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A B S T R A C T

Imperfections, meaning deviations from an idealized structure, can mani-
fest through unintended variations in a structure’s geometry or material
properties. Such imperfections affect the stiffness properties and can change
the way structures behave under load. The magnitude of these effects
determines how reliable and robust a structure is under loading.

Minor changes in geometry and material properties can also be added
intentionally, creating a more beneficial load response or making a more
robust structure. Examples of this are variable stiffness composites, which
have varying fiber paths, or structures with thickened patches.

The work presented in this thesis aims to introduce a general approach
to creating geodesic random fields in finite elements and exploiting these to
improve designs. Random fields can be assigned to a material or geometric
parameter. Stochastic analysis can then quantify the effects of variations on
a structure for a given type of imperfection.

Information extracted from the effects of imperfections can also identify
areas critical to a structure’s performance. Post-processing stochastic results
by computing the correlation between local changes and the structural
performance result in a pattern, describing the effects of local changes.
Perturbing the ideal deterministic geometry or material distribution of a
structure using the pattern of local influences can increase performance. Ex-
amples demonstrate the approach by increasing the deterministic (without
imperfections applied) linear buckling load, fatigue life, and post-buckling
path of structures.

Deterministic improvements can have a detrimental effect on the robust-
ness of a structure. Increasing the amplitude of perturbation applied to
the original design can improve the robustness of a structure’s response.
Robustness analyses on a curved composite panel show that increasing the
amplitude of design changes makes a structure less sensitive to variations.
The example studied shows that an increase in robustness comes with a
relatively small decrease in the deterministic improvement.

Keywords— Random fields, Robust design, Geodesic random field, Thickness
tailoring, Fiber steering

vii





Z U S A M M E N FA S S U N G

Imperfektionen, d. h. die Abweichungen von einer idealisierten Struktur,
können sich durch unbeabsichtigte Variationen in der Geometrie oder
den Materialeigenschaften einer Struktur ergeben. Solche Imperfektionen
wirken sich auf die Steifigkeitseigenschaften aus und können das Verhalten
von Strukturen unter Last verändern. Das Ausmaß dieser Auswirkungen
bestimmt, wie zuverlässig und robust eine Struktur unter Belastung ist.

Kleine Änderungen der Geometrie und der Materialeigenschaften können
auch absichtlich eingebaut werden, um ein verbessertes Lastverhalten zu
erreichen oder eine stabilere Struktur zu schaffen. Beispiele hierfür sind Ver-
bundwerkstoffe mit variabler Steifigkeit, die unterschiedliche Faserverläufe
aufweisen, oder Strukturen mit lokalen Verstärkungen.

Die in dieser Dissertation vorgestellte Arbeit zielt darauf ab, einen all-
gemeinen Ansatz zur Erstellung geodätischer Zufallsfelder in Finiten Ele-
menten zu entwickeln und diese zur Verbesserung von Konstruktionen zu
nutzen. Zufallsfelder können Material- oder Geometrieparametern zuge-
ordnet werden. Die stochastische Analyse kann dann die Auswirkungen
von Variationen auf eine Struktur für eine bestimmte Art von Imperfektion
quantifizieren.

Die aus den Auswirkungen von Imperfektionen gewonnenen Informa-
tionen können auch Bereiche identifizieren, die für das Tragvermögen
einer Struktur kritisch sind. Die Auswertung der stochastischen Ergebnisse
durch Berechnung der Korrelation zwischen lokalen Veränderungen und
Strukturtragvermögen ergibt ein Muster, das die Auswirkungen lokaler
Veränderungen beschreibt. Die Perturbation der idealen deterministischen
Geometrie oder der Materialverteilung einer Struktur unter Verwendung
des Musters der lokalen Einflüsse kann das Tragvermögen erhöhen. Anhand
von Beispielen wird der Ansatz durch die Erhöhung der deterministischen
(ohne Imperfektionen) linearen Knicklast, der Lebensdauer und des Nach-
knickverhaltens von Strukturen aufgezeigt.

Deterministische Verbesserungen können sich zum Nachteil der Robust-
heit einer Struktur auswirken. Eine Vergrößerung der Amplitude der auf
den ursprünglichen Designentwurf angewendeten Perturbation kann die
Robustheit der Reaktion einer Struktur verbessern. Robustheitsanalysen an
einer gekrümmten Verbundplatte zeigen, dass eine Struktur durch eine Ver-
größerung der Amplitude der Entwurfsänderungen weniger empfindlich
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gegenüber Abweichungen wird. Das untersuchte Beispiel zeigt, dass eine
Erhöhung der Robustheit mit einem relativ geringen Verlust der determi-
nistischen Verbesserung eingeht.

Schlüsselwörter— Zufallsfelder, robuster Entwurf, geodätisches Zufallsfeld, Di-
ckenanpassung, Fasersteuerung
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1
I N T R O D U C T I O N

If you thought that science was certain - well, that is
just an error on your part.

— Richard P. Feynman

1.1 background and motivation

Industry design practices make many simplifications and assumptions
in daily engineering practice. Simplifications made during structural

design include homogeneity of material properties, simplifying boundary
conditions, joints between parts, and idealizing geometry to a nominal
shape. Making these assumptions simplifies the analysis of structures
significantly, as uncertainties are often not quantifiable to designers.

Production processes are not ideal and introduce imperfections. Material
properties can be affected by chemical composition, curing, annealing,
internal stresses, and material orientation. Some manufacturing processes
introduce engineered changes in material properties, such as quenching
hot steel, promoting the formation of martensite crystals. However, most
variations introduced are unintended and can have a detrimental effect on
the structure’s performance.

Magnitude and type of variations are highly dependent on the manufac-
turing processes employed. More expensive and slow production processes
are often capable of generating structures with tighter tolerances at a mon-
etary cost. A common practice in engineering is to determine a safety
factor empirically and over-design a structure making sure it exceeds the
requirements by the set factor.

Using a safety factor does have two significant drawbacks. Designs using
a safety factor can be overly conservative, making structures unnecessarily
heavy and costly. A safety factor also disregards any insights that can be
developed by further analyzing the effects of (local) variations.

Another approach to the design process is to accept variations or tailor
these variations to improve the structure’s performance. Engineered vari-
ations in material properties or minor changes in geometry have already
seen widespread use. How structures can be tailored is heavily depen-
dent on the material and manufacturing process used. For instance, within
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2 introduction

fiber-reinforced composite structures, variable stiffness can be achieved by
steering the fiber filaments during placement to provide different properties
in different areas. Engineered stiffness distributions can also be achieved
using functionally graded materials (FGM) to achieve an improvement in
the mechanical response [1–3]. Structures manufactured through additive
manufacturing processes also make it possible to easily tailor a structure’s
geometry, thereby tailoring the stiffness. Tailoring can be achieved by vary-
ing the thickness, either empirically [4], using periodic functions [5] or
by using arbitrary stepwise variations [6]. Another approach is to modify
the ideal geometry, using seeded imperfections consisting of scaled mode
shapes to make areas less critical to local failure triggered by structural
instability [7–9].

Finding where to apply changes can be done by utilizing patterns that
indicate how local changes of a parameter within a structure affect the
performance. Finding these patterns of influence on local changes is not
trivial, as this inherently involves many parameters to define local changes.
Traditional optimization studies would have to deal with many variables
and constraints to avoid discontinuities that are not manufacturable.

Structures optimized for a conventional deterministic objective can also
be susceptible to unintended variations, as optimized designs usually in-
tersect multiple design constraints on a feasibility (Pareto) front. Robust
optimization techniques exist but are generally only suitable for tradi-
tional parametric optimization, which can be challenging to do with many
variables that are also linked to each other.

Therefore, it is of interest to develop a generalized method to find patterns
in which to apply these variations and evaluate the statistical response of
designs subjected to imperfections. Patterns applied to perturb the original
design have to make a tradeoff between deterministic performance and
resilience to imperfections introduced during manufacturing or use.

Like traditional optimization approaches, the method aims to improve the
performance of a structure. Traditional optimization approaches, however,
do this by varying parameters to reach a deterministic optimum. The
proposed method does not vary each parameter as an independent variable
but instead finds patterns to vary a design parameter. Patterns can be
analyzed for their sensitivity to imperfections using the same analysis
process used to generate the pattern, making it possible to repeat the
process or quantify the robustness of a perturbed design.
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1.2 literature survey

Work done by other authors defines the context in which this thesis should
be interpreted. Literature related to imperfections, modeling imperfections,
and tailoring using variations are discussed in this section.

1.2.1 Variations due to manufacturing of thin-walled structures

Manufacturing processes can affect the local material properties throughout
a structure, as well as the finished geometry. These parameters can influence
the global mechanical behavior of a structure, leading to variations in
properties such as buckling load, fatigue life, stiffness, and stress levels [10–
13].

1.2.1.1 Mechanical properties and orientation

Local variations in the material properties are very closely related to both
the material and manufacturing process used. Both of these are highly
dependent on the design of the manufactured (sub)component. Therefore,
statistical properties and the distribution of the material properties and
geometric deviations are quite challenging to extract from real components,
especially a priori.

Laser cutting is an example of a process that introduces local changes in
mechanical properties. When materials, such as fiber-reinforced composites,
are cut using a high-temperature process, the mechanical properties, such
as shear strength, can be negatively impacted within the heat-affected
zone [14].

Sufficient modeling and process tuning can make the size of the heat-
affected zone well known. However, uncontrolled external parameters such
as moisture content can still cause an unknown variance in the mechanical
properties within the heat-affected zone [15]. In these cases, the material
properties result from a combination of factors, generally unquantifiable,
creating uncertainty in the effective material properties.

mechanical properties within additive manufacturing

Additive manufacturing (AM) refers to a range of methods to create
a structure by selectively adding material to local parts of a structure.
Materials can be metals, polymers, ceramic, or composite materials [16, 17].
Lindgren & Lundbäck [18] have had success in modeling certain metal AM
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processes using computational welding models, but these are not suitable
for all AM processes, which often do not use metals.

Fused Filament Fabrication (FFM) is the most popular AM method used
to create polymer and composite structures. Manufacturing parameters’
effect on the mechanical properties has been studied extensively for this
approach [19–21]. The manufacturing parameters affect the material prop-
erties, as does the way a structure is built up. An inherent anisotropy exists
in different manufacturing directions. Anisotropy can be exacerbated by
varying the primary orientation between layers printed. Varying the layer
orientation reduces the fused area between filaments, significantly reducing
stiffness and strength in the build-up direction [22, 23].

unidirectional fiber-reinforced composites

Within aerospace engineering composites typically refer to polymer matrix
materials, reinforced with fibers, typically made out of glass or carbon.
Fibers greatly increase the stiffness and strength in one direction, creating
anisotropic material properties. Most structures do not have unidirectional
stress and strains, requiring reinforcement in different directions. Structures
can be assembled by layering laminas, which consist of tows1 of unidirec-
tional fibers. The stacking sequence and the laminas’ orientation determine
the laminate’s stiffness and strength properties [24–26].

Multi-stage manufacturing processes introduce uncertainty and vari-
ability throughout laminate manufacture. Material imperfections of fiber-
reinforced composites can be classified as interface defects, matrix defects,
fiber misalignments or breakage. All of these types of imperfections or
variations affect the strength, fatigue, and mechanical properties [27].

Interface defects occur when the interface between layers or fibers and the
matrix material is not adequately infused or wetted. Air trapped between
laminas can flatten during consolidation, resulting in unbound areas. Al-
though significant variations in strength and fatigue life are to be expected,
limited experimental data exists, though numerical analyses have been
performed in recent years [28–30].

Matrix defects are caused by incomplete curing, or more commonly by
voids introduced during manufacturing. Voids are small pockets of air
trapped within the matrix [31]. Such pockets can affect the mechanical
stiffness and the strength of the material [32]. Manufacturing and material
parameters, such as the autoclave pressure, cure temperature, resin viscosity,
and vacuum pressure, can affect the number of voids found in a structure

1 A bundle of fibers impregnated with epoxy-resin.
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(a) 40 °C with a voidage of 7.4%

(b) 70 °C with a voidage of 2.1%

Figure 1.1: Example of laying temperature affecting void content of a car-
bon/epoxy composite [36], reprinted with permission from Elsevier.

[33–35]. Figure 1.1 shows the effect of laying temperature on the void
content of unidirectional composites with layup laid by an automated
layup and vacuum bag-only cure. The material consists of IMA fibers in
a Hexcel M21 resin in an ATL-grade prepreg using single-sided backing
paper. Increasing the temperature during the curing process dramatically
reduces the void content in the composite.

Misalignment of fibers can occur due to several reasons. Misalignment
of laminas inside a laminate can cause an entire layer to deviate from
the desired orientation. Local variations within a prepreg are common
and result in the fibers having a non-uniform direction in a layer [37, 38].
Such local variations are also possible due to local curvature, stretching,
or compressing laminas locally [39]. Measured fiber misalignments of a
section of glass-fiber reinforced composite material are shown in fig. 1.2.

Manufacturing using Automated Fiber Placement (AFP) or Automated
Tape Laying (ATL) processes increases the manufacturing process’s repeata-
bility compared to hand-placed fibers. Both of these processes use robots
to lay fibers on a structure in an automated fashion. Fiber orientation can
vary significantly throughout a structure, depending on the manufactur-
ing parameters [41]. Deviations from an ideal path can be unavoidable in
complex structures, even in ideal manufacturing conditions. Defects should,
therefore, best be understood and managed [42].

Deviations of the fiber path can occur at the tow level or within a tow.
Paths a tow follows are defined as the center of a tow. Therefore, the tow’s
edges have a deviation of the fiber path, which depends on the tow width
[43]. Decreasing the tow width can improve the fiber alignment while also
slowing down production and increasing the number of gaps and overlaps
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Figure 1.2: Fiber trajectories reconstructed using x-ray tomography [40] (1px=1.1
µm), reprinted with permission from Elsevier.
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in a structure [44]. Steering can also cause out-of-plane waviness, as tight
turning radii can cause the fiber to buckle [39]. Stiffness and inertia effects
of placement machines also can cause deviations in the designed structure
[45, 46].

characterizing composite material uncertainties

Predicting the local variation in material properties a priori is very com-
plex due to the large number of variables involved. Generating realistic
distributions and patterns is therefore much easier using empirical results.
Sriramula & Chryssanthopoulos [47] have attempted to quantify the spatial
distribution of material properties using many coupons cut out of glass
fiber reinforced (GFRP) panels. Sasikumar et al. [48] have done a similar
series of experiments on a carbon fiber reinforced panel (CFRP). Such
approaches can characterize a specific structure and production process
but can not predict the influence different geometries and manufacturing
process parameters can have on the distributions.

Experimental characterization using coupon testing is expensive and
time-consuming, being a destructive form of determining spatial variability.
Non-destructive testing (NDT) is a promising approach to mapping spa-
tial variability in fiber orientation, void formation, and interface failures.
NDT uses X-rays, ultrasonic measurements, MRI, and other techniques to
inspect a structure without compromising its integrity. Using NDT enables
engineers to validate the correct manufacturing of structures to tolerances.
It also makes it possible to gain insight into the types and distribution of
material imperfections resulting from those geometry and manufacturing
processes [49–51]. Sutcliffe, Lemanski & Scott [52] have shown that fiber
waviness measurements using x-ray imaging can reproduce destructive
micrograph measurements. More recently Safdar et al. [53] used CT scans
to analyze the fiber misalignments in 3D and used extracted spectral infor-
mation to generate similar misalignments [54, 55], this process is illustrated
in fig. 1.3. Daum et al. [56] looked into measured data of misalignment
of non-crimp fabric laminates to determine their effects on compressive
strength.

1.2.1.2 Geometry and thickness variations in unstiffened cylindrical shells

Production processes do not only affect the material properties of structures;
they also affect the geometry. Pre-stress introduced through manufacturing
processes, production tolerances, and other manufacturing parameters can
cause deviations from the ideal geometrical shape. Thin-walled structures
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(a) A volumetrically scanned image of fiber
misalignment using a CT scans

(b) Constructed misalignments in vol-
ume based on data extracted from
scans

(c) Generated misalignment using spec-
tral information from measured data

Figure 1.3: Fiber waviness measured using computed tomography (CT) scans
and generated using extracted spectral density [53–55].
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can be affected by deviations in the mid-plane surface, as well as the local
thickness.

Although not necessarily as significant as mid-plane deviations in ge-
ometry, deviations of thickness can also influence the structural response.
Papadopoulos & Papadrakakis [57] studied the effect of local thickness
variations on the structural stability of a cylinder, showing a coefficient of
variation of up to 20% using a standard deviation of the thickness variation
of 10% the original wall thickness. Thickness deviations occur due to manu-
facturing processes such as cold forming, welding, or tape laying, which
can cause local thickness changes in composites due to gaps, overlaps, and
fiber curvature.

Mid-plane surface deviations are a common field of study within the
stability of structures. Imperfections such as these are also known as tradi-
tional imperfections. Experiments on the buckling of unstiffened cylindrical
shells show a large amount of scatter in the results, with a significant de-
crease from the analytical result. Koiter [58] first identified the source of
this spread as traditional imperfections, which are critical to cylindrical
shells’ stability.

Not all imperfect shapes have the same effect, and some are more critical
than others [59]. Certain shapes are more likely to decrease the buckling
load or increase local stresses. When analyzing the stability of a structure,
imperfections are often added in the shape of linear buckling modes, which
are very likely to trigger a decrease in buckling load. Applying imperfec-
tions in these shapes causes the buckling load to reduce significantly [60].
Research done by Meurer [61] has shown that worst-case shapes can be
filtered into more primitive descriptions of geometry representing critical
worst-case patterns that are not in the shape of a linear buckling mode.

Imperfection shapes in real structures can be measured through a variety
of techniques [62]. Degenhardt et al. [63] used photogrammetry to map
the imperfections of cylinders while using ultrasonic measurements for
the thickness. Hilburger & Starnes [64] mapped the local thickness by
measuring the distance from the inside to the outside of the cylinder.
Most recently Lyssakow et al. [65] measured the inner and outer surfaces
of a cylinder using lasers to increase the measurement resolution and
accuracy. Zhao, Tootkaboni & Schafer [66] used lasers to measure geometric
imperfections of cold-formed steel structures. An example of a laser scan-
generated imperfection field is shown in fig. 1.4.

Over the years, a large number of imperfect shapes for cylinders have
been cataloged and are accessible to researchers. Data has been published
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Figure 1.4: Imperfection pattern and thickness measurement of a cylinder, scaled
by a factor 100 [65], reprinted with permission from Elsevier.

by groups at TU Delft [67, 68], Technion, and CalTech [69] are the most well
known, with detailed scans of the imperfect shells being available, together
with associated experimental data. Such data can be used to, for instance,
find the manufacturing signature of a cylinder [70, sec. 5.6].

1.2.2 Stochastic Finite Element Analysis

Structural problems have been analyzed using analytical tools for most
of history [71]. Analytical solutions, though elegant, are not feasible for
complex structures, becoming too complex to solve without simplifying the
problem.

Finite element analyses are a useful tool in computing deterministic
structural problems. Structures with stochastic parameters, such as those
discussed in section 1.2.1 can have these stochastic influences work out in
their mechanical behavior. Such effects can affect the reliability of structures
[72, 73]. Uncertainties are usually taken into account by using a safety factor
in the design process, often, but not always, leading to overly conserva-
tive designs and not expanding the knowledge of the effects of specific
variations [74, 75]. Quantifying and assigning a probability to failure of
a (sub)component is pointed out by Tinsley Oden et al. [76] as one of the
major research directions in computational mechanics.

Stochastic finite elements refer to a variety of approaches that can be used
to quantify the effects of stochastic parameters on structures using finite
elements [77–81]. Origins of the method are discussed within this section,
as well as a variety of common approaches.
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1.2.2.1 Finite Element Analysis

Numerical approaches which discretize structures into elements are better
suited for such complex problems. Finite elements find their origins in
the work of Courant et al. [82], in which a hollow shaft is discretized into
triangles and analyzed using interpolating stress function. Pushed by the
development of computers and aerospace developments in the 1950s the
finite element approach was developed even further, leading to widespread
adoption in industry as well as academia [83, 84].

Equations used in finite element analysis vary by application and prob-
lem [85]. Structural problems relating displacements with forces utilize a
stiffness matrix K. K is an n× n matrix relating the forces and displace-
ments acting on a structure as Ku = f, in which u represent displacements
and f forces acting on the n degrees of freedom. Linear buckling analyses
take stress-dependent stiffness effects into account through a geometric
stiffness matrix KG, which allows for the solution of det (K + λcrKG) = 0,
in which factor λcr is the load factor fcr = λcrf, where fcr is the buckling
load and f an applied load.

Stochastic analysis introduces an additional variation to the matrices in
the finite element problem. Changes to material properties result in the
stiffness matrix K being decomposed to a deterministic stiffness K0, and a
stochastic component ∆K, resulting in (K0 + ∆K)u = f.

Assembly of the stochastic component can be done through a variety of
approaches. Local variations are represented using a random field, which
contains continuous or discretized values associated with a stochastic pa-
rameter. Mapping fields to the structure makes it possible to quantify their
numerical effect on the stiffness matrix, resulting in the stochastic compo-
nent ∆K. Approaches that can be used to generate fields, and map them to
the structure are discussed in the following sections.

1.2.2.2 Random fields

Random fields, also known as stochastic fields, are fields in n dimensional
space that spread a parameter in space with a specified statistical distri-
bution. A large variety of methods exist which can be used to generate
random fields [86–88]. Values of a random field are generally generated
from a normal distribution with an associated mean (µ) value and standard
deviation (σ). When other distributions are required normally distributed
random variables can be transformed into other distributions using a non-
linear mapping. A non-linear mapping links the normal distribution to that
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of a different distribution. Transforming random variables does however
introduce potential issues, such as differences in the power spectrum and
autocorrelation function, requiring careful consideration [81].

Points within a field are correlated in space, this gives a relationship to
a point’s value and those in its vicinity. Using the expectation operator E,
which equals the mean value when an infinite amount of stochastic samples
are generated, the definition of correlation between variables X and Y is
[89, ch. 10]

ρX,Y =
cov(X, Y)

σXσY
=

E[(X− µX)(Y− µY)]

σXσY
, (1.1)

which is bound between −1 ≤ ρ ≤ 1 where -1 would represent perfect
inverse correlation (y = −x for example) and 1 perfect correlation (y = x
for instance).

For the generation of fields and other spatial analyses, it is useful to switch
to a more convenient relationship of distance with respect to correlation. The
two most common definitions of distance-dependent correlation functions
are

ρexp = e−
∆L
Lc , (1.2)

ρsexp = e−(
∆L
Lc )

2

, (1.3)

where ∆L is the distance between points, and Lc is the correlation length, a
characteristic length scale in which the correlation between points decreases,
meaning they become less alike. The correlation functions in eqs. (1.2)
and (1.3) are known as the exponential and squared exponential functions.
When a correlation function of a field only depends on the distance between
points it is known as stationary.

Other types of correlation functions exist but must satisfy Bochner’s
theorem, which is not always the case, particularly with geodesic distances
instead of Euclidian distances [90]. The exponential function results in a
pointier correlation to a point whereas the squared type has a smoother cor-
relation surface from a point. The squared however does reduce correlation
faster than the exponential type, as can be seen in fig. 1.5.

1.2.2.3 Field generation through orthogonal series expansion

Orthogonal series approaches state that a field can be defined in the form
of a series [91]

f (x) = f̄ (x) +
N

∑
n=1

√
λnξnφn(x), (1.4)
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Figure 1.5: Comparison between correlation functions.

where f̄ (x) is the mean value of the field, λn and φn the eigenvalues and
eigenfunctions associated with an autocorrelation function, and value ξn
is a Gaussian distributed random value. Obtaining the eigenvalues and
eigenvectors to generate these random fields can be done through a variety
of approaches, the most accurate being the Karhunen-Loéve (KL) expansion
[78].

Finding the eigenvectors and eigenvalues through the KL approach
involves solving the Fredholm integral∫

Ω
C f f (x1, x2) φn (x1) dx1 = λnφn (x2) , (1.5)

in which C f f is the auto-covariance function of the field.
Truncating the series expansion is possible (i.e., setting N to a finite value),

limiting the number of eigenvalues to those above a certain threshold can
decrease the size of expansion without affecting the fidelity of the random
fields. Removing degrees of freedom of a field can lead to the creation of
constrained random fields, as shown by Lauterbach, Fina & Wagner [92].

Solving the necessary integral for the KL expansion can be difficult to
do in general. Ghanem & Spanos [91] and Spanos & Ghanem [93] show
closed-form solutions to a limited set of problems. Numerical solutions are
required for most cases, as no closed-form solutions exist, and a variety of
approaches exist to solve eq. (1.5) [94, 95].
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1.2.2.4 Field generation through decomposition of covariance matrix

Alternatively, a discretized field can be created by decomposing an assem-
bled correlation matrix. Davis [96] first described this approach to generate
random fields, which can be implemented relatively easily while represent-
ing any correlation function satisfying Bochner’s theorem. This is done by
first assembling a correlation matrix as a symmetric positive definite matrix
in which the correlation of points within the field are defined

Rij =
cov(yi, yj)

σyi σyj

=


1 ρ(y1, y2) . . . ρ(y1, yn)

ρ(y2, y1) 1 . . . ρ(y2, yn)
...

. . .
...

ρ(yn, y1) ρ(y2, yn) . . . ρ(yn, yn)

 . (1.6)

In which ρ(yi, yj) = ρ(yj, yi), note that the correlation here can be calculated
using eqs. (1.2) and (1.3).
The covariance matrix decomposition method (CMD) calculates a random
set of vectors using

zc(~xi) = Lχ, (1.7)

in which L is a decomposed version of the correlation matrix R and χ, a
normally distributed vector with zero mean and unit variance (χ ∼ N(0, 1)).
This decomposition has to be done in such a way as to generate a vector ~x
with a mean of zero and unit variance. Taking the definition of correlation
of eq. (1.1) and defining that variables X and Y have a mean value of zero
and a unit variance the equation can be simplified to

ρ(X, Y) =
E [(X− µX) (Y− µY)]

σXσY
= E(XY). (1.8)

If X and Y are uncorrelated to each other E(XY) = ρ = 0, if they are
correlated ρ ∈ [−1, 0) ∪ (0, 1]. If X and Y are uncorrelated vectors the
correlation is ρ(Xi, Yj) = E(XiYj) = δi,j, meaning that the correlation matrix
R = I.

Using eq. (1.8) it is possible to show that R can be decomposed into two
matrices

R = cov[~x,~x] = E(~x,~xT)− 0 · 0
= E(Lχ(Lχ)T) = LE(χχT)LT = LILT = LLT . (1.9)
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Decomposition can be done using different methods, the most common
methods are through Cholesky or eigenmode factorization. Cholesky de-
composition is found in many books in linear algebra and computation
methods, e.g. [97, Ch. 7]. Eigenmode decomposition can be done as

R = QΛQT . (1.10)

In which Λ is a diagonal matrix with the eigenvalues of R on the diagonal,
and Q contains the eigenvectors of the matrix. Matrix L can be extracted
from this as

R = QΛ̂Λ̂QT
= LLT → L = QΛ̂, (1.11)

in which Λ̂ = diag(
√

λ). Term QΛ̂ can be seen as the equivalent of the term
∑N

n=1
√

λnφn(x) in eq. (1.4), with N being the dimension of the correlation
matrix (unless it is truncated to only use larger eigenvalues).

As the correlation matrix increases in size, it can become ill-conditioned.
When this happens, the matrix is very close to being singular, which can
cause numerical problems. In such cases, the Cholesky decomposition may
fail, as eigenvalues that are (close to) zero might show up as negative values
in the algorithm. Numerical results may include imaginary eigenvalues,
which are not realistic. Setting eigenvalues that are below a certain threshold
to zero can resolve this. A comparative study showed that eigenmode
decomposition is slightly more accurate in generating the random fields
[98, Sec. 4.2]. A further advantage is that random fields can be generated
by only calculating the dominating eigenvectors [87, 99]. It is necessary to
first analyze the error relative to the field size to make sure that the field is
not unduly constrained.

Decomposition of the correlation matrix can become computationally
intensive for large array sizes. Work has been done over the years to approx-
imate this decomposition using a variety of numerical approaches. Dietrich
& Newsam [100] approximated the square root of the covariance matrix
using Chebyshev polynomials. Circular embedding can be used to more
efficiently calculate the covariance matrix’s eigenvalues using FFT, though
it can only be used for rectangular or linear meshes [101, 102]. Another ap-
proach is to approximate the covariance matrix using a hierarchical matrix.
Hierarchical matrices approximate some matrix segments while using exact
representations for others [103, 104].

1.2.2.5 Spectral approaches to random field generation

Spectral methods use an expansion of periodic functions to generate a
stochastic field. Methods include the Discrete Fourier Transform (DFT), Fast
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Fourier Transform (FFT.) [105]. Both of these methods calculate the value at
discrete points using a series expansion in the form of [105, 106]

f (x) =
N−1

∑
n=0

An cos
(

κnx + φ
(i)
n

)
, (1.12)

in which An =
√

2S f f (κn)∆κ, with S f f being the spectral density func-
tion of the random field. Other terms are defined as κn = n∆κ, ∆κ =
κu/N and n = 0, 1, 2, . . . N − 1. Parameter ku is the cut-off wave number
after which the power of the spectral density function S f f can be considered
zero for mathematical or physical reasons.

The DFT and FFT method are closely related, the FFT utilizing a faster
way to calculate the An and θn coefficients. FFT methods perform well
but can have issues if they are not used well [107, Ch. 2]. To generate a
well-performing field it is necessary to extend the field beyond the structure,
the extent of which depends on the spectral density of the field. Likewise,
the resolution of the field must correlate well with the spectral density. A
field with a low resolution can have issues related to the Nyquist limit of
the function.

When experimental data exists defining the spectral density instead of the
correlation function, the spectral density can be used to generate random
fields using these types of approaches directly. An example is the work
done by Safdar in which he recreates fiber waviness in composites using
spectral density measured through CT scans [54].

1.2.2.6 Other approaches to generate random fields

A range of alternative methods also exist, such as the turning bands method
(TBM), moving average (MA), and Local Average Subdivision Method (LAS).
Details on their implementation can be found in this section’s referred
literature, which mainly focuses on giving a brief overview of the methods.

The turning bands method (TBM) is schematically shown in fig. 1.6 for
2D fields (3D fields are also possible). Unidimensional stochastic processes
are generated on i lines that emanate from an origin point. Lines have an
equal spacing θi between 0 and 2π. Values on the field P are calculated as a
projected sum of these unidimensional processes. Extracting the value at
position N is done by creating a position vector xN , which is projected on
each line as zs (xN) =

1√
L ∑L

i=1 zi (xN · ui), with ui being the unit direction
vector of line i. The accuracy of the TBM method depends on the number of
lines used and the domain’s size, becoming computationally inefficient as
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1382 MANTOGLOU AND WILSON: SIMULATION OF RANDOM FIELDS 

N 

/region P 

Fig. 2. Schematic representation of the field P and the turning 
bands lines i. 

them the corresponding values of the on e dimensional dis- 
crete process. If N is a point of the region having location 
vector x/v, then the assigned value from line i will be zi(•/vi) 
where •vi - x•v' ui is the projection of the vector x•v onto 
line i (see Figure 2), ui the unit vector on line i, and xN' ui 
represents the inner product of the vectors x•v and ui. Take L 
lines such as i. For each line generate an independent 
unidimensional realization using C•(0 as the covariance 
function. Then at every point N of the region, there are L 
assigned values Zi(•Ni) = Zi(XN ' Ui), where i = 1,..., L, 
from the unidimensional realizations. Finally, assign to the 
point N the value Zs(X/v) given by 

1 L 
Zs(XN) = • Z Zi(XN ' Ui) 

i=1 

(6) 

as the realization of the two- or three-dimensional random 
field. The subscript s represents the term 'simulated' or 
'synthetic.' 

The line process is generated discretely. If we draw lines 
or planes perpendicular to the line at the ends of each 
discretized segment, a set of bands is defined (Figure 2). As 
the lines turn, the bands defined above also turn. Thus the 
method was given the name 'turning bands method' (TBM) 
by Matheron [1973]. 

The field given by (6) has zero mean. The question that 
arises is 'what is the form of the unidimensional covariance 
function C•([) so that the field defined by (6) has the imposed 
two- or three-dimensional covariance function C(r)?' Take 
two points of the field having location vectors x•, x2, 
respectively. The simulated values corresponding to these 
points are given by (6) and the covariance function of the 
simulated field is 

Cs(x•, x2) = E[Zs(x•) Zs(x2)] 

1 L L 

= 7 E Z g[zi(x'' ui)Zj(x 2 'u j)] (7) 
i=i j=l 

Because the unidimensional realizations along two different 
lines are independent, the expected value E[Zi(x•' ui) 
Zj{x2 ß u j)] will be zero unless i --j. Thus this expression 
reduces to 

1 L 

Cs(x•, x2) = •- • E[Z,{x• ß ui) Zi(x 2 ' Ui)] 
i=1 

1 L 
= •- • C,(h' ui) (8) 

i=1 

where h = x2 - x•. The ,expected value E[(Zi(x•' ui) 
Zi(x2 ß ui)] represents the covariance of the one-dimensional 
process on line i between points x• ß ui and x2 ß ui, which is 
written as C•(h ß ui) = E[Zi(x• ß ui) Zi(x2 ß ui)], assuming that 
the unidimensional process is second-order stationary. Be- 
cause the vector ui is uniformly distributed over the unit 
circle or sphere, the right-hand side of (8) is only a function 
of ]h] for large L. This means that the obtained process is 
wide sense stationary and isotropic, so that we can write 

1 L 

Cs(x•, x2) = Cs(h) = Cs(r) = • • C•(h' ui) (9) 
i=1 

where r = ]h]. For L --• o•, by using the law of large numbers 
this becomes 

Cs(r) = lim • C•(h. Ui) = E[C•(h' u)] 
L--->oo i=1 

= fc C•(h ß u)f(u) du (10) 

where c represents the unit circle or sphere, f(u) is the 
probability density function of u which becomes 1/2rr or 1/4rr 
in two- or three-dimensional cases, respectively, and du is 
the differential length or area at the end of vector u. Equation 
(10) then gives, for the two-dimensional case (n = 2), 

1 fa C•(h- u) du Cs(r) = • nit circle 
while for the three-dimensional field (n = 3) we have 

(11) 

Cs(r) = • nit sphere C•(h ß u) du (12) 

In the following we examine the cases of three- and two- 
dimensional fields separately. 

Three-Dimensional Fields 

For examples, see Journel and Huigbregts [1978]. Be- 
cause of the second-order stationarity and isotropy of the 
process, without loss of generality we can define orthogonal 
(x, y, z) axes with origin at the point x• and with the z axis in 
the direction of the vector h = x2 - x•, as shown in Figure 3. 
The unit sphere where the vector u ends is also shown. In 
spherical coordinates h ß u = r cos qb, where r = Ihl, and du 
= sin ck dck dO. The integral (12) is then written as 

Cs(r) = • C•(r cos 4>) sin ck dck dO 

1 C•(/•) d/• (13) 
r 

Figure 1.6: Schematic representation of field P generated using TBM [110],
reprinted with permission from John Wiley and Sons.

both of those increase [108]. Although other geometries have been used in
literature [109], it is not trivial to adopt this approach to complex geodesic
shapes.

The moving average method is related to the CMD method described in
section 1.2.2.4. Instead of decomposing the correlation matrix, the covariance
function is decomposed by finding a function f that satisfies

C(x) = f ∗ f T(x) =
∫ ∞

−∞
f (s) f (x + s)ds, (1.13)

where f T(s) = f (−s). A random field can be generated using

K(x) =
∫ ∞

−∞
f (x− s)Z(s)ds = ( f ∗ Z)(x), (1.14)

where Z is a Gaussian random vector Z ∼ N(0, 1). The function f can be
thought of as a decomposed covariance function, finding this function is
not trivial outside of a few cases, limiting its use for other functions and
complex geometry [111].

Fenton & Vanmarcke [112] first introduced the concept behind the Local
Average Subdivision (LAS) method. In the LAS method, a field is first
discretized using a coarse mesh. This can be done using CMD or a different
method. Points that are assigned surfaces (or line lengths in 1D) are then
split into smaller sections. The sectioning is done considering the mean
value of the original surface, the correlation, and covariance [107, 112].
Although this method has advantages, such as refining a larger mesh
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locally without the risk of aliasing or mirroring the random field, it requires
computational effort during each iteration. There are also potential issues
with the variance of the field and can be challenging to implement [108,
113].

1.2.2.7 Discretization and mapping of random fields

Fields generated using the methods described in sections 1.2.2.3 to 1.2.2.6
can be either continuous (e.g. spectral approaches) or discretized (e.g. CMD),
depending on the approach used. Continuous fields can be evaluated using
global-local coordinate transformations during matrix assembly. Discrete
methods require points to be evaluated, which are defined during field
generation.

Field discretization usually follows that of the underlying structure,
either at its nodes or integration points. Such discretization often leads
to unnecessary complexity and the amount of points. Unlike structural
discretization, which is refined to increase accuracy in areas subject to
stress gradients, random fields’ optimal discretization depends on the
correlation function used. Li & Der Kiureghian [114] analyzed the optimal
discretization and found the range of Lc

10 to Lc
5 for the exponential definition

(eq. (1.2)) and between Lc
4 to Lc

2 for other the squared exponential (eq. (1.3))
[114–116].

Points can be evaluated at integration points of elements, but this greatly
increases the number of evaluated points. Evaluating nodes of the structure
and interpolating values at integration points is one approach to reduce
the size of the discretization, enabling the reuse of element shape functions
already used in structural FEA. Interpolation of field values is done as

Ĥ(~x)
q

∑
i=1

Ni(~x)zc(~xi) x ∈ Ωe, (1.15)

where Ni is the shape function (usually polynomial), Ωe is the domain of an
element and ~xi are the values of the ith node [117]. Expanding on this is the
Optimal Linear Estimation (OLE) method, in which a continuous surface is
made of the random field by minimizing the variance of the approximation
error at each point [114].
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Another approach is taken by the Spatial Average method (SA). In this
method, the field over an element is described by the spatial average of the
field over the element.

Ĥ(~x) =

∫
Ωe

H(~x)dΩe∫
Ωe

dΩ
= z̄c(~xc) (1.16)

This creates stepwise discontinuities along the boundaries of the elements
[117]. There are a few limitations to this method, its nature makes it very
hard to be used for anything other than Gaussian distributions [118]. The
averaging process will also reduce the variance in the spatially averaged
field [86, sec. 7.6],[77].

