thus, to be practical, the nodes were classified into three types 

depending on possible reasons that induce irregularity when all parent nodes work regularly, 

including operation error, material flaw, and other conditions. 

➢ Type 1- Operation error 

The irregular states of these nodes are most likely caused by an operation error, given that all 

parent nodes work regularly. The failure probabilities of these nodes are higher than those of 

others.  

Table 4-13. Type 1 nodes for human perception analysis 

Type 1 nodes Possible reasons which induced irregularity when all parent nodes 

work regularly 

A1 (fuel system) Wrong fuel added/mixed 

B5 (misalignment) Not precisely assembled in the assembly phase 
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In the condition of all parents working regularly, the irregular probability for this type is 1% 

by expert judgement. 

➢ Type 2- Material flaw 

The irregular states of these nodes, given that all parents are regular, are usually damaged by 

objects, such as a foreign objects and material degradation. 

Table 4-14. Type 2 nodes for human perception analysis 

Type 2 nodes 
Possible reasons that induce irregularity when all parent 

nodes work regularly 

A3 (hydraulic control system) False information by DCS 

A5 (secondary air-cooling 

system) 

Blocking of cooling holes, operation in the wrong 

environment 

B4 (TBC spallation) Damage by foreign objects 

B10M (mechanical vibration) Degradation of blading material 

C2 (combustor) Degradation effect, flashback due to poor gas quality 

D3 (combustion chamber) Hot gas path degradation effect 

D4 (turbine) Hot gas path degradation effect 

In the condition that all parents work regularly, the irregular probability for this type is 0.1% 

according to expert judgement. 

➢ Type 3- Other conditions 

The chance of these components or functions failing is rare if all parents work regularly. The 

failure probabilities are tiny and are for some unexpected reasons. For example, the UPS 

might fail after thousands of times of operation. 

• A4 (digital control system) 

• A6 (UPS) 

• B1 (overspeed) 

• B2 (sealing rupture) 

• B3 (blading rupture) 
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• B6T (thermal overheating) 

• B6M (mechanical overheating) 

• B10T (thermos-acoustic induced vibration) 

• C1 (compressor blading) 

• C3 (turbine blading) 

• C4 (bearing) 

• C5 (AC pump) 

• C6 (DC pump) 

• D1 (rotor) 

• D2 (compressor) 

In the condition that all parents work regularly, the irregular probability for this type of node 

was given 0.1% by expert judgement. 

4.3.2. The Relation between Human Perception and Output 

A correlation coefficient is required to explore the relationship between human perception 

and model output. First, eight different probabilities were assigned, representing eight 

different values of human perception. Then, eight different probabilities of Group D nodes 

were calculated based on the inference analysis, representing the probability distribution of 

the system outcome state. After these, the correlation coefficient can be calculated using the 

Karl-Pearson correlation coefficient formula (see Equation 3-2). 

➢ Type 1- Operation error 

To demonstrate the influence of human perception in the Type 1 nodes on the model, only 

human perception in the Type 1 nodes was changed, while the values of the Type 2 and Type 

3 nodes were both fixed at 0.1%. The irregular probabilities of Group D were then calculated 

and shown in Table 4-15.  
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Table 4-15. Irregular probabilities of Group D given different human perception in Type 1 nodes 

Human perception 

in Type 1 nodes 
0 0.10% 0.50% 1.00% 2.00% 3.00% 5.00% 10.00% 

Irregular 

probability 

of Group 

D 

D1=I 3.01% 3.40% 4.94% 6.83% 10.44% 13.86% 20.16% 33.28% 

D2=I 1.43% 1.61% 2.29% 3.13% 4.78% 6.37% 9.41% 16.25% 

D3=I 1.56% 1.75% 2.52% 3.47% 5.33% 7.13% 10.59% 18.46% 

D4=I 3.98% 4.50% 6.55% 9.03% 13.77% 18.22% 26.35% 42.88% 

Based on Table 4-15, the correlation coefficients between perception and the output of group 

D were calculated, which were 0.9969, 0.9990, 0.9992, and 0.9961, respectively. These 

results indicated significant correlations between human perception in Type 1 nodes and the 

irregular probabilities of Group D. As shown in Figure 4-4, these correlations were positive. 

 

Figure 4-4. Irregular probabilities of Group D given different human perceptions in Type 1 nodes 

➢ Type 2- Material flaw 

To demonstrate the influence of human perception in Type 2 nodes on the model, only the 

human perception of Type 2 was changed, the values of Type 1 and Type 3 were fixed at 1% 

and 0.1% respectively. The results of group D were calculated and shown in Table 4-16. 
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Table 4-16. Irregular probability of group D given different perceptions for type 2 

Human 

perception of 

Type 2 nodes 

0 0.01% 0.05% 0.10% 0.20% 0.30% 0.50% 1.00% 

Irregular 

probability 

of Group 

D 

D1=I 6.16% 6.23% 6.49% 6.83% 7.48% 8.14% 9.42% 12.53% 

D2=I 2.90% 2.92% 3.02% 3.13% 3.37% 3.60% 4.60% 5.20% 

D3=I 2.97% 3.02% 3.22% 3.47% 3.97% 4.47% 5.46% 7.88% 

D4=I 7.96% 8.07% 8.50% 9.03% 10.08% 11.12% 13.15% 18.02% 

Based on Table 4-16, the correlation coefficients between perceptions and the output of each 

node within Group D were 0.9999, 0.9761, 0.9999, and 0.9998, respectively, indicating 

significant correlations between human perception in Type 2 nodes and the output of Group 

D. Furthermore, Figure 4-5 showed that these correlations were positive. 

 

Figure 4-5. Irregular probabilities of Group D given different human perceptions in Type 2 nodes 

➢ Type 3- Other conditions 

To show the influence of human perception in Type 3 nodes, only human perception was 

changed in Type 3 nodes, while the values of Type 1 and Type 2 were fixed at 1% and 0.1% 

respectively. The results of Group D were calculated and shown in Table 4-17. 
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 Table 4-17. Irregular probabilities of group D given different perceptions for Type 3 nodes 

Perception for type3 0.00% 0.01% 0.05% 0.10% 0.20% 0.30% 0.50% 1.00% 

Irregular 

probability 

of group D 

D1=I 4.68% 4.90% 5.76% 6.83% 8.91% 10.93% 14.81% 23.58% 

D2=I 1.98% 2.10% 2.56% 3.13% 4.26% 5.37% 7.55% 12.70% 

D3=I 2.48% 2.58% 2.98% 3.47% 4.45% 5.41% 7.30% 11.77% 

D4=I 6.41% 6.67% 7.73% 9.03% 11.57% 14.03% 18.72% 29.52% 

The correlation coefficients between perception in Type 3 nodes and outputs of each node 

within Group D were 0.9991, 0.9997, 0.9998, and 0.9992, respectively, indicating significant 

correlations between human perception in Type 3 nodes and the output of Group D. Figure 4-

6 showed these correlations are positive. 

 

Figure 4-6. Irregular probabilities of Group D given different perceptions for Type 3 nodes 

Therefore, probabilities based on human perception in all three types of nodes were positively 

correlated with the output Group D. 

4.3.3. The Sensitivity Coefficient of Human Perception 

The sensitivity analysis of human perception, introduced in Section 3.2.2, was conducted. 

The sensitivity coefficient can be calculated following Equation 3-3. Initially, values based 

on human perception were 1%, 0.1%, and 0.1% for Type 1, Type 2, and Type 3, respectively. 

These values were used as baseline values for human perception. 
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For example, the sensitivity coefficient of D1 was calculated with respect to various values of 

human at Type 1 nodes based on Table 4-15. When the value of human perception in Type 1 

changed from 1% to 0, the sensitivity coefficient was: 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 =
∆𝑜𝑢𝑡𝑝𝑢𝑡 𝑜𝑢𝑡𝑝𝑢𝑡⁄  𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

∆𝑝𝑒𝑟𝑐𝑒𝑝𝑡𝑖𝑜𝑛 𝑝𝑒𝑟𝑐𝑒𝑝𝑡𝑖𝑜𝑛 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒⁄
=

(3.01%−6.83%) 6.83%⁄

(0−1%) 1%⁄
= 0.5593                  Equation 4-4 

The sensitivity coefficients of Group D for various values of human perception in Type 1 

nodes were calculated based on Equation 4-1 and shown in Table 4-18. The sensitivity 

coefficient varied from 0.43 to 0.56 in Table 4-18, suggesting that the degree of change in the 

output would be around half of the degree of change in the value of human perception in 

Type 1 nodes.    

Table 4-18. Sensitivity coefficient of Group D for various values of human perception in Type 1 nodes 

Perception for 

type1 
0 0.10% 0.50% 1.00% 2.00% 3.00% 5.00% 10.00% 

Sensitivity 

coefficient 

of group 

D 

D1=I 0.5593 0.5580 0.5534  0.5286 0.5146 0.4879 0.4303 

D2=I 0.5431 0.5396 0.5367  0.5272 0.5176 0.5016 0.4657 

D3=I 0.5504 0.5508 0.5476  0.5360 0.5274 0.5130 0.4800 

D4=I 0.5592 0.5574 0.5493  0.5249 0.5089 0.4795 0.4165 

Table 4-19. Sensitivity coefficient of Group D regarding various values of human perception in Type 2 nodes 

Perception for 

type2 nodes 
0.00% 0.01% 0.05% 0.10% 0.20% 0.30% 0.50% 1.00% 

Sensitivity 

coefficient 

of Group 

D 

D1=I 0.0981 0.0976 0.0996  0.0952 0.0959 0.0948 0.0927 

D2=I 0.0735 0.0745 0.0703  0.0767 0.0751 0.1174 0.0735 

D3=I 0.1441 0.1441 0.1441  0.1441 0.1441 0.1434 0.1412 

D4=I 0.1185 0.1181 0.1174  0.1163 0.1157 0.1141 0.1106 

Similarly, the sensitivity coefficients of Group D with respect to human perception in Type 2 

nodes are shown in Table 4-19, and the range was 0.07 to 0.145. 

As for Type 3, the range of sensitive coefficient was from 0.25 to 0.37 (see Table 4-20). 
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Table 4-20. Sensitivity coefficient of Group D concerning various values of human perception in Type 3 nodes  

Human 

perception in 

Type3 nodes 

0.00% 0.01% 0.05% 0.10% 0.20% 0.30% 0.50% 1.00% 

Sensitivity 

coefficient 

of Group 

D 

D1=I 0.3148 0.3140 0.3133  0.3045 0.3001 0.2921 0.2725 

D2=I 0.3674 0.3656 0.3642  0.3610 0.3578 0.3530 0.3397 

D3=I 0.2853 0.2850 0.2824  0.2824 0.2795 0.2759 0.2658 

D4=I 0.2901 0.2904 0.2879  0.2813 0.2769 0.2683 0.2521 

Furthermore, the ranges of numbers in the three tables of sensitivity coefficients indicated 

that the output of the model is more sensitive to perception in Type 1 than the other two 

types.   

  

Figure 4-7 shows values with Type 1 nodes were the highest, while those of Type 2 nodes were 

the lowest. Thus, human perception in Type 1 nodes, which stands for operation error, is the 

most sensitive parameter in this model.  
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Figure 4-7. Sensitivity coefficient of Group D nodes regarding the difference in human perception for each type nodes 

However, one should be aware that the perception baseline for Type 1 nodes was 1%, while 

the others were 0.1%. If we use 0.1% as the baseline for the Type 1 nodes to calculate the 

sensitivity coefficient of D1, which means that the ‘output baseline’ and the ‘perception 

baseline’ were fixed at 3.40% and 0.1% individually, according to Table 4-15, then the 

results were calculated:  

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 =
∆𝑜𝑢𝑡𝑝𝑢𝑡 𝑜𝑢𝑡𝑝𝑢𝑡⁄  𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

∆𝑝𝑒𝑟𝑐𝑒𝑝𝑡𝑖𝑜𝑛 𝑝𝑒𝑟𝑐𝑒𝑝𝑡𝑖𝑜𝑛 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒⁄
=

(3.01%−3.40%) 3.40%⁄

(0−0.1%) 0.1%⁄
= 0.1147      Equation 4-5 

The value was much smaller than the one based on 1% human perception (see the result of                   

Equation 4-4). Therefore, the most sensitive human perception is related to operation error, 

because experts believe that operation error is more frequent than other causes. 

4.3.4. Conclusion of Human Perception Analysis 

The sensitivity analysis showed a significant positive correlation between human perception 

and model output. Furthermore, the most sensitive parameter was the one that had the highest 

human perception value at baseline. 
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Chapter 5. Modelling for Human Performance Included System 

and Human Error Analysis 

Compared to the Human Performance Separated System (HPSS), the Human Performance 

Included System (HPIS) is an integrated system with complex variables, including the 

human, the organization, and the environment, in addition to hardware. In such a system, 

human performance is usually involved. This chapter introduces how the Bayesian Network 

(BN) modelling can be used as an assessment model for an HPIS failure in the industry. Two 

methods have been applied for human error analysis. These two methods approach the 

modelling process from different perspectives. One method focuses on human errors and 

aims to figure out what causes human errors from a cognitive perspective. The other method 

treats human errors as an essential part of an HPIS and seeks to determine the role of human 

errors in such a system. These two methods show differences in taxonomy (a predefined 

classification scheme) and model structure. Such a methodology is a combination of 

causation modelling and human reliability analysis (HRA). It considers the human factor as a 

part of the industry system. Two different methods for human error analysis show that this 

modelling can examine human errors from different perspectives and can be applied to 

various HPIS systems. 

5.1. Taxonomy for an HPIS Model 

5.1.1. Taxonomy of Human Errors in HPIS based on a Cognitive View 

Cognition is related to how we understand the world. The taxonomy in this section aims to 

classify the causation of human errors by viewing human errors as part of the cognitive 

process. Due to its robustness and efficiency, this taxonomy is expected to provide a clear 

structure and specific information about the role of human cognitive functions in HPIS. As 

the focus is on the human cognitive process, other parts of the system are thus treated as 

potential triggers for human errors. That is, other parts within HPIS are not supposed to 

influence how the human brain works, but to provide information to human. Meanwhile, the 
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flow of the cognitive process, including retrieving information, thinking, and evaluating, is 

not supposed to differ significantly in the industrial sectors. Therefore, it is plausible to create 

a universal taxonomy for human cognitive processes. 

Table 5-1. Taxonomy of CREAM 

Category Group Sub-group Contributor details 

Human 

Wrong action 
Wrong time, wrong type, wrong object, and 

wrong place 

Specific 

cognitive 

function 

Observation 

failure 

missed observation, false observation, and 

wrong identification 

Interpretation 

failure 

Faulty diagnosis, wrong reasoning, decision 

error, delayed interpretation, and incorrect 

prediction 

Planning failure Inadequate plan and priority error 

Person-

related 

function 

Temporary 

person-related 

functions error 

Memory failure, fear, distraction, fatigue, 

performance variability, inattention, 

physiological stress, and psychological 

stress 

Permanent 

person-related 

functions error 

Functional impairment, cognitive style, and 

cognitive bias 

Technology 

Equipment failure Equipment failure and software failure 

Procedure error Inadequate procedure 

Man-

machine 

interface 

problem 

Temporary 

interface problem 

Access limitations, ambiguous information, 

and incomplete information 

Permanent 

interface problem 
Access problems and mislabelling 

Environment  

Communication failure Communication failure, missing information 

Organization problem 

Maintenance failure, inadequate quality 

control, management problem, design 

failure, inadequate task allocation, and 

social pressure 

Training problem Insufficient skill and insufficient knowledge 

Ambient condition problem 
Sound, humidity, adverse ambient 

conditions, illumination, and temperature 

Working condition problem 

Excessive demand, inadequate workplace 

layout, inadequate team support, and 

irregular working hours 
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As the human brain is rather complex, there is no perfect method to create a taxonomy that 

includes all human factors. In this dissertation, we develop a new scheme based on a previous 

taxonomy, known as the Cognitive Reliability and Error Analysis Method (CREAM) with 

some modifications. The CREAM was proposed by Hollnagel (1998). As a popular method 

for human reliability analysis (HRA), CREAM offers a clear and practical division of human, 

technological, and organizational factors in human errors (see Table 5-1).  

As mentioned in Chapter 2, more data are required for more nodes. An enormous dataset 

would be required if all nodes of contributors are included in the model. Therefore, this 

taxonomy has been simplified by reducing the number of nodes.  

To achieve this, the nodes for the HPIS model were adapted only from the group / subgroup 

columns of Table 5-1. Another reason to give up the last column (‘contributor details’) as the 

nodes in Table 5-1 is that the details of some contributors are similar and are not easily 

distinguished from each other in the industry. As for the human category, subgroups (e.g., 

wrong action, observation failure) have been chosen as nodes in the model, which are more 

specific than the group column. Regarding the technological and environment categories, the 

group column (e.g., equipment failure) was used as nodes for the same reason.  

Table 5-2. A simplified taxonomy adapted from CREAM 

Category Nodes used for the HPIS model 

Human 

Wrong action, observation failure, interpretation failure, 

planning failure, temporary person-related function error, 

and permanent person-related function error 

Technology 
Equipment failure, procedure error, and man-machine 

interface problem 

Environment  

Communication failure, organization failure, training 

problem, ambient condition problem, and working 

conditions problem 
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Table 5-2 shows the simplified taxonomy for identifying human, technological, and 

environment factors that trigger human errors.  

5.1.2. Taxonomy of HPIS Failure in a Specific Industry Sector Concerning Human 

Errors 

Human factor is an essential component of many industries. Cognition is only part of the 

function of the human brain. When human errors in a specific industry sector are examined, 

one must consider the broad background of the industry. For example, one or more 

streamlines are involved in the industry that consists of the production of goods. During 

production, one or several organizations must join relevant activities with appropriate 

methods and equipment in designated spaces while investing money and time. There are 

common features related to human errors in the HPIS. However, industry sectors vary in 

degree of mechanization, frequency, and accuracy of operation demand and require different 

financial schemes and environments. This diversity may change the role of the human factor 

from sector to sector. Therefore, to deal with the influence of human errors on HPIS, 

developing a specific model for a particular industry sector is more reliable than a universal 

one.  

Thus, to develop a taxonomy for the HPIS system, we must create a framework with basic 

categories. Since there is no standard way to do this, a new method has been proposed (see 

Table 5-3). 

Table 5-3. A taxonomy framework to build the HPIS model 

Category Explanation 

Human 
Human factors, such as action, physical/psychological condition, 

cognition, knowledge, and skill 

Resource 

Physical things used during production, such as raw material, energy 

power, mechanical control system (including software), equipment 

and tools 

Workplace 
Scenes where the production takes place, such as site layout and site 

environment 
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Process 

Immaterial things required during the production, such as design, 

method statement, inspection, daily working shift (including 

overtime), housekeeping 

Organization 

Intangible things within groups/organizations who are involved in the 

production, referring to company culture, rules, management 

structure, financial situation, timetable limit 

Based on this framework, we may elaborate and cross-check all contributors with expert 

knowledge (including relative research work) and then decide whether to keep, ignore, or 

combine them.  

5.2. A Hybrid Method to Ascertain Dependency Links 

Traditional methods to develop dependency links, known as expert judgement and 

mathematical analysis, have some limitations. Expert judgements may vary and can be 

arbitrary. Mathematical analysis requires sufficient data, which may not be available in many 

situations. A hybrid method that combines expert judgement with mathematical analysis 

could be a potential solution. The dependency links could be identified using mathematical 

analysis first, then modified by expert judgement, and vice versa.  

5.2.1. Expert Judgement on Dependency Links 

The expert evaluation questionnaire is used to gather the expert judgement. Table 5-4 shows 

an example of such a questionnaire.  

Table 5-4. Questionnaire of dependency links 

Consequence 

Contributor 

Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ 

Ⅰ      

Ⅱ      

Ⅲ      

Ⅳ      

Ⅴ      
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The expert is asked to cross-check each pair and put the weight to stand for the dependence 

links.  

➢ A score of 3 indicates a strong dependence (there is a dependency link). 

➢ A score of 1 indicates a weak dependence (there may or may not be a dependency link). 

➢ A score of 0 indicates no dependence at all (there is no dependency link). 

To fill in the table, experts are suggested to follow some principles and guidelines, which are 

the same as the Procedure for Building Dependency Arrows for HPSS (see Section 3.1). For 

example, cyclic links should be avoided because the BN model is an acyclic graph. That is 

why the hierarchy rule is usually recommended, for example, Ⅰ → Ⅱ / Ⅲ → Ⅳ / Ⅴ.  

As the judgement of one expert can be biased, judgements from multiple experts are required. 

In this case, an average score of expert judgement should be calculated and compared with a 

threshold. For example, when the average score is higher than 2/3, it indicates a strong 

dependency link. When the average score is below 1/3, it indicates a weak or even no 

dependency link. When the average score is between 1/3 and 2/3, it indicates a vague 

dependency link, which requires further examination using mathematical independence 

analysis. In particular, mutual links are not excluded in the questionnaire because experts 

may have opposite judgements. The one with a higher total score should be kept. However, it 

is still possible that two identical scores appeared for both directions of the mutual link. 

Section 3.1.3 recommends some solutions for this rare situation and for cyclical relations. We 

report an example in Section 7.3. 

5.2.2. Mathematical Independence Analysis 

As mentioned in Section 2.3.2, the independence test focuses on pairs of variables, as 

indicated in Table 5-4. Table 5-5 shows an example of the results of the independence test. 

 

 



 68 

Table 5-5. Example of independence test results 

 Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ 

Ⅰ      

Ⅱ Independent     

Ⅲ Independent Independent    

Ⅳ Independent Dependent Dependent   

Ⅴ Dependent Independent Dependent Independent  

The results of the independence test are probabilities of dependency instead of binary 

judgements, as indicated by yes/no answers. To define a dependency link, the value must be 

greater than 99% or even be 99.9%. Then, expert judgement is introduced to complement the 

mathematical analysis. In other words, we keep dependency links with high probabilities and 

let experts define the rest using their judgement. See Section 2.3.2 for more discussion.  

However, the independence test only shows if the two variables are dependent but cannot tell 

the casual relations, which can be determined by expert judgement before or after the 

mathematical analysis.  

5.2.3. Sequence of Dependency Analysis 

The sequence of performing the dependency analysis, with either a mathematical analysis 

first or an expert judgement first, should be determined by the data quality and expertise of 

the experts. Usually, a more reliable analysis should be performed first.  

Usually, it is difficult to identify the cause of human errors from a cognitive perspective in 

the industry because cognition is rather complex, and experts with different expertise may 

diverge in their opinions. Thus, mathematical analysis may be a better choice when expert 

judgement is unreliable. In contrast, in a particular industry sector, experts may have more 

consensus than divergence. Thus, expert judgement can be conducted before using the 

mathematical method for dependency analysis. 
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5.3. Parameter Learning 

Expert judgement is not reliable for defining parameters for the HPIS model, because it is 

difficult to estimate the dependency strength between human and organization in the HPIS. 

Mathematical analysis, known as parameter learning in BN, is often used to calculate the 

dependency links between human and organization in the HPIS instead. This method 

calculates the frequency that populates each value within the CPT under the combination of 

states of parents. The frequency is used to decide the probability of the root node (see Section 

2.2.2). 

5.4. Human Error Analysis in HPIS Failure 

Human error analysis over a complex system aims to explore the role of human errors as 

causes or consequences. When human errors are defined as causes, this analysis focuses on 

comparing the influence of human errors and other factors on HPIS failure. When human 

errors are defined as consequences, the analysis aims to explore the causes behind these 

errors. A typical analysis method is the BN inferencing method for diagnosis and prediction. 

Generally speaking, a what-if analysis can be used to infer the influence of contributors. 

5.4.1. What-if Diagnosis 

What-if diagnosis is used to build a hypothetical undesirable consequence and diagnose the 

probability distribution of contributors. The probability value indicates the probability of each 

contributor. The most probable contributor is exposed with the highest value with an irregular 

state. Furthermore, the influence paths can be compared, and the most critical path can be 

located. The idea is to assume an irregular consequence, calculate the irregular probability of 

all contributors and then find the path composed of contributors with higher values. 

Figure 5-1 shows a diagnosis with an example of a what-if model. In this model, the outcome 

of the system is assumed to be irregular. The values beside each node are the probability of it 

being irregular and regular, respectively. 
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Figure 5-1. An example of what-if diagnosis analysis 

Figure 5-1 shows that the probability of human action is much higher than that of other 

contributors to the irregularity of the system. To locate the path, the parents of the human 

factors are then compared with each other. Since the irregular probability of the organization 

is higher than the environment, the path ‘organization → human action → outcome’ is 

more likely to contribute to the irregularity of the system than other paths. In this example, 

the outcome of the system is treated as the consequence node, while human action (a type of 

human error) as the cause. Similarly, human action can be treated as the consequence node 

with an undesirable state. Then, through the diagnosis process, we can explore the 

probabilities of contributors. The diagnosis results are supposed to facilitate the identification 

of trigger(s) more efficiently. 