It should finally be noted that not all discretization methods can be
combined with all random field generation methods. The CMD method
is easy to combine with the OLE and SA methods. The OLE uses an
eigendecomposed covariance matrix to find the optimal shape functions,
which is also used in the CMD method. Similarly, the SA method can be
easy to implement in the CMD, as it can use the covariance between two
local averages. The LAS method implicitly utilizes the SA method in its
refining process. It is also possible to combine the FFT method with the SA
method, though it is not as straightforward [119].

1.2.2.8 Second moment estimation of structural response

Using random fields can make it possible to numerically analyze the effects
of spatially distributed variations in the structure. The reliability of the
structure is the main topic of most stochastic analyses. Mathematically this
involves estimating the first (mean) and second (variance) moments of the
structural response. Three main approaches exist to quantify a structure’s
reliability, which can generally be quantified as a scalar characterizing a
structure, such as maximum displacement, buckling load, and maximum
stress.

The most straightforward way of estimating the first and second moments
of a stochastic process is through sampling n analyses and analyzing
their statistics. Called a Monte-Carlo analysis, it is considered the most
straightforward approach to finding the statistical moments while also
being quite robust [120, 121]. The standard Monte Carlo method estimates
the mean and variance of a stochastic process f (i) using n samples as

f̄ =
1
n

n

∑
i=1

f (i),
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s2 =
1

n− 1

n

∑
i=1

(
f (i)− f̄

)2 .

Estimating the number of samples N required to converge to accurate
values for the mean and variance is not trivial and depends on both the
structure analyzed and the accuracy required. Increasing the number of
samples increases the computational cost of the analysis, limiting large
complex analyses. Several strategies exist to reduce the computational time
in Monte Carlo analyses [81, ch. 4] [79].

One approach is to reduce the variance of the samples. Doing this re-
quires some knowledge of the statistical response. When low-probability
responses are of interest, selectively sampling areas of interest can increase
the resolution of the statistics quite effectively. Such an approach is called
importance sampling and requires some knowledge of the statistical distri-
bution, for instance, by running a limited amount of standard Monte Carlo
samples [122].

When the distribution is unknown, another approach is to spread the
samples more effectively, making sure they are not too similar to previous
ones. Creating bins of equal probability samples can be generated in limited
probability density function areas, creating a lower variance and better fit to
stochastic analyses. Spreading out samples in such a manner is called Latin
Hypercube Sampling (LHS) [123]. Line sampling is another approach that
attaches an importance direction to more effectively sample a stochastic
problem without a prior estimate of variance [124].

Instead of analyzing a problem with a Monte Carlo analysis, it is also
possible to use alternative approaches. The perturbation method uses a
Taylor expansion of a stochastic finite element matrix in the form

K(a) = K0 +
N

∑
i=1

KI
i ai +

1
2

N

∑
i=1

N

∑
j=1

KII
ij aiaj + · · · , (1.17)

where K I and K I I are the partial derivatives KI
i = ∂K

∂ai

∣∣∣
a=0

and KII
ij =

∂2K
∂ai∂aj

∣∣∣
a=0

and a a random vector with N entries. Similar expansions are

also used for the displacement and load vectors.
Computing the derivatives can be computationally intensive, particularly

for systems with many stochastic parameters N. Estimates of the variance
work well for small coefficients of variation but can deviate due to the
nature of the Taylor expansion. Including higher-order terms can improve
the accuracy but comes at the cost of disproportionate computational
expense [125].
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Kriegesmann et al. [126] used finite differences to numerically compute
the derivatives of an objective function created through a Mahalanobis
transformation of measured outputs. Using this semi-analytical approach,
it was possible to quickly estimate the statistical moments of the structure
being analyzed, composite cylindrical shells [127, 128] and panels [129] in
this case.

Spectral stochastic finite element method (SSFEM) first introduced by
Ghanem & Spanos [91] directly incorporates the KL approach of eq. (1.4)
allowing normally distributed variations to be incorporated in the stiffness
matrix generation as

ke(θ) = ke
o +

∞

∑
i=1

ke
i ξi(θ) (1.18)

where ke
o is the mean element stiffness matrix and ke

i a deterministic ma-
trix defined as ke

i =
√

λi
∫

Ωe
ϕi(x)BT · Do · BdΩe, with B being the strain-

displacement matrix, and D0 the mean value of the constitutive (elasticity)
matrix. Assemby of the stiffness matrix leads to the equilibrium equation[

K0 +
∞

∑
l=1

Kiξi(θ)

]
u(θ) = F (1.19)

with u(θ) being a random vector of nodal displacements. Obtaining these
nodal displacements should be done by solving eq. (1.19), however no
closed-form solution exists to this problem. Solutions are generally obtained
by using Wiener chaos polynomials [130]. Material and geometric non-
linearities can not be analyzed with SSFEM at this time, nor has any other
field generation approach than the KL-expansion been used thus far.

When variables are not normally distributed they can be represented
using a polynomial chaos expansion

K(θ) = K0 +
M

∑
i=0

K̂iΨi(θ), (1.20)

where M is the total number of chaos polynomials, K̂i the deterministic
fluctioantion matrix, and Ψi(θ) the polynomial basis function acting on
random variables θ.

1.2.3 Tailoring thin-walled structures

Variations discussed in section 1.2.1 refer to unintended deviations from an
idealized design, subject to stochastic analyses described in section 1.2.2.
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thermore, no direct interactions between particles are
taken into consideration [13].

Experimental observations (e.g., [3,14]) show that the
typical microstructure of FGMs, illustrated in Fig. 1(a)
towards the gradation direction, contains a particle–
matrix zone with discrete particles filled in continuous
matrix, followed by a skeletal transition zone in which
the particle and matrix phases cannot be well defined
because the two phases are interpenetrated into each
other as a connected network. The transition zone is
further followed by another particle–matrix zone with
interchanged phases of particle and matrix. Hirano et al.
[15] applied the fuzzy logic approach to estimate the ef-
fective elastic behavior in the transition zone by using a
transition function to combine the two solutions ob-
tained from the particle–matrix zones. Reiter and Dvo-
rak [16] also adopted the transition functions combined
with the Mori–Tanaka model in the particle–matrix zone
and self-consistent model in the skeletal transition zone.

The above-mentioned FGMs models did not directly
include the local interactions between particles. Conse-
quently, they could not take into account the graded
particle distribution for FGMs. Some studies have
suggested the need for higher order theory in the mod-
eling of FGMs. For example, Zuiker and Dvorak [17]
extended the Mori–Tanaka method to linearly varying

fields and investigated the relations of the averaged
stress versus strain relation and of the stress-gradient
versus strain-gradient, which was shown to be depen-
dent on the size of the representative volume element
(RVE). Here the RVE for a material point in a contin-
uum body is a material volume that statistically repre-
sents the material neighborhood of the material point
[24]. Aboudi et al. [5] developed a higher-order numer-
ical cell theory based on volumetric averaging of the
various fields. Micromechanical finite element models
have also been constructed [16,18–20]. While taking into
account the local particle interactions, these numerical
methods are computationally intensive and inconvenient
to be implemented for engineering structural analysis.

In this paper a micromechanical framework is pro-
posed to investigate the effective elastic behavior of
FGMs. Based on the Eshelby’s equivalent inclusion
method [21], the pair-wise particle interaction is col-
lected for any two particles embedded in the matrix
medium. Given a uniform loading on the upper and
lower boundaries of FGMs, averaged strains in particles
are derived by integrating pair-wise interaction contri-
butions of all particles. In the course of derivation, the
microscopic RVE is constructed to reflect the micro-
structure of FGMs. A transition function is adopted in
the skeletal transition zone. From the effective stress and
strain fields distributed in the gradation direction of
FGMs, the effective elasticity distribution is solved as a
function of gradation direction.

The rest of this paper is organized as follows. In
Section 2, we briefly review the Eshelby’s equivalent
inclusion method [21] and two-inhomogeneity interac-
tion in the infinite medium [22]. We then apply the pair-
wise particle interaction for the micromechanical
analysis of FGMs to develop an elastic constitutive
model in Section 3. We further discuss the relation of the
proposed model and the Mori–Tanaka model, and
present the numerical results and comparisons with
available experimental data in Section 4.

2. Micromechanics of pair-wise particle interaction

To solve the local elastic field of a single ellipsoidal
particle filled in the infinite domain under a far field
strain, Eshelby [21] offered an analytical solution
through a so-called equivalent inclusion method. The
essence of this method is that the particle–matrix het-
erogeneous domain is transferred to a homogeneous
domain same as the matrix material but with an eigen-
strain acting in the particle phase to represent inhomo-
geneity. The equivalent inclusion method has been
widely applied in evaluating the effective mechanical
properties of heterogeneous composites [23,24].

Based on the Eshelby’s equivalent inclusion method,
the local strain field at a certain point x for one particle

Fig. 1. Schematic illustration of a two-phase FGM sample: (a) typical
microstructure including A and B phases; (b) three zones in macro-
scopic scale X; and (c) RVE in the microscopic scale x.

3536 H.M. Yin et al. / Acta Materialia 52 (2004) 3535–3543

Figure 1.7: Continuous transition of a FGM between material elements [137],
reprinted with permission from Elsevier.

Variations in material properties or local geometry can also be intentional.
When material properties are altered locally by, for instance, changing the
composition, these are called functionally graded materials. Effective mate-
rial properties can also be altered by altering the orientation of orthotropic
materials, for instance, by changing the fiber orientation in an FRP. Local
changes to the geometry by slightly perturbing the ideal geometry or thick-
ness can also tailor a structure’s response. This section presents an overview
of different engineered variations that exist.

1.2.3.1 Functionally graded materials

Functionally graded materials (FGM) constitute a type of material in which
the composition changes spatially throughout a structure. Transitions can be
continuous or discontinuous (fig. 1.7), depending on the materials and the
manufacturing process used. Mechanical, electrical, or thermal properties
can be optimized to improve a structure [131–134]. FGM consist of different
types of material, such as metal-ceramic, metal-metal, polymer-ceramic

Many manufacturing processes exist to create FGM [134, 135]. The ma-
jority of these processes limit the variability to a single direction, such as
methods that use centrifugal force, while other approaches, such as additive
manufacturing, allow a great deal of design freedom in the topological
gradation [136].
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1.2.3.2 Fiber paths in fiber-reinforced composite structures

Automated fiber placement (AFP) makes it possible to steer tows of fibers
along a path during the manufacturing process of a composite [138]. Chang-
ing the fiber angle of a lamina changes the stiffness properties of a laminate
spatially, potentially improving a structure’s behavior. Gurdal & Olmedo
[139] first coined the term variable stiffness composites (VSC) to refer to
these types of structures.

Clever use of varying stiffness can increase the strength of a structure
[140], or increase the buckling load of structures [141–143]. Combining
pre-stress, it is also possible to create structures with multiple equilibria
[144, 145]. Recent work by Lincoln et al. [146] showed that varying the fiber
angle in a cylinder can result in a structure more insensitive to geometric
imperfections.

1.2.3.3 Geometry and thickness of unstiffened shell structures

Local thickness changes result in stiffness properties that vary along with
the topology of a structure [147]. Townsend & Kim [148] used topology
optimization to improve the buckling load of shell structures by optimizing
the shape of thickened patches. Results showed that while increasing the
buckling load, compliance is also increased, resulting in a necessary trade-
off in the optimized solution. Non-uniform thickened patches were used
by Hu & Burgueño [4] to control the post-buckling response of a cylinder,
which were then analyzed using 3D printed specimens, patch patterns and
experimental responses are shown in fig. 1.8. Similarly, Steltner et al. [149]
optimized local thickness of a stiffened panel, improving both deterministic
and robust performance in a fully geometrically nonlinear analysis.

Adding small variations to structures can tailor the behavior of a structure.
Hu & Burgueño [9] controlled the post-buckling path of a cylinder by
adding seeded geometric imperfections in the shape of linear buckling
modes. Cox et al. [8] showed that it is possible to nudge structures towards
a certain post-bucking path, and thereby reduce the sensitivity towards
imperfections [4, 150].

Work done by Minera et al. [151] and Minera [152] demonstrates how
deterministic improvements can be achieved by performing element-wise
variations and mapping sensitivities. Sensitivities obtained this way are also
not necessarily continuous but indicate which parts of a structure contribute
most to the stiffness. Using these relative contributions to find locations,



24 introduction

non-thickened regions was either isolated, partially interconnected or fully con-
nected. The shell surface was discretized into 192 cells (8 in the axial direction by 24
in the circumferential direction). Cell size was chosen based on observations of local
buckling wave size in previously studied cylindrical composite shells28,30,31 such that
they were small enough to allow for variations in the thickening patch design but
large enough to have an e®ect on the formation and propagation of the local buckling
waves. All three designs had symmetry in their patch pattern and the basic (i.e.
repeating) pattern was assigned to one-eighth of the model, as shown in Fig. 1(a).
Eight out of 24 cells within the one-eighth domain were thickened to 1mm, which led
to a thickening ratio (the ratio of additional material volume over the original shell
volume) of 1/3 for all three NTD cylinders. The NTD cylinders were thus classi¯ed in
three categories: \zero-connected" (ZC), \partially-connected" (PC) and \fully-
connected" (FC). ZC and PC designs contained \isolated" non-thickened regions
while the thickened regions of FC design were arranged in clustered patterns
such that the non-thickened regions were well connected along the circumferential
direction.

The resulting force-deformation responses of the NTD cylinders are shown in
Fig. 1(b). It can be seen that all three cases had a similar initial sti®ness due to their
equal thickening ratio (1/3) on the shell surface. Yet, as it is to be expected, there
was signi¯cant variation in their buckling and postbuckling response. The sti®ness
for the zero-connected (ZC) design decreased signi¯cantly after each critical event,
which led to a signi¯cant reduction in capacity during the postbuckling response
and the ¯rst buckling load was the maximum critical load. Conversely, a sti®ening
post-buckling response was observed for the fully-connected (FC) design, with the
load capacity tending to gradually reach a level that surpassed the initial critical
buckling load, which is considered as a sti®ening post-buckling response. Combining
both response features from FC and PC design, the post-buckling sti®ness of the

(a) (b)

Fig. 1. Three NTD cylinders. (a) design pattern; (b) obtained elastic postbuckling responses.

Cylinders with Tunable Postbuckling Features

1850026-5

In
t. 

J. 
St

r. 
St

ab
. D

yn
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

ifi
c.

co
m

by
 N

A
N

Y
A

N
G

 T
EC

H
N

O
LO

G
IC

A
L 

U
N

IV
ER

SI
TY

 o
n 

06
/0

6/
17

. F
or

 p
er

so
na

l u
se

 o
nl

y.

(a) Thickened sections on cylinders,
shaded areas are twice as thick as un-
shaded areas

non-thickened regions was either isolated, partially interconnected or fully con-
nected. The shell surface was discretized into 192 cells (8 in the axial direction by 24
in the circumferential direction). Cell size was chosen based on observations of local
buckling wave size in previously studied cylindrical composite shells28,30,31 such that
they were small enough to allow for variations in the thickening patch design but
large enough to have an e®ect on the formation and propagation of the local buckling
waves. All three designs had symmetry in their patch pattern and the basic (i.e.
repeating) pattern was assigned to one-eighth of the model, as shown in Fig. 1(a).
Eight out of 24 cells within the one-eighth domain were thickened to 1mm, which led
to a thickening ratio (the ratio of additional material volume over the original shell
volume) of 1/3 for all three NTD cylinders. The NTD cylinders were thus classi¯ed in
three categories: \zero-connected" (ZC), \partially-connected" (PC) and \fully-
connected" (FC). ZC and PC designs contained \isolated" non-thickened regions
while the thickened regions of FC design were arranged in clustered patterns
such that the non-thickened regions were well connected along the circumferential
direction.

The resulting force-deformation responses of the NTD cylinders are shown in
Fig. 1(b). It can be seen that all three cases had a similar initial sti®ness due to their
equal thickening ratio (1/3) on the shell surface. Yet, as it is to be expected, there
was signi¯cant variation in their buckling and postbuckling response. The sti®ness
for the zero-connected (ZC) design decreased signi¯cantly after each critical event,
which led to a signi¯cant reduction in capacity during the postbuckling response
and the ¯rst buckling load was the maximum critical load. Conversely, a sti®ening
post-buckling response was observed for the fully-connected (FC) design, with the
load capacity tending to gradually reach a level that surpassed the initial critical
buckling load, which is considered as a sti®ening post-buckling response. Combining
both response features from FC and PC design, the post-buckling sti®ness of the
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Fig. 1. Three NTD cylinders. (a) design pattern; (b) obtained elastic postbuckling responses.
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(b) Post-buckling response of tested cylin-
ders, markers indicate critical events
in the post-buckling path

Figure 1.8: Effects of local thickened patches on the postbuckling response. Zero,
partial and fully connected designs refer to how the thickened (red
areas in subfigure a) are connected to each other [4], reproduced with
permission from World Scientific.

cutouts were added to a structure without significantly influencing the
structure’s performance, thereby reducing the mass.

1.2.4 Sensitivity and robustness analysis of structures

Stochastic analysis of structures can help quantify structures’ effects on
randomly distributed structural parameters in a structure. Quantifying the
distribution of an objective function relative to set inputs helps determine
the structure’s robustness and reliability.

The terminology used in stochastic analysis and structures’ reliability can
be ambiguous from the terminology used in other fields. To clarify terms,
the definitions used in [153, 154] are used within this thesis.

Uncertainty can refer to insufficient knowledge of a parameter or its
inherent variability. This uncertainty introduces variability in the system,
which can affect performance. Structures that are tolerant to variations of
the structure or environment are called robust. When analyzing the chance of
failure or another incident to occur, the reliability of a structure is analyzed.
Reliability quantifies the chance that a parameter will drop below or climb
over a limit state. In the probability density function (pdf) of a response, the
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Figure 1.9: Definitions of structural robustness and reliability [153]. Robustness
relates to the area near the mean value of the pdf. Reliability relates
to the tail-end of a pdf, moving towards the other tail as reliability
decreases, reprinted with permission from Elsevier.

robustness focuses on the variance around the expectation (mean) value,
while reliability affects values at the pdf’s tails, as is illustrated in fig. 1.9.

Section 1.2.4.1 discusses examples of stochastic analyses done on struc-
tures to quantify their variability under a set of uncertainties. Improvements
to structures are discussed in section 1.2.4.2, starting with defining design
objectives and then discussing methods that can be used to improve the
objective’s value.

1.2.4.1 Uncertainty quantification of shell structures

Quantifying the effects of random variations makes it possible to evaluate
the robustness and reliability of a structure. Stochastic analysis techniques
have been used on a wide array of structures in order to quantify their
responses.

Papadopoulos has published a wide range of reference results, analyzing
local variations in thickness and material properties of a cylindrical panel
[155] and cylindrical shell [57]. Later extensions have introduced imperfect
load introduction [156] and non-Gaussian distributions [157].

Material property variations analyzed by Shang & Yun [158] quantify
the effects Young’s modulus variation has on flat panels, circular segments,
and a retaining wall example. Analysis of variability of functionally graded
materials has recently been performed by Do et al. [159], using two random
fields to simulate both materials. Geodesic random fields used by Scarth et
al. [160] simulate composite material elastic variability of a blade structure’s
free-vibration and linear buckling modes. Fiber angle variations in variable
stiffness composites can also affect the buckling load [13] and stress level
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and failure onset of composite structures [161]. Balokas et al. [162–165] used
1D random fields to distort yarns in textile-reinforced composites, analyzing
the effects of disturbances on the mechanical properties.

Effects of geometric imperfections have also been analyzed using random
field approaches. Schenk & Schuëller [166] analyzed the buckling of cylin-
drical shells, later extending the analysis to include cut-outs [167]. Alfano &
Bisagni [168] further studied cylindrical sandwich composite shells under
a variety of imperfection sources, quantifying their individual contribu-
tion to buckling load reduction. Constrained random fields developed by
Lauterbach, Fina & Wagner [92] make it possible to create local geometric
imperfections, for instance, in shear walls, but also on cylinders, and flat
plates, amongst others. Geometric imperfections on I-section beams were
studied by Schillinger et al. [169], later extended by Papadopoulos, Soimiris
& Papadrakakis [170] to include portal frames.

Vryzidis, Stefanou & Papadopoulos [171] applied geometric imperfec-
tions on steel tubes using an evolutionary power spectrum derived from
experimental measurements. Using experimental measurements make it
possible to reproduce more realistic imperfection patterns, but limited
amounts of data can make it challenging to produce useful correlation
functions on a structure. Using fuzzy probabilistic Fina, Weber & Wagner
[172] increased the usability of finite measurement data to create realistic
imperfection patterns, later extending it to include sensitivities [10].

Work done by Kriegesmann et al. [126, 127, 173] on composite cylin-
drical shells and panels [129] combined different types of imperfections.
The analyses included traditional geometric imperfections as well as non-
traditional imperfections such as wall thickness, material properties, loading
and boundary conditions. It should be noted that the choice was made for
some parameters (such as wall thickness) to vary as a constant all over the
structure rather than locally. Meurer et al. [174] proposed a probabilistic per-
turbation load approach (PPLA) that incorporates perturbing loads instead
of geometric imperfections, as well as other non-traditional imperfections.
The PPLA design approach was applied on composite unstiffened cylindri-
cal shells, generating less conservative design loads than equivalent NASA
standards.

Other types of structures can also be analyzed with random fields. Chen
et al. [175] analyzed geometric imperfections of reticulated space-frame
structures. Microstructure analysis of composites’ material properties by
Stefanou, Savvas & Papadrakakis [176] couples the effects of mesoscale
configurations to microstructure models. Teixeira & Soares [12] analyzed
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the effects of corrosion damage on the collapse strength of panels found in
bulk carriers.

1.2.4.2 Improving design of thin-walled structures

Improving design can mean different things, depending on the objective of
the design. Traditional deterministic designs are often optimized to find a
(global) optimum, minimizing an objective function. Different optimality
definitions can be used when dealing with uncertainties, including the mean
and standard deviation or probability of failure. Traditional deterministic
design objectives, robust design, and reliability-based design objectives are
defined and discussed in this section.

deterministic parametric design optimization

Deterministic optimization encompasses a wide range of approaches that
try to find an optimum for a function f (x, p) subject to constraints [177].
Mathematically this problem can be defined as

minimize
x

f (x)

subject to g(x) ≤ 0

x− ≤ x ≤ x+,

(1.21)

in which x is the design variable being optimized, x− and x+ define the
lower and upper bounds of x, and g(x) is a constraint function.

Deterministic optimization suffers from several shortcomings [178]:

• A deterministic optimum is based on a deterministic model of a
structure, it is bound with assumptions and simplifications put into
the model. Any optimization therefore only optimizes the model, not
necessarily the structure. Assumptions and simplifications made in
the model may directly affect and alter the optimum.

• When an optimal model is found, it is impossible to recreate this
precisely due to variations in manufacturing processes. An optimum
is, therefore, often only a theoretical design that can not realistically
be produced.

• A function gives a static optimum, and the world is dynamic. When
external factors affect the model the optimum depends on their cur-
rent state. An example would be temperature-dependent material
properties, a bridge might need more material on a hot day than
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on a calm day if the material strength is degraded. A deterministic
optimum design is therefore often also dynamic depending on the
environment and other external factors.

The feasibility boundary usually constrains deterministic optima, mean-
ing that any small change in the parameters can cause the structure to
violate the constraint function g. Marczyk [179] wrote that "Optimization is
actually just the opposite of robustness," referring to this inherent sensitivity
of deterministic optima.

robust design optimization

Robust design optimization (RDO) comes forth from the work of Genichi
Taguchi [180], which focuses on making designs insensitive to the effects
of uncertainties. Extending the deterministic optimization formulation of
eq. (1.21) to

minimize
x

f̃ (x) = F(µ f (x), (σf (x))

subject to g(x) ≤ 0

x− ≤ x ≤ x+,

(1.22)

where F(µ f (x), (σf (x)) is the reformulated design objective which is a
function of the mean (µ f ) and standard deviation (σf ) of the optimization
objective f . Simple examples of the reformulated objective would be a
weighted sum or weighted vector product.

The optimum value found in RDO consists of the optimal value given the
variation in the design parameter. Figure 1.10a illustrates this by showing
that the robust optimum x2 is to the right of the deterministic optimum x1.
The variation of x1 with ±∆x leads to configurations outside the feasible
region. Configuration x2 remains in the feasible region with variations of
±∆x. Quantitatively, integrating x2 over x2±∆x will result in a lower value
than the equivalent over x1 and stay in the feasible region.

reliability-based design optimization

Reliability-based design optimization (RBDO) seeks an optimum with
an accepted chance of failure. Extending the mathematical definition of
eq. (1.21) to

minimize
x

f̃ (x) = µ f (x)

subject to P(g(x) ≤ 0) ≥ r

x− ≤ x ≤ x+,

(1.23)
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2.1.2. Robustness
In general, a system, organism or design may be said to be

robust if it is capable of coping well with variations (sometimes
unpredictable) in its operating environment with minimal
damage, alteration or loss of functionality. In IEEE guideline for
nuclear power generating station, robustness is referred to as a
statistical result that is not significantly affected by small changes
in parameters, models, or assumptions [28]. In some non-deter-
ministic design literature, a robust system is defined to be
relatively insensitive to variations in both the system components
and the environment, and the degree of tolerance to these
variations is measured with robustness [22]. We use the defini-
tion from Ref. [22] and state it as follows.

Definition 2. Robustness: The degree of tolerance of the system to
be insensitive to variations in both the system itself and the
environment.

2.1.3. Reliability
The definition of reliability is quite consistent in different

research fields. It is generally defined as the likelihood that an
item will perform its intended function for a specified time
interval under stated conditions [29,30]. We also use this defini-
tion and state it as follows

Definition 3. Reliability: The likelihood that a component (or a
system) will perform its intended function without failure for a
specified period of time under stated operating conditions.

With different mathematical theory to model uncertainties,
the likelihood can be quantified with different measures, e.g.
probability in probability theory, and belief and plausibility in
evidence theory.

2.1.4. Deterministic design optimization
The process of obtaining optimal designs is known as design

optimization. In traditional design optimization, most engineers
assume that design variables in the optimization problem are
deterministic for simplification, and do not account for uncer-
tainties that inherently exist in the design variables and para-
meters, as well as simulation models [31].

Definition 4. Deterministic design optimization: The process of
obtaining optimal designs assuming that all the variables, para-
meters, models, and simulations involved in the design problem
are deterministic.

For a deterministic design optimization, the mathematical
problem can be formulated as

find x

min f ðx,pÞ
s:t: gðx,pÞr0

xLrxrxU

8
>>><

>>>:
ð1Þ

where x is design variable vector, p is system constant parameter
vector, xL and xU are lower bound and upper bounds of x which
define the boundaries of design space, f(U) is the optimization
objective function, and g(U) is unequal constraint vector.

2.1.5. Robust design optimization
Robust design optimization (RDO) is a systematic and efficient

way to meet the challenge of design optimization for performance
and quality [32]. It is widely accepted that robust design is firstly
founded by Japanese engineer Genichi Taguchi, who develops the
Taguchi method to improve the quality of manufactured goods
and makes the product performance insensitive to variation in
variables beyond the control of designers [33,34]. With reference
from [34–36], the definition of RDO is stated as follows.

Definition 5. Robust design optimization: A methodology to opti-
mize design which is insensitive to various variations.

The mathematical formulation for RDO with probability theory is

find x

min ~f ðx,pÞ ¼ Fðmf ðx,pÞ,sf ðx,pÞÞ
s:t: gðx,pÞr0

xLrxrxU

8
>>><

>>>:
ð2Þ

where both x and p could be uncertain, mf and sf are the mean and
standard deviation of the original optimization objective f(U), F(U) is
the reformulated optimization objective function with respect to mf

and sf. The simplest example of F(U) is the weighted sum of the
mean and standard deviation stated as kmf(x,p)/wmfþ(1%k)sf

(x,p)/wsf, where k is the weighting factor, and wmf and wsf are the
scaling factors. By integrating sf into the objective function, mini-
mization of system sensitivity to uncertainties can be achieved. The
graphical illustration of RDO is shown in Fig. 2.

2.1.6. Reliability-based design optimization
Reliability-based design optimization (RBDO) is also referred to

as Reliability-based optimization (RBO) [20], which deals with
obtaining optimal design and meeting reliability constraints
[31]. With reference from [2], we give the definition of RBDO as
follows.

Definition 6. Reliability-based design optimization: A methodology
to optimize design which is reliable with small chance of failure
under predefined acceptable level.

The mathematical formulation for RBDO with probability
theory is

find x

min ~f ðx,pÞ ¼ mf ðx,pÞ
s:t: Pfgðx,pÞr0gZR

xLrxrxU

8
>>><

>>>:
ð3Þ

where P{U} is the probability of the statement within the braces to
be true, and R is the reliability vector specified for the constraint
vector. The graphical illustration of RBDO is shown in Fig. 3.

To improve system design in both robustness and reliability, RDO
and RBDO can be combined and referred to as reliability-based robust
design optimization (RBRDO), which is formulated as [20,37]

find x

min ~f ðx,pÞ ¼ Fðmf ðx,pÞ,sf ðx,pÞÞ
s:t: Pfgðx,pÞr0gZR

xLrxrxU

8
>>><

>>>:
ð4Þ

Fig. 2. Graphical illustration of RDO.
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(a) Robust design optimum (RDO)

2.2. General UMDO process

A panoramic view of the general UMDO solving process is
present in this section to provide an overall understanding of this
new methodology. UMDO is the methodology that solves the
uncertainty-based design optimization of complex systems by
fully considering coupling relationship and uncertainty propaga-
tion between disciplines involved in the system. For a UMDO
problem, the general solving flowchart is shown in Fig. 4, and the
main steps are explained as follows.

2.2.1. Uncertain system modeling
Uncertain system modeling is the first step to mathematically

describe the design optimization problem, which consists of
system modeling and uncertainty modeling.

2.2.1.1. System modeling. System modeling includes mathematical
modeling of the system and disciplines, and mathematical
formulation of optimization problems, such as design variables,
optimization objectives, constraints, design space, etc., which is
similar to the system modeling of deterministic optimization.

2.2.1.2. Uncertainty modeling. Uncertainty modeling is classifica-
tion and quantification of uncertainties involved in the system

design. There are many mathematical theories and methods to
model uncertainties [27,38], such as probability theory, possibi-
lity theory, evidence theory, clouds theory [39], etc. Throughout
aerospace vehicle lifecycle, there exist a vast number of uncer-
tainties, which inevitably lead to unacceptable calculation
burden. Therefore, it is generally necessary to use sensitivity
analysis to screen out the factors which have no significant
influence on system design.

2.2.2. UMDO procedure
UMDO procedure is the methodology about how to efficiently

organize and realize UMDO by programming in computers [40].
As shown in the flowchart, the key steps of UMDO procedure
mainly include optimization under uncertainty and uncertainty
analysis.

2.2.2.1. Optimization under uncertainty. This step is the design
space exploration under uncertainty. For large-scale, highly
nonlinear, and non-convex problem, the deterministic global
optimization is already very difficult and time-consuming, and it
naturally becomes even worse with additional efforts to deal with
uncertainties, which may lead to prohibitive computation. Hence
the researches of optimization algorithms, as well as the special
treatments of uncertain objectives and constraints, are essential
to enhance the overall optimization efficiency under uncertainty.

2.2.2.2. Uncertainty propagation and analysis. In this step, the
uncertainty characteristics of the system output under impacts of
uncertainties propagated through the system inner mechanism
are quantitatively analyzed, so as to further analyze reliability and
robustness of the design. Especially for the complex aerospace
vehicle system with multi-disciplines, the cross propagation of
uncertainties causes great difficulty to the uncertainty analysis,
which is one of the hot issues in the UMDO research.

In the following sections, the aforementioned key steps, except
system modeling which pertains to the specific research object,
are thoroughly discussed and surveyed.

3. Uncertainty modeling

Appropriate uncertainty modeling is the premise of uncer-
tainty-based design optimization, which includes adopting appro-
priate taxonomy to comprehensively identify and classify
uncertainty sources, utilizing suitable mathematical tools to
represent and model these uncertainties, and using sensitivity
analysis approaches to screen out uncertainties with minor
effects on design so as to simplify UMDO problem. These issues
will be studied in this section.

3.1. Uncertainty classification

There are numerous taxonomies in literature to address uncer-
tainty classification. The most popular uncertainty taxonomy is
firstly proposed in risk assessment, which classifies uncertainty
into two general types: aleatory and epistemic. Aleatory uncer-
tainty describes the inherent variation of the physical system or
the environment under consideration. It is also known as varia-
bility, type A, or stochastic uncertainty, which is irreducible because
it cannot be eliminated by collection of more information or data.
Epistemic uncertainty is a potential inaccuracy in any phase or
activity of the modeling process that is due to a lack of knowledge.
It is also known as subjective, type B, or cognitive uncertainty, which
is reducible because it can be eliminated with an increased state of
knowledge or collection of more data [41,42]. This taxonomy is
widely accepted and has been applied in lots of fields, including

Fig. 3. Graphical illustration of RBDO.

Fig. 4. General flowchart of UMDO.
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(b) Reliability-based design optimum
(RBDO)

Figure 1.10: Comparison of RDO and RBDO approaches [154], reproduced with
permission from Elsevier.

in which P indicates the probability of occurrence, which is limited by
the values set in vector r. Applying this reliability constraint moves the
optimum found away from the feasible boundary. Figure 1.10b shows how
this allows a degree of variation to the new optimum found.

RDO and RBDO can also be combined, with the minimization function of
RDO and the reliability constraint of RBDO, this is referred to as reliability-
based robust design optimization (RBRDO) [181].

approaches to improve stochastic response in structural

analysis

Improving the robustness or reliability of structures can be done through a
variety of approaches. Kriegesmann et al. [128] optimized fiber lay-up of a
composite cylinder, comparing four different approaches to imperfection
sensitivity and analyzing their robustness to geometric imperfections.

Traditional deterministic optimization approaches have extensions that
incorporate uncertainties [154, 178, 182–184], using the modified optimiza-
tion criteria discussed earlier in this section. Not all approaches are equally
suited for stochastic optimization using the stochastic finite element ap-
proach detailed in section 1.2.2. Doltsinis & Kang [153] as an example
applied sequential quadratic programming (SQP) to robustly minimize
compliance of truss structures.

In addition to these parametric approaches, topology optimization tech-
niques have also seen extensions for uncertainties [185–188]. Most research
has gone into compliance-based objective functions, but research has also
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been done on non-linear buckling optimization under uncertainty by Jansen,
Lombaert & Schevenels [189].

1.3 research aims and objectives

Literature outlined in section 1.2 shows that many methods exist to analyze
and improve a structure stochastically. The work presented in this thesis
aims to contribute to the existing literature in two main directions.

Most existing methods of generating random fields focus on generating
fields in Euclidian space. The Euclidian distance can be a lousy measure of
correlated imperfections for thin-walled structures. Structures with many
curvatures, such as Ω shaped brackets, would benefit from fields generated
using distances on the surface or volume of the part. Distances on a surface
of geometry are known as geodesic distances. Geodesic distances are gener-
ally only used when conveniently computed, such as for cylindrical shells.
Research on a general approach in generating geodesic random fields in
finite elements is still quite limited [160].

This thesis presents a finite element implementation of Crane’s heat
method [190]. This approach applies a heat flux to a single point of a
structure and uses that to compute the shortest path from that source to
other points. Due to its quick computation, it becomes possible to compute
the geodesic distances of points on a mesh very efficiently. Applying these
distance arrays to existing random field methods makes it possible to gen-
erate geodesic fields on any finite element model with less computational
effort than previously published methods. Modifications and extensions to
the approach are used to generate anisotropic and intercorrelated random
fields, both of which can be applied to structural problems, such as layered
composite structures.

As discussed in section 1.2.2, determining a structure’s reliability can
only be done with accurate information on the imperfections. However,
a structure’s robustness can be analyzed using assumed or fictional local
variations. Improvements in robustness can then lead to a reduction in the
response’s standard deviation.

The variability of a structure undergoing local changes in geometry
or material properties can be quantified by analyzing stochastic results.
Information about the local variation can also be post-processed by calcu-
lating their correlation. The resulting pattern describes the topology of a
structure’s relative contribution to a response. Such a pattern of relative
contribution shows which areas are the most critical for varying parameters.
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Knowledge obtained can improve inspection routines and the performance
of a structure by perturbing the design. Such small perturbations are partic-
ularly useful when the design already exists but can be slightly modified by
varying the manufacturing process. Minor variations in structural parame-
ters can be achieved relatively easily in additive manufacturing processes
or tow-steered structures.

Tailoring the topology of a structure to a design parameter using tradi-
tional parametric optimization techniques can quickly become cumbersome
when the values at discrete locations (such as nodes or elements) are con-
sidered separate design variables. Using such an approach has several
disadvantages:

• Loss of physical insight of local effects to a design objective

• Design solutions are not necessarily continuous, requiring additional
optimization constraints

• Lack of a direct way to analyze the effect of localized variations
affecting regions instead of single parameters

To some extent, these goals can be achieved through filtering of a gradient or
solution, see for example [191]. The use of filters to avoid singularities and
continuity of design variables requires additional processing and complexity
in the design workflow.

The work presented in this thesis presents a generalized method to apply
random fields on finite element models and improve a structure’s perfor-
mance by processing the statistical samples found in a stochastic analysis
by calculating their correlation to a design objective. Using such an ap-
proach makes it possible to analyze a parameter’s global and local effects
deviations. These local effects can then be used to add minor changes to a
structure consisting of minor perturbations in a structure’s material proper-
ties or geometry. The effects of the changes can then be further analyzed
or iterated by analyzing the effects of deviations on the new structural
configuration. The nature of the approach and workflow make it most
suitable for structures in the later stages of the design process or structures
with a relatively fixed shape (due to, e.g., aerodynamic requirements).

Through this research, the following things are aimed to achieve:

• Increase understanding of the local sensitivity to local variations due
to, e.g., local material property or thickness fluctuations.

• Use knowledge from the sensitivity towards local deviations to im-
prove structural performance.
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• Understand how these improvements affect the robustness and sensi-
tivity of a structure to local imperfections.

Realization of these aims is done through the following research objec-
tives:

• Develop and implement a general, computationally efficient method
to apply spatially correlated geodesic random variations on finite
element models.

• Improve the linear buckling load of a finite element model of plates
and panels using data from stochastic analyses.

• Improve the fatigue life of 3D printed structures by tailoring the local
thickness.

• Experimentally validate the improved design of the thickness-tailored
3D printed structure.

• Tailor the post-buckling behavior of a fiber-reinforced composite
curved panel to promote a particular response by perturbing the fiber
paths.