5.4.2. What-If Prediction 

Apart from locating the trigger by what-if diagnosis, we shall discuss how vital the trigger is 

and what the benefit is when the trigger is removed or mitigated. For this purpose, a what-if 

prediction can be used to see what would happen to the consequent node given a specific 

state of the contributor node. The idea of a what-if prediction is to assume a particular state of 

the contributor node and calculate the probability of the consequence node. Two different 

(usually opposite) assumptions are given to the same contributor node, and two separate 
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consequence probability distributions are calculated and compared to obtain the weight 

indicating the importance of the contributor node. See Equation 5-1 for the definition of the 

weight that is used to quantify the significance of the contributor node:           

𝑊𝑒𝑖𝑔ℎ𝑡 (contributor → 𝑐𝑜𝑛𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒) =
𝑐𝑜𝑛𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒

𝑐𝑜𝑛𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
            Equation 5-1 

where: 

weight is the critical quantity of contributor node to consequence node. 

The consequence baseline is the probability of consequence given the first assumption for the 

contributor state. 

The consequence difference is the difference between the consequences given another 

assumption for the contributor state and the consequence baseline. 

The weight value should be ranged from [-1,1]. A higher absolute value indicates a more 

significant influence of the contributor. A positive value indicates that the contributor impact 

consequence positively, whereas a negative value indicates a negative influence. 
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Chapter 6. Assessment Model for Human Error in Human 

Performance Included System from Cognitive View 

This chapter builds a Bayesian Network (BN) model based on a taxonomy, known as the 

Cognitive Reliability and Error Analysis Method (CREAM), for the Human Performance 

Included System (HPIS). Compared to previous studies and the next chapter, in this chapter, 

human factors, specifically the wrong action of workers, were treated as consequences of the 

HPIS. First, it reports the modelling process, including the taxonomy of nodes, dataset, and 

identification of the network structure and parameters. Then, the contributors to human errors 

were weighted and compared. Using an existing dataset, this BN model is used as an example 

to demonstrate how BN modelling can be used to improve traditional human reliability 

analysis (HRA). Our model has a clear structure and provides numerical weight to 

contributors. This information is important for making decisions that can facilitate the control 

of risk factors. In addition, this BN model can be used as an example of its application in 

various industrial sectors.  

6.1. Modelling Process 

6.1.1. Taxonomy of Nodes 

The taxonomy of nodes used in this chapter was adapted from   

Table 5-2.  

6.1.2. Dataset Converted from Multi-Attribute Technological Accidents Dataset 

(MATA-D) 

MATA-D was developed by Raphael Moura (Moura et al., 2014). It contains 238 major 

accidents in different industries. The dataset was originally designed to fit the taxonomy of 

contributors in Table 5-1 but was converted to fit the taxonomy in Table 5-2. All contributors 

were kept as binary variables. The state of nodes (second column in Table 6-1) was coded as 

irregular when a problem was identified in the accident reports. Nodes were registered as 
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regular only when no problem was identified in accident reports. The complete converted 

MATA-D dataset can be found in Appendix B. Table 6-1 shows the statistical results of the 

converted MATA-D. 

Table 6-1. Data classification results 

Category Contributor node 
Frequency* 

# % 

Human 

Wrong action 125 52.52% 

Observation failure 47 19.75% 

Interpretation failure 79 33.19% 

Planning failure 38 16.97% 

Temporary person-related function error 31 13.03% 

Permanent person-related function error 
18 7.56% 

Technology 

Equipment failure 134 56.30% 

Procedure error 105 44.12% 

Man-machine interface problem 51 21.43% 

Environment  

Communication failure 69 28.99% 

Organization failure 224 94.12% 

Training problem 129 54.20% 

Ambient condition problem 21 8.82% 

Working conditions problem 27 11.34% 

* Number of events in which contributors appeared 

6.1.3. Dependency Links 

We first developed an assessment model that explored the cause of human errors from a 

cognition point of view. To simplify the model, we focus on links that refer to cognitive 

functions and wrong actions while ignoring other links. To find dependency links, 

independence tests, known as the Chi-square test (see Section 2.3.2), were conducted. Table 

6-2 shows the results of the χ2 test. 
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Table 6-2. Results of the χ2 test 

Contributor 
Wrong 

action 

Planning 

error 

Interpretation 

error 

Observation 

error 

Planning failure 70.6177 
   

Interpretation failure 18.152 19.05 
  

Observation failure 55.3853 1.1601 11.0527 
 

Communication failure 27.2855 11.5856 0.9806 5.5169 

Person-related Temporary function error 84.2535 0.8305 27.2405 3.9253 

Person-related permanent function error 114.4443 8.0952 48.1788 14.9847 

Man-machine interface problem 49.367 2.3356 8.2967 0.2056 

Equipment failure 0.686 83.8972 25.7038 67.4753 

Ambient condition problem 106.8579 5.5914 42.5868 11.598 

Procedure error 3.3651 44.8721 5.989 32.5143 

Training problem 0.1351 76.3862 21.3476 60.6179 

Working condition problem 92.8262 2.1559 32.8175 6.4004 

Organization problem 110.6707 300.5958 197.2176 275.2037 

Only pairs with χ2 ≥ 10.828 indicated more than 99.9% probability of a dependency 

relationship, and thus were regarded as holding a dependent link. This is not a strict threshold 

but may vary in studies. To determine the direction of the links, expert judgement must be 

used. Additionally, arrowheads must be added to the links. Although the CREAM describes 

potential contributors of each factor used in the links, the logical decision was used to find 

contributors that were not otherwise identified. Table 6-3 shows all dependencies. 

Table 6-3.Dependencies table for the human error analysis model 

Consequence Contributor 

Wrong action 

Observation failure, interpretation failure, planning failure, communication 

failure, temporary person-related function error, permanent person-related 

function error, interface problem, ambient condition problem, working 

condition problem, organization problem 

Planning 

failure 

Interpretation failure, communication failure, equipment failure, procedure 

problem, training problem, organization problem 

Interpretation 

failure 

Observation, temporary person-related function error, permanent person-

related function error, equipment failure, ambient condition error, training 

problem, working condition problem, organization problem 

Observation 

failure 

Permanent person-related function error, equipment failure, ambient condition 

problem, procedure problem, training problem, organization problem 



 75 

6.1.4. Network Structure 

The causal graph, which represents the network structure, was developed to show the model 

structure (see Figure 6-1). 

 

Figure 6-1. Causal graph for human error analysis based on the CREAM 

6.1.5. Conditional Probability Table 

The parameter learning process was developed with all the data from the converted MATA-D 

dataset, following Bayesian parameters updating routine provided by the Bayesian Network 

Toolbox within Matlab. A uniform distribution was given as a prior probability for all nodes 

to aid in parameter learning. 

6.1.6. Model Validity 

The model in this chapter was developed using the converted MATA-D dataset, in which the 

dependency links and probabilities were identified by the BN modelling. The validity of the 

model was further evaluated on the basis of these links and probabilities. Expert knowledge 
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can be used to check whether the dependency links are reasonable. Erik Hollnagel (1998) 

presented antecedents of consequences in the CREAM, but they did not specify whether the 

dependency links were direct or indirect. Table 6-4 shows the difference between the present 

model and the CREAM 

Table 6-4. Differences in dependency link between the present model and the CREAM 

Consequence 

(Child node) 

Different parent nodes between the present model and the CREAM 

Included in our model but not in 

CREAM 

Included in CREAM but not labelled 

as parent nodes in our model 

Wrong 

action 

Permanent person-related function 

error, ambient condition problem, 

working condition problem 

Procedure failure, equipment failure 

Planning 

failure 

Equipment failure, procedure 

failure, organization failure 

Ambient condition problem, working 

condition problem 

Interpretation 

failure 

Ambient condition problem, 

training problem 

Procedure problem 

Observation 

failure 

Procedure problem, training 

problem 

Interpretation failure 

Although it is unlikely to give an accurate comparison of the dependency links between these 

two models (say which one is better), we have identified some differences.  

First, in the present model, procedure is considered the parent of planning and observation, 

but not the parent of action and interpretation, as in the CREAM model. The procedure is 

assumed to indicate how we observe and what we shall do next (planning). In addition, 

interpretation relies on the human brain, which translates what you see to what you think and 

requires more skills and knowledge than the procedure. Action refers to motor responses 

following the cognitive process, but is indirectly influenced by the procedure, just as the 

equipment. 

Second, interpretation and observation are mutually linked in the CREAM model. In the 

present model, however, observation is treated as a parent of interpretation due to the acyclic 

principle of the Bayesian Network.  
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Third, in the present model, wrong actions were associated with problems of ambient 

conditions and working conditions, but not in the CREAM model. However, the results of the 

quantity analysis indicate that these links are not strong in the present model (see Figure 6-2).  

As the probabilities of nodes are calculated based on the dataset, the quality of the model 

relies on the quality of the data. Our model demonstrates where the problem may exist, but it 

only shows the trend but not the accurate probability. Model quality can be examined by 

using the what-if analysis shown in Section 6.2 (although it is not the initial purpose of 

writing that section).  

In summary, the model in this chapter explores human errors from a cognitive point of view 

and reveals differences and similarities compared to the CREAM model.   

6.2. Weight of Contributors to Human Errors 

Figure 6-1 shows the potential causes of human errors. A weighted analysis is used to 

identify which factor affects the results to a greater extent, according to Section 5.4.2. Each 

ancestor node was assigned a different state (regular / irregular), while other nodes remained 

unobserved. The irregular probability of the child node was calculated, as shown in the 

following function. 

Weight (contributor → human error)

=
[𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦(human error = I|contributor = I) − 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦(human error = I|contributor = R)]

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦(human error = I|contributor = R)
 

The results were then compared to see which ancestor node(s) significantly influenced the 

child node. This calculation process was executed with a belief propagation algorithm 

provided by Bayesian Network Toolbox within Matlab (Murphy, 2003) 

6.2.1. Weights of the Contributors to the Wrong Action 

Figure 6-2 shows the weights of the contributors to the wrong action. As part of the cognitive 

process, interpretation has the most significant influence, followed by planning and 
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observation. The other contributors with small absolute values showed little influence on the 

wrong action. 

 

Figure 6-2. Weights of contributors to wrong action 

6.2.2. Weights of the Contributors to Planning Failure 

Figure 6-3 shows the weights of the contributors to planning failure. Interpretation has the 

most critical influence on planning failure, indicating its crucial role in the cognitive process. 

Communication also significantly influences planning due to its role in the planning stage. 

The weight of training was approximately 5%. This value is not high, but it still indicates the 

influence of training on planning failure. 

When the following contributors were treated as ancestors but not parents, including the 

ambient conditions, working conditions, observation, and the permanent and temporary 

functions related to the person, they showed little influence on planning, as indicated by their 

small absolute weight values. The procedure was treated as a parent node, but its weight was 

close to zero, suggesting that it had little effect on the planning failure. 
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As for the equipment node, its weight was negative, suggesting that equipment failure may 

decrease the probability of planning failure. In some accidents, equipment failure, but not 

human errors, often causes accidents. The negative influence of organizational problems on 

planning might be due to improved human performance used to compensate for 

organizational problems.  

  

Figure 6-3. Weights of contributors to planning failure 

6.2.3. Weights of the Contributors to Interpretation Failure 
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Figure 6-4 shows the weights of the contributors to interpretation failure. As a crucial part of the 

cognitive process, interpretation can be affected by six parents in a conspicuous way, 

including observation, permanent person-related function, temporary person-related function, 

working conditions, training, and ambient conditions, all of which the weights were above 

10%. In terms of equipment and organization, the same issue was found in planning failure. 

  

Figure 6-4. Weights of contributors to interpretation failure 
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6.2.4. Weights of Contributors to Observation Failure 

Figure 6-5 shows the weights of all contributors to the observation failure. The problem of 

permanent person-related function and ambient conditions increased the probability of 

observation failure by more than 30%, respectively, while procedure problems increased by 

about 20%. In terms of equipment and organization, the same issue was found in planning 

failure and interpretation.  

As to training problem, the reason for its negative influence on observation, seems to be an 

illusion by the dataset. Training problem may not induce observation failure. Furthermore, 

either training problem or observation failure may cause interpretation failure (or wrong 

action), but they do not occur at same time based on the dataset. 

  

Figure 6-5. Weights of contributors to observation failure 

6.3. Conclusion of Human Error Analysis from a Cognitive View 

This model shows that interpretation has the most significant influence on wrong action, 
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Table 6-5. Significant contributors to the cognitive process 

 Contributors with a significant influence on the cognitive process 

Planning failure Interpretation failure, communication failure 

Interpretation 

failure 

Observation failure, permanent person-related function error, 

temporary person-related function error, working conditions problem, 

training problem, ambient condition problem 

Observation 

failure 

Permanent person-related function error, ambient condition problem, 

procedure failure 

According to this model, equipment failure and organization problems are two contributors 

that have been shown to decrease the probability of human errors in the cognitive process. It 

is surprising that these two variables improve human cognition in our model. One possibility 

for these inconsistent results may lie in the accident reports dataset. In some cases, equipment 

failure has direct consequences, leaving no chance for human errors. Therefore, 

mathematically, equipment failure may decrease the probability of human errors. As for the 

organizational problem, there are two possible reasons. On one hand, organizational problems 

cause wrong action directly, but not harm the cognitive process. On the other hand, if people 

discover some organization problems, such as maintenance failure, design failure, or 

inadequate task allocation, they may be more careful during the cognitive process, thus, 

people compensate for human performance and reduce the probability of cognitive errors.  
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Chapter 7. Assessment Model for Construction Occupational 

Accidents and Human Error Analysis 

This chapter reports on the building of a BN model for occupational construction accidents in 

China. It demonstrates how to build a BN model for a Human Performance Included System 

(HPIS) failure and how to identify the most important contributors and main paths among 

contributors. Compared with the previous chapter, this chapter focuses not only on human 

factors but also on other factors that can contribute to the failure of the HPIS. In particular, it 

reveals how to analyse human errors for construction occupational accidents.  

It first introduces a new taxonomy of contributors that was proposed to identify and classify 

factors related to construction occupational accidents. The proposed taxonomy has been used 

to guide data collection in this dissertation and can be used in future data collection as well. 

Then it reports on a Bayesian Network (BN) model that was developed based on 303 

occupational accidents collected from the construction industry in China. Finally, it presents 

the analysis of the impact of contributors especially human errors on accidents. 

7.1. Contributors Taxonomy for Construction Occupational Accidents  

A new taxonomy was proposed to identify potential contributors to occupational accidents in 

the construction industry (see Table 7-1). 

It should be noted that, besides these contributors, the consequences, namely occupational 

accident and structure failure, are also nodes of the model. Occupational accident is usually 

mentioned as a safety accident in construction, while structure failure is always mentioned as 

a quality accident. Furthermore, structure failure may or may not cause occupational 

accident. 
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Table 7-1. Taxonomy of contributors linked with construction occupational accidents 

Category Contributor 

Human 
Wrong action, physical problem, insufficient skill, poor safety knowledge, 

communication failure 

Resource 
Personal Protective Equipment (PPE) failure, machinery problem, material 

deficiency 

Workplace Site layout problem, site environment problem 

Process 
Design deficiency, inadequate method statement, insufficient test, irregular 

working hours, supply/maintenance problem 

Organization 
Manpower allocation problem, insufficient management system/working rule, 

insufficient safety training, schedule pressure, economic pressure 

7.1.1. Human 

The human category, which includes behaviour, physical condition, ability, awareness, and 

communication of workers, has been consistently associated with construction accidents 

reported in industry and revealed in previous studies. In our taxonomy, the human category 

only includes on-site workers, but not people who were involved during design, rulemaking, 

finance, and schedule planning. Human errors in those stages are complex and should be 

analysed in separate models.  

Table 7-2. Contributors within the human category to occupational accidents in the construction industry  

Contributor Definition/explanation 

Wrong action Wrong action or operation of the worker(s). 

Physical problem 
Poor work performance due to physical problems, including 

fatigue, illness, impairment. 

Insufficient skill 
Lack of skills to complete the work or to use equipment/tools 

properly, such as welding, measuring, using the crane, etc. 

Poor safety knowledge 
Lack of safety knowledge/awareness, which is usually described 

as reckless, careless, or ignorance. 

Communication failure Missing, incorrect, or incomplete information. 

7.1.2. Resource 

The resource category refers only to physical resources used in the construction industry, 

such as materials, equipment, and tools. Other resources, such as human resources and 
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technical documents, are not included. Furthermore, according to previous research (Gattuso, 

2021; Sehsah et al., 2020), failure of Personal Protective Equipment (PPE) plays a vital role 

in occupational accidents in the construction industry. Due to the importance of safety 

performance and the use of personal protection, PPE is considered a separate factor.  

Table 7-3. Contributors within the resource category to construction occupational accidents 

Contributor Definition/explanation 

PPE failure Poor condition, usability, or suitability of PPE or lack of PPE 

Machinery problem Poor condition, usability, or suitability of the machine 

Material deficiency Poor condition, usability, or suitability of building material 

7.1.3. Workplace 

The workplace category refers mainly to the layout and environmental conditions of the 

construction site.  

Table 7-4. Contributors within the workplace category to construction occupational accidents  

Contributor Definition/explanation 

Site layout problem Narrow space, lack of safeguard, improper layout 

Site environment 

problem 

The problems of environment, such as noise, illumination, humidity, 

and toxic gas content 

7.1.4. Process 

The process category, also known as the technical process, refers to essential techniques or 

phases during the construction process, but does not include the building operation performed 

by workers. 

Table 7-5. Contributors within the process category to construction occupational accidents 

Contributor Definition/explanation 

Design 

deficiency/defect 

Inaccurate or insufficient details of the design document, including 

mechanical analysis and design for the structure, equipment, tools, 

materials and the work site 

Inadequate method 

statement 

Ambiguous, incomplete, or incorrect work method statement that 

specifies the procedure of a task 
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Insufficient test 
Missed or incorrect equipment, material, structure, or environment 

tests for revealing flaws or defects 

Irregular working 

hours (work shift / 

overtime) 

Irregular working hours, like overtime, night shift, and working on 

holiday, which may lead to disturbances in physiological and 

psychological conditions 

Supply/housekeeping 

problem 

(housekeeping) 

Inefficient supply and maintenance, which may cause problems 

with the lack of function of materials, equipment, machine, PPE, or 

working conditions on the construction site 

7.1.5. Organization 

The organization category refers to the organization environment. 

Table 7-6. Contributors within the organization category to construction occupational accidents 

Contributor Definition/explanation 

manpower 

allocation problem 

Allocate the task to incompetent subcontractors or unqualified 

workers, or the subcontract/task is not clearly defined 

Insufficient 

management rule 

Ambiguous, incomplete, or incorrect working rules, unclear roles and 

duties of workers, unclear distribution of responsibility, and poor 

management of the team 

Insufficient safety 

training  

Missing or inadequate safety training due to incomplete, ambiguous, 

incorrect content or insufficient training time, which causes poor 

knowledge or awareness of safety 

Schedule pressure High expectation of construction time, which may lead to 

modification of project design, resource supply, manpower 

allocation, etc. 

Economic pressure Budget reduction or overspending, which may lead to tight project 

design, resource supply, manpower allocation, etc. 

7.1.6. No Supervision/Inspection Included 

Supervision, also known as inspection, plays a vital role in the construction industry. 

Supervision is required in most construction sectors, including materials, structure, process, 

working rules, working plan, financial issues, and timetable. However, supervision or 

inspection is usually conducted by a separate professional team instead of the contractor. In 

other words, it is like a monitor or a safeguard running by a third party. Thus, the 

supervision/inspection is excluded in this classification scheme. 
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7.2. Dataset of Construction Occupational Accidents in China 

7.2.1. Data Collection 

A dataset with sufficient data is required to establish causal links between contributors and 

occupational accidents. In this study, we collected over 3000 accident reports, including 

occupational accidents and structural failure, from dozens of local authorities, insurance 

companies and construction firms in China, including mainland China and Hong Kong SAR. 

However, many reports lack sufficient detail, especially those about non-fatal cases. For 

example, in an incident report of a fall from height, the cause was simply specified as 

“careless”, but no further information, such as workplace, the worker’s characteristics, 

training, or safety rules, is included. Thus, these reports were excluded, leaving only 303 

reports about fatal accidents or severe structural failure with sufficient details in the data 

analysis. 

7.2.2. Data Classification 

To demonstrate how data classification works with the detailed description of an accident 

report, a gas explosion accident during the construction of the Dongjiashan tunnel in Sichuan, 

China, was used as an example (see Table 7-7). The Dongjiashan tunnel was part of a 

highway from Dujiangyan to Wenchuan in Sichuan province in the southwest of China. The 

accident occurred on December 22, 2005, which caused 44 fatalities, 11 injuries, and a direct 

economic loss of 20.35 million RMB (about 2.6 million Euros). The tragedy was triggered by 

a plug short circuit and a high concentration of gas. The investigation report revealed no 

further information about the short circuit, but elaborated on the high gas concentration at the 

construction site. According to the report, high gas concentration was related to a ventilation 

system problem that had been found a few days but not yet resolved, so fresh air had not been 

sent to the tunnel for a while. Additionally, the gas concentration inspection was not properly 

performed due to unskilled workers. Furthermore, designers underestimated the danger of gas 
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content and no precautious measures or technical procedures for gas leakage were 

implemented. 

Table 7-7. Classification and interpretation of nodes for modelling Dongjiashan tunnel accident 

Category Contributor Justification* 

Occupational accident There were 44 fatalities, 11 injuries. 

Structure failure The working face of tunnel collapsed. 

Human 

Wrong action Workers failed to fill the inspection form properly. 

Insufficient skill 

The workers to monitor gas concentration were 

unqualified. They did not have sufficient knowledge 

to conduct the inspection and fill the form. 

Resource 
Machinery 

problem 

An ignition source triggered the explosion due to the 

short circuit of a plug within an electric cabinet. The 

ventilation system had been out of work for a few 

days. 

Workplace 
Site environment 

problem 

A previous supervision report indicated a few days 

earlier that there was insufficient fresh air and 

luminance in the tunnel. No improvement had been 

reported before the accident occurred. 

Process 

Design deficiency 

Designers underestimated the danger of the gas 

content. No precautions or technical method for gas 

leakage were mentioned in any of the design 

documents. Only the gas concentration monitoring 

rules were specified. 

Insufficient test 

Some data required by the gas test form were 

missing. The frequency of tests did not meet the 

standard. 

Organization 

Supply 

/maintenance 

problem 

The ventilation system problem had been reported, 

but it was not fixed. 

Manpower 

allocation 

problem 

The allocation of manpower was improper or 

inadequate, such as using an unqualified gas 

monitoring team. 

* Inferred from descriptions in the accident investigation report on the gas explosion at the 

construction site of the Dongjiashan tunnel. 

This example demonstrated how irregular information was classified through qualitative 

analysis of accident reports. However, such an analysis could only reveal whether a problem 
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existed but could not measure its severity. Therefore, in the dataset, all factors were specified 

as two states, which are irregular and regular, in other words, whether a problem existed or 

not. The dataset has been named the Contributors to Construction Occupational Accidents 

Dataset (CCOAD) (see Appendix D). 

7.2.3. Results of Data Classification 

Table 7-8 summarizes the results of the data classification. The human category was 

identified in 77.89% of accident cases, with 71.95% being wrong action. Insufficient skill and 

poor safety knowledge were approximately 30%, which played an important role in 

construction safety performance. PPE failure (12.54%), machine problem (17.16%) and 

insufficient site layout (14.19%) were the main contributors in the resource category 

(30.69%) and the workplace category (23.10%). The failure of the process appeared in 

71.62% of the cases, including inadequate method statements (33.33%), design deficiency 

(29.04%), and supply/maintenance problems (18.48%). Organizational issues accounted for 

34.32%, with an essential role in the allocation of manpower (20.46%). 