• Analyze the effects perturbations in fiber orientation have on the
stochastic moments of the fiber-reinforced composite curved panel.

1.4 structure of thesis

Chapter 2 presents the heat method’s implementation for geodesic dis-
tance calculation in finite elements. Geodesic distances are used to generate
random fields, with examples showing the effects of using geodesic dis-
tances. Generating correlated fields is demonstrated and analyzed using an
example of a composite cylindrical shell.

Chapter 3 shows how applying random variations in thickness, or ma-
terial properties can lead to a correlation pattern. Linear buckling load is
applied using this pattern to tailor the local Young’s modulus or thickness
of a flat panel and cylindrical shell.

Using a similar approach chapter 4 uses an increase of a 3D-printed
structure’s fatigue life as its objective. Variations to the local thickness are
applied using random fields. Numerically obtained fatigue life improve-
ments are experimentally validated using 3D printed polylactic acid (PLA)
specimens, showing a significant improvement in the fatigue life reliability
without increasing mass.
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Fiber paths of a composite panel are varied in chapter 5, to increase
the structure’s limit-point buckling load. Correlation patterns of the fiber
variations are applied over a range of fiber deviation ranges and scaling
parameters. Deterministic solutions are compared with their stochastic
responses, showing that structures with the greatest deterministic improve-
ment were also the most sensitive to deviations in the prescribed fiber path.
Further analyses were done on perturbed designs to analyze the robustness
of local fiber misalignments. Further analyses of the structure illustrate an
inherent tradeoff between deterministic optimum and robustness, affecting
reliability.

Chapter 6 gives an overview of the results and conclusions of the thesis.
Extensions to increase computational time are discussed, as well as other
potential future uses of the approach.
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A B S T R A C T

Structures contain inherent deviations from idealized geometry and material properties. Quantifying the effects
of such random variations is of interest when determining the reliability and robustness of a structure.
Generating fields that follow complex shapes is not trivial. Generating random fields on simple shapes such
as a cylinder can be done using series-expansion methods or analytically computed distances as input for
a decomposition approach. Generating geodesic random fields on a mesh representing complex geometric
shapes using these approaches is very complex or not possible. This paper presents a generalized approach
to generating geodesic random fields representing variations in a finite element setting. Geodesic distances
represent the shortest path between points within a volume or surface. Computing geodesic distances of
structural points is achieved by solving the heat equation using normalized heat gradients originating from
every node within the structure. Any element (bar, beam, shell, or solid) can be used as long as it can
solve potential flow problems in the finite element program. Variations of the approach are discussed to
generate fields with defined similarities or fields that show asymmetric behavior. A numerical example of a
gyroid structure demonstrates the effect of using geodesic distances in field generation compared to Euclidean
distances. An anisotropic cylinder with varying Young’s modulus and thickness is taken from literature to
verify the implementation. Variations of the approach are analyzed using a composite cylinder in which fiber
angles are varied. Although the focus of this paper is thin-walled structures, the approach works for all types
of finite element structures and elements.

1. Introduction

How a structure performs under loads depends on many parameters
such as geometry, material properties, and the direction and magni-
tude of applied loads. These parameters are often considered constant
and known, but in reality, they vary and introduce an element of
uncertainty in structural analysis. As structures become more efficient
and lightweight, the behavior of these uncertainties and their effect
becomes more important.

Stochastic analysis of finite element problems has been around for
many years [1–4]. It is possible to model the effects of spatially varying
material properties or thickness variations in thin-walled structures
using these approaches. Applying imperfections is done by assigning
a randomly generated value to the local coordinates within a structure.
This field of values in space is often referred to as a random field or,
less commonly, stochastic field.

Random field values at different points inside the spatial domain are
correlated; if the correlations are positively-valued, points close to each
other tend to have similar field values. Correlation between points on a

∗ Corresponding author.
E-mail address: S.vandenBroek@isd.uni-hannover.de (S. van den Broek).

field is generally a function of the distance between points, decreasing
as the distance increases. The correlation of points in space can be
defined using a correlation function, which goes from 1 to 0 as a func-
tion of distance and possibly other parameters. When the covariance
between the pair (𝐱, 𝐲) only depends on the difference (𝐱 − 𝐲), the field
is considered weakly homogeneous. Similarly, the correlation between
points might have a directional dependency. When the relationship
between distance and correlation is the same irrespective of direction,
the covariance is only a function of the magnitude ‖𝐱−𝐲‖. Such a field
is isotropic. Conversely, if there is a directional dependency, the field is
anisotropic.

What these correlations look like in actual structures is a topic of
ongoing research. Recent work has been done to find these patterns
experimentally using coupon testing [5–7]. Investigating the spatial
correlation of random variations in material properties in such a man-
ner has many challenges. Not only do many samples have to be tested
to gain relevant results, but these results might also only be valid for
a specific production process and geometry. Using a different batch of
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material or having different environmental conditions can affect these
variations.

Therefore, a promising method to gain statistical information on
structures is to use non-destructive investigation (NDI). Applying such
methods to composite structures makes it possible to gain information
on the void content, fiber alignment, fiber volume fraction, and other
parameters using ultrasonic and infrared thermography [8–10]. The
information gained using these methods could potentially be used to
map the correlation function of a structure more accurately.

Many approaches exist to generate and apply random fields [11–
14]. A distinction can be made between methods that define the values
of fields as a continuous function and those that discretize the field and
evaluate values at specific locations.

Continuous methods represent the field through a sum of functions.
Such a sum can be composed of a series of orthogonal functions, often
done through a Karhunen–Loéve (KL) expansion [4]. KL expansions re-
quire solving the Fredholm integral, which is only possible analytically
for a limited set of correlation functions and geometries [2,15]. Other
geometries and correlation functions require a numerical solution to
solve the eigenvalues and eigenfunctions of the Fredholm integral [16].
Alternatively, fields can be represented using a Fourier series [17] in
which the Fourier coefficients and phase shifts match a desired spectral
density.

Discrete approaches define values at discrete points within the do-
main, such as integration points, nodes, or element centers. This can be
done through decomposition of the covariance matrix [18], discretized
fast Fourier series [19], and local average subdivision [20], among
others. These discretized values can then be interpolated among the
field using shape functions [21], optimal linear estimation (OLE) [22],
or spatial averaging [23].

Through the use of a correlation function and statistical properties,
the stochastic response of a structure to random variations can be quan-
tified. This can be used to design under uncertainty [24,25], simulating
the effects or random geometric imperfections on the ultimate load [26,
27], geometric imperfections affecting stability [28–36], effects fiber
angle misalignments have on stability [37,38]. Some authors have also
analyzed the effects of material property variations [39] or combined
material and geometry variations [40–43]. Teixeira and Soares [44]
investigated using random fields to study the effects of corrosion on the
ultimate strength of plates. Recent work by the authors has analyzed
the effects local thickness deviations can have on the fatigue life of a 3D
printed component [45]. Analysis of soil mechanics is also done, where
random variations in soil properties are represented using random
fields [46–50]. Recent work by Zhang et al. [51] used an information-
theoretic model to ensure non-Gaussianity of the random field. They
used this to perturb the mesh while ensuring that faces do not intersect
each other.

Fields generated in most of the previously mentioned analyses are
generated and applied on thin-walled structures such as a flat panel or
a cylindrical shell. For those structures, computing distances between
points using coordinate transformations is straightforward. Though this
works well for specific structures, this is not possible or trivial for most
structures. Generating fields on domains with a concave surface, such as
thin-walled structures containing curvature or a volume with a concave
surface, necessitates a different approach. Using the Euclidean distance
in computing the correlation will result in significant deviations from
the intended correlation matrix unless the correlation length is short
compared to the curvature of the structure.

A better approach is to use geodesic distance, which is the distance
on the surface or within the volume of the structure. Computing
shortest distances between points is a classic problem in computational
geometry and has many different approaches [52]. Using geodesic ran-
dom fields in structural problems was recently discussed by Scarth et al.
[53], where use was made of a mesh flattening ‘‘MMP’’ approach [54].
Within this approach, the shortest geodesic path between two points is
found using a continuous Dijkstra-type approach. Within the Dijkstra

algorithm [55], the shortest path between two points is found by slowly
expanding out from the origin point. This approach can give accurate
results for the geodesic length but at a high computational cost. The
order of operations is 𝑂(𝑛2), which can cause this approach to become
unfeasible for larger structures.

Recent work by Feng et al. [56], Liang et al. [57] tried a different
approach using a machine-learning powered isometric feature mapping
algorithm to reduce the dimension of the geodesic problem after flat-
tening the geodesic problem to a problem in 2D Euclidean space. The
geodesic distance can then be recovered using traditional methods like
the classic Dijkstra algorithm. Limitations in this approach do exist. The
approach does not work for all shapes and cannot easily be used for
non-homogeneous and anisotropic random fields. The approach in the
current form is also not suitable for recovering geodesic distances in
non-shell elements.

Previously discussed approaches to computing the geodesic dis-
tances have limitations in suitable geometry. Methods are generally
incompatible with higher-order or non-surface elements and not capa-
ble of computing anisotropic and non-stationary random fields. Scaling
of operations also limits many approaches from being used effectively
in generating random fields. The work presented in this paper dis-
cusses a computationally efficient way of computing distances in finite
elements and using those to generate random fields. Based on the
method presented by Crane [58] it is capable of computing geodesic
distances using shell, beam and volume elements. Instead of using mesh
flattening, the approach uses principles of heat conduction first to find
the path of the shortest distance using the heat gradient and then
solve the Poisson equation to recover the geodesic distance. Solving
the Poisson equation can be done by pre-factoring the sparse equations,
requiring minimal computational time to solve the distances between
all points in a field. Geodesic distances computed through the geodesic
heat method in finite elements are used to compute the autocorrelation
matrix of a field encompassing the domain of the finite element model.
Decomposing the autocorrelation matrix makes it possible to generate
random fields with a designated correlation through a simple matrix–
vector multiplication. Unlike many methods found in literature, this
approach works for any complex geometry and element type and does
not make assumptions about the geometry of a structure.

Novel variations of the approach can allow for more accurate mod-
els for a class of engineering problems. Using the geodesic heat ap-
proach makes anisotropy in random fields possible through anisotropic
heat conductivity. Another variation discussed is an approach to creat-
ing similar fields, which can be used in layered structures or coupled
parameters.

2. Methodology

Random fields in this study are randomly generated patterns, but
values are still correlated with each other. The correlation between the
field values at two different points depends on the distance between
the points for stationary fields. Generating random fields requires the
desired autocorrelation to be given as an input. Functions used to de-
termine the autocorrelation between points usually vary only with the
distance between points. Not all functions can be used, as the autocor-
relation matrix has to be positive definite. Correlation functions must
satisfy Bochner’s theorem, which states that functions must be symmet-
ric, non-negative definite, and bounded in variation [14, sec. 3.6.3]. For
correlation functions that only depend purely on distance, Bochner’s
theorem is equivalent to having a non-negative integrable spectral
density (the integrability ensures a bounded variation).

When considering correlation functions on geodesic surfaces, it
is essential to note that correlation functions that satisfy Bochner’s
theorem using Euclidean distances may not satisfy the theorem when
using geodesic distances [59–61]. In general, the admissibility of a
covariance function must be checked before being used on geometry
or type of distance. Not doing so could potentially lead to non-positive-
definite matrices [62, post. 2.10]. Issues were not encountered in the
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examples discussed in this paper but could arise in other shapes or with
other types of correlation functions.

Two functions often found in literature (e.g. [4,63,64]) are the
exponential type

𝜌 = 𝑒
−𝐿
𝐿𝑐 , (1)

and the square exponential function

𝜌 = 𝑒
−𝐿2

𝐿2𝑐 , (2)

where 𝜌 is the defined correlation between two points, 𝐿 is the dis-
tance between points, and 𝐿𝑐 is the correlation length. The correlation
functions decrease from 1 to 0 as distance increases. The speed of
which depends on the function used and the correlation length. The
correlation function of Eq. (1) decreases slower than that of Eq. (2).
The way that the correlation evolves with distance can be related to a
spectral density function using the Wiener–Khinchin theorem [11,65].

2.1. Calculation of geodesic distances

Geodesic distances are calculated using an implementation of
Keenan Crane’s heat method [58]. Crane’s approach is an extension
of the work done by Varadhan [66], which sought to find an elegant
solution to the heat equation. Distances from a point 𝑎 to other points
are calculated by calculating a normalized heat gradient from heat
applied at point 𝑎, followed by solving the Laplacian to find the
distance between points. Numerically this approach is fast and can be
pre-factored for large systems.

Initially developed in a computational geometry framework, this
paper reformulates the approach by Crane et al. into a finite element
environment. Using potential flow tools commonly found in finite
element solvers to solve thermal problems, the approach to computing
geodesic distances is straightforward to implement in many other finite
element solvers.

The examples used in this paper utilize an implementation that has
been developed using the library of potential flow elements already
built into DIANA [67], a commercial finite element solver.

The product of the calculation is to generate a length array 𝐋 ∈
R𝑛×𝑛, with 𝑛 the number of points in the array, in this case, nodes of
the structure. The length array should be symmetric as distances are
not direction-dependent. Meaning that 𝐿𝑎,𝑏 = 𝐿𝑏,𝑎, the diagonal is filled
with zeros. Resulting in an array in the form of

𝐋 =

⎡⎢⎢⎢⎢⎣

𝐿𝑎,𝑎 = 0 𝐿𝑎,𝑏 ⋯ 𝐿𝑎,𝑛
𝐿𝑏,𝑎 0 ⋯ 𝐿𝑏,𝑛
⋮ ⋱

𝐿𝑛,𝑎 𝐿𝑛,𝑏 ⋯ 0.

⎤⎥⎥⎥⎥⎦
(3)

As described in [67, sec. 81.4] and [68, ch. 12] a heat conduction
problem can be formulated using finite elements as

𝐊𝝓𝑖 + 𝐂�̇�𝑖 = 𝐪𝑖, (4)

where 𝐊 is the conductivity matrix, 𝐂 is the capacity matrix and 𝐪𝑖
is a combination of external heat flux, heat generation and boundary
convection vectors. The vector quantity 𝝓 is the potential term and
equals the temperature within a thermal problem.

Computing the distance at every point 𝑖 of a mesh requires the right-
hand side to be updated 𝑛 times. Every calculation uses a different
external heat flux 𝐪𝑖, where heat is added to the structure at a sin-
gle node using unit values for heat conductivity, heat capacity, and
external heat flux. Combining all of these into one expression results
in

𝐊Φ + 𝐂Φ̇ = 𝐐, (5)

where the matrix 𝐐 can be thought of as an identity matrix 𝐈𝑛, and Φ

contains the potential terms associated with all 𝑖 points.

In order to calculate the distances, the heat conduction problem has
to be solved, meaning that a hypothetical heat source is added to the
structure. This is done using explicit Euler forward time integration.
Hypothetically the results should become exact when the time step
𝑡 → 0. In practice, however, small time steps lead to numerical
instability. The optimum time step, therefore, has to be given as input.
The optimum value for the time step depends on the mesh. Crane et al.
[58] recommend 𝑡 = 𝛿2, where 𝛿 is the mean edge length of the mesh
analyzed. When SI units are used in the analysis 𝑡 is in seconds and 𝛿
in meters.

Through numerical integration Eq. (4) can be rewritten into the
form of

𝐊∗𝝓∗ = 𝐐∗, (6)

where 𝐊∗, 𝜙∗ and 𝐐∗ are the effective matrix, nodal potential and
fluxes [67, eqn. 81.18].

The solution 𝜙∗ provides a thermal flux of the structure originating
from the node specified in 𝐐∗. Normalizing this gradient is carried out
by removing the magnitude of the flux

𝐗𝑎 = −
∇𝝓𝑎
|∇𝝓𝑎| , (7)

which is unique for every node 𝑎. By integrating this normalized flux
over the elements using the gradient of the element shape function
𝑁1

𝐝𝑎 = ∬ 𝐗𝑎∇𝑁(𝜉, 𝜂)d𝜉d𝜂, (8)

a vector 𝐝𝑎 containing incremental distances between nodes is gener-
ated.

Using the vector 𝐝 it is now possible to easily calculate the distance
vector for all the points from node 𝑎 as

𝐬𝑎 = (𝐊∗)−1𝐝𝑎. (9)

Note that the same inverted matrix used to solve Eq. (6) is used to solve
this equation. As mentioned by Crane the solution for Eq. (9) is only
unique up to an additive constant. By adding the minimum value of the
calculated length vector the distances can be calculated.

The performance of the approach scales very well with the size of
the model. Pre-factoring of the left-hand side of the equation scales sub
quadratically, and even close to linearly [69]. Solving distances to other
points scales linearly with the number of points of the model. Recent
work on geodesic distances computed on shell elements by Scarth et al.
[53] used a method first proposed by Mitchell et al. [54]. The exact
method does not allow pre-computation and scales with 𝑂(𝑛2 log 𝑛),
where 𝑛 is the number of nodes in the model.

A performance comparison done between these approaches by
Crane et al. [69] showed that for a 1.6M triangle Ramses model,
the computation of distances from one point is approximately four
times faster using the heat method, even with pre-factoring included.
Different distances from another point of the model can be solved
almost 200 times faster than the exact algorithm, with a mean error
of only 0.24%. As generating an autocorrelation matrix requires the
distances from all points to each other, the additional speedup of the
implementation becomes essential for larger models.

This approach works on solid, shell, truss and beam elements as long
as they are capable of solving potential flow problems.

2.2. Generation of random fields

Discretized random fields consist of points representing randomly
generated variables in space. Values within the field have a predefined
correlation to each other.

1 Using a 2D shell element as an example.

3
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Correlation between two random variables 𝑋 and 𝑌 is defined
mathematically as [70, ch. 10]

𝜌(𝑋, 𝑌 ) = Cov(𝑋, 𝑌 )√
Var(𝑋) Var(𝑌 )

= E[(𝑋 − E[𝑋])(𝑌 − E[𝑌 ])]√
Var(𝑋) Var(𝑌 )

, (10)

where E is the expectation operator. If we define that 𝑋 and 𝑌 have a
mean value of zero, and a unit variance, the equation can be simplified
to

𝜌(𝑋, 𝑌 ) = E(𝑋𝑌 ). (11)

If 𝑋 and 𝑌 are uncorrelated to each other; E(𝑋𝑌 ) = 𝜌 = 0. If they are
correlated 𝜌 ∈ [−1, 0) ∪ (0, 1].

Gathering all points of a random field into a vector 𝐳 the correlation
between points in an uncorrelated random field is 𝜌(𝑋𝑖, 𝑌𝑗 ) = E(𝑋𝑖𝑌𝑗 ) =
𝛿𝑖,𝑗 , meaning that the correlation matrix 𝐑 = 𝐈. When values are
correlated to each other, the off-diagonal entries of the array become
populated with values between 0–1.

To generate correlated random fields using uncorrelated random
Gaussian vectors, a lower triangular matrix 𝐓 is introduced to map
uncorrelated values into correlated values as

𝐳 = 𝐓𝐱, (12)

with 𝐳 being a correlated Gaussian random vector with zero mean and
unit variance. Vector 𝐱 is an uncorrelated Gaussian random vector with
zero mean and unit variance. Substituting Eq. (12) into the simplified
definition of correlation of Eq. (11) the correlation matrix can be
rewritten as

𝜌(𝐳1, 𝐳2) = 𝐑 = E(𝐳𝟏𝐳𝑇𝟐 )
= E(𝐓𝐱𝟏𝐱𝑇𝟐 𝐓

𝑇 )
= 𝐓E(𝐱𝟏𝐱𝑇𝟐 )𝐓

𝑇

= 𝐓𝐈𝐓𝑇

= 𝐓𝐓𝑇 (13)

Meaning that the correlation matrix can be written as

𝜌(𝐳1, 𝐳2) = 𝐑 = 𝐓𝐓𝑇 , (14)

where 𝐑 can be given as an input, giving the correlation between points
as an input, using, for instance, Eqs. (1) and (2), which define an
input correlation as a function of the distance between points. Distances
from the length array computed in the previous section can be used to
compute values in the correlation matrix. Doing this will lead to an
array in the form of

𝐑 =

⎡
⎢⎢⎢⎢⎣

1 𝜌1,2 … 𝜌1,𝑛
𝜌2,1 1 … 𝜌2,𝑛
⋮ ⋱
𝜌𝑛,1 𝜌𝑛,2 … 1

⎤
⎥⎥⎥⎥⎦
= 𝐓𝐓𝑇 . (15)

There are different ways to factorize the correlation matrix 𝐑 into an
upper and lower triangular matrix. The two most common approaches
are using Cholesky decomposition and using eigenmode decomposition.
For larger systems, eigenmode decomposition has fewer numerical
issues and can also be done using a limited number of modes with-
out significant loss of accuracy [71]. Another advantage is, although
theoretically, a symmetric positive definite matrix only has positive
eigenvalues. Numerical issues can cause these eigenvalues to become
very small negative values. This can also be corrected by manually
setting these eigenvalues to zero [72].

Eigenvalue decomposition can be done by calculating the eigenval-
ues and eigenvectors of the correlation matrix as

𝐑 = 𝐐Λ𝐐, (16)

where 𝐐 is an array containing the eigenvectors of the array, and Λ is
a diagonal array with the squared eigenvalues. Taking the square root
of the diagonal array, Λ̂ = diag(

√
𝜆) Eq. (16) can be rewritten as

𝐑 = 𝐐Λ̂Λ̂𝐐 = 𝐓𝐓𝑇 → 𝐓 = 𝐐Λ̂. (17)

For a large number of random fields, this decomposition only has to be
done once. To calculate more fields, this decomposed matrix simply has
to be multiplied by an uncorrelated zero mean unit variance Gaussian
random vector using Eq. (12). An overview of the entire procedure to
generate geodesic random fields is shown in algorithm 1.

Fields generated in this manner have unit variance and zero-mean.
Scaling of the field is done when it is applied to a structural parameter
in the finite element model. Alternatively, fields can be generated with
a specified variance by factorizing the covariance matrix (𝐂 = 𝜎2𝐑) the
same way the correlation matrix 𝐑 was factorized in Eq. (13).
Algorithm 1: Heat method for finite element random fields

input : Mesh, 𝑡
output: 𝑛 samples of 𝐳

1 Compute 𝐊∗ using 𝑡 ; /* Distance calculation */
2 Solve the Poisson equation for 𝝓∗ (Eq. (6));
3 Normalize flux to obtain 𝐗𝑎 (Eq. (7)) ;
4 Compute incremental distances 𝐝𝑎 (Eq. (8)) ;
5 for Every point 𝑎 in mesh do
6 Compute distances 𝐬𝑎 from point 𝑎 (Eq. (9)) ;
7 Subtract minimum distance 𝐬𝑎 = 𝐬𝑎 - min(𝐬𝑎) ;
8 Assemble all distances 𝐬𝑎 into a distance array 𝐋 ;
9 Force symmetry of 𝐋, 𝐋 = 0.5(𝐋 + 𝐋⊺) ;
10 Compute 𝐑 using 𝐋 (e.g. Eqs. (1) and (2)) ; /* RF

generation */
11 Decompose 𝐑 into triangular form 𝐓 (Eq. (14)) ;
12 for i = 1:𝑛 do
13 𝐳𝑖 = 𝐓𝐱𝑖 (Eq. (12))

Examples in Section 4 utilize shell elements. Using shell elements is
useful in demonstrating the effects of geodesic distances. The approach
described in Section 2 is not limited to shell elements. Fig. 1 shows a
distance calculation and random field generated on a 3D tetrahedral
model of a compressor blisk.

2.2.1. Applying fields on a structure
The implementation used within this paper utilizes an identical

mesh for the random field and the structure. Using the element’s
shape function, scalar quantities, such as Young’s modulus, thickness,
or material orientation (angle), can easily be mapped from nodes to
integration points. The value of these quantities is computed as

𝑎𝑖 = 𝑎𝜇 + 𝑧𝑖𝑎𝜎 , (18)

in which 𝑎𝑖 is a scalar quantity used in the model (such as thickness or
Young’s modulus), 𝑎𝜇 the mean value of 𝑎, 𝑧𝑖 the value of the random
field, 𝑎𝜎 the standard deviation of 𝑎, all evaluated at point 𝑖.

Geometric imperfections are not a scalar quantity, as they require
a direction for the imperfection to act in. Assuming the structure is
modeled using shell elements, geometric imperfections can be defined
as a translation of nodes normal to its surface. Finding the normal
direction of a shell is done by first finding the tangential components
of the element coordinate system (𝜉, 𝜂) in the global coordinate system.
Partial derivatives of shape function have the property of transforming
coordinates into vectors oriented in the derivative direction. The direc-
tion normal to the surface is found by computing the cross product of
the shape function derivatives in the in-plane direction. With this in
mind, the unit normal vector of point 𝑖 on element 𝑗 is

𝐧𝐢 =
𝐗𝑗

𝜕𝑁(𝜉,𝜂)
𝜕𝜉 × 𝐗𝑗

𝜕𝑁(𝜉,𝜂)
𝜕𝜂

|||𝐗𝑗
𝜕𝑁(𝜉,𝜂)

𝜕𝜉 × 𝐗𝑗
𝜕𝑁(𝜉,𝜂)

𝜕𝜂
|||
, (19)

where 𝜉, 𝜂 are the element coordinates as shown in Fig. 2, 𝐗𝑗 are node
coordinates of element 𝑗. As an example, to calculate the normal of
node 1 of a quadratic shell element shown in Fig. 2 the values 𝜂 = 𝜉 =
−1 are used. 𝐗𝑗 being an array of the coordinates of all the nodes of the
element. Nodes which are part of multiple elements take the average
normal calculated using all elements.
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Fig. 1. Example of geodesic distance calculation and random field generation on a tetrahedral mesh model of a compressor blisk, model courtesy of authors of [73].

Fig. 2. Element numbering and coordinates of a quadratic shell element.

This approach for geometric imperfection only works on structures
that consist of one surface. Applying geometric imperfections generated
by random fields on structures consisting of multiple surfaces (such
as an I-beam) is more involved but can be done by decomposing the
deformation into local and global components [74,75].

2.3. Extensions of random field generation approach

What has been presented up to now can be used to generate
isotropic homogeneous random fields that are uncorrelated with each
other. However, certain structural problems could benefit from ex-
tensions to this approach, allowing for better modeling of certain
variations. Therefore, within this section two extensions are introduced
which can make it possible to generate more realistic imperfections in,
for instance, layered orthotropic structures such as composites.

2.3.1. Generation of correlated random fields
In some analyses, the imperfections correlate with each other. In

those cases, it is of interest to generate random fields which have
a pre-determined inter-correlation. An example can be the different
lamina in a composite structure. In these structures, imperfections can
have different sources. Errors due to initial fiber placement would be
independent of each other in every layer, but errors due to curing would
affect the structure more uniformly. One way to model these coupled
imperfection patterns is to generate fields that are correlated with each
other.

How to generate correlated random fields is very similar to the
approach used to generate random fields in Section 2.2. A correlation
matrix defines the relationship between random fields. A series of 𝑛
intercorrelated fields requires an 𝑛 × 𝑛 symmetric correlation matrix.
The correlation between fields can be constant or can be neighbor
dependent. It may be that neighboring layers in a composite structure
are more correlated to each other than layers on the outer surface.
The similarity between random fields is defined through a symmetric

correlation matrix describing the similarity of fields generated in a
grouping using

𝐑 =

⎡
⎢⎢⎢⎢⎣

1 𝜌1,2 … 𝜌1,𝑛
𝜌2,1 1 … 𝜌2,𝑛
⋮ ⋱
𝜌𝑛,1 𝜌𝑛,2 … 1

⎤
⎥⎥⎥⎥⎦
= 𝐓𝐓𝑇 (20)

where 𝑛 is the number of correlated random vectors. Decomposing this
in the form shown in Eq. (14) it is possible to create correlated random
vectors as

𝐘 = 𝐓𝐗, (21)

where 𝐘 is an array with correlated random vectors as its columns, 𝐗
a matrix with uncorrelated random vectors as its columns and 𝐓 the
decomposed matrix of Eq. (15). Using these correlated random vectors,
correlated random fields can be generated using Eq. (12).

Section 4.3 discusses an example in which the correlation of fiber
misalignments through different layers of a composite shell are an-
alyzed. Intercorrelated, through-thickness varying and independent
fields are compared for their relative influence on structural buckling.

2.3.2. Tailoring of thermal conductivity to generate asymmetric random
fields

The approach originally presented by Crane [58] utilizes a thermal
capacity 𝐶 = 1 J

K and thermal conductivity 𝑘 = 1 W
m K . When solv-

ing the heat equation, this converges to the geodesic length between
points. Using anisotropic heat conductivity enables the generation of a
metric in which points on the structure are connected through a scaled
pseudo-distance. This concept was first studied by [76]. Introducing
an anisotropic pseudo-distance to determine the correlation between
points on a structure makes it possible to generate fields that show dif-
ferent correlation behavior in different axes, such as limiting variation
in a particular direction while showing more in the other direction.

One approach often used in literature (e.g. [46,53,77]) is to define
a correlation length per axis. For instance converting Eqs. (1) and (2)
to

𝜌 = 𝑒
−

√
𝐿2𝑥
𝐿2𝑐,𝑥

+
𝐿2𝑦
𝐿2𝑐,𝑦 , (22)

and the square exponential function

𝜌 = 𝑒
−

(
𝐿2𝑥
𝐿2𝑐,𝑥

+
𝐿2𝑦
𝐿2𝑐,𝑦

)

, (23)

in which 𝐿𝑥 and 𝐿𝑦 are the 𝑥 and 𝑦 components of the distance between
points, and 𝐿𝑐,𝑥 and 𝐿𝑐,𝑦 the correlation length in those directions.

Decomposing a distance to (local) coordinates is not a trivial task,
except for simple geometries such as cylindrical shells and flat plates.
Using the approach presented in this paper, it is possible to directly
represent this asymmetric behavior by influencing the heat flow in the
geodesic distance calculation.

The heat conductivity used in the geodesic distance calculation
of Section 2.1 is inversely proportional to the distance calculated.
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Fig. 3. Pseudo-distances from the top right corner (a–f), and fields generated on a 10 × 10 m flat plate using a correlation length of 1 m and correlation function Eq. (23) (g–l).
Thermal conductivity is constant in the horizontal (x) direction and varies in the vertical (y) direction.

Assuming homogeneous orthotropic thermal properties, the correlation
functions in Eqs. (22) and (23) can be reproduced by implementing this
orthotropy into the correlation lengths 𝐿𝑐,𝑥 and 𝐿𝑐,𝑦 as

𝐿𝑐,𝑥 = 𝑎𝐿𝑐 , (24)

𝐿𝑐,𝑦 = 𝑏𝐿𝑐 . (25)

where 𝑎 and 𝑏 are scaling parameters of the thermal conductivity in the
element’s 𝑥 and 𝑦 directions

𝑘𝑥 = 𝑎𝑘, (26)

𝑘𝑦 = 𝑏𝑘. (27)

This effectively replaces the geodesic distance with a weighed pseudo
distance, in which the effective correlation length is the product of
the thermal conductivity and the axis-independent correlation length.
Examples of distance and random fields generated using anisotropic
thermal conductivity are shown in Fig. 3. Increasing anisotropy is
applied to the thermal properties resulting in increasing anisotropy in
the random fields.

Orientation of the material can be defined in the global coordinate
system or a local coordinate system. Local material orientation can be
defined through a parametric equation or as a manual input to the
nodes or centroid of elements. Material anisotropy in the heat conduc-
tivity used to compute pseudo-distances makes generating anisotropic
random fields on complex geometry possible.

This approach can also generate non-homogeneous fields by varying
the thermal conductivity at areas with different correlation behavior
(e.g., seams and edges). Increasing the thermal conductivity in these
areas can cause the variations to have a shorter correlation length than
their surroundings. Decreasing thermal conductivity can cause the local
variation to become more constant. The use of locally varying thermal
conductivity is not further explored within this paper.

3. Analysis of accuracy and time step of geodesic distance calcu-
lation

Numerical algorithms should converge to an exact solution with
increased refinement. In order to verify that the implementation de-
scribed in Section 2 complies with this paradigm, a number of analyses
were performed. These analyses compared the computed geodesic dis-
tance and compared it to one obtained analytically. These studies were
performed on a flat plate, cube, and cylindrical shell. For the sake of
brevity, only the cylindrical shell is discussed in more detail.

3.1. Optimal time step and error of geodesic distance calculation

As mentioned by Crane [58] it is not trivial to find an optimal time
step for geodesic length calculation. The ideal time step depends on the
size, shape, and average edge length of the elements within a mesh. The
geodesic calculation becomes more accurate with a finer mesh, while
the ideal time step decreases with an increasing mesh size.

The error in distance calculation between the length arrays in the
form of Section 2.1 obtained analytically (𝐋𝐴) and numerically (𝐋𝑁 ) is
calculated as

𝝐 =
𝐋𝑁 − 𝐋𝐴
𝐋𝐴 + 𝐈

. (28)

Array 𝝐 contains all the relative errors between points in the model.
Within the results shown here, the RMS value of the array entries is
taken as a comparative measure. The RMS is defined as

RMS Error =

√
𝜖21,1 + 𝜖22,1 +…+ 𝜖2𝑛,1 +…+ 𝜖2𝑛,𝑛

𝑛
(29)

where 𝑛 is the number of nodes of the mesh.

3.1.1. Numerical example of distance calculation
Cylindrical shells are often found in many structures in engineering

and are therefore of particular interest. Different discretizations are
analyzed to find the optimal time step depending on the geometry.
Discretizing a shell into 𝑚 circumferential elements and 𝑛 axial ele-
ments, nodes are located every 𝛼 = 360

𝑚 degrees on the circumference.
Due to the discretization, the circumference of a meshed cylindrical
shell is less than an analytical cylinder. Using the equation for a chord
of a circle segment [78, sec. 3.8] 𝑐 = 2𝑅 sin 𝛼

2 . The perimeter of the
geometry represented by the discrete mesh is therefore 𝑑 = 2𝑚𝑅 sin 360

𝑚2
(in degrees). Results generated using the heat method are compared to
the analytical solution

𝐿𝑎,𝑏 =

√(
2𝑚𝑖𝑅 sin 360

2𝑚

)2
+
(
𝑗𝐿
𝑛

)2
, (30)

in which 𝑖 is the number of elements between nodes 𝑎 and 𝑏 in the
circumferential direction. 𝑗 is the number of elements between nodes 𝑎
and 𝑏 in the axial direction. A discretization of one of the analyzed
cylinders can be found in Fig. 4(a), with an example of a distance
calculation shown in Fig. 4(b).
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Fig. 4. Example of cylindrical shell mesh 𝑅 = 1, 𝐿 = 1.5, 𝛿 = 0.2.

3.1.2. Numerical results and trends
Fig. 5 shows how the RMS error in distance calculation changes

with differing time steps when analyzing a cylinder with radius 𝑅 = 1
and length 𝐿 = 2. The analyses show that the RMS error decreases
with a decreasing time step up to a certain point. At this point, it
rapidly increases or does not converge. Minimization of the time step
does not occur when the time goes to zero. Analyses done by Crane
et al. [69, App. A] show that as the time step goes towards the limit of
zero, the computed distances become a combinatorial distance, e.g., the
distance product computed converges to 𝐿 = 𝑥 + 𝑦 instead of 𝐿 =√
𝑥2 + 𝑦2. Increasing the time-step smooths out the fluxes computed,

smoothening the distances computed and reducing accuracy. The exact
curves vary with the aspect ratio/model size, as shown in Fig. 6. These
are generated using a fixed radius of 1 m with a varying length between
1–3 m. Accuracy in the distance calculation improves with mesh size,
as shown in Fig. 6(a).

Time steps in which the RMS error is minimized were computed
using Brent’s method [79]. The ideal time step for cylindrical shells
was close (𝑅2 = 0.947) to

𝑡 = 𝛿1.7, (31)

where 𝛿 is the mesh’s mean edge length. This relationship is a similar
result to that recommended by Crane (𝑡 = 𝛿2). Better fits were found
with long polynomial expressions, but none of these expressions were
accurate for different geometries. The recommendation of Crane is
therefore a good starting point for meshes in general.

3.1.3. Anisotropic heat conduction
Utilizing pseudo-distances to create anisotropic fields was discussed

in Section 2.3.2. This section analyzes the pseudo-distances relationship
to (scaled) distance. This is done by varying the conductivity ratios2 𝑘𝑧

𝑘𝑥,𝑦
of a cylindrical shell. Ratios ranging from 0.1 to 10 were computed and
compared to the analytical result found by modifying Eq. (30) to

𝐿𝑎,𝑏 =

√(
2𝑚𝑖𝑅𝑘𝑥,𝑦 sin

360
2𝑚

)2
+
(

𝑗𝐿
𝑛𝑘𝑧

)2
, (32)

with 𝑘𝑧 being the axial thermal conductivity and 𝑘𝑥,𝑦 the thermal con-
ductivity in the circumferential direction. Fig. 7 shows the minimized
RMS error for different conductivity ratios. These minimized errors
were obtained using Brent’s method. Results show that with an increas-
ing anisotropy, the direct relationship with distance becomes unclear.
Though not necessarily an issue for generating inhomogeneous random
fields, this should nevertheless be considered when the correlation
function is defined.

2 𝑧 being the axial direction.

Fig. 5. RMS error in distance calculation of a cylindrical shell using different mean
element size 𝛿 and time steps.

4. Numerical examples

A series of numerical analyses verify the implementation in Diana
and demonstrate its use on structures, including how the extensions of
Section 2.3 can be used. Numerical analyses focus on cylindrical shells
as these are easy to model, and using geodesic length can considerably
influence results. In addition to this, cylindrical shells benefit from
having many examples analyzed in detail in published literature.

Verification of the random field implementation is done by analyz-
ing Young’s modulus and thickness variations of an isotropic cylinder.
Following this analysis, a cylindrical shell’s geometric imperfections
are analyzed and compared to those published in literature. A final
numerical study is performed to analyze variations in the fiber angle
of a composite cylindrical shell’s buckling load.

The last part of the section demonstrates some other structures
in which fields were generated, showing its use in more complex
structures.

4.1. Gyroid structure

Gyroid structures are a form of a minimal surface first described
by Schoen [80]. Minimal surfaces are surfaces for which the mean

7
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Fig. 6. RMS geodesic distance error minimization achieved and the time steps in which
it is achieved over a variety of element sizes and geometric ratios.

curvature equals zero. Gyroids can be described mathematically as a
surface defined by

sin 𝑥 cos 𝑦 + sin 𝑦 cos 𝑧 + sin 𝑧 cos 𝑥 = 0. (33)

Recent work showed that gyroid shapes are very strong porous struc-
tures that efficiently use space [81], and can be fabricated using
additive manufacturing techniques. The effective strength of the struc-
ture is directly related to the wall thickness, and the size of the periodic
gyroids [82–84]. Additive manufacturing techniques can cause local
variations in thickness. Within the current analysis, fictional variations
in thickness are introduced, where the x-displacement at the loaded
edge 𝑦 = 0 is measured. Comparing the stochastic response of the
structure with the random field-generated imperfections using geodesic
and Euclidean distances gives an impression of the relative influence
both measures have.