Table 7-8. Results of data classification 

Node 
Frequency* 

Category 
Frequency* 

# % # % 

occupational accident 296 97.69    

structure component failure 120 39.60    

Wrong action 218 71.95 

Human 236 77.89 

Physical problem 7 2.31 

Insufficient skill 91 30.03 

Poor safety knowledge 97 32.01 

Communication failure 18 5.94 

PPE failure 38 12.54 

Resource 93 30.69 Machinery problem 52 17.16 

Material deficiency 15 4.95 

Site layout problem 43 14.19 
Workplace 70 23.10 

Site environment problem 31 10.23 

Design deficiency 88 29.04 
Process 217 71.62 

Inadequate method statement 101 33.33 



 90 

Insufficient test 42 13.86 

Irregular working hours 5 1.65 

Supply/ maintenance problem 56 18.48 

Manpower allocation problem 62 20.46 

Organization 104 34.32 

Insufficient management rule 24 7.92 

Insufficient safety training 20 6.60 

Schedule pressure 16 5.28 

Economic pressure 8 2.64 

* Number of events in which contributors appeared 

7.3. Dependence Analysis 

Expert evaluation method and independence test were combined to identify dependency 

links. 

7.3.1. Relation Table 

A questionnaire was developed to build the relation table of contributors. A relation table was 

then filled with weights indicating the dependence’s strength. Table 7-9 shows an example of 

a relation table. The entire table can be found in Appendix C. 

Table 7-9. An example of a relation table of contributors built from the questionnaire 

Consequence 

Contributor 

Occupation 

accident 

Structure 

failure 

Wrong 

action 

Physical 

problem 

Insufficient 

skill 

Poor 

safety 

knowledge 

Occupation accident       

Structure failure       

Wrong action 3 3  0 0 0 

Physical problem 0 0 3  0 0 

Insufficient skill 0 0 3 0  0 

Poor safety knowledge 0 0 3 0 1  

➢ Strong-dependence 
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A score of 3 indicated a strong dependence on experts who judged a contributor to be the 

cause of a consequence. For example, structural failure is likely to cause occupational 

accidents. 

➢ Weak-dependence 

A score of 1 indicated a weak dependence that experts postulated that a contributor might be 

a cause of the consequence, but they could not make a strong statement. For example, experts 

may suspect that a construction schedule or economic pressure might lead to a less optimal 

method statement. 

➢ Non-dependence 

A score of 0 indicated that there was no dependence on whether a contributor was viewed as 

the cause of a consequence. For example, experts may not believe that insufficient skills 

could cause physical problems for the worker. 

To help fill the table, the following principles were followed: 

I. Only direct dependence is qualified to be considered as a strong or weak dependence. 

Indirect dependence should be classified as non-dependence. For example, insufficient 

safety training may cause poor safety knowledge that leads to wrong action, but 

inadequate safety training is not directly related to wrong action. 

II. Only human errors from construction workers on site are included in the model, but no 

other staff and personnel in the organization or the process are included.  

III. The hierarchy rule is introduced so that contributors are grouped into four levels, 

including:  

First level: Organization group 

Second level: Process group 

Third level: Worker group, Resource group, Working site group 
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Fourth level: Structure failure, Occupational accident 

7.3.2. Questionnaire  

Five experts were invited to complete the questionnaire. Two of them were site managers of 

contractors, another two were on-site chief supervisors, and one was from academia. All 

experts had more than 20 years of experience in construction management. The questionnaire 

(see Appendix C), the taxonomy, the definition (from Table 7-1 to Table 7-6), and the 

statistical analysis results (Table 7-8) were provided to experts. The experts filled the forms 

independently.  

For each box in the form, when the score was no less than 9, standing for three strong 

dependencies or two strong dependencies and three weak dependencies at least, suggesting 

that at least half of the experts believed that the dependence existed. Thus, the dependence 

relation was included in the model. The dependence relation was excluded from the model 

when the score was no more than 6, which is for two strong dependency links at most. A 

further independence test has been done for cells with a dependency score of 7 or 8. Table 7-

11 shows the summary results of the questionnaire. Overall, 42 dependence relations have 

been built, with four more requiring further analysis (highlighted in the table). The forms 

filled out by the five experts can be found in Appendix C. 

7.3.2. Independence Test 

Since all nodes are binary variables with two states, the Chi-square test was used to analyze 

the independence following the procedure of the Chi-square test in Section 2.3.2. Table 7-10 

shows the results of the Chi-square test.  

Table 7-10. Results of the Chi-square test for independence 

Target factors Test statistic Conclusion for 

dependence 

Inadequate method statement & insufficient 

skills 

0.7624 independent 
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Scheduling pressure & manpower allocation 

problem 

31.1358 dependent 

Site layout & occupational accident  428.5512 dependent 

Site environment & wrong action  238.3901 dependent 

According to Table 2-5, the dependence probability of the first pair is less than 75%, while 

others are as high as more than 99.9%. Thus, the last three pairs were considered to hold 

dependent relations. In total, 45 dependencies were identified in the model. 
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Table 7-11. Summary of the questionnaire 

 

 

              consequence
contributor

occupation
accident

structure
failure

wrong
action

physical
problem

insufficient
skill

poor safety
awareness

communication
failure

PPE
failure

equipment/tools
deficiency

material
deficiency

site
layout

site
environment

design
deficiency

inadequate
method

statement

insufficient
test

Irregular
working
hours

supply
/maintenance

problem

manpower
allocation
problem

insufficient
management

rule

insufficient
safety

training

scheduling
pressure

economic
pressure

occupation accident
structure failure 15
wrong action 15 13 0 0 0 0 0 0 0 0 0

physical problem 0 0 15 0 0 4 0 0 0 0 0
insufficient skill 0 0 15 0 1 1 6 0 0 0 0

poor safety awareness 0 0 15 0 1 5 15 0 0 0 0
communication failure 1 0 15 0 0 3 1 0 0 0 3

PPE failure 15 0 0 0 0 0 0 0 0 0 0
equipment/tools deficiency 15 5 0 0 0 0 0 0 0 0 0

material deficiency 2 15 0 0 0 0 0 0 4 0 0
site layout 8 0 0 0 0 0 1 0 0 0 0

site  environment 0 0 8 5 0 0 15 0 0 0 0
design deficiency 0 15 0 0 0 0 0 1 15 15 15 4 15 0 0 0

inadequate method statement 0 3 15 0 7 0 0 0 0 0 3 0 0 4 0 0
insufficient test 0 15 0 0 0 0 0 3 15 15 0 15 0 0 0 0

Irregular working hours 0 0 0 15 0 0 0 0 0 0 0 0 0 0 0 0
supply/ maintenance problem 0 0 0 0 0 0 0 15 15 15 12 15 0 0 0 0
manpower allocation problem 0 0 0 6 15 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
insufficient management rule 0 0 3 0 3 0 15 0 0 0 4 0 3 10 15 0 15 15 15 0 0

insufficient safety training 0 0 0 0 0 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
schedule pressure 0 0 2 2 0 0 0 0 0 0 2 0 15 5 3 15 6 8 1 1 0
economic pressure 0 0 0 0 0 0 0 0 0 0 2 0 10 5 3 0 15 15 0 0 0
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7.4. BN Model for Contributors to Construction Occupational Accidents  

7.4.1. Network Structure 

Figure 7-1 shows a causal graph representing the structure converted from the questionnaire 

and the independence test. This graph illustrates the contributors to accidents and their 

dependency links. Nodes from different groups were shown in distant background colours.  

Figure 7-1. Structure of a BN model for contributors to construction occupational accidents  

7.4.2. Conditional Probability Table 

The parameter learning process followed the belief propagation algorithm provided by 

Bayesian Network Toolbox within Matlab (Murphy, 2003) using all data. A uniform 

distribution was given as a prior probability for all nodes to aid in parameter learning. 

7.4.3. Model Validity 

Our model may have some limitations. First, since the network parameter was updated from 

the dataset, the robustness is based on the quality of the dataset. However, since the network 
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structure presented in this chapter was developed according to expert knowledge and an 

independence test subsequently, the structure is believed to fit empirical knowledge and the 

dataset. Second, since most of the data were adapted from accident reports, the probability 

value of a regular state for accidents is highly underestimated compared with the real world. 

When this model is used to examine contributors in a construction accident, it is reliable. 

However, this model cannot be used to predict the probability distribution of accidents, but to 

diagnose the frequency and probability of causes.  

7.5. Analysis of Contributors to Construction Occupational Accidents  

The analysis focuses on three nodes: occupational accident, structure failure, and wrong 

action. The first two are types of construction accidents, while the last is a typical human 

error performance. These three nodes were treated separately as consequences during the 

inference calculation. The calculation process was executed with Pearl’s belief propagation 

algorithm provided by Bayesian Network Toolbox within Matlab (Murphy, 2003).  

7.5.1. Main Paths to Occupational Accidents in the Construction Industry 

A diagnostic analysis was first conducted to locate possible contributors to accidents. Based 

on the assumption that the accident was in an irregular state, the irregular probability of each 

contributor was then calculated. Figure 7-2 shows the result. 

Wrong action contributed the most to the occurrence of accidents compared to other 

contributors, suggesting that wrong behaviours of workers caused the majority of 

occupational accidents in the construction industry in China. In other words, human error is 

the most frequent trigger of accidents. The second possible contributor is structure failure, 

representing another major trigger of accidents. Problems in method statements and safety 

knowledge accounted for more than 30% of accidents, followed by skills, design, and 

allocation of manpower, with probabilities around 20% and 30%, respectively.  
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Figure 7-2. Probability of contributors to the occurrence of occupational accidents in the construction industry 

To identify the main paths between contributors to accidents, the diagnosis results of all 

probabilities about irregular states were added to the causal model graph (see Figure 7-3). 

Figure 7-3 indicates several main paths between contributors to accidents, but contributors in 

the human category had higher probabilities of causing accidents than other contributors. The 

accidents had five parents, with the wrong action having the highest probability, followed by 

structural failure. Among the six parents of the wrong action, the probability of inadequate 

method statement, poor safety knowledge, and insufficient skill had higher probabilities than 

other contributors. The inadequate method statement could be caused by design deficiency 

and insufficient management rule. The insufficient management rule was more related to the 

manpower allocation problem than its other two parents. Manpower allocation problem was 

the only parent of insufficient skill, and it was more likely than insufficient training problem 

to cause poor safety knowledge. 
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Figure 7-3. Main paths to occupational accident 

7.5.2. Main Contributors to Structure Failure 

As structural failure also had a high probability of causing accidents, we examined the main 

contributors to structural failure. Given a structural failure with an unknown state of the 

accident node, we calculated the irregular probabilities of the parents and ancestors of 

structural failure. Figure 7-4 shows the results.  

The probability of wrong action was around 70%, the highest among all contributors. 

According to Figure 7-4, design deficiency was another frequent cause of structural failure. 

The probabilities of inadequate method statement, insufficient skill, and poor safety 

knowledge behind structural failure were around 30%. Their probabilities were much higher 

than those of other contributors except for wrong action and design deficiency.  
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Figure 7-4. Contributors to structure failure 

7.5.3. Triggers to Cause Wrong Action 

The contributors to the wrong action (the state was irregular) were further examined in the 

model. The probabilities of its parents and ancestors were then calculated. Figure 7-5 shows 

that insufficient skill, poor safety knowledge, inadequate method statement, design 

deficiency, as well as manpower allocation problem were among the leading contributors to 

the wrong action. Figure 7-6 shows the main paths to wrong action and five contributors to 

human errors, including method statement, design quality, manpower allocation, management 

rule, and scheduling. 
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Figure 7-5. Contributors to wrong action 

 

Figure 7-6. Main Paths to the wrong action 
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The influence weight of each contributor in the main path to wrong action was then 

calculated. The variation of the child node was measured when each contributor node was in 

the opposite state. According to Section 5.4.2, the process was expressed as following: 

Weight (contributor → wrong action)

=
[𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦(action = I|contributor = I) − 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦(action = I|contributor = R)]

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦(action = I|contributor = R)
 

Figure 7-7 shows that insufficient skill and poor safety knowledge were the two main 

contributors to wrong action, followed by the problem of manpower allocation and 

insufficient management rules. On the contrary, design deficiency did not play a significant 

role in wrong action. Figure 7-8 shows the most significant paths in red. 

To mitigate the influence of human error to decrease the wrong action of workers in 

construction, the probabilities of contributing human errors should be reduced. However, 

there should be a priority due to the limited financial and time costs. As shown in Figure 7-7, 

the nodes on the red path should be dealt with first, and then the nodes on other highlighted 

paths should be checked.  

 

Table 7-12 shows a summary of these paths. Level 1 should be the path that requires close 

attention. 