4.1.1. Numerical analysis
A series of gyroids with 100 mm sides are assembled in a 2 × 3

configuration as shown in Fig. 8. The model is discretized into 8558
analytically integrated triangular shell elements. Mesh convergence
is done to check if the end displacement converges with the chosen
refinement. A shear load of 10 N/mm is applied to the edges where
y=0. Displacements of nodes located at 𝑦 = 0 are tied together, making
them equal on one edge of the gyroids. Clamped boundary conditions
are applied to the edge where 𝑦 = 300 mm. Numerical modeling of

Fig. 7. RMS error of best time step found of various conductivity ratios within a
cylindrical shell of R=1, L=2.

Fig. 8. Gyroid geometry, boundary conditions, and load. Dimensions in mm.

the structure is done using bilinear triangular shell elements. Thickness
varies through a Gaussian distributed random field. Table 1 lists the
parameters of the random field and the material properties used in
the analyses. Thickness variations in the shell are applied as scalar
variations on the shell element using Eq. (18). One thousand samples
are generated for both types of distance calculations. A 100 mm cor-
relation length is used as it is of a similar order of magnitude as the
structure. Very small or large correlation lengths will not show as much
of a distinctive difference. In theory, a Gaussian distribution can result
in a locally negative thickness that would not be physically possible.
However, the chance of this happening with a standard deviation
of 0.1𝑡 is negligible. Computing the probability using the cumulative
distribution function leads to a probability of 1

1.3124⋅1023 and is not
considered an issue in this analysis. For more significant standard
deviations, a lognormal distribution would be more appropriate. The
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Fig. 9. Distances computed from a corner of gyroid.

Fig. 10. Random fields generated using two different distance metrics and 𝐿𝑐 = 100 mm.

Table 1
Deterministic and statistical properties of gyroid structure.
Property Value

𝐸 210 GPa
𝜈 0.3
Thickness Gaussian random field:

𝜇 = 0.5 mm
𝜎 = 0.05 mm (CoV 10%)
𝐿𝑐 = 100 mm

second-order estimate generated is directly affected by the distribution
of the random-field variables. Switching distributions, therefore, results
in different results in general. This study analyzes only the effects of
geodesic vs. Euclidean distances, which is possible to do qualitatively
using a Gaussian distribution.

4.1.2. Results
Geodesic distances computed differ significantly from Euclidean

distances between points. Fig. 9 illustrates this through a difference that
reaches up to 25% for this example. Generating fields with this differing
length and correlation matrix also leads to a different looking field.
Fig. 10 shows examples of fields generated using both distance metrics

Table 2
Statistical properties of analyses of the x-direction displacement
of the loaded edge of the gyroid using different distance metrics
in the random field generation.

𝜇, mm 𝜎, mm CoV

Geodesic 1.626 0.134 8.24%
Euclidean 1.617 0.158 9.78%
Relative difference −0.5% 18.1% 18.7%

in the correlation function. Fields generated using a geodesic distance
show more variation within the structure than fields using Euclidean
distance.

Fig. 11 shows the probability density function (pdf) of the dis-
placement of both statistical analyses. Statistical properties of these
distributions are shown in Table 2.

Comparing the two analyses, it is clear that a significant deviation
of the statistical properties can be present when the distance used for
random field generation does not reflect the actual geodesic distance.
This deviation depends on the actual structure (curvature and size), and
the correlation function used to generate the fields.
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Fig. 11. Displacement in 𝑥-direction of loaded edge (y=0) of the gyroid structure.

Fig. 12. Cylinder geometry definition.

4.2. Isotropic cylindrical shell with scalar variations

The second example analyzed deals with variations in thickness and
Young’s modulus in a cylinder. These results verify the implementation
by comparing them with published results. Arbocz and Abramovich
[85] published a series of geometric imperfection measurements of
isotropic cylindrical shells referred to as the A-shells. The average prop-
erty of shells A-7 to A-14 is often used in related imperfection analysis
research. Imperfections that are analyzed are not just in nominal shape,
but also local changes in thickness, Young’s modulus, or a combination
of these [86–89]. Only the independent local variations of thickness
and Young’s modulus are analyzed independently within the current
work.

4.2.1. Numerical analysis
The analyzed cylinder has a length of 𝐿 = 202.3 mm, radius of

𝑟 = 101.6 mm. Two series of analyses are performed in which either
Young’s modulus or the thickness is varied. When one is varied, the
other is fixed to the mean value listed in Table 3.

Using linear, curved shell elements, the cylinder is discretized into
213 circumferential elements and 67 axial, totaling 14 271 elements.
Using the coordinate system of Fig. 12, the edge at 𝑧 = 0 is constrained
in all translations and rotation in the 𝑧-axis. At the edge 𝑧 = 𝐿,
translations in 𝑥 and 𝑦 directions are constrained, as well as rotations in
the 𝑧-axis. Translations in the 𝑧-axis tied together on the top edge 𝑧 = 𝐿,
with distributed load is applied of −1.56649 N/m in the 𝑧-direction,
giving a total of 1 𝑁 in compression. Results are normalized by the

Table 3
Material and thickness properties of the isotropic cylinder.
Property Value

𝐸 Gaussian random field:
𝜇 = 104.41 GPa
𝜎 = 10.441 GPa (CoV 10%)
𝐿𝑐 = 50 − 500 mm

𝜈 0.3
Thickness Gaussian random field:

𝜇 = 0.11597 mm
𝜎 = 0.011597 mm (CoV 10%)
𝐿𝑐 = 50 − 500 mm

Note: Young’s modulus and thickness variations are not applied
simultaneously. When one is applied as a random field, the
mean value of the other is used as a deterministic value.

analytically obtained buckling load of the perfect cylinder calculated
as

𝜆analytical =
2𝜋𝐸𝑡2√
3
(
1 − 𝑣2

) = 5339 N. (34)

Variations are applied using the exponential correlation function
of Eq. (1), as well as the squared exponential function of Eq. (2). A se-
ries of correlation lengths are used to generate Gaussian random fields
ranging between 50–500 mm, the same range used by the study done
by Papadopoulos and Papadrakakis [88] on this structure. Analyzing
results over various correlation lengths makes it possible to identify the
influence correlation lengths of imperfections have on the structure.
Correlation lengths selected range from 𝐿𝑐

𝑅 ≈ 0.5 to more large scale
imperfections of 𝐿𝑐

𝑅 ≈ 5. The standard deviation of the variations is
10% of the nominal value of both the thickness and Young’s modulus
series of analyses. Although Gaussian fields can potentially result in
non-physical values of Young’s modulus and thickness, this is not an
issue for this particular example [89, sec. 7.1]. However, analyses with
larger variations should switch to a lognormal distribution or other
distribution that guarantees positive values. Results in this analysis are
directly compared with published results generated using a Gaussian
distribution, making direct comparison possible. In the general case
when experiments are reproduced, for instance, the distribution of the
input variable has to be carefully reproduced to generate an estimate
of the variance.

A series of 250 analyses were performed for every correlation length
analyzed, the same amount as the referred paper. The convergence of
statistical properties was checked qualitatively after the analysis and
found to show reasonable convergence. The applied load is slowly
increased during the geometrically non-linear analysis using a Newton-
based approach until the tangential stiffness matrix contains a negative
eigenvalue, meaning the bifurcation buckling load is reached.

4.2.2. Results
Results found in Fig. 13 show the statistical properties of analy-

ses that apply local Young’s modulus or thickness variations. Fields
generated in the referred literature [88] use a squared exponential
correlation function. Overall, fields generated using the squared expo-
nential correlation function show a higher mean value for the critical
load, while the coefficient of variation ( 𝜎𝜇 ) is only slightly lower.

Verifying results generated with the current approach and those
published by Papadopoulos and Papadrakakis [88], there is an apparent
discrepancy in the mean value of the stochastic results. Lower cor-
relation lengths result in a higher value for the buckling than those
generated using the geodesic approach. Papadopoulos et al. were aware
of the deviation between their model’s results and results that are
obtained using a considerably finer mesh. However, they asserted that
such a deviation would be consistent in their stochastic results and not
affect the stochastic response. This deviation was emphasized within
the paper’s geometric imperfections analysis, in which a 15% increase
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Fig. 13. Statistical properties of the critical load factor of analyses run with random
fields of varying correlation lengths affecting the local Young’s modulus or thickness.

in mean buckling load was found compared to results from Schenk and
Schuëller [86].

Checking this hypothesis was done by slowly refining the mesh
for one particular configuration and analyzing the convergence of
the stochastic results. Fig. 14 shows the stochastic convergence of
stochastic parameters of structures with imperfections applied with
a square exponential correlation function and a 0.1 m correlation
length. Comparing the mean buckling values of Figs. 13 and 14, the
mean normalized buckling load of the referred literature seems to be
overestimated, corresponding to values obtained with a mesh in the
order of 5000–8000 elements.

Comparing the coefficient of variation between the results shows
a closer fit, particularly with Young’s modulus variations. Stochastic
results of the thickness varying analyses show a more significant devi-
ation, however, not just in the variance but also in the mean value. The
larger discrepancy is due to the additional refinement needed to prop-
erly evaluate the more significant change in local stiffness attributed
to local thickness changes. Unlike the linear relationship with Young’s
modulus variations, thickness changes have a cubic relationship to
bending stiffness. Such more distinctive gradients in bending stiffness
require a more refined mesh to evaluate accurately, indicating that
the assumption made in [88] is only valid when the stiffness gradients
are not very large. Recent work from Feng et al. [56] reproduces the
thickness variation example and shows a similar discrepancy compared
to the original publication, with results being closer to those in the
current work.

Fig. 14. Convergence of statistical properties of the cylindrical shell with different
mesh sizes under the influence of imperfections in thickness or Young’s modulus. Fields
applied are generated using a square exponential correlation function and correlation
length of 0.1 m.

Table 4
Material properties of Water’s composite shell [90] and
stochastic parameters used for fiber misalignments.
Property Value

𝐸1 127.629 GPa
𝐸2 11.3074 GPa
𝐺12 6.00257 GPa
𝜈12 0.300235
Fiber misalignment of 𝜃𝑖 Gaussian random fields:

𝑖 ∈ [1…8] 𝜇 = 0◦
𝜎 = 2◦
𝐿𝑐 = 50 − 500 mm

Thickness 1.01539 mm

4.3. Waters’ shell

Effects of fiber angle variations and geometric imperfections are
demonstrated using a composite cylindrical shell. Dimensions and prop-
erties used are identical to the shell initially analyzed by Waters [90]
and consequently used by other researchers, e.g. [91–93].

The cylinder is 355.6 mm tall with a 203.18603 mm radius, con-
sisting of 8 layers with a total nominal thickness of 1.01539 mm with
a [±45, 0, 90]𝑠 layup. Material properties of the lamina can be found in
Table 4.

11

paper a : generating geodesic fields 47



S. van den Broek, E. Jansen and R. Rolfes Thin-Walled Structures 179 (2022) 109646

Top and bottom edges at 𝑧 = 0 and 𝑧 = 𝐿 in Fig. 12 are constrained
in the radial direction, leaving the axial direction free. One node on the
bottom edge is constrained in the 𝑧 direction to remove the rigid body
mode. The cylinder is discretized into a mesh of 6 536 analytically in-
tegrated triangular elements. Mesh is converged to reproduce buckling
results published in [93, tab. 3.13]. Results obtained are normalized
using the linear bucking load found for the perfect cylinder (without
variations applied), which equals 𝜆𝑙𝑖𝑛 = 135.7 N/mm.

This example aims to analyze the structure’s geometrically non-
linear behavior. Accurately representing the complex geometric be-
havior requires sufficient fidelity in the displacement field. Analyzing
the criticality of geometric imperfections demands a displacement field
to be accurate enough to represent a given imperfection pattern. The
discretization has a mean element size of 12.7 mm. The amount of ele-
ments needed to represent a local variation depends on the correlation
function, correlation length, and structure. A minimum of five elements
over the correlation length is used within this analysis, meaning a
minimum of 50 mm is used. 50 mm equals around 14% of the axial
length and 4% of the circumference of the cylinder. Fields are generated
using a Gaussian distribution, which closely matches imperfections
found in real structures [77].

4.3.1. Analysis of critical loads with fiber-misalignments applied
Stochastic variations on the fiber layup are applied using Gaussian

random fields with a standard deviation of 𝜃𝜎 = 2◦. These imperfections
are applied through fields generated over a range of correlation lengths,
using the squared exponential correlation function (Eq. (2)). The effects
of anisotropic heat coefficients in calculating pseudo-distance calcula-
tions and inter-field correlation are discussed in Section 2.3. Anisotropy
in the distance measurements of the fields is achieved by applying
𝑘𝑧 = 50 in the distance calculation. The 𝑧-axis is defined in Fig. 12
as the axial direction of the cylinder. The inter-field correlation 𝜮 used
in the analyses are:

Equicorrelation, (c𝜌) All fields in a run have an equal correlation to
one another,

𝜮 =

⎡⎢⎢⎢⎢⎣

1 𝜌 𝜌 … 𝜌
𝜌 1 𝜌 … 𝜌
⋮ ⋮ ⋮ ⋱ ⋮
𝜌 𝜌 𝜌 … 1

⎤⎥⎥⎥⎥⎦
, (35)

where 𝜌 ∈
[
0.3 0.5 0.9

]
, making all fields equally similar

to each other. Such a series of fields suitable for modeling, for
example, fiber imperfections which are influenced by curing
in an equal manner between layers (for instance, in very thin
structures).

Identity (𝐈) All fields are completely independent from each other,
𝜮 = 𝐼8. Generating a set of fields using an identity correlation
matrix implies that fields are completely independent. This is
equivalent to generating the fields separately without taking
others into account.

Material gradient (mat) Fields in a structure are less correlated the
more distance they have between them,

𝜮 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.00 0.90 0.80 0.70 0.60 0.50 0.40 0.30
0.90 1.00 0.90 0.80 0.70 0.60 0.50 0.40
0.80 0.90 1.00 0.90 0.80 0.70 0.60 0.50
0.70 0.80 0.90 1.00 0.90 0.80 0.70 0.60
0.60 0.70 0.80 0.90 1.00 0.90 0.80 0.70
0.50 0.60 0.70 0.80 0.90 1.00 0.90 0.80
0.40 0.50 0.60 0.70 0.80 0.90 1.00 0.90
0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(36)

meaning that the field of layer 1 is correlated by layer 2 with
0.9 for instance, but only 0.3 with layer 8. Using such a cor-
relation structure could potentially take curing imperfections of
fiber misalignments into account for thicker structures or struc-
tures with larger curvatures where curing effects vary through
thickness.

Five hundred samples are computed for each of these runs. The critical
load is defined as the limit point load in which a tangential stiffness
matrix becomes singular. A Newton–Raphson solver is used to compute
the critical load using automatic load-step resizing. The number of
samples required was determined in a convergence study. This study
involved performing 1000 analyses for a few different configurations
and analyzing when the mean and standard deviation values stabilize.

4.3.2. Results of stability analyses with fiber-misalignments applied
A total of 45 000 analyses were performed in 90 different configura-

tions, as shown in Figs. 15 and 16. Isotropic results, in which 𝑘𝑥 = 𝑘𝑦 =
𝑘𝑧 = 1 have the correlation of points on a field directly coupled to the
geodesic distance are shown in Figs. 15(a) and 15(b), with two example
structures shown in Figs. 18 and 19. Anisotropic results which use a
pseudo-distance to generate correlation values are shown in Figs. 16(a)
and 16(b), with two example structures shown in Figs. 20 and 21.

Results show that both the critical load and coefficient of variation
vary significantly depending on the correlation length used. Mean
critical load values go up as the correlation length increases. Physically
these represent smoother and less local fiber angle variations.

The coefficient of variation of the results also varies significantly
with the correlation length used. Values initially increase with the
correlation length up to 75 mm for isotropic and 37.5 for anisotropic
fields, after which the value drops to almost half of its peak value at
150–200 mm (isotropic) or 100–350 (anisotropic). It then goes up with
increasing correlation length.

Comparing the isotropic and anisotropic fields, it is clear that a
change in the critical correlation (pseudo-)length affects the results.
Anisotropic fields generated have less variation in the axial direction.
These more consistent variations can cause larger deviations from the
axisymmetric deformation of an ideal cylinder, causing slightly lower
buckling loads and more variation than the isotropic analyses.

Inter-field correlation has a significant effect on both the mean value
and the coefficient of variation in the analyses performed. Overall the
critical value decreases as fields become more independent while at the
same time increasing the variance. An essential factor is that the quasi-
isotropic layup of the structure can show more anisotropic behavior
when fields vary independently. Behavior such as compression-twist
coupling can have a more significant effect in such cases.

Variation in the results computed is limited, with a coefficient of
variation below 2%. It is important to note that the results do illustrate
that inter-correlation and correlation length both have a significant
effect on the variance obtained. The amplitude of the resulting analyses
can increase significantly when the amplitude of variations is increased,
or if the structure being analyzed has unstable nonlinear paths for
instance.

4.3.3. Analysis of critical loads with geometric imperfections applied
Geometric imperfections are also applied to the Waters shell using

the procedure described in Section 2.2.1. Geometric imperfections are
applied with a standard deviation equal to 𝜎 = 0.1𝑡 ≈ 0.1 mm
from the nominal coordinate. This value is within the maximum range
measured for a cylinder by NASA [94]. It should be noted that this
value would likely differ in real structures depending on the length
scale of variations, e.g., the correlation length. The same value is used
for all analyses for the sake of consistency.

The analyses are solved the same way the fiber deviation analyses
are, using a Newton–Raphson approach with automatic step resizing to
find the structure’s limit-point load.
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Fig. 15. Waters shell critical load 𝜆𝑐𝑟𝑖𝑡 under fiber orientation variations of different
correlation lengths, and different inter-layer correlation. Configurations mentioned in
the legend are discussed in Section 4.3.1. Correlations with a field use the geodesic
distance generated using isotropic thermal conductivity in the geodesic distance
calculation.

4.3.4. Results of stability analyses with geometric imperfections applied
Fig. 17 shows the statistical properties of geometrically imper-

fect analyses. The mean value’s overall trends are similar to those of
the fiber deviation, with a general increase in the correlation length.
Variance, however, shows different behavior to that of fiber angle
variations. There is a general decrease in the variance as the correlation
length increases. Trends in the variance values are similar between the
isotropic and anisotropic analyses, with values in the isotropic analyses
being approximately 60%–70% higher.

Imperfections representing the out-of-plane displacement use the
same standard deviation for every correlation length. Therefore, shorter
correlation lengths contain a higher degree of local curvature as the size
of imperfections decreases, but the amplitudes remain the same.

Variance decreases with an increase in correlation length. As im-
perfections become more smoothed out and less localized, they are less
likely to have an aggressive influence.

Fig. 16. Waters shell critical load 𝜆𝑐𝑟𝑖𝑡 under fiber orientation variations of different
correlation lengths, and different inter-layer correlation. Configurations mentioned in
the legend are discussed in Section 4.3.1. Correlations with a field use the geodesic
distance generated using anisotropic thermal conductivity in the geodesic distance
calculation, creating pseudo-distances which are used in the correlation function.

5. Discussion and conclusions

Adaption in finite elements of the heat method has dramatically
simplified and accelerated the computation of geodesic random fields
in structural mechanics. A random field is used to represent deviations
from an ideal geometry or material property. A cylindrical shell is used
to demonstrate the geodesic distance calculation. As the number of ele-
ments increases and the time step 𝑡 decreases, the geodesic calculations
converge to the exact analytical solution.

Substituting isotropic heat conductivity for anisotropic coefficients
makes it possible to generate ‘‘pseudo-distances’’ scaled with the ma-
terial orientation. These pseudo-distances lead to anisotropic fields,
which can have an anisotropic correlation. Anisotropic fields can poten-
tially better represent defects in specific structures introduced during
manufacturing processes.
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Fig. 17. Waters shell critical load 𝜆𝑐𝑟𝑖𝑡 with geometric imperfections of different
correlation lengths. Distances used in the correlation length use either isotropic (leading
to geodesic distances) or anisotropic (leading to pseudo-distances) thermal conductivity.

Compared to previous work done on geodesic random fields in
structural analysis, the approach presented has the following benefits:

Speed Computationally, the approach to geodesic distance calculation
is very efficient and scales almost linearly with the number of
points evaluated. Compared to the exact ‘‘MMP’’ approach [54]
used by Scarth et al. [53], the time to compute distances can
easily be several orders of magnitude faster.

Anisotropy Anisotropy The MMP method only generates isotropic
random fields, as the distances cannot be scaled to generate a di-
rectional dependency. Changing the heat conductivity could also
change the correlation length locally by scaling the computed
‘‘pseudo-distance’’, leading to non-stationary fields.

Element order The MMP method described in [54] can be used to
compute geodesic distances on polyhedral surfaces. As a first
step, the polyhedral has to be triangulated. Triangulation adds
a step to the distance calculation (assuming the model does not
use linear triangular shell elements) and limits the type and
effective order of elements used. Elements that use higher-order

shape functions have to be linearized locally, losing curvature
information and accuracy.

Element type The approach presented is not limited to a specific
element type. The numerical examples use shell elements, but
the approach is also fully functional for bar, beam and solid
elements. The more extensive element library makes it possible
to accurately model structures or materials requiring different
elements.

A few examples are used to demonstrate the approach in structural
mechanics. The first example illustrates that it is vital to use geodesic
distances when a structure has curvature. The spread of imperfections
can cause significant discrepancies in results when substituted by corre-
lations obtained with Euclidean distance. The gyroid example showed
a discrepancy of 20% for end displacement under shear loading.

Replicating an example from literature in which Young’s modulus
and thickness vary in a cylindrical shell shows a potential source of
error in computation. Structures susceptible to very local imperfections
(e.g., structures with buckling modes with a short wavelength) need to
be discretized and modeled in a sufficiently refined model to represent
the mechanical behavior accurately. Therefore, mesh convergence stud-
ies should focus on the shortest correlation length of fields applied to
a structure.

A final example analyzes the effect of local fiber misalignment. Both
isotropic and anisotropic heat conductivity is used in the random field
generation. Additionally, different types of correlation between layers
of the composite are analyzed. These parameters both significantly
influence the statistical response of a structure to imperfections.

Overall the approach presents a significant computational improve-
ment in generating geodesic random fields. It uses existing capabilities
found in finite element solvers to solve potential flow problems in the
computation of geodesic distances, simplifying implementation. The
generality of the formulation makes it possible to apply the approach
to a variety of element types without any inherent limitations.
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Fig. 18. Degrees fiber deviation of fields generated with 𝐿𝑐 = 50 mm, isotropic distance, and equal correlation to each other of 𝜌 = 0.5 (𝜌0.5) per Eq. (35).

Fig. 19. Degrees fiber deviation of fields generated with 𝐿𝑐 = 50 mm, isotropic distance, and a field correlation that reduces with increasing distance between fields (mat) per
Eq. (36).

Fig. 20. Degrees fiber deviation of fields generated with 𝐿𝑐 = 50 mm, anisotropic (𝑘𝑥 = 1, 𝑘𝑦 = 50) distance, and equal correlation to each other of 𝜌 = 0.5 (𝜌0.5) per Eq. (35).

Fig. 21. Degrees fiber deviation of fields generated with 𝐿𝑐 = 50 mm, anisotropic (𝑘𝑥 = 1, 𝑘𝑦 = 50) distance, and a field correlation that reduces with increasing distance between
fields (mat) per Eq. (36).
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Measure what can be measured, and make measurable
what cannot be measured.

— Galileo Galilei
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The effect of stochastic variation in material and geometric properties on structural performance is important for

robust design. Knowledge of such effects can be acquired by applying variation patterns to a structure using random

fields through a Monte Carlo analysis. The output is postprocessed to show the correlation pattern between the

stochastic variation of a structural property and a chosen mechanical response measure. The resulting patterns are

used to identify areasmost susceptible to variations, aswell as areas that have themost potential to increase structural

performance by varying the material parameter or geometry. By using these maps of local sensitivity to variations

with respect to the structural response, it is possible to redistributematerial properties or geometry to promote certain

behavior.This is demonstratedona flat plate andcurvedpanel byvarying either theYoung’smodulus or the thickness

of the structure to increase the linearbuckling load. Inbothof these variations the average property is set to remain the

same as the original structure. Applying the redistribution increased the linear buckling load by up to 29%.

Nomenclature

cov = covariance operator
ci = coordinates of element i
E = expectation operator
E = strain tensor
E = 2D cross-section shape function
f = force vector
gi = unit vector on i axis
H = correlation pattern

Ĥ = normalized correlation pattern

h = vector with correlated random values
K = conventional stiffness matrix
KG = geometric stiffness matrix
Lc = correlation length
L = decomposed correlation matrix
m = exponent used to rescale field
mel = vector with field values at element el
N = axial 1D shape function

N3D = 3D shape function of the geometric mesh

Q = array with eigenvectors
R = correlation matrix
S = second Piola stress tensor

u = displacement field
w = Gauss–Legendre integration weights
x = Gauss–Legendre integration points
Λ = array with eigenvalues on the diagonal
λ = eigenvalue
μ = mean value
ρ = correlation
σ = standard deviation
χ = random vector with unit standard deviation and zero

mean

I. Introduction

T RADITIONALLY structures are designed using constant,mean-
inguniformand deterministic,material properties throughout the

structure and nominal geometry. This representation is not necessarily
appropriate, as internal stresses, variations in production processes,
and chemical composition can causemechanical properties andgeom-
etry to vary stochastically. These variations exist not only within the
structural topology but also between manufactured components
thought to be identical. This means that one component coming
from the production line may conform to expectations, but another
one does not. These variations are usually included in safety factors
used within a structural design. Understanding these variations
and how they affect performance is a source of extensive research
and literature [1–3].
One of the ways to calculate the effects of stochastic variations is

by applying them through random fields [4]. In this way a parameter
can vary throughout a structure and, by running sufficient analyses,
the effects of the variation can be quantified. Previous uses of this
approach have looked at how geometric or material variations can
affect mechanical behavior [5–9].
These analyses usually make assumptions on the spatial distribu-

tion of statistical properties, or analyze a range of correlation lengths.††

The actual distribution depends on the specific structure, manufactur-
ing processes, and environmental conditions. Limited information
exists in the public domain, with only a few recent papers attempting
to find spatial and statistical distributions [10–13]. The approaches
discussed in these papers use coupon tests to quantify thevariability of
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mechanical properties and their distributions. This is a costly and time-
consuming process, which may be affected by factors such as curing
temperature, raw material batches, and even the technicians making
the structure. A potential future alternative is to use nondestructive
testing to find variations; within composites this could be used to
analyze variations in fiber angle, void content, as well as other
parameters that may affect material properties. This topic is an active
field of research [14,15] that could potentially be used to gain stat-
istical information about structures efficiently and cost effectively.
Variations of nominal material properties and geometry are

sometimes introduced purposefully by changing material parameters
spatially. Oneway of achieving local variations is by varying the fiber
angle in composites, creating variable stiffness composites [16–18].
Materials can also have other spatially varying material properties;
these are often referred to as functionally graded materials. These
materials can be used to improve thermal properties [19] or improve
the mechanical performance of a structure. This increase can also
be achieved by adding variations in the geometry, thereby tailoring
the response [20–22]. One example of such an improvement is where
the buckling load of the structure can be increased. Solutions are
usually based on a combination of linear buckling modes of the
structure. Another approach is to locally vary the thickness, either
empirically [23], using periodic functions [24], or by using arbitrary
stepwise variations [25]. Some papers directly vary the stiffness by
varying the Young’s modulus [18,26]. A few papers combine multi-
ple parameters [27,28]. There has been some research in optimizing
the stiffness topology [26,28,29]. These approaches lead to (local)
optima, but do not always give physical insight into the physical
changes or evolution of the structure. This is possible because the
topology is directly coupled with the average sensitivity to variations
of the structure to its response. The changes made to the structure
affect the stresses and strains and other mechanical parameters. It is
therefore likely possible to make further improvements through an
iterative approach. An iterative approach would reveal the nonlinear
topological change of sensitivity between iterations.
The difference between stochastic approaches and traditional

optimization methods is that the results take some degree of random
variations into account. The patterns therefore should lead to a design
that is less susceptible to deviations of the improved design. This
process is different from traditional structural optimization techniques,
in which the optimized design becomes increasingly sensitive to
deviations from the optimized shape (as optima often lie on a Pareto
front of design constraints). Robust optimization is a field of research
that is becomingmoreprominent as engineers realize that uncertainties
can have an ever-increasing effect on structural performance [30–32].
The work presented herein tries to identify where in the topology

variations cause the most influence on a measure of the structural
response, and can be considered a more generalized stochastic version
of the approach presented by Minera [33] to improve linear buckling
loads. Within the current approach a measure, which can be buckling
load, stress, displacement, or any other output from an analysis is
targeted to be improved. Property enhancement is achieved by analyz-
ing the effects of fictitious local variations on the structure. This is done
by looking at the correlation between these variations and its effect on
the structural response. Calculating this correlation at points through-
out a structure generates a pattern,which can be used to redistribute the
parameter within the structure. This distribution can improve the
understandingof the underlying structuralmechanics. This knowledge
can be used to improve the performance of the structure and identify
areas most critical for inspection during manufacture. This approach
could potentially be used in additive manufacturing, where there are
fewer design constraints and potentially more variation in material
properties due to the printing process. Additive manufacturing also
makes it possible to vary the composition of the printing material,
tailoring it to specific properties needed locally within a structure.
The patterns related to a structural measure are generated through

MonteCarlo analyses.These are runusing spatially randompatterns of
fictitious variations and then correlating how the patterns affect the
mechanical response (e.g., buckling load, displacements, and stresses).
The variations are analyzed on a flat plate and curved panel, by either
varying the Young’s modulus within a structure or by changing the

thickness locally. The variations used in this procedure are not related
to actual variations in the structure, but are instead fictitious small
variations that are purely used to generate the correlation pattern. The
correlation pattern is used in turn to tailor the material properties or
geometry of the structure to improve performance, as could be done
using additive materials or additive manufacturing techniques. These
techniquesmake it possible to theoretically vary the compositionof the
printing material locally, thereby changing its material properties. The
printing process also allows designers to vary geometry such as thick-
ness throughout the structure.
The remainder of this paper first introduces the methods used in

Sec. II, starting with the structural model in Sec. II.A. Section II.B
describes how random fields are generated, and how they aremapped
is described in Sec. II.C. The procedure to apply thickness imperfec-
tions is explained in Sec. II.D. Section II.E specifies how correlation
patterns are calculated, Sec. II.F discusses how they are applied to the
structure. Results are shown in Sec. III, starting with the flat plate
example in Sec. III.A, and continuing with a curved panel example in
Sec. III.B. The paper finishes with a discussion of the results and
method as well as some conclusions in Sec. IV.

II. Methods

A. Finite Element Formulation

The model used for the structural calculations is based on the
unified formulation [34]. The implementation used is based on
Serendipity Lagrange (SL) elements [35]. These elements use SL
expansion functions in two dimensions F�x; z�, and Lagrange shape
functions in the axial direction N�y� of a 3D element. The imple-
mentation is developed for 3D structures with beam-like geometry, in
which a cross section is extended axially. This can be donebywarping
the cross section in the axial direction (to include curvature or taper-
ing), but requires element connectivity to remain the same [36].
The focus of this work is on linear buckling problems, which

includes determining the geometric stiffness matrix KG. This matrix
captures the effect that in-plane forces have on the (out-of-plane)
stiffness of the structure, which is essential in buckling problems.

1. Basic Formulation

The structural model consists of 3D elements. Different shape
functions are used in the cross-sectional F�x; z� and axial direction
N�y� to approximate the displacement field.
Starting with a displacement field u � �u; v;w�T the

Green–Lagrange strain tensor E can be defined linearly as

Eij �
1

2
�ui ⋅ gj � uj ⋅ gi� (1)

where commas denote derivatives and gi denotes a unit vector on the
i axis. The displacement field u is approximated within the unified
formulation as

u�e��x; y; z� � F�x; z�N�y�ui; with i � 1; : : : ; N (2)

where N is the number of degrees of freedom of the model. For
quasi-static problems the elastic equilibrium is

δW int � δWext (3)

whereWext andWint are the externalwork and internal energy.Noting
that the internal energy of the structure can be calculated as the sumof

internal energy of all the elements W int �
P

e W
�e�
int , the internal

energy can be expressed using the stress and strain tensors:

δW�e�
int �

Z
V�e�

δE ⋅ S dV (4)

where S is the second Piola stress tensor. This can be written as

δW�e�
int � δuTjsk

ijτs
�e� u

T
iτ (5)
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where i; j � 1; : : : ; Ne, τ; s � 1; : : : ;M;Ne is the number of
Lagrange nodes in the axial direction, andM is the number of terms

in the cross-section expansion [35], Eq. (11). The term kijτs�e� is

referred to as the fundamental nucleus, the explicit form of which
can be found in [34,37]. The fundamental nuclei can be assembled
into a global stiffness matrix K in the form

Ku � f (6)

which can be solved to find generalized displacements.
To calculate the linear buckling load an additional geometric

stiffness matrix KG is needed. For the sake of brevity the full form
is omitted, but can be found in [33,38,39]. Linear buckling can be
derived as an eigenvalue problem in the form ([40] Chap. 18)

�K� λcrKG�δu � 0 (7)

where δu represents a buckling mode with an indeterminate
amplitude. The scalar value λ is a proportionality factor that relates
the applied force f and the stresses, which are used to generate the
geometric stiffness matrix. The buckling load can be solved as the
nontrivial solution to

det�K� λcrKG� � 0 (8)

whereby solving for λcr and subsequently identifying the load factor
as

fcr � λcrf (9)

where fcr is the buckling load.

2. Geometric Representation

The element stiffness matrix is obtained by integrating the terms
of equation (5) throughout the element domain. When modeling
complex geometries the correct geometrical description is of funda-
mental importance. The SL expansion functions defined in Sec. II.A
are used to enrich the kinematics in the cross section. These functions
are integrated over the cross section of the structure, which requires a
transformation of coordinates. If the edges of a quadrilateral element
are straight, the approximation of the geometry is obtained through
linear mapping by using linear Lagrange polynomials, which in this
case coincide with SL functions of order 1. This approach does not
allow for an accurate representation of curved geometries. When
using isogeometric formulations the same functions describe the
displacement field and the geometry. The advantage of this approach
is that modeling the geometry correctly automatically improves the
accuracy of the field. This may, however, comewith a high computa-
tional cost, especially when unified formulation is used. An alter-
native approach is to discretize the geometry and structure separately,
as is done in the current approach. This approach uses higher order
meshes for the geometry, and higher order Lagrange shape functions
for coordinate transformations.
The hierarchical nature of the SL shape functionsmakes it possible

to use them within curved elements, as the expansion order can be
increased as needed. The approach adopted in the current structural
model aims to do this without adding to the degrees of freedom of the
structure. This can be done by blending the structure with higher
order polynomials [41], which can become cumbersome for distorted
or large meshes. Another approach is to use exact geometric descrip-
tions through nonlinear functions ([42] Chap. 5). This approach
requires an exact geometric description to be given analytically,
limiting the geometry that can be analyzed. The approach used in
the current model is non-isoparametric, using higher order Lagrange
shape functions to describe geometry.
The current approach uses a higher order mesh generated using

gmsh [43], generating a mesh with elements of 9 or 16 nodes in the
cross section. This gives a 2D shape function N2D�α; β� to describe
the geometry of a cross section that is independent of the structural

shape functions F�x; z� andN�y�. The function N2D�α; β� is defined

in the range �−1; 1�2 and defines the mapping between the global
coordinates and local element coordinates

x � N2D
k �α; β�xk (10)

where xk ∈ IR2 are the position vectors of the nodes of the element,
and k � 1; : : : ; Nne, with Nne the number of nodes; 9 or 16 node
Lagrange elements are supported by the current implementation.
Tomodel varying thickness this approach is extended by changing

the shape function of the cross section to vary at every integration
point. This adds another dimension to the shape functionN2D�α; β� to
account for the change in the axial direction. This new function,

N3D�α; β; ξ�, can change the cross-sectionmapping as a function of ξ,
making it possible to model tapered structures.
The number of nodes used to describe the geometry (N3D�α; β; ξ�

is independent from the number of degrees of freedom in the struc-
tural model F�x; z� and N�y�). The degrees of freedom of the struc-
tural and geometric mesh are shown in Fig. 1. The 2D shape function

N2D is identical to N3D in structures that are prismatic. For non-
prismatic structures this shape function is calculated at every inte-
gration point in the ξ direction.
The current implementation uses 3D geometric Lagrange shape

functions to take thickness variations into account efficiently. This
geometric mesh overlaps the structural mesh, but uses higher order
brick elements of 27 or 64 nodes. These shape functions reduce the
amount of computation needed during assembly. The 3D geometric
mesh shape functions are used in Secs. II.C and II.D tomap variations
to the structure, and to calculate the volume and average material
properties of the structure.

B. Random Field Generation

Random fields, also known as stochastic fields, are fields in
n-dimensional space that spread a parameter in space with a distri-
bution. Values within a field are correlated with each other. There
are many methods that can be used to generate random fields [4].
These methods have their own advantages and disadvantages. The
technique used here is covariance matrix decomposition (CMD)
([44,45] Sec. 5.3.2). This choice is made due to the relative ease of
implementing customized correlation functions. CMD creates fields
directly from an autocorrelation matrix by decomposing it and multi-
plying the decomposed array with a random vector. The values of a
random field are usually generated from a (log)normal distribution
with an associated mean value (μ) and standard deviation (σ). Actual
variations may not be in such a distribution, but are often assumed to
be such as a simplification, or due to a lack of experimental data.
These points are correlated in space, thus giving a relationship to the
value of a coordinate and those in its vicinity. The mathematical
definition ([46] Chap. 10) of correlation between points i and j of
field h is

Axial shape function
N(y)

Cross-section shape functions
F(x, z)

Contribute
to degrees of freedom

a) SL element shape function
nodes

Do not contribute
to degrees of freedom

Jacobian
components

3D mapping
N3D (a, b, x )

Geometry
nodes

b) Geometric respresentation N3D

nodes
Fig. 1 Element discretization and shape functions [36].
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ρhi;hj �
cov�hi; hj�

σiσj
� E��hi − μi��hj − μj��

σiσj
(11)

whereE is the expectation operator used in probability and equals the

mean value of a distribution given an infinite amount of samples.

Equation (11) can be used to calculate the autocorrelation between

points; to generate fields these correlations have to be given as an

input. Themost common functions found in literature are based on an

exponential function. The correlation function used to generate the
fields here is

ρs;exp � e−�ΔL∕Lc�2 (12)

in which Lc is the correlation length, and ΔL the distance between

two points. This relationship assumes stationarity, as the field is only

dependent on distance, and does not change throughout the structure.

The term ΔL traditionally refers to Euclidean distance, but as we are
concerned with thin-walled structures, the geodesic length is used

instead. Using geodesic lengths creates a more accurate measure for

generating random fields than Euclidian distance, particularly for

highly curved structures [47]. Structures that are relatively flat might

have a bottom and top that are close to each other in a Euclidian sense,

but distant in a geodesic sense. The geodesic lengths of the current

implementation are calculated using the heat method of Crane et al.

[48], using normalized heat gradients to calculate the shortest path
through solving the Poisson’s equation. This can be donewith limited

computational costs, as these turn out to be linear problems. The

random field method used in this paper does not offer a continuous

function and instead discretizes points into space, which are then

coupled to points in the structure. The space between random field

nodes should be between �Lc∕4� and �Lc∕2� for the correlation

function used [49]. In the context of this paper the correlation length

represents a measure of the resolution of the correlated structure. A

shorter correlation length allows variations to bemore local, allowing
patterns to be more localized, at the cost of taking longer to converge.

Having a large correlation length thereforemakes it harder for smaller

details to converge; large-scalevariationsmake it easier to converge to

a pattern.
Using CMD, random fields are calculated through multiplication

of a matrix and a random vector:

h � Lχ (13)

inwhichL is a decomposed version of the correlationmatrixR and χ ,
a vector with random entries of zero mean and unit variance. This

decomposition has to be done in such away as to generate a correlated

vector h with a mean of zero and unit variance.
The first step in generating random fields is to build a correlation

matrix of all vertices of the field

Rij �
cov�hi; hj�

σiσj
→ R

�

2
666666664

1 ρ�h1; h2� : : : ρ�h1; hn�
ρ�h2; h1� 1 : : : ρ�h2; hn�

..

. . .
. ..

.

ρ�hn; h1� ρ�hn; h2� : : : ρ�fn; fn�

3
777777775

(14)

in which ρ�hi; hj� � ρ�hj; hi�, noting that the correlation here can be
calculated using Eq. (12).
Taking the definition of covariance

cov�hi; hj� � E�hihj� − E�hi�E�hj� (15)

and keeping in mind the field has a zero mean, it is possible to show

that R can be decomposed into two matrices:

R � cov�h;h� � E�h;hT� − 0 ⋅ 0

� E�Lχ �Lχ �T� � LE�χ χ T�LT � LILT � LLT (16)

where I is an identity matrix. Noting that from Eqs. (12) and (14) the
matrix R is symmetric and positive semidefinite, the eigenvalues
should not be negative. This expression exploits the independence of
the components of χ. Decomposing is done by using eigendecompo-
sition in the form of

R � QΛQ (17)

where Λ is a diagonal matrix with the eigenvalues of R on the
diagonal, and Q contains the eigenvectors of the matrix. The matrix
L can be extracted as

R � QΛ̂ Λ̂Q � LLT → L � QΛ̂ (18)

in which Λ̂ � diag� ���
λ

p �, where λ are the eigenvalues of theRmatrix.
Using the decomposed correlation matrixL it is possible to generate
random fields using Eq. (13), requiring minimal additional computa-
tional costs.

C. Random Field Mapping to Structure

The random fields in the current implementation are generated on a
surface, whereas the structural model is based on 3D elements. To
assignmaterial properties to each integration point using thevalues of
the random field, it is necessary to implement a mapping procedure.
The mapping procedure used within this paper separates the

random field mesh and the structural mesh. This is done so that in
other applications the geodesic length can be calculatedwith a greater
accuracy, being able to more accurately represent the curved geom-
etry. It also makes it possible to refine the structure without at the
same time refining the random field discretization.
By using the higher order shape functions of the geometric mesh

(Sec. II.A.2) it is possible to include the curvature within an element
in the mapping procedure. The mapping procedure starts by projec-
ting each node of the geometric mesh to the random field surface,
finding the shortest Euclidian distance. This has to be done only once,
which saves time during Monte Carlo analyses. While initializing
each analysis the values of the random field are calculated for every
geometric node using the four-node shape function of the random
field element.
During assembly, material properties of each integration point are

interpolated using the shape function of the geometric mesh. This
process has the advantage that by using higher order elements (e.g.,
27 nodes) it is possible to have a nonlinear variation of properties
within an element. It is therefore possible to represent the structure
with larger elements and still have an accurate material property
distribution. As a consequence the mapping procedure can have a
higher fidelity than would be possible with the linear shape functions
of the eight-node structural elements. The optimal discretization of
the random field is therefore also dependent on the order of the
geometric Lagrange elements, and the structural SL elements in
addition to the correlation function used.
The illustration in Fig. 2 shows the mapping process, where at an

integration point the coordinates within the element coordinate sys-
tem are used to interpolate values of the geometric mesh, or math-
ematically as

hi � melN
3D
el �αi; βi; ξi� (19)

where hi is the field value at a point i, mel a vector with the field

values at element el, andN3D
el �αi; βi; ξi� the shape function evaluated

at element coordinate i with components α, β, ξ. It should be noted
that this approach has a constant value assumption through thickness,
which is why the value is the same for β between [−1; 1].
Random field values are normalized to zero mean and unit vari-

ance. Applying the field to a variation in the Young’s modulus would
require the addition of the mean and multiplication with the standard
deviation as
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Ei � Eμ � hiEσ (20)

in whichEi is the Young’s modulus at point i,Eμ is the mean value of
E, hi is the value of the random field at the point, and Eσ is the
standard deviation of the Young’s modulus.

D. Applying Thickness Imperfections

Applying variations to the thickness in the structure requires
changing the 3D mesh to reflect the new geometry. This is done by
mapping the random field to perturbations to the structural mesh.
In Sec. II.C, a mapping between the random field and nodes of the

geometric mesh (N3D) is described. This process gives interpolated
scalar values of the random field to every node in the geometric mesh.
This scalar value is used to determine the amount of displacement that
should be applied to the node.
The approach used in the current work determines the amount

of displacement of a coordinate by scaling the displacement with
the distance from the random field surface. This approach makes
it possible to apply symmetric thickness variations, by having the
random field in the middle of the structural mesh. It also makes it
possible to vary in one direction, by having the random field intersect
the surface that should not be varied.
The direction in which the node is displaced is taken from the

derivative of the shape function with respect to the element normal
direction. In the convention used within this paper this gives the
normal direction relative to the surface of the structure. An unrotated
element has its α, β, ξ components aligned with x, z, y, with the
normal being defined as the component in z. With the convention

used the normal direction is therefore equal to gβ � x�∂N3D∕∂β�,
where gβ is a unit length normal vector of a coordinate in the normal

(β), and x an array of the physical coordinates of an element. This
solution may not be unique if a node is used in multiple elements. In
those cases the average normal direction of all elements containing
the node is used. The distance d between a physical node and the
random field surface is calculated numerically. The displacement is
applied to node i by adding an offset to the coordinates of the nodes

ci;new � ci;old � δdi � ci;old � diσtgβhi (21)

inwhichdi is the original distance between the node and random field
surface and ci the coordinates of node i.

E. Calculating the Correlation of a Parameter on the Structure

By running an analysis n times it is possible to calculate how
variations of material or geometric parameters affect the structure.
This approach makes it possible to identify areas that most influence
the mechanical response. In doing so, it offers valuable information
on the relationship of buckling load to stiffness variation, stress to
displacement, or any other combination of parameters.
The correlation is calculated at the same points in which

the random field is discretized; the points are then evaluated for

parameters a and b. Using the definition of correlation of Eq. (11)

the correlation of each point a on the structure is calculated relative to
parameter b. For the examples discussed in the Results section,

the parameter a would equal the Young’s modulus or thickness and

the parameter b the first linear buckling load. For this example the

pattern can be evaluated as

Hi �
P

n
j�1�fj − �f��Ei;j − �E���������������������������������P

n
j�1 �fj − �f�2

q �����������������������������������P
n
j�1 �Ei;j − �E�2

q (22)

whereHi is the correlated value at point i, fj the buckling load at run

j, �f the sample mean buckling load over all n runs, Ei;j the Young’s

modulus at point i at run j, and �E the sample mean Young’s modulus

over all runs.

F. Applying the Correlation Pattern to Improve Mechanical
Response

Themapof correlation gives a direct indicationof how the structure

responds to a variation of a parameter at a specific location. Changing

the base state to incorporate the variation pattern of parameter a
(e.g., Young’smodulus) can therefore increase or decrease the param-

eter b (e.g., buckling load).

1. Applying Correlation Pattern to the Structure

Tomap this correlation pattern to the structure, it is first normalized

by fitting it into a range [0, 1]. Using this normalized pattern it is used

to redistribute the parameter with the function

ai � amin � �amax − amin�Ĥi (23)

where Ĥi is the value of the normalized correlation pattern at ai.
The distribution of Ĥ is not necessarily symmetric, making it

necessary tomanipulate this pattern to improve performance ormove

the sample mean within a selected range. An extension is therefore

introduced to Eq. (23) to

ai � amin � �amax − amin�Ĥm
i (24)

in which either the exponent m or range of a ∈ �amin; amax� can be

calculated to ensure that the average value of the property remains

unchanged.
In the analyses shown in this paper, a is either a Young’s modulus

(a functionally graded material) or the thickness of the structure, the

parameter b is the linear buckling load. In these analyses a large value
form would result in very local increases in the Young’s modulus or

thickness. A small value for m would cause localized low values of

the distribution. The exponentm and range of the pattern are related.

When m is decreased the average value of the pattern increases,

whereas increasing m causes it to decrease. There is a unique value

of m for every specified range in which the average value (Young’s

modulus or thickness) remains the same.

2. Calculating Volume and Average Properties in an Analysis

When enhancing the structure it is important to analyze the

change in mass or average material property within a structure.

Increasing the stiffness of a structure by adding mass or increasing

the average Young’s modulus is trivial. The volume of elements is

calculated by using their shape functions, which represents a map-

ping between coordinate systems. Taking the definition of a volume

element

dV � ρ�u1; u2; u3�du1du2du3 (25)

The volume of an element can be found by integrating dV over the

volume of an element. Using the 3D Jacobian

Structural mesh
Geometric mesh
Rando mfield mesh

Fig. 2 Separate discretization of meshes and coordinates at point i.
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J3D �

���������������

∂N3D
1

∂α
∂N3D

1

∂β
∂N3D

1

∂ξ

∂N3D
2

∂α
∂N3D

2

∂β
∂N3D

2

∂ξ

∂N3D
3

∂α
∂N3D

3

∂β
∂N3D

3

∂ξ

���������������

(26)

and using Gauss–Legendre quadrature the volume of an element is
integrated numerically as

Vi �
XN
i�1

XN
j�1

XN
k�1

J3D�xi; xj; xk�wiwjwk (27)

where xi;j;k are the integration points in the range [−1; 1], wi;j;k are

integration weights, and N is the integration order.
To calculate the average value of the property a weighed integra-

tion is done of the volume, which is then divided by the structure’s
volume. For a property, n, within a structure this becomes

μn �
P

N
i�1

P
N
j�1

P
N
k�1 J3D�xi; xj; xk�pn�xi; xj; xk�wiwjwkP

N
i�1

P
N
j�1

P
N
k�1 J3D�xi; xj; xk�wiwjwk

(28)

where pn�xi; xj; xk� is the property n at integration point xi; xj; xk.

III. Results

The methods discussed in the previous section were applied to
two different structures: a square flat plate and a curved panel. Both
of these examples analyze variations of the Young’s modulus and
the thickness separately. These variations are applied intrusively,
by perturbing the mesh in the case of thickness variations, and
nonintrusively by changing the scalar value of material properties
at integration points in the case of Young’s modulus variations.

A. Rectangular Plate

The first example consists of a rectangular plate of 1 × 1 m and a
thickness of 3 mm, as shown in Fig. 3. It is modeled using a 20 × 20
mesh with Serendipity Lagrange third-order elements (described in
Sec. II.A). The material properties used are E � 181 GPa and
ν � 0.3. A unit force is applied to the y � 0 and y � 1 edges
as a uniform distributed load on the surface, with a total force of
1 N. Out-of-plane (z) displacement is restricted on all edges; x
displacement is also restricted on the x � 0 and x � 1 edges. The
linear buckling load is 16,892 N, with the buckling mode shown in
Fig. 4. Before generating the correlation pattern the buckling load and
mode were verified using the finite element code DIANA [50].

1. Young’s Modulus Variation

Five thousand runs were made in which a random field with a
correlation length Lc � 0.2 mwas applied to a standard deviation in
theYoung’smodulus of 1GPa.An example of such a distribution can

be found in Fig. 5. The correlation pattern of the Young’s modulus to
first buckling load among all 5000 runs is shown in Fig. 6a. These
runs are used to generate correlation patterns with which the Young’s

modulus is redistributed in order to increase the linear buckling load.
This could be done by using functionally gradedmaterials, where the
stiffness varies throughout the geometry.
This pattern is normalized and used to redistribute the Young’s

modulus of the plate in the range of 108–254GPa, which is�73 GPa
the baseline value. This range is an assumption using data of laser
deposition range ratios in Ti6Al4V/TiC functionally gradedmaterials

achieved byMahamood and Akinlabi [51]. Unfortunately, this paper
does not include mechanical properties, and the Young’s modulus

range is therefore assumed using the deposition ratios achieved.
The average Young’s modulus of the analyses was kept equal to that
of the baseline analysis (181 GPa). By having a fixed range and a set

average in the pattern, it is possible to determine the exponent m in
Eq. (24) to ensure that the average Young’s modulus in the plate
equals that of the baseline. This procedure is repeated for a variety of

property ranges, the trends of which are shown in Fig. 7. The largest
increase was found for the range 108–254 GPa, using a scaling

parameter ofm � 0.84. This is a unique value for a specific material
range, pattern, and average value of the pattern. The associated
material distribution can be found in Fig. 6b; applying the same loads

and boundary conditions to the plate results in an 8.6% increase in
linear buckling load (18,363 N).

2. Thickness Variation

Thickness is varied over 5000 samples. The fictitious variations
have a standard deviation of 5% of thickness with a correlation length

of 0.2 m. The correlation of the thickness variation with the linear
buckling load can be found in Fig. 8a. The load vector is updated

0.003

1

1

y

x

z

Fig. 3 Rectangular plate, dimensions in m.

0

0.1

1

z

0.8 1

0.6 0.8

x
0.6

y

0.4
0.4

0.2 0.2
0 0

Fig. 4 First buckling mode of the rectangular plate.

Fig. 5 Example of randomly distributed Young’s modulus on the flat
plate, Pa.
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every step to ensure that the total load magnitude is unit, and is

distributed proportional to the local thickness. Analyses were run

over a range of thickness between�5 and�50%, the results ofwhich

can be found in Fig. 9. The best result was found using a range of−50
to 35% of the original thickness (0.0015–0.00405m), using a scaling

coefficient m � 0.7409 to retain constant mass. In contrast to the

Young’s modulus example, the results here are not the best with the

largest range. Using a large range causes the scaling parameter used to

retain constant mass be more focused in the material thickening. In

this case this would cause a large local increase of bending stiffness

while reducing the bending stiffness in other parts of the structure. An

optimal is therefore found as a tradeoff between local stiffening and a

decrease in stiffness in other areas. It is quite possible that extending

the range through sequential iterative stepswill provide a better result.

Applying this pattern, shown in Fig. 8b increases the linear buckling

load by 16.9% to 19,754 N.

3. Interpretation

An interpretation of the results is made using the effect on the

prebuckling stress distribution, and the buckling state through buck-

ling mode and strain energy density. The strain energy density gives

an indication of the local stresses and strains that are locally stored
through elastic deformation. The center of the plate is stiffened in

both parameter studies. By examining the strain energy density with
definition U � �1∕2�εijσij ([52] p. 122) shown in Fig. 10, it can be

deduced that the strain energy density is lower at the center of the

plate, where the buckle forms. The reduction is due to a redistribution
where the strain energy density is relocated away from the center and

toward the loaded edges. The redistribution of strain energy density is

muchmore prominent than the redistribution of prebuckling stresses.
The redistribution of the thickness and strain energy causes the

bucklingmode to change, moving the curvature of the buckled shape

from the center toward the edges, as shown in Fig. 11. This effect is
due to the local increase of stiffness in the center of the plate, which

causes the mode shape to change where the curvature is more

prominent at the edges.

B. Curved Panel

As a second example the curved panel shown in Fig. 12a is

analyzed. It is a 90° arc of a cylindrical shell with a radius of
0.1 m, thickness of 2 mm, and a length of 0.15 m. A uniformly

distributed pressure load 1 N in magnitude is applied on the curved

Fig. 6 Calculated correlation pattern and applied Young’s modulus distribution of flat plate example.
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a) Percentage increase in linear buckling load b) Parameter m (Eq. (24)) for constant young’s modulus
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Fig. 7 Linear buckling load improvement of flat plate with Young’s modulus variation, retaining baseline average.
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edges of the panel, while restricting displacements in the plane of the

loaded edges. These boundary conditions differ from an earlier

version of this paper [53], in which the same boundary conditions

were used for the prebuckling state but had the loaded edges clamped

during the eigenvalue analysis. To restrict the rigid body mode in the

load direction, two points on the ends of the curve at y � 0.075 m are

fixed in the load direction. A discretization of 40 SL elements in

radial direction and 40 SL elements in the axial direction was used.

Material properties of the previous example (E � 181 GPa, ν � 0.3)
are also used in this example. Using the CUF implementation the first

buckling load of 102,504 N was calculated, and verified using

DIANA [50] with a 930 Q20SH element shell model (107,280 N).

Figure 13 shows the first linear buckling mode, calculated using the

CUF implementation.

-50 -45 -40 -35 -30 -25 -20 -15 -10 -5

Change in minimum thickness, % of original

5

10

15

20

25

30

35

40

45

50

C
ha

ng
e 

in
 m

ax
im

um
 th

ic
kn

es
s,

 %
 o

f 
or

ig
in

al

4.84

8.755

11.97

13.14

4.759

8.55

11.61

13.11

4.666

8.323

11.21

13.08

4.563

8.062

10.77

12.74

13.04

4.442

7.757

10.27

12.07

12.96

4.297

7.395

9.691

11.33

12.44

13.1

13.18

12.79

4.113

6.953

9.016

10.5

11.52

12.19

12.56

12.69

12.65

12.45

3.867

6.393

8.205

9.526

10.48

11.13

11.55

11.78

11.85

11.8

3.505

5.645

7.183

8.324

9.164

9.763

10.16

10.4

10.51

10.51

2.89

4.524

5.682

6.507

7.075

7.444

7.657

7.749

7.747

7.675

14.42

16.07

16.91

16.94

16.26

14.94

13.91

15.43

16.2

16.26

15.69

14.6

13.35

14.75

15.47

15.57

15.14

14.27

14.03

14.72

14.87

14.58

13.95

13.27

13.93

14.15

14.01

13.6

13.39

13.4

4

6

8

10

12

14

16

-50 -45 -40 -35 -30 -25 -20 -15 -10 -5

Change in minimum thickness, % of original

5

10

15

20

25

30

35

40

45

50

C
ha

ng
e 

in
 m

ax
im

um
 th

ic
kn

es
s,

 %
 o

f 
or

ig
in

al

0.118

0.231

0.34

0.445

0.547

0.645

0.741

0.834

0.925

1.01

0.131

0.256

0.375

0.491

0.602

0.709

0.814

0.915

1.01

1.11

0.147

0.286

0.419

0.547

0.669

0.788

0.903

1.01

1.12

1.23

0.167

0.325

0.474

0.617

0.754

0.886

1.01

1.14

1.26

1.38

0.194

0.375

0.547

0.709

0.865

1.01

1.16

1.3

1.43

1.56

0.231

0.445

0.645

0.834

1.01

1.19

1.35

1.51

1.67

1.82

0.286

0.547

0.788

1.01

1.23

1.43

1.63

1.82

2

2.18

0.375

0.709

1.01

1.3

1.56

1.82

2.06

2.3

2.53

2.75

0.547

1.01

1.43

1.82

2.18

2.53

2.86

3.18

3.49

3.8

1.01

1.82

2.53

3.18

3.8

4.4

4.98

5.55

6.11

6.67

a) Percentage increase in linear buckling load b) Scaling parameter m (Eq. (24)) for constant mass
Fig. 9 Flat plate with thickness variation linear buckling load improvement, with constant mass.

Fig. 8 Correlation pattern and redistribution of thickness within the flat plate.

Fig. 10 Strain energy density of the first buckling mode (compression in y), outer surface, J ⋅m−1.
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1. Young’s Modulus Variation

Acorrelation pattern was generated using a total of 10,000 random
samples using a correlation length of 0.01 m. During postprocessing
the correlation of the structure’s Young’s modulus with the first
buckling modewas computed, as shown in Fig. 14a. An examination
of the pattern shows that the panel benefits the most from reinforce-
ments in the center of the straight edges, in the area of the maximum
buckling amplitude. Stiffened regions are focused into five zones
around the center. As with the flat panel, the increase was studied
under a range of minima and maxima. The trends of these analyses
are shown in Fig. 15. Using the full range of 108–254 GPa the
material distribution of Fig. 14b shows the largest increase in linear
buckling load. Using this redistributed stiffness results in a 7.4%
increase in linear buckling load to 113,820 N. Applying this stiffness
redistribution also causes the prebuckling deformation to change, as
is shown in Fig. 16b.

2. Thickness Variation

Thickness variations are analyzed by running 10,000 linear buck-
ling analyses in which the mesh is perturbed proportional to the
thickness by a 5% standard deviation. The load vector is updated at
every sample, updating ensures that themagnitude on an edge remains
unity, and the load is distributed evenly on the surface. Variations are
applied to the structure using a correlation lengthof 0.01m.Figure 17a
shows the pattern of these correlations. A study was done to analyze
the improvement in linear buckling load; the resulting trends are
shown in Fig. 18. In these analyses the thickness range was changed
together with an appropriate scaling parameterm, while retaining the
original mesh volume (mass). The greatest increasewas found using a
range of −50 to 15% of the original thickness, using a scaling factor
m � 1.56. As was the case with the flat plate example the optimal
range is a tradeoff between localized bending stiffness increase and a
reduction elsewhere in the structure (due to the constant mass con-
straint imposed). Applying these ranges improved the linear buckling
load by 29%, to 136,702 N. Figure 17b shows the corresponding
thickness distribution. The changes in the pre-buckling displacement
are shown in Fig. 19, showing a significant decrease in displacement
along the unloaded edges.

3. Interpretation

As was done for the flat plate the interpretation focused on the
prebuckling stress and the strain energy density of the bucklingmode.
Changes in the prebuckling stress in the load (y) direction reduce in
areas where buckles form, particularly for the thickness varying
structure, as shown in Fig. 20c. At the same time the buckling strain
energy density (U � �1∕2�εijσij ([52] p. 122) of the structures has

also redistributed. The original structure had a concentration of strain

energy along the unsupported edges, which decreased in the Young’s

modulus–tailored structure, and even more so in the thickness-tail-

ored structure. Changes in the prebuckling stress pattern are more

prominent than changes in strain energy density, which differs from

the previous example. Increases in buckling strain energy density at

the corners of the thickness-tailored structure is due to the local

decrease in thickness, which causes a redistribution of the applied

force. This influences the load path of forces applied to the structure,

allowing these to be focused in areas less sensitive to high stresses.

C. Effect of Correlation Length

Patterns are generated using random variations of the Young’s

modulus or thickness throughout the structure. Variations are corre-

lated to each other,meaning that points close to each other are related,

more so than points far apart from each other. Patterns of correlations

shown in this section are similarly related. A comparison of the

curved panel thickness example is shown in Fig. 21, where the

thickness correlation of the curved panel is shown for a correlation

length of 0.05 and 0.01m.Both analyses are run 10,000 times, but it is

clear that the 0.05 m pattern appears to be more converged. It is also

clear that the pattern with a correlation length of 0.01 m is different,

preferring a fairly thin strip along the edges instead of the larger areas

along the off center areas of the panel.

Similarly an analysis was run in which the flat panel analysis of

Sec. III.A.1 was run with a correlation length of 1 m. A round pattern

was generated instead of an oval pattern. The correlation length in this

context can be interpreted as a characteristic patternminimum feature

length. A shorter length, while giving more resolution to the pattern,

also causes the pattern to take longer to converge.

Fig. 11 Linear buckling mode of baseline and thickness varied structure, relative displacement (projection facing unloaded edge).

t = 0.002 m

L = 0.15 m

R = 0.1 m
90o

x
z

y

a) Force and geometry b) Curved panel mesh
Fig. 12 Curved panel structure.

Fig. 13 First linear eigenmode of the curved panel, compression in y.
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Fig. 14 Calculated correlation pattern and applied stiffness distribution.
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Fig. 15 Improvement over a range of Young’s modulus of the curved panel, with average value equaling the baseline Young’s modulus.

Fig. 16 Prebuckling displacement of curved panel, m.
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Fig. 17 Calculated correlation pattern and applied thickness distribution of curved panel.
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Fig. 18 Improvement of buckling load of curved panel over a range of thickness ranges, with constant mass.

Fig. 19 Prebuckling displacement of curved panel change with thickness variation, m.
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To analyze how the two patterns compare, analyses were done in
which the thickness variation was compared. The 0.01 m pattern of
Fig. 21a shows an increase of 29% using m � 1.56 over a range of
change from −50 to 15% of the original thickness. A similar analysis
was done for a correlation length of 0.05 m. The best improvement
was found in the range −50 to 15%, which showed an increase of the
linear buckling load of 9.4%, using a scaling factor of m � 0.44.
Comparing this to the result generated with a smaller correlation
length gives only a third of the increase. A shorter correlation length
has a better potential enhancement, at a higher computational expense.

IV. Conclusions

Through stochastic analyses of randomized local variations of, for
example, thickness, it is possible to glean information on the average
local sensitivity of the structure to a variation of that parameter. Using
this information it is possible to tailor structures to enhance their
mechanical response. Numerical examples have demonstrated such
effects through examples that improve the linear buckling load of two
structures through stiffness redistribution, by varying either the
Young’s modulus or the thickness locally. The new stiffness distribu-
tions cause the bending stiffness to increase in areas where buckling
deformation is most significant. Another effect is that the prebuckling
stress tends to reduce in those areas; the combined effect of the
stiffness and stress redistributions is that the strain energy density
of sensitive areas reduces. Analyses over multiple correlation lengths
were accomplished. An overall trend shows that correlation patterns
with a shorter length generate patterns that perform better. This result
is due to the pattern having a higher resolution (i.e., is less smooth),
allowing enhancements to be more localized.

Correlation patterns are different depending on which parameter

(e.g., Young’s modulus or thickness) is varied; in the examples

shown, this is due to two effects: the first being the effect variations

have on the stiffness. Both parameters increase in-plane stiffness

linearly with their variation. Bending stiffness, on the other hand, is

proportional to Et3; thickness variations therefore affect the bending
stiffness of the structure much more than varying the Young’s modu-

lus. Variations of the thickness cause another effect; force is applied to

the edge of the structure as a distributed load. When the thickness

decreases, the load is redistributed away from the area and into other

areas (as the area decreases locally); this can help redirect load to parts

of the structure that are less sensitive. The corners of the curved panel

depict this; these areas are thinner so as to decrease the relative

amount of load applied in those areas close to the edge. In this way

the thickness distribution also tailors the load path while tailoring the

stiffness.

Future extensions can broaden the use of the method. Local stress

amplitude reduction during cyclic loading could also be decreased,

which could lead to an improved fatigue life. The results so far are

limited to linear results, and it is also possible to run these analyses

using nonlinear analyses at a specific load level or buckling load.

Potential use of this approach on additive manufactured materials

and structures is also of interest. Extra design freedoms facilitated by

these production processes make it possible to create complex geom-

etry, which would not be economical with traditional manufacturing

processes. When the manufacturing process is well understood and

the variations can be quantified in a representative fashion, the effects

on the structural performance of the tailored structure can be directly

compared, potentially enabling the structure simultaneously to be

Fig. 20 Prebuckling stress in the y direction for three different curved panel analyses with compression in y, Pa.

Fig. 21 Comparison to correlation patterns of thickness variations of curved panel with different correlation lengths.
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more highly tailored and have excellent performance through the
same design process.
Adding multiple design iterative stages can also lead to further

improvement of linear and, potentially, nonlinear problems. Results
shown in Figs. 9a and 18a indicate that maximizing the parameter
range does not automatically lead to the best improvement. To find
an optimal distributions, successive iterations will likely be needed.
By applying the random fields to out-of-plane displacements it may
also be possible to add tailored variations to affect the behavior.
Fields can be generated in 2D, as done here, but random fields can
also be generated for 3D structures. Optimization using these meth-
ods does not necessarily require a converged correlation pattern; the
patterns could be perturbed and modified in successive iterations
each time an improvement is found. It is noted that convergence
would likely improve by postprocessing on the patterns, using sym-
metry, for instance.
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4
PA P E R C : I M P R O V I N G FAT I G U E L I F E O F P R I N T E D
S T R U C T U R E S

Imperfection inspires invention, imagination,
creativity. It stimulates. The more I feel imperfect, the
more I feel alive.

— Jhumpa Lahiri

The paper presented in this chapter describes how local thickness changes
analyzed in stochastic analyses can be used to increase the fatigue life of
a structure. Validation of the results is done on 3D-printed samples. First
published as
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Abstract
Additive manufacturing allows designers to create geometries that would not be possible or economical to manufacture 
using traditional manufacturing processes. Production with these technologies does, however, introduce a large amount of 
variation and additional unknowns. These random variations from idealized geometry or material properties can harm the 
performance of the design. The current work presents an approach to improve the fatigue life of such structures, and simul-
taneously reduce its influence from random variations in local thickness. Following an initial numerical study, the results 
are experimentally validated. Experimental results show a significant improvement in fatigue life in the redesigned sample 
with a tailored thickness distribution.

Keywords Random field · Robust design · Fatigue improvement · Thickness tailoring · Additive manufacturing

1 Introduction

Load conditions of structures often change during opera-
tion. Cyclic changes in the stress state of a structure can 
cause cumulative damage, leading to fatigue failure after a 
certain number of cycles. Certain structural features, such 
as holes, slots, and sharp edges, cause stress concentrations 
that accelerate fatigue failure. For many of these features, 
it is best to avoid them, but holes are sometimes necessary 
due to cable routing, water drainage, pressure-equalizing, 
or other reasons. Designs can be adapted in these cases to 
minimize any adverse effects and reduce the effects of stress 
concentrations, which can induce fatigue failure.

Additive Manufacturing (AM) is a term used for different 
manufacturing technologies that create a structure by succes-
sively adding material layer by layer [15, 16]. A wide range 
of materials can be used with these techniques, including 
metals, polymers, and resins. These techniques selectively 
place or harden material using direct printing, laser sinter-
ing, photopolymerization, or another process.

The extra design freedom offered by AM techniques 
allows for an economical fabrication of components with 
very complex geometries, which are not feasible with tra-
ditional manufacturing techniques [28]. Nevertheless, since 
different AM techniques exhibit different design limitations, 
it is crucial to keep process type and necessary support struc-
tures in mind during planning and designing. Manufactur-
ability can be assured by adding constraints to the topology 
optimization by adding length-scale controls [25, 39], non-
enclosed void [27], and overhang constraints that limits the 
geometry to shapes which are less likely to collapse during 
manufacturing [23, 31]. Some AM technologies also cause 
an anisotropic behavior of the printed components, which 
must be taken into account during the design process [7].

The fatigue behavior can be improved using a design pro-
cess that shapes the structure to minimize stresses within 
a given design volume [30]. Keshavarzzadeh et al.  [20] 
showed that a more robust design with respect to random 
variations of geometry, material, and loads is possible by 
taking random variations into account during the design 
process. When it comes to fatigue, there are some hurdles 
to overcome in specific AM processes.

The most popular process used for polymers is Fused 
Filament Fabrication (FFF). FFF involves extruding molten 
plastic filament through a movable nozzle. Strands between 
0.05 and 0.8 mm in diameter are deposited parallel in two-
dimensional layers and fused to the previous layer during 
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deposition. In this way, a layer-by-layer manufacturing pro-
cess generates three-dimensional components. Within the 
FFF process, Chacón et al. and Wu et al. [5, 38] showed 
that the stiffness, strength, and fatigue performance of a 
printed component are directly influenced by manufactur-
ing process parameters such as the printing direction as well 
as the equipment used. Generally, the build-up direction is 
less robust and more susceptible to brittle failure than other 
directions [5]. Another parameter is the raster angle, refer-
ring to the printing direction which dominates in a layer. The 
ideal raster angle depends on the load and resulting stresses 
in the structure, the desired stiffness [26, 38], and fatigue 
requirements [13]. The extrusion and nozzle movement also 
influences the thickness of printed layers. The exact effects 
of the change in layer thickness vary depending on the build-
up direction and stress state of the structure.

In most cases, it is advantageous to orient the raster angle 
in the main direction of the load, thereby orienting the fila-
ments into the principal stress. Other design and process 
parameters can also influence the material parameters, 
such as the type of reinforcement used in fiber-reinforced 
filaments and the fiber volume fraction [6]. Predicting the 
exact mechanical properties of the manufactured materi-
als becomes quite complex, especially when variations 
introduced by machine and filament batch are also taken 
into account. Work done by Zou et al. [40] tries to predict 
mechanical properties while varying some of the discussed 
parameters, but these are still only estimates given to the 
inherent complexity.

These parameters can affect the semi-crystalline structure 
of an FFF structure, but more importantly, affect the bond-
ing of filaments added at every layer. With the right printing 
parameters, Young’s modulus within a printed layer can be 
nearly identical in longitudinal and transverse directions. 
In the buildup direction the Young’s modulus can vary due 
to inter-layer contact differences and polymer crystalliza-
tion. Conversely, the ultimate tensile stress in the buildup 
direction is usually significantly lower, showing more brittle 
behavior than in the printing plane [33]. Analysis of experi-
mental results by Ezeh and Susmel [13] shows that the loga-
rithmic slope in an s-n curve is the same in all directions 
when scaled from the ultimate tensile stress.

Even when the best effort is made to control manufactur-
ing parameters, an increase relative to traditional approaches 
still exists in the uncertainty in the material’s strength, stiff-
ness, and fatigue resilience. Controlling the process and 
assuring consistent performance is much more complex with 
an additive manufacturing technique such as FFF than tradi-
tional approaches, e.g., injection molding. Many opportuni-
ties exist in the FFF process for improper adhesion to form 
between filaments and for voids to form between filaments 
and layers in a structure, to name two sources of imperfec-
tions. Work done by Iragi et al. [19] has shown that a large 

amount of deviation from the expected performance can be 
traced down to such microstructure imperfections that are 
introduced during manufacturing.

Overcoming these uncertainties introduced by FFF manu-
facturing to improve fatigue life requires a robust design that 
is not as quickly affected by variations. This paper presents 
an approach for improving the fatigue life of a thin-walled, 
FFF-manufactured structure by a mass-neutral shape adap-
tation. Herein, only the thickness is varied, which is of par-
ticular interest for thin-walled structures in which the shape 
is fixed due to e.g., aerodynamic flow considerations. An 
example of this would be the inner structure of a suction-
panel wing-box designed to facilitate laminar flow over the 
outer surface of an aircraft wing. Such a structure may con-
sist of gyroid unit cells of varying sizes to facilitate a spe-
cific pressure drop. Herein, the thickness of the unit cells 
can be varied to reduce stress-induced fatigue while not hav-
ing a significant effect on the internal airflow. The approach 
used in this paper utilizes stochastic analyses to simulate 
the effects of local changes in thickness. Then, through 
post-processing, the correlation is computed between local 
thickness changes and the estimated influence on the fatigue 
life. Such a correlation pattern gives a map of the influence 
local changes have on fatigue life. Applying this pattern to 
modify the local thickness of the structure tailors the struc-
ture to increase its fatigue life. Using an open-hole structure 
as an example the approach is demonstrated numerically in 
Sect. 3, leading to a modified thickness distribution of the 
original design. Following numerical analyses, a series of 
experiments demonstrate the potential of this approach on 
an actual FFF open-hole specimen is presented in Sect. 4.

2  Methodology

The approach used to improve the fatigue life of a struc-
ture is based on earlier work on buckling loads presented 
in [3, 4]. This approach uses random fields to generate ran-
dom patterns of thickness distributions within a thin-walled 
structure. These variations are compared to their effect on 
initial fatigue failure, generating a pattern of correlated val-
ues. Using this pattern material is redistributed, postponing 
initial failure, while at the same time creating a more robust 
structure.

2.1  Random field generation

Random thickness distributions are generated using random 
fields. Many techniques exist to generate random fields [18, 
34]. Fields can be represented through continuous functions 
in space, usually a sum of functions. Sums of functions can 
be generated through a Karhunen-Loéve (KL) expansion [35] 
or Fourier series for instance [22]. Another approach is to 
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generate fields directly on points in space (such as nodes in a 
finite element model). Fields can be generated on those points 
through decomposition of the covariance matrix [8], using spa-
tial averaging [36] or fast Fourier transformations [32].

Vectors representing values of the field on finite element 
nodes are generated using a technique known as Covariance 
Matrix Decomposition (CMD). CMD makes it possible to 
create random vectors in which entries have a specified cor-
relation to each other. The choice for CMD is made because it 
is easy to implement, accurate, and has few limitations, espe-
cially for small to mid-sized models. The current approach 
generates fields using the finite element model nodes, giving 
thickness values at every structural node. Within the current 
work, correlation is a function of the physical distance between 
points on the structure. Correlation of two points i and j in field 
� is defined as [9, ch. 10]

where E is the expectation operator and equals the mean 
value over an infinite amount of samples. Parameters � and 
� are the mean and standard deviation. The functions used 
within this work to determine the correlation of points on 
the structure to each other are

and

where ΔL is the distance between points, and Lc is the cor-
relation length. These two functions will, from now on, be 
referred to as type I and type II correlation functions. Both 
type I and II correlation functions are commonly used in 
literature, but generate fields that have different types of 
imperfections. Both types of fields are used in this work as 
a comparison, and in an analysis of imperfection sensitivity.