 

Figure 7-7. Weight of contributors to wrong action 
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Figure 7-8. Most significant paths to wrong action 

 

Table 7-12. Suggested levels to mitigate wrong action in construction 

 Paths to wrong action 

Level 1 

Insufficient management rule → manpower allocation problem → Poor safety 

knowledge  

Insufficient management rule → manpower allocation problem → Insufficient skill 

Level 2 

Insufficient management rule → Insufficient method statement 

Schedule pressure → Design deficiency → Insufficient method statement 

Level 3 Other paths are shown in Figure 7-8 

 

7.6. Conclusion 

To conclude, we show that human error was the main contributor to accidents in the 

construction industry in China. However, it should be noted that our dataset has some 

limitations. This dataset only included accidents (irregular cases) in the construction industry, 
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most of which were occupational accidents. Thus, the nature of the data influenced the results 

of the analysis. In daily work of industry, some of the irregular contributors may not cause 

any accidents, neither occupational accident nor structure failure. Unfortunately, such cases 

were not collected to this dataset. Therefore, in the CPT developed from such dataset, the 

regular probability value for the consequent node, given irregular states of parent(s), may be 

highly underestimated. This limitation may exaggerate the weight influence of contributors to 

accidents. This is also the reason why the weights of contributors to the accident were not 

calculated. 

Furthermore, the frequency of irregular cases (with every node) reported in Section 7.5 is no 

doubt higher than in the real world due to the lack of data for regular cases. However, it still 

shows the pattern representing which contributors had higher probabilities than others. More 

data, especially regular examination reports, are required to improve the model. The value 

within CPT could also be modified using statistical or empirical knowledge. 
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Chapter 8. Conclusion 

8.1. Summary and Contributions 

This dissertation developed accident causal models based on Bayesian Network (BN) 

for the Human Performance Separated System (HPSS) and the Human Performance 

Included System (HPIS). It examined the influence of human perception in HPSS and 

human error in HPIS based on BN modelling. This dissertation made several 

empirical and theoretical contributions.  

First, we proposed new approaches to explore the causes of accidents, including:  

1）We classified systems into two types, HPSS and HPIS, depending on whether the 

system involves human performance. HPSS is a hardware system, while HPIS is 

more complex and influenced by human performance related to management, 

process, site environment, etc.  

2）We specified a taxonomy for the HPIS failure assessment model, which was used 

for data collection and BN modelling. We further developed a Contributors 

Taxonomy for Construction Occupational Accidents. 

3）We examined two methods for the analysis of human error. The first method was 

based on the cognitive view, with the aim of finding the influence of contributors 

related to human cognition that led to wrong action. The other method focused on 

the role of human error within the HPIS failure model by treating human action as 

an essential part of the system. 

Second, we introduced several strategies for the modelling process, including:  

1）We proposed a method to combine expert judgement and data analysis to specify 

the BN structure. For a specific industry sector, we suggested that the expert 

evaluation method first identify the main dependency links. Mathematical 

independence analysis should then examine the rest of the nodes. 
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2）We suggested that the influence of human perception on the model parameter 

should be measured when the parameter was identified based on expert judgement.   

Third, to demonstrate the practical use of the above suggestions, we developed 

models that could be applied to systems in different industrial sectors. They were used 

as examples of the proposed methodology. These models also explored the 

quantitative relations of accidents in these systems.  

1）The gas turbine failure model was a typical example of machine failure in HPSS. 

We revealed that human perception was significant positive correlated with model 

parameters, as indicated by model output results. 

2）Using the Multi-Attribute Technological Accidents Dataset (MATA-D), we 

weighted the impact of contributors to the cognition process behind human error in 

accidents. 

3）We further proposed a model to examine occupational accidents in the construction 

industry based on the Contributors to Construction Occupational Accidents Dataset 

(CCOAD). This model aimed to examine complex HPIS systems. We identified the 

main paths to occupational accidents in the construction industry and further 

quantified the contributors to structural failure and wrong action that were direct 

triggers of accidents. 

4）The CCOAD can be used as a dataset for further studies and a framework for data 

collection from similar works.  

8.2. Future Research Direction 

Further studies can aim to build new models and collect data for other industry 

fields by following the framework and practical guidelines proposed in this 

dissertation. In particular, more studies may focus on these areas:  

In our study, the human perception analysis in Chapters 3 & 4 was conducted in a 

way that was similar to parameter sensitivity analysis because we examined the 
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influence of expert judgements using predetermined parameters. Future studies 

may explore human perception in other tasks, including taxonomy development 

and dependency analysis. 

Regarding human error in the HPIS, we have focused only on-site workers. 

Future studies may examine human error at other stages of construction, 

including design, planning, and decision-making. 

We defined the nodes as binary, speaking regular and irregular situations. 

However, the node could be more complicated in the real world. For example, 

human skills could have more sophisticated levels of measurement. Similarly, the 

speed and temperature of the system could be used as continuous variables. Thus, 

future studies may include these factors as continuous variables, but not binary 

variables.  

Both datasets in Chapters 6 & 7 were developed based on accident reports and 

thus limited the use of the models. As the regular operation of a system is 

supposed to be more frequent than the occurrence of an accident, the 

corresponding models cannot reveal the whole picture and are likely to be reliable 

only when accidents occur. Future studies may focus on predictive analysis of 

accidents by including both regular and irregular data. 

The results of Pearson’s Chi-square Test, mentioned in Section 2.3.2.3, showed 

the probabilities of the dependence of the nodes. Then, expert judgement was 

used to determine whether the nodes were dependent or not. One potential 

problem is the lack of criteria to achieve this cut-off point. However, this problem 

can be found in other algorithms regardless of whether the statistical analysis was 

used individually or as a supplement to the expert judgement. Future studies may 

aim to address this issue.  
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Furthermore, future studies may work on collecting more data. Theoretically, we 

may overcome all the limitations mentioned above with sufficient data. Practical 

guidelines are required and play a crucial role in the taxonomy of data collection. 

Moreover, although the taxonomy blueprints are good examples, more data is 

needed to further improve the taxonomy.  

In conclusion, this dissertation makes important theoretical and empirical 

contributions to modelling accident causation for HPSS and HPIS based on 

Bayesian Network (BN). The modelling of HPSS failure relied mainly on expert 

judgement only, while the modelling of HPIS failure combined expert judgement 

and statistical analysis. For the HPSS failure model, we analysed the influence of 

human perception on the model. With the HPIS failure model, we suggested 

exploring human errors from a cognitive point of view in the industry while 

treating the human factor as a core part of HPIS in a specific domain. 

Importantly, we developed a BN model based on a dataset that collects 303 

accidents in Chinese construction industry. Our model is an important example 

for analysing the direct and indirect influence of contributors to accidents. 

However, future studies may further improve these models by using larger 

datasets with numerical variables instead of binary variables as contributors.  
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Appendix A. Assessment Model for Gas Turbine Failure 

Part I. Dependency Tables of the Assessment Model for Gas Turbine 

Failure 

Assumptions for the dependency tables: 

1) Trace failures only for the “operation mode”. Failures related to design, 

manufacturing, and assembly are not considered here. The same for “foreign 

objects” and “unexpected causes”. 

2) Relations are catalogued in “direct” and “indirect”. For the indirect case, the 

chain of contributors needs to be described. 

Split B6, B10: 

1) Consider two different types of overheating (B6), which are thermal 

overheating (B6T) and mechanical overheating (B6M). B6T means that 

overheating is caused by thermal reasons, while B6M means that overheating is 

caused by mechanical reasons. 

2) Consider two different types of vibration (B10), which are thermal vibration 

(B10T) and mechanical vibration (B10M). The former represents the vibration 

caused by thermos-acoustics, while the latter represents the vibration for other 

mechanical reasons. 

Table A-13. Dependency table from Group C to Group D 

Contribution from C to D (Core Components C & Main Components D) 

Contributor I Consequence (D) 

Compressor Blading (C1) 

Rotor(D1)   

Compressor(D2)   

Combustion Chamber(D3)   

Turbine(D4)   

Combustor (C2) 
Combustion Chamber(D3) 

Turbine(D4) 

Turbine Blading (C3) 
Rotor(D1) 

Turbine(D4) 

Bearing (C4) 

Rotor(D1) 

Compressor(D2) 

Turbine(D4) 
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All the dependencies in the above table are direct. 

Table A-14. Dependency table from Group B to Group C 

Contributor（B） 
Consequence (C) Type of 

relation 

Relation chain 

Overspeed (B1) 

Compressor Blading 

(C1) 

direct B1>C1 

Combustor (C2) direct B1>C2 

Turbine Blading (C3) direct B1>C3 

Bearing (C4) direct B1>C4 

Sealing Rupture (B2) 

Compressor Blading 

(C1) 

indirect B2>B6M>C1 

Turbine Blading (C3) indirect B2>B6M>C3 

Blading Rupture (B3) 

Compressor Blading 

(C1) 

indirect B3>B6M>C1 

B3>B10M>C1 

Turbine Blading (C3) 
indirect B3>B6M>C3 

B3>B10M>C3 

TBC Spallation (B4) 
Combustor (C2) direct B4>C2 

Turbine Blading (C3) direct B4>C3 

Misalignment (B5) 

Compressor Blading 

(C1) 

indirect B5>B2>B6M>C1 

B5>B3>B6M>C1 

Turbine Blading (C3) indirect B5>B2>B6M>C3 

B5>B3>B6M>C3 

Overheating (B6T) 
Combustor (C2) indirect B6T>B4>C2 

Turbine Blading (C3) indirect B6T>B4>C3 

Overheating (B6M) 

Compressor Blading 

(C1) 

direct B6M>C1 

Turbine Blading (C3) direct B6M>C3 

Vibration (B10T) Combustion (C2) direct B10T>C2 

Vibration (B10M) 

Compressor Blading 

(C1) 

direct B10M>C1 

Turbine Blading (C3) direct B10M>C3 
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Table A-15. Dependency table from Group A to Group C 

Contributor(A) 
Consequence (C) Type of 

relation 

Relation chain 

Fuel System (A1) 

Compressor Blading 

(C1) 

indirect A1>B1>C1 

Combustor (C2) indirect A1>B1>C2 

A1>B6T>B4>C2 

Turbine Blading (C3) indirect A1>B1>C3 

A1>B6T>B4>C3 

Bearing (C4) indirect A1>B1>C4 

Lube Oil System (A2) 

Compressor Blading 

(C1) 

indirect A2>C4>C1 

Turbine Blading (C3) indirect A2>C4>C3 

Bearing (C4) direct A2>C4 

Hydraulic/Pneumatic 

Control System (A3) 

Combustor (C2) indirect A3>A1>B6T> B4>C2 

Turbine Blading (C3) indirect A3>A1>B6T>B4>C3 

Digital Control 

System (A4) 

Compressor Blading 

(C1) 

indirect A4>A3>A1>B1>C1 

Combustor (C2) indirect A4>A3>A1>B6T>B4>C2 

Turbine Blading (C3) 
indirect A4>A3>A1>B1>C3 

A4>A3>A1>B6T>B4>C3 

Bearing (C4) 
indirect A4>B1>C4 

A4>C6>A2>C4 

auxiliary Pump (C6) direct A4>C6 

Secondary 

AirCooling System 

(A5) 

Combustor (C2) indirect A5>B6T>B4>C2 

Turbine Blading (C3) indirect 
A5>B6T>B4>C3 

Uninterruptible Power 

Supply (UPS) (A6) 

Compressor blading 

(C1) 

Indirect 
A6>C6>A2>C4>C1 

Turbine blading (C3) indirect A6>C6>A2>C4>C3 

Table A-16. Dependency table from Group C to Group A 

Contributor (C) 
Consequence (A) Type of 

relation 

Relation chain 

AC pump (C5) Lube Oil System (A2) direct C5>A2 

DC pump (C6) direct C6>A2 
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Table A-17. Dependency table from Group A to Group B 

Contributor (A) 
Consequence (B) Type of 

relation 

Relation chain 

Fuel System (A1) 

Overspeed (B1) direct A1>B1 

TBC Spallation (B4) indirect A1>B6T>B4 

Overheating (B6T) direct A1>B6T 

Vibration (B10T) direct A1>B10T 

Lube Oil System (A2)    

Hydraulic/Pneumatic 

Control System (A3) 

Overspeed (B1) indirect A3>A1>B1 

Misalignment (B5) indirect A3>A1>B6T>B5 

Overheating (B6) indirect A3>A1>B6T 

Digital Control System  

(A4) 

Overspeed (B1) indirect A4>A3>A1>B1 

Sealing Rupture (B2) indirect A4>A3>A1>B6T>B2 

Blading Rupture (B3) indirect A4>A3>A1>B6T>B3 

Misalignment (B5) indirect A4>A3>A1>B6T>B5 

Overheating (B6T) indirect A4>A3>A1>B6T 

Secondary Air Cooling 

System (A5) 

Sealing Rupture (B2) indirect A5>B6T>B2 

Blading Rupture (B3) indirect A5>B6T>B3 

TBC Spallation (B4) indirect A5>B6T>B4 

Overheating (B6T) direct A5>B6T 

Uninterruptible Power 

Supply (UPS) (A6) 

n/a   

 

 

Table A-18. Dependency table within Group A  

Contributor(A) Consequence (A) Type of relation 

Fuel System (A1) n/a  

Lue Oil System(A2) n/a  

Hydraulic/Pneumatic Control 

System (A3) 

Fuel System (A1) direct 

Digital Control System (A4) 
Hydraulic/Pneumatic Control 

System (A3) 

direct 

Secondary Air Cooling System 

(A5) 

n/a  

Uninterruptible Power Supply 

(UPS) (A6) 

n/a  
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Table A-19. Dependency table within Group B  

Contributor (B) Consequence (B) Type of relation 

Overspeed (B1) 

Sealing Rupture (B2) direct 

Blade Rupture (B3) direct 

Overheating (B10M) direct 

Sealing Rupture (B2) Overheating (B6M) direct 

Blade Rupture (B3) 
Overheating (B6M) direct 

Vibration (B10M) direct 

TBC Spallation (B4)   

Misalignment (B5) 

Sealing Rupture (B2) direct 

Blade Rupture (B3) direct 

Overheating (B6M) direct 

Overheating (B6T) 

Sealing Rupture (B2) direct 

Blading Rupture (B3) direct 

TBC Spallation (B4) direct 

Misalignment (B5) direct 

Overheating (B6M) n/a  

Vibration (B10T) n/a  

Vibration (B10M) n/a  

Table A-20. Dependency table within Group C  

Contributor (C) Consequence (C) Type of relation 

Compressor Blading (C1) n/a  

Combustor (C2) C3 direct 

Turbine Blade (C3) n/a  

Bearing (C4) 
Compressor Blading (C1) direct 

Turbine Blading (C3) direct 

AC Pump (C5) n/a   

Emergency pump (C6) n/a   

 

Backup system: 

Consider UPS as a backup to initiate the emergency pump. The way to deal with 

the backup system is to build the relation chain following ‘Protection control→ 
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acts on→ to supply→ safeguards’ and ‘backup system→ acts on→ to supply→ 

safeguards’. 

Table A-21. Dependency table referring to the backup system  

Protectio

n control 

backup system 

(not 

permanently) 

 acts on 

(not 

permanently) 

 to supply   safeguards 

DCS 

(A4) 

Uninterruptible 

Power Supply 

(UPS) (A6) 

Emergency 

pump (C6) 

 Lube oil 

system (A2)  
  Bearing (C4) > 

    

>Sealing rupture 

(B2) 

>Blading rupture 

(B3) 

>Misalignment (B5) 

>Overheating B6M) 

 

>Compres. Blading 

(C1) 

>Turbine blading 

(C3) 

The relation chain adapted from the above table: 

A4>C6>A2>C4>B2 

A6>C6>A2>C4>B3 

A4>C6>A2>C4>B5 

A6>C6>A2>C4>B6M 

and 

A4>C6>A2>C4>C1 

A6>C6>A2>C4>C3 

 

Emergency protection system: 

Emergency protection systems do not cause damage when not in operation. 

These systems must operate only in emergency cases and not permanently. A 

fail-safe system will generally control the emergency protection systems. In any 
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case, such a system will start acting when a specific limit value is exceeded. The 

emergency protection systems considered here are: 

• Thermo acoustic induced vibration (B10T) 

• Mechanical vibration (B10M) 

• Overspeed (B1) 

 

The way to deal with the protection system is to build the relation chain 

following ‘Protection control→ Protection system→ Safeguard’s and 

‘Protection control→ acts on→ Secures/assist→ safeguards’. The former chain 

only acts in an emergency, while the latter operates in regular situations. 

Table A-22. Dependency table referring to the protection system B10T 

Protection 

control 
Protection system  acts on  Secures / assists    safeguards 

DCS (A4) 
Anti-humming 

Vibration (B10T) 

Hydraulic/Pneumatic 

Control System (A3) 
Fuel system (A1) Combustor (C2) 

 

The relation chain adapted from the above table: 

A4 > B10T > C2 

A4 > A3 > A1 > … > C2 

the relation from A1 to C2 is indirect, which can be found in the table of the 

relation between groups A&C 

Table A-23. Dependency table referring to protection system B10M 

Protection 

control 
Protection system  Acts on 

 Secures 

/assists  
Safeguards 

DCS (A4) Vibration (B10M) 

Hydraulic / 

Pneumatic Control 

System (A3) 

Fuel system 

(A1) 

Compressor blading 

(C1) 

Turbine blading (C3) 
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The relation chain adapted from the above table: 

A4>B10M>C1; 

A4>B10M>C3;  

A4>A3>A1>…>C1 

A4>A3>A1>…>C3 

The relations from A1 to C1, and C3 are indirect, which can be found in the table 

of the relationship between groups A&C 

Table A-24. Dependency table referring to protection system B1 

Protection 

control 
Protection system 

 Acts on (not 

permanently) 
 Secures / assists    Safeguards 

DCS (A4) Over-speed (B1) 

Hydraulic/Pneumati

c Control System 

(A3) 

Fuel system (A1) 

Compressor blading 

(C1) 

Combustor (C2) 

Turbine blading (C3) 

Bearing (C4) 

 

The relation chain adapted from the above table: 

A4 > B1 > C1; 

A4 > B1 > C2; 

A4 > B1 > C3; 

A4 > B1 > C4; 

A4 > A3 > A1 > … > C1 

A4 > A3 > A1 > … > C3 

A4 > A3 > A1 > … > C1 

A4 > A3 > A1 > … > C3 

 

The relations from A1 to C1, C2, C3, and C4 are indirect, which can be found in 

the table of the relation between groups A & C 
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Part II. Intermedia Nodes for the Assessment Model for Gas Turbine 

Failure 

Six nodes (B2, B3, B6M, C1, C3, and D4) with more than three parents were 

dealt with by introducing intermedia nodes to reduce the size of the conditional 

probability table. 

(i). Intermedia nodes of D4 

Initial parents of 

D4 

C1  

(compressor blading) 

C3  

(turbine blading) C4 

(bearing) 

C2 

(combustor) 
Parents of D4 with 

intermedia nodes 
ID4 (Mechanical failure) 

 

 

 

  

C1 (compressor 

blading) 

C3 (turbine 

blading) 

C4 

(bearing) 

C2 

(combustor) 

ID4 

(mechanical 

failure) 

 

D4 (turbine) 
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(ii). Intermedia nodes of C1 

Initial parents of 

C1 (compressor 

blading) 

C4 (bearing) 

B6M 

(mechanical 

overheating) 

B10M 

(mechanical 

vibration) B1 

(overspeed) Parents of C1 

with intermedia 

nodes 

IC1 (mechanical operation failure) 

 

 

 

 

  

C4 

(bearing) 

B1  

(over-speed) 

B6M (mechanical 

overheating) 

IC1 (mechanical 

operation failure) 

B10M (mechanical 

vibration) 

C1 (compressor 

blading) 
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(iii). Intermedia nodes of C3 

Initial parents of 

C3 (turbine 

blading) 

B6M 

(mechanical 

overheating) 

B10M 

(mechanical 

vibration) 

C4 

(bearing) 
B1 

(oversp

eed) 

B4 (TBC 

spallation) 

C2 

(combusto

r) 

Parents of C3 with 

intermedia nodes 

I1C3 

(mechanical operation failure) 

I2C3 

(hot gas path failure) 

 

 

 
 

  

C2 

(combustor) 

 

C4 

(bearing) 

 

I1C3 (mechanical 

operation failure) 

B1  
(over-speed) 

B6M (mechanical 

overheating) 

 

C3 (turbine 

blading) 

B10M 
(mechanical 

vibration) 

I2C3 

(hot gas path failure) 

B4 (TBC 

spallation) 
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(iv). Intermedia nodes of B2 

Initial parents 

of B2 (sealing 

rupture) 

C4 (bearing) 
B5 

(misalignment) 

B1 

(overspeed) 

B6T 

(thermal 

overheating) 

Parents of B2 

with 

intermedia 

nodes 

IB2 (mechanical operation failure) 

 

 

  

C4 

(bearing) 

B6T (thermal 

overheating) 

B1  

(over-speed) 

B5 

(misalignment) 

IB2 (mechanical 

operation failure) 

B2 (sealing rupture) 



 131 

(v). Intermedia nodes of B3 

Initial parents 

of B3 (blading 

rupture) 

C4 (bearing) 
B5 

(misalignment) 

B1 

(overspeed) 

B6T 

(thermal 

overheating) 

Parents of B3 

with 

intermedia 

nodes 

IB3 (mechanical operation failure) 

 

 

  

C4 

(bearing) 

B6T (thermal 

overheating) 

B1  

(over-speed) 

B5 

(misalignment) 

IB3 (mechanical 

operation failure) 

B3 (blading rupture) 
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(vi). Intermedia nodes of B6M 

Initial parents of 

B6M 

(mechanical 

overheating) 

B2 (sealing 

rupture) 

B3 (blading 

rupture) 

B5 

(misalignment) 
C4 

(bearing) 
Parents of B6M 

with intermedia 

nodes 

IB6M (mechanical operation failure) 

 

 

 

  

B2 (sealing 

rupture) 

C4 

(bearing) 

B3 (blading 

rupture) 

IB6M (mechanical 

operation failure) 

B5 

(misalignment) 

B6M (mechanical 

overheating) 
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Part III.  Dependency Tables of the Assessment Model for Gas Turbine 

Failure  

The symbol ‘R’ represents ‘Regularly’, which means the component/function is 

working regularly or normal, and no problem existed (no over-speed, no 

overheating, no misalignment, no vibration, no spallation, or no rupture). 

The symbol ‘I’ represents ‘Irregularly,’ which means the component/function is 

working irregularly or abnormally, or some problem exists, like over-speed, 

overheating, misalignment, vibration, spallation, or rupture. 

For example, 

➢ A1(fuel system) =’ R’ means that the fuel system is in good condition without any 

problem. 

➢ A1(fuel system) =’ I’ means something is wrong with the fuel system. 

➢ B1(over-speed) =’ R’ means that the working condition is fine without over-speed. 

➢ B1(over-speed) =’ I’ means that there is a failure, specifically an over-speed problem. 