Generating a field requires first calculating the distances 
between nodes; these distances are then used to generate a 
correlation matrix using Eqs. (2) and (3). Assembly results in 
a symmetric positive definite correlation matrix with indices 
and matrix representation in the form of

(1)�hi,hj
=

cov(hi, hj
)

�i�j
=

E[(hi − �i
)(

hj − �j
)]

�i�j
,

(2)�I = e
−

ΔL

Lc

(3)�II = e
−

(
ΔL

Lc

)2

,

(4)Rij =
cov

(
hi, hj

)
�i�j

(5)� =

⎡⎢⎢⎢⎣

1 �
�
h1, h2

�
… �

�
h1, hn

�
�
�
h2, h1

�
1 … �

�
h2, hn

�
⋮ ⋱ ⋮

�
�
hn, h1

�
�
�
hn, h2

�
… 1

⎤⎥⎥⎥⎦
.

CMD makes it possible to generate many fields without any 
additional computational cost. Most of the computing time 
is spent factorizing the correlation matrix, which has to be 
done only once. After precomputing, simple matrix multi-
plication can generate additional fields using a random zero-
mean unit variance vector � in the form

where � is a decomposed version of the correlation matrix 
� of Eq. (5).

Determining the decomposed correlation matrix is done by 
first taking the definition of covariance

keeping in mind that the field has a zero mean value. The 
correlation matrix � can be decomposed into two matrices 
as

where � is an identity matrix. This approach exploits the 
independence of the components of � . Decomposition can 
be done using a variety of methods, such as Cholesky or 
eigenvalue methods. Within the current implementation, the 
eigenvalue decomposition was utilized, as this was shown 
to be slightly more accurate by van der Have [17]. Eigende-
composition gives matrices in the form

where � is a diagonal matrix with eigenvalues of � on the 
diagonal, and � contains its eigenvectors.

From this decomposed matrix the decomposed matrix � 
can be extracted as

in which �̂ = diag(
√
�) , in which � are the eigenvalues of 

the correlation matrix Eq. (5).
While solving the finite element model the thickness at 

integration points is evaluated at integration points using 
shape functions and field values at nodes. Fields are gener-
ated with unit variance and zero mean, the thickness at point 
i is therefore

where hi is the field value at point i and t� the standard devia-
tion of thickness.

(6)� = �� ,

(7)cov
[
hi, hj

]
= E

[
hihj

]
− E

[
hi
]
E
[
hj
]
,

(8)
� = cov[�, �] = E

(
�, �T

)
− 0 ⋅ 0

= E
[
��(��)T

]
= �E

(
��T

)
�T = ���T

= ��T ,

(9)� = ���,

(10)� = ��̂�̂� = ��T → � = ��̂,

(11)ti = t� + hit� ,
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2.2  Improving the cycles until initial failure

Within the current approach, the number of cycles until ini-
tial failure is estimated using the highest stress within the 
structure. Structures printed using fused filament fabrication 
have a very similar Young’s modulus in the printing plane, 
and slightly less stiff between printed layers. Elastic behavior 
for thin-walled structures can, therefore, be approximated 
as isotropic [5, 33, 40]. Experimental work done by Afrose 
et al., [1, 11, 12, 26] have indicated that the slope of the s-n 
diagram of the material is not dependent on the orientation 
of the printing direction. The structure designed has a pri-
mary filament orientation aligned with the applied forces. 
Inter-layer stresses should be minimal. With this in mind, 
it is possible to estimate the effect on the number of cycles 
using the Von Mises yield criterion and the material’s SN 
curve. This allows the initial failure of the structure due to 
fatigue to be estimated from the stress state of the structure 
at a given thickness distribution.

Stress concentrations caused by the production process 
are not taken into account in this fatigue model, the esti-
mated values are therefore a likely overestimation of the 
actual number of cycles until failure, and should therefore 
only be taken as a qualitative measure. Parameters affect-
ing failure in tested specimens are further discussed in 
Sect. 4.4.1.

2.2.1  Calculating the correlation pattern

In a large set of random thickness patterns, some samples 
will show an increased number of cycles until failure, while 
others will show a decrease. A non-dimensional map of the 
average contribution of thickness to the critical stress state 
can be evaluated by computing the correlation of these at 
every point on the structure. If we create a pattern H of 
the thickness distribution and insert it into the mathematical 
definition of correlation (Eq. 1) we can compute its terms as

where Hi is the correlated value of maximum Von Mises 
stress �vm found in the structure, and thickness at point 
i, while thickness of run j is described at as ti,j with bar ̄ 
describing the mean value of each term.

2.2.2  Applying the correlation pattern to fatigue behavior

Patterns obtained in Sect. 2.2.1 can not be used directly; it 
gives a correlation pattern with values in the range [− 1, 1]. 

(12)Hi =
∑n

j=1
�
𝜎vm,j − �̄�vm

��
ti,j − t̄

�
�∑n

j=1
�
𝜎vm,j − �̄�vm

�2�∑n

j=1
�
ti,j − t̄

�2 ,

This pattern is normalized to the range [0,1]. Such a normal-
ized pattern can easily be used to vary the thickness in the 
structure into a specified range as

where Ĥi is the value of the normalized correlation pattern 
at point i. Directly applying Eq.(13) to the structure will 
most likely change the volume of the structure. Retaining 
the original volume, and therefore mass requires a scaling 
parameter m, extending Eq.(13) to

For each range t ∈
[
tmin, tmax

]
 there exists a unique value of m 

where the volume of the original structure is retained. This 
value can be obtained numerically using numerical optimi-
zation and scalar minimization algorithms, within this paper; 
Brent’s method [2] is used.

3  Numerical analysis

To demonstrate the approach of Sect. 2, a numerical example 
was analyzed. The structure analyzed is an open-hole speci-
men, its baseline design is shown in Fig. 1. While this struc-
ture does not include bending stresses it does represent an 
easily reproducible stress state which can be repeated fairly 
easily. Nothing in the approach suggests that it does not work 
on more complex structures which include bending stresses. 
This structure is first modeled in finite elements, after which 
the approach described in Sect. 2 is used to improve the 
number of cycles until initial fatigue failure by redistributing 
the thickness of the structure. An additional study is done 
to analyze changes in stochastic response. Both the baseline 

(13)ti = tmin +
(
tmax − tmin

)
Ĥi,

(14)ti = tmin + (tmax − tmin)Ĥ
m
i
.

Fig. 1  Drawing of baseline specimen, dimensions in mm
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and the improved design were then tested experimentally to 
demonstrate the potential use of this approach.

3.1  Finite element model

Modeling of the structure in finite elements is done using 
DIANA FEA [10]. A mean mesh sizing of 1 mm was used 
to generate a mesh of a quarter of the sample’s gage length 
using 1858 Q8MEM linear shell elements. An image of the 
discretization can be found in Fig. 2.

The Young’s modulus in printed structures depends on 
both printer settings and build direction [1, 5, 26, 33]. The 
assumptions listed in section 2.2 means that the qualita-
tive response or improvement should not be affected by 
anisotropy, assuming the primary build direction and print 
parameters are maintained in the designs. Therefore, proper-
ties used in the analyses shown are assumed based on aver-
aged experimental data in literature as E = 3.368 GPa and 
� = 0.366 . It is important to note that the actual Young’s 
modulus used in the numerical analysis does not signifi-
cantly affect the linear analyses used to find the correlation 
between the highest stresses and local changes. Using the 
unifying fatigue curve for Polylactic Acid (PLA) proposed 
by [13] a relationship can be made between the maximum 
stress �max = �mean + �amp relative to the ultimate tensile 
stress, and the approximate number of cycles until failure. 
Stresses in the specimen are expected to be minimal in the 
printing direction, while the ultimate stress in the printing 
plane is very similar. Figure 3 shows the expected number 
of cycles for stresses in the printing plane.

Symmetry boundary conditions are applied to the struc-
ture on its symmetry line. The left edge in Fig. 2 is fixed in 
the x-direction, the upper edge is fixed in the y-direction. 
The rigid body mode in the z-direction is fixed on the edge 
of the hole. The load is applied as a distributed tensile force 
on the bottom edge of 1 kN. Von Mises stress results and 

the corresponding number of cycles estimated from the SN-
curves of [13] for the baseline sample is shown in Fig. 4.

3.2  Increasing cycles until initial failure

Improvement of the baseline design is achieved using the 
approach described in Sect. 2.2. Thickness variations are 
applied through both the type I and type II correlation func-
tions defined in Eqs.(2) and (3) with a correlation length 
of 5 mm. Figure 5 shows the relationship of distance to the 
correlation of field values. The correlation length helps 

Fig. 2  Mesh discretization

Fig. 3  SN curve used to approximate the number of cycles until ini-
tial failure in printing plane of printed PLA

Fig. 4  Baseline results of the finite element model
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determine how much distance is needed for the correlation 
pattern to change significantly within this approach. 5 mm 
gives reasonably local changes without any very abrupt 
changes. Fields define the thickness with a standard devia-
tion of t� = 0.5 mm from the t� = 4 mm baseline configura-
tion. Changes applied are purely fictitious and only used to 
generate a correlation pattern. These values can be smaller 
or slightly larger as long as the response to the local change 
remains linear. Both of these correlation functions are used 
to generate two sets with 5000 samples each. The number 
of samples used was determined by optically checking when 
the correlation pattern converged and then rounding up. Fig-
ure 6 shows an example of a sample of each set.

To find the relative effect of thickness to initial fatigue 
failure, the Von Mises stress, and the corresponding num-
ber of cycles from Fig. 3 are calculated at every node. As 
described in Fig. 2.2 the initial failure is assumed to be 
defined by the maximum Von Mises stress and has a loga-
rithmic direct relationship to the number of load cycles. Fig-
ure 7 shows the patterns of both types I and II correlation 
functions and the autocorrelation of each point.

The stress and cycles until failure patterns create a very 
similar pattern for each correlation function; this is expected 
as the number of cycles is defined as a function of the stress 
level. The number of cycles until failure increases with an 
increase of thickness while the stress decreases. Due to this, 
the correlation patterns are inverses of each other. Correla-
tion patterns generated using a type II correlation function 
result in an overall smoother pattern; this is due to the higher 
correlation the function has at shorter distances (Fig. 5).

Both correlation patterns are used to generate a thick-
ness distribution varying within the range of 2–6 mm. In 
order to retain the original volume of the structure, the scal-
ing parameter m defined in Eq.(14) had to be computed. 
Computed values were mI = 0.397 for the type I field and 

mII = 0.411 for the type II field. Figure 8 shows the thickness 
distributions obtained as well as the new stresses and cycles 
until initial failure related to the stresses in the structure.

Both patterns are similar and reinforce the hole in the 
high-stress area by increasing the thickness locally and 
reducing material in the low-stress area. The solution found 
can be deduced quite quickly to be more efficient than one 
obtained by simply adding thickness concentrically around 
the hole. Stresses vary in the topography around the hole, 
and sensitivity to local changes also varies significantly over 
the surface of the structure. Stresses at the top and bottom 
of the hole are very low, for instance, as forces flow around 
the hole as shown in Fig. 4a.

Comparing thickness patterns obtained through both 
correlation functions shows that they are slightly different. 
Type I correlation function results in a pattern which is less 
smooth overall, due to the lower correlation to nearby points. 
Table 1 gives an overview of how the results compare to 
each other. Both of the improved designs show a decreased 
stress of 36–38%, which results in having over 10× the num-
ber of cycles until initial fatigue failure in Fig. 3.

3.3  Robustness analysis

Designs of Sect. 3.2 are found using random variations, but 
no analyses are done on the stochastic response of the struc-
ture. Robust design can be defined as removing the nega-
tive effects of random variations on the performance of a 
structure. For the current design, this can be interpreted as 
the distribution of fatigue life in the presence of random 
thickness variations.

Fig. 5  Correlation functions used to generate thickness patterns, Eqs.
(2) and (3) with L

c
= 5 mm

Fig. 6  Example of thickness distributions generated with two differ-
ent correlation functions
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Robustness is analyzed by applying thickness variations 
generated using the same parameters as the thickness vari-
ations of Sect. 3.2, with two different correlation functions 
t� = 0.5 mm and Lc = 5 mm. These variations are applied 
to the baseline design, as well as the enhanced designs. 
The results of the maximum stress analyses are shown in 
Table 2. The statistical properties are shown for a normal 
distribution with a coefficient of variation (CoV) defined 
as CoV =

�

�
 . Estimated cycles until failure has been fit to 

a lognormal distribution, the parameters of the natural 
logarithm of these distributions are shown in Table 3, 

Fig. 7  Correlation patterns of type I and II correlation functions and 
the stress and number of cycles until initial failure

Fig. 8  Thickness distribution, Von Mises stress results and cor-
responding number of cycles until initial fatigue failure for designs 
obtained with type I and II correlation functions
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where the coefficient of variation for lognormal distribu-
tions is defined as CoV =

√
e�

2 − 1.
Enhancing the design has caused not only the determinis-

tic design to be improved, but also has reduced the standard 
deviation of the response, significantly improving structural 
reliability. Figure 9 shows the normal distributions found, 
as well as a histogram of the 5000 analyses of baseline and 
enhanced designs. Distributions of the enhanced and base-
line designs only have a small overlap at the tail of the distri-
bution. Reducing the maximum stress in the structure greatly 
influences the expected number of cycles until initial failure. 
The lognormal distribution of cycles is shown in Fig. 10, 
showing that the expected number of cycles is approximately 
one order of magnitude higher for the enhanced designs.

4  Experimental validation

The numerical results of Sect. 3 show a great increase in 
the expected fatigue life of specimens with the specified 
thickness redistribution. Manufacturing panel structures 
with tailored thicknesses using a traditional manufacturing 
process is quite challenging, requiring multiple machin-
ing steps. This section tries to analyze the potential use of 
additive manufacturing to generate structures with these 
types of thickness redistributions.

Table 1  Comparison between the maximum Von Mises stress and 
corresponding number of cycles until initial failure for baseline and 
enhanced designs

�
VM

Cycles

Baseline 15.1 MPa – 5.1E4 –
Pattern I 9.35 MPa − 38.1% 6.02E5 11.8×
Pattern II 9.61 MPa − 36.4% 5.24E5 10.3×

Fig. 9  Probability density function of maximum stress in structure 
subjected to type I thickness variations

Fig. 10  Probability density 
function of expected number 
of cycles until initial failure for 
structure subjected to type I 
thickness variations

Table 2  Statistical stress �
VM

 properties baseline and enhanced designs subjected to thickness variations generated with type I and II correlation 
functions with L

c
= 5 mm and t� = 0.5 mm

Thickness variations of type I Thickness variations of type II

X = � + �Z � , MPa � � , kPa � CoV � � , MPa � � , kPa � CoV �

Baseline 15.30 (–) 1430 (–) 9.35% (–) 15.31 (–) 1470 (–) 9.60% (–)
Enhanced I 9.40 (− 38.6%) 678 (− 52.6%) 7.22% (− 22.8%) 9.39 (− 38.7%) 683 (− 53.5%) 7.27% (− 24.3%)
Enhanced II 9.66 (− 36.9%) 692 (− 51.6%) 7.17% (− 23.3%) 9.65 (− 37.0%) 700 (− 52.4%) 7.26% (− 24.4%)
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The test campaign contained two types of tests. The first 
test has the objective of finding the failure load. Researchers 
have already published the ultimate tensile stress of PLA 
structures produced with FFF, but the numbers vary from 
15.5–72.2 MPa [21, 24], depending on the chosen filament 
and production parameters [5, 37]. As the objective of the 
test is to observe an increase in fatigue life of the structure, 
it is not necessary to obtain an exact tensile strength for the 
experimental campaign. What does have to be obtained is 
an appropriate load level to perform the fatigue test on, this 
is done by performing a static test series.

Using a load level derived from the static test, an oscil-
lating sinusoidal load with varying amplitude 
( R =

Fmin

Fmax

= 0.1 ) is applied to the structure until structural 
failure occurs. This fatigue test is first done on the baseline 
constant thickness sample and then repeated with the rede-
signed sample featuring a thickness redistribution.

4.1  Test specimen manufacturing using FFF 
technique

Samples were manufactured by importing the design from 
Sect. 3 and adding transitional radii between the clamping 
and gage areas. Sample manufacturing was done using the 
FFF technique and Polylactic Acid (PLA) filament.

Manufacturing of the samples was done at the institute of 
adaptronics and function integration (IAF) of TU Braunsch-
weig. Using a nozzle diameter of 0.4 mm, a heating chamber 
temperature of 220 ◦C , and a print bed temperature of 55 ◦C . 
The layer height used during printing was 0.2 mm.

The test specimens were printed as solid pieces, while 
most filament strands in the gauge area are routed in the 
direction of force with the help of a concentric arrangement 
as shown in Fig. 11. The test samples were spray-painted 
with a speckled pattern after printing, for deformation track-
ing with a digital image correlation system, as is visible in 
Fig. 12.

4.2  Test setup

Tests were performed at the testing facility of the Institute 
of Structural Analysis in Hannover, Germany. Samples 

were tested in a servo-hydraulic test machine with an 
attached 12.5 kN load cell. The machine clamps the sam-
ple on both ends, as shown in Fig. 12, where the bottom 
end is free in rotation, eliminating any unwanted torque 
in the test setup.

A digital image correlation (DIC) system constantly mon-
itored the sample during testing. This system allows for real-
time tracking of displacements (and resulting strains) of the 
test sample. Within the fatigue tests, the hole elongation is 
measured as a measure of damage evolution. An overview 
of the system operating during testing is shown in Fig. 13.

4.3  Static pretesting

The goal of the static test series is to find an appropriate load 
level for the succeeding fatigue test series. During the test, 
specimens were elongated at a rate of 1 mm/min, while con-
tinually recording the resulting force. The test was repeated 
3 times, and showed a high degree of reproducibility, with 
ultimate loads of around 8.5 kN. The force-displacement 
graphs of these three tests can be found in Fig. 14.

Table 3  Statistical parameters of the number of cycles until failure distribution’s natural logarithm, of baseline and enhanced designs subjected 
to thickness variations generated using type I and II correlation functions with L

c
= 5 mm and t� = 0.5 mm

Thickness variations of type I Thickness variations of type II

X = e
�+�Z � � � � CoV � � � � � CoV �

Baseline 10.81 (–) 0.475 (–) 0.503 (–) 10.80 (–) 0.485 (–) 0.515 (–)
Enhanced I 13.29 (− 22.9%) 0.361 (− 24.0%) 0.361 (− 25.8%) 13.30 (− 23.1%) 0.365 (− 24.7%) 0.378 (− 26.6%)
Enhanced II 13.16 (− 21.7%) 0.365 (− 23.2%) 0.378 (− 24.9%) 13.16 (− 21.9%) 0.370 (− 23.7%) 0.383 (− 25.6%)

Fig. 11  Orientation of filament in the printing of the improved sam-
ple
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Pretesting determines an appropriate load level and indi-
cates reproducibility. As tests on the improved samples are 
performed on the same load levels, pretesting is not repeated 
for those designs.

4.4  Fatigue testing

In order to assess the fatigue performance of both designs 
fatigue tests are performed under an oscillating load until 
failure. Force is applied as a sinusoid with a load level of 
25%, 50% and 70% of the ultimate load of Fig. 4.3, and a 
minimum load of a tenth of that, giving a stress ratio of 
R =

Fmin

Fmax

= 0.1.
At least three samples are used at each load level. The 

data points were used to fit a curve using the Basquin equa-
tion of N =

B

Sm
r

 , where N is the number of cycles, S the stress 
level, B and m are fitting parameters. A curve was fit using 
the Levenberg-Marquardt algorithm, leading to the follow-
ing least-squares fits

for the baseline sample and

for the improved sample.
The results shown in Fig. 15 make it clear that the redis-

tributed thickness found in Sect. 3 results in a significant 
improvement in the fatigue life. Accurately quantifying this 
improvement requires more testing, but it seems to be in the 
order of 4 to 5 times the original design on average.

The spread between results is relatively small. Tests done 
by [11] show an order of magnitude difference between the 
top and bottom 10% of samples. Results of the experiments 
performed in this paper all show a difference of the highest 
and lowest results of less than an order of magnitude. Any 
possible effects the load level has on this spread can not be 
extrapolated from the data as the sample size is not large 
enough.

(15)NBL =
340.58

S4.49
r

,

(16)NImp =
1661.9

S4.24
r

,

Fig. 12  Test sample clamped into test machine

Fig. 13  Test setup with digital image correlation system

Fig. 14  Static pretest results of baseline samples
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4.4.1  Analysis of fatigue failure of specimens

Failure in the numerical studies was taken as an instantane-
ous event, without any progressive damage, which can cause 
stresses to redistribute. Within this section, this assumption 
is analyzed using data obtained during testing. Hole elonga-
tion is used as a measure of damage progression. The rela-
tive progression towards failure is shown in Fig. 16. Within 
this diagram, the elongation of the hole is plotted using a 
virtual extensometer generated using digital image correla-
tion during testing. Values in the y-direction are set to

where values F1

u1
 is the original stiffness, and Fn

un
 the apparent 

stiffness during the test. The original stiffness is calculated 
as the average stiffness as the load is increased from 1 to 
25% of the maximum load level at the start of the test.

(17)D =

F1

u1

Fn

un

=
F1un

Fnu1
≜ E1

En

,

Figure 16 shows that there is a significant amount of 
progressive damage, and therefore stress redistribution dur-
ing testing. Stress redistribution and internal damage cause 
the stress distribution to evolve during the lifetime of the 
structure. The figures show an approximately linear increase 
in the damage evolution up to 60-80% of their lifetime. At 
this point, stress redistribution and crack forming cause an 
accelerated increase in the damage evolution until final fail-
ure occurs. Numerical analysis of Sect. 3 does not take any 
evolution or stress redistribution into account.

The mechanism resulting in ultimate failure seems to 
be identical in the baseline and improved designs. Rela-
tive progression of damage shown in Fig. 16 shows that the 
evolutionary characteristic of damage is very similar. Sam-
ples also showed cracks initiate at the same areas within 
both designs. It is, therefore, reasonable to assume that the 
primary mechanism leading to fatigue life improvement is 
the reduced tensile stress at critical locations. Lowering the 
stresses results in a slowing down damage progression and 
increase in the structural lifespan.

Also, fracture initiation found in the samples is not in 
the highest stress area in the finite element model. Figure 4 
shows that the highest von Mises stress in the structure is 
at the 3 and 9 o’clock locations of the hole. Fractures in 
the tested specimens were shown to initiate slightly above 
or below this location, i.e., 2, 4, 8, or 10 o’clock positions. 
Figure 17 shows a typical fracture forming during test-
ing. The topography of the immediate area can be seen in 
Fig. 11. The area that was found most critical in the finite 
element analysis consists of filaments oriented in the tensile 
direction. Immediately to the side of the critical areas, trans-
versely oriented filaments effectively introduce notches into 
the structure. Notches such as these naturally attract stress 
concentrations, leading to crack initiation and crack growth 
leading to final failure. Such topological features are not 
included within the numerical model. The structure is mod-
eled using ideal geometry. Manufacturing with FFF means 

Fig. 15  SN data of tested specimens and fitted curves

Fig. 16  Evolution of apparent elasticity during testing
Fig. 17  Evolving crack pattern formed during testing, just before final 
failure
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that the actual topology differs, making it easy for stresses 
to concentrate at irregularities not included in the model.

5  Conclusion and discussion

This paper has presented a numerical approach to increase 
the fatigue life of structures by tailoring the distribution of 
local thickness. By applying this approach to a test speci-
men, the simulated fatigue life was increased by order of 
magnitude. Numerical results also show that the approach 
decreases the sensitivity of the structure to random varia-
tions of thickness.

Experiments showed the potential use of this approach 
on structures manufactured using additive techniques. The 
experiments show that the number of cycles until failure 
is increased to around 4 to 5 the original baseline design. 
The method discussed is not designed to predict the number 
of cycles until failure but only to improve it. Nevertheless, 
analyzing this difference can show how the approach can be 
extended to include other effects.

This discrepancy between numerical and experimental 
results could be resolved by extending the fatigue model to 
consider additional effects. The two main areas identified 
are printer orientation and stress redistribution. Extending 
the numerical model to take these effects into account will 
likely improve the experimental results.

Additive manufacturing using FFF causes a topology 
within the final structure that can have areas more sensi-
tive to crack initiation. The printing layup can be adapted 
to remove these sensitive areas if this is considered in the 
numerical model. In cases where the topology must have 
these sensitive areas, the stresses can be lowered by adopting 
a scaling function to the fatigue relation used to generate a 
correlation pattern.

Compared to standard topology optimization methods 
used in additive manufacturing [14, 29], the approach dis-
cussed in this paper differentiates itself by including stochas-
tic variations in the design. By including these, the design 
can become more robust towards imperfections and enable 
evaluation of robustness during and after design using the 
same procedure. In addition to this, a transitory length scale 
can be specified through a correlation function and length 
used to generate variations. These length scales can assure 
continuity of thickness patterns, making it easier to assure 
manufacturability. Solutions obtained using density-based 
topology optimization may also create additional holes or 
end up with lattice-type solutions instead of continuous 
surfaces, which may be undesirable in structures such as 
wings panels. Extensive quantitative comparisons between 
approaches are left for the next phase of development.

Though this paper only deals with improving the fatigue 
life by redistributing the material thickness, it is possible to 

have a similar approach towards other parameters in AM. 
Process parameters, such as print speed, can directly affect 
the quality of a printed structure. The optimal values are usu-
ally a compromise between manufacturing time and quality. 
A similar analysis to that done in this paper could be per-
formed to tailor the local use of process parameters, increas-
ing the manufacturing speed while retaining high accuracy 
and a good finish in critical areas.
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A B S T R A C T

The buckling behavior of structures is highly sensitive to imperfections, i.e., deviations from the geometry and
material properties of the ideal structure. In this paper, an approach is presented in which the effects of spa-
tially varying fiber misalignments in composite structures are assessed through random field analysis and
are subsequently used to improve the structure while simultaneously making it more robust to fiber misalign-
ments. Effects of misalignments are quantified by applying random fields on the structure, which represent
fiber misalignments. Using analyses of the effect of the random local stiffness changes due to fiber misalign-
ments, a pattern of the relative influence these local changes have on the buckling load is created. By applying
a small change to local fiber orientation corresponding to this pattern to the original structure, the performance
of the design is improved. Additional stochastic analyses are performed using the improved design, reanalyzing
the effects local fiber misalignments have on the structural performance and the subsequent changes in robust-
ness. Stochastic results show an overall increase in the mean buckling load and a reduction in the coefficient of
variation in the analysis of the perturbed structure. The approach is applied to a composite panel exhibiting
asymmetric post‐buckling behavior, i.e., having an unstable post‐buckling branch and an (initially) stable
branch. Results show that perturbations in the fiber path can nudge a structure into a more stable post‐
buckling path by promoting a post‐buckling path using local changes in structural stiffness. The robustness
of improved designs can also increase, making structures less susceptible to local fiber misalignments.

1. Introduction

It has long been the habit of designers to design structures using
idealized homogeneous material properties within a structure. Devia-
tions of these assumptions are taken into consideration by using a
safety factor. Material properties found in manufactured composite
structures can vary spatially. Variations occur due to manufacturing
processes and allowable tolerances and can affect the shape [1], thick-
ness [2], void content [3], fiber alignment [4], and other material
properties [5,6].

Quantifying the effects of such local variations have on structures
can be done using random fields [7–12]. Random fields are continuous
spatial fields generated in one, two, or three dimensions. Fields con-
tain random values associated with coordinates on the field; the coor-
dinates’ values are correlated with each other using a predefined
correlation function, allowing for continuous variations of parameters.

Varying parameters can also improve performance or generate dif-
ferent behavior. Buckling loads can be improved by tailoring the thick-
ness [13], applying seeded geometric changes to geometry [14–16], or
tailoring the fiber path. Composite structures with engineered fiber
paths are also known as variable stiffness composites and enable more
careful tailoring of stiffnesses and tailor the buckling and out of plane
behavior of structures [17–20]. Variable stiffness structures also allow
for bistability, in which a stable equilibrium exists in multiple config-
urations utilizing a combination of pre‐stress and varying stiffnesses
[21].

Several manufacturing techniques are suited to manufacture vari-
able stiffness composites. Automated fiber placement (AFP) is one such
technology in which tows of fibers are placed following curved paths.
Conventional AFP machines use a compaction head that is perpendic-
ular to the tangential placement direction. Shear in tows, which results
due to in‐plane bending deformation, can not be compensated. As tow‐
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width increases and bending radius decreases, fiber breakage or wrin-
kling can become more of an issue. A lack of shear variability causes
the width of the tow to vary with the bending radius, leading to over-
laps or gaps between tows [22]. Gaps can be filled in using 3D printing
technologies [23], where fiber‐reinforced matrix material is deposited
on any gaps formed, though this is a tedious and time‐consuming pro-
cess for mass production. Continuous tow shearing alleviates these
issues by allowing shear within tows and compensating for deforma-
tion during placement using a pinching device, making much tighter
turning radii possible [24,25].

Tolerances in the placement and curing process cause small
changes in the fiber angle, resin richness, and other material parame-
ters. Local variations in stiffness caused by these changes can adversely
affect the deterministic result. The argument could be made that any
optimum found should be resilient enough to be insensitive to com-
mon variations [26]. Variable stiffness composites make it possible
to make structures less sensitive to imperfections [27].

Structures with asymmetric post‐buckling behavior have a stable
and an unstable branch, corresponding to the two alternative direc-
tions of the relevant buckling mode and initial geometric imperfection
shape. Which equilibrium path dominates depends on the imperfec-
tions found in the structure, making the structure very sensitive to
imperfections. Imperfections can consist of deviations from a nominal
geometry or, to a lesser extent, parameters affecting stiffness.

Tailoring a structure to incorporate small changes in its original
design can improve the buckling load by increasing stiffness locally.
This paper presents an approach to find patterns in which to apply
local changes to the fiber angle of composite structures. Local varia-
tions are applied to the structure using random fields, affecting its
buckling load. Analyzing the influence of local variations on the buck-
ling load of a structure can give a non‐dimensional pattern of influence
of a structural parameter. Previous work of the authors has improved
the deterministic linear buckling load of isotropic structures by tailor-
ing the local thickness and Young’s modulus [28]. Developments pre-
sented in this paper include its application on a non‐linear problem,
fiber angles of composite structures, and robustness analyses.

Developments are demonstrated on a composite curved panel by
varying fiber angles using its nominal geometry. Deviations from a
nominal fiber path can be achieved using existing techniques used to
fabricate variable‐stiffness composites. Fiber misalignments are gener-
ated on the structure using geodesic random fields. Running a Monte
Carlo analysis quantifies the likelihood of reaching a particular limit‐
point buckling load. Patterns of the perturbed fiber paths are gener-
ated by analyzing the effects of local fiber misalignments and finding
the local correlation between these variations and the buckling load.
Deterministic results are analyzed from perturbed designs, after which
the effects of introducing random fiber angle changes indicate the sen-
sitivity of a perturbed fiber path to imperfections introduced during
manufacturing.

The remainder of this paper introduces the methods used in Sec-
tion 2, starting with the structural model in Section 2.1. Random vari-
ations to the fiber angle are generated using random fields. The
generation and mapping of random fields is discussed in Section 2.2.
Analyzing stochastic results can lead to a pattern in which fibers are
perturbed. Applying this pattern to the fiber paths leads to a determin-
istic improvement discussed in Section 2.3. The robustness of
improved designs can be analyzed by applying random fiber misalign-
ments, this is discussed in Section 2.4. An example of a curved compos-
ite panel is described in Section 3.1, with baseline mechanical results
without variations applied are shown in Section 3.2. Section 3.3 adds
perturbations on top of the baseline structure, quantifying and analyz-
ing the effects fiber misalignments can have. Deterministic improve-
ments are discussed in Section 3.4, after which random variations
are applied to analyze the perturbed fiber paths’ sensitivity in Sec-
tion 3.5. The overall conclusions are discussed in Section 4.

2. Methods

2.1. Structural formulation

Results are generated by using a structural model based on a Uni-
fied Formulation, making use of Serendipity Lagrange shape functions
[29]. Extensions to the unified formulation enable the analysis of geo-
metric non‐linearity and curved elements [30]. Non‐linearity is taken
into account using an arc‐length based solver.

2.1.1. Basic formulation
The structural model is a non‐linear three‐dimensional model. It

utilizes a displacement field using two different shape functions in
the cross‐sectional plane (F x; zð Þ) and axial direction (N yð Þ).

Starting with a displacement field, u ¼ u; v;w½ �T, the Green–La-
grange stress tensor E can be defined as

Eij ¼ 1
2

u;i � gj þ u;j � gi þ u;i � u;j
� �

; ð1Þ

where commas denote derivatives and gi denotes a unit vector on the i
axis. Displacement field u is approximated within the Unified Formula-
tion as

u eð Þ x; y; zð Þ ¼ F x; zð ÞN yð Þui; with i ¼ 1; . . . ; n; ð2Þ
where n are the degrees of freedom of the model. For quasi‐static prob-
lems, the elastic equilibrium is

δW int ¼ δW ext ð3Þ
where W ext and W int are the external work and internal energy. Noting
that the internal energy of the structure can be calculated as the sum of

internal energy of all the elements W int ¼ ∑eW
eð Þ
int the internal energy

can be expressed using the stress and strain tensors

δW eð Þ
int ¼

Z
V eð Þ

δE � SdV ð4Þ

in which S is the second Piola stress tensor. For non‐linear analyses, it is
of interest to create tangential matrices. Changes in internal energy are
expressed as [31, Section 3.1.1]

δ δW eð Þ
int

� �
¼

Z
V eð Þ

δ δE � Sð ÞdV;

¼
Z
V eð Þ

δE � δSdV þ
Z
V eð Þ

δ δEð Þ � SdV ;

where V is the volume of an element. Rewriting these in terms of non‐
linear contributions of the tangential and geometric stiffness matrices
results in [32]

δ δW eð Þ
int

� �
¼ δuT

j K
eð Þ
Oð Þijui þ δuT

j K
eð Þ
Gð Þijui: ð7Þ

Rewriting the tangential stiffness matrix using Eq. (7) leads to

K eð Þ
Tð Þij ¼ K eð Þ

Oð Þij þ K eð Þ
Gð Þij; ð8Þ

where K eð Þ
Oð Þij is the non‐linear contribution and K eð Þ

Gð Þij the geometric stiff-
ness matrix. Explicit forms of these matrices can be found in [33,34].

2.1.2. Formulation for curved elements
Returning to the displacement field approximation of Eq. (2), the

model used in the presented research uses Serendipity Lagrange shape
functions in the cross‐section (F) and Lagrange shape functions in the
axial (N) direction. These shape functions are used to approximate the
displacement field of the structure. The cross‐sectional shape function
F has either 4, 8, 12, 17, 23, or 30 degrees of freedom, depending on
the order chosen. Hierarchical elements with four nodes are used in
the current implementation.
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Unlike most finite element formulations, different shape functions
are used for the displacement field and the geometry. Using this
approach, it is possible to have a higher fidelity representation of
the geometry without increasing the degrees of freedom of the struc-
tural problem. This additional shape function N3D α; β; ξð Þ is defined
within �1; 1½ �3. Shape functions are defined in brick (e.g., 8, 27, or
64 nodes) elements. The three shape functions N3D; F x; zð Þ, and N yð Þ
come together in a Jacobian matrix consisting of the shape derivatives
of the shape function. These can represent curvilinear basis vectors
[33].

2.2. Assigning random material variations

Variations analyzed in this paper are generated and applied by
combining several different techniques and methods. These techniques
have been previously applied and discussed in [28]. Geodesic dis-
tances define the correlation between points on a random field. Com-
puting and mapping geodesic distances add complexity to the
generation of fields in curved structures. This section will discuss the
methods used to generate the geodesic distance array, generate the
field, and map it to the structure.

2.2.1. Geodesics
Geodesic distance refers to the distance between points as it would

be on a (curved) surface. On the other hand, Euclidean distance calcu-
lates the distance between two coordinates in space as a straight line.
Finding the geodesic distance can be done with a variety of
approaches. The most straightforward approach for this problem
would be to find the shortest path between two points using the con-
nectivity of a mesh. Utilizing a forward front in all directions to itera-
tively find the shortest distance is the most simplistic approach and
first discussed by Dijkstra [35]. Such an approach tends to overesti-
mate the distance, as it follows the edges of elements, while the short-
est distance usually crosses over the face of an element (usually a
polyhedron).

Finding the actual shortest distance over a mesh is a classic field of
research in computational geometry, with many approaches being pro-
posed and extended on over the years [36]. The approach used within
this paper is based on the idea first published by Varadhan [37] and
recently extended by Crane et al. [38]. In this approach, heat is intro-
duced at a point on a mesh for a time t. Applying heat at a point gen-
erates a vector field of the heat flux on the surface. Normalizing this
vector field generates a vector field of the shortest distances from
the origin point, after which the geodesic distance is calculated by
solving the Poisson heat equation. Crane has shown how this approach
can be pre‐factored, significantly reducing the computational time
when distances between many points are required, as is the case for
random fields.

Geodesic distances used to generate the field are computed on a
surface within the 3D model. The surface used spans the mid‐plane
of the structure. Using a surface reduces the number of distances to
points that have to be computed, reducing the computational effort
of generating a distance array and the decomposition to generate ran-
dom fields.

2.2.2. Generating random fields
Random fields are stochastically generated distributions of a

parameter in n dimensional space. Fields generated within this work
are generated on a 2D plane within 3D space. These random variables’
values are not entirely unrelated to each other, and actual variations
are usually related to their neighboring variations. Defining how close
points are to each other is why the geodesic length of Section 2.2.1 is
used to relate points. There are many different techniques to generate
random fields [39]. Many of these methods have assumptions in space
or correlation function. The method used within this work is called

Covariance Matrix Decomposition (CMD) and has the advantage of
its relative ease in implementation and combining with geodesic
length.

Correlation of two sets X and Y is defined mathematically as [40,
ch. 10]

ρX;Y ¼ cov X;Yð Þ
σXσY

¼ E X � μXð Þ Y � μYð Þ½ �
σXσY

; ð9Þ

where ρ is the correlation, cov the covariance operator, μi the mean of
set i; σi the standard deviation of set i, and E the expectation operator,
within random fields, these sets represent points in a field and how they
relate to each other. The correlation varies between 1 and−1 and indi-
cates the relationship between the two sets. It is useful for generating
random fields to define functions, which define the correlation as a
function of distance. The fields generated in this paper use the correla-
tion function

ρk;l ¼ e�
ΔL
Lcð Þ2 ; ð10Þ

in which Lc is called the correlation length, and ΔL the (geodesic) dis-
tance between points k and l. This correlation function is widely used
in literature and produces smooth continuous fields, well suited for
in‐plane fiber‐angle variations [41]. Correlation length defines a length
scale at which the correlation function of Eq. (10) deteriorates. Exper-
imentally measured correlation functions are not available in published
literature and are highly dependant on the geometry and manufactur-
ing process used. Studies analyzing random‐field generated fiber imper-
fections on variable stiffness composites generally utilize a correlation
length defined scale of curvature [42,41] or a set distance, generally
shorter than the scale of the structure [43].

The CMD method uses discretized points in space and assigns a ran-
dom value to that value [44]. The field must be discretized fine enough
to represent the transition in variation amplitude. The necessary
refinement was studied by Li & Kiureghian [45] and found to be
between Lc

4 and Lc
2 for the correlation function of Eq. (10).

The CMD method decomposes the correlation matrix. This decom-
posed matrix can be used to calculate random fields through simple
multiplication with a random vector χ with unit variance, and zero
mean. The first step in generating fields is to build a correlation matrix
of all points hi of the field,

Rij ¼
cov hi; hj

� �
ffiffiffiffiffiffiffiffiffiffiffiσhiσhj

p ! R ¼

1 ρ h1; h2ð Þ . . . ρ h1; hnð Þ
ρ h2; h1ð Þ 1 . . . ρ h2; hnð Þ

..

. . .
. ..

.

ρ hn; h1ð Þ ρ hn; h2ð Þ . . . ρ hn; hnð Þ

2
66664

3
77775; ð11Þ

where ρ yi; yj

� �
¼ ρ yj; yi

� �
, noting that the correlation here can be cal-

culated using Eq. (10).
Taking the definition of covariance

cov X;Y½ � ¼ E XY½ � � E X½ �E Y½ �; ð12Þ
and keeping in mind the field has a mean of zero, it is possible to show
that R can be decomposed into two matrices,

R ¼ cov x; x½ � ¼ E x; xTð Þ � 0 � 0
¼ E Lχ Lχð ÞT� � ¼ LE χ χ Tð ÞLT ¼ LILT ¼ LLT :

ð13Þ

From Eqs. (10) and (11) the matrix R is symmetric and positive def-
inite, the eigenvalues should all be positive and real. This decomposi-
tion is done by using eigendecomposition in the form of

R ¼ QΛQ ð14Þ
in which Λ is a diagonal matrix with the eigenvalues of R, and Q
contains the eigenvectors of the matrix. Matrix L can be extracted from
this as

S. van den Broek et al. Composite Structures 270 (2021) 114011

3

paper d : robust buckling load improvement of a comp. structure 91



R ¼ QΛ̂Λ̂Q ¼ LLT ! L ¼ QΛ̂; ð15Þ

in which Λ̂ ¼ diag
ffiffiffi
λ

p� �
; λ being the eigenvalues of the R matrix. Using

the decomposed correlation matrix L, it is possible to generate random
fields using

f ¼ Lχ : ð16Þ
Decomposing is only necessary once, after which random fields are

generated with a minimal computational cost.

2.2.3. Mapping random fields to structure
Fields are generated on a 2D (surface) within a 3D structure, not

having any variability through the thickness of the structure, which
is considered negligible for thin‐walled structures. 3D brick elements
described in Section 2.1.2 are used to map the field into a 3D space.
Discretization of fields are not directly related and can be refined inde-
pendently depending on their optima. Structures containing much cur-
vature may benefit from a finely discretized random field (as the
geodesic distances would be more accurate) while not necessarily
needing a considerable refinement in structural elements to converge
to accurate results.

While initializing, the analysis nodes of the geometric mesh are
projected on the random field mesh. Random field element numbers
and local coordinates are stored, creating a mapping between the
two meshes. As this mapping is the same for all analyses, it only has
to be done once and can be reused during the stochastic analysis.
Values of the random field are evaluated using the shape function of
the geometric mesh. Fig. 1 shows how a point in the structure i has ele-
ment coordinates within the geometric mesh α; β; ξ.

During assembly of the stiffness matrix, the material properties are
assigned as

θpt ¼ θμ þ f ptθσ ð17Þ
in which θpt is the material orientation at point pt ; θμ is the mean value
of θ; f pt is the value of the random field at the point and θσ is the stan-
dard deviation of material parameter θ.

2.3. Deterministic improvement

Deterministic improvement of the buckling load of the baseline
structure is achieved by analyzing the effects of random variations
applied to the fiber angle. The authors’ previous work has led to an
increase of linear buckling loads by varying the thickness of Young’s
modulus in similar structures [28]. Similar to that approach, correla-
tion patterns of fiber angle variations of every layer show the local

influence of fiber angle changes. Improvement in the buckling load
is achieved by scaling this correlation pattern, perturbing the fiber
paths of the baseline design.

2.3.1. Generating correlation patterns
Independent random fields are generated for every layer of a struc-

ture. These random fields represent small angle variations of the fiber
paths in each layer. Variations generated can be modeled to be similar
to real fiber path deviations but can also be fictitious.

Extending Eq. (9), it is possible to generate the local correlation
pattern over n samples using

Hi;j ¼
∑n

k¼1 f lim;k � �f lim
� �

θi;j;k � �θi
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

k¼1 f lim;k � �f lim
� �2q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑n
k¼1 θi;j;k � �θi

� �2q ð18Þ

where Hi;j is the correlated value of the buckling load f lim, and fiber
angle variation at point i at layer j. Parameter θi;j;k is the fiber angle vari-
ation at point i, layer j, and sample k. Mean values of parameters are
indicated using�.

The pattern generated infers the average influence a local fiber
angle variation has on the buckling load. Applying this field to perturb
the fiber path can thereby lead to an improvement in the buckling load
of the structure. Patterns formed inherit the correlation of points to the
distance defined by the correlation function of Eq. (10). Correlation in
the distance within random variations leads to a continuity in the cor-
relation pattern and defines its length scale. Correlation patterns gen-
erated using a large correlation length will vary over a relatively large
distance. Shorter correlation lengths will lead to correlation patterns
with more localized deviations, and a higher potential improvement
[28]. Which correlation length to use while generating correlation pat-
terns may also be determined by manufacturing considerations. As
tighter fiber‐placement curvatures are possible, the correlation length
can become shorter.

2.3.2. Applying correlation pattern onto structure
Values of the correlation pattern show a non‐dimensional relative

influence of local variations. Applying these patterns to a structure first
requires proper scaling. Normalization is first applied to the fields so
that they fit in the range [−1,1]. Analyses within this paper utilize a
normalization in which the global minima and maxima (over all fields)
correspond to this range, not the individual layers minima and
maxima.

Using this normalized field Ĥ variations are computed using a max-
imum variation parameter ϕ, and a scaling parameterm. During matrix
assembly, these parameters are used to evaluate material orientation
using

θi;j ¼ θ0;i;j þ Ĥm
i;jϕi;j; ð19Þ

where θ0;i;j is the original material orientation.
Optimal values of m and ϕ depend on the structure in question and

the desired reliability if there are stochastic variations present of the
parameter in the structure.

2.4. Robustness analysis

The approach described in Section 2.3 can deterministically
improve the structural performance by adding small variations in the
material orientation (e.g., fiber angle). During manufacturing, random
variations of material orientation can occur due to production pro-
cesses. Robustness defines the effect that such imperfections have on
the structure. When a design becomes more robust, the response
becomes less sensitive to variations [46].

Improvements found using deterministic methods may be more
sensitive to these random variations. These deterministic solutions
are subjected to small local variations in fiber angle to analyze the

Fig. 1. Discretizations found in the structure, and the coordinates of i as
projected into the geometric mesh [28]. Coordinates are then used to evaluate
the value of a random field in the volume of the element.
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robustness of the deterministic design with respect to fiber misalign-
ments. Ideally, these would reflect real‐world manufacturing toler-
ances, but even fictional variations can give a qualitative
representation of the sensitivity of a structure to spatial fiber
misalignments.

The fiber‐alignment sensitivity of improved structures can be eval-
uated by comparing the statistical distribution of the buckling load of
the baseline structure under random influences to that of the improved
structure. Material orientation at every point i at layer j can be evalu-
ated as

θi;j ¼ θ0;i;j|{z}
Original

þ H
^
m
i;jϕi;j|{z}

Deterministic perturbation

þ f i;jθσ|{z}
Random variation

; ð20Þ

where the deterministic perturbation Ĥ equals zero for the baseline
configuration.

3. Numerical example

To demonstrate the approach discussed in Section 2, the approach
is applied to a composite curved panel similar to the one analyzed in
[10]. Analyses of the baseline structure without any variations applied
show the linear and non‐linear behavior of a structure without any
variations applied. Following these baseline results, stochastic varia-
tions are applied to the structure, providing information on the effects
of variations on the buckling load of the structure. Effects of these
stochastic runs are then processed to find a correlation pattern across
the structure. Perturbations of the fiber paths are made on the struc-
ture to improve the buckling load. These deterministic solutions are
finally evaluated to quantify their ability to withstand spatial fiber
misalignments.

3.1. Structure and solver

Dimensions of the panel are shown in Fig. 2. Three layers of aniso-
tropic material are applied in a [90°,0°,90°] configuration, where 0°
aligns with the y‐axis. Table 1 lists the material properties of the
layers.

The discretization of the structure consists of 10x3 third‐order
Serendipity Lagrange elements in the cross‐section and ten elements
in the axial direction. The structure has a total of 17670 degrees of
freedom over all these elements.

Boundary conditions and loads consist of distributed loads applied
on the edges of y ¼ 0 and y ¼ 0:15 totaling 1 N. Constraints limit out
of plane displacement on the loaded edges. Axial displacement is con-
strained using two points on one of the loaded edges in the axial (y)
direction.

Variations of the material orientation/fiber angle are applied of
θσ ¼ 2�. Fiber deviations, studied by Yurgartis, showed a measured
range of up to this value [4]. Fields generated in this study use a cor-
relation length of 25 mm for both correlation pattern generation and
robustness analyses.

Analyses done in the following sections all utilize a non‐linear sol-
ver. Buckling loads of the configurations are determined by using an
arc‐length based solver. Load is slowly increased until it deceases 5
sequential steps, the (limit‐point) buckling load is the highest load
found in the analysis.

3.2. Baseline analysis

Baseline results of the structure reach a buckling load of 22.1 kN.
Deformations are in the form shown in Fig. 3b. Curved panels have
asymmetric bifurcation behavior with an initially stable, as well as
unstable equilibrium. Deformations indicate that the baseline solution
follows the unstable branch of the asymmetric bifurcation.

3.3. Stochastic analysis

Effects of fiber variations are analyzed by applying independent
random fields to the three layers’ fiber angles. Samples with random
fields are generated and run 5000 times, generating the probability
density shown in Fig. 4.

Displacements in the z‐direction show distinct branching in
responses. Fig. 5 shows displacement results of all the stochastic runs,
highlighting four representative responses showing the different
load–displacement paths. Branches I and II both have two mirrored
versions of each other, depending on which side of the structure forms
the buckle. Scaled initial post‐buckling displacements corresponding
to these paths are shown in figure Fig. 6.

Both of the equilibrium paths generate distinctly different
responses. Lower load levels between 0.8–1.05 belong to the unstable
branch II shown in Fig. 3b, the initially stable branch I of Fig. 3a has a
buckling load that’s approximately 50% higher.

Analyzing the two equilibrium paths, 62% of samples follow the
unstable branch II, and 38% follow the initially stable branch I. Due

Fig. 2. Curved panel geometry.

Table 1
AS4 carbon fiber properties, taken from [47].

Material properties

E1 142 GPa E2 ¼ E3 10:3 GPa
G23 4:28 GPa G13 ¼ G12 7:2 GPa
ν23 0.4 ν13 ¼ ν12 0.27

Fig. 3. Scaled deformation shapes of the curved panel at buckling load.
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to these two branches’ distinctly different characteristics, both
branches are analyzed separately.

The unstable branch II, with λ between 0.8–1.1 has a mean value of
20.67 kN (0.935λ) with a standard deviation of 934 N (0.042λ), corre-
sponding to a coefficient of variation of 4.52%. Branch II with initial
stable behavior has a normalized buckling load around λ ¼ 1:5, equal-
ing a mean value of 32.99 kN (1.494λ), with a standard deviation of
322 N (0.0147λ) equalling a coefficient of variation of 0.975%.

3.4. Deterministic improvement

Improving the design is done by analyzing the runs done in Sec-
tion 3.3, finding the correlation between local variations and the buck-
ling load found, as discussed in Section 2.3. Doing these calculations
leads to the patterns found in Fig. 7. Such patterns indicate the relative
influence fiber angle variations have on the buckling load achieved.
Patterns are continuous because variations are coupled to local dis-
tances through a correlation function, as discussed in Section 2.2.2
and [28].

Applying the correlation function to the structure, changing the
predefined fiber paths is done by scaling the fields, as discussed in Sec-
tion 2.3.2. Changing the scaling parameterm (Eq. (19)) affects how the
pattern applies to the fiber paths. Figs. 9 to 11, shows examples with a
scaling parameter m of 0.1, 1, and 10. Extreme scaling parameters used
show how the pattern changes as the scaling parameter changes.
Lower values for scaling parameter m lead to very aggressive fiber
variations, with stronger curvatures in the path. Using high values
leads to very local changes of orientation changes, retaining the orig-
inal path in most of the structure. Scaling parameters close to 1 lead to
a very smooth continuous fiber path without any quick changes.

A series of deterministic analyses are performed using a range of
1–20° maximum fiber variation ϕ, with a logarithmically spaced range
of 21 different values between 0.1 and 10 for the scaling parameter m.
Fig. 8 shows these deterministic analyses’ results, comparing the buck-
ling load achieved with that of the baseline analysis done in Sec-
tion 3.2. Results show that the most significant deterministic
improvement is achieved using small local changes in the fiber path.
Using a maximum variation of 1°, a scaling parameter of m ¼ 10 led
to the largest increase in the buckling load by 51.1%. Such a small
deviation is enough to nudge the structure into the stable branch II
path shown in Fig. 3a, which has a higher buckling load. As the fiber
path perturbation increases in magnitude, the stiffness in the load‐
direction decreases, which reduces the buckling load, even when
post‐buckling branch II is triggered.

3.5. Robustness analysis

Stochastic results of Section 3.3 shows that the equilibrium path of
the baseline structure can switch due to localized fiber variations. Vari-
ation also exists within these equilibrium branches, in which these
variations can positively or negatively influence the load achieved
before instability occurs.

Robustness, in the context of this paper, refers to the influence such
variations have on a structure. Quantitatively, this entails reducing the
spread of the buckling load, ensuring that the stable equilibrium
branch is followed while simultaneously reducing the standard devia-
tion of the response.

Stochastic analyses were performed on a selection of the configura-
tions analyzed in Section 3.3. Each configuration had 1000 samples
computed, in which random fiber angle variations were applied. Vari-
ations were generated using the same parameters used in Section 3.3,
with σ ¼ 2� and a correlation length Lc ¼ 25 mm.

Results indicate that the mean values shown in Fig. 12 of specific
configurations differ substantially from the deterministic results of
Section 3.4. Comparing the graph with that of the coefficient of varia-
tion in Fig. 13, it is clear that this is due to different equilibrium paths
being followed in specific configurations.

Fig. 14 shows results of the structure with a maximum fiber varia-
tion of 2°, and a scaling factor of m ¼ 10. 56% of the samples follow
the stable path, with 44% following the unstable path followed in
the baseline configuration. Compared to the 38% of the baseline struc-
ture, this is an improvement but still shows a significant
unpredictability.

Seeking an optimal series of parameters of imperfect structures
requires a reliability target under stochastic inputs. If, for example,

Fig. 5. z-displacement results of stochastic runs at points A and B shown in
Fig. 2, highlighting runs following different equilibrium branches.

Fig. 4. Probability density plot of the buckling load of the baseline structure
subjected to 2° variations of fiber angles, normalized to the baseline load.
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the buckling load for 99% of the structures should exceed a target
value, the statistical properties of the lower 1% can be analyzed. For
the inputs given, the 1% values of the configurations are shown in

Fig. 15. Values are generated using either a fit Gaussian distribution
(Fig. 15a) or taking the lowest 1% of samples computed (Fig. 15b).
Configurations that consistently stay within one branch will show sim-
ilar results in both of these figures. Configurations that follow both
equilibrium paths will not fit Gaussian distributions. Comparing these
figures shows which configurations are sensitive to branch jumping
with the set variation and which are not.

Several configurations show similar performance. The ideal setup
might, therefore, be related to manufacturing‐related considerations.
For example, the configuration with a maximum fiber variation of 8°
and a scaling parameter of m ¼ 6:31, with the fiber paths shown in
Fig. 17 has the distribution shown in Fig. 16. Samples generated using
those parameters follow the stable equilibrium path, 99.7% of all runs.
Increasing the likelihood that the more stable branch II is followed sig-
nificantly decreases the variability in the post‐buckling response.
Decreasing the variance while increasing the expectant value of the
response of a structure makes the structure more robust while also
increasing reliability [46].

4. Conclusion

Misalignments in fiber angles can be represented using random
fields. These stochastically generated misalignments can simulate the
effects any local misalignments have on the structure. Analyzing the
effects of local changes on the limit load of the structure gives the local

Fig. 6. Scaled deformation shapes just past the buckling load, color indicates total relative deformation.

Fig. 7. Correlation of local fiber angle variations and buckling load achieved.

Fig. 8. Percent increase in buckling load in deterministic results achieved by
applying correlation patterns using Eq. (19).
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Fig. 9. Fiber orientation for configuration with maximum variation of ϕ ¼ 20� and scaling factor m ¼ 0:1.

Fig. 10. Fiber orientation for configuration with maximum variation of ϕ ¼ 20� and scaling factor m ¼ 1.

Fig. 11. Fiber orientation for configuration with maximum variation of ϕ ¼ 20� and scaling factor m ¼ 10.
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effects of small perturbations on the buckling load. Thus, perturbing
the design of a structure by incorporating minor changes to the fiber
path can promote a more desirable post‐buckling response.

Combining perturbed fiber paths in structures with random local
misalignments makes it possible to quantify the chance that the
desired equilibrium path is followed in an imperfect structure. Using
statistical analysis on such combined runs makes it is possible to com-
pute the minimum load for a specific configuration. Parameters used
to scale the field are a trade‐off between mean improvement in the

Fig. 12. Mean value of buckling load for configurations with fiber angle
variations of θσ ¼ 2 ° with Lc ¼ 25 mm applied.

Fig. 13. Coefficient of variation of configurations with fiber angle variations
of θσ ¼ 2 ° with Lc ¼ 25 mm applied.

Fig. 14. Probability density of samples with perturbed fiber paths with a
maximum variation of ϕ ¼ 2° and scaling parameter m ¼ 10.

Fig. 15. Lowest 1% values for the normalized buckling load for configurations
with scaling parameters m and maximum fiber deviations ϕ applied according
to Eq. (19).

Fig. 16. Probability density of samples with perturbed fiber paths with a
maximum variation ϕ ¼ 8° and scaling parameter m ¼ 6:31.
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buckling load and the robustness of the structure, defined by the like-
lihood to follow the more stable post‐buckling path in the presence of
fiber misalignments.

Improvements found in the numerical example show increases in
the order of 50%. The magnitude of improvement varies a lot by the
specific structure analyzed and which equilibrium paths exist.
Improvements can be higher than those of the example or lower.
Improvements will also exist for other structures without a more stable
post‐buckling path nearby but will not be as significant. Instead of
nudging the post‐buckling path, the approach will redistribute the
stiffnesses of a structure to increase the buckling load. Robustness,
quantified by a reduction in variance, should be present in most
structures.

The approach presented in this paper perturbs the design of a struc-
ture by applying small changes in the fiber orientation. Such perturba-
tions can directly influence the deterministic solution (without
random local misalignments applied) of the structural response and
make the response more robust to simulated imperfections in fiber
alignment. The ideal scaling parameters used to perturb the structure
depend on the fiber misalignments expected in the structure, which
affects the robustness of the structure.

Analyses presented in this work focus solely on fiber angle varia-
tions. Imperfections are not limited to such variations, and future work
should take others, such as geometric, into account. No limits are pre-
sent in the approach itself, as similar approaches have already been
used for thickness and Young’s modulus tailoring [28]. Combining
multiple sources of variations can potentially further improve the
insensitivity, and deterministic improvements presented.
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6
S U M M A RY A N D F U T U R E W O R K

We demand rigidly defined areas of doubt and
uncertainty!

— Douglas Adams

6.1 summary

This thesis aimed to present a general approach to improve a structure’s
performance by applying small perturbations to material or geometric
parameters. Improvements come forth from analyzing stochastic analyses,
which use geodesic random fields.

Geodesic distances refer to the distances using the structure’s geometry
rather than Euclidian space. Random fields using geodesic distances can
better simulate spatially varying structural parameters on curved structures.

Applying a point source of heat onto a structure gives a gradient of heat
flowing away from the point. Normalizing this gradient gives a general
direction of heat flow in the structure, thereby creating the path with the
shortest distance. Integrating the distance of the path followed then gives
the geodesic distance between points.

Extensions of this heat method generating random fields make it pos-
sible to generate anisotropic or inter-correlated fields. Extensions such as
these are particularly interesting when analyzing specific types of struc-
tures. Anisotropic fields are useful for, e.g., generating geometric imperfec-
tions in cylinders, which may vary in circumferential and axial directions.
Anisotropic fields use anisotropic heat conductivity to define the gradients
of the heat flow. Parametric studies show that the pseudo-distance com-
puted is not the exact scaled geodesic distance but rather a parameter that
gives a more smoothed pseudo-distance.

Another extension introduced is the simultaneous generation of multiple
fields that are correlated with each other. Such fields are both correlated
internally by a correlation function but also show similarities among the set
of simultaneously generated fields. Using these types of fields, imperfection
patterns can be generated that show many similarities (correlation) between
each other. Intercorrelated fields can help analyze the effects of fiber mis-
alignments in a composite structure. Misalignments can originate from
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different sources, such as fiber placement and curing. Some variations may
affect a single layer (lamina), while others affect the complete laminate. Sets
of correlated fields can represent global misalignments and simultaneously
add local misalignments to the fields.

Stochastic analyses using geodesic random fields make it possible to
quantify the effects of random imperfections of structures given a correlation
function and distribution. The correlation function describes the shape
and distribution of local variation of a parameter, while the distribution
describes the statistical distribution from which local variations are sampled.
Such analyses make it possible to quantify the robustness and reliability of
a structure.

Analyzing structures with randomly generated local imperfections can
reveal the local effects of a change in a parameter. Patterns generated by
correlating local structural parameters (such as thickness) and a structural
measure, such as maximum stress or buckling load, can be obtained using
realistic or fictional variations. Patterns generated indicate the local trend
of a parameter on the effects of a structural measure. Perturbing the design
using this information makes it possible to redistribute thickness to increase
the buckling load, for example.

Patterns generated by correlating local changes of a parameter with a
structural measure vary depending on the correlation function and length
used. As variations become more localized in a random field (e.g., by
applying fields with a shorter correlation length), correlated patterns can
become less smooth than larger lengths.

Using correlation patterns obtained from stochastic analyses, varying
the material or structural parameter deterministically becomes possible.
Analyzing the effects of thickness variations on the linear buckling load
can lead to a pattern relating thickness changes to the buckling load. Using
this pattern to redistribute material by varying the local thickness makes it
possible to increase the buckling load.

Additive manufacturing validated a thickness redistribution of an open-
hole specimen in which the number of cycles until fatigue failure was used
as a structural measure. Numerical results indicated that using a thickness-
redistributed design would increase the fatigue life by an estimated factor of
approximately 10x. Stochastic analyses were done on the baseline constant-
thickness design and the design with a tailored thickness distribution. A
reduction in the standard deviation was found in the tailored structure,
indicating that the improved design is more robust than the original.
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Applying the approach to a composite curved panel using variations
in the fiber angle led to a series of steered fiber path designs. The ana-
lyzed structure had an asymmetric post-buckling behavior, in which two
post-buckling paths are near each other but have significantly different
buckling loads. Deterministic improvements were best when very minute
changes were applied, pushing an ideal structure into a more-stable path.
Applying random fiber misalignments showed that the best deterministic
improvement configurations were the most sensitive to random misalign-
ments. Optimal fiber path perturbations are determined by taking realistic
fiber misalignments (and other variations when possible) into account.

Methods shown in this thesis can be used to readily analyze the effects
of local imperfections on curved thin-walled structures and analyze the
sensitivity to changes in geometry or material properties. The developed
approach has successfully been applied to tailor different structures, includ-
ing cylindrical shells, open-hole specimens and curved panels. Structural
parameters used to tailor structures include Young’s modulus, thickness,
and fiber path (material orientation). In addition to deterministic improve-
ments, the robustness of improved design is also analyzed, showing that
this can be improved using the method.

6.2 future work

Studies performed in this thesis have been on a limited amount of parame-
ters and relatively small structures. Future work should involve applying
this approach to larger, more complex structures, varying multiple pa-
rameters simultaneously. Doing so will increase the number of degrees of
freedom and parameters varied, potentially slowing down the enhance-
ment process. Improvements to the algorithm can increase computational
efficiency in several ways:

sampling Sampling in the work shown is entirely random, not taking
prior fields into account. Generating fields that are sampled orthogo-
nally to each other can improve the convergence of patterns, requiring
fewer samples.

perturbation approach Applying the approach within a perturbation-
type stochastic analysis could improve computational efficiency. As
shown in section 1.2.2.8, perturbation analyses represent the output
of a stochastic problem as a Taylor-series expansion. Combining or-
thogonal fields with a Taylor series expansion could make correlation-
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pattern generation much faster. Faster estimation of the standard
deviation also makes optimization of scaling parameters of robust
designs feasible, as doing this using Monte Carlo analyses can be
time-consuming.

machine learning Instead of using a correlation between points and
a structural measure to find a pattern and perturb the structure, it
would also be possible to use this data to train a neural network. A
trained neural network of structure would estimate the effects of local
changes to the structure without running a full finite element analysis.
Similar work done by Sun et al. [196] predicts stress levels of fiber-
reinforced polymers based on microstructure imperfections. Work
done by Giovanis & Papadopoulos [197] also improves in speeding up
random field imperfections using a neural network. Such an approach
can assist in increasing the speed in which patterns are computed,
and robustness can be evaluated.

Increasing efficiency makes it possible to analyze larger structures with
more complex and interconnected variations. Analysis with multiple layers
of fibers has already have been demonstrated in chapter 5. Analyzing
different types of parameters, such as geometry and fiber path, would
potentially make it possible to design perturbations that improve a structure
in multiple ways while also making it more robust to multiple types of
imperfections.

An aspect not thoroughly explored in this thesis is manufacturing appli-
cations using the tools developed in this thesis. Correlation patterns identify
areas that influence the structure’s response most when deviations occur of
the material or geometric parameters.

Areas that are the most sensitive can be the target of non-destructive
quality inspections. Rejecting structures with an unacceptable deviation in
critical areas leads to an increase in accepted structures’ robustness.

Manufacturing processes can also use correlation patterns to tweak the
manufacturing process. Manufacturing processes often have the option to
slow down in order to increase accuracy. Slowing down the manufacturing
of an entire component can be expensive, but slowing down at certain
stages/areas of manufacturing could be economical, especially if it helps
achieve design objectives. Laying tapes with an AFP process, as an example,
could be slowed down in certain areas in order to increase local accuracy.
Such local slow-downs can increase the overall quality of the product
without unnecessarily slowing down production too much.
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99. Vořechovský, M. & Novák, D. Simulation of random fields for stochas-
tic finite element analysis. Icossar, 2545 (2005).

https://doi.org/10.1007/1-84628-168-7
https://doi.org/10.13140/RG.2.2.23937.20325
https://doi.org/10.1007/978-1-4612-3094-6
https://doi.org/10.1007/978-1-4612-3094-6
https://doi.org/10.1007/s00466-018-1554-0
https://doi.org/10.1061/(ASCE)0733-9399(1989)115:5(1035)
https://doi.org/10.1016/j.cma.2013.12.010
https://doi.org/10.1016/j.cma.2019.02.003
https://doi.org/10.1007/BF00898189
https://doi.org/10.1137/1023031


bibliography 115

100. Dietrich, C. R. & Newsam, G. N. Efficient generation of conditional
simulations by chebyshev matrix polynomial approximations to the
symmetric square root of the covariance matrix. Mathematical Geology
27, 207. issn: 08828121. doi:10.1007/BF02083211 (1995).

101. Graham, I. G., Kuo, F. Y., Nuyens, D., Scheichl, R. & Sloan, I. H.
Analysis of Circulant Embedding Methods for Sampling Stationary
Random Fields. SIAM Journal on Numerical Analysis 56, 1871. issn:
0036-1429. doi:10.1137/17M1149730 (2018).

102. Park, M. & Tretyakov, M. V. A block circulant embeddingmethod
for simulation of stationary gaussian random fields on block-
regular grids. International Journal for Uncertainty Quantification 5, 527.
issn: 21525099. doi:10.1615/Int.J.UncertaintyQuantification.
2015013781 (2015).

103. Feischl, M., Kuo, F. Y. & Sloan, I. H. Fast random field generation with
H-matrices 3, 639. isbn: 0021101809. doi:10.1007/s00211-018-0974-2
(Springer Berlin Heidelberg, 2018).

104. Blanchard, P., Coulaud, O. & Darve, E. Fast hierarchical algorithms for
generating Gaussian random fields tech. rep. (Inria Bordeaux Sud-Ouest,
2015).

105. Shinozuka, M. & Deodatis, G. Simulation of stochastic processes
by spectral representation. Applied Mechanics Reviews 44, 191. issn:
00036900. doi:10.1115/1.3119501 (1991).

106. Shinozuka, M. & Deodatis, G. Simulation of multi-dimensional Gaus-
sian stochastic fields by spectral representation. Applied Mechanics
Reviews 49, 29. issn: 00036900. doi:10.1115/1.3101883 (1996).

107. Fenton, G. A. Simulation and Analysis of Random Fields PhD thesis
(1990), 189.

108. Fenton, G. A. Error Evaluation of Three Random-Field Generators.
Journal of Engineering Mechanics 120, 2478. issn: 0733-9399. doi:10.
1061/(ASCE)0733-9399(1994)120:12(2478) (1994).

109. Emery, X., Furrer, R. & Porcu, E. A turning bands method for simulat-
ing isotropic Gaussian random fields on the sphere. Statistics and Prob-
ability Letters 144, 9. issn: 01677152. doi:10.1016/j.spl.2018.07.017
(2019).

https://doi.org/10.1007/BF02083211
https://doi.org/10.1137/17M1149730
https://doi.org/10.1615/Int.J.UncertaintyQuantification.2015013781
https://doi.org/10.1615/Int.J.UncertaintyQuantification.2015013781
https://doi.org/10.1007/s00211-018-0974-2
https://doi.org/10.1115/1.3119501
https://doi.org/10.1115/1.3101883
https://doi.org/10.1061/(ASCE)0733-9399(1994)120:12(2478)
https://doi.org/10.1061/(ASCE)0733-9399(1994)120:12(2478)
https://doi.org/10.1016/j.spl.2018.07.017


116 bibliography

110. Mantoglou, A. & Wilson, J. L. The Turning Bands Method for simu-
lation of random fields using line generation by a spectral method.
Water Resources Research 18, 1379. issn: 19447973. doi:10 . 1029 /
WR018i005p01379 (1982).

111. Oliver, D. S. Moving averages for Gaussian simulation in two and
three dimensions. Mathematical Geology 27, 939. issn: 08828121. doi:10.
1007/BF02091660 (1995).

112. Fenton, G. A. & Vanmarcke, E. H. Simulation of Random Fields via
Local Average Subdivision. Journal of Engineering Mechanics 116, 1733.
issn: 0733-9399. doi:10.1061/(ASCE)0733-9399(1990)116:8(1733)
(1990).

113. Fenton, G. A. & Griffiths, D. in Probabilistic Methods in Geotechnical
Engineering 201 (Springer Vienna, Vienna, 2007). doi:10.1007/978-3-
211-73366-0_9.

114. Li, C.-C. & Der Kiureghian, A. Optimal discretization of random
fields. Journal of engineering mechanics 119, 1136. doi:10.1061/(ASCE)
0733-9399(1993)119:6(1136) (1993).

115. Zeldin, B. A. & Spanos, P. D. On random field discretization in
stochastic finite elements. Journal of Applied Mechanics, Transactions
ASME 65, 320. issn: 15289036. doi:10.1115/1.2789057 (1998).

116. Allaix, D. L. & Carbone, V. I. Discretization of 2D random fields:
A genetic algorithm approach. Engineering Structures 31, 1111. issn:
01410296. doi:10.1016/j.engstruct.2009.01.008 (2009).

117. Vanmarcke, E. & Grigoriu, M. Stochastic Finite Element Analysis
of Simple Beams. Journal of Engineering Mechanics 109, 1203. issn:
0733-9399. doi:10.1061/(asce)0733-9399(1983)109:5(1203) (1983).

118. Matthies, H. G., Brenner, C. E., Bucher, C. G. & Guedes Soares,
C. Uncertainties in probabilistic numerical analysis of structures
and solids-Stochastic finite elements. Structural Safety 19, 283. issn:
01674730. doi:10.1016/S0167-4730(97)00013-1 (1997).

119. Jha, S. K., Ching, J. & Asce, M. Simulating Spatial Averages of Sta-
tionary Random Field Using the Fourier Series Method. Journal of
Engineering Mechanics 139, 594. doi:10.1061/(ASCE)EM.1943-7889.
0000517. (2013).

https://doi.org/10.1029/WR018i005p01379
https://doi.org/10.1029/WR018i005p01379
https://doi.org/10.1007/BF02091660
https://doi.org/10.1007/BF02091660
https://doi.org/10.1061/(ASCE)0733-9399(1990)116:8(1733)
https://doi.org/10.1007/978-3-211-73366-0_9
https://doi.org/10.1007/978-3-211-73366-0_9
https://doi.org/10.1061/(ASCE)0733-9399(1993)119:6(1136)
https://doi.org/10.1061/(ASCE)0733-9399(1993)119:6(1136)
https://doi.org/10.1115/1.2789057
https://doi.org/10.1016/j.engstruct.2009.01.008
https://doi.org/10.1061/(asce)0733-9399(1983)109:5(1203)
https://doi.org/10.1016/S0167-4730(97)00013-1
https://doi.org/10.1061/(ASCE)EM.1943-7889.0000517.
https://doi.org/10.1061/(ASCE)EM.1943-7889.0000517.


bibliography 117

120. Papadrakakis, M. & Papadopoulos, V. Robust and efficient methods
for stochastic finite element analysis using Monte Carlo simulation.
Computer Methods in Applied Mechanics and Engineering 134, 325. issn:
00457825. doi:10.1016/0045-7825(95)00978-7 (1996).

121. Schuëller, G. I. Developments in stochastic structural mechanics.
Archive of Applied Mechanics 75, 755. issn: 09391533. doi:10.1007/
s00419-006-0067-z (2006).

122. Schuëller, G. I., Pradlwarter, H. J. & Koutsourelakis, P. S. A critical
appraisal of reliability estimation procedures for high dimensions.
Probabilistic Engineering Mechanics 19, 463. issn: 02668920. doi:10.
1016/j.probengmech.2004.05.004 (2004).

123. Helton, J. C. & Davis, F. J. Latin hypercube sampling and the propa-
gation of uncertainty in analyses of complex systems. Reliability Engi-
neering and System Safety 81, 23. issn: 09518320. doi:10.1016/S0951-
8320(03)00058-9 (2003).

124. Koutsourelakis, P. S., Pradlwarter, H. J. & Schuëller, G. I. Reliability
of structures in high dimensions, part I: Algorithms and applications.
Probabilistic Engineering Mechanics 19, 409. issn: 02668920. doi:10.
1016/j.probengmech.2004.05.001 (2004).

125. Papadimitriou, C., Katafygiotis, L. S. & Beck, J. L. Approximate anal-
ysis of response variability of uncertain linear systems. Probabilistic
Engineering Mechanics 10, 251. issn: 02668920. doi:10.1016/0266-
8920(95)00020-8 (1995).

126. Kriegesmann, B., Rolfes, R., Hühne, C. & Kling, A. Fast probabilistic
design procedure for axially compressed composite cylinders. Com-
posite Structures 93, 3140. issn: 02638223. doi:10.1016/j.compstruct.
2011.06.017 (2011).

127. Kriegesmann, B. Probabilistic design of thin-walled fiber composite struc-
tures PhD thesis (Leibniz Universität Hannover, 2012), 163. doi:10.
15488/7891.

128. Kriegesmann, B., Rolfes, R., Jansen, E. L., Elishakoff, I., Hühne, C. &
Kling, A. Design optimization of composite cylindrical shells under
uncertainty. Computers, Materials and Continua 32, 177. issn: 15462218.
doi:10.3970/cmc.2012.032.177 (2012).

https://doi.org/10.1016/0045-7825(95)00978-7
https://doi.org/10.1007/s00419-006-0067-z
https://doi.org/10.1007/s00419-006-0067-z
https://doi.org/10.1016/j.probengmech.2004.05.004
https://doi.org/10.1016/j.probengmech.2004.05.004
https://doi.org/10.1016/S0951-8320(03)00058-9
https://doi.org/10.1016/S0951-8320(03)00058-9
https://doi.org/10.1016/j.probengmech.2004.05.001
https://doi.org/10.1016/j.probengmech.2004.05.001
https://doi.org/10.1016/0266-8920(95)00020-8
https://doi.org/10.1016/0266-8920(95)00020-8
https://doi.org/10.1016/j.compstruct.2011.06.017
https://doi.org/10.1016/j.compstruct.2011.06.017
https://doi.org/10.15488/7891
https://doi.org/10.15488/7891
https://doi.org/10.3970/cmc.2012.032.177


118 bibliography

129. Kriegesmann, B., Jansen, E. L. & Rolfes, R. Semi-analytic probabilistic
analysis of axially compressed stiffened composite panels. Composite
Structures 94, 654. issn: 02638223. doi:10.1016/j.compstruct.2011.
08.033 (2012).

130. Wiener, N. The Homogeneous Chaos. American Journal of Mathematics
60, 897. issn: 00029327. doi:10.2307/2371268 (1938).

131. Jha, D. K., Kant, T. & Singh, R. K. A critical review of recent re-
search on functionally graded plates. Composite Structures 96, 833.
issn: 02638223. doi:10.1016/j.compstruct.2012.09.001 (2013).

132. Sobczak, J. J. & Drenchev, L. B. Metal Based Functionally Graded Ma-
terials (eds J. Sobczak, J. & B. Drenchev, L.) isbn: 9781608050383.
doi:10.2174/97816080503831090101 (BENTHAM SCIENCE PUB-
LISHERS, 2009).