(i). Probability table of group A 

Conditional Probability Table of A1 

The condition of A3  

(hydraulic/ 

pneumatic control 

system) 

Probability of A1 (fuel 

system) 

 

A1=I A1=R 
 

I 0.8 0.2  

R 0.01 0.99 
Operation fault, faulty 

maintenance 

Probability table of A2 

C5 (AC pump) 
C6 (emergency 

pump) 

Probability of A2 (lube oil system) 

A2= I A2=R 

I I 1 0 

R I 0 1 

I R 0 1 

R R 0 1 
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Conditional Probability Table of A3 

Condition of A4  

(digital control 

system) 

Probability of A3 (hydraulic/ 

pneumatic control system) 

 

A3= I A3=R  

I 0.9 0.1  

R 0.001 0.999 
false information by 

DCS 

Probability table of A4 

Probability of A4 (digital control 

system) 

A4= I A4=R 

0.001 0.999 

Probability table of A5 

Probability of A5 (secondary air cooling 

system) 

 

A5= I A5=R blocking of cooling holes, 

operation in the wrong 

environment 
0.001 0.999 

Conditional Probability Table of A6 

Probability of A6 (UPS) 

A6= I A6=R 

0.001 0.999 

(ii). Probability table of group B 

B1 (overspeed) 

Conditional Probability Table of B1 

A1 (fuel system) 
A4 (digital control 

system) 

Probability of B1 (overspeed) 

B1=I B1=R 

I I 0.99 0.01 

R I 0.9 0.1 

I R 0.2 0.8 

R R 0.001 0.999 

B2 (sealing rupture) 

The original conditional probability table of B2 
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B1 (overspeed) B5 (misalignment) B6T (overheating) C4 (bearing) 

Probability of 

B2 (sealing 

rupture) 

B2=I B2=R 

 

Introduced the intermedia nodes, then  

Conditional probability table of B2 

B1 

(overspeed) 

B6T (thermal 

overheating) 

IB2 (Mechanical 

operation failure) 

Probability of B2 (sealing 

rupture) 

B2=I B2=R 

I I I 1.0 0.0 

R I I 0.7 0.3 

I R I 1 0 

R R I 0.3 0.7 

I I R 1 0 

R I R 0.6 0.4 

I R R 1 0 

R R R 0.001 0.999 

conditional probability table of IB2 

B5 

(misalignment) 
C4 (bearing) 

Probability of IB2 (Mechanical operation failure) 

IB2=I IB2=R 

I I 1 0 

R I 0.6 0.4 

I R 0.8 0.2 

R R 0 1 

B3 (blading rupture) 

The original conditional probability table of B3 

B1 

(overspeed) 

B5 

(misalignment) 

B6T (thermal 

overheating) 
C4 (bearing) 

Probability of B3 (blading 

rupture) 

B3=I B3=R 

Introduced the intermedia nodes, then  
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conditional probability table of B3 

B1 

(overspeed) 

B6T 

(thermal 

overheating) 

IB3 (Mechanical 

operation failure) 

Probability of B3 (blading 

rupture) 

B3=I B3=R 

I I I 1.0 0.0 

R I I 0.7 0.3 

I R I 1 0 

R R I 0.3 0.7 

I I R 1 0 

R I R 0.6 0.4 

I R R 1 0 

R R R 0.001 0.999 

conditional probability table of IB3 

B5 

(misalignment) 
C4 (bearing) 

Probability of 

IB3 (Mechanical 

operation failure) 

IB3=I IB3=R 

I I 1 0 

R I 0.6 0.4 

I R 0.8 0.2 

R R 0 1 

B4 (TBC spallation) 

Conditional Probability Table of B4 

The Condition of B6T 

(thermal overheating) 

Probability of B4 

(TBC spallation) 

 

B4=I B4=R  

I 0.9 0.1  

R 0.001 0.999 
damage by foreign 

objects  

 

 

 

B5 (misalignment) 
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Conditional Probability Table of B5 

A4 (digital 

control 

system) 

B6T 

(thermal 

overheating) 

C4 

Probability of 

B5(misalignment) 

 

B5=I B5=R  

I I I 0.8 0.2  

R I I 0.7 0.3  

I R I 0.6 0.4  

R R I 0.1 0.9  

I I R 0.7 0.3  

R I R 0.6 0.4  

I R R 0.1 0.9  

R R R 0.01 0.99 Human error (assembly phase) 

B6T (thermal overheating) 

Conditional Probability Table of B6T 

A1 (fuel system) 
A5 (secondary air 

cooling system) 

Probability of B6T (thermal 

overheating) 

B6T=I B6T=R 

I I 1 0 

R I 0.9 0.1 

I R 0.9 0.1 

R R 0.001 0.999 

B6M (mechanical overheating) 

The original conditional probability table of B6M 

B2 

(sealing 

rupture) 

B3 (blading 

rupture) 

B5 

(misalignment) 
C4 (bearing) 

Probability of B6M 

(mechanical 

overheating) 

B6M=I B6M=R 

Introduced intermedia nodes. Then  

conditional probability table of B6M 

C4 (bearing) 
IB6M (mechanical 

operation failure) 

Probability of B6M (mechanical 

overheating) 

B6M=I B6M=R 

I I 0.9 0.1 

R I 0.8 0.2 

I R 0.6 0.4 

R R 0.001 0.999 
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Conditional Probability Table of IB6M 

B2 (sealing 

rupture) 

B3 (blading 

rupture) 

B5 

(misalignment) 

Probability of 

IB6M (mechanical 

operation failure) 

IB6M=I IB6M=R 

I I I 1 0 

R I I 0.9 0.1 

I R I 0.7 0.3 

R R I 0.5 0.5 

I I R 0.9 0.1 

R I R 0.8 0.2 

I R R 0.5 0.5 

R R R 0 1 

B10T (thermos acoustic-induced vibration 

Conditional Probability Table of B10T 

A1 (fuel 

system) 

A4 (digital control 

system) 

Probability of B10T (138hermos acoustic 

induced vibration) 

B10T=I B10T=R 

I I 0.9 0.1 

R I 0.8 0.2 

I R 0.4 0.6 

R R 0.001 0.999 

B10M (vibration) 

Conditional Probability Table of B10M 

A4 (digital 

control 

system) 

B1 (overspeed) 
B3 (blading 

rupture) 

Probability of B10M 

(vibration) 

 

B10M=I B10M=R  

I I I 1.0 0  

R I I 0.05 0.95  

I R I 0.3 0.7  

R R I 0.3 0.7  

I I R 1 0  

R I R 0.05 0.95  

I R R 0.01 0.99  

R R R 0.001 0.999 
degradation of the 

blading material 

If DS is good, it can control and limit the effect of overspeed and rupture. 
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(iii). Probability table of Group C 

C1 (compressor blading) 

The original conditional probability table of C1 

B1 

 (overspeed) 

B6M 

 (mechanical overheating) 

B10M 

(vibration) 

C4 

(bearing) 

Probability of C1 

(compressor 

blading) 

C1=I C1=R 

Introduced the intermedia nodes, then  

conditional probability table of C1 

B1 

 (over speed) 

IC1 (Mechanical 

operation failure) 

Probability of C1 

(compressor 

blading) 

C1=I C1=R 

I I 1 0 

R I 0.9 0.1 

I R 1 0 

R R 0.001 0.999 

conditional probability table of IC1 

B6M (mechanical 

overheating) 

B10M 

(vibration) 
C4 (bearing) 

Probability of IC1  

(Mechanical operation failure) 

IC1=I IC1=R 

I I I 1 0 

R I I 0.8 0.2 

I R I 0.7 0.3 

R R I 0.2 0.8 

I I R 0.9 0.1 

R I R 0.8 0.2 

I R R 0.7 0.3 

R R R 0 1 
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C2 (combustor) 

Conditional probability table of C2 

B1 

 (over speed) 

B4 (TBC 

spallation) 

B10T (thermos 

acoustic induced 

vibration) 

Probability of C2 

(combustor) 

 

C2=I C2=R  

I I I 1.0 0.0  

R I I 0.8 0.2  

I R I 1 0  

R R I 0.7 0.3  

I I R 1 0  

R I R 0.6 0.4  

I R R 1 0  

R R R 
0.001 0.999 

degradation 

effect 

C3 (turbine blading) 

The original conditional probability table of C3 

B1 

(over-

speed) 

B4 (TBC 

spallation) 

B6M 

(mechanical 

overheating) 

B10M 

(vibration) 

C2 

(combustor) 

C4 

(bearing) 

Probability 

of C3(turbine 

blading) 

C3=I C3=R 

Introduced intermedia nodes. Then  

Conditional probability table of C3 

B1 

(over speed) 

I1C3 (Mechanical 

operation failure) 

I2C3 (hot gas 

path failure) 

Probability of C3 

(turbine blading) 

C3=I C3=R 

I I I 1.0 0.0 

R I I 0.98 0.02 

I R I 1 0 

R R I 0.8 0.2 

I I R 1 0 

R I R 0.9 0.1 

I R R 1 0 

R R R 0.001 0.999 
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Conditional probability table of I1C3 

B6M 

(mechanical 

overheating) 

B10M (vibration) C4 (bearing) 

Probability of I1C3  

(Mechanical operation failure) 

I1C3=I I1C3=R 

I I I 1 0 

R I I 0.8 0.2 

I R I 0.7 0.3 

R R I 0.2 0.8 

I I R 0.9 0.1 

R I R 0.8 0.2 

I R R 0.7 0.3 

R R R 0 1 

Conditional probability table of I2C3 

B4 (TBC spallation) C2 (combustor) 
Probability of I2C3 (hot gas path failure) 

I2C3=I I2C3=R 

I I 1 0 

R I 0.8 0.2 

I R 0.7 0.3 

R R 0 1 

C4 (bearing) 

Conditional Probability Table of C4 

A2 (lube oil system) B1 (overspeed) 
Probability of C4 (bearing) 

C4=I C4=R 

I I 1 0 

R I 1 0 

I R 1 0 

R R 0.001 0.999 

C5 (AC pump) 

Conditional Probability Table of C5 

Probability of C5 (AC pump) 

C5=I C5=R 

0.001 0.999 
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C6 (emergency pump) 

Conditional Probability Table of C6 

The condition of A4 

(digital control system) 

The condition of 

A6 

(UPS) 

Probability of C6  

(emergency pump) 

C6=I C6=R 

I I 1 0 

R I 1 0 

I R 1 0 

R R 0.001 0.999 

(iv). Probability table of group D 

D1 (rotor) 

Conditional probability table of D1 

C1  

(compressor blading) 

C3  

(turbine blading) 
C4 (bearing) 

Probability of D1 (rotor) 

D1=I D1=R 

I I I 1 0 

R I I 0.9 0.1 

I R I 0.9 0.1 

R R I 0.3 0.7 

I I R 0.9 0.1 

R I R 0.9 0.1 

I R R 0.9 0.1 

R R R 0.001 0.999 

D2 (compressor) 

Conditional Probability Table of D2 

C1 (compressor 

blading) 
C4 (bearing) 

Probability of D2 

(compressor) 

D2=I D2=R 

I I 1 0 

R I 0.3 0.7 

I R 1 0 

R R 0.001 0.999 

D3 (combustion chamber) 
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Conditional Probability Table of D3 

C1 (compressor 

blading) 

C2 

(combustor) 

Probability of D3 (combustion chamber) 

D3=I D3=R  

I I 1 0  

R I 1 0  

I R 0.6 0.4  

R R 

0.001 0.999 degradation 

effect 

D4 (turbine) 

Original conditional probability table of D4 

C1 

(compressor 

blading) 

C2 

(combustor) 

C3 

(turbine 

blading) 

C4 

(bearing) 

Probability of D4 (turbine) 

D4=I D4=R 

 

Introduced intermedia nodes, then  

Conditional probability table of D4 

C2 

(combustor) 

C4 

(bearing) 

ID4 

(mechanical failure) 

Probability of D4 (turbine) 

D4=I D4=R  

I I I 1 0  

R I I 1 0  

I R I 1 0  

R R I 1 0  

I I R 0.95 0.05  

R I R 0.3 0.7  

I R R 0.95 0.05  

R R R 0.001 0.999 degradation effect 

Conditional Probability Table of ID4 

C1 (compressor 

blading) 

C3 (turbine 

blading) 

Probability of ID4 (mechanical 

failure) 

ID4=I ID4=R 

I I 1 0 

R I 1 0 

I R 1 0 

R R 0 1 
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Appendix B. The Dataset Converted from Multi-

Attribute Technological Accidents Dataset 

(Please see the excel file named Appendix B.) 

The symbol ‘R’ represents ‘Regularly’, which means the 

component/factor/contributor works regularly (or normally), and no 

corresponding problem or failure is found. 

The symbol ‘I’ represents ‘Irregularly’, which means the 

component/factor/contributor works irregularly (or abnormally). In other words, 

the corresponding problem or failure was indicated in the accident report. 
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Appendix C. Questionnaire for Dependence Analysis of 

Contributors to Construction Occupational Accidents 

(Please see the Excel file named Appendix C) 

Five tables were filled by five experts independently. Then the summary was 

developed by summing up the same box from the five tables. 

➢ Strong-dependence 

A score of 3 indicated a strong dependence when experts judged a contributor to 

be the cause of a consequence. For example, structural failure is likely to cause 

occupational accidents. 

➢ Weak-dependence 

A score of 1 indicated a weak dependence that experts postulated that a 

contributor might be a cause of the consequence, but they could not make a 

strong statement. For example, experts may suspect that a construction schedule 

or economic pressure might lead to a less optimal method statement. 

➢ Non-dependence 

A score of 0 indicated that there was no dependence on whether a contributor 

was viewed as the cause of a consequence. For example, experts may not believe 

that insufficient skills could cause physical problems for the worker. 
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Appendix D. Contributors to the Construction 

Occupational Accidents Dataset (CCOAD) 

(Please see the excel file named Appendix D) 

The symbol ‘R’ represents ‘Regularly’, which means the 

component/factor/contributor works regularly (or normally), and no 

corresponding problem or failure is found. 

The symbol I represents irregularly, which means that the 

component/factor/contributor works irregularly (or abnormally). In other words, 

the corresponding problem or failure was indicated in the accident report. 
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