133. Ford, R. G. Functionally gradient materials, design, process, and applica-
tions 330. isbn: 9780412607608 (1999).

134. Saleh, B., Jiang, J., Fathi, R., Al-hababi, T., Xu, Q., Wang, L., Song, D.
& Ma, A. 30 Years of functionally graded materials: An overview of
manufacturing methods, Applications and Future Challenges. Com-
posites Part B: Engineering 201, 108376. issn: 13598368. doi:10.1016/j.
compositesb.2020.108376 (2020).

135. Mortensen, A. & Suresh, S. Functionally graded metals and metal-
ceramic composites: Part 1 processing. International Materials Reviews
40, 239. issn: 17432804. doi:10.1179/imr.1995.40.6.239 (1995).

136. Zhang, C., Chen, F., Huang, Z., Jia, M., Chen, G., Ye, Y., Lin, Y.,
Liu, W., Chen, B., Shen, Q., Zhang, L. & Lavernia, E. J. Additive
manufacturing of functionally graded materials: A review. Materials
Science and Engineering A 764, 138209. issn: 09215093. doi:10.1016/j.
msea.2019.138209 (2019).

137. Yin, H. M., Sun, L. Z. & Paulino, G. H. Micromechanics-based elastic
model for functionally graded materials with particle interactions.
Acta Materialia 52, 3535. issn: 13596454. doi:10.1016/j.actamat.2004.
04.007 (2004).

138. Lozano, G. G., Tiwari, A., Turner, C. & Astwood, S. A review on
design for manufacture of variable stiffness composite laminates.
Proceedings of the Institution of Mechanical Engineers, Part B: Journal
of Engineering Manufacture 230, 981. issn: 20412975. doi:10.1177/
0954405415600012 (2016).

https://doi.org/10.1016/j.compstruct.2011.08.033
https://doi.org/10.1016/j.compstruct.2011.08.033
https://doi.org/10.2307/2371268
https://doi.org/10.1016/j.compstruct.2012.09.001
https://doi.org/10.2174/97816080503831090101
https://doi.org/10.1016/j.compositesb.2020.108376
https://doi.org/10.1016/j.compositesb.2020.108376
https://doi.org/10.1179/imr.1995.40.6.239
https://doi.org/10.1016/j.msea.2019.138209
https://doi.org/10.1016/j.msea.2019.138209
https://doi.org/10.1016/j.actamat.2004.04.007
https://doi.org/10.1016/j.actamat.2004.04.007
https://doi.org/10.1177/0954405415600012
https://doi.org/10.1177/0954405415600012


bibliography 119

139. Gurdal, Z. & Olmedo, R. In-plane response of laminates with spatially
varying fiber orientations - Variable stiffness concept. AIAA Journal
31, 751. issn: 0001-1452. doi:10.2514/3.11613 (1993).

140. Khani, A., Ijsselmuiden, S. T., Abdalla, M. M. & Gürdal, Z. Design
of variable stiffness panels for maximum strength using lamination
parameters. Composites Part B: Engineering 42, 546. issn: 13598368.
doi:10.1016/j.compositesb.2010.11.005 (2011).

141. Gürdal, Z., Tatting, B. F. & Wu, C. K. Variable stiffness composite
panels: Effects of stiffness variation on the in-plane and buckling
response. Composites Part A: Applied Science and Manufacturing 39, 911.
issn: 1359835X. doi:10.1016/j.compositesa.2007.11.015 (2008).

142. Wu, Z., Raju, G. & Weaver, P. M. Postbuckling analysis of variable
angle tow composite plates. International Journal of Solids and Structures
50, 1770. issn: 00207683. doi:10.1016/j.ijsolstr.2013.02.001
(2013).

143. Coburn, B. H., Wu, Z. & Weaver, P. M. Buckling analysis of stiff-
ened variable angle tow panels. Composite Structures 111, 259. issn:
02638223. doi:10.1016/j.compstruct.2013.12.029 (2014).

144. Haldar, A., Reinoso, J., Jansen, E. & Rolfes, R. Thermally induced
multistable configurations of variable stiffness composite plates: Semi-
analytical and finite element investigation. Composite Structures 183,
161. issn: 02638223. doi:10.1016/j.compstruct.2017.02.014 (2018).

145. Haldar, A., Groh, R. M., Jansen, E., Weaver, P. M. & Rolfes, R. An
efficient semi-analytical framework to tailor snap-through loads in
bistable variable stiffness laminates. International Journal of Solids and
Structures 195, 91. issn: 00207683. doi:10.1016/j.ijsolstr.2020.02.
018 (2020).

146. Lincoln, R. L., Weaver, P. M., Pirrera, A. & Groh, R. M. Imperfection-
insensitive continuous tow-sheared cylinders. Composite Structures
260, 113445. issn: 02638223. doi:10.1016/j.compstruct.2020.113445
(2021).

147. Nguyen, H. D., Hoang, V. N. & Jang, G. W. Moving morphable
patches for three-dimensional topology optimization with thickness
control. Computer Methods in Applied Mechanics and Engineering 368,
113186. issn: 00457825. doi:10.1016/j.cma.2020.113186 (2020).

https://doi.org/10.2514/3.11613
https://doi.org/10.1016/j.compositesb.2010.11.005
https://doi.org/10.1016/j.compositesa.2007.11.015
https://doi.org/10.1016/j.ijsolstr.2013.02.001
https://doi.org/10.1016/j.compstruct.2013.12.029
https://doi.org/10.1016/j.compstruct.2017.02.014
https://doi.org/10.1016/j.ijsolstr.2020.02.018
https://doi.org/10.1016/j.ijsolstr.2020.02.018
https://doi.org/10.1016/j.compstruct.2020.113445
https://doi.org/10.1016/j.cma.2020.113186


120 bibliography

148. Townsend, S. & Kim, H. A. A level set topology optimization method
for the buckling of shell structures. Structural and Multidisciplinary
Optimization 60, 1783. issn: 16151488. doi:10 . 1007 / s00158 - 019 -
02374-9 (2019).

149. Steltner, K., Kriegesmann, B. & Pedersen, C. B. Robust sizing opti-
mization of stiffened panels subject to geometric imperfections using
fully nonlinear postbuckling analyses. Thin-Walled Structures 175,
109195. issn: 02638231. doi:10.1016/j.tws.2022.109195 (2022).

150. Cox, B. S., Groh, R. M. & Pirrera, A. Nudging Axially Compressed
Cylindrical Panels Toward Imperfection Insensitivity. Journal of Ap-
plied Mechanics, Transactions ASME 86. issn: 15289036. doi:10.1115/1.
4043284 (2019).

151. Minera, S., Patni, M., Pirrera, A. & Weaver, P. Buckling-resistant topo-
logical design using sensitivities to variations in localised nominal
stiffness. Thin-Walled Structures 167, 108150. issn: 02638231. doi:10.
1016/j.tws.2021.108150 (2021).

152. Minera, S. Analysis and Design of Buckling Resistant Thin-Walled Struc-
tures via Computationally Efficient 3D Stress Analysis PhD thesis (Uni-
versity of Bristol, 2019), 230.

153. Doltsinis, I. & Kang, Z. Robust design of structures using optimization
methods. Computer Methods in Applied Mechanics and Engineering 193,
2221. issn: 00457825. doi:10.1016/j.cma.2003.12.055 (2004).

154. Yao, W., Chen, X., Luo, W., Van Tooren, M. & Guo, J. Review of
uncertainty-based multidisciplinary design optimization methods
for aerospace vehicles. Progress in Aerospace Sciences 47, 450. issn:
03760421. doi:10.1016/j.paerosci.2011.05.001 (2011).

155. Papadopoulos, V. & Papadrakakis, M. Finite-element analysis of
cylindrical panels with random initial imperfections. Journal of Engi-
neering Mechanics 130, 867. issn: 07339399. doi:10.1061/(ASCE)0733-
9399(2004)130:8(867) (2004).

156. Papadopoulos, V. & Iglesis, P. The effect of non-uniformity of axial
loading on the buckling behaviour of shells with random imper-
fections. International Journal of Solids and Structures 44, 6299. issn:
00207683. doi:10.1016/j.ijsolstr.2007.02.027 (2007).

https://doi.org/10.1007/s00158-019-02374-9
https://doi.org/10.1007/s00158-019-02374-9
https://doi.org/10.1016/j.tws.2022.109195
https://doi.org/10.1115/1.4043284
https://doi.org/10.1115/1.4043284
https://doi.org/10.1016/j.tws.2021.108150
https://doi.org/10.1016/j.tws.2021.108150
https://doi.org/10.1016/j.cma.2003.12.055
https://doi.org/10.1016/j.paerosci.2011.05.001
https://doi.org/10.1061/(ASCE)0733-9399(2004)130:8(867)
https://doi.org/10.1061/(ASCE)0733-9399(2004)130:8(867)
https://doi.org/10.1016/j.ijsolstr.2007.02.027


bibliography 121

157. Papadopoulos, V., Stefanou, G. & Papadrakakis, M. Buckling analysis
of imperfect shells with stochastic non-Gaussian material and thick-
ness properties. International Journal of Solids and Structures 46, 2800.
issn: 00207683. doi:10.1016/j.ijsolstr.2009.03.006 (2009).

158. Shang, S. & Yun, G. J. Stochastic finite element with material un-
certainties: Implementation in a general purpose simulation pro-
gram. Finite Elements in Analysis and Design 64, 65. issn: 0168874X.
doi:10.1016/j.finel.2012.10.001 (2013).

159. Do, D. M., Gao, K., Yang, W. & Li, C. Q. Hybrid uncertainty analysis
of functionally graded plates via multiple-imprecise-random-field
modelling of uncertain material properties. Computer Methods in Ap-
plied Mechanics and Engineering 368, 113116. issn: 00457825. doi:10.
1016/j.cma.2020.113116 (2020).

160. Scarth, C., Adhikari, S., Cabral, P. H., Silva, G. H. & Prado, A. P. d. Ran-
dom field simulation over curved surfaces: Applications to computa-
tional structural mechanics. Computer Methods in Applied Mechanics and
Engineering 345, 283. issn: 00457825. doi:10.1016/j.cma.2018.10.026
(2019).

161. Pagani, A. & Sanchez-Majano, A. R. Stochastic stress analysis and
failure onset of variable angle tow laminates affected by spatial fibre
variations. Composites Part C: Open Access 4, 100091. issn: 2666-6820.
doi:https://doi.org/10.1016/j.jcomc.2020.100091 (2021).

162. Balokas, G., Czichon, S. & Rolfes, R. Neural network assisted mul-
tiscale analysis for the elastic properties prediction of 3D braided
composites under uncertainty. Composite Structures 183, 550. issn:
02638223. doi:10.1016/j.compstruct.2017.06.037 (2018).

163. Balokas, G., Kriegesmann, B., Czichon, S. & Rolfes, R. Stochastic
modeling techniques for textile yarn distortion and waviness with
1D random fields. Composites Part A: Applied Science and Manufactur-
ing 127. issn: 1359835X. doi:10.1016/j.compositesa.2019.105639
(2019).

164. Balokas, G., Kriegesmann, B. & Rolfes, R. Data-driven inverse uncer-
tainty quantification in the transverse tensile response of carbon fiber
reinforced composites. Composites Science and Technology 211, 108845.
issn: 02663538. doi:10.1016/j.compscitech.2021.108845 (2021).

https://doi.org/10.1016/j.ijsolstr.2009.03.006
https://doi.org/10.1016/j.finel.2012.10.001
https://doi.org/10.1016/j.cma.2020.113116
https://doi.org/10.1016/j.cma.2020.113116
https://doi.org/10.1016/j.cma.2018.10.026
https://doi.org/https://doi.org/10.1016/j.jcomc.2020.100091
https://doi.org/10.1016/j.compstruct.2017.06.037
https://doi.org/10.1016/j.compositesa.2019.105639
https://doi.org/10.1016/j.compscitech.2021.108845


122 bibliography

165. Balokas, G., Kriegesmann, B., Czichon, S. & Rolfes, R. A variable-
fidelity hybrid surrogate approach for quantifying uncertainties in
the nonlinear response of braided composites. Computer Methods in
Applied Mechanics and Engineering 381, 113851. issn: 00457825. doi:10.
1016/j.cma.2021.113851 (2021).

166. Schenk, C. A. & Schuëller, G. I. Buckling analysis of cylindrical
shells with random geometric imperfections. International Journal of
Non-Linear Mechanics 38, 1119. issn: 00207462. doi:10.1016/S0020-
7462(02)00057-4 (2003).

167. Schenk, C. A. & Schuëller, G. I. Buckling analysis of cylindrical shells
with cutouts including random boundary and geometric imperfec-
tions. Computer Methods in Applied Mechanics and Engineering 196, 3424.
issn: 00457825. doi:10.1016/j.cma.2007.03.014 (2007).

168. Alfano, M. & Bisagni, C. Probability-based methodology for buckling
investigation of sandwich composite shells with and without cut-outs.
International Journal of Computational Methods in Engineering Science
and Mechanics 18, 77. issn: 15502295. doi:10.1080/15502287.2016.
1276353 (2017).

169. Schillinger, D., Papadopoulos, V., Bischoff, M. & Papadrakakis, M.
Buckling analysis of imperfect I-section beam-columns with stochastic
shell finite elements. Computational Mechanics 46, 495. issn: 01787675.
doi:10.1007/s00466-010-0488-y (2010).

170. Papadopoulos, V., Soimiris, G. & Papadrakakis, M. Buckling analysis
of I-section portal frames with stochastic imperfections. Engineering
Structures 47, 54. issn: 01410296. doi:10.1016/j.engstruct.2012.09.
009 (2013).

171. Vryzidis, I., Stefanou, G. & Papadopoulos, V. Stochastic stability anal-
ysis of steel tubes with random initial imperfections. Finite Elements
in Analysis and Design 77, 31. issn: 0168874X. doi:10.1016/j.finel.
2013.09.002 (2013).

172. Fina, M., Weber, P. & Wagner, W. Polymorphic uncertainty modeling
for the simulation of geometric imperfections in probabilistic design
of cylindrical shells. Structural Safety 82, 101894. issn: 0167-4730.
doi:10.1016/J.STRUSAFE.2019.101894 (2020).

https://doi.org/10.1016/j.cma.2021.113851
https://doi.org/10.1016/j.cma.2021.113851
https://doi.org/10.1016/S0020-7462(02)00057-4
https://doi.org/10.1016/S0020-7462(02)00057-4
https://doi.org/10.1016/j.cma.2007.03.014
https://doi.org/10.1080/15502287.2016.1276353
https://doi.org/10.1080/15502287.2016.1276353
https://doi.org/10.1007/s00466-010-0488-y
https://doi.org/10.1016/j.engstruct.2012.09.009
https://doi.org/10.1016/j.engstruct.2012.09.009
https://doi.org/10.1016/j.finel.2013.09.002
https://doi.org/10.1016/j.finel.2013.09.002
https://doi.org/10.1016/J.STRUSAFE.2019.101894


bibliography 123

173. Kriegesmann, B., Rolfes, R., Hühne, C., Teßmer, J. & Arbocz, J. Prob-
abilistic Design of Axially Compressed Composite Cylinders With
Geometric and Loading Imperfections. International Journal of Struc-
tural Stability and Dynamics 10, 623. issn: 0219-4554. doi:10.1142/
S0219455410003658 (2010).

174. Meurer, A., Kriegesmann, B., Dannert, M. & Rolfes, R. Probabilis-
tic perturbation load approach for designing axially compressed
cylindrical shells. Thin-Walled Structures 107, 648. issn: 02638231.
doi:10.1016/j.tws.2016.07.021 (2016).

175. Chen, G., Zhang, H., Rasmussen, K. J. & Fan, F. Modeling geometric
imperfections for reticulated shell structures using random field
theory. Engineering Structures 126, 481. issn: 01410296. doi:10.1016/j.
engstruct.2016.08.008 (2016).

176. Stefanou, G., Savvas, D. & Papadrakakis, M. Stochastic finite element
analysis of composite structures based on mesoscale random fields
of material properties. Computer Methods in Applied Mechanics and
Engineering 326, 319. issn: 00457825. doi:10.1016/j.cma.2017.08.002
(2017).

177. Martins, J. R. R. A. & Ning, A. Engineering Design Optimization isbn:
9781108980647. doi:10.1017/9781108980647 (Cambridge University
Press, 2021).

178. Beyer, H. G. & Sendhoff, B. Robust optimization - A comprehensive
survey. Computer Methods in Applied Mechanics and Engineering 196,
3190. issn: 00457825. doi:10.1016/j.cma.2007.03.003 (2007).

179. Marczyk, J. Stochastic multidisciplinary improvement - Beyond opti-
mization. 8th Symposium on Multidisciplinary Analysis and Optimization.
doi:10.2514/6.2000-4929 (2000).

180. Taguchi, G., Chowdhury, S. & Wu, Y. Taguchi’s Quality Engineering
Handbook 1. isbn: 9780470258354. doi:10.1002/9780470258354 (2007).

181. Mourelatos, Z. P. & Liang, J. A methodology for trading-off perfor-
mance and robustness under uncertainty. Journal of Mechanical Design,
Transactions of the ASME 128, 856. issn: 10500472. doi:10.1115/1.
2202883 (2006).

182. Schuëller, G. I. & Jensen, H. A. Computational methods in optimiza-
tion considering uncertainties - An overview. Computer Methods in
Applied Mechanics and Engineering 198, 2. issn: 00457825. doi:10.1016/
j.cma.2008.05.004 (2008).

https://doi.org/10.1142/S0219455410003658
https://doi.org/10.1142/S0219455410003658
https://doi.org/10.1016/j.tws.2016.07.021
https://doi.org/10.1016/j.engstruct.2016.08.008
https://doi.org/10.1016/j.engstruct.2016.08.008
https://doi.org/10.1016/j.cma.2017.08.002
https://doi.org/10.1017/9781108980647
https://doi.org/10.1016/j.cma.2007.03.003
https://doi.org/10.2514/6.2000-4929
https://doi.org/10.1002/9780470258354
https://doi.org/10.1115/1.2202883
https://doi.org/10.1115/1.2202883
https://doi.org/10.1016/j.cma.2008.05.004
https://doi.org/10.1016/j.cma.2008.05.004


124 bibliography

183. Spall, J. C. in Handbook of Computational Statistics 173 (Springer Berlin
Heidelberg, Berlin, Heidelberg, 2012). isbn: 9783642215513. doi:10.
1007/978-3-642-21551-3_7.

184. Schevenels, M., Lazarov, B. S. & Sigmund, O. Robust topology op-
timization accounting for spatially varying manufacturing errors.
Computer Methods in Applied Mechanics and Engineering 200, 3613. issn:
00457825. doi:10.1016/j.cma.2011.08.006 (2011).

185. Lazarov, B. S., Wang, F. & Sigmund, O. Length scale and manufac-
turability in density-based topology optimization. Archive of Applied
Mechanics 86, 189. issn: 14320681. doi:10.1007/s00419-015-1106-4
(2016).

186. Lazarov, B. S., Schevenels, M. & Sigmund, O. Topology optimization
with geometric uncertainties by perturbation techniques. International
Journal for Numerical Methods in Engineering 90, 1321. doi:10.1002/nme
(2012).

187. Lazarov, B. S., Schevenels, M. & Sigmund, O. Topology optimization
considering material and geometric uncertainties using stochastic
collocation methods. Structural and Multidisciplinary Optimization 46,
597. issn: 1615147X. doi:10.1007/s00158-012-0791-7 (2012).

188. Kharmanda, G., Olhoff, N., Mohamed, A. & Lemaire, M. Reliability-
based topology optimization. Structural and Multidisciplinary Opti-
mization 26, 295. issn: 1615147X. doi:10.1007/s00158-003-0322-7
(2004).

189. Jansen, M., Lombaert, G. & Schevenels, M. Robust topology opti-
mization of structures with imperfect geometry based on geometric
nonlinear analysis. Computer Methods in Applied Mechanics and Engi-
neering 285, 452. issn: 00457825. doi:10.1016/j.cma.2014.11.028
(2015).

190. Crane, K., Weischedel, C. & Wardetzky, M. The Heat Method for
Distance Computation. Communications of the ACM 60, 90. issn: 0001-
0782 (print), 1557-7317 (electronic). doi:0.1145/3131280 (2017).

191. Lazarov, B. S. & Sigmund, O. Filters in topology optimization based
on Helmholtz-type differential equations. International Journal for
Numerical Methods in Engineering 86, 765. issn: 00295981. doi:10.1002/
nme.3072 (2011).

https://doi.org/10.1007/978-3-642-21551-3_7
https://doi.org/10.1007/978-3-642-21551-3_7
https://doi.org/10.1016/j.cma.2011.08.006
https://doi.org/10.1007/s00419-015-1106-4
https://doi.org/10.1002/nme
https://doi.org/10.1007/s00158-012-0791-7
https://doi.org/10.1007/s00158-003-0322-7
https://doi.org/10.1016/j.cma.2014.11.028
https://doi.org/0.1145/3131280
https://doi.org/10.1002/nme.3072
https://doi.org/10.1002/nme.3072


bibliography 125

192. Van den Broek, S., Jansen, E. & Rolfes, R. Efficient generation of
geodesic random fields in finite elements with application to shell
buckling. Thin-Walled Structures 179, 109646. issn: 02638231. doi:10.
1016/j.tws.2022.109646 (2022).

193. Van den Broek, S., Minera, S., Pirrera, A., Weaver, P. M., Jansen, E.
& Rolfes, R. Enhanced deterministic performance of panels using
stochastic variations of geometry and material. AIAA Journal 58, 2307.
issn: 00011452. doi:10.2514/1.J058962 (2020).

194. Van den Broek, S., Wolff, J., Scheffler, S., Hühne, C. & Rolfes, R.
Improving the fatigue life of printed structures using stochastic vari-
ations. Progress in Additive Manufacturing. issn: 2363-9520. doi:10.
1007/s40964-022-00296-5 (2022).

195. Van den Broek, S., Minera, S., Jansen, E. & Rolfes, R. Robust im-
provement of the asymmetric post-buckling behavior of a composite
panel by perturbing fiber paths. Composite Structures 270, 114011. issn:
02638223. doi:10.1016/j.compstruct.2021.114011 (2021).

196. Sun, Y., Hanhan, I., Sangid, M. D. & Lin, G. Predicting mechanical
properties from microstructure images in fiber-reinforced polymers
using convolutional neural networks. arXiv, 1. issn: 23318422. doi:10.
48550/arXiv.2010.03675 (2020).

197. Giovanis, D. G. & Papadopoulos, V. Spectral representation-based
neural network assisted stochastic structural mechanics. Engineering
Structures 84, 382. issn: 1873-7323. doi:10.1016/j.engstruct.2014.
11.044 (2015).

https://doi.org/10.1016/j.tws.2022.109646
https://doi.org/10.1016/j.tws.2022.109646
https://doi.org/10.2514/1.J058962
https://doi.org/10.1007/s40964-022-00296-5
https://doi.org/10.1007/s40964-022-00296-5
https://doi.org/10.1016/j.compstruct.2021.114011
https://doi.org/10.48550/arXiv.2010.03675
https://doi.org/10.48550/arXiv.2010.03675
https://doi.org/10.1016/j.engstruct.2014.11.044
https://doi.org/10.1016/j.engstruct.2014.11.044




C U R R I C U L U M V I TA E

personal data

Name Sander Friso van den Broek
Date of Birth May 26, 1987

Place of Birth Amsterdam, the Netherlands
Citizen of Netherlands & United States

education

2006 – 2010 Hogeschool van Amsterdam,
Amsterdam, the Netherlands
Final degree: Bachelor of Engineering

2010 – 2013 Technische Universiteit Delft
Delft, the Netherlands
Final degree: Master of Science

2016 – 2023 Leibniz University Hannover
Hannover, Germany
Final degree: Doktor-Ingenieur

employment

Jan 2014 – Jan
2016

R&D Engineer
Allseas Engineering B.V.,
Delft, the Netherlands

April 2016

– Sep 2020

Research Assosciate
Leibniz University Hannover,
Hannover, Germany

June 2021 – Research Assosciate
University of Bristol,
Bristol, United Kingdom

127





D I S S E M I N AT I O N

Articles in peer-reviewed journals:

1. van den Broek, S., Jansen, E. & Rolfes, R. Efficient generation of
geodesic random fields in finite elements with application to shell
buckling. Thin-Walled Structures 179, 109646. issn: 0263-8231. doi:10.
1016/j.tws.2022.109646 (2022).

2. Van den Broek, S., Wolff, J., Scheffler, S., Hühne, C. & Rolfes, R.
Improving the fatigue life of printed structures using stochastic vari-
ations. Progress in Additive Manufacturing. issn: 2363-9520. doi:10.
1007/s40964-022-00296-5 (2022).

3. Van den Broek, S., Minera, S., Jansen, E. & Rolfes, R. Robust im-
provement of the asymmetric post-buckling behavior of a composite
panel by perturbing fiber paths. Composite Structures 270, 114011. issn:
02638223. doi:10.1016/j.compstruct.2021.114011 (2021).

4. Van den Broek, S., Minera, S., Pirrera, A., Weaver, P. M., Jansen, E.
& Rolfes, R. Enhanced Deterministic Performance of Panels Using
Stochastic Variations of Geometry and Material. AIAA Journal, 1. issn:
0001-1452. doi:10.2514/1.J058962 (2020).

Book chapters:

5. Van den Broek, S., Minera, S., Jansen, E., Pirrera, A., Weaver, P. M.
& Rolfes, R. in Advances in Predictive Models and Methodologies for
Numerically Efficient Linear and Nonlinear Analysis of Composites (ed
Petrolo, M.) 143 (Springer International Publishing, Cham, 2019).
isbn: 978-3-030-11969-0. doi:10.1007/978-3-030-11969-0_9.

Invited talks:

6. Van den Broek, S., Patni, M., Hii, A., Weaver, P., Greaves, P. & Pir-
rera, A. Structural analysis of horizontal-axis wind turbine blades Invited
lecture. Jiangsu, China: Jiangsu University of Technology, 2023.

Conference contributions:

7. Van den Broek, S., Patni, M., Hii, A., Weaver, P., Greaves, P. & Pirrera,
A. Nonlinear Analysis of Wind Turbine Blades Using Finite Elements
with Anisotropic Variable Kinematics in AIAA SCITECH 2023 Forum
(National Harbor, MD, USA, 2023). doi:10.2514/6.2023-1921.

129

https://doi.org/10.1016/j.tws.2022.109646
https://doi.org/10.1016/j.tws.2022.109646
https://doi.org/10.1007/s40964-022-00296-5
https://doi.org/10.1007/s40964-022-00296-5
https://doi.org/10.1016/j.compstruct.2021.114011
https://doi.org/10.2514/1.J058962
https://doi.org/10.1007/978-3-030-11969-0_9
https://doi.org/10.2514/6.2023-1921


130 dissemination

8. Van den Broek, S., Patni, M., Hii, A., Greaves, P., Weaver, P. & Pir-
rera, A. Three-dimensional Stress Fields in Tapered Laminated Composites
with Internal Ply Drops in Proceedings of the 15th World Congress on
Computational Mechanics (Yokohama, Japan, 2022).

9. Van den Broek, S., Patni, M., Hii, A., Greaves, P., Weaver, P. & Pir-
rera, A. Nonlinear 3D analysis of laminated composite structures using
variable kinematics elements in Proceedings of the 8th European Congress
on Computational Methods in Applied Sciences and Engineering (Oslo,
Norway, 2022).

10. Van den Broek, S., Minera, S., Pirrera, A., Weaver, P. M., Jansen, E. L. &
Rolfes, R. Enhanced Deterministic Performance of Panels Using Stochastic
Variations of Geometric and Material Parameters in Proceedings of the 2019
AIAA Science and Technology Forum and Exposition (San Diego, CA,
USA, 2019). doi:10.2514/6.2019-0511.

11. Van den Broek, S., Jansen, E., Minera, S., Weaver, P. M. & Rolfes, R.
Effect of spatially varying material properties on the post-buckling behaviour
of composite panels utilising geodesic stochastic fields in Proceedings of
the 6th Aircraft Structural Design conference (Bristol, United Kingdom,
2018).

12. Van den Broek, S., Jansen, E. L. & Rolfes, R. Effect of random spatial
stiffness variations on the post- buckling behavior of layered structures in
Proceedings of the First International Conference on Mechanics of Advanced
Materials and Structures (Turin, Italy, 2018), 86.

13. Van den Broek, S., Jansen, E. L., Rahman, T. & Rolfes, R. Post-buckling
behavior of a composite panel with spatially varying stochastic material
parameters using Koiter’s initial post-buckling method in ICCS20 - 20th
International Conference on Composite Structures (Paris, France, 2017), 6.

14. Van den Broek, S., Jansen, E. L., Rahman, T. & Rolfes, R. Effect of spa-
tially varying stochastic material properties on the post- buckling behavior
of composite panels using a reduced order model in ECCOMAS Thematic
Conference on the Mechanical Response of Composites (Eindhoven, the
Netherlands, 2017).

15. Jansen, E. L., van den Broek, S. & Rolfes, R. Modal Interaction and
Mode Switching in Post- buckling Analysis of Plates Using a Multi-mode
Finite Element Based Reduced Order Model in ICCS19 19th International
Conference on Composite Structures (Porto, Portugal, 2016), 162.

Reviewer for the following journals:

https://doi.org/10.2514/6.2019-0511


dissemination 131

1. Composite Structures

2. Frontiers in Materials - Mechanics of Materials

3. Thin-Walled Structures





M I T T E I L U N G E N D E S I N S T I T U T S F Ü R S TAT I K U N D
D Y N A M I K D E R L E I B N I Z U N I V E R S I TÄT H A N N O V E R

1

R. Rolfes/

C. Hühne
Eröffnungskolloquium (Tagungsband) 2005

2

H. Rothert/

M. Kaliske/

L. Nasdala

Entwicklung von Materialmodellen zur Alterung von
Elastomerwerkstoffen unter besonderer Berücksichti-
gung des Sauerstoffeinflusses (DFG-Abschlußbericht)

2005

3 L. Nasdala Simulation von Materialinelastizitäten bei Nano-,
Mikro- und Makrostrukturen – Stabilitätsprobleme,
Schädigungs- und Alterungsprozesse bei Kohlenstoff-
nanoröhren und Elastomerwerkstoffen (Habilitationss-
chrift)

2005

4 C. Hühne Robuster Entwurf beulgefährdeter, unversteifter
Kreiszylinderschalen aus Faserverbundwerkstoff
(Dissertationsschrift)

2006

5

L. Nasdala/

K.-U. Schröder
Finite Element Applications in Structural Analysis (Skript
zur Hörsaalübung)

2006

6 Klausuraufgabensammlung, 4. Auflage 2007

7

R. Rolfes/

W.-J. Gerasch/

D. Rotert

Vorlesung Tragwerksdynamik 2007

8

K.-H. Elmer/

K. Betke/

Th. Neumann

Standardverfahren zur Ermittlung und Bewertung der
Belastung der Meeresumwelt durch die Schallimmission
von Offshore-Windenergieanlagen (Abschlussbericht
zum BMU-Forschungsvorhaben)

2007

9 K.-U. Schröder Zur nichtlinearen Berechnung von Stahlbeton- und Ver-
bundbauteilen (Dissertationsschrift)

2007

10 G. Ernst Multiscale Analysis of Textile Composites – Stiffness and
Strength (Dissertationsschrift)

2008

11 G. Haake Systemidentifikation mit Autoregressiven Modellen und
Validierung numerischer Strukturmodelle bei Offshore-
Windenergieanlagen (Dissertationsschrift)

2010

12 T. Grießmann Dynamisches Tragverhalten von Stahlbetonbiegebalken
im Experiment und in der Simulation (Dissertationss-
chrift)

2011

133



134 mitteilungen des instituts für statik und dynamik

13 S. Zerbst Global Approach for Early Damage Detection on Rotor
Blades of Wind Energy Converters (Dissertationsschrift)

2011

14 N. Wieczorek Semiaktive Schwingungsdämpfung leichter Fußgänger-
brückenkonstruktionen (Dissertationsschrift)

2011

15 B. Kriegesmann Probabilistic Design of Thin-Walled Fiber Composite
Structures (Dissertationsschrift)

2012

16 J. Reetz Schadensdiagnose an Tragstrukturen von Winden-
ergieanlagen mit der Multiparameter-Eigenwertproblem-
Methode (Dissertationsschrift)

2012

17

R. Rolfes/

D. Rotert
Vorlesung Baustatik 2012

18

R. Rolfes/

D. Rotert
Vorlesung Stabtragwerke 2012

19 H. Krüger Ein physikalisch basiertes Ermüdungsschädigungsmod-
ell zur Degradationsberechnung von Faser-Kunststoff-
Verbunden (Dissertationsschrift)

2012

20 S. Czichon Multi scale Failure Analysis of Fibre Reinforced Polymers
with production induced Porosity Defects (Dissertation-
sschrift)

2013

21 T. Pahn Inverse Load Calculation for Offshore Wind Turbines
(Dissertationsschrift)

2013

22

M. Fricke/

B. Neddermann/

A. Lübben/

J. Gabriel

Realistische Hydroschallszenarien auf der Basis von Prog-
nosemodellen und Monitoring für den Bau von Offshore-
Windparks in der deutschen Nordsee („HyproWind“)
(Abschlussbericht zum BMU-Forschungsvorhaben)

2014

23 M. Vogler Anisotropic Material Models for Fiber Reinforced Poly-
mers (Dissertationsschrift)

2014

24 M. Fricke Ein physikalisch basiertes Gesamtmodell für hy-
droakustische Immissionsprognosen bei Offshore-
Pfahlrammungen (Dissertationsschrift)

2015

25 M. Häckell A holistic evaluation concept for long-term structural
health monitoring (Dissertationsschrift)

2015

26 J. Rustemeier Optimierung von Blasenschleiern zur Minderung von
Unterwasser-Rammschall (Dissertationsschrift)

2016

27 S. Hühne A two-way loose coupling procedure for buckling and
damage analysis of composite structures (Dissertationss-
chrift)

2016

28 A. Meurer Filtering Geometric Imperfection Patterns for Analysis
and Design of Composite Shell Structures (Dissertation-
sschrift)

2017



mitteilungen des instituts für statik und dynamik 135

29 A. Dean Material Modeling of Short Fiber Reinforced Polymeric
Composites: Theory, Numerical Aspects, and Applica-
tions (Dissertationsschrift)

2017

30 M. Bishara Compressive Failure of Polymer Composites Including
Fiber Kinking and Interaction of Failure Mechanisms
(Dissertationsschrift)

2017

31 K. Schröder Advanced Model Updating Strategies for Structural Dy-
namic Systems (Dissertationsschrift)

2018

32 S. Tsiapoki Transmissibility-Based Monitoring and Combination of
Damage Detection Decisions within a Holistic Structural
Health Monitoring Framework (Dissertationsschrift)

2018

33 S. R. Nabavi Failure analysis of polycrystalline silicon-based pho-
tovoltaic modules considering the effects of residual
stresses and mechanical loading (Dissertationsschrift)

2018

34 S. Scheffler Ein neuer Modellierungsansatz zur systematischen nu-
merischen Untersuchung des Versagensverhaltens von
Verbindungen in FVK (Dissertationsschrift)

2018

35 J. Häfele A numerically efficient and holistic approach to design
optimization of offshore wind turbine jacket substruc-
tures (Dissertationsschrift)

2019

36 C. Hübler Efficient probabilistic analysis of offshore wind turbines
based on time-domain simulations (Dissertationsschrift)

2019

37 M. Akterskaia Global-local progressive failure analysis of composite
panels including skin-stringer debonding and intralami-
nar damage (Dissertationsschrift)

2019

38 C. Gebhardt Robust computational procedures for the nonlinear dy-
namic analysis of beam and shell structures (Habilitation-
sschrift)

2020

39 A. Haldar Multistable morphing structures using variable stiffness
laminates (Dissertationsschrift)

2020

40 R. Unger Multi-scale constitutive modelling of nanoparticle/epoxy
nanocomposites: Molecular simulation-based methods
and experimental validation (Dissertationsschrift)

2020

41 J. Fankhänel A Multi-Scale Framework for Nanocomposites including
Interphase and Agglomeration Effects (Dissertationss-
chrift)

2020

42 N. Penner Monitoring ambient angeregter baudynamischer Systeme
durch mehrschichtige Perzeptren (Dissertationsschrift)

2021

43 C. Gerendt A finite element-based continuum damage model for
mechanical joints in fiber metal laminates under static
and fatigue loading: Theory and experimental validation
(Dissertationsschrift)

2022



136 mitteilungen des instituts für statik und dynamik

44 M. Brod Damage prediction of unidirectional fiber composites
under cyclic loading with different amplitudes (Disserta-
tionsschrift)

2022

45 R. Berger Multi-Objective Structural Optimization of Repairs of
Blisk Blades (Dissertationsschrift)

2022

46 G. Balokas Metamodel-based uncertainty quantification for the me-
chanical behavior of braided composites (Dissertationss-
chrift)

2022

47 S. Wernitz Damage Localization in Data-Driven Vibration-Based
Structural Health Monitoring Using Linear Quadratic
Estimation Theory (Dissertationsschrift)

2022

48 B. Daum On the computational analysis of microbuckling via
mesoscale approaches (Habilitationsschrift)

2022

49 N. Safdar A Stochastic Failure Investigation of Composites un-
der Combined Compression-Shear Loads (Dissertationss-
chrift)

2022

50 S. van den Broek Tailoring Structures Using Stochastic Variations of Struc-
tural Parameters (Dissertationsschrift)

2023


	Eidesstattliche Versicherung
	Abstract

	Abstract
	Zusammenfassung

	Zusammenfassung
	Acknowledgements
	Contents

	List of Figures
	List of Figures

	1 Introduction
	1.1 Background and motivation
	1.2 Literature survey
	1.2.1 Variations due to manufacturing of thin-walled structures
	1.2.2 Stochastic Finite Element Analysis
	1.2.3 Tailoring thin-walled structures
	1.2.4 Sensitivity and robustness analysis of structures

	1.3 Research aims and objectives
	1.4 Structure of thesis

	2 Paper A: Generating geodesic fields
	3 Paper B: Enhancing Structures
	4 Paper C: Improving fatigue life of printed structures
	5 Paper D: Robust buckling load improvement of a comp. structure
	6 Summary and Future Work
	6.1 Summary
	6.2 Future work

	 Bibliography
	Curriculum Vitae
	 Curriculum Vitae
	Publications

	 Dissemination
	 Mitteilungen des Instituts für Statik und Dynamik der Leibniz Universität Hannover

